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Resumo

Esta tese apresenta estudos sobre uma possível extensão do Modelo Padrão,
suas características teóricas e fenomenológicas. São estudados aspectos do
Modelo Padrão relevantes para a análise do setor eletrofraco. Motivado pela
solução do problema da hierarquia, é introduzido um espaço de cinco di-
mensões, com a quinta dimensão curva e compacti�cada em orbifold. Neste
espaço são analisados campos escalares, espinoriais e vetoriais, exibindo mo-
dos excitados, os chamados modos de Kaluza-Klein. É incluída uma quarta
geração de férmions, sendo então possível obter um setor eletrofraco forte-
mente acoplado na escala TeV, com a condensação de quarks. Este meca-
nismo é consequência de acoplamentos não universais com o primeiro modo
de Kaluza-Klein do glúon, acoplamentos mais intensos com a quarta gera-
ção de quarks. É feita a determinação dos parâmetros dos quarks no espaço
de cinco dimensões, resultando no setor de quarks do Modelo Padrão como
limite da teoria a baixas energias. A análise teórica termina com a determi-
nação dos acoplamentos dos quarks com o primeiro modo de Kaluza-Klein
do glúon. Valendo-se da propriedade de o primeiro modo excitado do glúon
trocar sabor, mesmo sendo uma partícula neutra, um estudo fenomenológico
é realizado, mostrando que é possível observar eventos no LHC que indicam
haver o setor fortemente acoplado, mediante a aplicação dos cortes descritos
neste trabalho.
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Abstract

This thesis presents studies concerning a possible extension of the Stan-
dard Model, its theoretical and phenomenological characteristics. Aspects
of the Standard Model that are relevant for the analysis of the electroweak
sector are studied. In order to solve the hierarchy problem, a space with �ve
dimensions is introduced, with the �fth dimension curved and compacti�ed in
orbifold. Within this space scalar, spinorial and vectorial �elds are analysed,
showing excited modes, the so-called Kaluza-Klein modes. A fourth gener-
ation of fermions is included, which makes it possible to obtain a strongly
coupled electroweak sector at the TeV scale, with quarks condensation. This
mechanism is possible due to non-universal couplings with the �rst Kaluza-
Klein mode of the gluon, couplings which are stronger with the fourth gen-
eration quarks. The quarks parameters in the �ve-dimensional space are de-
termined, leading to the quark sector of the Standard Model as a low energy
limit of the theory. The theoretical analysis is �nished by the determination
of the quarks couplings with the �rst Kaluza-Klein mode of the gluon. Us-
ing the property of �avor exchange by the gluon, even this being a neutral
particle, a phenomenological study is carried out, showing that is possible to
observe events at the LHC that indicate the existence of the strongly coupled
sector, by means of the use of the cuts described in this work.
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Capítulo 1

Introdução

Atualmente, a física de partículas elementares encontra-se no limiar de
novas descobertas. Com a construção do LHC (Large Hadron Collider) no
CERN (Organisation Européenne pour la Recherche Nucléaire) na Suíça,
foram abertas as portas para a exploração de fenômenos microscópicos a
energias nunca antes alcançadas.

O Modelo Padrão (ver, por exemplo [1, 2]), por um lado, é uma teoria
extremamente bem sucedida na descrição de fenômenos experimentais aos
quais se tem acesso presentemente. Inclui três das quatro interações ditas
fundamentais (não inclui a gravidade) e todas as partículas elementares co-
nhecidas. A teoria tem sido testada exaustivamente ao longo de meio século,
ajustando-se com precisão aos mais variados experimentos e testes.

Por outro lado esta teoria é incompleta. O Modelo Padrão depende da
introdução de uma partícula adicional, o chamado bóson de Higgs. Esta
partícula é um escalar fundamental (em oposição a ser uma consequência
da teoria ou uma partícula que se pode decompor) e deve estar presente na
teoria para que todas as outras partículas tenham massa. O fato é que, após
todos os testes do Modelo Padrão feitos até o presente, o bóson de Higgs não
foi detectado.

Até hoje as energias às quais se teve acesso para experimentos em física
de partículas chegam a ∼ 2 TeV [1] no TEVATRON (Fermilab), para co-
lisões entre prótons e anti-prótons. Com o LHC, chegar-se-á a 14 TeV de
energia no centro de massa, em colisões entre prótons. Desta forma, o Mo-
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2 CAPÍTULO 1. INTRODUÇÃO

delo Padrão será novamente posto à prova, sujeito a testes experimentais a
energias inexploradas.

O fato de se explorar energias maiores do que as disponíveis atualmente é
su�ciente para gerar a expectativa de novas descobertas. Tem sido assim por
toda a história da física. A busca pelo bóson de Higgs é a principal motivação
para o investimento expressivo feito na construção do LHC e é outro bom
motivo para gerar expectativas: caso seja encontrado, deve-se estudar o que
está além e veri�car se o Modelo Padrão vale até ∼ O(1 TeV); caso não seja
encontrado, deve-se reformular a teoria para acomodar este fato. Em ambos
os casos deve haver o entendimento teórico dos resultados experimentais e
suas consequências.

Há, ainda, limitações sobre a massa do bóson de Higgs, como será visto
no capítulo 2. Caso sua massa seja & 600 GeV, o Higgs se torna fortemente
acoplado [2], deixando de valer a teoria de perturbações e sendo questionável
a existência do bóson como partícula elementar.

O fato de ser o bóson de Higgs uma partícula escalar elementar impõe
correções quânticas à sua massa (ao quadrado) que divergem quadratica-
mente com o corte da teoria. De�ne-se o corte como o limite de energia
abaixo do qual a teoria é válida. A massa do Higgs ao quadrado é dada pela
soma de duas parcelas: uma proveniente das correções quânticas, propor-
cional ao corte da teoria ao quadrado (∆M2

H); a outra parcela (bare mass) é
um parâmetro da lagrangeana (M2

0 ):

M2
H = M2

0 + ∆M2
H .

Nota-se então que, caso o limite de validade (e portanto o corte da teo-
ria) seja aproximadamente 1 TeV, haverá nova física ao alcance do LHC;
se o limite de validade do Modelo Padrão estiver muito acima de 1 TeV, o
parâmetro da lagrangeana também deve estar, de forma que haja um grande
cancelamento e reste a massa do Higgs, que é menor do que 1 TeV. Ou seja,
é necessário um ajuste �no entre o corte da teoria e o parâmetro de massa da
lagrangeana. O fato de haver um cancelamento tão grande acabou ganhando
o nome de problema da hierarquia e sugere que haja efetivamente nova física
na escala TeV.



3

Espera-se o corte da teoria na escala da massa de Planck [1]:

MP = 1, 22089(6)× 1019GeV (1.1)

porque esta é a escala onde os efeitos da gravitação quântica seriam ob-
serváveis, sendo necessário um novo modelo que a incluísse. Então resolver o
problema da hierarquia equivale, de fato, a entender o porquê do ajuste �no,
ou, alternativamente, a encontrar uma explicação para a diferença entre a
escala de validade da teoria (MP ) e a escala de massa do bóson de Higgs.

Uma maneira de resolver o problema da hierarquia seria eliminar o es-
calar fundamental da teoria. A sua função, de gerar massas para todas as
partículas, seria realizada por um condensado de férmions [3], que não pos-
suem correções quadraticamente divergentes às suas massas. Para tanto, é
necessário que haja acoplamentos fortes que façam um (ou mais) quarks con-
densarem na escala TeV, enquanto os demais quarks não condensam. Ou
seja, o setor eletrofraco deve estar fortemente acoplado, na escala TeV, por
meio de interações não universais entre bósons de gauge e férmions.

Tal teoria é realizada por uma modi�cação do chamado modelo de Randall-
Sundrum [4]. Neste modelo, o espaço-tempo quadridimensional é esten-
dido, ganhando uma dimensão espacial adicional curva. A dimensão extra
é também compacti�cada, de forma que seus efeitos distintivos não sejam
observáveis abaixo da escala TeV.

As consequências do modelo aparecem como partículas novas e mais mas-
sivas, os modos de Kaluza-Klein, que introduzem novos efeitos. Uma modi�-
cação [5] do modelo original de Randall-Sundrum permite que todos os cam-
pos do Modelo Padrão, exceto o campo do Higgs, propaguem-se pela quinta
dimensão, o que introduz o problema de se obter as formas das funções de
onda 5-dimensionais [5, 6, 7].

