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E-mail: jcarlos@fisica.unam.mx, ffelix@fisica.unam.mx, myriam@fisica.unam.mx

Abstract. We present a non-minimal renormalizable SUSY SU(5) model where the flavour
sector exhibits a Q6 flavour symmetry, and R-parity is conserved. We find that the CKM
matrix has an NNI and a Fritzsch texture for the down and up sectors respectively, both
of which are known to be compatible with the experimental CKM values. At the same time,
in the leptonic side, the model predicts a strong inverted hierarchy spectrum and a sum rule

among the neutrino masses. As main results, the atmospheric (θ`
th

23 = 46.18+0.66
−0.65) and solar

(θ`
th

12 = 36.62 ± 4.06.) mixing angles are found to be consistent with the experimental data.

However, the reactor mixing angle value, θ`
th

13 = 3.38+0.03
−0.02, is small and not in good agreement

with the global experimental fits, but it is consistent with the MINOS experiment and fairly
large in comparison to the tribimaximal scenario.

1. Introduction
The Q6 flavour symmetry group has been proposed as responsible for the textures in the quark
as well as in the leptonic sectors [1–5]. This appealing flavour symmetry allows the appearance
of the NNI textures in the quark mass matrices [6,7], so that the mixing can be accommodated
in good agreement with the experimental data [1, 5]. The rich phenomenology Q6 provides in
supersymmetry (SUSY) scenarios is remarkable, such as prohibiting the dangerous terms that
mediate fast proton decay [2,3]. Thus, an immediate question that arises is how to combine the
Q6 flavour symmetry with a GUT framework, in particular, with the SUSY SU(5) model. Here
we will address this problem and we will see that it is possible to accommodate the masses and
mixings of fermions in such a framework.

2. SUSY SU(5)⊗ U(1)⊗Q6 MODEL
The assigned matter content under SUSY SU(5) ⊗ U(1) ⊗ Q6 is displayed on Table 1. Let us
comment on our notation and the matter content: φ and φ̄ are singlet scalars under the gauge
group, the former gives mass to the right-handed neutrinos and the latter is introduced in order
to cancel anomalies in the U(1) abelian group. In addition, φ breaks the SUSY SU(5)⊗U(1)⊗Q6

gauge group into SUSY SU(5) ⊗ Q6; Φa
b stands for the 24 adjoint scalar representation which

breaks the SUSY SU(5) gauge group to the MSSM; there are three families of Higgs type Hu
i

and Hd
j . On the other hand, we do need to include H45 and H4̄5 scalar representations so as to
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SU(5) Q6 U(1)(
Hd

1 , H
d
2

)
5̄ 21 −x

Hd
3 5̄ 1+,2 −x

(Hu
1 , H

u
2 ) 5 21 x

Hu
3 5 1+,2 x

(F1, F2) 5̄ 22
3x
2

F3 5̄ 1−,3
3x
2

(T1, T2) 10 22 −x
2

T3 10 1−,3 −x
2

(Nc
1 , N

c
2 ) 1 22 − 5x

2

Nc
3 1 1−,1 − 5x

2

φ 1 1+,2 5x

φ̄ 1 1+,2 −5x

H4̄5 4̄5 1+,2 −x
H45 45 1+,2 x

Φ 24 1+,0 0

Table 1. Matter content in the SUSY SU(5)⊗ U(1)⊗Q6 model.

fix the incorrect relation Md = MT
e , this can also be achieved by means of higher dimensional

operators [8–10]. Regarding the fermion sector, N c
i denotes the right-handed neutrino, which is a

singlet under the SU(5) gauge group; Fi and Tj stand for the 5-plets and the 10 antisymmetric-
plet, respectively. Here, a, b, c are SU(5) indices, and i, j are family indices. More explicitly,

Fia = (dc, L) ; T abj =
1√
2

(uc, q, `c) ; L =

(
ν`
`

)
; q =

(
u
d

)
, (1)

Hua =

(
Hu

Hu

)
; Hd

b =

(
Hd

Hd

)
; Hu =

(
h+u

h0u

)
; Hd =

(
h0d

h−d

)
.

