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In this paper I introduce tensor multinomials, an algebra that is dense in the space
of nonlinear smooth differential operators, and use a subalgebra to create an exten-
sion of Einstein’s theory of general relativity. In a mathematical sense this extension
falls between Einstein’s original theory of general relativity in four dimensions and the
Kaluza–Klein theory in five dimensions. The theory has elements in common with both
the original Kaluza–Klein and Brans–Dicke, but emphasizes a new and different under-
lying mathematical structure. Despite there being only four physical dimensions, the use
of tensor multinomials naturally leads to expanded operators that can incorporate other
fields. The equivalent Ricci tensor of this geometry is robust and yields vacuum general
relativity and electromagnetism, as well as a Klein–Gordon-like quantum scalar field.
The formalism permits a time-dependent cosmological function, which is the source for
the scalar field. I develop and discuss several candidate Lagrangians. Trial solutions of
the most natural field equations include a singularity-free dark energy dust cosmology.
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1. Introduction

The theory I present here grew out of an idea I had in graduate school in 1988, that

of creating a probabilistic theory of gravitation. In doing so, I hoped to understand

the connections between quantum mechanics and general relativity (GR). The idea

was that the paths of particles in spacetime, determined by curves of maximal length

in GR, might also be determined or approximated by some variation of a quantum

mechanical quantity. Comparing those two approaches might then shed light on the
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similarities and differences between them, leading to a better understanding of the

quantum in spacetime.

That idea raised a question: what quantum mechanical or statistical expres-

sion might be suitable? Probability distributions are important in both statistical

and quantum mechanics. If g̃(xa, va) is a distribution or other function defined on

spacetime, it should affect the orbits of particles. We can take an arbitrary path

between two points A and B and integrate along it,

N =

∫ B

A

g̃(xa, va)ds (1)

obtaining a number N for that path. We can then ask on which of many possible

paths the particle will travel. The intuitive answer is the particle will travel along

the path that maximizes the integral in Eq. (1). That yields a variational principle

for finding particle orbits that is analogous to that used in GR.

On implementing this idea, it became clear that the integrand in Eq. (1) re-

quired the use of smooth nonlinear differential operators on an otherwise ordinary

spacetime manifold M . Probability distributions on spacetime might require, for

example, exponential functions of both position and four velocities. Evidently, such

mathematical operators will not be multilinear, and using them will require a math-

ematical theory that does not yet exist.

It is possible, however, to perform a multivariable expansion of such operators

in powers of four velocities. Such an infinite sum is a multinomial in terms of one

or more four velocities, so that g̃(xa, va, wb), for example, could be written as

g̃(xa, va, wb) = ψ +Aav
a +Qbw

b + gabv
awb + · · · (2)

where ψ, Aa, Qb, and gab are functions of the four spacetime coordinates and by

the basis theorem, are tensors of appropriate rank. Truncating the infinite series

at the second rank, we recognize that such objects are similar to Lagrangians for

combining tensor fields of rank zero, one, and two.

The form of Eq. (2) suggests that g̃ maps pairs of vector fields va, wb to F (M),

the space of real-valued functions on the spacetime manifold M . Evidently, the

“component fields” ψ, Aa, Qb, gab, and so forth operate on the arbitrary vectors

va and wb. That suggests that the truncated form g̃ = ψ⊕Aa⊕Qb⊕ gab, where ⊕
is a direct sum, may be considered a single operator or field. That operator is not

multilinear in its arguments. For it to be so, substituting va = αpa + βsa, with α,

β real numbers, would have to result in

g̃(xa, αpa + βsa, wb) = αg̃(xa, pa, wb) + βg̃(xa, sa, wb) (3)

which it clearly does not. Specifically, neither of the components ψ and Qb in the

expression on the left will be multiplied by either α or β during the operation.

Therefore Eq. (3) does not hold, and g̃ is not multilinear in its four-velocity argu-

ments. In going forward, we assume that Qb = Ab. The truncated operator g̃ then

takes on characteristics similar to the metric of Kaluza–Klein spacetime.
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Kaluza and Klein independently proposed their five-dimensional theory so that

the metric would have places for the components of the electromagnetic field.1,2

The theory did not succeed, and that may be due in part to the fact that the electro-

magnetic field transforms as a vector, not as components of a tensor of rank two. In

addition, the Kaluza–Klein theory did not predict correct particle dynamics. Here,

I develop an alternate spacetime operator that has the needed extra components

but does not require defining a fifth dimension.3,4 The construction involves taking

a direct sum of a scalar field and a vector field in four dimensions and creating all

tensor products of that fundamental object.

The use of direct sums to create new mathematical spaces is well known and

described in any elementary text on abstract algebra, e.g., Herstein.5 A simple

example is the creation of the Cartesian plane, R⊕R, from the real line, R. Direct

sums are used routinely in mathematics and physics, usually without notice, because

a universal convention is to drop the direct sum sign, ⊕, in favor of an arithmetic

+ sign, which the reader must understand as indicating a direct sum. Direct sums

create polynomials and multinomials, such as f(x, y) = 1 + x + y + xy, where the

+ signs are actually direct sums, ⊕. When evaluated at a particular point (x0, y0)

of R⊕R, the foregoing direct sum becomes an arithmetic sum, mapping to a single

value of R. Vectors and higher order tensors are also the result of applying the

concept of direct sums.

An important and unrecognized tensor multinomial occurs during variation of

a Lagrangian involving tensors of different rank. For example, variation of the

Lagrangian

L =

∫

α∇aψ∇aψ + β∇aAb∇aAb + gabRab
√
−g d4x (4)

results in separate equations for ψ, Aa, and gab that can be understood as compo-

nents of a single tensor multinomial. Similarly, Lagrangians for particle dynamics

may be considered tensor multinomials that have operated on four velocities, map-

ping them to F (M), the space of real-valued functions on the manifold M . That

correspondence will be exploited in this paper to find the effective Christoffel sym-

bols and Ricci curvatures by working in reverse.

