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Abstract The dark energy problem is analyzed from the viewpoint of the time-varying cosmological term. It is demon-
strated that, at least within the scope of the holographic principle, an experimental value of the vacuum energy density may be
derived and may be tested quite well with a new small parameter arising in a quantum theory with the fundamental length on
the order of Planck’s length. Besides, within a theory proclaiming the existence of such fundamental length a high-energy
deformation of the General Relativity for the space with horizon has been constructed. The obtained results have been applied
to solving of the dark energy problem, making it possible to frame the following hypothesis: a dynamic cosmological term is
a measure of deviation from a thermodynamic identity (the first law of thermodynamics) of the high-energy (Planck’s) de-
formation of Einstein equations for horizon spaces in their thermodynamic interpretation.
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1. Introduction

The cosmological constant A is presently the most
probable candidate for a role of dark energy. However, more
and more researchers arrive at the idea that A is a dynamic
quantity A = A(#) [1-3] rather than a constant. The idea is
also supported by the inflation models pointing to the fact
that in the early Universe the quantity was enormous[4],
whereas this is evidently not so for the present-day Universe.
Ifthis is really the case, we have to appreciate time variations
of this quantity and to realize why its current value conforms
to the observable.

It should be recalled that in the initial calculations of A
with the use of a quantum field theory (QFT) it was cut-off at
large (Planck) momenta[5,6] and, actually, implicitly it was
QFT with the fundamental length on the order of Planck’s
l,.

On the other hand, in the last decade numerous works
devoted to a Quantum Field Theory (QFT) at Planck’s
scale[7-9] have been published(of course, the author has no
pretensions of being exhaustive in his references). This in-
terest stems from the facts that (i) at these scales it is ex-
pected to reveal the effects of a Quantum Gravity (QG), and
this still unresolved theory is intriguing all the researchers
engaged in the field of theoretical physics; (ii)) modern ac-
celerators, in particular LHC, have the capacity of achieving
the energies at which some QG effects may be exhibited.
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Planck’s scales undergoes changes associated with the
appearance of additional parameters related to a minimal
length (on the order of the Planck’s length). As this takes
place, the corresponding parameters are naturally considered
as deformation parameters, i.e. the related quantum theories
are considered as a high-energy deformation (at Planck’s
scales) of the well-known quantum field theory. The de-
formation is understood as an extension of a particular theory
by inclusion of one or several additional parameters in such a
way that the initial theory appears in the limiting transi-
tion[10].

The present work is a natural continuation of the previous
papers of the author. The idea that a quantum theory at the
Planck scales must involve the fundamental length has been
put forward in the works devoted to a string theory fairly a
long time ago[11]. But since it is still considered to be a
tentative theory, some other indications have been required.
Fortunately, by the present time numerous publications have
suggested the appearance of the fundamental length in the
Early Universe with the use of various approaches[12—15].
Of particular importance is the work[12], where on the basis
of a simple gedanken experiment it is demonstrated that,
with regard to the gravitational interactions (Planck’s scales)
exhibited in the Early Universe only, the Heisenberg Un-
certainty Principle should be extended to the Generalized
Uncertainty Principle[11-15]that in turn is bound to bring
forth the fundamental length on the order of Planck’s length.
The advent of novel theories in physics of the Early Universe
is associated with the introduction of new parameters, i.e.
with a deformation of the well-known theories. Of course, in
this case Heisenberg Algebra is subjected to the corre-
sponding deformation too. Such a deformation may be based
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on the Generalized Uncertainty Principle (GUP)[16-18] as
well as on the density matrix deformation[19-29].

At the same time, the above-mentioned new deformation
parameters so far have not appeared in gravity despite the
idea that they should. The situation is that no evident efforts
have been undertaken to develop the high-energy (Planck’s
scale) gravity deformations including the deformation pa-
rameters introduced in a Quantum Theory of the Early
Universe.