As partículas passam a ter novos acoplamentos não-universais, ou seja,
férmions, com os mesmos números quânticos, acoplam-se com intensidades
distintas aos diversos modos de Kaluza-Klein dos bósons de gauge. Os
acoplamentos são agora dependentes das formas das funções de onda 5-
dimensionais. Os fémions mais massivos se acoplam com intensidade superior
aos modos de Kaluza-Klein de bósons.

O bóson de Higgs pode ou não estar presente na teoria. Caso esteja,
deve estar localizado próximo a um dos pontos �xos da compacti�cação. Se
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não estiver, caso haja um condensado que o substitua, o condensado deve
possuir massa compatível com a localização próxima ao ponto �xo do Higgs
[8]. No caso de haver um condensado, deve estar presente também uma
quarta geração de quarks (e de léptons), pois nenhum quark conhecido é
massivo o su�ciente para condensar na escala TeV.

Sendo mais massivos os quarks da quarta geração, bem como os modos de
Kaluza-Klein dos bósons de gauge, compreende-se a ausência de observações
experimentais dessas partículas até o presente. Entretanto, vínculos de pre-
cisão eletrofracos permitem que os parâmetros de ambos, quarks e bósons,
sejam compatíveis com observação no LHC. Por causa de sua localização, os
quarks da quarta geração se acoplam muito intensamente ao primeiro modo
de Kaluza-Klein do glúon, com acoplamento superior ao da QCD. O modo
de Kaluza-Klein do glúon, por sua vez, possui massa O(TeV), podendo ser
produzido no LHC. A seção de choque do decaimento desse modo KK em
quarks da quarta geração favorece a observação de processos que envolvam
o primeiro modo excitado do glúon e os quarks mais massivos, devendo ser
este tipo de processo o primeiro desta classe de modelos a ser observado no
LHC.

Inicialmente, poder-se-ia considerar processos nos quais há produção de
pares de quarks da quarta geração, a partir do primeiro modo de Kaluza-
Klein do glúon. Este processo, devido a seu fundo muito expressivo (produção
de pares pela QCD), exigiria, para observação do primeiro modo de Kaluza-
Klein do glúon, luminosidade proibitiva no LHC, devendo ser este método
descartado [9].

Devido ao fato de os acoplamentos entre o primeiro modo de Kaluza-
Klein do glúon e os quarks não serem universais, em conjunto com o fato
de haver mistura entre as gerações de quarks no setor eletrofraco, por meio
da matriz CKM [2], chega-se a concluir que o primeiro modo de Kaluza-
Klein do glúon troca sabor. Sendo uma partícula neutra, surge um fato
novo e distintivo desta classe de teorias: a troca de sabor por correntes
neutras, que em outras teorias seria prejudicial, ocorre a altas energias, sem
violar os vínculos de precisão experimentais da física de sabor e fornecendo
uma maneira alternativa de se observar seu sinal experimentalmente. Dado
que na produção de pares u4ū4, d4d̄4 via QCD não há troca de sabor a
nível árvore, devem ser observados, como sinais distintivos desta teoria, os
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processos: pp→ u4t̄ e pp→ d4b̄, onde ocorre a troca de sabor.

A tese trata dessa teoria e de suas consequências experimentais e está
dividida em 6 capítulos. Este primeiro serve de introdução. O segundo
capítulo contém uma breve revisão do Modelo Padrão [1, 2], com o objetivo
de apresentar uma base para outras teorias, na medida em que se aproveitam
suas partículas e alguns de seus mecanismos de interação, mas também para
servir de vínculo a novas teorias, pois o Modelo Padrão deve ser obtido como
limite a baixas energias de teorias que o estendam. No �nal do capítulo são
apresentadas algumas possíveis extensões do Modelo Padrão.

O terceiro capítulo trata da realização do mecanismo de interações não-
universais fortemente acopladas ao setor eletrofraco, tema desta tese, ou seja,
do espaço curvo no Modelo de Randall-Sundrum, bem como da inclusão de
campos nesse espaço.

O quarto capítulo introduz o mecanismo de condensação de quarks da
quarta geração [8], isto é, os acoplamentos com o primeiro modo de Kaluza-
Klein do glúon. A consequência deste tipo de interação, que será aproveitada
para viabilizar a observação, é a troca de sabor por correntes neutras. Para se
tirar conclusões fenomenológicas deste modelo, é necessária a caracterização
dos quarks e a inclusão do Modelo Padrão no espaço 5-dimensional curvo.
Desta maneira é feita a caracterização dos quarks, ou seja, suas constantes
5-dimensionais e os acoplamentos com o primeiro modo de Kaluza-Klein do
glúon são obtidos, para dois modelos representativos da classe de modelos
que esta teoria acomoda.

No quinto capítulo, são mostrados resultados de simulações por método de
Monte Carlo [10], para processos que trocam sabor, mostrando a viabilidade
de observação dos sinais no LHC, após aplicação de adequada estratégia de
cortes. O sexto capítulo traz conclusões a respeito da teoria e da fenomenolo-
gia do setor eletrofraco fortemente acoplado no LHC, além de perpectivas.

O objetivo desta tese é mostrar a viabilidade da construção de modelos
com acoplamentos fortes na escala TeV que possibilitem a condensação de
quarks em substituição ao bóson de Higgs, assim resolvendo o problema da
hierarquia, bem como mostrar a viabilidade da observação de seus efeitos no
LHC.
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Capítulo 2

Modelo Padrão

O Modelo Padrão (MP) [1, 2] é uma teoria de campos quânticos [11] que
descreve os fenômenos sub-atômicos com grande precisão e inclui todas as
partículas conhecidas. É de extrema importância para a física de partículas,
enquanto serve de ponto de partida para desenvolvimentos teóricos.

Pelo princípio da correspondência, qualquer teoria que venha a substituí-
lo deve incluir seus resultados como caso limite. Então, o estudo do Modelo
Padrão serve aqui a dois propósitos: ser base para outras teorias, na medida
em que se aproveitam suas partículas e mecanismos de interação e explicitar
alguns dos vínculos que o MP impõe sobre outras teorias.

2.1 Partículas do Modelo

As partículas do Modelo Padrão são os quarks, os léptons e os bósons de
gauge. Há ainda no MP uma partícula, o bóson de Higgs, que foi inserida
na teoria para fornecer um mecanismo de obtenção de massas para todas as
partículas massivas, mas que até hoje não foi detectada experimentalmente.

Os férmions são organizados em gerações. São conhecidas três gerações
no Modelo Padrão, atualmente, apesar de não haver impedimento teórico
para que este número seja maior. Cada geração é composta por dois quarks
e dois léptons. Essas partículas, para efeito de transformações de gauge, são
decompostas em partículas de mão esquerda e de mão direita, sendo que os

7



8 CAPÍTULO 2. MODELO PADRÃO

quarks e léptons de mão esquerda, de cada geração, formam dubletos por
SU(2)L e os de mão direita são singletos.

No Modelo Padrão os léptons são, da primeira para a terceira geração,
elétron e neutrino do elétron, múon e neutrino do múon, tau e neutrino do
tau. No MP, os neutrinos não possuem massa, mas caso se con�rme experi-
mentalmente as massas dos neutrinos, estas podem ser incluídas no modelo.
Os léptons carregados possuem as massas [1]:
me = 0, 51 MeV, mµ = 105, 7 MeV e mτ = 1777 MeV. Nota-se a grande dis-
paridade entre as massas dos léptons, que diferem por 3 ordens de grandeza.

Os quarks, organizados na três gerações, são: up e down, da primeira
geração; charm e strange, da segunda; top e bottom, da terceira. As massas
são [1] mu = 1, 5− 3, 3 MeV; md = 3, 5− 6, 0 MeV; mc = 1, 270 GeV,
ms = 104 MeV; mb = 4, 200 GeV e mt = 171, 200 GeV. Nota-se também que
há disparidade entre as massas das partículas. O problema da disparidade
entre as massas das partículas do Modelo Padrão é conhecido como prob-
lema da hierarquia das massas, pois não há explicação conhecida para esta
grande variação entre as massas dos férmions mais leves e as massas dos mais
pesados.

2.2 Interações

O Modelo Padrão inclui três interações, as interações eletromagnéticas,
as interações fracas e as fortes. Estas interações são representadas por ter-
mos incluídos na densidade de lagrangeana da teoria que respeitam uma
certa transformação de gauge, associando um grupo de gauge a uma dada
interação.

