

Swift/XRT observations of superorbital modulations in wind-fed supergiant X-ray binaries

P. Romano^{1,2} E. Bozzo^{3,4} N. Islam^{4,5} and R. H. D. Corbet^{5,6,7}

¹INAF, Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807 Merate, Italy

²Department of Astronomy, University of Geneva, Chemin d'Ecogia 16, CH-1290 Versoix, Switzerland

³INAF-OAR, Via Frascati 33, I-00078 Monte Porzio Catone, Rome, Italy

⁴Center for Space Science and Technology, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA

⁵X-ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

⁶CRESST and CSST, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA

⁷Maryland Institute College of Art, 1300 W Mt Royal Ave, Baltimore, MD 21217, USA

Accepted 2023 December 13. Received 2023 December 13; in original form 2023 September 1

ABSTRACT

We present the first *Swift*/XRT long-term monitoring of 2S 0114+650, a wind-fed supergiant X-ray binary for which both orbital and superorbital periods are known ($P_{\text{orb}} \sim 11.6$ d and $P_{\text{sup}} \sim 30.8$ d). Our campaign, summing up to ~ 79 ks, is the most intense and complete sampling of the X-ray light curve of this source with a sensitive pointed X-ray instrument, and covers 17 orbital, and 6 superorbital cycles. The combination of flexibility, sensitivity, and soft X-ray coverage of the X-ray telescope (XRT) allowed us to confirm previously reported spectral changes along the orbital cycle of the source and unveil the variability in its spectral parameters as a function of the superorbital phase. For completeness, we also report on a similar analysis carried out by exploiting XRT archival data on three additional wind-fed supergiant X-ray binaries IGR J16418–4532, IGR J16479–4514, and IGR J16493–4348. For these sources, the archival data provided coverage along several superorbital cycles but our analysis could not reveal any significant spectral variability.

Key words: accretion, accretion discs–X-rays: binaries–X-rays: individual: 2S 0114+650–X-rays: individual: IGR J16418–4532–X-rays: individual: IGR J16479–4514–X-rays: individual: IGR J16493–4348.

1 INTRODUCTION

Superorbital modulations have been detected in the past decade from several different classes of X-ray binaries, containing both neutron star (NS) and black hole accretors. These modulations are revealed by exploiting long-term (typically months to years) monitoring observations of relatively bright systems in the X-rays and usually appear as significant peaks in the system power density spectra with periodicities that can be as long as several to tens of times those associated with the binary orbital period (see e.g. Sood et al. 2007, for a historical review). In those X-ray binaries where the accretion takes place via an accretion disc around the compact object, the superorbital modulation is commonly ascribed to the precession of a (sometimes) warped disc. The precession model has been extensively applied to systems like Her X-1, where spectroscopic investigations in the X-ray domain were able to constrain in fairly good detail the geometry of the X-ray emission along an entire superorbital cycle (see e.g. Brumback et al. 2021, and references therein). The precessing accretion disc model has also been able to convincingly explain the superorbital modulations observed from LMC X-4 (Ambrosi et al. 2022) and SMC X-1 (Brumback et al. 2020; Pradhan, Maitra & Paul 2020).

It proved considerably more complicated to explain the superorbital modulations revealed from wind-fed X-ray binaries, where the accretion on to the compact object takes place directly from the strong wind of a massive companion (without the presence of a disc). Wind-accreting X-ray binaries are generally fainter than disc-fed systems and thus revealing superorbital modulations requires years of monitoring observations carried out with large field-of-view (FOV) instruments (e.g. those onboard *RXTE*, *INTEGRAL*, and *Swift*; see Corbet & Krimm 2013, for a recent review). In this class of sources, alternative models for the superorbital modulations have been proposed. Koenigsberger, Moreno & Cervantes (2003) and Moreno, Koenigsberger & Toledo (2005) showed that oscillations induced in non-synchronously rotating stars in binary systems could lead to changes in the mass-loss rates (and thus on the accretion-driven X-ray luminosity) on periods longer than the binary orbital period. Alternatively, the presence of a third body in a more distant orbit but gravitationally bound to the binary could also produce a periodic long-term variation of the X-ray luminosity (see e.g. Farrell et al. 2008, and references therein). More recently, Bozzo et al. (2017) proposed that the superorbital modulation could be associated with the periodic interaction between the accreting compact object and the so-called corotating interaction regions (CIRs) around the massive companion. These structures are known to extend for several stellar radii around OB supergiants, being characterized by a substantial

* E-mail: patrizia.romano@inaf.it

overdensity compared to the surrounding stellar wind and a possibly asynchronous velocity with respect to the massive star rotation. Due to their physical properties, the interaction between the NS and the CIRs is expected to lead not only to an X-ray intensity variation but also to changes (by a factor of a few) of the absorption column density local to the source (see also Lobel & Blomme 2008, and references therein).

Currently, only six wind-fed binaries are known to show superorbital modulations, IGR J16479–4514, IGR J16418–4532, 2S 0114+650, 4U 1538–522, 4U 1909+07, and IGR J16493–4348. All of them displayed a puzzling virtually identical ratio between the orbital and superorbital periodicity of a factor of 2.7–4 (Corbet & Krimm 2013; Coley et al. 2019; Corbet et al. 2021; Islam et al. 2023). Attempts have been made in the literature to interpret their superorbital modulations in the context of the three models described above. Corbet & Krimm (2013) argued that the applicability of the stellar oscillations and the third-body model are rather difficult. The former scenario requires circular orbits (see also Moreno, Koenigsberger & Harrington 2011) and it is hardly compatible with the high coherency of the superorbital modulations. The second scenario could be compatible with the high coherency but the measured virtually constant ratio between the orbital and superorbital periodicity of a factor of ~ 2.7 –4 across different sources would require unrealistic constraints on their formation conditions (especially in view of the expectation that these should eventually be hierarchical systems hosting a distant third body). Corbet et al. (2021) and Islam et al. (2023) discussed how the CIR model could provide a more likely explanation for most sources, with the virtually constant ratio between the system orbital and superorbital modulations associated with a pseudosynchronization of the CIR rotational period with the NS orbit.

Investigations of the origin of the superorbital modulations in wind-fed X-ray binaries in the X-ray domain have so far relied on two kinds of observational campaigns: (i) long-term monitoring provided (mostly) at hard X-rays by large FOV instruments, and (ii) relatively short (few tens of ks) pointed observations per object during a specific superorbital phase. Monitoring observations proved so far crucial to discover the periodicities, although they generally provide limited information on possible spectral variations along the superorbital cycle due to the relatively low sensitivity and signal-to-noise ratio (S/N) over short time-scales (see e.g. Corbet & Krimm 2013; Corbet, Coley & Krimm 2017, and references therein). Pointed observations carried out also with multiple facilities at the same time are characterized by a much higher sensitivity and allow in-depth analysis of the intensity and spectral energy distribution of the source. However, they are affected by the limitation of providing only a snapshot of the binary system during a relatively short time interval and it is thus difficult to unambiguously link any measured variability of the source intensity or of any identified spectral feature with the superorbital phase. As discussed by Bozzo et al. (2017), wind-fed binaries are commonly characterized by a prominent intensity and spectral variability (on time-scales of hundreds of seconds to hours) due to the clumpiness of the stellar wind (see also Martínez-Núñez et al. 2017; Kretschmar et al. 2019, for recent reviews) from the companion star. A proper study of any source variability with the superorbital phase thus requires long-term observations carried out across many cycles with high sensitivity, so that they can be folded over the superorbital period and ensure the short-term variability due to the stellar wind clumps is averaged out.

In the past, the process of averaging X-ray observations has been exploited to unveil the presence of long-lived structures surrounding the accreting compact objects in wind-fed X-ray binaries along their orbital rather than their superorbital cycles. For very bright X-ray

sources as Vela X-1, GX 301–2, and 4U 1538–52, the data collected by the Monitor of All Sky X-ray Image (MAXI; Matsuoka et al. 2009) proved particularly interesting due to their extended energy coverage over many orbital revolutions since the beginning of the experiment scientific operations back in 2009 (Doroshenko et al. 2013; Islam & Paul 2014; Rodes-Roca et al. 2015). However, the vast majority of the wind-fed X-ray binaries are either too faint or located into crowded sky regions to be efficiently accessed by the MAXI capabilities. For all these cases, our group has extensively demonstrated that observations with the narrow-field instrument, the X-ray telescope (XRT; Burrows et al. 2005) onboard the Neil Gehrels *Swift* Observatory (Gehrels et al. 2004), are very well suited (Ferrigno, Bozzo & Romano 2022).

In this paper, we present for the first time the exploitation of XRT data to probe spectral variability not only on the orbital but also along the superorbital cycles of wind-fed X-ray binaries. In particular, we report on the outcomes of a new long-term XRT observational campaign focused on 2S 0114+650. The campaign was specifically designed to unveil spectral and intensity variability of this wind-fed binary along its superorbital cycle. Thanks to the regular monitoring and the enhanced sensitivity of *Swift*/XRT, we can now simultaneously average data over multiple orbital and superorbital cycles, a crucial step in mitigating short-term X-ray intensity variations and exploring long-term spectral changes. We also report the results obtained by applying the same techniques as those exploited in the case of 2S 0114+650 on archival data collected from three further wind-fed binaries, IGR J16418–4532, IGR J16479–4514, and IGR J16493–4348 (see Table 1). For these objects the past observational campaigns, albeit not optimized for the search of variability associated with the superorbital period, contained sufficient data to apply our method. A brief summary of the current knowledge on all sources we considered is given in Section 2. In Section 3, we provide a description of the *Swift*/XRT data (with log tables included in Appendix A) and the data-reduction technique. An overview of the results we obtained and their discussion are provided in Section 4.

2 THE SOURCE SAMPLE

In the subsections below, we briefly describe the current knowledge on all sources considered in this paper. We focus more on 2S 0114+650, which is the target of our recent observational campaign with *Swift*/XRT. The other three sources (IGR J16418–4532, IGR J16479–4514, and IGR J16493–4348) are briefly mentioned for completeness, as we apply to their archival data (already analysed in previous work) the same analysis techniques used in the case of 2S 0114+650.

2.1 2S 0114+650

2S 0114+650 was discovered in 1977 and readily classified as a supergiant high-mass X-ray binary, with the companion star being identified as a B1Ia supergiant (LSI + 65 010) at a distance of ~ 7.2 kpc (SgXB; Dower et al. 1977; Reig et al. 1996). The nature of the accretor was confirmed as a NS with the discovery of a 2.73 h spin period (see e.g. Hall et al. 2000, and references therein). Subsequent measurements of the source spin period also led to the discovery and monitoring of spin-up and spin-down phases (Falanga et al. 2015). The measured orbital period of the system is ~ 11.6 d, while the estimated eccentricity is ~ 0.18 (Koenigsberger et al. 2006).

The profile of the X-ray variability along the binary orbit shows the typical modulation expected for a wind-fed system (Grundstrom et al. 2007) but it is also characterized by a peculiar stable dip at the

Table 1. Properties of the sources studied in this paper.

Source	P_{orb} (d)	P_{sup} (d)	T_0^a (MJD)	P_{orb}	P_{sup}	References
2S 0114+650	11.5983 ± 0.0006^b	30.76 ± 0.03	53488	1	2	
IGR J16418–4532	3.73886 ± 0.00003	14.730 ± 0.006	55994.6	3	2	
IGR J16479–4514	3.3193 ± 0.0005	11.880 ± 0.002	55996	4	2	
IGR J16493–4348	6.782 ± 0.005	20.07 ± 0.01	54265.1	5	2, 6	

Notes. References: (1) Grundstrom et al. (2007); (2) Corbet & Krimm (2013); (3) Levine et al. (2011); (4) Romano et al. (2009); (5) Cusumano et al. (2010); (6) Coley, Corbet & Krimm (2015).

^aPhase zero for the superorbital period is the minimum of the folded light curve for 2S 0114+650 (Farrell et al. 2008), the maximum for the remainder of the sample. ^bPhase zero for the orbital period is the time of periastron passage from Grundstrom et al. (2007) at MJD 51824.8.

inferior conjunction that is most likely associated with a localized increase in the absorption column density rather than an X-ray eclipse (see Pradhan et al. 2015, and references therein).

2S 0114+650 also exhibits a 30.76 d superorbital modulation of its X-ray emission, whose origin has long been investigated but still remains unclear (Farrell, Sood & O’Neill 2006; Corbet & Krimm 2013). Hu et al. (2017) performed a detailed study of the long-term evolution of the spin, orbital, and superorbital modulations of the source by using *Swift*/BAT and *RXTE*/ASM data. These authors found that the NS spin period undergoes both episodes of intense and prolonged spin-up/spin-down, and episodes of more irregular and moderate variations. The orbital and superorbital periodicities were found to be stable over time, although the intensities of these modulations can vary substantially and generally the superorbital one decreases during times when the NS spin period variations are more erratic. Hu et al. (2017) suggested that a temporary accretion disc could form around the NS in 2S 0114+650, such that the source switches periodically from wind to disc accretion. During the disc accreting periods, the spin-up/spin-down is stronger and more regular, while during wind accretion it turns into a more complex behaviour, as expected due to the clumpiness of the stellar wind affecting the accretion. The weakening of the superorbital modulation intensity is more pronounced during the time intervals when the source is suspected to switch to the wind accretion. The authors thus advanced the hypothesis that the modulation itself could be somehow closely linked to the presence of an accretion disc.

The broad-band X-ray spectrum of 2S 0114+650 has been measured several times in the past decades using different facilities. The source spectral energy distribution is closely reminiscent of what is usually observed from wind-fed systems and well described by a model comprising a substantially absorbed ($3\text{--}5 \times 10^{22} \text{ cm}^{-2}$) cut-off power law. The cut-off energy is found to be in the range 10–30 keV, while typical power-law photon indices vary between 1.0 and 2.3 (Farrell et al. 2008; Pradhan et al. 2015; Abdallah et al. 2023). To the best of our knowledge, a detailed study of the spectral variability of the source along its orbital and superorbital cycles have been presented in the past only by Farrell et al. (2008). These authors used an absorbed cut-off model to describe the source X-ray emission measured by the *RXTE*/PCA and revealed a modest change in both the source absorption column density and photon index as a function of the orbital phase. In particular, they found that the spectrum is harder and less absorbed when the source emission is fainter. A similar trend for the photon index and absorption column density was suggested for the superorbital case as well, although the error bars associated with the measurements were far too large to draw any firm conclusion. No changes were measured as a function of both the orbital and superorbital period for the cut-off energy.

2.2 The other sources: IGR J16418–4532, IGR J16479–4514, and IGR J16493–4348

IGR J16418–4532 has been classified as an intermediate supergiant fast X-ray transient (SFXTs; e.g. for recent reviews, see Walter et al. 2015; Martínez-Núñez et al. 2017) since flares from this source have been observed several times (Tomsick et al. 2004; Sguera et al. 2006; Ducci, Sidoli & Paizis 2010; Romano et al. 2012a, 2014, 2023; Krimm et al. 2013) but the overall dynamic range in the X-ray luminosity remains as of today limited to values somewhat smaller than those typical of the bulk of the SFXT population (Romano et al. 2015). The source displays clear eclipses, with a measured orbital period of 3.73 d. The nature of the compact object has been firmly established to be an NS thanks to the discovery of X-ray pulsations with a period of \sim 1210 s (Sidoli et al. 2012). A precise classification of the donor star is still missing, given the fact that different authors have discussed both the possibility of an O or B supergiant located at about 13 kpc (Coleiro et al. 2013; Coley, Corbet & Krimm 2015). IGR J16418–4532 is also known to typically display a large absorption column density, exceeding 10^{23} cm^{-2} , and a superorbital modulation of its X-ray emission with a period of \sim 14.7 d. The superorbital modulation has been investigated in detail by Islam et al. (2023). These authors showed that the modulation changes in intensity over a time-scales of a few years and discussed the results of targeted *NuSTAR* observations (complemented by simultaneous *Swift*/XRT pointings).

IGR J16479–4514 is an eclipsing SFXT with an orbital period of 3.32 d (Jain, Paul & Dutta 2009). The nature of the compact object is unknown because no pulsations have been detected in the system. However, its spectrum is similar to that of accreting HMXB pulsars, suggesting an NS as the putative compact object. The optical companion is likely to be an O7 star, translating into a distance of 4.5 kpc to the binary system (Chaty et al. 2008; Coley, Corbet & Krimm 2015). In addition to short low-luminosity X-ray flares lasting a few thousand seconds, orbital phase-locked X-ray flares are present in the light curve, with an occasional bright X-ray flare lasting few hours and reaching an X-ray flux of $10^{-9} \text{ erg cm}^{-2} \text{ s}^{-1}$ (Romano et al. 2008; Sguera et al. 2008, 2020; Sidoli et al. 2013). These flares suggest the presence of large-scale structures in the stellar wind of the supergiant star (Bozzo et al. 2009; Sguera et al. 2020).

IGR J16493–4348 is an eclipsing high-mass X-ray binary with a B0.5 Ia supergiant companion (Nespoli, Fabregat & Mennickent 2010; Pearlman et al. 2019) at \sim 16.1 kpc, and an orbital period of \sim 6.8 d. The X-ray eclipses displayed by the source are known to last about 0.1 d (Cusumano et al. 2010; Corbet et al. 2010a). Given the discovery of X-ray pulsations with a period of 1093 s (Corbet, Pearlman & Pottschmidt 2010b; Pearlman et al. 2019) and

the reported evidence of a resonant cyclotron absorption feature at ~ 30 keV (D'Ai et al. 2011), the compact object hosted in the binary system is believed to be an NS with a surface magnetic field of 3.7×10^{12} G. A superorbital modulation of the X-ray light curve was discovered by Corbet et al. (2010a) and investigated in depth by Coley et al. (2019).