Arbitrary direct sums of tensors of different rank and type create elements

of a universal covering algebra for the tensor algebra. These tensor multinomials

are elements of the space of nonlinear differential operators on manifolds. Just

as arbitrary polynomials are dense in the space of real-valued functions, tensor

polynomials are dense in the space of nonlinear differential operators. For any given

nonlinear differential operator, there is a tensor multinomial arbitrarily close to it.

The construction presented here naturally involves a scalar field, necessary so

that the extended metric of the spacetime is invertible. The inclusion of both a

scalar field and vector field means the spacetime bears some resemblance to both

Brans–Dicke theory and Kaluza–Klein theory. This new theory provides a way

of understanding three fundamental fields as resulting from a single equation. In
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addition, it provides an alternative or supplement to the inclusion of a cosmological

constant, and a number of new ways of constructing Lagrangians that may facilitate

creating new mathematical models of physical phenomena.

Plan of the Paper

i. Develop the concept of tensor multinomials.

ii. Define the analog of the covariant derivative.

iii. Derive the analog of the geodesic equation.

iv. From the geodesic equation, deduce the implied Christoffel symbols.

v. Using the Christoffel symbols, calculate the equivalent Ricci curvature.

vi. Propose field equations based on the equivalent Ricci curvature.

vii. Discuss candidate Lagrangian formulations.

viii. Present trial solutions to some of the field equations.

After working through these eight steps, we will find that the spacetime struc-

ture described by the implied Christoffel symbols and equivalent Ricci tensor is

more complex than that of standard four-dimensional GR. At the same time, that

spacetime structure is much simpler than that of the five-dimensional Kaluza–Klein

theory. This new spacetime, therefore, lies between the spacetime of Einstein and

that of Kaluza and Klein.

2. X-Tensor Analysis

2.1. Tensor multinomials

An example of a tensor multinomial is

Q̃A = Q⊕Qa (5)

where Q is a scalar field and Qa is a covector field. Naturally, there are similar

operators having a contravariant index. The index A does not refer to spinor indices,

here, but to a scalar plus a vector index: A takes two values: A = 0 corresponds to

the scalar index, whereas A = a corresponds to a vector or covector index. Tildes

will often serve to emphasize and distinguish the scalar extended field operators

from their conventional analogs. Because the scalar Q extends the covector Qa, Q̃A
is called an extended covector, or x-covector. The expression in Eq. (5) is also a

direct sum of tensors of different rank, and is an element of the universal covering

algebra for tensors, as originally pointed out by Christodoulu.6 All tensor products

of such operators form a subalgebra of the universal covering algebra for tensors.

A particle with charge e and momentum pa will be represented as:

pA = e⊕ pa. (6)

Charge e will be taken as associated with electromagnetic fields, although other

interpretations are possible. The direct sum of a scalar and a four-vector is similar

to but distinct from a five-vector because it has different transformation properties
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under a change of coordinates. Here the first component, a scalar, is invariant under

coordinate transformations. The property that the zeroth index corresponds to a

scalar is particularly appropriate for charge, which is known to be an invariant

under coordinate transformations. Such vectors that have a scalar extension will be

referred to as scalar-extended vectors, or as extended vectors, or simply as x-vectors.

The coordinate transformation matrix Λ̃AB linking x-vectors in coordinates xa

to coordinates x̄a is

Λ̃AB =

(

1 0b

0a ∂x̄a

∂xb

)

(7)

where 0a is the zero column matrix and 0b a zero row matrix, respectively. A similar

transformation matrix can be defined for x-covectors.

2.2. Generalized Christoffel symbols

Now consider a second-order x-tensor g̃, which can be represented as an array:

g̃AB =

(

ψ Ab

Aa gab

)

. (8)

The resulting geometric object is similar to a second-order tensor of rank (0, 2)

in a five-dimensional space but is distinct for two reasons: First, these objects

are functions of only four coordinates; Second, as a fiber bundle, the transition

functions form a group isomorphic to GL(4), whereas the transition functions in

a five-dimensional space form the group GL(5). The operator g̃ can be evaluated

using the x-vector p̃A, obtaining:

g̃(pA, pB) = e2ψ + eAap
a + eAbp

b + gabp
apb. (9)

Now g̃ will be taken as the integrand of a functional to be maximized:

S =

∫ B

A

g̃(pA, pB)dλ (10)

where λ is an arbitrary path parameter. Note that massless, uncharged particles

such as photons would naturally be handled differently; they would not react with

the vector or scalar fields except through their momentum and energy. Dividing by

m2 and varying with respect to the four-velocity results in the following equation:

dvf

dλ
+

1

2
gdf
(

∂gdb
∂xa

+
∂gad
∂xb

− ∂gab
∂xd

)

vavb +
1

2

e

m
gdf
(

∂Ad
∂xa

− ∂Aa
∂xd

)

va

+
1

2

e

m
gdf
(

∂Ad
∂xb

− ∂Ab
∂xd

)

vb − 1

2

e2

m2
gdf

∂ψ

∂xd
= 0. (11)

This equation has the form of a geodesic, however, it has vector and scalar potentials

in addition to the usual Christoffel symbols derived from the metric. The Christoffel

symbols, however, can be redefined to take into account these new terms. Let zero

correspond to a scalar index, and a lower case roman letter correspond to the four
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components of a vector. Further, define the partial derivative operator as:

∂

∂x̃A
=











0, if A = 0,

∂

∂xa
, if A = a.

