
The anharmonic oscillator in

quantum mechanics

Summary

In this article the anharmonic oscillator in quantum mechanics is discussed.
First propagators of less complex systems are found by using the path integral
method.
With perturbation theory an expression, up to any order, has been found for
the vacuum propagator of the anharmonic oscillator. In this article only the
first and second order were calculated and by looking at the n-pointfunctions the
Feynman diagrams of these orders were found. It appears that the anharmonic
term up to first order causes a change in the frequency of the system.
Looking at second order perturbation theory gives five diagrams. The first four
of these diagrams are simple diagrams and again these diagrams alter the fre-
quency of the system. The change in the frequency looks a lot like a series and
it is possible to ’guess’ a general expression up to any order for all simple dia-
grams. This expression seems to fit qualitatively for higher orders however the
prefactors were not checked nor is there a proof formulated.
The fifth diagrams is a complex diagram and this diagram has not been solved
in a satisfying way.
Finally some recommendations for additional research are given.

Jordy de Vries, 1381156
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Introduction

In this article we discuss the quantum anharmonic oscillator. This system is
of great importance in many branches of physics and it is interesting to look at
it with different methods. In quantum field theory it the anharmonic oscillator
has been studied in great detail. In that area of physics it is possible to find
Feynman diagrams and Feynman rules which determine the vacuum propaga-
tor of the system. In this article these diagrams and rules are searched for in
standard quantum mechanics. It appears that there is a great analogy between
these two branches of physics.
This article starts out with basic propagator theory and path integral methods.
Then the propagators of several physical systems are calculated and with those
results an expression is found for the vacuum propagator of the anharmonic
oscillator.
This propagator is then calculated and the influence of the anharmonic term is
determined up to second order.

Propagator in quantum mechanics

Let’s look at the Schrodinger equation of a particle in one dimension

ih̄
∂

∂t
Ψ(q, t) = H(p, q)Ψ(q, t) (1)

We are only considering Hamiltonians of the form

H(p, q) =
p2

2m
+ V (q) p = −ih̄

∂

∂q
. (2)

If the wavefunction is known at a certain time ti the Schrodinger equation
determines the wavefunction at later times and it is possible to write

Ψ(q, t) =
∫

dq′K(q, t; q′, ti)Ψ(q′, ti). (3)

In the Heisenberg (time-independent states and time-dependant operators)
picture we can write

Ψ(q, t) =< q, t | Ψ >H , (4)

and since the states | q, t > form a complete set at every time

Ψ(q, t) =
∫

dq′ < q, t | q′, ti >< q′, ti | Ψ >H . (5)

Compare this with (3) and it is easily seen that

K(q, t; q′, ti) =< q, t | q′, ti >=< q | e
−i
h̄ (t−ti)H | q′ > . (6)
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If the eigenstates of the system are known the propagator can be written in
a more simple way. If H | n >= En | n >,

K(q, t; q′, ti) =
∑

n

< q | n >< n | q′ > e
−i
h̄ En(t−ti) =

∑
n

Ψn(q)Ψ∗
n(q′)e

−i
h̄ En(t−ti). (7)

It is useful to look at an important property of the propagator. If we intro-
duce a time t1, ti < t1 < tf ,

Ψ(q′′, t1) =
∫

dq′K(q′′, t1; q′, ti)Ψ(q′, ti)

Ψ(q, tf ) =
∫

dq′′K(q, tf ; q′′, t1)Ψ(q′′, t1) =∫
dq′′K(q, tf ; q′′, t1)

∫
dq′K(q′′, t1; q′, ti)Ψ(q′, ti). (8)

So together with (3) this gives,

K(q, tf ; q′, ti) =
∫

dq′′K(q, tf ; q′′, t1)K(q′′, t1; q′, ti). (9)

Now it is possible with (7) to calculate the propagator of some systems,
however it useful to look at different method of calculation; the path-integral
method.

The path-integral method

With property (9) it is possible to find K(q, tf ; q′, ti) in a different way. (9)
can be written as:

< q, tf | q′, ti >=
∫

dq′′ < q, tf | q′′, t1 >< q′′, t1 | q′, ti >, (10)

however we can introduce a whole set of times ti < t1 < · · · < tn < tf so
that:

< q, tf | q′, ti >=∫
dq1dq2 · · · dqn < q, tf | qn, tn >< qn, tn | · · · | q1, t1 >< q1, t1 | q′, ti > . (11)

So in order to find K(q, tf ; q′, ti) we are integrating over every possible path
which begins at q’ and ends at q. Now we can find an explicit expression for
K(q, tf ; q′, ti). First it is necessary to look at the small steps between qj and
qj+1. If we take the limit of n going to infinity and assume all time-intervals are
equal and given by τ ≡ tj+1 − tj then τ is infinitely small.

< qj+1, tj+1 | qj , tj >=< qj+1 | e
−i
h̄ Hτ | qj >=
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< qj+1, qj > − i

h̄
τ < qj+1 | H | qj > +O(τ2). (12)

In the last step a Taylor expansion is used. Because H is of the form (2)
the second term of the righthand side of (12) can be written as two terms; the
kinetic term and the potential. First let’s look at the kinetic term.

< qj+1 |
p2

2m
| qj >=

∫
dp′dp′′ < qj+1 | p′ >< p′ | p2

2m
| p′′ >< p′′ | qj >=

1
2πh̄

∫
dp′dp′′e

i
h̄ (p′qj+1−p′′qj)

p′′2

2m
δ(p′−p′′) =

1
2πh̄

∫
dp′e

i
h̄ p′(qj+1−qj)

p′2

2m
. (13)

Now for the potential term

< qj+1 | V (q) | qj >=
V (q̄j)
2πh̄

∫
dp′e

i
h̄ p′(qj+1−qj), q̄j =

qj+1 − qj

2
. (14)

Filling this in (12) gives

< qj+1, tj+1 | qj , tj >=
1

2πh̄

∫
dpje

i
h̄ pj(qj+1−qj)(1− i

h̄
τ(

p2
j

2m
+V (q̄j))+O(τ2) =

1
2πh̄

∫
dpje

i
h̄ pj(qj+1−qj)e

−i
h̄ τH(pj ,q̄j). (15)

If we write qn+1 = q and q0 = q′ we see

< q, tf | q′, ti >= lim
n→∞

∫ n∏
j=1

dqj

n∏
j=0

dpj

2πh̄
e

i
h̄

∑n

j=0
(pj(qj+1−qj)−τH(pj ,q̄j)) (16)

If we only use differentiable paths we can write qj+1 − qj = τ q̇(t) and write
the sum over τ as an integral over time. In that case

< q, tf | q′, ti >=
∫

DqDp

2πh̄
e

i
h̄

∫ tf

ti
dt′(pq̇−H(p,q))

(17)

Since we are considering Hamiltonians of the form (2) we can write (17) in
a more convenient form by actually doing the integration over the impulses.∫ n∏

j=0

dpj

2πh̄
e

i
h̄

∑n

j=0
(pj(qj+1−qj)−τ

p2
j

2m ) (18)

