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1 Introduction

The Coleman-Mandula theorem [1] and its generalization [2] strongly restrict the S-matrix symmetries
of a nontrivial (i.e. interacting) relativistic field theory in flat space-time. More precisely, the extension
of the space-time symmetry algebra is at most the (semi)direct sum of a (super)conformal algebra and
an internal symmetry algebra spanned by elements that commute with the generators of the Poincaré
algebra. Ruling out higher symmetries via these theorems, one rules out higher spin (HS) gauge fields
associated with them, allowing in practice only gauge fields of low spins (i.e. s 6 2). However, as will
be reviewed here, going beyond some assumptions of these no-go theorems allows to overcome both
restrictions, on higher spins (i.e. s > 2) and on space-time symmetry extensions.

By now, HS gauge fields are pretty well understood at the free field level. Therefore, the main open
problem in this topic is to find proper nonAbelian HS gauge symmetries which extend the space-time
symmetries. These symmetries can possibly mix fields of different spins, as supersymmetry does. Even
though one may never find HS particles in accelerators, nonAbelian HS symmetries might lead us to a
better understanding of the true symmetries of unification models. From the supergravity perspective,
the theories with HS fields may have more than 32 supercharges and may live in dimensions higher
than 11. From the superstring perspective, several arguments support the conjecture [3] that the
Stueckelberg symmetries of massive HS string excitations result from a spontaneous breaking of some
HS gauge symmetries. In this picture, tensile string theory appears as a spontaneously broken phase
of a more symmetric phase with only massless fields. In that case, superstrings should exhibit higher
symmetries in the high-energy limit as was argued long ago by Gross [4]. A more recent argument came
from the AdS/CFT side after it was realized [5, 6, 7, 8] that HS symmetries should be unbroken in the
Sundborg–Witten limit

λ = g2
Y MN =

“R2
AdS

α′

”2

−→ 0 ,

because the boundary conformal theory becomes free. A dual string theory in the highly curved AdS
space-time is therefore expected to be a HS theory (see also [9, 10] and refs therein for recent develop-
ments).

One way to provide an explicit solution of the nonAbelian HS gauge symmetry problem is by con-
structing a consistent nonlinear theory of massless HS fields. For several decades, a lot of efforts has been
put into this direction although, from the very beginning, this line of research faced several difficulties.
The first explicit attempts to introduce interactions between HS gauge fields and gravity encountered
severe problems [11]. However, some positive results [12] were later obtained in flat space-time on the
existence of consistent vertices for HS gauge fields interacting with each other, but not with gravity.

Seventeen years ago, the problem of consistent HS gravitational interactions was partially solved in
four dimensions [13]. In order to achieve this result, the following conditions of the no-go theorems [1,2]
were relaxed:

(1) the theory is formulated around a flat background.

(2) the spectrum contains a finite number of HS fields.

The nonlinear HS theory in four dimensions was shown to be consistent up to cubic order at the action
level [13] and, later, at all orders at the level of equations of motion [14, 15]. The second part of these
results was recently extended to arbitrary space-time dimensions [16]. The nonlinear HS theory exhibits
some rather unusual properties of HS gauge fields:

(1’) the theory is perturbed around an (A)dS background and does not admit a flat limit as long as
HS symmetries are unbroken.

(2’) the allowed spectra contain infinite towers of HS fields and do not admit a consistent finite trun-
cation with s > 2 fields.

(3’) the vertices have higher-derivative terms (that is to say, the higher derivatives appear in HS inter-
actions - not at the free field level).

The properties (2’) and (3’) were also observed by the authors of [12] for HS gauge fields. Though
unusual, these properties are familiar to high-energy theorists. The property (1’) is verified by gauged
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supergravities with charged gravitinos [17,18]. The property (2’) plays an important role in the consis-
tency of string theory. The property (3’) is also shared by Witten’s string field theory [19].

An argument in favor of an AdS background is that the S-matrix theorems [1,2] do not apply since
there is no well-defined S-matrix in AdS space-time [20]. The AdS geometry plays a key role in the
nonlinear theory because cubic higher derivative terms are added to the free Lagrangian, requiring a
nonvanishing cosmological constant Λ. These cubic vertices are schematically of the form

Lint =
X
n,p

Λ−
1
2 (n+p)Dn(ϕ...)D

p(ϕ...)R... ,

where ϕ... denotes some spin-s gauge field, and R stands for the fluctuation of the Riemann curvature
tensor around the AdS background. Such vertices do not admit a Λ → 0 limit. The highest order of
derivatives which appear in the cubic vertex increases linearly with the spin [12,13]: n+p ∼ s. Since all
spins s > 2 must be included in the nonAbelian HS algebra, the number of derivatives is not bounded
from above. In other words, the HS gauge theory is nonlocal1.

The purpose of these lecture notes is to present, in a self-contained2 way, the nonlinear equations
for completely symmetric bosonic HS gauge fields in AdS space of any dimension. The structure of the
present lecture notes is as follows.

1.1 Plan of the paper

In Section 2, the MacDowell-Mansouri-Stelle-West formulation of gravity is recalled. In Section 3, some
basics about Young tableaux and irreducible tensor representations are introduced. In Section 4, the
approach of Section 2 is generalized to HS fields, i.e. the free HS gauge theory is formulated as a theory
of one-form connections. In Section 5, a nonAbelian HS algebra is constructed. The general definition of
a free differential algebra is given in Section 6 and a strategy is explained on how to formulate nonlinear
HS field equations in these terms. Section 7 presents the unfolded form of the free massless scalar field
and linearized gravity field equations, which are generalized to free HS field equations in Section 8. In
Section 9 is explained how the cohomologies of some operator σ− describe the dynamical content of
a theory. The relevant cohomologies are calculated in the HS case in Section 10. Sections 11 and 12
introduce some tools (the star product and the twisted adjoint representation) useful for writing the
nonlinear equations, which is done in Section 13. The nonlinear equations are analyzed perturbatively
in Section 14 and they are further discussed in Section 15. A brief conclusion inviting to further readings
completes these lecture notes. In Appendix 1 some elementary material of lower spin gauge theories
is reviewed, while in Appendix 2 some technical points of the nonlinear HS equations are addressed in
more details.

For an easier reading of the lecture notes, here is a guide to the regions related to the main topics
addressed in these lecture notes:

- Abelian HS gauge theory: In section 4 is reviewed the quadratic actions of free (constrained) HS gauge
fields in the metric-like and frame-like approaches.

- Non-Abelian HS algebra: The definition and some properties of the two simplest HS algebras are
given in Section 5.

- Unfolded formulation of free HS fields: The unfolding of the free HS equations is very important as a
starting point towards nonlinear HS equations at all orders. The general unfolding procedure and
its application to the HS gauge theory is explained in many details in Sections 7, 8, 9, 10 and 12.
(Sections 9 and 10 can be skipped in a first quick reading since the corresponding material is not
necessary for understanding Sections from 11 till 15.)

1Nonlocal theories do not automatically suffer from the higher-derivative problem. Indeed, in some cases like
string field theory, the problem is somehow cured [21, 19, 22] if the free theory is well-behaved and if nonlocality
is treated perturbatively (see [23] for a comprehensive review on this point).

2For these lecture notes, the reader is only assumed to have basic knowledge of Yang-Mills theory, general
relativity and group theory. The reader is also supposed to be familiar with the notions of differential forms and
cohomology groups.
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- Non-linear HS equations: Consistent nonlinear equations, that are invariant under the non-Abelian
HS gauge transformations and diffeomorphisms, and correctly reproduce the free HS dynamics at
the linearized level, are presented and discussed in Sections 6.2, 10.3, 13, 14 and 15.

- Material of wider interest: Sections 2, 3, 6.1, 9 and 11 introduce tools which prove to be very useful
in HS gauge theories, but which may also appear in a variety of different contexts.

1.2 Conventions

Our conventions are as follows:

A generic space-time is denoted byMd and is a (pseudo)-Riemannian smooth manifold of dimension
d, where the metric is taken to be “mostly minus”.

Greek letters µ, ν, ρ, σ, . . . denote curved (i.e., base) indices, while Latin letters a, b, c, d, . . . denote
fiber indices often referred to as tangent space indices. Both types of indices run from 0 to d− 1. The
tensor ηab is the mostly minus Minkowski metric. Capital Latin letters A,B,C,D, . . . denote ambient
space indices and their range of values is 0, 1, . . . , d − 1, d̂, where the (timelike) (d + 1)-th direction is
denoted by d̂ (in order to distinguish the tangent space index d from the value d̂ that it can take). The
tensor ηAB is diagonal with entries (+,−, . . . ,−,+).

The bracket [. . .] denotes complete antisymmetrization of indices, with strength one (e.g. A[aBb] =
1
2
(AaBb−AbBa)), while the bracket {. . .} denotes complete symmetrization of the indices, with strength

one (e.g. A{aBb} = 1
2
(AaBb + AbBa)). Analogously, the commutator and anticommutator are respec-

tively denoted as [ , ] and { , }.
The de Rham complex Ω∗(Md) is the graded commutative algebra of differential forms that is

endowed with the wedge product (the wedge symbol will always be omitted in this paper) and the
exterior differential d. Ωp(Md) is the space of differential p-forms on the manifold Md, which are
sections of the p-th exterior power of the cotangent bundle T ∗Md. In the topologically trivial situation
discussed in this paper Ωp(Md) = C∞(Md)⊗ΛpRd ∗, where the space C∞(Md) is the space of smooth
functions from Md to R. The generators dxµ of the exterior algebra ΛRd ∗ are Grassmann odd (i.e.
anticommuting). The exterior differential is defined as d = dxµ∂µ.

2 Gravity à la MacDowell - Mansouri - Stelle - West

Einstein’s theory of gravity is a nonAbelian gauge theory of a spin-2 particle, in a similar way as
Yang-Mills theories3 are nonAbelian gauge theories of spin-1 particles. Local symmetries of Yang-Mills
theories originate from internal global symmetries. Similarly, the gauge symmetries of Einstein gravity
in the vielbein formulation4 originate from global space-time symmetries of its most symmetric vacua.
The latter symmetries are manifest in the formulation of MacDowell, Mansouri, Stelle and West [25,26].

This section is devoted to the presentation of the latter formulation. In the first subsection 2.1, the
Einstein-Cartan formulation of gravity is reviewed and the link with the Einstein-Hilbert action without
cosmological constant is explained. A cosmological constant can be introduced into the formalism,
which is done in Subsection 2.2. This subsection also contains an elegant action for gravity, written by
MacDowell and Mansouri. In Subsection 2.3, the improved version of this action introduced by Stelle
and West is presented, the covariance under all symmetries being made manifest.

2.1 Gravity as a Poincaré gauge theory

In this subsection, the frame formulation of gravity with zero cosmological constant is reviewed. We
first introduce the dynamical fields and sketch the link to the metric formulation. Then the action is
written.

3See Appendix 1.2 for a brief review of Yang-Mills theories.
4See e.g. [24] for a pedagogical review on the gauge theory formulation of gravity and some of its extensions,

like supergravity.
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The basic idea is as follows: instead of considering the metric gµν as the dynamical field, two new
dynamical fields are introduced: the vielbein or frame field ea

µ and the Lorentz connection ωL ab
µ .

The relevant fields appear through the one-forms ea = ea
µ dx

µ and ωL ab = −ωL ba = ωL ab
µ dxµ .

The number of one-forms is equal to d+ d(d−1)
2

= (d+1)d
2

, which is the dimension of the Poincaré group
ISO(d− 1, 1). So they can be collected into a single one-form taking values in the Poincaré algebra as
ω = eaPa + 1

2
ωL abMab, where Pa and Mab generate iso(d−1, 1) (see Appendix 1.1). The corresponding

curvature is the two-form (see Appendix 1.2):

R = dω + ω2 ≡ T aPa +
1

2
RL abMab ,

where T a is the torsion, given by

T a = DLea = dea + ωL a
be

b ,

and RL ab is the Lorentz curvature

RL ab = DLωL ab = dωL ab + ωL a
cω

L cb ,

as follows from the Poincaré algebra (1.1)-(1.3).

To make contact with the metric formulation of gravity, one must assume that the frame ea
µ has

maximal rank d so that it gives rise to the nondegenerate metric tensor gµν = ηabe
a
µe

b
ν . As will be shown

further in this section, one is allowed to require the absence of torsion, Ta = 0. Then one solves this
constraint and expresses the Lorentz connection in terms of the frame field, ωL = ωL(e, ∂e). It can be
checked that the tensor Rρσ, µν = ea

µe
b
νR

L
ρσ ab is then expressed solely in terms of the metric, and is the

Riemann tensor.

The first order action of the frame formulation of gravity is due to Weyl [27]. In any dimension
d > 1 it can be written in the form

S[ ea
µ, ω

L ab
µ ] =

1

2κ2

Z
Md

RL bcea1 . . . ead−2εa1...ad−2bc , (2.1)

where εa1...ad is the invariant tensor of the special linear group SL(d) and κ2 is the gravitational constant,

so that κ has dimension (length)
d
2−1. The Euler-Lagrange equations of the Lorentz connection

δS

δωL bc
∝ εa1...ad−2bc e

a1 . . . ead−3T ad−2 = 0

imply that the torsion vanishes. The Lorentz connection is then an auxiliary field, which can be removed
from the action by solving its own (algebraic) equations of motion. The action S = S[ e , ωL(e, ∂e) ] is
now expressed only in terms of the vielbein 5. Actually, only combinations of vielbeins corresponding
to the metric appear and the action S = S[ gµν ] is indeed the second order Einstein-Hilbert action.

The Minkowski space-time solves RL ab = 0 and T a = 0. It is the most symmetrical solution of the
Euler-Lagrange equations, whose global symmetries form the Poincaré group. The gauge symmetries of
the action (2.1) are the diffeomorphisms and the local Lorentz transformations. Together, these gauge
symmetries correspond to the gauging of the Poincaré group (see Appendix 1.3 for more comments).

2.2 Gravity as a theory of o(d− 1, 2) gauge fields

In the previous section, the Einstein-Cartan formulation of gravity with vanishing cosmological constant
has been presented. We will now show how a nonvanishing cosmological constant can be added to this
formalism. In these lectures, we will restrict ourselves to the AdS case but, for the bosonic case we focus
on, everything can be rephrased for dS. One is mostly interested in the AdS case for the reason that it

5In the context of supergravity, this action principle [18,28] is sometimes called the “1.5 order formalism” [29]
because it combines in some sense the virtues of first and second order formalism.
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is more suitable for supersymmetric extensions. Furthermore, dS and AdS have rather different unitary
representations (for dS there are unitary irreducible representations the energy of which is not bounded
from below).

It is rather natural to reinterpret Pa and Mab as the generators of the AdSd isometry algebra
o(d− 1, 2). The curvature R = dω + ω2 then decomposes as R = T aPa + 1

2
RabMab, where the Lorentz

curvature RL ab is deformed to

Rab ≡ RL ab +Rcosm ab ≡ RL ab + Λ eaeb , (2.2)

since (1.3) is deformed to (1.4).

MacDowell and Mansouri proposed an action [25], the Lagrangian of which is the (wedge) product
of two curvatures (2.2) in d = 4

SMM [ e, ω] =
1

4κ2Λ

Z
M4

Ra1a2Ra3a4εa1a2a3a4 . (2.3)

Expressing Rab in terms of RL ab and Rcosm ab by (2.2), the Lagrangian is the sum of three terms: a
term RLRcosm, which is the previous Lagrangian (2.1) without cosmological constant, a cosmological
term Rcosm Rcosm and a Gauss-Bonnet term RLRL. The latter term contains higher-derivatives but it
does not contribute to the equations of motion because it is a total derivative.

In any dimension, the AdSd space-time is defined as the most symmetrical solution of the Euler-
Lagrange equations of pure gravity with the cosmological term. As explained in more detail in Section
2.3, it is a solution of the system Rab = 0, T a = 0 such that rank(ea

µ) = d.

The MacDowell-Mansouri action admits a higher dimensional generalization [30]

SMM [ e, ω] =
1

4κ2Λ

Z
Md

Ra1a2Ra3a4ea5 . . . eadεa1...ad . (2.4)

Because the Gauss-Bonnet term

SGB [ e, ω] =
1

4κ2Λ

Z
Md

RL a1a2RL a3a4ea5 . . . eadεa1...ad

is not topological beyond d = 4, the field equations resulting from the action (2.4) are different from the
Einstein equations in d dimensions. However the difference is by nonlinear terms that do not contribute
to the free spin-2 equations [30] apart from replacing the cosmological constant Λ by 2(d−2)

d
Λ (in such a

way that no correction appears in d = 4, as expected). One way to see this is by considering the action

Snonlin[ e, ω] ≡ SGB [ e, ω] +
d− 4

4κ2

Z
Md

“ 2

d− 2
RL a1a2ea3 . . . ead +

Λ

d
ea1 . . . ead

”
εa1...ad , (2.5)

which is the sum of the Gauss-Bonnet term plus terms of the same type as the Einstein-Hilbert and
cosmological terms (note that the latter are absent when d = 4). The variation of (2.5) is equal to

δSnonlin[ e, ω] =
1

4κ2Λ

Z
Md

Ra1a2Ra3a4δ(ea5 . . . ead) εa1...ad , (2.6)

when the torsion is required to be zero (i.e. applying the 1.5 order formalism to see that the variation
over the Lorentz connection does not contribute). Indeed, the variation of the action (2.5) vanishes
when d = 4, but when d > 4 the variation (2.6) is bilinear in the AdSd field strength Rab. Since the
AdSd field strength is zero in the vacuum AdSd solution, variation of the action Snonlin is nonlinear in
the fluctuations near the AdSd background. As a consequence, at the linearized level the Gauss-Bonnet
term does not affect the form of the free spin-2 equations of motion, it merely redefines an overall factor
in front of the action and the cosmological constant via κ2 → ( d

2
− 1)κ2 and Λ→ 2(d−2)

d
Λ, respectively

(as can be seen by substituting SGB in (2.4) with its expression in terms of Snonlin from (2.5)). Also let
us note that from (2.6) it is obvious that the variation of the Gauss-Bonnet term contains second order
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derivatives of the metric, i.e. it is of the Lanczos-Lovelock type (see [24] for a review).

Beyond the free field approximation the corrections to Einstein’s field equations resulting from the
action (2.4) are nontrivial for d > 4 and nonanalytic in Λ (as can be seen from (2.6)), having no
meaningful flat limit. As will be shown later, this is analogous to the structure of HS interactions which
also contain terms with higher derivatives and negative powers of Λ. The important difference is that
in the case of gravity one can subtract the term (2.5) without destroying the symmetries of the model,
while this is not possible in the HS gauge theories. In both cases, the flat limit Λ → 0 is perfectly
smooth at the level of the algebra (e.g. o(d− 1, 2)→ iso(d− 1, 1) for gravity, see Appendix 1.1) and at
the level of the free equations of motion, but it may be singular at the level of the action and nonlinear
field equations.

2.3 MacDowell-Mansouri-Stelle-West gravity

The action (2.4) is not manifestly o(d − 1, 2) gauge invariant. Its gauge symmetries are the diffeomor-
phisms and the local Lorentz transformations. It is possible to make the o(d − 1, 2) gauge symmetry
manifest by combining the vielbein and the Lorentz connection into a single field ω = dxµω AB

µ MAB

and by introducing a vector V A called compensator6. The fiber indices A,B now run from 0 to d. They
are raised and lowered by the invariant mostly minus metric ηAB of o(d− 1, 2) (see Appendix 1.1).

In this subsection, the MacDowell-Mansouri-Stelle-West (MMSW) action [26] is written and it is
shown how to recover the action presented in the previous subsection. The particular vacuum solution
which corresponds to AdS space-time is also introduced. Finally the symmetries of the MMSW action
and of the vacuum solution are analyzed.

To have a formulation with manifest o(d − 1, 2) gauge symmetries, a time-like vector compensator
V A has to be introduced which is constrained to have a constant norm ρ,

V AV BηAB = ρ2 . (2.7)

As one will see, the constant ρ is related to the cosmological constant by

ρ2 = −Λ−1 . (2.8)

The MMSW action is ( [26] for d = 4 and [30] for arbitrary d)

SMMSW [ωAB , V A] = − ρ

4κ2

Z
Md

εA1...Ad+1R
A1A2RA3A4EA5 . . . EAdV Ad+1 , (2.9)

where the curvature or field strength RAB is defined by

RAB ≡ dωAB + ωACω B
C

and the frame field EA by
EA ≡ DV A = dV A + ωA

BV
B .

Furthermore, in order to make link with Einstein gravity, two constraints are imposed: (i) the norm of
V A is fixed, and (ii) the frame field EA

µ is assumed to have maximal rank equal to d. As the norm of
V A is constant, the frame field satisfies

EAVA = 0 . (2.10)

If the condition (2.7) is relaxed, then the norm of V A corresponds to an additional dilaton-like field [26].

Let us now analyze the symmetries of the MMSW action. The action is manifestly invariant under

6This compensator field compensates additional symmetries serving for them as a Higgs field. The terminology
is borrowed from application of conformal supersymmetry for the analysis of Poincaré supermultiplets (see e.g.
[31]). It should not be confused with the homonymous - but unrelated - gauge field introduced in another
approach to free HS fields [32,33].
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• Local o(d− 1, 2) transformations:

δωAB
ν (x) = Dνε

AB(x) , δV A(x) = −εAB(x)VB(x) ; (2.11)

• Diffeomorphisms:

δωAB
ν (x) = ∂νξ

µ(x)ωAB
µ (x) + ξµ(x) ∂µω

AB
ν (x) , δV A(x) = ξν(x) ∂νV

A(x) . (2.12)

Let us define the covariantized diffeomorphism as the sum of a diffeomorphism with parameter ξµ and a
o(d− 1, 2) local transformation with parameter εAB(ξµ) = −ξµωAB

µ . The action of this transformation
is thus

δcovωAB
µ = ξνRAB

νµ , δcovV A = ξνEA
ν (2.13)

by (2.11)-(2.12).

The compensator vector is pure gauge. Indeed, by local O(d − 1, 2) rotations one can gauge fix
V A(x) to any value with V A(x)VA(x) = ρ2. In particular, one can reach the standard gauge

V A = ρ δA
d̂ . (2.14)

Taking into account (2.10), one observes that the covariantized diffeomorphism also makes it possible to
gauge fix fluctuations of the compensator V A(x) near any fixed value. Because the full list of symmetries
can be represented as a combination of covariantized diffeomorphisms, local Lorentz transformations
and diffeomorphisms, in the standard gauge (2.14) the gauge symmetries are spontaneously broken
to the o(d − 1, 1) local Lorentz symmetry and diffeomorphisms. In the standard gauge, one therefore
recovers the field content and the gauge symmetries of the MacDowell-Mansouri action. Let us note that
covariantized diffeomorphisms (2.13) do not affect the connection ωAB

µ if it is flat (i.e. has zero curvature
RAB

νµ ). In particular covariantized diffeomorphisms do not affect the background AdS geometry.

To show the equivalence of the action (2.9) with the action (2.4), it is useful to define a Lorentz
connection by

ωL AB ≡ ωAB − ρ−2(EAV B − EBV A) . (2.15)

In the standard gauge, the curvature can be expressed in terms of the vielbein ea ≡ Ea = ρωad̂ and the
nonvanishing components of the Lorentz connection ωL ab = ωab as

Rab = dωab + ωaCω b
C = dωL ab + ωL a

cω
L cb − ρ−2eaeb = RL ab +Rcosm ab ,

Rad̂ = dωad̂ + ωacω d̂
c = ρ−1T a .

Inserting these gauge fixed expressions into the MMSW action yields the action (2.4), where Λ = −ρ−2.
The MMSW action is thus equivalent to (2.4) by partially fixing the gauge invariance. Let us note that
a version of the covariant compensator formalism applicable to the case with zero cosmological constant
was developed in [34].

Let us now consider the vacuum equations RAB(ω0) = 0. They are equivalent to T a(ω0) = 0 and
Rab(ω0) = 0 and, under the condition that rank(EA

ν ) = d , they uniquely define the local geometry of
AdSd with parameter ρ, in a coordinate independent way. The solution ω0 also obviously satisfies the
equations of motion of the MMSW action. To find the symmetries of the vacuum solution ω0, one first
notes that vacuum solutions are sent onto vacuum solutions by diffeomorphisms and local AdS transfor-
mations, because they transform the curvature homogeneously. Since covariantized diffeomorphisms do
not affect ω0, to find symmetries of the chosen solution ω0 it is enough to check its transformation law
under local o(d−1, 2) transformation. Indeed, by adjusting an appropriate covariantized diffeomorphism
it is always possible to keep the compensator invariant.

