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Abstract  The dark energy problem is analyzed from the viewpoint of the time-varying cosmological term. It is demon-
strated that, at least within the scope of the holographic principle, an experimental value of the vacuum energy density may be 
derived and may be tested quite well with a new small parameter arising in a quantum theory with the fundamental length on 
the order of Planck’s length. Besides, within a theory proclaiming the existence of such fundamental length a high-energy 
deformation of the General Relativity for the space with horizon has been constructed. The obtained results have been applied 
to solving of the dark energy problem, making it possible to frame the following hypothesis: a dynamic cosmological term is 
a measure of deviation from a thermodynamic identity (the first law of thermodynamics) of the high-energy (Planck’s) de-
formation of Einstein equations for horizon spaces in their thermodynamic interpretation.  
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1. Introduction 
The cosmological constant Λ  is presently the most 

probable candidate for a role of dark energy. However, more 
and more researchers arrive at the idea that Λ  is a dynamic 
quantity ( )tΛ = Λ [1–3] rather than a constant. The idea is 
also supported by the inflation models pointing to the fact 
that in the early Universe the quantity was enormous[4], 
whereas this is evidently not so for the present-day Universe. 
If this is really the case, we have to appreciate time variations 
of this quantity and to realize why its current value conforms 
to the observable.  

It should be recalled that in the initial calculations of Λ  
with the use of a quantum field theory (QFT) it was cut-off at 
large (Planck) momenta[5,6] and, actually, implicitly it was 
QFT with the fundamental length on the order of Planck’s 

pl .  
On the other hand, in the last decade numerous works 

devoted to a Quantum Field Theory (QFT) at Planck’s 
scale[7–9] have been published(of course, the author has no 
pretensions of being exhaustive in his references). This in-
terest stems from the facts that (i) at these scales it is ex-
pected to reveal the effects of a Quantum Gravity (QG), and 
this still unresolved theory is intriguing all the researchers 
engaged in the field of theoretical physics; (ii) modern ac-
celerators, in particular LHC, have the capacity of achieving 
the energies at which some QG effects may be exhibited. 
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Planck’s scales undergoes changes associated with the 
appearance of additional parameters related to a minimal 
length (on the order of the Planck’s length). As this takes 
place, the corresponding parameters are naturally considered 
as deformation parameters, i.e. the related quantum theories 
are considered as a high-energy deformation (at Planck’s 
scales) of the well-known quantum field theory. The de-
formation is understood as an extension of a particular theory 
by inclusion of one or several additional parameters in such a 
way that the initial theory appears in the limiting transi-
tion[10]. 

The present work is a natural continuation of the previous 
papers of the author. The idea that a quantum theory at the 
Planck scales must involve the fundamental length has been 
put forward in the works devoted to a string theory fairly a 
long time ago[11]. But since it is still considered to be a 
tentative theory, some other indications have been required. 
Fortunately, by the present time numerous publications have 
suggested the appearance of the fundamental length in the 
Early Universe with the use of various approaches[12–15]. 
Of particular importance is the work[12], where on the basis 
of a simple gedanken experiment it is demonstrated that, 
with regard to the gravitational interactions (Planck’s scales) 
exhibited in the Early Universe only, the Heisenberg Un-
certainty Principle should be extended to the Generalized 
Uncertainty Principle[11–15]that in turn is bound to bring 
forth the fundamental length on the order of Planck’s length. 
The advent of novel theories in physics of the Early Universe 
is associated with the introduction of new parameters, i.e. 
with a deformation of the well-known theories. Of course, in 
this case Heisenberg Algebra is subjected to the corre-
sponding deformation too. Such a deformation may be based 
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on the Generalized Uncertainty Principle (GUP)[16–18] as 
well as on the density matrix deformation[19–29].  

At the same time, the above-mentioned new deformation 
parameters so far have not appeared in gravity despite the 
idea that they should. The situation is that no evident efforts 
have been undertaken to develop the high-energy (Planck’s 
scale) gravity deformations including the deformation pa-
rameters introduced in a Quantum Theory of the Early 
Universe.  