In this paper, with GUP held true, the possibility for the
high-energy gravity deformation is considered for a specific
case of Finstein’s equations. As this takes place, the pa-
rameter « appearing in the Quantum Field Theory (QFT)
with the UV cut off (fundamental length) produced by the
density matrix deformation is used. There is no discrepancy
of any kind as the deformation parameter in the GUP- pro-
duced Heisenberg algebra deformation is quite naturally
expressed in terms of « , and this will be shown later (Sec-
tion 3). Besides, by its nature, « is better applicable to
study the high-energy deformation of General Relativity
because it is small, dimensionless (making series expansion
more natural), and the corresponding representation of the
Einstein’s equations in its terms or its deformation appear
simple. Structurally, the paper is as follows. Section 2 pre-
sents a short discussion o the notion of a dynamic cosmo-
logical term and also the general problem statement associ-
ated with its connection to the dark energy problem. In Sec-
tion 3 the approaches to the deformation of a quantum theory
at the Planck scales are briefly reviewed. In Section 4 the
possibilities for derivation of a modern value of the dark
energy in the assumption of the existing dynamic cosmo-
logical term A(¢) are analyzed using the standard approach
to the cosmological constant A [5,6]. It is shown that only
the validity of the holographic principle gives the required
result. This Section is mainly based on the author’s re-
sults[30,31]. In Section 5 it is shown how to interpret quan-
tum corrections for the thermodynamic characteristics of
black holes considering the deformation of a theory with the
fundamental length[31]. Essentially new results are pre-
sented in Sections 5 and 6. A thermodynamic description of
the General Relativity is used. The possibility for the high
energy deformation of Einstein’s equations is discussed
within the scope of both equilibrium thermodynamics and
non-equilibrium thermodynamics. In the latter case the ap-
proach is contemplated only in terms of a nature of the
cosmological term. Moreover, in this case a more precise
definition for the dependence of this term on the deformation
parameter is possible. In Section 7 the derived results are
applied to solve the dark energy problem. Based on the re-
sults obtained, in Conclusion the following hypothesis is
framed: a dynamic cosmological term is a measure of de-
viation from the thermodynamic identity (the first law of
thermodynamics) of the high-energy (Planck’s) deformation
of Einstein equations for horizon spaces in their thermody-
namic interpretation.

2. Dark Energy and Dynamical
Cosmological Term

The dark matter problem[32], along with the dark energy
problem[33], is presently the basic problem in modern fun-
damental physics, astrophysics, and cosmology. Whereas for
a nature of the first real hypotheses have been accepted al-
ready[34], the dark energy still remains enigmatic[35-38].
But it is the opinion of most researchers that dark energy
represents the energy of the cosmic vacuum, its density being
associated with the cosmological term A in Einstein’s
equation[5,6,39]. In this respect an important reservation
must be made — the point is that most common is the term
cosmological constant. Actually, due to the Bianchi identi-
ties[40]

v,G*, =0 (1)
where G*, — Einstein equations
4
Gh =R, —L5u g=STG (A sl ()
2 c 3zG

the energy-momentum tensor 7% (energy-momentum

density tensor) remains covariantly valid
v, 1%, =0 3)

From whence it directly follows that the cosmological
term A is a constant.

But, as has been rightly noted in several publications
(e.g.,[1-3]), conservation laws (3) are only regulating the
energy-momentum exchange between the field sources and
gravitational field and are liable to be violated if an inde-
pendent energy source is existent in the Universe. Such a
source may be associated with a time-varying cosmological
term. So, in this case it is reasonable to consider A = A(?).

Then the Bianchi identity (1) is replaced by the "general-
ized Bianchi identity"[2]

v, [T, + A%, =0 (4)

where A* =g,0", is some energy-momentum tensor

(referred to as the dark energy-momentum tensor [2]) related
to the cosmological term, where

c*A

&G

is the corresponding energy density.

We are not interested in a diversity of the cosmological
models involving the dynamic cosmological term A =A(z)
and different relationships between A and ¢ . Rather de-
tailed references to such models have been made in the the-
siswork[41]. Of interest is the problem: how can we obtain
the observable value of A=A knowing that A is de-
pendenton ¢.

Ep

)
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3. Quantum Theory at Planck’s Scale
and Universal Deformation
Parameter

In the last twenty years the researchers have come to the

understanding that studies of the Early Universe physics
(extremely high — Planck’s energies) necessitate changes in
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the fundamental physical theories, specifically quantum
mechanics and quantum field theory. Inevitably a funda-
mental length should be involved in these theories[14—17].
This idea has been first suggested by a string theory[11]. But
it is still considered to be a tentative theory without the ex-
perimental status and merely an attractive model. However,
the fundamental length has been involved subsequently in
more simple and natural considerations[12].

The main approach to framing of Quantum Mechanics
with fundamental length (QMFL) and Quantum Field The-
ory with fundamental length (QFTFL) (or with Ultraviolet
(UV) cutoff) is that associated with the Generalized Uncer-
tainty Principle (GUP)[11-18]:

NP3 4 ©6)
Ap h

with the corresponding Heisenberg algebra deformation
produced by this principle[16—18].

Besides, in the works by the author[19-28] an approach to
the construction of QMFL has been developed with the help
of the deformed density matrix, the density matrix deforma-
tion in QMFL being a starting object called the density
pro-matrix p(a)3 and deformation parameter (additional
parameter)

a=10,/x (7)

scale, [/ ~/[ and

min P

where x is the measuring
0<a<1/4[19-25].