The solution ω0 is invariant under those o(d− 1, 2) gauge transformations for which the parameter
εAB(x) satisfies

0 = D0ε
AB(x) = dεAB(x) + ω0

A
C(x) εCB(x)− ω0

B
C(x) εCA(x) . (2.16)
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This equation fixes the derivatives ∂µε
AB(x) in terms of εAB(x) itself. In other words, once εAB(x0) is

chosen for some x0, ε
AB(x) can be reconstructed for all x in a neighborhood of x0, since by consistency7

all derivatives of the parameter can be expressed as functions of the parameter itself. The parameters
εAB(x0) remain arbitrary, being parameters of the global symmetry o(d − 1, 2). This means that, as
expected for AdSd space-time, the symmetry of the vacuum solution ω0 is the global o(d− 1, 2).

The lesson is that, to describe a gauge model that has a global symmetry h, it is useful to reformulate
it in terms of the gauge connections ω and curvatures R of h in such a way that the zero curvature
condition R = 0 solves the field equations and provides a solution with h as its global symmetry. If
a symmetry h is not known, this observation can be used the other way around: by reformulating the
dynamics à la MacDowell-Mansouri one might guess the structure of an appropriate curvature R and
thereby the nonAbelian algebra h.

3 Young tableaux and Howe duality

In this section, the Young tableaux are introduced. They characterize the irreducible representations of
gl(M) and o(M). A representation of these algebras that will be useful in the sequel is built.

A Young tableau {ni} (i = 1, . . . , p) is a diagram which consists of a finite number p > 0 of rows of
identical squares. The lengths of the rows are finite and do not increase: n1 > n2 > . . . > np > 0. The
Young tableau {ni} is represented as follows:

np

np−1

. . . ...

n2

n1

Let us consider covariant tensors of gl(M): Aa, b, c,... where a, b, c, . . . = 1, 2, . . . ,M . Simple examples
of these are the symmetric tensor AS

a, b such that AS
a, b − AS

b, a = 0, or the antisymmetric tensor AA
a, b

such that AA
a, b +AA

b, a = 0.

A complete set of covariant tensors irreducible under gl(M) is given by the tensorsAa1
1...a1

n1
, ... , a

p
1 ...a

p
np

(ni ≥ ni+1) that are symmetric in each set of indices {ai
1 . . . a

i
ni
} with fixed i and that vanish when one

symmetrizes the indices of a set {ai
1 . . . a

i
ni
} with any index aj

l with j > i. The properties of these irre-
ducible tensors can be conveniently encoded into Young tableaux. The Young tableau {ni} (i = 1, . . . , p)
is associated with the tensor Aa1

1...a1
n1

, ... , a
p
1 ...a

p
np

. Each box of the Young tableau is related to an index

of the tensor, boxes of the same row corresponding to symmetric indices. Finally, the symmetrization of
all the indices of a row with an index from any row below vanishes. In this way, the irreducible tensors

AS
ab and AA

a, b are associated with the Young tableaux and , respectively.

Let us introduce the polynomial algebra R[Y a
i ] generated by commuting generators Y a

i where i =
1, . . . p ; a = 1, . . .M . Elements of the algebra R[Y a

i ] are of the form

A(Y ) = Aa1
1...a1

n1
, ... , a

p
1 ...a

p
np
Y

a1
1

1 . . . Y
a1

n1
1 . . . Y

a
p
1

p . . . Y
ap

np
p .

7The identity D2
0 = R0 = 0 ensures consistency of the system (2.16), which is overdetermined because it

contains
d2(d+1)

2
equations for

d(d+1)
2

unknowns. Consistency in turn implies that higher space-time derivatives

∂ν1 . . . ∂νnεAB(x) obtained by hitting (2.16) n−1 times with D0νk
are guaranteed to be symmetric in the indices

ν1 . . . νn.
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The condition that A is irreducible under gl(M), i.e. is a Young tableau {ni}, can be expressed as

Y a
i

∂

∂Y a
i

A(Y ) = niA(Y ) ,

Y b
i

∂

∂Y b
j

A(Y ) = 0 , i < j , (3.1)

where no sum on i is to be understood in the first equation. Let us first note that, as the generators Y a
i

commute, the tensor A is automatically symmetric in each set of indices {ai
1 . . . a

i
ni
}. The operator on

the l.h.s. of the first equation of (3.1) then counts the number of Y a
i ’s, the index i being fixed and the

index a arbitrary. The first equation thus ensures that there are ni indices contracted with Yi, forming
the set ai

1 . . . a
i
ni

. The second equation of (3.1) is equivalent to the vanishing of the symmetrization of
a set of indices {ai

1 . . . a
i
ni
} with an index b to the right. Indeed, the operator on the l.h.s. replaces a

generator Y b
j by a generator Y b

i , j > i , thus projecting A..., ai
1...ai

ni
,...b... on its component symmetric in

{ai
1 . . . a

i
ni
b}.

Two types of generators appear in the above equations: the generators

tab = Y a
i

∂

∂Y b
i

(3.2)

of gl(M) and the generators

lji = Y a
i

∂

∂Y a
j

(3.3)

of gl(p). These generators commute
[lji , t

a
b ] = 0 (3.4)

and the algebras gl(p) and gl(M) are said to be Howe dual [35]. The important fact is that the
irreducibility conditions (3.1) of gl(M) are the highest weight conditions with respect to gl(p).

When all the lengths ni have the same value n, A(Y ) is invariant under sl(p) ⊂ gl(p). Moreover,
exchange of any two rows of this rectangular Young tableau only brings a sign factor (−1)n, as is easy
to prove combinatorically. The conditions (3.1) are then equivalent to:„

Y a
i

∂

∂Y a
j

− 1

p
δj

iY
a

k
∂

∂Y a
k

«
A(Y ) = 0 . (3.5)

Indeed, let us first consider the equation for i = j. The operator Y a
k

∂
∂Y a

k
(where there is a sum over

k and a) counts the total number m of Y ’s in A(Y ), while Y a
i

∂
∂Y a

i
counts the number of Yi’s for some

fixed i. The condition can only be satisfied if m
p

is an integer, i.e. m = np for some integer n. As the
condition is true for all i’s, there are thus n Yi’s for every i. In other words, the tensorial coefficient
of A(Y ) has p sets of n indices, i.e. is rectangular. The fact that it is a Young tableau is insured by
the condition (3.5) for i < j, which is simply the second condition of (3.1). That the condition (3.5) is
true both for i < j and for i > j is a consequence of the simple fact that any finite-dimensional sl(p)
module with zero sl(p) weights (which are differences of lengths of the rows of the Young tableau) is
sl(p) invariant. Alternatively, this follows from the property that exchange of rows leaves a rectangular
Young tableau invariant.

If there are p1 rows of length n1, p2 rows of length n2, etc. , then A(Y ) is invariant under sl(p1)⊕
sl(p2)⊕ sl(p3)⊕ . . ., as well as under permutations within each set of pi rows of length ni.

To construct irreducible representations of o(M − N,N), one needs to add the condition that A is
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traceless8, which can be expressed as:

∂2

∂Y a
i ∂Y

b
j

ηab A(Y ) = 0 , ∀ i, j , (3.6)

where ηab is the invariant metric of o(M −N,N). The generators of o(M −N,N) are given by

tab =
1

2
(ηact

c
b − ηbct

c
a) . (3.7)

They commute with the generators

kij = ηabY
a

i Y
b

j , lji = Y a
i

∂

∂Y a
j

, mij = ηab ∂2

∂Y a
i ∂Y

b
j

(3.8)

of sp(2p). The conditions (3.1) and (3.6) are highest weight conditions for the algebra sp(2p) which is
Howe dual to o(M −N,N).

In the notation developed here, the irreducible tensors are manifestly symmetric in groups of indices.
This is a convention: one could as well choose to have manifestly antisymmetric groups of indices
corresponding to columns of the Young tableau. An equivalent implementation of the conditions for a
tensor to be a Young tableau can be performed in the antisymmetric convention, by taking fermionic
generators Y .

To end up with this introduction to Young diagrams, we give two “multiplication rules” of one box
with an arbitrary Young tableau. More precisely, the tensor product of a vector (characterized by one
box) with an irreducible tensor under gl(M) characterized by a given Young tableau decomposes as the
direct sum of irreducible tensors under gl(M) corresponding to all possible Young tableaux obtained by
adding one box to the initial Young tableau, e.g.

⊗ ∗ ' ∗ ⊕
∗
⊕

∗

.

For the (pseudo)orthogonal algebras o(M −N,N), the tensor product of a vector (characterized by
one box) with a traceless tensor characterized by a given Young tableau decomposes as the direct sum
of traceless tensors under o(M−N,N) corresponding to all possible Young tableaux obtained by adding
or removing one box from the initial Young tableau (a box can be removed as a result of contraction of
indices), e.g.

⊗ ' ⊕ ⊕ ⊕ ⊕ .

4 Free symmetric higher spin gauge fields as one-forms

Properties of HS gauge theories are to a large extent determined by the HS global symmetries of their
most symmetric vacua. The HS symmetry restricts interactions and fixes spectra of spins of massless
fields in HS theories as ordinary supersymmetry does in supergravity. To elucidate the structure of a
global HS algebra h it is useful to follow the approach in which fields, action and transformation laws
are formulated in terms of the connection of h.

8For M = 2N modulo 4, the irreducibility conditions also include the (anti)selfduality conditions on the
tensors described by Young tableaux with M/2 rows. However, these conditions are not used in the analysis of
HS dynamics in this paper.
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4.1 Metric-like formulation of higher spins

The free HS gauge theories were originally formulated in terms of completely symmetric and double-
traceless HS-fields ϕν1...νs [36, 37], in a way analogous to the metric formulation of gravity (see [38]
for recent reviews on the metric-like formulation of HS theories). In Minkowski space-time Rd−1,1, the
spin-s Fronsdal action is

S
(s)
2 [ϕ] =

1

2

Z
ddx

“
∂νϕµ1...µs∂

νϕµ1...µs

−s(s− 1)

2
∂νϕ

λ
λµ3...µs∂

νϕρ
ρµ3...µs + s(s− 1) ∂νϕ

λ
λµ3...µs∂ρϕ

νρµ3...µs

−s ∂νϕ
ν

µ2...µs∂ρϕ
ρµ2...µs − s(s− 1)(s− 2)

4
∂νϕ

νρ
ρµ2...µs∂λϕσ

λσµ2...µs

”
, (4.1)

where the metric-like field is double-traceless (ηµ1µ2ηµ3µ4ϕµ1...µs = 0) and has the dimension of (length)1−d/2.
This action is invariant under Abelian HS gauge transformations

δϕµ1...µs = ∂{µ1εµ2...µs} , (4.2)

where the gauge parameter is a completely symmetric and traceless rank-(s− 1) tensor,

ηµ1µ2εµ1...µs−1 = 0 .

For spin s = 2, (4.1) is the Pauli-Fierz action that is obtained from the linearization of the Einstein-
Hilbert action via gµν = ηµν + κϕµν and the gauge transformations (4.2) correspond to linearized
diffeomorphisms. The approach followed in this section is to generalize the MMSW construction of
gravity to the case of free HS gauge fields in AdS backgrounds. The free HS dynamics will then be
expressed in terms of one-form connections taking values in certain representations of the AdSd isometry
algebra o(d− 1, 2).

The procedure is similar to that of Section 2 for gravity. The HS metric-like field is replaced by a
frame-like field and a set of connections. These new fields are then united in a single connection. The
action is given in terms of the latter connection and a compensator vector. It is constructed in such a
way that it reproduces the dynamics of the Fronsdal formulation, once auxiliary fields are removed and
part of the gauge invariance is fixed.

4.2 Frame-like formulation of higher spins

The double-traceless metric-like HS gauge field ϕµ1...µs is replaced by a frame-like field e
a1...as−1

µ , a

Lorentz-like connection ω
a1...as−1, b

µ [39] and a set of connections ω
a1...as−1, b1...bt

µ called extra fields,
where t = 2, . . . , s − 1, s > 2 [40, 41]. All fields e, ω are traceless in the fiber indices a, b, which have

the symmetry of the Young tableaux
s− 1

t , where t = 0 for the frame-like field and
t = 1 for the Lorentz-like connection. The metric-like field arises as the completely symmetric part of
the frame field [39],

ϕµ1...µs = ρ3−s− d
2 e{µ1, µ2...µs} ,

where the dimensionful factor of ρ3−s− d
2 is introduced for the future convenience (ρ is a length scale)

and all fiber indices have been lowered using the AdS or flat frame field e0
a
µ defined in Section 2. From

the fiber index tracelessness of the frame field follows automatically that the field ϕµ1...µs is double
traceless.

The frame-like field and other connections are then combined [30] into a connection one-form
ωA1...As−1, B1...Bs−1 (where A,B = 0, . . . , d − 1, d̂) taking values in the irreducible o(d − 1, 2)-module
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characterized by the two-row traceless rectangular Young tableau of length s− 1, that is

ω
A1...As−1,B1...Bs−1
µ = ω

{A1...As−1},B1...Bs−1
µ = ω

A1...As−1,{B1...Bs−1}
µ ,

ω
{A1...As−1,As}B2...Bs−1
µ = 0 , ω

A1...As−3 C
µ C,

B1...Bs−1 = 0 . (4.3)

One also introduces a time-like vector V A of constant norm ρ. The component of the connection
ωA1...As−1, B1...Bs−1 that is most parallel to V A is the frame-like field

EA1...As−1 = ωA1...As−1, B1...Bs−1VB1 . . . VBs−1 ,

while the less V -longitudinal components are the other connections. Note that the contraction of the
connection with more than s− 1 compensators V A is zero by virtue of (4.3). Let us be more explicit in
a specific gauge. As in the MMSW gravity reformulation, one can show that V A is a pure gauge field
and that one can reach the standard gauge V A = δA

d̂
ρ (the argument will not be repeated here). In the

standard gauge, the frame field and the connections are given by

e a1...as−1 = ρs−1ω a1...as−1, d̂...d̂ ,

ω a1...as−1, b1...bt = ρs−1−tΠ(ω a1...as−1, b1...bt d̂...d̂) ,

where the powers of ρ originate from a corresponding number of contractions with the compensator
vector V A and Π is a projector to the Lorentz-traceless part of a Lorentz tensor, which is needed for

t ≥ 2. These normalization factors are consistent with the fact that the auxiliary fields ω
a1...as−1, b1...bt

µ

will be found to be expressed via t partial derivatives of the frame field e
a1...as−1

µ at the linearized level.

The linearized field strength or curvature is defined as the o(d − 1, 2) covariant derivative of the
connection ωA1...As−1,B1...Bs−1 , i.e. by

R
A1...As−1,B1...Bs−1
1 = D0ω

A1...As−1,B1...Bs−1

= dωA1...As−1,B1...Bs−1 + ω A1
0 Cω

CA2...As−1, B1...Bs−1 + . . .

+ω B1
0 Cω

A1...As−1, CB2...Bs−1 + . . . , (4.4)

where the dots stand for the terms needed to get an expression symmetric in A1 . . . As−1 and B1 . . . Bs−1,
and ω A

0 B is the o(d− 1, 2) connection associated to the AdS space-time solution, as defined in Section

2. The connection ω
A1...As−1, B1...Bs−1
µ has dimension (length)−1 in such a way that the field strength

R
A1...As−1, B1...Bs−1
µν has proper dimension (length)−2.

As (D0)
2 = R0 = 0, the linearized curvature R1 is invariant under Abelian gauge transformations of

the form

δ0ω
A1...As−1, B1...Bs−1 = D0ε

A1...As−1, B1...Bs−1 . (4.5)

The gauge parameter εA1...As−1, B1...Bs−1 has the symmetry and is traceless.

Before writing the action, let us analyze the frame field and its gauge transformations, in the standard
gauge. According to the multiplication rule formulated in the end of Section 3, the frame field e

a1...as−1
µ

contains three irreducible (traceless) Lorentz components characterized by the symmetry of their indices:

s , 1

s − 1
and s − 2 , where the last tableau describes the trace component of

the frame field e
a1...as−1

µ . Its gauge transformations are given by (4.5) and read

δ0e
a1...as−1 = DL

0 ε
a1...as−1 − e0 cε

a1...as−1, c .

The parameter εa1...as−1, c is a generalized local Lorentz parameter. It allows us to gauge away the

traceless component of the frame field. The other two components of the latter just correspond
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to a completely symmetric double traceless Fronsdal field ϕµ1...µs . The remaining invariance is then the
Fronsdal gauge invariance (4.2) with a traceless completely symmetric parameter εa1...as−1 .

4.3 Action of higher spin gauge fields

For a given spin s, the most general o(d − 1, 2)-invariant action that is quadratic in the linearized
curvatures (4.4) and, for the rest, built only from the compensator V C and the background frame field
EB

0 = D0V
B is

S
(s)
2 [ω

A1...As−1, B1...Bs−1
µ , ωAB

0 , V C ] =
1

2

s−2X
p=0

a(s, p)S(s,p)[ω
A1...As−1, B1...Bs−1
µ , ωAB

0 , V C ] , (4.6)

where a(s, p) is the a priori arbitrary coefficient of the term

S(s,p)[ω, ω0, V ] = εA1...Ad+1

Z
Md

EA5
0 . . . E

Ad
0 V Ad+1VC1 . . . VC2(s−2−p) ×

×RA1B1...Bs−2, A2C1...Cs−2−pD1...Dp

1 R A3
1 B1...Bs−2,

A4Cs−1−p...C2(s−2−p)
D1...Dp .

This action is manifestly invariant under diffeomorphisms, local o(d − 1, 2) transformations (2.11) and
Abelian HS gauge transformations (4.5), which leave invariant the linearized HS curvatures (4.4). Having
fixed the AdSd background gravitational field ωAB

0 and compensator V A, the diffeomorphisms and the
local o(d− 1, 2) transformations break down to the AdSd global symmetry o(d− 1, 2).

As will be explained in Sections 6 and 8, the connections ω
a1...as−1, b1...bt

µ can be expressed as t
derivatives of the frame-like field, via analogues of the torsion constraint. Therefore, to make sure that
higher-derivative terms are absent from the free theory, the coefficients a(s, p) are chosen in such a way
that the Euler-Lagrange derivatives are nonvanishing only for the frame field and the first connection

(t = 1). All extra fields, i.e. the connections ω
a1...as−1, b1...bt

µ with t > 1, should appear only through
total derivatives9. This requirement fixes uniquely the spin-s free action up to a coefficient b(s) in front
of the action. More precisely, the coefficient a(s, p) is essentially a relative coefficient given by [30]

a(s, p) = b(s)(−Λ)−(s−p−1) (d− 5 + 2(s− p− 2))!! (s− p− 1)

(s− p− 2)!
,

where b(s) is the arbitrary spin-dependent factor.

The equations of motion for ω
a1...as−1, b

µ are equivalent to the “zero-torsion condition”

R1 A1...As−1, B1...Bs−1V
B1 . . . V Bs−1 = 0 .

They imply that ω
a1...as−1, b

µ is an auxiliary field that can be expressed in terms of the first derivative

of the frame field modulo a pure gauge part associated with the symmetry parameter ε
a1...as−1, b1b2

µ .

Substituting the found expression for ω
a1...as−1, b

µ into the HS action yields an action only expressed
in terms of the frame field and its first derivative, modulo total derivatives. As gauge symmetries told
us, the action actually depends only on the completely symmetric part of the frame field, i.e. the
Fronsdal field. Moreover, the action (4.6) has the same gauge invariance as Fronsdal’s one, thus it
must be proportional to the Fronsdal action (4.1) because the latter is fixed up to a front factor by the
requirements of being gauge invariant and of being of second order in the derivatives of the field [42].

9The extra fields show up in the nonlinear theory and are responsible for the higher-derivatives as well as for
the terms with negative powers of Λ in the interaction vertices.
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5 Simplest higher spin algebras

In the previous section, the dynamics of free HS gauge fields has been expressed as a theory of one-
forms, the o(d−1, 2) fiber indices of which have symmetries characterized by two-row rectangular Young
tableaux. This suggests that there exists a nonAbelian HS algebra h ⊃ o(d − 1, 2) that admits a basis
formed by a set of elements TA1...As−1,B1...Bs−1 in irreducible representations of o(d−1, 2) characterized
by such Young tableaux. More precisely, the basis elements TA1...As−1,B1...Bs−1 satisfy the following

properties T{A1...As−1,As}B2...Bs−1 = 0, TA1...As−3CC,
B1...Bs−1 = 0, and the basis contains the o(d−1, 2)

basis elements TA,B = −TB,A such that all generators transform as o(d− 1, 2) tensors

[TC,D , TA1...As−1,B1...Bs−1 ] = ηDA1TCA2...As−1,B1...Bs−1 + . . . . (5.1)

The question is whether a nonAbelian algebra h with these properties really exists. If yes, the
Abelian curvatures R1 can be understood as resulting from the linearization of the nonAbelian field
curvatures R = dW + W 2 of h with the h gauge connection W = ω0 + ω, where ω0 is some fixed flat
(i.e. vanishing curvature) zero-order connection of the subalgebra o(d−1, 2) ⊂ h and ω is the first-order
dynamical part which describes massless fields of various spins.

The HS algebras with these properties were originally found for the case of AdS4 [43, 44, 45, 46] in
terms of spinor algebras. Then this construction was extended to HS algebras in AdS3 [47,48,49] and to
d = 4 conformal HS algebras [50,51] equivalent to the AdS5 algebras of [7]. The d = 7 HS algebras [52]
were also built in spinorial terms. Conformal HS conserved currents in any dimension, generating HS
symmetries with the parameters carrying representations of the conformal algebra o(d, 2) described by
various rectangular two-row Young tableaux, were found in [53]. The realization of the conformal HS
algebra h in any dimension in terms of a quotient of the universal enveloping algebra10 U(o(d, 2)) was
given by Eastwood in [54]. Here we use the construction of the same algebra as given in [16], which is
based on vector oscillator algebra (i.e. Weyl algebra).

5.1 Weyl algebras

The Weyl algebra Ad+1 is the associative algebra generated by the oscillators Ŷ A
i , where i = 1, 2 and

A = 0, 1, . . . d, satisfying the commutation relations

[Ŷ A
i , Ŷ B

j ] = εij η
AB , (5.2)

where εij = −εj i and ε12 = ε12 = 1. The invariant metrics ηAB = ηBA and symplectic form εij of
o(d−1, 2) and sp(2), respectively, are used to raise and lower indices in the usual manner AA = ηABAB ,
ai = εijaj , ai = ajεj i . The Weyl algebra Ad+1 can be realized by taking as generators

Ŷ A
1 = ηAB ∂

∂XB
, Ŷ A

2 = XA ,

i.e. the Weyl algebra is realized as the algebra of differential operators acting on formal power series
Φ(X) in the variable XA. One can consider both complex (Ad+1(C)) and real Weyl (Ad+1(R)) algebras.
One can also construct the (say, real) Weyl algebra Ad+1(R) starting from the associative algebra
R < Ŷ A

i > freely generated by the variables Ŷ A
i , i.e. spanned by all (real) linear combinations of

all possible products of the variables Ŷ A
i . The real Weyl algebra Ad+1 is realized as the quotient of

R < Ŷ A
i > by the ideal made of all elements proportional to

Ŷ A
i Ŷ B

j − Ŷ B
j Ŷ A

i − εijηAB .

In order to pick one representative of each equivalence class, we work with Weyl ordered operators.
These are the operators completely symmetric under the exchange of Ŷ A

i ’s. The generic element of

10A universal enveloping algebra is defined as follows. Let S be the associative algebra that is freely generated
by the elements of a Lie algebra s. Let I be the ideal of S generated by elements of the form xy − yx − [x, y]
(x, y ∈ s). The quotient U(s)= S/I is called the universal enveloping algebra of s.
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Ad+1 is then of the form

f(Ŷ ) =

∞X
p=0

φ
i1...ip

A1...Ap
Ŷ A1

i1
. . . Ŷ

Ap

ip
, (5.3)

where φ
i1...ip

A1...Ap
is symmetric under the exchange (ik, Ak) ↔ (il, Al). Equivalently, one can define basis

elements SA1...Am ,B1...Bn that are completely symmetrized products of m Ŷ A
1 ’s and n Ŷ B

2 ’s (e.g. SA,B =
{Ŷ A

1 , Ŷ B
2 }), and write the generic element as

f(Ŷ ) =
X
m,n

fA1...Am ,B1...BnS
A1...Am ,B1...Bn , (5.4)

where the coefficients fA1...Am ,B1...Bn are symmetric in the indices Ai and Bj .