Here, Hu and Hd are the coloured triplet scalars; Hd and Hu are identified as the weak doublets
of the MSSM group. Since we are only interested in studying the masses and mixings, we do
not dwell on the details of the full gauge symmetry breaking from SUSY SU(5)⊗U(1)⊗Q6 to
the MSSM group. We assume that the coloured Higgs triplets are very heavy, in order to avoid
fast proton decay. Such subtle issues are part of a wider study of this particular model, that is
still in progress. For the scalars fields, we use the following vacuum expectation values (vev’s)

〈Hu〉 =

(
0
〈Hu〉

)
;
〈
Hd
〉

=

(
0

〈Hd〉

)
; 〈H45〉α5

α = v45; 〈H45〉45
4 = −3v45,

〈H4̄5〉
α
α5 = v4̄5; 〈H4̄5〉

4
45 = −3v4̄5; 〈φ〉 = vs;

〈
φ̄
〉

= v̄s; α, β = 1, 2, 3. (2)

The superpotential, invariant under the Q6 discrete group, is

W =
√

2yd1(F1T2 − F2T1)Hd
3 +
√

2yd2(F1T3H
d
2 − F2T3H

d
1 ) +

√
2yd3F3(T1H

d
2 − T2H

d
1 )

+
√

2yd4F3T3H
d
3 +

yu1
4

(T1T2 − T2T1)Hu
3 +

yu2
4

(T1T3H
u
2 − T2T3H

u
1 ) +

yu3
4
T3 (T1H

u
2 − T2H

u
1 )

+
yu4
4
T3T3H

u
3 +
√

2Y1 (F1T2 − F2T1)H4̄5 +
√

2Y2F3T3H4̄5 +
√

2Ỹ1 (T1T2 − T2T1)H45

+
√

2Ỹ2T3T3H45 + yn1 (N c
1F2 −N c

2F1)Hu
3 + yn2 (N c

1F3H
u
2 −N c

2F3H
u
1 )

+yn3N
c
3 (F1H

u
2 + F2H

u
1 ) + ym1 (N c

1φN
c
1 +N c

2φN
c
2) + ym2 N

c
3φN

c
3 . (3)
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There is a missing term which is invariant under SUSY SU(5)⊗ U(1)⊗Q6, namely yijN
c
i φ̄N

c
j ,

however, it is not allowed by the U(1) symmetry. From the above superpotential, using the
scalar vev’s given in Eq.(2), one must obtain the mass terms; working in the SU(5) basis the
Lagrangian for the mass terms is

Lq = −d̄iR (Md)ij djL − ūiR (Mu)ij ujL + h.c. ,

Ll = −¯̀
iR (M`)ij `jL − N̄iR (MD)ij νjL −

1
2N̄iR (MR)ij N

c
jR + h.c. ,

(4)

where the fermion mass matrices have the following structures:

Md =

(
0 yd1h

0d
3 + 2Y1v4̄5 yd2h

0d
2

−yd1h0d
3 − 2Y1v4̄5 0 −yd2h0d

1

yd3h
0d
2 −yd3h0d

1 yd4h
0d
3 + 2Y2v4̄5

)
; Mu =

(
0 −2Ỹ1v45 ȳuh0u

2

2Ỹ1v45 0 −ȳuh0u
1

ȳuh0u
2 −ȳuh0u

1 yu4h
0u
3

)

M` =

(
0 −

(
yd1h

0d
3 − 6Y1v4̄5

)
yd3h

0d
2

yd1h
0d
3 − 6Y1v4̄5 0 −yd3h0d

1

yd2h
0d
2 −yd2h0d

1 yd4h
0d
3 − 6Y2v4̄5

)
; MD =

(
0 yn1 h

0u
3 yn2 h

0u
2

−yn1 h0u
3 0 −yn2 h0u

1

yn3 h
0u
2 yn3 h

0u
1 0

)
(5)

and ȳu ≡ (yu2 + yu3 )/2. At the same time, we get MR = diag(MR1 ,MR1 ,MR3). Therefore,
after the type I see-saw mechanism one obtains the Mν = MT

DM−1
R MD effective neutrino mass

matrix.