(12)

The reason for the definition of this operator is that there are only four coordinates:

the dimension associated with a scalar field does not introduce another coordinate,

nor are there paths in spacetime associated with that purely mathematical dimen-

sion. It facilitates the mathematical formalism, however, to define a place-holding

zero operator. Now consider a general extended vector vA = e
m ⊕ va. The direc-

tional derivative can be written:

vA∇̃Av
F = vA

∂vF

∂x̃A
+ vAΓ̃FABv

B (13)

where ∇̃A is the extended connection. Expanding this expression, and taking it to

be zero as in a geodesic equation, results in

dvf

dλ
+

e2

m2
Γ̃F00 +

e

m
vaΓ̃Fa0 +

e

m
vbΓ̃F0b + Γ̃Fabv

avb = 0. (14)

The nonzero Christoffel symbols can be obtained from a general expression of

the geodesic equation.7 Comparing the expression in Eq. (14) to the expression

in Eq. (11), it is possible to read off the equivalent of the Christoffel symbols:

Γ̃0
AB = 0, (15)

Γ̃f00 = −1

2
gdf

∂ψ

∂xd
, (16)

Γ̃fa0 = Γ̃f0a =
1

2
gdf
(

∂Ad
∂xa

− ∂Aa
∂xd

)

. (17)

Γ̃fab = Γfab. (18)

By construction, a theory having connection coefficients given by Eqs. (15)–(18)

should have the correct particle dynamics, if solutions to the field equations gen-

erated from them are sufficiently similar to those of existing well-tested theories.

Further, familiar mathematical forms associated with scalar, vector, and tensor

forces are in evidence: the negative gradient of a scalar field, the Maxwell tensor,

and the Christoffel symbols of GR. Using the extended Christoffel symbols, the

next section develops the concept of extended curvature.

2.3. The Ricci x-tensor

The equivalent Ricci tensor, found by calculating a commutator of x-covariant

derivatives on an x-vector, is given by the expression

R̃AB =
∂Γ̃CAB
∂x̃C

− ∂Γ̃CAC
∂x̃B

+ Γ̃EABΓ̃
C
CE − Γ̃EACΓ̃

C
BE . (19)
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Using the extended C-symbols, this equation generates three component equations,

each of different tensorial order. The rank two tensor equation is

R̃ab =
∂Γcab
∂xc

− ∂Γcac
∂xb

+ ΓeabΓ
c
ce − ΓeacΓ

c
be (20)

which is the usual Ricci tensor of GR. The vector component yields

R̃a0 =
1

2

(

∂F ca
∂xc

+ ΓccdF
d
a − ΓdcaF

c
d

)

(21)

with

Fba =
∂Ab
∂xa

− ∂Aa
∂xb

(22)

which is the covariant form of the left side of Maxwell’s equation in curved space-

time. Finally, the scalar component is given by

R̃00 = −1

2

[

∂

∂xc

(

gdc
∂ψ

∂xd

)

+ Γcce

(

gde
∂ψ

∂xd

)]

− 1

4
gdegfcFdcFfe (23)

which is a second-order scalar wave equation for ψ with the electromagnetic energy

density acting as a source.

So in vacuum, the x-Ricci gives the equations of GR and electromagnetism,

however they are coupled to a scalar field. That raises the concern that the scalar

field could lead to predictions that are not supported by experiment. If, however,

a coupling constant associated with the scalar field is sufficiently small, deviations

might not be observable in most contexts while creating physical observables near

singularities, such as cosmic inflation at the beginning of the universe. The only way

to determine whether predictions of the theory are physical is to complete the theory

by introducing the sources of the field and writing the equation connecting the Ricci

x-tensor to the analog of stress-energy. After solving the system, predictions can be

compared to observations.

2.4. The extended stress-energy

For systems of particles, the energy-momentum tensor is described as relating to

the flux of momentum across a surface. If Na = nva is the flux number, where n

is the number of particles and va the four-velocity, and pb = mvb is the particle

momentum, then the stress-energy can be represented as Napb = nmvavb. This

formulation suggests a similar definition, taking into account the differences in the

fundamental mathematical objects. By analogy, NA = n(q/m ⊕ va) and pB =

m(q/m⊕ vb). The tensor product of those two forms yields:

T̃AB = NApB =

(

n q
2

m nqvb

nqva nmvavb

)

. (24)

So the natural generalization of the energy-momentum tensor yields the expected

charge current for the Maxwell fields and the usual expression for the stress-energy

of a swarm of particles. In addition, the source of the scalar field appears as the
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density of q2/m. In general, the extended stress-energy tensor might be taken as

T̃AB =

(

αρψ βJb

βJa κT ab

)

(25)

where α, β, and κ are constants, and ρψ is the density of quantity q2/m, which

may also be presumed proportional to the number density. Using the x-covariant

derivative, the divergence of the x-stress-energy can be defined in the natural way:

Div(T̃ ) = ∇̃AT̃
AB. (26)

For B = 0, the result is

∇̃AT̃
A0 = β∇aJ

a (27)

whereas for B = b, the result is

∇̃AT̃
Ab = κ∇aT

ab + βgdbJeFde −
α

2
gdb

∂ψ

∂xd
ρψ. (28)

The ordinary divergence of the current density, ∇aJ
a, is indeed zero, but it is not

clear whether Eq. (28) should be zero, or not. This lack of clarity is likely due to the

divergence operation being undefined on scalar fields. An alternate operator ∇alt
A =

0⊕∇a, on the other hand, does return zero when operating on the extended stress-

energy. In the cosmological trial exact solutions, using ∇̃A as defined in Eq. (26)

on both sides of the generalization of Einstein’s equations results in a tautology. A

tautology may be an acceptable generalization of Einstein’s requirement because it

does not generate a new, independent equation.