The elements

TAB = −TBA =
1

4
{Ŷ Ai , Ŷ B

i } (5.5)

satisfy the o(d− 1, 2) algebra

[TAB , TCD] =
1

2

“
ηBCTAD − ηACTBD − ηBDTAC + ηADTBC

”
because of (5.2). When the Weyl algebra is realized as the algebra of differential operators, then
TAB = X [A∂B] generates rotations of Rd−1,2 acting on a scalar Φ(XA).

The operators

tij = tji =
1

2
{Ŷ A

i , Ŷ B
j }ηAB (5.6)

generate sp(2). The various bilinears TAB and tij commute

[TAB , tij ] = 0 , (5.7)

thus forming a Howe dual pair o(d− 1, 2)⊕ sp(2).

5.2 Definition of the higher spin algebras

Let us consider the subalgebra S of elements f(Ŷ ) of the complex Weyl algebra Ad+1(C) that are
invariant under sp(2), i.e. [f(Ŷ ), tij ] = 0. Replacing f(Ŷ ) by its Weyl symbol f(Y ), which is the
ordinary function of commuting variables Y that has the same power series expansion as f(Ŷ ) in the
Weyl ordering, the sp(2) invariance condition takes the form (a simple proof will be given in Section 11)“

εk jY
A

i
∂

∂Y A
k

+ εk iY
A

j
∂

∂Y A
k

”
f(Y A

i ) = 0 , (5.8)

which is equivalent to (3.5) for p = 2. This condition implies that the coefficients fA1...An, B1...Bm

vanish except when n = m, and the nonvanishing coefficients carry irreducible representations of gl(d+
1) corresponding to two-row rectangular Young tableaux. The sp(2) invariance condition means in
particular that (the symbol of) any element of S is an even function of Y A

i . Let us note that the rôle
of sp(2) in our construction is reminiscent of that of sp(2) in the conformal framework description of
dynamical models (two-time physics) [55, 56].

However, the associative algebra S is not simple. It contains the ideal I spanned by the elements
of S of the form g = tij g

ij = gij tij . Due to the definition of tij (5.6), all traces of two-row Young
tableaux are contained in I. As a result, the associative algebra A = S/I contains only all traceless
two-row rectangular tableaux. Let us choose a basis {Ts} of A where the elements Ts carry an irre-
ducible representation of o(d − 1, 2) characterized by a two-row Young tableau with s − 1 columns:

Ts ∼
s − 1

s − 1 .
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Now consider the complex Lie algebra hC obtained from the associative algebra A by taking the
commutator as Lie bracket, the associativity property of A thereby translating into the Jacobi identity
of hC. It admits several inequivalent real forms hR such that hC = hR ⊕ i hR. The particular real form
that corresponds to a unitary HS theory is denoted by hu(1|2:[d− 1, 2]). This notation11 refers to the
Howe dual pair sp(2)⊕ o(d− 1, 2) and to the fact that the related spin-1 Yang-Mills subalgebra is u(1).
The algebra hu(1|2:[d− 1, 2]) is spanned by the elements satisfying the following reality condition

(f(Ŷ ))† = −f(Ŷ ) , (5.9)

where † is an involution12 of the complex Weyl algebra defined by the relation

(Ŷ A
i )† = iŶ A

i . (5.10)

Thanks to the use of the Weyl ordering prescription, reversing the order of the oscillators has no effect
so that (f(Ŷ ))† = f̄(iŶ ) where the bar means complex conjugation of the coefficients in the expansion
(5.3)

f̄(Ŷ ) =

∞X
p=0

φ̄
i1...ip

A1...Ap
Ŷ A1

i1
. . . Ŷ

Ap

ip
. (5.11)

As a result, the reality condition (5.9) implies that the coefficients in front of the generators Ts (i.e. the
basis elements SA1...As−1 ,B1...Bs−1) with even and odd s are, respectively, real and pure imaginary. In
particular, the spin-2 generator TAB enters with a real coefficient.

What singles out hu(1|2:[d− 1, 2]) as the physically relevant real form is that it allows lowest weight
unitary representations to be identified with the spaces of single particle states in the free HS theory [57].
For these unitary representations (5.9) becomes the antihermiticity property of the generators with †
defined via a positive definite Hermitian form. As was argued in [44, 45, 46] for the similar problem in
the case of d = 4 HS algebras, the real HS algebras that share this property are obtained by imposing
the reality conditions based on an involution of the underlying complex associative algebra (i.e., Weyl
algebra).

Let us note that, as pointed out in [75] and will be demonstrated below in Section 10.1, the Lie
algebra with the ideal I included, i.e., resulting from the algebra S with the commutator as a Lie
product and the reality condition (5.9), (5.10), underlies the off-mass-shell formulation of the HS gauge
theory. We call this off-mass-shell HS algebra hu∞(1|2:[d− 1, 2]).13

5.3 Properties of the higher spin algebras

The real Lie algebra hu(1|2:[d− 1, 2]) is infinite-dimensional. It contains the space-time isometry algebra
o(d− 1, 2) as the subalgebra generated by TAB . The basis elements Ts (s > 1) will be associated with a
spin-s gauge field. In Section 14 we will show that hu(1|2:[d− 1, 2]) is indeed a global symmetry algebra
of the AdSd vacuum solution in the nonlinear HS gauge theory.

Taking two HS generators Ts1 and Ts2 , being homogeneous polynomials of degrees 2(s1 − 1) and
2(s2 − 1) in Ŷ , respectively, one obtains (modulo some coefficients)

[Ts1 , Ts2 ] =

min(s1,s2)−1X
m=1

Ts1+s2−2m = Ts1+s2−2 + Ts1+s2−4 + . . .+ T|s1−s2|+2 . (5.12)

11This notation was introduced in [57] instead of the more complicated one hu(1/sp(2)[d− 1, 2]) of [16].
12This means that † conjugates complex numbers, reverses the order of operators and squares to unity: (µf)† =

µ̄f†, (fg)† = g†f†, ((f)†)† = f . To be an involution of the Weyl algebra, † is required to leave invariant its
defining relation (5.2). Any condition of the form (5.9) singles out a real linear space of elements that form a
closed Lie algebra with respect to commutators.

13There exist also intermediate factor algebras huP (1|2:[d− 1, 2]) with the smaller ideals IP factored out, where
IP is spanned by the elements of S of the form tijP (c2)gij , where c2 = 1

2
tijtij is the quadratic Casimir operator

of sp(2) and P (c2) is some polynomial. The latter HS algebras are presumably of less importance because they
should correspond to HS models with higher derivatives in the field equations even at the free field level.
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Let us notice that the formula (5.12) is indeed consistent with the requirement (5.1). Furthermore, once
a gauge field of spin s > 2 appears, the HS symmetry algebra requires an infinite tower of HS gauge fields
to be present, together with gravity. Indeed, the commutator [Ts, Ts] of two spin-s generators gives rise to
generators T2s−2, corresponding to a gauge field of spin s′ = 2s−2 > s, and also gives rise to generators
T2 of o(d− 1, 2), corresponding to gravity fields. The spin-2 barrier separates theories with usual finite-
dimensional lower-spin symmetries from those with infinite-dimensional HS symmetries. More precisely,
the maximal finite-dimensional subalgebra of hu(1|2:[d− 1, 2]) is the direct sum: u(1)⊕o(d−1, 2), where
u(1) is the center associated with the elements proportional to the unit. Another consequence of the
commutation relations (5.12) is that even spin generators T2p (p > 1) span a proper subalgebra of the
HS algebra, denoted as ho(1|2:[d− 1, 2]) in [57].

The general structure of the commutation relations (5.12) follows from the simple fact that the
associative Weyl algebra possesses an antiautomorphism such that ρ(f(Ŷ )) = f(iŶ ) in the Weyl ordering.
(The difference between ρ and † is that the former does not conjugate complex numbers.) It induces an
automorphism τ of the Lie algebra hu(1|2:[d− 1, 2]) with

τ(f(Ŷ )) = −f(iŶ ) . (5.13)

This automorphism is involutive in the HS algebra, i.e. τ2 = identity, because f(−Ŷ ) = f(Ŷ ). Therefore
the algebra decomposes into subspaces of τ–odd and τ–even elements. Clearly, these are the subspaces
of odd and even spins, respectively. This determines the general structure of the commutation relation
(5.12), implying in particular that the even spin subspace forms the proper subalgebra ho(1|2:[d− 1, 2]) ⊂
hu(1|2:[d− 1, 2]).

Alternatively, the commutation relation (5.12) can be obtained from the following reasoning. The
oscillator commutation relation (5.2) contracts two Ŷ variables and produces a tensor εij . Thus, since
the commutator of two polynomials is antisymmetric, only odd numbers of contractions can survive.
A HS generator Ts is a polynomial of degree 2(s − 1) in Ŷ with the symmetries associated with the
two-row Young tableau of length s−1. Computing the commutator [Ts1 , Ts2 ], only odd numbers 2m−1
of contractions survive (m > 1) leading to polynomials of degree 2(s1 + s2 − 2m − 1) in Ŷ . They
correspond to two-row rectangular Young tableaux14 of length s1 + s2 − 2m− 1 that are associated to
basis elements Ts1+s2−2m. The maximal number, say 2n − 1, of possible contractions is at most equal
to the lowest polynomial degree in Ŷ of the two generators. Actually, it must be one unit smaller since
the numbers of surviving contractions are odd numbers while the polynomial degrees of the generators
are even numbers. The lowest polynomial degree in Y of the two generators Ts1 and Ts2 is equal to

2
“
min(s1, s2)− 1

”
. Hence, n = min(s1, s2)− 1. Consequently, the lowest possible polynomial degree of

a basis element appearing on the right-hand-side of (5.12) is equal to 2(s1+s2−2n−1) = 2(|s1−s2|+1).
The corresponding generators are T|s1−s2|+2.

The gauge fields of hu(1|2:[d− 1, 2]) are the components of the connection one-form

ω(Ŷ , x) =

∞X
s=1

dxµ is−2ωµ A1...As−1 ,B1...Bs−1(x)Ŷ
A1
1 . . . Ŷ

As−1
1 Ŷ B1

2 . . . Ŷ
Bs−1
2 . (5.14)

They take values in the traceless two-row rectangular Young tableaux of o(d − 1, 2). It is obvious
from this formula why the basis elements Ts are associated to spin-s fields. The curvature and gauge
transformations have the standard Yang-Mills form

R = dω + ω2
˛̨̨
I∼0

, δω = Dε ≡ dε+ [ω, ε]
˛̨̨
I∼0

(5.15)

except that the product of two elements (5.14) with traceless coefficients is not necessarily traceless so
that the ideal I has to be factored out in the end. More precisely, the products ω2 and [ω, ε] have to be
represented as sums of elements of the algebra with traceless coefficients and others of the form gijt

ij

14Note that the formal tensor product of two two-row rectangular Young tableaux contains various Young
tableaux having up to four rows. The property that only two-row Young tableaux appear in the commutator of
HS generators is a consequence of the sp(2) invariance condition.
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(equivalently, taking into account the sp(2) invariance condition, tij g̃ij). The latter terms have then to

be dropped out, and the resulting factorization is denoted by the symbol
˛̨̨
I∼0

(see also the discussion

in Subsections 12.2 and 14.3).

The formalism here presented is equivalent [57] to the spinor formalism developed previously for
lower dimensions, where the HS algebra was realized in terms of commuting spinor oscillators ŷα, ˆ̄yα̇

(see, for example, [3, 58] for reviews) as

[ŷα, ŷβ ] = iεαβ , [ˆ̄yα̇, ˆ̄yβ̇ ] = iεα̇β̇ , [ŷα, ˆ̄yβ̇ ] = 0 .

Though limited to d = 3, 4, the definition of the HS algebra with spinorial oscillators is simpler than
that with vectorial oscillators Y A

i , since the generators are automatically traceless (because ŷαŷα =
ˆ̄yα̇ ˆ̄yα̇ = const), and there is no ideal to be factored out. However, spinorial realizations of d = 4
conformal HS algebras [50, 51] (equivalent to the AdS5 algebras [7]) and AdS7 HS algebras [52] require
the factorization of an ideal.

6 Free differential algebras and unfolded dynamics

Subsection 6.1 reviews some general definitions of the unfolded formulation of dynamical systems, a
particular case of which are the HS field equations [59, 60]. The strategy of the unfolded formalism is
presented in Subsection 6.2. It makes use of free differential algebras [61] in order to write consistent
nonlinear dynamics. In more modern terms the fundamental underlying concept is L∞ algebra [62].

6.1 Definition and examples of free differential algebras

Let us consider an arbitrary set of differential forms Wα ∈ Ωpα(Md) with degree pα > 0 (zero-forms are
included), where α is an index enumerating various forms, which, generically, may range in the infinite
set 1 6 α <∞.

Let Rα ∈ Ωpα+1(Md) be the generalized curvatures defined by the relations

Rα = dWα +Gα(W ) , (6.1)

where

Gα(W β) =

∞X
n=1

fα
β1...βn

W β1 . . .W βn (6.2)

are some power series in W β built with the aid of the exterior product of differential forms. The
(anti)symmetry properties of the structure constants fα

β1...βn
are such that fα

β1...βn
6= 0 for pα + 1 =Pn

i=1 pβi and the permutation of any two indices βi and βj brings a factor of (−1)
pβi

pβj (in the case of
bosonic fields, i.e. with no extra Grassmann grading in addition to that of the exterior algebra).

The choice of a function Gα(W β) satisfying the generalized Jacobi identity

Gβ δ
LGα

δW β
≡ 0 (6.3)

(the derivative with respect to W β is left) defines a free differential algebra15 [61] introduced originally in
the field-theoretical context in [64]. We emphasize that the property (6.3) is a condition on the function

15We remind the reader that a differential d is a Grassmann odd nilpotent derivation of degree one, i.e. it
satisfies the (graded) Leibnitz rule and d2 = 0. A differential algebra is a graded algebra endowed with a
differential d. Actually, the “free differential algebras” (in physicist terminology) are more precisely christened
“graded commutative free differential algebra” by mathematicians (this means that the algebra does not obey
algebraic relations apart from graded commutativity). In the absence of zero-forms (which however play a key
role in the unfolded dynamics construction) the structure of these algebras is classified by Sullivan [63].



Nonlinear Higher Spin Theories in Various Dimensions 151

Gα(W ) to be satisfied identically for all W β . It is equivalent to the following generalized Jacobi identity
on the structure coefficients

mX
n=0

(n+ 1)fγ
[β1...βm−n

fα
γβm−n+1...βm} = 0 , (6.4)

where the brackets [ } denote an appropriate (anti)symmetrization of all indices βi. Strictly speaking,
the generalized Jacobi identities (6.4) have to be satisfied only at pα < d for the case of a d-dimensional
manifold Md where any d + 1-form is zero. We will call a free differential algebra universal if the
generalized Jacobi identity is true for all values of indices, i.e., independently of a particular value of
space-time dimension. The HS free differential algebras discussed in this paper belong to the universal
class. Note that every universal free differential algebra defines some L∞ algebra16.

The property (6.3) guarantees the generalized Bianchi identity

dRα = Rβ δ
LGα

δW β
,

which tells us that the differential equations on W β

Rα(W ) = 0 (6.5)

are consistent with d2 = 0 and supercommutativity. Conversely, the property (6.3) is necessary for the
consistency of the equation (6.5).

For universal free differential algebras one defines the gauge transformations as

δWα = dεα − εβ δ
LGα

δW β
, (6.6)

where εα(x) has form degree equal to pα − 1 (so that zero-forms Wα do not give rise to any gauge
parameter). With respect to these gauge transformations the generalized curvatures transform as

δRα = −Rγ δL

δW γ

„
εβ δ

LGα

δW β

«
due to the property (6.3). This implies the gauge invariance of the equations (6.5). Also, since the equa-
tions (6.5) are formulated entirely in terms of differential forms, they are explicitly general coordinate
invariant.

Unfolding means reformulating the dynamics of a system into an equivalent system of the form
(6.5), which, as is explained below, is always possible by virtue of introducing enough auxiliary fields.
Note that, according to (6.1), in this approach the exterior differential of all fields is expressed in
terms of the fields themselves. A nice property of the universal free differential algebras is that they
allow an equivalent description of unfolded systems in larger (super)spaces simply by adding additional
coordinates corresponding to a larger (super)space as was demonstrated for some particular examples
in [51,89,17,71].

Let h be a Lie (super)algebra, a basis of which is the set {Tα}. Let ω = ωαTα be a one-form taking
values in h. If one chooses G(ω) = ω2 ≡ 1

2
ωαωβ [Tα, Tβ ], then the equation (6.5) with W = ω is the

zero-curvature equation dω + ω2 = 0. The relation (6.3) amounts to the usual Jacobi identity for the
Lie (super)algebra h as is most obvious from (6.4) (or its super version). In the same way, (6.6) is the
usual gauge transformation of the connection ω.

If the set Wα also contains some p-forms denoted by Ci (e.g. zero-forms) and if the functions Gi are
linear in ω and C,

Gi = ωα(Tα)i
jCj , (6.7)

16The minor difference is that a form degree pα of W α is fixed in a universal free differential algebra while
W α in L∞ are treated as coordinates of a graded manifold. A universal free differential algebra can therefore be
obtained from L∞ algebra by an appropriate projection to specific form degrees.



152 Bekaert, Cnockaert, Iazeolla, Vasiliev

then the relation (6.3) implies that the coefficients (Tα)i
j define some matrices Tα forming a represen-

tation T of h, acting in a module V where the Ci take their values. The corresponding equation (6.5) is
a covariant constancy condition DωC = 0, where Dω ≡ d+ω is the covariant derivative in the h-module
V .

6.2 Unfolding strategy

From the previous considerations, one knows that the system of equations

dω0 + ω2
0 = 0 , (6.8)

Dω0C = 0 (6.9)

forms a free differential algebra. The first equation usually describes a background (for example
Minkowski or AdS) along with some pure gauge modes. The connection one-form ω0 takes value in
some Lie algebra h. The second equation may describe nontrivial dynamics if C is a zero-form C that
forms an infinite-dimensional h-module T appropriate to describe the space of all moduli of solutions
(i.e., the initial data). One can wonder how the set of equations (6.8) and

Dω0C = 0 (6.10)

could describe any dynamics, since it implies that (locally) the connection ω0 is pure gauge and C is
covariantly constant, so that

ω0(x) = g−1(x) dg(x) , (6.11)

C(x) = g−1(x) · C , (6.12)

where g(x) is some function of the position x taking values in the Lie group H associated with h (by
exponentiation), C is a constant vector of the h-module T and the dot stands for the corresponding
action of H on T . Since the gauge parameter g(x) does not carry any physical degree of freedom, all
physical information is contained in the value C(x0) = g−1(x0) · C of the zero-form C(x) at a fixed
point x0 of space-time. But as one will see in Section 7, if the zero-form C(x) somehow parametrizes
all the derivatives of the original dynamical fields, then, supplemented with some algebraic constraints
(that, in turn, single out an appropriate h-module), it can actually describe nontrivial dynamics. More
precisely, the restrictions imposed on values of some zero-forms at a fixed point x0 of space-time can lead
to nontrivial dynamics if the set of zero-forms is rich enough to describe all space-time derivatives of the
dynamical fields at a fixed point of space-time, provided that the constraints just single out those values
of the derivatives that are compatible with the original dynamical equations. By knowing a solution
(6.12) one knows all the derivatives of the dynamical fields compatible with the field equations and can
therefore reconstruct these fields by analyticity in some neighborhood of x0.

The p-forms with p > 0 contained in C (if any) are still pure gauge in these equations. As will be
clear from the examples below, the meaning of the zero-forms C contained in C is that they describe all
gauge invariant degrees of freedom (e.g. the spin-0 scalar field, the spin-1 Maxwell field strength, the
spin-2 Weyl tensor, etc., and all their on-mass-shell nontrivial derivatives). When the gauge invariant
zero-forms are identified with derivatives of the gauge fields which are p > 0 forms, this is expressed by
a deformation of the equation (6.9)

Dω0C = P (ω0)C , (6.13)

where P (ω0) is a linear operator (depending on ω0 at least quadratically) acting on C. The equations
(6.8) and (6.13) are of course required to be consistent, i.e. to describe some free differential algebra,
which is a deformation of (6.8) and (6.9). If the deformation is trivial, one can get rid of the terms on the
right-hand-side of (6.13) by a field redefinition. The interesting case therefore is when the deformation
is nontrivial. A useful criterium of whether the deformation (6.13) is trivial or not is given in terms of
the σ− cohomology in Section 9.
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The next step is to interpret the equations (6.8) and (6.13) as resulting from the linearization of
some nonlinear system of equations with

W = ω0 + C (6.14)

in which ω0 is some fixed zero-order background field chosen to satisfy (6.8) while C describes first order
fluctuations. Consistency of this identification however requires nonlinear corrections to the original
linearized equations because the full covariant derivatives built of W = ω0 + C develop nonzero curva-
ture due to the right hand side of (6.13). Finding these nonlinear corrections is equivalent to finding
interactions.

This suggests the following strategy for the analysis of HS gauge theories:

1. One starts from a space-time with some symmetry algebra s (e.g. Poincaré or anti-de Sitter algebra)
and a vacuum gravitational gauge field ω0, which is a one-form taking values in s and satisfying
the zero curvature equations (6.8).

2. One reformulates the field equations of a given free dynamical system in the “unfolded form” (6.13).
This can always be done in principle (the general procedure is explained in Section 7). The only
questions are: “how simple is the explicit formulation?” and “what are the modules T of s for
which the unfolded equation (6.10) can be interpreted as a covariant constancy condition?”.

3. One looks for a nonlinear free differential algebra such that (6.5) with (6.14) correctly reproduces
the free field equations (6.8) and (6.13) at the linearized level. More precisely, one looks for some
function G(W ) verifying (6.3) and the Taylor expansion of which around ω0 is given by

G(W ) = ω2
0 +

“
ω0 − P (ω0)

”
C +O(C2) ,

where ω0C denotes the action of ω0 in the h-module C and the terms denoted by O(C2) are at
least quadratic in the fluctuation.

It is not a priori guaranteed that some nonlinear deformation exists at all. If not, this would mean
that no consistent nonlinear equations exist. But if the deformation is found, then the problem is
solved because the resulting equations are formally consistent, gauge invariant and generally coordinate
invariant17 as a consequence of the general properties of free differential algebras, and, by construction,
they describe the correct dynamics at the free field level.

To find some nonlinear deformation, one has to address two related questions. The first one is “what
is a relevant s-module T in which zero-forms that describe physical degrees of freedom in the model can
take values?” and the second is “which infinite-dimensional (HS) extension h of s, in which one-form
connections take their values, can act on the s-module T?”. A natural candidate is a Lie algebra h
constructed via commutators from the associative algebra A

A = U(s)/Ann(T ) ,

where U(s) is the universal enveloping algebra of s while Ann(T ) is the annihilator, i.e. the ideal of U(s)
spanned by the elements which trivialize on the module T . Of course, this strategy may be too naive
in general because not all algebras can be symmetries of a consistent field-theoretical model and only
some subalgebras of h resulting from this construction may allow a consistent nonlinear deformation.
A useful criterium is the admissibility condition [66] which requires that there should be a unitary h-
module which describes a list of quantum single-particle states corresponding to all HS gauge fields
described in terms of the connections of h. If no such representation exists, there is no chance to find
a nontrivial consistent (in particular, free of ghosts) theory that admits h as a symmetry of its most
symmetric vacuum. In any case, U(s) is the reasonable starting point to look for a HS algebra18. It

17Note that any fixed choice of ω0 breaks down the diffeomorphism invariance to a global symmetry of the
vacuum solution. This is why the unfolding formulation works equally well both in the theories with fixed
background field ω0 and no manifest diffeomorphism invariance and those including gravity where ω0 is a zero
order part of the dynamical gravitational field.

18Based on somewhat different arguments, this idea was put forward by Fradkin and Linetsky in [65].
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seems to be most appropriate, however, to search for conformal HS algebras. Indeed, the associative
algebra A introduced in Section 5 is a quotient A = U(s)/Ann(T ) , where T represents its conformal
realization in d − 1 dimensions [54, 57]. The related real Lie algebra h is hu(1|2:[d− 1, 2]). The space
of single-particle quantum states of free massless HS fields of Section 8 provides a unitary module of
hu(1|2:[d− 1, 2]) in which all massless completely symmetric representations of o(d − 1, 2) appear just
once [57].

7 Unfolding lower spins

The dynamics of any consistent system can in principle be rewritten in the unfolded form (6.5) by adding
enough auxiliary variables [67]. This technique is explained in Subsection 7.1. Two particular examples
of the general procedure are presented: the unfolding of the Klein-Gordon equation and the unfolding
of gravity, in Subsections 7.2 and 7.3, respectively.

