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Abstract. The 4-loop contribution to the slope of the Dirac form factor in QED has been evaluated with 1100

digits of precision. The value is

m2F
(4)′

1
(0) = 0.886545673946443145836821730610315359390424032660064745. . .

(

α

π

)4

.

We have also obtained a semi-analytical fit to the numerical value. The expression contains harmonic polylog-

arithms of argument e
iπ
3 , e

2iπ
3 , e

iπ
2 , one-dimensional integrals of products of complete elliptic integrals and six

finite parts of master integrals, evaluated up to 4800 digits. We show the correction to the energy levels of the

hydrogen atom due to the slope.

1 The slope of the Dirac form factor

In QED the vertex can be written

ū(p1)

(

γµF1(t) +
σµν

2m
qνF2(t)

)

u(p2) , (1)

where m is the electron mass, F1(t) and F2(t) are the Dirac

and Pauli form factors. At t = 0, the charge conservation

implies that

F1(0) = 1 , (2)

whereas the value of the Pauli form factor is the g-2

F2(0) =
g − 2

2
. (3)

The quantity d
dt

F1(t)
∣

∣

∣

t=0
= F′

1
(0) is the slope of the Dirac

form factor.

1.1 Theoretical expression

We expand perturbatively the slope in powers of
(

α
π

)

m2F′1(0) = A1

(

α

π

)

+A2

(

α

π

)2

+A3

(

α

π

)3

+A4

(

α

π

)4

+ . . . . (4)

The coefficients known in analytical form are [2–4]

A1 = −
1

8
−

1

6ǫ
. (5)

A2 = −
4819

5184
−

49

432
π2 +

1

2
π2 ln 2 −

3

4
ζ(3)
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0.88654567394644314583682173061031535939042403266006474536805

5909320840316465628927454836486324177336869351275874721830799

6875923974888466826147611753011917584831446774752672980326917

4027192146515393255198447931004950196245313721193729467160800

6342998095842536958494506068383665985141387321894210012394882

7595153823786537220388349644856007568985761687756410271977960

3910290276615122356406105399227905150277608224592369504332757

0361335093525176476399251682267935964524928545665821844102867

4547644077579921118603788315350119800677785150747802126742479

0405222247330295021831074290199029916276829160228905899116426

4634498789876307270828483643587434780024554153724340089695147

1683115538642559188352093478066512674887503345902599182245563

6131251241198806154155376213371122848462776848674219282896865

6811548030353727600787303621093059264752959892234017835732828

9717496239918335278488413242436969926422136403200684400061242

3529815833966332566753158241741448217616597381276692161976675

0950507406493095613619589880245645116354567571623094417388481

1565020098334847940590188785421700667378220853053541953188378

610075518116338519220...

Table 1. First 1100 digits of A4.

= 0.469 941 487 459 992. . . , (6)

A3 = −
17

24
π2ζ(3) +

25

8
ζ(5) −

217

9

(

Li4

(

1

2

)

+
ln4 2

24

)

−
103

1080
π2ln2 2 +

3899

25920
π4 −

2929

288
ζ(3) +

41671

2160
π2ln 2

−
454979

38880
π2 −

77513

186624

= 0.171 720 018 909 775. . . . (7)

In this paper we present the result of the calculation of

A4 with a precision of 1100 digits. The first digits of the

result are

A4 = 0.8865456739464431458368217306103153. . . .

(8)
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loop F′
1
(0) F2(0)

1 ∞ 0.5

2 0.469941487459 −0.328478965579

3 0.171720018909 1.181241456587

4 0.886545673946 −1.912245764926

5 6.737(159)

positive alternating signs

Table 2. Values of the known contributions to F′
1
(0) and F2(0)

(1)

1480.1350

(2)

1480.3802

(3)

40−0.07894

(4)

500.3662

(5)

108−1.0979

(6)

240.6467

(7)

600.08958

(8)

60−0.3322

(9)

120.07633

(10)

180.2118

(11)

8−0.05418

(12)

40.01087

(13)

4−0.01426

(14)