In order to do this integral we to have to use the following standard integral:∫
dx e−a(b−x)2ecx = ebc+ c2

4a

√
π

a
(19)
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Which can be proven quite easily by changing variables and doing a Gauss
integral. In this case we have x = pj , a = iτ

2mh̄ , b = 0, c = (iqj+1−qj)
h̄ so

performing the integral gives:

n∏
j=0

1
2πh̄

√
2mπh̄

iτ
e
−(qj+1−qj)22mh̄

4iτh̄2 = (
m

2πh̄iτ
)

n+1
2 e

∑n

j=0
imτ
2h̄ (

qj+1−qj
τ )2 (20)

Filling this in (18) gives:

< q, tf | q′, ti >= lim
n→∞

∫ n∏
j=1

dqj(
m

2πh̄iτ
)

n+1
2 e

i
h̄ τ

∑n

j=0
( m

2 (
qj+1−qj

τ )2−V (q̄j)) (21)

And finally, by taking the limit we get:

< q, tf | q′, ti >= N

∫
Dq e

i
h̄

∫
dt ( 1

2 mq̇2−V (q)) (22)

We see that the term in the exponent is nothing else then i
h̄ times the classi-

cal action. So in quantum mechanics every possible path gives a contribution to
the propagator. This is completely different from classical mechanics in which
only one path contributes to the propagator; the path which minimizes the
action. If we take the limit from quantum mechanics to classical mechanics
(h̄ → 0), we get that result back.

For Hamiltonians with a potential which is no more then a quadratic poly-
nomial of q, thus V (q) = V0 + V1q + V2q

2 it is possible to find a real simple
expression for the propagator. Since the free particle, the harmonic oscillator
with and without an external linear force all have this property it is useful to
find this expression. This will greatly simplify calculating the propagators for
these systems.

For Hamiltonians of the form (2) the equation of motion is:

mq̈(t) +
∂V (q(t))

∂q
= 0, q(ti) = q′, q(tf ) = q. (23)

Now let’s introduce the classical path qcl(t) and the difference between the
classical and ’real’ path x(t) so that:

q(t) = qcl(t) + x(t), x(ti) = x(tf ) = 0. (24)

Then we can write the Lagrangian as, by Taylor expanding the potential
around the classical path,

L(q, q̇) =
1
2
mq̇2 − V (q) =

L(qcl, ˙qcl) +
1
2
mẋ2 + m ˙qclẋ− x

∂V (q)
∂q

|q=qcl
− 1

2
x2 ∂2V (q)

∂2q
|q=qcl

. (25)

5



Two of this terms will cancel which can be seen by integrating these terms
over time: ∫

dt (m ˙qclẋ− x
∂V (q)

∂q
|q=qcl

) =

m ˙qclx|
tf

ti
−

∫
dt x(mq̈cl +

∂V (q)
∂q

|q=qcl
) = 0. (26)

This gives

< q, tf | q′, ti >= N

∫
Dq e

i
h̄

∫ tf

ti
dt ( 1

2 mq̇2−V (q))
=

e
i
h̄ Scl

∫
Dxe

i
h̄

∫ tf

ti
dt ( 1

2 mẋ2− 1
2 x2 ∂2V (q)

∂2q
|q=qcl

)
. (27)

But since the potential is no more then a quadratic polynomial of q, the
second partial derivative will be a constant. This means that we can write:

< q, tf | q′, ti >= Ne
i
h̄ Scl (28)

Propagator of a free particle

First let us look at the free particle case,

S =
∫

dt L(q, q̇) =
∫

dt
1
2
mq̇2. (29)

Minimizing the action gives naturally q̈ = 0 and this means

q̇ = b, q(t) = bt + c (30)

With the boundary conditions q(ti) = q′, q(tf ) = q this can be easily solved
for c and b:

c =
q − q′

tf − ti
, b =

q′tf − qti
tf − ti

, (31)

and this gives

q(t) =
1

tf − ti
[(tf − t)q′ + (t− ti)q] (32)

Differentiating this expression and filling this in the action gives

S =
∫ tf

ti

dt
1
2
m

(q − q′)2

(tf − ti)2
=

1
2
m

(q − q′)2

(tf − ti)
, (33)

and thus
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K(q, tf ; q′, ti) =< q, tf | q′, ti >= Ne
i
h̄

1
2 m

(q−q′)2
(tf−ti) (34)

Of course we don’t know N but in most applications N isn’t of any impor-
tance.

Propagator of the harmonic oscillator with path integral method

Let’s now calculate the propagator for the harmonic oscillator. Again we
write down the action:

S =
∫

dtL(q, q̇) =
∫

dt (
1
2
mq̇2 − 1

2
mω2q2). (35)

The equation of motion simply is:

q̈ + ω2q = 0, q(ti) = q′, q(tf ) = q. (36)

Which has the solution

q(t) = A sin(ω(t− ti)) + B cos(ω(t− ti)). (37)

Filling in the boundary conditions gives

A =
q − q′ cos(ω(tf − ti))

sin(ω(tf − ti))
, B = q′. (38)

For brevity let’s write c = cos(ω(tf − ti)), s = sin(ω(tf − ti)) so that

q(t) =
q − q′c

s
sin(ω(t− ti)) + q′ cos(ω(t− ti)) (39)

q̇(t) = ω
q − q′c

s
cos(ω(t− ti))− ωq′ sin(ω(t− ti)). (40)

With these results and a bit of algebra we can write

L(q, q̇) =
1
2
mω2[

(q − q′c)2

s2
cos(2ω(t− ti))−

2q′
q − q′c

s
sin(2ω(t− ti))− q′2 cos(2ω(t− ti))]. (41)

In order to find the action we now have to integrate this expression over
time. A simple but tedious task. Using∫ tf

ti

dt cos(2ω(t− ti)) =
cs

ω
,

∫ tf

ti

dt sin(2ω(t− ti)) =
s2

ω
, (42)

we can write

S =
1
2
mω2[

(q − q′c)2

s2

cs

ω
− 2q′

q − q′c

s

s2

ω
− q′2

cs

ω
] =
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mω

2 sin(ω(tf − ti))
[(q2 + q′2) cos(ω(tf − ti))− 2qq′]. (43)

With this we have found the propagator:

K(q, tf ; q′, ti) = N exp(
imω

2h̄ sin(ω(tf − ti))
[(q2+q′2) cos(ω(tf−ti))−2qq′]). (44)

Propagator of the harmonic oscillator with traditional methods

In order to see the usefulness of the path integral method we will also cal-
culate the propagator of the harmonic oscillator with (7). An advantage of this
method is that we will find an expression for N.

The eigenfunctions of the harmonic oscillator are

Ψn =
1√
2nn!

(
mω

πh̄
)

1
4 e−

mωq2

2h̄ Hn(
√

mω

h̄
q) (45)

Where Hn are the Hermite Polynomials. For the harmonic oscillator the
energies are given by En = h̄ω(n + 1

2 ) so the expression for the propagator is

K(q, tf ; q′, ti) =
∑

n

Ψn(q)Ψ∗
n(q′)e

−i
h̄ En(tf−ti) =

∑
n

1
2nn!