2.5. X-covariant derivative of the x-metric

The x-covariant derivative, as defined, does not result in zero when applied to the

second rank x-tensor g̃. The computation of ∇̃Ag̃BC yields:

∇̃0g̃BC =





∂ψ
∂xdA

d 1
2

∂ψ
∂xc − 1

2
AdFdc

1
2

∂ψ
∂xb − 1

2
AdFdb 0



 (29)

∇̃ag̃BC =





∂ψ
∂xa −AdFda

1
2

(

∂Ac

∂xa + ∂Aa

∂xc

)

− ΓλacAλ

1
2

(

∂Ab

∂xa + ∂Aa

∂xb

)

− ΓλabAλ
∂gbc
∂xa − Γλabgλc − Γλacgbλ



. (30)

For ∇̃Ag̃BC = 0 to hold true, the following four constraints must apply:

Ad∇dψ = 0, (31)

∂ψ

∂xb
−AdFdb = 0, (32)

1

2

(

∂Ab
∂xa

+
∂Aa
∂xb

)

− ΓλabAλ = 0, (33)
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∂gbc
∂xa

− Γλabgλc − Γλacgbλ = 0. (34)

Taking the inner product of Eq. (32) with Ab shows that Eq. (31) follows from

Eq. (32), so there are only three independent constraints: Eqs. (32), (33), and (34),

the latter being the usual assumption in a four-dimensional spacetime. Equation

(33) is equivalent to

∇aAd +∇dAa = 0. (35)

Garfinkle8 suggests, given Eq. (35), that Aa is a Killing field associated with a

symmetry of the theory, as it satisfies the Killing equation. Further, Eq. (31) implies

that ψ is constant in the direction of Aa, whereas Eq. (32) suggests that ψ is related

to the magnitude of Aa. Garfinkle’s insights may lead to an understanding of this

theory when ∇Ag̃BC = 0.

Otherwise, Eq. (35) amounts to a constraint on the gauge of the electromagnetic

field. In this theory, therefore, making the choice that the covariant derivative is zero

automatically chooses that gauge. Note, however, that Eq. (35) implies that ∇aAd
is an antisymmetric second rank tensor. Although some special solutions may exist,

that constraint is likely too stringent. Further, in the absence of electromagnetic

fields, these constraints require a constant scalar field.

Applying all these constraints may therefore result in only a trivial extension

of GR. Whether that is always so is worthy of investigation. Here, the focus will

be on applying only Eq. (34), as in standard GR. That suggests that while g̃AB
may be considered an extension of the usual metric gab, it does not share all of its

properties under the defined x-covariant derivative.

As in four-dimensional GR, a five-dimensional Kaluza–Klein spacetime has

Christoffel symbols defined entirely in terms of the metric. Assuming a five-

dimensional spacetime metric analogous in form to the x-metric is independent

of the new fifth coordinate, and that it yields proper dynamics from a particle

Lagrangian, leads to the same set of constraints. That strongly suggests that the

original Kaluza–Klein theory may be untenable in principle.

3. Field Lagrangians and Their Variations

An article of faith in theoretical physics is that equations of physics must derive

from Lagrangians. As described in this section, there are a number of choices of field

Lagrangians that result in different predictions. The usual field Lagrangian giving a

minimally-coupled massless scalar field, electromagnetic field, and gravitation can

be written

L =

∫

αgab∇aψ∇bψ + βFabF
ab + gabRab

√−g d4x (36)

where α and β are chosen so as to give suitable expressions for stress-energy con-

tributions to the gravity field. Those constants are adjustable, and must be so,

because experiments have not yet determined the magnitude of the contribution of

those fields to gravitation.

2030020-9

M
od

. P
hy

s.
 L

et
t. 

A
 2

02
0.

35
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
R

M
A

N
 E

L
E

C
T

R
O

N
 S

Y
N

C
H

R
O

T
R

O
N

 @
 H

A
M

B
U

R
G

 o
n 

11
/3

0/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



November 20, 2020 15:54 MPLA S0217732320300207 page 10

C. Vuille

An important observation is that the fields ψ and Aa in Eq. (36) are quadratic

in their first derivatives. In contrast, the x-Ricci Lagrangians include second deriva-

tives in ψ and Aa.

In some sense, Eq. (36) leads to an “already unified” field theory because its

variation yields a single x-tensor equation. It is somewhat unsatisfactory because it

involves cobbling together three completely separate theories. Using the theory of

tensor multinomials, on the other hand, delivers three fields through the extension

of curvature.

3.1. Scalar forms and integration

Here I present some operators useful in constructing Lagrangians. In addition, I

address the question of integration.

3.1.1. Scalar forms

Given a general x-metric

g̃AB =

(

ψ Ab

Aa gab

)

(37)

an inverse x-metric can be easily calculated:

g̃BC =

(

1 −Ac

−Ab [gbc(ψ −AdA
d) +AbAc]

)

[ψ −AdA
d]−1. (38)

As in standard GR, the inverse x-metric and x-metric can be used to raise and

lower indices, and to create Lagrangian densities using the x-Ricci. There are other

choices. Lowering and raising indices could also be effected with the operator

H̃AB =

(

1 0b
0a gab

)

(39)

and its inverse:

H̃AB =

(

1 0b

0a gab

)

. (40)

The H̃ operators would preserve the canonical mapping of standard GR for the

components of the tensor multinomials. They can also create new x-tensors. Ap-

plying H̃AC and H̃BD to g̃AB results in the following star operator, g∗CD:

g̃∗CD = H̃ACH̃BDg̃AB =

(

ψ Ad

Ac gcd

)

. (41)

The operators g̃AB, H̃AB, and g̃∗AB can be used in conjunction with R̃AB and

other operators to construct various Lagrangian densities.
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The most natural scalar for consideration in a Lagrangian-based theory is

g̃ABR̃AB. However, R̃AB involves ψ, Aa, gab, and g
ab, rather than any of the inverse

x-metric components. Consequently, there may be a mismatch between the inverse

x-metric components of g̃AB and the components of R̃AB. That suggests using the

scalar g̃∗ABR̃AB may be a good alternative.