2−0.005811

(15)

24−0.2439

(16)

120.2062

(17)

10.008536

(18)

60.05339

(19)

30.02360

(20)

150.07401

(21)

48−0.05377

(22)

180.1819

(23)

600.2359

(24)

12−0.002122

(25)

60.06903

Figure 1. Typical representative diagrams of gauge-invariant

sets. For each set only one diagrams is shown. Top left: con-

tribution of the set to F′
1
(0); top right: number of diagrams of the

set

The full-precision result is shown in table 1. In table 2

we have listed the known values of the slope and g-2; we

see that A2, A3 and A4 are all positive, in contrast with the

alternating signs observed in the g-2.

1.2 Shift to the hydrogen levels

Let us now consider the shift to the hydrogen energy levels

due to A4. We express the energy shift in terms of the

frequency shift ∆ f = ∆E/h. For the level nS the frequency

shift is [5, 6]

1 0.1350531726346435372674724541103838371038

2 0.3802929165240844585552528298843579658371

3 - 0.0789488893676831608109628366941799823079

4 0.3662786736588470044584250527325325702299

5 - 1.0979832148317652705103820073196531832520

6 0.6467871429585372084492391789800382619165

7 0.0895891170440342216099366534902414320652

8 - 0.3322086225106643608126657791889571079890

9 0.0763376479373933425961220467893817339605

10 0.2118669010888818123786340161652003594809

11 - 0.0541837571893361764657206136746826299854

12 0.0108761535582321058694530867351119912448

13 - 0.0142646608196830116628021692409901716905

14 - 0.0058117416010420357833143542203438251011

15 - 0.2439068506475319592123409557076293747890

16 0.2062012570841125786262218639260170000956

17 0.0085366428673036656037790352019835488011

18 0.0533927095302949341276880145918233326838

19 0.0236058911191014021135877461122766184082

20 0.0740163162205724051338179043210727390276

21 - 0.0537711607064956999082765338567906834199

22 0.1819474273966664016975772159395176159307

23 0.2359289294543601921365690660148707901595

24 - 0.0021225895319909487365222280699442649666

25 0.0690362620755704991160330435886767859471

Table 3. Contribution to A4 of the 25 gauge-invariant sets of

Fig.1.

∆ fslope(nS, 4-loop) =
4(Zα)4mc2

h n3

(

mr

m

)3
[

(

α

π

)4

A4

]

, (9)

where mr is the reduced mass mr = mM/(m + M) and M

is the proton mass. Inserting the values of m, M, c, h and

Z = 1, the correction due to A4 is

∆ fslope(nS, 4-loop) =
36.11

n3
Hz , (10)

and is comparable with the experimental error of the ex-

tremely precise measurement of 1S − 2S transition[7]

f (1S − 2S) = 2466 061 413 187 018 ± 11 Hz . (11)

Eq.(10) is the first calculated four-loop correction to the

energy levels, of the kind
(

α
π

)4
(Zα)4.

2 Gauge-invariant sets

There are 891 vertex diagrams contributing to A4. These

vertex diagrams can be arranged in 25 gauge-invariant sets

(Fig.1). The sets are classified according to the number of

photon corrections on the same side of the main electron

line and the insertions of electron loops (see Ref.[8]). The

numerical contributions of each set, truncated to 40 dig-

its, are listed in the table 3. The separate contributions to

the slope from diagrams without or with internal loops are

listed in table 4.

2
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loop F′
1
(0) no elec. loop F′

1
(0) only elec. loop

2 0.438352514986 0.031588972473

3 −0.002437444568 0.174157463478

4 0.351479801576 0.535065872369

Table 4. Separate contributions to the slope from diagrams

without and with electron loops.

3 The analytical fit

By building systems of integration-by-parts identities[9,

10] and solving them[11], the contributions to A4 of all the

diagrams are expressed as linear combinations of 334 mas-

ter integrals, the same ones as appeared in the calculation

of 4-loop g-2 [1]. In Ref.[1] these master integrals were

calculated numerically with precision ranging from 1100

to 9600 digits; analytical expressions were fit to all these

master integrals (single or in particular combinations) by

using the PSLQ algorithm[12, 13]. We use those results

here.