7.1 Unfolded dynamics

Let ω0 = ea
0 Pa + 1

2
ωab

0 Mab be a vacuum gravitational gauge field taking values in some space-time

symmetry algebra s. Let C(0)(x) be a given space-time field satisfying some dynamical equations to
be unfolded. Consider for simplicity the case where C(0)(x) is a zero-form. The general procedure of
unfolding free field equations goes schematically as follows:

For a start, one writes the equation

DL
0 C

(0) = ea
0 C(1)

a , (7.1)

where DL
0 is the covariant Lorentz derivative and the field C

(1)
a is auxiliary. Next, one checks whether the

original field equations for C(0) impose any restrictions on the first derivatives of C(0). More precisely,
some part of DL

0 , µC
(0) might vanish on-mass-shell (e.g. for Dirac spinors). These restrictions in turn

impose some restrictions on the auxiliary fields C
(1)
a . If these constraints are satisfied by C

(1)
a , then

these fields parametrize all on-mass-shell nontrivial components of first derivatives.

Then, one writes for these first level auxiliary fields an equation similar to (7.1)

DL
0 C

(1)
a = eb

0 C
(2)
a,b , (7.2)

where the new fields C
(2)
a,b parametrize the second derivatives of C(0). Once again one checks (taking

into account the Bianchi identities) which components of the second level fields C
(2)
a,b are nonvanishing

provided that the original equations of motion are satisfied.

This process continues indefinitely, leading to a chain of equations having the form of some covariant
constancy condition for the chain of fields C

(m)
a1,a2,...,am (m ∈ N) parametrizing all on-mass-shell nontrivial

derivatives of the original dynamical field. By construction, this leads to a particular unfolded equation
(6.5) with Gi in (6.1) given by (6.7). As explained in Section 6.1, this means that the set of fields

realizes some module T of the space-time symmetry algebra s. In other words, the fields C
(m)
a1,a2,...,am

are the components of a single field C living in the infinite-dimensional s–module T . Then the infinite
chain of equations can be rewritten as a single covariant constancy condition D0C = 0, where D0 is the
s-covariant derivative in T .

7.2 The example of the scalar field

As a preliminary to the gravity example considered in the next subsection, the simplest field-theoretical
case of unfolding is reviewed, i.e. the unfolding of a massless scalar field, which was first described
in [67].
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For simplicity, for the remaining of Section 7, we will consider the flat space-time background. The
Minkowski solution can be written as

ω0 = dxµδa
µPa (7.3)

i.e. the flat frame is (e0)
a
µ = δa

µ and the Lorentz connection vanishes. The equation (7.3) corresponds
to the “pure gauge” solution (6.11) with

g(x) = exp(xµ δa
µ Pa) , (7.4)

where the space-time Lie algebra s is identified with the Poincaré algebra iso(d − 1, 1). Though the
vacuum ω0 solution has a pure gauge form (7.4), this solution cannot be gauged away because of the
constraint rank(e0) = d (see Section 2.1).

The “unfolding” of the massless Klein-Gordon equation

2C(x) = 0 (7.5)

is relatively easy to work out, so we give directly the final result and we comment about how it is
obtained afterwards.

To describe the dynamics of the spin-0 massless field C(x), let us introduce the infinite collection of
zero-forms Ca1...an(x) (n = 0, 1, 2, . . .) that are completely symmetric traceless tensors

Ca1...an = C{a1...an} , ηbcCbca3...an = 0 . (7.6)

The “unfolded” version of the Klein-Gordon equation (7.5) has the form of the following infinite chain
of equations

dCa1...an = eb
0Ca1...anb (n = 0, 1, . . .) , (7.7)

where we have used the opportunity to replace the Lorentz covariant derivative DL
0 by the ordinary

exterior derivative d. It is easy to see that this system is formally consistent because applying d on both
sides of (7.7) does not lead to any new condition,

d2Ca1...an = − eb
0 dCa1...anb = − eb

0 e
c
0 Ca1...anbc = 0 (n = 0, 1, . . .) ,

since eb
0e

c
0 = −ec

0e
b
0 because eb

0 is a one-form. As we know from Section 6.1, this property implies that
the space T of zero-forms Ca1...an(x) spans some representation of the Poincaré algebra iso(d− 1, 1). In
other words, T is an infinite-dimensional iso(d− 1, 1)-module19.

To show that this system of equations is indeed equivalent to the free massless field equation (7.5),
let us identify the scalar field C(x) with the member of the family of zero-forms Ca1...an(x) at n = 0.
Then the first two equations of the system (7.7) read

∂νC = Cν ,

∂νCµ = Cµν ,

where we have identified the world and tangent indices via (e0)
a
µ = δa

µ. The first of these equations just
tells us that Cν is the first derivative of C. The second one tells us that Cνµ is the second derivative
of C. However, because of the tracelessness condition (7.6) it imposes the Klein-Gordon equation (7.5).
It is easy to see that all other equations in (7.7) express highest tensors in terms of the higher-order
derivatives

Cν1...νn = ∂ν1 . . . ∂νnC (7.8)

and impose no new conditions on C. The tracelessness conditions (7.6) are all satisfied once the Klein-
Gordon equation is true. From this formula it is clear that the meaning of the zero-forms Cν1...νn is
that they form a basis in the space of all on-mass-shell nontrivial derivatives of the dynamical field C(x)
(including the derivative of order zero which is the field C(x) itself).

19Strictly speaking, to apply the general argument of Section 6.1 one has to check that the equation remains
consistent for any flat connection in iso(d− 1, 1). It is not hard to see that this is true indeed.
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Let us note that the system (7.7) without the constraints (7.6), which was originally considered
in [68], remains formally consistent but is dynamically empty just expressing all highest tensors in terms
of derivatives of C according to (7.8). This simple example illustrates how algebraic constraints like
tracelessness of a tensor can be equivalent to dynamical equations.

The above consideration can be simplified further by means of introducing the auxiliary coordinate
ua and the generating function

C(x, u) =

∞X
n=0

1

n !
Ca1...an(x)ua1 . . . uan

with the convention that
C(x, 0) = C(x) .

This generating function accounts for all tensors Ca1...an provided that the tracelessness condition is
imposed, which in these terms implies that

2uC(x, u) ≡ ∂

∂ua

∂

∂ua
C = 0 . (7.9)

In other words, the iso(d − 1, 1)-module T is realized as the space of formal harmonic power series in
ua. The equations (7.7) then acquire the simple form

∂

∂xµ
C(x, u) = δa

µ
∂

∂ua
C(x, u) . (7.10)

From this realization one concludes that the translation generators in the infinite-dimensional module
T of the Poincaré algebra are realized as translations in the u–space, i.e.

Pa = − ∂

∂ua
,

for which the equation (7.10) reads as a covariant constancy condition (6.9)

dC(x, u) + ea
0PaC(x, u) = 0 . (7.11)

One can find a general solution of the equation (7.11) in the form

C(x, u) = C(x+ u, 0) = C(0, x+ u) (7.12)

from which it follows in particular that

C(x) ≡ C(x, 0) = C(0, x) =

∞X
n=0

1

n!
Cν1...νn(0)xν1 . . . xνn . (7.13)

From (7.6) and (7.8) one can see that this is indeed the Taylor expansion for any solution of the
Klein-Gordon equation which is analytic at x0 = 0. Moreover the general solution (7.12) expresses the
covariant constancy of the vector C(x, u) of the module T ,

C(x, u) = C(0, x+ u) = exp(−xµ δa
µ Pa)C(0, u) .

This is a particular realization of the pure gauge solution (6.12) with the gauge function g(x) of the
form (7.4) and C = C(0, u).

The example of a free scalar field is so simple that one might think that the unfolding procedure
is always like a trivial mapping of the original equation (7.5) to the equivalent one (7.9) in terms
of additional variables. This is not true, however, for the less trivial cases of dynamical systems in
nontrivial backgrounds and, especially, nonlinear systems. The situation here is analogous to that in the
Fedosov quantization prescription [69] which reduces the nontrivial problem of quantization in a curved
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background to the standard problem of quantization of the flat phase space, that, of course, becomes
an identity when the ambient space is flat itself. It is worth to mention that this parallelism is not
accidental because, as one can easily see, the Fedosov quantization prescription provides a particular
case of the general unfolding approach [59] in the dynamically empty situation (i.e., with no dynamical
equations imposed).

7.3 The example of gravity

The set of fields in Einstein-Cartan’s formulation of gravity is composed of the frame field ea
µ and

the Lorentz connection ωab
µ . One supposes that the torsion constraint Ta = 0 is satisfied, in order to

express the Lorentz connection in terms of the frame field. The Lorentz curvature can be expressed as
Rab = eced R

[cd] ; [ab], where Rab ; cd is a rank four tensor with indices in the tangent space and which

is antisymmetric both in ab and in cd, having the symmetries of the tensor product
a

b

N c

d .
The algebraic Bianchi identity ebR

ab = 0, which follows from the zero torsion constraint, imposes that
the tensor Rab ; cd possesses the symmetries of the Riemann tensor, i.e. R[ab ; c]d = 0. More precisely,

it carries an irreducible representation of GL(d) characterized by the Young tableau
a c

b d
in the

antisymmetric basis. The vacuum Einstein equations state that this tensor is traceless, so that it is
actually irreducible under the pseudo-orthogonal group O(d − 1, 1) on-mass-shell. In other words, the
Riemann tensor is equal on-mass-shell to the Weyl tensor.

For HS generalization, it is more convenient to use the symmetric basis. In this convention, the
Einstein equations can be written as

T a = 0 , Rab = ec ed C
ac, bd , (7.14)

where the zero-form Cac, bd is the Weyl tensor in the symmetric basis. More precisely, the tensor Cac,bd

is symmetric in the pairs ac and bd and it satisfies the algebraic identities

C{ac, b}d = 0 , ηacC
ac, bd = 0 .

Let us now start the unfolding of linearized gravity around the Minkowski background described by
a frame one-form ea

0 and Lorentz covariant derivative DL
0 . The linearization of the second equation of

(7.14) is
Rab

1 = e0 c e0 d C
ac, bd , (7.15)

where Rab
1 is the linearized Riemann tensor. This equation is a particular case of the equation (6.13).

What is lacking at this stage is the equations containing the differential of the Weyl zero-form Cac, bd.
Since we do not want to impose any additional dynamical restrictions on the system, the only restrictions
on the derivatives of the Weyl zero-form Cac, bd may result from the Bianchi identities applied to (7.15).

A priori, the first Lorentz covariant derivative of the Weyl tensor is a rank five tensor in the following
representation

N
=

L
(7.16)

decomposed according to irreducible representations of gl(d). Since the Weyl tensor is traceless, the
right hand side of (7.16) contains only one nontrivial trace, that is for traceless tensors we have the
o(d− 1, 1) Young decomposition by adding a three cell hook tableau, i.e.

N
=

L L
(7.17)
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The linearized Bianchi identity DL
0 R

ab
1 = 0 leads to

e0 ce0 d D
L
0 C

ac, bd = 0 . (7.18)

The components of the left-hand-side written in the basis dxµdxνdxρ have the symmetry property
corresponding to the tableau µ a

ν b
ρ

∼ DL
0 [ρC

a
µ

,b
ν] ,

which also contains the single trace part with the symmetry properties of the three-cell hook tableau.

Therefore the consistency condition (7.18) says that in the decomposition (7.17) of the Lorentz
covariant derivative of the Weyl tensor, the first and third terms vanish and the second term is traceless
and otherwise arbitrary. Let Cabf, cd be the traceless tensor corresponding to the second term in the
decomposition (7.16) of the Lorentz covariant derivative of the Weyl tensor. This is equivalent to say
that

DL
0 C

ac, bd = e0f (2Cacf, bd + Cacb, df + Cacd, bf ) , (7.19)

where the right hand side is fixed by the Young symmetry properties of the left hand side modulo an
overall normalization coefficient. This equation looks like the first step (7.1) of the unfolding procedure.
Cacf, bd is irreducible under o(d− 1, 1).

One should now perform the second step of the general unfolding scheme and write the analogue of
(7.2). This process goes on indefinitely. To summarize the procedure, one can analyze the decomposition
of the k-th Lorentz covariant derivatives (with respect to the Minkowski vacuum background, so they
commute) of the Weyl tensor Cac, bd. Taking into account the Bianchi identity, the decomposition goes
as follows

k
N

→ k + 2 (7.20)

As a result, one obtains

DL
0 C

a1...ak+2, b1b2 = e0 c

“
(k + 2)Ca1...ak+2c, b1b2 + Ca1...ak+2b1, b2c + Ca1...ak+2b2, b1c

”
,

(0 6 k 6∞) , (7.21)

where the fields Ca1...ak+2, b1b2 are in the irreducible representation of o(d − 1, 1) characterized by the
traceless two-row Young tableau on the right hand side of (7.20), i.e.

C{a1...ak+2, b1}b2 = 0 , ηa1a2C
a1a2...ak+2, b1b2 = 0 .

Note that, as expected, the system (7.21) is consistent with (DL
0 )2Ca1...ak+2, b1b2 = 0.

Analogously to the spin-0 case, the meaning of the zero-forms Ca1...ak+2, b1b2 is that they form a
basis in the space of all on-mass-shell nontrivial gauge invariant combinations of the derivatives of the
spin-2 gauge field.

In order to extend this analysis to nonlinear gravity, one replaces the background derivative DL
0 and

frame field ea
0 by the full Lorentz covariant derivative DL and dynamical frame ea satisfying the zero

torsion condition DLea = 0 and
DLDL = R , (7.22)

where R is the Riemann tensor taking values in the adjoint representation of the Lorentz algebra. The
unfolding procedure goes the same way up to the equation (7.19) but needs nonlinear corrections starting
from the next step. The reason is that Bianchi identities for (7.19) and analogous higher equations give
rise to terms nonlinear in C via (7.22) and (7.14). All terms of second order in C in the nonlinear
deformation of (7.21) were obtained in [60] for the case of four dimensions. The problem of unfolding
nonlinear gravity in all orders remains unsolved.
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8 Free massless equations for any spin

In order to follow the strategy exposed in Subsection 6.2 and generalize the example of gravity treated
along these lines in Subsection 7.3, we shall start by writing unfolded HS field equations in terms of the
linearized HS curvatures (4.4). This result is christened the “central on-mass-shell theorem”. It was
originally obtained in [40, 59] for the case of d = 4 and then extended to any d in [41, 30]. That these
HS equations of motion indeed reproduce the correct physical degrees of freedom will be shown later in
Section 10, via a cohomological approach explained in Section 9.

8.1 Connection one-form sector

The linearized curvatures R
A1...As−1, B1...Bs−1
1 were defined by (4.4). They decompose into the linearized

curvatures with Lorentz (i.e. V A transverse) fibre indices which have the symmetry properties associated

with the two-row traceless Young tableau
s − 1

t . It is convenient to use the standard gauge
V A = δA

d̂
(from now on we normalize V to unity). In the Lorentz basis, the linearized HS curvatures

have the form

R
a1...as−1, b1...bt

1 = DL
0 ω

a1...as−1, b1...bt + e0 c ω
a1...as−1, b1...btc + O(Λ) . (8.1)

For simplicity, in this section we discard the complicated Λ–dependent terms which do not affect the
general analysis, i.e. we present explicitly the flat-space-time part of the linearized HS curvatures. It is
important to note however that the Λ–dependent terms in (8.1) contain only the field ωa1...as−1, b1...bt−1

which carries one index less than the linearized HS curvatures. The explicit form of the Λ–dependent
terms is given in [41].

For t = 0, these curvatures generalize the torsion of gravity, while for t > 0 the curvature corresponds
to the Riemann tensor. In particular, as we will demonstrate in Section 10, the analogues of the Ricci
tensor and scalar curvature are contained in the curvatures with t = 1 while the HS analog of the Weyl
tensor is contained in the curvatures with t = s− 1. (For the case of s = 2 they combine into the level
t = 1 traceful Riemann tensor.)

The first on-mass-shell theorem states that the following free field equations in Minkowski or (A)dS
space-time

R
a1...as−1, b1...bt

1 = δt, s−1 e0 c e0 d C
a1...as−1c, b1...bs−1d , (0 6 t 6 s− 1) (8.2)

properly describe completely symmetric gauge fields of generic spin s > 2. This means that they are
equivalent to the proper generalization of the d = 4 Fronsdal equations of motion to any dimension,
supplemented with certain algebraic constraints on the auxiliary HS connections which express the
latter via derivatives of the dynamical HS fields. The zero-form Ca1...as, b1...bs is the spin-s Weyl-like
tensor. It is irreducible under o(d − 1, 1) and is characterized by a rectangular two-row Young tableau

s
s. The field equations generalize (7.15) of linearized gravity. The equations of motion put

to zero all curvatures with t 6= s− 1 and require Ca1...as, b1...bs to be traceless.

8.2 Weyl zero-form sector

Note that the equations (8.2) result from the first step in the unfolding of the Fronsdal equations.20 The
analysis of the Bianchi identities of (8.2) works for any spin s > 2 in a way analogous to gravity. The

20Actually, the action and equations of motion for totally symmetric massless HS fields in AdSd with d > 4
were originally obtained in [41] in the frame-like formalism.
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final result is the following equation [30], which presents itself like a covariant constancy condition

0 = eD0C
a1...as+k, b1...bs ≡ DL

0 C
a1...as+k, b1...bs

− e0 c

“
(k + 2)Ca1...as+kc, b1...bs + sCa1...as+k{b1, b2...bs}c

”
+O(Λ) ,

(0 6 k 6∞) , (8.3)

where Ca1...as+k, b1...bs are o(d − 1, 1) irreducible (i.e., traceless) tensors characterized by the Young

tableaux
s+ k

s They describe on-mass-shell nontrivial k-th derivatives of the spin-sWeyl-
like tensor, thus forming a basis in the space of gauge invariant combinations of (s+ k)-th derivatives of
a spin-s HS gauge field. The system (8.3) is the generalization of the spin-0 system (7.7) and the spin-2
system (7.21) to arbitrary spin and to AdS background (the explicit form of the Λ–dependent terms is
given in [30]). Let us stress that for s > 2 the infinite system of equations (8.3) is a consequence of (8.2)
by the Bianchi identity. For s = 0 and s = 1, the system (8.3) contains the dynamical Klein-Gordon
and Maxwell equations, respectively. Note that (8.2) makes no sense for s = 0 because there is no
spin-0 gauge potential while (8.3) with s = 0 reproduces the unfolded spin-0 equation (7.7) and its AdS
generalization. For the spin-1 case, (8.2) only gives a definition of the spin-1 Maxwell field strength
Ca,b = −Cb,a in terms of the potential ωµ. The dynamical equations for spin-1, i.e. Maxwell equations,
are contained in (8.3). The fields Ca1...ak+1, b, characterized by the Lorentz irreducible (i.e. traceless)
two-row Young tableaux with one cell in the second row, form a basis in the space of on-mass-shell
nontrivial derivatives of the Maxwell tensor Ca, b.

It is clear that the complete set of zero-forms Ca1...as+k, b1...bs∼ s+ k
s covers the set

of all two-row Young tableaux. This suggests that the Weyl-like zero-forms take values in the linear
space of hu(1|2:[d− 1, 2]), which obviously forms an o(d−1, 1)-(i.e. Lorentz) module. Following Sections
6.1 and 6.2, one expects that the zero-forms belong to an o(d − 1, 2)-module T . But the idea to use
the adjoint representation of hu(1|2:[d− 1, 2]) does not work because, according to the commutation
relation (5.1), the commutator of the background gravity connection ω0 = ωAB

0 TAB with a generator of

hu(1|2:[d− 1, 2]) preserves the rank of the generator, while the covariant derivative eD0 in (8.3) acts on the
infinite set of Lorentz tensors of infinitely increasing ranks. Fortunately, the appropriate representation
only requires a slight modification compared to the adjoint representation. As will be explained in
Section 12, the zero-forms C belong to the so-called “twisted adjoint representation”.

Since k goes from zero to infinity for any fixed s in (8.3), in agreement with the general arguments of
Section 6, each irreducible spin-s submodule of the twisted adjoint representation is infinite-dimensional.
This means that, in the unfolded formulation, the dynamics of any fixed spin-s field is described in terms
of an infinite set of fields related by the first-order unfolded equations. Of course, to make it possible to
describe a field-theoretical dynamical system with an infinite number of degrees of freedom, the set of
auxiliary zero-forms associated with all gauge invariant combinations of derivatives of dynamical fields
should be infinite. Let us note that the right-hand-side of the equation (8.2) is a particular realization
of the deformation terms (6.13) in free differential algebras.

The system of equations (8.2)-(8.3) provides the unfolded form of the free equations of motion for
completely symmetric massless fields of all spins in any dimension. This fact is referred to as “central
on-mass-shell theorem” because it plays a distinguished role in various respects. The idea of the proof
will be explained in Section 10. The proof is based on a very general cohomological reformulation of the
problem, which is reviewed in Section 9.

9 Dynamical content via σ− cohomology

In this section, we perform a very general analysis of equations of motion of the form

bD0C = 0 , (9.1)
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via a cohomological reformulation [68, 51, 17, 71] of the problem21. It will be applied to the HS context
in the next section.

9.1 General properties of σ−

Let us introduce the number of Lorentz indices as a grading G of the space of tensors with fiber (tangent)

Lorentz indices. In the unfolded HS equations the background covariant derivative bD0 decomposes as
the sum bD0 = σ− +DL

0 + σ+ , (9.2)

where the operator σ± modifies the rank of a Lorentz tensor by ±1 and the background Lorentz covariant
derivative DL

0 does not change it.

In the present consideration we do not fix the module V on which bD acts and, in (9.1), C denotes
a set of differential forms taking values in V . In the context of the HS theory, the interesting cases are
when bD acts either on the adjoint representation or on the twisted adjoint representation of the HS
algebra. For example, the covariant constancy condition (8.3) takes the form

eD0C = (DL
0 + σ− + σ+)C = 0 ,

where σ+ denotes the Λ–dependent terms. The cohomological classification exposed here only assumes
the following abstract properties:

(i) The grading operator G is diagonalizable in the vector space V and it possesses a spectrum bounded
from below.

(ii) The grading properties of the Grassmann odd operators DL
0 and σ− are summarized in the com-

mutation relations
[G,DL

0 ] = 0 , [G, σ−] = −σ− .

The operator σ+ is a sum of operators of strictly positive grade. (In HS applications σ+ has grade
one, i.e. [G, σ+] = σ+ , but this is not essential for the general analysis.)

(iii) The operator σ− acts vertically in the fibre V , i.e. it does not act on space-time coordinates. (In
HS models, only the operator DL

0 acts nontrivially on the space-time coordinates (differentiates).)

(iv) The background covariant derivative bD0 defined by (9.2) is nilpotent. The graded decomposition

of the nilpotency equation ( bD0)
2 = 0 gives the following identities

(σ−)2 = 0 , DL
0 σ−+σ−D

L
0 = 0 , (DL

0 )2+σ+σ−+σ−σ++DL
0 σ++σ+D

L
0 +(σ+)2 = 0 . (9.3)

If σ+ has definite grade +1 (as is the case in the HS theories under consideration) the last relation is
equivalent to the three conditions (σ+)2 = 0 , DL

0 σ+ +σ+D
L
0 = 0 , (DL

0 )2 +σ+σ−+σ−σ+ = 0 .

An important property is the nilpotency of σ−. The point is that the analysis of Bianchi identities (as
was done in details in Section 7.3 for gravity) is, in fact, equivalent to the analysis of the cohomology of
σ−, that is

H(σ−) ≡ Ker(σ−)

Im(σ−)
.

9.2 Cohomological classification of the dynamical content

Let C denote a differential form of degree p taking values in V , that is an element of the complex
V ⊗ Ωp(Md). The field equation (9.1) is invariant under the gauge transformations

δC = bD0ε , (9.4)

21Note that a similar approach was applied in a recent paper [72] in the context of BRST formalism.
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since bD0 is nilpotent by the hypothesis (iv). The gauge parameter ε is a (p − 1)-form. These gauge
transformations contain both differential gauge transformations (like linearized diffeomorphisms) and
Stueckelberg gauge symmetries (like linearized local Lorentz transformations22).

The following terminology will be used. By dynamical field, we mean a field that is not expressed
as derivatives of something else by field equations (e.g. the frame field in gravity or a frame-like HS
one-form field ω

a1...as−1
µ ). The fields that are expressed by virtue of the field equations as derivatives

of the dynamical fields modulo Stueckelberg gauge symmeries are referred to as auxiliary fields (e.g. the

Lorentz connection in gravity or its HS analogues ω
a1...as−1, b1...bt

µ with t > 0). A field that is neither
auxiliary nor pure gauge by Stueckelberg gauge symmeries is said to be a nontrivial dynamical field (e.g.
the metric tensor or the metric-like gauge fields of Fronsdal’s approach).

