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In this paper I introduce tensor multinomials, an algebra that is dense in the space
of nonlinear smooth differential operators, and use a subalgebra to create an exten-
sion of Einstein’s theory of general relativity. In a mathematical sense this extension
falls between Einstein’s original theory of general relativity in four dimensions and the
Kaluza—Klein theory in five dimensions. The theory has elements in common with both
the original Kaluza—Klein and Brans—Dicke, but emphasizes a new and different under-
lying mathematical structure. Despite there being only four physical dimensions, the use
of tensor multinomials naturally leads to expanded operators that can incorporate other
fields. The equivalent Ricci tensor of this geometry is robust and yields vacuum general
relativity and electromagnetism, as well as a Klein—Gordon-like quantum scalar field.
The formalism permits a time-dependent cosmological function, which is the source for
the scalar field. I develop and discuss several candidate Lagrangians. Trial solutions of
the most natural field equations include a singularity-free dark energy dust cosmology.
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1. Introduction

The theory I present here grew out of an idea I had in graduate school in 1988, that
of creating a probabilistic theory of gravitation. In doing so, I hoped to understand
the connections between quantum mechanics and general relativity (GR). The idea
was that the paths of particles in spacetime, determined by curves of maximal length
in GR, might also be determined or approximated by some variation of a quantum
mechanical quantity. Comparing those two approaches might then shed light on the
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similarities and differences between them, leading to a better understanding of the
quantum in spacetime.

That idea raised a question: what quantum mechanical or statistical expres-
sion might be suitable? Probability distributions are important in both statistical
and quantum mechanics. If g(z®,v?) is a distribution or other function defined on
spacetime, it should affect the orbits of particles. We can take an arbitrary path
between two points A and B and integrate along it,

B
N:/A glx®, v*)ds (1)

obtaining a number N for that path. We can then ask on which of many possible
paths the particle will travel. The intuitive answer is the particle will travel along
the path that maximizes the integral in Eq. (1). That yields a variational principle
for finding particle orbits that is analogous to that used in GR.

On implementing this idea, it became clear that the integrand in Eq. (1) re-
quired the use of smooth nonlinear differential operators on an otherwise ordinary
spacetime manifold M. Probability distributions on spacetime might require, for
example, exponential functions of both position and four velocities. Evidently, such
mathematical operators will not be multilinear, and using them will require a math-
ematical theory that does not yet exist.

It is possible, however, to perform a multivariable expansion of such operators
in powers of four velocities. Such an infinite sum is a multinomial in terms of one
or more four velocities, so that §(z%, v, w?), for example, could be written as

3(2%, 0%, wb) = 9 + Agv® + Quu® + gapv®uw® + - - @)

where 1, Ay, Qp, and g.p are functions of the four spacetime coordinates and by
the basis theorem, are tensors of appropriate rank. Truncating the infinite series
at the second rank, we recognize that such objects are similar to Lagrangians for
combining tensor fields of rank zero, one, and two.

The form of Eq. (2) suggests that § maps pairs of vector fields v®, w® to F(M),
the space of real-valued functions on the spacetime manifold M. Evidently, the
“component fields” ¥, Aq, Qb, gap, and so forth operate on the arbitrary vectors
v® and w®. That suggests that the truncated form § = 1 ® Aq ® Qp ® gap, Where &
is a direct sum, may be considered a single operator or field. That operator is not
multilinear in its arguments. For it to be so, substituting v* = ap® + [s%, with «,
B real numbers, would have to result in

f](iﬂaa apa + Bsaawb) = ag(xaupaawb) + Bg(xa7 Sa7wb) (3)

which it clearly does not. Specifically, neither of the components ¥ and Q) in the
expression on the left will be multiplied by either a or 8 during the operation.
Therefore Eq. (3) does not hold, and g is not multilinear in its four-velocity argu-
ments. In going forward, we assume that @ = Ap. The truncated operator g then
takes on characteristics similar to the metric of Kaluza—Klein spacetime.
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Kaluza and Klein independently proposed their five-dimensional theory so that
the metric would have places for the components of the electromagnetic field.!+2
The theory did not succeed, and that may be due in part to the fact that the electro-
magnetic field transforms as a vector, not as components of a tensor of rank two. In
addition, the Kaluza—Klein theory did not predict correct particle dynamics. Here,
I develop an alternate spacetime operator that has the needed extra components
but does not require defining a fifth dimension.?** The construction involves taking
a direct sum of a scalar field and a vector field in four dimensions and creating all
tensor products of that fundamental object.

The use of direct sums to create new mathematical spaces is well known and
described in any elementary text on abstract algebra, e.g., Herstein.> A simple
example is the creation of the Cartesian plane, R & R, from the real line, R. Direct
sums are used routinely in mathematics and physics, usually without notice, because
a universal convention is to drop the direct sum sign, @, in favor of an arithmetic
+ sign, which the reader must understand as indicating a direct sum. Direct sums
create polynomials and multinomials, such as f(z,y) = 1 + = + y + zy, where the
+ signs are actually direct sums, @. When evaluated at a particular point (zo, yo)
of R& R, the foregoing direct sum becomes an arithmetic sum, mapping to a single
value of R. Vectors and higher order tensors are also the result of applying the
concept of direct sums.