(
mω

πh̄
)

1
2 e−

mω
2h̄ (q2+q′2)Hn(

√
mω

h̄
q)Hn(

√
mω

h̄
q′)e−iω(n+ 1

2 )(tf−ti). (46)

Let’s define y ≡
√

mω
h̄ q and T ≡ e−iω(tf−ti) so we can look at

k =
∑

n

1
2nn!

1√
π

e−
1
2 y2

Hn(y)e−
1
2 y′2)Hn(y′)Tn. (47)

If we find k, we can easily find K by the relation

K =
√

T

√
mω

h̄
k (48)

In order to find k we’ll have to use the following expression for the Hermite
polynomials

Hn(y) =
2n(−i)ney2

√
π

∫ ∞

−∞
du une2iyu−u2

. (49)

Filling this in the expression for k gives

k = π−
3
2 e

y2+y′2
2

∫ ∞

−∞

∫ ∞

−∞
dudv

∑
n

1
n!

(−2uvT )ne−u2−v2+2iyu+2iy′v. (50)
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Using
∑

n
1
n! (−2uvT )n = e−2uvT we get

k = π−
3
2 e

y2+y′2
2

∫ ∞

−∞
dv e−v2+2iy′v

∫ ∞

−∞
du e−u2+2iyu−2uvT (51)

Now we have two Gaussian integrals which can be easily done by using (19).
Doing the integral gives

k = π−
3
2 e

y2+y′2
2

∫ ∞

−∞
dv e−v2+2iy′v

√
πev2T 2−2iyvT−y2

=

π−1e
y2+y′2

2

∫ ∞

−∞
dv e−v2(1−T 2)+v(2iy′−2iyT )e−y2

=

π−1e
−y2+y′2

2

√
π

1− T 2
e

2yy′T−y′2−y2T2

1−T2 =

1√
π(1− T 2)

e
− 1

2 (y2+y′2) 1+T2

1−T2 + 2yy′T
1−T2 . (52)

Using the definition of T we can write

1 + T 2

1− T 2
=
−i cos(ω(tf − ti))

sin(ω(tf − ti))
,

T

1− T 2
=

−i

2 sin(ω(tf − ti))
, (53)

and this gives

k =
1√

π(1− T 2)
e

i
2 sin(ω(tf−ti))

[(y2+y′2) cos(ω(tf−ti))−yy′]
. (54)

Finally using (48) we get

K =
√

mω

2iπh̄ sin(ω(tf − ti))
e

imω
2h̄ sin(ω(tf−ti))

[(q2+q′2) cos(ω(tf−ti))−2qq′]
. (55)

This is the same result as the path integral method. However the path
integral method is much more easier and straightforward then the traditional
method. One can imagine that for more advanced systems the propagators are
extremely hard or even impossible to calculate without path integrals.

Now we are going to calculate the propagator for the forced harmonic oscil-
lator. This case turns out to be really important in the things we are going to
do later.

Propagator of the forced harmonic oscillator

We need to find the classical action of the system with the Lagrangian

L =
1
2
mq̇2 − 1

2
mω2q2 + γ(t)q (56)
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Using Euler-Lagrange equations we see that we have to solve

(
d2

dt2
+ ω2)q(t) =

γ(t)
m

. (57)

The solution of this equation has a homogeneous part and an inhomogeneous
part with the homogeneous part written as

qH(t) = Aeiωt + Be−iωt. (58)

In order to solve for the inhomogeneous part we are going to define a Greens
functions with the property

(
d2

dt2
+ ω2)G(t− t′) = −δ(t− t′) (59)

qI(t) = −
∫ tf

ti

dt′G(t− t′)
γ(t′)
m

. (60)

By Fourier transformations it’s easy to see that the expression for the Greens
function becomes

G(t− t′) =
∫

dk
1√
2π

exp(−ik(t− t′))G(k) =
∫

dk
1
2π

exp(−ik(t− t′))
(k2 − ω2)

. (61)

Although this solves the system it appears that it is convenient to define the
Feynman Greens function in the following manner

GF (t− t′) = lim
ε→0

∫
dk

1
2π

exp(−ik(t− t′))
(k2 − ω2 + iε)

. (62)

This is convenient because now we can do a contour integration to find

GF (t− t′) = θ(t− t′)
exp(−iω(t− t′))

2iω
+ θ(t′ − t)

exp(iω(t− t′))
2iω

. (63)

With this we can find qI since

qI(t) = −
∫ tf

ti

dt′GF (t− t′)
γ(t′)
m

=

− 1
2imω

(
∫ t

ti

dt′ exp(−iω(t− t′)γ(t′) +
∫ tf

t

dt′ exp(iω(t− t′)γ(t′)). (64)

With q(t) = qH(t)+qI(t) and the boundary conditions q(tf ) = q and q(ti) =
q′ we can now solve for A and B. By defining T = tf − ti we find the following
lengthy expression for the classical action

S(q) =
mω

2 sin(ωT )
[(q2 + q′2) cos(ωT )− 2qq′]
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+
q′

sin(ωT )

∫ tf

ti

dt γ(t) sin(ω(tf − t) +
q

sin(ωT )

∫ tf

ti

dt γ(t) sin(ω(t− ti)−

1
mω sin(ωT )

∫ t′f

ti

dt

∫ t′f

ti

dt′ γ(t) sin(ω(tf − t)) sin(ω(t′ − ti))γ(t′). (65)

With finding the action we have also determined the propagator of the sys-
tem. We see that if we let γ vanish we get the action of the harmonic oscillator
back. However we also see that this expression is not very insightful and it’s
also complicated to use. That’s why in the next section we are going to look
only at vacuum-vacuum transitions.

Vacuum to vacuum transitions

Vacuum-vacuum transitions are transitions where a particle begins in the
ground state at ti = −∞ and at tf = ∞ it is still in the ground state. In order
to find an expression for the vacuum-propagator we have to do some additional
things. We know

< q, tf | q′, ti >= N

∫
Dq e

i
h̄ S . (66)

Now let’s look at the matrix-element of the form < q, tf | Q(t1)Q(t2) | q, ti >
where Q(t) | q, t >= q | q, t > and ti < t1 < t2 < tf .

< q, tf | Q(t1)Q(t2) | q′, ti >=∫
dq1dq2 < q, tf | Q(t1) | q1, t1 >< q1, t1 | Q(t2) | q2, t2 >< q2, t2 | q′, ti >=∫

dq1dq2q1q2 < q, tf | q1, t1 >< q1, t1 | q2, t2 >< q2, t2 | q′, ti > . (67)

The inner products can be written as a path integral and this gives

< q, tf | Q(t1)Q(t2) | q′, ti >= N

∫
Dq q(t1)q(t2)e

i
h̄ S . (68)

This was the case for t1 < t2, however we can also write the same thing
down for t1 > t2. In that case

< q, tf | Q(t2)Q(t1) | q′, ti >=∫
dq1dq2 < q, tf | Q(t2) | q2, t2 >< q2, t2 | Q(t1) | q1, t1 >< q1, t1 | q′, ti >=∫

dq1dq2q2q1 < q, tf | q1, t1 >< q1, t1 | q2, t2 >< q2, t2 | q′, ti > .

