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Abstract
Federated learning (FL) has gained significant traction across diverse industries, which allows multiple clients or institutions
to enhance model performance and outcomes while preserving data privacy collaboratively. In recent years, tensor networks
(TNs) have become important in machine learning because they allow the compact representation of high-dimensional
tensors by decomposing them into lower-dimensional components with polynomial complexity. The application of TNs in
FL is a natural extension because of its flexible framework for representing and optimizing models. Inspired by quantum
computing principles, we have integrated a quantum-inspired tensor network into the FL framework. This framework focuses
on a one-dimensional matrix product state (MPS) tensor network (TN) in a federated setting (FedTN), with data distributed
across homogeneous and heterogeneous partitions among clients. Our experiments demonstrate that tensor network-based
federated learning can be made practical, as FedTN is robust to the unbalanced and non-IID data distributions typically
encountered in such settings. Our research assessed the effectiveness and feasibility of comparing quantum-inspired TN
and conventional methods, evaluating their performance, and exploring the benefits of incorporating quantum principles in
FL settings. Furthermore, we have investigated its performance when training for many local epochs (large E) between the
averaging steps.

Keywords Tensor networks · Federated learning · Quantum computing · Machine learning · Security ·
Quantum machine learning

1 Introduction

Protecting privacy has become essential in the current digital
environment, especially within machine learning applica-
tions. In recent years, federated learning (FL) has emerged as
a distributed learning paradigm where multiple clients (e.g.,
mobile devices or institutions) collaboratively train a model
while keeping their data decentralized, as illustrated in Fig. 1.
It allows clients to exchange model parameters with a global
server without disclosing their private data (Li et al. 2021).
This paradigm improves data privacy and security, making
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it ideal for use in healthcare, finance, and other sensitive
areas. However, implementing FL comes with unique chal-
lenges. One significant challenge is the high communication
overhead (Nguyen et al. 2021). Several efficient communi-
cation strategies and techniques, such as model compression
and aggregation, have been proposed to improve commu-
nication overhead and resource allocation in computation
efficiency. Another challenge is the system and data hetero-
geneity, leading to significant variance among clients and
slower convergence rates (Mendieta et al. 2022). To address
these non-IID (independent and identically distributed) data,
advanced techniques are required to optimize federated learn-
ing effectively across distributed data sources.

Tensor networks are gaining prominence across various
domains in data science. They represent a class of quantum-
inspired algorithms and techniques that emulate the tensor
operations of quantum computers while running on classi-
cal hardware. These networks are influenced by theories,
models, and methods from quantum physics; they are com-
monly referred to as “quantum-inspired.” By leveraging
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Fig. 1 An illustration of the federated learning process. Initially,
the global model sends the current global weights (θs ) to all clients
(C1,C2, ...,CN ). Each client trains their local model on their respec-
tive data using these weights. After training, clients send their updated
weights (θ1, θ2, ..., θn) back to the global server. The global server
then aggregates these weights to update the global model. This process
repeats iteratively until the global model converges. The framework
ensures data privacy as the clients do not share their raw data, only the
model parameters

the properties of tensors, these techniques optimize com-
putations, particularly in scenarios where accessing specific
properties of the quantum state vector is sufficient, rather than
dealingwith the entire state vector (Ali et al. 2024).Quantum-
inspired approaches have proven highly relevant to machine
learning due to their ability to compress models effectively.
By reducing memory requirements while maintaining a high
level of precision, thesemethods offer a practical solution for
handling complex computations efficiently. TheMPS, a type
of tensor network, is highly beneficial, as it decomposes a
tensor into a one-dimensional structure through matrix prod-
uct operations.

In recent years, quantum-inspired tensor network (QTN)
approaches have been making significant strides in the field
of data science (Cichocki 2014), offering novel solutions
to traditional computational challenges in condensed mat-
ter physics (Fernández-González et al. 2015), and quantum
computer science (Jahn and Eisert 2021; Grant et al. 2018;
Bhatia et al. 2019). In the context of tensor networks (TNs),
a tensor refers to a multi-dimensional array that generalizes
scalars, vectors, and matrices to higher dimensions. A ten-
sor with rank r and dimensions d1 × · · · × dr are elements
of the tensor product vector space

⊗r
i=1 C

di . These tensors
are represented by components Vi1···ir , where i j takes values
from [d j ] (Monturiol et al. 2024). Tensor networks use these
tensors to capture and model complex relationships within
the data.