An important and unrecognized tensor multinomial occurs during variation of
a Lagrangian involving tensors of different rank. For example, variation of the
Lagrangian

L= / aVahpVe + BV, AV AY + g Roy/—g dia (4)

results in separate equations for v, A,, and g4 that can be understood as compo-
nents of a single tensor multinomial. Similarly, Lagrangians for particle dynamics
may be considered tensor multinomials that have operated on four velocities, map-
ping them to F'(M), the space of real-valued functions on the manifold M. That
correspondence will be exploited in this paper to find the effective Christoffel sym-
bols and Ricci curvatures by working in reverse.

Arbitrary direct sums of tensors of different rank and type create elements
of a universal covering algebra for the tensor algebra. These tensor multinomials
are elements of the space of nonlinear differential operators on manifolds. Just
as arbitrary polynomials are dense in the space of real-valued functions, tensor
polynomials are dense in the space of nonlinear differential operators. For any given
nonlinear differential operator, there is a tensor multinomial arbitrarily close to it.

The construction presented here naturally involves a scalar field, necessary so
that the extended metric of the spacetime is invertible. The inclusion of both a
scalar field and vector field means the spacetime bears some resemblance to both
Brans—Dicke theory and Kaluza—Klein theory. This new theory provides a way
of understanding three fundamental fields as resulting from a single equation. In
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addition, it provides an alternative or supplement to the inclusion of a cosmological
constant, and a number of new ways of constructing Lagrangians that may facilitate
creating new mathematical models of physical phenomena.

Plan of the Paper

i. Develop the concept of tensor multinomials.
ii. Define the analog of the covariant derivative.
iii. Derive the analog of the geodesic equation.
iv. From the geodesic equation, deduce the implied Christoffel symbols.
v. Using the Christoffel symbols, calculate the equivalent Ricci curvature.
vi. Propose field equations based on the equivalent Ricci curvature.
vii. Discuss candidate Lagrangian formulations.
viii. Present trial solutions to some of the field equations.

After working through these eight steps, we will find that the spacetime struc-
ture described by the implied Christoffel symbols and equivalent Ricci tensor is
more complex than that of standard four-dimensional GR. At the same time, that
spacetime structure is much simpler than that of the five-dimensional Kaluza—Klein
theory. This new spacetime, therefore, lies between the spacetime of Einstein and
that of Kaluza and Klein.

2. X-Tensor Analysis
2.1. Tensor multinomzials

An example of a tensor multinomial is

QA = Q @ Qa (5)
where @ is a scalar field and @), is a covector field. Naturally, there are similar
operators having a contravariant index. The index A does not refer to spinor indices,
here, but to a scalar plus a vector index: A takes two values: A = 0 corresponds to
the scalar index, whereas A = a corresponds to a vector or covector index. Tildes
will often serve to emphasize and distinguish the scalar extended field operators
from their conventional analogs. Because the scalar ) extends the covector Q,, Q A
is called an extended covector, or z-covector. The expression in Eq. (5) is also a
direct sum of tensors of different rank, and is an element of the universal covering
algebra for tensors, as originally pointed out by Christodoulu.® All tensor products
of such operators form a subalgebra of the universal covering algebra for tensors.

A particle with charge e and momentum p® will be represented as:

pt=e®p” (6)

Charge e will be taken as associated with electromagnetic fields, although other
interpretations are possible. The direct sum of a scalar and a four-vector is similar
to but distinct from a five-vector because it has different transformation properties
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under a change of coordinates. Here the first component, a scalar, is invariant under
coordinate transformations. The property that the zeroth index corresponds to a
scalar is particularly appropriate for charge, which is known to be an invariant
under coordinate transformations. Such vectors that have a scalar extension will be
referred to as scalar-extended vectors, or as extended vectors, or simply as x-vectors.

The coordinate transformation matrix A’é linking x-vectors in coordinates

to coordinates ¢ is
~ 1 0
Ag = <0a a_xa> (7)

ozb
where 0% is the zero column matrix and 0y a zero row matrix, respectively. A similar
transformation matrix can be defined for z-covectors.

2.2. Generalized Christoffel symbols

Now consider a second-order z-tensor g, which can be represented as an array:

N ;1
JaB = <Aa gab>. (8)

The resulting geometric object is similar to a second-order tensor of rank (0,2)
in a five-dimensional space but is distinct for two reasons: First, these objects
are functions of only four coordinates; Second, as a fiber bundle, the transition
functions form a group isomorphic to GL(4), whereas the transition functions in
a five-dimensional space form the group GL(5). The operator g can be evaluated
using the z-vector p*, obtaining:

9™, p") = ¢ + eAup® + eApp” + gurp“p". 9)
Now g will be taken as the integrand of a functional to be maximized:
B
s= [ gt p)an (10)
A

where X is an arbitrary path parameter. Note that massless, uncharged particles
such as photons would naturally be handled differently; they would not react with
the vector or scalar fields except through their momentum and energy. Dividing by
m? and varying with respect to the four-velocity results in the following equation:
dvf 1 4 (09ay  O9aa  OYab le dA; OA
b/ ag _ ZJda ayb .~ = df _ a).,a
d)\+2g ( UU+2mg o ozt )’