3 DATA REDUCTION AND ANALYSIS

In order to probe, as a main goal, possible intensity and spectral variability over the superorbital revolution of the NS in 2S 0114+650, we planned our campaign (Target ID 15874, PI: P. Romano) with *Swift*/XRT. The monitoring campaign consisted of 1 ks observations performed 3 times a week starting on 2023-02-10. For this work we considered data collected until 2023-08-24, yielding 74 photon counting (PC) mode observations for a total effective exposure time on the target of 78.8 ks. We adopt for the orbital period $P_{\text{orb}} = 11.5983 \pm 0.0006$ d (Grundstrom et al. 2007), with the phase zero being the time of periastron passage at MJD 51824.8), and for the superorbital period $P_{\text{sup}} = 30.76 \pm 0.03$ d (Corbet & Krimm 2013), with the phase zero being the time of the minimum of the folded light curve, at MJD 53488 (Farrell et al. 2008). Our observations therefore cover ~ 17 orbital, and ~ 6 superorbital cycles.

Table A1 reports the log of the *Swift*/XRT observations, including the ObsID, the observation date (MJD of the middle of the observation), the calculated orbital and superorbital phase, the start and end times (UTC), the XRT exposure time, and also relevant spectral parameters (see later in this section).

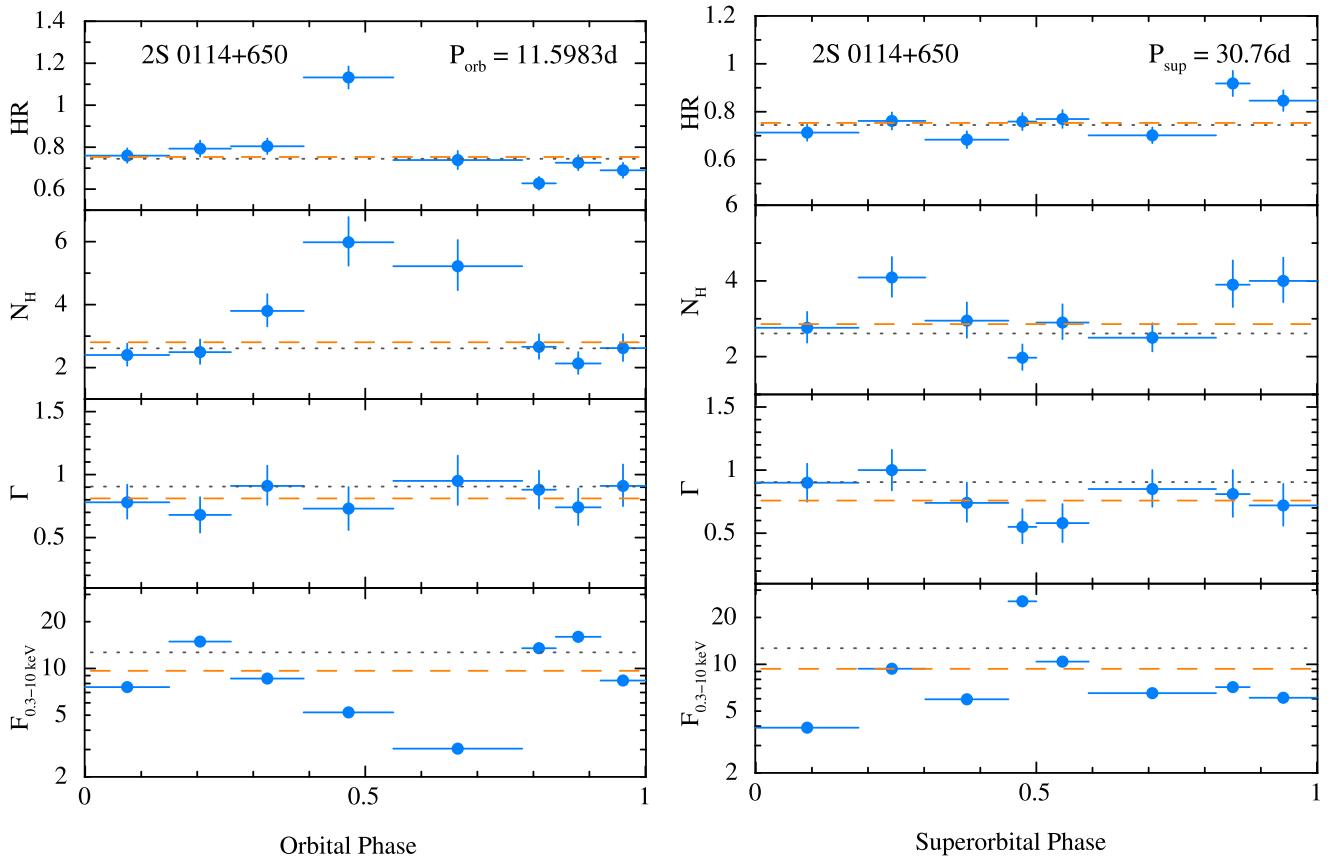
The XRT data were uniformly processed and analysed using FTOOLS¹ (v6.29b), and matching calibration (CALDB)² files. The spectral analysis was performed with XSPEC (Arnaud 1996), by using the C-statistics (Cash 1979) and by adopting an absorbed power-law model with free absorption and photon index. The absorption component was modelled with TBABS with the default Wilms, Allen & McCray (2000) abundances (ABUND WILM) and Verner et al. (1996) cross-sections (XSECT VERN). Errors on the spectral parameters are reported at the 90 per cent confidence level (c.l.). The *Swift*/XRT data were analysed as follows.

First, for each observation we calculated the orbital phase, and from the count rates in the 0.3–4 and 4–10 keV energy bands, we derived the hardness ratio $\text{HR} = \text{CR}(4\text{--}10)/\text{CR}(0.3\text{--}4)$ (also binned by observation). We extracted the average spectrum and fitted it with an absorbed power law to measure the observed and unabsorbed 0.3–10 keV flux (Cols. 8 and 9 of Table A1).

We then chose eight orbital phase bins that would yield a comparable number of source counts (on average ≈ 2070 cts bin^{-1}) and calculated the HR in those bins. The top panel of Fig. 1 (left) shows the HR in the eight orbital phase bins, as well as the weighted averages of HRs derived both from individual observations (dotted line) and from the eight bins (dashed line). We then combined all observations in each of the eight phase bins to create a single spectrum per bin. We note that the number of phase bins was chosen as a compromise between obtaining a significant number of points along the cycle and maintaining a sufficiently high S/N ratio spectrum to accurately determine both the absorption column density and the power-law slope (see also the discussion in our previous paper, Ferrigno, Bozzo & Romano 2022). Finally, we performed an eight-bin phase-resolved spectroscopic analysis in the 0.3–10 keV energy

range adopting an absorbed power-law model. The results of our orbital-resolved spectral analysis of 2S 0114+650 are summarized in Table 2 and plotted in Fig. 1 (left).

We repeated the same procedure for the creation of superorbital phase bins and the corresponding spectroscopic analysis. The results are reported in Table 2 and Fig. 1 (right). Finally, in Appendix B we also address the effect of data binning on our result.


We note that the use of a simple model comprising an absorption component and a power law is justified for the source based on previous work (see Section 2.1), due to the limited energy band coverage and exposure of the stacked XRT spectra. The addition of a cut-off energy, as measured by *RXTE* and *Suzaku*, at energies 10–30 keV (Farrell et al. 2008; Abdallah et al. 2023) was tested and found not to significantly affect the results obtained here. More complicated models including Comptonizing components and reported in a few studies exploiting either the broad-band coverage of the instruments onboard *Suzaku* or the deep exposures of the *XMM-Newton* data (Pradhan et al. 2015; Sanjurjo-Ferrín et al. 2017) were also not usable in the present case, as most parameters would simply be unconstrained. As our scope is to unveil the relative variability between observations carried out with the same instrument at different orbital and superorbital phases, the absorbed power-law model allows us to unveil if the variability is mostly occurring in the soft X-ray part of the spectrum (and thus most likely associated with the absorption column density) or driven by changes in the harder part of the XRT energy band (thus more likely associated by a change in the overall spectral slope). As a further remark, we note that the procedure we adopted here also ensures that the known (modest) spectral energy variability due to the energy-dependent pulsations from the source is averaged out in the stacked XRT spectra (see Pradhan et al. 2015, and references therein, and Appendix B). This is because for each orbital and superorbital bin we are merging together many different relatively short XRT pointings (typically 1–2 ks at most) over several different orbital and superorbital revolutions (see Appendix B for further details).

For completeness, we applied the methodology of folding along the superorbital phase to three more sources, listed in Table 1 along with their relevant properties, IGR J16418–4532, IGR J16479–4514, and IGR J16493–4348. For these sources, the data available in the *Swift* archive were not optimized to investigate superorbital spectral variations but rather obtained either as monitoring campaigns for the orbital variability or as SFXT discovery/outburst follow-ups (see Romano et al. 2023). Spectral variations as a function of the orbital phase of these three sources were already investigated in previous work (see Romano et al. 2012a; Sidoli et al. 2013; Varun & Raman 2023; Pearlman et al. 2019, and references therein). In order to optimize the *Swift* archival data for superorbital variability studies, we selected only observations with homogeneous exposure times, so as not to introduce biases in favour of a specific superorbital phase, and with an off-axis angle < 15 arcmin to limit the known XRT vignetting effects. We then applied the same procedures as those adopted for 2S 0114+650, as follows.

The data we considered for IGR J16418–4532 are reported in Table A2. The majority have mostly been collected either as monitoring campaigns (e.g. Romano et al. 2012a) or as outburst follow-ups (Romano et al. 2023, and references therein, and in Table A2). Consequently, their exposures vary considerably, from $\sim 2\text{--}5$ ks obtained during the orbital monitoring in 2011 (Romano et al. 2012a) that uniformly cover three orbital periods (1.1 superorbital periods), or ~ 2 ks triggered observations and their follow-up campaigns (typically 1 ks per observation), to very short serendipitous observations. By combining all the data (57 observations for a

¹https://heasarc.gsfc.nasa.gov/ftools/ftools_menu.html.

²https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/caldb_intro.html.

Figure 1. *Left:* *Swift/XRT* hardness ratio of 2S 0114+650, and best-fitting parameters as a function of orbital phase ($P_{\text{orb}} = 11.5983$ d, $T_0 = \text{MJD } 51824.8$). The absorption column density N_{H} is in units of 10^{22} cm^{-2} , the power-law photon index is Γ , and the observed 0.3–10 keV flux is in units of $10^{-11} \text{ erg cm}^{-2} \text{ s}^{-1}$. *Right:* same as left side but for the superorbital phase ($P_{\text{sup}} = 30.76$ d, $T_0 = \text{MJD } 53488$, Corbet & Krimm 2013). In each panel, we also report the mean value of each variable plotted when calculated from the individual observations (dotted line) and from the values obtained in the eight phase bins (orange dashed line). The two lines are compatible in all cases within the associated uncertainties.

total exposure of 93 ks) we obtained eight phase-selected spectra with an average of ≈ 900 counts each, the only exception being bin number five, where only one observation (00032037022) was available that did not even yield a detection.

For IGR J16479–4514, we considered the data published in Romano et al. (2009, table 5) and in Romano et al. (2011, table 1), that were collected to define the long-term properties of a sample of SFXTs (Romano et al. 2008, 2009, 2011; Sidoli et al. 2008, 2009). The campaign consisted of 144 observations, each 1 ks long, obtained twice a week, along a baseline of 2 yr as well as outburst observations and their follow-ups, for a total of ~ 160 ks. The observations cover ~ 54 superorbital cycles³ and yield eight phase-selected spectra with ≈ 1650 counts each.

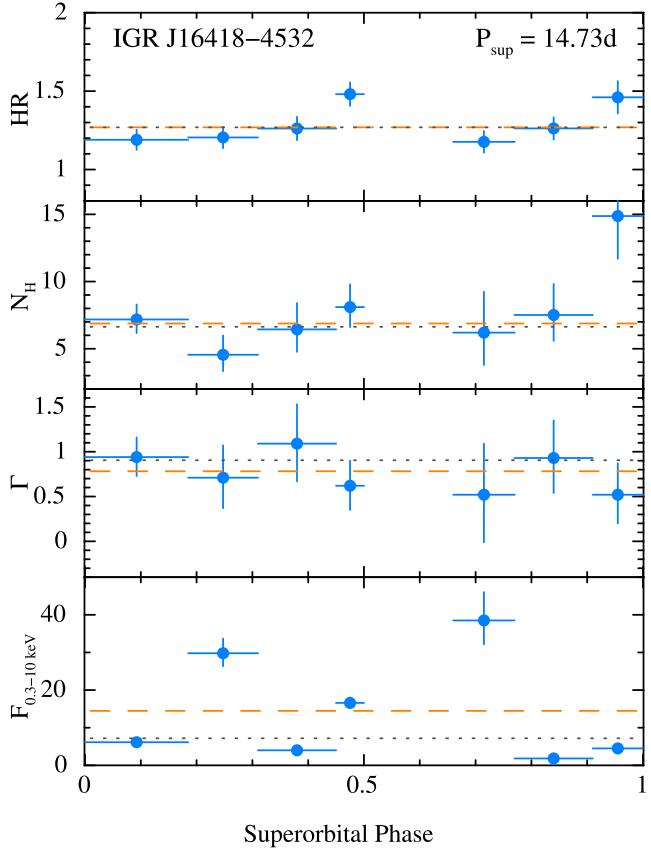
Finally, for IGR J16493–4348, we considered the monitoring data we obtained in 2014 (see Table A4) to study the long-term behaviour of this source and create the cumulative luminosity distribution, with a cadence of 1 ks twice a week for a total of ~ 53 ks and 57 observations, as reported in Romano (2015) and Kretschmar et al. (2019). These observations, covering ~ 11 superorbital cycles, yield eight phase-selected spectra with ≈ 700 counts each.

Figs 2, 3, and 4 show the HR and best-fitting parameters as a function of superorbital phase for IGR J16418–4532, IGR J16479–4514,

and IGR J16493–4348, respectively, while the values of the best-fitting parameters are reported in Table 3.

4 RESULTS AND DISCUSSION

4.1 Orbital variability


The suitability of XRT monitoring campaigns to perform orbital variability studies was already widely demonstrated by our group in a recent paper for a number of wind-fed binaries (Ferrigno, Bozzo & Romano 2022). Here, we discuss the orbital variability only for the source 2S 0114+650, as for the remaining sources considered in this paper the corresponding results were already reported previously by our group and also extensively analysed in the literature (see Romano et al. 2009, 2011, 2012a, and references therein).

The left side of Fig. 1 shows the variability of the spectral parameters measured in the case of 2S 0114+650 as a function of the system orbital phase. As in the case of previous objects, XRT was able to unveil also for this source an interesting variability pattern for the flux, the absorption column density, and the power-law photon index. The phase 0 is set at the periastron passage in such a way that our figure and the equivalent one realized with *Swift/BAT* data (15–50 keV) in Corbet & Krimm (2013, see their fig. 2) are directly comparable. Both light curves display a minimum in flux

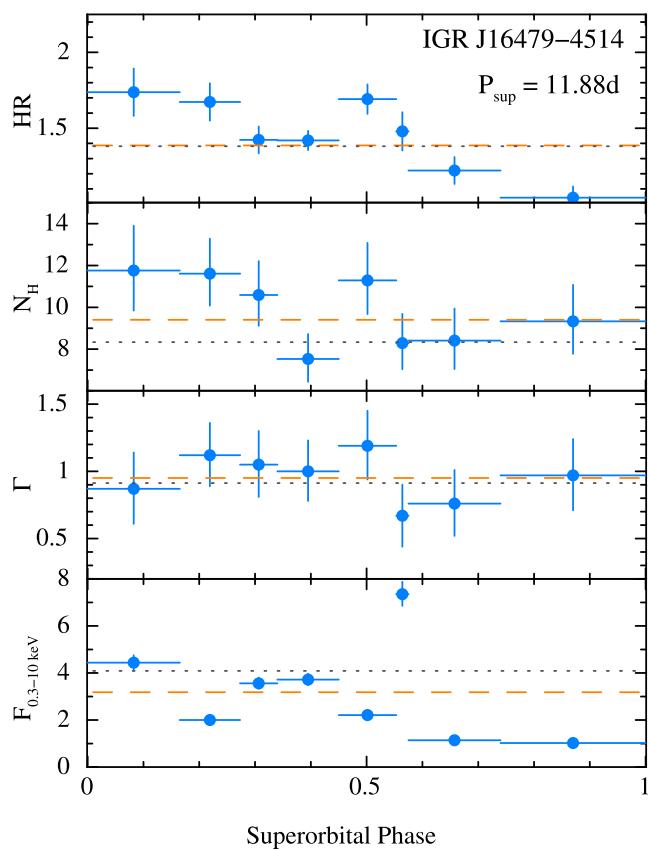

³We discarded observation 00030296005, since it is a single observation dated 3 months before the remainder of the campaign.

Table 2. Results of the orbital and superorbital phase-resolved spectral analysis for 2S 0114+650.