3.1.2. Integration

An important issue to address is that of integration. Because there are only four

physical dimensions, a natural choice of volume element is
√−g d4x, where g =

det(gab). Intuitively, however, if the vector and scalar fields affect particle motion

and are considered extensions of the metric, then the form
√−g̃ d4x may be more

appropriate, where g̃ = det(g̃AB). The latter choice also makes sense if the theory is

considered a five-dimensional spacetime that restricts the component fields to four

dimensions.

In effect, there may already be an implicit fifth dimension in this theory: the

charge-to-mass ratio. Given vA = pA/m, it is evident in expressions such as

g̃(vA, vB) =

(

e

m

)2

ψ +
e

m
Aav

a +
e

m
Abv

b + gabv
avb (42)

that e/m is analogous to a velocity component, but is constant and scalar-valued.

It suggests a relationship with any path parameter λ of qm = (e/m)λ + C, where

C is a constant and qm is a linear parameterization. These considerations suggest

the use of
√−g̃ in Lagrangians. Further investigation of this quantity as a possible

discrete or approximately continuous fifth dimension would be of interest. Going

forward, the form of the volume element will be considered provisional.

3.2. Candidate Lagrangians

Here I present several possible field Lagrangians and/or field equations and briefly

comment on them. In many cases, the variational calculations are highly complex,

with many of the complications resulting from the presence of the electromagnetic

field. Any Lagrangian giving the fields ψ, Aa, and gab is possible, but if the vacuum

field equations deviate too greatly from R̃AB = 0, then observations would find

measurable differences between the unified theory and the standard theories of

Einstein and Maxwell. The breadth of possibilities is substantial, and ideally, some

principle or set of physical observations will point to one formulation over all the

others.

3.2.1. “Already-unified” Lagrangian

Given the stress-energy of Eq. (25), a field equation might take a form such as

R̃AB − 1

2
Rgab = T̃AB (43)
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where R is the ordinary Ricci scalar of four-dimensional GR and the components

of the x-stress tensor are lowered with the operator H̃AB. This equation yields

Einstein’s theory of GR together with Maxwell’s equations and a scalar field

equation. Further, a divergence operation using H̃AC∇alt
C gives zero on both sides

of this equation.

An approximate Lagrangian for Eq. (43) might have the form of Eq. (36) with

an additional term:

L =

∫

αgab∇aψ∇bψ + (β + αψ)FabF
ab + gabRab

√
−g d4x. (44)

The constants α and β, after conversion to dimensionless variables, can be consid-

ered scale factors as well as constants yielding proper stress-energy contributions.

The extra term in the equation for Aa would not affect vacuum solutions, and if

β >> α, then the term would be negligible in the presence of currents. Although it

may give a similar x-tensor equation, Eq. (44) lacks an explicit x-Ricci. Nonethe-

less, Eq. (44) would lead to expressions similar to those in Eq. (43) and have good

chances of preserving GR and electromagnetism.

3.2.2. LMF Lagrangian

Another option in developing a Lagrangian for Eq. (43) is to use a Lagrange mul-

tiplier field (LMF ), ΩAB. Here, the constraint equation is given by Eq. (43), itself,

and constitutes the full Lagrangian density:

L =

∫

ΩAB
(

R̃AB − 1

2
Rgab − T̃AB

)√
−g d4x. (45)

The variation with respect to ΩAB immediately yields Eq. (43). Variations with

respect to the metric, the electromagnetic, and scalar fields result in equations for

the various components of ΩAB. That said, ΩAB is not easy to find explicitly from

the derived equations. The study of special cases may lead the way to discovering

an explicit, exact Lagrangian using this method.

3.2.3. Pseudo-five-dimensional GR Lagrangian

Equation (43) can be modified by replacing Rgab with R̃g̃AB:

R̃AB − 1

2
R̃g̃AB = T̃AB. (46)

The field equations of Eq. (46) can be derived from the usual field Lagrangian

for five-dimensional GR. To yield the Christoffel symbols corresponding to the x-

Ricci of Eqs. (20)–(23), however, the system would have to be independent of the

fifth coordinate and the constraints of Eqs. (32)–(34) would have to hold, proba-

bly resulting in a trivial extension of four-dimensional GR, where the new fields

are constant. It would therefore be inappropriate to invoke the GR Lagrangian as

leading to Eq. (46). If the equation, nonetheless, is predictive and otherwise sound,
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it could be regarded as a Lagrangian-free theory, or in some cases as a zeroth-order

equation in perturbation.

Lagrangian-derived field equations represent extrema in a function space. A

unification of fields may require field equations falling between those extrema. As

in the previous case, however, it is possible to write a Lagrangian in terms of

Lagrange multiplier fields:

L =

∫

ΩAB
(

R̃AB − 1

2
R̃g̃AB − T̃AB

)

√

−g̃ d4x. (47)

In principle, therefore, Eq. (47) provides an implicit Lagrangian for the field equa-

tions given by Eq. (46). Variation will yield the desired field equations and equations

determining the necessary form of ΩAB, although those equations are not easy to

solve. I provisionally prefer the Lagrangian of Eq. (47) and that of Eq. (45) be-

cause they leave four-dimensional GR and the electromagnetic field largely intact.

