ATL-SOFT-PROC-2012-044

18/06/2012

@y

Exploiting Virtualization and Cloud Computing in

ATLAS

Fernando Harald Barreiro Megino®, Doug Benjamin®, Kaushik De?,
Ian Gable’, Val Hendrix¢, Sergey Panitkin¢, Michael Paterson®,
Asoka De Silva”, Daniel van der Ster®, Ryan Taylor’, Roberto A.
Vitillo¢, Rod Walker? on behalf of the ATLAS Collaboration

: CERN: European Organization for Nuclear Research, Geneva, Switzerland
: Duke University Durham, NC 27708
: The University of Texas at Arlington, TX, USA
: University of Victoria, BC, Canada
Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, USA 94720
: Brookhaven National Laboratory, Upton, NY, USA
: TRIUMF, Vancouver, BC, Canada
: Ludwig-Maximilians-Universitaet Munich

I YN S22 O

Abstract. The ATLAS Computing Model was designed around the concept of grid computing;
since the start of data-taking, this model has proven very successful in the federated operation
of more than one hundred Worldwide LHC Computing Grid (WLCGQ) sites for offline data
distribution, storage, processing and analysis. However, new paradigms in computing, namely
virtualization and cloud computing, present improved strategies for managing and provisioning
IT resources that could allow ATLAS to more flexibly adapt and scale its storage and processing
workloads on varied underlying resources. In particular, ATLAS is developing a “grid-of-clouds”
infrastructure in order to utilize WLCG sites that make resources available via a cloud API.
This work will present the current status of the Virtualization and Cloud Computing R&D
project in ATLAS Distributed Computing. First, strategies for deploying PanDA queues on
cloud sites will be discussed, including the introduction of a “cloud factory” for managing cloud
VM instances. Next, performance results when running on virtualized /cloud resources at CERN
LxCloud, StratusLab, and elsewhere will be presented. Finally, we will present the ATLAS
strategies for exploiting cloud-based storage, including remote XROOTD access to input data,
management of EC2-based files, and the deployment of cloud-resident LCG storage elements.

1. Introduction

Emerging standards and software of the cloud computing paradigm bring attractive features to
improve the operations and elasticity of scientific distributed computing. At the same time, the
existing European Grid Infrastructure and Worldwide LHC Computing Grid (WLCG) have been
highly customized over the past decade or more to the needs of the Virtual Organisations, and
are operating with remarkable success. It is therefore of interest not to replace “The Grid” with
“The Cloud”, but rather to consider strategies to integrate cloud resources, both commercial
and private (academic), into the existing grid infrastructures, thereby forming a grid-of-clouds.
This work will present the efforts underway in the ATLAS Experiment [1] to adapt existing grid
workload and storage management services to cloud computing technologies.

In mid-2011 the ATLAS experiment formed a Virtualization and Cloud Computing R&D
project to evaluate the new capabilities offered by these software and standards (e.g. Xen,
KVM, EC2, S3, OCCI) and to evaluate which of the existing grid workflows can best make
use of them. In parallel, many existing grid sites have begun internal evaluations of cloud
technologies (such as Open Nebula or OpenStack) to reorganize the internal management of
their computing resources. In both cases, the usage of standards in common with commercial
resource providers (e.g. Amazon, RackSpace) would enable an elastic adaptation of the amount
of computing resources provided in relation to the varying user demand.

The remainder of this paper is organized as follows. Section 2 presents a list of cloud
computing use-cases foreseen by ATLAS. The work in data processing in the cloud is presented
in sections 3, 4, and 5. Next, section 6 presents the work towards using cloud-resident storage
for caching and archival. Finally, we conclude and present future plans of the R&D project in
section 7.

2. Cloud Computing Use-Cases

We have enumerated a number of use-cases which highlight the various ways in which cloud
computing technologies can be exploited by ATLAS. They are generally grouped into Data
Processing and Data Storage.