Phase range	N_{H} 10^{22} (cm^{-2})	Γ	$F_{0.3-10\mathrm{keV}}$ 10^{-11} ($\mathrm{erg \, cm}^{-2} \, \mathrm{s}^{-1}$)	Cstat /d.o.f.
Orbital				
0.00–0.15	$2.4^{+0.4}_{-0.3}$	$0.8^{+0.1}_{-0.1}$	$7.6^{+0.4}_{-0.4}$	674.8/694
0.15–0.26	$2.5^{+0.4}_{-0.4}$	$0.7^{+0.1}_{-0.1}$	$14.9^{+0.9}_{-0.8}$	590.9/675
0.26–0.39	$3.8^{+0.5}_{-0.5}$	$0.9^{+0.2}_{-0.2}$	$8.6^{+0.5}_{-0.5}$	634.1/664
0.39–0.55	$6.0^{+0.8}_{-0.7}$	$0.7^{+0.2}_{-0.2}$	$5.2^{+0.3}_{-0.3}$	643.4/664
0.55–0.78	$5.2^{+0.8}_{-0.8}$	$1.0^{+0.2}_{-0.2}$	$3.0^{+0.2}_{-0.2}$	591.1/616
0.78–0.84	$2.7^{+0.4}_{-0.4}$	$0.9^{+0.2}_{-0.1}$	$13.5^{+0.8}_{-0.8}$	604.2/658
0.84–0.92	$2.1^{+0.4}_{-0.3}$	$0.7^{+0.1}_{-0.1}$	$16.0^{+1.0}_{-0.9}$	575.8/638
0.92–0.99	$2.6^{+0.4}_{-0.4}$	$0.9^{+0.2}_{-0.2}$	$8.4^{+0.5}_{-0.5}$	556.0/613
Superorbital				
0.000–0.183	$2.8^{+0.4}_{-0.4}$	$0.9^{+0.2}_{-0.1}$	$3.9^{+0.2}_{-0.2}$	572.7/647
0.183–0.302	$4.1^{+0.5}_{-0.5}$	$1.0^{+0.2}_{-0.2}$	$9.4^{+0.5}_{-0.5}$	649.4/656
0.302–0.450	$3.0^{+0.5}_{-0.4}$	$0.7^{+0.2}_{-0.2}$	$5.9^{+0.4}_{-0.3}$	619.1/667
0.450–0.500	$2.0^{+0.4}_{-0.3}$	$0.6^{+0.1}_{-0.1}$	$25.4^{+1.5}_{-1.4}$	628.4/692
0.500–0.593	$2.9^{+0.5}_{-0.4}$	$0.6^{+0.2}_{-0.1}$	$10.4^{+0.6}_{-0.6}$	674.8/673
0.593–0.820	$2.5^{+0.4}_{-0.4}$	$0.9^{+0.1}_{-0.1}$	$6.5^{+0.4}_{-0.4}$	701.4/673
0.820–0.880	$3.9^{+0.6}_{-0.6}$	$0.8^{+0.2}_{-0.2}$	$7.1^{+0.5}_{-0.5}$	474.0/610
0.880–1.000	$4.0^{+0.6}_{-0.6}$	$0.7^{+0.2}_{-0.2}$	$6.1^{+0.4}_{-0.3}$	613.1/645

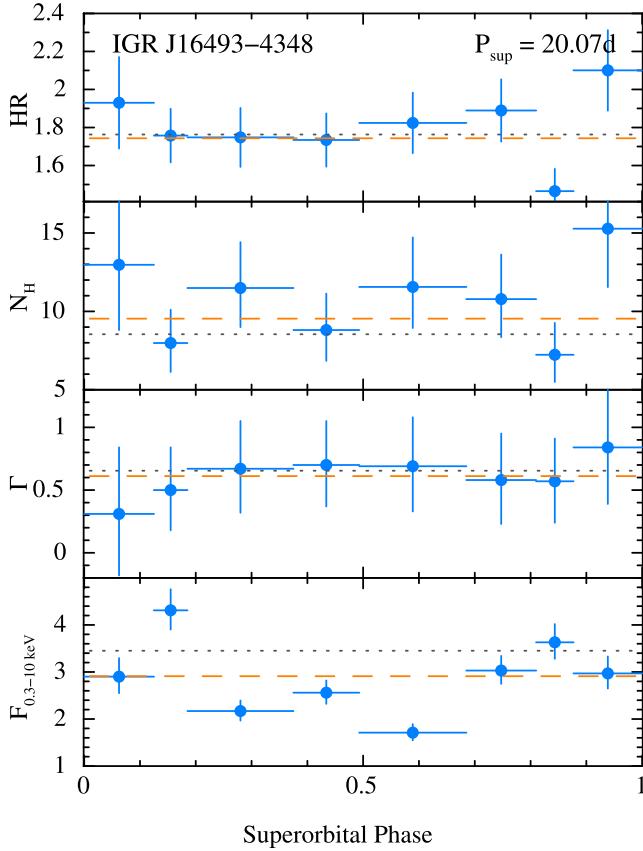

Figure 2. Same as Fig. 1 (right) but for the case of IGR J16418–4532 ($P_{\mathrm{sup}} = 14.730$ d, $T_0 = 55994.6$ MJD, Corbet & Krimm 2013).

Figure 3. Same as Fig. 1 (right) but for the case of IGR J16479–4514 ($P_{\mathrm{sup}} = 11.880$ d, $T_0 = \mathrm{MJD} 55996$, Corbet & Krimm 2013).

at phase 0.7 that was already visible in the folded *RXTE*/PCA data⁴ (2–12 keV range) reported by Farrell et al. (2008, see their fig. 13) and extensively investigated by Pradhan et al. (2015) to verify the hypothesis of an X-ray eclipse. The latter authors concluded that the properties of the flux minimum are not compatible with being a total obscuration of the NS by its companion. This conclusion was mainly driven by the fact that *Suzaku* data collected during the flux minimum could only reveal a modest increase of the local column density (a factor of ∼3) and equivalent width of the fluorescence iron line (if any at all), as well as a complete lack of evidence for a significant flattening of the spectral slope. This is at odds with what is commonly observed in eclipsing wind-fed X-ray binaries where both the absorption column density and equivalent width of the fluorescence iron emission line can increase by a factor of ∼10–100 (compared to the out-of-eclipse emission), and the power-law slope gets dramatically softer due to the fact that only the scattered X-ray emission is observed during the eclipse (rather than the direct X-ray emission from the accreting source; see e.g. Falanga et al. 2015, and references therein). These authors thus suggested that the flux minimum is most likely due to the modulation of the mass accretion rate along the relatively highly eccentric orbit (see Section 2.1). The sensitivity achieved thanks to our XRT monitoring campaign allows us to confirm this suggestion, since during the flux minimum we

⁴Note that the source light curve folded on the system orbital period reported in Farrell et al. (2008) uses the time of the flux minimum to define phase 0 and thus there is a shift of ∼0.3 in phase compared to our and Corbet & Krimm (2013) light curves.

Figure 4. Same as Fig. 1 (right) but for the case of IGR J16493–4348 ($P_{\text{sup}} = 20.07$ d, $T_0 = \text{MJD } 54265.1$, Corbet & Krimm 2013; Coley, Corbet & Krimm 2015).

recorded a noticeable but still modest increase of N_{H} compared to the remaining orbital phases (a factor of ~ 3 as reported also by Pradhan et al. 2015). We can consider that the XRT measurement is truly representative of the characteristic absorption column density in the X-ray dip because this value is obtained as an average of many different orbital cycles.

The folded XRT light curve also presents two peaks in flux preceding and following the periastron passage. Although this has not been widely discussed in the literature, it is worth remarking that the peak in flux following the periastron is expected in case of eccentric or short-orbital period wind-fed SgXB due to the effect of both the stellar wind photoionization by the high-energy emission of the compact object and the relative velocity between the orbiting NS and the stellar wind. As a consequence of these effects, a second peak in flux is also expected slightly before the NS approaches the periastron again (with the exact position in phase depending also on the poorly known physical conditions of the stellar wind, as the density, velocity, and ionization state; see Bozzo, Ducci & Falanga 2021, and references therein). A similar double-peaked light curve is observed in the case of the SFXT endowed with the shortest orbital period of this class of objects, IGR J16479–4514 (Sidoli et al. 2013, fig. 1).

Note that the double-peaked structure of the folded XRT light curve is not immediately evident from the equivalent folded light curves in the higher energy domains, for example those obtained from *Swift*/BAT. This is not unexpected as the X-ray emission of wind-fed SgXBs above $\gtrsim 10$ keV is dominated by the cut-off power-law spectral component. This component usually shows a much less pronounced variability along the orbital phase (see also the discussion

Table 3. Results of the superorbital phase-resolved spectral analysis for the three sources IGR J16418–4532, IGR J16479–4514, and IGR J16493–4348.

Superorbital phase	N_{H} 10^{22} (cm^{-2})	Γ	$F_{0.3-10 \text{ keV}}$ 10^{-11} ($\text{erg cm}^{-2} \text{ s}^{-1}$)	Cstat /d.o.f.
J16418				
0.000–0.185	$7.2_{-1.0}^{+1.1}$	$0.9_{-0.2}^{+0.2}$	$6.1_{-0.4}^{+0.4}$	556.0/608
0.185–0.310	$4.5_{-1.2}^{+1.4}$	$0.7_{-0.3}^{+0.4}$	$29.8_{-3.4}^{+3.9}$	269.3/327
0.310–0.450	$6.4_{-1.7}^{+2.0}$	$1.1_{-0.4}^{+0.4}$	$4.0_{-0.5}^{+0.6}$	263.3/294
0.450–0.500	$8.1_{-1.5}^{+1.7}$	$0.6_{-0.3}^{+0.3}$	$16.6_{-1.3}^{+1.4}$	435.5/514
0.500–0.660	–	–	–	–
0.660–0.770	$6.2_{-2.4}^{+3.0}$	$0.5_{-0.5}^{+0.6}$	$38.5_{-6.4}^{+7.5}$	163.5/181
0.770–0.910	$7.5_{-1.9}^{+2.3}$	$0.9_{-0.4}^{+0.4}$	$1.8_{-0.2}^{+0.2}$	304.5/374
0.910–1.000	$14.9_{-3.2}^{+3.8}$	$0.5_{-0.3}^{+0.3}$	$4.5_{-0.3}^{+0.3}$	551.0/596
J16479				
0.000–0.165	$11.8_{-1.9}^{+2.1}$	$0.9_{-0.3}^{+0.3}$	$4.4_{-0.3}^{+0.3}$	542.5/582
0.165–0.273	$11.6_{-1.5}^{+1.7}$	$1.1_{-0.2}^{+0.2}$	$2.0_{-0.1}^{+0.1}$	576.6/624
0.273–0.340	$10.6_{-1.5}^{+1.6}$	$1.1_{-0.2}^{+0.2}$	$3.6_{-0.2}^{+0.2}$	500.6/591
0.340–0.450	$7.5_{-1.1}^{+1.2}$	$1.0_{-0.2}^{+0.2}$	$3.7_{-0.2}^{+0.3}$	596.2/593
0.450–0.553	$11.3_{-1.6}^{+1.8}$	$1.2_{-0.3}^{+0.3}$	$2.2_{-0.1}^{+0.2}$	495.2/580
0.553–0.575	$8.3_{-1.3}^{+1.4}$	$0.7_{-0.2}^{+0.2}$	$7.4_{-0.5}^{+0.5}$	533.4/585
0.575–0.740	$8.4_{-1.4}^{+1.5}$	$0.8_{-0.2}^{+0.3}$	$1.1_{-0.1}^{+0.1}$	498.0/574
0.740–1.000	$9.3_{-1.6}^{+1.7}$	$1.0_{-0.3}^{+0.3}$	$1.0_{-0.1}^{+0.1}$	494.0/572
J16493				
0.000–0.125	$13.0_{-4.2}^{+5.1}$	$0.3_{-0.5}^{+0.5}$	$2.9_{-0.3}^{+0.4}$	275.8/332
0.125–0.185	$8.0_{-1.8}^{+2.1}$	$0.5_{-0.3}^{+0.3}$	$4.3_{-0.4}^{+0.4}$	338.7/416
0.185–0.375	$11.5_{-2.5}^{+2.9}$	$0.7_{-0.4}^{+0.4}$	$2.2_{-0.2}^{+0.2}$	377.8/443
0.375–0.493	$8.8_{-2.0}^{+2.3}$	$0.7_{-0.3}^{+0.4}$	$2.6_{-0.2}^{+0.3}$	357.0/437
0.493–0.685	$11.6_{-2.6}^{+3.1}$	$0.7_{-0.4}^{+0.4}$	$1.7_{-0.2}^{+0.2}$	324.3/435
0.685–0.810	$10.8_{-2.4}^{+2.8}$	$0.6_{-0.3}^{+0.4}$	$3.0_{-0.3}^{+0.3}$	378.7/420
0.810–0.877	$7.2_{-1.7}^{+2.0}$	$0.6_{-0.3}^{+0.3}$	$3.6_{-0.3}^{+0.4}$	344.3/425
0.877–1.000	$15.3_{-3.7}^{+4.3}$	$0.8_{-0.5}^{+0.5}$	$3.0_{-0.3}^{+0.4}$	277.5/361

in Farrell et al. 2008) and it is only marginally affected by changes in the absorption column density local to the source. The folded BAT light curves along the orbital phases of SgXBs thus display in most of the cases a modest (if any at all) variability, apart from the evident cases of X-ray eclipses (see Falanga et al. 2015; Coley, Corbet & Krimm 2015, for recent reviews). Before the provision of our XRT results here, a very different profile of the X-ray emission from 2S 0114+650 in the soft versus hard X-ray domain could be well appreciated by looking at fig. 2 of Pradhan et al. (2015). Although the *Suzaku*/XIS data covering the soft energy domain ($\lesssim 10$ keV) only spanned a limited portion of the orbital phase around the X-ray minimum, the much more prominent variability of these data compared to the superimposed ones from *Swift*/BAT is particularly striking.

4.2 Superorbital variability

Of more interest for the focus of this paper are the variations of the source spectral parameters as a function of the superorbital phase, as shown in the right side of Fig. 1. In the past, only Farrell et al. (2008) attempted a superorbital-phase-resolved spectral analysis of the X-ray emission from 2S 0114+650, but the outcomes of their analysis were partly hampered by the limited coverage of the *RXTE*/PCA data

used, which sampled only two superorbital cycles. The PCA folded light curve showed a peak of the emission at phase 0.5, and only a marginally significant increase in the photon index was reported around phase 1.0. The data also suggested a possible increase of the absorption column density at the same phase, but the uncertainty associated with the measurement was far too large to draw a firm conclusion. The higher sensitivity and longer coverage of our XRT monitoring campaign (spanning six superorbital cycles) allows us to improve the measurements and investigate in more detail the properties of the source X-ray emission at different superorbital phases. The profile of the XRT folded light curve shows a sharp peak in the source flux at phase 0.5 and an intriguing pattern of variability of the N_{H} , confirming a remarkable increase toward phase 0.8–1.0 (note that our figure and fig. 16 of Farrell et al. 2008 are directly compatible as the reference time for phase 0 is the same in both cases). We could not detect any changes in the power-law photon index, which remains virtually constant at a value of 0.8 at most superorbital phases and show a modest decrease down to ~ 0.6 around the superorbital phase 0.5. We tested that a fit to the eight superorbital phase bin spectra with a common photon index (introducing intercalibration constants and with all other parameters free) yields a photon index of $0.795^{+0.056}_{-0.055}$, which is consistent with all individual fits apart from the two spectra extracted around phase 0.5. However, in these two cases, the deviation is only marginally ($\lesssim 3\sigma$ c.l.) significant.

Farrell et al. (2008) suggested that the superorbital periodicity in 2S 0114+650 could be due to a periodic variation of the mass accretion rate, although these authors could not identify any specific mechanism(s) driving the variation. As discussed in Section 1, there is a general convergence in believing that the CIR model provides the most solid ground to explain the superorbital variability of wind-fed X-ray binaries as 2S 0114+650. In this model, increases in the flux are associated with the accretion on to the NS of the denser (by a factor of 2–3; see Lobel & Blomme 2008, and reference therein) and (possibly) slower material of the CIR compared to the surrounding stellar wind. This interaction should also lead to increases in the local absorption column density, because the CIR is expected to intercept at some point the line of sight between the compact object and the observer. Our XRT measurements unveiled increases in the flux and absorption column density that are compatible with the factor 2–3 expected in the CIR model, although some geometrical effect shall be assumed in order to interpret the difference in phase between the rise in the flux and that in the N_{H} . Compatibly with the CIR model, no dramatic variation is observed in the power-law photon index, as accretion is driven at any phase by the stellar wind and no spectral state changes are expected as those observed in disc-accreting systems (Bozzo et al. 2016). In view of the pioneering measurements we presented with XRT, it is difficult to obtain insights into the possibility suggested by Hu et al. (2017) that the source is not a pure wind-fed system but a temporary accretion disc is forming around the NS when the superorbital variability is more pronounced. The physics of temporary accretion disc formation around NS in wind-fed binaries is not yet known, and neither are the expected spectral energy variations as a function of the accretion disc properties (see e.g. the discussion in Romano et al. 2015). However, should a temporary accretion disc be driving the superorbital modulation in 2S 0114+650, one would likely expect to see spectral state changes (i.e. changes in the power-law photon index) at different superorbital phases as those recorded from, e.g. Her X-1 and SMC X-1 (see e.g. Brumback et al. 2021, 2023, and references therein). At present, our XRT data do not show clear evidence to support this but deeper and more extended observations of the source are clearly needed to

consolidate the reported findings (to be carried out by exploiting, e.g. the combination of flexibility, soft X-ray coverage, and large effective area of NICER, Gendreau, Arzoumanian & Okajima 2012).

Concerning the remaining three sources considered in this paper, we note that in the case of IGR J16418–4532, XRT revealed some intriguing variability pattern for the source flux as a function of the superorbital phase (see Fig. 2). However, the coverage in phase is not complete and the S/N in the different available bins is far too low to claim the detection of any meaningful variation in either the power-law photon index or the absorption column density. We tested that merging more phase bins together to increase the S/N would not allow us to have a reasonable number of points to search for spectral variations at different superorbital phases. In the case of IGR J16479–4514, the intriguing flux pattern is also accompanied by a similar HR variability trend. There is some indication in the data for possible variations especially of the absorption column density, but more data are needed in the different phase bins in order to decrease the uncertainties on the spectral parameters and draw a more firm conclusion. Among all analysed sources, IGR J16493–4348 is the least interesting from a superorbital analysis point of view. XRT could only reveal modest changes in the flux and did not provide indications for possible variations in either the absorption column density or the power-law photon index. It should be noted, however, that the source is relatively faint for XRT and the error bars associated with both N_{H} and Γ are definitively larger than in other cases (thus hampering any attempt to unveil only modest variations of these parameters). A substantially larger number of observations would be needed in this case to lower the error bars and dig into the presence of possibly modest (but recurrent) variations of the source spectral parameters as a function of the superorbital phase.

ACKNOWLEDGEMENTS

We acknowledge unwavering support from Amos. We also thank the anonymous referee for comments that helped improve the paper. We acknowledge financial contribution from contracts ASI-INAF I/037/12/0 and ASI-INAF n. 2017-14-H.0. NI acknowledges support from NASA grants 80NSSC21K0022 and 80NSSC21K1994. This work was supported in part by NASA under award number 80GSFC21M0002. The *Swift* data of our monitoring campaigns on 2S 0114+650, on IGR J16493–4348 and (partially) IGR J16418–4532 were obtained through contract ASI-INAF I/004/11/0 to ASI-INAF I/004/11/5. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester (see Evans et al. 2007, 2009). Happy 18th, *Swift*.

