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1I N T R O D U C T I O N

In this thesis we will present three seemingly very di�erent models that can be
treated in the context of holography. First, in chapter 2 we will present the black hole
S-matrix of Gerard ’t Hooft, and we will show how by solving a quantum mechanical
problem, one can obtain the same S-matrix. Then, in chapter 3 we will present the
correspondence between non critical Liouville string theory coupled to c = 1 matter
and the dual matrix quantum mechanics model. Finally, in chapter 4 we will present
an example of correspondence, between a condensed matter system at quantum crit-
icality and a gravitational theory. We would like in this chapter, to give a basic and
self-contained introduction of the various physical notions that one needs to be fa-
miliar with in order to read this thesis. As well as to emphasise the underlying links
among the seemingly unrelated three main chapters.

1.1 holography

If one wants to summarise in one word what is the core subject of this thesis, this
word would be holography. What we mean by holography broadly is the mapping
of a gravitational theory in D dimensions to a quantum mechanics system or quan-
tum �eld theory in less dimensions. In this section we �rst present the Holographic
Principle by ’t Hooft and then we focus on gauge/gravity duality, which is the best
understood example of holography to date.

1.1.1 Holographic Principle

The holographic principle was �rst stated by Gerard ’t Hooft [3] and then re�ned by
Susskind [4] who combined his ideas with those of Thorn [5] and ’t Hooft. The origi-
nal statement by ’t Hooft is that if we want the physical phenomena associated with
gravitational collapse to be consistent with the postulates of quantum mechanics,
then at a Planckian level our world does not have the degrees of freedom expected in
3 + 1 dimensions but rather the observable degrees of freedom can be described as
if they were Boolean variables de�ned on a two-dimensional lattice, evolving with
time. This idea was inspired by the Bekenstein-Hawking entropy of a black hole,
which as we will see later on is given by an area law and it does not scale with the
volume as is usually the case with statistical systems –where gravity does not play
any role. More generally one can make the statement that our world is a hologram in
the sense that its degrees of freedom can be understood as the degrees of freedom of
a two dimensional lattice where at each lattice point there is one degree of freedom
–one bit of information.

1



2 introduction

These ideas gave seeds to what we now call gauge/gravity duality. The latter, was
initially formulated in the context of D- branes in string theory. Its best understood
example is the duality betweenN = 4 super- Yang-Mills (SYM) �eld theory at strong
coupling and type I IB string theory on AdS5 × S5 at weak coupling (supergravity
limit). It is also called AdS/CFT1. Gauge/gravity duality has been applied to much
more general systems than the previous example. For example it can be used even
outside the context of string theory, when the �eld theory is not conformal and the
gravity is asympotically locally AdS. In this more general form it can be used to
describe physics at strong coupling in condensed matter systems and phenomeno-
logical QCD models. In the next subsection we are going to review both the formal
and the more applied aspects of gauge/gravity duality.

1.1.2 Gauge/Gravity duality

Gauge/Gravity duality refers to the correspondence between a gauge theory and a
gravitational theory at some appropriate limit, that we are going to describe in the
following. But �rst we should introduce the large N limit and the ’t Hooft coupling
that as we will show are essential for the existence of gauge/gravity duality. There is a
tremendous number of reviews about gauge/gravity duality both for the applications
and the more formal aspects, here we cite only the reviews that we used to write this
section [6, 7, 8].

1.1.2.1 The large N limit and the ’t Hooft coupling

One of the �rst hints that gauge theories are related to string theories was given by
the large N expansion proposed by Gerard ’t Hooft [9] as a possible approach to
render QCD solvable. Before we move on to present the large N limit, let us �rst
mention that string theory that now is a theory of gravity was �rst formulated in
order to explain the experimental discovery of mesons and hadrons in the 1960’s.
The idea was to view all these particles as di�erent oscillation modes of a string. This
approach was successful in capturing some aspects of the spectrum of those particles.
It was later discovered that hadrons and mesons are actually made of quarks and that
they are described by quantum chromodynamics (QCD).

QCD, is a gauge theory that has an SU(3) gauge symmetry. This is what we call
colors of quarks. The basic characteristic of QCD is that it is strongly coupled at low
energies and that its coupling decreases as the energy increases (it is asympotically
free). QCD at low energy is strongly coupled and cannot be treated perturbatively.
Moreover it is not clear what is an appropriate expansion parameter since the cou-
pling constant is not a free parameter but after renormalisation it is absorbed into
de�ning the scale of the masses. Therefore, we are not able to perturb with respect
to it.

1 The term AdS/CFT stands for Anti-de-Sitter space/ Conformal Field Theory since as we will see later on
the gravity theory lives in an AdS space and the �eld theory is conformal in the case of the canonical
example given by Maldacena.
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figure 1: Perturbation expansion in powers of 1/N and classi�cation with respect to the
topology of the graphs.

+ + + ....
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22 0 -2

figure 2: Genus expansion of closed oriented strings, gs is the string theory coupling con-
stant.

To tackle this issue, Gerard ’t Hooft in [9] proposed that one can send N → ∞
and the same time to keep �xed λ = g2N, where λ is the ’t Hooft coupling and g is
the bare coupling constant of the gauge interactions. Now, the ’t Hooft coupling is
the one that governs the pertubative expansion. The idea is that the gauge theories
simplify at large N limit and one can have a well de�ned perturbation expansion in
powers of 1/N. Indeed, he showed that the correlation functions at this limit have
such an expansion. Moreover by introducing the double line notation he classi�ed
the various Feynman graphs with respect to their topology –their genus (number of
handles in a two dimensional surface)– this is the so called “genus expansion”, see
Figure 1. It can be shown that the only diagrams that contribute at this limit are the
planar2 ones, since they are of order N2 and the rest are suppressed by powers of
1/N2. Another theory that we �nd such genus expansion is in perturbation theory
of closed oriented strings, see Figure 2. We can match these two by identifying gs =
1/N, where gs is the string coupling constant. In this case the genus is referred
to the di�erent topologies of the two dimensional string worldsheet. This similarity
between the gauge theory and the string theory expansion is the strongest indication
that there should exist some relation between them. But, this is not enough to tell us
which string theory is dual to which gauge theory.

2 They are diagrams that can be draw on a sphere without intersecting themselves.
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a) b) c)

figure 3: In picture a) we see a Dp- brane where open strings can end. In picture b) we see
three parallel Dp- branes where open strings stretch among them. In picure c) we see a stack
of N coincident Dp- branes where N2 open strings are stretching on.

1.1.2.2 AdS/CFT correspondence

The best way to see the relation between gauge theories and string theories is by
studying Dp- branes, where we will be able to show that we can get the two di�erent
theories by taking two di�erent limits. The best understood example was given by
Maldacena in [10] and it is the one that we are going to describe here. Take a stack
of N coincident Dp- branes with N being large. Dp- branes are objects in string
theory with p spatial dimensions. We want to describe the low energy excitations of
this stack of Dp- branes in two di�erent limits. For simplicity we will restrict to a
stack of N coincident D3- branes embedded in nine spatial dimensions of I IB string
theory, see Figure 3. How strong is the gravitational back-reaction depends on how
large N is and on the dimensionless string coupling constant gs. When

λ ≡ 4πNgs � 1 , (1.1)

the gravitational back-reaction of the D3- branes is negligible, since the tension of
the N D3- branes scales as N/gs, but the strength of gravity is g2

s . In this limit the
D3- branes, just exist in the nine dimensional space parallel to each other and be-
tween each pair of them there are open strings stretching, there are N2 such strings.
Since the branes are coincident, the lightest string states are massless. These are the
low energy degrees of freedom of the theory. These N2 massless excitations can be
described byN = 4 super Yang-Mills theory. This theory, has an SU(N) symmetry
and its matter content transforms in the adjoint representation this allows us to intro-
duce matrix indices for their study. This theory describes excitations that propagate
on the three spatial dimensions of the D3- branes and has the following Lagrangian
density

L ∼ N
λ

Tr
(

F2 + (∇Φ)2 + iΨ̄ /DΨ− iΨ̄ [Φ, Ψ]− [Φ, Φ]2
)

, (1.2)
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u→

L

0
AdS5 x

N D3

figure 4: In this picture we see the formation of AdS5 × S5. The stack of N D3- branes
gravitationally collapses and forms the in�nite throat at u→ 0, when we are at the limit (1.3).
The D3- branes act as sources of closed strings (red closed lines). These closed strings cannot
escape from the throat since it is in�nite and at this limit the transmission and absorption
probabilities are zero thus they decouple from the rest �at space u→ ∞. L is the AdS5 radius
and u is the radial coordinate in the ten dimensional �at space time.

where F is the SU(N) �eld strength, Φ are bosons and Ψ are fermions. Both of
them transform under the adjoint representation of SU(N), thus can be written as
matrices. The overall trace is over the SU(N) indices. Moreover this theory is su-
persymmetric with a global SU(4) symmetry (R- symmetry) as well as conformal
(SO(4, 2)). One can see that (1.1) is the ’t Hooft coupling. To summarise, the claim
is that the low energy excitations of the stack of N D3- branes in the limit (1.1) is
given by a weakly interacting matrix large N theory.

In the opposite regime

λ ≡ 4πNgs � 1 , (1.3)

the e�ects of gravity are very strong forcing the N Dp- branes to gravitationally
collapse forming a black brane, see Figure 4. By de�nition the horizon of the black
brane is in�nitely gravitationally redshifted. Thus for an observer at in�nity the low
energy excitations of the system are excitations that occur at the near horizon geom-
etry. In our case the near horizon geometry is AdS5 × S5 with the following metric

ds2 = L2(
−dt2 + ∑3

i=1 dx2
i + dr2

r2 + dΩ2
5) . (1.4)

The xi coordinates are along the D3- brane spatial dimensions, the radial coordinate
r is orthogonal to the D3- branes, while the rest �ve directions form a �ve sphere.
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The horizon is at r → ∞ and the AdS radius L can be related to the string length Ls
and the Planck length Lp, L = λ1/4Ls = (4πN)1/4Lp. In particular, in the strong
’t Hooft coupling regime (1.3) and at large N � 1, the radius of curvature L of
the AdS5 × S5 geometry is very large compared to both the string and the Planck
lengths. Thus, we can neglect quantum gravity e�ects and highly excited string states,
so that the near horizon excitations are classical gravitational perturbations of the
background (1.4). The AdSd+1 space is a maximally symmetric space with isometry
group SO(d, 2)3.

The conclusion of the above discussion is that the low energy excitations of a stack
of N D3- branes at the two opposite ’t hooft coupling limits are described by two
di�erent theories, a gauge theory at weak coupling and a gravity theory at strong
coupling.

Maldacena conjectured in [10] that there exists a decoupled set of degrees of free-
dom that interpolates between these weak and strong coupling descriptions. In the
context of D3- branes this translates to the following: the classical gravitational dy-
namics of AdS5 × S5 is the strong coupling description of large N N = 4 super
Yang-Mills theory. One can notice that the gravitational theory lives in more dimen-
sions than the gauge theory.

There are more examples of such dualities that one can form by choosing di�erent
types of branes. Another very important example comes from M- theory, if one takes
a stack of large N number of M2- branes in R1,2 × R8/Zk then the low energy
theory is at weak ’t Hooft coupling the 2+ 1- dimensional gauge theory called ABJM
[11] and at strong ’t Hooft coupling is the 11- dimensional supergravity on AdS4 ×
S7.

AdS/CFT and more generally gauge/gravity duality is a strong/weak type of du-
ality. Seen in a string theoretical framework it is an open/closed duality, since D-
branes can be seen as objects where open strings can end but also as sources of
closed strings. In the weak ’t Hooft coupling, it is the open strings spectrum that
gave us the gauge theory (the open string spectrum does not include the graviton).
On the other hand, the equivalent interpretation as closed string sources (graviton is
included in this case) gave us the gravitational theory. There are other examples of
open/closed duality that hey were discovered even before AdS/CFT. Such an example
of open/closed duality is the duality between noncritical string theory and the c ≤ 1
matrix models4 that we will study in chapter 3.

1.1.2.3 Applied Gauge/Gravity Duality

Now, that we have presented the best understood example of gauge/gravity duality
from a string theoretical point of view, we are ready to move towards applications

3 One can notice that the conformal group of a d dimensional conformal �eld theory is the same as the
isometry group of AdSd+1 space. This matching of the symmetries justi�es, as we will see in 1.1.2.3 in
the context of applied AdS/CFT that we ask for the gravity theory to be asympotically locally AdS and to
live in one more dimension than the �eld theory.

4 In this thesis we are going to present the case of c = 1 matrix model and Liouville string theory in the
form of “old matrix model” where open/closed duality is not essential for our results, but we are going to
give a basic presentation of the D- brane interpretation.
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of this duality. Although, the duality is not proven mathematically there have been
many successful consistency checks. We are at such level of con�dence that we use
the duality in less restrictive setups and outside the string theoretic framework. By
this we mean the following: it is enough to have a gauge �eld theory that is strongly
coupled 5 and has a large number of colors on the one side and a classical gravitational
theory at weak coupling and one more dimension that is asymptotically locally AdS
on the other. Then the de�ning relation of the correspondence is [12]:〈

e
∫

dd(x)J(x)O(x)
〉

CFT
=
∫
Dφ eSAdSd+1

∣∣
φ(x,∂AdS)=J(x) , (1.5)

where, J(x) is the source for the operator O(x) in the �eld theory side and φ(x, r)
is the bulk �eld that lives in the AdS space and whose leading behavior near the
boundary corresponds to the source for the operator O. Thus if one wants to com-
pute correlation functions for the operator O should vary the gravitational action
with respect to the dual �eld φ. The matching between the di�erent computations
that can be performed at each side can be done using the holographic dictionary be-
low.

∂AdS: CFT Bulk AdS: Gravity
Global Symmetry Gauge Symmetry

Temperature Hawking temperature
chemical potential/charge density boundary values of the gauge �eld

Scalar operator Ob Scalar �eld φ(x, r)

Energy-Momentum Tensor Tab Metric Tensor gµν

Global Internal Symmetry Current Ja Maxwell Field Aµ

This broader de�nition of gauge/gravity duality allows us to study condensed mat-
ter systems such as strange metals and high temperature superconductors [8], where
strong coupling and lack of a quasi-particle description renders the usual methods in-
su�cient. Moreover, phenomenological models of QCD were constructed that show
agreement with lattice computations and experimental results [13, 14].

In contrast with the example of the previous section, where one follows a top-down
approach, starting from string theory and taking appropriate limits to arrive at the
quantum �eld theory and the classical gravity descriptions respectively, in the case
of applied holography the approach is more phenomenological. In this case, one just
assumes the validity of the duality and proceeds by using the dictionary. This way,
one maps the strongly coupled �eld theoretic problem to a problem described by an
e�ective weakly coupled (classical) gravity theory. This approach is called bottom-up
and since the connection through string theory is lacking one can not know the exact
�eld content of the theory. As one can see from the dictionary the only relations that
one can get are expectation values and correlation functions of operators. But, still

5 Let us stress that conformality is not essential and can be dropped.
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this approach is very useful since these are precisely the observable quantities -the
quantities that one can measure in an experiment and the ones that have a physical
meaning.

1.2 black holes

Black holes are fascinating and mysterious objects that can be observed in nature
[15]. At the same time there is huge theoretical interest in them for various reasons
that we are going to review in the following paragraphs, such as the well known
information paradox. Except of their own very interesting and still not completely
understood physics, one can appreciate their usefulness as tools that give access and
shed light in the thermodynamic properties and phase transitions of strongly coupled
systems in the framework of gauge/gravity duality.

Black holes as astrophysical objects are very dense and they have a singularity
at their center that is cloaked by a surface called the event horizon. After something
passes through the event horizon classically cannot get out and even the light cannot
escape hence the name. One way that a black hole can form is when a very large star
has burned all its fuels and cannot support its volume anymore. Then, it undergoes a
gravitational collapse shrinking to a tiny size with huge density, this is the so called
singularity. The gravitational �eld around it is huge and it starts “eating” anything
that passes through its event horizon even light, making it even more dense. Since
black holes are “black” they do not emit any electromagnetic signal outside their
event horizon at least classically. The way that scientists detect a black hole is from
other astrophysical objects that are forced to orbit around them due to the black
hole’s huge gravitational �eld. They accelerate and emit radiation and hence give us
the signal that something with huge mass is there.

In the beginning of the 20th century, general relativity was discovered and came
to explain in a classical context the gravitational interactions in cosmological scales.
Schwarzschild in 1916 found the black hole solution [16]–named after him– as so-
lution of the vacuum Einstein equations. This means that general relativity, allows
such singular geometries. What characterises such a solution is a curvature singular-
ity that is cloaked by a horizon. After the black hole has formed, it is characterised
only by a handful of parameters. Those are its mass and charges such as the electric
charge and the angular momentum. This means that we lost all the information about
the in-falling matter that formed the black hole. This property allows us to treat the
black hole as a thermodynamic system. Indeed, it was discovered that the three laws
of thermodynamics can be translated to the three laws of black hole mechanics [17].

Bekenstein [18] and Hawking [19] argued that the entropy of the black hole scales
with the area of the horizon, in contrast with what is expected usually from statistical
systems where the entropy scales with the volume6. Moreover, Hawking by doing a
semi-classical computation discovered that black holes emit thermal radiation [20].
Since the radiation is thermal, after the total evaporation of the black hole, we can-

6 This observation, as we saw led to the formation of the holographic principle since it seems that all the
degrees of freedom of the black hole “live” on its horizon.



1.2 black holes 9

not recover the information of the particles that created it. Information loss violates
unitarity and unitarity is essential for a consistent quantum mechanical theory. This
is the well known information paradox. There are many proposals for the solution
of the information paradox and the reconciliation of gravity with quantum mechan-
ics. One of them is by Gerard ’t Hooft and is based on the black hole S-matrix [21].
The black hole S-matrix is formulated by taking into account the gravitational back-
reaction that the ingoing particles have on the outgoing ones close to the horizon.
We will review the black hole S-matrix in detail in chapter 2, so we are not going to
give any more details here.

Another issue is what we mean by the black hole entropy. In the language of sta-
tistical physics the entropy counts the microscopic degrees of freedom –microstates–
of a system. But what are these microstates that the black hole is composed of? For
a theory of quantum gravity to be consistent, it should allow for a microstate count-
ing and this counting should reproduce the area law of the thermodynamic black
hole entropy. Such check has only be performed in the context of string theory and
for supersymmetric black holes [22]. For this computation supersymmetry was cru-
cial since it makes the microstates insensitive to e�ects due to changes of the string
coupling. The identi�cation of microstates was made using open/closed duality and
counting them using the Cardy formula in the conformal �eld theory side, so still we
do not know what are these microstates in the gravitational picture. Due to these rea-
sons there has not yet been performed a microstate counting for the Schwarzschild
black hole.

1.2.1 Black Holes in AdS and in AdS/CFT

New developments in the study of black holes came with gauge/gravity duality. As
we saw AdS/CFT has its seeds in the holographic principle. Black holes are a natu-
ral framework for the holographic principle, since a hologram is a two dimensional
picture that encodes information about a three dimensional object. Like the black
hole entropy is encoded at its horizon and it scales with its area, but encodes all the
information about the black hole.

The new insight that AdS/CFT gave us is that now we can have a dual description
of the black hole physics in terms of a quantum �eld theory. Naturally, there are many
studies that try to solve the information paradox [23, 24] in this context as well as to
count the black hole microstates [25, 26, 27, 28]. There is a drawback, though in this
approach, that we can study asymptotically AdS and not asymptotically Minkowski
black holes.

On the other hand, in the context of gauge/gravity duality one can use the semi-
classical description of black holes to model strongly coupled �eld theories at �nite
temperature, charge density, magnetic �elds etc. Indeed in chapter 4 of this thesis we
are going to use this approach to model a strongly coupled system at �nite charge
density and under external magnetic �eld. There are many such studies in the ap-
plied AdS/CFT literature, for example we have seen the use of black holes to model
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high temperature superconductors, heavy ion colisions, the dehavior of quark-gluon
plasma etc.

Since in chapter 4 we are going to use asymptotically Anti-de Sitter black hole solu-
tions arising in four-dimensionalN = 2 gauged supergravity, we would like to give
a brief and incomplete overview. Gauged supergravity is the low energy e�ective
theory describing string compacti�cations in the presence of �uxes. Compacti�ca-
tions on a seven dimensional manifold give us four dimensional con�gurations with
a scalar potential. This potential allows for a negative cosmological constant, thus
for asymptotically AdS black hole solutions. The solutions that arise at this context
are very useful for many reasons [29]. First of all some of them can be embedded in
M/string theory and through AdS/CFT can be seen as dual con�gurations in the con-
text of ABJM [11] theory. In this framework there are recent studies that are trying
to count their microstates [25, 26, 27, 28]. Moreover since they are four dimensional,
they can be charged and be at �nite temperature, by employing the AdS/CFT dictio-
nary, they can be used in studies of 2 + 1- dimensional condensed matter systems.
Indeed they have been used in top down models of holographic superconductors
[30, 31, 32]. Going away from the formal AdS/CFT, we see their extensive use also in
applied gauge/gravity duality where people use them to explore universal behaviors
of transport coe�cients as well as to study phase transitions both in top-down and
bottom-up models [33, 34, 35].

1.3 matrix models and liouville string theory

Random matrix models have many applications in various �elds of theoretical physics.
In the context of this thesis we are interested in matrix models from the point of view
of string theory. But, �rst we would like to give some examples of the use of random
matrices in other physical problems. The use of matrix models implies the existence
of random processes, since usually we turn to them when the matrix size is large.

The �rst time matrix models where used in physics, was when Wigner [36] re-
alised that the energy levels of large atomic nuclei have the same distribution as the
spectrum of eigenvalues of a random Hermitian matrix when the size of the matrix
becomes in�nite. The importance of this observation lies in the fact that one can use
the matrix model approach for any nucleus that is su�ciently large, thus there is an
underlying universality. The identi�cation of universal features is very important in
the case of chaotic systems and systems with large number of degrees of freedom.

Another natural case that we can use matrix models is when we take the large N
limit. As we already saw, since the gauge �elds are operators in the adjoint represen-
tation of SU(N) they are N × N unitary matrices. Moreover, if we use the double
line notation we can classify the Feynman diagrams according to their topology. In
this limit only the planar graphs contribute –the ones that can be drawn on a sphere
without intersecting themselves. Furthermore, one can have a diagrammatic expan-
sion in terms of the size of the matrix for each matrix model. These, simpli�cations
although did not solve QCD gave a huge insight in the connection between string
theory and gauge theories and as we already saw led to gauge/gravity duality.
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In the following subsections we are going to present the connection of matrix
models with two dimensional string theory. Again there are numerous reviews, here
we cite the ones that we used [37, 38, 39, 40].

1.3.1 Liouville �eld theory

As we know from a basic course in string theory, for a string theory to be consistent
we want the Weyl anomaly to cancel. This can happen only for speci�c dimensions
of spacetime. These special dimensions are twenty six for the bosonic case and ten
for the supersymmetric one. Moreover in the supersymmetric case we have absence
of the tachyonic mode –scalar mode with negative mass– that destabilizes the vac-
uum in the bosonic case. When the Weyl anomaly is not canceled we can still have
meaningful theories, the so called noncritical string theories. Such theories can be
interpreted as statistical ensembles of collections of two dimensional surfaces em-
bedded in a D dimensional space. Employing this interpretation we can even allow
for breaking of Weyl invariance at the classical level for example by introducing a
worldsheet cosmological constant.

String theory is believed to be the theory that describes our world since it produces
all possible states that we need, incorporates quantum gravity and at low energies it
can reduce to interesting �eld theories. Moreover, it has the ability to describe many
di�erent worlds, but it does not have a mechanism to explain why our world is as it
is. One of the reasons that we do not have a more thorough physical understanding
of string theory is the di�culty to incorporate non perturbative e�ects7[? ]. After
the discovery of D- branes a lot of progress has been made towards this direction
for example through open/closed duality and AdS/CFT. Another road that scientists
followed, before the advent of D- branes was discovered, was to try to work in two
dimensions where due to reduction of the number of dynamical degrees of freedom
the equations and the physics simplify considerably but still interesting phenomena
can arise. In this section we are going to follow this second path. We are interested
in Liouville �eld theory coupled to c = 1 matter, a non-critical string theory that is
equivalent to two dimensional string theory in a linear dilaton background, a critical
string theory.

Liouville equation named after Joseph Liouville was studied by him in order to un-
derstand the conformal properties of the Riemann surface (especially the uniformiza-
tion problem8). When one quantises the two dimensional gravity the quantum Liou-
ville equation emerges. Starting from the Polyakov formulation of the path integral
of string theory for �xed topology, allowing for a cosmological constant term we
have,

Z =
∫

[Dg] [DX] e−S[g;X]−µ0
∫

d2z
√

g , (1.6)

7 More precisely we do not know what is the true vacuum of the theory.
8 The uniformization theorem says that every simply connected Riemann surface is conformally equivalent

to one of the three Riemann surfaces: the open unit disk, the complex plane, or the Riemann sphere. In
particular it implies that every Riemann surface admits a Riemannian metric of constant curvature.
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where

S[g; X] =
∫

d2z
√

ggµν∂µX I∂νX I , (1.7)

gµν is the metric of the two dimensional worldsheet and X I are the bosonic matter
�elds that live there. This integral implies that we have to integrate over all possible
topologies and geometries in two dimensions. If one performs a Weyl transforma-
tion gµν → eσgµν, then a kinetic term will arise for the scalar �eld σ at the action
due to the fact that the integration measure Dgµν is not invariant under the Weyl
transformation. Exponentiating this anomaly, one arrives at the Liouville action,

SL =
∫

d2z
(

1
2

∂µσ∂µσ + Rσ + µeσ

)
. (1.8)

To perform the path integral over the metric, we decompose the �uctuation of the
metric into the di�eomorphism vµ, Weyl transformation σ and the moduli Y. The
action and the measure of integration by de�nition are di�eomorphism invariant.
This is a gauge symmetry and we have still leftover gauge invariance that we need
to get rid o�. We do so by dividing with the volume of the gauge group. Then we
are left with integration over the conformal mode and the moduli. To implement
this change of variables we employ the Fadeev-Popov method. In the case of critical
string theory Weyl symmetry is a gauge symmetry and we can again get rid of it, but
in our case we cannot do this due to the anomalies at the integration measure. By
choosing to work in the conformal gauge gµν = eφ ĝµν, the partition function of the
two dimensional quantum gravity coupled to matter �elds is

Z =
∫

[DY]
[

Dφeφ ĝµν

]
[Dbc]

[
DXeφ ĝµν

]
e−S[X,ĝ]−S[bc,ĝ] . (1.9)

where b, c are the Fadeev-Popov ghosts. For the Liouville action to emerge we have
to integrate over the Liouville mode φ, but there is an issue here. The integration
measure for φ is not Gaussian and it is tricky to integrate over it. In order to bring
it to the Gaussian form we have to perform a Jacobian transformation. This is very
di�cult. Another way to treat this –proposed by David-Distler-Kawai (DDK)– is to
guess the Gaussian measure by asking for “locality”, “di�eomorphism invariance”
and “conformal invariance”. Then we get the renormalised Liouville action

S =
1

4π

∫
d2z
√

g
(

∂µφ∂µφ + QRφ + 4πµe2bφ
)

, (1.10)

where one can �nd that Q = b + b−1. Moreover, for the metric to be real the central
charge of the matter �eld cm ≤ 1.

Let’s now present the second interpretation of the c = 1 Liouville theory as a
critical two dimensional string theory. Let’s start by considering the sigma model
description of the critical string in general dimensions with arbitrary background
�elds.

S =
1

4π

∫
d2z
√

g
(

gµνGab(X)∂µXa∂νXb + 2Λ2T(X) +
1
2

RΦ(X)

)
, (1.11)
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where we have put Bµν = 0 (the total antisymmetric rank two tensor) and Λ is the
cut-o� scale of the world sheet. If we ask for the background to be consistent with
the string equation of motion then this action has to satisfy conformal invariance.
This translates to the vanishing of the beta functions at �rst order with respect to α′.

βµν (g) = Rµν +∇µ∇νΦ− 1
4

∂µT∂νT

β (Φ) = −R +
(
∂µΦ

)2 −∇2Φ +
2(D− 26)

3
− T2 +

1
6

T3

β (T) = ∇2T − ∂µΦ∂µT + 4T − T2 . (1.12)

These beta functions can be seen as equations of motion of the following e�ective
action

S =
∫

dDx
√

Ge−Φ
[

R + (∂aΦ)2 − 2(D− 26)
3

− 1
4
(∂aT)2 + T2 − T3

6

]
. (1.13)

If we compare the action (1.11) with the c = 1 Liouville action,

S =
1

4π

∫
d2z
√

g
(

gµν∂µφ∂νφ + 2Rφ + 4πµe2bφ + gµν∂µX∂νX
)

, (1.14)

we see that when µ = 0, they match for: D = 2, Gab = ηab, Φ = 4φ and T =
0. When µ 6= 0 then we also have the following identi�cation: Λ2T = 2πµe2φ.
In this case though, the mass-shell condition for the tachyon �eld is satis�ed9 but
the one-loop corrected beta function is not. Since, Liouville theory is by de�nition
conformal invariant we expect that if one includes all orders in α′ the beta function
will be satis�ed. We see that Φ = 4φ gives rise to the emergent second dimension
the so called Liouville dimension. The inclusion of the tachyonic mode T is very
important since as we can see from Λ2T = 2πµe2φ, it is analogous to the exponential
of the Liouville direction. As we see from (1.11) it imposes an exponential potential
at the string theory action, that protects the perturbative string theory from entering
the strong coupling regime, thus allowing for a meaningful perturbation theory, see
Figure 5.

Using the string theory formulation one can compute the genus one (torus) parti-
tion function. One can also quantise semi-classically the theory and compute expec-
tation values of correlators of operators again though at some approximation. The
tool that enables us to compute higher genera and non-perturbative contributions is
the matrix model approach that we are going to describe in the next subsection.

1.3.2 Matrix Models

The c = 1 Liouville �eld theory can be represented by a matrix model. This matrix
model comes to life by summing over geometries embedded in one dimension, but as
we have already shown the resulting string theory is two dimensional and the extra

9 It is a massless �eld in the case of two dimensional string theory, it is not really a tachyon.
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φ
weak coupling strong coupling

μe2bφ

~ -logμ/2b

figure 5: In this picture we see the scattering of a tachyon excitation o� the tachyon poten-
tial µe2bφ. When φ → ∞ (strong coupling), the exponential barrier keeps the string theory
perturbations from reaching the strongly coupled region.

dimension comes from the Liouville mode. The role of the matrix model is to map
this one dimensional embedding into a non-relativistic quantum mechanics model
of free fermions. In this language, in principle one can compute any quantity at all
genera.

We parametrize the continuous surfaces by coordinates z1, z2. The Euclidean ge-
ometry is described by the metric gµν(z), and the embedding by the scalar �eld X(z).
Then indeed the theory of random surfaces in one embedding dimension is equiva-
lent to two dimensional quantum gravity coupled to a scalar �eld. This can be seen
from the path integral formulation, where we have to sum over all the compact con-
nected geometries and their embeddings,

Z = ∑
topologies

∫
[Dgµν][DX]e−S , (1.15)

where we have chosen S to be the simplest covariant action in two dimensions:

S =
1

4π

∫
d2z
√

g
(

gµν∂µX∂νX + RΦ + 4λ
)

. (1.16)

As we know in two dimensions the integral of curvature R

1
4π

∫
d2z
√

gR = 2(1− h) = χEuler , (1.17)

gives the Euler characteristic χEuler that depends only on the number of handles h
–the genus– of the surface. One can see the surface with h handles as a string theory
diagram with h loops. The weighting factor for a surface with h handles is eΦ(2h−2)
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figure 6: In this picture we see the trangulation of a surface. The red lines compose the
triangular lattice Λ and the black double lines the dual lattice Λ̃.

and we can identify g0 = eΦ where g0 is the string theory coupling. Instead of the
continuous approach that we presented in the subsection above, here we are going to
sum over discrete approximations to smooth surfaces and then we will take the limit
that the lattice spacing goes to zero to get the continuum sum. One way to discretise
the surfaces is to triangulate them, see Figure 6 –to approximate the surfaces with
a collection of equilateral triangles with side a. Each face of the triangular lattice is
considered �at, and the curvature is entirely concentrated at the vertices. Each vertex
I of the triangular lattice has a conical singularity with de�cit angle π(6− qI)/3,
where qI is the number of triangles that meet at I. Thus, the vertex I has a delta-
function of curvature with positive, zero, or negative strength if qI ≤ 6,= 6,≥ 6
respectively. In the continuum limit the size of each face becomes in�nitesimal, and
we can de�ne the smoothed out curvature by averaging over many triangles.

The basic assumption that we made here is that the sum over the handles is equiv-
alent to the sum over the various lattices when we send the lattice spacing to zero.
Then the integral over the embeddings

∫
[DX] is de�ned as the integral over all pos-

sible embeddings of the lattice in the real line. The last piece left to complete the
procedure is to specify the weight attached to each con�guration. This can be done
by discretising the action (1.16) and counting each con�guration with weight e−S.
The discretised version of (1.15) is

Z(g0, κ) = ∑
h

g2(h−1)
0 ∑

Λ
κV

V

∏
i=1

∫
dXi ∏

〈ij〉
G
(
Xi − Xj

)
, (1.18)

where Λ is the lattice, 〈ij〉 is referred to the links of the dual lattice Λ̃, V is the
number of vertices of the dual lattice, κ ∼ e

√
3λa2/4π and G(X) = e−X2/2.

The important observation here is that this partition function is given by the sum
of all connected Feynman graphs in the quantum mechanics system of N × N Her-
mitian matrices. To make this clearer, let’s consider the following partition function

Z =
∫

DN2
Φ(x)exp

(
−β

∫ T/2

−T/2
dx Tr

(
1
2
(dxΦ)2 + U(Φ)

))
, (1.19)
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where U(Φ) = 1
2α′Φ

2 − 1
3! Φ

3, x is the Euclidean time and β = 1
} . The next step is

to rescale Φ such that,

Z ∼
∫

DN2
Φ(x)exp

(
−N

∫ T/2

−T/2
dx Tr

(
1
2
(

dΦ
dx

)2 +
1

2α′
Φ2 − κ

3!
Φ3
))

, (1.20)

where κ =
√

N/β is the cubic coupling constant. The sum over all connected graphs
is

lim
T→∞

ln Z = ∑
h

N2(1−h) ∑
V

κV
V

∏
i=1

∫ +∞

−∞
dxi ∏
〈ij〉

e−|xi−xj |/α′ . (1.21)

If we compare (1.18) and (1.21), we can see that they match if we identify X with
x –the embedding coordinate– with the Euclidean time. Then, the link factor G is
represented here by the one dimensional Euclidean propagator. Moreover, from the
one dimensional Euclidean propagator and the identi�cation between X, x one can
see that the scaling of X is determined by α′. Finally, the string coupling g0 is re-
lated to the size of the matrix N as g0 ∼ 1/N. Due to this identi�cation the free
energy expansion for the matrix model, in powers of 1/N2 gives a classi�cation in
a topological fashion of the surfaces. Then, it looks like we have to keep N �nite if
we want g0 to be �nite, but we will show that if we take the continuum limit and the
same time we send N → ∞, we end up with a �nite string coupling g0. This is the
so called double scaling limit.

Let us now, review how one takes the continuum limit. We start by increasing the
cubic coupling up to a critical value κc. When κ = κc, the number of triangles that
parametrise a surface goes to in�nity and each triangle has become in�nitesimal so
that each surface is continuous and �nite. Moreover, when κ → κc, we de�ne the
cosmological constant to be ∆ = π(κ2

c − κ2). Since κ = κce−
√

3λa2/4π , where λ the
physical cosmological constant, we have λ ∼ ∆/a2.

We would like to stress here that although we chose to triangulate the surfaces,
we could have chosen any other way to discretise the surfaces and again be able
to make connection with the matrix quantum mechanics, the only di�erence would
have been the use of a di�erent potential U(Φ). In the end the way that we discretise
the surfaces after we take the double scaling limit should not play any role.

Now that we have shown the connection between the sum of the connected Feyn-
man diagrams of a quantum mechanical system of N × N Hermitian matrices with
the partition function of discretised surfaces, we would like to move to the Hamilto-
nian formalism and show how the free fermionic theory arises.

Using Hamiltonian formalism the partition function is

Z =
〈

f |e−βHT |i
〉

, (1.22)

where f is the �nal state, i is the initial state and H is the Hamiltonian. Now, if we
take the limit T → ∞ and the �nal and initial state to be the same we can compute
the ground state energy E0 as follows

lim
T→∞

ln Z
T

= −βE0 . (1.23)
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Then, since we are interested to compute the partition function for the embedding
in the in�nite line, the only thing that we need to compute is E0. To do so �rst we
have to quantise the SU(N) symmetric Hermitian matrix quantum mechanics. The
Lorentzian signature Lagrangian is

L = Tr
(

1
2

Φ̇2 −U(Φ)

)
. (1.24)

The Lagrangian is symmetric under rigid rotations Φ(t)→ V†Φ(t)V where
V ∈ SU(N). Now we are going to diagonalise the matrix Φ such that Φ(t) =
Ω†(t)Λ(t)Ω(t), where Ω ∈ SU(N), the diagonal piece is
Λ(t) = diag(λ1(t), ..., λN(t)) and the rest N2 − N angular degrees of freedom are
at the Ω pieces. So, then we have

Tr
(

Φ̇2
)
= Tr

(
λ̇2
)
+ Tr

[
λ, Ω̇Ω†

]2
. (1.25)

Furthermore we can decompose Ω̇Ω in terms of the generators of SU(N), Tij, T̃ij
and Hi. Where Tij is the symmetric traceless piece Mij = Mji = 1, T̃ij is the an-
tisymmetric traceless piece Mij = −Mji = −i and Hi is the diagonal piece that
generates the Cartan subalgebra.

Ω̇Ω† =
i√
2

∑
i<j

(
α̇ijTij + β̇ijT̃ij

)
+

N−1

∑
i=1

α̇i Hi . (1.26)

Then (1.24) substituting (1.26) and (1.25) becomes

L = ∑
i

(
λ̇2

i + U(λi)
)
+

1
2 ∑

i<j
(λi − λj)

2(α̇2
ij + β̇2

ij) . (1.27)

Now we should also transform the measure of integration DΦ in terms of Ω, λ. It
takes the form DΦ = DΩ∏idλi∆2(λ), where ∆2(λ) = ∏i<j(λi − λj), is the Van-
dermonde10 determinant. Due to the Jacobian determinant of the transformation of
the measure the kinetic term for the diagonal matrix Λ -the matrix of the eigenvalues-
becomes after some manipulations

− 1
2β2∆ (λ) ∑

i

d2

dλ2 ∆ (λ) . (1.28)

Then the Hamiltonian is

H = − 1
2β2∆ (λ) ∑

i

d2

dλ2 ∆ (λ) + ∑
i

U(λi) + ∑
i<j

Π2
ij + Π̃2

ij

(λi − λj)2 . (1.29)

Πij and Π̃ij are conjugate momenta to αij and βij. Πij generates left rotations Ω→
AΩ and since the Lagrangian is independent of α̇i the wave function Ψ should sat-
isfy the following constraints ΠiiΨ = 0. This translates to the fact that when A is
diagonal then the left rotations leave Φ the same.

10 It is totally antisymmetric.
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μEF

U

λ

figure 7: In picture (a) we see the cubic potential U(λ), on the left of the potential we see
the energy levels of the N fermions �lling the energy levels up to energy µF = εN . In picture
(b) we see the e�ect of the double scaling limit that is to focus around the tip of the potential
(around the quadratic maximum).

The next step is to �nd the ground state, such a state should be annihilated by
Πij and Π̃ij. This means that it should be in the singlet representation of SU(N).
These are symmetric functions that depend only on λ, χs(λ). By acting with the
Hamiltonian (1.29) we have

(
N

∑
i=1

hi)Ψ(λ) = EΨ(λ) , (1.30)

where E is the energy of the state, Ψ(λ) = ∆(λ)χs(λ) and hi = − 1
2β2

d2

dλ2 +U(λi).
We notice that the wavefunction Ψ is by construction totally antisymmetric and hi
is a non-relativistic single particle Hamiltonian. Then it is clear that �nding the par-
tition function for the sum of the discretised surfaces embedded in an in�nite line
has been reduced to the problem of �nding the ground state energy of a system of N
free fermions under a potential U(λ). This means that we can solve two dimensional
string theory through solving a quantum mechanical problem of N non interacting
fermions.

Now, we are ready to �nd E0. According to what we show above it should be
given by E0 = ∑N

i=1εi where εi is the energy of each of the N fermions. Since we
are dealing with fermions we cannot have them all at the same energy level, this
means that they are going to occupy the �rst N energy levels of the Hamiltonian h.
As we saw U(λ) is a cubic potential unbounded from below11, this means that it does
not have bound states. Moreover, uncontrollable non-perturbative processes such as
tunneling can occur. But we are interested in the limit where β→ ∞ -classical limit
and in an expansion in 1/β2. In this limit, there are orbits at the left of the potential
that are spaced as 1/β and their decay time is analogous to β → ∞. Thus, at the

11 In the case of 0B type “super-string” theory the potential is quartic (double well potential) and it is non-
pertubativelly stable [41].
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λ

p

figure 8: In this picture we see the phase space of the free fermions after taking the double
scaling limit. The contours are orbits of �xed energy and the pink region is the Fermi sea. The
little blob is the scattered tachyon excitation of Figure 5.

expansion in powers of 1/β2 this instability cannot be probed. Then, each εi is the
energy of each of these levels, see Figure 7. Using the Bohr-Sommerfeld quantisation
condition,

∫
pn(λ)dλ = 2πn/β, where pn(λ) =

√
2(εn −U(λ)) we can �nd the

Fermi sea level µF = εN .∫ λ+

λ−

√
2(µF −U(λ))dλ = πN/β, where λ−/+ are the classical turning points.

One can notice that µF is increasing as a function of N/β. Both µF and E0 become
singular when N/β → κ2

c and µF = µc the latter been the height of the potential
barrier. As we saw above, it is at this critical limit that the theory of free fermions
is equivalent to quantum gravity in two dimensions. For the fermionic system this
critical limit pinpoints the start of spilling of fermions o� the barrier. In Figure 8 we
see the phase space of the free fermions after we have taken the double scaling limit.