The explicit form of the above-mentioned deformation
gives the exponential ansatz

pr(@)=exp(-a)y o, i ><i]| @®)

where all @, >0 are independent of « and their sum is
equal to 1.

In the corresponding deformed Quantum Theory (denoted
as QFT*) for average values we have

<B>,=exp(-a)< B> 9)

where < B> - average in well-known QFT[24,25]. All
the variables associated with the considered & - deformed
quantum field theory are hereinafter marked with the upper
index “.

Note that the deformation parameter ¢ is absolutely
naturally represented as a ratio between the squared UV and
IR limits

uv .,
a=(7) (10)

where UV is fixed and IR is varying.

It should be noted[29] that in a series of the author’s
works[19-28] a minimal & -deformation of QFT has been
formed. By “minimal” it is meant that no space-time non-
commutativity was required, i.e. there was no requirement
for noncommutative operators associated with different
spatial coordinates

[X,, X, ]#0,i# ] an

However, all the well-known deformations of QFT asso-

ciated with GUP (for example[16—18]) contain (11) as an

element of the corresponding deformed Heisenberg algebra.
Because of this, it is necessary to extend (or modify) the

above-mentioned minimal « -deformation of QFT — QFT*
[19-28] to some new deformation QF7” compatible with

GUP, as it has been noted in[29]. We can easily show that
QFT parameter of deformations associated with GUP may be
expressed in terms of the parameter « that has been intro-
duced in the approach associated with the density matrix
deformation[30,31]. Here the notation 0f[42] is used. Then

[%,p]l=ih(1+B° p°+..) (12)
and
Ax = Ip 1, (13)
Then from (12), (13) it follows that B ~1/p*, and for
~1,, B corresponding to x,; is nothing else but
B~1/P,

where P, is Planck’s momentum: P, =h/1,.

X

min

(14)

In this way £ is changing over the following interval:
Al sz, <f<w (15)
where A is a numerical factor and the second member in

(12) is accurately reproduced in momentum representation

(up to the numerical factor) by
2 2 2 2 2 2
a=1L, /1"~ /I"=p" /P,

min

[%, Bl=ih(l+ f° p*+..) = ih(l + q,a + a,a” +...) (16)

4. Dynamical Cosmological Term and Its
Modern Value

As is known, a direct calculation of the vacuum energy
density p,,. results in the value that is higher than the ex-
perimental one by a factor of 10" . According to the typical
reasoning that is already “canonical” we have[5,6,43]:

,,,,, 4rzp’
<P >=2[" dp L ho
0 Q2zny 2

is the momentum cut-off at Planck

7)
where p,. ~P,
scales, because the General Relativity is valid right up to the
Planck scales. Proceeding from p=(fiw/c), we can ob-
tain[43]

4

P (18)
And then Q isgivenby Q, , where
hcs 1/2

hQ, =E, = [G} (19)

But it is known that < p, > is higher than the observable

value p°* [6,43] approximately by a factor of 10" .

Yet, taking the cosmological term as a dynamic quantity,
we can write (17) as

2
<pu>=2[" ap L he

(20)
0 Qrzh)y 2
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that in the very early Universe, at the time close to the
Planck’s time ¢,, turns to (17) as follows:

4rp* ho

Qzh)y 2
However, it is known that the experimental value p? is

vac

@n

P,
< Puclt,)>=2[" dp

sooner determined by low momenta and energies (corre-
sponding to large scales) and also by the infrared limit that is
given by a radius of the measurable part of the Universe

R, =10%cm . For such momenta by the uncertainty princi-
ple (17) we have
< Palty)>=2[ " dp AT RO (o)
0 Qrhy 2
where 1, —Universe life-time, p,, —'minimal" mo-
mentum.

As Ry, /l,=P,/p,, =10, then by analogy (18)and in

the infrared limit
Q‘:m'n
8z%c? 23)

< pvac (tUm'v) >=

where
nQ

But in this case p,, (1,

from(17) by a factor of 10** rather than by a factor of 10'*.
This result is easily obtained using the Uncertainty Prin-
ciple for the pair of conjugate variables (A,V) ,[44—47]:
N (25)
AA
where A is the dynamic cosmological term, ¥ is the
space-time volume. And ¥ results from the Einstein- Hil-
bert action S, [45]:

=F

min

min (24)
) is lower than p, calculated

AfduJT§=AV
where (26) is the term in S, .
In[30,31] the Uncertainty Principle (25) has been gener-
alized at Planck scales up to the Generalized Uncertainty
Principle

(26)

h ., aAA
AV v —+ P —
an YTy

where V - spatial part J that, as is assumed, may be
extracted explicitly.