In this paper, with GUP held true, the possibility for the 
high-energy gravity deformation is considered for a specific 
case of Einstein’s equations. As this takes place, the pa-
rameter α  appearing in the Quantum Field Theory (QFT) 
with the UV cut off (fundamental length) produced by the 
density matrix deformation is used. There is no discrepancy 
of any kind as the deformation parameter in the GUP- pro-
duced Heisenberg algebra deformation is quite naturally 
expressed in terms of α , and this will be shown later (Sec-
tion 3). Besides, by its nature, α  is better applicable to 
study the high-energy deformation of General Relativity 
because it is small, dimensionless (making series expansion 
more natural), and the corresponding representation of the 
Einstein’s equations in its terms or its deformation appear 
simple. Structurally, the paper is as follows. Section 2 pre-
sents a short discussion o the notion of a dynamic cosmo-
logical term and also the general problem statement associ-
ated with its connection to the dark energy problem. In Sec-
tion 3 the approaches to the deformation of a quantum theory 
at the Planck scales are briefly reviewed. In Section 4 the 
possibilities for derivation of a modern value of the dark 
energy in the assumption of the existing dynamic cosmo-
logical term ( )tΛ  are analyzed using the standard approach 
to the cosmological constant Λ [5,6]. It is shown that only 
the validity of the holographic principle gives the required 
result. This Section is mainly based on the author’s re-
sults[30,31]. In Section 5 it is shown how to interpret quan-
tum corrections for the thermodynamic characteristics of 
black holes considering the deformation of a theory with the 
fundamental length[31]. Essentially new results are pre-
sented in Sections 5 and 6. A thermodynamic description of 
the General Relativity is used. The possibility for the high 
energy deformation of Einstein’s equations is discussed 
within the scope of both equilibrium thermodynamics and 
non-equilibrium thermodynamics. In the latter case the ap-
proach is contemplated only in terms of a nature of the 
cosmological term. Moreover, in this case a more precise 
definition for the dependence of this term on the deformation 
parameter is possible. In Section 7 the derived results are 
applied to solve the dark energy problem. Based on the re-
sults obtained, in Conclusion the following hypothesis is 
framed: a dynamic cosmological term is a measure of de-
viation from the thermodynamic identity (the first law of 
thermodynamics) of the high-energy (Planck’s) deformation 
of Einstein equations for horizon spaces in their thermody-
namic interpretation.  

2. Dark Energy and Dynamical 
Cosmological Term 

The dark matter problem[32], along with the dark energy 
problem[33], is presently the basic problem in modern fun-
damental physics, astrophysics, and cosmology. Whereas for 
a nature of the first real hypotheses have been accepted al-
ready[34], the dark energy still remains enigmatic[35–38]. 
But it is the opinion of most researchers that dark energy 
represents the energy of the cosmic vacuum, its density being 
associated with the cosmological term Λ  in Einstein’s 
equation[5,6,39]. In this respect an important reservation 
must be made – the point is that most common is the term 
cosmological constant. Actually, due to the Bianchi identi-
ties[40]  

0Gµ
µ ν∇ =                   (1) 

where Gµ
ν  – Einstein equations  
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the energy-momentum tensor T µ
ν  (energy-momentum 

density tensor) remains covariantly valid  
0T µ

µ ν∇ =                     (3) 
From whence it directly follows that the cosmological 

term Λ  is a constant.   
But, as has been rightly noted in several publications 

(e.g.,[1–3]), conservation laws (3) are only regulating the 
energy-momentum exchange between the field sources and 
gravitational field and are liable to be violated if an inde-
pendent energy source is existent in the Universe. Such a 
source may be associated with a time-varying cosmological 
term. So, in this case it is reasonable to consider ( )tΛ = Λ . 

Then the Bianchi identity (1) is replaced by the "general-
ized Bianchi identity"[2]  

0T µ µ
µ ν ν

 
  

∇ + Λ =                 (4) 

where µ µ
ν νε δΛΛ =  is some energy-momentum tensor 

(referred to as the dark energy-momentum tensor [2]) related 
to the cosmological term, where  

4

8
c

G
ε

πΛ
Λ

=                       (5) 

is the corresponding energy density.  
We are not interested in a diversity of the cosmological 

models involving the dynamic cosmological term ( )tΛ = Λ  
and different relationships between Λ  and t . Rather de-
tailed references to such models have been made in the the-
siswork[41]. Of interest is the problem: how can we obtain 
the observable value of observΛ = Λ  knowing that Λ  is de-
pendent on t .  

3. Quantum Theory at Planck’s Scale 
and Universal Deformation 
Parameter 

In the last twenty years the researchers have come to the 
understanding that studies of the Early Universe physics 
(extremely high – Planck’s energies) necessitate changes in 
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the fundamental physical theories, specifically quantum 
mechanics and quantum field theory. Inevitably a funda-
mental length should be involved in these theories[14–17]. 
This idea has been first suggested by a string theory[11]. But 
it is still considered to be a tentative theory without the ex-
perimental status and merely an attractive model. However, 
the fundamental length has been involved subsequently in 
more simple and natural considerations[12].  

The main approach to framing of Quantum Mechanics 
with fundamental length (QMFL) and Quantum Field The-
ory with fundamental length (QFTFL) (or with Ultraviolet 
(UV) cutoff) is that associated with the Generalized Uncer-
tainty Principle (GUP)[11–18]:  

2
p

px l
p

α ′≥ +
 



 

                 (6) 

with the corresponding Heisenberg algebra deformation 
produced by this principle[16–18].  

Besides, in the works by the author[19–28] an approach to 
the construction of QMFL has been developed with the help 
of the deformed density matrix, the density matrix deforma-
tion in QMFL being a starting object called the density 
pro-matrix ( )3ρ α  and deformation parameter (additional 
parameter)  

2 2
minl xα = /                      (7) 

where x  is the measuring scale, min pl l  and 
0 1 4α< ≤ / [19–25].  

The explicit form of the above-mentioned deformation 
gives the exponential ansatz  

( ) ( ) i
i

exp i iρ α α ω∗ = − | >< |∑            (8) 

where all 0iω >  are independent of α  and their sum is 
equal to 1.  

