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ABSTRACT

We present the first Swift/XRT long-term monitoring of 2S 01144-650, a wind-fed supergiant X-ray binary for which both orbital
and superorbital periods are known (Poy, ~ 11.6d and Py, ~ 30.8 d). Our campaign, summing up to ~79 ks, is the most intense
and complete sampling of the X-ray light curve of this source with a sensitive pointed X-ray instrument, and covers 17 orbital,
and 6 superorbital cycles. The combination of flexibility, sensitivity, and soft X-ray coverage of the X-ray telescope (XRT)
allowed us to confirm previously reported spectral changes along the orbital cycle of the source and unveil the variability in its
spectral parameters as a function of the superorbital phase. For completeness, we also report on a similar analysis carried out
by exploiting XRT archival data on three additional wind-fed supergiant X-ray binaries IGR J16418—4532, IGR J16479—4514,
and IGR J16493—4348. For these sources, the archival data provided coverage along several superorbital cycles but our analysis

could not reveal any significant spectral variability.
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1 INTRODUCTION

Superorbital modulations have been detected in the past decade from
several different classes of X-ray binaries, containing both neutron
star (NS) and black hole accretors. These modulations are revealed
by exploiting long-term (typically months to years) monitoring
observations of relatively bright systems in the X-rays and usually
appear as significant peaks in the system power density spectra with
periodicities that can be as long as several to tens of times those
associated with the binary orbital period (see e.g. Sood et al. 2007,
for a historical review). In those X-ray binaries where the accretion
takes place via an accretion disc around the compact object, the
superorbital modulation is commonly ascribed to the precession
of a (sometimes) warped disc. The precession model has been
extensively applied to systems like Her X-1, where spectroscopic
investigations in the X-ray domain were able to constrain in fairly
good detail the geometry of the X-ray emission along an entire
superorbital cycle (see e.g. Brumback et al. 2021, and references
therein). The precessing accretion disc model has also been able
to convincingly explain the superorbital modulations observed from
LMC X-4 (Ambrosi et al. 2022) and SMC X-1 (Brumback et al. 2020;
Pradhan, Maitra & Paul 2020).
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It proved considerably more complicated to explain the super-
orbital modulations revealed from wind-fed X-ray binaries, where
the accretion on to the compact object takes place directly from
the strong wind of a massive companion (without the presence of a
disc). Wind-accreting X-ray binaries are generally fainter than disc-
fed systems and thus revealing superorbital modulations requires
years of monitoring observations carried out with large field-of-
view (FOV) instruments (e.g. those onboard RXTE, INTEGRAL,
and Swift; see Corbet & Krimm 2013, for a recent review). In this
class of sources, alternative models for the superorbital modulations
have been proposed. Koenigsberger, Moreno & Cervantes (2003) and
Moreno, Koenigsberger & Toledano (2005) showed that oscillations
induced in non-synchronously rotating stars in binary systems could
lead to changes in the mass-loss rates (and thus on the accretion-
driven X-ray luminosity) on periods longer than the binary orbital
period. Alternatively, the presence of a third body in a more distant
orbit but gravitationally bound to the binary could also produce a
periodic long-term variation of the X-ray luminosity (see e.g. Farrell
etal. 2008, and references therein). More recently, Bozzo et al. (2017)
proposed that the superorbital modulation could be associated with
the periodic interaction between the accreting compact object and the
so-called corotating interaction regions (CIRs) around the massive
companion. These structures are known to extend for several stellar
radii around OB supergiants, being characterized by a substantial
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overdensity compared to the surrounding stellar wind and a possibly
asynchronous velocity with respect to the massive star rotation. Due
to their physical properties, the interaction between the NS and the
CIRs is expected to lead not only to an X-ray intensity variation
but also to changes (by a factor of a few) of the absorption column
density local to the source (see also Lobel & Blomme 2008, and
references therein).

Currently, only six wind-fed binaries are known to show su-
perorbital modulations, IGR J16479—4514, IGR J16418—4532,
2S 01144-650,4U 1538—-522,4U 1909+07, and IGR J16493—-4348.
All of them displayed a puzzling virtually identical ratio between the
orbital and superorbital periodicity of a factor of 2.7-4 (Corbet &
Krimm 2013; Coley et al. 2019; Corbet et al. 2021; Islam et al. 2023).
Attempts have been made in the literature to interpret their superor-
bital modulations in the context of the three models described above.
Corbet & Krimm (2013) argued that the applicability of the stellar
oscillations and the third-body model are rather difficult. The former
scenario requires circular orbits (see also Moreno, Koenigsberger &
Harrington 2011) and it is hardly compatible with the high coherency
of the superorbital modulations. The second scenario could be com-
patible with the high coherency but the measured virtually constant
ratio between the orbital and superorbital periodicity of a factor of
~2.7-4 across different sources would require unrealistic constraints
on their formation conditions (especially in view of the expectation
that these should eventually be hierarchical systems hosting a distant
third body). Corbet et al. (2021) and Islam et al. (2023) discussed
how the CIR model could provide a more likely explanation for
most sources, with the virtually constant ratio between the system
orbital and superorbital modulations associated with a pseudo-
synchronization of the CIR rotational period with the NS orbit.