Therefore, the analytical expression of A4 contains the

same transcendentals appeared in the g-2 result: values

of harmonic polylogarithms[14] with argument 1, 1
2
, e

iπ
3 ,

e
2iπ
3 , e

iπ
2 [15, 16] , a family of one-dimensional integrals

of products of elliptic integrals, and the finite terms of the

ǫ−expansions of six master integrals belonging to topolo-

gies 24 and 25 of Fig.1. The expression of the analytical

fit is written as follows:

A4 = T +
√

3Va + Vb +W +
√

3Ea + Eb + U , (12)

T =−
92473962293

19752284160
−

6619898477

21772800
ζ(2) −

12334741

132300
ζ(3)

+
97832509

90720
ζ(2) ln 2 −

241619904061

391910400
ζ(4)

+
4572662443

12247200
ln2 2ζ(2) −

1449791143

3061800

(

a4 +
1

24
ln4 2

)

+
90355973

134400
ζ(5) +

1173056009

9072000
ζ(3)ζ(2) −

8548241

30240
ζ(4) ln 2

−
68168

135

(

a5 +
1

12
ζ(2) ln3 2 −

1

120
ln5 2

)

−
244603373713

52254720
ζ(6)

−
8082848863

24192000
ζ2(3) +

26062

27
a6 −

18215

27
b6 +

18215

27
a5 ln 2

−
18215

27
ζ(5) ln 2 +

402152509

189000
a4ζ(2) +

159693503

72000
ζ(3)ζ(2) ln 2

−
328317209

302400
ζ(4) ln2 2 −

18215

162
ζ(3) ln3 2 +

188648503

1512000
ζ(2) ln4 2

−
21671

6480
ln6 2 −

7224951103

1741824
ζ(7) −

1267114025

387072
ζ(4)ζ(3)

−
427145

504
a4ζ(3) −

2749470791

387072
ζ(5)ζ(2) +

1420289

180
a5ζ(2)

+
116987

21
a7 −

116987

63
b7 +

256321

756
d7 +

971827

128
ζ(6) ln 2

+
607282

189
a6 ln 2 −

256321

378
b6 ln 2 −

1794247

3456
ζ2(3) ln 2

+
104041

20
a4ζ(2) ln 2 −

1888991

24192
ζ(5) ln2 2

+
256321

378
a5 ln2 2 −

9699379

6048
ζ(4) ln3 2 −

2574883

36288
ζ(3) ln4 2

+
37144753

226800
ζ(2) ln5 2 −

218465

127008
ln7 2 +

75222353

60480
ζ(3)ζ(2) ln2 2 ,

(13)

W =−
1117

36
ζ(2)Cl2

(

π

2

)

+
38424

125
ζ(2)Cl22

(

π

2

)

−118

(

4ReH0,1,0,1,1 (i) ζ(2) + 4ImH0,1,1 (i) Cl2

(

π

2

)

ζ(2)

−2Cl4

(

π

2

)

ζ(2)π + Cl22

(

π

2

)

ζ(2) ln 2

)

, (14)

Va =−
14186171

194400
Cl4

(

π

3

)

−
103023803

583200
ζ(2)Cl2

(

π

3

)

+
916598

76545
ImH0,0,0,1,−1,−1

(

ei π
3

)

+
916598

76545
ImH0,0,0,1,−1,1

(

ei 2π
3

)

+
916598

76545
ImH0,0,0,1,1,−1

(

ei 2π
3

)

+
458299

36855
ImH0,0,1,0,1,1

(

ei 2π
3

)

+
10540877

442260
ImH0,0,0,1,1,1

(

ei 2π
3

)

+
178619489

3980340
Cl6

(

π

3

)

+
1833196

45927
a4Cl2

(

π

3

)

−
12563350487

2579260320
ζ(5)π

+
533401067

459270
ζ(4)Cl2

(

π

3

)