In the corresponding deformed Quantum Theory (denoted 
as QFT α ) for average values we have  

( )B exp Bα α< > = − < >              (9) 
where B< >  - average in well-known QFT[24,25]. All 

the variables associated with the considered α  - deformed 
quantum field theory are hereinafter marked with the upper 
index α .  

Note that the deformation parameter α  is absolutely 
naturally represented as a ratio between the squared UV and 
IR limits  

2( )UV
IR

α =                       (10) 

where UV is fixed and IR is varying. 
It should be noted[29] that in a series of the author’s 

works[19–28] a minimal α -deformation of QFT has been 
formed. By “minimal” it is meant that no space-time non-
commutativity was required, i.e. there was no requirement 
for noncommutative operators associated with different 
spatial coordinates  

[ ] 0i jX X i j, ≠ , ≠                   (11) 
However, all the well-known deformations of QFT asso-

ciated with GUP (for example[16–18]) contain (11) as an 

element of the corresponding deformed Heisenberg algebra. 
Because of this, it is necessary to extend (or modify) the 
above-mentioned minimal α -deformation of QFT – QFT α

[19-28] to some new deformation QFT
α  compatible with 

GUP, as it has been noted in[29]. We can easily show that 
QFT parameter of deformations associated with GUP may be 
expressed in terms of the parameter α  that has been intro-
duced in the approach associated with the density matrix 
deformation[30,31]. Here the notation of[42] is used. Then  

22[ ] (1 )x p i pβ, = + + ...
  

            (12) 
and  

min px lβ∆ ≈                  (13) 
Then from (12), (13) it follows that 21β / p , and for 

min px l , β  corresponding to minx  is nothing else but  
21 plPβ /                     (14) 

where plP  is Planck’s momentum: pl pP l= / .  
In this way β  is changing over the following interval:  

2
plPλ β/ ≤ < ∞                   (15) 

where λ  is a numerical factor and the second member in 
(12) is accurately reproduced in momentum representation 
(up to the numerical factor) by  

2 2 2 2 2 2
min p pll l l l p Pα = / / = /  

22 2
1 2[ ] (1 ) (1 )x p i i a apβ α α, = + + ... == + + + ...

  

  (16) 

4. Dynamical Cosmological Term and Its 
Modern Value 

As is known, a direct calculation of the vacuum energy 
density vacρ  results in the value that is higher than the ex-
perimental one by a factor of 12210 . According to the typical 
reasoning that is already “canonical” we have[5,6,43]:  

2

30

42
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π
< >= ∫





         (17) 

where max plp P  is the momentum cut-off at Planck 
scales, because the General Relativity is valid right up to the 
Planck scales. Proceeding from ( )p cω= / , we can ob-
tain[43] 

4

2 38vac c
ρ

π
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< >=
                (18) 

And then Ω  is given by pΩ  , where  
1 25

p p
cE
G

/
 

Ω = =  
 




              (19) 

But it is known that pρ< >  is higher than the observable 

value obs
vacρ [6,43] approximately by a factor of 12210 .  

Yet, taking the cosmological term as a dynamic quantity, 
we can write (17) as  

2( )

30

4( ) 2
2(2 )

p t

vac
pt dp π ωρ

π
< >= ∫





       (20) 
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that in the very early Universe, at the time close to the 
Planck’s time pt , turns to (17) as follows:  

2

30

4( ) 2
(2 ) 2

plP

vac p
pt dp π ωρ

π
< >= ∫





       (21) 

However, it is known that the experimental value obs
vacρ  is 

sooner determined by low momenta and energies (corre-
sponding to large scales) and also by the infrared limit that is 
given by a radius of the measurable part of the Universe 

2810UnivR cm= . For such momenta by the uncertainty princi-
ple (17) we have  

2

30

4( ) 2
(2 ) 2

minp

vac Univ
pt dp π ωρ

π
< >= ∫





      (22) 

where Univt –Universe life-time, minp  –"minimal" mo-
mentum. 

As 6110Univ p pl minR l P p/ = / = , then by analogy (18)and in 
the infrared limit  

4

2 3( )
8

min
vac Univt

c
ρ

π
Ω

< >=


               (23) 

where  
min minEΩ =                     (24) 

But in this case ( )vac Univtρ  is lower than vacρ  calculated 
from(17) by a factor of 24410  rather than by a factor of 12210 .  

This result is easily obtained using the Uncertainty Prin-
ciple for the pair of conjugate variables ( )VΛ, ,[44–47]:  

V∆ ≈
∆Λ
                     (25) 

where Λ  is the dynamic cosmological term, V  is the 
space-time volume. And V  results from the Einstein- Hil-
bert action EHS [45]:  

4d x g VΛ − = Λ∫                 (26) 
where (26) is the term in EHS .  
In[30,31] the Uncertainty Principle (25) has been gener-

alized at Planck scales up to the Generalized Uncertainty 
Principle  

22
pV t Vα ′ ∆Λ

∆ ≈ +
∆Λ




              (27) 

where V  - spatial part V  that, as is assumed, may be 
extracted explicitly. 