2.1. Data Processing Use-Cases

The first set of use-cases describes how ATLAS could generate or process data in the cloud. Due
to the relative difficulties of exploiting cloud storage with the existing grid middlewares, most
of these use-cases rely on the existing grid storage elements.

2.1.1. PanDA Queues in the Cloud: The primary goal of the grid-of-clouds approach is to
deploy PanDA [2] processing queues for Monte Carlo (MC) production or distributed analysis.
In this case, cloud resources are added to a new or existing PanDA queue and pilot jobs [3] are
used to retrieve the payloads; however, the cloud site would not need a grid computing element.

These queues would allow jobs to run on either commercial or private (academic) cloud
resources. In the first examples of this use-case, data stage-in and stage-out could use existing
grid storage elements, but the use of cloud object storage services is not excluded. Data access
to remote grid storage elements may be more or less practical based on varying I/O demands
for different job types; for example, distributed analysis jobs are generally more I/O intensive
and may present performance challenges, which could be ameliorated with data caching or other
methods. Monte Carlo simulation jobs, having lighter I/O requirements, are ideal as a first
use-case.

These queues are intended to be managed centrally and used for grid capacity bursting when
more resources are needed and available. In fact, if the MC production work can be successfully
offloaded to the cloud, then more of the existing grid resources could be dedicated to analysis.

2.1.2. Cloud Analysis Clusters: Users or sites should be able to easily deploy a new analysis
cluster (e.g. a generic batch farm or PROOF cluster [4]) in commercial or private cloud resources.
The goal of this activity would be to provide a “one-click” solution which would deploy all of
the necessary virtual machines and software components needed to run ATLAS analysis. The
success of such clusters will depend on efficient I/O with the local or remote storage.

2.1.3. Personal PanDA Analysis Queues: In situations where the conventional grid resources
are fully occupied and an individual physicist has exhausted all of his or her fair share of the
resources, it would be desirable to have a mechanism for the user to exploit private cloud

resources or purchase extra resources from commercial cloud providers. Such a tool should hide
the complexities of cloud computing and transparently run that user’s own PanDA jobs on these
new resources. For example, a user could submit an analysis job with the PanDA clients as usual
and then execute another command to instantiate the necessary cloud resources to process those
jobs.

These queues are intended to be non-centrally managed, with the underlying infrastructure
being instantiated on demand by the users.

2.2. Data Storage Use-Cases

ATLAS should be able to make use of cloud storage for short and long term storage. Note that
cloud storage can refer to both object stores such as Amazon S3 and OpenStack Swift, and also
the disk provided with cloud IaaS instances (e.g. the disk associated with an EC2 instance that
can optionally persist independently from the life of the instance).

2.2.1. Data Caching in the Cloud 'The aforementioned data processing use-cases would have
improved performance if the I/O operations had a local caching layer. For instance, reads over
the wide area network could be reduced with an Xrootd [5] local caching policy, or technologies
such as HDF'S could be used to build short-term storage clusters with the ephemeral disks.

2.2.2. Object Storage and Archival It may be beneficial for ATLAS to store DQ2 [6] datasets
on cloud resources, thereby federating cloud storage with the conventional grid storage elements
(which are accessible via the SRM protocol). In addition, HTTP-based data transfer protocols
such as WebDAV and S3 may have advantages over gsiF' TP (e.g. session reuse). The implications
for third party transfers and the File Transfer Service [7] should also be studied.

3. Building PanDA Queues in the Cloud
The primary goal of the grid-of-clouds work is to deliver PanDA queues which transparently
add cloud resources to the ATLAS grid infrastructure.

3.1. Condor and the Helix Nebula Science Cloud

The Helix Nebula Science Cloud is a European initiative between three laboratories (CERN,
EMBL and ESA) to evaluate cloud computing resources from different European commercial
IT providers. The ultimate goal is to set up a cloud computing infrastructure for the European
Research Area and to identify and adopt policies for trust, security and privacy at the pan-
European level. The general timeline of the project is shown in Figure 1. ATLAS is participating
in the pilot phase and is committed to run real Monte Carlo production jobs on each of around
five commercial providers.