It is important to relate the cosmological constant ∆ with the chemical potential
µ = µc − µF , since this allows us to express E0 in terms of ∆. To do so we will need
the following relations. First let us de�ne the density of eigenvalues as

ρ(ε) =
1
β ∑

n
δ (ε− εn) , (1.31)

then

κ2 =
N
β

=
∫ µF

0
ρ(ε)dε , (1.32)

and

lim
T→∞

− ln Z
T

= βE = β2
∫ µF

0
ρ(ε)εdε . (1.33)
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Now, we di�erentiate (1.32)

∂∆
∂µ

= πρ(µF) , (1.34)

and we invert it to get µ as a function of ∆. Then we di�erentiate (1.33) and we
have ∂E

∂∆ = 1
π β(µ− µc). After doing the following rede�nition of the energy E →

E + 1
π βµc∆, we get

∂E
∂∆

=
1
π

βµ . (1.35)

Using the WKB relation we get

ρ(µF) =
1
π

∫ λ+

λ−

dλ√
µF −U(λ)

∼ − 1
π

ln µ +O
(

1/β2
)

. (1.36)

Substituting (1.36) in (1.34) we have

∆ = −µ ln µ +O(1/β2) . (1.37)

Then, substituting (1.36) in (1.35) we have

−βE =
1

2π
(βµ)2 ln µ + ... . (1.38)

Thus, we have related both the cosmological constant ∆ of the worldsheet and the
ground state energy E with the chemical potential µ. These relations, as we will
see in chapter 3 are crucial for the matching of the string theory with the matrix
model results. The important observation is that the critical behavior of the density
of eigenvalues comes from the part of the integral near the quadratic maximum of
the potential. This results to the quantum mechanical theory of free fermions in an
inverted harmonic oscillator potential as in Figure 7. One may be concerned because
the cubic potential is unstable and as we saw tunneling phenomena can occur. But if
one is interested in perturbative e�ects only, such as an asymptotic genus expansion,
then it can be shown that the theory is pertubatively stable, because at this limit
µ→ 0 (continuum limit) tunneling phenomena are forbidden.

The observables that one can compute now that we have completely de�ned our
model are the partition function at all genera, correlation functions, expectation val-
ues of loop operators that are poking holes into the worldsheet in the dual string
theory picture, the S-matrix of scattering states and conserved charges. Moreover,
these quantities can be computed also from the Liouville side at the torus level and
then one can match with the results from the matrix model. This is important in or-
der to be con�dent that the matrix model indeed describes the string theory that we
want to study. Since the matrix model is much more rich and we can not be sure that
they are in one to one correspondence.

The analysis above is for the case of singlet states, if one wants to consider non-
singlet excitations has to pay energy O(− log µ), but at the continuum limit µ →
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0, thus these states are completely decoupled from the singlet excitations at the
limit of interest. A way to project naturally only to the singlet states is to gauge
the matrix model by a non dynamical gauge �eld A and DxΦ = ∂xΦ + [A, Φ],
then the Gauss constraint projects on the U(N) singlets. In the model that we de-
scribed above –embedding in the in�nite line– the non-singlets do not contribute
and they do not play any role. But, if we allow for periodic Euclidean time x ∼
x + 2πR, then we must allow for twisted boundary conditions for Φ(x + 2πR) =
ΩΦ(x)Ω−1, Ω ∈ U(N). The propagator is

〈
Φk

i (x)Φl
j(x′)

〉
= ∑∞

m=−∞ exp(−|x−
x′ + 2πRm|2)(Ωm)l

i(Ω
−m)k

j . By a diagrammatic visualisation it can become clear
that the sum over mi is a sum over vortex insertions. Thus, the sum over twisted
boundary conditions introduces vortices into the partition sum for the scalar matter
�eld X. The suppression of non-singlet excitations is analogous to the suppression of
vortices in two spacial dimensions of a periodic scalar below the Kosterlitz-Thouless
transition12.

For what we have said so far we have not referred at all in D- branes, this is the
so called “old matrix model” that was developed in the beginning of the 90s. After
the discovery of D- branes in the mid 90s and after the AdS/CFT correspondence,
a di�erent perspective on the matrix model was developed. One can interpret the
matrix quantum mechanics as the quantum mechanics of a tachyonic �eld living on
a stack of N unstable D0- branes, the so called ZZ13 branes. This tachyon transforms
in the adjoint representation of the U(N) gauge group and has the following e�ective
action

ST =
∫

dt
1
2

Tr (DtT)2 − Tr [V(T)] + ... , (1.39)

where Dt the covariant derivative with respect to the non-dynamical gauge �eld
that lives on the D0- brane. The expectation is that the open string dynamics of
the ZZ branes describes the pure closed string physics of the Liouville theory at
the double scaling limit. This is a realisation of open/closed duality. Since, the D0-
branes decouple from the closed string dynamics that give gravity, precisely when at
the double scaling limit and their e�ective description (1.39) is the one of the tachyon
“�eld theory”. This is the exact equivalent of the AdS/CFT corespondence where we
can take the di�erent limits for the stack of N D3- branes and at the one case we
have N = 4 SYM and in the other gravity on AdS5 × S5.

We would like to close this section by presenting the dictionary between the two
dimensional dilaton background bosonic string theory and the c = 1 matrix model
picture, since it gives the global picture of the duality and summarises results that
we did not talk about here.

12 It is a transition from bound vortex-antivortex pairs at low temperatures to unpaired vortices and anti-
vortices at some critical temperature.

13 Named after the Zamolodchikov brothers.
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String theory Matrix model

Closed string vacuum Fermi sea of matrix eigenvalues
Liouville potential µ e2bφ Inverted oscillator potential

Worldsheet cosmological constant ∆ Chemical potential −µ ln µ

Closed strings Fermi surface density wave quanta
String S-matrix S-matrix of density waves

D0 particle (φ: D, X: N) Matrix eigenvalue λ

Open string tachyon on n D-particles A block of the matrix Mij

D-branes
(X: D, φ: N, Sbdy =µB

∮
ebφ) Macroscopic loops tr[log(z−M(λ))]

Boundary cosm. const. µB Loop eigenvalue parameter 2z

D-branes
(φ: D, X: N, Sbdy =β

∮
cos X) Eigenvalues outside the Fermi sea

Open string coupling β Eigenvalue energy E = −µ sin2 πβ

Where z symbolises the eigenvalue coordinate, D stands for Dirichlet boundary
conditions, N stands for Neumann boundary conditions.

1.4 qantum phase transitions

In this section we would like to introduce the notion of quantum phase transitions,
these are phase transitions that occur at zero temperature T = 0 due to quantum
�uctuations. In chapter 4 of this thesis, we are going to study them holographically.
Here, we will not talk about holography but we are going to present the notion from
the condensed matter theory point of view, where the physics is clearer. This section
is based on the book [42] about quantum phase transitions by Sachdev.

We consider a lattice system with Hamiltonian H(g), where g is the coupling
constant. The ground state energy of this system varies with g and in general when
this lattice is �nite, the ground state energy is a smooth and analytic function of
g. In this case (�nite lattice), a non analyticity in the ground state energy can be
present if H(h) = H0 + gH1 and H0, H1 commute, which means that although
the eigenvalues depend on g the eigenfunctions are independent of g. Then there
can be a level-crossing where an excited level becomes the ground state at g = gc.
By taking the limit where the �nite lattice becomes in�nite (continuous), there are
more possibilities. For example an avoided level-crossing between the ground and
an excited state in a �nite lattice could become progressively sharper as the lattice
size increases, leading to a non-analyticity at g = gc in the in�nite lattice limit, see
Figure 9. Thus, one arrives at the following de�nition for a quantum phase transition:
Any point of non-analyticity in the ground state energy of an in�nite lattice system
signals a quantum phase transition. The nonanalyticity could be either the limiting
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figure 9: In picture (a) we see the case of an actual level crossing and in picture (b) the case
of an avoided level crossing. Both graphs in (a) and (b) present the energy levels of a system
Ei as functions of the coupling constant g.

case of an avoided level-crossing or an actual level-crossing. The phase transition is
usually accompanied by a qualitative change in the nature of the correlations in the
ground state.

Although quantum phase transitions occur strictly at T = 0 we will see now that
they have important impact on the physics at �nite temperature. First of all let’s see
what is the fate of the quantum critical point when we turn on the temperature T > 0.
There are two possibilities either the non-analyticity vanishes at �nite temperature
and all the functions are analytic with respect to g close to g = gc, or there is a line
of second-order phase transitions14 that at T = 0 ends at the quantum critical point
g = gc, see Figure 10.

Phase transitions aside, it is worth noting how the quantum phase transition in�u-
ences the dynamics of the system at �nite temperature. The equilibration time τeq is
de�ned as the characteristic time in which local thermal equilibrium is established
after a weak external perturbation and it is a function of g− gc and T. This quantity
can be used to characterise the dynamics of the system at �nite temperature.

At T = 0 there is only one characteristic scale that is for example the energy di�er-
ence between the ground state energy and the �rst excited state ∆E and depends on
g− gc, but at T 6= 0 we have a second energy scale, kBT due to thermal �uctuations.
As one can see at Figure 10 there are two distinct regions of thermal equilibration. In
the case where ∆E > kBT , we �nd long equilibration times which satisfy τeq � }

kBT .
In this case the dynamics of the system become e�ectively classical. Thus we can use
classical equations of motion to describe the re-equilibration dynamics at the time
scale τeq. In the case where ∆E < kBT, we have the quantum critical region, here we
�nd a short equilibration time given by τeq ∼ }

kBT . The equilibration time is indepen-

14 A second order phase transition is signaled by a discontinuity in the second derivative of the free energy.
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Quantum Critical Region

k T >ΔΕ

k T <ΔΕ k T <ΔΕ

QCP, B =Bc

B

T

figure 10: In this graph we represent temperature with T, the Boltzmann constant kB with
k and the coupling constant g with B. The light blue region is the quantum critical region
(QCR). In QCR both quantum and thermal �uctuations are equally important and the physics is
governed by the conformal �eld theory (CFT) that describes the physics at the quantum critical
point (QCP). The boundary of the critical region, shown by the dashed lines, is where the
thermal �uctuations kT are of the same order as the intrinsic energy scale ∆E. At the QCP the
energy scale vanishes signaling a quantum phase transition (QPT) when the coupling constant
B takes a critical value B = Bc, since there are no scales the physics at this point is governed
by a CFT. The white regions are the ones where the thermal �uctuations are important and
the physics is e�ectively classical. The solid black line symbolises a line of second order phase
transitions that can happen at �nite temperature T –if they exist– at T = 0 they end up at the
QCP.

dent of the microscopic energy scale and is determined only by kBT. In this regime,
quantum and thermal �uctuations are equally important and to study the dynamics
of the system at this phase we cannot use an e�ectively classical description. Let us
point out that the dashed lines are not phase transitions but smooth crossovers and
that on these lines the thermal and quantum �uctuations are of the same magnitude.
For a pictorial overview see Figure 10.

1.5 content of the thesis

In this last section of the introduction we would like to give an overview of the
content of each chapter.

In chapter 2, we are going to revisit the old black hole S-matrix construction and its
new partial wave expansion of ’t Hooft. Inspired by old ideas from non-critical string
theory and the c = 1 Matrix Quantum Mechanics, we reformulate the scattering in
terms of a quantum mechanical model –of waves scattering o� inverted harmonic
oscillator potentials– that exactly reproduces the unitary black hole S-matrix for all
spherical harmonics; each partial wave corresponds to an inverted harmonic oscil-
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lator with ground state energy that is shifted relative to the s-wave oscillator. Iden-
tifying a connection to two dimensional string theory allows us to show that there
is an exponential degeneracy in how a given total initial energy may be distributed
among many partial waves of the four dimensional black hole.

In chapter 3, we study Matrix Quantum Mechanics (MQM) on the Euclidean time
orbifold S1/Z2. Upon Wick rotation to Lorentzian time and taking the double-scaling
limit this theory provides a toy model for a big-bang/big-crunch universe in two
dimensional non-critical string theory where the orbifold �xed points become cos-
mological singularities. We derive the partition function both in the canonical and
grand canonical ensemble in two di�erent formulations and demonstrate a match-
ing between them. We pinpoint the contribution of twisted states in both of these
formulations either in terms of bi-local operators acting at the end-points of time or
branch-cuts on the complex plane. We calculate, in the matrix model, the contribution
of the twisted states to the torus level partition function explicitly and show that it
precisely matches the world-sheet result, providing a non-trivial test of the proposed
duality. Finally we discuss some interesting features of the partition function and the
possibility of realising it as a τ- function of an integrable hierarchy.

In chapter 4, we investigate quantum critical points in a 2+ 1- dimensional gauge
theory at �nite chemical potential χ and magnetic �eld B. The gravity dual is based
on four dimensional N = 2 Fayet-Iliopoulos gauged supergravity and the solutions
we consider –that are constructed analytically– are extremal, dyonic, asymptotically
AdS4 black branes with a nontrivial radial pro�le for the scalar �eld and extremal,
magnetically charged, asymptotically AdS4 acceptable singular solutions with a non-
trivial radial pro�le for the scalar �eld. We discover a line of second order �xed points
B = Bc(χ) between the dyonic black brane and the extremal “thermal gas” solution
with a singularity of good-type, according to the acceptability criteria of Gubser. The
dual �eld theory is a strongly coupled nonconformal �eld theory at �nite charge and
magnetic �eld, related to the ABJM theory deformed by a triple trace operator Φ3.
We �nd similarities between the behaviour of the VeV 〈Φ〉 under magnetic �eld and
that of the quark condensate in 2 + 1- dimensional Nambu-Jona-Lasinio models.
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2.1 introduction

The work of Bekenstein [18] and Hawking [20] has spurred extensive research on
the so-called “information paradox”. The premise of the paradox is that in a collapse
of matter forming a black hole, the intermediate state post-collapse is a black hole
that can be characterized by a small number of physical parameters (mass, charge,
angular momentum, etc.). A semi-classical calculation as the one Hawking originally
did, however, suggests that black holes radiate as black bodies, namely with a thermal
spectrum. This seems to suggest a gross violation of unitary evolution as all informa-
tion about the exact in-state that went into forming the black hole appears to have
been lost after its evaporation.

The emergence of string theory, holography [21, 43, 4] and gauge/gravity duality
[10, 44, 12] has shed signi�cant light on this problem. In fact, it is often claimed that if
one were to believe gauge/gravity duality, the paradox is solved “in-principle” as the
boundary theory is unitary by construction and the duality states an equivalence (at
the level of partition functions) between the gravitational and boundary �eld theo-
ries. Nevertheless, the strength of this claim is questionable [45, 46] and even within
the best understood examples of gauge/gravity duality, there is no general consensus
on the exact process of information retrieval. Furthermore, the best understood exam-
ples of the said duality, while providing for a very useful toolbox, typically involve
bulk space-times with a negative cosmological constant and are far from the real
world. Technology at this stage is far from established to reliably understand more
realistic space-times. Additionally, why intricate details of string theory or the du-
ality may be absolutely necessary for our understanding of the evolution of general
gravitational dynamics is not apparent. While the fuzzball program [47, 48, 49, 50, 51]
provides some arguments for why stringy details may be important, it is fair to say
that there is no general consensus on the matter.

Years before gauge/gravity duality was proposed and was seen as a possible reso-
lution to the information paradox, there was an alternative suggestion by ’t Hooft
[21, 52, 53]. The proposal was to consider particles of de�nite momenta “scatter-
ing” o� a black-hole horizon. These particles were to impact the out-going Hawk-
ing quanta owing to their back-reaction on the geometry. With the knowledge that
the black hole is made out of a large, yet �nite, number of in-states, one may scatter
particles of varying momenta repeatedly, until all in-states that may have made up
the black hole have been exhausted. This led to a construction of an S-matrix that
maps in to out states. This matrix was shown to be unitary. A further advancement
for spherically symmetric horizons was made recently [54, 55, 56], where a partial

27
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wave expansion allowed for an explicit writing of the S-matrix for each spherical
harmonic. This construction presumes that the S-matrix can be split as

Stotal = S−∞ Shorizon S+∞ , (2.1)

where S±∞ correspond to matrices that map asymptotic in-states to in-going states
near the horizon and outgoing states near the horizon to asymptotic out-states re-
spectively. And Shorizon is the S-matrix that captures all the dynamics of the horizon.
The construction is also done in a “probe-limit” in that the back-reaction is not taken
to impact the mass of the black hole. Only its e�ect on outgoing particles is captured.
Based on the spherical symmetry it is natural to expand the scatering in spherical
harmonics. It is then found that the di�erent waves evolve independently. For a gen-
eral non-spherically symmetric background such as the Kerr black hole one would
have to use a di�erent basis of eigenfunctions in which to expand the scattering. Fur-
thermore, one would need to extend the scattering algebra once one includes extra
forces such as the electromagnetic one. A limitation is that the back-reaction calcu-
lations ignore transverse e�ects [57, 58] which grow in increasing importance as we
approach Planckian scales. These e�ects might cause the partial waves to interact.
One might claim that this should lead to non-linear interactions between the par-
tial waves. However, the situation is more complex. The algebra is closely related to
string theory algebras, where transverse modes would represent motion in the string
world sheet itself; there, these are seen to blend with the gauge constraints for the
transverse coordinates. The algebra for the dynamical variables is still linear, but the
entire algebra for the Poincare group is not.

Inspired by old ideas from non-critical two dimensional string theory [38, 59, 60, 61,
62, 63, 64, 65], we construct a theory—of a collection of quantum mechanical degrees
of freedom in an inverted harmonic oscillator potential—that exactly reproduces the
S-matrix of ’t Hooft for every partial wave; the inverted potential arises naturally to
allow for scattering states, as opposed to bound states in a conventional harmonic
oscillator. The intrinsically quantum nature of the model dispenses with the critique
that the S-matrix of ’t Hooft is a “classical” one. In our construction, all the observ-
ables (S-matrix elements) are exactly identical to those of ’t Hooft’s S-matrix. Further-
more, we observe that in-states must contain an approximately constant number den-
sity over a wide range of frequencies in order for the scattered out-states to appear
(approximately) thermal; this condition was also noted in the two dimensional string
theory literature. Finally, we show that our model captures an exponentially grow-
ing degeneracy of states. It may be added that aside from the approaches mentioned
earlier, there have been many attempts to construct toy-models to study black hole
physics [66, 67, 68, 69, 70, 71]. The hope is that “good” toy models teach us certain uni-
versal features of the dynamics of black hole horizons. Unfortunately, most of these
models are based on assumptions and extrapolations far away from well established
physics, while as we mentioned earlier we just combine gravitational back-reaction
and quantum mechanics in our work.

This chapter is organized as follows. In the section 2.2, we brie�y review gravita-
tional back-reaction and ’t Hooft’s S-matrix construction along with its partial wave
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expansion. Our derivation is slightly di�erent to the one of ’t Hooft [54] in that our
derivation relies only on the algebra associated to the scattering problem. Therefore,
the “boundary conditions” of the e�ective bounce, as was imposed in ’t Hooft’s con-
struction is built in from the start via the back-reaction algebra (2.15). In section 2.3,
we present our model and compute the corresponding scattering matrix to show that
it explicitly matches the one of ’t Hooft. In section 2.4, we make an estimate of the
high energy behaviour of the total density of states to argue that the model indeed
describes the existence of an intermediate black-hole state. We conclude with a dis-
cussion and some future perspectives in 2.5.

a brief summary of results: There are two main results of this work: one is
a re-writing of the degrees of freedom associated to ’t Hooft’s black hole S-matrix in
terms of inverted harmonic oscillators; this allows us to write down the correspond-
ing Hamiltonian of evolution explicitly. The second, related result is an identi�cation
of a connection to two dimensional string theory which in turn allows us to show
that there is an exponential degeneracy of how a given total initial energy may be
distributed among many partial waves of the four dimensional black hole; much as is
expected from the growth of states associated to black hole entropy. At various points
in Sections 2.3 and 2.4, we review some aspects of matrix models and two dimensional
string theory in detail. While we expect some consequences for these theories based
on our current work, we do not have any new results within the framework of two
dimensional black holes or matrix models in this chapter.

2.2 back-reaction and the black hole s-matrix

Consider a vacuum solution to Einstein’s equations of the form:

ds2 = 2A
(
u+, u−

)
du+ du− + g

(
u+, u−

)
h (Ω) dΩ2 , (2.2)

where u+, u− are light-cone coordinates, A (u+, u−) and g (u+, u−) are generic
smooth functions of those coordinates and h (Ω) is the metric tensor depending on
only the (d − 2) transverse coordinates Ω. It was shown in [58] that an in-going
massless particle with momentum p− induces a shock-wave at its position speci�ed
by Ω and u− = 0. The shock-wave was shown to change geodesics such that out-
going massless particles feel a kick—of the form u− → u− + 8πG p−in f̂ (Ω, Ω′)—in
their trajectories at u− = 0, where f̂ depends on the spacetime in question. If we
were to associate a putative S-matrix to the dynamics of the black hole, the said
back-reaction may be attributed to this S-matrix in the following manner. Consider a
generic in-state |in0〉 that collapsed into a black hole and call the corresponding out-
state after the complete evaporation of the black hole |out0〉. The S-matrix maps one
into the other via: S |in1〉 = |out1〉. Now the back-reaction e�ect may be treated as a
tiny modi�cation of the in-state as |in0〉 → |in0 + δp−in (Ω)〉, where δp−in (Ω) is the
momentum of an in-going particle at position Ω on the horizon. Consequently, the
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action of the S-matrix on the modi�ed in-state results in a di�erent out-state which
is acted upon by an operator that yields the back-reacted displacement:

S |in0 + δp−in (Ω)〉 = e−iδp+out(Ω
′)δu−out |out0〉 , (2.3)

where the operator acting on the out-state above is the “displacement” operator writ-
ten in Fourier modes. Now, we may repeat this modi�cation arbitrarily many times.
This results in a cumulative e�ect arising from all the radially in-going particles with
a distribution of momenta on the horizon. Therefore, writing the new in- and out-
states—with all the modi�cations included—as |in〉 and |out〉 respectively, we have

〈out| S |in〉 = (2.4)

〈out0| S |in0〉 exp
[
−i8πG

∫
dd−2Ω′ p+out

(
Ω′
)

f̂
(
Ω, Ω′

)
p−in (Ω)

]
.

Should we now assume that the Hilbert space of states associated to the black-hole
is completely spanned by the in-going momenta and that the Hawking radiation is
entirely spanned by the out-state momenta, we are naturally led to a unitary S-matrix
given by〈

p+out
∣∣ S |p−in〉 = exp

[
−i8πG

∫
dd−2Ω′ p+out

(
Ω′
)

f̂
(
Ω, Ω′

)
p−in (Ω)

]
. (2.5)

There is an overall normalization factor (vacuum to vacuum amplitude) that is unde-
termined in this construction. The assumption that the black hole Hilbert space of
states is spanned entirely by the in-state momenta p−in is equivalent to postulating
that the said collection of radially in-going, gravitationally back-reacting particles
collapse into a black hole. While this may seem a reasonable assumption, it is worth
emphasizing that there is no evidence for this at the level of the discussion so far. We
have not modeled a collapsing problem. We will see in Section 2.4 that our proposed
model in Section 2.3 provides for a natural way to study this further. And signi�cantly,
we give non-trivial evidence that the derived S-matrix possibly models a collapsing
black-hole.

2.2.1 Derivation of the S-Matrix

We now return to the back-reaction e�ect at a semi-classical level in order to derive an
explicit S-matrix using a partial wave expansion in a spherically symmetric problem.
For the back-reacted metric—after incorporating the shift u− → u−+ f (Ω, Ω′) into
(2.2)—to still satisfy Einstein’s equations of motion, the following conditions need to
hold at u− = 0 [58]:

A (u+,−)

g (u+,−)
4Ω f

(
Ω, Ω′

)
−
(

d− 2
2

)
∂u+∂u−g (u+,−)

g (u+,−)
f
(
Ω, Ω′

)
= 8 π p−in A

(
u+,−)2

δ(d−2) (Ω, Ω′
)

∂u−A
(
u+,−) = 0 = ∂u−g

(
u+,−) , (2.6)
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where4Ω is the Laplacian on the (d− 2)-dimensional metric h (Ω). We concern our-
selves with the Schwarzschild black-hole, written in Kruskal-Szekeres coordinates as

ds2 = −32 G3 m3

r
e−r/2Gmdu+ du− + r2dΩ2 . (2.7)

For the above metric (2.7), at the horizon r = R = 2Gm, the conditions (2.6) were
shown [58] to reduce to

4S (Ω) f
(
Ω, Ω′

)
:= (4Ω − 1) f

(
Ω, Ω′

)
= −κ δ(d−2) (Ω, Ω′

)
, (2.8)

with the implicit dependence of r on u+ and u− given by

u+ u− =
(

1− r
2Gm

)
e−r/2Gm , (2.9)

and κ = 24 π e−1 G R2 p−in . These seemingly ugly coe�cients may easily be absorbed
into the stress-tensor on the right hand side of the Einstein’s equations. Now, the
cumulative shift experienced by an out-going particle, say u−out, is given by a distri-
bution of in-going momenta on the horizon

u−out (Ω) = 8πGR2
∫

dd−2Ω′ f̃
(
Ω, Ω′

)
p−in
(
Ω′
)

, (2.10)

where κ f̃ (Ω, Ω′) = f (Ω, Ω′). Similarly, we have the complementary relation for
the momentum of the out-going particle, say p+out given in terms of the position u+

in
of the in-going particle:

u+
in (Ω) = −8πGR2

∫
dd−2Ω′ f̃

(
Ω, Ω′

)
p+out

(
Ω′
)

. (2.11)

The expressions (2.10) and (2.11) may be seen as “boundary conditions” of an e�ec-
tive bounce o� the horizon. However, this intuition is rather misleading and we will
refrain from this line of thought. Nevertheless, what is striking to note is that the
momentum of the in-state is encoded in the out-going position of the Hawking radi-
ation while the position of the in-state is encoded in the momentum of the out-going
Hawking state! However, so far, the quantities u±in/out are dimensionless while p∓in/out
are densities of momenta with mass dimensions four. Therefore, to appropriately in-
terpret these as positions and momenta, we rescale them as u±in/out → Ru±in/out and
p∓in/out → R−3 p∓in/out [55]. Notwithstanding this rescaling, we continue to use the
same labels for the said quantities in order to avoid clutter of notation. Now, using
the canonical commutation relations, respectively, for the out and in particles1[

û− (Ω) , p̂+
(
Ω′
)]

=
[
û+ (Ω) , p̂−

(
Ω′
)]

= i δ(d−2) (Ω−Ω′
)

, (2.12)

1 To avoid clutter in notation, we drop the in/out labels on positions and momenta of particles. u+ and u−

always refer to ingoing/outgoing positions, respectively. Consequently, p− and p+ are always associated
with ingoing/outgoing momenta, respectively.
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we may derive the algebra associated to the black hole scattering. We do this in a
partial wave expansion—in four dimensions—as

û± (Ω) = ∑
lm

û±lm Ylm (Ω) and p̂± (Ω) = ∑
lm

p̂±lm Ylm (Ω) . (2.13)

Working with these eigenfunctions of the two-sphere Laplacian and using (2.8) we
can write the back-reaction equations (2.10) and (2.11) as

û±lm = ∓ 8πG
R2 (l2 + l + 1)

p̂±lm =: ∓λ p̂±lm . (2.14)

In terms of these partial waves, we may now write the scattering algebra as[
û±lm, p̂∓l′m′

]
= iδll′δmm′ (2.15)[

û+
lm, û−l′m′

]
= i λ δll′δmm′ (2.16)[

p̂+lm, p̂−l′m′
]
= − i

λ
δll′δmm′ . (2.17)

A few comments are now in order. Since the di�erent spherical harmonics do not
couple in the algebra, we will drop the subscripts of l and m from here on. Further-
more, we see that the shift-parameter λ “morally” plays the role of Planck’s constant
h̄, but one that is now l dependent. Moreover, we see that wave-functions described
in terms of four phase-space variables are now pair-wise related owing to the back-
reaction (2.14). Finally, it is important to note that each partial wave does not describe
a single particle but a speci�c pro�le of a density of particles. For instance, the s-wave
with l = 0 describes a spherically symmetric density of particles.

Since the operators û± and p̂± obey commutation relations associated to posi-
tion and momentum operators, we see that the algebra may be realized with û− =
−iλ∂u+ in the u+ basis and û+ = iλ∂u− in the u− basis. A similar realization is
evident for the momentum operators. Moreover, we may now de�ne the following
inner-products on the associated Hilbert space of states that respect the above alge-
bra: 〈

u±
∣∣ p∓

〉
=

1√
2π

exp
(
iu±p∓

)
(2.18)

〈
u+
∣∣ u−

〉
=

1√
2πλ

exp
(

i
u+u−

λ

)
(2.19)

〈
p+
∣∣ p−

〉
=

√
λ

2π
exp

(
iλp+p−

)
. (2.20)

Using (2.19), for instance, we may write the out-going wave-function—travelling
along the coordinate u− after scattering—in terms of the in-going one travelling
along u+ as

〈
u−
∣∣ψ
〉
=: ψout (u−) = ∫ ∞

−∞

du+

√
2πλ

exp
(
−i

u+u−

λ

)
ψin (u+

)
. (2.21)
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One can immediately see that this mapping is Unitary just being a fourier transform.
To derive another useful form of the S-matrix associated to the scattering, we �rst
move to Eddington-Finkelstein coordinates:

u+ = α+ eρ+ , u− = α− eρ− , p+ = β+ eω+ and p− = β− eω− (2.22)

where α± = ±1 and β± = ±1 to account for both positive and negative values
of the phase space coordinates u+, u−, p+ and p−. The normalization of the wave-
function as

1 =
∫ ∞

−∞

∣∣ψ (u+
)∣∣2 du+

=
∫ 0

−∞

∣∣ψ (u+
)∣∣2 du+ +

∫ ∞

0

∣∣ψ (u+
)∣∣2 du+

= −
∫ −∞

∞

∣∣∣ψ+
(
−eρ+

)∣∣∣2 eρ+ dρ+ +
∫ ∞

−∞

∣∣∣ψ+
(
+eρ+

)∣∣∣2 eρ+ dρ+

= ∑
α=±

∫ ∞

−∞

∣∣∣ψ+
(

αeρ+
)∣∣∣2 eρ+ dρ+ (2.23)

suggests the following rede�nitions for the wave-function in position and momen-
tum spaces

ψ±
(

α±eρ±
)

= e−ρ±/2 φ±
(
α±, ρ±

)
ψ̃±
(

β±eω±
)

= e−ω±/2 φ̃±
(

β±, ω±
)

. (2.24)

Therefore, using (2.21), we may write φout (α−, ρ−) as:

φout (α−, ρ−
)
=

1√
2πλ

∫ ∞

−∞
du+ e

ρ++ρ−
2 exp

(
−i

u+u−

λ

)
φin (α+, ρ+

)
=

∑
α+=±

∫ ∞

−∞

du+

√
2π

e
ρ++ρ−−log λ

2 exp
(
−iα+α−eρ++ρ−−log λ

)
φin (α+, ρ+

)
=

∑
α+=±

∫ ∞

−∞

dx√
2π

exp
( x

2
− iα+α−ex

)
φin (α+, x + log λ− ρ−

)
, (2.25)

where in the last line, we introduced x := ρ+ + ρ− − log λ. This equation may be
written in matrix form as(

φout (+, ρ−)

φout (−, ρ−)

)
=

∫ ∞

−∞
dx

(
A (+,+, x) A (+,−, x)
A (−,+, x) A (−,−, x)

)(
φin (+, x + log λ− ρ−)

φin (−, x + log λ− ρ−)

)
(2.26)
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where we have de�ned the quantity

A (γ, δ, x) :=
1√
2π

exp
( x

2
− i γ δ ex

)
, (2.27)

with γ = ± and δ = ±. This integral equation may further be simpli�ed by moving
to Rindler plane waves:

φout (±, ρ−
)
=

1√
2π

∫ ∞

−∞
dk− φout (±, k−) eik−ρ− (2.28)

φin (±, x + log λ− ρ−
)
=

1√
2π

∫ ∞

−∞
dkx̃ φin (±, kx̃) e−ikx̃(x+log λ−ρ−) (2.29)

A (γ, δ, x) =
1√
2π

∫ ∞

−∞
dkx A (γ, δ, kx) eikx x . (2.30)

This allows us to write the above matrix equation (2.26) as(
φout (+, k)
φout (−, k)

)
=

e−ik log λ

(
A (+,+, k) A (+,−, k)
A (−,+, k) A (−,−, k)

)(
φin (+, k)
φin (−, k)

)
(2.31)

where A (γ, δ, k) can be computed from the inverse Fourier transform of (2.27) using
a coordinate change y = ex and the identity∫ ∞

0
dy eiσyy−ik− 1

2 = Γ
(

1
2
− ik

)
eiσ π

4 ekσ π
2 , where σ = ± . (2.32)

Carrying out this computation, we �nd the following S-matrix:

S (kl , λl) = e−ikl log λl

(
A (+,+, kl) A (+,−, kl)

A (−,+, kl) A (−,−, kl)

)
=

1√
2π

Γ
(

1
2
− ikl

)
e−ikl log λl

(
e−i π

4 e−kl
π
2 ei π

4 ekl
π
2

ei π
4 ekl

π
2 e−i π

4 e−kl
π
2

)
. (2.33)

In this expression, we have reinstated a subscript on k and λ to signify that they
depend on the speci�c partial wave in question. One may additionally diagonalize
this matrix by noting that

A (+,+, k) = A (−,−, k) and A (+,−, k) = A (−,+, k) . (2.34)
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With this observation, we see that the diagonalization of the S-matrix is achieved via
the rede�nitions

φ+
1 (k) = φ+ (+, k) + φ+

(
−, ρ+

)
,

φ+
2 (k) = φ+ (+, k)− φ+ (−, k) ,

A1 (k) = A (+,+, k) + A (+,−, k) ,

A2 (k) = A (+,+, k)− A (+,−, k) . (2.35)

It may be additionally checked that this matrix is unitary. As already mentioned,
while it may not be clear whether this matrix is applicable to the formation and
evaporation of a physical black hole, a conservative statement that can be made with
certainty is the following: all information that is thrown into a large black hole is cer-
tainly recovered in its entirety, at least when the degrees of freedom in question are
positions and momenta. It would be interesting to generalize this to degrees of free-
dom carrying additional conserved quantities like electric charge, etc. On the other
hand, there is a certain property of the S-matrix that may be puzzling at �rst sight.
Positive Rindler energies k imply that the o�-diagonal elements in the S-matrix are
dominant with exponentially suppressed diagonal elements. While negative Rindler
energies reverse roles. One way to interpret this feature is to think of an eternal black
hole where dominant o�-diagonal elements suggest that information about in-going
matter from the right exterior is carried mostly by out-going matter from the left exte-
rior. However, in a physical collapse, there is only one exterior. It has been suggested
by ’t Hooft that one must make an antipodal mapping between the two exteriors to
make contact with the one-sided physical black hole; we discuss this issue in Section
2.5.

2.3 the model

Asking two simple questions allows us to almost entirely determine a quantum me-
chanical model that corresponds to the black hole scattering matrix of the previous
section. The �rst question is “what kind of a quantum mechanical potential allows
for scattering states?” The answer is quite simply that it must be an unstable po-
tential. The second question is “what quantum mechanical model allows for energy
eigenstates that resemble those of Rindler space?” The answer, as we will show in
this section, is a model of waves scattering o� an inverted harmonic oscillator poten-
tial. Using this intuition, we will now construct the model and show that it explicitly
reproduces the desired S-matrix. Having constructed the model, we will then pro-
ceed to compare it to two dimensional string theory models. The construction of our
model and intuition gained from a comparison to two dimensional string theory/-
matrix quantum mechanics models [59, 62, 65] allows us to study time delays and
degeneracy of states in the next section.

Inverted quadratic potentials, at a classical level, �ll up phase space with hyper-
bolas as opposed to ellipses as in the case of standard harmonic oscillator potentials.
Since we have a tower of four dimensional partial waves in the black hole picture,
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each of them results in a phase space of position and momentum and consequently
a collection of inverted harmonic oscillators, one for each partial wave. Since the
black hole scattering of ’t Hooft mixes positions and momenta, we are naturally led
to consider the description of scattering in phase space.

2.3.1 Construction of the model

We �rst start with a phase space parametrized by variables xlm and plm. To im-
plement the appropriate scattering o� the horizon, we start with the same black
hole scattering algebra: [x̂lm, p̂l′m′ ] = iλδmm′δll′ , with λ = c/

(
l2 + l + 1

)
with

c = 8πG/R2. We will return to how this parameter might naturally arise in a micro-
scopic setting in Section 2.5. Standard bases of orthonormal states are |x; l, m〉 and
|p; l, m〉; these are coordinate and momentum eigenstates respectively, with

〈l, m; x|p; l′, m′〉 =
1√
2πλ

eipx/λ δmm′δll′ . (2.36)

Since our interest is in the scattering of massless particles, it will turn out to be
convenient to use light-cone bases |u±; l, m〉 which are orthonormal eigenstates of
the light-cone operators:

û±lm =
p̂lm ± x̂lm√

2
and

[
û+

lm , û−l′m′
]
= iλδll′δmm′ . (2.37)

While they look similar to creation and annihilation operators of the ordinary har-
monic oscillator, û± are in truth hermitian operators themselves; and are not her-
mitian conjugate to each other. Therefore, the states |u±; l, m〉 are reminiscent of
coherent states. These plus and minus bases will be useful in describing the in and
outgoing states of the upside down harmonic oscillator. For de�niteness, we will
choose for the ingoing states to be described in terms of the u+

l,m basis while for the
outgoing ones to be in terms of the u−l,m basis. As in the previous section, we will
work in the simpli�cation where di�erent oscillators (partial waves) do not interact
and will therefore omit the partial wave labels in all places where they do not teach
us anything new. Furthermore, as before, from the commutation relations we may
de�ne the following inner product on the Hilbert space of states

〈u+|u−〉 =
1√
2πλ

exp
(

iu+u−

λ

)
, (2.38)

that expresses the Fourier transform kernel between the two bases. We may again
realize the algebra if û− acts on 〈u+|u−〉 and 〈u+|x〉 as −iλ∂u+ while û+ acts on
〈u−|u+〉 and 〈u−|x〉 as iλ∂u− . To endow the model with dynamics, we now turn to
the Hamiltonian for each oscillator/partial wave

Hlm =
1
2

(
p2

lm − x2
lm

)
=

1
2
(u+

lmu−lm + u−lmu+
lm) , (2.39)
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which may also be written as

H = ∓ i λ

(
u±∂u± +

1
2

)
(2.40)

in the u± bases where we drop the l, m indices. Physically the wave-function can be
taken to correspond to a wave coming from the right which after scattering splits
into a transmitted piece that moves on to the left and a re�ected piece that returns
to the right. The other wave function can be obtained from this one by a re�ection
x → −x. The light-cone coordinates describe these left/right movers and simplify
the description of scattering since the Schrödinger equation becomes a �rst order par-
tial di�erential equation. Moreover, the energy eigenfunctions are simply monomials
of u± while in the x representation the energy eigenfunctions are more complicated
parabolic cylinder functions. In particular, for each partial wave the Schrödinger
equation in light-cone coordinates is:

i λ ∂tψ±
(
u±, t

)
= ∓i λ

(
u±∂u± + 1/2

)
ψ±
(
u±, t

)
(2.41)

with solutions

ψ±
(
u±, t

)
= e∓t/2 ψ0

±
(
e∓tu±

)
. (2.42)

This can also be written in bra/ket notation as:

〈u±|ψ±(t)〉 = 〈u±|e
i
λ Ĥt|Ψ±0 〉 = e∓

t
2 〈e∓tu±|Ψ±0 〉 . (2.43)

The time evolution for the basis states is given by

e
i
λ Ht|u±〉 = e±

t
2 |e±tu±〉

〈u±|e
i
λ Ht = e∓

t
2 〈e∓tu±|

〈u+|e
i
λ Ht|u−〉 =

1√
2πλ

e−
t
2 exp

(
i
λ

u+u−e−t
)

. (2.44)

In the conventions of Figure 11, it is easy to see that ingoing states can be labelled by
the u+ axis while the outgoing ones by the u− axis. Since the potential is unbounded,
the Hamiltonian has a continuous spectrum. In the u+ representation the energy
eigenstates with eigenvalue ε are

1√
2πλ

(u+)i ε
λ−

1
2 .

The singularity at u+ = 0 leads to a two fold doubling of the number of states. This is
understood to be arising from the existence of the two regions (I - II) in the scattering
diagram. From now on we use |ε, α+〉in and |ε, α−〉out for the in and outgoing energy
eigenstates with the labels α+ = ± , α− = ± to denote the regions I and II. While
we have four labels, we are still only describing waves in the two quadrants (I-II)
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p
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uu +-
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figure 11: The scattering diagram.

with two of them for ingoing waves and two for outgoing ones. The in-states may
be written as

〈u+|ε,+〉in =

 1√
2πλ

(u+)
i ε

λ−
1
2 u+ > 0

0 u+ < 0

〈u+|ε,−〉in =

0 u+ > 0
1√
2πλ

(−u+)i ε
λ−

1
2 u+ < 0

describing left and right moving ingoing waves for the regions I and II respectively.
Similarly, the natural out basis is written as

〈u−|ε,+〉out =

 1√
2πλ

(u−)−i ε
λ−

1
2 u− > 0

0 u− < 0

〈u−|ε,−〉out =

0 u− > 0
1√
2πλ

(−u−)−i ε
λ−

1
2 u− < 0

to describe the right and left moving outgoing waves for the regions I and II respec-
tively. Therefore, time evolution of the energy eigenstates

〈u+|ε,+〉in(t) =
1√
2πλ

e−i ε
λ t(u+)i ε

λ−
1
2 =

1√
2πλ

e−
ρ+

2 e−i ε
λ tei ε

λ ρ+ (2.45)

implies that they correspond to the Rindler relativistic plane-waves2 moving with
the speed of light in the tortoise-coordinates if we identify the quantum mechanical

2 Normalised in the u± basis.
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time with Rindler time t = τ and the inverted harmonic oscillator energy with the
Rindler momentum via κλ = ε. This means that the energy of the eigenstates of the
non-relativistic inverted oscillator, when multiplied by λ, can also be interpreted as
the energy/momentum of the Rindler relativistic plane waves of the previous section.
This allows us to write down any ingoing state in terms of these Rindler plane waves.
As we have seen, the unitary operator relating the u± representations is given by the
fourier kernel (2.38) on the whole line that acts on a state as

ψout(u−) =
[
Ŝψin

]
(u−) =

∫ ∞

−∞

du+

√
2πλ

e
−iu+u−

λ ψin(u+). (2.46)

It is now clear that repeating the calculations of the previous section results in the
same S-matrix, rather trivially. However, to make the connection to the eigenstates of
the inverted harmonic oscillator transparent, we will derive it in a more conventional
manner. To represent the action of the kernel on energy eigenstates, we split it into
a 2× 2 matrix that relates them as follows:(

|ε,+〉out

|ε,−〉out

)
= Ŝ

(
|ε,+〉in
|ε,−〉in

)
. (2.47)

The fastest method to �nd each entry is to compute the in-going energy eigenstates
in the out-going position basis and vice versa using the insertion of a complete set
of states of the form

〈u−|ε〉in =
∫ ∞

−∞
du+〈u−|u+〉〈u+|ε〉in . (2.48)

The results are

〈u−|ε,±〉in = λ
iε
λ e
∓iπ

4 e±
πε
2λ Γ

(
1
2
+ i

ε

λ

)
(α−|u−|)−i ε

λ−
1
2

√
2πλ

(2.49)

〈u+|ε,±〉out = λ
−iε
λ e

±iπ
4 e±

πε
2λ Γ

(
1
2
− i

ε

λ

)
(α+|u+|)i ε

λ−
1
2

√
2πλ

. (2.50)

Each of these equations gives two results for each sign3 to yield:

S =

1√
2π

exp
(
−i

ε

λ
log λ

)
Γ
(

1
2 − i

ε

λ

)(e−i π
4 e−

πε
2λ ei π

4 e
πε
2λ

ei π
4 e

πε
2λ e−i π

4 e−
πε
2λ

)

= eiΦ(ε) exp
(
−i

ε

λ
log λ

) e−iπ/4
√

1+e2πε/λ
eiπ/4

√
1+e−2πε/λ

eiπ/4
√

1+e−2πε/λ
e−iπ/4

√
1+e2πε/λ

 , (2.51)

3 For negative signs, one makes use of (−1)iε/λ−1/2 = e−iπ/2e−πε/λ .
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with the scattering phase Φ(ε) being de�ned as

Φ(ε) =

√√√√√Γ
(

1
2 − i ε

λ

)
Γ
(

1
2 + i ε

λ

) . (2.52)

Identifying parameters as kl λl = εl , we see that this precisely reproduces the S-
matrix derived in the previous section for every partial wave. In this model, it is
clear that the competition between re�ection and transmission coe�cients is owed
to the energy of the waves being scattered being larger than the tip of the inverted
potential.