3. Masses and mixings
3.1. Quark and lepton masses
If we suppose that h0u

2 = h0u
1 ≡ h0u and h0d

2 = h0d
1 ≡ h0d in Eq. (5), then one realizes

that the M(d,`) and Mu mass matrices contain implicitly the NNI and Fritzsch textures
respectively, which appear explicitly as follows: the above mass matrices are diagonalized by

Uf(R,L) unitary matrices according to Eq.(4), thus one obtains, M̃f = U†fRM̂fUfL, in general.

Here, M̃f = diag(m̃f1 , m̃f2 , 1) and M̂f = Mf/mf3 are dimensionless mass matrices.

Then, taking Uf(R,L) = Uπ/4uf(R,L), one can easily get M̃f = u†fRmfufL where

mf = UT
π/4M̂fUπ/4 =

 0 ±Ãf 0

∓Ãf 0 −
√

2B̃f
0 −

√
2C̃f D̃f

, and Uπ/4 =


1√
2
− 1√

2
0

1√
2

1√
2

0

0 0 1

 (6)

Here, ± the upper (lower) sign corresponds to the md (m` and mu) mass matrices. In addition,
the mf dimensionless coefficients can be read directly from Eq. (5), and we have to keep in

mind that B̃u = C̃u for the up quarks. The degeneracy in the vev’s for two scalar fields modifies
the effective neutrino mass matrix which is given explicitly as

Mν =

A2
ν +B2

ν B2
ν AνCν

B2
ν A2

ν +B2
ν AνCν

AνCν AνCν 2C2
ν

 with Aν =
√
xyn1 h

0u
3 , Bν =

√
yyn3 h

u andCν =
√
xyn2 h

u (7)

3.2. Quark and lepton mixings
We will describe briefly how to diagonalize the mass matrices, m(d,`) and mu, respectively. Let
us focus on the former one which has the NNI texture [6, 7]. We will follow the prescription
applied to mu in the case of Fritzsch mass textures [11,12]. For a pedagogical review on how to
diagonalize this type of matrices see ref. [13].

Going back to the expression M̃f = u†fRmfufL, we are interested in obtaining the ufL left-
handed matrices necessary to construct the CKM matrix, for this we must build the bilineal
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form: M̃†
fM̃f = u†fLm†fmfufL. From this relation, we can factorize the CP phases that come

from m†fmf = Qf (m†fmf )Q†f see [13], such that, Qf = diag (1, exp(−iηf2), exp(−iηf3)). Thus,
we appropriately choose ufL = QfOfL where OfL is the real orthogonal matrix that diagonalizes

the (m†fmf ) matrix which we have not written here. Notice that OfL = (| f1〉, | f2〉, | f3〉), where
the three eigenvectors have the following form

| fi〉 = Nfi

 (m̃2
fi
− |Ãf |2 − |C̃f |2)|Ãf ||B̃f |

(m̃2
fi
− |Ãf |2)|C̃f ||D̃f |

(m̃2
fi
− |Ãf |2)(m̃2

fi
− |Ãf |2 − |C̃f |2)

, | f3〉 = Nf3

 (1− |Ãf |2 − |C̃f |2)|Ãf ||B̃f |
(1− |Ãf |2)|C̃f ||D̃f |

(1− |Ãf |2)(1− |Ãf |2 − |C̃f |2)

. (8)

Here, Nfi (i = 1, 2) and Nf3 stand for the normalization factors whose definition must be read
directly from the above expression. Three dimensionless free parameters can be fixed in terms
of the physical masses and |D̃f | ≡ y2

f , which is the only dimensionless free parameter [6, 7].
Explicitly, these are given by

|Ãf | =
qf
yf

; |B̃f | =

√
1 + Pf − y4

f −Rf
2

−
(
qf
yf

)2

; |C̃f | =

√
1 + Pf − y4

f +Rf

2
−
(
qf
yf

)2

, (9)

where

Pf = m̃2
f1 + m̃2

f2 , qf = 4

√
m̃2
f1
m̃2
f2
, Rf =

√(
1 + Pf − y4

f

)2

− 4
(
Pf + q4

f

)
+ 8q2

fy
2
f . (10)

Hence, there are two free parameters, yf (f = d, `), in the leptonic sector. So far, we have found
the U(d,`)L left-handed matrices.