Let C(x) be an element of the complex V ⊗ Ωp(Md) that satisfies the dynamical equation (9.1).
Under the hypotheses (i)-(iv) one can prove the following propositions [68,51] (see also [17,71]):

A. Nontrivial dynamical fields C are nonvanishing elements of Hp(σ−).

B. Differential gauge symmetry parameters ε are classified by Hp−1(σ−).

C. Inequivalent differential field equations on the nontrivial dynamical fields contained in bD0C = 0
are in one-to-one correspondence with representatives of Hp+1(σ−).

Proof of A: The first claim is almost obvious. Indeed, let us decompose the field C according to the
grade G:

C =
X
n=0

Cn , GCn = n Cn , (n = 0, 1, 2, . . .) .

The field equation (9.1) thus decomposes as

bD0C|n−1 = σ−Cn +DL
0 Cn−1 +

“
σ+

X
m6n−2

Cm

”˛̨̨
n−1

= 0 . (9.5)

By a straightforward induction on n = 1, 2, . . ., one can convince oneself that all fields Cn that contribute
to the first term of the right hand side of the equation (9.5) are thereby expressed in terms of derivatives
of lower grade (i.e. < n) fields, hence they are auxiliary23. As a result only fields annihilated by σ− are
not auxiliary. Taking into account the gauge transformation (9.4)

δCn = bD0ε|n = σ−εn+1 +DL
0 εn +

“
σ+

X
m6n−1

εm

”˛̨̨
n

(9.6)

one observes that, due to the first term in this transformation law, all components Cn which are σ−
exact, i.e. which belong to the image of σ−, are Stueckelberg and they can be gauged away. Therefore,
a nontrivial dynamical p-form field in C should belong to the quotient Ker(σ−)/Im(σ−).

For Einstein-Cartan’s gravity, the Stueckelberg gauge symmetry is the local Lorentz symmetry and
indeed what distinguishes the frame field from the the metric tensor is that the latter actually belongs
to the cohomology H1(σ−) while the former contains a σ− exact part.

Proof of B: The proof follows the same lines as the proof of A. The first step has already been performed
in the sense that (9.6) already told us that the parameters such that σ−ε 6= 0 are Stueckelberg and can
be used to completely gauge away trivial parts of the field C. Thus differential parameters must be
σ− closed. The only subtlety is that one should make use of the fact that the gauge transformation
δεC = bD0ε are reducible. More precisely, gauge parameters obeying the reducibility identity

ε = bD0ζ (9.7)

22Recall that, at the linearized level, the metric tensor corresponds to the symmetric part e{µ a} of the frame
field. The antisymmetric part of the frame field e[µ a] can be gauged away by fixing locally the Lorentz symmetry,

because it contains as many independent components as the Lorentz gauge parameter εcd.
23Here we use the fact that the operator σ− acts vertically (that is, it does not differentiate space-time coor-

dinates) thus giving rise to algebraic conditions which express auxiliary fields via derivatives of the other fields.
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are trivial in the sense that they do not perform any gauge transformation, δε= bD0ζC = 0. The second
step of the proof is a mere decomposition of the reducibility identity (9.7) in order to see that σ− exact
parameters correspond to reducible gauge transformations24.

Proof of C: Given a nonnegative integer number n0, let us suppose that one has already obtained and
analyzed (9.1) in grades ranging from n = 0 up to n = n0 − 1. Let us analyze (9.1) in grade G equal

to n0 by looking at the constraints imposed by the Bianchi identities. Applying the operator bD0 on the
covariant derivative bD0C gives identically zero, which is the Bianchi identity ( bD0)

2C = 0. Decomposing
the latter Bianchi identity gives, in grade equal to n0 − 1,

( bD0)
2C|n0−1 = σ−

“ bD0C|n0

”
+DL

0

“ bD0C|n0−1

”
+
“
σ+

X
m6n0−2

bD0C|m
”˛̨̨

n0−1
= 0 . (9.8)

By the induction hypothesis, the equations bD0C|m = 0 with m 6 n0− 1 have already been imposed and
analyzed. Therefore (9.8) leads to

σ−
“ bD0C|n0

”
= 0 .

In other words, bD0C|n0 belongs to Ker(σ−). Thus it can contain a σ− exact part and a nontrivial
cohomology part: bD0C|n0 = σ−(En0+1) + Fn0 , Fn0 ∈ H

p+1(σ−) .

The exact part can be compensated by a field redefinition of the component Cn0+1 which was not treated
before (by the induction hypothesis). More precisely, if one performs

Cn0+1 → C′n0+1 := Cn0+1 − En0+1 ,

then one is left with bD0C′|n0 = Fn0 . The field equation (9.1) in grade n0 is bD0C′|n0 = 0. This not only
expresses the auxiliary p-forms C′n0+1 (that are not annihilated by σ−) in terms of derivatives of lower
grade p-forms Ck (k 6 n0), but also sets Fn0 to zero. This imposes some Cn0+1-independent conditions
on the derivatives of the fields Ck with k 6 n0, thus leading to differential restrictions on the nontrivial
dynamical fields. Therefore, to each representative of Hp+1(σ−) corresponds a differential field equation.

Note that if Hp+1(σ−) = 0, the equation (9.1) contains only constraints which express auxilary
fields via derivatives of the dynamical fields, imposing no restrictions on the latter. If DL

0 is a first
order differential operator and if σ+ is at most a second order differential operator (which is true in HS
applications) then, if Hp+1(σ−) is nonzero in the grade k sector, the associated differential equations on
a grade ` dynamical field are of order k + 1− `. In the next section, two concrete examples of operator
σ− will be considered in many details, together with the physical interpretation of their cohomologies.

10 σ− cohomology in higher spin gauge theories

As was shown in the previous section, the analysis of generic unfolded dynamical equations amounts to
the computation of the cohomology of σ−. In this section we apply this technique to the analysis of the
specific case we focus on: the free unfolded HS gauge field equations of Section 8. The computation of
the σ− cohomology groups relevant for the zero and one-form sectors of the theory is sketched in the
subsection 10.1. The physical interpretation of these cohomological results is discussed in the subsection
10.2.

24Note that factoring out the σ− exact parameters accounts for algebraic reducibility of gauge symmetries. The
gauge parameters in Hp−1(σ−) may still have differential reducibility analogous to differential gauge symmetries
for nontrivial dynamical fields. For the examples of HS systems considered below the issue of reducibility of gauge
symmetries is irrelevant however because there are no p-form gauge parameters with p > 0.
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10.1 Computation of some σ− cohomology groups

As explained in Section 8, the fields entering in the unfolded formulation of the HS dynamics are
either zero- or one-forms both taking values in various two-row traceless (i.e. Lorentz irreducible)
Young tableaux. These two sectors of the theory have distinct σ− operators and thus require separate
investigations.

Following Section 3, two-row Young tableaux in the symmetric basis can be conveniently described
as a subspace of the polynomial algebra R[Y a, Zb] generated by the 2d commuting generators Y a and
Zb. (One makes contact with the HS algebra convention via the identification of variables (Y,Z) with
(Y1, Y2). Also let us note that the variable Za in this section has no relation with the variables ZA

i of
sections 13 and 14.) Vectors of the space Ωp(Md) ⊗ R[Y,Z] are p-forms taking values in R[Y,Z]. A
generic element reads

α = αa1...as−1, b1...bt(x, dx)Y
a1 . . . Y as−1Zb1 . . . Zbt ,

where αa1...as−1, b1...bt(x, dx) are differential forms. The Lorentz irreducibility conditions of the HS fields
are two-fold. Firstly, there is the Young tableau condition (3.1), i.e. in this case

Y a ∂

∂Za
α = 0 . (10.1)

The condition singles out an irreducible gl(d)-module W ⊂ Ωp(Md)⊗ R[Y,Z]. Secondly, the HS fields
are furthermore irreducible under o(d − 1, 1), which is equivalent to the tracelessness condition (3.6),
i.e. in our case it is sufficient to impose

ηab ∂2

∂Y a∂Y b
α = 0 . (10.2)

This condition further restricts to the irreducible o(d−1, 1)-module Ŵ ⊂W . Note that from (10.1) and
(10.2) follows that all traces are zero

ηab ∂2

∂Za∂Y b
α = 0 , ηab ∂2

∂Za∂Zb
α = 0 .

Connection one-form sector

By looking at the definition (8.1) of the linearized curvatures, and taking into account that the Λ-
dependent terms in this formula denote some operator σ+ that increases the number of Lorentz indices,
it should be clear that the σ− operator of the unfolded field equation (8.2) acts as

σ− ω(Y,Z) ∝ ea
0

∂

∂Za
ω(Y,Z) . (10.3)

In other words, σ− is the “de Rham differential” of the “manifold” parametrized by the Z-variables
where the generators dZa of the exterior algebra are identified with the background vielbein one-forms
ea
0 . This remark is very helpful because it already tells us that the cohomology of σ− is zero in the space

Ωp(Md)⊗R[Y,Z] with p > 0 because its topology is trivial in the Z-variable sector. The actual physical
situation is less trivial because one has to take into account the Lorentz irreducibility properties of the
HS fields. Both conditions, (10.1) and (10.2), do commute with σ−, so one can restrict the cohomology
to the corresponding subspaces. Since the topology in Z space is not trivial any more, the same is true
for the cohomology groups.

As explained in Section 9, for HS equations formulated in terms of the connection one-forms (p = 1),
the cohomology groups of dynamical relevance are Hq(σ−) with q = 0, 1 and 2. The computation of the
cohomology groups obviously increases in complexity as the form degree increases. In our analysis we
consider simultaneously the cohomology Hp(σ−,W ) of traceful two-row Young tableaux (i.e. relaxing
the tracelessness condition (10.2)) and the cohomology Hp(σ−, Ŵ ) of traceless two-row Young tableaux.
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Form degree zero: This case corresponds to the gauge parameters ε. The cocycle condition σ−ε = 0
states that the gauge parameters do not depend on Z. In addition, they cannot be σ−-exact since
they are at the bottom of the form degree ladder. Therefore, the elements of H0(σ−,W ) are the
completely symmetric tensors which correspond to the unconstrained zero-form gauge parameters ε(Y )
in the traceful case (like in [73]), while they are furthermore traceless in H0(σ−, Ŵ ) and correspond to

Fronsdal’s gauge parameters [36] ηab ∂2

∂Y a∂Y b ε(Y ) = 0 in the traceless case.

Form degree one: Because of the Poincaré Lemma, any σ− closed one-form α(Y,Z) admits a represen-
tation

α(Y,Z) = ea
0
∂

∂Za
φ(Y,Z) . (10.4)

The right hand side of this relation should satisfy the Young condition (10.1), i.e., taking into account
that it commutes with σ−,

ea
0
∂

∂Za

“
Y b ∂

∂Zb
φ(Y,Z)

”
= 0 .

From here it follows that φ(Y,Z) is either linear in Za (a Z-independent φ does not contribute to (10.4))
or satisfies the Young property itself. In the latter case the α(Y,Z) given by (10.4) is σ− exact. Therefore,
nontrivial cohomology can only appear in the sector of elements of the form α(Y,Z) = ea

0βa(Y ), where
βa(Y ) are arbitrary in the traceful case of W and harmonic in Y in the traceless case of Ŵ . Decomposing
βa(Y ) into irreps of gl(d)

N
s− 1 ∼= s− 1

L
s

one observes that the hook (i.e., the two-row tableau) is the σ− exact part, while the one-row part
describes H1(σ−,W ). These are the rank s totally symmetric traceful dynamical fields which appear in
the unconstrained approach [37,73].

In the traceless case, decomposing βa(Y ) into irreps of o(d− 1, 1) one obtains

N
s− 1 ∼= s− 1

L
s

L
s− 2(10.5)

where all tensors associated with the various Young tableaux are traceless. Again, the hook (i.e. two-row
tableau) is the σ− exact part, while the one-row traceless tensors in (10.5) describe H1(σ−, Ŵ ) which
just matches the Fronsdal fields [36] because a rank s double traceless symmetric tensor is equivalent to
a pair of rank s and rank s− 2 traceless symmetric tensors.

Form degree two: The analysis of H2(σ−,W ) and H2(σ−, Ŵ ) is still elementary, but a little bit more

complicated than that of H0(σ−) and H1(σ−). Skipping technical details we therefore give the final
results.

By following a reasoning similar to the one in the previous proof, one can show that, in the traceful
case, the cohomology group H2(σ−,W ) is spanned by two-forms of the form

F = ea
0 e

b
0

∂2

∂Y a∂Zb
C(Y,Z) , (10.6)

where the zero-form C(Y,Z) satisfies the Howe dual sp(2) invariance conditions

Zb ∂

∂Y b
C(Y,Z) = 0 , Y b ∂

∂Zb
C(Y,Z) = 0 , (10.7)
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and, therefore,

(Zb ∂

∂Zb
− Y b ∂

∂Y b
)C(Y,Z) = 0 . (10.8)

In accordance with the analysis of Section 3, this means that

C(Y,Z) = Ca1...as, b1...bsY
a1 . . . Y asZb1 . . . Zbs , (10.9)

where the zero-form components Ca1...as, b1...bs have the symmetry properties corresponding to the
rectangular two-row Young tableau of length s

Ca1...as, b1...bs ∼
s
s . (10.10)

From (10.6) it is clear that F is σ− closed and F ∈ W . It is also clear that it is not σ− exact in the
space W . Indeed, suppose that F = σ−G, G ∈W . For any polynomial G ∈W its power in Z cannot be
higher than the power in Y (because of the Young property, the second row of a Young tableau is not
longer than the first row). Since σ− decreases the power in Z, the degree in Z of exact elements σ−G
is strictly less than the degree in Y . This is not true for the elements (10.6) because of the condition
(10.8). The tensors (10.9) correspond to the linearized curvature tensors introduced by de Wit and
Freedman [37].

Let us now consider the traceless case of H2(σ−, Ŵ ). The formula (10.6) still gives cohomology but
now C(Y,Z) must be traceless,

ηab ∂2

∂Y a∂Y b
C(Y,Z) = 0 , ηab ∂2

∂Za∂Zb
C(Y,Z) = 0 , ηab ∂2

∂Y a∂Zb
C(Y,Z) = 0 .

In this case the tensors (10.9) correspond to Weyl-like tensors, i.e. on-shell curvatures. They form the
so-called “Weyl cohomology”. But this is not the end of the story because there are other elements in
H2(σ−, Ŵ ). They span the “Einstein cohomology” and contain two different types of elements:

r1 = ea
0e

b
0

“
(Zb Y

c − Yb Z
c)

∂2

∂Y a∂Y c
ρ1(Y )

”
, (10.11)

r2 = ea
0e

b
0

“
(d− 1)(d+ Y c ∂

∂Y c
− 2)YaZb + dYcY

cZa
∂

∂Y b

− (d+ Y c ∂

∂Y c
− 2)YeZ

eYa
∂

∂Y b
+ YeY

eYaZ
c ∂

∂Y c

∂

∂Y b

”
ρ2(Y ) , (10.12)

where ρ1,2(Y ) are arbitrary harmonic polynomials

ηab ∂2

∂Y a∂Y b
ρ1,2(Y ) = 0 ,

thus describing completely symmetric traceless tensors.

One can directly see that r1 and r2 belong to Ŵ (i.e., satisfy (10.1) and (10.2)) and are σ− closed,
σ−r1,2 = 0 (the check is particularly simple for r1). It is also easy to see that r1,2 are in the nontrivial
cohomology class. Indeed, the appropriate trivial class is described in tensor notations by the two-form
ec
0ωa1...as−1,bc, where

ωa1...as−1,bc = ef
0ωf ; a1...as−1,bc (10.13)

is a one-form that has the properties of traceless two-row Young tableau with s− 1 cells in the first row
and two cells in the second row. The trivial cohomology class neither contains a rank s− 2 tensor like
ρ2, that needs a double contraction in ωf ;a1...as−1,bc in (10.13), nor a rank s symmetric tensor like ρ1,
because symmetrization of a contraction of the tensor ωf ; a1...as−1,bc over any s indices gives zero. It can
be shown that the Einstein cohomology (10.11) and (10.12) together with the Weyl cohomology (10.6)
span H2(σ−, Ŵ ).
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Weyl zero-form sector

The Λ-dependent terms in the formula (8.3) denote some operator σ+ that increases the number of
Lorentz indices, therefore the operator σ− of the unfolded field equation (8.3) is given by

(σ−C)a1...as+k, b1...bs = −e0 c

“
(2 + k)Ca1...as+kc, b1...bs + sCa1...as+k{b1, b2...bs}c

”
(10.14)

both in the traceless and in the traceful twisted adjoint representations. One can analogously compute
the cohomology groups Hq(σ−,W ) and Hq(σ−, Ŵ ) with q = 0 and 1, which are dynamically relevant
in the zero-from sector (p = 0).

Form degree zero: It is not hard to see that H0(σ−,W ) and H0(σ−, Ŵ ) consist, respectively, of the

generalized Riemann (i.e. traceful) and Weyl (i.e. traceless) tensors Ca1...as, b1...bs .

Form degree one: The cohomology groups H1(σ−,W ) and H1(σ−, Ŵ ) consist of one-forms of the form

wa1...as,b1,...bs = e0 cC
a1...as ,b1...bs ,c , (10.15)

where Ca1...as ,b1...bs ,c is, respectively, a traceful and traceless zero-form described by the three row
Young tableaux with s cells in the first and second rows and one cell in the third row. Indeed, a one-
form wa1...as,b1,...bs given by (10.15) is obviously σ− closed (by definition, σ− gives zero when applied
to a rectangular Young tableau) and not σ− exact, thus belonging to nontrivial cohomology.

In addition, in the traceless case, H1(σ−, Ŵ ) includes the “Klein-Gordon cohomology”

wa = ea
0k (10.16)

and the “Maxwell cohomology”
wa, b = ea

0m
b − eb

0m
a , (10.17)

where k and ma are arbitrary scalar and vector, respectively. It is obvious that the one-forms (10.16)
and (10.17) are σ− closed for σ− (10.14). They are in fact exact in the traceful case with w = σ−(ϕ),
where

ϕa1a2 ∝ kηa1a2 , ϕa1a2 ,b ∝ 2mbηa1a2 −ma2ηa1b −ma1ηa2b (10.18)

but are not exact in the traceless case since the tensors ϕ in (10.18) are not traceless although the
resulting w = σ−(ϕ) belong to the space of traceless tensors.

Unfolded system

One may combine the connection one-forms ω and Weyl zero-forms C into the set C = (ω,C) and
redefine σ− → σ̂− in such a way that σ̂− = σ− + ∆σ− where σ− acts on ω and C following (10.3) and
(10.14), respectively, and ∆σ− maps the rectangular zero-form Weyl tensors to the two-form sector via

∆σ− C(Y,Z) ∝ ea
0 e

b
0

∂2

∂Y a∂Zb
C(Y,Z) , (10.19)

thus adding the term with the Weyl zero-form to the linearized curvature of one-forms.

The dynamical content of the unfolded system of equations (8.2)-(8.3) is encoded in the cohomology
groups of σ̂−. The gauge parameters are those of H0(σ̂−) in the adjoint module (i.e. the connection one-
form sector). The dynamical fields are symmetric tensors of H1(σ̂−) in the adjoint module, along with
the scalar field in the zero-form sector. There are no nontrivial field equations in the traceful case. As
explained in more detail in Subsection 10.2, in the traceless case, the field equations are associated with
the Einstein cohomology (10.11)-(10.12), Maxwell cohomology (10.17) and Klein-Gordon cohomology
(10.16). Note that the cohomology (10.15) disappears as a result of gluing the one-form adjoint and
zero-form twisted adjoint modules by (10.19).
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10.2 Physical interpretation of some σ− cohomology groups

These cohomological results tell us that there are several possible choices for gauge invariant differential
equations on HS fields.

The form of r1,2 (10.11) and (10.12) indicates that the Einstein cohomology is responsible for the
Lagrangian field equations of completely symmetric double traceless fields. Indeed, carrying one power of
Za, they are parts of the HS curvatures Ra1...as−1,b with one cell in the second row of the corresponding
Young tableau. For spin s, ρ1(Y ) is a harmonic polynomial of homogeneity degree s, while ρ2(Y ) is a
harmonic polynomial of homogeneity degree s − 2. As a result, the field equations which follow from
r1 = 0 and r2 = 0 are of second order25 in derivatives of the dynamical Fronsdal fields taking values
in H1(σ−, Ŵ ) and, as expected for Lagrangian equations in general, there are as many equations as
dynamical fields.

For example, spin-2 equations on the trace and traceless parts of the metric tensor associated with
the elements of H1(σ−, Ŵ ) result from the conditions r1 = 0 and r2 = 0 with ρ1,2 in (10.11) and (10.12)
of the form ρ1(Y ) = rabY

aY b, ρ2(Y ) = r, with arbitrary r and traceless rab. These are, respectively,
the traceless and trace parts of the linearized Einstein equations. Analogously, the equations r1 = 0 and
r2 = 0 of higher orders in Y correspond to the traceless and first trace parts of the Fronsdal spin s > 1
HS equations (which are, of course, double traceless).

Thus, in the traceless case, the proper choice to reproduce dynamical field equations equivalent to
the equations resulting from the Fronsdal Lagrangian is to keep only the Weyl cohomology nonzero.
Setting elements of the Einstein cohomology to zero, which imposes the second-order field equations on
the dynamical fields, leads to

R1 = ea
0 e

b
0 εij

∂2

∂Y a
i ∂Y

b
j

C(Y c
k ) , (10.20)

where one makes contact with the HS algebra convention via the identification of variables (Y,Z) with
(Y1, Y2). Here C(Y c

k ) satisfies the sp(2) invariance condition

Y a
i

∂

∂Y a
j

C(Y ) =
1

2
δi

jY
a

k
∂

∂Y a
k

C(Y ) (10.21)

along with the tracelessness condition

ηab ∂2

∂Y a
j ∂Y

b
i

C(Y ) = 0 (10.22)

to parametrize the Weyl cohomology. The equation (10.20) is exactly (8.2). Thus, the generalized Weyl
tensors on the right hand side of (8.2) parametrize the Weyl cohomology in the HS curvatures exactly so
as to make the equations (8.2) for s > 1 equivalent to the HS field equations that follow from Fronsdal’s
action.26

Alternatively, one can set the Weyl cohomology to zero, keeping the Einstein cohomology arbitrary.
It is well known that in the spin-2 case of gravity the generic solution of the condition that the Weyl
tensor is zero leads to conformally flat metrics. Analogous analysis for free spin 3 was performed in [74].
It is tempting to conjecture that this property is true for any spin s > 2, i.e., the condition that Weyl
cohomology is zero singles out the “conformally flat” single trace HS fields of the form

ϕν1...νs(x) = g{ν1ν2(x)ψν3...νs}(x) (10.23)

with traceless symmetric ψν3...νs(x). Indeed, the conformally flat free HS fields (10.23) have zero gener-
alized Weyl tensor simply because it is impossible to build a traceless tensor (10.10) from derivatives of

25The cohomological analysis outlined here can be extended to the space Ŵn of tensors required to have their

n-th trace equal zero, i.e. with (10.2) replaced by (ηab ∂2

∂Y a∂Y b )nα(Y, Z) = 0 . It is tempting to conjecture that
the resulting gauge invariant field equations will contain 2n derivatives.

26The subtle relationship between Fronsdal’s field equations and the tracelessness of the HS curvatures was
discussed in details for metric-like spin-3 fields in [74].



Nonlinear Higher Spin Theories in Various Dimensions 169

ψν1...νs−2(x).

The spin-0 and spin-1 equations are not described by the cohomology in the one-form adjoint sector.
The Klein-Gordon and Maxwell equations result from the cohomology of the zero-form twisted adjoint
representation, which encodes equations that can be imposed in terms of the generalized Weyl tensors
which contain the spin-1 Maxwell tensor and the spin-0 scalar as the lower spin particular cases. More
precisely, the spin-0 and spin-1 field equations are contained in the parts of equations (8.3) associated
with the cohomology groups (10.16) and (10.17). For spin s > 1, the cohomology (10.15) encodes the
Bianchi identities for the definition of the Weyl (Riemann) tensors by (10.20). This is equivalent to the
fact that, in the traceless case, the equations (10.20) and (8.3) describe properly free massless equations
of all spins supplemented with an infinite set of constraints for auxiliary fields, which is the content of
the central on-mass-shell theorem.