(27) is of interest from the viewpoint of two limits[30,31]: 
1) IR - limit: t → ∞   
2) UV - limit: mint t→ .  
In the case of IR-limit we have large volumes V  and V  

at low ∆Λ . Because of this, the main contribution on the 
right-hand side of (27) is made by the first term, as great V  
in the second term is damped by small pt  and ∆Λ . Thus, 
we derive at  

lim
t

V
→∞

∆ ≈
∆Λ
                 (28) 

in accordance with (25) and Λ  is a dynamic value fluc-
tuating around zero.  

And for the case 2) ∆Λ  becomes significant  
3 3lim lim

min min
p min p p pmin pt t t t

V l V V V l tV V→ →
= = ; = =    (29) 

As a result, we have  
2lim

min
pt t

V VαΛ→

∆Λ
∆ = +

∆Λ




         (30) 

where the parameter αΛ  absorbs all the above-mentioned 
proportionality coefficients.  

For (30), p p p pV E V∆Λ Λ ≡ / = /  . 
It is easily seen that in this case 4

pmΛ  , in agreement 
with the value obtained using a standard (i.e. without su-
per-symmetry and the like) quantum field theory[6,5]. De-
spite the fact that Λ  at Planck’s scales (referred to as UVΛ ) 
(30) is also a dynamic quantity, it is not directly related to 
well-known Λ  (25),(28) (called IRΛ ) because the latter, as 
opposed to the first one, is derived from Einstein’s equations  

1 8
2 NR g R G g Tµν µν µν µνπ  

 
 

− = −Λ +        (31) 

However, Einstein’s equations (31) are not valid at the 
Planck scales and hence UVΛ  may be considered as some 
high-energy generalization of the conventional cosmological 
constant, leading to IRΛ  in the low-energy limit.  

As 3 4V l lt  , where l -characteristic linear dimension V , 
it is directly inferred that in the infrared region IRΛ  calcu-
lated for Univl R=  is lower than UVΛ  in 4 4 24410Univ pR l/ = , 
that is in a perfect agreement with the result obtained by the 
direct calculations at the beginning of this Section.  

In other words, a quantum field theory with UV-cutoff in 
the assumption that Λ  is a dynamic quantity gives no cor-
rect value for observΛ  as well.  

In this way, similar to[48,49], we obtain  

DE UR IRΛ = Λ Λ                (32) 
where DE observΛ = Λ  – cosmological term corresponding to 

the observable value.  
Now we demonstrate that the Holographic Princi-

ple[50–53] is helpful in the solution of this problem, the 
deformation parameter α  (7)”testing” variations of vacρ  in 
time and hence playing the critical role.  

In terms of the deformation parameter α , the principal 
values of the Vacuum Energy Problem may be simply and 
clearly defined. Let us begin with the Schwarzschild black 
holes, whose semiclassical entropy is given by  

2 2 2 2 1
SchSch p Sch p RS R l R mπ π πα −= / = =          (33) 

with the assumption that in the formula for α  SchR x=  is 
the measuring scale and 1p pl m= / . Here SchR  is the ade-
quate Schwarzschild radius, and 

SchRα  is the value of α  
associated with this radius. Then, as it has been pointed out 
in [55], in case the Fischler - Susskind cosmic holographic 
conjecture[56] is valid, the entropy of the Universe is limited 
by its "surface" measured in Planck units[55]:  

2

4 p
AS m≤                     (34) 

where the surface area 24A Rπ=  is defined in terms of 
the apparent (Hubble) horizon  
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2 2

1R
H k a

=
+ /

                 (35) 

with curvature k  and scale a  factors.  
Again, interpreting R  from (35) as a measuring scale, 

we directly obtain(34) in terms of a :  
1

RS πα −≤                     (36) 
where 2 2

R pl Rα = / . Therefore, the average entropy density 
may be found as  

1
RS

V V
πα −

≤                    (37) 

Using further the reasoning line of[55] based on the results 
of the holographic thermodynamics, we can relate the en-
tropy and energy of a holographic system[54]. Similarly, in 
terms of the α  parameter one can easily estimate the upper 
limit for the energy density of the Universe (denoted here by 

holρ ):  

2 4
2

3 3
88hol p R pm m

R
ρ α

ππ
≤ =          (38) 

that is drastically differing from the one obtained with 
well-known QFT  

4QFT
pmρ                      (39) 

Here by QFTρ  we denote the energy vacuum density 
calculated from well-known QFT (without UV cutoff)[5]. 
Obviously, as Rα  for R  determined by (35) is very small, 
actually approximating zero, holρ  is by several orders of 
magnitude smaller than the value expected in QFT – QFTρ . 

Since 1p pm l/ , the right-hand side of (38) is actually 
nothing else but the energy density in Holographic Dark 
Energy Models[57–60]. Thus, in Holographic Dark Energy 
Models the principal quantity, holographic energy density 
ρΛ , may be estimated in terms of the deformation parameter 
α . 