(27) is of interest from the viewpoint of two limits[30,31]:

1) IR - limit: ¢ — o0

2) UV - limit: ¢ —¢

In the case of IR-limit we have large volumes ¥ and »
at low AA . Because of this, the main contribution on the

27

min *

right-hand side of (27) is made by the first term, as great V
in the second term is damped by small 7, and AA . Thus,

we derive at

limAVzi
1> AA

(28)

in accordance with (25) and A is a dynamic value fluc-
tuating around zero.
And for the case 2) AA becomes significant

T — 3. q: _ _ 3
tlgn Vb~ V,= lp,fli{n V=V,.,~V, =0t (29)

rrrrrrrrrrr

As a result, we have
. AA
e AA n
where the parameter «, absorbs all the above-mentioned
proportionality coefficients.

For (30), AA~A,=n/V,=E,/y,.

(30)

It is easily seen that in this case A ~m,, in agreement

with the value obtained using a standard (i.e. without su-
per-symmetry and the like) quantum field theory[6,5]. De-
spite the fact that A at Planck’s scales (referred to as A, )

(30) is also a dynamic quantity, it is not directly related to
well-known A (25),(28) (called A, ) because the latter, as

opposed to the first one, is derived from Einstein’s equations
(31

However, Einstein’s equations (31) are not valid at the
Planck scales and hence A, may be considered as some

R, —% g, R=87G,(-Ag,, +T,,)

high-energy generalization of the conventional cosmological
constant, leading to A, in the low-energy limit.

As V ~1tr ~1*, where [-characteristic linear dimension
it is directly inferred that in the infrared region A, calcu-
/1 =10,
that is in a perfect agreement with the result obtained by the
direct calculations at the beginning of this Section.

In other words, a quantum field theory with UV-cutoff in

the assumption that A is a dynamic quantity gives no cor-
rect value for A as well.

lated for /=R, is lower than A, in ~R}

Univ

observ

In this way, similar to[48,49], we obtain

Ape = m (32)

where A,, =A — cosmological term corresponding to

observ
the observable value.

Now we demonstrate that the Holographic Princi-
ple[50-53] is helpful in the solution of this problem, the
deformation parameter « (7)’testing” variations of p . in
time and hence playing the critical role.

In terms of the deformation parameter «, the principal
values of the Vacuum Energy Problem may be simply and
clearly defined. Let us begin with the Schwarzschild black
holes, whose semiclassical entropy is given by

S=nRs, 1} =R, m, = may (33)

with the assumption that in the formula for ¢ R, =x is
the measuring scale and /,=1/m,. Here R, is the ade-
quate Schwarzschild radius, and «, is the value of «

associated with this radius. Then, as it has been pointed out
in [55], in case the Fischler - Susskind cosmic holographic
conjecture[56] is valid, the entropy of the Universe is limited

by its "surface" measured in Planck units[55]:
A
S < Zm; (34)

where the surface area A4=47zR’ is defined in terms of
the apparent (Hubble) horizon
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1

NH* +k ] d?
with curvature k& and scale a factors.

Again, interpreting R from (35) as a measuring scale,
we directly obtain(34) in terms of a :

R= 35)

S < ray! (36)

where a, =1’/ R*. Therefore, the average entropy density
may be found as
-1
s <% (37)
14 14
Using further the reasoning line of[55] based on the results
of the holographic thermodynamics, we can relate the en-
tropy and energy of a holographic system[54]. Similarly, in
terms of the « parameter one can easily estimate the upper

limit for the energy density of the Universe (denoted here by
Pror )}
3
2 4
——m, =—Q,m
8zR* " 8z 7
that is drastically differing from the one obtained with
well-known QFT

Pt S (38)

QOFT

P (39)
Here by p%" we denote the energy vacuum density

calculated from well-known QFT (without UV cutoff)[5].
Obviously, as «, for R determined by (35) is very small,

4
mP

actually approximating zero, p,, is by several orders of

magnitude smaller than the value expected in QFT — p7 .

Since m, ~1/1,, the right-hand side of (38) is actually
nothing else but the energy density in Holographic Dark
Energy Models[57—60]. Thus, in Holographic Dark Energy
Models the principal quantity, holographic energy density
p, , may be estimated in terms of the deformation parameter

a.