O grupo de gauge do MP é dado por SU(3)c×SU(2)L×U(1)Y . O grupo
SU(3)c é o grupo da cromodinâmica quântica (QCD), enquanto SU(2)L ×
U(1)Y representa o grupo das interações eletrofracas.
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2.2.1 Interações Eletrofracas

Todos os férmions elementares conhecidos sofrem interações eletrofracas.
Estas respeitam o grupo de gauge SU(2)L × U(1)Y , onde o grupo SU(2)L
governa as transformações de isospin fraco e o índice indica que apenas os
estados de mão esquerda se transformam de maneira não trivial e U(1)Y é o
grupo das transformações de gauge de hipercarga fraca.

A lagrangeana invariante por SU(2)L × U(1)Y se decompõe em:

Lef = LG + LF + LH . (2.1)

A lagrangeana de gauge é:

LG = −1

4
F µν
i F i

µν −
1

4
BµνBµν , (2.2)

onde:

F i
µν = ∂µW

i
ν − ∂νW i

µ − g2ε
ijkW j

µW
k
ν (2.3)

é o tensor de campo de SU(2)L, sendo i = 1, 2, 3 o índice que identi�ca o
gerador de SU(2)L ao qual é associado o campo W i

µ (vide eq. 2.8) e:

Bµν = ∂µBν − ∂νBµ (2.4)

é o campo de U(1)Y .

Os férmions devem respeitar a equação de Dirac:

(iγµ∂
µ −m)ψ = 0, (2.5)

onde o campo ψ representa quarks ou léptons. Como o grupo SU(2)L atua
apenas sobre os componentes de mão esquerda (dubletos) de cada campo
fermiônico, segue à decomposição dos campos dos férmions:

ψL,R =
1

2
(1∓ γ5)ψ, (2.6)

a lagrangeana fermiônica:

LF =
∑
ψL

ψ̄Liγ
µDµψL +

∑
ψR

ψ̄Riγ
µDµψR,
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com as somas sobre os dubletos ψL e sobre os singletos ψR1. Para os últimos:

DµψR = (∂µ + i
g1

2
YwBµ)ψR (2.7)

e para os primeiros:

DµψL = (I(∂µ + i
g1

2
YwBµ) + ig2

−→τ
2
· −→W µ)ψL. (2.8)

As matrizes τ são as matrizes de Pauli, geradores de SU(2) na representação
fundamental e Yw é a hipercarga fraca, de�nida por:

Yw = 2(Q− Tw3), (2.9)

sendo Q a carga elétrica e Tw3 o segundo componente do isospin fermiônico
fraco, que para os componentes do tipo up dos dubletos (de SU(2)L) de
quarks vale 1/2 e para os do tipo down vale -1/2. Para os singletos vale
zero.2

Finalmente, introduzindo um dubleto complexo:

Φ =

(
ϕ+

ϕ0

)
(2.10)

de campos de Higgs de spin zero, são obtidos os componentes de:

LH = LHG + LHF , (2.11)

LHG = (DµΦ)∗DµΦ− V (Φ), (2.12)

onde

DµΦ = (I(∂µ + i
g1

2
Bµ) + ig2

−→τ
2
· −→Wµ)Φ (2.13)

e
V (Φ) = −µ2Φ†Φ + λ(Φ†Φ)2 (2.14)

é a auto-interação do Higgs, com λ e µ2 positivos.

1Nota-se a ausência de termos de massa para os férmions. Ocorre que estes termos de

massa são proibidos pois não respeitam a simetria de gauge SU(2)L × U(1)Y . O mesmo

ocorre com os bósons de gauge, como pode ser observado na equação 2.2. As massas serão

introduzidas pelo mecanismo de Higgs, como será visto adiante.
2As de�nições acima são feitas para que se respeite a invariância de gauge e para de�nir

a normalização do acoplamento g1 de U(1)Y . No caso do bóson de Higgs, como pode ser

notado a seguir, Yw = 1.
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Quanto à lagrangeana de interação Higgs-férmion, considerando-se inicial-
mente apenas uma geração de férmions, por simplicidade notacional, segue
que:

LHF = −fuq̄LΦ̃uR − fdq̄LΦdR − fel̄LΦeR + h.c. (2.15)

onde as constantes fu, fd e fe são os acoplamentos de Yukawa, relacionados
às massas dos férmions e:

Φ̃ = iτ2Φ
∗. (2.16)

As massas dos férmions surgem com a quebra espontânea de simetria. A
minimização de V (Φ†Φ) leva a:

(−µ2 + 2λΦ†Φ) = 0, (2.17)

que é interpretada em termos do valor esperado de vácuo de Φ. A equação
admite como solução: 〈

Φ†Φ
〉

0
=
v2

2
, (2.18)

com:

v =

√
µ2

λ
. (2.19)

Experimentalmente determina-se o valor [2]: v = 246, 221(2). Uma con�gu-
ração que satisfaz a equação 2.18 é:

〈Φ〉0 =

(
0

v/
√

2

)
, (2.20)

que, não sendo a única, implica na degenerescência do vácuo. Quando o
vácuo é degenerado, deve ser feita uma escolha para o valor esperado de
vácuo (VEV) da teoria (por exemplo a equação 2.20) e assim o vácuo deixa
de respeitar o grupo de simetria da interação em questão, neste caso é dito
que a simetria foi espontaneamente quebrada.

Com a expansão do campo de Higgs em torno do valor esperado de vácuo
da equação 2.20, os termos de massa na lagrangeana, decorrentes de 2.15,
tornam-se aparentes:

Lm = − v√
2

(fuūu+ fdd̄d+ feēe) +
(vg2

2

)2

W+
µ W

µ
− +

+
v2

8
(W 3

µ , Bµ)

(
g2

2 −g1g2

−g1g2 g2
1

)(
W µ

3

Bµ

)
. (2.21)
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Nota-se que as massas dos férmions são dadas por:

mα =
v√
2
fα, (2.22)

com α = u, d, e, ..., sendo que os bósons carregados são dados pelas combi-
nações:

W±
µ =

√
1

2
(W 1

µ ∓W 2
µ), (2.23)

que possuem massa MW = v
2
g2. Nota-se também que os bósons neutros

sofrem mistura, sendo que a diagonalização ocorre na base de estados:

Zµ = cos θwW
3
µ − sin θwBµ, (2.24)

Aµ = sin θwW
3
µ + cos θwBµ, (2.25)

levando ao fóton e ao bóson Z, com massas zero e MZ = v
2

√
g2

1 + g2
2, respec-

tivamente. Nestas equações vale:

tan(θw) =
g1

g2

. (2.26)

Até o momento a discussão foi baseada em uma geração de férmions.
Para sua extensão a mais gerações, é necessário generalizar a lagrangeana de
interação Higgs-férmion:

−LHF = fαβu Q̄′L,αΦ̃U
′
R,β + fαβd Q̄′L,αΦD

′
R,β + fαβe l̄′L,αΦE

′
R,β + h.c. (2.27)

sendo que os índices α e β representam a geração e a sua repetição implica
em soma, a notação adotada signi�ca:

~U ′ = (u′, c′, t′, ..)T (2.28)

~D′ = (d′, s′, b′, ...)T (2.29)

~E ′ = (e′, µ′, τ ′, ...)T (2.30)

~Q′ =

((
u′

d′

)
,

(
c′

s′

)
,

(
t′

b′

)
, ...

)T
(2.31)

~l′ =

((
ν ′e
e′

)
,

(
ν ′µ
µ′

)
,

(
ν ′τ
τ ′

)
, ...

)T
(2.32)
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e as linhas sobre campos fermiônicos indicam que estes estados que aparecem
originalmente na lagrangeana invariante de gauge não são, em geral, os auto-
estados de massa. Nota-se também que os coe�cientes fαβ com α 6= β não
precisam ser nulos, levando a matrizes de massa que, em geral, não serão
diagonais.

As matrizes de massa, que seguem a quebra espontânea de simetria:

m′α =
v√
2
fα (2.33)

com (α = u, d, e), não são diagonais na base de interação (a base onde se
escrevem os campos, que respeitam as simetrias de gauge). Assim são intro-
duzidas matrizes n x n unitárias (n é o número de gerações), denotadas por
S, de forma que a lagrangeana de massa se torna:

−LF,m = Ū ′LSuLSu†L m′uS
u
RSu†R U

′
R + D̄′LSdLSd†L m′dS

d
RSd†RD

′
R +

+Ē ′LSeLSe†L m′eS
e
RSe†RE

′
R + h.c. =

= ŪmuU + D̄mdD + ĒmeE. (2.34)

As matrizes S relacionam as bases de gauge e de massa, resultando, por
exemplo: U ′L = SuLUL.