< q, tf | Q(t2)Q(t1) | q′, ti >= N

∫
Dq q(t1)q(t2)e

i
h̄ S . (69)
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In the last step we used that q(t1) and q(t2) are classical things and thus
we are allowed to swap them around. So now we know what the path integral
gives:

< q, tf | T (Q(t1)Q(t2)) | q′, ti >= N

∫
Dq q(t1)q(t2)e

i
h̄ S , (70)

where T (Q(t1)Q(t2)) gives the time-ordered product of A and B;

T (Q(t1)Q(t2)) = θ(t1 − t2)Q(t1)Q(t2) + θ(t2 − t1)Q(t2)Q(t1). (71)

It can be easily seen that this can be extended to any set of operators:

< q, tf | T (O1(Q(t1)) . . . On(Q(tn))) | q′, ti >=

N

∫
Dq O1(Q(t1)) . . . On(Q(tn))e

i
h̄ S . (72)

Now again let’s look at the harmonic oscillator with an external force

< q, tf | q′, ti >γ= N

∫
Dq e

i
h̄ [

∫ tf

ti
dt (SHO)+

∫ tf

ti
dt γ(t)q(t)]

. (73)

By using (72) we can write this as:

< q, tf | q′, ti >γ=< q, tf | T (e
i
h̄

∫ tf

ti
dt γ(t)q(t)]

) | q′, ti > . (74)

Now let’s look at the probability that a particle in the infinite past from
the coordinate state q′ transfers to the coordinate state q in the infinite future
in the presence of the external force γ(t). So we have to take the limits ti →
−∞, tf →∞. Now we are also going to assume that the system has a discrete
set of eigenenergies with H | 0 >= 0, H | n >= En > 0. Of course in most
quantum mechanical systems the ground state energy does not vanish. However
the derivation becomes very complicated without this assumption. Now we can
write

lim
ti→−∞,tf→∞

< q, tf | q′, ti >γ= lim
ti→−∞

lim
tf→∞

< q, tf | T (e
i
h̄

∫ tf

ti
dt γ(t)q(t)]

) | q′, ti >=

lim
ti→−∞

lim
tf→∞

∑
n,m

< q, tf | n >< n | T (e
i
h̄

∫ tf

ti
dt γ(t)q(t)

) | m >< m | q′, ti >=

lim
ti→−∞

lim
tf→∞

∑
n,m

< q | e− i
h̄ tf H | n >< n | T (e

i
h̄

∫ tf

ti
dt γ(t)q(t)

) | m >< m | e
i
h̄ tiH | q′ >=

lim
ti→−∞

lim
tf→∞

∑
n,m

e
i
h̄ (Emti−Entf ) < q | n >< n | T (e

i
h̄

∫∞
−∞

dt γ(t)q(t)]
) | m >< m | q′ > .

If we take the limits and look at the exponent we can conclude that the only
terms contributing anything are n, m = 0 because all other terms will oscillate
out. This means
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lim
ti→−∞

lim
tf→∞

< q, tf | q′, ti >γ=

< q | 0 >< 0 | q′ >< 0 | T (e
i
h̄

∫∞
−∞

dt γ(t)q(t)]
) | 0 > . (75)

Rearranging this gives

< 0 | T (e
i
h̄

∫∞
−∞

dt γ(t)q(t)]
) | 0 >= lim

ti→−∞
lim

tf→∞

< q, tf | q′, ti >γ

< q | 0 >< 0 | q′ >
. (76)

Now we see two things, the left hand side is independent of q and q’ so the
right hand side should also be independent of q and q’. The other thing we
notice is that the right hand side can be simply written as a path integral. Now
we define Zγ as

Zγ =< 0 | T (e
i
h̄

∫∞
−∞

dt γ(t)q(t)]
) | 0 >= N

∫
Dq e

i
h̄ Sγ . (77)

Now we are going to calculate Zγ . We are going to have to use some tricks
we used in calculating the propagator for the forced harmonic oscillator.

Zγ = N

∫
Dq e

i
h̄

∫∞
−∞

dt ( 1
2 mq̇2− 1

2 mω2q2+γq)
=

lim
ε→0

N

∫
Dq e

−im
2h̄

∫∞
−∞

dt (q( ∂2

∂t2
+ω2−iε)q− 2

m γq)
. (78)

Where we have used the same trick as in (62), ω2 → ω2 − iε. Remember
from (59) that

lim
ε→0

(
∂2

∂t2
+ ω2 − iε)GF (t− t′) = −δ(t− t′). (79)

Using this to define

q̃(t) = q(t) +
1
m

∫ ∞

−∞
dt′ GF (t− t′)γ(t′), (80)

we can write

Zγ = lim
ε→0

N

∫
Dq̃ e

−im
2h̄

∫∞
−∞

dt q̃( ∂2

∂t2
+ω2−iε)q̃×e

−i
2h̄m

∫∞
−∞

∫∞
−∞

dtdt′ γ(t)GF (t−t′)γ(t′)
=

ZHOe
−i

2h̄m

∫∞
−∞

∫∞
−∞

dtdt′ γ(t)GF (t−t′)γ(t′)
. (81)

This result is very important in the upcoming calculations.

Perturbation theory
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In fact we are not interested in the harmonic oscillator with an external
force but we are interested in the anharmonic oscillator. However it appears we
can find an expression for Z of this system by using Zγ . Let’s write down the
Lagrangian for the anharmonic oscillator with an external force,

L =
1
2
mq̇(t)2 − 1

2
mω2q(t)2 + λq(t)4 + γ(t)q(t) = Lγ + λq(t)4. (82)

By definition

Zλ = N

∫
Dq e

i
h̄

∫∞
−∞

dt λq4

e
i
h̄

∫∞
−∞

dt Lγ (83)

Functional derivatives

Now we are going to do a functional derivative. A functional derivative is
just like a normal derivative but instead of taking a derivative with respect to
a variable we take the derivative with respect to a function. The definition is

δF (f)
δf(y)

= lim
ε→0

F [f(x) + εδ(x− y)]− F [f(x)]
ε

(84)

The chain- and productrule for normal derivatives also hold for functional
derivatives. A few important functional derivatives are:

δf(x)
δf(y)

=
1
ε
[f(x) + εδ(x− y)− f(x)] = δ(x− y). (85)

If

Fx(f) =
∫

dz G(x, z)f(z) (86)

then

δFx(f)
δf(y)

= G(x, y). (87)