In fact, the upper limit of the right-hand side of (38) is
attainable, as it has been indicated in[55]. The "overestima-
tion" value of 7 for the energy density p" , compared to
P » May be determined as
po P 8m o 8T R 8r S

P 3 5 3L 38

where §, is the entropy of the Plank mass and length for

(40)

the Schwarzschild black hole. It is clear that due to smallness
of a, the value of «;' is on the contrary too large. It may

be easily calculated (e.g., see[55])
r=5.44x10"

in a good agreement with the astrophysical data.
Naturally, on the assumption that the vacuum energy
density p,,. isinvolvedin p asaterm

p:pM+pvac (42)

where p,, - average matter density, in case of p,, we

(41)

can arrive to the same upper limit (right-hand side of the
formula (38)) as for p.

Average values of any quantity in QFT with UV-cutoff
may be expended in terms of the small parameter a (Sec-
tion 3). Specifically, for the vacuum energy density p(f) in
the most general case we have

< p(t) >= a, + a,a(t) + a,a’ (t) + 43)

In[48,49] a similar expansion was performed for
al)=oy,:

2 4
1 1( 1(1, 1 2
Pac =—4+—4(—] +—4[— +...:—4(1+a,R+a1R +)(44)
Lo\ A1, X
Here p, 1is understood as the quantity calculated for

ly,=l,=R,, and «a, correspondsto /.

But as shown previously, if the holographic principle is
valid, this expansion has a more exact form
< p(t) >=aa(t) +a,a’ () +... (45)

and a, #0.

5. Gravitational Thermodynamics in
Low and High Energy and Deformed
Quantum Theory

In the last decade a number of very interesting works have
been published. We can primary name the works[61-70],
where gravitation, at least for the B spaces with horizon, is
directly associated with thermodynamics and the results
obtained demonstrate a holographic character of gravitation.
Of the greatest significance is a pioneer work[54]. For black
holes the association has been first revealed in[71,72], where
related the black-hole event horizon temperature to the sur-
face gravitation. In[69], has shown that this relation is not
accidental and may be generalized for the spaces with hori-
zon. As all the foregoing results have been obtained in a
semiclassical approximation, i.e. for sufficiently low ener-
gies, the problem arises: how these results are modified when
going to higher energies. In the context of this paper, the
problem may be stated as follows: since we have some infra-
red (IR) cutoff /,, and ultraviolet (UV) cutoff [, , we
naturally have a problem how the above-mentioned results
on Gravitational Thermodynamics are changed for

11, (46)

Sections 2 and 3 of this paper show that the results are
dependent on the deformation parameter « (33), (10) that
in the accepted notation is of the form

= (47)

In fact, in several papers[73—80] it has been demonstrated
that thermodynamics and statistical mechanics of black holes
in the presence of GUP (i.e. at high energies) should be
modified. To illustrate, in[78] the Hawking temperature
modification has been computed in the asymptotically flat
space in this case in particular. It is easily seen that in this
case the deformation parameter « arises naturally. Indeed,
modification of the Hawking temperature is of the following



6 A.E.Shalyt-Margolin: Quantum Theory at Planck Scale, Dynamical Cosmological Term and Deformed Gravity

form[73,75,78]:
d-3. hr 4”1,
T — (= '+ 1_ 1_—11 1/2
GUP ( 472_ )20!2[[2) [ ( }’;2 ) ]
where d is the space-time dimension, and r, is the un-
certainty in the emitted particle position by the Hawking
effect, expressed as

(4%)

Ax, =r, (49)

and being nothing else but a radius of the event horizon;
o - dimensionless constant from GUP. But as we have
2a1,=1,,, in terms of o (48) may be written in a natural

min >
way as follows:

d-3.h

-1
a
T; )——[1-(1-,)"]
alp -

GUuP — (? (50)

where a, - parameter o associated with the IR-cutoff
r,. In such a manner 7, is only dependent on the con-
stants including the fundamental ones and on the deforma-
tion parameter « .

The dependence of the black hole entropy on @ may be
derived in a similar way. For a semiclassical approximation
of the Bekenstein-Hawking formula[71,72]

14
40

where 4 —surface area of the event horizon, provided the

horizon event has radius r, , then 4~ and (51) is clearly

(51

of the form

S=oa (52)
where o is some dimensionless denumerable factor. The

general formula for quantum corrections[77] given as

A 7a? A 2 4
Sp=————In| — [++ — | +const 53
T [41;J 2 C”[41;J (53)

n=l1

where the expansion coefficients ¢, oc a*"*™"

can always
be computed to any desired order of accuracy[77], may be
also written as a power series in «, ' (or Laurent series in
a, )
ﬂ_a'Z 0
2 In(oa," )+ (c,07")a +const (54)
n=1

Note that here no consideration is given to the restrictions
on the IR-cutoff

_
Seup = 0, =

1<, (55)

and to those corresponding the extended uncertainty
principle (EUP)[78] or symmetric generalized uncertainty
principle (SGUP)[79] that leads to a minimal momentum.