In fact, the upper limit of the right-hand side of (38) is 
attainable, as it has been indicated in[55]. The "overestima-
tion" value of r  for the energy density QFTρ , compared to 

holρ , may be determined as  
2

1
2

8 8 8
3 3 3

QFT

hol pp

R Sr
Sl

ρ π π πα
ρ

−= = = =R        (40) 

where pS  is the entropy of the Plank mass and length for 
the Schwarzschild black hole. It is clear that due to smallness 
of Rα  the value of 1

Rα −  is on the contrary too large. It may 
be easily calculated (e.g., see[55])  

1225 44 10r = . ×                (41) 
in a good agreement with the astrophysical data. 
Naturally, on the assumption that the vacuum energy 

density vacρ  is involved in ρ  as a term  

M vacρ ρ ρ= +                   (42) 
where Mρ  - average matter density, in case of vacρ  we 

can arrive to the same upper limit (right-hand side of the 
formula (38)) as for ρ . 

Average values of any quantity in QFT with UV-cutoff 
may be expended in terms of the small parameter α  (Sec-
tion 3). Specifically, for the vacuum energy density ( )tρ  in 
the most general case we have  

2
0 1 2( ) ( ) ( )t a a t a tρ α α< >= + + +        (43) 

In[48,49] a similar expansion was performed for 
( ) IRtα α= :  

2 4
2

vac 4 4 4 4

1 1 1 1 (1 )p p
IR IR

p p p p

l l
l ll l l l

ρ α α
Λ Λ

   
= + + + ... = + + + ...   

   
(44) 

Here vacρ  is understood as the quantity calculated for 

IR Univl l RΛ = =  and IRα  corresponds to IRl . 
But as shown previously, if the holographic principle is 

valid, this expansion has a more exact form  
2

1 2( ) ( ) ( )t a t a tρ α α< >= + + ...         (45) 
and 1 0a ≠ .   

5. Gravitational Thermodynamics in 
Low and High Energy and Deformed 
Quantum Theory 

In the last decade a number of very interesting works have 
been published. We can primary name the works[61–70], 
where gravitation, at least for the в spaces with horizon, is 
directly associated with thermodynamics and the results 
obtained demonstrate a holographic character of gravitation. 
Of the greatest significance is a pioneer work[54]. For black 
holes the association has been first revealed in[71,72], where 
related the black-hole event horizon temperature to the sur-
face gravitation. In[69], has shown that this relation is not 
accidental and may be generalized for the spaces with hori-
zon. As all the foregoing results have been obtained in a 
semiclassical approximation, i.e. for sufficiently low ener-
gies, the problem arises: how these results are modified when 
going to higher energies. In the context of this paper, the 
problem may be stated as follows: since we have some infra- 
red (IR) cutoff maxl  and ultraviolet (UV) cutoff minl , we 
naturally have a problem how the above-mentioned results 
on Gravitational Thermodynamics are changed for  

minl l→                        (46) 
Sections 2 and 3 of this paper show that the results are 

dependent on the deformation parameter α  (33), (10) that 
in the accepted notation is of the form  

2

2
minl
l

α =                        (47) 

In fact, in several papers[73–80] it has been demonstrated 
that thermodynamics and statistical mechanics of black holes 
in the presence of GUP (i.e. at high energies) should be 
modified. To illustrate, in[78] the Hawking temperature 
modification has been computed in the asymptotically flat 
space in this case in particular. It is easily seen that in this 
case the deformation parameter α  arises naturally. Indeed, 
modification of the Hawking temperature is of the following 
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form[73,75,78]:  

 
2 2

1 2
2 2 2

43( ) [1 (1 ) ]
4 2

p
GUP

p

lrdT
l r

α
π α

′
/+

′
+

−
= − −

      (48) 

where d  is the space-time dimension, and r+  is the un-
certainty in the emitted particle position by the Hawking 
effect, expressed as  

ix r+∆ ≈                     (49) 
and being nothing else but a radius of the event horizon; 

α ′  – dimensionless constant from GUP. But as we have 
2 p minl lα ′ = , in terms of α  (48) may be written in a natural 
way as follows:  

1
1 23( ) [1 (1 ) ]

4
r

GUP r
p

dT
l

α
α

π α
+

+

−
/

′

−
= − −



        (50) 

where rα
+

- parameter α  associated with the IR-cutoff 
r+ . In such a manner GUPT  is only dependent on the con-
stants including the fundamental ones and on the deforma-
tion parameter α . 

The dependence of the black hole entropy on α  may be 
derived in a similar way. For a semiclassical approximation 
of the Bekenstein-Hawking formula[71,72]  

2

1
4 p

AS
l

=                     (51) 

where A  – surface area of the event horizon, provided the 
horizon event has radius r+ , then 2A r+  and (51) is clearly 
of the form  

1
rS σα
+

−=                        (52) 

where σ  is some dimensionless denumerable factor. The 
general formula for quantum corrections[77] given as 

2

2 2 2
1

ln const
4 4 4 4

n

GUP n
np p p

A A AS c
l l l

πα
−

′ ∞

=

   
= − + + +      

   
∑

   

(53) 

where the expansion coefficients 2( 1)n
nc α ′ +∝  can always 

be computed to any desired order of accuracy[77], may be 
also written as a power series in 1

rα
+

−  (or Laurent series in 

rα
+

)  
2

1 1

1
ln( ) ( ) const

4
n n

GUP r r n r
n

S cπασα σα σ α
+ + +

′ ∞
− − −

=

= − + +∑  (54) 

Note that here no consideration is given to the restrictions 
on the IR-cutoff  

maxl l≤                      (55) 
and to those corresponding the extended uncertainty 

principle (EUP)[78] or symmetric generalized uncertainty 
principle (SGUP)[79] that leads to a minimal momentum. 