Integrating tensor networks into deep learning pipelines
offers multiple advantages, potentially boosting the perfor-
mance and capabilities of existing models with tensorization
and tensor decomposition. The process of tensorizing low-
ers the storage memory needed by decreasing the number
of elements, and it also enhances computation efficiency.
There are different layouts of TNs: grid (matrix product state
(MPS) for 1D or projected entangled-pair states (PEPS) for
2D systems) or hierarchical (tree tensor network (TTN) and
multi-scale entanglement renormalization ansatz (MERA)).
One-dimensional MPS is the most widely studied TN and a
versatilemethod used extensively in the study of 1Dquantum
many-body systems. It provides an efficient way to represent
the state of a quantum system by decomposing it into a the
product of matrices, which simplifies the handling and anal-
ysis of complex quantum states.

An MPS representation expresses a quantum state as a
sequence of tensors (or matrices) connected in a linear fash-
ion, as shown in Fig. 2. Consider a quantum state |ψ〉 of a
systemwith N sites, each having a local Hilbert space dimen-
sion d (Sengupta et al. 2022). TheMPS representation of |ψ〉
is given by

|ψ〉 =
∑

s1,s2,...,sN

As1 As2 · · · AsN |s1, s2, . . . , sN 〉, (1)

where Ask are D × D matrices (with boundary conditions
requiring the first and last matrices to be vectors of dimen-
sion D). Here, D is the bond dimension, a parameter that
controls the accuracy of the MPS representation, as shown
in Fig. 2. A larger bond dimension allows for a more accu-
rate representation but at the cost of increased computational
resources.

A tensor network’s layout specifies the maximum entan-
glement or internal correlation it can accommodate. In the
case of MPS, the entanglement adheres to an area law, indi-
cating that the entanglement between a sub-network and its
environment is proportional to its boundary size. Therefore,
for a 1D MPS, the entanglement remains constant (Rieser
et al. 2023). Due to the quantum-inspired formulation of
TNs, the information cannot be shared across branches in

Fig. 2 Matrix product state (MPS) representation for a vector. The
MPS representation of a quantum state |ψ〉 for a system with N sites,
each with a local Hilbert space dimension d and bond dimension D.
It is expressed as a sequence of tensors (or matrices) Ask , which are
connected linearly. Each tensor is primarily entangledwith its neighbors
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the same way that neural networks use the information to
trigger neuron activation.

Based on the current literature, TNs-based machine learn-
ing models are applied to various tasks including classifica-
tion (Grant et al. 2018; Bhatia et al. 2019; Huggins et al.
2019; Wang et al. 2021), compression (Selvan et al. 2020),
entanglement-based feature extraction (Liu et al. 2021), and
generative TNs (Wall et al. 2021). Due to the structural simi-
larity between TN architectures and neural networks, several
studies have explored the mapping of one onto the other
to compare different network configurations. For instance,
recurrent neural networks can efficiently simulate MPS in
certain scenarios (Wu et al. 2023), while TNs can be used to
implement convolutional neural networks efficiently (Levine
et al. 2019). Recently, Bhatia andNeira (2024) introduced the
first quantum federated learning framework based on tensor
networks for the healthcare sector and investigated its per-
formance in various types of medical images. Additionally,
the authors provided a comparison of the methods based on
communication overhead and robustness against local differ-
ential privacy.

Bhatia et al. (2024a) improvedQFL efficiency by reducing
communication rounds and boosting performance through
quantum natural gradient descent optimization and the
use of variational quantum circuits on diverse healthcare
datasets. Saggi et al. (2024a) introduced FedQNN, a hybrid
quantum-classical neural network framework, for the classi-
fication of human DNA sequence datasets. Li et al. (2024)
proposed advanced quantum protocols incorporating quan-
tum communication to tackle federated learning challenges,
enhance privacy, and improve communication efficiency
using the gradient hiding technique. Javeed et al. (2024)
developed a framework combining quantum computing, fed-
erated learning, and 6G wireless networks to bolster the
security of IoT ecosystems.