DATA AVAILABILITY

The data underlying this article are publicly available from the *Swift* archive and processed with publicly available software.

REFERENCES

- Abdallah M. H., Samir R. M., Leahy D. A., Shaker A. A., 2023, *MNRAS*, 522, 3271
- Ambrosi E., D’Aì A., Del Santo M., Segreto A., Ferrigno C., Amato R., Cusumano G., 2022, *MNRAS*, 512, 3422
- Arnaud K. A., 1996, in Jacoby G. H., Barnes J., eds, ASP Conf. Ser. Vol. 101, Astronomical Data Analysis Software and Systems V. Astron. Soc. Pac., San Francisco, p. 17

Bozzo E., Giunta A., Stella L., Falanga M., Israel G., Campana S., 2009, *A&A*, 502, 21

Bozzo E., Oskinova L., Feldmeier A., Falanga M., 2016, *A&A*, 589, A102

Bozzo E., Oskinova L., Lobel A., Hamann W. R., 2017, *A&A*, 606, L10

Bozzo E., Ducci L., Falanga M., 2021, *MNRAS*, 501, 2403

Brumback M. C., Hickox R. C., Fürst F. S., Pottschmidt K., Tomsick J. A., Wilms J., 2020, *ApJ*, 888, 125

Brumback M. C., Hickox R. C., Fürst F. S., Pottschmidt K., Tomsick J. A., Wilms J., Staubert R., Vrtilek S., 2021, *ApJ*, 909, 186

Brumback M. C., Vasilopoulos G., Coley J. B., Dage K., Miller J. M., 2023, *ApJ*, 953, 89

Burrows D. N. et al., 2005, *Space Sci. Rev.*, 120, 165

Cash W., 1979, *ApJ*, 228, 939

Chaty S., Rahoui F., Foellmi C., Tomsick J. A., Rodriguez J., Walter R., 2008, *A&A*, 484, 783

Coleiro A., Chaty S., Zurita Heras J. A., Rahoui F., Tomsick J. A., 2013, *A&A*, 560, A108

Coley J. B., Corbet R. H. D., Krimm H. A., 2015, *ApJ*, 808, 140

Coley J. B., Corbet R. H. D., Fürst F., Huxtable G., Krimm H. A., Pearlman A. B., Pottschmidt K., 2019, *ApJ*, 879, 34

Corbet R. H. D., Krimm H. A., 2013, *ApJ*, 778, 45

Corbet R. H. D., Barthelmy S. D., Baumgartner W. H., Krimm H. A., Markwardt C. B., Skinner G. K., Tueller J., 2010a, *Astron. Telegram*, 2599, 1

Corbet R. H. D., Pearlman A. B., Pottschmidt K., 2010b, *Astron. Telegram*, 2766, 1

Corbet R. H. D., Coley J. B., Krimm H. A., 2017, *ApJ*, 846, 161

Corbet R. H. D., Coley J. B., Krimm H. A., Pottschmidt K., Roche P., 2021, *ApJ*, 906, 13

Cusumano G., La Parola V., Romano P., Segreto A., Vercellone S., Chincarini G., 2010, *MNRAS*, 406, L16

D'Ai A., Cusumano G., La Parola V., Segreto A., di Salvo T., Iaria R., Robba N. R., 2011, *A&A*, 532, A73

Doroshenko V., Santangelo A., Nakahira S., Mihara T., Sugizaki M., Matsuo M., Nakajima M., Makishima K., 2013, *A&A*, 554, A37

Dower R., Kelley R., Margon B., Bradt H., 1977, *IAU Circ.*, 3144, 2

Ducci L., Sidoli L., Paizis A., 2010, *MNRAS*, 408, 1540

Evans P. A. et al., 2007, *A&A*, 469, 379

Evans P. A. et al., 2009, *MNRAS*, 397, 1177

Falanga M., Bozzo E., Lutovinov A., Bonnet-Bidaud J. M., Fetisova Y., Puls J., 2015, *A&A*, 577, A130

Farrell S. A., Sood R. K., O'Neill P. M., 2006, *MNRAS*, 367, 1457

Farrell S. A., Sood R. K., O'Neill P. M., Dieters S., 2008, *MNRAS*, 389, 608

Ferrigno C., Bozzo E., Romano P., 2022, *A&A*, 664, A99

Gehrels N. et al., 2004, *ApJ*, 611, 1005

Gendreau K. C., Arzoumanian Z., Okajima T., 2012, in Takahashi T., Murray S. S., den Herder J.-W. A., eds, *Proc. SPIE Conf. Ser. Vol. 8443, Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray*. SPIE, Bellingham, p. 844313

Grundstrom E. D. et al., 2007, *ApJ*, 656, 431

Hall T. A., Finley J. P., Corbet R. H. D., Thomas R. C., 2000, *ApJ*, 536, 450

Hu C.-P., Chou Y., Ng C. Y., Lin L. C.-C., Yen D. C.-C., 2017, *ApJ*, 844, 16

Islam N., Paul B., 2014, *MNRAS*, 441, 2539

Islam N., Corbet R. H. D., Coley J. B., Pottschmidt K., Fuerst F., 2023, *ApJ*, 948, 45

Jain C., Paul B., Dutta A., 2009, *MNRAS*, 397, L11

Koenigsberger G., Moreno E., Cervantes F., 2003, in van der Hucht K., Herrero A., Esteban C., eds, *Proc. IAU Symp. 212, Astron. Soc. Pac.*, San Francisco, p. 101

Koenigsberger G., Georgiev L., Moreno E., Richer M. G., Toledano O., Canalizo G., Arrieta A., 2006, *A&A*, 458, 513

Kretschmar P. et al., 2019, *New Astron. Rev.*, 86, 101546

Krimm H. A. et al., 2013, *Astron. Telegram*, 5398, 1

Levine A. M., Bradt H. V., Chakrabarty D., Corbet R. H. D., Harris R. J., 2011, *ApJS*, 196, 6

Lobel A., Blomme R., 2008, *ApJ*, 678, 408

Martínez-Núñez S. et al., 2017, *Space Sci. Rev.*, 212, 59

Matsuoka M. et al. 2009, *PASJ*, 61, 999

Moreno E., Koenigsberger G., Toledano O., 2005, *A&A*, 437, 641

Moreno E., Koenigsberger G., Harrington D. M., 2011, *A&A*, 528, A48

Nespoli E., Fabregat J., Mennickent R. E., 2010, *A&A*, 516, A106

Pearlman A. B., Coley J. B., Corbet R. H. D., Pottschmidt K., 2019, *ApJ*, 873, 86

Pradhan P., Paul B., Paul B. C., Bozzo E., Belloni T. M., 2015, *MNRAS*, 454, 4467

Pradhan P., Maitra C., Paul B., 2020, *ApJ*, 895, 10

Reig P., Chakrabarty D., Coe M. J., Fabregat J., Negueruela I., Prince T. A., Roche P., Steele I. A., 1996, *A&A*, 311, 879

Rodes-Roca J. J., Mihara T., Nakahira S., Torrejón J. M., Giménez-García Á., Bernabeu G., 2015, *A&A*, 580, A140

Romano P., 2015, *J. High Energy Astrophys.*, 7, 126

Romano P. et al., 2008, *ApJ*, 680, L137

Romano P. et al., 2009, *MNRAS*, 399, 2021

Romano P. et al., 2011, *MNRAS*, 410, 1825

Romano P. et al., 2012a, *MNRAS*, 419, 2695

Romano P. et al., 2012b, *Astron. Telegram*, 4148, 1,

Romano P. et al., 2013, *Mem. Soc. Astron. Ital.*, 84, 602

Romano P. et al., 2014, *A&A*, 562, A2

Romano P. et al., 2015, *A&A*, 576, L4

Romano P. et al., 2023, *A&A*, 670, A127

Sanjurjo-Ferrín G., Torrejón J. M., Postnov K., Oskinova L., Rodes-Roca J., Bernabeu G., 2017, *A&A*, 606, A145

Sbarufatti B., Romano P., Barthelmy S. D., Krimm H. A., Evans P. A., Kennea J. A., Page K. L., Siegel M. H., 2021, *Astron. Telegram*, 14924, 1,

Sguera V. et al., 2006, *ApJ*, 646, 452

Sguera V. et al., 2008, *A&A*, 487, 619

Sguera V., Tiengo A., Sidoli L., Bird A. J., 2020, *ApJ*, 900, 22

Sidoli L. et al., 2008, *ApJ*, 687, 1230

Sidoli L. et al., 2009, *ApJ*, 690, 120

Sidoli L., Mereghetti S., Sguera V., Pizzolato F., 2012, *MNRAS*, 420, 554

Sidoli L. et al., 2013, *MNRAS*, 429, 2763

Sood R., Farrell S., O'Neill P., Dieters S., 2007, *Adv. Space Res.*, 40, 1528

Tomsick J. A., Lingenfelter R., Corbel S., Goldwurm A., Kaaret P., 2004, *Astron. Telegram*, 224, 1

Varun, Raman G., 2023, *MNRAS*, 523, 5024

Verner D. A., Ferland G. J., Korista K. T., Yakovlev D. G., 1996, *ApJ*, 465, 487

Walter R., Lutovinov A. A., Bozzo E., Tsygankov S. S., 2015, *A&AR*, 23, 2

Wilms J., Allen A., McCray R., 2000, *ApJ*, 542, 914

APPENDIX A: LOGS OF OBSERVATIONS

In this section, we include several tables to complement the results described in the main paper. Table A1 reports all details of the new observational campaign focused on 2S 0114+650 (and never reported elsewhere), while Tables A2, A3, and A4 those of the campaigns on IGR J16418–4532, IGR J16479–4514, and IGR J16493–4348.

Table A1. Observation log for 2S 0114+650: ObsID, date (MJD of the middle of the observation), orbital phase, superorbital phase, start and end times (UT), XRT exposure time, and 0.3–10 keV observed and unabsorbed flux.

ObsID	MJD	Orbital ^a phase	Supero. ^b phase	Start time (UT) (yyyy-mm-dd hh:mm:ss)	End time (UT) (yyyy-mm-dd hh:mm:ss)	Exposure (s)	Flux ^c (erg cm ⁻² s ⁻¹)	Flux ^d (erg cm ⁻² s ⁻¹)
00015874001	59985.97953	0.65	0.25	2023-02-10 23:23:09	2023-02-10 23:37:52	883	2.5 ^{+0.8} _{-0.6}	13.7 ^{+11.5} _{-8.6}
00015874002	59987.63298	0.80	0.30	2023-02-12 15:05:05	2023-02-12 15:17:52	767	21.3 ^{+3.3} _{-2.8}	28.4 ^{+4.4} _{-3.1}
00015874003	59989.36260	0.94	0.36	2023-02-14 08:34:24	2023-02-14 08:49:52	928	1.2 ^{+0.4} _{-0.3}	1.7 ^{+0.8} _{-0.4}
00015874004	59992.53420	0.22	0.46	2023-02-17 12:40:37	2023-02-17 12:57:52	1036	55.8 ^{+5.8} _{-5.2}	63.2 ^{+5.1} _{-4.7}
00015874005	59994.18332	0.36	0.51	2023-02-19 04:17:05	2023-02-19 04:30:52	827	36.1 ^{+4.4} _{-3.9}	43.4 ^{+4.0} _{-3.7}
00015874006	59996.17138	0.53	0.58	2023-02-21 03:59:42	2023-02-21 04:13:52	850	21.3 ^{+4.0} _{-3.4}	52.8 ^{+19.8} _{-16.8}
00015874007	59999.09258	0.78	0.67	2023-02-24 02:05:43	2023-02-24 02:20:53	910	16.3 ^{+3.2} _{-2.6}	22.7 ^{+6.3} _{-3.3}
00015874008	60001.14424	0.96	0.74	2023-02-26 03:20:31	2023-02-26 03:34:53	863	2.4 ^{+0.6} _{-0.5}	3.7 ^{+2.4} _{-0.8}
00015874009	60003.59002	0.17	0.82	2023-02-28 14:05:20	2023-02-28 14:13:54	514	7.1 ^{+1.4} _{-1.2}	9.0 ^{+1.6} _{-1.2}
00015874010	60006.39117	0.41	0.91	2023-03-03 00:24:40	2023-03-03 18:11:53	1860	8.7 ^{+1.1} _{-1.0}	12.9 ^{+2.4} _{-1.4}
00015874011	60009.07858	0.64	1.00	2023-03-05 06:44:26	2023-03-06 21:01:53	3229	—	—
00015874012	60010.53555	0.77	0.05	2023-03-07 01:42:29	2023-03-07 23:59:53	3543	0.2 ^{+0.1} _{-0.1}	0.4 ^{+0.7} _{-0.1}
00015874013	60012.52010	0.94	0.11	2023-03-09 12:22:00	2023-03-09 12:35:52	832	2.7 ^{+0.7} _{-0.6}	3.6 ^{+0.9} _{-0.6}
00015874014	60015.09010	0.16	0.16	2023-03-12 02:01:35	2023-03-12 02:17:53	978	21.2 ^{+2.7} _{-2.4}	26.8 ^{+2.9} _{-2.5}
00015874015	60017.87524	0.40	0.28	2023-03-14 20:51:47	2023-03-14 21:08:52	1025	29.0 ^{+3.8} _{-3.3}	54.6 ^{+21.8} _{-9.7}
00015874016	600019.49996	0.54	0.34	2023-03-16 03:12:00	2023-03-16 20:47:53	1246	1.1 ^{+0.6} _{-0.4}	1.1 ^{+0.6} _{-0.4}
00015874017	60022.43528	0.80	0.43	2023-03-19 00:55:42	2023-03-19 20:07:53	1377	13.9 ^{+1.7} _{-1.5}	19.9 ^{+3.2} _{-2.1}
00015874018	60024.41987	0.97	0.50	2023-03-21 02:03:20	2023-03-21 18:05:52	1311	42.8 ^{+3.9} _{-3.5}	53.8 ^{+4.1} _{-3.6}
00015874019	60026.960975	0.10	0.55	2023-03-23 00:08:12	2023-03-23 00:19:52	700	20.2 ^{+3.8} _{-3.1}	36.1 ^{+20.0} _{-7.7}
00015874020	60035.92511	0.96	0.87	2023-04-01 21:20:25	2023-04-01 23:03:53	700	6.0 ^{+1.2} _{-1.0}	10.0 ^{+5.3} _{-2.0}
00015874021	60038.806010	0.21	0.97	2023-04-04 19:13:40	2023-04-04 19:27:55	852	3.6 ^{+0.9} _{-0.7}	3.8 ^{+0.8} _{-0.7}
00015874022	60040.56001	0.36	0.02	2023-04-06 02:21:57	2023-04-06 20:30:51	945	17.7 ^{+2.9} _{-2.4}	28.6 ^{+4.5} _{-4.5}
00015874023	60042.16699	0.49	0.07	2023-04-08 02:26:13	2023-04-08 02:41:53	940	2.4 ^{+0.8} _{-0.6}	3.8 ^{+4.9} _{-1.0}
00015874024	60045.78485	0.79	0.19	2023-04-11 08:17:29	2023-04-11 16:46:52	1138	1.0 ^{+0.3} _{-0.2}	1.7 ^{+1.6} _{-0.4}
00015874025	60047.20792	0.93	0.24	2023-04-13 04:51:53	2023-04-13 05:06:53	900	0.6 ^{+0.4} _{-0.2}	0.8 ^{+3.1} _{-0.3}
00015874026	60049.24266	0.11	0.30	2023-04-15 05:41:59	2023-04-15 05:56:51	893	6.8 ^{+1.7} _{-1.3}	7.7 ^{+1.4} _{-1.1}
00015874027	60052.28427	0.37	0.40	2023-04-18 06:41:48	2023-04-18 06:56:53	905	—	—
00015874028	60054.60630	0.57	0.48	2023-04-20 14:25:16	2023-04-20 14:40:52	935	—	—
00015874029	60056.85598	0.76	0.53	2023-04-22 02:24:18	2023-04-22 02:40:53	955	1.7 ^{+0.4} _{-0.3}	2.5 ^{+1.3} _{-2.5}
00015874030	60063.07469	0.59	0.75	2023-04-24 00:46:13	2023-04-24 00:54:53	820	50.8 ^{+6.6} _{-2.6}	63.5 ^{+6.1} _{-5.3}
00015874031	60065.28811	0.49	0.83	2023-04-30 10:40:14	2023-04-30 15:44:53	878	11.5 ^{+2.4} _{-2.0}	15.8 ^{+2.3} _{-2.3}
00015874032	60068.03664	0.87	0.30	2023-04-29 01:54:52	2023-04-29 01:54:52	820	9.8 ^{+1.2} _{-1.1}	12.7 ^{+1.2} _{-1.2}
00015874033	60068.02361	0.73	0.91	2023-05-04 00:39:52	2023-05-04 00:39:52	705	80.2 ^{+9.6} _{-8.5}	117.9 ^{+0.3} _{-0.3}