Investigations of the origin of the superorbital modulations in
wind-fed X-ray binaries in the X-ray domain have so far relied
on two kinds of observational campaigns: (i) long-term monitoring
provided (mostly) at hard X-rays by large FOV instruments, and
(ii) relatively short (few tens of ks) pointed observations per object
during a specific superorbital phase. Monitoring observations proved
so far crucial to discover the periodicities, although they generally
provide limited information on possible spectral variations along the
superorbital cycle due to the relatively low sensitivity and signal-to-
noise ratio (S/N) over short time-scales (see e.g. Corbet & Krimm
2013; Corbet, Coley & Krimm 2017, and references therein). Pointed
observations carried out also with multiple facilities at the same
time are characterized by a much higher sensitivity and allow in-
depth analysis of the intensity and spectral energy distribution of the
source. However, they are affected by the limitation of providing only
a snapshot of the binary system during a relatively short time interval
and it is thus difficult to unambiguously link any measured variability
of the source intensity or of any identified spectral feature with the
superorbital phase. As discussed by Bozzo et al. (2017), wind-fed
binaries are commonly characterized by a prominent intensity and
spectral variability (on time-scales of hundreds of seconds to hours)
due to the clumpiness of the stellar wind (see also Martinez-Nufiez
et al. 2017; Kretschmar et al. 2019, for recent reviews) from the
companion star. A proper study of any source variability with the
superorbital phase thus requires long-term observations carried out
across many cycles with high sensitivity, so that they can be folded
over the superorbital period and ensure the short-term variability due
to the stellar wind clumps is averaged out.

In the past, the process of averaging X-ray observations has been
exploited to unveil the presence of long-lived structures surrounding
the accreting compact objects in wind-fed X-ray binaries along their
orbital rather then their superorbital cycles. For very bright X-ray
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sources as Vela X-1, GX 301—2, and 4U 1538—52, the data collected
by the Monitor of All Sky X-ray Image (MAXI; Matsuoka et al.
2009) proved particularly interesting due to their extended energy
coverage over many orbital revolutions since the beginning of the
experiment scientific operations back in 2009 (Doroshenko et al.
2013; Islam & Paul 2014; Rodes-Roca et al. 2015). However, the
vast majority of the wind-fed X-ray binaries are either too faint or
located into crowded sky regions to be efficiently accessed by the
MAXI capabilities. For all these cases, our group has extensively
demonstrated that observations with the narrow-field instrument,
the X-ray telescope (XRT; Burrows et al. 2005) onboard the Neil
Gehrels Swift Observatory (Gehrels et al. 2004), are very well suited
(Ferrigno, Bozzo & Romano 2022).

In this paper, we present for the first time the exploitation of XRT
data to probe spectral variability not only on the orbital but also along
the superorbital cycles of wind-fed X-ray binaries. In particular,
we report on the outcomes of a new long-term XRT observational
campaign focused on 2S 01144-650. The campaign was specifically
designed to unveil spectral and intensity variability of this wind-fed
binary along its superorbital cycle. Thanks to the regular monitoring
and the enhanced sensitivity of Swift/XRT, we can now simulta-
neously average data over multiple orbital and superorbital cycles,
a crucial step in mitigating short-term X-ray intensity variations
and exploring long-term spectral changes. We also report the results
obtained by applying the same techniques as those exploited in the
case of 2S 01144650 on archival data collected from three further
wind-fed binaries, IGR J16418—4532, IGR J16479—4514, and IGR
J16493—-4348 (see Table 1). For these objects the past observa-
tional campaigns, albeit not optimized for the search of variability
associated with the superorbital period, contained sufficient data to
apply our method. A brief summary of the current knowledge on
all sources we considered is given in Section 2. In Section 3, we
provide a description of the Swift/XRT data (with log tables included
in Appendix A) and the data-reduction technique. An overview of the
results we obtained and their discussion are provided in Section 4.

2 THE SOURCE SAMPLE

In the subsections below, we briefly describe the current knowl-
edge on all sources considered in this paper. We focus more on
2S 01144650, which is the target of our recent observational cam-
paign with Swift/XRT. The other three sources (IGR J16418—-4532,
IGR J16479—4514, and IGR J16493—4348) are briefly mentioned
for completeness, as we apply to their archival data (already analysed
in previous work) the same analysis techniques used in the case of
2S 0114+650.

2.1 2S 01144650

2S 01144650 was discovered in 1977 and readily classified as a
supergiant high-mass X-ray binary, with the companion star being
identified as a Blla supergiant (LST + 65010) at a distance of
~7.2 kpc (SgXB; Dower et al. 1977; Reig et al. 1996). The nature of
the accretor was confirmed as a NS with the discovery of a2.73 h spin
period (see e.g. Hall et al. 2000, and references therein). Subsequent
measurements of the source spin period also led to the discovery and
monitoring of spin-up and spin-down phases (Falanga et al. 2015).
The measured orbital period of the system is ~11.6 d, while the
estimated eccentricity is ~0.18 (Koenigsberger et al. 2006).

The profile of the X-ray variability along the binary orbit shows
the typical modulation expected for a wind-fed system (Grundstrom
et al. 2007) but it is also characterized by a peculiar stable dip at the
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Table 1. Properties of the sources studied in this paper.
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References
Source Porb Psup To “ Porb Psup
(@) (@) (MID)
2S 01144650 11.5983 = 0.0006” 30.76 £ 0.03 53488 1 2
IGR J16418—4532 3.73886 £ 0.00003 14.730 £ 0.006 55994.6 3 2
IGR J16479—-4514 3.3193 £ 0.0005 11.880 £ 0.002 55996 4 2
IGR J16493—-4348 6.782 £ 0.005 20.07 £ 0.01 54265.1 5 2,6

Notes. References: (1) Grundstrom et al. (2007); (2) Corbet & Krimm (2013); (3) Levine et al. (2011); (4) Romano
et al. (2009); (5) Cusumano et al. (2010); (6) Coley, Corbet & Krimm (2015).