2.3.2 A projective light-cone construction

Although we had good reason to expect such an inverse harmonic oscillator realiza-
tion of the black hole S-matrix, there is, in fact, another way to derive it—using what
is called a projective light-cone construction. This construction was �rst studied by
Dirac and [72, 73] provide a good modern introduction to the topic. The essential idea
is to embed a null hyper-surface inside Minkowski space to study how linear Lorentz
symmetries induce non-linearly realized conformal symmetries on a (Euclidean) sec-
tion of the embedded surface. This allows us to relate the Rindler Hamiltonian -which
can then be related directly to the Hamiltonian of the quantum mechanics model
that describes the scattering- with the Dilatation operator on the horizon. In a black
hole background this construction is of course expected to hold only locally in the
near horizon region. We �rst introduce xM = (xµ, xd−1, xd) with µ = 1, .., d − 2
(note that µ is a Euclidean index), where the light-cone coordinates are de�ned as
x± = xd ± xd−1. Here, xd serves as the time coordinate 4. The Minkowski metric
ηMN in these coordinates is given as

ds2 = −dx+dx− + dxµdxµ , (2.53)

which has an SO(d − 1, 1) Lorentz symmetry. There is an isomorphism between
the corresponding Lorentz algebra and the Euclidean conformal algebra in d − 2
dimensions. To state this isomorphism, we �rst label the d− 2-dimensional Euclidean
conformal group generators as:

Pµ = i∂µ corresponding to translations,
Mµν = i

(
xµ∂ν − xν∂µ

)
to rotations,

D = ixµ∂µ to dilatations and

Kµ = i
(

2xµ (xν∂ν)− x2∂µ

)
to special conformal transform. (2.54)

The identi�cation is now given as follows:

Jµν = Mµν , Jµ+ = Pµ , Jµ− = Kµ , J+− = D , (2.55)

4 The null cone is described by the equation X2 = 0 and a Euclidean section can be given as x+ = f (xµ).



2.3 the model 41

where the SO(3, 1) Lorentz generators JMN are given by

JMN = xM pN − xN pM . (2.56)

These satisfy the SO(3, 1) w SL(2, C) algebra. Equation (2.55) is understood as
holding on the null hyper-surface, so one needs to solve the constraint equation and
express x± in terms of xµ. In particular the Dilatation operator on the two dimen-
sional horizon is

D = J+− = x+p− − x−p+ =
1
λ

(
u+u− + u−u+

)
=

1
λ

H , (2.57)

where in the second equality we used u± = x± to connect to the light-cone co-
ordinates of the previous sub-section and in the third equality, we made use of the
back-reaction relations (2.14). Interestingly enough, we see that the Rindler Hamil-
tonian (Boost generator) together with the backreaction relations gives exactly the
Hamiltonian of the inverted oscillator and can also be interpreted as the Dilatation
operator on the two dimensional horizon. This identi�cation involves a rescaling of
the inverted harmonic oscillator Hamiltonian with λ that is also neatly realized in
the relation between the quantum mechanical energy ε and the Rindler energy κ to
relate the two S-matrices.

This construction via the light-cone projection could possibly shed more light on
the relation between the black hole S-matrix and string theoretic amplitudes. In the
early papers on black hole scattering [52, 53, 21], a striking similarity between the
S-matrix and stringy amplitudes was observed. The role of the string worldsheet was
attributed to the horizon itself. It was noted that the string tension was imaginary.
In the construction above, we found that the induced conformal symmetry on the
horizon is Euclidean and that the Dilatation operator is mapped to the time-evolution
operator (Rindler Hamiltonian) of the four dimensional Lorentzian theory. This led
us to the unstable potential of the inverse harmonic oscillator. It may well be that
the apparently misplaced factors of i in the string tension is owed to the Euclidean
nature of conformal algebra on the horizon. It would also be interesting to understand
the role of possible in�nite-dimensional local symmetries on the horizon/worldsheet
[74, 75] from the point of view of the quantum mechanics model, elaborating on the
null cone construction. We leave this study to future work.

While the model is seemingly very simple, this is not the �rst time that such a
model has been considered to be relevant for black hole physics [64, 76]. However,
previous considerations have found that these models do not correspond to two di-
mensional black hole formation owing to an insu�cient density of states in the spec-
trum. Re�ning these considerations with the intuition that each oscillator as consid-
ered in this section corresponds to a partial wave of a four dimensional black hole, we
�nd that our model may indeed be directly related to four dimensional black holes.
We provide evidence for this in Section 2.4. In order to move on to which, however, it
will be very useful for us to review the two dimensional string theory considerations
of the past; this is what we now turn to.
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2.3.3 Relation to Matrix Models and two dimensional String Theory

Hermitian Matrix Quantum Mechanics (MQM) in the inverted harmonic oscillator
was studied in connection with c = 1 Matrix Model and string theory in two dimen-
sions. For more details, we refer the reader to [38, 39]. Here, we brie�y review these
results in order to point out various similarities and di�erences with our work. The
Lagrangian of MQM is of the form

L =
1
2

Tr
[
(Dt M)2 + M2

]
with Dt = ∂t − iAt , (2.58)

where At is a non-dynamical gauge �eld. The N× N Hermitian Matrices transform
under U(N) as M→ U† MU. The role of the non-dynamical gauge �eld is to project
out the non-singlet states in the path integral. Diagonalization of the matrices results
in a Vandermonde factor in the path integral measure:

DM = DU ∏
i

dxi ∏
i<j

(xi − xj)
2 . (2.59)

This indicates a natural fermionic rede�nition of the wave-functions into Slater deter-
minants (in a �rst quantised description). The Hamiltonian of the system is, therefore,
in terms of N free fermions:

ĤΨ̃ = −
(

h̄2

2

N

∑
i=1

∂2
xi
+

1
2

x2
i

)
Ψ̃ , with

Ψ̃(xi) = ∏
i<j

(xi − xj)Ψ(xi) , (2.60)

with Ψ̃(xi) being the rede�ned fermionic wave-functions. Filling up the “Fermi-sea”
up to a level µ, allows for a de�nition of the vacuum. Clearly, all fermions are sub-
ject to the same chemical potential µ that is typically considered to be below the tip
of the inverted oscillator. A smooth string world-sheet was argued to be produced
out of these matrices in a double-scaling limit N → ∞, h̄ → 0 with an inverse
string-coupling related to the chemical potential as µ ∼ 1/gs. In this double-scaling
limit, this theory describes string theory on a two dimensional linear dilaton back-
ground with coordinates described by time t and the Liouville �eld φ. The matrix
model/harmonic oscillator coordinate x is conjugate to the target space Liouville
�eld via a non-local integral transformation [77]. In contrast to this picture, owing
to a one-one correspondence between the two dimensional harmonic oscillators and
four dimensional partial waves in our model, this integral transform is unnecessary.
However, it has been argued in string theory that only the quadratic tip is relevant in
this double-scaling limit, even in the presence of a generic inverted potential, empha-
sizing the universality of the quadratic tip. Whilst we do not have a similar stringy
argument, we expect the ubiquitous presence of the quadratic potential to persist in
our construction owing to the ubiquitous presence of the Rindler horizon in physical
black holes formed from collapsing matter. A modern discourse with emphasis on
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the target space interpretation of the matrix model as the e�ective action of N D0
branes may be found in [78]. A natural second quantized string �eld theory descrip-
tion of the system where the fermionic wave-functions are promoted to fermionic
�elds may be found in [79, 38, 37] and references therein. A satisfactory picture of
free fermionic scattering in the matrix model was given in [59] via the following
S-matrix relation:

Ŝ = ib→ f ◦ Ŝ f f ◦ i f→b (2.61)

where even though the asymptotic tachyonic states are bosonic, one is instructed
to �rst fermionize, then scatter the fermions in the inverted quadratic potential and
then to bosonize again. The total S-matrix is unitary if the fermionic scattering is
unitary and the bosonization spans all possible states. The logic of this expression
resembles that of ’t Hooft’s S-matrix, where one �rst expands a generic asymptotic
state into partial waves, expresses them in terms of near horizon Rindler parameters,
scatters them with the given S-matrix that is similar to the one of two dimensional
string theory before transforming back to the original asymptotic coordinates. At
the level of the discussion now, it may already be noted that one important di�erence
between the two dimensional string-theoretic interpretation of the matrix model and
our four dimensional partial wave one is the nature of the transformations that relate
asymptotic states to the eigenstates of the inverted harmonic oscillator. Additionally,
and perhaps more importantly, in our construction, we have an entire collection of
such harmonic oscillators/matrix models parametrised by l, m that conspire to make
up a four dimensional black hole. We present concrete evidence for this by studying
time-delays and degeneracy of states in Section 2.4. There are further di�erences
between the two dimensional string theories and our construction, in order to present
which, we need to proceed to a study of the spectrum of states in our model; this
enables us to study growth of states in the two models. Finally, we also comment on
a possible second quantization and appropriate MQM interpretation of our model in
Section 2.5.

2.4 combining the oscillators (partial waves)

On the side of the macroscopic black hole in Section 2.2, the calculation was done
in an approximation where there is a pre-existing black hole into which degrees of
freedom are thrown (as positions and momenta). It was then evident that the infor-
mation that was sent into the black hole is completely recovered since the S-matrix
was unitary. Furthermore, the back-reaction computation told us exactly how this
information is retrieved: in-going positions as out-going momenta and in-going mo-
menta as out-going positions. However, a critical standpoint one may take with good
reason would be to say that this is not good enough to tell us if a physical collapse
of a black hole and complete evaporation of it is a unitary process. The calculation
has not modeled a collapsing problem.

The picture to have in a realistic collapse is that of an initial state that evolves
in time to collapse into an intermediate black hole state which then subsequently



44 the black hole s-matrix from qantum mechanics

evaporates to result in a �nal state that is related to the initial one by a unitary trans-
formation. Naturally, the corresponding macroscopic picture is that of a strongly
time-dependent metric. Heuristically, one may think of the total S-matrix of this pro-
cess as being split as

Ŝ = ŜI −→hor− Ŝhor−→hor+ Ŝhor+→I + (2.62)

where ŜI −→hor− corresponds to evolution from asymptotic past to a (loosely de-
�ned) point in time when gravitational interactions are strong enough for the col-
lapse to begin, Ŝhor−→hor+ to the piece that captures all the “action”—insofar as col-
lapse and evaporation are concerned—take place and �nally Ŝhor+→I + represents
the evolution of the evaporated states to future in�nity. The horizon—being a tele-
ological construction that can be de�ned only if one knows the global structure of
spacetime—has a time dependent size and location in a collapse/evaporation scenario
but for us will nevertheless comprise the locus of spacetime points where the back-
reaction e�ects are important. Therefore, we use subscripts hor± to refer to it, at dif-
ferent points in time, in the above heuristic split. Thought of the total evolution this
way, it is clear that the most important contribution arises from the part of the ma-
trix that refers to the region in space-time where gravitational back-reaction cannot
be ignored. The other pieces are fairly well-approximated by quantum �eld theory
on an approximately �xed background. Nevertheless, in the intermediate stage, the
metric is strongly time-dependent.

At the outset, let it be stated that we will not get as far as being able to derive this
metric from the quantum mechanics model. We may ask if there are generic features
of the black hole that we have come to learn from semi-classical analyses that can
also be seen in this model. We will focus on two important qualitative aspects of
(semi-classical) black holes:

time-delay: A physical black hole is not expected to instantaneously radiate
information that has been thrown into it. There is a time-delay between the time at
which radiation begins to be received by a distant observer compared to the time that
in-going information was thrown at it. Given an in-state that collapses into a black
hole, we expect that the time-scale associated to the scattering process is of the order
GM5.

In previous studies of two dimensional non-critical string theory, it was found
that with a single inverted harmonic oscillator, the associated time-delay is not long
enough to have formed a black hole [60, 63, 64]. However, with the recognition that
each oscillator corresponds to a partial wave and that a collection of oscillators rep-
resents a four dimensional black hole, we see that the time delay associated to each
oscillator is the time spent by an in-going mode in the scattering region. This is the
time in which the backreaction e�ect transforms UV modes-localised packets into
IR-delocalised ones. In order for one to study the lifetime of the black hole as a single
system one needs to combine all these oscillators.

5 More precicely due to dimensional reasons it should scale with a power of GM, with a logarithmic cor-
rection due to the relation between tortoise and asymptotic coordinates.
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approximate thermality: As Hawking famously showed [20], the spectrum
of emitted radiation should look largely thermal for a wide range of energies. One
way to probe this feature is via the number operator which, for a �nite temperature
system, can be written as

〈
N̂(ω)

〉
= ρ(ω) f (ω) with ρ(ω) being the density of

states and f (ω) the appropriate thermal distribution for Fermi/Bose statistics. Given
that the S-matrix is unitary, we know that this notion of temperature and thermality
of the spectrum is only approximate. Notwithstanding this, a detector at future in-
�nity should register this approximately thermal distribution for a large frequency
range in order to satisfy the criterion of unitarity together with approximate ther-
mality. To be more precise, if one captures only the re�ected or transmitted piece of
the waves, the spectrum can be shown to be approximately thermal 2.5. If one tries
to capture both, there will still be a relative time delay since the re�ected and trans-
mitted pieces do not su�er the same time delay which leads to some period of time
until the process reveals its unitary nature.

In what follows, we will study whether the S-Matrix corresponding to our collec-
tion of oscillators in the model presented in Section 2.3 displays both these properties.
En route we will have to understand the correct way of combining the di�erent os-
cillators partial waves.

2.4.1 Time delays and degeneracy of states

We have seen that the total scattering matrix associated to four-dimensional gravity
can be seen as arising via a collection of inverted harmonic oscillators, each with
a di�erent algebra di�erentiated by λl in, say, (2.15). One canonical way to study
life-times in scattering problems in quantum mechanics is via the time-delay matrix,
which is de�ned as:

∆tab = <
(

i ∑
c

S†(kl , λl)ac

(
dS(kl , λl)

dk

)
cb

)
. (2.63)

Each matrix element above encodes the time spent by a wave of energy kl in the scat-
tering region in the corresponding channel. The trace of this matrix, called Wigner’s
time delay τl , captures the total characteristic time-scale associated to the entire scat-
tering process. Said another way, should we start with a generic in-state that under-
goes scattering and is then retrieved in the asymptotic future as some out-state, the
trace of the above matrix associates a life-time to the intermediate state [80, 81].
For large energies kl , using S (kl , λl) in (2.33), the Wigner time-delay associated to
the scattering of a single oscillator can be calculated to scale as τ ∼ log (λl kl).
This is the same result as was found in the two dimensional string theory literature
[60, 63, 64] and was argued to not be long-enough for black hole formation. Based
on these black hole non-formation results in the matrix quantum mechanics, it was
suggested that studying the non-singlet sectors would shed light on two dimensional
black hole formation[68, 82]. Despite some e�orts in relating the adjoint representa-
tions with long-string states [76], a satisfactory Lorentzian description is still missing.
Anticipating our result prematurely, our model does not su�er from these di�cul-
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ties as it is to describe a four dimensional black hole with a collection of oscillators.
Merely the s-wave oscillator in our model would mimic the singlet sector in matrix
quantum mechanics6.

The above time delay τ may also be interpreted as a density of states associated
to the system. The inverted potential under consideration implies a continuous spec-
trum. In order to discretize which, to derive the density of states, the system must be
stabilized—by putting it in a box of size Λ, for instance. Demanding that the wave-
functions vanish at the wall and regulating the result by subtracting any cut-o� de-
pendent quantities, the density of states may be computed from the scattering phase
Φ de�ned via S (kl , λl) = exp [i Φ (kl , λl)] as ρ(εl) = dΦ/dεl [83]. The result is
exactly the same as what we get from computing the time delay using the scattering
matrix (2.33) and the time-delay equation (2.63) to �nd a Di-Gamma function ψ(0)

ρ (εl) = τl =
2
λl
<
[

ψ(0)
(

1
2
− i

εl
λl

)
+ log (λl)

]

= <

 ∞

∑
n=0

2

iεl − λl

(
n + 1

2

) +
2
λl

log (λl)

 . (2.64)

This density of states may be used to de�ne a partition function for each partial wave
(with Hamiltonian Ĥlm), where the energy eigenstates contributing to the partition
function will have been picked out by the poles of the density ρ (εl). However, in
our model, we see that there are many oscillators in question. Should we start with
an in-state made of a collection of all oscillators instead of a single partial wave, we
may �rst write down the total S-matrix as a product of the individual oscillators as

Stot =
∞

∏
l=0
S (kl , λl) , (2.65)

assuming that di�erent partial waves do not interact. One may correct for this by
adding interaction terms between di�erent oscillators. To compute the time-delay
associated to a scattering of some in-state speci�ed by a given total energy involves
an appropriately de�ned Wigner time-delay matrix as

τtot = Tr
[
<
(
−i
(
S†

tot

)
ac

(
dStot
dEtot

)
cb

)]
, (2.66)

where this equation makes sense only if we have de�ned a common time evolution
and unit of energy for the total system/collection of partial waves. We will elaborate
on this in a while. Now, even in the spherically symmetric approximation, to write
the total S-matrix as a function of merely one coarse-grained energy Etot is not a
uniquely de�ned procedure. However, our intuition that each partial wave may be
thought of as a single-particle oscillator allows us to compute the density of states
in a combinatorial fashion. We will see that the degeneracy of states associated to
an intermediate long-lived thermal state arises from the various ways in which one

6 It would be very interesting if higher l modes can be described as non-singlets of a matrix model.
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might distribute a given total energy among the many available oscillators. Given
a total energy Etot, we now have the freedom to describe many states, each with a
di�erent distribution of energies into the various available oscillators. From the poles
in the density de�ned in (2.64), we see that each oscillator has energies quantized as

εl = λl

(
nl +

1
2

)
. (2.67)

This allows us to measure energies in units of c, where c is de�ned implicitly via
λl
(
l2 + l + 1

)
= c. Therefore, in these units, the energies are “quantized” as

εl
c

=
1

l2 + l + 1

(
nl +

1
2

)
. (2.68)

Now, given some total energy Etot, we see that any oscillator may be populated with a
single particle state carrying energy such that nl = Etot

(
l2 + l + 1

)
, where we leave

out the half integer piece for simplicity. Importantly, we see that there exist “special”
states coming from very large l-modes even for very small energies. For example,
an energy of 1 could arise from a very large l-mode with the excitation given by
nl =

(
l2 + l + 1

)
. This is rather unsatisfactory for one expects that it costs a lot of

energy to create such states. Moreover, there is an interplay between the log term in
the growth of states and the behaviour of the DiGamma function that we are unable
to satisfactorily take into account. There is an additional problem which is that the
energy of each partial wave is measured in di�erent units that are l dependent; this
means that they also evolve with di�erent times. We thus conclude that this is not
the correct way to combine the di�erent oscillators.

There is a rather beautiful way to resolve all these three problems via a simple
change of variables that we turn to next. It will allow us to interpret the above cost
of energy as relative shifts of energies with respect to a common ground state. Ad-
ditionally these relative shifts also cure the above interplay; there will simply be no
log term in the density of states. Finally, this will also introduce a canonical time
evolution for the entire system, resulting in one common unit of energy.

2.4.2 Exponential degeneracy for the collection of oscillators

In order to combine the di�erent oscillators and de�ne a Hamiltonian for the total
system we need to get rid of the l dependence in the units of energy used for di�erent
oscillators. It turns out that this is possible by rewriting the black hole algebra. More-
over using these new variables, the relation between ’t Hooft’s black hole S-matrix
for an individual partial wave and the one of two dimensional string theory of type
II [59] can be made manifest. To make this connection transparent, we again start
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with a collection of inverse harmonic oscillators and the following Hamiltonian for
the total system

Htot = ∑
l,m

1
2

(
p̃2

lm − x̃2
lm

)
= ∑

l,m

1
2
(
ũ+

lmũ−lm + ũ−lmũ+
lm
)

, (2.69)

but this time imposing the usual λ-independent commutation relations [ũ+
lmũ−l′m′ ] =

iδll′δmm′ . The λ dependence will come through via an assignment of a chemical po-
tential µ(λ) for each oscillator; this assignment is to be thought of as a di�erent vac-
uum energy for each partial wave. Following [59], one may then derive an S-matrix
for this theory. To match this to the one of ’t Hooft for any given partial wave, one
must identify the chemical potential and energy parameters as µ = 1/λ and the
Rindler energy k = ω + µ = ω + 1/λ. It is worth noting that in the reference cited
above, only energies below the tip of the inverted potential were considered, result-
ing in a dominant re�ection coe�cient. In contrast ’t Hooft’s partial waves carry
energies higher than the one set by the tip of the potential. Consequently, to make
an appropriate identi�cation of two dimensional string theory with the partial wave
S-matrix, an interchanging of the re�ection and transmission coe�cients is neces-
sary. If one were to make a parallelism with the string theory the “string coupling”
of each partial wave would scale as gs ∼ 1/µ ∼ c/(l2 + l + 1). This indicates that
as we increase the size of the black hole or we consider higher l partial waves the
corresponding string coupling becomes perturbatively small.
Writing out the energies of the various partial waves with the above identi�cation,
we have

kl = ωl +
l2 + l + 1

c
, and ERindler

tot = ∑
l

kl . (2.70)

At this stage, the labels ωl are continuous energies. However, discretizing the spec-
trum as before, by putting the system in a box, we arrive at discrete energies

c Etot = ∑
l

[
c
(

nl +
1
2

)
+ l2 + l + 1

]
, (2.71)

for every individual oscillator. Without a detour into this two dimensional string the-
ory literature, we may have alternatively arrived at this spectrum from the quantum
mechanics model in 2.3 via the following identi�cations:

εl −→ 1 + λl ωl and λl −→
1
µl

. (2.72)

While the model presented in Section 2.3 makes the algebra manifest, the above iden-
ti�cation of parameters to relate to the model with a λ-independent algebra makes
the physical interpretation of the relative shifts in energies between the partial waves
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figure 12: Spectrum of the collection of oscillators. The left picture is the continuous spec-
trum of the collection of inverted oscillators, where each ground state energy depends on the
angular momentum of the partial wave to be interpreted as a chemical potential. On the right,
we have discretised the spectrum by putting the system into a box.

manifest and allows for a consistent de�nition of time and energy for the total sys-
tem.

This allows us to rewrite our S-matrix S (εl/λl) as a function of two variables ωl
and µl as S (ωl , µl). With this change of variables, we recover exactly the S-matrix
of two dimensional string theory discussed in the literature and therefore, now al-
lows us to interpret µ as a chemical potential of the theory. However, since µl is
now l dependent in our collection of oscillators, it gives us a natural way to interpret
how the combined system behaves. To excite a very large l oscillator, one �rst has
to provide su�cient energy that is equal to µl ∼

(
l2 + l + 1

)
. Therefore, we natu-

rally see that exciting a large l-oscillator costs energy. The physical spectrum may be
depicted as in Figure 12, where we depict an arbitrarily chosen ground-state energy
with E = 0, each oscillator labeled by l and excitations above them by nl . The vari-
ous oscillators are shifted by a chemical potential. And the vacuum is de�ned to be
the one with all Rindler energies kl set to zero. Now, given an initial state carrying
a total energy of Etot, we are left with a degeneracy of states that may be formed by
distributing this energy among the many available oscillators. The larger this energy,
the more oscillators we may distribute it into and hence the larger the degeneracy.
The degeneracy associated to equation (2.71), without the chemical potential shift, is
merely asking for the number of sets of all integers {nl} that add up to Etot. These
are the celebrated partitions into integers that—as Ramanujan showed—grow expo-
nentially. Clearly, for large total energy, our degeneracy grows similarly at leading
order. However, the chemical potential shift slows down the growth polynomially
compared to the partitioning into integers owing to the fact that for a given Etot,
only approximately

√
Etot number of oscillators are available. It is worthwhile to

note that, in this simplistic analysis, we have ignored the degeneracy arising from
the m quantum number; accounting for which clearly increases the growth of states.
We already see that the statistical description of the model supports an exponential
growth of density of states. This shares striking resemblance to the Hagedorn growth
of density of states in black holes.

As a conservative estimate, we may start with some total energy Etot and a �xed
set of oscillators that are allowed to contribute to it. This allows us to sum over the
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contribution arising from the
(
l2 + l + 1

)
c−1 piece in (2.71) to be left with some

subtracted total energy Ẽtot that is to be distributed among the nl excitations over
each of the available oscillators. Clearly, this grows exponentially much as the parti-
tions into integers does, with the subtracted energy Ẽtot. This is given by the famous
Hardy-Ramanujan formula for the growth of partitions of integers:

p (n) ∼ exp

(
π

√
2 n
3

)
. (2.73)

Identifying n with the integer part of Ẽtot, we see the desired exponential growth.
And considering that the same total energy may be gained from choosing di�erent
sets of oscillators to start with, increases this degeneracy further, in equal measure.
While imposing the antipodal identi�cation of ’t Hooft—which we discuss in Section
2.5—reduces this degeneracy, the exponential growth of states remains. How one may
derive the Schwarzschild entropy from this degeneracy requires a truly microscopic
understanding of the parameter λ. We suggest a way forward towards the end of this
chapter but leave a careful study to future work.

2.5 discussion

Here, we have constructed a quantum mechanics model that reproduces ’t Hooft’s
black hole S-matrix for every partial wave using which, we provided non-trivial evi-
dence that it corresponds to a black hole S-matrix. Several questions, though, remain
unanswered. The only degrees of freedom in question were momenta and positions
of ingoing modes. One may add various standard model charges, spin, etc. to see how
information may be retrieved by the asymptotic observer.

Dynamically speaking, gravitational evolution is expected to be very complicated
in real-world scenarios. We have merely discuss the problem upon the assumption of
spherical symmetry. One could also imagine interactions between the di�erent har-
monics once the transverse part of the gravitational force becomes dominant. While
incorporating these interactions may be very di�cult to conceive in gravity, they are
rather straightforward to implement in the quantum mechanical model; one merely
introduces interaction terms coupling di�erent oscillators. Exactly what the nature
of these interactions is, is still left open.

The complete dynamics of the black hole includes a change in mass of the black
hole during the scattering process. In this chapter, we chose to work in an approxi-
mation where this is ignored. The corresponding approximation in the inverted oscil-
lators is that the potential is not a�ected by the scattering waves. In reality, of course,
the quadratic potential changes due to the waves that scatter o� it. The change in the
form of the inverted potential due to a scattering mode can be calculated [84]. We
hope to work on this in the future and we think that this gives us a natural way to
incorporate the changes to the mass of the black hole. Another possible avenue for
future work is to realise a truly microscopic description of the S-matrix, either in the
form of a matrix model or a non-local spin model having a �nite-dimensional Hilbert
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figure 13: The Penrose diagram. Each point in the conformal diagram originally corresponds
to a di�erent sphere. After antipodal identi�cation, the points (u+, u−) and (−u+,−u−)
correspond to antipodal points on a common sphere as given in (2.74). The red lines indicate
the arrows of time.

space from the outset, where the inverse harmonic potential or emergent SL(2, R)
symmetries are expected to arise after an averaging over the interactions between
the microscopic degrees of freedom. Some models with these properties can be found
in [85, 86, 87, 88].

antipodal entanglement Unitarity of the S-Matrix demands that both the
left and right exteriors in the two-sided Penrose diagram need to be accounted for;
they capture the transmitted and re�ected pieces of the wave-function, respectively.
In the quantum mechanics model, there appears to be an ambiguity of how to asso-
ciate the two regions I and II of the scattering diagram in Fig. 11 to the two exteriors of
the Penrose diagram. We saw, in the previous section, that the quantum mechanical
model appears to support the creation of physical black holes by exciting appropri-
ate oscillators. To resolve then the issue of two exteriors, it was proposed that one
must make an antipodal identi�cation on the Penrose diagram [55]; see �gure 13.
Unitarity is arguably a better physical consistency condition for the allowed states
than a demand of the maximal analytic extension. The precise identi�cation is given
by x → Jx with7

J : (u+, u−, θ, φ) ←→
(
−u+,−u−, π − θ, π + φ

)
. (2.74)

Note that J has no �xed points and is also an involution, in that J2 = 1. Such an
identi�cation implies that the points u+, u− and−u+,−u− in the Penrose diagram
are just antipodal points of a common sphere, but with no identi�cation among dif-
ferent points of this sphere. Precisely on the horizon, one actually needs to identify
the antipodal points of the horizon. This represents the central point of the Penrose
diagram for which u± = 0. Note that, since external observers can only see positive

7 Note that the simpler mapping of identifying points in I, I I via (u+, u−, θ, φ) ↔ (−u+,−u−, θ, φ) is
singular on the axis u+, u− = 0.
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u values, the external observer does not notice the antipodal identi�cation on the
horizon, he never sees the horizon directly. In particular for the distributions, this
means

u± (θ, φ) = −u± (π − θ, π + φ) and p± (θ, φ) = −p± (π − θ, π + φ) .

(2.75)

Therefore, noting that the spherical harmonics then obey Yl,m (π − θ, π + φ) =

(−1)l Yl,m (θ, φ), we see that only those modes with an l that is odd contribute.
Global identi�cations of the two exteriors have been considered in the past [89, 90, 91]
but we emphasize that this proposal is di�erent from these works. The physics of the
scattering, with this identi�cation is now clear. In-going wave-packets move towards
the horizon where gravitational back-reaction is strongest according to an asymp-
totic observer. Most of the information then passes through the antipodal region
and a small fraction is re�ected back. Turning on quantum mechanics implies that
ingoing position is imprinted on outgoing momenta and consequently, an highly lo-
calised ingoing wave-packet transforms into two outgoing pieces—transmitted and
re�ected ones—but both having highly localised momenta. Their positions, however,
are highly de-localised. This is how large wavelength Hawking particles are produced
out of short wavelength wave-packets and an IR-UV connection seems to be at play.
Interestingly, the maximal entanglement between the antipodal out-going modes sug-
gests a non geometric microscopic “wormhole” connecting each pair [92]; the large
geometric wormhole (Einstein-Rosen bridge) connects the re�ected and transmitted
Hilbert spaces. Furthermore, as the study of the Wigner time-delay showed, the re-
�ected and transmitted pieces arrive with a time-delay that scales logarithmically in
the energy of the in-going wave. One may also wonder why transmitted pieces dom-
inate the re�ected ones. It may be that the attractive nature of gravity is the actor
behind the scene.

approximate thermality: We now turn to the issue of thermality of the ra-
diated spectrum. Given a number density, say Nin(k) as a function of the energy k,
we know that there is a unitary matrix that relates it to radiated spectrum. This uni-
tary matrix is precisely the S-matrix of the theory. The relation between the in and
out spectra is given by Nout(k) = S†Nin(k)S8. Using the explicit expression for the
S-matrix (2.33), we �nd

Nout
++(k) =

Nin
++(k)

1 + e2πk +
Nin
−−(k)

1 + e−2πk (2.76)

Nout
−−(k) =

Nin
−−(k)

1 + e2πk +
Nin
++(k)

1 + e−2πk , (2.77)

where Nin
++ and Nin

−− are the in-going number densities from either side of the poten-
tial. We see that indeed the scattered pulse emerges with thermal factors 1 + e±2πk.

8 This comes about since it is a bilinear having one creation one annihilation operator.



2.5 discussion 53

For most of the radiated spectrum to actually be thermal, we see that Nin
++ and Nin

−−
must be constant over a large range of energies. This was observed to be the case
in the context of two dimensional string theory, starting from a coherent pulse, seen
as an excitation over an appropriate Fermi-sea vacuum [60, 63, 64]. In our context,
since we do not yet have a �rst principles construction of the appropriate second
quantised theory, this in-state may be chosen. For instance, a simple pulse with a
wide-rectangular shape would su�ce. One may hope to create such a pulse micro-
scopically, by going to the second quantised description and creating a coherent state.
Alternatively, one may hope to realize a matrix quantum mechanics model that real-
izes a �eld theory in the limit of large number of particles. After all, we know that
each oscillator in our model really corresponds to a partial wave and not a single
particle in the four dimensional black hole picture.

second qantization v/s matrix qantum mechanics: Given the quan-
tum mechanical model we have studied in this chapter, we may naively promote the
wave-functions ψlm into �elds to obtain a second quantized Lagrangian:

L =

∑
l,m

∫ ∞

−∞
du±ψ†

lm
(
u±, t

) [
i∂t +

i
2
(
u±∂u± + ∂u±u±

)
+ µl

]
ψlm(u±, t) .

(2.78)

With a change of variables to go to Rindler coordinates,

ψ
(in/out)
lm (α±, ρ±, t) = eρ±/2ψlm(u± = α±eρ± , t) , (2.79)

the Lagrangian becomes relativistic

L = ∑
l,m

∫ ∞

−∞
dρ± ∑

α±=1,2
Ψ†(in/out)

lm
(
α±, ρ±, t

)
×(

i∂t − i∂ρ± + µl

)
Ψ(in/out)

lm
(
α±, ρ, t

)
, (2.80)

where the label “in” (out) corresponds to the + (−) sign. The form of the Lagrangian
being �rst order in derivatives indicates that the Rindler �elds are naturally fermionic.
In this description we have a collection of di�erent species of fermionic �elds labelled
by the {l, m} indices. Possible interaction between di�erent harmonics9 would cor-
respond to interacting fermions of the kind above. The conceptual trouble with this
approach is that each “particle” to be promoted to a �eld is in reality a partial wave
as can be seen from the four-dimensional picture. Therefore, second quantizing this
model may not be straight-forward [56]. It appears to be more appealing to think of
each partial wave as actually arising from an N-particle matrix quantum mechan-

9 Such interactions could be caused by transverse e�ects, though note that such e�ects are suppressed as
1/MPl .
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ics model which in the large-N limit yields a second quantized description. Since N
counts the number of degrees of freedom, it is naturally related to c via

1
N2 ∼ c =

8πG
R2 ∼

l2
P

R2 . (2.81)

Therefore, N appears to count the truly microscopic Planckian degrees of freedom
that the black hole is composed of. The collection of partial waves describing the
Schwarzschild black hole would then be a collection of such N-particle matrix quan-
tum mechanics models. Another possibility is to describe the total system in terms
of a single matrix model but including higher representations/non-singlet states to
describe the higher l modes. This seems promising because if one �xes the ground
state energy of the lowest l = 0 (or l = 1 after antipodal) oscillator, the higher l
oscillators have missing poles in their density of states compared to the l = 0, much
similar to what was found for the adjoint and higher representations in [93]. Finally
we note that we can combine the chemical potential with the oscillator Hamiltonian
to get

Ĥtot = ∑
l,m

[
1
2

(
p̂2

lm − x̂2
lm

)
+

R2

8πG

(
L̂2 + 1

)]
, (2.82)

with L̂2 = ∑i L̂2
i giving the magnitude of angular momentum of each harmonic.

One can then perform a matrix regularisation of the spherical harmonics following
[94, 95] which replaces the spherical harmonics Ylm(θ, φ) with N×N matrices Ylm
where l ≤ N − 1. This naturally sets a cut-o� on the spherical harmonics from the
onset. To sharpen any microscopic statements about the S-matrix, one might �rst
need to derive an MQM model that regulates Planckian e�ects.
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Little is known in Quantum Gravity about how the space-like singularities in general,
and cosmological singularities in particular, can be resolved—if they can be resolved
at all. Some of the questions in this context are: is string theory able to provide con-
sistent, non-singular dynamics around such singularities? What is the set of possible
initial conditions for the cosmological evolution starting from a big-bang singularity?
What are the possible initial wave-functions of the universe at the big-bang? How is
the evolution of the universe determined following the big-bang, et cetera. Quantum
gravity is, notoriously, a subject where problems vastly outnumber results especially
for the physics near spacetime singularities. At short distances strong �uctuations
of the metric are expected to cause a breakdown of classical geometry and the no-
tion of space and time might lose their meaning and become emergent concepts of
a more fundamental theory. Nevertheless, various e�orts to understand the initial
conditions of the Universe based on the semi-classical approximation to the path in-
tegral were made in the 80’s, most notably the no-boundary proposal of Hartle and
Hawking [96] and the tunnelling boundary condition of Linde and Vilenkin [97, 98]
but it is fair to say we do not have a unique sensible answer to the aforementioned
problems.

It is natural to ponder what string theory has to o�er in this context, and whether it
can resolve these problems or at least provide us with a new perspective. In string/M-
theory these fundamental questions have been addressed in the various approxima-
tions and using various models in the past. Some notable work includes the study
of time dependent orbifolds and the null-brane construction [99, 100, 101, 102, 103,
104, 105], the Bang-Crunch scenarios [106, 107, 108, 109, 110, 111, 112, 113], tachyon
condensation [114, 115, 116], constructions attempting to address cosmological sin-
gularities via string theory [117, 118, 119, 120, 121, 122, 123], or via AdS/CFT [124,
125, 126, 127, 128, 129] and pre-Big Bang scenarios [130] among many others. For
related work on string cosmology with a view towards in�ation see [131, 132, 133].

Motivated by these di�cult questions, we ask a more modest question in this chap-
ter: What can string theory teach us about the cosmological singularities in the con-
text of a toy model: the two dimensional non-critical string theory or c = 1 Liouville
theory1) [134, 135]? The idea here is the following. Start with the Euclidean 2D non-
critical string theory with Euclidean time direction, τ, compacti�ed on a circle with
radius R. This theory has a well-known dual formulation in terms of Matrix Quantum
Mechanics (MQM) of a Hermitean N × N dimensional matrix M at �nite tempera-

1 More precisely c = 1 Liouville theory is an exact CFT equivalent to 2D string theory in a linear dilaton
and exponential tachyon background in the Liouville direction φ. The non-critical is an adjective referring
to the number of dimensions.
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ture T = 1/2πR in a double scaling limit [136, 38, 83]. Now, consider a Z2 orbifold
of the non-critical string theory (NCST) in the Euclidean time direction where one
identi�es τ ∼ −τ. The following identi�cations

τ ∼ τ + 2πR, and τ ∼ −τ , (3.1)

restrict the domain of the Euclidean time to the line segment 0 ≤ τ ≤ πR. Upon
Wick rotating to Lorentzian time, the �xed points of the orbifold at the points τ = 0
and τ = πR correspond respectively to the big-bang and big-crunch singularities of
a toy, cosmological big-bang/big crunch universe in two dimensions. The questions
posed above are expected to have a much simpler formulation in this toy universe,
since the only non-trivial physical degrees of freedom in the bulk are a massless
closed string “tachyon �eld” in case of the bosonic NCST with an additional RR scalar
C0 in case of supersymmetric type 0B NCST [137, 138, 139, 41, 140]. This is to be
contrasted with the in�nitely many physical excitations of the critical bosonic string
in 26 dimensions and supersymmetric string in 10 dimensions. The 2D toy model
also enjoys the following great advantage: Resolution of cosmological singularities
in string theory is expected to involve not only the full set of corrections in the string
length scale α′ but also the perturbative corrections in the string coupling constant
gs [141]2. This seems an insurmountable task for critical string theories (unless one
attempts to use the BFSS [142] or related matrix model formulations, as in some
of the references above). In the case of 2D NCST however, the dual formulation in
terms of Hermitean MQM comes to the rescue. The partition function evaluated via
MQM involves at least the full set of perturbative gs corrections in the dual string
theory and in addition a great deal is understood for non-perturbative corrections as
well [143, 144, 145, 146].

The duality between 2D NCST and the Hermitean MQM was discovered back in
the late 80s [147, 148, 149, 150]. Starting from a Lagrangian of the form

L = tr

(
1
2

(
∂M
∂t

)2
+

1
2α′

M2 − κ

3!
M3

)
, (3.2)

one considers the web of Feynman diagrams of the matrix M that arise from the cu-
bic interaction vertex. This web of Feynman diagrams then provides the dual lattice
of the one obtained from triangulations of a string world-sheet a la ’t Hooft [151].
As one increases the bare coupling κ one discovers that the average number of trian-
gles on a given world-sheet begins to diverge at a critical value κc. Then, taking the
double scaling limit N → ∞, κ → κc with N(κ2

c − κ2) kept constant, one obtains a
continuum formulation of the 2D string theory in terms of matrix quantum mechan-
ics. The crucial point here is that a universality arises in this double scaling limit, that
focuses on the tip of the potential provided by the mass term in (3.2). Therefore, the
theory dual to the continuum limit of the 2D string theory is just described by Her-
mitean matrix quantum mechanics with the inverse harmonic oscillator potential. In

2 and possibly corrections non-perturbative in gs .
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this duality, the time direction in MQM provides the time direction for the 2D space-
time where the string can propagate. In addition, the eigenvalues λi of the matrix M
provide the extra space-like Liouville direction φ in the 2D string theory picture.