Federated learning based on the MPS quantum-inspired
network has the potential to be extended to various indus-
tries beyond the scope of this study. Quantum-inspired tensor
networks are well-suited for industrial applications, offer-
ing the capability to tackle highly complex and large-scale
problems with remarkable efficiency. Healthcare and drug
discovery: The lightweight MPS-based federated learning
framework can be applied to privacy-sensitive tasks in health-
care, such as collaborative training of models for diagnosing
diseases (Bhatia et al. 2023a, 2024a, 2023b), predicting
patient outcomes, or analyzing genomic data (Saggi et al.
2024a; Bhatia et al. 2023c; Saggi et al. 2024b). Its ability
to process high-dimensional data efficiently aligns well with
applications like medical imaging, electronic health records,
and drug discovery. Finance: This framework can enable
secure and efficient collaborative learning for frauddetection,
credit scoring, portfolio optimization, risk assessment, and
financial predictions, where client data must remain private

due to stringent regulatory requirements (Orús et al. 2019;
Paquet et al. 2022; Brandhofer et al. 2022). Manufacturing
and supply chain: It can be extended to predict equipment
failure, optimize supply chains, and detect anomalies inman-
ufacturing processes while keeping proprietary operational
data confidential (Bhatia et al. 2024b). Quantum-inspired
models like MPS often have lower computational and mem-
ory overheads compared to traditional deep learning models,
making them ideal for industries prioritizing sustainability,
energy efficiency, and security.

1.1 Challenges

The following are the key challenges encountered during
the implementation of the quantum-inspiredMPS tensor net-
work in federated learning:

• The decomposition of tensors in the MPS framework
requires sophisticated algorithms and careful optimiza-
tion to avoid excessive computational burden, particu-
larly when applied to real-world, large-scale datasets in
a federated setting.

• FL typically involves frequent communication between
clients and the central server. The quantum-inspired
MPS approach, while reducing model size, still requires
careful handling of tensor operations to minimize com-
munication costs, which can be substantial in large-scale
federated settings.

• FL environments often deal with data that is non-IID
(non-independent and identically distributed). Ensuring
that the quantum-inspired MPS model generalizes well
across diverse client data without overfitting is a key con-
cern.

1.2 Motivation

Given the remarkable capability of tensor networks to han-
dle and represent high-dimensional data through advanced
tensor decompositions, integrating quantum-inspired ten-
sor networks (QTNs) into federated learning environments
emerges as a compelling objective. Based on the principles of
quantum computing such as entanglement and superposition,
tensor networks offer an advanced framework for represent-
ing and managing intricate relationships and dependencies
within data. This makes them well-suited for the heteroge-
neous data encountered in FL settings. To the best of our
knowledge, no published studies have implemented or eval-
uated the utility of quantum-inspired tensor train networks
in federated settings.

1.3 Main contributions

To summarize, this paper makes the following contributions:
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• Wepropose aquantum-inspired federated learning frame-
work, FedTN, which leverages tensor train networks for
collaborative training across multiple clients, allowing
TNs to effectively handle non-IID data.

• Our experiments demonstrate that FedTN is capable of
efficiently integrating new clients into the existing fed-
erated learning system by aligning with the local data
distributions of these clients. Additionally, FedTN can
achieve convergence of the globalmodelwithout the need
for extra adjustments or fine-tuning.

• Our experiments show that FedTNs provide better clas-
sification accuracy on test data than federated multilayer
perceptron (FedMLP). Moreover, the global TN feder-
ated model exhibited enhanced classification accuracy
and generalizability, consistently surpassing the perfor-
mance of locally trained models, even when data is
unevenly distributed among clients.

The remainder of the article is organized as follows:
Section2 discusses quantum-inspired tensor network-based
federated learning. Section3 presents the data settings and
discusses the findings and outcomes. Finally, the concluding
remarks are reported in Section 4. The list of acronyms used
throughout the paper is given in Table 1.

2 Federated learning optimization for MPS
tensor networks

In this paper, we focused on optimizing one-dimensional
MPS tensor networks for image classification tasks (MNIST
and FMNIST) in the federated learning environment.

TheMPS tensor network, representing vector in the image
space, consists of 2N components, with each one described
by the product ofN matrices. Before describing the federated
learning approach based onMPS TN employed in this study,
it is important to first explain the data encoding process into
the MPS.