“Phase zero for the superorbital period is the minimum of the folded light curve for 2S 0114+650 (Farrell et al.
2008), the maximum for the remainder of the sample. *Phase zero for the orbital period is the time of periastron

passage from Grundstrom et al. (2007) at MJD 51824.8.

inferior conjunction that is most likely associated with a localized
increase in the absorption column density rather than an X-ray eclipse
(see Pradhan et al. 2015, and references therein).

2S 01144650 also exhibits a 30.76 d superorbital modulation of
its X-ray emission, whose origin has long been investigated but still
remains unclear (Farrell, Sood & O’Neill 2006; Corbet & Krimm
2013). Hu et al. (2017) performed a detailed study of the long-
term evolution of the spin, orbital, and superorbital modulations of
the source by using Swift/BAT and RXTE/ASM data. These authors
found that the NS spin period undergoes both episodes of intense
and prolonged spin-up/spin-down, and episodes of more irregular
and moderate variations. The orbital and superorbital periodicities
were found to be stable over time, although the intensities of these
modulations can vary substantially and generally the superorbital
one decreases during times when the NS spin period variations are
more erratic. Hu et al. (2017) suggested that a temporary accretion
disc could form around the NS in 2S 01144650, such that the
source switches periodically from wind to disc accretion. During
the disc accreting periods, the spin-up/spin-down is stronger and
more regular, while during wind accretion it turns into a more
complex behaviour, as expected due to the clumpiness of the stellar
wind affecting the accretion. The weakening of the superorbital
modulation intensity is more pronounced during the time intervals
when the source is suspected to switch to the wind accretion. The
authors thus advanced the hypothesis that the modulation itself could
be somehow closely linked to the presence of an accretion disc.

The broad-band X-ray spectrum of 2S 01144650 has been
measured several times in the past decades using different facilities.
The source spectral energy distribution is closely reminiscent of
what is usually observed from wind-fed systems and well described
by a model comprising a substantially absorbed (3—5 x 10?> cm~2)
cut-off power law. The cut-off energy is found to be in the range
10-30keV, while typical power-law photon indices vary between
1.0 and 2.3 (Farrell et al. 2008; Pradhan et al. 2015; Abdallah et al.
2023). To the best of our knowledge, a detailed study of the spectral
variability of the source along its orbital and superorbital cycles
have been presented in the past only by Farrell et al. (2008). These
authors used an absorbed cut-off model to describe the source X-ray
emission measured by the RXTE/PCA and revealed a modest change
in both the source absorption column density and photon index as
a function of the orbital phase. In particular, they found that the
spectrum is harder and less absorbed when the source emission is
fainter. A similar trend for the photon index and absorption column
density was suggested for the superorbital case as well, although the
error bars associated with the measurements were far too large to
draw any firm conclusion. No changes were measured as a function
of both the orbital and superorbital period for the cut-off energy.

2.2 The other sources: IGR J16418—4532, IGR J16479—-4514,
and IGR J16493—4348

IGR J16418—4532 has been classified as an intermediate supergiant
fast X-ray transient (SFXTs; e.g. for recent reviews, see Walter et al.
2015; Martinez-Nunez et al. 2017) since flares from this source have
been observed several times (Tomsick et al. 2004; Sguera et al.
2006; Ducci, Sidoli & Paizis 2010; Romano et al. 2012a, 2014,
2023; Krimm et al. 2013) but the overall dynamic range in the X-ray
luminosity remains as of today limited to values somewhat smaller
than those typical of the bulk of the SEXT population (Romano et al.
2015). The source displays clear eclipses, with a measured orbital
period of 3.73 d. The nature of the compact object has been firmly
established to be an NS thanks to the discovery of X-ray pulsations
with a period of ~1210 s (Sidoli et al. 2012). A precise classification
of the donor star is still missing, given the fact that different authors
have discussed both the possibility of an O or B supergiant located
at about 13 kpc (Coleiro et al. 2013; Coley, Corbet & Krimm
2015). IGR J16418—-4532 is also known to typically display a large
absorption column density, exceeding 10>* cm~2, and a superorbital
modulation of its X-ray emission with a period of ~14.7 d. The
superorbital modulation has been investigated in detail by Islam
et al. (2023). These authors showed that the modulation changes in
intensity over a time-scales of a few years and discussed the results
of targeted NuSTAR observations (complemented by simultaneous
Swift/XRT pointings).

IGR J16479—4514 is an eclipsing SFXT with an orbital period
of 3.32 d (Jain, Paul & Dutta 2009). The nature of the compact
object is unknown because no pulsations have been detected in the
system. However, its spectrum is similar to that of accreting HMXB
pulsars, suggesting an NS as the putative compact object. The optical
companion is likely to be an O7 star, translating into a distance of
4.5kpc to the binary system (Chaty et al. 2008; Coley, Corbet &
Krimm 2015). In addition to short low-luminosity X-ray flares lasting
a few thousand seconds, orbital phase-locked X-ray flares are present
in the light curve, with an occasional bright X-ray flare lasting few
hours and reaching an X-ray flux of 10~° ergcm™ s~! (Romano
et al. 2008; Sguera et al. 2008, 2020; Sidoli et al. 2013). These flares
suggest the presence of large-scale structures in the stellar wind of
the supergiant star (Bozzo et al. 2009; Sguera et al. 2020).