In some sense, this duality can be viewed as the oldest example of the open/closed
dualities in string theory, much before the famous AdS/CFT correspondence in the
case of critical IIB string theory [10]. The lessons learned from AdS/CFT, in partic-
ular the role of D-branes in this correspondence, ignited a revival of interest in the
old matrix quantum mechanics in the 00s. A gauge/gravity type of interpretation fo-
cusing on the target space physics arising from the matrix model has been proposed
in [152, 153]. According to this picture, MQM describes the �eld theory living on N
D0 branes, the ZZ branes found in [154], that sit at the strong coupling end of the Li-
ouville theory. Furthermore, the 0B fermionic NCST also admits a non-perturbative
formulation where the cubic potential in case of the bosonic NCST is simply replaced
by a quartic potential. Therefore, unlike the bosonic theory, 0B fermionic NCST is
believed to be non-perturbatively stable [41, 140]. One important insight that arises
from the D-brane interpretation in the string/matrix duality is the need to introduce a
non-dynamical3 bulk gauge �eld A0(τ) in the matrix path integral. Integration over
this gauge �eld then projects to the singlet sector of the MQM. The gauged matrix
model then captures the physics of the so-called linear dilaton background of the 2D
string theory.

In this chapter, we consider a toy cosmological universe with a big bang/big crunch
singularity in the context of bosonic and 0B NCST. As explained above, a natural
model that is suitable for this purpose is a space-time where the (Euclidean) time
direction is compacti�ed and orbifolded as S1/Z2 and coupled to the Liouville di-
rection. If the Euclidean time direction in this model admits an analytic continuation
into Lorentzian signature, one can interpret the orbifold singularities as cosmological
singularities. One also hopes that information about the initial and �nal wavefunc-
tions is encoded in the twisted sector of the orbifold that describes states localized
at the orbifold �xed points. One can go further and also ask if one can compute the
transition amplitude of the universe in this model.

We take the �rst step toward this aim in this chapter and focus on the calculation of
the orbifolded matrix model partition function in Euclidean time using the machinery
of matrix quantum mechanics. In particular, we show that

• the orbifold operation is represented in the matrix model by the operation
diag(−1,−1,
· · · − 1, 1, 1, · · · , 1) ? where ? acts on time as ?t = −t? and with n eigenval-
ues with the value−1 in the diagonal matrix. Hence, there are n = 0, · · ·N/2
distinct orbifold representations on the matrix model. In the T-dual D-instanton
picture there are N − 2n fractional instantons that are stuck at the orbifold
�xed points and n D-particles free to move along the t-directon. We argue that
the correct choice corresponds to n = N/2, where there are no fractional
instantons.

3 This gauge �eld is necessarily non-dynamical in two dimensions.
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• Using the matrix model techniques we calculate the torus partition function in
the large R limit for the n = 0 and n = N/2 representations, especially the
twisted state contribution to it, and show that the n = N/2 representation
matches precisely the result obtained from the world-sheet CFT. This provides
a non-trivial check of the equivalence we propose between the orbifold MQM
and the orbifold 2D non-critical string theory.

• The calculation of the full orbifold partition function in the canonical ensem-
ble in the large-N limit proves hard. However, we manage to represent the
grand-canonical partition function in terms of an integral kernel whose spec-
trum gives the single-particle density of states. We obtain this density by two
independent methods that agree with each other.

• We further discuss certain aspects of this matrix model in connection with the
corresponding 2D string theory. Finally we make various comments on how to
implement the Wick rotation of the Euclidean time orbifold partition function
to Lorentzian signature. We leave the full Lorentzian space-time interpreta-
tion of the possible initial and �nal boundary conditions at the cosmological
singularities and a more thorough study of the semi-classical geometry that
the matrix model describes, to future work.

The organization of the chapter is as follows. In the next section we �rst outline the
necessary material on the orbifold c = 1 Liouville theory. In particular we present
the torus partition function of the bosonic, super-a�ne 0B and 0A NCSTs including
the contribution from the twisted sectors. This is achieved by considering the pos-
sible Z2 orbifolds of these theories and using self consistency CFT techniques that
relate the orbifold with the circle CFT at di�erent multiples of the self-dual radius.
In this section, we also introduce some more details of Matrix Quantum Mechanics
in 3.1.3 and set up our conventions. Finally in section 3.1.4 we make use of the D0
brane picture to determine the boundary conditions of the partition function of the
dual MQM, in particular we obtain the boundary conditions for the matrix M and
the gauge �eld A consistent with the orbifold projection. Interestingly, we �nd dif-
ferent representations of the projection classi�ed by an integer4 0 ≤ n ≤ N/2.
Di�erent representations are found to be related via the action of a certain kind
of “loop-operator” at the end-points in 3.2.1.3. In section 3.2, we also compute the
canonical (�nite N) partition function by representing it as a path integral over the
eigenvalues of M. In addition we �nd that this partition function admits a natural
continuation into Lorentzian signature, hence provides a possible connection to the
cosmological toy universe. In particular it has a nice structure from which the initial
and �nal wavefunctions and the transition amplitude of the toy cosmological space-
time can be read o�. These wavefunctions are expressed in terms of determinants of
eigenvalues of M at t = 0 and t = T. We further argue that the regular n = N/2
representation is the one expected to be dual to the orbifold in section 3.2.1.6. More-
over in section 3.2.2 we provide a dual description in terms of an angular integral

4 This possibility was observed earlier in the unpublished work [155].
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with the angles corresponding to the zero modes of the gauge �eld A.
Section 3.3 is devoted to the computation of the MQM grand partition function for
the “regular” n = N/2 and n = 0 representations. The grand canonical partition
function is helpful in taking the double scaling limit [93], hence connecting the MQM
partition function to the genus expansion of the dual string theory. This section con-
tains one of our main �ndings: here we show that the calculation of the grand canon-
ical partition reduces to the computation of the spectrum of an integral kernel which
we express in various useful forms. The equations that determine the spectrum of
this kernel can be expressed as integral equations. By deforming the contour of in-
tegration in these integral equations, we identify contributions to the untwisted and
twisted sectors in the free energy of the orbifolded 2D NCST.
It proves hard to evaluate and express these contributions in terms of the dual string
theory quantities in the double scaling limit. In section 3.3.2.3 we perform a par-
tial matching of the various expressions for the kernel by computing its trace, from
which we can read-o� the one-particle density of states that we express as a sum of
the usual harmonic oscillator density of states including a twisted state contribution.
Finally in section 3.4 and in appendix A.7 we attempt to compute the twisted states
at the orbifold end-points by performing a large radius expansion of the canonical
partition function. We manage to do this precisely for the n = 0 representation and
the “regular” n = N/2 representation. We discover then that we can perform an
exact matching with the torus contribution to twisted states computed in Liouville.
The main �nding of our work is that the twisted state contribution in the scaling
limit involves a Fredholm determinant of the sine-kernel which expresses the prob-
ability that all the energy eigenvalues taken from a random Hermitian Hamiltonian
lie outside the interval [−µ, 0] and thus form the fermi sea. This is also called the
level spacing distribution E2(0, µ) in the random matrix theory parlance. The initial
and �nal wavefunctions take the form of “square-roots” of this distribution.
Throughout the text, we discuss similarities and di�erences with established results
in the literature such as the circle and the 2D black hole [136, 156]. We also discuss
the possibility of realising the grand canonical partition function as a τ function of an
integrable hierarchy with a Pfa�an structure. Finally, in section 3.5 we conclude with
what is achieved and provide a look ahead. Several appendices contain the details of
our calculations.

3.1 the setup

3.1.1 c = 1 Liouville Theory on S1/Z2

One computes the orbifold partition function at the torus level in string theory as
folllows. Let us call the bosonic matter �eld5 X restricted to the line segment−πR ≤
X < πR and obeying the following identi�cations under translation and re�ection

X ≈ X + 2πR and X ≈ −X . (3.3)

5 This �eld corresponds to the Euclidean time τ in the previous section.
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The modular partition function of the theory is (see for example [157])

Zorb (R, z) =
1
2

{
Zcircle (R, z) + |θ2(z)θ3(z)|

|η(z)|2 + |θ2(z)θ4(z)|
|η(z)|2 + |θ3(z)θ4(z)|

|η(z)|2
}

, (3.4)

where Zcircle (R, z) is the modular partition function for the circle, η (z) is the
Dedekind η function, θ’s are the elliptic functions, R is the radius of the circle and
z is the coordinate on the torus. The �st term in (3.4) gives the contribution from
the untwisted states and equals half the partition function of the circle. The contri-
bution from the twisted states is given by the R independent part. To obtain the full
torus partition function on the orbifold one should couple the ghost and the Liouville
modes to (3.4) and integrate over the moduli z

Zorb (R) = −Vφ

∫
F

d2z
(
|η (z)|4

2z2

)(
2π
√

z2|η (z) |2
)−1

Zorb (R, z) , (3.5)

where the integral is over the fundamental domain F , the �rst term in the integrand
is the contribution from the ghost sector and the second the contribution from the
Liouville modes. Vφ is the contribution from the Liouville zero mode, shown to be
proportional to the renormalised volume in the Liouville direction log µ0 with µ0 the
renormalised string coupling [158]. Upon performing the integral over z one �nds
the following answer

Zorb (R) =
1
2
Zcircle (R) + c, (3.6)

where c is independent of R and Zcircle (R) is the partition function of the circle
coupled to the Liouville mode computed by the worldsheet methods in [158]

Zcircle (R) = − 1
24

(
R +

1
R

)
ln (µ0) . (3.7)

To determine the constant c for the orbifold partition function one may use the rela-
tion between the circle and the orbifold at the self-dual radius [159]:

Zorb (R = 1, z) = Zcircle (R = 2, z) . (3.8)

Then substituting in (3.8) to (3.5) and combining them with (3.7), one �nds the �nal
result:

Zorb (R) = − 1
48

(
R +

1
R

)
ln (µ0)−

1
16

ln (µ0) . (3.9)

3.1.2 Fermionic orbifold theories

The classi�cation of ĉ = 1 CFTs has been performed in [160][161]. According to
this classi�cation, the continuous lines of theories include two lines of “circular” the-
ories and various orbifolds of these theories. The “circular” theories consist of the
circle CFT and a super-a�ne CFT. The coupling of these “circular” theories to super-
Liouville is discussed in [41]. We summarize their results:
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• Circle CFTs: The usual fermionic circle theory (compact X + Ising) gives rise
to two theories when coupled to super-Liouville: 0A and 0B depending on the
GSO projection. Their partition functions are:

ZcirA(R) = − 1
12
√

2
ln µ0

(
2R +

1
R

)
,

ZcirB(R) = − 1
12
√

2
ln µ0

(
R +

2
R

)
. (3.10)

These theories are interchanged under the T-duality: R→ 1/R. At the special
radius, R = 1 there is enhanced SU(2)× SU(2) symmetry.

• Super-A�neCFTs: The usual super-a�ne theory is obtained by modding out
the usual fermionic circle theory by the following Z2:

(−1)Fs e2ipδ, (3.11)

where (−1)Fs is de�ned as +1 on the antiperiodic fermions and −1 on the
periodic ones. e2ipδ is a shift operator that shifts by a unit vector on the self-dual
lattice. When Coupled to super-Liouville one again obtains two theories: Super-
A�ne A and Super-A�ne B theories with the following partition functions:

ZcirA(R) = − 1
12

ln µ0

(
R√

2
+

√
2

R

)
,

ZcirB(R) = − 1
24

ln µ0

(
R√

2
+

√
2

R

)
. (3.12)

These theories are both self-dual under R → 2/R. At the self-dual radius
R =
√

2, there is an enhanced SO(3)2 symmetry.

Apart from the type 0 theories, there are other “circular” ĉ = 1 theories with type
I GSO projections. These have been classi�ed in [162]. In addition to the “circular”
ĉ = 1 theories, there are three families of orbifold CFTs [160][161]. Here we are
interested in the 0B orbifold:

• Orbifold I: The �rst class of orbifolds is obtained by modding out circular
theories by:

R : X → −X, Ψ→ −Ψ . (3.13)

Both the left and right handed fermions on the world-sheet are transformed in
order to preserve world-sheet supersymmetry. R as de�ned above is a symme-
try of only the 0B theory since in the 0A theory states in the Ramond sector
have odd fermion number. Therefore one obtains only one orbifold CFT by
twisting the 0B theory by R. The partition function is obtained by noting the
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following two relations [160] which continue to hold after coupling to super-
Liouville:

ZorbI(R) =
1
2
ZcirB(R) + const, (3.14)

and

ZorbB(1) = ZcirB(2), . (3.15)

The result is:

ZorbI(R) =
1
2
ZcirB(R)− 1

8
√

2
ln µ0 . (3.16)

This orbifold theory is the one that we shall be interested in constructing the
matrix model dual.

We also �nd two other continuous families of orbifold theories, discuss them and
present their torus level partition functions in appendix A.1.

3.1.3 Matrix Quantum Mechanics

We now provide a very short review of Matrix Quantum Mechanics (MQM). For more
details the reader can consult existing reviews in the literature, for example [83, 38,
163]. Gauged MQM is a 0 + 1 dimensional quantum mechanical theory of N × N
Hermitian matrices denoted by M(t) and a non dynamical gauge �eld A(t). The
gauge �eld acts as a Lagrange multiplier and projects onto the singlet representation
of the U(N) gauge group. The path integral is de�ned as (we work in units where
α′ = 1):

〈out|in〉 =
∫
DM(t)DA(t) (3.17)

exp
[

iN
∫ t f

tin

dtTr
(

1
2
(Dt M)2 +

1
2

M2 − κ

3!
√

N
M3
)]

,

where Dt = ∂t + [A, M]. This model has a U(N) gauge symmetry. One can diago-
nalise M by a unitary transformation M(t) = U(t)Λ(t)U†(t) where Λ(t) is diag-
onal and U(t) unitary. One then picks up a Jacobian from the path integral measure
for every t

DM = DUHaar

N

∏
i=1

dλi∆2(Λ), ∆(Λ) = ∏
i<j

(λi − λj). (3.18)

This Vandermonde determinant is responsible for many interesting properties of ma-
trix models in general and for MQM it leads to a natural description in terms of
fermionic wave-functions. In particular, after projecting to the singlet sector, the
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Hamiltonian is found to act on the fermionic wavefunctions Ψ̃ = ∆(λ)Ψ(λ) as

(
−1

2
d2

dλ2
i
− 1

2 λ2
i +

√
h̄

3!
λ3

i

)
Ψ̃(λ) = h̄−1EΨ̃(λ), h̄−1 =

N
κ2 , (3.19)

and describes N non interacting fermions in the cubic potential V(λ).
To connect this model with 2D string theory one needs to send N → ∞ and tune

the cubic potential to a critical value κ → κc, just before the system becomes un-
stable6. The double scaling limit is most easily performed by introducing a chemical
potential µ to �ll up the fermi-sea. Schematically this goes as follows: One sends
µ, h̄→ 0, while keeping µ

h̄ = g−1
st �xed. A careful treatment will be provided in sec-

tions 3.4 and A.7.4. Tuning the system near the critical point is responsible for pro-
ducing smooth surfaces out of the matrices [83]. In this limit only the local maximum
of the potential becomes relevant and the model thus becomes solvable, described in
terms of N free fermions in an inverse harmonic oscillator potential. Let us also men-
tion that in the more modern target space approach, MQM is considered as the zero
dimensional �eld theory living on the world volume of N unstable ZZ D0- branes
and the matrix �eld M (t) is interpreted as the open string tachyon �eld [152].

3.1.4 Orbifolding in the Matrix Model Picture

We now consider implementation of the orbifolding procedure in MQM7, that corre-
sponds to the circle orbifolding we discussed in the string theory picture above. The
orbifolding procedure is very similar to the one presented in [164]. We start from the
Euclidean Partition function on S1 (the radius is de�ned via βc = 2β = 2πR) with
the following action:

S =
∫ β

−β
dτ tr

(
1
2
(Dτ M)2 + ω2M2

)
, (3.20)

where τ is the Euclidean time variable, β = πR, and the covariant derivative with
respect to the gauge group is Dτ M = ∂τ M− i [A, M] . Here, anticipating the large
N limit in (3.17) we have dropped the interaction term in (3.17) and we have allowed
for a more general mass term ω. For real values of ω this action corresponds to the
normal harmonic oscillator potential—the inverted one can be obtained upon the
analytic continuation ω → iω.
The action (3.20) is invariant under the U(N) gauge transformations:

M (τ) → U (τ) M (τ)U† (τ) ,

A (τ) → U (τ) A (τ)U† (τ) + iU (τ) ∂τU† (τ) . (3.21)

6 This cubic potential is always non-perturbatively unstable, but the supersymmetric version of the model
(0B) has a quartic stable potential and is thus non-perturbatively well de�ned.

7 This procedure has been worked out in [155].
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The theory also has a Z2 symmetry corresponding to

τ → −τ, M (τ)→ M (−τ) , A (τ)→ −A (−τ) . (3.22)

One can gauge this symmetry by projecting to the invariant states. We will use a
more general gauging, by combining the re�ection symmetry with a Z2 subgroup of
the U(N) gauge group (see also [164]). We de�ne (up to a change of basis- note also
that Ω is de�ned up to a minus sign)

Ω =

(
−1n×n 0

0 1(N−n)×(N−n)

)
∗ , (3.23)

with ∗ f (τ) = f (−τ)∗, ∗∂τ = −∂τ∗, 0 ≤ n ≤ N
2 , and then require:

ΩA(τ)Ω−1 = −A(τ) + 2niβδij, ΩM(τ)Ω−1 = M(τ). (3.24)

with ni ∈ Z which is allowed since the eigenvalues of A are periodic variables with
period β. This term turns out to be unimportant since it can be gauged-away. This
procedure naturally splits the matrices into (even/odd) blocks that need to satisfy
di�erent boundary conditions. We get

M(τ) =

(
M1(τ) Φ(τ)

Φ†(τ) M2(τ)

)
, A(τ) =

(
A1(τ) B(τ)

B†(τ) A2(τ) .

)
(3.25)

One immediately sees that the n× n M1, A1 and the (N − n)× (N − n) M2, A2
matrices should be Hermitian while the n× (N − n) Φ, B are complex. In addition,
consistency with 3.23, 3.24 requires that M1, M2, B are even while A1, A2, Φ are odd
functions of τ. From the gauge transformations (3.21) the ones that are consistent
with the action of Ω are

U(τ) =

(
V1(τ) W1(τ)

W2(τ) V2(τ)

)
, (3.26)

with V1, V2 even and W1, W2 odd.
After orbifolding the fundamental domain is 0 ≤ τ ≤ β. In the bulk of the domain the
theory is as before. The changes come from demanding di�erent boundary conditions
for the �elds in (3.25) imposed at the �xed points 0, β due to their symmetry. In
particular we need to demand

A1(0) = A2(0) = Φ(0) = 0 = A1(β) = A2(β) = Φ(β) (3.27)

The U(N) gauge group gets broken to U(n) × U(N − n) at the boundaries, and
as we will see the initial and �nal wavefunctions contain two separate sets of n and
N − n fermions. This breaking also means that the zero-modes of A come solely
from the o�-diagonal elements B.
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The two most special cases are8 n = 0 and n = N/2. The �rst is the simplest case
where there exist no zero modes of the gauge �eld, while the second describes the
so-called “regular” representation of the orbifold which is expected to give the Matrix
Model dual to the orbifold Liouville theory. Further reasoning for why n = N/2 is
expected to be the correct representation, based on ideas related to deconstruction,
is discussed in section 3.2.1.6.

Representations with di�erent n correspond to adding fractional D-instantons at
the �xed points. This becomes clear in the T-dual picture. In particular, upon T-
dualizing the Euclidean circle to a radius 1/R and then orbifolding, the original D0
branes become D-instantons whose position on the dual circle is governed by the
zero mode of the gauge-�eld. This means that for n = 0, A(τ) = ni

π
R δij, ni ∈ Z

and all the instantons are stuck at the �xed points 0, π/R. For the generic n repre-
sentation, one has n-zero modes with arbitrary angle in the T-dual circle and thus
the con�guration contains n-physical instantons at angles θi together with N − 2n
stuck at the �xed points. This makes clear that the regular n = N/2 representation
has only physical instantons in the T-dual picture. More discussion about how to
connect di�erent representations will follow in section 3.2.1.3.

3.2 the canonical partition function

The partition function for a generic n representation of the orbifold is then obtained
by integrating over the non-vanishing components of the matrices M and A in (3.25)
at the initial and �nal points—that are the even components M1, M2 and B at τ = 0
and τ = β, and performing the path integral of the full matrices between these points.
Thus, for a generic n-representation we have,

Z =
∫
DB(0)DB(β)DM1,2(0)DM1,2(0)

∫ A(β)

A(0)
DA(τ)

∫ M(β)

M(0)
DM(τ)e−S .

(3.28)

The next step is to reduce this matrix integral to an integral over eigenvalues. One
can show that∫ M′(β)

M(0)
DADMe−

∫ β
0 dτTr 1

2 (Dτ M)2+ 1
2 ωM2

=
∫

U(N)
DU〈UM′U†, β|M, 0〉 . (3.29)

In our case the propagator is the (Euclidean) propagator for a matrix harmonic oscil-
lator given by

〈M′, β|M, 0〉 =
(

ω
2π sinh ωβ

)N2/2
exp

(
− ω

2 sinh ωβ

[(
TrM2 + TrM′2

)
cosh ωβ− 2TrMM′

]) (3.30)

These two equations can be combined beautifully using the Harish-Chandra-Itzykson-
Zuber integral∫

U(N)
DU exp

(
gTrMUM′U†

)
=

N−1

∏
p=1

(p!) g−
1
2 N(N−1) det egλiλ

′
j

∆(λ)∆(λ′)
(3.31)

8 From now on we assume even N.
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that will allow us to reduce the integral to eigenvalues. This is possible since the only
term that couples di�erent matrices in the propagator is precisely of the form that
can be reduced to eigenvalues via the HCIZ formula.

Before moving on, let us note the following two options: we can either �rst diag-
onalise M and then integrate over U using the HCIZ formula or �rst diagonalise U
and then integrate over M. In the orbifold case one also needs to take care about the
orbifold projection which is implemented through the block structure of the matrices.
In the next section, we will follow the �rst procedure and compare the results for the
circle and orbifold. In section 3.2.2 we will follow the second and in section 3.3.2.3
we will perform a matching between the two methods.

3.2.1 Partition function in terms of eigenvalues

To set up our notation, we de�ne KE(λi, λ′j; β) = 〈λ′j, β|λi, 0〉 the Euclidean oscilla-
tor propagator as follows

KE(λi, λ′j; β) =

[
ω

2π sinh ωβ

] 1
2

exp

(
−ω cosh ωβ

2 sinh ωβ

(
λ2

i + λ′
2
j

)
+

ωλiλ
′
j

sinh ωβ

)

= ∑
n

ψn(λi)ψn(λ
′
j)q

n+ 1
2 , (3.32)

where the second spectral representation is also known as Mehler’s formula. In this
representation q = e−ωβ and ψn(λi) are the Hermite functions. Note that upon
analytic continuation ω → iω the Hermite functions turn into parabolic cylinder
functions
Dν(z) de�ned for complex ν, z see Appendix A.2. One can also resolve the inverted
oscillator propagator in terms of parabolic cylinder functions from the start [165], the
relevant formula is presented in Appendix A.2.3. As we discuss below the possibility
of analytically continuing the propagator in the parameters ω, β is the reason we
expect to obtain the Lorentzian transition amplitude in this 2D toy universe directly
from the Euclidean description.

3.2.1.1 The circle

We �rst review the case of circle [136, 93]. For this partition function on S1 we just
have to demand periodic boundary conditions (M′(βc) = M(0), βc = 2β)

ZN =
∫
DM(0)DU1〈U1M(0)U†

1 |M(0)〉 = 1
N!

∫ N

∏
i=1

dλi det KE(λi, λj), (3.33)

where we diagonalised M(0) = U2ΛU†
2 and integrated over the matrix U = U1U†

2 .
The ∆2(Λ) in the numerator from the measure of M, canceled the similar term pro-
duced by the HCIZ formula. The term ∏N−1

p=0 p! in the HCIZ formula got canceled

by the second integration over the gauge group which is
∫
DUHaar =

πN(N−1)/2

∏N
p=0 p!

. In
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the end the 1/N! term is due to the left-over permutation (Weyl) symmetry between
the eigenvalues. For more details on factors of N for this and more general cases
see [166].
The result is the partition function of N free fermions in the harmonic oscillator po-
tential:

ZN =
q

N2
2

∏N
k=1(1− qk)

, (3.34)

with q = e−ωβc . One can also expand this result for large βc and recover the zero
temperature free energy

F = βc ω
N2

2
= βcE0 + O(e−ωβc), (3.35)

where E0 = ∑N−1
k=0 ω(k + 1

2 ) the vacuum energy of the system of N fermions. In con-
strast, in the orbifold case at least for the torus contribution we expect a subleading
β independent term due to the presence of twisted states since these are localised at
the end-points.

3.2.1.2 The orbifold partition function for generic n

The orbifold partition function for generic n after we integrate over the propagation
becomes

Zn,N−n =
∫
DMDM′DU〈UM′U†, β|M, 0〉, (3.36)

with

M =

(
M(n×n)

1 0

0 M(N−n)×(N−n)
2

)
, DM = DM1DM2 (3.37)

and similarly for M′. We now use the HCIZ formula to evaluate the integral over
the unitary matrix U. If we de�ne the eigenvalues of M1,2 as xi, yi respectively,
∏n

i=1 dxi/n! ≡ dnx and similarly for y, the result is found to be

Zn,N−n = CN,n

∫
dnxdN−nydnx′dN−ny′

∆n(x)∆N−n(y)
∆n,N−n(x, y)

det K(x̄i; x̄′j)
∆n(x′)∆N−n(y′)

∆n,N−n(x′, y′)
, (3.38)

with

∆n,N−n(x, y) =
n

∏
i=1

N−n

∏
j=1

(xi − yj) . (3.39)

First of all we make the following crucial observation: the form of this Euclidean par-
tition functions in (3.28) and (3.38) are appropriate for analytic continuation into the
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Lorentzian time. The analytic continuation is obtained simply by changing β = iT
in the propagator. Therefore, after the analytic continuation we can simply interpret
these Lorentzian partition functions as transition amplitudes from an initial state of
the universe at t = 0 to a �nal state at t = T

〈ψ f , T|ψi0〉 =
∫

Dx̄Dx̄
′
ψ∗f (x̄

′
)det KL(x̄, x̄

′
; T)ψi(x̄) , (3.40)

where we introduced the compact notation x̄ = (x, y). Here the initial and �nal
wave-functions in this toy universe are of the form

ψi(x̄) = ψ f (x̄) =
∆n(x)∆N−n(y)

∆n,N−n(x, y)
. (3.41)

One can rewrite these wavefunctions in the form ∏i,j(λi−λj)
qiqj in terms of fermions

having positive (qi = +1 , 1 ≤ i ≤ n) and negative (qi = −1 , n + 1 ≤ i ≤ N)
charge (or spin), with same charge fermions “feeling” repulsion and opposite ones
attraction. They represent a Coulomb-gas in one dimension. From this point of view,
the representation n = N/2 is the only one satisfying charge neutrality. Wavefunc-
tions of this form �rst arised in studies of Quiver Matrix Models [167, 168, 169]9.
Then they reappeared in connection to the description of e�ective IR superpotentials
of N = 1 gauge theories and in studies of supermatrix models (see [170, 171, 172]
and references within). If one replaces rational with hyperbolic functions, a similar
ratio can also be found in studies of superconformal Chern-Simons theories of A�ne
D̂-type, at the quiver end-nodes [173]. Finally there is recent interest in these wave-
functions [174] in the context of non-Unitary holography.

3.2.1.3 Changing representations via Loop operators

One can connect di�erent n representations by inserting operators in the end-points
of the path integral of the form ∏j(x − yj)

2 or ∏j 1/(x − yj)
2 to lower/raise the

value of n. This form of operators is known as loop operators. We �rst de�ne the loop
operator that creates macroscopic holes/boundaries on the worldsheet (this means
the string gets attached to a D-brane, the so called FZZT brane) in matrix model
language [175, 163, 39, 176, 177]:

W(x) =
1
N

tr log(x−M) . (3.42)

The function that creates a coherent state of them is:

eNW(x) = det(x−M) =
N

∏
j
(x− λj) . (3.43)

In these equations x can be thought of as a chemical potential µB (or a boundary
cosmological constant). For c < 1 theories these operators have been thoroughly

9 In some of these studies the divergence coming from the denominator is avoided, since it has the form
xi + yj with the variables restricted to be positive. We will regulate this divergence taking the principal
value in section 3.3.2.
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studied from the matrix model point of view in [176, 177]. The relevant branes are
the FZZT branes which extend along the Liouville direction. In our case let us take as
an example the operator that transforms the generic n to the n = 0 representation

n

∏
i

N−n

∏
j
(xi − yj)

2 = det (M1 ⊗ 1N−n×N−n − 1n×n ⊗M2)
2 , (3.44)

where the determinant is in the tensor product space. Similarly one can transform
the generic n representation to the n = N/2 by an inverse determinant of the same
form. From this expression, it is easy to see that the eigenvalues of M1 act as chem-
ical potentials for the eigenvalues of M2 and vice versa and have to be integrated
over (they do not represent external parameters as in the familiar computations that
involve FZZT branes). The open strings are the ones stretched between the two sets
of n and N− n D0 branes which can be thought to separate at the end-points due to
the breaking U(N)→ U(n)×U(N− n). Using a Miwa-style representation [178],
the authors of [179] found that in the case of the Normal matrix model, these deter-
minants/inverse determinants decrease/increase the closed string tachyon coupling
thus deforming the closed string background. Therefore there exist two complemen-
tary ways to understand these operators (open/closed duality). In our case let us note
that similarly we can write

det (M1 ⊗ 1N−n×N−n − 1n×n ⊗M2)
2 =

e[(N−n) tr log M1+n tr log M2−∑∞
k=1 tk Mk

2−∑∞
k=1 t̄k Mk

1] (3.45)

where we chose to expand each determinant factor in a di�erent way and tk =
tr(M−k

1 )/k, t̄k = tr(M−k
2 )/k. These are the closed string tachyon couplings in

Miwa variables. The logarithmic terms in the exponent appear in versions of the
Penner model, for more details one can consult [180]. This description makes clear
that there is a backreaction e�ect where M1 deforms the closed string background
of M2 and vice versa.
One might furthermore try to use grassmannian/fermionic variables to exponentiate
these factors [176, 177]. In particular we get

det (M1 ⊗ 1N−n×N−n − 1n×n ⊗M2) =
∫

dχ†dχeχ†(M1⊗1N−n×N−n−1n×n⊗M2)χ,

(3.46)

with χαj, χ†
αj fermions transforming in the bifundamental representation of U(n)×

U(N − n)10 that exist only at the orbifold endpoints. One can also endow these
fermions with a kinetic term (dynamic-loops on the worldsheet) as in [181] that
would correspond to the T-dual picture (Neumann conditions for open strings). This
construction also indicates that determinants correspond to fermionic open strings
streched between the branes, while inverse determinants to bosonic open strings [176,

10 Integrating-in fundamental fermions had been already used in the context of c = 1 open string theory
in [181].
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177, 179]. It would be very interesting to study further our model from this point of
view and connect it with various ideas related to FZZT branes in the existing litera-
ture and possibly understand non-perturbative e�ects as well.

3.2.1.4 The n = 0 case

This is the simplest case, where the zero modes of the gauge �eld vanish. The line
segment partition function for n = 0 has a structure similar to the two-matrix
model [182, 183].

Z0,N =
∫
DMDM′〈M′, β|M, 0〉 = CN

∫ N

∏
i=1

dλidλ′i∆(λ
′)det

i,j
KE(λi; λ′j)∆(λ),

(3.47)

with CN a constant. One can also compute the canonical partition in this case using
the methods in the appendix of [182] or by direct Gaussian integration to �nd

Z0,N =

(
2π

ω sinh ωβ

)N2/2
. (3.48)

De�ning the partition function of a single harmonic oscillator with open boundary
conditions [184]

Z op
1 =

∫ ∞

−∞
dxdx′〈x|x′〉 =

(
2π

ω sinh ωβ

) 1
2

, (3.49)

one �nds that the n = 0 partition function is just N2 copies of the single particle
one

Z0,N =
(
Z op

1

)N2

. (3.50)

For large β = βc/2 one again obtains

F0,N = 1
2 βcE0 +

N2

2
log C + O(e−ωβc), (3.51)

with the β independent term depending on the normalization of the partition func-
tion. We evaluate this β-independent term from the canonical partition function in
an unambiguous manner in section 3.4 and try to directly perform the double scaling
limit.

3.2.1.5 The n = N/2 Case

As we discussed, the regular n = N/2 case is special and expected to be the correct
dual of the 2D string theory on the orbifold, see also the discussion in section 3.2.1.6.



3.2 the canonical partition function 71

In order to facilitate the computation of the partition function in this case, let us �rst
introduce the Cauchy identity

∏i<j(xi − xj)∏i<j(yi − yj)

∏i,j(xi − yj)
= det

1
xi − yj

. (3.52)

Using this identity we can express the n = N/2 partition function as

Zn = Cn

∫
dn x̄dn x̄′ (3.53)

det
n×n

(
1

xi − yj

)
det

2n×2n

Kn(xi, x′j) Kn(xi, y′j)

Kn(yi, x′j) Kn(yi, y′j)

 det
n×n

(
1

x′i − y′j

)
.

Now one can perform the integration over (x′, y′) using the extension of Andréief’s
identity for matrices of di�erent ranks presented in [185]. The result is

Zn ∼ (−1)n
∫

dnxdnx′ det

 K(xi, x′j) (K • N)(xi, x′j)

(M • K)(xi, x′j) (M • K • N)(xi, x′j)

 ,

(3.54)

where • stands for either the y integration or the y′ integration and we de�ned
M(xi, y) = 1

xi−y , N(y′, xj) = 1
y′−x′j

to distinguish between these two cases. For
example

(M • K • N)(xi, x′j) =
∫

dydy′M(xi, y)K(y, y′)N(y′, x′j) . (3.55)

Thus, in this way, we manage to trade integrals over n variables with integrals over
single variables.
One can also perform the x′ integrations using a formula by de Bruijn [186, 173] to
get

Zn ∼ (−1)n+ 1
2 (n−1)n

∫
dnx pf P, P =

(
P11 P12

P21 P22

)
, (3.56)

where “pf” stands for the Pfa�an and the four n× n blocks given by

P11 = −(K ◦ N • K + K • N ◦ K),

P12 = (K ◦ N • K + K • N ◦ K) •M,

P21 = −M • (K ◦ N • K + K • N ◦ K),

P22 = M • (K ◦ N • K + K • N ◦ K) •M . (3.57)

with the ◦ standing for integration over x′. Let us note that the Pfa�an structure we
�nd here is very similar to the one encountered in studies of the a�ne D̂ supercon-
formal Chern-Simons theory in [173] and we followed essentially the same steps in
deriving the equation (3.56).
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U(2N)
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figure 14: The a�ne Â and D̂ quivers. For the D̂ case the nodes in the middle correspond
to U(2N), while the end-nodes to U(N) adjoint �elds. The connections between the nodes
correspond to bi-fundamental �elds. In studies of superconformal-chern-simons theories [173],
it was found that one can write the partition function integrand as a product of determinants
with the end-nodes interacting pairwise as in eq. 3.58.

3.2.1.6 Deconstruction and Quiver Matrix Models

There is another important reasoning on why one expects the regular n = N/2
representation to be the one related to the orbifold on the Liouville theory. It is based
on deconstruction arguments in relation to the study of c = 1 CFTs at multiples of
the self-dual radius.
In particular a survey of c = 1 CFT’s shows that the orbifold CFT is related to the
critical Ashkin-Teller model [187, 159, 188] that describes two Ising spins coupled
by a four spin interaction. The theory at a multiple mRo

sd of the self-dual radius
Ro

sd has an a�ne D̂m symmetry. The reasoning for this is analogous to the one for
the a�ne Â2m−1 symmetry of the circle theory at multiples of the circle self-dual
radius mRc

sd = 2mRo
sd and based on studying string propagation on SU(2)/Γ with

Γ ⊂ SU(2) a �nite subgroup of SU(2) (the binary cyclic group C2n for the circle
and the binary dihedral group Dn for the orbifold).

Deconstruction is a form of discretization of a continuous dimension pioneered
in [189]. We will be mostly interested in the proposed description of c = 1 string
theory, where the dual matrix description for multiples of the self-dual radius on the
circle is in terms of an Â2m+1 quiver of matrices and that for the orbifold should
similarly expected to be in terms of a D̂m quiver of matrices [190, 172](see �g. 14).
Moreover, in the case of Â-quiver, the partition function can typically be written
as the integral of a determinant [167], a fact encountered also in the study of the Â
matrix-quiver of superconformal Chern-Simons theory, where the rational functions
are replaced by hyperbolic functions [191]. As we saw in equation (3.33), this is also
true for the S1 partition function for arbitrary radius. Similarly it is known from
studies of the ABJM D̂-type quiver matrix model, that the partition function has the
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structure of a Pfa�an [173]. In particular at the end-nodes x, y of the D̂ quiver where
the gauge group breaks from U(2N) to U(N)×U(N)11, one �nds a factor

∏i<j sinh
( xi−xj

2

)
sinh

( yi−yj
2

)
∏i,j sinh

( xi−yj
2

) = det
1

sinh
( xi−yj

2

) (3.58)

which is very similar to our expression (3.41) where the rational functions are re-
placed by hyperbolic ones. In addition, for the rational case the limit of an in�nite
number of nodes (Â∞ -case), is expected to describe the c = 1 in�nite line as a limit
of the circle at in�nite radius and similarly one should expect the in�nite line with
twisted states at the endpoints to be obtained either taking an in�nite radius limit
for the orbifold, or equivalently by studying the D̂∞ quiver.

In the light of this discussion, it becomes more clear why the regular represen-
tation should contain the correct description of the orbifold, as it shares the same
symmetry breaking at the end-points with the D̂m quiver-matrix model. Moreover
it should also match with it at the corresponding multiples of the self-dual radius.
On the other hand this also explains why we were able to write the integrand of
the partition function as a Pfa�an. A �nal property that singles out the regular rep-
resentation is that this is the only case where the wavefunctions at the endpoints
are square integrable on the in�nite line x, y ∈ (−∞, ∞). In particular taking the
generic wavefunction

ψn,N(x, y) =
∆n(x)∆N−n(y)

∆n,N−n(x, y)
(3.59)

we �nd that it scales as

ψn,N ∼ x2n−N−1
i , f or xi → ∞

ψn,N ∼ yN−2n−1
j , f or yj → ∞ (3.60)

and thus can be square integrable,
∫
|ψ|2dnxdN−ny < ∞, only for the representation

n = N/212.

3.2.2 Canonical partition function in terms of angles

In this section we will follow the other possible method of evaluation of the canonical
partition function that involves diagonalising the unitary matrix U and integrating
over M.

11 A non-symmetric breaking should probably be understood as containing extra non-perturbative e�ects
which is consistent with the picture of adding D-instantons at the end-points.

12 The divergences at the locii xi = yj are regulated below by adopting the principal value prescription.
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3.2.2.1 The circle

We start again by reviewing the circle case. In equation (3.33) we diagonalise U1 by
a unitary transformation as U2U1U†

2 = δije
iθj and integrate over M(0) in the path

integral to obtain [93]:

ZN =
∫
DM(0)DU1〈U1M(0)U†

1 |M(0)〉

=
1

N!

∫ 2π

0

N

∏
k=1

dθk
2π
|∆(eiθ)|2q

1
2 N2

∏
ij

1

1− qei(θi−θj)

=
1

N!

∮ N

∏
k=1

dzk
2πi

det
i,j

1

q
1
2 zi − q−

1
2 zj

, (3.61)

with zi = eiθi , q = qc = e−ωβc and in the second line we used the Cauchy iden-
tity. The result of the integrations was found [93] to agree with (3.34). The large βc
expansion of this expression can be found in Appendix A.7.1.

3.2.2.2 The orbifold for generic n

We now write down the result for the generic n-representation of the orbifold [155].
The details of this calculation are presented in the appendix A.3.

Zn =
∫ π

0
∏

k
dθk Jn(θ)In(θ) (3.62)

with (Z o
1 given by eqn. 3.49)

In = (Zo
1 )

(N−2n)2
2

n

∏
i

[
2

cosh β̃− cos θi

]N−2n

n

∏
i,j

[
4

(cosh β̃− cos(θi + θj)(cosh β̃− cos(θi − θj)

] 1
2

(3.63)

where β̃ = ωβc = 2ωβ and the measure

Jn(θ) =
1

2nn!(2π)n

n

∏
i<j

sin2
(

θi − θj

2

)
sin2

(
θi + θj

2

) n

∏
k=1

sin θk sin2(N−2n)
(

θk
2

)
.

(3.64)

This looks quite complicated, but as we show in appendix A.3, it can be expressed as
the inverse quarter of determinant of the di�erential operator Q

I =
(

2π

ω

) 1
2 (N−2n)2

(det Q)−
1
4 , (3.65)
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where

Q = −D2
0 + ω2, D0 = ∂0 + i[A, ·] , (3.66)

with a diagonal constant gauge �eld

A = (πR)−1diag(θ1, θ2, ..., θn,−θ1,−θ2, ...,−θn, 0, ..., 0) . (3.67)

This form makes it clear that the angles θi can be interpreted in the T-dual picture
as the positions of the D-instantons that can move freely. The vanishing θi for i =
2n + 1, · · ·N correspond to the fractional D-instantons that are stuck at the �xed
points. The extra power 1/2 in (3.65) is due to the orbifold projection.

We also show below that the particular case of n = N/2 enjoys a nice Pfaf-
�an structure. Furthermore as a consistency check, one obtains the previous expres-
sion (3.48) for Zn=0, since in this case there is no integral to be performed and there-
fore one just picks up the prefactor. Finally, the large β expansion for generic n can
be found in Appendix A.7.2.

3.2.2.3 The orbifold for n = N/2

For the special n = N/2 representation one �nds that the canonical partition func-
tion can be written in terms of a Pfa�an, as derived in Appendix A.3.2:

Zn =
1
n!

∫ π

0

n

∏
k=1

dθk
2πi

n

∏
k=1

q
1
2√(

1− qz2
k
) (

1− qz∗k
2
) pf

 q1/2(zi−zj)
1−qzizj

q1/2(zi−z∗j )
1−qziz∗j

q1/2(z∗i −zj)

1−qz∗i zj

q1/2(z∗i −z∗j )
1−qz∗i z∗j

 ,

(3.68)

with zi = eiθi , q = e−ωβc .
This expression is very interesting. We notice that the terms in the measure take
values around the full circle and the square-root leads to branch cuts in the complex
zi plane. One can also exponentiate the measure to obtain an equivalent expression

Zn =
q

n
2

n!