The first provider to be tested was Cloud Sigma AG in Zurich. Given the short turn-around
time per provider (around 1 month each), it was necessary to develop a lightweight approach
to use these cloud resources. The basic architecture chosen was to build a worker node VM
image with a Condor startd that is configured to connect back to a schedd at CERN. The VM
images were based on CernVM [8] for convenience and the ATLAS software was accessed via
CVMES [9]. The Condor schedd at CERN already existed as one of the PanDA pilot factories.
To maintain data simplicity, files were read and written over the WAN via both the CERN SRM
interface and the native root:// protocol of CERN’s EOS [10] storage service.

These worker node servers at CloudSigma were cloned to a final deployment of 100 dual-
core nodes (thus 200 job slots in total). To integrate this new Condor cluster with PanDA, a
new queue was created (HELIX) and a stream of PanDA pilots were submitted to the cluster.

Full-scale
cloud service

Set-up Pilot phase market
(2011) (2012-2014) (2014 ...)
u u
u u
® : o i o
u u
u u
. .
Select flagships use cases, Deploy flagships, More applications,
identify service providers, Analysis of functionality, More services,
define governancemodel performance & financial More users,
model More service providers

Figure 1. Timeline of the Helix Nebula Science Cloud project

Table 1. Helix Nebula Summary Statistics

HELIX CERN
Success Rates 265 failed, 6000 succeeded | 36 failed, 1000 succeeded
Mean Running Times 16267s + 7038s 8136.6s &= 765.5s

Following some short validations of the CPUs, a series of six MC production tasks (of 1000 jobs
each) was assigned to HELIX and they were left to run for a period of almost 2 weeks.

The results of the CloudSigma HELIX jobs in comparison with a single similar task executed
at CERN are shown in table 1. The success rates of HELIX and CERN are similar. However,
it is clear that there is a high variance in the job running time at HELIX. This could be caused
by resource contention with other CloudSigma users that have instances co-scheduled on the
same bare-metal nodes. Also note that we show the mean running times for completeness, but
it is not valid to compare the running times at HELIX and CERN since the hardware is very
different. To get an ideal throughput comparison one should estimate the cost per event, though
unfortunately the costs are not presently known at either site. The observed results need to be
further investigated and fully understood.

In summary, the ATLAS tests of CloudSigma can be seen as a success; these were the first
demonstration of real MC tasks running in the cloud for ATLAS. Work with CloudSigma and
the other commercial providers related to Helix Nebula is ongoing.

3.2. The Cloud Scheduler Project

A second approach to running PanDA jobs in the cloud uses a software component called Cloud
Scheduler [11]. Cloud Scheduler is a simple python software package designed to monitor the
state of a Condor queue and boot VMs in response to waiting condor jobs. Cloud Scheduler
can boot VMs on multiple TaaS cloud sites by interacting with cloud APIs at each site. This
approach allows the user to run jobs on IaaS resources by simply submitting to a standard
Condor queue using familiar commands. This same approach has been used successfully for
BaBar jobs [12].

In order to integrate Cloud Scheduler with the existing PanDA grid infrastructure for ATLAS,
two PanDA queues were established: TAAS for production jobs and ANALY_VICTORIA-WG1-
CLOUD_TEST for analysis jobs. Since Cloud Scheduler can interact with multiple IaaS cloud
sites, many cloud resources can be aggregated and served to these two queues. A new pilot
factory was established at TRIUMF and is being configured to submit PanDA pilots to Cloud

Job Submission

User

ananb epued

CernVM Batch

Pilot Factory
-]
®
: s
- . $s
: : 28
t 2
| Condor - ! % o
" 1
. Pilot Job | ! Cloud Interface | 5
| Nimbus, EC2, Other) | 5
Cloud Scheduler |t (3
B oo | (:_/ 7
! |
| 1

laaS Service API Request

Figure 2. Integration of Cloud Scheduler with existing PanDA workload management system.