Equation (47) appears to offer new pathways to modeling certain unexplained phys-

ical phenomena, with either
√−g or

√−g̃ in the volume element, and with either

g̃AB or gab in the factor multiplied by R̃.

3.2.4. X-metric Lagrangian

The most direct try for an explicit Lagrangian-based theory is

L =

∫

g̃ABR̃AB
√−g d4x (48)

where g̃AB is the inverse x-metric. The idea that the metric of spacetime is some-

how extended to include vector and scalar parts is attractive and geometrically

fascinating. Formally, this Lagrangian is the same as for five-dimensional GR,

but the integration is over a four-manifold and the constraints not invoked. As

discussed previously,
√−g might be replaced by

√−g̃. Either way, the result-

ing field equations will include an x-Ricci, but will also involve numerous other

new terms.

That a single quantity in Eq. (48), the x-Ricci tensor, contains all three fields

can create unexpected difficulties. Variation of such Lagrangians shows how the

electromagnetic or scalar field interacts with the gravitational field. In standard

GR, those separate fields create stress-energies that by assumption have an effect

on gravitation, although coupling constants often weaken that effect. The result-

ing theory can often be studied through perturbation theory. When those indi-

vidual fields are already coupled into a single, indivisible field, it’s less clear how

to proceed.

One method of proceeding would be to place coupling constants in front of the

various terms in the expanded contraction, as is done in Eq. (36). That would

weaken the concept of three fields given by a single mathematical operator, but

allow more control over the mathematical models. Because an x-tensor has a scalar

portion, it is not difficult to create second-rank x-tensors that introduce scale factors
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through contraction. For example, first decompose R̃AB into two x-tensors:

R̃AC = D̃1
AC + D̃2

AC =

(

R̃00 0c

0a R̃ac

)

+

(

0 R̃0c

R̃a0 0ac

)

. (49)

Now create a new x-tensor:

R̃mod
AB = D̃1

ACS̃
C
B + D̃2

ACP̃
C
B (50)

where

S̃CB =

(

α 0b

0c δcb

)

(51)

P̃CB = β

(

1 0b

0c δcb

)

. (52)

Another way to insert user-adjustable constants involves redefining all fields as

scale factors multiplied by the fields, and then defining dimensionless quantities.

For example, put ψ → aφ and Aa → bUa, where a and b are constants carrying

the units. Then make all quantities and coordinates dimensionless and adjust the

x-stress-tensor constants as necessary.

A further difficulty of this Lagrangian is that the field equations it generates

are extremely complex, raising concerns that they may make predictions at odds

with well-tested theories. Such problems can be mitigated to an extent with the

introduction of scale factors.

The variation of R̃AB can be taken assuming geodesic coordinates, so that the

ordinary Christoffel symbols vanish, Γabc = 0. Variation of R̃a0 and R̃00 are both

nonzero. The expanded variation is

δL =

∫

δg̃ABR̃AB + g̃00δR̃00 + g̃a0δR̃a0 + g̃0bδR̃0b

− 1

2
gabR̃δg

ab√−g d4x = 0 (53)

where δRab = 0 has already been dropped. Note that the volume element results

in a term containing δgab, which must be written as a combination of δg̃AB. For

that reason, using
√−g̃ in the volume element actually leads to simpler equations.

One method of calculating δgab involves using the fact that δ(gabg
bc) = 0 and

δ(g̃AB g̃
BC) = 0 both hold, resulting in the two formulas:

δgab = −gacgdbδgcd (54)

and

δg̃CD = −g̃CK g̃LDδg̃KL. (55)

Simply write the quantity δgab in terms of lowered indices with Eq. (54), then

identify gcd with g̃cd, which is identical,and use Eq. (55) to raise the x-tensor indices.
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The other, more intuitive method is to write gab in terms of g̃AB, as follows:

gab = g̃ab − AaAb

ψ −AcAc
= g̃ab − g̃a0g̃0b(g̃00)−1 (56)

so that

δgab = δg̃ab +Abδg̃a0 +Aaδg̃0b +AaAbδg̃00. (57)

Both methods yield the same answer. In other variational calculations, it may also

be necessary to write δAa as a linear combination of δg̃AB. It must be symmetrized,

because Aa could be either g̃a0 or g̃0a. The result, using Eq. (55), is

δAa =
1

2
δ(g̃a0 + g̃0a) = −ψAaδg̃00 −

1

2
(AbAa + ψgba)δg̃

b0

− 1

2
(AcAa + ψgca)δg̃

0c −Abgcaδg̃
bc. (58)

With these and similar results, it is now possible to write the full set of field

equations for the x-metric Lagrangian, either using the given volume element or√−g̃ d4x. Those field equations are of interest, but are reasonably tractable only in

the absence of an electromagnetic field and will not be pursued here.

The field equations may be simplified by noting that − 1
4
g̃00FcdF

dc is a scalar,

and that an arbitrary multiple of it may be added to the Lagrangian. That multiple

could either remove the term entirely from the Lagrangian or reduce it sufficiently

for perturbation theory. That procedure, called “bleaching” the Lagrangian, simpli-

fies the resulting field equations considerably, both here and in the Star Lagrangian.

Given that the term naturally arises from a consideration of particle dynamics, how-

ever, strongly suggests it should be retained.