Oxo Oz Ozxd
le df<8Ad 8Ab) , 1é? df(?_d)i

2m

= = 5 ~ 0. (11)

2m2? ord

This equation has the form of a geodesic, however, it has vector and scalar potentials
in addition to the usual Christoffel symbols derived from the metric. The Christoffel
symbols, however, can be redefined to take into account these new terms. Let zero
correspond to a scalar index, and a lower case roman letter correspond to the four
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components of a vector. Further, define the partial derivative operator as:

0, ifA=0,
A=) 0 (12)
oz’

The reason for the definition of this operator is that there are only four coordinates:

if A=a.

the dimension associated with a scalar field does not introduce another coordinate,
nor are there paths in spacetime associated with that purely mathematical dimen-
sion. It facilitates the mathematical formalism, however, to define a place-holding

zero operator. Now consider a general extended vector v = = @ v The direc-
tional derivative can be written:
vAV g0l = vAﬁ + vATE go® (13)

where V4 is the extended connection. Expanding this expression, and taking it to
be zero as in a geodesic equation, results in

62 ~ e ~ e ~ ~
—— + — Tk + —vTE + —o'TE + TE v = 0. 14
+m2 oo+mU a0+mv ob 1V v (14)

The nonzero Christoffel symbols can be obtained from a general expression of
the geodesic equation.” Comparing the expression in Eq. (14) to the expression
in Eq. (11), it is possible to read off the equivalent of the Christoffel symbols:

f%B = 07 (15)
. 1 . 0
Lo = —5 df@a (16)
~ ~ 1 ,./0A 0A
f _pf _ d d a
Tao =T0a =59 / (83@“ - axd>' (17)
f‘gb = F;]:b' (18)

By construction, a theory having connection coefficients given by Eqs. (15)—(18)
should have the correct particle dynamics, if solutions to the field equations gen-
erated from them are sufficiently similar to those of existing well-tested theories.
Further, familiar mathematical forms associated with scalar, vector, and tensor
forces are in evidence: the negative gradient of a scalar field, the Maxwell tensor,
and the Christoffel symbols of GR. Using the extended Christoffel symbols, the
next section develops the concept of extended curvature.

2.3. The Ricct x-tensor

The equivalent Ricci tensor, found by calculating a commutator of x-covariant
derivatives on an z-vector, is given by the expression
e e
~  0I'Yp OI'%:

Rap = 20 ~ gz

+TEpT8s — TR TG0 (19)
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Using the extended C-symbols, this equation generates three component equations,
each of different tensorial order. The rank two tensor equation is

~ ore¢, ore
b = ab ac 1’\6 I\c _ 1’\6 c 20
b oxc Arb + ab™ ce ac™ be ( )
which is the usual Ricci tensor of GR. The vector component yields
- 1/0F¢
a0 = = o + TS, F, — T4 F© 21
0 2 < orc t 1l ca d> ( )
with
04, 0A,
Fyoy=———— 22
b Ox*  Oxb (22)

which is the covariant form of the left side of Maxwell’s equation in curved space-
time. Finally, the scalar component is given by

which is a second-order scalar wave equation for ¢ with the electromagnetic energy
density acting as a source.

So in vacuum, the z-Ricci gives the equations of GR and electromagnetism,
however they are coupled to a scalar field. That raises the concern that the scalar
field could lead to predictions that are not supported by experiment. If, however,
a coupling constant associated with the scalar field is sufficiently small, deviations
might not be observable in most contexts while creating physical observables near
singularities, such as cosmic inflation at the beginning of the universe. The only way
to determine whether predictions of the theory are physical is to complete the theory
by introducing the sources of the field and writing the equation connecting the Ricci
z-tensor to the analog of stress-energy. After solving the system, predictions can be
compared to observations.

2.4. The extended stress-energy

For systems of particles, the energy-momentum tensor is described as relating to
the flux of momentum across a surface. If N = nv® is the flux number, where n
is the number of particles and v® the four-velocity, and p? = mo® is the particle
momentum, then the stress-energy can be represented as N%p® = nmuv®®. This
formulation suggests a similar definition, taking into account the differences in the
fundamental mathematical objects. By analogy, N4 = n(q/m @ v®) and p? =
m(q/m @ v®). The tensor product of those two forms yields:

2
TAB — NARE — <”qm ngv® ) (24)

ngv® nmo®v®

So the natural generalization of the energy-momentum tensor yields the expected
charge current for the Maxwell fields and the usual expression for the stress-energy
of a swarm of particles. In addition, the source of the scalar field appears as the
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density of ¢%/m. In general, the extended stress-energy tensor might be taken as
. apy BJ°
TAB — [TV (25)
BJa HTab

where «, 8, and k are constants, and p, is the density of quantity ¢*/m, which
may also be presumed proportional to the number density. Using the x-covariant
derivative, the divergence of the z-stress-energy can be defined in the natural way:

Din(T) = VATAE. (26)
For B = 0, the result is
VAT = BV, J¢ (27)
whereas for B = b, the result is
vals b a e 81/)
VATAY = VT + Bg T Fy, — 59 baxd% (28)

The ordinary divergence of the current density, V,J%, is indeed zero, but it is not
clear whether Eq. (28) should be zero, or not. This lack of clarity is likely due to the
divergence operation being undefined on scalar fields. An alternate operator Vj” =
0@ Vg, on the other hand, does return zero when operating on the extended stress-
energy. In the cosmological trial exact solutions, using V4 as defined in Eq. (26)
on both sides of the generalization of Einstein’s equations results in a tautology. A
tautology may be an acceptable generalization of Einstein’s requirement because it
does not generate a new, independent equation.