Scheduler as shown in Figure 2. The VMs booted were CernVM images configured in a similar
fashion to those described in Section 3.1. The principal motivation for this design was to
minimize changes to the existing ATLAS workload management system, and to be able to add
new laaS cloud resources quickly.

Cloud Scheduler depends on custom Condor job description attributes to identify the VM
requirements of a waiting job, the most important of which are the name and URL of the VM
images to boot, e.g. +VMType = "vm-name" +VMLoc = "http://repo.tld/vm.img.gz". These
extra attributes are used by Cloud Scheduler to determine what VM should be booted for each
job, and are added to the standard pilot job attributes by the pilot factory.

A HammerCloud [13] benchmark was conducted on FutureGrid, a cloud provider in Chicago,
U.S., to evaluate the performance and feasibility of running analysis-style jobs in the cloud using
remote data access. Initial results were promising, with 692 successful jobs out of a total of 702.
HammerCloud benchmark jobs are I/O intensive, and depend on significant wide-area network
(WAN) bandwidth capacity between the sites. After a focused effort to improve the bandwidth
between the two locations, data was transferred at several Gbps over the WAN, from a dCache
storage element in Victoria to the booted VMs in Chicago. Two HammerCloud runs were
conducted: one using WebDAV to stage in data and one using GridFTP. Each HammerCloud
run consisted of 351 jobs, that downloaded 15GB in files sized between 0.8 and 1.6 GB. The
WebDAV copy achieved better performance levels and download times (mean: 2007s, deviation:
1451s to download 15GB) than the GridFTP copy (mean: 2329s, deviation: 1783s to download
15GB), but more tests need to be completed to guarantee the statistical significance. Overall,
the tests demonstrated the I/O capability of the WAN and FutureGrid infrastructure. Figure 3
shows the event rate and time to stage in data for the run which used WebDAV.

The production Panda queue (IAAS) has been put into continuous operation for running
simulation jobs. Unlike analysis and HammerCloud jobs, these Monte Carlo simulation jobs
have low I/O requirements, so they do not stress the network. Several thousand jobs have been
executed, with over 200 VMs running simultaneously at FutureGrid and the Synnefo cloud at

ANALY_VICTORIA-WG1-CLOUD_TEST ANALY _VICTORIA-WG1-CLOUD_TEST

| 85.24

364 714
288 568
21.64 4251
14.4 28.4
ol lll [T ol

(1] 17.47 34,085 52.42 (1]

£9.89 B7.37 10484 12231
Events/Athena (s)

=~
o

. i
1222.01 2444.02 3666.04 4888.05 6110.06 7332.08 8554.08 4776.1

Download input files (s)
mean=56.9 dev=22.4 mean=2007.0 dev=1451.5

Figure 3. Event rate on the FutureGrid cloud at U Chicago (left). Time to download input
files via WebDAYV from the University of Victoria (right).

IAAS - week
1008

jobs

Man Tue Wed Thu Fri sat sun
O assigned M activated M@ sent M running O holding © transferring W finished O failed
Range from Mon Apr 16 07:00:00 2012 +to Mon Apr 23 07:00:00 2012

Generated by TRIUMF-LCGZ (time in UTC)

Figure 4. Production operation of JAAS PanDA queue managed by Cloud Scheduler, April 16
- 22, 2012.

the University of Victoria, as shown in Figure 4. We plan to scale up the number of running
jobs as additional cloud resources become available.

4. Analysis Clusters in the Cloud

As previously mentioned, a site should be able to easily deploy new analysis clusters in a
commercial or private cloud resource. It doesn’t matter who runs a job in the cloud, which
cloud they run on or who pays for it. The fact is that an easy and user-transparent way to scale
out jobs in the cloud is needed so that scientists may spend time on data analysis, not system
administration. This work [14] is an effort to meet these scientists’ needs.