+
844343

18900
ImH0,1,1,−1

(

ei 2π
3

)

ζ(2)

+
844343

28350
ImH0,1,1,−1

(

ei π
3

)

ζ(2) +
458299

21870
ζ(3)ImH0,1,−1

(

ei π
3

)

+
458299

14580
ζ(3)ImH0,1,1

(

ei 2π
3

)

−
263673944

295245
Cl4

(

π

3

)

ζ(2)

−
39924629

6889050
ζ(3)ζ(2)π +

844343

1224720
ζ(4)π ln 2

−
844343

11340
ImH0,1,−1

(

ei π
3

)

ζ(2) ln 2 +
19130869

367416
ζ(2)Cl2

(

π

3

)

ln2 2

−
844343

7560
ImH0,1,1

(

ei 2π
3

)

ζ(2) ln 2 +
458299

275562
Cl2

(

π

3

)

ln4 2 , (15)

Vb =
212671

2400

(

ReH0,0,0,1,0,1

(

ei π
3

)

+ Cl4

(

π

3

)

Cl2

(

π

3

))

−
1031987

14400
Cl22

(

π

3

)

ζ(2) −
507

4
ReH0,0,0,1,0,1,−1

(

ei π
3

)

−507ReH0,0,0,0,1,1,−1

(

ei π
3

)

+
13689

32
ReH0,0,1,0,0,1,1

(

ei 2π
3

)

+
68445

64
ReH0,0,0,1,0,1,1

(

ei 2π
3

)

+
13689

8
ReH0,0,0,0,1,1,1

(

ei 2π
3

)

−
507

4
Cl4

(

π

3

)

ImH0,1,−1

(

ei π
3

)

−
1521

8
Cl4

(

π

3

)

ImH0,1,1

(

ei 2π
3

)

−
24505

176
Cl6

(

π

3

)

π −
295

4
ReH0,1,0,1,−1

(

ei π
3

)

ζ(2)

−
295

2
ReH0,0,1,1,−1

(

ei π
3

)

ζ(2) −
2655

16
ReH0,1,0,1,1

(

ei 2π
3

)

ζ(2)

−
2655

8
ReH0,0,1,1,1

(

ei 2π
3

)

ζ(2) −
295

4
ImH0,1,−1

(

ei π
3

)

Cl2

(

π

3

)

ζ(2)

−
885

8
ImH0,1,1

(

ei 2π
3

)

Cl2

(

π

3

)

ζ(2) , (16)

Ea =π

(

5581729229

362880000
B3 +

1233637481

1399680000
C3

)

−
11495611

3265920
π f2(0, 0, 1) + π

(

751

972
ln 2 f2(0, 0, 1)

−
365478661

24494400
f2(0, 2, 0) +

119022487

5443200
f2(0, 1, 1)

−
119022487

14515200
f2(0, 0, 2)

)

−
751

729
ζ(2) f1(0, 0, 1)

+π

(

−
1735283

497664
ζ(2) f2(0, 0, 1) +

1105

108
ln 2 f2(0, 0, 2)

−
2210

81
ln 2 f2(0, 1, 1) +

4420

243
ln 2 f2(0, 2, 0) −

1104271

497664
f2(0, 0, 3)

+
272833

41472
f2(0, 1, 2) −

4011005

497664
f2(0, 2, 1) +

8417635

2239488
f2(0, 3, 0)

+
157753

248832
f2(1, 0, 2) +

354323

248832
f2(1, 1, 1) − 298711

124416
f2(1, 2, 0)

−
157753

497664
f2(2, 0, 1) −

98285

248832
f2(2, 1, 0)

)

, (17)

3
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T - 2191.23546965751178841316292285882885509√
3Va - 648.74441479274053140037234999290048941

Vb - 400.66449515766079257160481868291283752

W 1539.32919916681645350981276108756905937√
3Ea - 266.54091710106238111286732183079933994

Eb 1928.22253648844241548541655379066123429

U 40.52010672766306764861492021782154366

Table 5. Numerical values of the addends appearing in Eq.12.