∫
C

n

∏
k=1

dzk
2πzk

n

∏
k=1

e∑∞
j=1 tjz

2j
k +∑∞

j=1 t−jz
−2j
k pf P, (3.69)

with tj = t−j = qj/2j and the contour C is the upper-half plane semi-circle.
Comparing this expression with the analogous matrix model description of the 2D
black-hole (see [156]) one notices that the couplings tj act by turning on vortex per-
turbations or Wilson-lines (tk tr Uk) whose strength in our case is determined by the
inverse temperature β13. Moreover, in our case, all these couplings are related and
at large β the most relevant ones are t±1 which vanish as e−ωβc . The form of these
couplings raises the possibility of encountering a phase transition as one lowers β.
Let as also note that these type of perturbations can be encountered also in variants

13 In that case only t±1 were turned on and were independent parameters of the model.
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of the Gross-Witten-Wadia model [192, 193, 194, 195] that exhibit phase transitions.
The form of these couplings thus raises the possibility of encountering a phase tran-
sition as one lowers β, but one should keep in mind that for the relevant case of the
inverse harmonic oscillator, ω = −i, q = eiβc corresponds to a phase and a more
careful study is needed. We should also mention here that based on a generalised ver-
sion of the FZZ-duality, it is conjectured that higher-windings are related to higher
spin generalisations of the 2D black hole [196], where discrete states are liberated as
well [197].

Let us �nally comment on the possibility of relating this partition function to an
integrable hierarchy14. If true, this would, on the one hand, indicate that the model
is integrable, and on the other hand it would provide us with di�erential equations
for the partition function in terms of its parameters, as in the case of the 2D black
hole [156]. To this end, we �rst note that the couplings tk act as deformation param-
eters in a Miwa parametrization. The next step is identifying an appropriate 2n-free
fermion correlator that gives the speci�c Pfa�an. This Pfa�an structure for free
fermions is encountered in BKP/DKP hierarchies, for more information the reader
can consult [198, 199, 200] and the references therein. The most important and �-
nal di�culty is the fact that the integration is not around the circle but from 0 to π,
thus one needs free fermionic correlators with branch cuts like in the Ramond sector.
Since the fermionic modes are expanded in semi-integer powers, this means that the
fermions live on the double-cover of the z plane, or equivalently in the background
of a twisting �eld, that creates rami�cation points. In section 3.3.2.2 we �nd that the
natural way to understand the double cover—that turns out to be a torus—is by using
a parametrization in terms of Jacobi’s elliptic functions.

3.2.2.4 A non-perturbative symmetry

It is also easy to check that the partition function for n = N/2 admits an exact
symmetry upon rotating ω → −iω and β → iT together. This is because the parti-
tion function depends only on the product ωβ15. This can be seen for example from
eqn. (3.53) by rescaling the matrix eigenvalues. This property is also shared with
the S1 partition function and furthermore does not hold for any of the other n, that
nevertheless just pick phase factors that depend on n.

This symmetry indicates that there is a close connection between the orbifold parti-
tion function for an inverted oscillator at Euclidean time and the transition amplitude
of the normal oscillator at Lorentzian time and similarly for the cases of the inverted
oscillator transition amplitude with the normal oscillator partition function. One can
then restrict to the study of two out of the four possibilities.

14 We wish to thank A.Morozov, A.Yu.Orlov and J.van de Leur for discussions related to this possibility.
15 In fact it is also invariant under �ipping the sign of ωβ.
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3.3 the grand canonical partition function

It is convenient to consider the grand-canonical ensemble instead of the canonical
ensemble of the previous section, in order to study the double scaling limit. The
canonical partition functions we found in the previous section having the form of
determinants and Pfa�ans, prove very important in this respect. This is because
these forms allow one to pass to the grand-canonical ensemble in a straightforward
and rigorous way. The partition function in the grand canonical ensemble is de�ned
by

ZG =
∞

∑
N=0

xNZN , x = eβµ . (3.70)

It is a well known in statistical mechanics that it is typically much easier to compute
the grand canonical ensemble of fermionic/bosonic16 gases rather than the canonical
one. In the determinant form this is because one can show that [184, 191]

ZG =
∞

∑
N=0

xN

N!

∫ N

∏
i=1

dλi det K(λi, λj) = det
(

I + xK̂
)

, (3.71)

where det is a Fredholm determinant. The problem is thus reduced to the computa-
tion of the spectrum of a Kernel K̂ acting on the space of functions of one variable
f (x) as

K̂ [ f ] (x) =
∫

dyK(x, y) f (y) . (3.72)

Therefore now one needs to solve a one-particle problem. A similar equation exists
for Pfa�ans [204, 173]

∞

∑
n=0

xn
∫ dnx

n!
(−1)

1
2 (n−1)n pf P =

√
det
(

I − x Ω P
)
, (3.73)

where P is a 2n × 2n skew-symmetric matrix consisting of four n × n blocks Pab
(a, b = 1, 2), whose (i, j)-component is Pab(xi, xj) satisfying Pba(xj, xj) = −Pab(xi, xj).
The Ω and I matrices in (3.73) are de�ned as,

Ω =

(
0 I

−I 0

)
, I =

(
I 0

0 I

)
. (3.74)

Here the Pfa�an on the left-hand side is the �nite dimensional one, while the de-
terminanton the right-hand side simultaneously contains a 2× 2 determinant and a
Fredholm determinant.

16 Also for particles satisfying generalised exclusion statistics [201, 202], this was helpful in studying unori-
ented strings [203].
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3.3.1 The Circle

The canonical partition function for the circle is of the form (3.71) thus one directly
obtains the result

Z c
G = det

(
I + xK̂

)
, with K(x, y) =

∞

∑
n=0

ψn(x)ψn(y)qn+ 1
2 ,

or K(z, z′) =
1

q
1
2 z− q−

1
2 z′

, z = eiθ . (3.75)

The eigen-functions are either Hermite functions ψn(x) or the polynomials zn with

eigenvalues λn = qn+ 1
2 17. The partition function and the grand free energy are thus

Z c
G = ∏

k

(
1 + xqk+ 1

2

)
,

F c
G = −∑

k
log
(

1 + xqk+ 1
2

)
= −

∫ ∞

−∞
dερH.O.(ε) log

(
1 + eβc(µ−ε)

)
, (3.76)

where we introduced the inverted oscillator density of states ρH.O.(ε) =
1
π ∑k δ(ε−

εk) = − 1
2π ReΨ( 1

2 + iε), with Ψ(z) the di-gamma function. The derivation of the
asymptotic string theory genus expansion from this expression can be found in detail
in [38].

3.3.2 Grand Canonical for the regular representation

For the regular representation of the orbifold with n = N/2, one can pass to the
grand canonical ensemble using the pfa�an formula (3.73). We also present the
n = 0 case with an alternate method in Appendix (A.4). Combining equation (3.56)
with 3.73, the result for the regular representation can be written in a nice operator
form as

ZG =
√

det(I + eβµρ̂), (3.77)

with

ρ̂ =

(
Ôe−βĤÔe−βĤ −Ôe−βĤÔe−βĤÔ
−e−βĤÔe−βĤ e−βĤÔe−βĤÔ

)
, (3.78)

where we de�ned the bi-local operator 〈x|Ô|y〉 = 1
π(x−y) that acts at the orbifold

end-points and Ĥ the usual harmonic oscillator hamiltonian. The evolution is for

17 One should remember to set ω = i in case of the inverted harmonic oscillator potential.
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β = βc/2. If we furthermore use the Mehler formula, equation (3.32), we �nd that
this operator acts on the harmonic oscillator wavefunctions (Hermite functions) at
the segment endpoints as

〈x|Ô|ψn〉 =
1
π

∫
γ

dy
ψn(y)
x− y

. (3.79)

Now it is important to properly discuss the contour of integration γ since the inte-
grand is singular when x = y. This is related also to the problem of the singular na-
ture of the integrals we’ve encountered so far when two eigenvalues of M1,2 coalesce.
To avoid the singularity one can adopt an iε prescription to go around the singularity
either on the positive or negative imaginary plane, and using the Sokhotski-Plemelj
theorem

1
x− y± iε

= ∓iπδ(x− y) + P 1
x− y

, (3.80)

one learns that these two independent possibilities are either to encircle the singu-
larity and pick a delta function or to adopt the principal value prescription. It is easy
to see that the �rst prescription of the delta function trivialises the action of Ô and
one just �nds eigenfunctions of the matrix kernel as the vectors vT = (e−βĤψn, ψn)

and the eigenvalues as λn = qn+ 1
2 , q = e−ωβc . The free energy in this case would

then just be one for the circle divided by two (due to the pfa�an/square-root of the
determinant).

This makes clear that the prescription that contains the non-trivial twisted state
contribution should be the other one, namely the principal value prescription. In
addition, this prescription is consistent with the fact that the original integral is for
y ∈ (−∞, ∞) and the principal value is the natural regulating prescription for the
singular kernel 1/(x− y) in this range. One can therefore understand the operator Ô
acting as a Hilbert transform to the Harmonic oscillator wavefunctions (see appendix
A.5 for the properties of Hilbert transform.)

〈x|Ô|ψn〉 = 〈x|ψHn 〉 =
1
π
P
∫ ∞

−∞
dy

ψn(y)
x− y

. (3.81)

One can also notice that the kernel ρ̂ can be written as the square of a more elemen-
tary kernel ρ̂ = ˆ̄ρ2 with18

〈x| ˆ̄ρ|y〉 = 1√
2

∞

∑
n=0

q
1
2 (n+

1
2 )

(
−ψHn (x)ψn(y) ψHn (x)ψHn (y)

ψn(x)ψn(y) −ψn(x)ψHn (y)

)
.

(3.82)

One can easily extend these de�nitions, using from the start parabolic cylinder func-
tions which are the eigenfunctions of the inverse harmonic oscillator and the appro-
priate Mehler resolution of the propagator, see appendix A.2. It is also possible then

18 Note the similarity with kernels arising in the study of Riemann-Hilbert problems [205, 206, 166].
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to wick rotate β = iT to discuss the real-time propagator as well. It is also important
to note that one can also write the orbifold kernel ρ̂ in the energy basis in terms of
hypergeometric functions, see appendix A.6.1.

Finally, as an interesting result coming from eqn. (3.78), one can compute the trace
of the kernel, if one resolves the operator Ô in momentum basis as 〈p1|Ô|p2〉 =
−i sgn p1δ(p1− p2) (see appendix A.5). Expressing the oscillator propagator in mo-
mentum basis one computes (β̃ = ωβc).

tr ρ̂ =
1

2π sinh(β̃/2)
tan−1 1

sinh(β̃/2)
. (3.83)

This is an interesting expression from which we will manage to extract the one-
particle density of states -see section 3.3.2.3 - and match it with the analogous ex-
pression arising from the representation of the kernel in terms of angles that we now
turn to.

3.3.2.1 Kernel in terms of angles

One can �nd an alternative representation of the kernel in terms of angles using
equation (3.68). To pass to the grand canonical ensemble in this case we used refer-
ence [204] that treats the same structure as we have in terms of angles. The kernel
in this description acts to functions X(θ) as

ρ̂

[(
X1

X2

)]
(θ) =

∫ π

0
dµ(θ′)ρ(θ, θ′)

(
X1(θ

′)

X2(θ
′)

)
, (3.84)

with the matrix

ρ(θ, θ′) =

(
ρ11(θ, θ′) ρ12(θ, θ′)

ρ21(θ, θ′) ρ22(θ, θ′)

)
=

(
ρ11(θ, θ′) ρ11(θ,−θ′)

−ρ11(−θ, θ′) −ρ11(−θ,−θ′)

)

ρ11(θ, θ′) =
1

q−1/2eiθ − q1/2eiθ′ +
1

q1/2e−iθ − q−1/2e−iθ′ , (3.85)

and the measure

dµ(θ′) =
dθ′

2πi
q

1
2√

(1− qe2iθ′)(1− qe−2iθ′)
, (3.86)

that contains two branch-cuts in the complex z′ = eiθ′ plane, emanating from four
points z′ = ±q

1
2 ,±q−

1
2 . For more details see �gs. 15, 16. The relevant Riemann

surface can be understood by gluing two spheres along two branch-cuts, the resulting
surface being a torus. In the next section, we see that this kernel simpli�es greatly
using Jacobi’s elliptic functions.
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figure 15: The geometry in the complex z plane is of a two-sheeted Riemann surface. The
elliptic substitution makes clear that this surface is a torus.
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figure 16: The mapping of the rectangle to the upper-half plane via z = k
1
2 sn(u, k), with

a matching of corresponding points. The branch cuts are between H∆ and ZΘ. Both pictures
correspond to the UHP1 quadrant of 15.

3.3.2.2 Elliptic function parametrization

We �nd that the simplest representation of the kernel follows by going to the double
cover and using the doubly periodic elliptic functions. Similar transformations and
kernels can be found in studies of Ising, Ashkin-Teller and other models of statistical
mechanics [207, 208, 209]. For more details on elliptic functions the reader can con-
sult [210]. In particular we de�ne z = eiθ = q

1
2 sn(u, q) with sn u Jacobi’s elliptic

sine. Note that q ≡ k = e−ωβ plays the role of the so-called modulus. With this
substitution we �nd∫ π

0
dθµ(θ)→ −q

1
2
∫ −K+iK′/2

K+iK′/2

du
2πi

, (3.87)

which is a great simpli�cation for the measure. To �nd the new range of integration
one can follow picture 16. The eigenvalue equation for the spectrum of the kernel
can now be written as follows

λ

(
X1(u)

X2(u)

)
= −q

1
2
∫ −K+iK′/2

K+iK′/2

dv
2πi(

ρ11(u, v) ρ11(u, v + iK′)

−ρ11(u + iK′, v) −ρ11(u + iK′, v + iK′)

)(
X1(v)

X2(v) .

)
(3.88)
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One notices a consistency condition X1(u) + X2(u − iK′) = 0 arising from the
matrix equation. We conclude that one need not study a full matrix problem, since
the eigenvalue equation reduces to

λX(u) = −q
1
2
∫ −K+iK′/2

K+iK′/2

dv
2πi

ρ11(u, v)X(v)− q
1
2
∫ K−iK′/2

−K−iK′/2

dv
2πi

ρ11(u, v)X(v)

= −q
1
2
∫

C1+C2

dv
2πi

ρ11(u, v)X(v), (3.89)

with

ρ11(u, v) =
1− q sn u sn v
sn u− q sn v

. (3.90)

Let us also note that the Jacobi’s sine and thus the kernel, are doubly periodic with
periods 4K, 2iK′ i.e. sn(u + 4K + 2iK′, k) = sn(u, k).

It is interesting to note that had we instead used the closed contour C1 + C2 +
C3 + C4 (see �g. 17), we could have then solved the integral equation by picking the
poles of the kernel at sn u = q sn v∗, �nding

λX(u) = q−
1
2

cn u
cn v∗

X(v∗), (3.91)

which is solved by X(u) = cn u snm u, m ≥ 0 with eigenvalues q−
1
2−m(if we de-

mand eigenfunctions that are analytic in the interior of the strip of integration/ in-
terior of unit circle), or by X(u) = cn u sn−m u, m ≥ 1 with eigenvalues q−

1
2+m

(if we demand eigenfunctions that are analytic in the exterior of the unit circle/strip
of integration). This is analogous to the discussion in section 3.3.2, where we �nd an
alternative contour that also gives half the free energy on the circle.

Comparing the integral equation with the contour C1 + C2 comprising of two
horizontal pieces with the one de�ned via the closed contour C1 +C2 +C3 +C4, we
�nd that we need some extra monodromy data around the torus to relate them. This
is also to be expected since, the orbifold we consider is more than half of the circle
because of the contributions from the twisted states localized at the �xed points of the
orbifold. What we have shown above then means that the information about these
twisted states should be contained in the contours C3 +C4. This contribution can be
determined either from the contour integrals around the branch cuts or equivalently
from monodromy data around the fundamental cycles of the corresponding torus.

We were not able to solve the Kernel equation including the contribution from
the branch-cuts. Therefore we do not have the full-spectrum of the theory in the
n = N/2 representation. We list di�erent ways of expressing the Kernel equation
in Appendix A.6.2. These expressions may be useful to solve obtain the spectrum in
future work.
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figure 17: The original contour C1 +C2 is drawn by red lines in the u and z plane. In addition
we draw also the two extra segments C3 + C4 with which the contour can close. In order to
relate the closed with the open contour, one needs to know either the contribution around the
torus, or the di�erence of the integral above and below the branch cut.

3.3.2.3 Trace of the kernel

A consistency check that can be performed in all the di�erent descriptions we have
for the kernel is to compute its trace. From (3.85) and (3.86) we can compute (β̃ =
ωβc)

tr ρ̂ =
1√

2 sinh(β̃/2)

∫ π

0

dθ

2π

sin θ√
cosh β̃− cos(2θ)

=
1

2π sinh(β̃/2)
tan−1 1

sinh(β̃/2)
. (3.92)

This equation matches perfectly with eqn. (3.83), derived from the alternative repre-
sentation of the kernel and thus provides a good consistency check of the two ap-
proaches. This equation is to be contrasted with the one-particle oscillator partition
function on the circle

Z1p
H.O. =

1
2 sinh β̃/2

. (3.93)

By rotating ω → −iω, one then �nds the inverse oscillator result for the orbifold

tr ρ̂inv =
−1

2π sin(ωβc/2)
tanh−1

(
1

sin(ωβc/2)

)
=

∫ π

0

dθ

2π

cos(θ/2)
cos(ωβc)− cos(θ)

(3.94)

for more details see appendix A.6.3. This expression has poles as the usual circle parti-
tion function for one particle at ωβc = 2nπ, n ∈ Z and also branch cuts emanating
from ωβc = 2π(m + 1), m ∈ Z due to the two logarithms from the inverse hyper-
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bolic tangent. One could try to derive the density of states of this partition function
using the de�nition via the Laplace transform

ρd(ε) =
∫ c+i∞

c−i∞

dβ

2πi
Z(β)eβε , (3.95)

but the branch-cuts pose some di�culty. In particular adding the piece at in�nity, the
contour will enclose all the poles for n ≤ 0, which gives the same density of states as
in the case of the inverted H.O. but in addition one picks contributions from all the
branch cuts for m ≤ −1. To simplify things, we rewrote this expression as an integral
with the integrand having simple poles. Exchanging the integrals, one can formally
derive a single particle density of states, ρ

1p
o (ε) = ρH.O.(ε) + ρtwisted(ε) + ρIm(ε),

with the “twisted” piece

ρtwisted(ε) =
1

4π sinh( ε
ω π)

[
Im Ψ

(
i

ε

2ω
+

1
4
)

)
− Im Ψ

(
i

ε

2ω
+

3
4
)

)]
=

1
4π sinh( ε

ω π)
Im

∫ ∞

0
dt

e−i ε
ω t

cosh( t
2 )

, (3.96)

with Ψ(z) the digamma function. For more details of this derivation one can see ap-
pendix A.6.3. Finally, the density of states contains an extra imaginary piece ρIm(ε)
(see A.6.3), that might have some interesting interpretation in terms of decaying
states, since the decay/tunneling rate of a metastable physical system is related with
the imaginary part of the free energy Γ ∼ ImF [211].

3.4 large orbifold expansions

The contribution to the partition function from the twisted states can be isolated by
considering the limit β→ ∞. This limit reduces the free energy to the ground state
contribution as F = βcEground/2 + Θ and the β-independent constant piece Θ in
this expression is the twisted state contribution to the ground state energy of the
orbifold.

3.4.1 Generic n

One can obtain a closed form expression for this constant piece in the generic n
representation of the orbifold, in the formulation in terms of the eigenvalues of M
as follows:

Θ = 2 log
∫

dN1 x det
1≤i≤N
1≤k≤n

1≤p≤N−2n

[∫
dy

ψi−1(y)
xk − y

∫
dyyN−2n−pψi−1(y) ψi−1(xk)

]

(3.97)

In this expression the determinant is of an N × N matrix with rows labelled by the
index i and the columns separated into three pieces whose size is governed by the
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range of k and p. Derivation of this expression can be found in appendix A.7.3. An-
other expression in the second formulation in terms of eigenvalues of A is presented
in Appendix A.7.2. We are unable to obtain the analogous expressions after taking
the double scaling (large N) limit however. The latter is necessary to make direct
connection to the Liouville theory. In principle, one should be able to express Θ in
the grand canonical ensemble. For example it may be possible to obtain it directly
using the twisted contribution to the one-particle density of states in equation (3.96).
In the previous section we also identi�ed the origin of the twisted state contribution
through the contour around the branch cuts in �gure 17. However, none of these al-
ternative formulations has practically helped obtaining the �nal expression in terms
of Liouville theory quantities. Instead, we perform the calculation for speci�c values
of n below.

3.4.2 n = 0

Starting from the canonical ensemble, we have managed to treat the n = 0 repre-
sentation in terms of even/odd parabolic cylinder functions and write the twisted
state contribution in terms of the chemical potential µ. The relevant calculations are
presented with detail in appendix A.7.4. This result is found to be

Θ =
1
2

∫ µ
ρH.O.(ε)

∫ µ
ρH.O.(ε

′) log |ε− ε′|dεdε′. (3.98)

One can then use the asymptotic form ρH.O.(ε) = 1
π

(
− log ε + ∑∞

m=1 Cmε−2m)
of the density of states to derive the asymptotic genus expansion, which we now
describe. In particular one de�nes the cosmological constant ∆ = π(κ2

c − κ2) that is
related to the renormalised string coupling µ0 as ∆ = −µ0 log µ0 in the limit κ → κc.
One then �lls up states up to the chemical potential µ. The relevant equations are

N =
1
h̄

∫ µ
dερH.O.(ε) ,

∂∆
∂µ

= πρ(µ) . (3.99)

One can invert the second equation above, to �nd µ(µ0) in an asymptotic expansion
whose �rst term is µ = µ0, see [38]. After that we can use an asymptotic expansion of
the twisted states Θ(µ) and turn it into an asymptotic expansion in the renormalised
string coupling µ0.

Θ = µ2
0

(
11
8
− π2

24
+

(
π2

12
− 11

4

)
log µ0 +

7
4

log2 µ0 −
1
2

log3 µ0

)
− 1

24

(
1 +

π2

6

)
log µ0 +

1
µ2

0

(
259

11520
+

7
2880

(
π2

3
− 7
)

log µ0

)
O(µ−4

0 ),

(3.100)

with µ0 the renormalised string coupling. One notices that the torus contribution is
not the same as in equation (3.9).
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3.4.3 n = N/2

We will now �nally treat the case that provides the matching between Liouville the-
ory and the matrix model. For the regular representation n = N/2 the generic ex-
pression in (3.97) simpli�es as

Θ = 1
2 log det Oij, Oij = 2

∫ ∞

−∞
dxdy

ψ+(εi, x)ψ−(ε j, y)
x− y

. (3.101)

We have calculated this expression using both the Hermite functions and the delta-
function normalised even and odd parabolic cylinder functions which are the eigen-
functions of the inverted oscillator, see appendix A.2. Details of the calculation of
(3.101) are presented in appendices A.7.5 and A.7.6 respectively. For the normal os-
cillator one �nds that the result can be expressed in terms of a determinant of sine-
kernel, see A.110. For the inverted oscillator the result is in terms of continuous labels

O(ε1, ε2) =
1
π
|Γ(1/4+ iε1/2)Γ(3/4+ iε2/2)|επ(3ε2+ε1)/4

sinh
(

1
4 π(ε2 − ε1)

)
ε1 − ε2

.

(3.102)

Substituting this in (3.101), we see that the determinant becomes the product of di-
agonal pieces times the determinant of the sinh(ε1− ε2)/(ε1− ε2). It is easy to see
that the diagonal pieces do not contribute to the 1/µ expansion in the double scal-
ing limit, only giving contributions to non-perturbative terms in µ. Therefore the
twisted state contribution to the perturbative expansion in gs = 1/µ0 is determined
by the kernel of the operator sinh(ε1 − ε2)/(ε1 − ε2) in the double-scaling limit.
We should also remember to solve µ(µ0) to derive the correct asymptotic expansion.

It is, as far as we know, not possible to calculate the spectra of this kernel with
the currently available methods. However the determinant of sine kernel where one
replaces sinh(ε1− ε2) with sin(ε1− ε2) is possible to be calculated in an asymptotic
fashion as was done in the 70s[212, 213]. Luckily, we can make the replacement ε→
iε in (3.102), hence transform the sinh(∆ε)/∆ε kernel into sin(∆ε)/∆ε kernel by
considering the following, alternative calculation. The canonical partition function
(3.38) with the propagator (3.32) is invariant under ω → iω, β→ −iβ.

This is because one can Wick rotate the integrals over the matrix eigenvalues as
xi → e−iπ/4xi, yi → e−iπ/4yi in the partition function. To see this consider the inte-
gral along the contour C = (−∞,→ ∞)∪ (∞, ∞e−iπ/4)∪ (∞e−iπ/4,−∞e−iπ/4)∪
(−∞e−iπ/4,−∞) where the second and the last pieces are on the indicated arcs at
in�nity. One can see that there are no poles inside this contour C as follows. The
only possible poles could arise from the denominator in the initial and �nal wave
functions in (3.41). However these poles can easily be avoided by rotating xs and x′s
(and similarly ys and y′s) in pairs. Also, there are no possible divergences at the arcs
at in�nity, |x| = ∞, in the n = N/2 partition function we are interested in here
because the wave functions, (3.41) decay at in�nity in this case19. Finally, one shows

19 Note that this part of the argument would fail for the partition functions with n < N/2.
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that possible divergence that could arise from the det K(x̄, x̄′) in (3.38) on the in�nite
arcs in contour C are also absent because one can expand

det K = ∑
r

Ψ̄r(x̄)Ψr(x̄′)eiβEr (3.103)

where the N-fermion wave functions Ψr are constructed out of products of the the
parabolic cylinder wave-functions, and the latter are convergent on the particular
in�nite arcs (∞, ∞e−iπ/4) and (−∞e−iπ/4,−∞), as can be seen from appendix A.2.
We conclude that the integral on the contour C vanishes, thus one can Wick-rotate
xi → e−iπ/4xi, yi → e−iπ/4yi in the partition function giving rise to the symmetry
under ω → iω, β→ −iβ.

Thus, one could calculate the twisted state contribution in the Lorentzian path
integral instead of the Euclidean partition function. The only di�erence that this
makes for the twisted state contribution coming from (3.102) is to replace the ener-
gies ε→ iε, thus transforming20 the sinh into the sine kernel. This is also the result
for the normal oscillator. Therefore the result, remarkably, boils down to the com-
putation of a Fredholm-determinant of sine-kernel which is a well known object in
random matrix theory that corresponds to the probability that all the energy eigen-
values are outside the energy range (−µ, 0) and thus form the fermi sea. This object
has been computed with various approaches such as inverse scattering, toeplitz de-
terminants and the Riemann-Hilbert method. Some basic references are [212, 213].
This calculation is reviewed in appendix A.7.6.3 and results in

Θ =
1
4

log E2(0; (0, µ0)) =

= − 1
32

µ2
0 −

1
16

log µ0 +
1

48
log 2 +

3
4

ζ ′(−1) + O

(
1

µ2m
0

)
. (3.104)

We observe that the twisted state contribution to the torus level partition function
− 1

16 log µ0 matches precisely the world-sheet result (3.9). This provides a non-trivial
check of the duality we propose between the n = N/2 representation of the orbifold
matrix quantum mechanics and the 2D non-critical string theory on S1/Z2.

3.5 conclusions

In this chapter we considered the quantum mechanics of an N × N dimensional
Hermitean matrix M compacti�ed on Euclidean time τ and orbifolded by a Z2 action
that contains the re�ection τ → −τ, which we also embedded into the gauge group.
We provided evidence that this MQM on the S1/Z2 orbifold in the large-N limit
constitutes a good toy model for a Bang-Crunch universe in the context of 2D string
theory. This is because the orbifold MQM admits a natural analytic continuation

20 One may be ask how come the twisted state contributions in the Euclidean and Lorentzian path inte-
grals give rise to di�erent expressions. After all twisted states that are localized on the �xed points are
not supposed to see the signature of time. This should be true at the non-perturbative level. Asymptotic
expansions can di�er, which is the well known Stokes phenomenon.
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into Lorentzian time as shown in equation (3.40) and in the double scaling limit the
theory becomes dual to 2D string theory with space-like singularities at Lorentzian
time t = 0 and t = T. The space-like dimension of this 2D string theory is given
by the Liouville direction that is made out of the eigenvalues of M in the dual MQM
description.

partition function - The information that one can practically extract from
the Liouville description of this theory is rather limited at the moment. In particular
we managed to compute the torus contribution to the partition function including
the contribution of the twisted states by indirect consistency methods as shown in
section 3.1.1. On the other hand, we believe that the description of the theory in terms
of MQM provides an alternative, richer point of view.

As a �rst step, we focused on calculating the partition function of the orbifolded
MQM. We found that the orbifolding operation in the MQM description can be given
in terms of di�erent representations labeled by a parameter 0 ≤ n ≤ N/2 (with
even N). These representations arise from possible embeddings of Z2 into the SU(N)
gauge group. We argued why the “regular” representation with n = N/2 is preferred.
We also showed that the di�erent representations are connected by the action at
the orbifold �xed points of operators resembling loop operators in section 3.2.1.3.
These operators should correspond to changing the number of stretched open strings
between the two sets of n, N − n D0 branes.

We calculated both the canonical and the grand canonical partition functions using
two di�erent formulations. The �rst formulation involves �rst integrating over the
gauge �eld and represents the partition function as an integral over the eigenvalues
λi of the matrix M. The �nal expression for an arbitrary representation n is given in
equation (3.38). This representation is useful since as we show in equation (3.40) the
integrand can be naturally decomposed into a piece localized at τ = 0, a transition
amplitude from τ = 0 to τ = β and a piece localized at τ = β. This form of the parti-
tion function therefore admits a natural rotation into Lorenzian time where the �rst
and the last pieces are naturally identi�ed with the initial and �nal wave-functions
of the toy cosmological universe, and the middle piece with the transition amplitude
from the big-bang to the big-crunch. These wave functions depend on the orbifold
index n, hence in some sense provide us with a classi�cation of possible bang/crunch
universes in this toy model and hence it is crucial to understand the role of n from
the string theory side as well. We also note a similarity of our wavefunctions with
the ones arising in the work of Dijkgraaf/Vafa on “negative branes” and supermatrix
models, see [174]. We do not develop these observations further here. One should be
really careful about whether the Wick rotation into Lorentzian time applies smoothly
near the singularities/end points in time. Finally, there is always the possibility of in-
serting excited states at the initial and �nal states of the universe. Nevertheless, this
description suggests an intriguing general qualitative prescription for how to make
sense of quantum gravity in a bang/crunch cosmology: express the theory in terms of
a dual open-string description, evaluate the orbifold partition function in Euclidean
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time to obtain a decomposition into pieces that contain the initial state, transition
and the �nal state, and �nally Wick rotate into Lorentzian time.

The second formulation of the partition function involves �rst integrating over
the matrix M and expressing the result in terms of the eigenvalues of the gauge
�eld A. This method gives an alternative form for the partition function in terms of
Wilson lines, the zero modes of the gauge �eld. The �nal expression for an arbitrary
representation n is given in equation (3.62). This formulation clari�es the meaning
of the index n: as shown in (3.67), in the T-dual picture, n corresponds to the number
of free D-instantons -free to move along the time direction. There also exists N− 2n
fractional D-instantons stuck at the �xed points of the orbifold. Thus there are no
fractional D-instantons in the regular representation with n = N/2 and there are
only fractional instantons in the n = 0 representation.

The n = N/2 partition function in this formulation contains a measure which
can be thought as containing vortex/Wilson line perturbations of arbitrary order
in the form of exp ∑k tk

(
tr Uk + tr U−k

)
with tk = qk/2k. Similar deformations

are encountered also in versions of the GWW model [192, 193] which has a third
order phase transition, as well as in the proposed matrix model description of the
SL(2, R)/U(1) 2D black hole [156]. In contrast, in our case these deformations in-
clude all windings and are temperature or radius dependent, which is a quite interest-
ing novel characteristic. In addition it is expected that the higher-windings we �nd
are related to higher spin generalisations of the 2D black hole [196], where discrete
states are liberated as well [197]. These discrete states are remnants of the higher-
spin excitations that exist in higher dimensions [163, 39] and it is not unnatural to
expect their presence due to the orbifolding and breaking of the gauge group that lib-
erates SU(N) non-singlet states near the end of time. The closed string twisted states
should then be thought of as a condensate of both the tachyon and those extra states.
The possible presence of these states due to the temperature dependent higher wind-
ing perturbations can thus lead to quite interesting and rich physics once we manage
to compute the partition function or other observables for �nite orbifold size R.

The two formulations should of course be equivalent. Even though we have not
managed to �nd a direct change of variables that would relate the two in the canoni-
cal ensemble, the equivalence can be partially demonstrated at the level of the grand
canonical ensemble. Indeed, in both formulations it is possible to go to the grand
canonical ensemble and express it in terms of a square root of a Fredholm determi-
nant of a one-particle kernel ρ̂. The spectrum of this Kernel then determines the full
non-perturbative answer. We checked the equivalence of the two formulations by
explicitly matching the trace of this Kernel in the two cases, see equations (3.83) and
(3.92).

twisted states - A central focus of our work is the contribution of the twisted
states to the orbifold partition function. Since these states are localized at the �xed
points of the orbifold that are supposed to become the cosmological singularities
under Wick rotation, they are expected to contain crucial information on the string
dynamics around these points. The twisted states are clearly marked in the torus
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partition function of the Liouville theory. Their contribution is given by the constant
(R-independent) terms in section 3.1.1. One can isolate this contribution in the dual
MQM partition function in the �rst formulation (in terms of eigenvalues of M) by
taking the large β = πR limit. This limit, essentially decouples the propagation
from the wavefunctions/states at the endpoints in time and focuses on the ground
state channel contribution to the free energy. The radius independent piece has the
form of determinant operators and was denoted by Θ in section 3.4. We were able
to explicitly express and compute Θ in terms of 2D string theory parameters in the
n = 0 and n = N/2 representations. This provided the exact matching with the
Liouville theory prediction for the torus for the n = N/2 representation.

It is also interesting to single out the twisted state contribution directly at the level
of the grand canonical ensemble. In particular we worked out the regular n = N/2
representation and found that they should manifest in the spectrum of the one par-
ticle kernel ρ̂ which can be determined solving an integral equation. In the �rst for-
mulation, section 3.3.2, the presence of extra twisted states was understood through
the action of Hilbert transform operators at the endpoints. The large β limit, again
decouples the Hamiltonian propagation from these operators and “zooms in” at the
endpoints in time.

In the second formulation (in terms of eigenvalues of A), we isolated this contri-
bution in section 3.3.2.2. Here the integral is de�ned on a complex plane with two
branch cuts, or alternatively on a two-torus. One obtains precisely half the free en-
ergy for MQM on S1 if one ignores the contribution to the contour of integration
around these branch cuts, or alternatively the monodromy around the fundamental
cycles of the corresponding torus. Hence in this description the twisted states should
be contained in these branch-cut or monodromy contributions. Moreover, let us note
that from the Matrix model picture it is clear that these extra contributions can gener-
ically lead to both radius dependent together with radius independent terms in the
free energy.

We also note that in both formulations, the partition function looks very similar
to a four point correlation function: in the �rst formulation it can be thought of as a
correlator between two bi-local operators and in the second as containing four twist
operators creating the two branch cuts.

future directions - In this chapter we focused on the closed string asymp-
totic expansion of the partition function. We have found that the matrix model also
contains a wealth of non-perturbative information.

It will be interesting to understand further the contribution of the fractional in-
stantons present in other representations, which we expect to be non-perturbative
in gst.

Let us also note that the structure of the partition function in terms of Wilson lines,
is very reminiscent of τ functions of BKP/DKP Hierarchies [198, 199] and it may
be very interesting to pursue this connection. For further progress in this direction,
one should study free fermions and τ-functions in the presence of twist �elds.
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Some other interesting calculations we look forward to perform in the future in-
clude the disk one point function and the annulus correlation function for two macro-
scopic loops. Such quantities will be very good probes of the singularities at the end-
points of time.

Furthermore, we should develop the target space picture of our construction fur-
ther by using the relation between the matrix eigenvalues and the Liouville coor-
dinate φ. A description of the initial state in collective �eld theory variables might
prove useful here. A natural question in this context is, what is the spatial extend of
the 2D universe near the singularities? Is our theory describing one of the known
metrics in the 2D string theory literature? The previous probes we mentioned could
also help in giving answers to these questions.

As a �nal observation we recall that [214, 215] the horizon and the singularity
of the 2D black hole is exchanged under T-duality and that there is a relation be-
tween the 2D cosmology with the 2D black hole [216]. This can be shown at least
at the classical level, for the Lorentzian 2D black hole [217, 218] described by the
SL(2, R)/U(1) WZW coset. It is interesting to note that the Hilbert transform op-
erators at the endpoints in time commute with the SL(2, R) generators of linear
fractional transformations and that the description of the kernel on the torus has a
manifest SL(2, Z) symmetry. In addition, based on the fact that we have a combi-
nation of radius dependent vortex perturbations together with radius independent
twisted states, it would be very interesting to investigate whether we can similarly
relate our setup with a 2D black hole with a possible interpretation of the twisted
states as black hole microstates. To this end, it is encouraging that the contribution
of the end-point wavefunctions to the canonical free energy takes the form of an en-
tropy S ∼ tr logρtwisted (or S = N log 2 for the normal oscillator), which is also the
logarithm of the probability of forming the fermi-sea from an ensemble of random
hermitean hamiltonians (taking the double scaling limit of the inverted oscillator).
For all these reasons it would be extremely interesting to investigate similar S1/Z2
orbifolds in higher dimensions21.

21 In the context of the 4D Schwarzschild black hole analogous Lorentzian Z2 involutions that involve time
reversal have found a recent interest in [219], this case will be treated in the next chapter.





4A M A G N E T I C A L LY I N D U C E D Q UA N T U M C R I T I C A L P O I N T I N
H O L O G R A P H Y

4.1 introduction and summary

Quantum criticality is proposed to play a fundamental role in solution to important
open problems in physics, such as the high Tc superconductivity [42, 220]. Strongly
interacting �xed points can be obtained by tuning a certain coupling in these systems
such as the pressure, the doping fraction or the magnetic �eld to a critical value, see
e.g. [42] for multiple examples. The characteristic energy scale ∆E that governs the
spectrum of �uctuations in these systems vanishes as one approaches this critical
point. If the critical point corresponds to second or higher order then this results
in a conformal �eld theory as an e�ective theory governing the dynamics around
criticality. Quantum phase transitions essentially happen in two di�erent ways. It
can correspond to a level crossing or a limiting case of an avoided level crossing. The
second case appears to be more common in the condensed matter systems [220].

On the other hand, the AdS/CFT correspondence [10, 44, 12] has been proven,
over the last two decades, to be one of the most e�ective methods in addressing the
strongly interacting critical phenomena. In this chapter, we take this route to analyse
quantum phase transitions at strong coupling, from a dual holographic point of view.
As an example of a strongly interacting �eld theory one may consider the ABJM
model [11], deformed by a bosonic, gauge invariant triple trace operator Φ3, and
placed at �nite charge q and magnetic �eld B. The theory we consider in this chapter
is related to this model. In fact, we de�ne the precise theory through the dual grav-
itational background [221, 222] that are analytic solutions to N = 2 U(1)-gauged
(Fayet–Iliopoulos) supergravity in four dimensions [223]. The aforementioned triple
trace deformation corresponding to a scalar �eld ϕ(r) with a particular pro�le in the
holographic coordinate r, that is determined by an integration constant b, which can
be thought of as the value of the VeV of the corresponding bosonic gauge invariant
operator Φ. Thus, the solutions we consider in this chapter are governed by three
parameters: the VeV b, the charge q (alternatively, the chemical potential χ), and the
magnetic �eld B. Had this solution to N = 2 U(1)-gauged (Fayet–Iliopoulos) su-
pergravity in four dimensions been completely equivalent to the corresponding M2-
brane solution in eleven dimensions, would one con�dently identify the �eld the-
ory with the deformed ABJM model mentioned in the beginning of this paragraph.
However, instabilities may arise for the scalar �elds which are left outside of the trun-
cation to four dimensions [224, 225, 226]. Therefore, in the most general case the �eld
theories dual to our solutions are strongly coupled, non conformal theories placed at
�nite charge q and magnetic �eld B that can be obtained from the ABJM model by
such deformations.
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Four dimensional N = 2 Fayet–Iliopoulos gauged supergravity allows for the
existence of black branes in asymptotically locally AdS4 space, preserving two real
supercharges (1/4- BPS states)[227]. Their generalization to non-supersymmetric
and �nite temperature solutions were �rst constructed in [228, 229]. There has been
a lot of progress, recently, on holography for BPS solutions in AdS4 from gauged
Supergravity, leading to the microstate counting of 1/4- BPS black holes entropy
[26], [25, 28, 27]. In these examples there exist an AdS2 factor in the near horizon
region of the supersymmetric solution, corresponding to an IR �xed point to which
the conformal UV theory �ows, as a result of the topological twist induced at the
AdS4 boundary by the presence of magnetic �elds. Another related line of investiga-
tions in the literature involve a holographic study of the ABJM type models deformed
by dynamical �avors [230, 231]. The latter paper [231] also reports similar quantum
critical behaviour in the ABJM model deformed by dynamical �avor degrees of free-
dom. Finally, dilatonic, charged and dyonic black-branes have been investigated in
the holographic context in a series of papers by Goldstein et al [232, 233] and [234].

We focus on two di�erent types of such solutions in this chapter: the �rst one is an
asymptotically AdS, extremal and dyonic1 black brane solution with a horizon at a
�nite locus r = rh. We denote this solution with a subscript “BB" below. The second
type of solution is horizonless dyonic “thermal gas" solution that can be obtained by
sending the horizon rh to a singularity rs. We denote this solution with a subscript
“TG" below. Generically it is insu�cient to treat these latter type of singular solutions
in the classical gravity approximation. However, as shown in [235], if the singularity
can always be cloaked by a horizon, the two-derivative gravity approximation is
able to capture interesting IR physics in the dual CFT at vanishing string coupling
gs (corresponding to large N in the dual gauge theory)2. We �nd that this latter
requirement results in the following non-trivial conditions:

qTG = 0, bTG = ±2−
7
4

√
|B| . (4.1)

Having imposed these conditions on the TG solution, we then seek for possible phase
transitions between the BB and the TG branches by considering the di�erence of free
energies between these branches ∆F = FBB − FTG .

We �nd that this di�erence indeed vanishes at the critical locus

|B| = Bc(χ) =
4
√

2
3

χ2 . (4.2)

1 We consider a theory in which two abelian electric-magnetic gauge �elds are present. Our main subject
of investigation will be systems that are electrically charged with respect to the �rst gauge �eld and
magnetically charged with respect to the second. Even though they are not dyonic under the same gauge
�eld, we use a broader de�nition of dyonic systems and we refer to them as possessing generic electric
and magnetic charges.