In the traceful case, the equation (10.20) with traceful C(Y a
i ) does not impose any differential

restrictions on the fields in H1(σ−,W ) because ea
0 e

b
0 εij

∂2

∂Y a
i ∂Y b

j

C(Y c
k ) span the full H2(σ−,W ) of the

one-form adjoint sector. This means that the equation (10.20) describes a set of constraints which express
all fields in terms of derivatives of the dynamical fields in H1(σ−,W ). In this sense, the equation (10.20)
for a traceful field describes off-mass-shell constraints identifying the components of C(Y ) with the
deWit-Freedman curvature tensors27. Supplementing (10.20) by the covariant constancy equation (8.3)
on the traceful zero-forms C(Y ) one obtains an infinite set of constraints for any spin which express
infinite sets of auxiliary fields in terms of derivatives of the dynamical fields, imposing no differential
restrictions on the latter. These constraints provide unfolded off-mass-shell description of massless fields
of all spins. We call this fact “central off-mass-shell theorem”.

Let us stress that our analysis works both in the flat space-time and in the (A)dSd case originally
considered in [41]. Indeed, although the nonzero curvature affects the explicit form of the background
frame and the Lorentz covariant derivative DL

0 and also requires a nonzero operator σ+ denoted by O(Λ)
in (8.1), all this does not affect the analysis of the σ− cohomology because the operator σ− remains of
the form (10.3) with a nondegenerate frame field ea

µ.

Let us make the following comment. The analysis of the dynamical content of the covariant constancy
equations bD0C = 0 may depend on the choice of the grading operatorG and related graded decomposition
(9.2). This may lead to different definitions of σ− and, therefore, different interpretations of the same
system of equations. For example, one can choose a different definition of σ− in the space W of traceful
tensors simply by decomposing W into a sum of irreducible Lorentz tensors (i.e., traceless tensors)
and then defining σ− within any of these subspaces as in Ŵ . In this basis, the equations (8.2) will be
interpreted as dynamical equations for an infinite set of traceless dynamical fields. This phenomenon is
not so surprising, taking into account the well-known analogous fact that, say, an off-mass-shell scalar
can be represented as an integral over the parameter of mass of an infinite set of on-mass-shell scalar
fields. More generally, to avoid paradoxical conclusions one has to take into account that σ− may or
may not have a meaning in terms of the elements of the Lie algebra Lie h that gives rise to the covariant
derivative (9.2).

10.3 Towards nonlinear equations

Nonlinear equations should replace the linearized covariant derivative eD0 with the full one, eD, containing
the h-valued connection ω. They should also promote the linearized curvature R1 to R. Indeed, (8.3) and

(10.20) cannot be correct at the nonlinear level because the consistency of eDC = 0 implies arbitrarily
high powers of C in the r.h.s. of the modified equations, since

eD eDC ∼ RC ∼ O(C2) + higher order terms ,

27However, as pointed out in [75], if one imposes C(Y a
i ) to be harmonic in Y , then the corresponding field

equations (10.20) imposes the deWit-Freedman curvature to be traceless. In this sense, it may be possible to
remove the tracelessness requirement in the frame-like formulation (see Section 4.2) without changing the physical
content of the free field equations.



170 Bekaert, Cnockaert, Iazeolla, Vasiliev

the last relation being motivated by (10.20).

Apart from dynamical field equations, the unfolded HS field equations contain constraints on the
auxiliary components of the HS connections, expressing the latter via derivatives of the nontrivial dynam-
ical variables (i.e. Fronsdal fields), modulo pure gauge ambiguity. Originally, all HS gauge connections

ω
A1...As−1, B1...Bs−1

µ have dimension length−1 so that the HS field strength (5.15) needs no dimensionful
parameter to have dimension length−2. However, this means that when some of the gauge connections
are expressed via derivatives of the others, these expressions must involve space-time derivatives in the
dimensionless combination ρ ∂

∂xν , where ρ is some parameter of dimension length. The only dimensionful
parameter available in the analysis of the free dynamics is the radius ρ of the AdS space-time related to
the cosmological constant by (2.8). Recall that it appears through the definition of the frame field (2.10)
with V A ∼ ρ adapted to make the frame EA

µ (and, therefore, the metric tensor) dimensionless. As a
result, the HS gauge connections are expressed by the unfolded field equations through the derivatives
of the dynamical fields as

ω a1...as−1, b1...btd̂...d̂ = Π

„
ρt ∂

∂xb1
. . .

∂

∂xbt
ω a1...as−1, d̂...d̂

«
+ lower derivative terms , (10.24)

where Π is some projector that permutes indices (including the indices of the forms) and projects out
traces. Plugging these expressions back into the HS field strength (5.15) one finds that HS connections
with t > 1 (i.e. extra fields that appear for s > 2) contribute to the terms with higher derivatives which
blow up in the flat limit ρ→∞. This mechanism brings higher derivatives and negative powers of the
cosmological constant into HS interactions (but not into the free field dynamics because the free action
is required to be independent of the extra fields). Note that a similar phenomenon takes place in the
sector of the generalized Weyl zero-forms C(Y ) in the twisted adjoint representation.

11 Star product

We shall formulate consistent nonlinear equations using the star product. In other words we shall deal
with ordinary commuting variables Y A

i instead of operators Ŷ A
i . In order to avoid ordering ambiguities,

we use the Weyl prescription. An operator is said to be Weyl ordered if it is completely symmetric
under the exchange of operators Ŷ A

i . One establishes a one to one correspondence between each Weyl
ordered polynomial f(Ŷ ) (5.4) and its symbol f(Y ), defined by substituting each operator Ŷ A

i with the
commuting variable Y A

i . Thus f(Y ) admits a formal expansion in power series of Y A
i identical to that

of f(Ŷ ), i.e. with the same coefficients,

f(Y ) =
X
m,n

fA1...Am ,B1...BnY
A1
1 . . . Y Am

1 Y B1
2 . . . Y Bn

2 . (11.1)

To reproduce the algebra Ad+1, one defines the star product in such a way that, given any couple of
functions f1, f2, which are symbols of operators f̂1, f̂2 respectively, f1 ∗ f2 is the symbol of the operator
f̂1f̂2. The result is nontrivial because the operator f̂1f̂2 should be Weyl ordered. It can be shown that
this leads to the well-known Weyl-Moyal formula

(f1 ∗ f2)(Y ) = f1(Y ) e
1
2
←−
∂

j
A

−→
∂ i

BηABεji f2(Y ) , (11.2)

where ∂j
A ≡

∂
∂Y A

j
and
←−
∂ , as usual, means that the partial derivative acts to the left while

−→
∂ acts to the

right. The rationale behind this definition is simply that higher and higher powers of the differential
operator in the exponent produce more and more contractions. One can show that the star product is an
associative product law, and that it is regular, which means that the star product of two polynomials in
Y is still a polynomial. From (11.2) it follows that the star product reproduces the proper commutation
relation of oscillators,

[Y A
i , Y B

j ]∗ ≡ Y A
i ∗ Y B

j − Y B
j ∗ Y A

i = εijη
AB .
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The star product has also an integral definition, equivalent to the differential one given by (11.2), which
is

(f1 ∗ f2)(Y ) =
1

π2(d+1)

Z
dSdT f1(Y + S) f2(Y + T ) exp(−2SA

i T
i
A) . (11.3)

The whole discussion of Section 5 can be repeated here, with the prescription of substituting operators
with their symbols and operator products with star products. For example, the o(d − 1, 2) generators
(5.5) and the sp(2) generators (5.6) are realized as

TAB = −TBA =
1

2
Y iAY B

i , tij = tji = Y A
i YjA , (11.4)

respectively. Note that

Y A
i ∗ = Y A

i +
1

2

−→
∂

∂Y i
A

and

∗Y A
i = Y A

i −
1

2

←−
∂

∂Y i
A

.

From here it follows that

[Y A
i , f(Y )]∗ =

∂

∂Y i
A

f(Y ) (11.5)

and
{Y A

i , f(Y )}∗ = 2Y A
i f(Y ) . (11.6)

With the help of these relations it is easy to see that the sp(2) invariance condition [tij , f(Y )]∗ = 0
indeed has the form (5.8) and singles out two-row rectangular Young tableaux, i.e. it implies that the
coefficients fA1...Am ,B1...Bn are nonzero only if n = m, and symmetrization of any m + 1 indices of
fA1...Am ,B1...Bm gives zero. Let us also note that if [tij , f(Y )]∗ = 0 then

tij ∗ f = f ∗ tij =
“
tij +

1

4

∂2

∂Y i
A∂Y

jA

”
f . (11.7)

One can then introduce the gauge fields taking values in this star algebra as functions ω(Y |x) of
oscillators,

ω(Y |x) =
X
s≥1

is−2ωA1...As−1 ,B1...Bs−1(x)Y1A1 ...Y1As−1Y2B1 ...Y2Bs−1 , (11.8)

with their field strength defined by

R(Y ) = dω(Y ) + (ω ∗ ω)(Y ) (11.9)

and gauge transformations
δω(Y ) = dε(Y ) + [ω , ε]∗(Y ) (11.10)

(where the dependence on the space-time coordinates x is implicit). For the subalgebra of sp(2) singlets
we have

D(tij) = 0 , [tij , ε]∗ = 0 , [tij , R]∗ = 0 . (11.11)

Note that d(tij) = 0 and, therefore from the first of these relations it follows that [tij , ω]∗ = 0, which is
the sp(2) invariance relation.

Furthermore, one can get rid of traces by factoring out the ideal I spanned by the elements of the
form tij ∗ gij . For factoring out the ideal I it is convenient to consider [57] elements of the form ∆ ∗ g
where ∆ is an element satisfying the conditions ∆ ∗ tij = tij ∗∆ = 0. The explicit form of ∆ is [57,75]

∆ =

Z 1

−1

ds(1− s2)
1
2 (d−3) exp (s

√
z ) = 2

Z 1

0

ds(1− s2)
1
2 (d−3)ch(s

√
z ) , (11.12)
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where

z =
1

4
Y A

i YAjY
BiY j

B . (11.13)

Indeed, one can see [57] that ∆ ∗ f = f ∗ ∆ and that all elements of the form f = uij ∗ tij or
f = tij ∗ uij disappear in ∆ ∗ f , i.e. the factorization of I is automatic. The operator ∆, which we call
quasiprojector, is not a projector because ∆ ∗∆ does not exist (diverges) [57,75]. One therefore cannot
define a product of two elements ∆ ∗ f and ∆ ∗ g in the quotient algebra as the usual star product. A
consistent definition for the appropriately modified product law ◦ is

(∆ ∗ f) ◦ (∆ ∗ g) = ∆ ∗ f ∗ g (11.14)

(for more detail see section 3 of [57]). Note that from this consideration it follows that the star product
g1 ∗ g2 of any two elements satisfying the strong sp(2) invariance condition tij ∗ g1,2 = 0 of [75] is
ill-defined because such elements admit a form g1,2 = ∆ ∗ g′1,2.

12 Twisted adjoint representation

As announced in Section 8, we give here a precise definition of the module in which the Weyl-like zero-
forms take values, in such a way that (8.3) is reproduced at the linearized level. Taking the quotient by
the ideal I is a subtle step the procedure of which is explained in Subsection 12.2.

12.1 Definition of the twisted adjoint module

To warm up, let us start with the adjoint representation. Let A be an associative algebra endowed with
a product denoted by ∗. The ∗-commutator is defined as [a, b]∗ = a ∗ b− b ∗a , a, b ∈ A. As usual for an
associative algebra, one constructs a Lie algebra g from A, the Lie bracket of which is the ∗-commutator.
Then g has an adjoint representation the module of which coincides with the algebra itself and such
that the action of an element a ∈ g is given by

[a,X]∗ , ∀X ∈ A .

Let τ be an automorphism of the algebra A, that is to say

τ(a ∗ b) = τ(a) ∗ τ(b) , τ(λa+ µb) = λτ(a) + µτ(b), ∀a, b ∈ A ,

where λ and µ are any elements of the ground field R or C. The τ -twisted adjoint representation of
g has the same definition as the adjoint representation, except that the action of g on its elements is
modified by the automorphism τ :

a(X) → a ∗X −X ∗ τ(a) .

It is easy to see that this gives a representation of g.

The appropriate choice of τ , giving rise to the infinite bunch of fields contained in the zero-form C
(matter fields, generalized Weyl tensors and their derivatives), is the following:

τ(f(Y )) = ef(Y ) , (12.1)

where ef(Y ) = f(eY ) , eY A
i = Y A

i − 2V AV BYBi , (12.2)

i.e., eY A
i is the oscillator Y A

i reflected with respect to the compensator (recall that we use the normal-
ization VAV

A = 1). So one can say that the automorphism τ is some sort of parity transformation in
the V -direction, leaving unaltered the Lorentz components of the oscillators. More explicitly, in terms
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of the transverse and longitudinal components

⊥Y A
i = Y A

i − V AVBY
B

i , ‖Y A
i = V AV BYBi ,

the automorphism τ is the transformation

⊥Y A
i →⊥ Y A

i , ‖Y A
i → − ‖Y A

i ,

or, in the standard gauge, Y a
i → Y a

i , Y d̂
i → −Y d̂

i . From (11.2) it is obvious that τ is indeed an
automorphism of the star product algebra.

The automorphism τ (12.1) leaves invariant the sp(2) generators

τ(tij) = tij .

This allows us to require the zero-form C(Y |x) in the twisted adjoint module to satisfy the sp(2)
invariance condition

tij ∗ C = C ∗ tij (12.3)

and to define the covariant derivative in the twisted adjoint module of hu(1|2:[d− 1, 2]) as

eDC = dC + ω ∗ C − C ∗ eω . (12.4)

At the linearized level one obtains

eD0C = dC + ω0 ∗ C − C ∗ eω0 . (12.5)

One decomposes ω0 into its Lorentz and translational part, ω0 = ωL
0 + ωtransl

0 , via (2.15), which gives

ωL
0 ≡ 1

2
ωAB

0
⊥Y i

A
⊥YBi =

1

2
ωab

0 Y i
a Ybi ,

ωtransl
0 ≡ ωAB

0
⊥Y i

A
‖YBi = ea

0Y
i

aYBiV
B .

Taking into account the definition (12.1), it is clear that τ changes the sign of ωtransl
0 while leaving ωL

0

untouched. This is tantamount to say that eD0 contains an anticommutator with the translational part
of the connection instead of a commutator,

eD0C = DL
0 C + {ωtransl

0 , C}∗ ,

where DL
0 is the usual Lorentz covariant derivative, acting on Lorentz indices. Expanding the star

products, we have eD0 = DL
0 + 2EA

0 V
B(⊥Y i

A
‖YBi −

1

4
εij

∂2

∂ ⊥Y Ai∂ ‖Y Bj
) , (12.6)

the last term being due to the noncommutative structure of the star algebra.

The equation (12.6) suggests that there exists a grading operator

N tw = N⊥ −N‖ =⊥ Y A
i

∂

∂⊥Y A
i

− ‖Y A
i

∂

∂‖Y A
i

(12.7)

commuting with eD0, and whose eigenvalues N⊥ − N‖ = 2s, where s is the spin, classify the various
irreducible submodules into which the twisted adjoint module decomposes as o(d−1, 2)-module. In other

words, the system of equations eD0C = 0 decomposes into an infinite number of independent subsystems,
the fields of each subset satisfying N twC = 2sC, for some nonnegative integer s. Let us give some more
detail about this fact. Recall that requiring sp(2) invariance restricts us to the rectangular two row AdSd

Young tableaux . By means of the compensator V A we then distinguish between transverse
(Lorentz) and longitudinal indices. Clearly N tw > 0, since having more than half of vector indices in the
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extra direction V would imply symmetrization over more than half of all indices, thus giving zero because
of the symmetry properties of Young tableaux. Then, each independent sector N tw = 2s of the twisted
adjoint module starts from the rectangular Lorentz-Young tableau corresponding to the (generalized)

Weyl tensor
s

s , and admits as further components all its “descendants”
s + k

s , which

the equations themselves set equal to k Lorentz covariant derivatives of
s

s. From the AdSd-Young
tableaux point of view, the set of fields forming an irreducible submodule of the twisted adjoint module
with some fixed s is nothing but the components of the fields CA1...Au,B1...Bu (u = s, . . .∞) that have

k = u− s indices parallel to V A:
s + k = u

s ∼ u

d̂ d̂ u
. . . .

12.2 Factorization procedure

The twisted adjoint module as defined in the previous section is off-mass-shell because the zero-form
C(Y |x) is traceful in the oscillators Y A

i . To put it on-mass-shell one has to factor out those elements of
the twisted adjoint module T that also belong to the ideal I of the associative algebra S of sp(2) singlets
(see Subsection 5.2) and form a submodule T ∩ I of the HS algebra. By a slight abuse of terminology,
we will also refer to this submodule as “ideal I” in the sequel. Therefore, “quotienting by the ideal I”
means dropping terms g ∈ T ∩ I, that is

g ∈ I ⇐⇒ [tij , g]∗ = 0 , g = tij ∗ gij = gij ∗ tij . (12.8)

The factorization of I admits an infinite number of possible ways of choosing representatives of the
equivalence classes (recall that f1 and f2 belong to the same equivalence class iff f1 − f2 ∈ I). The
tracelessness condition (3.6), which in the case of HS gauge one-forms amounts to

∂2

∂Y A
i ∂YAj

ω(Y ) = 0 ,

is not convenient for the twisted adjoint representation because it does not preserve the grading (12.7),
i.e. it does not commute with N tw. A version of the factorization condition that commutes with N tw

and is more appropriate for the twisted adjoint case is“ ∂2

∂⊥Y A
i ∂⊥YAj

− 4‖Y Ai‖Y j
A

”
C(Y ) = 0 .

For the computations, both in the adjoint and the twisted adjoint representation, it may be conve-
nient to require Lorentz tracelessness, i.e. the tracelessness with respect to transversal indices. Recall
that the final result is insensitive to a particular choice of the factorization condition, that is, choosing
one or another condition is a matter of convenience. In practice the factorization procedure is imple-
mented as follows. Let Atr denote either a one-form HS connection or a HS Weyl zero-form satisfying
a chosen tracelessness (i.e. factorization) condition. The left hand side of the field equations contains

the covariant derivative D in the adjoint, D = D0, or twisted adjoint, D = eD0, representation. D(Atr)
does not necessarily satisfy the chosen tracelessness condition, but it can be represented in the form

D(Atr) = (D(Atr))tr + tijX
ij
1 , (12.9)

where the ordinary product of tij with someXij
1 parametrizes the traceful part, while (D(Atr))tr satisfies

the chosen tracelessness condition. Note that Xij
1 contains less traces than D(Atr). One rewrites (12.9)

in the form
D(Atr) = (D(Atr))tr + tij ∗Xij

1 +B , (12.10)

where B = tijX
ij
1 − tij ∗X

ij
1 . Taking into account that

B = tijX
ij
1 − tij ∗X

ij
1 = −1

4

∂2

∂Y i
A∂Y

jA
Xij

1 (12.11)
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by virtue of (11.7), one observes that B contains less traces than D(Atr). The factorization is performed
by dropping out the term tij ∗ Xij

1 . The resulting expression (D(Atr))tr + B contains less traces. If
necessary, the procedure has to be repeated to get rid of lower traces. At the linearized level it terminates
in a finite number of steps (two steps is enough for the Lorentz tracelessness condition). The resulting
expression gives the covariant derivative in the quotient representation which is the on-mass-shell twisted
adjoint representation.

Equivalently, one can use the factorization procedure with the quasiprojector ∆ as explained in the
end of Section 11. Upon application of one or another procedure for factorizing out the traces, the
spin-s submodule of the twisted adjoint module forms an irreducible o(d− 1, 2)-module. The subset of
the fields C in the twisted adjoint module with some fixed s matches the set of spin-s generalized Weyl
zero-forms of Section 8. Not surprisingly, they form equivalent o(d− 1, 2)-modules. In particular, it can
be checked that, upon an appropriate rescaling of the fields, the covariant constancy condition in the
twisted adjoint representation eD0C = 0 (12.12)

reproduces (8.3) in the standard gauge. The precise form of the Λ–dependent terms in (8.3) follows from
this construction. It is straightforward to compute the value of the Casimir operator in this irreducible
o(d− 1, 2)-module (see also [75])

2TABTAB = (s− 1)(s+ d− 3) ,

where 2s is the eigenvalue of N tw. This value coincides with that for the unitary massless representations
of any spin in AdSd [76]. This fact is in agreement with the general observation [77, 51] that the
representations carried by the zero-form sector in the unfolded dynamics are dual by a nonunitary
Bogolyubov transform to the Hilbert space of single-particle states in the quantized theory.

13 Nonlinear field equations

We are now ready to search for nonlinear corrections to the free field dynamics. We will see that it is
indeed possible to find a unique form for interactions, modulo field redefinitions, if one demands that
the sp(2) invariance of Section 5.2 is maintained at the nonlinear level. This condition is of crucial
importance because, if the sp(2) invariance was broken, then the resulting nonlinear equations might
involve new tensor fields, different from the two-row rectangular Young tableaux one started with, and
this might have no sense (for example, the new fields may contain ghosts). Thus, to have only usual
HS fields as independent degrees of freedom, one has to require that sp(2) invariance survives at the
nonlinear level, or, in other words, that there should be a modified sp(2) generator,

tint
ij = tij +O(C) ,

that still satisfies D(tint
ij ) = 0, which is a deformation of the free field condition (11.11).

The construction of nonlinear corrections to the free field dynamics and the check of consistency
order by order is quite cumbersome. These have been performed explicitly up to second order in the
Weyl zero-forms [59, 60, 78] in terms of the spinorial formulation of the d = 4 HS theory. More refined
methods have been developed to formulate the full dynamics of HS gauge fields in a closed form first in
four dimensions [14,15] and more recently in any dimension [16]. The latter is presented now.

13.1 Doubling of oscillators

A trick that simplifies the formulation is to introduce additional noncommutative variables Z. This
allows one to describe complicate nonlinear corrections as solutions of some simple differential equations
with respect to such variables. The form of these equations is fixed by formal consistency and by the
existence of nonlinear sp(2) generators that guarantee the correct spectrum of fields and the gauge
invariance of all nonlinear terms they encode.
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More precisely, this step amounts to the doubling of the oscillators Y A
i → (ZA

i , Y
A

i ), and correspond-
ingly one needs to enlarge the star product law. It turns out that a sensible definition is the following,

(f ∗ g)(Z, Y ) =
1

π2(d+1)

Z
dSdT e−2SA

i T i
Af(Z + S, Y + S)g(Z − T, Y + T ) , (13.1)

which is an associative and regular product law in the space of polynomial functions f(Z, Y ), and gives
rise to the commutation relations

[ZA
i , Z

B
j ]∗ = −εijηAB , [Y A

i , Y B
j ]∗ = εijη

AB , [Y A
i , ZB

j ]∗ = 0 .

The definition (13.1) has the meaning of a normal ordering with respect to the “creation” and “an-
nihilation” operators Z − Y and Z + Y , respectively. Actually, from (13.1) follows that the left star
multiplication by Z−Y and the right star multiplication by Z+Y are equivalent to usual multiplications
by Z − Y and Z + Y , respectively. Note that Z independent functions f(Y ) form a proper subalgebra
of the star product algebra (13.1) with the Moyal star product (11.3).

One can also check that the following formulae are true:

Y A
i ∗ = Y A

i +
1

2

 −→
∂

∂Y i
A

−
−→
∂

∂Zi
A

!
, ∗Y A

i = Y A
i −

1

2

 ←−
∂

∂Y i
A

+

←−
∂

∂Zi
A

!
, (13.2)

ZA
i ∗ = ZA

i +
1

2

 −→
∂

∂Y i
A

−
−→
∂

∂Zi
A

!
, ∗ZA

i = ZA
i +

1

2

 ←−
∂

∂Y i
A

+

←−
∂

∂Zi
A

!
. (13.3)

Furthermore, the appropriate reality conditions for the Lie algebra built from this associative star
product algebra via commutators are

f̄(Z, Y ) = −f(−iZ, iY ) , (13.4)

where the bar denotes complex conjugation of the coefficients of the expansion of f(Z, Y ) in powers of
Z and Y . This condition results from (5.9) with the involution † defined by the relations

(Y A
i )† = iY A

i , (ZA
i )† = −iZA

i . (13.5)

13.2 Klein operator

The distinguishing property of the extended definition (13.1) of the star product is that it admits the
inner Klein operator

K = exp(−2ziy
i) , (13.6)

where
yi ≡ VAY

A
i , zi ≡ VAZ

A
i

are the projections of the oscillators along V A. Using the definitions (13.1)-(13.6), one can show that K
(i) generates the automorphism τ as an inner automorphism of the extended star algebra,

K ∗ f(Z, Y ) = f( eZ, eY ) ∗ K , (13.7)

and (ii) is involutive,
K ∗ K = 1 (13.8)

(see Appendix 2.1 for a proof of these properties).