Table 1 List of acronyms used throughout the paper

Abbr Explanation

FL Federated learning

non-IID Non-independent and identically distributed

TN Tensor networks

QML Quantum machine learning

QTN Quantum-inspired tensor networks

MPS Matrix product state

FedMLP Federated multi-layer perceptron

FedCNN Federated convolutional neural networks

FedTN Federated tensor networks

First, each pixel of the image is mapped into its own
two-dimensional pixel space according to a local feature
transformation as

�(p) = (cos (π p/2) , sin (π p/2)) (2)

where p ∈ [0, 1] represents the normalized pixel value. In
the experiments, we used �(p)i , where the index i can take
two values. For the linear feature transformation, we have
�(p)0 = 1 − p and �(p)1 = p. The overall image space
is created by taking the tensor product of all individual pixel
spaces. On changing a single pixel value from black to white
results in a vector that is orthogonal to the original vec-
tor (Rieser et al. 2023). An image pixel (p1, p2, ..., pn) is
represented in the image space as

(p1, p2, . . . , pn) �→ �(p1) ⊗ �(p2) ⊗ · · · ⊗ �(pn) (3)

It is also referred to as a data tensor and has 2n compo-
nents, represented as �(p1)i1�(p2)i2 · · · �(pn)in . Suppose
an input image x = (p1, p2, . . . , pn) ∈ [0, 1]n represents a
flattened image and corresponding label y ∈ {0, 1, ...,m−1}
(with n=784 and m=10 for MNIST and FMNIST). First, we
determine the inner product between the encoded image vec-
tor and a variational MPS (Eq. 1) as

f (m)(x) =
1∑

i1,i2,...,in=0

|ψ〉�(p1)i1�(p2)i2 · · ·�(pn)in (4)

It should be noted that every pixel indices of MPS is con-
tracted with the data, except the index (0, 1,...., 9) which is
left free to distinguish between 10 labels. For example, the
middle one index of MPS is set free to distinguish whether
an image belongs to class 0 or 1, as shown in Fig. 3c.

Following conventional machine learning methods, the
variational parameters Asi defining MPS |ψ〉 (see Eq. 1) will
be optimized tominimize an objective function in the training
set. The optimization of parameters in MPS tensor networks
can be achieved using any gradient-based or gradient-free
method. In all experiments acrossmodels,weopted formulti-
class cross-entropy (MCE) andADAMoptimizer to optimize
our training set is as

MCE = −
∑

(xi ,yi )∈N
log softmax f (yi )(xi ), where (5)

softmax f (yi )(xi ) = e f (yi )(xi )
∑m−1

l=0 e f (l)(xi )
(6)

2.1 Federated learning setup

We incorporated the federated averaging (FedAvg) algorithm
with MPS tensor networks for image classification tasks
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Fig. 3 Schematic depictions of the considered architectures in feder-
ated environment. a a Multi-layer perceptron (MLP) with two hidden
layers, b a convolutional neural network (CNN) with two 5x5 convo-

lutional layers, followed by a fully connected layer with 274 units, c a
matrix product state (MPS) tensor network with 10 bond dimensions
and output dimensions equal to the number of classes to predict

among the clients. It is widely used to train machine learning
models collaboratively across multiple clients while keep-
ing data decentralized. The steps of federated averaging are
summarized as

1. Client-side computation

Each client c has a local datasetDc with total nc samples and
updates its local model parameters as

• Initial setup: The global server model at round t is
denoted as wt .

• Local gradient computation: Each client c computes
the gradient of its local loss function with respect to the
current model parameters wt . For a model with multi-
class cross-entropy loss, the gradient gc for client c is

gc = 1

nc

∑

(xi ,yi )∈Dc

∇wMCE(xi , yi , wt ),

whereMCE(xi , yi , wt ) is the cross-entropy loss for sam-
ple (xi , yi ), and ∇w represents the gradient with respect
to the TN model parameters w.

• Local update: Each client performs a local update using
a fixed learning rate ηc:

w
(c)
t = wt − ηcgc.

2. Aggregation on server-side

The server aggregates the locally updated models from all
clients to compute the global model update as

• Aggregation: The server computes the weighted aver-
age of the updated models w

(c)
t based on the number of

samples nc at each client as

wt+1 = 1

n

C∑

c=1

ncw
(c)
t ,

where n is the total number of samples across all clients,
given by n = ∑C

c=1 nc.

3. Increase computation on the client side

To improve performance, each client can perform multiple
local gradient descent steps or local epochs (E) before send-
ing updates to the server for aggregation. For each epoch (e),
the client updates its model parameters as

w
(e)
t = w

(e−1)
t − η

1

nc

∑

(xi ,yi )∈Dc

∇wMCE(xi , yi , w
(e−1)
t ),

where w
(e−1)
t is the model weights from the previous epoch.