A black hole is a specific example of the space with ho-
rizon. It is clear that for other horizon spaces[69] a similar
relationship between their thermodynamics and the defor-
mation parameter « should be exhibited.

Quite recently, in a series of papers, and specifically
in[61-67], it has been shown that Einstein equations may be
derived from the surface term of the GR Lagrangian, in fact
containing the same information as the bulk term.

It should be noted that Einstein’s equations[at least for
space with horizon] may be obtained from the proportional-
ity of the entropy and horizon area together with the fun-
damental thermodynamic relation connecting heat, entropy,
and temperature[54]. In fact[61-68], this approach has been
extended and complemented by the demonstration of holo-
graphicity for the gravitational action (see also[69]).And in
the case of Einstein-Hilbert gravity, it is possible to interpret
Einstein’s equations as the thermodynamic identity[70]:

TdS = dE + PdV (56)

The above-mentioned results have been obtained at low
energies, i.e. in a semiclassical approximation. Because of
this, the problem arises how these results are changed in the
case of high energies? Or more precisely, how the results
0f[54,61-70] are generalized in the UV-limit? It is obvious
that, as in this case all the thermodynamic characteristics
become dependent on the deformation parameter «, all the
corresponding results should be modified (deformed) to meet
the following requirements:

(a) to be clearly dependent on the deformation parameter
& at high energies;

(b) to be duplicated, with high precision, at low energies
due to the suitable limiting transition.

The problem may be more specific. As, according to[54,
69,70] and some other works, gravitation is greatly deter-
mined by thermodynamics, and at high energies the latter is a
"deformation of the classical thermodynamics". Here "high-
energy deformation of thermodynamics" is understood as
some (meanwhile unknown) deformation of thermodynam-
ics in high energies. This theory is still unframed, though
several of its elements 7,,,S,, and the like[73-80] are
known already. It is interesting whether gravitation at high
energies (or what is the same, quantum gravity or Planck
scale) is being determined by the corresponding deformed
thermodynamics. The formulae (50) and (54) are elements of
the high-energy « -deformation in thermodynamics, a gen-
eral pattern of which still remains to be formed. Obviously,
these formulae should be involved in the general pattern
giving better insight into the quantum gravity, as they are
applicable to black mini-holes (Planck black holes) which
may be a significant element of such a pattern. But what
about other elements of this pattern? How can we generalize
the results[54,69,70]when the IR-cutoff tends to the UV-
cutoff (formula (46))? What are modifications of the ther-
modynamic identity (56) in a high-energy deformed ther-
modynamics and how is it applied in high-energy (quantum)
gravity?

By authors opinion, the methods developed to solve the
problem of point (c) and elucidation of other above- men-
tioned problems may form the basis for a new approach to
solution of the quantum gravity problem. And one of the
keys to the quantum gravity problem is a better insight into
the high-energy thermodynamics.

6. o —Representation of Einstein’s
Equations
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Let us consider « -representation and high energy «
-deformation of the Einstein’s field equations for the specific
cases of horizon spaces (the point (¢) of Section 4). In so
doing the results of the survey work[81] are used. Then,
specifically, for a static, spherically symmetric horizon in
space-time described by the metric

ds’ =—f(r)c’dt’ + [~ (r)dr’ +r’dQ’ (57)
the horizon location will be given by simple zero of the
function f(r),at r=a.

It is known that for horizon spaces one can introduce the
temperature that can be identified with an analytic con-
tinuation to imaginary time. In the case under consideration
([81], eq.(116))

7@
4z

Therewith, the condition f(a)=0 and f'(a)#0 mustbe
fulfilled.

Then at the horizon r=a Einstein’s field equations

A1, 1 5
Elizf (a)a —5} =47z Pa

may be written as the thermodynamic identity (56)([81]
formula (119))

—hcf'(a) id {147[&2 J—l c'da = Pd (4—7[ aﬂ (60)
4r  Gh 4 2 G 3
kT ds Pdv

where P=T' is the trace of the momentum-energy ten-

(58)

(59)

—dE

sor and radial pressure. In the last equation da arises in the
infinitesimal consideration of Einstein’s equations when
studying two horizons distinguished by this infinitesimal
quantity ¢ and a+da ([81] formula (118)).