2.5. X -covariant derivative of the x-metric

The z-covariant derivative, as defined, does not result in zero when applied to the
second rank z-tensor §. The computation of V 4gp¢ yields:

8

A

Vogsc = Low 1 (29)
3820 — 24w 0

- bis —A'Fu 5 (G + 5e) — LAy

Vagpe = 1 9A A d A A ' (30)
(55 + %) — T Ay S — T gae — Docgon

For V Agdsc = 0 to hold true, the following four constraints must apply:

AN 1p = 0, (31)
o d
55~ ATFan =0, (32)
104, 04\ o,
3 (@ b > —TgAN =0, (33)
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gib: —T9xe — Daegor = 0. (34)
Taking the inner product of Eq. (32) with A’ shows that Eq. (31) follows from
Eq. (32), so there are only three independent constraints: Eqgs. (32), (33), and (34),
the latter being the usual assumption in a four-dimensional spacetime. Equation
(33) is equivalent to

VoA + Vgl = 0. (35)

Garfinkle® suggests, given Eq. (35), that A% is a Killing field associated with a
symmetry of the theory, as it satisfies the Killing equation. Further, Eq. (31) implies
that 1) is constant in the direction of A%, whereas Eq. (32) suggests that 1 is related
to the magnitude of A®. Garfinkle’s insights may lead to an understanding of this
theory when V4gpc = 0.

Otherwise, Eq. (35) amounts to a constraint on the gauge of the electromagnetic
field. In this theory, therefore, making the choice that the covariant derivative is zero
automatically chooses that gauge. Note, however, that Eq. (35) implies that V, A,
is an antisymmetric second rank tensor. Although some special solutions may exist,
that constraint is likely too stringent. Further, in the absence of electromagnetic
fields, these constraints require a constant scalar field.

Applying all these constraints may therefore result in only a trivial extension
of GR. Whether that is always so is worthy of investigation. Here, the focus will
be on applying only Eq. (34), as in standard GR. That suggests that while gap
may be considered an extension of the usual metric gqp, it does not share all of its
properties under the defined z-covariant derivative.

As in four-dimensional GR, a five-dimensional Kaluza—Klein spacetime has
Christoffel symbols defined entirely in terms of the metric. Assuming a five-
dimensional spacetime metric analogous in form to the x-metric is independent
of the new fifth coordinate, and that it yields proper dynamics from a particle
Lagrangian, leads to the same set of constraints. That strongly suggests that the
original Kaluza—Klein theory may be untenable in principle.

3. Field Lagrangians and Their Variations

An article of faith in theoretical physics is that equations of physics must derive
from Lagrangians. As described in this section, there are a number of choices of field
Lagrangians that result in different predictions. The usual field Lagrangian giving a
minimally-coupled massless scalar field, electromagnetic field, and gravitation can
be written

L= / ag®V o hVth + BEwF® + g Ry /—g d*x (36)

where o and (8 are chosen so as to give suitable expressions for stress-energy con-
tributions to the gravity field. Those constants are adjustable, and must be so,
because experiments have not yet determined the magnitude of the contribution of
those fields to gravitation.
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An important observation is that the fields ¥ and A, in Eq. (36) are quadratic
in their first derivatives. In contrast, the z-Ricci Lagrangians include second deriva-
tives in ¢ and A,.

In some sense, Eq. (36) leads to an “already unified” field theory because its
variation yields a single z-tensor equation. It is somewhat unsatisfactory because it
involves cobbling together three completely separate theories. Using the theory of
tensor multinomials, on the other hand, delivers three fields through the extension
of curvature.

3.1. Scalar forms and integration

Here I present some operators useful in constructing Lagrangians. In addition, I
address the question of integration.

3.1.1. Scalar forms

Given a general x-metric

. v A
gAB = 37
o <Aa Gab ( )
an inverse z-metric can be easily calculated:
1 —A°

~BC dj—1
= — A4A . 38
! (—Ab [9" (¢ — AaA?) + AbAC]) v At o

As in standard GR, the inverse z-metric and xz-metric can be used to raise and
lower indices, and to create Lagrangian densities using the z-Ricci. There are other
choices. Lowering and raising indices could also be effected with the operator

Flap = <1 Ob) (39)

Oa Gab

- 1 0
HAP = (40)
0% g

The H operators would preserve the canonical mapping of standard GR for the

and its inverse:

components of the tensor multinomials. They can also create new x-tensors. Ap-

plying HAY and HBP to jap results in the following star operator, g*CP:
d
wcD _ gaciBp. [V A
g =H""H""gap = (Ac gcd>. (41)
The operators 42, HAB and §*48 can be used in conjunction with Rsp and

other operators to construct various Lagrangian densities.
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The most natural scalar for consideration in a Lagrangian-based theory is
gABRAB. However, R4 p involves ¢, Aq, Jab, and g, rather than any of the inverse
z-metric components. Consequently, there may be a mismatch between the inverse
z-metric components of g4% and the components of R 4. That suggests using the
scalar ¢*AP R, p may be a good alternative.