IGR J16493—4348 is an eclipsing high-mass X-ray binary with
a B0.5 Ia supergiant companion (Nespoli, Fabregat & Mennickent
2010; Pearlman et al. 2019) at ~16.1kpc, and an orbital period
of ~6.8d. The X-ray eclipses displayed by the source are known
to last about 0.1d (Cusumano et al. 2010; Corbet et al. 2010a).
Given the discovery of X-ray pulsations with a period of 1093s
(Corbet, Pearlman & Pottschmidt 2010b; Pearlman et al. 2019) and
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the reported evidence of a resonant cyclotron absorption feature at
~30keV (D’Ai et al. 2011), the compact object hosted in the binary
system is believed to be an NS with a surface magnetic field of
3.7 x 102 G. A superorbital modulation of the X-ray light curve
was discovered by Corbet et al. (2010a) and investigated in depth by
Coley et al. (2019).

3 DATA REDUCTION AND ANALYSIS

In order to probe, as a main goal, possible intensity and spectral
variability over the superorbital revolution of the NS in 2S 01144-650,
we planned our campaign (Target ID 15874, PI: P. Romano) with
Swift/XRT. The monitoring campaign consisted of 1 ks observations
performed 3 times a week starting on 2023-02-10. For this work
we considered data collected until 2023-08-24, yielding 74 photon
counting (PC) mode observations for a total effective exposure
time on the target of 78.8ks. We adopt for the orbital period
Po, = 11.5983 £ 0.0006 d (Grundstrom et al. 2007, with the phase
zero being the time of periastron passage at MJD 51824.8), and for the
superorbital period Py, = 30.76 £ 0.03 d (Corbet & Krimm 2013),
with the phase zero being the time of the minimum of the folded light
curve, at MJD 53488 (Farrell et al. 2008). Our observations therefore
cover ~17 orbital, and ~6 superorbital cycles.

Table A1 reports the log of the Swift/XRT observations, including
the ObsID, the observation date (MJD of the middle of the obser-
vation), the calculated orbital and superorbital phase, the start and
end times (UTC), the XRT exposure time, and also relevant spectral
parameters (see later in this section).

The XRT data were uniformly processed and analysed using
FTOOLS' (v6.29b), and matching calibration (CALDB)? files. The
spectral analysis was performed with XSPEC (Arnaud 1996), by using
the C-statistics (Cash 1979) and by adopting an absorbed power-
law model with free absorption and photon index. The absorption
component was modelled with TBABS with the default Wilms,
Allen & McCray (2000) abundances (ABUND WILM) and Verner
et al. (1996) cross-sections (XSECT VERN). Errors on the spectral
parameters are reported at the 90 per cent confidence level (c.l.). The
Swift/XRT data were analysed as follows.

First, for each observation we calculated the orbital phase, and
from the count rates in the 0.3—4 and 4-10keV energy bands, we
derived the hardness ratio HR = CR(4-10)/CR(0.3-4) (also binned
by observation). We extracted the average spectrum and fitted it with
an absorbed power law to measure the observed and unabsorbed
0.3-10keV flux (Cols. 8 and 9 of Table Al).

We then chose eight orbital phase bins that would yield a
comparable number of source counts (on average 22070 cts bin~')
and calculated the HR in those bins. The top panel of Fig. 1 (left)
shows the HR in the eight orbital phase bins, as well as the weighted
averages of HRs derived both from individual observations (dotted
line) and from the eight bins (dashed line). We then combined all
observations in each of the eight phase bins to create a single spectrum
per bin. We note that the number of phase bins was chosen as a
compromise between obtaining a significant number of points along
the cycle and maintaining a sufficiently high S/N ratio spectrum
to accurately determine both the absorption column density and
the power-law slope (see also the discussion in our previous paper,
Ferrigno, Bozzo & Romano 2022). Finally, we performed an eight-
bin phase-resolved spectroscopic analysis in the 0.3-10keV energy

Uhttps://heasarc.gsfc.nasa.gov/ftools/ftools_menu.html.
Zhttps://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/caldb_intro.html.
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range adopting an absorbed power-law model. The results of our
orbital-resolved spectral analysis of 2S5 01144650 are summarized
in Table 2 and plotted in Fig. 1 (left).

We repeated the same procedure for the creation of superorbital
phase bins and the corresponding spectroscopic analysis. The results
are reported in Table 2 and Fig. 1 (right). Finally, in Appendix B we
also address the effect of data binning on our result.

We note that the use of a simple model comprising an absorption
component and a power law is justified for the source based on
previous work (see Section 2.1), due to the limited energy band
coverage and exposure of the stacked XRT spectra. The addition
of a cut-off energy, as measured by RXTE and Suzaku, at energies
10-30keV (Farrell et al. 2008; Abdallah et al. 2023) was tested
and found not to significantly affect the results obtained here.
More complicated models including Comptonizing components and
reported in a few studies exploiting either the broad-band coverage
of the instruments onboard Suzaku or the deep exposures of the
XMM-Newton data (Pradhan et al. 2015; Sanjurjo-Ferrrin et al.
2017) were also not usable in the present case, as most parameters
would simply be unconstrained. As our scope is to unveil the relative
variability between observations carried out with the same instrument
at different orbital and superorbital phases, the absorbed power-law
model allows us to unveil if the variability is mostly occurring in the
soft X-ray part of the spectrum (and thus most likely associated with
the absorption column density) or driven by changes in the harder
part of the XRT energy band (thus more likely associated by a change
in the overall spectral slope). As a further remark, we note that the
procedure we adopted here also ensures that the known (modest)
spectral energy variability due to the energy-dependent pulsations
from the source is averaged out in the stacked XRT spectra (see
Pradhan et al. 2015, and references therein, and Appendix B). This is
because for each orbital and superorbital bin we are merging together
many different relatively short XRT pointings (typically 1-2 ks at
most) over several different orbital and superorbital revolutions (see
Appendix B for futher details).