3.2.5. Star Lagrangian

The advantage of using the Star Lagrangian is that the variation process and the

infinitesimals are very similar to those of well-known theories. The Lagrangian in

vacuum can be taken as

L =

∫

R̃∗
√−g d4x (59)

where R∗ = g̃∗ABR̃AB. Expanding the contraction, obtain

L =

∫

ψ

(

−1

2
∇d∇dψ − 1

4
FcdF

dc

)

+Aa
(

1

2
∇dF

d
a

)

+Ab
(

1

2
∇dF

d
b

)

+R
√−g d4x. (60)

Equation (60) involves second derivatives of the fields ψ and Aa, each contracted

with their contravariant counterparts, whereas Eq. (36) involves squares of first

derivatives for ψ and Aa. Unlike the x-metric Lagrangian, there is no need to convert
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to combinations of δg̃AB. Choosing
√−g̃ in the Lagrangian, however, would result

in having to write δg̃AB in terms of δψ, δAa, and δgab.

As with the x-metric Lagrangian, the electromagnetic energy density in R̃00 can

be bleached out by adding a multiple of the scalar 1
4
ψFcdF

dc to the Lagrangian,

somewhat simplifying the resulting field equations.

4. Trial Solutions of the Field Equations

To give the reader a feel for the modeling possibilities of this formalism, I present

some illustrative solutions to Eq. (46). The eventual choice of Lagrangian or other

system of equations will depend on what form of the theory can best be put in

agreement with observations and answer unsolved questions.

Physically, the scalar source ρψ acts in concert with Einstein’s equations to

produce the equivalent of a cosmological constant, although it need not be constant

to do that. By the derivation of the stress-energy, it is related to the distribution

of the electric charge squared, but other interpretations are possible. Here, I will

take ρψ → µψ for the type (0, 2) x-tensor equations, with µ considered constant,

although in general µ could depend on the coordinates.

4.1. Static vacuum solution

With the given form of the x-Ricci, it’s natural to first determine a possible vacuum

solution,

R̃AB = 0 (61)

for the case of static spherical symmetry, assuming a trial x-metric of

ds̃2 = −eν dt2 + eλ dr2 + r2(dθ2 + sin2 θ dφ2) + 2A4 dt+ ψ (62)

where direct sums are understood, as appropriate. It is clear that the Schwarzschild

solution and A4 = a/r, where a is a constant, immediately follow. That leaves the

static scalar field equation, which reads

−1

2
e−λ

(

ψ′′ +

(

2

r
+
ν′

2
− λ′

2

)

ψ′

)

− 1

2
e−ν−λA′ 2

4 = 0. (63)

With ν = −λ and eν = 1− 2m/r, this equation can be readily solved, giving

ψ(r) =
a2/2m

r
+

(

b

2m
+

a2

4m2

)

ln

(

1− 2m

r

)

+ ψ∞ (64)

where a is a constant associated with the electrostatic field, and b is an arbitrary

constant. Eq. (64) yields an additional attractive inverse square force if r ≫ 2m and

b > 0. In principle, it should be possible to measure b experimentally, although if it

couples to e2 the effect might be unobservable except under extreme circumstances.
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4.2. Plane-symmetric cosmologies

For this calculation, the field equation is again Eq. (46) and raising and lowering

is performed using the x-metric, g̃AB. The stress-energy is taken to be a plane-

symmetric perfect fluid. Note here that the Lagrangian involves
√−g̃, as it would in

Kaluza–Klein theory, instead of
√−g. The distinction is that

√−g̃ depends only on

four coordinates. Using
√−g yields the usual cosmologies when µ = 0. Regardless,

a factor of
√
g̃00 could always be appended to the Lagrangian, if desired. The

x-metric is

ds̃2 = −dτ2 + a2(τ)(dx2 + dy2 + dz2) + ψ(τ). (65)

The field equations then become:

G̃00 =
1

2

(

ψ̈ + 3
ȧ

a
ψ̇

)

− 1

2
ψ(ψ−1R̃00 +R) = µψ, (66)

G̃ττ = 3
ȧ2

a2
+

1

2
ψ−1R̃00 = κρ, (67)

G̃xx = −2aä− ȧ2 − 1

2
a2ψ−1R̃00 = κa2P (68)

with G̃zz = G̃yy = G̃xx. Note that in Eqs. (67) and (68), R̃ = ψ−1R̃00 + R, with

R = gabRab, was split into two terms, with the R term in each case combined with

similar terms involving a(τ). For reference, it also holds that

R = 6

(

ä

a
+
ȧ2

a2

)

(69)

where R is the ordinary scalar curvature. Further, an additional equation can be

generated by requiring that the divergence of the left side equals the divergence of

the other side. Raising with the inverse x-metric, this results in:

−1

2
ψ−1ψ̇

(

3
ȧ2

a2
+ F

)

− dF

dτ
= −κ

2
ψ−1ψ̇ρ− κ

(

ρ̇+ 3
ȧ

a
(ρ+ P )

)

(70)

where F = 1
2
ψ−1R̃00. Now, using Eq. (67), its derivative, and Eq. (68) divided

by a2, it can be shown that Eq. (70) is a tautology, so going forward, it can be

disregarded.

4.2.1. Vacuum cosmology with scalar source

Under these assumptions, the field equations become:

G̃00 =
1

2

(

ψ̈ + 3
ȧ

a
ψ̇

)

− 1

2
ψ(ψ−1R̃00 +R) = µψ, (71)

G̃ττ = 3
ȧ2

a2
+

1

2
ψ−1R̃00 = 0, (72)
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G̃xx = −2aä− ȧ2 − 1

2
a2ψ−1R̃00 = 0 (73)

with G̃zz = G̃yy = G̃xx.