Table A1 – continued

ObsID	MJD	Orbital ^a phase	Supero. ^b phase	Start time (UT) (yyyy-mm-dd hh:mm:ss)	End time (UT) (yyyy-mm-dd hh:mm:ss)	Exposure (s)	Flux ^c (erg cm ⁻² s ⁻¹)	Flux ^d (erg cm ⁻² s ⁻¹)
00015874035	60070.06917	0.90	0.98	2023-05-06 01:32:19	2023-05-06 01:46:52	873	27.1 ^{+4.2} -3.6	41.2 ^{+12.3} -5.8
00015874036	60072.12550	0.08	0.05	2023-05-08 02:51:33	2023-05-08 03:09:53	1101	28.0 ^{+4.0} -3.5	32.6 ^{+3.5} -3.3
00015874037	60075.62487	0.38	0.16	2023-05-11 14:53:43	2023-05-11 15:05:53	730	1.6 ^{+0.5} -0.4	3.2 ^{+4.5} -0.9
00015874038	60077.01463	0.50	0.21	2023-05-13 00:14:15	2023-05-13 00:27:51	767	0.7 ^{+1.6} -0.5	0.8 ^{+1.5} -0.3
00015874039	60088.94118	0.53	0.59	2023-05-24 22:31:42	2023-05-24 22:38:53	431	1.1 ^{+1.2} -0.6	2.1 ^{+1.3} -0.9
00015874040	60091.72302	0.77	0.69	2023-05-27 17:14:23	2023-05-27 17:27:53	810	0.7 ^{+0.3} -0.2	2.1 ^{+1.6} -1.1
00015874041	60093.62734	0.93	0.75	2023-05-29 14:55:49	2023-05-29 15:10:54	905	7.8 ^{+1.7} -1.4	9.2 ^{+1.5} -1.3
00015874042	60095.80837	0.12	0.82	2023-05-31 19:16:13	2023-05-31 19:31:53	940	32.8 ^{+3.8} -3.4	35.3 ^{+3.4} -3.0
00015874043	60097.33644	0.25	0.87	2023-06-02 03:13:04	2023-06-02 12:55:53	1344	9.0 ^{+1.1} -1.0	12.6 ^{+1.8} -1.2
00015874044	60100.11488	0.49	0.6	2023-06-05 00:01:14	2023-06-05 04:29:53	1710	1.0 ^{+0.4} -0.3	1.2 ^{+0.8} -0.3
00015874045	60102.18849	0.67	0.03	2023-06-07 03:40:56	2023-06-07 05:21:53	1387	—	—
00015874046	60104.14462	0.84	0.09	2023-06-09 01:43:38	2023-06-09 05:11:52	1519	15.6 ^{+2.1} -1.9	18.3 ^{+1.8} -2.7
00015874047	60107.02921	0.09	0.18	2023-06-11 22:12:35	2023-06-12 03:02:53	1069	7.5 ^{+1.4} -1.2	10.2 ^{+2.4} -1.4
00015874048	60109.09067	0.27	0.25	2023-06-14 02:03:14	2023-06-14 02:17:54	880	18.2 ^{+2.6} -2.2	26.3 ^{+5.1} -3.1
00015874049	60110.71524	0.41	0.30	2023-06-15 00:02:59	2023-06-16 00:16:53	875	3.0 ^{+0.8} -0.6	5.5 ^{+6.1} -0.6
00015874050	60114.32445	0.72	0.42	2023-06-19 07:39:32	2023-06-19 07:54:52	920	3.0 ^{+0.7} -0.5	5.8 ^{+5.4} -1.6
00015874051	60116.23916	0.88	0.48	2023-06-21 05:24:52	2023-06-21 05:53:53	1141	22.2 ^{+3.7} -3.2	25.0 ^{+3.3} -2.9
00015874052	60118.93825	0.12	0.57	2023-06-23 22:23:51	2023-06-23 22:38:53	938	1.1 ^{+0.4} -0.3	2.4 ^{+5.5} -0.8
00015874053	60121.26255	0.32	0.65	2023-06-26 06:10:15	2023-06-26 06:25:53	938	—	—
00015874054	60123.87369	0.54	0.73	2023-06-28 07:38	2023-06-28 21:46:52	1118	—	—
00015874055	60125.15694	0.77	0.95	2023-06-30 03:38:49	2023-06-30 03:52:52	842	—	—
00015874056	60127.59959	0.85	0.86	2023-07-02 14:14:56	2023-07-02 14:31:52	1015	2.1 ^{+0.6} -0.5	2.8 ^{+0.7} -0.5
00015874057	60129.54923	0.03	0.92	2023-07-04 01:13:52	2023-07-05 01:07:54	1101	1.3 ^{+0.4} -0.3	1.7 ^{+0.6} -0.3
00015874058	60141.69944	0.08	0.31	2023-07-16 16:38:20	2023-07-16 19:54:53	933	—	—
00015874059	60144.53360	0.32	0.40	2023-07-19 12:40:54	2023-07-19 12:55:51	888	29.4 ^{+4.1} -3.6	39.2 ^{+5.5} -4.1
00015874060	60146.46352	0.49	0.47	2023-07-21 01:33:04	2023-07-21 20:41:52	1038	6.5 ^{+1.7} -1.7	8.3 ^{+2.8} -1.4
00015874061	60148.17633	0.64	0.52	2023-07-23 02:33:57	2023-07-23 05:53:52	1249	4.4 ^{+0.9} -0.7	7.9 ^{+6.9} -1.8
00015874062	60150.41982	0.59	0.71	2023-07-28 02:22:15	2023-07-28 11:13:52	1111	—	—
00015874063	60153.92619	0.77	0.77	2023-07-30 21:40:02	2023-07-30 21:54:52	890	—	—
00015874064	60155.90796	0.30	0.43	2023-08-01 05:28:30	2023-08-01 11:40:52	955	—	—
00015874065	60157.35473	0.77	0.82	2023-08-01 05:28:30	2023-08-01 11:40:52	—	—	—

Table A1 – *continued*

ObsID	MJD	Orbital ^a phase	Supero. ^b phase	Start time (UT) (yyyy-mm-dd hh:mm:ss)	End time (UT) (yyyy-mm-dd hh:mm:ss)	Exposure (s)	Flux ^c (erg cm ⁻² s ⁻¹)	Flux ^d (erg cm ⁻² s ⁻¹)
00015874066	6016005938	0.71	0.92	2023-08-04 14:07:46	2023-08-04 14:22:54	908	1.8 _{-0.5} ^{+0.5}	3.5 _{-1.1} ^{+0.9}
00015874073	601690713	0.88	0.99	2023-08-06 13:48:38	2023-08-06 15:19:52	1178	4.2 _{-0.7} ^{+0.9}	5.9 _{-0.9} ^{+0.6}
000158742094	6016422094	0.02	0.04	2023-08-08 05:10:41	2023-08-08 05:25:54	895	3.9 _{-0.7} ^{+0.9}	6.2 _{-1.1} ^{+2.2}
00015874068	6016804810	0.35	0.17	2023-08-11 12:22:37	2023-08-12 13:55:53	1108	2.9 _{-0.5} ^{+0.5}	4.4 _{-0.8} ^{+0.2}
00015874069	6017000772	0.23	0.23	2023-08-13 17:00:19	2023-08-14 07:21:53	1364	0.5 _{-0.3} ^{+0.3}	8.5 _{-11.1} ^{+11.4}
00015874070	601715790	0.65	0.28	2023-08-15 11:46:51	2023-08-15 14:59:54	1046	13.9 _{-2.3} ^{+2.3}	35.1 _{-10.6} ^{+12.8}
00015874072	6017320319	0.80	0.33	2023-08-17 04:42:19	2023-08-17 05:02:52	1234	17.0 _{-2.7} ^{+2.7}	22.9 _{-2.7} ^{+4.2}
00015874073	6017664572	0.09	0.45	2023-08-20 15:22:47	2023-08-20 15:36:52	845	1.4 _{-0.8} ^{+0.8}	1.5 _{-0.4} ^{+0.6}
00015874074	6017862604	0.26	0.51	2023-08-22 14:54:07	2023-08-22 15:08:52	885	3.2 _{-0.8} ^{+1.1}	3.9 _{-0.6} ^{+0.8}
00015874075	6018027359	0.40	0.59	2023-08-24 06:27:03	2023-08-24 06:40:53	830	4.9 _{-0.8} ^{+1.1}	5.5 _{-0.5} ^{+0.9}

Notes. ^aPhase zero for the orbital period is the time of periastron passage at MJD 5824.8 (Grundmann et al. 2007). ^bPhase zero for the superorbital period is the minimum of the folded light curve at MJD 53488 (Farrell et al. 2008). ^cObserved flux in the 0.3–10 keV energy band in units of $\times 10^{-11}$ erg cm⁻² s⁻¹. When no value is provided, the observation yielded insufficient counts to perform spectral analysis. ^dUnabsorbed flux in the 0.3–10 keV energy band in units of $\times 10^{-11}$ erg cm⁻² s⁻¹.

Table A2. Observation log for IGR J16418–4532. Observing sequence, date (MJD of the middle of the observation), superorbital phase, start and end times (UTC), XRT exposure time, and 0.3–10 keV observed and unabsorbed flux, and references.

ObsID	MJD	Phase	Start time (UT)	End time (UT)	Exposure (s)	Flux ^a (erg cm ⁻² s ⁻¹)	Flux ^b (erg cm ⁻² s ⁻¹)	Ref.
00031926001	55610.11915	0.90	2011-02-18 01:59:42	2011-02-18 03:32:25	1953	16.4 ^{+2.3} _{-2.0}	30.0 ^{+14.4} _{-5.6}	1
00031926002	55641.0599	0.85	2011-03-04 00:03:18	2011-03-04 05:01:56	2021	10.1 ^{+1.4} _{-1.2}	13.5 ^{+1.8} _{-1.4}	
00031926003	55755.51071	0.77	2011-07-13 09:46:54	2011-07-13 14:43:56	4756	6.9 ^{+0.6} _{-0.5}	10.0 ^{+1.0} _{-0.8}	
00031926004	55756.67068	0.85	2011-07-14 12:39:38	2011-07-14 19:31:55	4832	0.5 ^{+0.3} _{-0.2}	4.4 ^{+31.9} _{-3.5}	
00031926005	55757.61991	0.91	2011-07-15 06:42:49	2011-07-15 23:01:56	1081	1.4 ^{+0.8} _{-0.5}	1.8 ^{+8.0} _{-0.3}	
00031929006	55757.689515	0.98	2011-07-16 10:15:04	2011-07-16 23:06:57	396	7.1 ^{+3.7} _{-2.4}	9.5 ^{+46.6} _{-2.5}	
00031929007	55761.52284	0.18	2011-07-19 01:52:40	2011-07-19 23:19:56	2673	7.2 ^{+0.9} _{-0.8}	9.8 ⁺¹³ ₋₁₀	
00032037001	55760.96527	0.14	2011-07-18 21:28:27	2011-07-19 00:51:30	1941	–	–	
00032037002	55762.43113	0.24	2011-07-20 05:18:41	2011-07-20 15:22:57	3503	5.6 ^{+0.6} _{-0.5}	8.9 ^{+1.7} _{-1.0}	
00032037003	55763.53270	0.31	2011-07-21 10:07:17	2011-07-21 15:27:53	3779	1.9 ^{+0.3} _{-0.3}	2.7 ^{+0.7} _{-0.4}	
00032037004	55764.69695	0.39	2011-07-22 15:19:42	2011-07-22 18:44:56	2818	–	–	
00032037005	55765.56675	0.45	2011-07-23 11:48:18	2011-07-23 15:23:55	4145	3.7 ^{+0.4} _{-0.4}	5.7 ^{+1.2} _{-0.7}	
00032037006	55771.74569	0.87	2011-07-25 01:07:29	2011-07-25 23:45:55	469	–	–	
00032037007	55772.24797	0.90	2011-07-30 01:52:57	2011-07-30 10:52:57	5082	0.5 ^{+0.1} _{-0.1}	0.8 ^{+0.6} _{-0.2}	
00032037008	56081.80123	0.92	2012-06-03 18:16:39	2012-06-03 20:10:52	2771	8.4 ^{+1.0} _{-0.9}	66.2 ^{+19.8} ₋₈	
00032037009	56082.65221	0.98	2012-06-04 13:06:06	2012-06-04 18:12:15	3280	4.2 ^{+0.6} _{-0.6}	7.0 ^{+3.5} ₋₃	2, 3, 4
00032037010	56344.54853	0.47	2013-04-02 12:16:51	2013-04-02 14:02:05	2191	35.5 ^{+3.0} _{-2.7}	55.5 ^{+7.5} _{-5.0}	4
00032037011	56352.67883	0.89	2013-09-07 17 16:26:44	2013-09-17 16:26:44	1108	3.8 ^{+0.7} _{-0.7}	7.5 ^{+2.5} _{-2.4}	4
00032037012	56557.61314	0.22	2013-09-21 01:05:24	2013-09-21 06:31:55	975	–	–	
00032037013	56558.04041	0.28	2013-09-23 09:33:53	2013-09-23 09:49:53	975	7.9 ^{+1.5} _{-1.3}	11.7 ^{+3.9} _{-1.7}	
00032037014	56559.68368	0.36	2013-09-24 16:16:06	2013-09-24 16:32:53	108	0.6 ^{+0.3} _{-0.3}	1.2 ^{+7.2} _{-2.2}	
00032037015	56970.15963	0.95	2014-09-07 03:44:49	2014-09-07 03:57:54	965	4.7 ^{+1.2} _{-1.2}	6.0 ^{+2.7} _{-2.5}	
00032037016	56941.61884	0.14	2014-09-24 14:48:50	2014-09-24 22:35:06	948	2.3 ^{+0.9} _{-0.8}	19.1 ^{+66.2} _{-6.7}	
00032037017	56941.946454	0.96	2014-09-24 16:22:03:8	2014-09-24 17:02:19:55	998	–	–	
00032037018	56970.17093	0.63	2014-09-14 22:38:55	2014-09-17 01:22:30:54	905	1.9 ^{+0.7} _{-0.5}	2.0 ^{+1.3} _{-0.5}	
00032037019	56952.65225	0.48	2014-09-14 22:43:50	2014-09-17 02:03:04	276	9.7 ^{+3.6} _{-2.5}	10.6 ^{+9.0} _{-9.0}	
00032037020	56953.01289	0.58	2014-10-05 01:10:00	2014-10-05 02:56:56	928	–	–	
00032037021	56934.14320	0.06	2014-10-08 04:58:59	2014-10-08 05:13:54	985	–	–	
00032037022	56935.01289	0.84	2014-10-01 03:18:28	2014-10-01 03:33:55	1005	–	–	
00032037023	56935.51071	0.77	2014-10-08 04:58:59	2014-10-08 05:13:54	928	–	–	
00032037024	56938.21281	0.06	2014-10-08 04:58:59	2014-10-08 05:13:54	985	–	–	

Table A2 – *continued*

ObsID	MJD	Phase	Start time (UT) (yyyy-mm-dd hh:mm:ss)	End time (UT) (yyyy-mm-dd hh:mm:ss)	Exposure (s)	Flux ^a (erg cm ⁻² s ⁻¹)	Flux ^b (erg cm ⁻² s ⁻¹)	Ref.
00032037025	56942.94418	0.38	2014-10-12 22:29:20	2014-10-12 22:49:54	1234	9.7 ^{+1.8} _{-1.5}	15.0 ^{+6.6} _{-2.3}	
00032037026	56945.71201	0.57	2014-10-15 14:43:38	2014-10-15 19:26:56	1031	–	–	
00032037027	56949.53568	0.83	2014-10-19 09:40:03	2014-10-19 16:02:54	1221	–	–	
00032037029	56955.07324	0.21	2014-10-25 01:34:01	2014-10-25 01:56:55	1374	1.6 ^{+0.7} _{-0.5}	4.1 ^{+2.9} _{-1.7}	
00032037030	57040.49987	0.00	2015-01-18 11:51:43	2015-01-18 12:07:54	970	9.3 ^{+1.7} _{-1.4}	16.3 ^{+8.3} _{-3.1}	
00032037031	57043.16719	0.19	2015-01-21 03:52:36	2015-01-21 04:08:54	978	–	–	
00032037032	57047.68975	0.49	2015-01-25 16:25:33	2015-01-25 16:40:55	923	8.0 ^{+1.5} _{-1.3}	11.1 ^{+2.4} _{-1.4}	
00032037033	57050.95139	0.71	2015-01-28 22:42:06	2015-01-28 22:57:54	948	–	–	
00032037034	57054.02305	0.92	2015-02-01 00:24:29	2015-02-01 00:41:54	1046	–	–	
00639199000	57139.60458	0.73	2015-04-27 14:25:53	2015-04-27 14:35:17	564	38.5 ^{+7.5} _{-6.4}	50.0 ^{+9.4} _{-6.7}	4
00032037036	57141.19595	0.84	2015-04-29 04:34:23	2015-04-29 04:49:56	933	3.4 ^{+0.7} _{-0.6}	7.0 ^{+6.7} _{-1.8}	
00032037037	57142.98612	0.96	2015-04-30 23:33:21	2015-04-30 23:46:39	797	1.1 ^{+0.5} _{-0.3}	16.9 ^{+179.5} _{-14.9}	
00032037038	57143.24946	0.98	2015-05-01 01:10:31	2015-05-01 10:47:55	707	3.1 ^{+1.2} _{-0.8}	7.0 ^{+81.0} _{-3.8}	
00032037039	57144.85102	0.09	2015-05-02 20:18:02	2015-05-02 20:32:54	893	4.3 ^{+1.3} _{-0.8}	6.1 ^{+3.2} _{-1.1}	
0107321000	59475.38643	0.31	2021-09-18 09:08:42	2021-09-18 09:24:13	930	30.5 ^{+3.9} _{-3.5}	39.3 ^{+4.4} _{-3.7}	6, 4
0107321001	59475.48760	0.31	2021-09-18 10:43:44	2021-09-18 12:40:33	2951	4.0 ^{+0.6} _{-0.5}	6.3 ^{+1.6} _{-0.9}	
00043105001	55739.22181	0.66	2011-06-27 05:14:53	2011-06-27 05:23:55	542	3.5 ^{+1.8} _{-1.2}	4.6 ^{+4.1} _{-1.2}	7
00081650001	57291.94305	0.07	2015-09-26 21:43:06	2015-09-26 23:32:53	1891	6.2 ^{+1.0} _{-0.9}	7.8 ^{+1.1} _{-0.9}	
00088748001	58393.93698	0.89	2018-10-02 21:32:47	2018-10-02 23:25:52	1800	2.0 ^{+0.4} _{-0.4}	2.6 ^{+0.8} _{-0.4}	
00088748002	58401.90480	0.43	2018-10-10 20:45:56	2018-10-10 22:39:52	1790	4.4 ^{+0.7} _{-0.6}	6.0 ^{+1.3} _{-0.8}	

Notes. ^aObserved flux in the 0.3–10 keV energy band in units of $\times 10^{-11}$ erg cm⁻² s⁻¹. When no value is provided, the observation yielded insufficient counts to perform spectral analysis. ^bUnabsorbed flux in the 0.3–10 keV energy band in units of $\times 10^{-11}$ erg cm⁻² s⁻¹.

(1) Monitoring campaign in Romano et al. (2012a); (2) Romano et al. (2012b); (3) Romano et al. (2013); (4) Outbursts and follow-ups in Romano et al. (2023); (5) Monitoring campaign, this work. (6) Sbarufatti et al. (2021); (7) Sequential observations, this work; (8) Islam et al. (2023).