We have investigated tools for contextualizing cluster nodes and managing clusters. Our goal
is to migrate all the functionality of a physical data analysis cluster (DAC) into the cloud. A
physical DAC has services that support job execution and submission (condor), user management
(ldap), ATLAS software distribution (cvmfs), web caching (squid), and distributed filesystems
(nfs) to name a few. It is our plan to support these services in the cloud. Therefore, we need to
find a cloud management tool that will enable us to define these DACs in all their complexity
without burdening the scientist with its details.

4.1. Cloud Management Tools

CloudCRV [15], Starcluster [16] and Scalr [17] cloud management tools were chosen for our
investigation. All of these tools are open source projects with varied levels of community support
and features. We investigated their strengths and weaknesses for managing DACs.

4.1.1. CloudCRV , developed at Lawrence Berkeley National Lab (LBNL), uses a built-in
web server to host a website that deploys clusters in one click. It doesn’t require any external
support tools and allows clusters to be managed (started and stopped) with a web interface.
A thin client runs on each VM for communication and control purposes. On the CloudCRV
server, an asynchronous event controller manages the lifecycle of the clusters, roles and virtual
machines (VM). The clusters are written in python using a highly extensible API [18]. The
roles are defined with the Puppet [19] configuration management engine which is a high-level
language for defining the target state of a machine. These roles are applied to virtual machines
so that they may work as a cluster of interdependent services.

CloudCRY is designed to be configuration and cloud provider agnostic. At this point in time,
it only supports Puppet and cloud providers with an EC2 interface, but it could be extended
to support others. Unfortunately, this software is in alpha stage and does not have a rich
community of support.

4.1.2. Starcluster is an open source cluster-computing toolkit for Amazon’s EC2 [20] written
in python. It is a wrapper around Amazon EC2 command line tools (CLI) and provides its
own CLI for configuration, management and scaling out of multiple clusters. There is a flexible
plugin architecture that provides an easy way to extend the platform. Elastic load balancing is
supported by shrinking and expanding the cluster based on a Sun Grid Engine queue.

Starcluster is a mature project with a very rich community. Its downside is that the
management of the cluster must happen from the machine that has the configuration files.
It also does not have monitoring and dynamic scaling of nodes.

4.1.3. Scalr is a commercial Software as a Service (SaaS) that allows you to launch, auto-scale
and configure clusters in the cloud. The commercial product is actively developed and released
by Scalr Inc. under an open source license [21]. Scalr provides a robust graphical user interface
as well as a command line interface for managing multiple clusters on multiple cloud providers.
It has integration with Chef [22], a configuration management tool by Opscode, and provides
many features in customization, management and failover of clusters. Multi-cloud deployments
are offered for Amazon EC2, Eucalyptus [23], Nimbus [24], Cloudstack [25], Rackspace [26] and
soon Openstack [27]. Customization is allowed through its scripting engine, role importer, and
API control.

Our comparison of these three open source cloud management tools has highlighted a clear
leader. Scalr has the most robust feature set as well as an active community [28]. Unlike
CloudCRV and Starcluster, Scalr provides customizable scaling algorithms, monitoring of load
statistics for single nodes or entire clusters and has both a CLI and a web interface.

ANALY_AMAZON

Jles n- Adyondy

Amazon's
Cloud

Figure 5. Workflow of the Cloud Factory Tool

5. Personal PanDA Analysis Queues in the Cloud
The availability of personal PanDA analysis queues would enable users to access extra computing
resources on-demand; these extra resources would be sourced from private clouds or purchased
from commercial cloud providers. One goal of personal PanDA queues is that they should
look identical to the normal grid sites; users should be able to transparently access new cloud
resources with zero or minimal changes to their data analysis workflow. For example, a personal
analysis queue could be accessible by the user submitting their job with the PanDA clients
and specifying the site ANALY_AMAZON. Note that in this case there would be no pilot factory
associated with the virtual cloud site ANALY_AMAZON. Instead, this workflow would rely on the
user taking some extra action to instantiate PanDA pilot jobs which would retrieve and run their
jobs waiting in the ANALY_AMAZON queue. The PanDA pilot already has a personal pilots feature
which will retrieve only the invoking users job from the PanDA server, ignoring any other user
jobs that may be in the queue.