3.1.2. Integration

An important issue to address is that of integration. Because there are only four
physical dimensions, a natural choice of volume element is \/—gd*z, where g =
det(gaqp). Intuitively, however, if the vector and scalar fields affect particle motion
and are considered extensions of the metric, then the form /—gd*z may be more
appropriate, where § = det(gap). The latter choice also makes sense if the theory is
considered a five-dimensional spacetime that restricts the component fields to four
dimensions.

In effect, there may already be an implicit fifth dimension in this theory: the

charge-to-mass ratio. Given v = pA/m, it is evident in expressions such as

2
. e e e
g(vA, vB) = (E) U+ EAava + EAbvb + gabvavb (42)

that e/m is analogous to a velocity component, but is constant and scalar-valued.
It suggests a relationship with any path parameter A of ¢, = (e/m)A + C, where
C is a constant and g, is a linear parameterization. These considerations suggest
the use of v/—g in Lagrangians. Further investigation of this quantity as a possible
discrete or approximately continuous fifth dimension would be of interest. Going
forward, the form of the volume element will be considered provisional.

3.2. Candidate Lagrangians

Here I present several possible field Lagrangians and/or field equations and briefly
comment on them. In many cases, the variational calculations are highly complex,
with many of the complications resulting from the presence of the electromagnetic
field. Any Lagrangian giving the fields v, A,, and g4 is possible, but if the vacuum
field equations deviate too greatly from Rap = 0, then observations would find
measurable differences between the unified theory and the standard theories of
Einstein and Maxwell. The breadth of possibilities is substantial, and ideally, some
principle or set of physical observations will point to one formulation over all the
others.

3.2.1. “Already-unified” Lagrangian
Given the stress-energy of Eq. (25), a field equation might take a form such as

_ 1 _
Rap — gRgab =TaB (43)
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where R is the ordinary Ricci scalar of four-dimensional GR and the components
of the a-stress tensor are lowered with the operator H4p. This equation yields
Einstein’s theory of GR together with Maxwell’s equations and a scalar field
equation. Further, a divergence operation using H ACV‘&” gives zero on both sides
of this equation.

An approximate Lagrangian for Eq. (43) might have the form of Eq. (36) with
an additional term:

L= / ag®V o hVih + (B + a)) Fyy F + g Rop/—g d . (44)

The constants « and 3, after conversion to dimensionless variables, can be consid-
ered scale factors as well as constants yielding proper stress-energy contributions.
The extra term in the equation for A, would not affect vacuum solutions, and if
B >> «, then the term would be negligible in the presence of currents. Although it
may give a similar z-tensor equation, Eq. (44) lacks an explicit z-Ricci. Nonethe-
less, Eq. (44) would lead to expressions similar to those in Eq. (43) and have good
chances of preserving GR and electromagnetism.

3.2.2. LMF' Lagrangian

Another option in developing a Lagrangian for Eq. (43) is to use a Lagrange mul-
tiplier field (LMF), QAB. Here, the constraint equation is given by Eq. (43), itself,
and constitutes the full Lagrangian density:

- 1 -
L= /QAB (RAB — 5R9a0 — TAB> V—gdiz. (45)

The variation with respect to Q47 immediately yields Eq. (43). Variations with
respect to the metric, the electromagnetic, and scalar fields result in equations for
the various components of Q458 That said, Q47 is not easy to find explicitly from
the derived equations. The study of special cases may lead the way to discovering
an explicit, exact Lagrangian using this method.

3.2.3. Pseudo-five-dimensional GR Lagrangian
Equation (43) can be modified by replacing Rg,, with RgAB:

_ 1~ _
Rap — §R9AB =Typ. (46)

The field equations of Eq. (46) can be derived from the usual field Lagrangian
for five-dimensional GR. To yield the Christoffel symbols corresponding to the z-
Ricci of Egs. (20)—(23), however, the system would have to be independent of the
fifth coordinate and the constraints of Eqs. (32)—(34) would have to hold, proba-
bly resulting in a trivial extension of four-dimensional GR, where the new fields
are constant. It would therefore be inappropriate to invoke the GR Lagrangian as
leading to Eq. (46). If the equation, nonetheless, is predictive and otherwise sound,
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it could be regarded as a Lagrangian-free theory, or in some cases as a zeroth-order
equation in perturbation.