Let us now focus on mu, where we must remember that |B̃u| = |C̃u|. In this case, one can
fix the three free parameters in terms of the physical masses. Explicitly, we obtain

|Ãu| =
√

m̃um̃c

1− m̃c + m̃u
, |B̃u| =

√
(1− m̃c)(1 + m̃u)(m̃c − m̃u)

1− m̃c + m̃u
, |D̃u| = 1− m̃c + m̃u. (11)

Following the analysis previously described, the OuL orthogonal matrix that diagonalizes

(m†umu) is fixed in terms of the above mentioned parameters. Thus, using the expression
given in Eq. (8), we get

OuL =



−

√
m̃c(1 − m̃c)

(1 − m̃u)(m̃c + m̃u)(1 − m̃c + m̃u)
−

√
m̃u(1 + m̃u)

(1 + m̃c)(m̃c + m̃u)(1 − m̃c + m̃u)

√
m̃um̃c(m̃c − m̃u)

(1 − m̃u)(1 + m̃c)(1 − m̃c + m̃u)

−

√
m̃u(1 − m̃c)

(1 − m̃u)(m̃c + m̃u)

√
m̃c(1 + m̃u)

(1 + m̃c)(m̃c + m̃u)

√
(m̃c − m̃u)

(1 − m̃u)(1 + m̃c)√
m̃u(1 + m̃u)(m̃c − m̃u)

(1 − m̃u)(m̃c + m̃u)(1 − m̃c + m̃u)
−

√
m̃c(1 − m̃c)(m̃c − m̃u)

(1 + m̃c)(m̃c + m̃u)(1 − m̃c + m̃u)

√
(1 + m̃u)(1 − m̃c)

(1 − m̃u)(1 + m̃c)(1 − m̃c + m̃u)


(12)

Therefore, the full left-handed unitary matrices are given, in general, by UfL = Uπ/4ufL,
where ufL = QfOfL. Then, the CKM matrix may be completely determined by VCKM =

U†uLUdL = OT
uLQqOdL, where we have defined Qq = Q†uQd. In this way, the CKM matrix can

be obtained either analytically or numerically. However, in here we are just interested in getting
a numerical expression for it.

In the leptonic sector, we have that U`L = Uπ/4Q`O`L, but we need to obtain the
neutrino mixing contribution in order to have a complete PMNS matrix which is defined as

VPMNS = U†`LUνLK, we shall neglect the K Majorana phases. The Mν mass matrix given

in Eq. (7) is diagonalized by Uν = uπ/4P
†
νOν , that is, M̃ν = diag (mν1 ,mν2 ,mν3) = OT

ν M̂νOν

where Pν = diag(exp iην1 , exp iην2 , exp iην1), and

uπ/4 =


1√
2

0 − 1√
2

1√
2

0
1√
2

0 1 0

; M̂ν =

|Aν |2 + 2|Bν |2
√

2|Aν ||Cν | 0√
2|Aν ||Cν | 2|Cν |2 0

0 0 |Aν |2

. (13)
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A necessary condition to factorize the phases in a similar way to the quark sector, is that the A2
ν

and B2
ν phases must be aligned [13]. On the other hand, |Aν |, |Bν |2 and |Cν |2 are determined

by the physical masses

|Aν |2 = mν3 ; |Bν |2∓ =
1

4
(mν2 +mν1 −mν3 ∓Rν) ; |Cν |2± =

1

4
(mν2 +mν1 −mν3 ±Rν) , (14)

where Rν =
√

(mν2 +mν1 −mν3)2 − 4mν2mν1 . A straightforward analysis on the inverted and

normal hierarchies among the neutrino masses rules out the latter one. For the inverted case
(mν2 > mν1 > mν3), |Bν |2− and |Cν |2+ turn out to be real and positive, if and only if, mν3 is
tiny. Actually, from Rν we obtain the following sum rule, mν3 ≤ (

√
mν2 −

√
mν1)2, where the

equality in the above expression means an upper bound for the mν3 mass. Having fixed |Bν |2−
and |Cν |2+ in terms of the physical neutrino masses, the Oν matrix is well determined by them.
Explicitly, we obtain