What is needed to enable the above workflow is a simple tool which senses the queued jobs
in the personal queue, instantiates sufficient cloud VMs, runs the personal pilots, monitors the
VMs, and destroys them after they are no longer needed. We call such a tool the cloud factory.

5.1. Cloud Factory
The requirements for a cloud factory tool are as follows:

e Manage the physical cloud VM instances needed to process jobs in a given logical queue
(i.e. PanDA queue)

Discover demand by querying the logical queue status

Create instances via a cloud API according to demand

Monitor instance states (alive/zombie, busy/idle, X509 proxy status)

Destroy instances (zombies, expired proxy, unneeded)

ATLAS has developed a proof-of-concept cloud factory tool named cf (see Figure 5). This
tool wraps around cvm, which is an EC2-compatible cloud instance management utility provided

ANALY CERNVM _test Events/Athena(s) ANALY CERNVM_test Events/Athena(s)

110 70
99 63
88| 561
77 49
B 42
55 35
44 28
334 214
224 144
Q1T ||| (]
,ninnl.n n g] -
0 5 10 15 20 0 5 10 15 20 25 a0
Hz Hz
=10.3 o=4.0 =108 o=4.7

Figure 6. Performance comparison between LxCloud (left) and bare-metal (right).

with CernVM; cvm is used to instantiate, contextualize, and terminate instances of CernVM
running in an EC2 cloud. cf includes three components:

cf: the tool itself, which queries the PanDA queue status and invokes cvm to instantiate
instances.

cf-wrapper: a wrapper script which does some environment initialization and runs PanDA
pilot on the cloud VM

cf-heartbeat: a script which runs in parallel with cf-wrapper on the cloud VM and monitors
the status of the running instance

The heartbeat messages are communicated back to a message queue and report if the node
is active or idle. When cf is periodically invoked, it retrieves the messages from the queue and
by comparing with the activity in the PanDA queue it decides whether it should create new
instances or terminate existing ones.

5.2. Cloud Factory Testing at LxCloud

LxCloud is an OpenNebula testing instance at CERN. Because resources are made available
via the EC2 API, LxCloud is a convenient platform to evaluate cf and the personal PanDA
queues workflow. We tested cf by first creating a queue ANALY_CERNVM_test and configuring it
to get ATLAS releases from CVMFS and read data from the CERN storage facility. We then
configured a series of HammerCloud [13] stress tests in order to measure the performance of the
jobs running in the cloud. cf was used to run these test jobs with the same series of jobs run on
both LxCloud and on identical bare metal via the CERN batch facility LSF; some results are
shown in figure 6. No difference was observed in the reliability of virtualized versus bare metal
hardware, while there was a small decrease in performance (from a mean of 10.8Hz in LSF to
10.3Hz in LxCloud).

6. Storage and Data Management
As mentioned in section 2, ATLAS sees two main use-cases for cloud storage: cloud-resident
caches to accelerate data processing, and persistent object stores in the cloud for data archival.

Proof performance on Amazon EC2. t-tbar analysis

Events/s

1800

ELZTO-ZTLOZ J5

1600

1400

c1.xlarge. 1+2 Proof farm
+ EBS volume
= Ephemeral volume

1200

1000

800

_lI|III|III|III|III|III|III|III|III|
|]

| |
1 1 1 ‘ 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 | | | | 1 1 1 1 | 1 1 1

5 10 15 20 25 30
Number of Workers

Figure 7. Performance comparison between EBS and ephemeral storage in ATLAS data
analysis.

6.1. Data Access and Caching

Some of the most important issues associated with use of cloud computing for physics data
analysis are data storage and data management. Different cloud platforms provide different
storage abstraction implementations, and cloud storage is often multi-tiered in terms of
performance, persistency and related costs. Amazon EC2 [20] provides a good example of
this model. It offers at least three storage options: Simple Storage Service (S3), Elastic Block
Store (EBS) and ephemeral store associated with a VM instance. When planning an analysis
cluster model one needs to take into account all these factors. It is also clear that any evaluation
and testing of cloud storage needs to be done with ATLAS codes and data.