Lagrangian-derived field equations represent extrema in a function space. A
unification of fields may require field equations falling between those extrema. As
in the previous case, however, it is possible to write a Lagrangian in terms of
Lagrange multiplier fields:

- 1~ - _
L= /QAB (RAB — 5R9ap — TAB) V—gd'z. (47)

In principle, therefore, Eq. (47) provides an implicit Lagrangian for the field equa-
tions given by Eq. (46). Variation will yield the desired field equations and equations
determining the necessary form of Q45 although those equations are not easy to
solve. T provisionally prefer the Lagrangian of Eq. (47) and that of Eq. (45) be-
cause they leave four-dimensional GR and the electromagnetic field largely intact.
Equation (47) appears to offer new pathways to modeling certain unexplained phys-
ical phenomena, with either \/—g or v/—g in the volume element, and with either

JAB OT ggp in the factor multiplied by R.

3.2.4. X -metric Lagrangian

The most direct try for an explicit Lagrangian-based theory is
Ez/gABRAB\/—gd‘l:v (48)

where §4% is the inverse z-metric. The idea that the metric of spacetime is some-
how extended to include vector and scalar parts is attractive and geometrically
fascinating. Formally, this Lagrangian is the same as for five-dimensional GR,
but the integration is over a four-manifold and the constraints not invoked. As
discussed previously, /—g might be replaced by /—g. Either way, the result-
ing field equations will include an z-Ricci, but will also involve numerous other
new terms.

That a single quantity in Eq. (48), the a-Ricci tensor, contains all three fields
can create unexpected difficulties. Variation of such Lagrangians shows how the
electromagnetic or scalar field interacts with the gravitational field. In standard
GR, those separate fields create stress-energies that by assumption have an effect
on gravitation, although coupling constants often weaken that effect. The result-
ing theory can often be studied through perturbation theory. When those indi-
vidual fields are already coupled into a single, indivisible field, it’s less clear how
to proceed.

One method of proceeding would be to place coupling constants in front of the
various terms in the expanded contraction, as is done in Eq. (36). That would
weaken the concept of three fields given by a single mathematical operator, but
allow more control over the mathematical models. Because an z-tensor has a scalar
portion, it is not difficult to create second-rank z-tensors that introduce scale factors
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through contraction. For example, first decompose Rap into two z-tensors:

~ ~ ~ Roo Oc 0 ROC
RAC_D}40+D?40_<O B >+<Ro 0 ) (49)

Now create a new x-tensor:

Ry = DyeS% + D4 P% (50)

~ « Ob
SC, = 51
7 <OC 65) oy

_ 10
PG =8 (oe (;’) (52)
b

Another way to insert user-adjustable constants involves redefining all fields as

where

scale factors multiplied by the fields, and then defining dimensionless quantities.
For example, put ¢» — a¢ and A, — bU,, where a and b are constants carrying
the units. Then make all quantities and coordinates dimensionless and adjust the
z-stress-tensor constants as necessary.

A further difficulty of this Lagrangian is that the field equations it generates
are extremely complex, raising concerns that they may make predictions at odds
with well-tested theories. Such problems can be mitigated to an extent with the
introduction of scale factors.

The variation of Rap can be taken assuming geodesic coordinates, so that the
ordinary Christoffel symbols vanish, I'}, = 0. Variation of Rao and Rgo are both
nonzero. The expanded variation is

oL = /5§ABRAB + 3% Roo + "0 Rao + §°°0 Rop

1 -
—~ EgabRég“b\/—g d'z =0 (53)

where dR,, = 0 has already been dropped. Note that the volume element results
in a term containing §¢®°, which must be written as a combination of §G4Z. For
that reason, using v/—¢ in the volume element actually leads to simpler equations.
One method of calculating 6g® involves using the fact that §(g.»g®¢) = 0 and
5(GapgP%) = 0 both hold, resulting in the two formulas:

5gab — —gacgdb59cd (54)
and
6gcp = —GexdrLpdg™ . (55)

Simply write the quantity dg? in terms of lowered indices with Eq. (54), then
identify g.q with g.q, which is identical,and use Eq. (55) to raise the z-tensor indices.

2030020-14



Mod. Phys. Lett. A 2020.35. Downloaded from www.worldscientific.com

by GERMAN ELECTRON SYNCHROTRON @ HAMBURG on 11/30/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

The spacetime between Einstein and Kaluza—Klein

The other, more intuitive method is to write g% in terms of 4%, as follows:

Ac AP
ab _ ~ab __ — ~ab _ ~a0~0b/~00\—1
9" =9 A T 9 (@) (56)
so that
89%0 = 0G4 A6 + A%65" + A" A*65". (57)

Both methods yield the same answer. In other variational calculations, it may also
be necessary to write 0 A, as a linear combination of §g 4 5. It must be symmetrized,
because A, could be either §,o or goa. The result, using Eq. (55), is

1 ~ . 1 .
(SAa = 55(9110 + gOa) = —wAa&IOO - Q(AbAa + wgba)&gbo

1 ~0c ~bc
- §(A6Aa + 1/)gca)6go - Abgca5gb . (58)

With these and similar results, it is now possible to write the full set of field
equations for the z-metric Lagrangian, either using the given volume element or
v/—g d*z. Those field equations are of interest, but are reasonably tractable only in
the absence of an electromagnetic field and will not be pursued here.