Das equações (2.7) e (2.8) os acoplamentos entre os bósons de gauge e os
quarks podem ser postos na forma:

Linter =
−g2√

8
(W+

µ J
µ
car +W−

µ J
µ†
car)− g1 cos θwAµJ

µ
em −

− g2

2 cos θw
Zµ
[
Ū ′L(g(u)

v γµ − g(u)
a γµγ5)U ′L + D̄′L(g(d)

v γµ − g(d)
a γµγ5)D′L

]
. (2.35)

As constantes do acoplamento com o bóson Z são:

g(f)
v = T

(f)
w3 − 2sen2θwQ

(f), (2.36)

g(f)
a = T

(f)
w3 . (2.37)

Do termo entre colchetes, que é a corrente neutra fraca para os quarks, segue
que, usando também a unitariedade das matrizes S, a corrente neutra não
troca sabor, ou seja:[

Ū ′L(g(u)
v γµ − g(u)

a γµγ5)U ′L + D̄′L(g(d)
v γµ − g(d)

a γµγ5)D′L

]
=

=
[
ŪL(g(u)

v γµ − g(u)
a γµγ5)UL + D̄L(g(d)

v γµ − g(d)
a γµγ5)DL

]
, (2.38)
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sendo evidente que os termos entre parênteses não misturam índices de sabor.
A corrente eletromagnética dos quarks tipo up é:

Jµem =
2

3
Ū ′αγ

µU ′α =
2

3
Ū ′αLγ

µU ′αL +
2

3
Ū ′αRγ

µU ′αR =

=
2

3
(ŪLSu†L )αγ

µ(SuLUL)α +
2

3
(ŪRSu†R )αγ

µ(SuRUR)α =

=
2

3
Ū ′αLγ

µU ′αL +
2

3
Ū ′αRγ

µU ′αR =
2

3
Ūαγ

µUα, (2.39)

onde �ca claro que a corrente eletromagnética também não troca sabor.

Nota-se, pela veri�cação direta das equações 2.35 e (particularmente) das
2.38, 2.39, que não há correntes neutras que trocam sabor (FCNC) no Modelo
Padrão3, a mistura de férmions decorrendo do acoplamento com os bósons
carregados. A ausência de FCNC decorre do fato de todas as gerações se
acoplarem aos bósons de gauge com acoplamentos idênticos.

A corrente carregada de quarks, que se acopla aos bósons W±, é dada
por:

Jµcar = 2Ū ′L,αγ
µD′L,α = 2ŪL,αγ

µD′′L,α, (2.40)

onde:

D′′L,α = VαβDL,β (2.41)

e:

V = Su†L SdL. (2.42)

A matriz unitária V é a matriz de mistura de quarks, pois não é diagonal.
Para três gerações é conhecida como matriz de Cabibbo-Kobayashi-Maskawa
(CKM). Vale ressaltar, para o uso no modelo com quatro gerações, que esta
matriz pode ser expressa [2], para n gerações, em termos de n(n−1)/2 ângulos
(tais qual o ângulo de Cabibbo para n = 2) e n(n + 1)/2 fases, das quais
podem ser eliminadas 2n− 1 por mudança de fase dos quarks.

3A�rmação válida também para a QCD, como poderá ser veri�cado a seguir, uma vez

que seus termos também são diagonais nos índices de sabor.
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2.2.2 QCD

O Modelo Padrão inclui ainda a cromodinâmica quântica (QCD), que
representa as interações fortes. Sua lagrangeana é:

L =
∑
α

ψ̄
(α)
j (iγµDµjk −m(α)δjk)ψ

(α)
k −

1

4
(F µν

a F a
µν), (2.43)

a partir da qual são obtidas as regras de Feynman para a QCD, o que permite
o cálculo de processos. A soma é feita pelo índice de sabor α = u, d, s, ...,
pelos índices de cor j, k = 1, 2, 3 e pelo índice do campo do glúon a = 1, ..., 8,
sendo a derivada covariante expressa por:

Dµψ = (∂µ + igAaµ
λa
2

)ψ, (2.44)

onde λa são as matrizes de Gell-Mann, geradores de SU(3) na represen-
tação fundamental. Os quarks são atribuídos à representação fundamental
do grupo, enquanto o glúon é atribuído à representação adjunta. Vale tam-
bém:

F a
µν = ∂µA

a
ν − ∂νAaµ − gfabcAbµAcν , (2.45)

sendo fabc as constantes de estrutura de SU(3).

Nota-se, em particular, que o acoplamento g é o mesmo para todos os
sabores dos quarks. Na verdade, a expressão de sabor na QCD se dá apenas
no aumento do número de quarks (na soma 2.43), o sabor dos quarks não tem
in�uência alguma na interação da QCD. Como a soma sobre os sabores, na
equação (2.43), ocorre para produtos de termos com o mesmo sabor, notando
também que os geradores da QCD não misturam índices de sabor, segue que
a QCD não apresenta troca de sabor (a nível árvore).

A QCD possui muitas características peculiares [2] como a liberdade assin-
tótica, que signi�ca que partículas que sofrem esta interação, a altas energias,
comportam-se como se fossem livres; o con�namento dos quarks, que impos-
sibilita a observação de quarks isolados, entre outras características muito
importantes, que tornaram indispensável a inclusão desta teoria no Modelo
Eletrofraco de Glashow-Weinberg-Salam. Nesta tese, entretanto, a atenção
será voltada a aspectos da QCD que, em teorias extra-dimensionais, possam
afetar a física de sabor.
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2.3 O Bóson de Higgs

A única partícula escalar fundamental do Modelo Padrão é o bóson de
Higgs. Esta partícula é a única que ainda não foi descoberta. Observando
novamente seu potencial de auto-interação, em particular o segundo termo
do lado direito da equação 2.14, nota-se que, quando o campo de Higgs obtém
um valor esperado de vácuo igual a v/

√
2, o coe�ciente de acoplamento pode

ser expresso, em relação à massa do bóson de Higgs, como [2]:

λ =
1

2

M2
H

v2
. (2.46)

Ou seja para MH � v o Higgs se torna fortemente acoplado.

Pode-se estimar quando a teoria se torna fortemente acoplada de duas
maneiras. A primeira é observando a largura do bóson de Higgs. Quando a
massa do Higgs é muito grande, os modos dominantes de seus decaimentos
são:

H0 → W+W−

com largura

ΓH0→W+W− =
1

16π

M3
H

v2

√
1− 4

MW

MH

(
1− 4

(
MW

MH

)2

+ 12

(
MW

MH

)4
)
(2.47)

e o modo:

H0 → Z0Z0

com largura

ΓH0→Z0Z0 =
1

32π

M3
H

v2

√
1− 4

MZ

MH

(
1− 4

(
MZ

MH

)2

+ 12

(
MZ

MH

)4
)

(2.48)

que se combinam para fornecer a largura do bóson de Higgs massivo:

ΓH0→V V =
3

32π

M3
H

v2
, (2.49)

onde as contribuições dos decaimentos em férmions foram desconsideradas
pois são proporcionais à massa do Higgs, enquanto os decaimentos em bósons
vetoriais são proporcionais à massa ao cubo.
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Desta maneira, seMH ∼ 1,4 TeV, a largura do Higgs é igual à sua massa,
uma característica de interação forte e que leva ao questionamento se o Higgs
é, de fato, uma ressonância. Se o Higgs está fortemente acoplado, talvez não
esteja presente na teoria como uma partícula de fato, mas possivelmente
como um condensado ou outro tipo de partícula que simplesmente não se
pode identi�car, por falhar a teoria de perturbações, principal instrumento
de investigação fenomenológica. Pode ser questionado se o Higgs é, de fato,
um grau de liberdade da teoria e se deveria ser incluído na sua lagrangeana
inicialmente. Nota-se que MH = 1,4 TeV, corresponde ao acoplamento
λ ∼ 16.

A segunda maneira de se estimar se a teoria é fortemente acoplada é
a chamada violação de unitariedade. O vínculo de unitariedade deve ser
satisfeito por qualquer elemento de matriz S, para todos os valores de massa
e constantes de acoplamento [2]. Contudo, só será satisfeito se a teoria for
tratada em todas as ordens de teoria de perturbações. Uma aproximação
perturbativa não necessita obedecer unitariedade numa dada ordem.