In the course of our tests of Proof/Xrootd clusters on Amazon EC2, we studied some aspects
of the cloud storage performance. For example, Figure 7 shows a performance comparison
between EBS and ephemeral volumes. For these tests we utilized a three-node Proof farm
running an ATLAS D3PD data analysis. One can see from Figure 7 that the EBS volume
performed better than the ephemeral one. It is worth mentioning that ephemeral storage comes
free with EC2 instances and also allows for scaling of storage space and performance with the
size of the analysis farm. This example emphasizes the point that in planning for storage layouts
in clouds, one needs to carefully analyze the cost-performance benefits of various storage layouts
in connection to the particular analysis use-case.

We also tested direct read of ATLAS data located on ATLAS Grid sites from EC2 based
analysis clusters. The main motivations for this were the free out-of-cloud data reads and
greatly simplified in-cloud data management. For these tests we utilized both individual grid
sites as well as the ATLAS federated Xrootd store as data sources. We found out that analysis
performance in many cases was quite acceptable, if variable, and depended on the quality of the
network connection from EC2 to a given storage site. This mode may also require tuning of the

Root WAN I/0 parameters and is a subject of current active studies in ATLAS.

As part of these data caching tests, an Xrootd storage cluster was setup in the cloud. The
storage cluster was composed of three data servers and a redirector node. Tests were performed
on Amazon EC2 large instances. Both the Amazon ephemeral storage and Amazon elastic block
storage (EBS) were used. The goal was to test the write performance of such a cluster where
the data comes from outside of the cloud and is pulled into the cloud automatically.

As part of the automation of the data transfer, the XRoot FRM (file residency manager)
daemon [29] was used to fetch the data files and copy them automatically to Xrootd storage
partitions. The files were transferred using the Xrootd native copy program with the setting to
fetch files from multiple sources. The copies were done in this way to ensure maximum transport
speed.

In the initial tests, both ephemeral storage partitions provided with the EC2 large instance
were used. Xrootd managed the volumes. This configuration proved to be unstable and resulted
in many failures with files often not created. The most useable configuration was determined to
be two ephemeral storage partitions joined together by Linux LVM into one partition. In this
configuration, an average transfer rate of 16 MB/s to one data server was achieved (around 45
MB/s for the three servers). In this configuration, the startup time of the virtual machine would
be increased due to the added time of assembling, formatting and configuring the storage.

In order to address the issue of data persistence, the storage cluster used Amazon Elastic
Block Storage for the data volumes. In this way, when the data was not needed right away
the partitions could remain on the storage to be available when the Xrootd storage cluster was
reconstituted. A series of tests was performed using either one or two Elastic Block Storage
partitions. The average transfer rate into the storage was less than 12 MB/s, with a large
number of very slow transfers (less than 1 MB/s). In this configuration, storage costs would be
an issue (the average amount of storage in an ATLAS local analysis site in the US is 50 TB). At
current Amazon rates, the yearly costs would be around four times larger than the one-time cost
of the existing storage which should be operational for at least 5 years. It should be noted that
many universities provide power, cooling and space without additional cost to research groups,
thus lowering the total cost of ownership for the storage.

6.2. Future Fvaluation of Object Stores

In respect to persistent object stores, a new project has been started to investigate the possibility
of integrating Amazon S3 with Rucio, the future version of the ATLAS Distributed Data
Management (DDM) system. The DDM team will demonstrate the compatibility of their future
system with the S3 API implementations of different storage providers (e.g. Huawei, OpenStack
Swift and Amazon). The main questions that need to be answered are:

e how to store, retrieve and delete data from an S3 store and how to combine the S3
(bucket/object) and ATLAS (dataset/file) data organization models

e how to integrate cloud storage with the existing grid middleware
e how to integrate the various authentication and authorization mechanisms

The project will try simulating various ATLAS use-cases and will measure the storage
performance over a timeline of one year.