Eb =ζ(2)

(

−
4629335

165888
f1(0, 0, 2) +

112357

1536
f1(0, 1, 1) −

99731

1944
f1(0, 2, 0)

+
157753

41472
f1(1, 0, 1)

)

,

(18)

U =
174623

288000
C81a +

29479

7200
C81b −

43

6
C81c +

10871

14400
C83a −

157

1620
C83b

−
95

24
C83c .

(19)

In the above expressions ζ(n) =
∑∞

i=1 i−n, an =
∑∞

i=1 2−i i−n, b6 = H0,0,0,0,1,1

(

1
2

)

, b7 = H0,0,0,0,0,1,1

(

1
2

)

,

d7 = H0,0,0,0,1,−1,−1(1), Cln (θ) = ImLin(eiθ). Hi1,i2,...(x) are

the harmonic polylogarithms. The integrals f j are defined

as follows:

fm(i, j, k) =

∫ 9

1

ds D1(s)Re
(√

3m−1Dm(s)
)

×
(

s −
9

5

)

lni (9 − s) ln j (s − 1) lnk (s) ,

Dm(s) =
2

√

(
√

s + 3)(
√

s − 1)3

×

K

(

m − 1 − (2m − 3)
(
√

s − 3)(
√

s + 1)3

(
√

s + 3)(
√

s − 1)3

)

;

(20)

K(x) is the complete elliptic integral of the first kind. The

constants B3 and C3 have the following hypergeometric

representations [1, 17]:

B3 =
π

27

√
3

[

4F̃3

(

1
6

1
3

1
3

1
2

5
6

5
6

2
3

; 1

)

− 4F̃3

(

5
6

2
3

2
3

1
2

7
6

7
6

4
3

; 1

)]

,

C3 =
π

27

√
3

[

4F̃3

(

1
6

1
3

4
3
− 1

2

− 1
6

5
6

5
3

; 1

)

− 4F̃3

(

− 7
6
− 1

3
2
3
− 1

2

− 5
6

1
6

1
3

; 1

)]

,

(21)

4F̃3

(

a1 a2 a3 a4

b1 b2 b3
; x

)

=
Γ(a1)Γ(a2)Γ(a3)Γ(a4)

Γ(b1)Γ(b2)Γ(b3)
4F3

(

a1 a2 a3 a4

b1 b2 b3
; x

)

.

(22)

The numerical values of the constants appearing in Eq.(12)

are listed in Table 5. Note the strong numerical cancella-

tions in Eq.(12): the largest term is − 2749470791
387072

ζ(2)ζ(5) =

−12115.862 .

4 Method of calculation

We sketch the method used to obtain A4. It is the same

used in Ref.[1].

1. Generation of 891 vertex diagrams (C program)

from 104 self-mass diagrams. These are the same

of the 4-loop g-2 calculation.

2. Extraction of the contribution to A4 from the ampli-

tude of each diagram by using projectors [18, 19]

with a FORM program[20, 21].

3. Algebraic reduction to master integrals, obtained by

building and solving large systems of integration-

by-parts identities[9, 10] by using the program

SYS[11].

4. For the sake of checks we generate a different sys-

tem for each group of vertex diagrams obtained

from the same self-mass diagram.

5. The smallest system contains 108 identities, with

size of 90GB. The system with the largest number

of identities contains 5 × 108, with a size of 170GB.

The largest system has 3 × 108 identities with a size

of 1.2TB.

6. The ratio between number of independent identities

and total number of generated identities is in the

range 0.2 − 0.3. The dependent identities become

trivial zeroes when substituted into the system, and

have been used to check the reliability of hardware

and software. No hardware errors were detected. In-

stead, software errors have been detected in this way

(frequency: one every 2-3 weeks), caused by a bug

in the OpenMPI message passing library used with

the highest level of threads support.

7. We algebraically check that the contribution from a

diagram is invariant to the changes in the particu-

lar internal routing of the momentum of the external

photon.

8. The renormalization is carried out by subtracting

suitable counterterms, which are generated with C

and FORM programs and calculated numerically with

SYS.
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