O vínculo de unitariedade para a matriz T, a nível árvore, sobre o espa-
lhamento de onda S de bósons Z0 longitudinais [2] é dado por:

|T0|2 <
s

s− 4M2
Z

, (2.50)

enquanto para s�M2
H �M2

W o elemento de matriz T se torna:

T0 → −
3

16π

M2
H

v2
, (2.51)

o que mostra que a unitariedade seria violada paraMH ∼1 TeV, com s�M2
Z

a nível árvore, para a onda S. Isto, por sua vez, apesar de não signi�car falha
da teoria, indica problemas com o cálculo de nível árvore e, portanto, sugere
que a teoria de perturbações falha para tais energias. Desta maneira espera-
se um limite superior para a massa do bóson de Higgs de cerca de 1 TeV.

Por outro lado, o bóson de Higgs é o único escalar fundamental da teoria.
As correções quânticas para a massa (ao quadrado) de um escalar, a um
loop, divergem quadraticamente com o corte da teoria. Assim, as correções
à massa do bóson de Higgs a um loop, uma das quais mostrada na �gura 2.1,
levam a [12]:

∆M2
H ∼ Λ2 3(2M2

W +M2
Z +M2

H − 4m2
t )

32π2v2
, (2.52)
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mais termos logaritmicamente dependentes do corte.

Figura 2.1: Correção quântica à massa do bóson de Higgs.

Como foi mencionado, o Modelo Padrão inclui três das quatro interações
fundamentais conhecidas, faltando apenas a gravidade. Para se perceber
efeitos quânticos da gravitação e, portanto, para que se deva incluí-la no
Modelo Padrão, são necessárias energias da ordem da massa de Planck

MP = 1, 22089(6)× 1019 GeV.

Assim, como apenas uma das interações conhecidas falta no modelo, espera-
se o corte da teoria Λ ∼MP .

A massa do bóson de Higgs obedece, após as correções quânticas, a ex-
pressão:

M2
H = M2

0 + ∆M2
H , (2.53)

onde M0 é o parâmetro de massa do Higgs inserido na lagrangeana (bare
mass). Nota-se que este parâmetro deve cancelar o excesso à massa do Higgs
introduzido pelas correções quânticas, de forma que resulte, do lado esquerdo,
a massa do Higgs ao quadrado.

Se o corte da teoria for cerca de 1 TeV, a massa obtida para o Higgs será da
mesma ordem, se o parâmetro de massa também o for, o que signi�caria que
haveria nova física não distante da escala TeV. Quanto maior for o corte da
teoria, maior deve ser o cancelamento entre parâmetro de massa e correções
quânticas, de modo que resulte uma massa para o Higgs não superior a 1
TeV. Desta forma, para cortes a energias mais elevadas, deve haver ajuste
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�no entre as duas quantidadesM2
0 e ∆M2

H , pois ambas serão grandes e muito
próximas, de tal maneira que a soma das duas dê lugar a um cancelamento
muito grande e resulte a massa do bóson de Higgs inferior a 1 TeV. Este é o
caso quando se coloca o corte da teoria na massa de Planck.

A razão da diferença entre os módulos do parâmetro de massa |M2
0 | e das

correções |∆M2
H | e as próprias correções é, neste caso extremo:

∆ =

∣∣∣∣ |M2
0 | − |∆M2

H |
∆M2

H

∣∣∣∣ ∼ M2
H

M2
P

∼ 10−32

ou seja, a diferença relativa entre parâmetro de massa e correções quânticas
é, neste caso, 1032 vezes menor do que quaisquer das duas grandezas. Isto
poderia não representar problema, entretanto as duas grandezas em questão
não são relacionadas pela teoria, faltando uma explicação para uma similar-
idade tão grande entre duas grandezas de origens distintas. O problema é
equivalente à falta de explicação entre a diferença entre a escala eletrofraca
(massa do Higgs, cerca de 1 TeV) e a massa da Planck, que �cou conhecido
como problema da hierarquia e é um grande motivador das pesquisas teóri-
cas em física de partículas elementares, buscando-se através de sua solução
teorias que estendam o Modelo Padrão.

2.4 Extensões do Modelo Padrão

Extensões do Modelo Padrão devem se reduzir a ele a baixas energias,
dado seu sucesso nos experimentos como LEP e TEVATRON. Há enorme
variedade de teorias e mais surgem a cada dia. As principais extensões estu-
dadas atualmente são aquelas que resolvem o problema da hierarquia, porque
predizem nova física ao alcance do LHC. Estas são, entre outras, a super-
simetria, technicolor e teorias com dimensões extras.

2.4.1 Supersimetria

A Supersimetria [13, 14, 15, 16], [17] é a única extensão do grupo de
Poincaré, introduzindo na teoria, para cada partícula existente, um parceiro
supersimétrico correspondente que possui diferença de spin para a partícula
original em meia unidade. Assim, aos férmions correspondem os escalares
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chamados sférmions, aos bósons de gauge, férmions chamados gauginos e,
considerando apenas a extensão do Modelo Padrão à supersimetria, ao bóson
de Higgs, o férmion denominado higgsino.

Como nenhum parceiro supersimétrico foi observado até o presente, a su-
persimetria deve estar quebrada. Se a supersimetria é quebrada em energias
não muito altas comparadas com a escala eletrofraca (e.g. < 1 TeV), os
estados supersimétricos cancelam as divergências quadráticas na massa do
bóson de Higgs, estabilizando deste jeito a escala eletrofraca e resolvendo o
problema da hierarquia.

Algumas características da supersimetria são: melhor uni�cação das cons-
tantes de acoplamento na escala de grande uni�cação e candidatos naturais a
matéria escura, por exemplo. Entretanto a teoria se torna menos promissora
devido à ausência de resultados experimentais que mostrem estados super-
simétricos. Há também a enorme quantidade de parâmetros de um possível
Modelo Padrão Supersimétrico Mínimo (MSSM), parâmetros não explicados
pela teoria. A supersimetria continua sendo objeto de intensa pesquisa e, no
contexto desta tese, pode ser uma ferramenta interessante para extensão dos
modelos que serão contruídos.

2.4.2 Technicolor

As teorias de Technicolor (TC) [18, 19, 20], [21] são baseadas na ex-
istência de novas interações de gauge, responsáveis pela condensação de
novos férmions (techniquarks) e resultando na quebra dinâmica da simetria
eletrofraca, pois essas interações se tornam fortes para energias O (1 TeV).
Esse fato tem a vantagem de eliminar a necessidade de um bóson de Higgs
fundamental, que até hoje não foi observado, pois o condensado de férmions
faz seu papel. Isto resolve também o problema da hierarquia, pois sem es-
calares elementares não há as divergências do MP e, portanto, não há ajuste
�no.

Entretanto, para gerar as massas dos férmions, o grupo de gauge do Tech-
nicolor deve ser estendido, gerando o chamado Technicolor estendido (ETC)
[22, 23]. Mas, devido aos bósons de gauge do technicolor estendido, aparecem
interações que violam vínculos experimentais, em particular surgem correntes
neutras que trocam sabor (FCNC). Como no caso da supersimetria, pode ser
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interessante utilizar aspectos de technicolor na construção de modelos, bem
como, modi�car a teoria para aplicações futuras.

No capítulo 4 é introduzido um mecanismo de condensação de quarks [8]
onde, devido a interações não universais, é obtida a condensação de quarks,
com troca de sabor a nível árvore mas sem a violação de vínculos experimen-
tais da física de sabor.

2.4.3 Dimensões Extras

A extensão do Modelo Padrão pode ser construída com o uso de dimensões
extras [24, 25]. Estas podem ser planas ou curvas e ser em número arbitrário,
desde que não sejam observáveis seus efeitos nas escalas de energia testadas
até o presente. Dimensões extras resolvem o problema da hierarquia porque
o corte do Modelo Padrão �ca na escala eletrofraca (UED - Universal Extra
Dimensions) ou é trazido a esta escala pela estrutura do espaço (LED -
Large Extra Dimensions e WED - Warped Extra Dimensions), eliminando
naturalmente a necessidade de ajuste �no [26].

O fato de não haverem sido observados efeitos de dimensões adicionais
até o momento sugere que estas são compactas, o que signi�ca que qualquer
dimensão extra não pode ser in�nita e, parametrizando qualquer de suas
coordenadas por y, deve valer y + L = y para algum comprimento L não
observável nas escalas de energias já exploradas. Isto signi�ca que a dimensão
extra deve ser pequena.

A métrica para uma teoria com dimensões planas é dada por:

ds2 = gµν(x)dxµdxν − δabdyadyb, (2.54)

sendo gµν o tensor métrico 4-dimensional e ya denota uma das coordenadas
das dimensões adicionais.