After E local epochs, each client sends the final model w(E)
t

to the server for aggregation. FedAvg achieves collaborative
MPS TN model training across multiple clients by iterating
this approach, all thewhile upholding data privacy and taking
advantage of decentralized data.

3 Experimental results and setup

3.1 Datasets andmodels

In this paper, we focus on image classification tasks and
utilize two datasets: MNIST and FMNIST. We train three
different models in a federated environment: (1) a sim-
ple multilayer perceptron with 2-hidden layers with 164
units each using ReLu activations (157,450 total parame-
ters), which we refer to as the FedMLP in Fig. 3a. (2) A
CNN with two 5x5 convolution layers (the first with 32
channels, the second with 64, each followed with 2x2 max
pooling), a fully connected layer with 274 units and ReLu
activation, and a final softmax output layer (156,560 total
parameters) (McMahan et al. 2017), which we refer to as the
FedCNN in Fig. 3b. (3) A quantum-inspired tensor network
with 10bonddimensions andoutput dimensions embeds each
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pixel value into a vector space of dimension 2, using a random
initialization method, and obtains an output vector with the
probabilities after tensor contraction (157,820 total parame-
ters), whichwe refer to as the FedTN inFig. 3c. To investigate
federated optimization, it is essential to define how the data is
distributed across the clients. Each dataset is converted into a
federated version by randomly distributing the training data
among 100 clients, where each client is assigned at least 500
samples. To adjust the level of non-IIDness, we use latent
Dirichlet allocation (LDA) on the labels, where the Dirichlet
concentration parameter α controls the degree of class het-
erogeneity. The distribution of classes for different α values
is depicted in Fig. 4a and d. Finally, for the number of rounds
R, we use 500 rounds for the heterogeneous Dirichlet distri-
bution with α = 0.1 and 300 rounds for the homogeneous
Dirichlet distributionwithα = 1.0, applied across all models
for the MNIST and FMNIST datasets.

3.2 Performance evaluation

To make the comparison fair, we use multilayer perceptron
(MLP) and convolutional neural network (CNN) with the
same number of model parameters and entire data training
as performance upper bound, which serves as a target that we
strive to achieve in our experiments. We set the number of
clients to 100. From these, we randomly select 10% to par-
ticipate. Each participating client undergoes E local epochs
of training on their dataset, where E=1 for results in Fig. 4,
mini-batch gradients of size b = 64, and ηc is set as 0.001.
We investigated the performance of different federated mod-
els with different degrees of heterogeneity by varying the
concentration parameter α ∈ {1, 0.1}. We ensured that all
models have an equal number of trainable parameters, so the
total amount of data exchanged between the data center and
the clients is nearly identical across all models (Table 2).

Fig. 4 Convergence rates and the effect of heterogeneity on different
methods, induced by the Dirichlet distribution in the federated learn-
ing scenario. a, d The level of heterogeneity resulting from different
concentration parameters α ∈ {0.1, 1.0} for the Dirichlet distribution,
applied to theMNIST and FMNIST datasets (10 classes, represented by
10 colors) across 100 clients (100 rows on the y-axis). b, c For this task,
with α = 1.0 (i.e., closer to IID), all federated models perform better

when trained for fixed 300 rounds, as compared to α = 0.1, as expected,
and data consumption is also less. e, f With α = 0.1, which represents
a highly non-IID, a significant drop in performance is observed across
all methods, when trained for fixed 500 communication rounds. Exper-
iments are repeated for two independent trials. The average is plotted,
with a shaded area indicating the standard deviation
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Table 2 Performance (testing accuracy) of different federated models
on MNIST and FMNIST datasets

Non-IIdness Models Parameters MNIST FMNIST

α = 1 FedMLP 157450 91.8 92.0

FedCNN 156560 96.9 96.5

FedTN 157820 95.5 95.3

α = 0.1 FedMLP 157450 87.3 89.1

FedCNN 156560 92.1 91.3

FedTN 157820 89.9 90.7

Figure 4b and c presents the results of trainingMNIST and
FMNIST datasets with federated MLP, CNN, and TN mod-
els, distributing the data among 100 clients with α = 1.0.
The gray line represents the target accuracy achieved by cen-
tralized training of the TN model. In contrast to MNIST and
FMNIST, the FedTN model demonstrates superior perfor-
mance compared to the FedMLPmodel, as shown in Table 1.
FedCNN performed marginally better than other methods.
Lastly, in Fig. 4e and f, results α = 0.1 are illustrated. We
noticed a significant drop in performance in all federated
models due to a high level of heterogeneity in data among
the clients. When the MPS tensor network (MPS TN) is
trained for MNIST classification, it achieves an accuracy of
95.3%, outperforming theMLPmodel, which achieves 92%.
However, FedCNN achieves a higher accuracy of 96.5%.
For FMNIST, on the other hand, FedTN achieves 90.7%,