Table A3. Observation log for GRB 1107-4514. Observing sequence, date (MD of the middle of the observation), superorbital phase, start and end times (UTC), XRT exposure time, and 0.3-10 keV observed and unabsorbed flux.

ObsID	MJD	Phase	Start time (UT) (yyymmdd hh:mm:ss)	End time (UT) (yyymmdd hh:mm:ss)	Exposure (s)	Flux ^a (erg cm ⁻² s ⁻¹)	Flux ^b (erg cm ⁻² s ⁻¹)
00030296006	54484496244	0.81	2008-01-19 22:58:28	2008-01-19 23:13:58	928	12.5 ^{+3.3} _{-2.6}	15.9 ^{+3.6} _{-2.6}
00030296007	5448778512	0.05	2008-01-22 20:07:57	2008-01-22 20:25:58	1081	2.5 ^{+0.6} _{-0.5}	4.6 ^{+5.7} _{-1.3}
00030296008	5449179550	0.38	2008-01-26 18:56:04	2008-01-26 19:14:57	1133	1.4 ^{+0.6} _{-0.4}	2.2 ^{+3.2} _{-0.5}
00030296009	5449434173	0.60	2008-01-29 08:03:13	2008-01-29 08:20:56	1063	0.4 ^{+0.4} _{-0.2}	0.5 ^{+0.6} _{-0.2}
00030296010	5450137081	0.19	2008-02-05 04:48:59	2008-02-05 16:58:56	3056	1.8 ^{+0.3} _{-0.2}	8.3 ^{+21.8} _{-4.1}
00030296011	5450589050	0.57	2008-02-09 18:53:39	2008-02-09 23:50:58	2751	4.2 ^{+0.6} _{-0.5}	5.2 ^{+0.5} _{-0.5}
00030296012	5450612279	0.59	2008-02-10 01:16:40	2008-02-10 04:36:58	873	1.8 ^{+0.5} _{-0.4}	4.3 ^{+12.2} _{-1.6}
00030296013	5451137698	0.03	2008-02-15 08:12:38	2008-02-15 10:01:25	1254	1.2 ^{+0.3} _{-0.2}	—
00030296014	5451435488	0.28	2008-02-18 06:46:05	2008-02-18 10:12:57	1151	4.4 ^{+1.0} _{-0.5}	22.6 ^{+24.6} _{-7.7}
00030296015	5451602799	0.42	2008-02-20 00:46:58	2008-02-20 00:46:58	800	0.5 ^{+0.5} _{-0.2}	1.1 ^{+5.0} _{-5.5}
00030296016	5451994461	0.75	2008-02-23 21:44:31	2008-02-23 23:35:57	1679	0.9 ^{+0.3} _{-0.3}	1.8 ^{+18.3} _{-0.7}
00030296017	5452298995	0.01	2008-02-26 23:38:06	2008-02-26 23:52:56	890	—	—
00030296018	545252959264	0.35	2008-03-01 23:38:51	2008-03-01 23:59:59	1266	—	—
00030296019	545311054502	0.44	2008-03-10 01:50:45	2008-03-10 02:12:56	1076	—	—
00030296020	545354534	0.06	2008-03-10 09:05:42	2008-03-10 12:15:56	1101	—	—
00030296021	5453594044	0.18	2008-03-06 00:26:49	2008-03-11 23:22:56	2986	0.1 ^{+0.1} _{-0.0}	38.7 ^{+7.4} _{-4.4}
00030296022	54540041	0.69	2008-03-11 04:45:40	2008-03-11 12:46:44	2086	1.0 ^{+0.1} _{-0.1}	1.7 ^{+20.1} _{-1.1}
00030296023	5454378833	0.26	2008-03-12 18:26:44	2008-03-12 23:51:49	2776	5.6 ^{+0.7} _{-0.6}	10.5 ^{+3.3} _{-0.7}
00030296024	5454521212228	0.029	2008-03-21 21:22:28	2008-03-21 23:05:57	835	2.7 ^{+0.7} _{-0.5}	—
00030296025	5454539923	0.46	2008-03-15 04:37:49	2008-03-15 04:55:57	1088	—	—
00030296026	5454133765	0.55	2008-03-16 08:15:30	2008-03-16 08:15:30	1116	4.8 ^{+0.9} _{-0.8}	7.7 ^{+3.4} _{-1.3}
00030296027	5454231110	0.94	2008-03-17 06:34:08	2008-03-17 06:21:48	1216	0.3 ^{+0.2} _{-0.2}	0.5 ^{+2.9} _{-0.2}
00030296028	5454347703	0.73	2008-03-18 16:31:54	2008-03-18 16:31:56	2342	0.3 ^{+0.2} _{-0.1}	0.3 ^{+0.2} _{-0.1}
00030296029	5454482184	0.85	2008-03-19 10:38:56	2008-03-19 10:47:57	542	0.8 ^{+0.6} _{-0.3}	1.7 ^{+24.1} _{-1.1}
00030296030	54544969873	0.96	2008-03-20 00:00:53	2008-03-20 00:00:53	326	8.7 ^{+2.9} _{-2.0}	44.8 ^{+20.3} _{-9.0}
00030296031	54545612308	0.02	2008-03-21 02:05:29	2008-03-21 03:48:58	835	1.6 ^{+1.5} _{-0.7}	6.5 ^{+7.6} _{-3.9}
00030296032	5454839300	0.56	2008-05-02 22:12:26	2008-05-02 22:25:56	810	14.6 ^{+2.2} _{-2.6}	21.4 ^{+3.2} _{-2.7}
00030296033	5456873909	0.69	2008-04-10 15:17:37	2008-04-10 20:10:57	905	—	—
00030296034	5456929655	0.22	2008-03-24 06:50:56	2008-03-24 06:55:30	627	3.9 ^{+0.9} _{-0.7}	5.5 ^{+1.6} _{-0.9}
00030296035	545692937	0.13	2008-03-23 05:25:03	2008-03-23 05:33:03	1041	3.0 ^{+0.4} _{-0.2}	0.6 ^{+2.4} _{-2.4}
00030296036	545692603	—	—	—	—	—	—
00030296037	545692603	—	—	—	—	—	—
00030296038	545692603	—	—	—	—	—	—
00030296039	545692603	—	—	—	—	—	—
00030296040	545692604	—	—	—	—	—	—
00030296041	545692604	—	—	—	—	—	—
00030296042	545692604	—	—	—	—	—	—
00030296043	545692604	—	—	—	—	—	—
00030296044	545692604	—	—	—	—	—	—
00030296045	545692605	—	—	—	—	—	—
00030296046	545692605	—	—	—	—	—	—
00030296047	545692605	—	—	—	—	—	—
00030296048	545692605	—	—	—	—	—	—
00030296049	545692605	—	—	—	—	—	—
00030296050	545692605	—	—	—	—	—	—
00030296051	545692605	—	—	—	—	—	—
00030296052	545692605	—	—	—	—	—	—
00030296053	545692605	—	—	—	—	—	—
00030296054	545692605	—	—	—	—	—	—
00030296055	545692605	—	—	—	—	—	—
00030296056	545692605	—	—	—	—	—	—
00030296057	545692605	—	—	—	—	—	—
00030296058	545692605	—	—	—	—	—	—
00030296059	545692605	—	—	—	—	—	—
00030296060	545692606	—	—	—	—	—	—
00030296061	545692606	—	—	—	—	—	—
00030296062	545692606	—	—	—	—	—	—
00030296063	545692603	—	—	—	—	—	—
00030296064	545692604	—	—	—	—	—	—
00030296065	545692605	—	—	—	—	—	—
00030296066	545692606	—	—	—	—	—	—
00030296067	545692607	—	—	—	—	—	—
00030296068	545692608	—	—	—	—	—	—
00030296069	545692609	—	—	—	—	—	—
00030296070	545692609	—	—	—	—	—	—
00030296071	545692609	—	—	—	—	—	—
00030296072	545692609	—	—	—	—	—	—
00030296073	545692609	—	—	—	—	—	—
00030296074	545692609	—	—	—	—	—	—
00030296075	545692609	—	—	—	—	—	—
00030296076	545692609	—	—	—	—	—	—
00030296077	545692609	—	—	—	—	—	—
00030296078	545692609	—	—	—	—	—	—
00030296079	545692609	—	—	—	—	—	—
00030296080	545692609	—	—	—	—	—	—
00030296081	545692609	—	—	—	—	—	—
00030296082	545692609	—	—	—	—	—	—
00030296083	545692609	—	—	—	—	—	—
00030296084	545692609	—	—	—	—	—	—
00030296085	545692609	—	—	—	—	—	—
00030296086	545692609	—	—	—	—	—	—
00030296087	545692609	—	—	—	—	—	—
00030296088	545692609	—	—	—	—	—	—
00030296089	545692609	—	—	—	—	—	—
00030296090	545692609	—	—	—	—	—	—
00030296091	545692609	—	—	—	—	—	—
00030296092	545692609	—	—	—	—	—	—
00030296093	545692609	—	—	—	—	—	—
00030296094	545692609	—	—	—	—	—	—
00030296095	545692609	—	—	—	—	—	—
00030296096	545692609	—	—	—	—	—	—
00030296097	545692609	—	—	—	—	—	—
00030296098	545692609	—	—	—	—	—	—
00030296099	545692609	—	—	—	—	—	—
00030296100	545692609	—	—	—	—	—	—
00030296101	545692609	—	—	—	—	—	—
00030296102	545692609	—	—	—	—	—	—
00030296103	545692609	—	—	—	—	—	—
00030296104	545692609	—	—	—	—	—	—
00030296105	545692609	—	—	—	—	—	—
00030296106	545692609	—	—	—	—	—	—
00030296107	545692609	—	—	—	—	—	—
00030296108	545692609	—	—	—	—	—	—
00030296109	545692609	—	—	—	—	—	—
00030296110	545692609	—	—	—	—	—	—
00030296111	545692609	—	—	—	—	—	—
00030296112	545692609	—	—	—	—	—	—
00030296113	545692609	—	—	—	—	—	—
00030296114	545692609	—	—	—	—	—	—
00030296115	545692609	—	—	—	—	—	—
00030296116	545692609	—	—	—	—	—	—
00030296117	545692609	—	—	—	—	—	—
00030296118	545692609	—	—	—	—	—	—
00030296119	545692609	—	—	—	—	—	—
00030296120	545692609	—	—	—	—	—	—
00030296121	545692609	—	—	—	—	—	—
00030296122	545692609	—	—	—	—	—	—
00030296123	545692609	—	—	—	—	—	—
00030296124	545692609	—	—	—	—	—	—
00030296125	545692609	—	—	—	—	—	—
00030296126	545692609	—	—	—	—	—	—
00030296127	545692609	—	—	—	—	—	—
00030296128	545692609	—	—	—	—	—	—
00030296129	545692609	—	—	—	—	—	—
00030296130</td							

Table A3 – continued

ObsID	MD	Phase	Start time (UT) (yyyy-mm-dd hh:mm:ss)	End time (UT) (yyyy-mm-dd hh:mm:ss)	Exposure (s)	Flux ^a (erg cm ⁻² s ⁻¹)	Flux ^b (erg cm ⁻² s ⁻¹)
00030296036	54592.88247	0.89	2008-05-06 00:40:14	2008-05-06 02:43:39	206	—	—
00030296037	54596.41810	0.19	2008-05-10 00:53:10	2008-05-10 01:10:56	1066	3.0 _{-0.6} ^{+0.7}	10.4 _{-4.9} ^{+3.9}
00030296038	54600.36235	0.52	2008-05-14 08:33:12	2008-05-14 08:52:58	1189	—	—
00030296039	54608.96984	0.24	2008-05-22 20:54:24	2008-05-22 22:45:56	2374	0.6 _{-0.2} ^{+0.3}	1.1 _{-0.3} ^{+5.2}
00030296040	54612.288702	0.58	2008-05-26 21:10:54	2008-05-26 21:28:57	1397	2.8 _{-0.5} ^{+0.6}	4.0 _{-0.7} ^{+1.6}
00030296041	54617.05938	0.93	2008-05-30 08:40:01	2008-05-31 18:10:58	995	2.0 _{-0.8} ^{+1.4}	3.9 _{-1.5} ^{+4.4}
00030296042	54620.85944	0.25	2008-06-03 20:15:44	2008-06-03 20:34:57	1153	1.8 _{-0.7} ^{+0.7}	2.0 _{-0.7} ^{+0.7}
00030296043	54624.67212	0.57	2008-06-07 16:09:09	2008-06-07 16:09:56	251	12.8 _{-2.5} ^{+3.1}	24.0 _{-6.1} ^{+25.8}
00030296044	54628.38194	0.88	2008-06-11 09:57:56	2008-06-11 09:57:56	736	—	—
00030296045	54636.67351	0.58	2008-06-19 18:35:58	2008-06-19 18:35:58	1512	—	—
00030296046	54636.74855	0.55	2008-06-23 00:25:56	2008-06-23 00:41:29	802	1.6 _{-0.9} ^{+0.9}	32.6 _{-28.9} ^{+18.2}
00030296047	54640.38837	0.89	2008-06-28 04:05:19	2008-06-28 04:59:57	970	2.4 _{-0.6} ^{+0.5}	3.7 _{-0.8} ^{+2.6}
00030296048	54645.11642	0.29	2008-07-01 05:28:57	2008-07-01 05:28:57	983	2.5 _{-0.5} ^{+0.7}	3.9 _{-0.9} ^{+3.3}
00030296049	54648.22275	0.55	2008-07-05 13:23:44	2008-07-05 14:10:57	1069	0.7 _{-0.3} ^{+0.5}	0.7 _{-0.3} ^{+0.5}
00030296050	54648.456157	0.93	2008-07-13 13:32:34	2008-07-17 13:30:44	251	2.2 _{-0.6} ^{+0.6}	5.3 _{-1.9} ^{+13.4}
00030296051	54652.28477	0.92	2008-07-20 09:41:29	2008-07-21 02:29:57	980	—	—
00030296052	54656.04651	0.58	2008-08-02 13:18:37	2008-08-02 14:46:58	933	7.9 _{-1.3} ^{+1.1}	15.0 _{-3.3} ^{+11.3}
00030296053	54656.45157	0.92	2008-08-07 20:09:08	2008-08-07 25:03:42	1033	4.0 _{-1.6} ^{+1.6}	40.9 _{-5.3} ^{+9.4}
00030296054	54680.89847	0.22	2008-08-12 13:00:42	2008-08-12 14:46:58	982	2.2 _{-0.5} ^{+0.7}	2.7 _{-0.5} ^{+1.0}
00030296055	54686.48327	0.61	2008-08-18 11:12:53	2008-08-18 11:43:56	963	7.0 _{-1.4} ^{+1.8}	—
00030296056	54692.88424	0.30	2008-08-22 00:22:02	2008-08-22 00:41:16	940	—	—
00030296057	54700.66840	0.59	2008-08-30 00:12:29:00	2008-08-30 01:29:10	755	—	8.7 _{-6.9} ^{+4.4}
00030296058	54724.34964	0.96	2008-09-15 07:46:25	2008-09-15 08:25:56	990	0.7 _{-0.2} ^{+0.3}	—
00030296059	54727.0541:07	0.67	2008-09-27 07:45:41:07	2008-09-27 07:54:55	1066	—	—
00030296060	54742.09667	0.33	2008-10-01 15:49:11	2008-10-01 16:07:57	1126	0.4 _{-0.2} ^{+0.5}	16.0 _{-15.4} ^{+17.3}
00030296061	54744.066567	0.33	2008-10-01 15:49:11	2008-10-01 16:07:57	1126	—	—
00030296062	54746.024306	0.96	2008-09-27 07:45:41:07	2008-09-27 07:54:55	1066	—	—
00030296063	54747.0541:07	0.67	2008-09-27 07:45:41:07	2008-09-27 07:54:56	990	0.7 _{-0.2} ^{+0.3}	—
00030296064	54747.43964	0.96	2008-09-15 07:46:25	2008-09-15 08:25:56	990	0.7 _{-0.2} ^{+0.3}	—
00030296065	54748.77440	0.59	2008-09-11 23:32:56	2008-09-11 23:32:56	890	1.0 _{-0.3} ^{+0.3}	—
00030296066	54751.2512	0.59	2008-08-30 00:12:29:00	2008-08-30 01:29:10	1236	—	7.0 _{-1.2} ^{+1.2}
00030296067	54752.7512	0.59	2008-08-30 00:12:29:00	2008-08-30 01:29:10	1236	—	—
00030296068	54753.7512	0.59	2008-08-30 00:12:29:00	2008-08-30 01:29:10	1236	—	—
00030296069	54754.7512	0.59	2008-08-30 00:12:29:00	2008-08-30 01:29:10	1236	—	—
00030296070	54755.7512	0.59	2008-08-30 00:12:29:00	2008-08-30 01:29:10	1236	—	—
00030296071	54756.7512	0.59	2008-08-30 00:12:29:00	2008-08-30 01:29:10	1236	—	—