Como as dimensões extras não são percebidas na escala macroscópica, de-
vem ser compactas, requisito que leva a condições de contorno para campos:
φ(y) = φ(y + 2πR), para algum R pequeno (L = 2πR).

Para ilustrar técnicas envolvidas e propriedades de teorias extra-dimensionais,
seja um espaço plano com uma dimensão extra e um campo escalar que, de-
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vido às condições de contorno, pode ser expandido em série de Fourier:

φ(x, y) =
1√
2πR

φ0(x) +
∞∑
n=1

1√
πR

[φn(x) cos
(ny
R

)
+

+φ̂n(x) sin
(ny
R

)
]. (2.55)

O termo φ0, que não depende da quinta dimensão, é chamado de modo zero.
Os outros modos de Fourier φn e φ̂n são chamados de modos de Kaluza-Klein
(KK). A ação é:

S[φ] =
1

2

∫
d4xdy(∂Aφ∂Aφ−m2φ2), (2.56)

onde A = 0, 1, 2, 3, 5.

Substituindo a expansão (2.55) na expressão (2.56) e integrando pela
dimensão extra resulta:

S[φ] =
1

2

∞∑
n=0

∫
d4x(∂µφn∂µφn −m2

nφ
2
n) +

+
1

2

∞∑
n=1

∫
d4x(∂µφ̂n∂µφ̂n −m2

nφ̂
2
n). (2.57)

Isso mostra que a quinta dimensão é percebida, na teoria efetiva 4-dimensional,
como um espectro de partículas, onde a massa dos modos KK é dada por
m2
n = m2 + n2/R2. Desta maneira, para que se detecte um modo exci-

tado de um campo, é necessário utilizar energias maiores do que m2
n, neste

caso tornam-se disponíveis para observação as partículas correspondentes
aos modos 0, 1, 2, ..., n. Todos os modos de Kaluza-Klein possuem os mesmos
números quânticos de φ0.

Uma outra abordagem utilizando dimensões extras é o uso de espaço
curvo, o que é feito a seguir, em maior detalhe, onde são analisados campos
em espaço com uma dimensão extra curva.



Capítulo 3

Espaço Curvo com Cinco

Dimensões

Uma das possibilidades de extensão do Modelo Padrão (MP) é a adição de
dimensões extras às quatro usuais. Desconsiderando-se efeitos gravitacionais,
o espaço de Minkowski se torna um sub-espaço deste novo espaço estendido.

Sendo o Modelo Padrão válido dentro dos limites até o presente ex-
plorados, deve ser obtido como limite de qualquer teoria que lhe sirva de
extensão. Desta forma, devem ser buscadas representações de bósons e
férmions, em teorias com dimensões extras compactas, que possam acomodar
as partículas do MP. Uma das possibilidades, a que será detalhada no pre-
sente trabalho, é um espaço curvo com dimensões extras, teoria do tipoWED

(Warped Extra Dimensions) [4].

Em particular, o espaço a ser estudado tem cinco dimensões (uma adi-
cional), a métrica é do tipo anti-de Sitter (AdS), o que permite gerar a escala
eletrofraca a partir da escala de Planck, caso o bóson de Higgs esteja loca-
lizado próximo a um dos pontos �xos do espaço compacti�cado. Todos os
campos podem se propagar pela dimensão extra. O fato de se obter a es-
cala eletrofraca a partir da escala de Planck implica que correções quânticas
à massa do bóson de Higgs tem corte na escala eletrofraca, naturalmente
resolvendo o problema da hierarquia.

23



24 CAPÍTULO 3. ESPAÇO CURVO COM CINCO DIMENSÕES

3.1 O Espaço

O espaço é composto pelas quatro dimensões do espaço de Minkowski
(uma temporal e três espaciais), além de uma dimensão espacial adicional.
Esta dimensão não pode ser in�nita como as outras, deve estar compacti�-
cada, uma vez que sua presença não foi detectada em nenhum dos experi-
mentos realizados até hoje. Por esse mesmo motivo deve ser muito pequena,
tal que seus efeitos somente sejam observáveis para energias superiores às já
sondadas.

Seja y a coordenada correspondente à quinta dimensão. Vale, para algum
R (denominado raio de curvatura):

y + 2πR = y. (3.1)

Ou seja, para especi�car a coordenada periódica y basta limitar o intervalo
(com condições de contorno periódicas) a:

−πR ≤ y ≤ πR, (3.2)

Além disso, para que haja férmions quirais no Modelo Padrão, deve haver
a identi�cação (xµ, y) com (xµ,−y), isto é, os termos da lagrangeana de
qualquer teoria devem respeitar a paridade y → −y.

A dimensão extra é compacti�cada em orbifold, como ilustrado na �gura
3.1. Nota-se que esta compacti�cação signi�ca que a dimensão extra é um
espaço S1/Z2, o que por sua vez implica que a ação �ca completamente
especi�cada para 0 ≤ y ≤ πR. Outra consequência direta é a presença de
dois pontos �xos do orbifold: y∗ = 0 e y∗ = πR, que são a localização das
duas 3-branas (sub-espaços quadridimensionais). Serão denominadas brana
UV (Planck) e brana IR (TeV), respectivamente.

Seguindo o modelo proposto na referência [4], uma solução para as equações
de Einstein em cinco dimensões, que respeita a invariância de Poincaré nas
direções xµ, é dada por:

ds2 = e−2σηµνdx
µdxν − dy2, (3.3)

onde:
σ = k|y| (3.4)
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Figura 3.1: Compacti�cação em orbifold.

k é a curvatura do espaço e:

ηµν = ηµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 . (3.5)

Os índices µ, ν variam de 0 a 3, a coordenada temporal corresponde ao índice
0.

A métrica pode ser reescrita como:

ds2 = dxMdxNgMN = dxµdxνgµν − dy2, (3.6)

onde os índices M,N percorrem os valores 0 a 3 e 5, sendo 5 o índice da
coordenada y. Desta forma, o produto escalar AMBM = A0B

0 + A1B
1 +

A2B
2 + A3B

3 + A5B
5. Também �ca de�nido o tensor métrico:

gµν = e−2σηµν . (3.7)

O fator exponencial é o responsável pela mudança nas escalas de energias
entre os dois pontos �xos e esta é a razão de sua introdução na métrica. A
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escala de massa na brana UV é a massa de Planck:

MP = G
−1/2
N ≈ 1, 2× 1019 GeV (3.8)

e, para que a escala de massa efetiva MP e
−πkR esteja na escala TeV, na

brana IR, deve valer kR ≈ 12, pois para kR = 12, MP e
−πkR ≈ 0, 5 TeV, o

que claramente �ca na escala TeV. Por esta razão, as branas UV e IR também
são chamadas de brana de Planck e brana TeV, respectivamente.

Assim sendo, �xando a escala de energia da teoria próxima a escala da
massa da Planck k . MP e notando que k ∼ 10/R, resulta que R−1 não
difere muito de MP , ou seja, a dimensão extra é extremamente pequena.

3.2 Os Campos

Uma vez caracterizado o espaço, é necessário incluir os campos da teoria.
Serão tratados campos escalares, espinoriais e vetoriais, elementos necessários
para a obtenção do Modelo Padrão a baixas energias a partir desta teoria.