Now we consider (60) in new notation expressing d in
terms of the corresponding deformation parameter « . Then

we have

_ _1/2
a= lmina

(61)
Therefore,

fa)==21,,a" () (62)
Substituting this into (59) or into (60), we obtain in the

l

considered case of Einstein’s equations in the "« - repre-
sentation" the following:
4
c , 1 S
—(af(a)-—)=4nPa" I 63
G( /(@) 2) min (63)

Multiplying the left- and right-hand sides of the last
equation by «a , we get

(64)

min

4
c 2 pr 1 2
—(—a a)——a)=4rnPl
G( f(@) 2 )

But since usually /

i ~ 1, (that is just the case if the
Generalized Uncertainty Principle (GUP) is satisfied), we

have I, ~0>=Gh/c’. When selecting a system of units,

where h=c=1, wearrive at [, ~1I = VG, and then (63) is

min

of the form

—a’ f'(a) —%a =47PF G’ (65)

where 9=/, /1,. Lhs. of (65) is dependent on « . Be-

cause of this, r.h.s. of (65) must be dependent on « as well,
i.e. P=P(a).

Analysis of « -Representation of Einstein’s Equations

Now let us get back to (60). In[81] the low-energy case has
been considered, for which ([81] formula (120))

4 4 a0y 1/2
S :L2 4ra®) =l—§;E =S =2 ] (66)
4l 41 2G G\16x

where 4, isthe horizon area. In our notation (66) may be

rewritten as

4 4 1/2
S =lzta’1;E =< 4 :C—(A—”] AT (67)
4 26 G167 2VG

We proceed to two entirely different cases: low energy
(LE) case and high energy (HE) case. In our notation these
are respectively given by

A) a—0 (LE),Bya—>1/4 (HE),

C) « complies with the familiar scales and energies.

The case of C) is of no particular importance as it may be
considered within the scope of the conventional General
Relativity.

Indeed, in point A) o — 0 isnot actually an exact limit as
a real scale of the Universe (Infrared (IR) - cutoff
[ =R, =~10"%cm), and then

max Univ
2 2
amin - lp / lmax

~ 10—122.

In this way A) is replaced by Al) « > «,,, . In any case at

low energies the second term in the left-hand side (65) may
be neglected in the infrared limit. Consequently, at low en-
ergies (65) is written as
-’ f'(a) = 47 P(a)F G’ (68)
Solution of the corresponding Einstein equation — finding
of the function f(a)= f[P(a)] satisfying (68). In this case
formulae (66) are valid as at low energies a semiclassical
approximation is true. But from (68) it follows that

f@)=-argG* | (f‘) da
(04

knowing f(a) ,

(69)

On the contrary, we can obtain
P(a)=T'.

But it is noteworthy that, when studying the infrared
modified gravity[82-84], we have to make corrections for the

considerations of point Al).

7. Possible High Energy o -Deformation
of General Relativity

Let us consider the high-energy case B). Here two variants
are possible.

L. First variant

In this case it is assumed that in the high-energy (Ultra-
violet (UV)) limit the thermodynamic identity (60) (or that is
the same (56) is retained but now all the quantities involved
in this identity become « -deformed. This means that they
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appear in the o« -representation with quantum corrections
and are considered at high values of the parameter « , i.e. at
a close to 1/4. In particular, the temperature 7 from
equation (60) is changed by 7, (50), the entropy S from
the same equation given by semiclassical formula (66) is
changed by S, (54), and so forth:
E Egups V= Ve

Then the high-energy « -deformation of equation (60)

takes the form
kpTop(@)dS (@) —dE g () = P(a)dV () (70)

Substituting into (70) the corresponding quantities

Top(@)y Seup(@), Egpp(@), Viyp(@), P(@) and expanding
them into a Laurent series in terms of «, close to high val-
ues of a, specifically close to a=1/4, we can derive a
solution for the high energy « -deformation of general rela-
tivity (70) as a function of P(«). As this takes place, pro-
vided at high energies the generalization of (60) to (70)is
possible, we can have the high-energy « -deformation of the
metric. Actually, as from (60) it follows that

4
)= azie, T
fic

(considering that we have assumed 7=c=1), we get
S gupl@) = 4mky Ty, () (72)
L.h.s. of (72) is directly obtained in the « -representation.
This means that, when f'~T, we have [’ ,~T,, Wwith

the same factor of proportionality. In this case the function
Joup determining the high-energy o -deformation of the

(71)

spherically symmetric metric may be in fact derived by the
expansion of T, , that is known from (50), into a Laurent

series in terms of « close to high values of « (specifically
close to a =1/4), and by the subsequent integration.

It might be well to remark on the following.