outperforming FedMLP at 89.6% and closely approaching
the performance of FedCNN, which stands at 91.3% on
training with fixed 500 communication rounds, as shown in
Fig. 5a and b. Moreover, FedTN demonstrates effective gen-
eralization across clients, with the global model significantly
outperforming the local average accuracy of the client mod-
els, regardless of how the data is distributed among them, as
shown in Fig. 5a and b. We observed that all models exhibit
variability in their results due to the non-IID nature of the
data distributed among the clients, as shown in Fig. 4e and f.

3.3 Existing federation to accept new clients

In our FedTN environment, the strategy of incrementally
adding new clients proved effective in evaluating the sys-
tem’s scalability and performance. Initially, we trained the
TN model with the first 10 clients for 20 rounds, which
allowed us to establish a baseline for performance and data
transmission. By introducing an additional 10 clients every
20 rounds, we tested the model’s ability to generalize and
aggregate updates from an increasing number of clients. This
incremental approach not only provided insights into how
well the system handles increasing client diversity but also
revealed the impact of additional clients on data transmission
and computational demands. For 100 rounds, we evaluated
the performance of FedTN for MNIST and FMNIST with
Dir α ∈ {0.1, 1.0}, as shown in Fig. 6. This methodology
demonstrated thatwhile addingmore clients improvedmodel

Fig. 5 Comparison among various federated learning methods when
trained with a limited number of communication rounds. a Heteroge-
neous data partition (Dir α = 0.1): The performance of the FedTN
global model outperformed that of the FedMLP and the average local
accuracy of the local clients, regardless of how the data was distributed
among the clients. The gray color indicates the centralized performance

of the TN model, and the number of trainable parameters is similar
across all methods. b Homogeneous data partition (Dir α = 1.0): All
federated models perform better, as compared to non-IID distribution
α = 0.1. The performance of FedTN is on parwithwell-known classical
CNN and MLP models
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Fig. 6 Performance of the existing federation to accommodate new
clients. Incrementally adding new clients to the existing federated
system. An additional 10 clients are added after every 20 rounds to
demonstrate the TNmodel’s ability to generalize and aggregate updates
from a growing number of clients

robustness and generalization, it also increased the total data
transmitted, highlighting the trade-offs between client partic-
ipation and communication efficiency in federated learning.

3.4 Effect of local training epochs

Next, we evaluated the impact of local training epochs on
the FedTN model for the FMNIST dataset with a Dirich-
let distribution of α = 0.1. Nevertheless, the improvement
in convergence speed appears minimal relative to the addi-
tional computation time needed; specifically, using E=20
approximately doubles the total wall-clock time compared
to using E=10, as shown in Fig. 7. We find that extending the
training duration enhances FedTN performance, supporting
our assumption that FedTN is most effective when applied
to local client models of superior quality. However, FedTN
achieves strong performance even with just one local epoch
per client (E = 1), demonstrating its effectiveness, in Fig. 4.

Fig. 7 Effect of local training epochs. The effect of the different number
of local epochs (E), while fixing the experimental setup to be the clas-
sification of FMNIST Dir α = 0.1 distribution, trained with a FedTN.
Using a higher E leads to slightly faster convergence

4 Conclusion

We presented federated learning based on tensor networks
(FedTNs), which has shown the capability to enhance the
effectiveness and convergence of federated learning TN
models, ultimately leading to improved performance across
diverse client data. Our proposed FedTN model surpasses
multiplayer perceptron and closely approaches convolu-
tional neural networks’ performance in fixed communication
rounds. We ensured that all models have an equal number of
trainable parameters, so the total amount of data exchanged
between the data center and the clients is nearly identical
across all models. The global FedTN model significantly
outperforms the average accuracy of locally trained mod-
els, achieving a testing accuracy of 95% and demonstrating
smoother convergence. As research advances, the potential
benefits of applying quantum-inspired methods to FL are
likely to become increasingly significant. In future work, we
want to extend FedTN to color images, thereby addressing
higher-dimensional image spaces. These enhancements will
broaden the applicability and robustness of FedTN across
various complex datasets and sensitive applications.
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