Now let’s take a functional derivative of N
∫

Dq e
i
h̄

∫∞
−∞

dt Lγ ,

δ

δγ(t)
N

∫
Dq e

i
h̄

∫∞
−∞

dt 1
2 mq̇(t)2− 1

2 mω2q(t)2+γ(t)q(t)
=

N
i

h̄

∫
Dq q(t)e

i
h̄

∫∞
−∞

dt Lγ
. (88)

It is easy to see that

δn

δγ(t)n
N

∫
Dq e

i
h̄

∫∞
−∞

dt Lγ = N(
i

h̄
)n

∫
Dq q(t)ne

i
h̄

∫∞
−∞

dt Lγ
. (89)

Now if we have a function f(q) which can be written as a Taylor series then
we can say
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N

∫
Dq f(q)e

i
h̄

∫∞
−∞

dt Lγ =

f(
h

i

δ

δγ(t)
)N

∫
e

i
h̄

∫∞
−∞

dt Lγ = Nf(
h

i

δ

δγ(t)
)Zγ (90)

But if we look at (83) we have

f(q) = e
i
h̄

∫∞
−∞

dt λq4

. (91)

So we can write

Zλ = Ne
i
h̄

∫∞
−∞

dt λ( h̄
i )4( δ

δγ(t) )
4

Zγ . (92)

If we write the exponent as a Taylor series we get

Zλ = N(1+ ih̄3λ

∫
dt [

δ4

δγ(t)4
]− 1

2
h̄6λ2

∫
dtdt′ [

δ4

δγ(t)4
δ4

δγ(t′)4
] + . . .)Zγ . (93)

This is perturbation theory in the path integral approach. Since we know
Zγ (see (81)) we can know determine the influence of the λ-term on the system
up to any order.

So in order to find Zλ we have to find functional derivatives of the vacuum
propagator of the forced harmonic oscillator.

δZγ

δγ(t)
= Zγ ×

−i

mh̄

∫
dt′ GF (t− t′)γ(t′) =

−i

mh̄
g(t)Zγ (94)

g(t) =
∫

dt′ GF (t− t′)γ(t′). (95)

The second functional gives:

δ2Zγ

δγ2(t)
=
−i

mh̄
[g(t)

δZγ

δγ(t)
+ Zγ

δg(t)
δγ(t)

]. (96)

Looking at δg(t)
δγ(t) gives

δg(ta)
δγ(tb)

= GF (ta − tb) (97)

and this gives for the second derivative of the Zγ

δ2Zγ

δγ2(t)
=
−i

mh̄
[g(t)× −i

h̄m
g(t)Zγ + ZγGF (0)] =

Zγ [(
i

h̄m
)2g2(t)− i

h̄m
GF (0)]. (98)
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If we continue this process we find the following expression for first order
perturbation theory:

Zλ = N{1 + ih̄3×

λ

∫
dt [3(

i

h̄m
)2G 2

F (0)− 6(
i

h̄m
)3GF (0)g2(t) + (

i

h̄m
)4g4(t)]}Zγ . (99)

However we have to normalize this in order to get a useful expression. We
know that if there is no external force then a particle in the ground state at ti =
−∞ will still be in the ground state at tf = ∞. This means that limγ→0 Zγ = 1
and that the constant N has to make sure that limγ→0 Zλ = 1.

Since g(t) vanishes when γ vanishes we get the following expression for N

1 = N{1 + ih̄3λ

∫
dt 3(

i

mh̄
)2G 2

F (0)}

N = {1+ih̄3λ

∫
dt 3(

i

mh̄
)2G 2

F (0)}−1 ≈ {1−ih̄3λ

∫
dt 3(

i

mh̄
)2G 2

F (0)}. (100)

Finally this gives for the first order

Zλ = {1 + ih̄3λ

∫
dt [−6(

i

h̄m
)3GF (0)g2(t) + (

i

h̄m
)4g4(t)]}Zγ . (101)

In order to see what the anharmonic term does to the system we have to use
so called n-pointfunctions

n-pointfunctions

With expression (72) it can be seen:

< T (Q(t1) · · ·Q(tn)) >= (
h̄

i
)n δnZλ

δγ(t1) · · · δγ(tn)
|γ→0= D(n). (102)

So we see that the Zλ generates time-ordered correlation functions. The
D(N) are called the n-pointfunctions, and with these functions the influence of
the anharmonic term can be determined.

Propagator of the anharmonic oscillator up to first order

Let us calculate the 2-pointfunction up to first order. We know Zλ so in
order to find D(2) we need to take some more partial derivatives:

δZλ

δγ(t1)
= {− i

mh̄
g(t1) + ih̄3λ

∫
dt [−12(

i

mh̄
)3GF (0)GF (t− t1)g(t)+

16



6(
i

mh̄
)4g2(t)g(t1) + 4(

i

mh̄
)4GF (t− t1)g3(t)− (

i

mh̄
)5g4(t)g(t1)]}. (103)

We have to take one more functional derivative and then we have to let γ
vanish. But this means that all terms that have a g in them after taking the
derivative will become zero. This makes the calculation a lot shorter since the
only thing we have to look at is

δ

δγ(t2)
{− i

mh̄
g(t1) + ih̄3λ

∫
dt [−12(

i

mh̄
)3GF (0)GF (t− t1)g(t)]}. (104)

This gives for the 2-pointfunction:

D(2) = (
h̄

i
)2{(− i

mh̄
GF (t1 − t2) + ih̄3λ×∫

dt[−12(
i

mh̄
)3GF (0)GF (t− t1)GF (t− t2)]}. (105)

This expression can be written as a sum of Feynman diagrams. This gives
the following diagrams:

Figure 1: First order diagrams

The first diagram is just the diagram of the harmonic oscillator. So we see
that the anharmonic term gives, up to first order, a perturbation to the system
given by the second diagram.
Since we know the expressions for the Greens functions (62) we can write:

dt GF (t− t1)GF (t− t2) =∫ ∫
dtdk1dk2 (

1
2π

)2
exp(−ik1(t− t1))exp(−ik2(t2 − t))

(k2
1 − ω2 + iε)(k2

2 − ω2 + iε)
. (106)

By doing the integral over time this becomes:∫
dk1dk2

1
2π

δ(k1 − k2)
exp(+ik1t1 − ik2t2)

(k2
1 − ω2 + iε)(k2

2 − ω2 + iε)
=

∫
dk

1
2π

exp(−ik(t1 − t2))
(k2 − ω2 + iε)2

. (107)

Filling this in the expression for the 2-point function gives
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D(2) = (
h̄

i
)2
−i

h̄m

∫
dk

1
2π

exp(−ik(t1 − t2))
(k2 − ω2 + iε)

[1− 12ih̄λGF (0)
m2

1
(k2 − ω2 + iε)

].

Since we are looking at the first order and thus are ignoring terms of λ2 and
higher we can use 1 + λ ≈ 1

1−λ to write the two-pointfunction as

D(2) =
ih̄

m

∫
dk

1
2π

exp(−ik(t1 − t2))

(k2 − ω2 + 12ih̄GF (0)
m2 λ + iε)

. (108)

Now we clearly see what the anharmonic term, up to first order, does to the
system. We see that the anharmonic term changes ω by:

ω2 → ω2 − 12ih̄GF (0)
m2

λ. (109)

Of course the change is linear in λ since we looked only up to first order.
There is also a term GF (0), this is a convergent integral given by

∫
dk 1

k2−ω2+iε .
So now we can solve the system up to first order.