A black hole is a specific example of the space with ho-
rizon. It is clear that for other horizon spaces[69] a similar 
relationship between their thermodynamics and the defor-
mation parameter α  should be exhibited. 

Quite recently, in a series of papers, and specifically 
in[61–67], it has been shown that Einstein equations may be 
derived from the surface term of the GR Lagrangian, in fact 
containing the same information as the bulk term. 

It should be noted that Einstein’s equations[at least for 
space with horizon] may be obtained from the proportional-
ity of the entropy and horizon area together with the fun-
damental thermodynamic relation connecting heat, entropy, 
and temperature[54]. In fact[61–68], this approach has been 
extended and complemented by the demonstration of holo-
graphicity for the gravitational action (see also[69]).And in 
the case of Einstein-Hilbert gravity, it is possible to interpret 
Einstein’s equations as the thermodynamic identity[70]:  

TdS dE PdV= +                 (56) 
The above-mentioned results have been obtained at low 

energies, i.e. in a semiclassical approximation. Because of 
this, the problem arises how these results are changed in the 
case of high energies? Or more precisely, how the results 
of[54,61–70] are generalized in the UV-limit? It is obvious 
that, as in this case all the thermodynamic characteristics 
become dependent on the deformation parameter α , all the 
corresponding results should be modified (deformed) to meet 
the following requirements:  

(a) to be clearly dependent on the deformation parameter 
α  at high energies;  

(b) to be duplicated, with high precision, at low energies 
due to the suitable limiting transition.  

The problem may be more specific. As, according to[54, 
69,70] and some other works, gravitation is greatly deter-
mined by thermodynamics, and at high energies the latter is a 
"deformation of the classical thermodynamics". Here "high- 
energy deformation of thermodynamics" is understood as 
some (meanwhile unknown) deformation of thermodynam-
ics in high energies. This theory is still unframed, though 
several of its elements GUP GUPT S,  and the like[73–80] are 
known already. It is interesting whether gravitation at high 
energies (or what is the same, quantum gravity or Planck 
scale) is being determined by the corresponding deformed 
thermodynamics. The formulae (50) and (54) are elements of 
the high-energy α -deformation in thermodynamics, a gen-
eral pattern of which still remains to be formed. Obviously, 
these formulae should be involved in the general pattern 
giving better insight into the quantum gravity, as they are 
applicable to black mini-holes (Planck black holes) which 
may be a significant element of such a pattern. But what 
about other elements of this pattern? How can we generalize 
the results[54,69,70]when the IR-cutoff tends to the UV- 
cutoff (formula (46))? What are modifications of the ther-
modynamic identity (56) in a high-energy deformed ther-
modynamics and how is it applied in high-energy (quantum) 
gravity?   

By authors opinion, the methods developed to solve the 
problem of point (c) and elucidation of other above- men-
tioned problems may form the basis for a new approach to 
solution of the quantum gravity problem. And one of the 
keys to the quantum gravity problem is a better insight into 
the high-energy thermodynamics.  

6. α –Representation of Einstein’s 
Equations 
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Let us consider α -representation and high energy α
-deformation of the Einstein’s field equations for the specific 
cases of horizon spaces (the point (c) of Section 4). In so 
doing the results of the survey work[81] are used. Then, 
specifically, for a static, spherically symmetric horizon in 
space-time described by the metric  

2 2 2 1 2 2 2( ) ( )ds f r c dt f r dr r d−= − + + Ω      (57) 
the horizon location will be given by simple zero of the 

function ( )f r , at r a= . 
It is known that for horizon spaces one can introduce the 

temperature that can be identified with an analytic con-
tinuation to imaginary time. In the case under consideration 
([81], eq.(116))  

( )
4B

cf ak T
π
′

=
                     (58) 

Therewith, the condition ( ) 0f a =  and ( ) 0f a′ ≠  must be 
fulfilled.   

Then at the horizon r a=  Einstein’s field equations  
4

21 1( ) 4
2 2

c f a a Pa
G

π ′ − =  
           (59) 

may be written as the thermodynamic identity (56)([81] 
formula (119))  

3 4
2 3( ) 1 1 44

4 4 2 3
B

cf a c c dad a Pd a
G G

k T dEdS P dV

ππ
π

   
   
   
   
   

′
− =

−





 

 

   (60) 

where r
rP T=  is the trace of the momentum-energy ten-

sor and radial pressure. In the last equation da  arises in the 
infinitesimal consideration of Einstein’s equations when 
studying two horizons distinguished by this infinitesimal 
quantity a  and a da+  ([81] formula (118)). 