Let us note that a priori the star product (13.1) is well-defined for the algebra of polynomials (which
means that the star product of two polynomials is still a polynomial). Thus the star product admits an
ordinary interpretation in terms of oscillators as long as we deal with polynomial functions. But K is
not a polynomial because it contains an infinite number of terms with higher and higher powers of ziy

i.
So, a priori the star product with K might give rise to divergencies arising from the contraction of an
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infinite number of terms (for example, an infinite contribution might appear in the zeroth order like a
sort of vacuum energy). What singles out the particular star product (13.1) is that this does not happen
for the class of functions which extends the space of polynomials to include K and similar functions.

Indeed, the evaluation of the star product of two exponentials like A = exp(Aij
ABW1

A
i W2

B
j ), where

Aij
AB are constant coefficients and the W ’s are some linear combinations of Y A

i and ZA
i , amounts to

evaluating the Gaussian integral resulting from (13.1). The potential problem is that the bilinear form B
of the integration variables in the Gaussian integral in A1 ∗A2 may be degenerate for some exponentials
A1 and A2, which leads to an infinite result because the Gaussian evaluates det−1/2|B|. As was shown
originally in [15] (see also [79]) for the analogous spinorial star product in four dimensions, the star
product (13.1) is well-defined for the class of functions, which we call regular, that can be expanded into
a finite sum of functions f of the form

f(Z, Y ) = P (Z, Y )

Z
Mn

dnτ ρ(τ) exp
“
φ(τ)ziy

i
”
, (13.9)

where the integration is over some compact domain Mn ⊂ Rn parametrized by the coordinates τi

(i = 1, . . . , n), the functions P (Z, Y ) and φ(τ) are arbitrary polynomials of (Z, Y ) and τi, respectively,
while ρ(τ) is integrable in Mn. The key point of the proof is that the star product (13.1) is such that
the exponential in the Ansatz (13.9) never contributes to the quadratic form in the integration variables
simply because sis

i = tit
i ≡ 0 (where si = SA

i VA and ti = TA
i VA). As a result, the star product of

two elements (13.9) never develops an infinity and the class (13.9) turns out to be closed under star
multiplication pretty much as usual polynomials. The complete proof is given in Appendix 2.2.

The Klein operator K obviously belongs to the regular class, as can be seen by putting n = 1,
ρ(τ) = δ(τ + 2), φ(τ) = τ and P (Z, Y ) = 1 in (13.9). Hence our manipulations with K are safe. This
property can be lost however if one either goes beyond the class of regular functions (in particular, this
happens when the quasiprojector ∆ (11.12) is involved) or uses a different star product realization of
the same oscillator algebra. For example, usual Weyl ordering prescription is not helpful in that respect.

13.3 Field content

The nonlinear equations are formulated in terms of the fields W (Z, Y |x), S(Z, Y |x) and B(Z, Y |x),
where B is a zero-form, while

W (Z, Y |x) = dxµWµ(Z, Y |x) , S(Z, Y |x) = dZA
i S

i
A(Z, Y |x)

are connection one-forms, in space-time and auxiliary ZA
i directions, respectively. They satisfy the

reality conditions analogous to (13.4)

W̄ (Z, Y |x) = −W (−iZ, iY |x) , S̄(Z, Y |x) = −S(−iZ, iY |x) ,

B̄(Z, Y |x) = − eB(−iZ, iY |x) .

The fields ω and C are identified with the “initial data” for the evolution in Z variables as follows:

ω(Y |x) = W (0, Y |x) , C(Y |x) = B(0, Y |x) .

The differentials satisfy the standard anticommutation relations

dxµdxν = −dxνdxµ , dZA
i dZ

B
j = −dZB

j dZ
A
i , dxµdZA

i = −dZA
i dx

µ ,

and commute with all other variables. The dependence on Z variables will be reconstructed by the
imposed equations (modulo pure gauge ambiguities).

We require that all sp(2) indices are contracted covariantly. This is achieved by imposing the
conditions

[ttot
ij ,W ]∗ = 0 , [ttot

ij , B]∗ = 0 , [ttot
ij , S

A
k ]∗ = εjkS

A
i + εikS

A
j , (13.10)



178 Bekaert, Cnockaert, Iazeolla, Vasiliev

where the diagonal sp(2) generator

ttot
ij ≡ Y A

i YAj − ZA
i ZAj (13.11)

generates inner sp(2) rotations of the star product algebra

[ttot
ij , Y

A
k ]∗ = εjkY

A
i + εikY

A
j , [ttot

ij , Z
A
k ]∗ = εjkZ

A
i + εikZ

A
j . (13.12)

Note that the first of the relations (13.10) can be written covariantly as D(ttot
ij ) = 0, by taking into

account that d(ttot
ij ) = 0.

13.4 Nonlinear system of equations

The full nonlinear system of equations for completely symmetric HS fields is

dW +W ∗W = 0 , (13.13)

dB +W ∗B −B ∗fW = 0 , (13.14)

dS +W ∗ S + S ∗W = 0 , (13.15)

S ∗B −B ∗ eS = 0 , (13.16)

S ∗ S = −1

2
(dZi

AdZ
A
i + 4Λ−1dZAidZ

i
BV

AV BB ∗ K) , (13.17)

where we define eS(dZ,Z, Y ) = S(fdZ, eZ, eY ) . (13.18)

One should stress that the twisting of the basis elements dZA
i of the exterior algebra in the auxiliary

directions is not implemented via the Klein operator as in (13.7). Solutions of the system (13.13)-(13.17)
admit factorization over the ideal generated by the nonlinear sp(2) generators (13.22) defined in Section
13.6 as nonlinear deformations of the generators (11.4) used in the free field analysis. The system
resulting from this factorization gives the nonlinear HS interactions to all orders.

The first three equations are the only ones containing space-time derivatives, via the de Rham
differential d = dxµ ∂

∂xµ . They have the form of zero-curvature equations for the space-time connection
W (13.13) and the Z-space connection S (13.15) together with a covariant constancy condition for the
zero-form B (13.14). These equations alone do not allow any nontrivial dynamics, so the contribution
coming from (13.16) and (13.17) is essential. Note that the last two equations are constraints from
the space-time point of view, not containing derivatives with respect to the x-variables, and that the
nontrivial part only appears with the “source” term B ∗ K in the V A longitudinal sector of (13.17)
(the first term on the right hand side of (13.17) is a constant). The inverse power of the cosmological
constant Λ is present in (13.17) to obtain a Weyl tensor with Λ independent coefficients in the linearized
equations in such a way that their flat limit also makes sense. In the following, however, we will again
keep V normalized to 1, which means Λ = −1 (see Section 2.3).

13.5 Formal consistency

The system is formally consistent, i.e. compatible with d2 = 0 and with associativity. A detailed proof
of this statement can be found in the appendix 2.3. Let us however point out here the only tricky step.
To prove the consistency, one has to show that the associativity relation S ∗ (S ∗ S) = (S ∗ S) ∗ S is
compatible with the equations. This is in fact the form of the Bianchi identity with respect to the Z
variables, because S actually acts as a sort of exterior derivative in the noncommutative space (as will
be shown in the next section). Associativity seems then to be broken by the source term B ∗ K which
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anticommutes with dzi as a consequence of (13.16) and the definition (13.18), and brings in a term
proportional to dzidz

idzj (where dzi = VAdZ
A
i ). This is not a problem however: since i is an sp(2)

index, it can take only two values and, as a result, the antisymmetrized product of three indices vanishes
identically: dzidz

idzj = 0.

In a more compact way, one can prove consistency by introducing the noncommutative extended
covariant derivative W = d+W + S and assembling eqs. (13.13)-(13.17) into

W ∗W = −1

2
dZi

AdZ
A
i + 2 dZAidZ

i
BV

AV BB ∗ K ,

W ∗B = B ∗ fW .

In other words, S ∗ S is nothing but the ZZ component of an (x, Z)-space curvature, and it is actually
the only component of the curvature allowed to be nonvanishing, xx and xZ being trivial according to
(13.13) and (13.15), respectively. Consistency then amounts to the fact that the associativity relations
W ∗ (W ∗W) = (W ∗W) ∗W and (W ∗W) ∗B =W ∗ (W ∗B) are respected by the nonlinear equations.
Recall, however, that it was crucial for the consistency that the symplectic indices take only two values.

According to the general scheme of free differential algebras, the consistency of the nonlinear equa-
tions implies gauge symmetry under the local transformations

δW = [ε,W]∗ , δB = ε ∗B −B ∗ eε , (13.19)

where ε = ε(Z, Y |x) is sp(2) invariant, i.e. [ttot
ij , ε]∗ = 0, and otherwise arbitrary.

The consistency of the system, which means compatibility of the equations with the Bianchi identi-
ties, both in the x and in the Z sector (the latter case being verified by associativity of S), guarantees
that the perturbative analysis works systematically at all orders.

13.6 Sp(2) invariance

The sp(2) symmetry is crucial for the consistency of the free system, to avoid unwanted ghost degrees
of freedom. But as said before, survival of the sp(2) invariance at the full nonlinear level is also very
important, in the sense that it fixes the form of the nonlinear equations and prevents a mixture of
unwanted degrees of freedom at the nonlinear level.

The rationale behind this is as follows. The conditions (13.10) guarantee the sp(2) covariance of the
whole framework. But this is not enough because one has to remove traces by factoring out terms which
are themselves proportional to the sp(2) generators. The third commutation relation in (13.10) makes
this difficult. Indeed, it means that the operators SA

i transform elements of the algebra proportional to
ttot
ij into ttot

ij independent elements, i.e. the equations (13.13)-(13.17) do not allow a factorization with
respect to the ideal generated by ttot

ij .

To avoid this problem at the full nonlinear level one has to build proper generators

tint
ij = tij + t1ij + . . . ,

where t1ij and higher terms denote the field-dependent corrections to the original sp(2) generators (5.6),
such that they satisfy the sp(2) commutation relations

[tint
ij , t

int
kl ] = εikt

int
j l + εjkt

int
il + εilt

int
jk + εjlt

int
ik

and
Dtint

ij = 0 , [S, tint
ij ]∗ = 0 , [B ∗ K, tint

ij ]∗ = 0 . (13.20)

What fixes the form of the nontrivial equations (13.16) and (13.17) is just the requirement that such
nonlinearly deformed sp(2) generators tint

ij do exist. Actually, getting rid of the dZ’s in (13.16) and
(13.17) in the longitudinal sector, these equations read as

[si, sj ]∗ = −εij(1− 4B ∗ K) , {si , B ∗ K}∗ = 0
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(where si ≡ V ASi
A). This is just a realization [49] of the so called deformed oscillator algebra found

originally by Wigner [80] and discussed by many authors [81]

[ŷi, ŷj ]∗ = εij(1 + νk̂) , {ŷi, k̂}∗ = 0 , (13.21)

ν being a central element. The main property of this algebra is that, for any ν, the elements τij =
− 1

2
{si, sj}∗ form the sp(2) algebra that rotates properly si

[τij , sk]∗ = εiksj + εjksi .

As a consequence, there exists an sp(2) generator

Tij = −1

2
{SA

i , SAj}∗ ,

which acts on SA
i as

[Tij , S
A
k ]∗ = εikS

A
j + εjkS

A
i .

As a result, the difference
tint
ij ≡ ttot

ij − Tij (13.22)

satisfies the sp(2) commutation relation and the conditions (13.20), taking into account (13.10) and
(13.13) - (13.17). Moreover, at the linearized level, where SA

i = ZA
i as will be shown in the next section,

tint
ij reduces to tij . This means that, if nonlinear equations have the form (13.13) - (13.17), interaction

terms coming from the evolution along noncommutative directions do not spoil the sp(2) invariance and
allow the factorization of the elements proportional to tint

ij . This, in turn, implies that the nonlinear
equations admit an interpretation in terms of the tensor fields we started with in the free field analysis.
Let us also note that by virtue of (13.22) and (13.13)-(13.17) the conditions (13.20) are equivalent to
(13.10).

Finally, let us mention that an interesting interpretation of the deformed oscillator algebra (13.21)
is [49] that it describes a two-dimensional fuzzy sphere of a ν-dependent radius. Comparing this with the
equations (13.16) and (13.17) we conclude that the nontrivial HS equations describe a two-dimensional
fuzzy sphere embedded into a noncommutative space of variables ZA and Y A. Its radius varies from
point to point of the usual (commutative) space-time with coordinates x, depending on the value of the
HS curvatures collectively described by the Weyl zero-form B(Z, Y |x).

13.7 Factoring out the ideal

The factorization procedure is performed analogously to the linearized analysis of Subsection 12.2 by
choosing one or another tracelessness condition for representatives of the equivalence classes and then
dropping the terms of the form f = tint

ij ∗ gij , [f, tint
ij ] = 0 as explained in more detail in Subsection

(14.3).

Equivalently, one can use the quasiprojector approach of [57] exposed in Section 11. To this end one
defines a nonlinear quasiprojector ∆int = ∆ + . . . as a nonlinear extension of the operator ∆ (11.12),
satisfying

[S ,∆int]∗ = 0 , D(∆int) = 0 (13.23)

and
∆int ∗ tint

ij = tint
ij ∗∆int = 0 . (13.24)

The equations with factored out traces then take the form28

∆int ∗ (dW +W ∗W ) = 0 , (13.25)

28This form of the HS field equations was also considered by E. Sezgin and P. Sundell (unpublished) as one of
us (MV) learned from a private discussion during the Solvay workshop.
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∆int ∗ (dB +W ∗B −B ∗fW ) = 0 , (13.26)

∆int ∗ (dS +W ∗ S + S ∗W ) = 0 , (13.27)

∆int ∗ (S ∗B −B ∗ eS) = 0 , (13.28)

∆int ∗
„
S ∗ S +

1

2
(dZi

AdZ
A
i + 4Λ−1dZAidZ

i
BV

AV BB ∗ K)

«
= 0 . (13.29)

The factors of ∆int here insure that all terms proportional to tint
ij drop out. Note that ∆ and, therefore,

∆int do not belong to the regular class, and their star products with themselves and similar operators
are ill-defined. However, as pointed out in Appendix E, since ∆ and ∆int admit expansions in power
series in ZA

i and Y A
j , their products with regular functions are well-defined (free of infinities), so that

the equations (13.25)-(13.29) make sense at all orders. Note that, in practice, to derive manifest com-
ponent equations on the physical HS modes within this approach it is anyway necessary to choose a
representative of the quotient algebra in one or another form of the tracelessness conditions as discussed
in Sections 4.2 and 12.

Let us note that the idea to use the strong sp(2) condition suggested in [75]

tint
ij ∗B = B ∗ tint

ij = 0 (13.30)

is likely to lead to a problem beyond the linearized approximation. The reason is that the elements
satisfying (13.30) are themselves of the form ∆int ∗ B′ [4, 57], which is beyond the class of regular
functions even in the linearized approximation with ∆ in place of ∆int. From (13.17) it follows that the
corresponding field S is also beyond the regular class. As a result, star products of the corresponding
functions that appear in the perturbative analysis of the field equations may be ill-defined (infinite),
i.e. imposing this condition may cause infinities in the analysis of HS equations [75]. Let us note that
this unlucky situation is not accidental. A closely related point is that the elements satisfying (13.30)
would form a subalgebra of the off-mass-shell HS algebra if their product existed. This is not true,
however: the on-mass-shell HS algebra is a quotient algebra over the ideal I but not a subalgebra. This
fact manifests itself in the nonexistence of products of elements satisfying (13.30) (see also [4, 57, 75]),
having nothing to do with any inconsistency of the HS field equations. The factorization of the ideal I
in (13.25)-(13.29) is both sufficient and free of infinities.

14 Perturbative analysis

Let us now expand the equations around a vacuum solution, checking that the full system of HS equations
reproduces the free field dynamics at the linearized level.

14.1 Vacuum solution

The vacuum solution (W0, S0, B0) around which we will expand is defined by B0 = 0, which is clearly a
trivial solution of (13.14) and (13.16). Furthermore, it cancels the source term in (13.17), which is then
solved by

S0 = dZA
i Zi

A . (14.1)

Let us point out that dS0 = 0 and eS0 = S0 by the definition (13.18). From (14.1) and

[ZA
i , f ]∗(Z, Y ) = − ∂

∂Zi
A

f(Z, Y ) (14.2)
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(see (13.3)) follows that the (twisted or not) adjoint action of S0 is equivalent to the action of the
exterior differential dZ = dZA

i
∂

∂ZA
i

in the auxiliary space. The equation (13.15) at the zeroth order then

becomes {W0 , S0}∗ = dZW0 = 0 and one concludes that W0 can only depend on Y and not on Z. One
solution of (13.13) is the AdS connection bilinear in Y

W0 = ωAB
0 (x)TAB(Y ) , (14.3)

which thus appears as a natural vacuum solution of HS nonlinear equations. The vacuum solution (14.1),
(14.3) satisfies also the sp(2) invariance condition (13.10).

The symmetry of the chosen vacuum solution is hu(1|2:[d− 1, 2]). Indeed, the vacuum symmetry
parameters εgl(Z, Y |x) must satisfy

[S0 , ε
gl]∗ = 0 , D0(ε

gl) = 0 . (14.4)

The first of these conditions implies that εgl(Z, Y |x) is Z–independent, i.e., εgl(Z, Y |x) = εgl(Y |x) while
the second condition reconstructs the dependence of εgl(Y |x) on space-time coordinates x in terms
of values of εgl(Y |x0) at any fixed point x0 of space-time. Since the parameters are required to be
sp(2) invariant, one concludes that, upon factorization of the ideal I, the global symmetry algebra is
hu(1|2:[d− 1, 2]).

Our goal is now to see whether free HS equations emerge from the full system as first order correction
to the vacuum solution. We thus set

W = W0 +W1 , S = S0 + S1 , B = B0 +B1 ,

and keep terms up to the first order in W1, S1, B1 in the nonlinear equations.

14.2 First order correction

As a result of the fact that the adjoint action of S0 is equivalent to the action of dZ , if treated perturba-
tively, the space-time constraints (13.16) and (13.17) actually correspond to differential equations with
respect to the noncommutative Z variables.

We begin by looking at (13.16). The zero-form B = B1 is already first order, so we can substitute
S by S0, to obtain that B1 is Z-independent

B1(Z, Y ) = C(Y |x) . (14.5)

Inserting this solution into (13.14) just gives the twisted adjoint equation (12.12) (with eD0 defined by
(12.5)), one of the two field equations we are looking for.

Next we attempt to find S1 substituting (14.5) into (13.17), taking into account that

f(Z, Y ) ∗ K = exp(−2ziy
i) f(ZA

i − V A(zi + yi), Y
A

i − V A(zi + yi))

(see Appendix 2.1), which one can write as

f(Z, Y ) ∗ K = exp(−2ziy
i) f(⊥Z − ‖Y,⊥ Y − ‖Z) .

This means that K acts on functions of Z and Y by interchanging their respective longitudinal parts
(taken with a minus sign) and multiplying them by a factor of exp(−2ziy

i).

Looking at the ZZ part of the curvature, one can see that the V A transversal sector is trivial at first
order and that the essential Z-dependence is concentrated only in the longitudinal components. One
can then analyze the content of (13.17) with respect to the longitudinal direction only, getting

∂isj
1 − ∂

jsi
1 = 4εijC(⊥Y − ‖Z) exp(−2ziy

i) (14.6)
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with ∂i = ∂
∂zi

and si
1 = Si

1 AV
A. The general solution of the equation ∂if

i(z) = g(z) is fi(z) =

∂iε+
R 1

0
dt t zig(z). Applying this to (14.6) one has

si
1 = ∂iε1 − 2zi

Z 1

0

dt t C(⊥Y − t ‖Z) exp(−2tzky
k) .

Analogously, in the V transverse sector one obtains that ⊥SA
i is pure gauge so that

Si
1 A =

∂

∂ZA
i

ε1 − 2VAz
i

Z 1

0

dt t C(⊥Y − t ‖Z) exp(−2tzky
k) ,

where the first term on the r.h.s. is the Z-exact part. This term is the pure gauge part with the
gauge parameter ε1 = ε1(Z;Y |x) belonging to the Z-extended HS algebra. One can conveniently set

∂
∂ZA

i
ε1 = 0 by using part of the gauge symmetry (13.19). This choice fixes the Z-dependence of the

gauge parameters to be trivial and leaves exactly the gauge freedom one had at the free field level,
ε1 = ε1(Y |x). Moreover, let us stress that with this choice one has reconstructed S1 entirely in terms of
B1. Note that si

1 belongs to the regular class of functions (13.9) compatible with the star product.
We now turn our attention to the equation (13.15), which determines the dependence of W on z. In

the first order, it gives
∂iW1 = dsi

1 +W0 ∗ si
1 − si

1 ∗W0 .

The general solution of the equation ∂
∂zi

ϕ(z) = χi(z) is given by the line integral

ϕ(z) = ϕ(0) +

Z 1

0

dt ziχ
i(tz) ,

provided that ∂
∂zi

χi(z) = 0 (i = 1, 2). Consequently,

W1 = ω(Y |x) + zj

Z 1

0

dt (1− t) e−2tziyi

EB
0

∂

∂⊥Y jB
C(⊥Y − t ‖Z) , (14.7)

taking into account that the term zids
i
1 vanishes because ziz

i = 0. Again, W1 is in the regular class.
Note also that in (14.7) only the frame field appears, while the dependence on the Lorentz connection
cancels out. This is the manifestation of the local Lorentz symmetry which forbids the presence of ωab

if not inside Lorentz covariant derivatives.
One still has to analyze (13.13), which at first order reads

dW1 + {W0,W1}∗ = 0 .

Plugging in (14.7), one gets

R1 = O(C) , R1 ≡ dω + {ω ,W0}∗ , (14.8)

where corrections on the r.h.s. of the first equation in (14.8) come from the second term in (14.7),
and prevent (14.8) from being trivial, that would imply ω to be a pure gauge solution29. The formal
consistency of the system with respect to Z variables allows one to restrict the study of (13.13) to the
physical space Z = 0 only (with the proviso that the star products are to be evaluated before sending
Z to zero). This is due to the fact that the dependence on Z is reconstructed by the equations in such
a way that if (13.13) is satisfied for Z = 0, it is true for all Z. By elementary algebraic manipulations
one obtains the final result

R1 =
1

2
EA

0 E
B
0

∂2

∂ ⊥Y Ai∂ ⊥Y B
i

C(⊥Y ) ,

29In retrospective, one sees that this is the reason why it was necessary for the Z coordinates to be noncommu-
tative, allowing nontrivial contractions, since corrections are obtained from perturbative analysis as coefficients
of an expansion in powers of z obtained by solving for the z-dependence of the fields from the full system.
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which, together with the equation for the twisted adjoint representation previously obtained, reproduces
the free field dynamics for all spins (10.20) and (12.12).

14.3 Higher order corrections and factorization of the ideal

Following the same lines one can now reconstruct order-by-order all nonlinear corrections to the free
HS equations of motion. Note that all expressions that appear in this analysis belong to the regular
class (13.9), and therefore the computation as a whole is free from divergencies, being well defined. At
the same time, the substitution of expressions like (10.24) for auxiliary fields will give rise to nonlinear
corrections with higher derivatives, which are nonanalytic in the cosmological constant.

Strictly speaking, the analysis explained so far is off-mass-shell. To put the theory on-mass-shell
one has to factor out the ideal I. To this end, analogously to the linearized analysis of Section 12, one
has to fix representatives of ω(Y |x) and C(Y |x) in one or another way (for example, demanding ω(Y |x)
to be AdS traceless and C(Y |x) to be Lorentz traceless). The derived component HS equations may
or may not share these tracelessness properties. Let us consider a resulting expression containing some
terms of the form

A = Atr
0 + tij A

ij
1 ,

where Atr
0 satisfies the chosen tracelessness condition while the second term, with tij defined by (11.4),

describes extra traces. One has to rewrite such terms as

A = Atr
0 + tint

ij ∗Aij
1 +A′ +A′′ , (14.9)

where the third term

A′ ≡ tij Aij
1 − tij ∗A

ij
1 = −1

4

∂2

∂Y i
A∂Y

jA
Aij

contains less traces (we took into account (11.7)), and the fourth term

A′′ ≡ (tint
ij − tij) ∗Aij

1 = O(C) ∗Aij
1

contains higher-order corrections due to the definitions (13.11) and (13.22). The factorization is per-
formed by dropping out the terms of the form tint

ij ∗ Aij
1 in (14.9). The resulting expression A =

Atr
0 + A′ + A′′ contains either less traces or higher order nonlinearities. If necessary, the procedure

has to be repeated to get rid of lower traces at the same order or new traces at the nonlinear order.
Although this procedure is complicated, it can be done in a finite number of well-defined steps for any
given type of HS tensor field and given order of nonlinearity. The process is much nicer of course within
the spinorial realization available in the lower dimension cases [14, 78, 79] where the factorization over
the ideal I is automatic.