Propagator of the anharmonic oscillator up to second order

Let us now look at second order perturbation theory, using again (93) we
see that we now have to do 8 functional derivatives. However we already found
the first 4. We have to calculate:∫ ∫

dtdt′
δ4

δγ4(t)
δ4

δγ4(t′)
Zγ =

∫ ∫
dtdt′

δ4

δγ4(t′)
[3(

i

h̄m
)2G 2

F (0)− 6(
i

h̄m
)3GF (0)g2(t) + (

i

h̄m
)4g4(t)]. (110)

We are going to do the derivatives one by one:

δ

δγ(t′)
δ4

δγ(t)
Zγ = {−3(

i

h̄m
)3G 2

F (0)g(t′)−

12(
i

h̄m
)2GF (0)GF (t− t′)g(t) + 6(

i

h̄m
)4GF (0)g2(t)g(t′)+

4(
i

h̄m
)4GF (0)g3(t)GF (t− t′)− (

i

h̄m
)5g4(t)g(t′)}Zγ . (111)

Now by simply continuing this calculation, which is a gruesome task, we
arrive at the result:

δ4

δγ4(t)
δ4

δγ4(t′)
Zγ = {9(

i

h̄m
)4G 4

F (0) + 72(
i

h̄m
)4G 2

F (0)G 2
F (t− t′)+

24(
i

h̄m
)4G 4

F (t− t)− 18(
i

h̄m
)5G 3

F (0)g2(t′)−
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18(
i

h̄m
)5G 3

F (0)g2(t)− 72(
i

h̄m
)5GF (0)G 2

F (t− t′)g2(t′)−

72(
i

h̄m
)5GF (0)G 2

F (t− t′)g2(t)− 144(
i

h̄m
)5G 2

F (0)GF (t− t′)g(t)g(t′)−

96(
i

h̄m
)5G 3

F (t− t′)g(t)g(t′) + 3(
i

h̄m
)6G 2

F (0)g4(t′)+

3(
i

h̄m
)6G 2

F (0)g4(t) + 48(
i

h̄m
)6GF (0)GF (t− t′)g(t)g3(t′)

48(
i

h̄m
)6GF (0)GF (t− t′)g3(t)g(t′) + 72(

i

h̄m
)6G 2

F (t− t′)g2(t)g2(t′)+

36(
i

h̄m
)6G 2

F (0)g2(t)g2(t′)− 6(
i

h̄m
)7GF (0)g2(t)g4(t′)−

6(
i

h̄m
)7GF (0)g4(t)g2(t′)− 16(

i

h̄m
)7GF (t− t′)g3(t)g3(t′)+

(
i

h̄m
)8g4(t)g4(t′)}Zγ . (112)

In order to find Zλ we still have to normalize. If we look at (x) and let γ
vanish we get the following expression for N

N ≈ {1− ih̄3λ

∫
dt[3(

i

h̄m
)2G 2

F (0)]+

1
2
h̄6λ2

∫ ∫
dtdt′(

i

h̄m
)4[9G 4

F (0) + 72G 2
F (0)G 2

F (t− t′) + 24G 4
F (t− t′)]}. (113)

As you can imagine getting (112) by simply taking one derivative after the
other is a very tiring task. A lot of terms appear and this means that mistakes
are easily made. However this calculation can be done a lot faster by using some
tricks.

A useful method for finding derivatives

If we look at δ4

δγ4(t)Zγ we see that it consists of 3 terms:

δ4

δγ4(t)
Zγ = [3(

i

h̄m
)2G 2

F (0)− 6(
i

h̄m
)3GF (0)g2(t) + (

i

h̄m
)4g4(t)]Zγ =

A + B + C. (114)

Now let’s look at the three terms A,B and C separately. We have to take
4 functional derivatives with respect to γ(t′) of all 3 terms. Let’s first look at
A = 3( i

h̄m )2G 2
F (0)Zγ .

We see that the only term dependant on γ is Zγ . So we first differentiate
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Zγ and after taking this derivative we get a g(t′)Zγ term. In this term both
g(t′) as Zγ are dependant on γ. This means that for the second derivative we
have two choices. The third derivative will give even more possibilities etc.
If we introduce a new notation we can quickly see what terms will appear. A
row AZZZZ means we differentiate the Zγ-term in A 4 times. AZZZg′ means
we differentiate the Zγ-term in A 3 times and finally differentiate the g(t’)-term.
A Z in a row creates a − i

h̄mg(t′)-term (see (94)) and a g′ changes a g(t′) term
into a GF (0) term (see (97)). This means that a combination Zg′ gives a
− i

h̄mGF (0) term. So by just writing down all possible combinations and then
counting the number of Z, g′ and Zg′ in the row it’s easy to see what terms will
appear. Of course we don’t have to write down all possible rows because a lot
of them will give 0. Rows that begin with a g′ and rows with more g′s than Z’s
won’t contribute anything. Same goes for rows such as AZg′g′Z because the
first Z creates only one g(t′) term and the next g′ destroys it. So the following
g′ will give 0.
Now let’s look at all possible rows:

first look at AZZZZ, since we have 4 Z’s in this row we have to multiply A
with ( i

h̄m )4g4(t′).

AZZZZ = 3(
i

h̄m
)2G 2

F (0)Zγ × (
i

h̄m
)4g4(t′) = 3(

i

h̄m
)6G 2

F (0)Zγ . (115)

Now let’s look at rows with one g’ and 3 Z’s. We know that g′ZZZ gives 0 so
the only rows left are Zg′ZZ, ZZg′Z and ZZZg′. By simply counting the num-
ber of Z’s that appear before the g′ it can be seen that AZZZg′ = 3×AZg′ZZ
and AZZgZ ′ = 2×AZg′ZZ.
AZg′ZZ has a Zg′ that gives a − i

h̄mGF (0) term and 2 Z’s which gives a
( i

h̄m )2g2(t′) term.
This means

AZZZg′ + AZZg′Z + AZg′ZZ = 6×AZg′ZZ =

6×3(
i

h̄m
)2G 2

F (0)Zγ×−(
i

h̄m
)3GF (0)g2(t′) = −18(

i

h̄m
)5G 3

F (0)g2(t′)Zγ . (116)

Finally look at terms with 2 Z’s and 2 g’s. The only possibilities that contribute
anything are AZZg′g′ and AZg′Zg′ and with the same argument as above we
see AZZg′g′ = 2×AZg′Zg′. Thus

AZZg′g′ + AZg′Zg′ = 3×AZg′Zg′ =

3× 3(
i

h̄m
)2G 2

F (0)Zγ × (
i

h̄m
)2G 2

F (0) = 9(
i

h̄m
)4G 4

F (0). (117)

These are all rows for A that contribute anything.
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Now let’s look at B, which is slightly more complicating but still very straight-
forward.