2 We elaborate on details of the criteria in section 4.2.2.
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As one approaches this locus, the di�erence of free energies vanishes quadratically
and the di�erence of magnetizations and the VeVs of the scalar operator vanish lin-
early,

∆F ≈ 3
√

3
2

(B− Bc)2

χ
, ∆M ≈ 3

√
3

2
B− Bc

8χ
, ∆b ≈ 3

√
3

16
(B− Bc)

χ
(4.3)

signaling a second order quantum critical point. In particular, as we show below, the
two solutions become the same as B approaches Bc. The order parameter of this crit-
ical behavior can then be identi�ed as either the magnetization or the VeV of the
scalar operator. The magnetization behaves linearly in B in the BB phase and as

√
B

in the TG phase:

mBB =
3
√

3√
2

B
|χ| , mTG = 3 2−

5
4

√
|B|sgn(B) , (4.4)

exhibiting a discontinuity in the derivative with respect to both B and χ at the critical
point. Similar scaling arise when one considers the VeV 〈Φ〉 in the BB and the TG
phases, as we show in section 4.3. At this point, one should emphasize that there is
no independent source for the operator Φ in the dual theory. Therefore the VeV is
completely set by the intensive variables B and χ (chemical potential corresponding
to electric charge q) at vanishing T.

It is tempting to relate the phase coalescence we �nd here to a con�nement- decon-
�nement type critical behaviour as usually is the case with the Hawking-Page type
transitions between a black brane and a thermal gas geometry. However, we show
in section 4.4.3 that this expectation is false. In particular, we calculate the Polyakov
loop holographically, and show that it is �nite on both backgrounds. A computation
of the quark anti-quark potential supports this conclusion. Finally, we determined
the holographic entanglement entropy between a region and its complement in the
dual �eld theory and observed that the thermal gas also corresponds to a “decon�ned”
state in the corresponding �eld theory along with the black brane phase. As we argue
in section 4.3.4, the critical point is more similar to formation of quark condensate in
the three dimensional Nambu-Jona-Lasinio models with magnetic �eld, rather than
a con�nement-decon�nement type transition.

We also consider the spectrum of �uctuations around these two type of solutions
and �nd that the spectrum is continuous with no normalisable zero energy excita-
tions in the TG phase and continuous in the BB phase. These �ndings are discussed
in section 4.4 and they are in accord with the expectations from quantum critical
points mentioned above. In particular, the boundary of the quantum critical region
in the phase space should be determined by the condition ∆T ∼ T ∼ ∆E and ∆E
should vanish as one approaches the critical point. Just by dimensional analysis one
can determine the boundary of the quantum critical region on a �xed χ slice of the
phase diagram as T ∝ (B− Bc)p/Bp−1/2

c where p is a positive real number which
we do not determine here. The expected phase diagram on �xed χ slice is shown in
�gure 18.
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Quantum Critical Region

k T > ΔΕ 

k T < ΔΕ k T < ΔΕ

QCP, B = Bc

B

T

figure 18: The quantum critical region on a �xed χ slice. The boundary of the critical region,
shown by the dashed line, is where the thermal �uctuations are of the same order as the
intrinsic energy scale ∆E. The latter vanishes as one approaches the critical point, signaling a
quantum phase transition.

The rest of the chapter is organized as follows. In the next section we describe the
gravity setting and introduce the dyonic black brane background. In particular sec-
tion 4.2.2 discusses the singular limit of these black branes and outlines construction
of the thermal gas backgrounds with a “good" type singularity. We derive the good
singularity condition (4.1) in this section. In section 4.3, we study the thermodynam-
ics of the system in the mixed ensemble de�ned by �nite electric chemical potential
χ and magnetic �eld B at vanishing temperature and establish the presence of the
quantum critical point. At the end of this section, in subsection 4.3.4, we compare
our �ndings with similar phenomena observed in 2 + 1 dimensional Nambu-Jona-
Lasinio models. In particular we discuss qualitative similarities and dissimilarities in
the pro�le of the condensate between our holographic model and the NJL models.
In section 4.4 we consider �uctuations around our backgrounds obtained by excit-
ing point-like �elds and extended objects such as a Nambu-Goto string and minimal
surfaces. Here we show that the quantum criticality we �nd is not associated with
a con�nement-deconfenement type. Finally in section 4.5 we discuss the various im-
plications of our �ndings in regard to applications in particle physics and condensed
matter. We also give an outlook of the various routes one can extend our investiga-
tions. Several appendices detail our calculations.
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4.2 gravity set up

Our starting point is the Einstein-Maxwell-scalar theory with two gauge �elds and
one real scalar �eld, (κ2 = 8πGN)

I =
1
κ2

∫ √
−g d4x

(
R
2
− 1

2
∂µ ϕ∂µ ϕ− e

√
6ϕξ3F0

µνF0 µν − 3
ξ

e−
√

2/3ϕF1
µνF1 µν

−Vg(ϕ)
)
+ SGH . (4.5)

This action is identical to the bosonic action of an N = 2 sector of N = 8 gauged
supergravity, obtained by truncating the SO(8) gauging to the U(1)4 Cartan sub-
group and further restricting to the diagonal U(1) [221]. In the language of N = 2
gauged supergravity it corresponds to a Fayet-Iliopoulos, or R-symmetry gauging
where the U(1)R ∈ SU(2)R symmetry is made local. Moreover, the �eld content
can be seen as a no-axions truncation of the N = 2 Supergravity special geome-
try described by the prepotential F = −2i

√
X0(X1)3 [222], with the identi�cation

z = X0/X1 = e
√

3/8ϕ. The Gibbons- Hawking term is

SGH = − 1
κ2

∫
d3x
√
−hΘ , (4.6)

where hmn is the induced metric at the boundary and Θ is the trace of the extrinsic
curvature of the boundary given by Θµν = − 1

2 (∇µnν + ∇νnµ); nµ is the unit
normal vector at the boundary pointing outwards. The theory is speci�ed by two
constants ξ0, ξ1, a coupling g, and a scalar potential

Vg(ϕ) = − 3
`2

AdS
cosh

(√
2
3

ϕ(r)

)
, `2

AdS =
3
√

3
2g2
√

ξ0(ξ1)3
,

ξ =
√

3ξ0/ξ1 (4.7)

where `AdS is the AdS length scale. The theory admits a (supersymmetric) AdS4
vacuum at the ϕ = 0 locus. At this extremum the scalar �eld has mass m2

ϕ`
2
AdS = −2,

satisfying the Breitenlohner-Freedman bound. In particular, the mass of the scalar
�ts in the window − 9

4 < m2
ϕ`

2
AdS < −9/4 + 1 that allows for mixed boundary

conditions for the scalar �eld at the boundary [236, 237]. From this point on we set
ξ0 = 1/

√
2, ξ1 = 3/

√
2, g = 1 thus ξ = 1, `AdS = 1. In particular the radial

direction r will be considered as dimensionless below. One can easily recover the
dimension of a given object by inserting appropriate powers of `AdS if needed.

4.2.1 Black branes

We consider static, spherically symmetric black brane solutions of (4.5) supported by
two magnetic gauge �elds

AΛ =
1
4

pΛ(xdy− ydx) , Λ = 0, 1 , (4.8)
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where x and y are the two spatial directions.
For reasons explained in section 4.3 we are rather interested in dyonic solutions

with one electric and one magnetic charge, obtained by an electric-magnetic duality
transformation only on the gauge �eld A0. After the transformation the gauge �elds
are given by,

F̃0 =
q

2(r− 3b)2 dr ∧ dt , F1 =
B
2

dx ∧ dy . (4.9)

The charges of the dualized con�guration are related to the original one (4.8) by

q(p0) = −p0 ≡ q B(p1) = p1 ≡ B . (4.10)

The duality transformation leaves the metric invariant, hence the solution is of the
form as in [228, 229]. We use the parameterization as in [237]. The metric is

ds2 = − f (r)√
H0(r)H3

1(r)
dt2 +

√
H0(r)H3

1(r)
(

dr2

f (r)
+ r2(dx2 + dy2)

)
(4.11)

with

H0(r) = 1− 3b
r

, H1(r) = 1 +
b
r

, f (r) =
c1

r
+

c2

r2 + r2H0(r)H1(r)3 , (4.12)

while the metric coe�cients are related to the charges as

c1 =
(p0)2 − (p1)2

2b
, c2 =

(p0)2 + 3(p1)2

2
. (4.13)

The scalar �eld has a radial pro�le

e
√

8/3ϕ =
r + b
r− 3b

. (4.14)

which, from its asymptotic expansion at the boundary r → ∞

ϕ =
ϕ−
r

+
ϕ+

r2 + O(1/r3) , (4.15)

reveals that it satis�es mixed boundary conditions: ϕ+ = 1√
6

ϕ2
− . From the holo-

graphic point of view this corresponds to the insertion of a multi trace deforma-
tion in the �eld theory [238, 239, 240, 236], which, in this case, is given by a triple
trace deformationλ Φ3, with ∆Φ = 1, λ = 1√

6
. The dual operator corresponds to

Φ ∼ Tr[Z†
1 Z1 −W†W], obtained after the identi�cation of the bi-fundamental mat-

ter of the boundary theory as Z2 = W1 = W2 = W [241], giving an N = 2
truncation of ABJM. Multi traces are products of single trace operators, normalized
canonically [238] such that 〈O〉 = O(N0) as N → ∞. Due to large-N factorization,
there is no mixing at leading order between single and multi trace operators.
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It is important to note that the dyonic solution above is a solution of (4.5) with the
modi�ed kinetic terms for the gauge �elds3

LDual
FF = −e−

√
6ϕ F̃0

µν F̃0 µν − 3e−
√

2/3ϕF1
µνF1 µν . (4.16)

We note that, in the holographic dual �eld theory we interpret q as the charge density
and B as the magnetic �eld. Reinserting the dimensions, the correct identi�cation is
given by

q f t = q `AdS, e B f t = B/`AdS, (4.17)

where e is the electron charge in the dual 2 + 1 dimensional �eld theory. Finally,
we provide an expression for the chemical potential associated with the conserved
electric charge q, see Appendix B.1.1 for details. The chemical potential is given by

χ = −
∫ ∞

rh

F̃0
trdr = − q

2(rh − 3b)
, (4.18)

which we identify as the electric chemical potential after the aforementioned duality
transformation.

4.2.2 Good singularities and the thermal gas solution

In addition to the black brane solution we described in the previous section, the action
(4.5) supports thermal gas type solutions [13], that are horizonless solutions with
vanishing entropy. These solutions can be obtained from the black brane by sending
the horizon location to the singularity, that are located at the zeros of the functions
H0(r) and H1(r) in 4.12:

rs = 3b for b > 0 , rs = −b for b < 0 . (4.19)

These solutions have curvature singularities that are expected to be resolved in the
embedding to the full string theory. These solutions may still be acceptable in the
3 + 1 dimensional supergravity reduction that we work with here. In the AdS/CFT
context, these solutions are dual to a well-de�ned state in the dual �eld theory if
these singularities satisfy the Gubser’s criteria [235]. Indeed, such singular solutions
which satisfy the criteria of [235] are shown to correspond to the con�ned phase in
the dual QCD-like gauge theories in [14, 13].

The Gubser criterion requires the singular solution be obtainable from a black-hole
in the limit that the horizon approaches the singularity rh → rs. To be speci�c, we
consider b > 0. The criterion can be expressed in di�erent ways depending on which
parameters in the solution one keeps constant, that will eventually correspond to the
choice of the thermodynamic ensemble. As it will become clear in the next section,
we �nd appropriate to work with the mixed ensemble where we keep constant the
magnetic charge B and the electric chemical potential χ, de�ned in (4.18). Thus, the

3 The potential and the Einstein-Hilbert term remain invariant.
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figure 19: Example of warp factor −gtt for a good singularity (left: B = 8
√

2, χ = 1,
rh = 3b = 3) and a bad one (right: B = 1, q = 5, b = 0.5). The dashed line indicates the
location of the singularity. This coincides with the horizon, rh = rsing, in the plot at the top
(good singularity); in this case there is no region where−g′tt(r) < 0. In the plot at the bottom
(bad singularity), on the contrary, there exists a region where−g′tt(r) < 0 (for instance r < 2).
In both cases of good and bad singularities, the warp factors gyy and gxx go to zero at r = rsing
and the curvature invariants such as the Kretschmann scalar RµνρσRµνρσ diverge at r = rsing.

black brane solution is speci�ed in terms of (b, B, q). Consider the family of black
branes with horizon rh = 3b + ε, for small ε. For b > 0, the horizon rh satis�es
f (rh) = 0 where f is de�ned in (4.12). This equation, with rh = 3b + ε, can be
analytically solved in B. For small epsilon ε� 1, one �nds

|B| = 8
√

2b2 +
(6b2 + χ2)ε√

2b
+O(ε2) . (4.20)

This is an analytic expression valid for ε > 0, which determines the horizon of the
black brane. Under the crucial assumption that the magnetization χ remains �nite
(see Sec. 4.3.2), we analytically continue eq. f (rh) = 0 to ε = 0 and we take this limit
as the de�ning relation of the “good singularity”. Namely, we de�ne the thermal gas
as the subset in parameter space (B, bTG, χ) de�ned by

bTG = 2−
7
4

√
|B| . (4.21)
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figure 20: Example of warp factor −gtt for black branes (blue, orange and green lines) and
good singularity (red line). The curves corresponds to b = 0.33 and χ = 1 and are drawn
for the following values of magnetic charge: B = 7.44, 5.14, 3.37, 1.26. In all cases the singu-
larity is located at r = rs = 1; here the curvature invariants such as the Kretschmann scalar
RµνρσRµνρσ diverge. The plot shows the family of black branes approaching the good singu-
larity solution (thermal gas) as B approaches the value given by (4.21), at �xed b and χ. In the
limit, the horizon is pushed to the singularity rs = 3b = rh.

Using (4.18), we �nd that the charge of the thermal gas solution qTG vanishes linearly
in the limit ε→ 0:

qTG = −2χ ε→ 0 . (4.22)

Notice that for the thermal gas the dependence on χ drops from the metric:

ds2
TG = −e−

√
6ϕ(r2 + 6br + 21b2)dt2 + e

√
6ϕdr2(r2 + 6br + 21b2)−1 +

e
√

6ϕ(r− 3b)2(dx2 + dy2) ,

e
√

6ϕ =

(
r + b

r− 3b

)3/2
. (4.23)

Since B, b are related, a suitable set of parameters for the thermal gas is (B, χ, T),
where T is the temperature of the gas. Together with χ, they are moduli of the thermal
gas solution. Notice it has the same number of parameters as the black brane non-
singular solution.

Before concluding this section, let us mention the fact that the de�nition for a good
singularity requires that the gravitational force acting on an uncharged probe particle
is always attractive. More precisely, the radial motion of an uncharged particle with
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zero angular momentum and energy E is determined by the equation (see for example
[242])

1
2

(
dr
dτ

)2
−Ve f f (r) =

1
2

E2 , (4.24)

where the e�ective potential is given by

Ve f f (r) = −
1
2

gtt . (4.25)

Hence the requirement that the force on a probe particle is never repulsive translates
in−dgtt/dr > 0 throughout the spacetime. We illustrate this in Figure 19. In Figure
20, instead, we show how a good singularity (red line) can be obtained as a limit of
regular black brane con�gurations, by tuning the value of the magnetic �eld B (blue,
yellow and green lines are non extremal black branes with two regular horizons).

4.3 thermodynamic qantities and the qantum critical point

4.3.1 Thermodynamics of the black brane

Thermodynamic properties of gravity solutions in asymptotic Anti de Sitter space
can be obtained via holographic renormalization of the on-shell action and gravita-
tional stress-energy tensor. We have derived these quantities in Appendix B.1.1, to
which we refer for the following relations and identities.

The free energy of any black brane solution of Sec. 4.2.1 is

FBB = MBB − TSBB + qBBχ , (4.26)

where MBB is the mass of the black brane

MBB =
B2 − q2

BB
4bBB

, (4.27)

T , SBB are its temperature and entropy, qBB is the electric charge carried by the black
brane, χ is the chemical potential given in equation (4.18). We are interested in the
thermodynamics of these solutions in the mixed ensemble, de�ned by the free energy
relation

dFBB = −SBBdT + qBBdχ + mBBdB , (4.28)

therefore the independent thermodynamic variables are T, χ and B.
Furthermore, we will restrict to the case of vanishing temperature, T = 0. In order

to eliminate rh, q and b in the expressions we will make use of (4.18), the horizon
equation f (rh) = 0 ( f is as in (4.12)) and the extremality condition f ′(rh) = 0.
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We obtain two interesting ways to express the free energy. First, we can solve the
aforementioned equations in terms of B and q and obtain:

B2 =
1
2

(
−5b4 − 12b3rh − 6b2r2

h + 4br3
h + 3r4

h

)
, (4.29)

q2 =
27b4

2
+ 18b3rh − 3b2r2

h − 6br3
h +

3r4
h

2
. (4.30)

Substitution in (4.26) then gives

FBB =
1
4
(5rh − 7b) (b + rh)

2 . (4.31)

This form is useful to check the zeros of the free energy. The function in (4.31) clearly
has a quadratic zero at rh = −b, which corresponds to the singularity when b < 0,
and this gives a consistency check. When b > 0, it appears there is another zero at
rh = 7b/5, however this value for rh is smaller than the actual singularity rs = 3b,
so in fact the free energy has only one zero that is given by rh = −b. It is also clear
from the formula above that the free energy is positive de�nite.

It is more appropriate, for thermodynamic studies, to express the free energy in
terms of the correct variables of the mixed ensemble, namely (T, B, χ). To do so we
just need to solve the equations above, this time in terms of χ and B. We obtain the
following expressions:

rh =
9B2 + 160χ4

64
√

6|χ|3
, (4.32)

qBB =
−9B2 + 32χ4

8
√

6χ2
sgn(χ) , (4.33)

bBB =

√
3
2

32χ4 − 3B2

64|χ|3 . (4.34)

These solutions are valid only for χ 6= 0. The free energy of the black brane then
follows as,

FBB =
27B2 + 32χ4

24
√

6|χ|
. (4.35)

This form also makes it obvious that the free energy of the black brane is positive def-
inite. Now one can check the �rst law of thermodynamics (4.28). The charge density
q should be obtained as

qBB =
∂FBB
∂χ

∣∣∣∣
B,T

. (4.36)

This indeed matches (4.33) perfectly, hence the �rst law is satis�ed. This provides
another non-trivial check on our calculations. Finally, the magnetization of the black
brane solution is obtained as

mBB =
∂FBB
∂B

∣∣∣∣
χ,T

= 3

√
3
2

B
|χ| . (4.37)
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We �nd that the magnetization of the black brane grows linearly with B.

4.3.2 Thermodynamics of the thermal gas

As explained in section 4.2.2, the thermal gas solution is obtained from the black
brane by sending the horizon rh to one of the singularities. In the following, in particu-
lar, we take b > 04. Consider then the limit of a black brane with horizon rh = 3b+ ε,
as ε → 0. In the grand canonical ensemble the states have �xed magnetic potential,
thus χTG = χBB = χ, which remains �nite in this limit. As explained in section
4.2.2, this requirement implies the following relation between the parameter bTG of
the thermal gas and the magnetic �eld B

bTG = +2−
7
4

√
|B| , (4.38)

and it also leads to a vanishing electric charge, qTG = 0, see equation (4.22). The
temperature of the thermal gas is a moduli parameter, which can be set to any positive
value. To match the black brane solution above, then, we choose TTG = 0. The
entropy for the thermal gas also vanishes in this limit as,

STG = 16π2−
21
8 |B|

3
4
√

ε→ 0 . (4.39)

In the appendix B.1.1 we compute the thermal gas free energy by holographic renor-
malization. We have veri�ed that the same result is obtained by substituting in equa-
tion (4.26) the expressions (4.22) and (4.39), and imposing the de�ning relation (4.38).
We arrive at

FTG = MTG =
B2

4bTG
= 2−

1
4 |B|

3
2 . (4.40)

This result is clearly consistent with the �rst law of thermodynamics: the charge of
the thermal gas solution obtained by the variation with respect to χ trivially vanishes,
just like (4.22). Moreover, the magnetization is given by

mTG =
∂FBB
∂B

∣∣∣∣
χ,T

= 3 · 2−
5
4

√
|B| sgn(B) . (4.41)

We note the qualitative di�erence between the black brane (4.37) and the thermal
gas (4.41) magnetization: the former is linear in B whereas the latter grows like the
square root of B.

4.3.3 Di�erence of free energies and the quantum critical point

In the work presented so far, we have introduced all relevant physical quantities
needed to study the thermodynamics phase space. We will proceed now to investigate
possible phase transitions between black brane and thermal gas solutions.

4 Good singularities with b < 0 require B = 0 instead, thus, in this ensemble (in which the magnetic �eld
is �xed) they do not compete with regular black branes, the latter generically having B 6= 0.
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In order to determine whether a phase transition occurs, we consider the di�erence
of free energies (4.35) and (4.40):

∆F = FBB − FTG =
27B2 + 32χ4

24
√

6|χ|
− 2−

1
4 |B|

3
2 . (4.42)

We note that it is even under B → −B and χ → −χ independently. This means, as
it should be, that the free energy is C-even and P-even. We can consider analogous
checks for the di�erence of magnetizations

m =
∂∆F
∂B

∣∣∣∣
χ,T

=
3
√

6
8

B
|χ| − 3 2−

5
4

√
|B| sgn(B) , (4.43)

which is C-even and P-odd, and the di�erence of electric charges

q =
∂∆F
∂χ

∣∣∣∣
B,T

= qBB =
−9B2 + 32χ4

8
√

6χ2
sgn(χ) , (4.44)

yielding that the total charge is P-even and C-odd.
Finally, we �nd that the free energies of the TG and the BB phases become equal

at

|Bc| =
4
√

2
3

χ2 , (4.45)

corresponding to the zero of (4.42). Therefore, for every value of χ (except χ = 0)
we �nd a non-analytic behaviour in the free energy at a �nite magnetic �eld given
by (4.45). Quite interestingly, this non-analytic behaviour is of second order. In fact,
by expanding the di�erence of free energy (4.42) near the critical point, we obtain

∆F = 3

√
3
2
(B− Bc)2

|χ| +O(B− Bc)
3 . (4.46)

In order to exhibit the discontinuity in the free energy we can directly compare the
free energies and their derivatives at the critical point. We �nd that, even though the
free energies and their �rst derivatives are continuous between the two phases, the
second derivative jumps by an excess amount 3

8

√
3/2/|χ| from the TG phase to the

BB phase at B = Bc. Our example corresponds to the limiting case of an avoided level
crossing, in the sense that the TG phase always wins over the BB phase everywhere
in the phase space except the critical point B = Bc where their free energies become
equal. This is still called a “quantum phase transition” according to the de�nition
utilised in [220]. However we avoid using the term “transition”, as it sounds more
appropriate for an actual level crossing.

The excess magnetization (4.43) can be expanded near the critical point as,

∆m = 3

√
3
2
(B− Bc)

8|χ| +O(B− Bc)
2 , (4.47)
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showing that the di�erence of magnetization between the two phases vanishes lin-
early at the critical point. We note that the excess charge also vanishes, although
quadratically, precisely at the critical point:

∆q = −3

√
3
2
(B− Bc)2

χ2 sgn(χ) +O(B− Bc)
2 . (4.48)

These results are another non-trivial check of our previous calculations. It is indeed
expected that, at a second order critical point, two competing solutions become the
same (as opposed to a �rst order point where two di�erent, competing states coexist).
The solutions we consider are completely speci�ed by S, m and q. The entropies SBB
and STG vanish at the critical point (to check that SBB vanish one has to impose on
the black brane parameters (4.32)-(4.34) the criticality condition (4.45)), hence they
are the same. As we have seen in (4.47) the magnetizations also become the same. For
consistency of a second order critical point then the charges should also become the
same. Since the charge of thermal gas vanishes, the critical behaviour then should
happen when the charge of the black brane also vanishes, as nicely con�rmed above.

The di�erence between the vacuum expectation values of the condensates in the
thermal gas phase, bTG in (4.38) and the black brane phase, bBB in (4.34) also vanishes
linearly as

∆b = bTG − bBB =
3
√

3
16

(B− Bc)

χ
+O(B− Bc)

2 . (4.49)

4.3.4 Similarities with the Nambu-Jona-Lasinio model

Our results may �nd interesting applications in particle physics, regarding dynami-
cal mass generation and spontaneous �avor symmetry breaking in 2+ 1 dimensional
gauge theories under external magnetic �elds (see [243] and the references therein).
It is well known that magnetic �eld acts as a catalyst of chiral condensate in 3+ 1 di-
mensional gauge theories with massless fermions [244, 245]. As shown in [246, 247],
it also acts as a catalyst for the �avor symmetry breaking U(2) → U(1)×U(1) in
similar 2+ 1 dimensional gauge theories, with fermions in a 4- component reducible
Dirac representation. These theories are generalized and extensively studied in vec-
tor like, large-N f Nambu-Jona-Lasinio (NJL) models, as reviewed in [243]. There, the
spontaneous symmetry breaking pattern becomes U(2N f )→ U(N f )×U(N f ). We
observe that our results for the scaling of the condensate in the two phases ‘‘BB’’ and
‘‘TG’’, given by equations (4.34) and (4.38), are in striking similarity with the results
obtained in these e�ective models [243].

In the absence of magnetic �elds, the �avor condensate in NJL models vanish when
the quartic fermion coupling g is smaller than a critical value gc. For g > gc a fermion
mass term is dynamically generated and the condensate becomes nonzero [243]. Its
strength σ0 is proportional to the di�erence g − gc. This breaks the �avor symme-
try as described above. Now we would like to compare this with our values for the
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figure 21: Plot of the free energies of the black brane and the solitonic solution for χ = 1,
as functions of B, the blue line is the black brane and the yellow line is the thermal gas. The
thermal gas is thermodynamically favoured everywhere in the (B, χ) region. At the critical
line, de�ned as B = 4

√
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3 χ2, black brane and thermal gas coincide.
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figure 22: Plot of the di�erence of the the two free energies for χ = 1, as function of B.

condensate in the two phases (4.34) and (4.38) at B = 0. First of all, we see that the
condensate vanishes in the TG phase, therefore the phase with g > gc of the NJL
model could only be identi�ed with the black brane phase:

σ0 = bBB

∣∣∣∣
B=0

=

√
3
2
|χ|
2

. (4.50)
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It is therefore tempting to identify the chemical potential χ with the di�erence of the
4- fermion coupling and the critical coupling, i.e. g− gc, for g > gc. As explained
in [243], two qualitatively di�erent phases arise when B is turned on. In the phase
analogous to our black brane phase, the condensate scales as

σNJL,1 ≈ σ0

(
1 +

B2

12σ4
0

)
, (4.51)

for B� σ2
0 , which qualitatively agrees with the scaling we have found in (4.34):

σBB ≡ bBB

∣∣∣∣
B 6=0

= σ0

(
1− B2

384σ4
0

)
, (4.52)

which is valid for any value B. The second phase is obtained in the region g → gc
which corresponds to χ/

√
B << 1 limit. In this limit the TG phase de�nitely wins

over the BB phase, as can be seen from (4.42), which is the only phase where scaling
of the condensate becomes independent of χ, (4.21)

σTG ≡ bTG = 0.297
√

B , (4.53)

whereas the NJL model result is

σNJL,2 = 0.446
√

B , (4.54)

again, in qualitative agreement. We note that this qualitative agreement is non-trivial,
for it cannot be deduced only by dimensional analysis, as the condensate in our case
could have scaled with an arbitrary power of the ratio B/χ2.

4.4 fluctuations

Another support to our �ndings, namely presence of quantum criticality at the locus
B = Bc(χ), comes from the study of the theory’s spectrum.

Let’s consider the spectrum of �uctuations obtained by acting with a bosonic op-
erator O∆ on the vacuum. This can be determined holographically, by studying the
�uctuations of the dual bosonic bulk �eld with mass m2 = ∆(3− ∆), on the gravity
background corresponding to the �eld theory’s vacuum.

Below we consider the special case of �uctuations with m2 = 0, both on the ther-
mal gas (TG) and the black brane (BB) backgrounds. The spectrum is given by so-
lutions corresponding to energy eigenvalues ω, which are normalizable both in the
ultra-violet (r → ∞) and in the infra-red regime (namely r → rs on the TG solution,
and r → rh on the BB solution). For simplicity we set~k = 0 in the following. The
�uctuation equation can be obtained from the action

S f luc =
∫

d4x
√
−ggµν∂µφ∂νφ∗ = (4.55)

=
∫

drd3x
√
−g
{

grr|∂rξω(r)|2 + ω2gtt|ξω(r)|2
}

,
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where we set φ(r, x) = ξω(r)e−iωt. The �rst term above can be removed by integra-
tion by parts and renormalizing away the boundary term [248], the second term is
required to be �nite for �nite energy �uctuations. Thus, the spectrum is obtained by
solving the �uctuation equation

ξ ′′ω(r) +
d
dr

log(
√
−ggrr)ξ ′ω(r)−ω2gttgrrξω(r) = 0 , (4.56)

and requiring

lim
rUV→∞

ω2
∫ rIR

rUV

dr
√
−gg00|ξω(r)|2 < ∞ , (4.57)

on the solution. Here rUV denotes a UV cut-o� and rIR is either rs or rh depending
on the background. Potential divergences in the integral above arise both in the UV
and in the IR. For backgrounds with no horizon, requirement of square integrability
in these two limits typically results in a discrete spectrum ω = ωn, see for example
[13].

4.4.1 Spectrum in the thermal gas phase

We are going to address the question whether there exists normalizable solutions
(according to the normalizability requirement above) with energy ω arbitrarily close
to 0. If such solutions can be found, then there is a continuum of states starting just
above the vacuum ω = 0. For ω � 1 the solution can be obtained perturbatively as
ξω(r) = ξ0 + ω2δξω +O(ω4). Since the expression in (4.57) is already quadratic
in ω we can safely drop the second term and consider solutions to (4.56) with ω = 0.
The solution can be obtained analytically in this limit as

ξ0(r) = C1 + C2

∫ r

∞

dr′√−ggrr = C1 + C2

∫ r

∞

dr′

r′2 f (r′)
, (4.58)

where C1,2 are integration constants and we used the ansatz (4.11). The solution with
C1 6= 0 is not normalizable near the UV because the limit in (4.57) diverges linearly
in rUV . Therefore we set C1 = 0. This solution with C2 6= 0 is clearly normalizable
in the UV as the result of the integration in (4.57) is proportional to r5

UV .
Now let us look at what happens near the IR. For b > 0 the singularity is given

by rs = 3b. The TG solution with a good type of singularity at that point is given by
setting the parameters as (4.1) in (4.11). One then shows that

r2 f (r) = (r− 3b)((r + b)3 − B2/(2b)) = 48b2ε2 +O(ε3) , (4.59)

where we set r = 3b+ ε and expand near ε = 0 in the second equation. To obtain this
double zero it is crucial to use the second condition in (4.1), namely b = 2−7/4

√
|B|.

Otherwise one obtains a single zero: f → O(ε). Therefore the solution behaves as
ξ0 ∼ ε−1 near the singularity and the integral in (4.57) diverges as ε−2. We conclude
that there are no normalizable excitations with ω = 0 in the TG phase.
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figure 23: We plot the Schrodinger potential for �uctuations around the thermal gas solution
for the choice of b = 1. The potential vanishes as r approaches the singularity located at 3b.
Therefore the potential has the same qualitative features as the−gtt factor plotted in the right
�gure in 19.

It is instructive to consider what would have happened had we released the con-
dition b = 2−7/4

√
|B| on the TG solution. If we keep b arbitrary then the black-

ening factor has a single zero as mentioned above. Then the solution would behave
as ξ0 ∼ log ε and the integral in (4.57) would have a �nite limit as ε log2(ε) plus
a constant. Thus, one would have obtained a normalizable excitation with ω = 0.
This should not happen for consistency of the entire picture and we learn that the
condition (4.1) is essential for this.

Finally, we note that the �uctuation equation (4.56) can be put in a Schrödinger
form

−dΨ(r)
dr2 + Vs(r)Ψ(r) = ω2Ψ(r) , (4.60)

and de�ning,

ξω =
(

grr√−g
)− 1

2 Ψ , (4.61)

where gµν is the metric of the thermal gas solution given by (4.23). Luckily one ob-
tains an analytic expression for the Schrödinger potential in the r-variable as

Vs(r) =
(3b− r)

(
21b2 + 6br + r2) (279b4 − 54b3r + b2r2 − 4br3 − 2r4)

(b + r)5 . (4.62)

We plot this potential for a choice of b = 1 in �gure 23. Note that the potential
vanishes as r approaches the singularity located at r = 3b. This does not mean
however that there exists massless states: as we have shown above states with ω = 0
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does not have square-normalizable wave-functions. Thus the thermal gas solution
supports a continuous spectrum with no normalisable ω = 0 excitations. We also
note that the Schrödinger potential enjoys the same qualitative features with the
−gtt factor plotted in the top �gure in 19.

4.4.2 Spectrum in the black brane phase

In contrast to the thermal gas phase above, one can show that there exist normalizable
�uctuations with arbitrarily small frequency ω in the black brane phase. The easiest
argument is as follows. The analog of the normalizable modes in the black brane
with Lorentzian signature are the quasi-normal modes (QNM). They are �uctuations
on the black brane background with infalling boundary conditions on the horizon
and vanishing Dirichlet boundary conditions on the boundary. At �nite T, the QNM
spectrum is typically given by separated poles on the lower complex frequency plane,
the lowest QNM having |ω| ∼ T, therefore one can think of these �uctuations as
gapped, see for example the review paper [249]. If we view the extremal brane as
the T → 0 limit of a �nite T black brane background, then we indeed �nd modes
with arbitrarily small energy in the spectrum [250][251]. This argument is robust
as long as one keeps an arbitrarily small but �nite T = ε as an IR cut-o�. Then
the lowest QNM indeed has an arbitrarily small energy |ω| ∝ ε and the separation
between the QNMs are also of the same order, |∆ω| ∼ ε. In the strict T → 0 limit
however, multiple QNMs accumulate at the origin of the ω complex plane producing
a branch-cut [250][251]. This is in accordance with the holographic correspondence
as one expects branch-cuts in the retarded Green’s function in a strongly interacting
conformal �eld theory at vanishing temperature.

4.4.3 Extended probes

We have also studied the solutions of string-like extended objects in our backgrounds.
We summarize here our �ndings; the details are presented in Appendix B.2. It is
important to study extended objects on our backgrounds because the corresponding
�eld theory quantities such as the Polyakov loop, theWilson loop and the entanglement
entropy may potentially be considered as order parameters of the critical behavior we
found in section 4.3.

In section B.2.1 we calculate the action of a Nambu-Goto string wrapped on the
Euclidean time direction and extending in the holographic direction from the bound-
ary to the origin in our geometries. We studied this on both backgrounds where the
origin corresponds to the horizon in the case of the Euclidean black brane, and to
the singularity rs in the case of the thermal gas. the exponential of this string action
corresponds to the Polyakov loop in the corresponding �eld theory [252]. We �nd
that, with a proper renormalization at the boundary, the area swiped by the string is
�nite on both backgrounds, whereas it should be in�nite on the thermal gas and �nite
on the black brane, had these two geometries corresponded to con�ned (decon�ned)
phases of the corresponding �eld theory.
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Secondly, in section B.2.2 we studied the string that is attached on the boundary
at two points −l/2 and +l/2 on the x-axis, and hanging down towards the origin.
Action of this string corresponds to the potential Vqq̄ between a quark-antiquark pair
located at x = −l/2 and +l/2 [253, 254]. Thus, this potential should grow with l in
a con�ning phase. We �nd however that on the thermal gas phase the Vqq̄ remains
�nite and it approaches to a constant as l increases. Therefore this phase does not
exhibit a con�ning behaviour.

The entanglement entropy of a region A with its complement on the boundary
theory is obtained in the holographic dual by studying the area of a space-like min-
imal surface that ends on the boundary of region A [255]. This quantity may also
act as an order parameter in con�nement-decon�nement type transitions [256]. We
investigate this possibility in Appendix B.2.3 where we study the space-like minimal
surfaces on the thermal gas background. We �nd that the connected surfaces always
have an area smaller than the corresponding disconnected surfaces with the same
boundary conditions. This means that the thermal gas, as the black brane, always
correspond to a decon�ned state in the corresponding �eld theory.

We found that none of these quantities provides an order parameter for the phase
transition, as they exhibit the same qualitative behaviour both on the black brane
and the thermal gas phases. On the other hand, this negative statement provides a
valuable insight on the nature of the critical point, namely that it does not correspond
to a con�nement-decon�nement type transition.

4.5 discussion and outlook

Our main result is a second order type critical behaviour in the free energy at vanish-
ing temperature, between an electrically and magnetically charged black brane and
a magnetically charged, horizonless thermal gas solution, in the Einstein-Maxwell-
scalar theory de�ned by the action (4.5). Both geometries asymptote to AdS4 near
the boundary, and we work in a mixed ensemble where the magnetic charge B and
the electrostatic potential χ are held �xed, and the temperature T is set to zero. Quite
conveniently, both the backgrounds and the physical quantities such as the thermo-
dynamic potentials can be obtained analytically in our study. Moreover, the action
can be embedded in M-theory [222]. The critical point we �nd is somewhat trivial
from the gravity point of view, as we de�ne the thermal gas solution by a limiting
procedure where the horizon is sent to the singularity. It is then obvious that these
two solutions become the same in this limit. However, it is quite non-trivial from the
boundary �eld theory point of view, since when expressed in terms of the physical
variables, χ and B the critical behavior takes place at a �nite value of B and χ and
T = 0. Hence, it corresponds to a line of quantum critical points in the phase space,
that can be parametrized by χ or B, as in equation (4.45).

Our dual �eld theory is a 2+ 1 dimensional, strongly coupled gauge theory related
to the deformed ABJM model [11] as explained in section 4.1. From a bottom-up per-
spective we have a nonconformal, strongly coupled gauge theory in 2+ 1 dimensions
at �nite chemical potential χ and magnetic �eld B, holographically de�ned by the
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gravity solution. The gauge group U(1)2 in the gravitational theory corresponds to
part of the global R-symmetry of the boundary �eld theory, and this group is weakly
gauged to produce background magnetic and electric �elds. The theory is also de-
formed by a bosonic triple trace operator5—that corresponds to the bulk scalar ϕ—
whereby breaking the conformality of the theory and initiating an RG �ow. The the-
ory is non-conformal even at vanishing B and χ. This is clear from the running of
the scalar ϕ when b 6= 0. Therefore we are dealing with a non-conformal strongly
coupled gauge theory that contains both fermionic and bosonic �elds in the adjoint
representation of the gauge group. It is important to note however, that the defor-
mation of the �eld theory by the operator Φ3 is not relevant, in fact it is classically
marginal, since the engineering dimension of this operator is three by dimensional
analysis. It is also important to note that the source corresponding to the the op-
erator Φ is set to zero in the �eld theory, see the discussion on page 12 of [236].
Therefore the only dimensionful scales in the theory, at vanishing temperature, are
the electrostatic potential χ and the magnetic �eld B.

Below we discuss the implications of our �ndings in the holographic dual �eld
theory and in supergravity.

nature of the qantum critical point: First of all, as we showed in
section 4.4.3 by studying the Polyakov loop, the quark potential and the entangle-
ment entropy, the quantum critical point we �nd here does not correspond to a
con�nement-decon�ement type transition. However, it may correspond to sponta-
neous breaking of a �avor symmetry in the dual �eld theory. We already noted sim-
ilarities between our �ndings and the earlier studies in 2 + 1 dimensional Nambu-
Jona-Lasinio models in section 4.3.4. In particular we observed that the dependence
of the VeV of the scalar operator follows a similar pattern observed in these studies:
there is agreement between the square-root scaling in the TG phase and the near
critical region of the NJL model, as well as between the scaling in the BB phase and
the g > gc region of the NJL model. There is one important di�erence in the lat-
ter case however. Comparison of equations (4.51) and (4.52) shows that while the
magnetic �eld tends to increase the value of the condensate in the NJL model, it
tends to destroy the condensate in our holographic model. The former phenomenon
is called the magnetic catalysis [244, 245], a phenomenon well-established by pertur-
bative and e�ective �eld theory calculations (see [243] for a recent review, see also a
study of the phenomenon in the ABJM type models in [230]). Decrease of the conden-
sate with B in con�ning 3 + 1 dimensional gauge theories above the decon�nement
temperature has also been observed both on the lattice [257], in the Sakai-Sugimoto
model [258, 259] and in the hard-wall model [260], and it was termed the inverse mag-
netic catalysis. The same phenomenon also occurs in 2+ 1 dimensions, as studies on
the lattice, the NJL model and the NJL with Polyakov loop shows [261]. What we
�nd here is the inverse magnetic catalysis at vanishing temperature in a holographic

5 As discussed in footnote ??, we interpret the scalar �eld as having mixed boundary conditions. Other
choices are possible for the bulk solution under consideration, leading to di�erent holographic interpreta-
tions that are not of interest in this work.
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dual of a strongly interacting gauge theory. One should understand this phenomenon
from a microscopic point of view. We suspect that both strong interactions and non-
conformality of our theory is essential in this respect. Firstly, as one can show in
perturbative studies quite generally, there is no inverse magnetic catalysis when the
interactions are weak [244, 245]. Secondly, even the strongest interactions cannot
allow for a condensate, hence a fermion mass term, when the underlying theory is
conformally invariant.

implications for the abjm-type models: Regardless of the discussion
above, it would be interesting to investigate possible patterns of �avor symmetry
breaking in the ABJM model under magnetic �eld directly from the microscopic point
of view. As discussed in [11] the superpotential enjoys a full SU(4) �avor symmetry
obtained by combining the SU(2)× SU(2) symmetry that rotates the A and B type
super�eld doublets separately, and the SU(2)R R-symmetry. The breaking SU(4)→
SU(2)× SU(2)—that is very similar to the pattern in the NJL model above—would
take place through the formation of a condensate in a non-conformal cousin of ABJM.
This can happen either spontaneously through strong interactions, or explicitly with
aid of an external magnetic �eld.