The field equations may be simplified by noting that —i GOF, F% is a scalar,
and that an arbitrary multiple of it may be added to the Lagrangian. That multiple
could either remove the term entirely from the Lagrangian or reduce it sufficiently
for perturbation theory. That procedure, called “bleaching” the Lagrangian, simpli-
fies the resulting field equations considerably, both here and in the Star Lagrangian.
Given that the term naturally arises from a consideration of particle dynamics, how-
ever, strongly suggests it should be retained.

3.2.5. Star Lagrangian

The advantage of using the Star Lagrangian is that the variation process and the
infinitesimals are very similar to those of well-known theories. The Lagrangian in
vacuum can be taken as

L= /R*\/—gd‘lx (59)
where R* = §*AP R 4 5. Expanding the contraction, obtain

1 1 1
r— /¢<—§vdvd¢ _ ZchFdC) + A0 (§VdFda)

1
4 Ab (Evdde) + Ry/—gd*z. (60)

Equation (60) involves second derivatives of the fields ¥ and A,, each contracted
with their contravariant counterparts, whereas Eq. (36) involves squares of first
derivatives for ¢ and A,. Unlike the z-metric Lagrangian, there is no need to convert
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to combinations of §§48. Choosing v/—§ in the Lagrangian, however, would result
in having to write 6G42 in terms of §¢, §A®, and dg°.

As with the z-metric Lagrangian, the electromagnetic energy density in Rgo can
be bleached out by adding a multiple of the scalar %wFCdF d¢ to the Lagrangian,
somewhat simplifying the resulting field equations.

4. Trial Solutions of the Field Equations

To give the reader a feel for the modeling possibilities of this formalism, I present
some illustrative solutions to Eq. (46). The eventual choice of Lagrangian or other
system of equations will depend on what form of the theory can best be put in
agreement with observations and answer unsolved questions.

Physically, the scalar source py acts in concert with Einstein’s equations to
produce the equivalent of a cosmological constant, although it need not be constant
to do that. By the derivation of the stress-energy, it is related to the distribution
of the electric charge squared, but other interpretations are possible. Here, I will
take py — wtp for the type (0, 2) z-tensor equations, with p considered constant,
although in general p could depend on the coordinates.

4.1. Static vacuum solution

With the given form of the z-Ricci, it’s natural to first determine a possible vacuum
solution,

Rap =0 (61)
for the case of static spherical symmetry, assuming a trial z-metric of
d3? = —e” dt? + e dr? + r2(d6* + sin® 0 dp?) + 2A, dt + 1 (62)

where direct sums are understood, as appropriate. It is clear that the Schwarzschild
solution and A4 = a/r, where a is a constant, immediately follow. That leaves the
static scalar field equation, which reads

1 —A " 2 v N / 1 _ —A 72
-= -+ = - = ——e VAP =0.
5¢ (1/1 + (r + 5 5 P 5¢ 2 =0 (63)
With v = —X and e = 1 — 2m/r, this equation can be readily solved, giving
a?/2m b a? 2m
= — 4+ —|In{1—-— o 4
¥(r) T +(2m+4m2) n< T )+¢ (64)

where a is a constant associated with the electrostatic field, and b is an arbitrary
constant. Eq. (64) yields an additional attractive inverse square force if r > 2m and
b > 0. In principle, it should be possible to measure b experimentally, although if it
couples to e? the effect might be unobservable except under extreme circumstances.
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4.2. Plane-symmetric cosmologies

For this calculation, the field equation is again Eq. (46) and raising and lowering
is performed using the z-metric, gap. The stress-energy is taken to be a plane-
symmetric perfect fluid. Note here that the Lagrangian involves v/—g, as it would in
Kaluza—Klein theory, instead of v/—g. The distinction is that /—g depends only on
four coordinates. Using /—g yields the usual cosmologies when p = 0. Regardless,
a factor of v/goo could always be appended to the Lagrangian, if desired. The
z-metric is

d&* = —dr? + a*(7)(da? + dy* + d2*) + (7). (65)
The field equations then become:
- 1/ - a - 1 e
Goo = 3 (U 351/1 - 5‘/’(1/1 Roo + R) = wip, (66)
- a2 1 -
Grr = 3; + 51/} 1FcOO = Kp, (67)
~ S ST 2
Guy = —2ad — a° — 3¢ ¥~ Rgo = ka“P (68)

with G, = éuu = (.. Note that in Egs. (67) and (68), R = ¢ Roo + R, with
R = ¢**R,;, was split into two terms, with the R term in each case combined with
similar terms involving a(7). For reference, it also holds that

R:6<%+Z—z> (69)

where R is the ordinary scalar curvature. Further, an additional equation can be
generated by requiring that the divergence of the left side equals the divergence of
the other side. Raising with the inverse z-metric, this results in:

a2 dF ; '
_%¢—1¢(3%+F) - = —gw‘lwp—n(p+3§(p+13)) (70)

where F' = %1/)’1]?00. Now, using Eq. (67), its derivative, and Eq. (68) divided
by a?, it can be shown that Eq. (70) is a tautology, so going forward, it can be
disregarded.