B = −6(
i

h̄m
)3GF (0)g2(t)Zγ

So we see that this time there is an additional term dependant on γ namely
the g(t)-term. This means that in the rows also a g appears which means we
differentiate the g(t) term. A g in a row changes a g(t) term into a GF (t − t′)
term. Fortunately this does not make things a lot harder. If we look at the
terms we immediately see that a gZ combination gives the same thing as a Zg
combination. Also a gg′ combination gives the same as a g′g combination. This
is clearly not the case for g′Z and Zg′ combinations.
Since there is a g2(t) term in B we cannot have more than two g’s in a row. The
third g would make the contribution 0.
Let us look at all possible rows and begin with the rows we already discussed
for A:

BZZZZ = −6(
i

h̄m
)3GF (0)g2(t)Zγ×(

i

h̄m
)4g4(t′) = −6(

i

h̄m
)7GF (0)g2(t)g4(t′)Zγ

6×BZg′ZZ = 6×−6(
i

h̄m
)3GF (0)g2(t)Zγ×−(

i

h̄m
)3GF (0)g2(t′) = 36(

i

h̄m
)6G 2

F (0)g2(t)g2(t′)Zγ

3×BZg′Zg′ = 3×−6(
i

h̄m
)3GF (0)g2(t)Zγ×(

i

h̄m
)2G 2

F (0) = −18(
i

h̄m
)5G 3

F (0)g2(t)Zγ .

Now look at rows that have 1 g in them. The first g in a row changes
the g2(t) term into a 2GF (t − t′)g(t) term. Since g and Z are independent,
BgZZZ = · · · = BZZZg so we get:

4×BgZZZ = 48(
i

h̄m
)6GF (0)GF (t− t′)g(t)g3(t′)Zγ . (118)

We know BgZZg′ = 2 × BgZg′Z and by looking at the rows we see that
BgZZg′ = BZgZg′ = BZZgg′ = BZZg′g. Also BgZg′Z = BZgg′Z =
BZg′gZ = BZgZg′. So this gives

4×BgZg′Z + 4×BgZZg′ = 12×BgZg′Z =

−144(
i

h̄m
)5GF (0)GF (t− t′)g(t)g(t′)Zγ . (119)

It’s also easy to see that

(
4
2 )BggZZ = 6×BggZZ = −72(

i

h̄m
)5GF (0)G 2

F (t− t′)g2(t′)Zγ

6×BggZg′ = 72(
i

h̄m
)4G 2

F (0)G 2
F (t− t′)Zγ . (120)
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Finally look at C = ( i
h̄m )4g4(t)]Zγ , using the same method as above we can

now easily write down all possible rows. The difference is that this time we can
have up to 4 g’s in a row.

1× CZZZZ = (
i

h̄m
)8g4(t′)g4(t)Zγ

6× CZg′ZZ = −6(
i

h̄m
)7GF (0)g2(t′)g4(t)Zγ

3× CZg′Zg′ = 3(
i

h̄m
)6G 2

F (0)g4(t)Zγ

4× CgZZZ = −16(
i

h̄m
)7GF (t− t′)g3(t′)g3(t)Zγ

12× CgZg′Z = 48(
i

h̄m
)6GF (0)GF (t− t′)g(t′)g3(t)Zγ

6× CggZZ = 72(
i

h̄m
)6G 2

F (t− t′)g2(t′)g2(t)Zγ

6× CggZg′ = −72(
i

h̄m
)5GF (0)G 2

F (t− t′)g2(t)Zγ

4× CgggZ = −96(
i

h̄m
)5G 3

F (t− t′)g(t′)g(t)Zγ

1× Cgggg = 24(
i

h̄m
)4G 4

F (t− t′)Zγ . (121)

If we now add up all rows from A,B and C we get the same expression as we
get by taking the derivatives one at a time. However doing it this way is much
faster and it’s also a lot easier to see where terms are coming from.

2-point function up to second order

With the expression for the 2-point function

D(2) = (
h̄

i
)2

δ2Zλ

δγ(t1)δγ(t2)
|γ→0, (122)

we see that we have to take two more functional derivatives of Zλ. However
all terms that consists of g3(t) or g3(t′) or higher orders will become zero because
after differentiating there will still be g’s left and they vanish when we let γ
vanish.
After doing the calculation, which is really straightforward and fortunately not
very long, we get the following expression

D(2) = (
h̄

i
)2{− i

mh̄
GF (t1−t2)+ih̄3λ

∫
dt[−12(

i

mh̄
)3GF (0)GF (t−t1)GF (t−t2)]}−

h̄6λ2

∫ ∫
dtdt′[−144(

i

h̄m
)5G 2

F (0)GF (t− t′)GF (t′ − t1)GF (t− t2)−
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144(
i

h̄m
)5GF (0)G 2

F (t−t′)GF (t−t1)GF (t−t2)−96(
i

h̄m
)5G 3

F (t−t′)GF (t′−t1)GF (t−t2)]}.

We can write this expression as the following diagrams.

Figure 2: Second order diagrams

We see that the first two diagrams are, naturally, the same as we got in first
order perturbation theory but we also get three new diagrams. We define the
first four diagrams as simple diagrams because between their internal points
there are no more than two internal lines and it appears that such diagrams are
a lot easier to deal with. The last diagram has three internal lines between its
internal points and is defined as a complex diagram

Let’s look at the influence of the diagrams separately beginning with the
third diagram.

Figure 3: The first simple diagram in second order

The expression for this diagram is

h̄6λ2

∫ ∫
dtdt′ − 144(

i

h̄m
)5G 2

F (0)GF (t− t′)GF (t′ − t1)GF (t− t2). (123)
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Let us again use the expressions for the Green functions to see what this
term does to the system.∫ ∫

dtdt′ GF (t− t′)GF (t′ − t1)GF (t− t2) =

∫
dtdt′dk1dk2dk3(

1
2π

)3
exp(−ik1(t− t1)) exp(−ik2(t′ − t)) exp(−ik3(t2 − t′))

(k2
1 − ω2 + iε)(k2

2 − ω2 + iε)(k2
3 − ω2 + iε)

.