For completeness, we applied the methodology of folding along
the superorbital phase to three more sources, listed in Table 1
along with their relevant properties, IGR J16418—4532,
IGR J16479—4514, and IGR J16493—4348. For these sources,
the data available in the Swift archive were not optimized to
investigate superorbital spectral variations but rather obtained either
as monitoring campaigns for the orbital variability or as SFXT
discovery/outburst follow-ups (see Romano et al. 2023). Spectral
variations as a function of the orbital phase of these three sources
were already investigated in previous work (see Romano et al. 2012a;
Sidoli et al. 2013; Varun & Raman 2023; Pearlman et al. 2019, and
references therein). In order to optimize the Swift archival data for
superorbital variability studies, we selected only observations with
homogeneous exposure times, so as not to introduce biases in favour
of a specific superorbital phase, and with an off-axis angle <15
arcmin to limit the known XRT vignetting effects. We then applied
the same procedures as those adopted for 2S 01144650, as follows.

The data we considered for IGR J16418—4532 are reported
in Table A2. The majority have mostly been collected either as
monitoring campaigns (e.g. Romano et al. 2012a) or as outburst
follow-ups (Romano et al. 2023, and references therein, and in
Table A2). Consequently, their exposures vary considerably, from
~2-5ks obtained during the orbital monitoring in 2011 (Romano
et al. 2012a) that uniformly cover three orbital periods (1.1 super-
orbital periods), or ~2 ks triggered observations and their follow-up
campaigns (typically 1ks per observation), to very short serendipi-
tous observations. By combining all the data (57 observations for a
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Figure 1. Left: Swift/XRT hardness ratio of 2S 01144650, and best-fitting parameters as a function of orbital phase (P, = 11.5983d, Ty = MJD 51824.8).

The absorption column density Ny is in units of 10> cm~2, the power-law photon index is T, and the observed 0.3—10 keV flux is in units of 10~!! ergem™

2

s~1). Right: same as left side but for the superorbital phase (Psup = 30.76d, Ty = MID 53488, Corbet & Krimm 2013). In each panel, we also report the mean
value of each variable plotted when calculated from the individual observations (dotted line) and from the values obtained in the eight phase bins (orange dashed
line). The two lines are compatible in all cases within the associated uncertainties.

total exposure of 93 ks) we obtained eight phase-selected spectra with
an average of ~900 counts each, the only exception being bin number
five, where only one observation (00032037022) was available that
did not even yield a detection.

For IGR J16479—4514, we considered the data published in
Romano et al. (2009, table 5) and in Romano et al. (2011, table 1),
that were collected to define the long-term properties of a sample of
SFXTs (Romano et al. 2008, 2009, 2011; Sidoli et al. 2008, 2009).
The campaign consisted of 144 observations, each 1 ks long, obtained
twice a week, along a baseline of 2 yr as well as outburst observations
and their follow-ups, for a total of ~160 ks. The observations cover
~54 superorbital cycles® and yield eight phase-selected spectra with
~1650 counts each.

Finally, for IGR J16493—4348, we considered the monitoring data
we obtained in 2014 (see Table A4) to study the long-term behaviour
of this source and create the cumulative luminosity distribution,
with a cadence of 1ks twice a week for a total of ~53ks and 57
observations, as reported in Romano (2015) and Kretschmar et al.
(2019). These observations, covering ~11 superorbital cycles, yield
eight phase-selected spectra with ~700 counts each.

Figs 2, 3, and 4 show the HR and best-fitting parameters as a func-
tion of superorbital phase for IGR J16418—4532,IGR J16479—-4514,

3We discarded observation 00030296005, since it is a single observation
dated 3 months before the remainder of the campaign.

and IGR J16493—4348, respectively, while the values of the best-
fitting parameters are reported in Table 3.

4 RESULTS AND DISCUSSION

4.1 Orbital variability

The suitability of XRT monitoring campaigns to perform orbital
variability studies was already widely demonstrated by our group in
a recent paper for a number of wind-fed binaries (Ferrigno, Bozzo &
Romano 2022). Here, we discuss the orbital variability only for the
source 2S 01144-650, as for the remaining sources considered in this
paper the corresponding results were already reported previously by
our group and also extensively analysed in the literature (see Romano
et al. 2009, 2011, 2012a, and references therein).

The left side of Fig. 1 shows the variability of the spectral
parameters measured in the case of 2S 01144650 as a function
of the system orbital phase. As in the case of previous objects,
XRT was able to unveil also for this source an interesting variability
pattern for the flux, the absorption column density, and the power-law
photon index. The phase 0 is set at the periastron passage in such a
way that our figure and the equivalent one realized with Swift/BAT
data (15-50keV) in Corbet & Krimm (2013, see their fig. 2) are
directly comparable. Both light curves display a minimum in flux
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Table 2. Results of the orbital and superorbital phase-resolved spectral
analysis for 2S 0114+4650.