Now we consider (60) in new notation expressing a  in 
terms of the corresponding deformation parameter α . Then 
we have  

1 2
mina l α − /=                 (61) 

Therefore,  
1 3 2( ) 2 ( )minf a l fα α− /′ ′= −              (62) 

Substituting this into (59) or into (60), we obtain in the 
considered case of Einstein’s equations in the " α - repre-
sentation" the following:  

4
1 21( ( ) ) 4

2 min
c f P l
G

α α π α −′− − =        (63) 

Multiplying the left- and right-hand sides of the last 
equation by α , we get  

4
2 21( ( ) ) 4

2 min
c f Pl
G

α α α π′− − =         (64) 

But since usually min pl l  (that is just the case if the 
Generalized Uncertainty Principle (GUP) is satisfied), we 
have 2 2 3

min pl l G c= /  . When selecting a system of units, 

where 1c= = , we arrive at min pl l G= √ , and then (63) is 
of the form  

2 2 21( ) 4
2

f P Gα α α π ϑ′− − =          (65) 

where min pl lϑ = / . L.h.s. of (65) is dependent on α . Be-
cause of this, r.h.s. of (65) must be dependent on α  as well, 
i. e. ( )P P α= .  

Analysis of α -Representation of Einstein’s Equations  
Now let us get back to (60). In[81] the low-energy case has 

been considered, for which ([81] formula (120))  
1 24 4

2
2 2

1 1(4 )
4 2 164

H H

p p

A Ac cS a E a
G Gl l

π
π

/
 = = ; = =  
 

  (66) 

where HA  is the horizon area. In our notation (66) may be 
rewritten as 

1 24 4
1 1 21

4 2 16 2
HAc cS E a

G G G
ϑπα α

π

/
− / = ; = = =  √ 

 

(67) 

We proceed to two entirely different cases: low energy 
(LE) case and high energy (HE) case. In our notation these 
are respectively given by  

A) 0α →  (LE), B) 1 4α → /  (HE),  
C) α  complies with the familiar scales and energies.  
The case of C) is of no particular importance as it may be 

considered within the scope of the conventional General 
Relativity.  

Indeed, in point A) 0α →  is not actually an exact limit as 
a real scale of the Universe (Infrared (IR) - cutoff 

2810max Univl R cm= ≈ ), and then  
2 2 12210 .min p maxl lα −/ ≈  

In this way A) is replaced by A1) minα α→ . In any case at 
low energies the second term in the left-hand side (65) may 
be neglected in the infrared limit. Consequently, at low en-
ergies (65) is written as  

2 2 2( ) 4 ( )f P Gα α π α ϑ′− =             (68) 
Solution of the corresponding Einstein equation – finding 

of the function ( ) [ ( )]f f Pα α=  satisfying (68). In this case 
formulae (66) are valid as at low energies a semiclassical 
approximation is true. But from (68) it follows that  

2 2
2

( )( ) 4 Pf G dαα πϑ α
α

= − ∫            (69) 

On the contrary, knowing ( )f α , we can obtain 
( ) r

rP Tα = .  
But it is noteworthy that, when studying the infrared 

modified gravity[82-84], we have to make corrections for the 
considerations of point A1).  

7. Possible High Energy α -Deformation 
of General Relativity 

Let us consider the high-energy case B). Here two variants 
are possible.   
I. First variant 

In this case it is assumed that in the high-energy (Ultra-
violet (UV)) limit the thermodynamic identity (60) (or that is 
the same (56) is retained but now all the quantities involved 
in this identity become α -deformed. This means that they 
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appear in the α -representation with quantum corrections 
and are considered at high values of the parameter α , i.e. at 
α  close to 1/4. In particular, the temperature T  from 
equation (60) is changed by GUPT  (50), the entropy S  from 
the same equation given by semiclassical formula (66) is 
changed by GUPS  (54), and so forth:  

GUP GUPE E V V,   
Then the high-energy α -deformation of equation (60) 

takes the form  
( ) ( ) ( ) ( ) ( )B GUP GUP GUP GUPk T dS dE P dVα α α α α− =   (70) 

Substituting into (70) the corresponding quantities  
( ) ( ) ( ) ( ) ( )GUP GUP GUP GUPT S E V Pα α α α α,  ,  ,  ,   and expanding 

them into a Laurent series in terms of α , close to high val-
ues of α , specifically close to 1 4α = / , we can derive a 
solution for the high energy α -deformation of general rela-
tivity (70) as a function of ( )P α . As this takes place, pro-
vided at high energies the generalization of (60) to (70)is 
possible, we can have the high-energy α -deformation of the 
metric. Actually, as from (60) it follows that  

4
( ) 4B

B
kf a T k T
c

π
π′ = =



           (71) 

(considering that we have assumed 1c= = ), we get  
( ) 4 ( )B GUPGUP a k Tf π α′ =               (72) 

L.h.s. of (72) is directly obtained in the α -representation. 
This means that, when f T′

 , we have GUPGUP Tf ′
  with 

the same factor of proportionality. In this case the function 
GUPf  determining the high-energy α -deformation of the 

spherically symmetric metric may be in fact derived by the 
expansion of GUPT , that is known from (50), into a Laurent 
series in terms of α  close to high values of α  (specifically 
close to 1 4α = / ), and by the subsequent integration.  

It might be well to remark on the following.  
7.1 As on going to high energies we use (GUP), ϑ  from 

equation (65) is expressed in terms of α ′ –dimensionless 
constant from GUP (6), (50): 2ϑ α ′= .  