When theN = 2 Supergravity theory considered here is embedded inN = 8 Su-
pergravity (as required if one is interested in ABJM as the dual theory), the stability
of the gravity con�guration needs to be discussed taking into account the fullN = 8
theory. In particular, it was shown in [225] that the AdS2×R2 vacua are unstable in
the N = 8 theory for generic values of the parameters. These instabilities arise be-
cause charged scalars of theN = 8 theory do not satisfy the AdS2 BF bound. Notice
that, in our analysis, also the supersymmetric con�guration is thermodynamically
disfavoured with respect to the thermal gas, at T = 0. This can be interpreted in the
dual theory as the supersymmetric vacuum being disfavoured with respect to a scalar
�eld condensate. In order to understand the BPS magnetic solution in the context of
ABJM one should analyze the instability of such speci�c background along the lines
of [224, 225, 226]. This will be left for future work.

applications to condensed matter theory: Despite its exotic nature,
the ABJM theory at �nite charge density comes very close to various realistic appli-
cations in two (spatial) dimensional condensed matter systems such as the cuprate su-
perconductors and the various strongly coupled strange metals, see [7, 262, 263, 264]
for reviews. The �eld theory we consider is a non-conformal, strongly coupled �eld
theory related to ABJM in the manner explained in section 4.1. When put under ex-
ternal magnetic �elds, this theory is quite interesting in view of condensed matter
applications. It is long argued that resolution to the various puzzles concerning high
Tc superconductivity may be associated with the presence of a quantum critical point
under the superconducting dome [42]. Connections between superconductivity [243]
and spontaneous symmetry breaking in the NJL type e�ective theories are also well-
known, and our observations above may be interesting from this point of view. All
in all, it remains to be seen whether the quantum criticality we found may serve as
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a proxy for a strongly interacting quantum critical point that may underlie high Tc
superconductivity. To explore this issue it is crucial to study our system at �nite T
and to introduce a scalar that is charged under the U(1). It is also crucial to study
correlators of e.g. composite fermionic operators and explore their behaviour near
the quantum critical point.

Finally, it is very interesting to explore the fate of the phase that we found, in the
regime of �nite temperature. In particular we would like to know if there exists a
phase separation line in the (T, B) plane, at �xed χ, of second order that ends on the
quantum critical point in the vanishing T limit. It is also conceivable that the critical
behavior we �nd extends into a true second order phase transition at �nite T domain.
Moreover, we would like to �nd what is the precise shape of the crossover lines that
separate the critical and non-critical regions shown in �gure 18. We plan to address
these questions in the future.

open qestions in the supergravity context: Last but not least, our
study raises interesting questions directly in the context of supergravity. First of all,
our ensemble includes BPS solutions [227]. One may wonder how the BPS brane
decays into the thermal gas solution, despite being stable with respect to small �uc-
tuations in charge6. In general, supersymmetric solutions saturate a BPS bound of
the form M ≥ |Q|. For zero temperature solutions, the mass coincides with the sys-
tem’s free energy in the canonical ensemble. Thus, one explains the stability of the
supersymmetric solution in the thermodynamic phase space. We considered how-
ever a mixed canonical-grand canonical ensemble, where the free energy is given by
(4.26), thus saturation of the BPS bound is no more equivalent to non-perturbative
thermodynamic stability. With the choice of this ensemble, we indeed �nd that in
most of the parameter space except the locus of the critical point, the thermal gas is
thermodynamically dominant at vanishing temperature.

It is interesting to ask if the thermal gas itself preserves any supersymmetry, and
if so if it preserves more supersymmetries than the black brane. In this case, the ther-
modynamically favoured solution would be the most supersymmetric one. In order
to address this question, one has to embed the theory we considered inN = 2 U(1)-
gauged Supergravity (a truncation ofN = 8 SO(8) gauged theory where only the di-
agonal U(1) in the Cartan of SO(8) is gauged). Here, however, an electric-magnetic
duality transformation a�ects not only the Maxwell �elds, but also the gauging pa-
rameters. Such a transformation has been performed in [265] in the black hole case;
the analogue, black brane 1/4- BPS constraint obtained with this transformation is
3B− q = 0. One can then see that the thermal gas, having q = 0, cannot preserve
supersymmetry for B 6= 0 (we �nd that the thermal gas cannot be supersymmet-
ric for either choice of Killing spinors studied in the literature [221, 265, 266]). We

6 This can be done, for instance by computing the permittivity of the solution, de�ned as

ε =

(
∂Q
∂φ

)
T

.

For the BPS con�guration this quantity is positive, denoting stability with respect to charge �uctuations:
the chemical potential of the black brane increases as a result of placing more charge on it.
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cannot exclude less conventional duality transformations on the gauging that acts
di�erently than in [265], but, since the origin of magnetic gauging parameters in M-
theory is less understood [267], the analysis of these scenarios goes beyond the scope
of the present analysis.

Finally, a pressing question relates to possible resolution of the thermal gas singu-
larities in the full string theory. It will be very interesting to see if the singularities
at r = 3b and r = −b can be excised through an enhançon mechanism found in the
study of D1-D5 and D2-D6 systems, see [268].
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a.1 other classes of orbifolds

Here we present the rest of the supersymmetric orbifold theories for completeness.

• Orbifold II: The second class of orbifolds are obtained by modding out super-
a�ne theories by the same re�ection symmetry as above. One has the follow-
ing relations [160]:

ZorbsaA,B(R) =
1
2
ZsaA,B(R) + constA,B (A.1)

and the following relation at the special radius [160]:

ZorbsaA,B(
√

2) = ZcirA,B(
√

2) . (A.2)

The partition functions are:

ZorbsaA(R) =
1
2
ZsaA(R)− 1

8
ln µ0

ZorbsaB(R) =
1
2
ZsaB(R)− 1

8
ln µ0 (A.3)

These theories are seperately self dual under R→ 2/R.

• Orbifold III: The third class of orbifolds are obtained by twisting the circular
theories by (−1)Fs R. Note that this is only a symmetry in the 0A theory. One
obtains,

ZorbA(R) =
1
2
ZcirA(R) + const (A.4)

and

ZorbA(1) = ZsaA(2) (A.5)

The result is:

ZorbA(R) =
1
2
ZcirA(R)− 1

8
√

2
ln µ0 (A.6)

We observe that orbA and orbB theories are exchanged under T-duality.

a.2 oscillator wavefunctions

We provide this section as a collection of the relations between various representa-
tions of normal/inverted harmonic oscillator wavefunctions.
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a.2.1 Normal Harmonic Oscilator

We de�ne the normal harmonic oscillator time independent Schroendinger equation
h̄, m = 1

1
2

(
−∂2

x + ω2x2
)

ψn = εnψn . (A.7)

The Kronecker delta normalised eigenfunctions are

ψn(x) =
1√
2nn!

(ω

π

) 1
4 e−

1
2 ωx2

Hn(
√

ωx) =
1√
n!

(ω

π

) 1
4 Dn(

√
2ωx) . (A.8)

These wavefunctions satisfy Mehler’s formula for the propagator (in real time)( ω

2πi sin ωT

) 1
2 e

iω
2 sin ωT

[(
λ2

i +λ′2j
)

cos ωT−2λiλ
′
j

]
= ∑

n
ψn(λi)ψn(λ

′
j)e
−iω(n+ 1

2 )T ,

which we analytically continued to Euclidean time via T = −iβ to obtain equa-
tion (3.32).

a.2.2 Inverted Harmonic Oscillator

We want to solve the inverse harmonic oscillator time independent Schroendinger
equation. Take the normal harmonic oscillator equation and let ω → i, and x →
x/
√

2. One then needs to solve:(
∂2

x +
x2

4

)
ψ = εψ . (A.9)

This is a particular form of the Weber di�erential equation(
∂2

z + ν + 1
2 −

z2

4

)
ψ = 0 . (A.10)

The solutions are the Parabolic cylinder functions (equivalently expressed via Whit-
taker functions W)

Dν(z) = 2
ν
2 +

1
4 z−

1
2 W ν

2 +
1
4 ,− 1

4
(

z2

2
),

D−ν−1(iz) = 2
−ν
2 −

1
4 eiπ/4z−

1
2 W−ν

2 −
1
4 ,− 1

4
(− z2

2
) . (A.11)

where Dν(z), D−ν−1(±iz) are linearly independent. We are in the speci�c case
where ν = iε− 1

2 , ix2 = z2, thus

D
iε− 1

2
(ei π

4 x) =
2

iε
2 e−iπ/8

x
1
2

W iε
2 ,− 1

4
(

ix2

2
),

D
−iε− 1

2
(ei 3π

4 x) =
2
−iε

2 ei 3π
8

x
1
2

W−iε
2 ,− 1

4
(−i

x2

2
), (A.12)
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are the two linearly independent solutions in our case and there is a degeneracy in
the continuous energy spectrum. It is easy to see that they are also formally obtain-
able from the normal harmonic oscillator upon substituting x → x/

√
2, ω = ±i

and n = ±iε− 1
2 , the normalization is di�erent though.

Another useful basis of solutions are the delta function normalised even/odd parabolic
cylinder functions [165] which we will denote by ψ±(ε, z)

ψ+(ε, x) =(
1

4π
√
(1 + e2πε)

) 1
2

21/4|Γ(1/4 + iε/2)
Γ(3/4 + iε/2)

|e−ix2/4
1F1(1/4− iε/2, 1/2; ix2/2)

=
e−iπ/8

2π
e−επ/4|Γ(1/4 + iε/2)| 1√

|x|
Miε/2,−1/4(ix2/2)

ψ−(ε, x) =(
1

4π
√
(1 + e2πε)

) 1
2

23/4|Γ(3/4 + iε/2)
Γ(1/4 + iε/2)

|xe−ix2/4
1F1(3/4− iε/2, 3/2; ix2/2)

=
e−3iπ/8

π
e−επ/4|Γ(3/4 + iε/2)| x

|x|3/2 Miε/2,1/4(ix2/2) .

(A.13)

Their normalisation is∫ ∞

−∞
dx ∑

a=±
ψa(ε1, x)ψa(ε2, x) = δ(ε1 − ε2), (A.14)

and ∫ ∞

−∞
dε ∑

a=±
ψa(ε, x1)ψ

a(ε, x2) = δ(x1 − x2) . (A.15)

The relation with the previous basis can be established using the following equations

D
iε− 1

2
(eiπ/4x) =

√
π2iε/2e−iπ/8

Γ(3/4− iε/2)
√

x
Miε/2,−1/4(ix2/2)− 2

√
π2iε/2e−iπ/8

Γ(1/4− iε/2)
√

x
Miε/2,1/4(ix2/2)

D
−iε− 1

2
(ei3π/4x) =

Γ(1/2− iε)√
2π

[
e−επ/2eiπ/4D

iε− 1
2
(eiπ/4x) + eεπ/2e−iπ/4D

iε− 1
2
(−eiπ/4x)

]
.

(A.16)
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a.2.3 Mehler for parabolic cylinder

The delta-function normalised odd/even parabolic cylinder functions ψ∓(ε, x) satisfy
the following formula [165]:

〈x|e−2iTH |y〉 =
∫ ∞

−∞
dεeiεT ∑

a=±
ψa(ε, x)ψa(ε, y)

=
1√

4πi sinh T
exp

i
4

[
x2 + y2

tanh T
− 2xy

sinh T

]
, (A.17)

which is the analogue of Mehler’s formula for the real-time (T = −iβ) inverted H.O.
propagator with the Hamiltonian A.9. This holds for −π < ImT < 0 or ImT = 0
with ReT 6= 0. To prove it one can use the general expression (7.694) in [269].
An equivalent expression can be found also in the basis of D

iε− 1
2
(z), D

−iε− 1
2
(iz)

using (7.77.3) of [269]

〈x|e−2iTH |y〉 =
1√

4πi sinh T
exp

i
4

[
x2 + y2

tanh T
− 2xy

sinh T

]

=
∫ ∞

−∞
dεeiεT e−

1
2 επ

4π cosh(επ)[
D

iε− 1
2
(ei π

4 x)D
−iε− 1

2
(ei 3π

4 y) + D
iε− 1

2
(−ei π

4 x)D
−iε− 1

2
(ei 3π

4 y)
]

,

(A.18)

with the same restrictions in T. These expressions are most well suited to compute the
transition amplitude in real time. To recover the Euclidean, inverted H.O. expression
one needs to set T = −iβ in the above, (note that they will hold for R < 1, otherwise
one needs to change the contour of integration to make them well behaved).

a.3 representation in terms of angles (wilson-lines)

Instead of integrating out U one can �rst integrate out the M’s in the expression

Zn,N =
∫
DMDM′DU〈UM′U†, β|M, 0〉 =

∫
DUI(U) . (A.19)

If we de�ne A = 1/ tanh(ωβ), B = 1/ sinh(ωβ), and remember to use blocks for
the matrices after orbifolding we get

I(U) = ω−
1
2 (N−2n)2

(
B

2π

)N2/2 ∫
dM1dM2dM′1dM′2eT , U =

(
U1 U12

U21 U2

)
,

K = −A
2

tr(M2
1 + M2

1
′) + Btr(M1U1M′1U†

1 + M1U12M′2U†
12) + (1↔ 2) .

(A.20)
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Now the U′s are complex but satisfy certain conditions

U1U†
1 + U12U†

12 = U2U†
2 + U21U†

21 = 1, U12U†
12 = U21U†

21

U1U†
21 + U12U†

2 = U†
2 U21 + U†

12U1 = 0, (A.21)

and can be diagonalised by bi-unitary transformations such that they leave the mea-
sure invariant. We thus use the unitary matrices V1, V′1, V2, V′2 to get1

U1 = V1CV′†1 , U2 = V2

(
C 0

0 1

)
V′†2 ,

U12 = −V1(D, 0)V′†2 , U21 = V2

(
D

0

)
V†

1 , (A.22)

with

Cij = cos θiδij, Dij = sin θiδij, 0 ≤ θi ≤
π

2
. (A.23)

This can be also easily achieved after exponentiation of the zero mode of A that has
only non-zero the diagonal components of the o�-diagonal blocks.
Since the measure of M’s is invariant under a unitary transformation, we can write
the four matrix coupling term of K as

tr(M1CM′1C + M1DRD + RDM′1D + RCR′C + SS′†C + S†CS′+ TT′) (A.24)

where we have written M2 and M′2 (which are (N − n)× (N − n) matrices) as

M2 =

(
R S

S† T

)
, M′2 =

(
R′ S′

S′† T′

)
(A.25)

with R, R′ n× n matrices. Integration over T, T′ will yield a constant factor

(2π)(N−2n)2 (A.26)

Integrations over S, S′ yield

(2π)2n(N−2n)
n

∏
i

(
B2

1 + B2 sin2 θi

)N−2n

(A.27)

and integrations over R, M1 give

(2π)2n2
∏
i,j

(
1

(1 + B2 sin2(θi + θj)(1 + B2 sin2(θi − θj)

) 1
2

(A.28)

1 Note that any complex matrix can diagonalized by bi-unitary transformations. Also the �rst line of equa-
tion A.21 implies that U1U†

1 and U12U†
12 can be simultaneously diagonalized.
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Thus altogether we get

I =

(
2πB

ω

) (N−2n)2
2 n

∏
i

[
B2

1 + B2 sin2 θi

]N−2n

n

∏
i,j

[
B4

(1 + B2 sin2(θi + θj)(1 + B2 sin2(θi − θj)

] 1
2

(A.29)

It is also useful to massage this expression into

I =

[
2πB

ω

] (N−2n)2
2 n

∏
i

[
2

cosh β̃− cos θi

]N−2n

∏
i,j

[
4

(cosh β̃− cos(θi + θj)(cosh β̃− cos(θi − θj)

] 1
2

(A.30)

where now the angles run 0 ≤ θk ≤ π and β̃ = 2ωβ = ωβc.
One can also express the part of the integrand of the canonical partition function
that is not coming from the measure as the determinant of a di�erential operator Q,

I =
(

2π
) 1

2 (N−2n)2

(det Q)−
1
4 , (A.31)

where Q is a di�erential operator on a circle of length 2β.

Q = −D2
0 +

2 = −∂2
0 + 2iα∂0 + α2 + ω2 , (A.32)

where α is a constant gauge �eld in the adjoint representation related to θ as θi = αiβ.
Q acts on the matrices M as

[Q, M] = ∂0M + i[α, M] (A.33)

and

[α, M]ij = α
adj
ij,kl Mkl = αik Mkj −Mikαkj (A.34)

(UMU†)ij = exp[iβα]
adj
ij,kl Mkl , (A.35)

with

α
adj
ij,kl = αikδjl − αl jδik , exp[iβα]

adj
ij,kl = UikU†

l j . (A.36)

Thus in the momentum representation one can write

det
(
−D2

0 +
2
)

= det
matrix

∞

∏
n=−∞

[(
2πn

β
− α2

)2
+ 2

]
= (A.37)

= det
matrix

2 (cosh(β)− cos(βα)) , (A.38)
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where α is a matrix and the determinant is with respect of this matrix structure.
If the gauge �eld is AN×N = diag(α1, α2, ..., αn,−α1,−α2, ...,−αn, 0, ..., 0), then
α

adj
ij,kl = (αi − αj)δikδjl and A.31 equals A.30.

a.3.1 Measure

One needs also to compute the measure for DU. This is achieved by de�ning the
metric on the tangent space of the group ds2 = tr(UdU†UdU†) and then computing
its determinant to get (0 ≤ θi ≤ π)

Jn(θ) =
1

2nn!(2π)n

n

∏
i<j

sin2
(

θi − θj

2

)
sin2

(
θi + θj

2

) n

∏
k=1

sin θk sin2(N−2n)
(

θk
2

)
.

(A.39)

One �nds that this is exactly the measure on the symmetric space of positive curva-
ture de�ned as the coset SU(N1+N2)

SU(N1)×SU(N2)×U(1) (Cartan Class AII I) [270] with N1 ≡
n, N2 ≡ (N− n). Again we see that n = N/2 is special and the measure simpli�es.
The normalization factor (2π)n corresponds to the stability group U(1)⊗n and the
factor (2nn!) to the discrete Weyl-group [271].

a.3.2 Pfa�an in regular representation

In the case of n = N/2 we �nd

Zn =
∫ π

0
∏

i
dθi Jn(θ)

n

∏
i,j

(
4

(cosh β̃− cos(θi + θj)(cosh β̃− cos(θi − θj)

) 1
2

(A.40)

where the angles are in 0 ≤ θi ≤ π.
One then unfolds the denominator using for example

1
cosh β̃− cos(θi + θj)

=
2q

(1− qzizj)(1− qz∗i z∗j )
, q = e−β̃, zi = eiθi (A.41)

and similarly the measure

Jn =
1

in22n2 n!(2π)n

n

∏
i<j

(zi− zj)(zi− z∗j )(z
∗
i − zj)(z∗i − z∗j )

n

∏
k
(zk− z∗k ) (A.42)

We then de�ne zi = eiθi , z̄1..2n = (z1..n, z∗1..n). The partition function now is

Zn =
1
n!

∫ π

0

n

∏
k=1

dθk
2πi

2−
1
2√

(cosh(β̃)− cos(2θk))

2n

∏
i<j

q1/2(z̄i − z̄j)

1− qz̄i z̄j
(A.43)
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From this form, one can use Schur’s Pfa�an identity [272, 273]

2n

∏
i<j

xi − xj

1− xixj
= pf

(
xi − xj

1− xixj

)
1≤i,j≤2n

(A.44)

for xi = q
1
2 z̄i to compactly write

Zn =
1
n!

∫ π

0

n

∏
k=1

dθk
2πi

n

∏
k=1

q
1
2√(

1− qz2
k
) (

1− qz∗k
2
) pf

 q1/2(zi−zj)
1−qzizj

q1/2(zi−z∗j )
1−qziz∗j

q1/2(z∗i −zj)

1−qz∗i zj

q1/2(z∗i −z∗j )
1−qz∗i z∗j


(A.45)

This is the expression that we use in the main text. This structure has appeared in
connection with Ginibre’s orthogonal ensemble, for more details see [274, 204] and
references within.

a.4 grand canonical for n = 0

The grand canonical partition function for n = 0 is a partial-theta

ZG =
∞

∑
N=0

xNQ
N2
2 (A.46)

with Q = Zop
1 the 1-particle partition function with open boundary conditions and

x = eβµ the chemical potential. Little is known about partial theta functions as
compared to the usual theta functions. In [275] one is able to �nd the proof for the
following formula originally found by Ramanujan

∞

∑
N=0

xNQ
N2
2 =

∞

∏
n=1

(
1− x

f (n)

)
1

f (n)
= −Qn− 1

2
(

1 + y1(n) + y2(n) +O(Q
3
2 n(n+1))

)
(A.47)

with y’s computable in a recursive fashion

y1(n) =
∑∞

j=n(−1)jQ
1
2 j(j+1)

∑∞
j=0(−1)j(2j + 1)Q

1
2 j(j+1)

y2(n) =

(
∑∞

j=n(j + 1)(−1)jQ
1
2 j(j+1)

)(
∑∞

j=n(−1)jQ
1
2 j(j+1)

)
(

∑∞
j=0(−1)j(2j + 1)Q

1
2 j(j+1)

)2

y3(n) = ... (A.48)
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It is amusing to note that these terms resemble the rotational partition function of
diatomic molecules [276]. It is also easy to see that for large segment as β → ∞,

Q→ q
1
2
c and yn → 0 leaving

ZG ≈
∞

∏
n=0

(
1 + xq

1
2 (n+

1
2 )

c

)
(A.49)

We thus observe that the leading contribution is half the one of the circle in the
large radius limit. Finally, it would be interesting to study further the thermodynamic
properties of equation A.47, since it is in a form (entire function) that the Lee-Yang
theorem can apply [276]. In particular a sum of positive terms does not allow for a
phase transition - no zeros for x on the positive real axis, thus a phase transition is
only possible if f (n) can change sign for some value of β.

a.5 hilbert transform properties

In this Appendix we collect some of the properties of the Hilbert transform which
can be found in [277].
The Hilbert transform on the real line x ∈ R of a function f (x) is de�ned as

H[ f ](x) =
1
π
P
∫ ∞

−∞

f (y)dy
x− y

(A.50)

with P denoting the principal value. Some properties of the transform are

• The Hilbert transform commutes with complex conjugation (H[ f ])∗ = H[ f ∗].

• It satis�es linearityH[a f1 + b f2] = aH[ f1] + bH[ f2].

• The linearity of the Hilbert transform also means that if one has a series ex-
pansion of a function f = ∑k fk thenH[ f ] = ∑kH[ f ]k.

• It has the parity property of exchanging even with odd functions.

• The Hilbert transform relates the real and imaginary part of a function (Kramers-
Kronig relations). As an example if f (z) = g + ih is analytic in the upper half
complex plane then h(x) = −H[g](x) and thus

∫ ∞
−∞ gH[g]dx = 0. Moreover

H[g](x) = h[x].

• The combination with fourier transform F gives
F ◦H[ f ](x) = −i sgn(x)F [ f ](x).

• H2 = −I and thus the inverse isH−1 = −H. The eigenvalues of the Hilbert
transform are λ = ±i.

• The Hilbert transform is skew adjointH† = −H.
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• If g(x) = H[ f ](x) then H[ f ](ax + b) = sgn(a)g(ax + b). Generically the
Hilbert transform commutes with translation and positive dilations but anti-
commutes with re�ection.

• The Hilbert transform commutes with the derivative operator.

• The Hilbert transform commutes with SL(2, R) generators i.e with unitary
operators Ug on the space L2(R) acting as

U−1
g f (x) = (cx + d)−1 f

(
ax + b
cx + d

)
,{

g =

(
a b

c d

)
: a, b, c, d ∈ R, ad− bc = 1

}
. (A.51)

Moreover the following properties hold:
For an integer n ≥ 0, g(x) = H[ f ](x)

H[xn f (x)] = xng(x)− 1
π

n−1

∑
k=0

xk
∫ ∞

−∞
tn−1−k f (t)dt (A.52)

Hardy:∫ ∞

−∞
dxH[ f ](x)g(x) = −

∫ ∞

−∞
dx f (x)H[g](x) (A.53)

Hardy-Poincare-Bertrand:

1
π
P
∫ ∞

−∞

f (x)dx
x− t

1
π
P
∫ ∞

−∞

g(y)dy
y− x

=

1
π
P
∫ ∞

−∞
g(y)dy

1
π
P
∫ ∞

−∞

f (x)dx
(x− t)(y− x)

− f (t)g(t) (A.54)

One can de�ne projection operators as follows:

P± =
1
2
(I ± iH) (A.55)

Then one can easily see that they satisfy the properties of projection operators (idem-
potent conditions) P2

± = P±.
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a.6 the kernel

a.6.1 Kernel in Energy basis

One can write down the form of the kernel in energy eigen-states and try to diago-
nalise from there. One has (after symmetrising appropriately):

〈m|e−
β
2 ĤÔe−

β
2 Ĥ |n〉 =

23+ m+n
2

√
m!n!

e−
ωβ
2 (m+n+1)√π

n−m

[
1

Γ(−m/2)Γ(−n+1
2 )

+
1

Γ(−n/2)Γ(−m+1
2 )

]
.

(A.56)

To prove this formula one �rst has to compute 〈m|Ô|n〉 and it is easier to do so in
momentum basis where the Hilbert transform just becomes a signum function, see
appendix A.5

〈m|Ô|n〉 = −i
∫ ∞

−∞
dp sgn(p)ψm(p)ψn(p) (A.57)

with ψm(p) the Hermite functions. Note that this is non-zero only if m,n are odd/even
or even/odd respectively. One can also form the full kernel by computing the element:

〈n1|e−
β
2 ĤÔe−βĤÔe−

β
2 Ĥ |n2〉 =

π26+ n2+n1
2

√
n1!n2!

e−
ωβ
2 (n1+n2+1) ×

∑
m

2me−ωβ(m+1/2)

m!(n1 −m)(m− n2)

(
1

Γ(−n1/2)Γ(−m+1
2 )

1

Γ(−m/2)Γ(−n2+1
2 )

+ perm

)
(A.58)

Now this kernel can be non-zero only if both n1,2 are even or odd and the states that
run through the sum are then only odd or even respectively. In either case, only one
term contributes in the sum and in particular for n1,2 odd we get (q = e−ωβc ):

〈n1|ρ̂|n2〉 =
q

1
4 (n1+n2+2)26+ n2+n1

2

Γ(−n1
2 )Γ(−n2

2 )
√

n1!n2!
×

n2 2F1

(
1
2 ,− n1

2 ; 1− n1
2 ; q

)
− n1 2F1

(
1
2 ,− n2

2 ; 1− n2
2 ; q

)
n1

2n2 − n1n22 ,

(A.59)

while for n1,2 even

〈n1|ρ̂|n2〉 =
q

1
4 (n1+n2+2)26+ n2+n1

2

Γ(−n1+1
2 )Γ(−n2+1

2 )
√

n1!n2!

q
n2
2 Bq

(
1
2 −

n2
2 ,− 1

2

)
− q

n1
2 Bq

(
1
2 −

n1
2 ,− 1

2

)
4(n1 − n2)

which can also be rewritten in terms of 2F1. From this expression we can also match
the formulas in A.7.5 for Ô2 if we set β = 0.
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a.6.2 Kernel in elliptic functions

One can massage a bit the integral equation (3.89), by adding/subtracting information
from the second sheet. In terms of the torus this means to form (the parentheses in
both sides of the equation stand for the even/odd case)

λ (X(u) (±) X(u + 2K)) = −2q
1
2
∫

C1+C2

dv
2πi

(
q sn v cn2 u

sn u dn2 v

)
X(v)

dn2 v− cn2 u
,

(A.60)

where the denominator can be also written as sn2 u− q2 sn2 v. One can bring this
equation into the following �nal form

λX(±)(u) = −q
1
2
∫

C1+C2

dv
2πi

(
q sn v cn2 u

sn u dn2 v

)
X(±)(v)

dn2 v− cn2 u
(A.61)

with X(±)(u) = X(u) (±) X(u + 2K).

a.6.3 Trace of the kernel

The trace of the kernel can be computed to be (also using equation 3.78)

tr ρ̂ =
1√

2 sinh(β̃/2)

∫ π

0

dθ

2π

sin θ√
cosh β̃− cos(2θ)

=
1

2π sinh(β̃/2)
tan−1 1

sinh(β̃/2)
(A.62)

Due to the branch-cut structure of this expression, it is useful to represent this func-
tion in terms of an integral with the integrand having simple poles

tr ρ̂ =
1

2π sinh(β̃/2)
arctan

(
1

sinh(β̃/2)

)
=
∫ π

0

dθ

2π

cos(θ/2)
cosh(β̃)− cos(θ)

(A.63)

(keep in mind that β̃ = ωβcircle = 2ωβorb). To discuss the inverse oscillator one
needs to set ω → −iω. One then �nds

tr ρ̂inv =
−1

2π sin(ωβc/2)
tanh−1

(
1

sin(ωβc/2)

)
=
∫ π

0

dθ

2π

cos(θ/2)
cos(ωβc)− cos(θ)

(A.64)

An analogous formula for the circle is [93]

Zinv
circ(βc) =

∞

∑
k=0

eiωβc(k+
1
2 ) =

i
2 sin(ωβc/2)

=
∫ π

0

dθ

2π

1
cos(ωβc/2)− cos(θ)



A.6 the kernel 129

(A.65)

If we de�ne the twisted partition function [93]

Z(θ, βc) =
1/2

cos ωβc − cos θ
(A.66)

we understand both results as a 1-particle partition function derived from averaging
over twist angles with a di�erent weight for the orbifold and circle (after extending
due to symmetry the integrals for θ′ ∈ [−π, π]). Another useful representation is

Z(θ, βc) =
∫ +∞

−∞
dε e−βcερ(θ, ε) =

1
sin θ

∫ +∞

−∞
dε e−βcε sinh ε

ω (π − θ)

sinh ε
ω π

(A.67)

which holds for 0 < θ < 2π and ρ(θ, ε) is the twisted density of states. From this
one �nds a closed formula for the twisted dos:

ρ(θ, ε) =
sinh ε

ω (π − θ)

sinh ε
ω π sin θ

(A.68)

and also an expression that gives away the spectrum

ρ(θ, ε) =
∞

∑
m=−∞

eimθρ(m)(ε) =
1
π

∞

∑
k=0

∞

∑
m=−∞

eimθ( |m|+1
2 + k)

( ε
ω )2 + (k + |m|+1

2 )2
+ δ(θ) log Λ2

(A.69)

note in particular the logarithmic divergence at θ = 0 that is regulated putting a wall
at some cuto� Λ and neglecting any cuto� dependent quantities in the double scaling
limit. In this equation ρm(ε) = − 1

π ReΨ(i ε
ω + |m|+1

2 ) is the Hydrogen atom density
of states (discrete spectrum) which should be contrasted with the H.O. density of
states ρH.O.(ε) = − 1

2π ReΨ(i ε
ω + 1

2 ).

a.6.4 1-particle density of states

From the partition function Z(β), one computes the density of states using

ρd(ε) =
∫ c+i∞

c−i∞

dβ

2πi
Z(β)eβε (A.70)

The di�culty in our case is that one needs again to study very well the pole and
branch cut structure of the integrand. We will instead try to use the integral repre-
sentation for the partition function of the orbifold to write

ρo(ε) =
1
2

∫ c+i∞

c−i∞

dβc

2πi

∫ π

0

dθ

2π

cos(θ/2)
cos(ωβc)− cos(θ)

eβcε (A.71)

with c an in�nitesimal positive regulator. Interchanging the integrations one picks
the poles at the negative βc axis βc = 2nπ ± θ and sums over the residues. There
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is a catch when θ → 0, since then two poles merge and the singularity pinches the
contour. In any case, the same singularity appears also in the analogous formula of
the circle A.65 and will just reproduce the irrelevant logarithmic divergence. The
result is

ρo(ε) =
∫ π

0

dθ

2π

cos(θ/2)
sin(θ)

sinh ε
ω (π − θ)

sinh ε
ω π

=
∫ π

0

dθ

2π
cos(θ/2)ρ(θ, ε) (A.72)

It is thus easy to see that this result is equivalent to the one we would get if we just
integrate over the twisted dos with the appropriate weight. Now this integral can be
performed inde�nite to get a result in terms of hypergeometric functions 2F1. Taking
the limit θ → 0 and subtracting the expected logarithmic divergence, we �nd a �nite
piece

ρ0(ε) =

1
4π

(
iπ − 2γ +

e−π ε
ω

sinh(π ε
ω )

Ψ
(
−i

ε

ω
+

1
2

)
− eπ ε

ω

sinh(π ε
ω )

Ψ
(

i
ε

ω
+ 1

2

))

=
i
2
− 1

2π
γ− 1

2π
ReΨ

(
i

ε

ω
+

1
2

)
+ i

1
2π

cosh(π ε
ω )

sinh(π ε
ω )

Im Ψ
(

i
ε

ω
+ 1

2

)
,

(A.73)

that contains the H.O. dos ρHO(ε) = − 1
2π ReΨ

(
i ε

ω + 1
2

)
, and imaginary pieces.

From the π limit we get2

ρπ(ε) =
1

4π sinh( ε
ω π)

[
Im Ψ

(
i

ε

2ω
+

1
4
)

)
− Im Ψ

(
i

ε

2ω
+

3
4
)

)]
(A.74)

One then notices that the 1-particle orbifold density of states is ρo(ε) = ρH.O.(ε) +
ρtwisted + ρIm(ε), with the twisted piece

ρtwisted(ε) =
1

4π sinh( ε
ω π)

[
Im Ψ

(
i

ε

2ω
+

1
4
)

)
− Im Ψ

(
i

ε

2ω
+

3
4
)

)]
=

1
4π sinh( ε

ω π)
Im

∫ ∞

0
dt

e−i ε
ω t

cosh( t
2 )

(A.75)

where we used the integral representation of the digamma function.

a.7 approximate methods for large β

Here we give more details on the large β approximation to the canonical partition
function.

2 One nice thing to note is that the twisted part of the dos does not require a cuto� in accordance with the
discussion in [93].
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a.7.1 Circle in angles

It is easy to expand formula 3.61 for large βc to �nd

ZN ≈ q
1
2 N2 1

N!

∫ 2π

0

N

∏
k=1

dθk
2π
|∆(eiθ)|2(1 +O(q)) = q

1
2 N2

(1 +O(q)) (A.76)

where one can use the Selberg integral [278] to perform the integration that cancels
the factorial.
Thus we �nd again F = βcE0 +O(e−βcω).

a.7.2 Generic n in angles

One can expand eq. 3.62 for large β and relating qc = q2
o to �nd

Zn ≈ q
(N−2n)2

4
c qN−2n

c qn2

c (1 +O(qc))
∫ π

0
∏

k
dθk Jn(θ)

= q
N2
4

c (1 +O(qc))
1
n!

n−1

∏
j=0

Γ(1 + j)Γ(2 + j)Γ(N − 2n + 1 + j)
Γ(N − n + j + 1)

,

(A.77)

where we used again the Selberg integral to compute the integral. We �nd that the
leading in βc term will give half the Free-energy of the circle for any n.

a.7.3 Generic n in eigenvalues of M

We start by the following generalization of the Cauchy identity [279]

∏n
i<j(xi − xj) ·∏N−n

a<b (ya − yb)

∏n
i=1 ∏N−n

a=1 (xi − ya)
=

(−1)n(N−2n) det



1
x1−y1

· · · 1
x1−yN−n

...
. . .

...
1

xn−y1
· · · 1

xn−yN−n

yN−2n−1
1 · · · yN−2n−1

N−n
...

. . .
...

y0
1 . . . y0

N−n


. (A.78)

where on the right hand side, the upper N × N − n submatrix and the lower (N −
2n)× n submatrix are given respectively by(

1
xi − ya

)
1≤i≤n

1≤a≤N−n

,
(
yN−2n−p

a
)

1≤p≤N−2n
1≤a≤N−n

. (A.79)
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One can now perform the y integrations to obtain

∫
dnxdN−ny det

N−n×N−n


(

1
xi−ya

)
1≤i≤n

1≤a≤N−n(
yN−2n−p

a
)

1≤p≤N−2n
1≤a≤N−n

 det
N×N

ψi−1(x̄j) . (A.80)

It is reassuring to check that the formula reproduces correctly the cases of n = 0 and
n = N/2. One can then perform one extra integration to reach the formula eqn. 3.97
of the main text.

a.7.4 n = 0

For the n = 0 representation, we de�ne Dx = ∏N
k dxk/N! and expand in multi-

particle fermionic wavefunctions

ZN =
∫

DxDy∆(x)∆(y)det
ij

K(xi, yj)

=
∫

DxDy∆(x)∆(y)∏
k

K(xk, yk)

=
∫

DxDy∆(x)∆(y)∑
En

e−βEn ΨEn(xk)ΨEn(yk) (A.81)

with ΨEn(yk) the multiparticle energy eigenfunctions 〈En|y1, y2, ....yN〉. This in the
β→ ∞ limit gives

Z = e−βEground

(∫
Dx∆(x)Ψground(xk)

)2

= e−βEground

(∫
Dx det

i,k
(xi−1

k )det
j,k

(ψj−1(xk))

)2

= e−βEground

(
det

ij

∫
dx(xi−1ψj−1(x))

)2
(A.82)

with ψi(xk) the single-particle wavefunctions and we used Andreief identity [186]
to turn the integral over N variables to an integral over a single one. The Free energy
is

F = + 1
2 βcEground − 2 log det

0≤i,j≤N

∫
dx(xi−1ψj−1(x)) (A.83)

where the second term can be interpreted as a radius independent contribution of
states at the endpoints written as a determinant of a matrix Fij. One needs to compute
the following integrals

F+
nm =

∫ ∞

−∞
dxx2n−2ψ2m−2(x)→

∫ ∞

−∞
dxx2n−2ψ+(εm−1, x)

F−nm =
∫ ∞

−∞
dxx2n−1ψ2m−1(x)→

∫ ∞

−∞
dxx2n−1ψ−(εm−1, x) (A.84)
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where we have indicated the corresponding expressions for the normal and the in-
verse H.O. To compute this contribution for the inverse harmonic oscillator we will
use the odd/even parabolic cylinder ψ± functions of appendix A.2. We de�ne α =
1
4 − i ε

2 and use the following integral (c is an in�nitesimal regulating parameter)

I =
∫ ∞

0
dxx2ne−i x2

4 1F1

(
α; γ;

ix2

2
eic
)
=

= 22ne
iπ
4 (2n+1)Γ(n +

1
2
)2F1

(
α; n +

1
2

; γ; 2eic
)

(A.85)

This can be proven using Mellin-Barnes representations for hypergeometric func-
tions. We then get

F+
nm = 22n−1e

iπ
4 (2n−1)C+(ε)Γ(n−

1
2
)2F1

(
α, n− 1

2
;

1
2

; 2eic
)

(A.86)

F−nm = 22n+1e
iπ
4 (2n+1)C−(ε)Γ(n +

1
2
)2F1

(
α +

1
2

, n +
1
2

;
3
2

; 2eic
)

,(A.87)

using the following identity for the hypergeometric functions

F (a, b; c; z) = (1− z)c−a−bF
(

c− a, c− b; c;
z

z− 1

)
(A.88)

we �nd

F+
mn = 22n−1e

iπ
4 (2n−1)C+(εm−1)(−1)n−1eiπαΓ(n− 1

2
)

2F1

(
1
2
− α, 1− n;

1
2

; 2e−ic
)
=

= 22n−1e
iπ
4 (2n−1)C+(εm−1)(2)n−1eiπα

√
π

×
n−1

∑
k=0

Γ
(

1
2 − α + n− 1− k

)
Γ
(

1
2 − α

) Γ
(

n− 1
2

)
Γ
(

n− 1
2 − k

) (n− 1)!
(n− 1− k)!

(
− 1

2

)k

k!
=

=
22n−1e

π
4 εm−1 |Γ (αm−1) |

2
5
4
√

π

n−1

∑
k=0

ak(n)εn−1−k
m−1 (A.89)
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where ak depends only on n. Similarly,

F−nm = 22n+1e
iπ
4 (2n+1)C−(εm−1)(−1)n−1eiπ(α+ 1

2 )Γ(n +
1
2
)

2F1

(
1− α, 1− n;

3
2

; 2e−ic
)
=

= 22n+1e
iπ
4 (2n+1)C−(εm−1)(2)n−1eiπ(α+ 1

2 )

√
π

2

×
n−1

∑
k=0

Γ
(

1
2 − α + n− 1

2 − k
)

Γ (1− α)

Γ
(

n + 1
2

)
Γ
(

n + 1
2 − k

) (n− 1)!
(n− 1− k)!

(
− 1

2

)k

k!
=

=
22ne

π
4 εm−1 |Γ

(
αm−1 +

1
2

)
|

2
3
4
√

π

n−1

∑
k=0

bk(n)εn−1−k
m−1 (A.90)

with b0 = 1. After using determinantal properties, we �nd that

ln
(
det F+

mn
)

= ∑
i<j

ln
(
εi−1 − ε j−1

)
+ ∑

i
fi (A.91)

ln
(
det F−mn

)
= ∑

i<j
ln
(
εi−1 − ε j−1

)
+ ∑

i
gi (A.92)

with,

fi =
π

4
εi−1 + ln |Γ

(
1
4
− iεi−1

2

)
| , gi =

π

4
εi−1 + ln |Γ

(
3
4
− iεi−1

2

)
| .(A.93)

Note that as ε→ ∞

f (ε) + g(ε) = ln(2π)− 1
2

ln
(

1 + e−2πε
)
= ln(2π)− 1

2
e−2πε + ... (A.94)

contributing only non perturbative terms.
Introducing the density of states, one obtains a quite simple result for the twisted
state contribution

Θ =
1
2

∫ µ
ρ(ε)

∫ µ
ρ(ε′) log |ε− ε′|dεdε′ (A.95)

where ρ(ε) is the density of states:

ρ(ε) =
1
π

(
− log ε +

∞

∑
m=1
Cmε−2m

)
(A.96)

the coe�cients Cm are known in terms of Bernoulli numbers. To compute this quan-
tity we take one derivative wtr to µ to get

∂Θ
∂µ

= ρ(µ)
∫ 0

−∞
dερ(ε + µ) log |ε| (A.97)
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In this expression one needs to put a cuto� Λ at the lower part of integration and
compute it as a series expansion in 1/µ. After one computes A.95, one has to express
it in terms of the cosmological constant ∆ in order to be able to compare with the
Liouville result (see section 3.4). One needs to use

∂∆
∂µ

= πρ(µ) , (A.98)

and the renormalised cosmological constant µ0 that plays the role of the string cou-
pling, de�ned via

∆ = −µ0 log µ0 . (A.99)

In the end Θ can be found in terms of µ0 as:

Θ = µ2
0

(
11
8
− π2

24
+

(
π2

12
− 11

4

)
log µ0 +

7
4

log2 µ0 −
1
2

log3 µ0

)
− 1

24

(
1 +

π2

6

)
log µ0 +

1
µ2

0

(
259

11520
+

7
2880

(
π2

3
− 7
)

log µ0

)
O(µ−4

0 ) .