By doing the integral over the times we get∫
dk1dk2dk3

1
2π

δ(k1−k2)δ(k2−k3)
exp(i(k1t1 − k3t2))

(k2
1 − ω2 + iε)(k2

2 − ω2 + iε)(k2
3 − ω2 + iε)

=

∫
dk

1
2π

exp(−ik(t1 − t2))
(k2 − ω2 + iε)3

. (124)

Now let’s use this in the expression for Zλ and look at the 2-point function
for the first three diagrams

D(2) = (
h̄

i
)2
−i

h̄m

∫
dk

1
2π

exp(−ik(t1 − t2))
(k2 − ω2 + iε)

×

[1− 12ih̄λGF (0)
m2

1
(k2 − ω2 + iε)

− 144h̄2λ2G 2
F (0)

m4

1
(k2 − ω2 + iε)2

]. (125)

Since we are looking at second order we are ignoring λ3 and higher order
terms. This means we can, just like in first order, use 1+λ+λ2 ≈ 1

1−λ . So just
as in first order we can write

D(2) =
ih̄

m

∫
dk

1
2π

exp(−ik(t1 − t2))

(k2 − ω2 + 12ih̄GF (0)
m2 λ + iε)

. (126)

This means that this second order diagram does not change the system any
further. It does make the approximation we used better since we are ignoring
less terms. In order to make the approximation even better we have to look at
diagrams in higher orders such as

Figure 4: A simple third order diagram
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Figure 5: The second simple diagram in second order

Now look at the fourth diagram

The expression for this diagram is

h̄6λ2

∫ ∫
dtdt′ − 144(

i

h̄m
)5GF (0)G 2

F (t− t′)GF (t− t1)GF (t− t2), (127)

using (62) we can write∫
dtdt′G 2

F (t− t′)GF (t− t1)GF (t− t2) = (128)∫
dtdt′dk1dk2dk3dk4(

1
2π

)4
exp(−ik1(t− t1)) exp(−ik2(t′ − t)) exp(−ik3(t′ − t)) exp(−ik4(t2 − t))

(k2
1 − ω2 + iε)(k2

2 − ω2 + iε)(k2
3 − ω2 + iε)(k2

4 − ω2 + iε)
.

By doing the integrals over time we get the expression∫
dk1dk2dk3dk4(

1
2π

)2
δ(k1 − k2 − k3 − k4)δ(k2 + k3) exp(i(k1t1 − k4t2))

(k2
1 − ω2 + iε)(k2

2 − ω2 + iε)(k2
3 − ω2 + iε)(k2

4 − ω2 + iε)
=

∫
dk

1
2π

exp(−ik(t1 − t2))
(k2 − ω2 + iε)2

∫
dk′

1
2π

1
(k′2 − ω2 + iε)2

. (129)

If we look at the integral 1
2π

1
(k′2−ω2+iε)2 we see that this greatly resembles

GF (0) = 1
2π

1
(k′2−ω2+iε) . Thus we define

GF2(0) =
1
2π

1
(k′2 − ω2 + iε)2

. (130)

Now let’s fill all this in (129) and add this up to the previous 3 diagrams
and see what this does to the system.

D(2) = (
h̄

i
)2
−i

h̄m

∫
dk

1
2π

exp(−ik(t1 − t2))
(k2 − ω2 + iε)

×

[1− 12ih̄λGF (0)
m2(k2 − ω2 + iε)

− 144h̄2λ2G 2
F (0)

m4(k2 − ω2 + iε)2
− 144h̄2λ2GF (0)GF2(0)

m4(k2 − ω2 + iε)2
]. (131)
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Now we have to use a approximation similar to the one we already used.
Look at 1 + x + x2 + y with y of order x2 and we are ignoring terms of x3 and
higher (thus also xy). Then we can write

1+x+x2 +y ≈ 1
1− x

+y =
1 + y − yx

1− x
≈ 1 + y

1− x
≈ 1

(1− x)(1− y)
≈ 1

1− x− y
.

Using this we see

D(2) =
ih̄

m

∫
dk

1
2π

exp(−ik(t1 − t2))

(k2 − ω2 + 12ih̄GF (0)
m2 λ + 144h̄2GF (0)GF2(0)

m4 λ2 + iε)
. (132)

Now we clearly see what these diagrams do to the system. Again ω has
changed but this time by the amount

ω2 → ω2 + (
−12ih̄λ

m2
)GF (0) + (

−12ih̄λ

m2
)2GF (0)GF2(0). (133)

This looks like a series and it is tempting to say that for higher orders all
simple diagrams can be written in this series. If we write down the following
series up to order p

ω2 → ω2 + (
−12ih̄λ

m2
)GF (0) +

p∑
n=2

(
−12ih̄λ

m2
)n

n−1∑
m=1

G m
F (0)G n−m

F2 (0) (134)

we see that up to second order it is correct. In the series no terms dependant
on GF3(0) appear because we are only looking at simple diagrams and this means
there are no more than two internal lines between internal points. A GF3(0)
term requires three internal lines.

We now need to check whether higher orders also work out.
Let us look qualitatively at third order simple diagrams. There are only three
possibilities

Figure 6: All simple third order diagrams
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We already discussed the first of these diagrams; it is absorbed in the se-
ries 1 + λ + λ2 ≈ 1

1−λ and only makes the approximation better. The second
diagram gives a term ∼ GF (0)G 2

F2(0) and the third diagrams gives a term
∼ G 2

F (0)GF2(0). We see that qualitatively the third order simple diagrams fit
in the series however we did not check the prefactor (−12ih̄λ

m2 )3.

It’s looks like a series exists for all simple diagrams but whether the series
we wrote down is the correct one is not clear. In this article higher orders have
not been calculated nor is a proof formulated so we cannot be sure that the
series is correct. It remains an interesting idea though.

Let us now look at the complex diagram

Figure 7: Second order complex diagram

The expression for this diagram is

h̄6λ2

∫ ∫
dtdt′ − 96(

i

h̄m
)5G 3

F (t− t′)GF (t′ − t1)GF (t− t2)] (135)

We can write the Green functions in the following way∫
dtdt′G 3

F (t− t′)GF (t′ − t1)GF (t− t2)] =

∫
dk

exp(−ik(t1 − t2))
(k2 − ω2 + iε)2

∫
dk′

1
(k′2 − ω2 + iε)

×∫
dk′′

1
(k′′2 − ω2 + iε)

1
((k − k′ − k′′)2 − ω2 + iε)

. (136)

It appears that this integral is more complicated than the previous ones. In
this project no satisfying solutions has been found for this diagram because of
the final integral. The (k−k′−k′′)2 term in the denominator causes these prob-
lems because it makes it impossible to split the integral in independent parts.

Recommendations for new projects
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For additional research on this subject there are some interesting things to
do. Most of them were briefly looked after but were discarded due to a lack of
time.

- It would be interesting to look at higher order perturbation theory and inter-
pret those diagrams. In this way also the series we wrote down for the change
in ω could be checked.
- Instead of only looking at 2-pointfunctions also 4-pointfunctions or even higher
functions could be found. Researching those functions would surely give more
insight in the physics behind this problem.
- In this project we only looked at vacuum-vacuum transitions. However since
we calculated the propagator of the forced harmonic oscillator in a general case
we could in principle find the general propagator of the anharmonic oscillator.
With this propagator we could, for example look at transitions from the ground
state to the first excited state. Also with this general propagator we should be
able to derive the same things we found in this project.
- By using more advanced mathematical techniques the complex diagram per-
haps can be solved in a satisfying way. This would be very interesting because
than we can solve the system completely up to second order.
- In this project we assumed the ground state energy to be 0. It would be in-
teresting to see whether the expressions change a lot if we do not assume this.
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