3.2.1 Campo Escalar

O caso mais simples é o do campo escalar [7, 5], cuja ação é dada por:

Se =

∫
d4x

∫
dy
√
g(|DMΦ|2 −m2

Φ|Φ|2), (3.9)

onde

g = det (gMN), (3.10)

gMN é a representação matricial do tensor métrico covariante e DM é a
derivada covariante. A ação pode ser reescrita como:

Se =

∫
d4x

∫
dy
√
g[(DµΦ)∗DνΦg

µν − (D5Φ)∗D5Φ−m2
Φ|Φ|2]. (3.11)

Por simplicidade notacional será considerado o campo escalar livre (posteri-
ormente interações serão incluídas na teoria), o que resulta em Dµ = ∂µ e
D5 = ∂5 ≡ ∂y.
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A variação da ação é:

δSe =

∫
d4x

∫
dy
√
g
{ δ

δ∂ρΦ∗
(∂µΦ∗∂νΦg

µν)δ(∂ρΦ
∗) +

+
δ

δ∂ρΦ
(∂µΦ∗∂νΦg

µν)δ(∂ρΦ)− δ

δ∂yΦ∗
[∂yΦ

∗∂yΦ]δ(∂yΦ
∗)−

− δ

δ∂yΦ
(∂yΦ

∗∂yΦ)δ(∂yΦ)−m2
Φ

[ δ

δΦ∗
(Φ∗Φ)δΦ∗ +

δ

δΦ
(Φ∗Φ)δΦ

]}
. (3.12)

Como é usual, cada campo Φ e Φ∗ é independente (pois podem ser decom-
postos em dois campos reais independentes). Usando:

δ

δ∂νΦ
∂µΦ = δνµ,

resulta:

δSe =

∫
d4x

∫
dy
√
g{∂νΦgµν∂µδΦ∗ + ∂µΦ∗gµν∂νδΦ−

−m2
Φ(ΦδΦ∗ + Φ∗δΦ)− ∂yΦ∂y(δΦ∗)− ∂yΦ∗∂y(δΦ)}. (3.13)

A regra do produto para derivadas leva a:∫
d4x

∫
dy
√
g∂νΦg

µν∂µδΦ
∗ =

∫
d4x

∫
dy{∂µ(

√
g∂νΦg

µνδΦ∗)−

−∂µ(
√
g∂νΦg

µν)δΦ∗} (3.14)

e ∫
d4x

∫
dy
√
g∂yΦ∂y(δΦ

∗) =

∫
d4x

∫
dy{∂y(

√
g∂yΦδΦ

∗)−

−∂y(
√
g∂yΦ)δΦ∗}. (3.15)

Desta última equação, integrando-se o primeiro termo do lado direito da
equação em y, entre a e b (os limites de integração da variável), resulta:∫

d4x

∫
dy
√
g∂yΦ∂y(δΦ

∗) = −
∫
d4x

∫
dy∂y(

√
g∂yΦ)δΦ∗ +

+

∫
d4x[
√
g∂yΦδΦ

∗]|y=b
y=a, (3.16)

enquanto aplicando-se o teorema de Gauss em quatro dimensões ao primeiro
termo do lado direito da equação (3.14), para a integral nas quatro dimensões
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xµ, nota-se que o termo é nulo. Isto ocorre porque cada dimensão do espaço
de Minkowski quadridimensional é in�nita e, portanto, a integral de superfície
resultante deve se anular para campos que se anulam su�cientemente rápido
no in�nito, como está sendo assumido que seja o caso.

Assim, para a variação da ação se obtém:

δSe =

∫
d4x

∫
dy{δΦ[∂y(

√
g∂yΦ

∗)−√g(m2
Φ + ∂µ∂νg

µν)Φ∗] +

+δΦ∗[∂y(
√
g∂yΦ)−√g(m2

Φ + ∂µ∂νg
µν)Φ]} −

−
∫
d4x{√g[∂yΦδΦ

∗ + ∂yΦ
∗δΦ]}|y=b

y=a. (3.17)

Para valores arbitrários de δΦ∗:

√
g(m2

Φ + gµν∂µ∂ν)Φ− ∂y(
√
g∂yΦ) = 0. (3.18)

Das equações (3.7) e (3.10) resulta:

g = det (gMN) = e−8σ

que implica que:
√
g = e−4σ. (3.19)

Levando em consideração a compacti�cação em orbifold, todos os termos
da densidade de lagrangeana devem ser pares, sob a transformação y → −y,
o que equivale a integrar em y entre a = 0 e b = πR em lugar de a = −πR,
mediante a multiplicação por dois da integral. Tomando esses limites, os
valores da equação (3.17) �cam dobrados, o que não interfere com a equação
de movimento (3.18) ou com as condições de contorno do último termo de
(3.17).

Como o intervalo foi restrito a 0 ≤ y ≤ πR, o último termo da equação
(3.18) se torna:

∂y(
√
g∂yΦ) = −4ke−4ky∂yΦ + e−4ky∂2

yΦ.

Usando a igualdade gMNgNP = δMP , a equação de movimento (3.18) pode ser
ainda simpli�cada. Da equação (3.7) se obtém:

(∂µ∂
µ + e−2kym2

Φ)Φ− e2ky∂y(e
−4ky∂yΦ) = 0 (3.20)
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e para as condições de contorno, do termo de superfície da equação (3.17)
resulta: ∫

d4x(
√
g∂yΦδΦ

∗)|y=πR
y=0 = 0. (3.21)

Para a solução da equação de movimento, é adotado o Ansatz:

Φ(xµ, y) =
1√
πR

∑
n

φ(n)(x)ψ(n)(y), (3.22)

sobre a separação de variáveis, com:

(∂µ∂
µ +m2

n)φ(n)(x) = 0 (3.23)

e a condição de normalização:

1

πR

∫ πR

0

dye−2kyψ(n)(y)ψ(m)(y) = δmn, (3.24)

para que a ação, após a integral em y, seja a ação para campos de Klein-
Gordon.

A substituição do Ansatz na equação de movimento (3.20) leva a:∑
n

[(∂µ∂
µ +m2

Φe
−2ky)φ(n)ψ(n) − e−2kyφ(n)(∂y − 4k)∂yψ

(n)] = 0. (3.25)

Cada termo φ(n)(x) na expansão (3.22) é um campo 4-dimensional denomi-
nado modo n de Kaluza-Klein (modo KK) do campo Φ e da partícula cor-
respondente. A função ψ(n)(y), dependente de y, é denominada função de
onda do modo n na dimensão extra. Após a integração da dimensão adi-
cional, restarão, como sinal de dimensão extra, modos KK de um mesmo
campo, relacionados pelas equações de movimento e condições de contorno,
representando partículas com números quânticos idênticos.

À medida que aumenta o valor de n, aumenta também o demn, como será
observado adiante, o que signi�ca que maiores energias devem ser fornecidas
ao sistema para que os modos KK superiores possam ser detectados. A cada
modo KK corresponde uma partícula com números quânticos idênticos aos
do campo Φ, mas com massa distinta.

Assim, como se busca a obtenção do Modelo Padrão como limite de baixas
energias da teoria, é necessário estudar as propriedades das partículas sem



30 CAPÍTULO 3. ESPAÇO CURVO COM CINCO DIMENSÕES

massa, os chamados modos zero. A interpretação que se faz é que as partícu-
las observadas do Modelo Padrão correspondem aos modos zero dos campos
em cinco dimensões. Portanto os modos zero devem ser estudados com mais
cuidado.

Para se encontrar o modo zero é utilizada a de�nição mn = 0 e n = 0 pois
o parâmetro mn representa uma contribuição à massa da partícula quando a
dimensão adicional é eliminada, por integração. Como o bóson de Higgs é o
responsável pela geração de massas para as partículas do MP, para estas, não
deve haver massa inicialmente na lagrangeana, antes de se inserir o bóson de
Higgs na teoria e, portanto, mn deve se anular, se o modo zero representa
campo do MP.

O modo zero corresponde a n = 0 e, apesar de haver a interpretação acima
descrita, não são todos os campos em cinco dimensões que possuem modo
zero, mas aqueles que correspondem a campos do MP certamente devem
possuir.

Para o modo zero, obtém-se, a partir da equação (3.25) e da (3.23):

d2

dy2
ψ(0) − 4k

d

dy
ψ(0) −m2

Φψ
(0) = 0, (3.26)

que tem solução:

ψ(0)(y) = c1e
(2−α)ky + c2e

(2+α)ky, (3.27)

onde:

α =

√
4 +

m2
Φ

k2
. (3.28)

e com o cuidado de usar a solução (3.27) quando α 6= 0, caso contrário deve-se
solucionar novamente a equação (3.26). Este caso não será trabalhado aqui
pois requer valores negativos de m2

Φ.

Caso valha mΦ = 0 nota-se, após a aplicação das condições de contorno,
que a função de onda ψ(y) é apenas uma constante. Este caso também não
será abordado para escalares, pois, como será visto, implica em acoplamentos
5D universais com os férmions o que por sua vez resultaria na manutenção do
problema da hierarquia das massas (dos férmions). O único escalar elementar
do MP é o bóson de Higgs, que tem acoplamentos não universais, isto é
mΦ 6= 0.
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Assim, para α > 2, as variações arbitrárias de Φ nas branas, aplicadas à
equação (3.21), resultam em condições de contorno de Neumann:

d

dy
ψ(0)

∣∣∣
y=0

=
d

dy
ψ(0)

∣∣∣
y=πR

= 0. (3.29)

Pode-se observar, aplicando à equação (3.27) as condições de contorno, que
estas implicam que c1 = c2 = 0. Ou seja, o campo não possui modo zero.
Caso fossem usadas condições de Dirichlet, a conclusão seria a mesma.