7.1 As on going to high energies we use (GUP), & from
equation (65) is expressed in terms of o —dimensionless
constant from GUP (6), (50): =2«

7.2 Of course, in all the formulae including [, this
quantity must be changed by G'* and hence [, by
9G"* =2a'G".

7.3 As noted in the end of subsection 6.1, and in this case
also knowing all the high-energy deformed quantities
Top (@), Seup(@), Egyp(@), Veyp(@) , we can find P(a) at a
close to 1/4.

7.4 Here it is implicitly understood that the Ultraviolet
limit of Einstein’s equations is independent of the starting
horizon space. This assumption is quite reasonable. Because
of this, we use the well-known formulae for the modification
of thermodynamics and statistical mechanics of black holes
in the presence of GUP[73-80]

7.5 The use of the thermodynamic identity (70) for the
description of the high energy deformation in General Rela-
tivity implies that on going to the UV-limit of Einstein’s
equations for horizon spaces in the thermodynamic repre-
sentation (consideration) we are trying to remain within the

scope of equilibrium statistical mechanics[85] (equilibrium
thermodynamics)[86]. However, such an assumption seems
to be too strong. But some grounds to think so may be found
as well. Among other things, of interest is the result from[73]
that GUP may prevent black holes from their total evapora-
tion. In this case the Planck’s remnants of black holes will be
stable, and when they are considered, in some approximation
the equilibrium thermodynamics should be valid. At the
same time, by author’s opinion these arguments are rather
weak to think that the quantum gravitational effects in this
context have been described only within the scope of equi-
librium thermodynamics[86].

I1. Second variant

According to the remark of .5, it is assumed that the in-
terpretation of Einstein’s equations as a thermodynamic
identity (60) is not retained on going to high energies
(UV-limit), i.e. at « —1/4, and the situation is adequately
described exclusively by non-equilibrium thermodynam-
ics[86,87]. Naturally, the question arises: which of the addi-
tional terms introduced in (60) at high energies may be
leading to such a description?

In the[30,31] it has been shown that in case the cosmo-
logical term A is a dynamic quantity, it is small at low
energies and may be sufficiently large at high energies. In the
right-hand side of (65) in the « —representation the addi-
tional term G(A(a)) is introduced:

—&*f'(a) —%a =47P()$ G’ -GA(@)  (73)

where A(a) is the cosmological term depending from « .
Then its inclusion in the low-energy case (59)(or in the « -
representation (65)) has actually no effect on the thermo-
dynamic identity (60) validity, and consideration within the
scope of equilibrium thermodynamics still holds true. It is
well known that this is not the case at high energies as the A
-term may contribute significantly to make the "process"
non-equilibrium in the end[86,87].

Is this the only cause for violation of the thermodynamic
identity (60) as an interpretation of the high-energy gener-
alization of Einstein’s equations? Further investigations are
required to answer this question.

8. Conclusions

Thus, this work presents an analysis of the dark energy
problem on the assumption that it is the time-varying vac-
uum energy, that conforms to the dynamic cosmological
term A(f) . Note that the question of the explicit relationship
between A and ¢ is not touched, we have rather studied
the problem of deriving the currently observable value for
A=Ay

As such a consideration inevitably involves the physics of
the early Universe (Planck scales) and hence QFT with the
fundamental length (on the order of Planck’s 1)), it is asso-

ciated with new parameters (deformation parameters) and, in
the limiting transition to low-energy, QFT with the funda-
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mental length turns to well-known QFT (without cutoff). By
the author’s opinion, a (7) is the most optimal of the de-
formation parameters from the standpoint of the problems
considered in this work.

The results obtained in Sections 6 and 7 enable framing of
the following hypothesis:

a dynamic cosmological term is a measure of deviation
from the thermodynamic identity (the first law of thermo-
dynamics) of the high-energy (Planck’s) deformation of
Einstein equations for horizon spaces in their thermody-
namic interpretation.

The dynamic cosmological term correlates well with in-
flation models[4] as the latter require a very high A at the
early stages of the Universe, and this is distinct from
A=A in the modern period. Of great interest is the re-

exper
cent work[89], where a mechanism of the vacuum energy
decay in the de Sitter space is established to support a dy-
namic nature of A.

This work is a step to the incorporation of deformation
parameters involved in a quantum field theory at Planck’s
scales into the high-energy deformation of the General
Relativity (GR). The corresponding calculations with the
adequate interpretation must follow next. It is interesting to
consider the high energy « -deformation of GR in a more
general case. The problem is how far a thermodynamic in-
terpretation of Einstein’s equations may be extended? We
should remember that, as all the deformations considered
involve a minimal length at the Planck level 7, ~/,, a

minimal three-dimensional volume should also be the case
Vein =V, =Z;. And this is of particular importance for high

min

energy thermodynamics (some indications to this fact have
been demonstrated in[30,31]).
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