Table A3 – *continued*

ObsID	MD	Phase	Start time (UT) (yyymm-dd hh:mm:ss)	End time (UT) (yyymm-dd hh:mm:ss)	Exposure (s)	Flux ^a (erg cm ⁻² s ⁻¹)	Flux ^b (erg cm ⁻² s ⁻¹)
00030296073	54751.97333	0.28	2008-10-12 23:28:55	2008-10-12 23:28:55	880	1.2+0.4	4.4+13.6
00030296074	54756.09479	0.63	2008-10-17 03:57:07	2008-10-17 03:57:07	994	—	—
00030296075	54760.20390	0.98	2008-10-21 04:46:15	2008-10-21 04:46:15	883	1.8+0.5	2.4+1.8
00030296076	54764.95512	0.38	2008-10-25 23:48:38	2008-10-25 23:02:05	807	9.4+1.9	15.7+8.9
00344152000	54806.32757	0.40	2009-01-29 06:47:34	2009-01-29 08:39:03	2660	19.2+2.3	27.7+4.6
00030296077	54806.80421	0.44	2009-01-29 15:59:43	2009-01-29 22:36:23	5927	3.9+0.4	6.2+1.1
00030296078	54806.205578	0.55	2009-01-31 02:34:44	2009-02-01 21:30:56	2043	0.9+0.3	0.9+0.3
00030296079	54806.38170	0.70	2009-02-01 21:30:56	2009-02-01 21:40:56	1490	0.4+0.3	0.4+0.3
00030296080	54806.125266	0.48	2009-02-04 04:00:55	2009-02-04 04:15:57	1286	—	—
00030296081	54806.11879	0.87	2009-02-08 18:54:07	2009-02-08 22:15:56	1620	0.6+0.3	1.0+0.5
00030296082	54806.105444	0.41	2009-02-11 15:45:40	2009-02-14 06:34:00	1365	—	—
00030296083	54806.102254	0.75	2009-02-17 00:22:54	2009-02-17 12:23:38	955	4.9+1.0	6.2+2.4
00030296084	54806.103004	0.98	2009-02-17 00:52:09	2009-02-17 00:52:09	1555	3.0+0.5	3.0+0.5
00030296085	54806.10417	1.14	2009-02-17 00:52:09	2009-02-17 00:52:09	1314	—	—
00030296086	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1524	2.7+0.6	2.7+0.6
00030296087	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1626	—	—
00030296088	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1211	—	—
00030296089	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1754	—	—
00030296090	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296091	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	910	—	—
00030296092	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296093	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	910	—	—
00030296094	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296095	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	910	—	—
00030296096	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296097	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	910	—	—
00030296098	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296099	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	910	—	—
00030296100	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296101	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	910	—	—
00030296102	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296103	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	910	—	—
00030296104	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296105	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	910	—	—
00030296106	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296107	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	910	—	—
00030296108	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296109	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	910	—	—
00030296110	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296111	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	910	—	—
00030296112	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296113	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	910	—	—
00030296114	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296115	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	910	—	—
00030296116	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296117	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	910	—	—
00030296118	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296119	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	910	—	—
00030296120	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296121	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	910	—	—
00030296122	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296123	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	910	—	—
00030296124	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296125	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	910	—	—
00030296126	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296127	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	910	—	—
00030296128	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296129	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	910	—	—
00030296130	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296131	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	910	—	—
00030296132	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296133	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	910	—	—
00030296134	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296135	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	910	—	—
00030296136	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296137	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	910	—	—
00030296138	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296139	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	910	—	—
00030296140	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296141	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	910	—	—
00030296142	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296143	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	910	—	—
00030296144	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296145	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	910	—	—
00030296146	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296147	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	910	—	—
00030296148	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296149	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	910	—	—
00030296150	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296151	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	910	—	—
00030296152	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296153	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296154	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296155	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296156	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296157	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296158	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296159	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296160	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296161	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296162	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296163	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296164	54806.10441	0.75	2009-02-17 00:52:09	2009-02-17 00:52:09	1933	—	—
00030296165	54806.10441	0.75	2009-02-17 00:52:09				

Table A3 – *continued*

ObsID	MJD	Phase	Start time (UT) (yyyy-mm-dd hh:mm:ss)	End time (UT) (yyyy-mm-dd hh:mm:ss)	Exposure (s)	Flux ^a (erg cm ⁻² s ⁻¹)	Flux ^b (erg cm ⁻² s ⁻¹)
00030296104	54909.95111	0.58	2009-03-19 22:41:21	2009-03-19 22:57:49	988	–	–
00030296105	54913.22458	0.86	2009-03-23 05:15:50	2009-03-23 05:34:56	1361	1.9 ^{+0.5} 1.6 ^{+0.5}	3.6 ^{+4.7} 2.7 ^{+4.6}
00030296106	54916.97633	0.17	2009-03-25 23:31:54	2009-03-26 00:23:33:55	950	0.4 ^{+0.4} 0.3 ^{+0.4}	2.7 ^{+6.5} 2.7 ^{+1.0}
00030296107	54923.49186	0.72	2009-04-02 10:51:37	2009-04-02 12:44:56	1171	1.2 ^{+0.4} 1.0 ^{+0.3}	0.9 ^{+5.2} 0.9 ^{+0.3}
00030296108	54930.96239	0.35	2009-04-09 22:57:45	2009-04-09 23:13:55	970	0.6 ^{+0.6} 0.5 ^{+0.5}	4.2 ^{+5.9} 4.2 ^{+1.1}
00030296110	54933.03779	0.53	2009-04-12 00:46:55	2009-04-12 01:05:53	870	2.2 ^{+0.6} 2.0 ^{+0.6}	–
00030296111	54937.08095	0.87	2009-04-16 01:03:11	2009-04-16 02:49:57	875	0.8 ^{+0.7} 0.8 ^{+0.7}	–
00030296112	54943.48973	0.36	2009-04-23 06:35:09	2009-04-23 08:25:56	832	3.4 ^{+1.0} 3.0 ^{+0.9}	5.2 ^{+1.2} 5.2 ^{+0.3}
00030296114	54944.31288	0.47	2009-05-03 00:35:09	2009-05-03 02:44:57	1151	0.6 ^{+0.4} 0.5 ^{+0.4}	1.0 ^{+5.3} 1.0 ^{+0.3}
00030296116	54945.95235	0.29	2009-05-14 21:13:14	2009-05-14 22:23:55	782	–	–
00030296117	54948.32941	0.65	2009-05-28 06:01:58	2009-05-28 17:44:55	915	1.5 ^{+0.4} 1.5 ^{+0.4}	1.6 ^{+0.3} 1.6 ^{+0.3}
00030296120	54972.14231	0.82	2009-05-21 02:03:56	2009-05-28 16:01:58	832	6.1 ^{+1.3} 6.1 ^{+1.3}	9.6 ^{+7.9} 9.6 ^{+1.9}
00030296121	54979.73037	0.45	2009-05-28 06:01:58	2009-05-28 17:44:55	975	0.5 ^{+0.4} 0.5 ^{+0.4}	0.9 ^{+0.4} 0.9 ^{+0.4}
00030296122	55001.38840	0.12	2009-06-11 01:41:19	2009-06-10 10:22:31:56	1176	0.5 ^{+0.2} 0.5 ^{+0.2}	0.7 ^{+0.2} 0.7 ^{+0.2}
00030296123	55004.49365	0.21	2009-06-14 12:25:56	2009-06-14 16:25:56	1354	2.1 ^{+0.8} 2.1 ^{+0.8}	2.5 ^{+1.1} 2.5 ^{+0.6}
00030296124	55007.65543	0.01	2009-06-22 14:14:14	2009-06-22 23:44:56	919	–	–
00030296125	55011.38841	0.16	2009-06-22 14:14:14	2009-06-22 23:44:56	1141	–	–
00030296127	55014.93641	0.83	2009-07-19 18:04:31	2009-07-19 18:13:55	564	–	–
00030296131	55024.33552	0.21	2009-07-12 07:45:28	2009-07-12 09:29:57	1221	1.6 ^{+0.3} 1.6 ^{+0.3}	5.9 ⁺⁴¹ 5.9 ⁺⁴¹
00030296132	55021.95295	0.01	2009-07-09 20:41:43	2009-07-09 23:55:56	394	–	–
00030296133	55031.75641	0.16	2009-07-19 18:04:31	2009-07-19 18:13:55	702	4.1 ^{+1.3} 4.1 ^{+1.3}	7.1 ⁺¹⁰⁸ 7.1 ⁺¹⁰⁸
00030296134	55035.67416	0.16	2009-07-23 15:17:38	2009-07-23 15:31:56	1005	2.1 ^{+0.6} 2.1 ^{+0.6}	3.5 ⁺³⁷ 3.5 ⁺³⁷
00030296135	55040.95150	0.02	2009-08-02 19:36:56	2009-08-02 19:36:56	1005	–	–
00030296136	55042.11395	0.71	2009-07-30 00:24:55	2009-07-30 04:24:55	1622	5.5 ^{+1.2} 5.5 ^{+1.2}	7.1 ^{+1.2} 7.1 ^{+1.2}
00030296137	55042.11395	0.41	2009-07-26 13:36:27	2009-07-26 17:00:56	973	–	–
00030296138	55045.81150	0.02	2009-08-19 20:11	2009-08-19 20:11	005	–	–
00030296139	55046.21150	0.71	2009-07-30 01:03:15	2009-07-30 01:03:15	005	–	–
00030296140	55046.21150	0.41	2009-07-26 13:36:27	2009-07-26 17:00:56	973	–	–
00030296141	55053.67399	0.16	2009-07-19 18:04:31	2009-07-19 18:13:55	702	4.1 ^{+1.3} 4.1 ^{+1.3}	7.1 ⁺¹⁰⁸ 7.1 ⁺¹⁰⁸
00030296142	55054.43280	0.16	2009-07-23 15:17:38	2009-07-23 15:31:56	1005	–	–
00030296143	55054.43280	0.16	2009-07-19 18:04:31	2009-07-19 18:13:55	702	4.1 ^{+1.3} 4.1 ^{+1.3}	7.1 ⁺¹⁰⁸ 7.1 ⁺¹⁰⁸
00030296144	55058.94049	0.76	2009-07-09 20:41:43	2009-07-09 23:55:56	394	–	–
00030296145	55061.75641	0.16	2009-07-19 18:04:31	2009-07-19 18:13:55	702	4.1 ^{+1.3} 4.1 ^{+1.3}	7.1 ⁺¹⁰⁸ 7.1 ⁺¹⁰⁸
00030296146	55061.75641	0.16	2009-07-23 15:17:38	2009-07-23 15:31:56	1005	–	–
00030296147	55061.75641	0.16	2009-07-19 18:04:31	2009-07-19 18:13:55	702	4.1 ^{+1.3} 4.1 ^{+1.3}	7.1 ⁺¹⁰⁸ 7.1 ⁺¹⁰⁸
00030296148	55061.75641	0.16	2009-07-23 15:17:38	2009-07-23 15:31:56	1005	–	–
00030296149	55061.75641	0.16	2009-07-19 18:04:31	2009-07-19 18:13:55	702	4.1 ^{+1.3} 4.1 ^{+1.3}	7.1 ⁺¹⁰⁸ 7.1 ⁺¹⁰⁸
00030296150	55061.75641	0.16	2009-07-23 15:17:38	2009-07-23 15:31:56	1005	–	–
00030296151	55061.75641	0.16	2009-07-19 18:04:31	2009-07-19 18:13:55	702	4.1 ^{+1.3} 4.1 ^{+1.3}	7.1 ⁺¹⁰⁸ 7.1 ⁺¹⁰⁸
00030296152	55061.75641	0.16	2009-07-23 15:17:38	2009-07-23 15:31:56	1005	–	–
00030296153	55061.75641	0.16	2009-07-19 18:04:31	2009-07-19 18:13:55	702	4.1 ^{+1.3} 4.1 ^{+1.3}	7.1 ⁺¹⁰⁸ 7.1 ⁺¹⁰⁸
00030296154	55061.75641	0.16	2009-07-23 15:17:38	2009-07-23 15:31:56	1005	–	–
00030296155	55061.75641	0.16	2009-07-19 18:04:31	2009-07-19 18:13:55	702	4.1 ^{+1.3} 4.1 ^{+1.3}	7.1 ⁺¹⁰⁸ 7.1 ⁺¹⁰⁸
00030296156	55061.75641	0.16	2009-07-23 15:17:38	2009-07-23 15:31:56	1005	–	–
00030296157	55061.75641	0.16	2009-07-19 18:04:31	2009-07-19 18:13:55	702	4.1 ^{+1.3} 4.1 ^{+1.3}	7.1 ⁺¹⁰⁸ 7.1 ⁺¹⁰⁸
00030296158	55061.75641	0.16	2009-07-23 15:17:38	2009-07-23 15:31:56	1005	–	–
00030296159	55061.75641	0.16	2009-07-19 18:04:31	2009-07-19 18:13:55	702	4.1 ^{+1.3} 4.1 ^{+1.3}	7.1 ⁺¹⁰⁸ 7.1 ⁺¹⁰⁸
00030296160	55061.75641	0.16	2009-07-23 15:17:38	2009-07-23 15:31:56	1005	–	–
00030296161	55061.75641	0.16	2009-07-19 18:04:31	2009-07-19 18:13:55	702	4.1 ^{+1.3} 4.1 ^{+1.3}	7.1 ⁺¹⁰⁸ 7.1 ⁺¹⁰⁸
00030296162	55061.75641	0.16	2009-07-23 15:17:38	2009-07-23 15:31:56	1005	–	–
00030296163	55061.75641	0.16	2009-07-19 18:04:31	2009-07-19 18:13:55	702	4.1 ^{+1.3} 4.1 ^{+1.3}	7.1 ⁺¹⁰⁸ 7.1 ⁺¹⁰⁸
00030296164	55061.75641	0.16	2009-07-23 15:17:38	2009-07-23 15:31:56	1005	–	–
00030296165	55061.75641	0.16	2009-07-19 18:04:31	2009-07-19 18:13:55	702	4.1 ^{+1.3} 4.1 ^{+1.3}	7.1 ⁺¹⁰⁸ 7.1 ⁺¹⁰⁸
00030296166	55061.75641	0.16	2009-07-23 15:17:38	2009-07-23 15:31:56	1005	–	–
00030296167	55061.75641	0.16	2009-07-19 18:04:31	2009-07-19 18:13:55	702	4.1 ^{+1.3} 4.1 ^{+1.3}	7.1 ⁺¹⁰⁸ 7.1 ⁺¹⁰⁸
00030296168	55061.75641	0.16	2009-07-23 15:17:38	2009-07-23 15:31:56	1005	–	–
00030296169	55061.75641	0.16	2009-07-19 18:04:31	2009-07-19 18:13:55	702	4.1 ^{+1.3} 4.1 ^{+1.3}	7.1 ⁺¹⁰⁸ 7.1 ⁺¹⁰⁸
00030296170	55061.75641	0.16	2009-07-23 15:17:38	2009-07-23 15:31:56	1005	–	–
00030296171	55061.75641	0.16	2009-07-19 18:04:31	2009-07-19 18:13:55	702	4.1 ^{+1.3} 4.1 ^{+1.3}	7.1 ⁺¹⁰⁸ 7.1 ⁺¹⁰⁸
00030296172	55061.75641	0.16	2009-07-23 15:17:38	2009-07-23 15:31:56	1005	–	–
00030296173	55061.75641	0.16	2009-07-19 18:04:31	2009-07-19 18:13:55	702	4.1 ^{+1.3} 4.1 ^{+1.3}	7.1 ⁺¹⁰⁸ 7.1 ⁺¹⁰⁸
00030296174	55061.75641	0.16	2009-07-23 15:17:38	2009-07-23 15:31:56	1005	–	–
00030296175	55061.75641	0.16	2009-07-19 18:04:31	2009-07-19 18:13:55	702	4.1 ^{+1.3} 4.1 ^{+1.3}	7.1 ⁺¹⁰⁸ 7.1 ⁺¹⁰⁸
00030296176	55061.75641	0.16	2009-07-23 15:17:38	2009-07-23 15:31:56	1005	–	–
00030296177	55061.75641	0.16	2009-07-19 18:04:31	2009-07-19 18:13:55	702	4.1 ^{+1.3} 4.1 ^{+1.3}	7.1 ⁺¹⁰⁸ 7.1 ⁺¹⁰⁸
00030296178	55061.75641	0.16	2009-07-23 15:17:38	2009-07-23 15:31:56	1005	–	–
00030296179	55061.75641	0.16	2009-07-19 18:04:31	2009-07-19 18:13:55	702	4.1 ^{+1.3} 4.1 ^{+1.3}	7.1 ⁺¹⁰⁸ 7.1 ⁺¹⁰⁸
00030296180	55061.75641	0.16	2009-07-23 15:17:38	2009-07-23 15:31:56	1005	–	–
00030296181	55061.75641	0.16	2009-07-19 18:04:31	2009-07-19 18:13:55	702	4.1 ^{+1.3} 4.1 ^{+1.3}	7.1 ⁺¹⁰⁸ 7.1 ⁺¹⁰⁸
00030296182	55061.75641	0.16	2009-07-23 15:17:38	2009-07-23 15:31:56	1005	–	–
00030296183	55061.75641	0.16	2009-07-19 18:04:31	2009-07-19 18:13:55	702	4.1 ^{+1.3} 4.1 ^{+1.3}	7.1 ⁺¹⁰⁸ 7.1 ⁺¹⁰⁸
00030296184	55061.75641	0.16	2009-07-23 15:17:38	2009-07-23 15:31:56	1005	–	–
00030296185	55061.75641	0.16	2009-07-19 18:04:31	2009-07-19 18:13:55	702	4.1 ^{+1.3} 4.1 ^{+1.3}	7.1 ⁺¹⁰⁸ 7.1 ⁺¹⁰⁸
00030296186	55061.75641	0.16	2009-07-23 15:17:38	2009-07-23 15:31:56	1005	–	–
00030296187	55061.75641	0.16	2009-07-19 18:04:31	2009-07-19 18:13:55	702	4.1 ^{+1.3} 4.1 ^{+1.3}	7.1 ⁺¹⁰⁸ 7.1 ⁺¹⁰⁸
00030296188	55061.75641	0.16	2009-07-23 15:17:38	2009-07-23 15:31:56	1005	–	–
00030296189	55061.75641	0.16	2009-07-19 18:04:31	2009-07-19 18:13:55	702	4.1 ^{+1.3} 4.1 ^{+1.3}	7.1 ⁺¹⁰⁸ 7.1 ⁺¹⁰⁸
00030296190	55061.75641	0.16	2009-07-23 15:17:38	2009-07-23 15:31:56	1005	–	–
00030296191	55061.75641	0.16	2009-07-19 18:04:31	2009-07-1			