Phase Ny r Fo3-10kev Cstat
range 1022 1071 /dof.
(cm™2) (erg cm~2s7h)
Orbital
0.00-0.15 24704 870! 76194 674.8/694
0.15-0.26 25704 07101 14.970% 590.9/675
0.26-0.39 38703 09703 8.6%03 634.1/664
0.39-0.55 6.0198 07402 52103 643.4/664
0.55-0.78 52008 10102 3.0%02 591.1/616
0.78-0.84 27704 09702 13.570% 604.2/658
0.84-0.92 21704 07t 16.079 575.8/638
0.92-0.99 26704 09192 8.4103 556.0/613
Superorbital
0.000-0.183 2.8104 0,902 3.9%02 572.7/647
0.183-0.302 41703 10703 9.4%03 649.4/656
0.302-0.450 3.0703 07192 5.9104 619.1/667
0.450-0.500 20105 0670 254113 628.4/692
0.500-0.593 29703 0.6%02 10.479¢ 674.8/673
0.593-0.820 25704 09701 6.5704 701.4/673
0.820-0.880 39706 (g+02 7.1403 4740610
0.880-1.000 40706 07792 6.1104 613.1/645
2 —
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Figure 2. Same as Fig. 1 (right) but for the case of IGR J16418—-4532
(Psup = 14.730d, Tp = 55994.6 MID, Corbet & Krimm 2013).
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Figure 3. Same as Fig. 1 (right) but for the case of IGR J16479—4514
(Psup = 11.880d, Tp = MID 55996, Corbet & Krimm 2013).

at phase 0.7 that was already visible in the folded RXTE/PCA data*
(2-12 keV range) reported by Farrell et al. (2008, see their fig. 13)
and extensively investigated by Pradhan et al. (2015) to verify the
hypothesis of an X-ray eclipse. The latter authors concluded that
the properties of the flux minimum are not compatible with being a
total obscuration of the NS by its companion. This conclusion was
mainly driven by the fact that Suzaku data collected during the flux
minimum could only reveal a modest increase of the local column
density (a factor of ~3) and equivalent width of the fluorescence
iron line (if any at all), as well as a complete lack of evidence for
a significant flattening of the spectral slope. This is at odds with
what is commonly observed in eclipsing wind-fed X-ray binaries
where both the absorption column density and equivalent width of
the fluorescence iron emission line can increase by a factor of ~10-
100 (compared to the out-of-eclipse emission), and the power-law
slope gets dramatically softer due to the fact that only the scattered
X-ray emission is observed during the eclipse (rather than the direct
X-ray emission from the accreting source; see e.g. Falangaetal. 2015,
and references therein). These authors thus suggested that the flux
minimum is most likely due to the modulation of the mass accretion
rate along the relatively highly eccentric orbit (see Section 2.1). The
sensitivity achieved thanks to our XRT monitoring campaign allows
us to confirm this suggestion, since during the flux minimum we

4Note that the source light curve folded on the system orbital period reported
in Farrell et al. (2008) uses the time of the flux minimum to define phase
0 and thus there is a shift of ~0.3 in phase compared to our and Corbet &
Krimm (2013) light curves.
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Figure 4. Same as Fig. 1 (right) but for the case of IGR J16493—-4348
(Psup = 20.07d, Ty = MJD 54265.1, Corbet & Krimm 2013; Coley, Corbet &
Krimm 2015).

recorded a noticeable but still modest increase of Ny compared to
the remaining orbital phases (a factor of ~3 as reported also by
Pradhan et al. 2015). We can consider that the XRT measurement is
truly representative of the characteristic absorption column density
in the X-ray dip because this value is obtained as an average of many
different orbital cycles.

The folded XRT light curve also presents two peaks in flux
preceding and following the periastron passage. Although this has not
been widely discussed in the literature, it is worth remarking that the
peak in flux following the periastron is expected in case of eccentric
or short-orbital period wind-fed SgXB due to the effect of both
the stellar wind photoionization by the high-energy emission of the
compact object and the relative velocity between the orbiting NS and
the stellar wind. As a consequence of these effects, a second peak in
flux is also expected slightly before the NS approaches the periastron
again (with the exact position in phase depending also on the
poorly known physical conditions of the stellar wind, as the density,
velocity, and ionization state; see Bozzo, Ducci & Falanga 2021, and
references therein). A similar double-peaked light curve is observed
in the case of the SFXT endowed with the shortest orbital period of
this class of objects, IGR J16479—-4514 (Sidoli et al. 2013, fig. 1).

Note that the double-peaked structure of the folded XRT light
curve is not immediately evident from the equivalent folded light
curves in the higher energy domains, for example those obtained
from Swift/BAT. This is not unexpected as the X-ray emission of
wind-fed SgXBs above 210 keV is dominated by the cut-off power-
law spectral component. This component usually shows a much less
pronounced variability along the orbital phase (see also the discussion
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Table 3. Results of the superorbital phase-resolved spectral analy-
sis for the three sources IGR J16418—4532, IGR J16479—4514, and
IGR J16493—-4348.