15 Discussion

A surprising issue related to the structure of the HS equations of motion is that, within this formulation
of the dynamics, one can get rid of the space-time variables. Indeed, (13.13)-(13.15) are zero curvature
and covariant constancy conditions, admitting pure gauge solutions. This means that, locally,

W (x) = g−1(x) ∗ dg(x) ,
B(x) = g−1(x) ∗ b ∗ eg(x) ,
S(x) = g−1(x) ∗ s ∗ g(x) , (15.1)

the whole dependence on space-time points being absorbed into a gauge function g(x), which is an
arbitrary invertible element of the star product algebra, while b = b(Z, Y ) and s = s(Z, Y ) are arbitrary
x-independent elements of the star product algebra. Since the system is gauge invariant, the gauge
functions disappear from the remaining two equations (13.16)-(13.17), which then encode the whole



Nonlinear Higher Spin Theories in Various Dimensions 185

dynamics though being independent of x. This turns out to be possible, in the unfolded formulation, just
because of the presence of an infinite bunch of fields, supplemented by an infinite number of appropriate
constraints, determined by consistency. As previously seen in the lower spin examples (see Section 7),
the zero-form B turns out to be the generating function of all on-mass-shell nontrivial derivatives of
the dynamical fields. Thus it locally reconstructs their x-dependence through their Taylor expansion
which in turn is just given by the formulas (15.1). So, within the unfolded formulation, the dynamical
problem is well posed once all zero-forms assembled in b are given at one space-time point x0, because
this is sufficient to obtain the whole evolution of fields in some neighborhood of x0 (note that s is
reconstructed in terms of b up to a pure gauge part). This way of solving the nonlinear system, getting
rid of x variables, is completely equivalent to the one used in the previous section, or, in other words,
the unfolded formulation involves a trade between space-time variables and auxiliary noncommutative
variables (Z, Y ). Nevertheless, the way we see and perceive the world seems to require the definition
of local events, and it is this need for locality that makes the reduction to the “physical” subspace
Z = 0 (keeping the x-dependence instead of gauging it away) more appealing. On the other hand,
as mentioned in Section 13.6, the HS equations in the auxiliary noncommutative space have the clear
geometrical meaning of describing embeddings of a two-dimensional noncommutative sphere into the
Weyl algebra.

The system of gauge invariant nonlinear equations for all spins in AdSd here presented can be
generalized [16] to matrix-valued fields, W → W β

α , S → S β
α and B → B β

α , α, β = 1, ..., n, giving
rise to Yang-Mills groups U(n) in the s = 1 sector while remaining consistent. It is also possible to
truncate to smaller inner symmetry groups USp(n) and O(n) by imposing further conditions based on
certain antiautomorphisms of the star product algebra [46, 16]. Apart from the possibility of extending
the symmetry group with matrix-valued fields, and modulo field redefinitions, it seems that there is no
ambiguity in the form of nonlinear equations. As previously noted, this is due to the fact that the sp(2)
invariance requires (13.16) and (13.17) to have the form of a deformed oscillator algebra.

HS models have just one dimensionless coupling constant

g2 = |Λ|
d
2−1κ2 .

To introduce the coupling constant, one has to rescale the fluctuations ω1 of the gauge fields (i.e.
additions to the vacuum field) as well as the Weyl zero-forms by a coupling constant g so that it cancels
out in the free field equations. In particular, g is identified with the Yang-Mills coupling constant in the
spin-1 sector. Its particular value is artificial however because it can be rescaled away in the classical
theory (although it is supposed to be a true coupling constant in the quantum theory where it is a
constant in front of the whole action in the exponential inside the path integral). Moreover, there is
no dimensionful constant allowing us to discuss a low-energy expansion, i.e. an expansion in powers
of a dimensionless combination of this constant and the covariant derivative. The only dimensionful
constant present here is Λ. The dimensionless combinations D̄µ ≡ Λ−1/2Dµ are not good expansion
entities, since the commutator of two of them is of order 1, as a consequence of the fact that the AdS
curvature is roughly R0 ∼ D2 ∼ Λgg. For this reason also it would be important to find solutions of HS
field equations different from AdSd, thus introducing in the theory a massive parameter different from
the cosmological constant.

Finally, let us note that a variational principle giving the nonlinear equations (13.13)-(13.17) is still
unknown in all orders. Indeed, at the action level, gauge invariant interactions have been constructed
only up to the cubic order [13,4, 82].

16 Conclusion

The main message of these lectures is that nonlinear dynamics of HS gauge fields can be consistently
formulated in all orders in interactions in anti de Sitter space-time of any dimension d > 4. The level of
generality of the analyzes covered has been restricted in the following points: only completely symmetric
bosonic HS gauge fields have been considered, and only at the level of the equations of motion.

Since it was impossible to cover all the interesting and important directions of research in the modern
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HS gauge theory, an invitation to further readings is provided as a conclusion. For general topics in HS
gauge theories, the reader is referred to the review papers [3, 9, 10,38,58,83,84,85]. Among the specific
topics that have not been addressed here, one can mention:

(i) Spinor realizations of HS superalgebras in d = 3, 4 [43, 44, 46, 79], d = 5 [50, 7], d = 7 [52] and the
recent developments in any dimension [57],

(ii) Cubic action interactions [13,4, 82],

(iii) Spinor form of d = 4 nonlinear HS field equations [14,3, 86],

(iv) HS dynamics in larger (super)spaces, e.g. free HS theories in tensorial superspaces [87,51,71] and
HS theories in usual superspace [88,89],

(v) Group-theoretical classification of invariant equations via unfolded formalism [90],

(vi) HS gauge fields different from the completely symmetric Fronsdal fields: e.g. mixed symmetry
fields [91], infinite component massless representations [92] and partially massless fields [93],

(vii) Light cone formulation for massless fields in AdSd [94],

(viii) Tensionless limit of quantized (super)string theory [95,33].
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1 Basic material on lower spin gauge theories

1.1 Isometry algebras

By “space-time” symmetries one means symmetries of the corresponding space-time manifold Md of
dimension d, which may be isometries or conformal symmetries. The most symmetrical solutions of
vacuum Einstein equations, with or without cosmological constant Λ, are (locally) Minkowski space-
time (Λ = 0), de Sitter (Λ > 0) and Anti de Sitter (Λ < 0) spaces. In this paper, we only consider
Rd−1,1 and AdSd spaces though the results generalize easily to dSd space.

The Poincaré group ISO(d−1, 1) = Rd−1,1 oSO(d−1, 1) has translation generators Pa and Lorentz
generators Mab (a, b = 0, 1, . . . , d− 1) satisfying the algebra

[Mab , Mcd ] = ηac Mdb − ηbc Mda − ηad Mcb + ηbd Mca , (1.1)

[Pa , Mbc] = ηab Pc − ηac Pb , (1.2)
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[Pa, Pb] = 0 . (1.3)

“Internal” symmetries are defined as transformations that commute with the translations generated
by Pa and the Lorentz transformations generated by Mab [1]. The relation (1.1) defines the Lorentz
algebra o(d−1, 1) while the relations (1.2)-(1.3) state that the Poincaré algebra is a semi-direct product
iso(d− 1, 1) = Rd B o(d− 1, 1).

The algebra of isometries of the AdSd space-time is given by the commutation relations (1.1)-(1.2)
and

[Pa, Pb] = − 1

ρ2
Mab , (1.4)

where ρ is proportional to the radius of curvature of AdSd and is related to the cosmological constant
via Λ = −ρ−2 . The (noncommuting) transformations generated by Pa are called transvections in AdSd

to distinguish them from the (commuting) translations. By defining Md̂ a = ρPa, it is possible to collect

all generators into the generators MAB where A = 0, 1, . . . , d̂. These generators MAB span o(d − 1, 2)
algebra since they satisfy the commutation relations

[MAB ,MCD] = ηACMDB − ηBCMDA − ηADMCB + ηBDMCA ,

where ηAB is the mostly minus invariant metric of o(d − 1, 2). This is easily understood from the

geometrical construction of AdSd as the hyperboloid defined byXAXA = (d−1)(d−2)
2

ρ2 which is obviously
invariant under the isometry group O(d − 1, 2). Since transvections are actually rotations in ambient
space, it is normal that they do not commute. It is possible to derive the Poincaré algebra from the
AdSd isometry algebra by taking the infinite-radius limit ρ → ∞. This limiting procedure is called
Inönü-Wigner contraction [96].

1.2 Gauging internal symmetries

In this subsection, a series of tools used in any gauge theory is briefly introduced. One considers the most
illustrative example of Yang-Mills theory, which corresponds to gauging an internal symmetry group.

Let g be a (finite-dimensional) Lie algebra of basis {Tα} and Lie bracket [ , ]. The structure constants
are defined by [Tα, Tβ ] = Tγf

γ
αβ . The Yang-Mills theory is conveniently formulated by using differential

forms taking values in the Lie algebra g.

• The connection A = dxµAα
µTα is defined in terms the vector gauge field Aα

µ .

• The curvature F = dA+A2 = 1
2
dxµdxνFα

µνTα is associated with the field strength tensor Fα
µν =

∂[µA
α
ν] + fα

βγA
β
µA

γ
ν .

• The Bianchi identity dF + AF − FA = 0 is a consequence of d2 = 0 and the Jacobi identity in
the Lie algebra.

• The gauge parameter ε = εαTα is associated with the infinitesimal gauge transformation δεA =
dε + Aε − εA which transforms the curvature as δεF = Fε − εF . In components, this reads as
δεαAα

µ = ∂µε
α + fα

βγA
β
µε

γ and δFα
µν = fα

βγF
β
µνε

γ .

The algebra Ω(Md) ⊗ g is a Lie superalgebra, the product of which is the graded Lie bracket denoted
by [ , ] 30. The elements of Ωp(Md) ⊗ g are p-forms taking values in g. The interest of the algebra
Ω(Md) ⊗ g is that it contains the gauge parameter ε ∈ Ω0(Md) ⊗ g, the connection A ∈ Ω1(Md) ⊗ g,
the curvature F ∈ Ω2(Md)⊗ g, and the Bianchi identity takes place in Ω3(Md)⊗ g.

To summarize, the Yang-Mills theory is a fibre bundle construction where the Lie algebra g is the
fiber, A the connection and F the curvature. The Yang-Mills action takes the form

SY M [Aa
µ] ∝

Z
Md

Tr[F ∗F ] ,

30Here, the grading is identified with that in the exterior algebra so that the graded commutator is evaluated
in terms of the original Lie bracket [ , ].
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in which case g is taken to be compact and semisimple so that the Killing form is negative definite (in
order to ensure that the Hamiltonian is bounded from below). Here ∗ is the Hodge star producing a
dual form. Note that, via Hodge star, the Yang-Mills action contains the metric tensor which is needed
to achieve invariance under diffeomorphisms. Furthermore, because of the cyclicity of the trace, the
Yang-Mills Lagrangian Tr[F ∗F ] is also manifestly invariant under the gauge transformations.

An operatorial formulation is also useful for its compactness. Let us now consider some matter fields
Φ living in some space V on which acts the Lie algebra g, via a representation Tα. In other words,
the elements Tα are reinterpreted as operators acting on some representation space (also called module)
V . The connection A becomes thereby an operator. For instance, if T is the adjoint representation
then the module V is identified with the Lie algebra g and A acts as A · Φ = [A,Φ]. The connection
A defines the covariant derivative D ≡ d + A. For any representation of g, the transformation law
of the matter field is δΦ = − ε · Φ, where ε is a constant or a function of x according to whether g
is a global or a local symmetry. The gauge transformation law of the connection can also be written
as δA = δD = [D, ε] because of the identity [d,A] = dA, and is such that δ(DΦ) = − ε · (DΦ). The
curvature is economically defined as an operator F = 1

2
[D,D] = D2. In space-time components, the

latter equation reads as usual [Dµ, Dν ] = Fµν . The Bianchi identity is a direct consequence of the
associativity of the differential algebra and Jacobi identities of the Lie algebra and reads in space-
time components as [Dµ, Fνρ] + [Dν , Fρµ] + [Dρ, Fµν ] = 0. The graded Jacobi identity leads to δF =
1
2

“
[ [D, ε] , D ] + [D, [D, ε] ]

”
= [D2 , ε] = [F , ε].

The present notes make an extension of the previous compact notations and synthetic identities.
Indeed, they generalize it straightforwardly to other gauge theories formulated via a nonAbelian con-
nection, e.g. HS gauge theories31.

1.3 Gauging space-time symmetries

The usual Einstein-Hilbert action S[g] is invariant under diffeomorphisms. The same is true for S[e, ω],
defined by (2.1), since everything is written in terms of differential forms. The action (2.1) is also
manifestly invariant under local Lorentz transformations δω = dε + [ω, ε] with gauge parameter ε =
εabMab, because εa1...ad is an invariant tensor of SO(d− 1, 1). The gauge formulation of gravity shares
many features with a Yang-Mills theory formulated in terms of a connection ω taking values in the
Poincaré algebra.

However, gravity is actually not a Yang-Mills theory with Poincaré as (internal) gauge group. The
aim of this section is to express precisely the distinction between gauge symmetries which are either
internal or space-time.

To warm up, let us mention several obvious differences between Einstein-Cartan’s gravity and Yang-
Mills theory. First of all, the Poincaré algebra iso(d − 1, 1) is not semisimple (since it is not a direct
sum of simple Lie algebras, containing a nontrivial Abelian ideal spanned by translations). Secondly,
the action (2.1) cannot be written in a Yang-Mills form

R
Tr[F ∗F ]. Thirdly, the action (2.1) is not

invariant under the gauge transformations δω = dε+[ω, ε] generated by all Poincaré algebra generators,
i.e. with gauge parameter ε(x) = εa(x)Pa + εab(x)Mab. For d > 3, the action (2.1) is invariant only
when εa = 0. (For d = 3, the action (2.1) describes a genuine Chern-Simons theory with local ISO(2, 1)
symmetries.)

This latter fact is not in contradiction with the fact that one actually gauges the Poincaré group
in gravity. Indeed, the torsion constraint allows one to relate the local translation parameter εa to the
infinitesimal change of coordinates parameter ξµ. Indeed, the infinitesimal diffeomorphism xµ → xµ +ξµ

acts as the Lie derivative
δξ = Lξ ≡ iξd+ diξ ,

31More precisely, one can take g as an infinite-dimensional Lie algebra that arises from an associative algebra
with product law ∗ and is endowed with the (sometimes twisted) commutator as bracket. Up to these subtleties
and some changes of notation, all previous relations hold for HS gauge theories considered here, and they might
simplify some explicit checks by the reader.
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where the inner product i is defined by

iξ ≡ ξµ ∂

∂(dxµ)
,

where the derivative is understood to act from the left. Any coordinate transformation of the frame
field can be written as

δξe
a = iξ(de

a) + d(iξe
a) = iξT

a + εabe
b +DLεa| {z }
=δε ea

,

where the Poincaré gauge parameter is given by ε = iξω. Therefore, when T a vanishes any coordinate
transformation of the frame field can be interpreted as a local Poincaré transformation of the frame
field, and reciprocally.

To summarize, the Einstein-Cartan formulation of gravity is indeed a fibre bundle construction where
the Poincaré algebra iso(d − 1, 1) is the fiber, ω the connection and R the curvature, but, unlike for
Yang-Mills theories, the equations of motion imposes some constraints on the curvature (T a = 0), and
some fields are auxiliary (ωab). A fully covariant formulation is achieved in the AdSd case with the aid
of compensator formalism as explained in Section 2.3.

2 Technical issues on nonlinear higher spin equations

2.1 Two properties of the inner Klein operator

In this appendix, we shall give a proof of the properties (13.7) and (13.8). One can check the second
property with the help of (13.1), which in this case amounts to

K ∗ K =
1

π2(d+1)

Z
dSdT e−2SA

i T i
Ae−2(si+zi)(y

i+si)e−2(zi−ti)(y
i+ti) ,

with
si ≡ VAS

A
i , ti ≡ VAT

A
i . (2.1)

Using the fact that sis
i = tit

i = 0 and rearranging the terms yields

K ∗ K =
1

π2(d+1)
e−4ziyi

Z
dSdT e−2SA

i T i
Ae−2si(zi−yi)e−2ti(zi+yi)

=
1

π2(d+1)
e−4ziyi

Z
dSdT e−2Si

A[V A(zi−yi)−T A
i ]e−2ti(zi+yi) .

Since

1

π2(d+1)

Z
dSe−2Si

A(ZA
i −Y A

i ) = δ(ZA
i − Y A

i ) , (2.2)

one gets

K ∗ K = e−4ziyi
Z
dTδ(V A(zi − yi)− TA

i )e−2T i
BV B(zi+yi)

which, using VBV
B = 1, gives K∗K = e−4ziyi

e−2(−yizi+ziyi) = 1. The formula (2.2) might seem unusual
because of the absence of an i in the exponent. It is consistent however, since one can assume that all
oscillator variables, including integration variables, are genuine real variables times (some fixed) square
root of i, i.e. that the integration is along appropriate lines in the complex plane. One is allowed to do
so without coming into conflict with the definition of the star algebra, because its elements are analytic
functions of the oscillators, and can then always be continued to real values of the variables.

The proof of (13.7) is quite similar. Let us note that, with the help of (13.8), it amounts to check
that K ∗ f(Z, Y ) ∗ K = f(Z̃, Ỹ ). One can prove, by going through almost the same steps shown above,
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that
K ∗ f(Z, Y ) = K f(Zi

A + VA(yi − zi), Y i
A − VA(yi − zi)) .

Explicitly, one has

K ∗ f(Z, Y ) =
K

π2(d+1)

Z
dSdTe−2SA

i (T i
A+VA(yi−zi))f(Z − T, Y + T )

= K
Z
dT δ(T i

A + VA(yi − zi))f(Z − T, Y + T )

= K f(Zi
A + VA(yi − zi), Y i

A − VA(yi − zi)) ,

where we have made use of (2.2). Another star product with K leads to

K ∗ f(Z, Y ) ∗ K =

1

π2(d+1)
e−4ziyi

Z
dSdTe−2T i

A[V A(zi+yi)+SA
i ]e−2si(y

i−zi)f(Zi
A + VA(yi − zi) + Si

A, Y
i

A − VA(yi − zi) + Si
A) ,

which, performing the integral over T and using (2.2), gives in the end

e−4ziyi

e2(zi+yi)(y
i−zi)f(Zi

A + VA(yi − zi)− VA(zi + yi), Y i
A − VA(yi − zi)− VA(zi + yi)) = f(Z̃, Ỹ ) .

2.2 Regularity

We will prove that the star product (13.1) is well-defined for the regular class of functions (13.9).
This extends the analogous result for the spinorial star product in three and four dimension obtained
in [15,79].

Theorem 2.1. Given two regular functions f1(Z, Y ) and f2(Z, Y ), their star product (13.1) (f1 ∗
f2)(Z, Y ) is a regular function.

Proof:

f1 ∗ f2 = P1(Z, Y )

Z
M1

dτ1ρ1(τ1) exp[2φ1(τ1)ziy
i] ∗ P2(Z, Y )

Z
M2

dτ2ρ2(τ2) exp[2φ2(τ2)ziy
i]

=

Z
M1

dτ1ρ1(τ1) exp[2φ1(τ1)ziy
i]

Z
M2

dτ2ρ2(τ2) exp[2φ2(τ2)ziy
i]

1

π2(d+1)

Z
dSdT×

× exp{−2SA
i T

i
A + 2φ1(τ1)[s

i(z − y)i] + 2φ2(τ2)[t
i(z + y)i]}P1(Z + S, Y + S)P2(Z − T, Y + T ) ,

with si and ti defined in (2.1). Inserting

P (Z + U, Y + U) = exp

»
UA

i

„
∂

∂ZA
1 i

+
∂

∂Y A
1 i

«–
P (Z1, Y1)

˛̨̨̨
Z1=Z
Y1=Y

, (2.3)

one gets

f1 ∗ f2 =

Z
M1×M2

dτ1dτ2ρ1(τ1)ρ2(τ2) exp{2[φ1(τ1) + φ2(τ2)]ziy
i}×

×
Z
dSdT exp


−2Si

A

»
−φ1(τ1)V

A(z − y)i +
1

2

„
∂

∂Zi
1 A

+
∂

∂Y i
1 A

«–ff
P1(Z1, Y1)

˛̨̨̨
Z1=Z
Y1=Y

×

× exp


−2T i

A

»
SA

i − φ2(τ2)V
A(z + y)i +

1

2

„
− ∂

∂Zi
2 A

+
∂

∂Y i
2 A

«–ff
P2(Z2, Y2)

˛̨̨̨
Z2=Z
Y2=Y
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=

Z
M1×M2

dτ1dτ2ρ1(τ1)ρ2(τ2) exp{2[φ1(τ1) + φ2(τ2) + 2φ1(τ1)φ2(τ2)]ziy
i}×

× exp


−1

2

„
∂

∂Zi
1 A

+
∂

∂Y i
1 A

«„
∂

∂Zi
2 A

− ∂

∂Y i
2 A

«ff
P1[Z1 − φ2(τ2)

‖(Z + Y ), Z2 − φ2(τ2)
‖(Z + Y )]×

P2(Z2 + φ1(τ1)
‖(Z − Y ), Y2 − φ1(τ1)

‖(Z − Y ))

˛̨̨̨
Z1=Z2=Z
Y1=Y2=Y

,

as one can check by using (2.2) (or, equivalently, Gaussian integration, the rationale for the equivalence
being given in Appendix 2.1). The product of two compact domains M1 ⊂ Rn and M2 ⊂ Rm is a
compact domain in Rn+m and P1, P2 are polynomials, so one concludes that the latter expression is a
finite sum of regular functions of the form (13.9).

As explained in Section 13.1, it is important for this proof that the exponential in the Ansatz (13.9)
never contributes to the quadratic form in the integration variables, which is thus independent of the
particular choice of the functions f1 and f2. This property makes sure that the class of functions (13.9)
is closed under star multiplication, and it is a crucial consequence of the definition (13.1).

Analogously one can easily prove that the star products f ∗ g and g ∗ f of f(Z, Y ) being a power
series in ZA

i and Y A
i with a regular function g(Z, Y ) are again some power series. In other words, the

following theorem is true:

Theorem 2.2. The space of power series f(Z, Y ) forms a bimodule of the star product algebra of regular

functions.

2.3 Consistency of the nonlinear equations

We want to show explicitly that the system of equations (13.13)-(13.17) is consistent with respect to
both x and Z variables.

We can start by acting on (13.13) with the x-differential d. Imposing d2 = 0, one has

dW ∗W −W ∗ dW = 0 ,

which is indeed satisfied by associativity, as can be checked by using (13.13) itself. So (13.13) represents
its own consistency condition.

Differentiating (13.14), one gets

dW ∗B −W ∗ dB − dB ∗fW −B ∗ dfW = 0 .

Using (13.14), one can substitute each dB with −W ∗B +B ∗fW , obtaining

dW ∗B +W ∗W ∗B −B ∗fW ∗fW −B ∗ dfW = 0 .

This is identically satisfied by virtue of (13.13), which is thus the consistency condition of (13.14).

The same procedure works in the case of (13.15), taking into account that, although S is a space-time
zero-form, dxµdZA

i = −dZA
i dx

µ. Again one gets a condition which amounts to an identity because of
(13.13).

Hitting (13.16) with d and using (13.14) and (13.15), one obtains

−W ∗ S ∗B − S ∗B ∗fW +W ∗B ∗ eS +B ∗ eS ∗fW = 0 ,

which is identically solved taking into account (13.16).

Finally, (13.15) turns the differentiated l.h.s. of (13.17) into −W ∗ S ∗ S + S ∗ S ∗W , while using

(13.14) the differentiated r.h.s. becomes −2Λ−1dzidz
i(−W ∗ B ∗ K + B ∗fW ∗ K). Using (13.7), one is

then able to show that the two sides of the equation obtained are indeed equal if (13.17) holds.
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S being an exterior derivative in the noncommutative directions, in the Z sector the consistency
check is more easily carried on by making sure that a covariant derivative of each equation does not lead
to any new condition, i.e. leads to identities. This amounts to implementing d2

Z = 0.

So commuting S with (13.13) gives identically 0 by virtue of (13.13) itself. The same is true for
(13.15), (13.14) and (13.16), with the proviso that in these latter two cases one has to take an anticom-
mutator of the equations with S because one is dealing with odd-degree-forms (one-forms). The only
nontrivial case then turns out to be (13.17), which is treated in Section 13.3.
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[96] E. Inönü and E. P. Wigner, Proc. Nat. Acad. Sci. 39 (1953) 510.