4.2.1. Vacuum cosmology with scalar source

Under these assumptions, the field equations become:

Goo = % (1/1 + 331/.1> - %1/)(1/1711%00 + R) = wy, (71)

G —3d2+11/r11% =0 (72)
TT — a2 2 00 — Y,
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. 1 -
Gop = —2ad — 4% — §a21/flRoo =0 (73)
After dividing Eq. (73) by a?, Egs. (72) and (73) can be summed, obtaining

2

a a
2— —2-=0 74
=2 (74)
which gives the de Sitter solution:
a(t) = coekT. (75)
With essentially two different equations for ¢, consistency of this solution re-
quires u = —9k2. Equation (71) now gives a solution for :
O+ 3kip + 12k%) = 0 (76)

resulting in two complex roots, which can be converted to a negative exponential
times a real cosine:

P = 2/106_%’” cos (@lﬂ) (77)

Exactly the same solution, with y = —6k?, results if Eq. (46) features a term %Rgab
instead of %RgAB.

4.2.2. Dust cosmologies

In this case P = 0, so the field equations become:

. 1/ _a- 1 -
Goo = 3 (1/1 + 351&) - §¢(¢ "Roo + R) = b, (78)
~ at 1=
Grr = 3; + 51/} Roo = Kp, (79)
A T N BT W
Gurw = —2ad — a° — 3¢ Y "Rpo =0 (80)
with G, = Gy, = Gy From Eq. (80), it follows that
1 - i @
S Ry = 22— L 81
Ly g = 28 s
Substituting the expression for %1/)’1]?00 in Eq. (78), obtain
. . . . .2
b+ 3% + (29+4a—2+2u)¢_0. (82)
a a a
Equation (81) can be written as:
. . . . . 2
b +329 + (-sf _4%)¢_o. (83)
a a a
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Subtracting Eq. (83) from Eq. (82) yields:

. . 2

a a
a a

If 1 is taken to be constant, there are several solutions depending on whether p is

positive, negative, or zero, and depending on the sign of an integration constant.

Case 1: p =0
It is straightforward to integrate Eq. (84) and find that

a(t) = (k1 + ¢)*/°. (85)
After setting u = k7 + ¢, the equation for ¢ turns out to be an Euler equation:
5 20
" “, =1 22, —
P +3u P +27u P = 0. (86)
This equation can be converted into a linear equation by putting z = In(u), resulting
in
2 2dy 20
T 2Py =0. 87
dz?2 = 3dz + 271/} (87)

The general solution, after choosing the origin with ¢y = 0, is elementary:

¥ = e 3* cos (\/ 17/271n(k7)) . (88)

Case 2: p #0

If u # 0 and is constant, it is tempting to guess a simple exponential form, but
that would imply p = 0, returning the vacuum case. Instead, the Eq. (84) must be
solved in more generality. Dividing the equation by five and multiplying through

by a?/® results in:

d 1
p (a*/Pa) = — gua9/5. (89)
Now, multiplying both sides by a*/®4, it is possible to arrive at a simple antideriva-

tive for 7, which can then be inverted to obtain the expansion factor, a(7):

4/5
o’ da = +(1 — 7). (90)
1/2
(—§a'®>+0)

The positive sign on (7 — 79) will be taken going forward. Some choices of the
constants will result in contradictions, such as p = 0 or an oscillating solution
admitting negative values of a(7). However, two such solutions for the scale factor
a(7) are of interest. The choices C' > 0 and p < 0 yield

a(r) = asinh®°(B7) (91)
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where o = (9|C|/|u|)>/*® and § = 3|u|*/?/5 are both constants. The solution of
Eq. (91) is singular at the origin, has positive energy density, and inflates exponen-
tially. The choices C' < 0, p < 0 yield

a(t) = acosh®® () (92)

which is non-singular at the origin, has a positive energy density and again, inflates
exponentially thereafter. The equations for the scalar field are linear with hyperbolic
function coefficients, and will not be presented, here.

So the source pi of the scalar field equation, as shown here, assumes the same
role as a cosmological constant. That is also true in the static, spherically symmetric
case. There are two important differences: First, u need not be constant; Second,
the source of a field contributes to the dynamics of the system. Intuitively, ui is
related to the density of charge squared, although some other interpretation may
be required for cosmological solutions.

5. Concluding Remarks

In this paper, I have demonstrated that there is a relationship between the idea
of a nonlinear differential operator on spacetime and the classical fields of physics.
By using a simple variational principle, it’s possible to develop GR, electromag-
netism, and a quantum mechanical scalar field as parts of a single entity, a tensor
multinomial associated with a subalgebra of the universal covering algebra of ten-
sors in four spacetime dimensions. Further, the formalism yields a new way of
introducing the equivalent of a cosmological constant, including the possibility of a
“time-dependent cosmological constant”, i.e. a cosmological function, as called for
recently by James Peebles.”

The mathematical ideas here could readily be carried out with spinors, as well,
which might yield some new insights. Three fields could be represented as a single
mathematical object by the direct sum of a spin-one-half spinor, a spin-one spinor,
and a two-spinor.

This theory could be of interest to those seeking explanations or models for cos-
mic inflation, dark matter, or dark energy, the “cosmic trifecta”. The theory is not
complete as it stands, because it is unclear which of the many variations connects
best to current theory and also makes correct predictions concerning those three
unexplained phenomena. The field equations can be derived and tested, however,
and through that process it may be possible to determine the best way forward.
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