7.2 Of course, in all the formulae including pl  this 

quantity must be changed by 1 2G /  and hence minl  by 
1 2 1 22G Gϑ α/ ′ /= .  

7.3 As noted in the end of subsection 6.1, and in this case 
also knowing all the high-energy deformed quantities 

( ) ( ) ( ) ( )GUP GUP GUP GUPT S E Vα α α α,  ,  ,  , we can find ( )P α  at α  
close to 1/4.  

7.4 Here it is implicitly understood that the Ultraviolet 
limit of Einstein’s equations is independent of the starting 
horizon space. This assumption is quite reasonable. Because 
of this, we use the well-known formulae for the modification 
of thermodynamics and statistical mechanics of black holes 
in the presence of GUP[73–80] 

7.5 The use of the thermodynamic identity (70) for the 
description of the high energy deformation in General Rela-
tivity implies that on going to the UV-limit of Einstein’s 
equations for horizon spaces in the thermodynamic repre-
sentation (consideration) we are trying to remain within the 

scope of equilibrium statistical mechanics[85] (equilibrium 
thermodynamics)[86]. However, such an assumption seems 
to be too strong. But some grounds to think so may be found 
as well. Among other things, of interest is the result from[73] 
that GUP may prevent black holes from their total evapora-
tion. In this case the Planck’s remnants of black holes will be 
stable, and when they are considered, in some approximation 
the equilibrium thermodynamics should be valid. At the 
same time, by author’s opinion these arguments are rather 
weak to think that the quantum gravitational effects in this 
context have been described only within the scope of equi-
librium thermodynamics[86]. 
II. Second variant 

According to the remark of .5, it is assumed that the in-
terpretation of Einstein’s equations as a thermodynamic 
identity (60) is not retained on going to high energies 
(UV–limit), i.e. at 1 4α → / , and the situation is adequately 
described exclusively by non-equilibrium thermodynam-
ics[86,87]. Naturally, the question arises: which of the addi-
tional terms introduced in (60) at high energies may be 
leading to such a description? 

In the[30,31] it has been shown that in case the cosmo-
logical term Λ  is a dynamic quantity, it is small at low 
energies and may be sufficiently large at high energies. In the 
right-hand side of (65) in the α –representation the addi-
tional term ( ( ))G αΛ  is introduced:  

2 2 21( ) 4 ( ) ( )
2

f P G Gα α α π α ϑ α′− − = − Λ     (73) 

where ( )αΛ  is the cosmological term depending from α . 
Then its inclusion in the low-energy case (59)(or in the α - 
representation (65)) has actually no effect on the thermo-
dynamic identity (60) validity, and consideration within the 
scope of equilibrium thermodynamics still holds true. It is 
well known that this is not the case at high energies as the Λ
-term may contribute significantly to make the "process" 
non-equilibrium in the end[86,87]. 

Is this the only cause for violation of the thermodynamic 
identity (60) as an interpretation of the high-energy gener-
alization of Einstein’s equations? Further investigations are 
required to answer this question.  

8. Conclusions 
Thus, this work presents an analysis of the dark energy 

problem on the assumption that it is the time-varying vac-
uum energy, that conforms to the dynamic cosmological 
term ( )tΛ . Note that the question of the explicit relationship 
between Λ  and t  is not touched, we have rather studied 
the problem of deriving the currently observable value for 

observΛ = Λ .  
As such a consideration inevitably involves the physics of 

the early Universe (Planck scales) and hence QFT with the 
fundamental length (on the order of Planck’s pl ), it is asso-
ciated with new parameters (deformation parameters) and, in 
the limiting transition to low-energy, QFT with the funda-
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mental length turns to well-known QFT (without cutoff). By 
the author’s opinion, α  (7) is the most optimal of the de-
formation parameters from the standpoint of the problems 
considered in this work. 

The results obtained in Sections 6 and 7 enable framing of 
the following hypothesis: 

a dynamic cosmological term is a measure of deviation 
from the thermodynamic identity (the first law of thermo-
dynamics) of the high-energy (Planck’s) deformation of 
Einstein equations for horizon spaces in their thermody-
namic interpretation. 

The dynamic cosmological term correlates well with in-
flation models[4] as the latter require a very high Λ  at the 
early stages of the Universe, and this is distinct from 

experΛ = Λ  in the modern period. Of great interest is the re-
cent work[89], where a mechanism of the vacuum energy 
decay in the de Sitter space is established to support a dy-
namic nature of Λ .  

This work is a step to the incorporation of deformation 
parameters involved in a quantum field theory at Planck’s 
scales into the high-energy deformation of the General 
Relativity (GR). The corresponding calculations with the 
adequate interpretation must follow next. It is interesting to 
consider the high energy α -deformation of GR in a more 
general case. The problem is how far a thermodynamic in-
terpretation of Einstein’s equations may be extended? We 
should remember that, as all the deformations considered 
involve a minimal length at the Planck level min pl l , a 
minimal three-dimensional volume should also be the case 

3
min p pV V l= . And this is of particular importance for high 

energy thermodynamics (some indications to this fact have 
been demonstrated in[30,31]).  
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