Oν =



√
mν3 (mν2 +mν1 −mν3 +Rν)

(mν2 −mν1) (mν2 −mν1 +mν3 −Rν)

√
mν3 (mν2 +mν1 −mν3 +Rν)

(mν2 −mν1) (mν2 −mν1 −mν3 +Rν)
0

−
√
mν2 −mν1 +mν3 −Rν

2 (mν2 −mν1)

√
mν2 −mν1 −m3ν +Rν

2 (mν2 −mν1)
0

0 0 1

 . (15)

Therefore, VPMNS = U†`Uν = OT
`LQ†`S23P

†
νOνL, where S23 = UT

π/4uπ/4. Comparing this

matrix with the standard parametrization given in [14], we find that the reactor, atmospheric
and solar mixing angles are completely determined as follows

| sin θ13| = |O21`|; | sin θ23| =
|O22`|√

1− |O21`|2
; | tan θ12|2 =

|O11`O12ν +O31`O22ν exp (iη̄3e) |2

|O11`O11ν +O31`O21ν exp (iη̄3e) |2
. (16)

There is a remarkable coincidence between the above formulas and those presented in refs. [15,16].

4. Results
4.1. CKM mixing matrix

As we showed before, the CKM matrix is defined as VCKM = U†uLUdL = OT
uLQqOdL, where

the orthogonal matrices depend on the physical quark masses, to be more explicit, they depend
on their ratios, that is on mu/mt, mc/mt and md/mb, ms/mb for the up and down quarks,
respectively. Then, knowing those ratios, we just need to tune the free parameters yd and the
two CP-violating phases to get a reliable CKM matrix. This numerical analysis is still in
progress.

4.2. PMNS mixing matrix
In order to fix the ye free parameter, we performed a χ2 analysis using the theoretical expressions
for the reactor and atmospheric angles given in Eq. (16) and the following experimental values:
sin2 2θ`13 = 0.076 ± 0.068 [17] and sin2 θ`23 = 0.52 ± 0.06 [18]. Also, we consider the following
values for the charged lepton masses values: me = 0.51099 MeV, mµ = 105.6583 MeV and

mτ = 1776.82 MeV [14]. As a result, we obtain that ye = 0.8478+0,0045
−0.0046 is the best fit at 1σ,

moreover, the best theoretical values (at 1σ) for the reactor and atmospheric angles that come
out from this analysis are

θ`
th

23 = 46.18+0.66
−0.65 and θ`

th

13 = 3.38+0.03
−0.02 where χ2

bf = 0.85 (17)
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The solar angle, which now depends on the neutrino masses and one Dirac phase, can be
determined using the neutrino mass sum rule. This is written in terms of the observables ∆m2

�
and ∆m2

ATM as

mν3 ≤
(

4

√
m2
ν3 + ∆m2

� + ∆m2
ATM −

4

√
m2
ν3 + ∆m2

ATM

)2

. (18)

Using the experimental results on ∆m2
� and ∆m2

ATM [18], we obtain, 0 ≤ mν3 ≤ 4 × 10−6 eV.
As a result, the mν2 and mν1 neutrino masses are easily calculated taking mν3 = 3.9× 10−6 eV.
Therefore, mν2 = 0.05080 eV and mν1 = 0.04987 eV.

Having done that, the neutrino masses are not any more free parameters in the solar mixing
angle expression given in Eq. (16). As consequence, it is easy to calculate the solar mixing angle
with a particular value for the η̄3e = π Dirac phase and using the ye value at 90% at C.L, we
obtain

θ`
th

12 = 36.62± 4.06. (19)

Although, the atmospheric and solar angle are in good agreement with the experimental data,
the reactor angle is not consistent with the global fits, although it is not completely negligible

and it is large in comparison to the tribimaximal scenario, θ`
th

13 = 3.38+0.03
−0.02. This value may be

enhanced to the current experimental one by considering that the first and second right-handed
neutrinos are not degenerate in mass, that is, MR1 6= MR2 in the right handed neutrino mass
matrix. These results will be presented very soon.
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