7. Conclusion

This work has presented the past year of activities of the ATLAS Virtualization and Cloud
Computing R&D project. The majority of the work has focused on data processing in the cloud.
In this area, ATLAS has used Condor to rapidly deploy a production facility at commercial
providers for the Helix Nebula Science Cloud project. The UVic work has delivered a Panda
queue in permanent operation under which multiple cloud resources can be automatically

aggregated and managed by Cloud Scheduler. Finally, the development of a personal pilot
factory to allow individual users to access extra resources as needed is ongoing.

In the area of data caching and storage in the cloud, ATLAS is still working actively but has
yet to achieve production-ready results. The studies into EC2 I/O performance in a PROOF
cluster are promising, while the work to integrate cloud object stores into the distributed data
management system is just beginning.

References
[1] The ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, 2008 JINST 3
508003 doi:10.1088/1748-0221/3/08/S08003
[2] T. Maeno, Overview of ATLAS PanDA Workload Management, Proc. of the 18th Int. Conf. on Computing
in High Energy and Nuclear Physics (CHEP2010)
[3] P. Nilsson, The ATLAS PanDA Pilot in Operation, in Proc. of the 18th Int. Conf. on Computing in High
Energy and Nuclear Physics (CHEP2010)
[4] http://www2.lns.mit.edu/proof/
[5] Alvise Dorigo et al.; XROOTD- A highly scalable architecture for data access. WSEAS Transactions on
Computers, 1(4.3), 2005.
[6] M Branco et al. Managing ATLAS data on a petabyte-scale with DQ2. 2008 J. Phys.: Conf. Ser. 119 062017
doi:10.1088/1742-6596/119/6,/062017.
[7] https://svnweb.cern.ch/trac/glitefts/wiki/FTSUserGuide
[8] P Buncic et al.; The European Physical Journal Plus 126(1) 1-8 10.1140/epjp/i2011-11013-1, “A practical
approach to virtualization in HEP”.
[9] J Blomer et al. 2011 J. Phys.: Conf. Ser. 331 042003, “Distributing LHC application software and conditions
databases using the CernVM file system”.
[10] Andreas J Peters and Lukasz Janyst. Exabyte Scale Storage at CERN. 11 J. Phys.: Conf. Ser. 331 052015
doi:10.1088/1742-6596/331/5/052015.
[11] P Armstrong et al. Cloud Scheduler: a resource manager for distributed compute clouds. arXiv:1007.0050v1
[12] T Gable et al. A batch system for HEP applications on a distributed IaaS cloud. 2011 J. Phys.: Conf. Ser.
331 062010 doi:10.1088/1742-6596/331/6/062010
[13] D. van der Ster et al. HammerCloud: A Stress Testing System for Distributed Analysis. 2011 J. Phys.: Conf.
Ser. 331 072036 doi:10.1088/1742-6596/331/7/072036.
https://indico.cern.ch/getFile.py/access?contribId=3&resId=1&materialId=slides&confId=180053
https://indico.cern.ch/getFile.py/access?contribId=26&sessionId=5&resId=0&materialId=poster&confId=92498
http://web.mit.edu/star/cluster/
http://scalr.net
http://code.google.com/p/cloudcrv/
http://puppetlabs.com/
http://aws.amazon.com/ec2/
http://code.google.com/p/scalr/
http://www.opscode.com/chef/
http://wuw.eucalyptus.com/
http://www.nimbusproject.org/
http://www.cloudstack.org/
http://wuw.rackspace.com/
http://openstack.org/
https://groups.google.com/forum/?fromgroups#!forum/scalr-discuss
http://wuw.xrootd.org/doc/dev/frm_config.htm

= —
=~ w

(ORI I wre
W N = OO0~ Ot

[N
O, R0 N3 LN - O O 03O

[\]

O 0~ S Ot

N DN