(A.100)

One notices that the torus contribution is not the same as in equation 3.9.

a.7.5 n = N/2 with Hermite polynomials

For the regular case we get (the measures contain appropriate factorials)

Z =
∫

dxdx′dydy′ det
i,j

1
xi − yj

det
i,j

1
x′i − y′j

det
2n×2n

K(x, y; x′, y′) (A.101)

which in the β→ ∞ limit gives

F = 1
2 βcEground − 2 log

∫
dnxdny det

i,j

1
xi − x′j

det
2n×2n

ψi−1(x̄j) (A.102)

with x̄ = (x, y). One can use Moriyama’s formula for unequal ranks in the appendix
of [185] to get

Θ = 2 log
∫

dnx det
1≤i≤2n
1≤k≤n

[∫
dy

ψi−1(xk)

xk − y
ψi−1(xk)

]
(A.103)

As we have dicussed, one can also integrate x’s to �nd

Θ = 2 log
[
pf2n×2n Oij

]
(A.104)

with the antisymmetric

Oij =
∫

dxdy
ψi−1(x)ψj−1(y)− ψi−1(y)ψj−1(x)

x− y
. (A.105)
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Similarly to the main text we will adopt the principal value prescription. This gives

Oi,j =
∫ ∞

−∞
dxψi−1(x)ψHj−1(x)− ψHi−1(x)ψj−1(x) = 2

∫ ∞

−∞
dxψi−1(x)ψHj−1(x)

(A.106)

with ψH the Hilbert transform of ψ and in the second line we used that the Hilbert
transform is skew-adjoint. For the Pfa�an we have the formula log [pf A pf B] =
1
2 tr log AT B. where we want to apply it for the case A = B = O with OT = −O
so that we get

Θ = 1
2 tr log

(
−O2

)
(A.107)

One notices that the matrix O is just twice the Hilbert transform operator Ô in the
energy basis. It is a real antisymmetric matrix with imaginary eigenvalues. Also, since
H2 = −1 (see appendix A.5), we immediately �nd Θ = 1

2 tr log 4 Î = N log 2. To
be more explicit, if we perform the integrals we can rewrite O as:

Om,n = 2〈m|Ô|n〉 = ±4
22+ m+n

2
√

m!n!

√
π

n−m

[
1

Γ(−m/2)Γ(−n+1
2 )

+
1

Γ(−n/2)Γ(−m+1
2 )

]
(A.108)

with 0 ≤ m, n ≤ N − 1. In this expression, only one of the two terms inside the
brackets can be non-zero when m-odd, n-even or vice versa, the odd/odd even/even
pieces are zero. The overall ± is because the hermite functions are eigenfunctions
of the fourier transform with eigenvalues ±1,±i and one �nds an overall factor
(−i)m+n+1, when going to momentum space in order to calculate the integral. Using
this we can form O2 as (this now holds for n1, n2 together odd/even!)

O2
n1n2

=
2n1/2+n2/2+3√π√

n1!n2!(n1 − n2)

[
1

Γ(− n1
2 )Γ(−n2+1

2 )
− 1

Γ(− n2
2 )Γ(−n1+1

2 )

]
. (A.109)

In this expression, we �nd that the only non-zero terms are the diagonal. This is also
consistent with the appropriate limit of the full energy-basis kernel A.58. Near the
diagonal this expression approaches the sine-kernel

O2
n1n2
≈ −4 sin π(n1 − n2)

π(n1 − n2)
. (A.110)

Taking the limit n2 → n1 we �nd

Θ = 1
2 tr log

(
−O2

)
= 1

2

N−1

∑
k=0

log
[
(Ψ(−k/2)−Ψ(1/2− k/2))

2 sin πk
π

]
.

(A.111)
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The expression in brackets has only real part. One also �nds

lim
k→N

(Ψ(−k/2)−Ψ(1/2− k/2))
2 sin πk

π
= 4, ∀k ∈N, (A.112)

and thus we recover the expected Θ = N log 2 which pinpoints to the fact that we
just count the total entropy of a two state system at the endpoints, due to the spin
up/down nature of the wavefunctions. It is tempting to pass to continuous variables
via the dos ρH.O.(ε) = − 1

π ∑k δ(ε − εk) which for the inverse H.O. clicks when
−iε = k + 1

2 . The result is

Θ = 1
2

∫ µ
dερH.O.(ε) log

[(
Ψ(

1
4
+

iε
2
)−Ψ(

3
4
+

iε
2

)
2 cosh(πε)

π

]
, (A.113)

with the term in the logarithm looking conspicuously similar to the twisted dos equa-
tion A.75. One should be very careful though, since the normalization of the Hermite
functions after rotating is di�erent compared to the one of the parabolic cylinder
functions and one should really perform the computation from the start using the
inverse H.O. eigenfunctions.

a.7.6 n = N/2 with parabolic cylinder functions

Here we perform the same computation using the delta-function normalised even
and odd parabolic cylinder functions of appendix A.2 which are eigenfunctions of the
inverted oscillator. Since the spectrum is now continuous, we can imagine obtaining
a discrete spectrum by putting a cuto�/wall at Λ which is then send to in�nity. We
again adopt the principal value prescription whenever fourier transforming.

We compute3

〈ε1|O|ε2〉 = 2
∫ ∞

−∞
dxdy

ψ+(ε1, x)ψ−(ε2, y)
x− y

=

= 4
∫ ∞

0
dx
∫ ∞

0
dy

ψ+(ε1, x)yψ−(ε2, y)
x2 − y2 . (A.114)

This expression is non zero and the integrand is even both in x and y. One can then
exponentiate again the denominator using the Fourier transform of the sign function.
This gives

O(ε1, ε2) = −2i
∫ ∞

−∞
dt sgn(t)I+(t)I−(t) = −4<

[
i
∫ ∞

0
dtI+(t)I−(t)

]
(A.115)

where,

I+(t) =
∫ ∞

0
dxψ+(x)e−i 1

2 tx2
, I−(t) =

∫ ∞

0
dyyψ−(y)e+i 1

2 ty2
. (A.116)

3 Only the energy dependence is important in the overall normalisation of this object.
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The advantage is that now one can compute the resulting integrals using [269]∫ ∞

0
due−suub−1

1F1(a, c, ku) = Γ(b)s−b
2F1(a, b, c, ks−1),

<s > <k, <s > 0, b > 0 ; ; |s| > |k| ,

= Γ(b)(s− k)−b
2F1(c− a, b, c,

k
k− s

),

<s > <k, <s > 0, b > 0 ; ; |s− k| > |k|

Or even the following simpler form that can be obtained from the expression above
if k = 1, b = c∫ ∞

0
due−suuc−1

1F1(a, c, u) = Γ(c)s−c(1− s−1)−a , <c > 0 , <s > 1 .

(A.117)

Using an in�nitesimal regulator eic we can �nd for I+(ε1, t) with t > 1
2

I+(ε1, t) = N1(ε1)
∫ ∞

0

du√
2u

e−i( 1
2+t)ueic

1F1(1/4− iε1/2, 1/2; iueic)

= N1(ε1)

√
π

2
(it +

i
2
)−1/2

2F1(1/4− iε1/2, 1/2, 1/2,
eic

1
2 + t

) ,

(A.118)

with N1(ε) =

(
1

4π
√

(1+e2πε)

) 1
2

21/4| Γ(1/4+iε/2)
Γ(3/4+iε/2) |

1
2 .

For I−(ε2, t), we now have (with t < − 1
2 ),

I−(ε2, t) = N2(ε2)
∫ ∞

0
du
√

2ue−i( 1
2−t)ueic

1F1(3/4− iε2/2, 3/2; iueic)

= N2(ε2)

√
π

2
(−it +

i
2
)−3/2

2F1(3/4− iε2/2, 3/2, 3/2,
eic

1
2 − t

) ,

(A.119)

with N2(ε) =

(
1

4π
√

(1+e2πε)

) 1
2

23/4| Γ(3/4+iε/2)
Γ(1/4+iε/2) |

1
2 . We now encounter a form of

non-perturbative ambiguity which has to do with the possible analytic continua-
tions of these hypergeometric functions. In particular, the hypergeometric functions
2F1(a, b, c, z) have branch points at z = (0, 1, ∞) and thus the integrals A.118, A.119
have branch points at t = (∞, 1

2 ,− 1
2 ) and t = (−∞,− 1

2 , 1
2 ) respectively. We will

now assume working in some undetermined branch and naively analytically con-
tinue these equations for complex t. In the next subsection we are going to split the t
integral into sections and �nd what are the exact conditions (which sheet to choose)
in order to match the result we �nd here.
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We will now introduce the following change of variables z = 1/( 1
2 + t) , t =

(2− z)/2z. By shifting the corresponding hypergeometric function and performing
the integral we get

O(ε1, ε2) = −2πN1(ε1)N2(ε2)e
1
2 (ε1+ε2)π<

[
i
∫ 2

0
dz(z− 1)−1+ 1

2 i(ε1−ε2)
]

= −2πN1(ε1)N2(ε2)e
1
2 (ε1+ε2)π<

[∫ 1

−1

du
u

u+ 1
2 i(ε1−ε2)

]

= 4πN1(ε1)N2(ε2)e
1
2 (ε1+ε2)π

1− e
1
2 (ε2−ε1)π

ε1 − ε2

 . (A.120)

where the last expression holds when=ε1 > =ε2 and one can derive a similar one in
case=ε1 < =ε2 by exchanging ε1 ↔ ε2 with an overall minus sign4. We expect that
our analytically continued result is valid for some speci�c branch. A di�erent branch
would give a di�erent normalization. This di�erence in normalization we expect to
play a role in the contribution of non-perturbative states as discussed in the main
text. The result can also be written as

O(ε1, ε2) =
2e(ε1+ε2)π/2

(1 + e2πε2)1/4(1 + e2πε1)1/4

∣∣∣∣Γ(1/4 + iε1/2)
Γ(3/4 + iε1/2)

Γ(3/4 + iε2/2)
Γ(1/4 + iε2/2)

∣∣∣∣
1
2

× 1− e(ε2−ε1)π/2

ε1 − ε2

=
1
π
|Γ(1/4 + iε1/2)Γ(3/4 + iε2/2)|eπ(3ε2+ε1)/4

×
sinh

(
1
4 π(ε2 − ε1)

)
ε1 − ε2

. (A.121)

a.7.6.1 Calculation of the integrals for segments

We will now perform a consistency check and understand better our branch choice.
We split the integrals into sections with respect to the branch points. We demand that
the parameter t is real and we drop the regulator. Then we indeed �nd a result that
di�ers for di�erent sections of t. The sections are (−∞,−1/2) ∪ (−1/2, 1/2) ∪
(1/2, ∞) . We have computed the integrals for each section by taking the limit at
the branch points sending a small parameter to zero (ex. we integrate up to 1/2 + ε
and then we send ε → 0). The results are (to be multiplied with the normalization
prefactors N(ε1), N(ε2))

• For the section (0, 1/2):

I+(t) =

√
2πe

πε1
2
( 2

2t+1 − 1
)+ 1

2 iε1

(1− 4t2)1/4 (A.122)

4 These cases probably form di�erent elements of the discrete matrix above and below the diagonal, since
the poles of the inverted oscillator dos are at =ε1 = n1 +

1
2 . The matrix is then appropriately real and

antisymmetric
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I−(t) =

√
2πe

πε2
2
( 2

2t+1 − 1
)− 1

2 iε2

(1− 4t2)
3/4 (A.123)

• For the section (1/2, ∞):

I+(t) =
(1− i)

√
π
(

2t−1
2t+1

) iε1
2

(4t2 − 1)1/4 (A.124)

I−(t) = −
(1− i)

√
π
(

2t−1
2t+1

)− 1
2 (iε2)

(4t2 − 1)3/4 (A.125)

One can similarly obtain the rest of the sections by t→ −t.

One can now notice that A.122, A.124 are the same expression if one chooses −1 =
e−iπ and A.123, A.125 are the same if we chose −1 = eiπ . This choice corresponds
to picking a speci�c branch. We already know that the spectrum of the inverted
oscillator is twofold degenerate and our choice just means that the even/odd modes
live in a di�erent sheet of the complex energy plane. After changing variables z =
1/ 1

2 + t this choice gives the same integral and result as in A.120

a.7.6.2 The sine/sinh kernel

It is now easy to see that since O(ε1, ε2) = A(ε1)Ksinh(ε1 − ε2)B(ε2), the only in-
teresting asymptotic contribution comes from the kernel in the middle. The diagonal
normalization factors can be shown to contribute non-perturbatively, since they do
not admit an 1/ε expansion and scale for large ε as eaε with a a parameter depending
on the branch we choose. The kernel whose spectrum we want to compute is the ana-
lytic continuation of the very well studied sine kernel Ksine(ε1, ε2) =

sin( 1
4 π(ε1−ε2))
ε1−ε2

for which various results exist in the literature in relation to its spectrum and Fred-
holm determinants [212, 213].

One way of computing its determinant is to discretise and bring it into a Toeplitz
form. In our case one can put a cuto� Λ and then use the density of states of the
inverted oscillator iε j = j + 1

2 which is equidistant, or equivalently analytically con-
tinue in ω. Then calculating the determinant of the sine kernel with support on an
energy segment one �nds that it can be represented as a Toeplitz determinant in a
scaling limit

det Ksine|−µ
−∞ = det

(
1− Ksine|0−µ

)
, ⇔ lim

N→∞
N det Cj−k ,

with Cj−k = δjk −
sin(πµ

2N (j− k))
π(j− k)

(A.126)
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We will now discuss some properties of this fredholm determinant, and provide an
asymptotic evaluation for large µ, with which we can match the torus contribution
to the twisted states.

a.7.6.3 Level spacings

The level spacing distribution Eβ(n, µ) of Random matrices is the probability that the
interval (0, µ) contains exactly n eigenvalues [280]. In our case these will be energy
eigenvalues and the random matrix is the Hamiltonian. Thus the Hilbert transform
operator e�ectively randomizes the energy eigenvalues of the system which are to
be drawn from an ensemble (GUE/GOE/GSE). The parameter β denotes the ensemble
and for us β = 2 (GUE). We �rst de�ne D(µ; λ) = det

(
1− λKsine). We also de�ne

K± = Ksine(x, y)±Ksine(x,−y) and similarly D±(µ; λ) = det (1− λK±). For the
other ensembles, β , the kernel is a matrix. Then one has [280]

E2(n; (0, µ)) =
(−1)n

n!
∂D(µ; λ)

∂λn |λ=1 (A.127)

and for the other ensembles one can again �nd formulas involving E± D±. We will
now use the asymptotic formulas in the literature for the level spacings as µ → ∞
much like what we want for the asymptotic expansion of string theory µ → ∞. We
provide here the more general result/conjecture for arbitrary β, n [281] that correctly
reproduces the proven result for n = 0, β = 2 [212, 213]

log Eβ(n; (0, µ)) ∼µ→∞ −β
µ2

16
+ (βn + β/2− 1)

µ

2

+

[
n
2
(1− β/2− βn/2) +

1
4
(β/2 + 2/β− 3)

]
log µ + .... (A.128)

We now need to remember that the Pfa�an is the square root of the determinant
and that we need to divide our result by an extra factor of 2, since we want to match
the bosonic string theory partition function, that has support on the one side of the
potential. After taking these into account, one �nds the twisted state contribution

Θ =
1
4

log E2(0; (0, µ)) = − 1
32

µ2− 1
16

log µ+
1

48
log 2+

3
4

ζ ′(−1)+O
(

1
µ2m

)
.

(A.129)

We see that we correctly capture only closed string contributions with even higher
powers of 1/µ and some of these coe�cients can be found in [212]. Moreover this
formula predicts that there is no-logarithmic divergence coming from the genus 0
spherical contribution. As a bonus, it is interesting to note that one can make the
same computation with orthogonal or symplectic matrices in GOE, GSE which can
be found to receive open string corrections with odd powers in µ. These results might
be relevant for the unoriented string theory on the orbifold, where odd powers of µ
are known to appear and orthogonal/symplectic symmetries to be relevant.
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a.7.6.4 Properties of the sine kernel

The sine kernel has some remarkable properties some of which which we list here

• Its eigenfunctions are the prolate spheroidal functions and some asymptotic
forms of the spectrum exist.

• The Christo�el Darboux (CD) kernels approach the sine kernel in a scaling
limit that focuses on the bulk of the spectrum.

• As with all the CD kernels it is a self-reproducing kernel, it obeys K ∗ K = K.

• It is the band-limited version of the Dirac delta distribution. To understand
this better, let f ∈ L2(R) a function whose fourier transform has support
on the segment [−πb, πb] (band limited functions) Then the sine kernel is an
orthogonal projection to this space since∫ ∞

−∞
dy

sin(πb(x− y))
π(x− y)

f (y) =
1√
2π

∫ πb

−πb
eixξF [ f ](ξ)dξ (A.130)

• Moreover one can further consider functions f ∈ L2([−s, s]). This gives both
energy and time band limited functions (in our case s ∼ µ is the energy-band
limit while b = 1/4 is a “time-band” limiting). This is called a compression of
the sine kernel and gives a trace class operator.

• It is easy to see that it is the natural regulating description of the dirac-δ func-
tion we were expecting to have (for O2), since at the discrete level we encoun-
tered the identity operator δnm and we were �lling eigenvalues up to the size of
the matrix N. It also allows for a rigorous understanding of limiting the energy
and de�ning the fermi surface which corresponds to �lling all the negative en-
ergy states up to a band below 0 corresponding to the chemical potential −µ.
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b.1 on-shell action via holographic renormalization and back-
ground subtraction

b.1.1 On-shell action via holographic renormalization

In this section we compute the on-shell action for our con�gurations. In doing so,
we plug in the action (4.5) the solutions of the equations of motion and perform the
integration over all space. Since the quantity Son−shell obtained this way is per se
divergent, we need to resort to the techniques of holographic renormalization (see
for instance [282, 283, 284, 285]). We therefore add to the action (4.5) appropriate
counterterms that we denote by

Son−shell,ren = Son−shell + Sct . (B.1)

The counterterms we need to add are functions of boundary curvature invariants,
hence they do not alter the bulk equations of motion. The prescription for such terms
is spelled out for example in [236] (see also [286] for a related computation). They are
constructed from the boundary Ricci scalar R3 and a function W(ϕ) of the scalar
�elds, called superpotential:

Sct =
1

4πG

∫
∂M

d3x
√

h
(

`AdS
2
R3 −W(ϕ)

)
. (B.2)

In this expression, h is the determinant of the induced metric at the boundary ∂M, hab,
andR3,ab is its Ricci curvature. For the black brane the curvature of the boundary is
zero, hence the �rst addendum vanishes identically. The superpotentialW appearing
in (B.2) satis�es the following relation:

Vg(ϕ) =
1
2

(
−3

2
W2 + gij∂iW∂jW

)
. (B.3)

The crucial point in the computation of counterterms for mixed boundary condition
is the fact that the superpotential relation (B.3) �xes the functionW(ϕ) up to �nite
terms, that would in principle a�ect the renormalized physical quantities. Indeed, to
completely �x this �nite term one needs an additional requirement, namely that the
holographic renormalization be derived via a well-de�ned variational principle. As
explained in [236], only one speci�c choice of �nite term (thus ofW , satisfying (B.3))
satis�es this requirement1. Following the prescription of [236] and the work [237]

1 It has been noticed in [237] that, when the boundary conditions enforce a marginal deformation, the �nite
part of the countertermW can be equivalently determined by taking the superpotentialW ≡ W f low that
drives the �ow of the scalar �elds, ϕ′ = ∂ϕW f low of the solution. See [237] for more details.

143
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we �nd that the correct superpotential counterterm one has to use for our solutions
(both branes and thermal gas) is

W(ϕ) =
2

`AdS

(
1 +

ϕ2

2
+

1
6
√

6
ϕ3 +O(ϕ4)

)
, (B.4)

the �nite part being given by the ϕ3 term.
The action obtained here requires speci�c boundary conditions on the vector �elds:

these are exactly imposing �xed electric chemical potential and �xed magnetic charge.
Let us mention the fact that imposing �xed electric charge would amount in adding
the �nite Hawking-Ross boundary term [287]

SHR =
1

4πG

∫
∂M

d3x
√

h naFab Ab , (B.5)

where na is an outward pointing vector normal to the boundary. Since we have de-
cided to work in the mixed ensemble (with �xed electric chemical potential and �xed
magnetic charge) we do not need to make such an addition.

We are now ready to perform the computation of the on-shell action. We �rst start
by noticing that, making use of the Einstein’s equations of motion, the action (4.5)
can be rewritten in terms of the Ricci tensor components plus the integrals over the
kinetic terms of the gauge �elds:

Son−shell =
Vβ

4π

∫ ∞

rh

dr
√
−g
[
(Ry

y + Rt
t)/2 + IΛΣFΛ

µνFΣ µν
]
+ SGH . (B.6)

We �rst impose a radial cuto� r0 that should be sent to in�nity after integration. The
extrema of integration are rh and r0. The total on shell action takes the form

Son−shell =
Vβ
8π

(
− 3

4
(
2c1 − 8b3)− 3c1b+c2

4(rh−3b) −
3c1b−3c2
4(rh+b)

)
+

+Vβ
8π

(
3b2rh − r3

h + 6b2r0 − 2r3
0
)

, (B.7)

where β comes from the integration in the time direction. For the solution at hand,
the computation of the counterterm using (B.4) gives

Sct =
βV
4π

(
1
4

(
2c1 − 8b3

)
− 3b2r0 + r3

0

)
. (B.8)

Plugging in (B.7) and (B.8) in (B.1) we see that the divergencies cancel, giving a �nite
result for the on-shell action. Using the horizon equation f (r0) = 0, we can recast
(B.1) in the following form:

Sos,ren =
1

16π
βV
(

3(3b− rh)(b + rh)
2 − 2c1

)
. (B.9)

At this point we can directly rewrite the on-shell action in terms of the thermody-
namic potentials. The mass of the system can be computed from the renormalized
stress energy tensor τab

τab =
2√
h

δSren

δhab
. (B.10)
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The following expression gives the conserved charge associated with the boundary
Killing vector Kb (σab is the induced metric on the spacelike section Σ of the boundary
and ua is the unit normal vector to Σ):

QK =
∫

Σ
d2x
√

σuaτabKb . (B.11)

The mass of the system is then obtained for K = ∂t and one �nds

M = Q∂t = −
1

4π

c1

2
. (B.12)

This expressions coincides with the mass computed via the AMD procedure [288,
289]. The temperature T is

T =
1

4π

d f (r)
dr

∣∣∣∣
rh

1√
H0(r)H3

1(r)

∣∣∣∣
rh

=
−12b2rh − c1 + 4r3

h

4π

√
(rh − 3b) (b + rh)

3
, (B.13)

and the entropy density reads

S =
Area
4κ2 =

r2
h

√
H0(rh)H3

1(rh)

4κ2 . (B.14)

The magnetostatic potential mB and the electrostatic one χ respectively read

mB = −
∫ ∞

rh

G1,trdr , χ = −
∫ ∞

rh

F0,trdr . (B.15)

The �eld GΛ is the dual of the �eld strength F = dA and it is de�ned in this way:

Gtr,Λ =
1
4

εtrxy
∂L

∂FΛ
xy

= εtrxy IΛΣFxy,Σ (B.16)

with Levi Civita tensor

εµνρσ = ea
µeb

νec
ρed

σεabcd , ε0123 = 1 . (B.17)

With εtrxy = h2(r) and FΛ
xy = pΛ

2 one gets Gtr,Λ = IΛΣ pΣ

2h2 , hence

χ =
q

2 (3b− rh)
, mB =

3B
2 (b + rh)

. (B.18)

Having all the conserved quantities and the potential de�ned, one can check that the
�rst law of thermodynamics is satis�ed:

dM = TdS− χdq + mdB , (B.19)

and the (renormalized) on-shell action Son−shell,ren coincides with the free energy for
the mixed ensemble

Son−shell,ren

β
=

I
β
= M− TS + χq . (B.20)
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b.1.2 Background subtraction method

We will now illustrate the background subtraction method for the free energy com-
putation. The appropriate background should have the same boundary asymptotics
of the solution taken into consideration and, in addition to it, it has zero AMD mass.

Obviously, we should subtract the same background from the two solutions that
we want to compare. Using di�erent backgrounds would result in a �nite piece that
comes from the di�erence between the two backgrounds.

For our speci�c example, such a background turns out to be the domain wall solu-
tion with metric

ds2 = −r2
√

H0(r)H3
1(r)dt2 +

dr2

r2
√

H0(r)H3
1(r))

+ r2
√

H0(r)H3
1(r)dσ2 , (B.21)

and area element

dσ2 = dx2 + dy2 . (B.22)

Furthermore, the background has zero magnetic and electric charges Fµν = (0, 0, 0, 0)
and the same asymptotic expansion for the scalar �eld at in�nity.

To compute the �nite on-shell action we subtract the on-shell action of the back-
ground from the on-shell action of the black brane. We can use the same rewriting
(B.6) used in the previous section. Since for the background con�guration the electric
and the magnetic charges are zero, the on-shell action can be written as a whole as
an integral of the Ricci tensor component Rt

t. One can then expand the di�erence
around r0 → ∞. The result is given in terms of a �nite part and subleading terms
that go to zero as r0 → ∞.

I =
βV
4π

(
9b3 + 15b2rh + 3br2

h − 2c1 − 3r3
h

4

)
+O(r0

−1) (B.23)

This quantity coincides with the renormalized on shell action (B.9), and the free
energy F is the �nite part divided by β, which is exactly F = M− TS + qχ. Hence
in this case the background subtraction gives the same result as the holographic
renormalization.

b.1.3 On-shell action for the thermal gas solution

As we show in a previous section the way we acquire the acceptable thermal gas
solution is to take the limit rh → rs. Likewise to compute the on-shell action we will
perform the same procedure as in the black brane case but the limits of integration
will be rs + ε, ε→ 0 and r → ∞. After the subtraction of the background one �nds

Fsol = MADM,sol = −
c1

8π
. (B.24)
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All the rest thermodynamic quantities are computed as in the black brane but taking
the limit rh → rs.

As one can notice, we have found the thermodynamic quantities and the free en-
ergy as functions of rh, c1, b, using the T = 0 condition we can express them in terms
of the actual thermodynamical variables T = 0, χ, B.

b.2 extended objects

b.2.1 Polyakov loop

The action of a Euclidean string propagating on the background is given by

ING =
1

4πα′

√
det(∂αXµ∂βXνgµν)dσdτ , (B.25)

where gµν is the Euclidean metric of the target space. This area diverges in an asymp-
totically AdS space-time and the renormalization procedure is standard [253]. After
renormalization, the area on the Euclidean black brane background is obviously �-
nite because the near horizon geometry is �at corresponding to the origin in the
Euclidean signature. The area on the thermal gas background can be obtained by
choosing a gauge σ = r, τ = tE where tE is the imaginary time. Then one obtains
det(∂αXµ∂βXνgµν) = gttgrr = 1 where we used (4.11) with t = itE. Thus, after
renormalization of the UV divergence, we again �nd a �nite area for the Nambu-
Goto string on the thermal gas, even though there is a singularity at r = rs.

b.2.2 The quark potential

We consider a string embedded in the thermal gas background that is attached on
the boundary at two points separated by a distance l. A typical geometry minimiz-
ing (B.25) with this boundary condition is a curve that ends on the boundary r = ∞
at the points (x, y) = (±l/2, 0) and hangs down the interior of the geometry mak-
ing a turning point at r = r0, see for example [290]. The on-shell action is propor-
tional to the quark-antiquark potential on the boundary and the latter can be put in
a form[290]

Vqq̄ = H(r0) l − 2d(r0) (B.26)

where

d(r0) = 2
∫ ∞

r0

dr
G(s)
H(s)

(√
H2(r)− H2(r0)− H(s)

)
− 2

∫ r0

3b
drG(r) , (B.27)

with H2 = gttgxx and G2 = gttgrr . On our backgrounds these quantities simplify
as G2(r) = 1 and H2(r) = f (r)r2 where f is de�ned in (4.12). On a con�ning back-
ground, as l increases, the turning point of the string, r0 approaches to a �nal value
r = r f located deeper in the interior of the geometry where d(r f ) and c(r f ) attain
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�nite values. Therefore, one obtains linear con�nement in (B.26). On our thermal gas
geometry this point corresponds to the singularity r f = 3b. In order to explore the
behavior of the function H near this point we set r0 = 3b + ε and expand for small
ε. The blackening factor f on the thermal gas can be put in the form

f (r) = H0(r)
(

r2H3
1(r)−

B2

2br

)
, (B.28)

where H0 and H1 are de�ned in (4.12). Using this expression and the good singularity
condition (4.1) we obtain

H(r0) = r2
0 f (r0)→ 4

√
3bε , (B.29)

in the limit ε→ 0. Therefore, we �nd that d(r0) in (B.26) remains �nite as r0 → 3b
as l increases, whereas H(r0) vanishes linearly in this limit. This means that the only
way con�nement may arise from (B.26) is by l diverging faster than 1/ε. The latter
is given by [290]

l = 2
∫ ∞

r0

dr
G(r)
H(r)

H(r0)√
H2(r)− H2(r0)

= 2
∫ r1

r0

√
f (r0)r2

0

f (r)r2
dr√

f (r)r2 − f (r0)r2
0

.

(B.30)

Changing integration variable r = 3b+ ε, r0 = 3b+ ε0, to focus near the singularity,
we �nd

l =
∫ ∞

ε0

dε

4
√

6
√

ε− ε0 + · · ·
, (B.31)

that always remains �nite. We conclude that the string is not con�ning on the thermal
gas solution.

b.2.3 Entanglement Entropy

Entanglement entropy can be employed to check if the thermal gas is a con�ning
background. For a con�ning background there are two possible minimal surfaces
with the same end points on the boundary. When con�nement occurs the favoured
minimal surface is the two disconnected straight lines extending from the endpoints
of the line segment inside the bulk. In the decon�ned phase the minimal surface
is the curved line that connects the two endpoints. In the following we identify:
h(r)2 = r2

√
H0(r)H3

1(r). We divide the boundary region into two parts A and
B (A’s complement), where A is de�ned as: l/2 < x < l/2 and 0 < y < ∞. By
parametrizing this two dimensional surface with (x, y) we can write down the action
that should be minimized as

A = L
∫ l/2

−l/2
dxh (r (x))2

√√√√1 +
(∂xr (x))2

U (r (x))2 h (r (x))2 . (B.32)
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One notices that the Lagrangian does not depend explicitly on x, hence the quantity

H = − h(r)2√
1 + (∂xr)2

U(r)2h(r)2

, (B.33)

is conserved. If r∗ is the minimal value of r with respect to x, ∂xr|r∗ = 0, then

H = −h (r∗)2 , (B.34)

but H is a constant and always equals −h (r∗)2. Thus we can solve B.33 for ∂xr,

∂xr = U(r)h(r)

√
h(r)4

h(r∗)4 − 1 . (B.35)

We can now compute the length l that minimizes the area B.32 as a function of r∗,

l
2
=
∫ r∞

r∗
dr

1

U(r)h(r)
√

h(r)4

h(r∗)4 − 1
, (B.36)

where r∞ is the UV cut-o�. Eliminating l from the B.32, we �nd for the connected
surface

Acon =
L

2GN4

∫ r∞

r∗
dr

h(r)3

h(r∗)2U(r)
1√

h(r)4

h(r∗)4 − 1
. (B.37)

The area for the disconnected case is simply,

Adis =
L

2GN4

∫ r∞

r0

dr
h(r)
U(r)

, (B.38)

where r0 is in�nitesimally close to the singularity.
Plotting the di�erence between B.37 and B.38 Acon − Adis as a function of l for

all values of B and χ we �nd that the connected minimal surface is always favoured,
leading to the conclusion that thermal gas always corresponds to a decon�ned phase.





S U M M A R Y

In this thesis we present three seemingly very di�erent models that can be treated in
the context of holography. First, in chapter 2 we present the black hole S-matrix of
Gerard ’t Hooft, and we show how by solving a quantum mechanical problem, one
can obtain the same S-matrix. Then, in chapter 3 we present the correspondence be-
tween non critical Liouville string theory coupled to c = 1 matter and the dual matrix
quantum mechanics model. In this framework, we build a toy model of two dimen-
sional cosmology that describes a big-bang/ big-crunch universe. Finally, in chapter
4 we use holography to model a 2 + 1- dimensional strongly coupled theory under
external magnetic �eld and under �nite charge density at zero temperature. We then,
discover a line of second order quantum critical points by comparing thermodynam-
ically dual gravitational solutions. In the following we would like to present in more
details the subject of each chapter.

In the introduction 1, we give a basic and self-contained account of the various
physical notions that one needs to be familiar with in order to read this thesis. Specif-
ically, we present the holographic principle as stated by Gerard ’t Hooft and Leonard
Susskind. This is the primary idea behind Gauge/Gravity duality. We then present,
the best understood example of holography –�rst discovered by Maldacena– which
states that gravity on AdS5 is dual to strongly coupled N = 4 super Yang-Mills
gauge theory. Next, we present the dictionary of applied gauge/gravity duality, that
is relevant for chapter 4 and some examples that applied gauge/gravity duality has
been of use. Concluding this subsection, we move on to the physics of black holes,
where we �rst de�ne and describe real world astrophysical black holes. Afterwards,
we comment in the di�culty to connect consistently gravity with quantum mechan-
ics and we state the information paradox. This part is relevant for chapter 2. Then,
we brie�y present how one can use black hole physics in the context of hologra-
phy in order to study strongly coupled �eld theories (this is relevant for chapter 4)
and vice-versa. Subsequently, we move on to the correspondence between Liouville
string theory and matrix quantum mechanics, where we introduce Liouville �eld
theory and matrix models as well as how to take an appropriate limit –the so called
double scaling limit– to show that matrix quantum mechanics are dual to Liouville
string theory. We end this subsection, by giving a precise dictionary between the two
pictures. Finally, we present quantum criticality and quantum phase transitions that
are relevant for chapter 4, from the point of view of condensed matter theory.

In chapter 2, we revisit the old black hole S-matrix construction and its new par-
tial wave expansion of ’t Hooft. Inspired by old ideas from non-critical string theory
and the c = 1 Matrix Quantum Mechanics, we formulate the scattering in terms of
a quantum mechanical model –of waves scattering o� inverted harmonic oscillator
potentials– that exactly reproduces the unitary black hole S-matrix for all spherical
harmonics; each partial wave corresponds to an inverted harmonic oscillator with
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ground state energy that is shifted relative to the s-wave oscillator. Identifying a
connection to two dimensional string theory allows us to show that there is an ex-
ponential degeneracy in how a given total initial energy may be distributed among
many partial waves of the four dimensional black hole.

In chapter 3, we study Matrix Quantum Mechanics (MQM) on the Euclidean time
orbifold S1/Z2. Upon Wick rotation to Lorentzian time and taking the double-scaling
limit this theory provides a toy model for a big-bang/big-crunch universe in two di-
mensional non-critical string theory where the orbifold �xed points become cosmo-
logical singularities. We derive the MQM partition function both in the canonical
and grand canonical ensemble in two di�erent formulations and demonstrate agree-
ment between them. We pinpoint the contribution of twisted states in both of these
formulations either in terms of bi-local operators acting at the end-points of time or
branch-cuts on the complex plane. We calculate, in the matrix model, the contribution
of the twisted states to the torus level partition function explicitly and show that it
precisely matches the world-sheet result, providing a non-trivial test of the proposed
duality. Finally, we discuss some interesting features of the partition function and the
possibility of realising it as a τ-function of an integrable hierarchy.

In chapter 4, we investigate quantum critical points in a 2+ 1- dimensional gauge
theory at �nite chemical potential and magnetic �eld. The gravity dual is based on
four dimensional N = 2 Fayet-Iliopoulos gauged supergravity and the solutions
we consider –that are constructed analytically– are extremal, dyonic, asymptotically
AdS4 black branes with a nontrivial radial pro�le for the scalar �eld and extremal,
magnetically charged, asymptotically AdS4 acceptable singular solutions with a non-
trivial radial pro�le for the scalar �eld. We discover a line of second order �xed
points at a critical value of the magnetic �eld between the dyonic black brane and
the extremal “thermal gas” solution with a singularity of good-type, according to
the acceptability criteria of Gubser. The dual �eld theory is a strongly coupled non-
conformal �eld theory at �nite charge and constant external magnetic �eld, related
to the ABJM theory deformed by a triple trace operator. We �nd similarities between
the behaviour of the vacuum expectation value of the scalar operator under magnetic
�eld and that of the quark condensate in 2 + 1- dimensional Nambu-Jona-Lasinio
models.



S A M E N VAT T I N G

In dit proefschrift presenteren we drie schijnbaar verschillende modellen die door
middel van holografrie beschreven kunnen worden. In hoofdstuk 2 presenteren we
de S-matrix van een zwart gat volgens Gerard ’t Hooft en vervolgens laten we zien
hoe die afgeleid kan worden door een kwantum mechanisch probleem op te lossen.
In hoofdstuk 3 presenteren we de correspondentie tussen een niet kritische Liouville
snaar theorie gekoppeld aan c = 1 materie en een duale matrix kwantum mechanica
model. In deze constructie bouwen wij een speelgoed model van een twee dimensi-
onale kosmologie model dat een big-bang/big-crunch universum beschrijft. In hoof-
stuk 4 eindigen we met een toepassing van hologra�e op een 2 + 1 dimensionale
sterk gekoppelde theorie onder de invloed van een extern magnetisch veld met een
eindige ladingsdichtheid op de nul temperatuur. Als een resultaat ontdekken we dat
er een lijn is van tweede orde kwantum kritische punten door thermodynamisch du-
ale gravitatie oplossing te vergelijken. We zullen niet diper ingaan op elk hoofdstuk.

In de introductie 1, geven we een basische en complete beschrijving van de phy-
siche concepten die men moet kennen om dit profschrift te kunnen doorgronden.
We presenteren, met name, het hologra�sch princie geformuleerd door Gerard ’t
Hooft en Leonard Susskind. Dit is het centrale idee achter de Ijk/Gravitatie duali-
teit. Vervolgens presenteren we het best begrepen voorbeeld van hologra�e -ontdekt
door Maldacena- dat aantoont dat gravitatie op AdS5 duaal is aan een sterk gekop-
peld N = 4 super Yang-Mills ijk theorie. Daarna presenteren we thet woordenboek
van de toegepaste gravitatie/ijk dualiteit dat relevant is voor hoofdstuk 4 en som-
mige voorbeelden waarbij de dualiteit belangrijk was. We eindigen dit onderdeel en
gaan door met de natuurkunde van zwarte gaten, waar we eerst de astrofysische
zwarte gaten de�nieÃ«ren en beschrijven. Vervolgens geven we comentaar op de
moeilijkheidsgraad van het probleem om en connectie te maken tussen gravitatie en
kwantum mechanica en geven we een beschrijving van het informatie paradox. Dit
is relevant voor hoofdstuk 2. Daarna geven we een korte beschrijving van de wijze
waarmee zwarte gat natuurkunde gebruikt kan worden om sterk gekoppelde syste-
men te beschrijven in de context van hologra�e en vice-versa. Vervolgens gaan we
naar de correspodentie tussen Liouville snaar theorie en matrix kwantum mechanica
door de ze te introduceren en aan te tonen hoe men een correct limiet te nemen - de
double scaling limiet- om de dualiteit te bevestigen. We eindigen door het speci�ek
woordenboek tussen de twee te geven. Als laatste presenteren we, vanuit het oogpunt
van gecondenseerde materie, kwantum kritikaliteit and kwantum fase transities die
relevant zijn voor hoofdstuk 4.

In hoofdstuk 2 behandelen we de oude S-matrix van een zwart gat met de nieuwe
partieele golf expansie van ’t Hooft. Geinsipireerd door oude ideen uit niet kritische
snaar theorie en de c = 1 matrix kwantum mechanica formuleren we de verstrooing
in termen van het kwantum mechanica model -golven verstrooien van geinverteerde
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harmonische oscillator potentialen- die precies de unitaire zwarte gat S-matrix repro-
duceert voor alle sferisch harmonische functies; elke partiele golf correspondeert met
een geinverteerde harmonische oscillator met grontoestands energie die is verscho-
ven ten opzichte van de s-golf oscillator. Het identi�ceren van een verbinding naar
de twee dimensionale snaar theorie staat ons toe om aan te tonen dat er een exponen-
tiele ontaarding is in de wijze waarmee de totale begins energie verdeeld kan worden
over de vele partiele golven van het vier dimensionale zwart gat.

In hoofdstuk 3 bestuderen we de Matrix Kwantum Mechaninca (MQM) op de Eucli-
dische tijd orbifold S1/Z2. Na een Wick rotatie richting Lorentz tijd en een dubbele-
schaal limiet geeft deze theorie een speelgoed model voor een big-bang/big-crunch
universum in twee dimensionale niet-kritische snaar theorie waar de orbifold sta-
biele dekpunten kosmologische singulariteiten vormen. We leiden de MQM partitie
functie af zowel in de canonical als de grand canonica ensemble in twee verschillende
formuleringen en tonen aan dat ze overeenkomen. We duiden aan wat de contributies
zijn van de twisted toestanden zijn allebei de formuleringen zowel gebruik makend
van bi-lokale operatoren werkend op de eind punten van de tijd als vertakkingslij-
nen in het complexe vlak. In het matrix model berekenen we expliciet de contributie
van de twisted toestanden op de torus level partitie functie en laten we zien dat het
overeenkomt met het wereldschappen resultaat. Dit is dan een niet triviale test van
de voorgestelde dualiteit. We beindigen met een discussie van sommige interessante
eigenschappen van de partitie functie en de mogelijkheid om het te realiseren als een
τ-functie van een integreerbare hierarchie.

In hoofdstuk 4 onderzoeken we de kwantum kritieke punten in een 2 + 1 dimen-
sionale ijktheorie met een eindig chemisch potentiaal en magnetisch veld. De gravi-
tatie duaal is gebaseerd op een vier dimensionale N = 2 Fayet-Iliopoulos geijkte
supergravity en de oplossingen die we bekijken -die analytisch geformuleerd zijn-
zijn extremal, dyonische en asymptotische AdS4 zwarte branen met een niet triviaal
radiaal pro�el voor het scalair veld en extremal, magnetisch geladen, asymptotische
AdS4 geaccepteerde singulaire oplosingen met een niet triviaal radiaal pro�el voor
het scalair veld. We ontdekken een lijn van tweede orde stabiele dekpunten op een
kritische waarde van magnetisch veld tussen het dyonische zwarte braan en de extre-
mal “thermisch gasöplossing met een singulariteit van het goede-soort, volgens de
criteria van Gubser. De duale velden theorie is een sterk gekoppelde niet-conforme
velden theorie met eindige lading en constant extern magnetisch veld, gerelateerd
aan de ABJM theorie gedeformeerd door een drievoudig spoor operator. We vinden
overeenkomsten tussen het gedrag van de grondtoestand excitatiewaarde van de sca-
laire operator onder de invloed van een extern veld and dat van een quark condensaat
in 2 + 1 dimensionaale Nambu-Jona-Lasinio modellen.
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