Table A3 – *continued*

ObsID	MJD	Phase	Start time (UT) (yyyy-mm-dd hh:mm:ss)	End time (UT) (yyyy-mm-dd hh:mm:ss)	Exposure (s)	Flux ^a (erg cm ⁻² s ⁻¹)	Flux ^a (erg cm ⁻² s ⁻¹)	Flux ^a (erg cm ⁻² s ⁻¹)
00030296139	550409.57839	0.33	2009-08-06 14:46:56	2009-08-06 14:46:56	4.2 ^{+4.2} -0.2	2.3 ^{+0.4} -0.2	0.7 ^{+0.7} -0.2	0.8 ^{+8.0} -0.6
00030296141	550656.24617	0.07	2009-08-27 00:24:58	2009-08-27 00:24:58	10.5 ^{+0.6} -0.6	1.3 ^{+0.4} -0.5	0.4 ^{+0.2} -0.1	1.8 ^{+8.0} -0.8
00030296143	550844.62449	0.29	2009-09-10 15:20:37	2009-09-10 15:20:37	0.7 ^{+0.4} -0.3	0.2 ^{+0.1} -0.1	0.1 ^{+0.1} -0.1	0.1 ^{+0.1} -0.1
00030296144	55070.24617	0.33	2009-08-30 05:52:16	2009-09-01 13:15:36	1720.0 ^{+0.6} -0.6	983.0 ^{+0.6} -0.8	0.4 ^{+0.2} -0.3	1.5 ^{+2.0} -0.9
00030296148	55087.64947	0.54	2009-09-13 15:20:33	2009-09-17 07:03:56	2009-09-17 07:03:56	900.0 ^{+0.6} -0.6	1.4 ^{+0.6} -0.4	2.6 ^{+1.0} -1.0
00030296150	55101.65828	0.72	2009-09-27 14:45:35	2009-09-27 16:44:56	1128.0 ^{+0.6} -0.6	23.0 ^{+3.0} -3.0	-	2.5 ^{+1.4} -1.4
00030296151	55109.12292	0.83	2009-09-17 02:48:02	2009-09-17 02:48:02	1073.0 ^{+0.6} -0.6	0.4 ^{+0.3} -0.3	0.9 ^{+0.6} -0.3	0.9 ^{+0.6} -0.3
00030296152	55108.11932	0.26	2009-10-04 02:59:56	2009-10-04 02:59:56	963.0 ^{+0.6} -0.8	0.4 ^{+0.2} -0.3	-	2.5 ^{+1.8} -1.4
00030296153	55112.13932	0.60	2009-10-18 13:39:20	2009-10-18 13:39:20	905.0 ^{+0.5} -0.5	1.4 ^{+0.3} -0.3	9.0 ^{+9.6} -6.4	33.1 ^{+1.4} -8.8
00030296154	55122.25240	0.48	2009-10-25 08:04:26	2009-10-25 08:13:55	569.0 ^{+0.5} -0.5	1.6 ^{+0.3} -0.3	0.05	0.3 ^{+0.1} -0.1
00030296155	55129.33971	0.05	2009-10-25 08:13:55	2009-10-25 08:13:55	569.0 ^{+0.5} -0.5	1.6 ^{+0.3} -0.3	0.05	0.3 ^{+0.1} -0.1

^aNotes: ^a Observed flux in the 0.3–10 keV energy band in units of $\times 10^{-11}$ erg cm⁻² s⁻¹. When no value is provided, the observation yielded insufficient counts to perform spectral analysis. ^b Unabsorbed flux in the 0.3–10 keV energy band in units of $\times 10^{-11}$ erg cm⁻² s⁻¹.

Table A4. Same as Table A3 for IGR J16493–4348.

ObsID	MJD	Phase	Start time (UT) (yyyy-mm-dd hh:mm:ss)	End time (UT) (yyyy-mm-dd hh:mm:ss)	Exposure (s)	Flux ^a (erg cm ^{−2} s ^{−1})	Flux ^b (erg cm ^{−2} s ^{−1})
00030379003	56676.84697	0.17	2014-01-19 20:11:21	2014-01-19 20:27:54	993	2.9 ^{+0.7} −0.5	6.2 ^{+10.3} −1.9
00030379004	56676.12236	0.28	2014-01-22 02:49:29	2014-01-22 03:25:54	805	1.8 ^{+0.9} −0.6	13.3 ^{+78.5} −10.0
00030379005	56683.05763	0.48	2014-01-26 01:10:04	2014-01-26 01:35:54	1550	3.9 ^{+0.7} −0.6	5.6 ⁺¹⁶ −8.8
00030379006	56686.25279	0.64	2014-01-29 00:56:05	2014-01-29 06:11:56	950	—	—
00030379007	56690.06221	0.83	2014-02-02 01:21:14	2014-02-02 01:37:55	1000	4.8 ^{+1.1} −0.9	5.8 ^{+1.0} −0.9
00030379008	56693.06911	0.97	2014-02-05 01:31:07	2014-02-05 01:47:55	1008	2.4 ^{+0.6} −0.5	8.6 ^{+45.2} −4.3
00030379009	56697.26632	0.18	2014-02-09 06:14:06	2014-02-09 06:32:54	1128	2.9 ^{+0.7} −0.6	3.5 ^{+0.6} −0.6
00030379010	56704.36711	0.54	2014-02-16 01:12:45	2014-02-16 17:50:56	1221	2.1 ^{+0.7} −0.5	4.5 ^{+19.5} −1.8
00030379011	56707.20263	0.68	2014-02-19 04:59:53	2014-02-19 04:59:53	973	3.3 ^{+0.9} −0.7	6.0 ^{+9.4} −1.6
00030379012	56711.17433	0.91	2014-02-23 12:26:32	2014-02-23 23:45:55	865	0.5 ^{+0.5} −0.3	0.9 ^{+8.8} −0.8
00030379013	56714.44248	0.04	2014-02-26 09:44:00	2014-02-26 13:01:55	980	5.1 ^{+2.6} −1.0	—
00030379014	56718.86194	0.26	2014-03-02 20:33:27	2014-03-02 20:48:55	925	—	—
00030379016	56725.32999	0.58	2014-03-09 07:47:26	2014-03-09 08:02:54	928	—	—
00030379017	56728.52286	0.74	2014-03-12 12:38:43	2014-03-12 12:55:54	1014	2.3 ^{+0.7} −0.5	3.4 ^{+2.4} −0.7
00030379018	56732.14626	0.92	2014-03-16 03:22:20	2014-03-16 03:38:53	993	5.5 ^{+1.5} −1.3	8.2 ^{+5.5} −5.5
00030379019	56735.61277	0.09	2014-03-19 14:43:50	2014-03-19 14:50:55	1025	5.4 ^{+1.2} −1.0	10.4 ^{+4.8} −2.9
00030379020	56739.61033	0.29	2014-03-23 14:35:25	2014-03-23 14:42:19	414	—	—
00030379021	56742.07266	0.42	2014-03-26 01:34:19	2014-03-26 01:54:55	1236	1.9 ^{+0.5} −0.4	2.8 ^{+2.0} −0.6
00030379022	56746.78347	0.65	2014-03-30 19:37:54	2014-04-02 21:17:55	953	—	—
00030379023	56749.88149	0.81	2014-04-02 21:00:45	2014-04-02 21:17:55	1031	5.3 ^{+1.1} −0.9	6.6 ^{+1.5} −0.0
00030379024	56753.13446	0.97	2014-04-06 00:03:17	2014-04-06 02:23:56	875	—	—
00030379025	56756.73465	0.15	2014-04-09 17:29:51	2014-04-09 17:45:54	963	9.9 ^{+1.8} −1.5	13.0 ^{+2.4} −1.7
00030379026	56760.79634	0.35	2014-04-13 19:03:09	2014-04-13 19:18:57	945	3.1 ^{+1.0} −0.7	6.9 ^{+2.6} −2.4
00030379027	56763.54492	0.49	2014-04-16 12:56:25	2014-04-16 13:12:55	990	5.8 ^{+1.6} −1.2	8.3 ^{+6.6} −1.6
00030379028	56767.76751	0.70	2014-04-20 17:31:39	2014-04-20 19:18:54	248	—	—
00030379029	56770.53186	0.83	2014-04-23 12:53:54	2014-04-23 12:53:54	963	3.3 ^{+1.4} −1.0	3.6 ^{+1.0} −0.8
00030379030	56774.74229	0.04	2014-04-27 17:43:37	2014-04-27 17:50:55	978	2.9 ^{+0.8} −0.6	6.8 ^{+2.2} −2.5
00030379031	56777.21166	0.17	2014-05-03 03:27:41	2014-05-04 03:41:54	1013	3.1 ^{+0.8} −0.5	4.2 ^{+1.4} −0.7
00030379032	56781.14707	0.36	2014-05-04 03:22:39	2014-05-04 03:40:54	990	2.0 ^{+0.6} −0.4	4.5 ⁺¹¹ −16
00030379033	56784.74352	0.54	2014-05-07 17:42:24	2014-05-07 17:58:55	990	—	—

Table A4 – continued

ObsID	MJD	Phase	Start time (UT) (yyyy-mm-dd hh:mm:ss)	End time (UT) (yyyy-mm-dd hh:mm:ss)	Exposure (s)	Flux ^a (erg cm ⁻² s ⁻¹)	Flux ^b (erg cm ⁻² s ⁻¹)
00030279034	5678847134	0.73	2014-05-11 11:10:33	2014-05-11 11:26:54	980	4.7 ^{+1.1} _{-0.9}	6.5 ^{+2.3} _{-1.1}
00030279035	5679100951	0.86	2014-05-14 01:32:15	2014-05-14 04:47:55	940	5.4 ^{+1.3} _{-1.0}	7.6 ^{+3.2} _{-1.3}
00030279039	56805367506	0.59	2014-05-28 16:03:15	2014-05-28 16:20:55	1061	1.1 ^{+0.6}	2.2 ^{+12.3}
00030279040	56809180156	0.79	2014-06-01 19:05:34	2014-06-01 19:22:55	1041	1.2 ^{+0.4}	23.4 ^{+206.4}
00030279044	5682345513	0.47	2014-06-15 10:47:50	2014-06-15 11:02:55	905	1.2 ^{+0.6}	1.8 ^{+4.2}
00030279045	5682652881	0.61	2014-06-18 07:45:12	2014-06-18 08:04:56	993	2.8 ^{+1.1}	7.6 ^{+36.3}
00030279046	56830080013	0.84	2014-06-22 04:22:40	2014-06-23 14:20:54	1186	2.3 ^{+0.7}	2.7 ^{+0.6}
00030279047	568336993	0.95	2014-06-25 01:34:30	2014-06-25 01:46:54	745	4.4 ^{+1.1}	6.8 ^{+4.7}
00030279048	5683758312	0.19	2014-06-29 20:27:28	2014-06-29 20:43:54	985	6.6 ^{+1.2}	9.5 ^{+2.6}
00030279049	56840040933	0.32	2014-07-02 00:03:17	2014-07-02 19:26:55	1068	0.7 ^{+0.5}	1.1 ^{+8.5}
00030279050	5684455560	0.52	2014-07-06 12:45:35	2014-07-06 12:56:55	679	3.9 ^{+1.6}	4.4 ^{+1.0}
00030279051	5684738344	0.66	2014-07-09 09:08:36	2014-07-09 09:09:56	80	–	–
00030279052	5685125188	0.86	2014-07-13 05:54:29	2014-07-13 06:10:54	985	3.8 ^{+0.8}	6.2 ^{+4.2}
00030279053	56853475888	0.03	2014-07-16 15:41:39	2014-07-16 20:43:55	750	–	–
00030279054	56858359527	0.22	2014-07-20 04:08:27	2014-07-20 14:25:55	1048	1.6 ^{+0.6}	2.4 ^{+2.3}
00030279055	5688172998	0.38	2014-07-23 17:27:26	2014-07-23 17:34:54	449	–	–
00030279056	56885157199	0.07	2014-08-06 13:35:23	2014-08-06 13:51:56	993	3.0 ^{+0.8}	3.4 ^{+0.7}
00030279057	56886818760	0.70	2014-08-07-30 04:42:23	2014-08-07-30 04:58:53	1051	–	–
00030279058	56887283217	0.93	2014-08-03 20:18:24	2014-08-03 20:35:55	1046	6.6 ^{+1.6}	12.4 ^{+15.2}
00030279059	56887557199	0.07	2014-08-06 13:35:23	2014-08-06 13:51:56	993	–	–
00030279060	5688866423	0.62	2014-08-17 15:24:31	2014-08-17 15:30:55	449	–	–
00030279061	56889517643	0.55	2014-08-27 04:05:12	2014-08-27 04:22:55	1063	–	–
00030279062	5688966423	0.28	2014-08-30 18:38:31	2014-08-30 18:54:54	983	1.1 ^{+0.5}	2.9 ^{+22.5}
00030279063	56889798244	0.09	2014-08-27 04:04:38	2014-08-27 04:20:54	958	–	–
00030279064	56890631039	0.30	2014-08-31 07:19:01	2014-08-31 07:34:53	953	1.7 ^{+5.5}	9.1 ^{+1.1}
00030279065	56890631044	0.09	2014-08-27 04:04:38	2014-08-27 04:20:54	958	–	–
00030279066	5689203944	0.77	2014-08-20 16:49:41	2014-08-20 17:04:56	915	6.8 ^{+1.7}	9.1 ^{+1.1}
00030279067	5690035922	0.46	2014-09-03 12:20:43:7	2014-09-03 12:21:55	1038	2.9 ^{+0.7} _{-0.6}	4.7 ^{+0.3}

Notes. ^a Observed flux in the 0.3–10 keV energy band in units of 10^{-11} erg cm⁻² s⁻¹. When no value is provided, the observation yielded insufficient counts to perform spectral analysis. ^b Unabsorbed flux in the 0.3–10 keV energy band in units of 10^{-11} erg cm⁻² s⁻¹.

APPENDIX B: ADDITIONAL MATERIAL

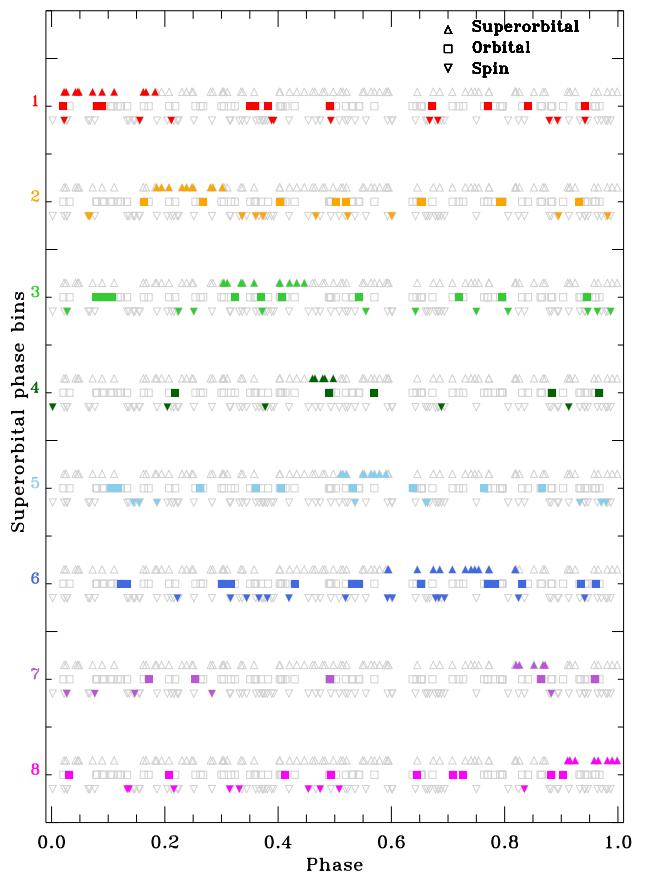

As reported in Section 2.1, the X-ray light curves of 2S 0114+650 show variability on different time-scales, namely, the spin period $P_{\text{spin}} \sim 9800$ s, the orbital period $P_{\text{orb}} = 11.5983$ d, and the superorbital period $P_{\text{sup}} = 30.76$ d. In order to clarify the effects of binning of the data on these different time-scales on our results we also calculated the spin phase for each observation (Table A1). We note that the typical exposure time of our observations is generally a factor of 10 shorter than P_{spin} , so we addressed the possibility that in each orbital phase bin the spin phases would not be equally represented.

Fig. B1 (left) shows as grey empty squares where our sample of observations occur in the orbital phase and as grey downward-pointing empty triangles where they occur in spin phase (see e.g. the first two rows). For each orbital phase bin (filled squares: red for the first bin, orange for the second bin, green for the third and so on) on the first row, we report as filled triangles the matching observations in spin phase in the second row (with the same colour). As can be observed, the spin phases, albeit being a small number, are not preferentially clustered. Therefore, we can argue that, within the limits of our discrete sampling of the light curve of 2S 0114+650, we are not introducing strong biases due to

the distribution of our observations in spin phase in each orbital phase bin.

Similarly, to address the possibility that in each superorbital phase bin the orbital phases would not be equally represented, Fig. B1 (right) shows as grey upward-pointing empty triangles where our sample of observations occur in the superorbital phase, as grey empty squares where our sample of observations occur in the orbital phase and as grey downward-pointing empty triangles where they occur in spin phase (e.g. the first three rows). For each superorbital phase bin (filled triangles with the same colour scheme) on the first row, we report as filled symbols the matching observations in orbital phase in the second row and spin phase in the third row (with the same colour). Once more, we can argue that we are not introducing strong biases due to the distribution of our observations in orbital phase in each superorbital orbital phase bin.

We finally consider the other sources whose data we reported in Table 1. In the case of IGR J16418–4532 and IGR J16493–4348 the pulsation time-scale is of the order of ~ 1 ks, comparable with the typical XRT exposure. The XRT data thus sample automatically all spin phases in each observation. For IGR J16479–4514, no pulsations were ever detected and thus no such investigation is possible at this time.

Figure B1. *Left:* Distribution of the observations collected on 2S 0114+650 (on the x-axis) in orbital phase (empty squares), and spin phase (empty downward-pointing triangles) as a function of orbital phase bin (on the y-axis). The observations for each orbital phase bin are shown in different colours as filled symbols and offset for clarity. *Right:* Distribution of the observations collected on 2S 0114+650 (on the x-axis) in superorbital phase (empty upward-pointing triangles), orbital phase (empty squares), and spin phase (empty downward-pointing triangles) as a function of superorbital phase bin (on the y-axis). The observations for each superorbital phase bin are shown in different colours as filled symbols and offset for clarity.

This paper has been typeset from a $\text{\TeX}/\text{\LaTeX}$ file prepared by the author.

© 2023 The Author(s).

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<https://creativecommons.org/licenses/by/4.0/>), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.