Superorbital Ny r Fo3-10 kev Cstat
phase 1022 10~ /d.of.
(cm™?) (ergem™2s~1)

716418

0.000-0.185 7271 09702 6.1704 556.0/608
1.4 0.4 3.9

0.185-0.310 45015 07103 29.873% 269.3/327
2.0 0.4 0.6

0.310-0.450 6.473%0 L1404 4.01)° 263.3/294

0.450-0.500 81T 0673 16.6714 435.5/514

0.500-0.660 - - - -

0.660-0.770 6.2739 05108 38.5173 163.5/181
2.3 0.4 0.2

0.770-0.910 7508 09704 1.8%)3 304.5/374
3.8 0.3 0.3

0.910-1.000 149735 0513 45753 551.0/596

716479

0.000-0.165 11.8720 09793 4.4793 542.5/582

0.165-0.273 1etl?  11%02 2.0791 576.6/624

0.273-0.340 10618 11703 3.6103 500.6/591
1.2 0.2 0.3

0.340-0.450 75013 1.0%)3 3.75%03 596.2/593

0.450-0.553 113518 12703 2.2192 495.2/580
1.4 0.2 0.5

0.553-0.575 8355 0713 74702 533.4/585
1.5 0.3 0.1

0.575-0.740 84ty 0873 117 498.0/574
1.7 0.3 0.1

0.740-1.000 9.3717 1.0%93 10101 494.0/572

716493

0.000-0.125 13.0%5 03703 2.9%04 275.8/332
2.1 0.3 0.4

0.125-0.185 8.077¢ 0573 43403 338.7/416

0.185-0.375 1.5722 077904 2.2%02 377.8/443
2.3 0.4 0.3

0.375-0.493 8.8775  0.7%93 26703 357.0/437

0.493-0.685 1653 07704 17502 324.3/435

0.685-0.810 108728 0.6703 3.0%93 378.7/420

0.810-0.877 72730 06103 3.6704 344.3/425

0.877-1.000 153153 0.8%03 3.0704 277.5/361

in Farrell et al. 2008) and it is only marginally affected by changes in
the absorption column density local to the source. The folded BAT
light curves along the orbital phases of SgXBs thus display in most
of the cases a modest (if any at all) variability, apart from the evident
cases of X-ray eclipses (see Falanga et al. 2015; Coley, Corbet &
Krimm 2015, for recent reviews). Before the provision of our XRT
results here, a very different profile of the X-ray emission from
2S 0114+650 in the soft versus hard X-ray domain could be well
appreciated by looking at fig. 2 of Pradhan et al. (2015). Although the
Suzaku/XIS data covering the soft energy domain (<10 keV) only
spanned a limited portion of the orbital phase around the X-ray min-
imum, the much more prominent variability of these data compared
to the superimposed ones from Swift/BAT is particularly striking.

4.2 Superorbital variability

Of more interest for the focus of this paper are the variations of the
source spectral parameters as a function of the superorbital phase, as
shown in the right side of Fig. 1. In the past, only Farrell et al. (2008)
attempted a superorbital-phase-resolved spectral analysis of the X-
ray emission from 2S 01144650, but the outcomes of their analysis
were partly hampered by the limited coverage of the RXTE/PCA data
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used, which sampled only two superorbital cycles. The PCA folded
light curve showed a peak of the emission at phase 0.5, and only
a marginally significant increase in the photon index was reported
around phase 1.0. The data also suggested a possible increase of the
absorption column density at the same phase, but the uncertainty
associated with the measurement was far too large to draw a firm
conclusion. The higher sensitivity and longer coverage of our XRT
monitoring campaign (spanning six superorbital cycles) allows us
to improve the measurements and investigate in more detail the
properties of the source X-ray emission at different superorbital
phases. The profile of the XRT folded light curve shows a sharp
peak in the source flux at phase 0.5 and an intriguing pattern of
variability of the Ny, confirming a remarkable increase toward phase
0.8-1.0 (note that our figure and fig. 16 of Farrell et al. 2008 are
directly compatible as the reference time for phase 0 is the same
in both cases). We could not detect any changes in the power-law
photon index, which remains virtually constant at a value of 0.8
at most superorbital phases and show a modest decrease down to
~0.6 around the superorbital phase 0.5. We tested that a fit to the
eight superorbital phase bin spectra with a common photon index
(introducing intercalibration constants and with all other parameters
free) yields a photon index of 0.795f8:8§§, which is consistent with
all individual fits apart from the two spectra extracted around phase
0.5. However, in these two cases, the deviation is only marginally
(=<3 o c.l) significant.

Farrell et al. (2008) suggested that the superorbital periodicity
in 2S 01144650 could be due to a periodic variation of the mass
accretion rate, although these authors could not identify any specific
mechanism(s) driving the variation. As discussed in Section 1, there
is a general convergence in believing that the CIR model provides the
most solid ground to explain the superorbital variability of wind-fed
X-ray binaries as 2S 01144-650. In this model, increases in the flux
are associated with the accretion on to the NS of the denser (by a
factor of 2-3; see Lobel & Blomme 2008, and reference stherein) and
(possibly) slower material of the CIR compared to the surrounding
stellar wind. This interaction should also lead to increases in the local
absorption column density, because the CIR is expected to intercept
at some point the line of sight between the compact object and the
observer. Our XRT measurements unveiled increases in the flux and
absorption column density that are compatible with the factor 2-3
expected in the CIR model, although some geometrical effect shall
be assumed in order to interpret the difference in phase between the
rise in the flux and that in the Ny. Compatibly with the CIR model,
no dramatic variation is observed in the power-law photon index, as
accretion is driven at any phase by the stellar wind and no spectral
state changes are expected as those observed in disc-accreting
systems (Bozzo et al. 2016). In view of the pioneering measurements
we presented with XRT, it is difficult to obtain insights into the
possibility suggested by Hu et al. (2017) that the source is not a pure
wind-fed system but a temporary accretion disc is forming around
the NS when the superorbital variability is more pronounced. The
physics of temporary accretion disc formation around NS in wind-
fed binaries is not yet known, and neither are the expected spectral
energy variations as a function of the accretion disc properties (see
e.g. the discussion in Romano et al. 2015). However, should a
temporary accretion disc be driving the superorbital modulation in
2S 0114+650, one would likely expect to see spectral state changes
(i.e. changes in the power-law photon index) at different superorbital
phases as those recorded from, e.g. Her X-1 and SMC X-1 (see e.g.
Brumback et al. 2021, 2023, and references therein). At present,
our XRT data do not show clear evidence to support this but deeper
and more extended observations of the source are clearly needed to
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consolidate the reported findings (to be carried out by exploiting,
e.g. the combination of flexibility, soft X-ray coverage, and large
effective area of NICER, Gendreau, Arzoumanian & Okajima
2012).