After dividing Eq. (73) by a2, Eqs. (72) and (73) can be summed, obtaining

2
ȧ2

a2
− 2

ä

a
= 0 (74)

which gives the de Sitter solution:

a(τ) = c0e
kτ . (75)

With essentially two different equations for ψ, consistency of this solution re-

quires µ = −9k2. Equation (71) now gives a solution for ψ:

ψ̈ + 3kψ̇ + 12k2ψ = 0 (76)

resulting in two complex roots, which can be converted to a negative exponential

times a real cosine:

ψ = ψ0e
−

3

2
kτ cos

(
√
39

2
kτ

)

. (77)

Exactly the same solution, with µ = −6k2, results if Eq. (46) features a term 1
2
R̃gab

instead of 1
2
R̃g̃AB.

4.2.2. Dust cosmologies

In this case P = 0, so the field equations become:

G̃00 =
1

2

(

ψ̈ + 3
ȧ

a
ψ̇

)

− 1

2
ψ(ψ−1R̃00 +R) = µψ, (78)

G̃ττ = 3
ȧ2

a2
+

1

2
ψ−1R̃00 = κρ, (79)

G̃xx = −2aä− ȧ2 − 1

2
a2ψ−1R̃00 = 0 (80)

with G̃zz = G̃yy = G̃xx. From Eq. (80), it follows that

1

2
ψ−1R̃00 = −2

ä

a
− ȧ2

a2
. (81)

Substituting the expression for 1
2
ψ−1R̃00 in Eq. (78), obtain

ψ̈ + 3
ȧ

a
ψ̇ +

(

2
ä

a
+ 4

ȧ2

a2
+ 2µ

)

ψ = 0. (82)

Equation (81) can be written as:

ψ̈ + 3
ȧ

a
ψ̇ +

(

−8
ä

a
− 4

ȧ2

a2

)

ψ = 0. (83)
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Subtracting Eq. (83) from Eq. (82) yields:
(

5
ä

a
+ 4

ȧ2

a2
+ µ

)

ψ = 0. (84)

If µ is taken to be constant, there are several solutions depending on whether µ is

positive, negative, or zero, and depending on the sign of an integration constant.

Case 1: µ = 0

It is straightforward to integrate Eq. (84) and find that

a(τ) = (kτ + c0)
5/9. (85)

After setting u = kτ + c0, the equation for ψ turns out to be an Euler equation:

ψ′′ +
5

3
u−1ψ′ +

20

27
u−2ψ = 0. (86)

This equation can be converted into a linear equation by putting z = ln(u), resulting

in

d2ψ

dz2
+

2

3

dψ

dz
+

20

27
ψ = 0. (87)

The general solution, after choosing the origin with c0 = 0, is elementary:

ψ = ψ0e
−

1

3
kτ cos

(

√

17/27 ln(kτ)
)

. (88)

Case 2: µ 6= 0

If µ 6= 0 and is constant, it is tempting to guess a simple exponential form, but

that would imply ρ = 0, returning the vacuum case. Instead, the Eq. (84) must be

solved in more generality. Dividing the equation by five and multiplying through

by a9/5 results in:

d

dτ
(a4/5ȧ) = −1

5
µa9/5. (89)

Now, multiplying both sides by a4/5ȧ, it is possible to arrive at a simple antideriva-

tive for τ , which can then be inverted to obtain the expansion factor, a(τ):

∫

a4/5da
(

−µ
9
a18/5 + C

)1/2
= ±(τ − τ0). (90)

The positive sign on (τ − τ0) will be taken going forward. Some choices of the

constants will result in contradictions, such as ρ = 0 or an oscillating solution

admitting negative values of a(τ). However, two such solutions for the scale factor

a(τ) are of interest. The choices C > 0 and µ < 0 yield

a(τ) = α sinh5/9(βτ) (91)
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where α = (9|C|/|µ|)5/18 and β = 3|µ|1/2/5 are both constants. The solution of

Eq. (91) is singular at the origin, has positive energy density, and inflates exponen-

tially. The choices C < 0, µ < 0 yield

a(τ) = α cosh5/9(βτ) (92)

which is non-singular at the origin, has a positive energy density and again, inflates

exponentially thereafter. The equations for the scalar field are linear with hyperbolic

function coefficients, and will not be presented, here.

So the source µψ of the scalar field equation, as shown here, assumes the same

role as a cosmological constant. That is also true in the static, spherically symmetric

case. There are two important differences: First, µ need not be constant; Second,

the source of a field contributes to the dynamics of the system. Intuitively, µψ is

related to the density of charge squared, although some other interpretation may

be required for cosmological solutions.

5. Concluding Remarks

In this paper, I have demonstrated that there is a relationship between the idea

of a nonlinear differential operator on spacetime and the classical fields of physics.

By using a simple variational principle, it’s possible to develop GR, electromag-

netism, and a quantum mechanical scalar field as parts of a single entity, a tensor

multinomial associated with a subalgebra of the universal covering algebra of ten-

sors in four spacetime dimensions. Further, the formalism yields a new way of

introducing the equivalent of a cosmological constant, including the possibility of a

“time-dependent cosmological constant”, i.e. a cosmological function, as called for

recently by James Peebles.9

The mathematical ideas here could readily be carried out with spinors, as well,

which might yield some new insights. Three fields could be represented as a single

mathematical object by the direct sum of a spin-one-half spinor, a spin-one spinor,

and a two-spinor.

This theory could be of interest to those seeking explanations or models for cos-

mic inflation, dark matter, or dark energy, the “cosmic trifecta”. The theory is not

complete as it stands, because it is unclear which of the many variations connects

best to current theory and also makes correct predictions concerning those three

unexplained phenomena. The field equations can be derived and tested, however,

and through that process it may be possible to determine the best way forward.
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