Concerning the remaining three sources considered in this paper,
we note that in the case of IGR J16418—4532, XRT revealed some
intriguing variability pattern for the source flux as a function of the
superorbital phase (see Fig. 2). However, the coverage in phase is
not complete and the S/N in the different available bins is far too
low to claim the detection of any meaningful variation in either the
power-law photon index or the absorption column density. We tested
that merging more phase bins together to increase the S/N would
not allow us to have a reasonable number of points to search for
spectral variations at different superorbital phases. In the case of
IGR J16479—4514, the intriguing flux pattern is also accompanied
by a similar HR variability trend. There is some indication in the data
for possible variations especially of the absorption column density,
but more data are needed in the different phase bins in order to
decrease the uncertainties on the spectral parameters and draw a more
firm conclusion. Among all analysed sources, IGR J16493—4348
is the least interesting from a superorbital analysis point of view.
XRT could only reveal modest changes in the flux and did not
provide indications for possible variations in either the absorption
column density or the power-law photon index. It should be noted,
however, that the source is relatively faint for XRT and the error
bars associated with both Ny and I' are definitively larger than
in other cases (thus hampering any attempt to unveil only modest
variations of these parameters). A substantially larger number of
observations would be needed in this case to lower the error bars and
dig into the presence of possibly modest (but recurrent) variations
of the source spectral parameters as a function of the superorbital
phase.
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APPENDIX A: LOGS OF OBSERVATIONS

In this section, we include several tables to complement the results
described in the main paper. Table A1 reports all details of the new ob-
servational campaign focused on 2S 01144650 (and never reported
elsewhere), while Tables A2, A3, and A4 those of the campaigns on
IGR J16418—4532, IGR J16479—4514, and IGR J16493—-4348.
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APPENDIX B: ADDITIONAL MATERIAL

As reported in Section 2.1, the X-ray light curves of 2S 0114+650
show variability on different time-scales, namely, the spin period Py,
~ 9800 s, the orbital period Py, = 11.5983 d, and the superorbital
period Py, = 30.76 d. In order to clarify the effects of binning of the
data on these different time-scales on our results we also calculated
the spin phase for each observation (Table Al). We note that the
typical exposure time of our observations is generally a factor of 10
shorter than Py, so we addressed the possibility that in each orbital
phase bin the spin phases would not be equally represented.

Fig. B1 (left) shows as grey empty squares where our sample
of observations occur in the orbital phase and as grey downward-
pointing empty triangles where they occur in spin phase (see e.g.
the first two rows). For each orbital phase bin (filled squares:
red for the first bin, orange for the second bin, green for the
third and so on) on the first row, we report as filled triangles the
matching observations in spin phase in the second row (with the
same colour). As can be observed, the spin phases, albeit being a
small number, are not preferentially clustered. Therefore, we can
argue that, within the limits of our discrete sampling of the light
curve of 2S 01144650, we are not introducing strong biases due to
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the distribution of our observations in spin phase in each orbital phase
bin.

Similarly, to address the possibility that in each superorbital phase
bin the orbital phases would not be equally represented, Fig. B1
(right) shows as grey upward-pointing empty triangles where our
sample of observations occur in the superorbital phase, as grey empty
squares where our sample of observations occur in the orbital phase
and as grey downward-pointing empty triangles where they occur in
spin phase (e.g. the first three rows). For each superorbital phase bin
(filled triangles with the same colour scheme) on the first row, we
report as filled symbols the matching observations in orbital phase
in the second row and spin phase in the third row (with the same
colour). Once more, we can argue that we are not introducing strong
biases due to the distribution of our observations in orbital phase in
each superorbital orbital phase bin.

We finally consider the other sources whose data we reported in
Table 1. In the case of IGR J16418—4532 and IGR J16493—4348 the
pulsation time-scale is of the order of ~1ks, comparable with the
typical XRT exposure. The XRT data thus sample automatically
all spin phases in each observation. For IGR J16479—4514, no
pulsations were ever detected and thus no such investigation is
possible at this time.
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Figure B1. Left: Distribution of the observations collected on 2S 01144650 (on the x-axis) in orbital phase (empty squares), and spin phase (empty downward-
pointing triangles) as a function of orbital phase bin (on the y-axis). The observations for each orbital phase bin are shown in different colours as filled symbols
and offset for clarity. Right: Distribution of the observations collected on 2S 01144650 (on the x-axis) in superorbital phase (empty upward-pointing triangles),
orbital phase (empty squares), and spin phase (empty downward-pointing triangles) as a function of superorbital phase bin (on the y-axis). The observations for
each superorbital phase bin are shown in different colours as filled symbols and offset for clarity.
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