Para se obter campo com modo zero, a ação, equação (3.9), deve ser
modi�cada pela inclusão de um termo de superfície nas branas, por exemplo:

Sbrana =

∫
d4x

∫
dy
√
gbk[δ(y)− δ(y − πR)]|Φ|2, (3.30)

que, com a variação da ação modi�cada, leva às novas condições de contorno
para o modo zero: (

d

dy
ψ(0) − bkψ(0)

) ∣∣∣y=πR

y=0
= 0. (3.31)

Por �m, aplicando essas condições de contorno modi�cadas à solução
(3.27) resultam:

(2− α− b)c1 + (2 + α− b)c2 = 0 (3.32)

e
(2− α− b)c1e

(2−α)πkR + (2 + α− b)c2e
(2+α)πkR = 0. (3.33)

Para valores genéricos de α e b resulta novamente que c1 = c2 = 0.
Entretanto, se b = 2 − α → c2 = 0 e se b = 2 + α → c1 = 0. De qualquer
forma, vale:

ψ(0)(y) ∝ ebky, (3.34)

com b = 2± α.

Para os modos KK (n > 0), mn 6= 0, o que resulta, para o modo n, em:

e−2ky d
2

dy2
ψ(n) − 4ke−2ky d

dy
ψ(n) + (m2

n −m2
Φe
−2ky)ψ(n) = 0, (3.35)

com condições de contorno:(
d

dy
ψ(n) − bkψ(n)

)∣∣∣y=πR

y=0
. (3.36)
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Com as transformações:
z =

mn

k
eky (3.37)

e

ψ(n)(y) =
z2k2

m2
n

ϕ(n)(z), (3.38)

substituídas na equação (3.35), resulta:

z2 d
2

dz2
ϕ(n) + z

d

dz
ϕ(n) +

(
z2 − α2

)
ϕ(n) = 0. (3.39)

Esta equação pode ser reconhecida como a equação de Bessel [27]. Sua
solução leva a:

ϕ(n)(z) = c′1Jα(z) + c′2Yα(z), (3.40)

que, com:

c′i

(mn

k

)2

= ci,

leva a:
ψ(n)(y) = e2ky

[
c1Jα

(mn

k
eky
)

+ c2Yα

(mn

k
eky
)]
. (3.41)

As condições de contorno se tornam:

mn

[
c1J'α

(mn

k

)
+ c2Y'α

(mn

k

)]
+

+k(2− b)
[
c1Jα

(mn

k

)
+ c2Yα

(mn

k

)]
= 0 (3.42)

e

mne
πkR
[
c1J'α

(mn

k
eπkR

)
+ c2Y'α

(mn

k
eπkR

)]
+

+k(2− b)
[
c1Jα

(mn

k
eπkR

)
+ c2Yα

(mn

k
eπkR

)]
= 0, (3.43)

com J ′(a) ≡ dJ/dy|y=a. Estas condições determinam mn e c1, por exemplo,
neste caso c2 �ca determinado pela normalização.

Destas últimas, para mn >> 1, vale a aproximação, baseada nas formas
assintóticas das funções de Bessel:

mn ≈ πke−πkR
(
n+

α

2
− 3

4

)
. (3.44)

Da aproximação para a massa, �ca claro que ela aumenta conforme aumenta
n.

Uma vez caracterizado o campo escalar, segue a caracterização do campo
espinorial, para a construção e extensão do Modelo Padrão.
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3.2.2 Campo Espinorial

O campo espinorial [6, 5], além de mais complexo algebricamente do que o
campo escalar, introduz o problema de se reproduzir a quiralidade necessária
às interações fracas.

A ação do campo espinorial é dada por:

Ss =

∫
d4x

∫
dy
√
g

(
i

2
Ψ̄γM(∂M −

←−
∂ M)Ψ−mΨΨ̄Ψ

)
. (3.45)

O termo de conexão de spin não foi incluído, pois não contribui para a ação,
uma vez que a métrica é diagonal.

As matrizes gama são de�nidas por:

γM = Eα
Mγα, (3.46)

onde γα = (γµ, iγ5), γµ são as matrizes de Dirac no espaço plano e Eα
M é o

vierbein (ou funfbein, por ser em cinco dimensões), de�nido por [28]:

Eα
M(X) =

(
∂

∂xM
ξαX(x)

)∣∣∣
x=X

, (3.47)

onde ξαX é um sistema de coordenadas localmente inercial em X. A métrica
em sistema não-inercial geral é:

gMN(x) = Eα
M(x)Eβ

N(x)ηαβ, (3.48)

sendo ηMN a métrica plana em cinco dimensões.

Desta forma, segue que

Eα
M = δαM .

{
e−σ M 6= 5

1 M = 5
(3.49)

A ação, equação (3.45), torna-se:

Ss =

∫
d4x

∫
dye−4σ

( i
2

Ψ̄γµ(∂µ −
←−
∂ µ)Ψeσ +

i

2
Ψ̄iγ5(∂y −

←−
∂ y)Ψ−

−mΨΨ̄Ψ
)
. (3.50)

Vale também:

−i
2

Ψ̄γµ
←−
∂ µΨeσ =

−i
2
∂µ(Ψ̄γµΨeσ) +

i

2
Ψ̄γµ∂µΨeσ, (3.51)
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onde o primeiro termo do lado direito se anula, quando integrado em d4x,
com a aplicação do teorema de Gauss e a imposição de que os campos se
anulem su�cientemente rápido no in�nito. Alem disso, vale também:

−i
2

Ψ̄iγ5←−∂ yΨ =
−i
2
∂y(Ψ̄iγ

5Ψ) +
i

2
Ψ̄iγ5∂yΨ. (3.52)

Por �m, o parâmetro de massa é escrito como:

mΨ = m sgn(y). (3.53)

A aplicação dos últimos resultados à ação resulta em:

Ss =

∫
d4x

∫
dye−4σ(iΨ̄γµ∂µΨeσ − Ψ̄γ5∂yΨ +

1

2
∂y(Ψ̄γ

5Ψ)−

−m sgn(y)Ψ̄Ψ). (3.54)

As transformações dos campos, sob a paridade Z2, são dadas por:

Ψ(xµ,−y) = ±γ5Ψ(xµ, y), (3.55)

com o sinal determinado pelas interações dos férmions. Com esta regra de
transformações, resulta que:

Ψ̄(−y)Ψ(−y) = Ψ†(y)γ5γ0γ5Ψ(y) = −Ψ̄(y)Ψ(y),

mostrando que Ψ̄Ψ é ímpar e que, portanto, o parâmetro de massa mΨ deve
ser ímpar: mΨ(−y) = −mΨ(y), para que a lagrangeana seja par, justi�cando
a equação (3.53).

Sejam de�nidos os campos:

ΨL,R =
1

2
(1∓ γ5)Ψ, (3.56)

que ainda não são os campos quirais do Modelo Padrão, mas sim os modos
zero correspondentes, como será observado. Para inserir os campos quirais
na ação, é mais útil valer-se das igualdades:

Ψ̄L,RΨL,R =
1

4
Ψ†(1∓ γ5)γ0(1∓ γ5)Ψ =

1

4
Ψ†γ0(1∓ γ5 ± γ5 − (γ5)2)Ψ = 0,

(3.57)



3.2. OS CAMPOS 35

Ψ̄L,Rγ
µ∂µΨR,L =

1

4
Ψ†(1∓ γ5)γ0γµ(1± γ5)∂µΨ =

=
1

4
Ψ†(1∓ γ5)γ0(1∓ γ5)γµ∂µΨ = 0, (3.58)

Ψ̄L,Rγ
5∂yΨL,R =

1

4
Ψ†(1∓ γ5)γ0γ5(1∓ γ5)Ψ =

= ∓1

4
Ψ†(1∓ γ5)γ0(1∓ γ5)Ψ = 0. (3.59)

Das quais resultam:

Ψ̄Ψ = (Ψ̄L + Ψ̄R)(ΨL + ΨR) = Ψ̄RΨL + Ψ̄LΨR, (3.60)

Ψ̄γµ∂µΨ = (Ψ̄L + Ψ̄R)γµ∂µ(ΨL + ΨR) = Ψ̄Lγ
µ∂µΨL + Ψ̄Rγ

µ∂µΨR, (3.61)

Ψ̄γ5∂yΨ = (Ψ̄L + Ψ̄R)γ5∂y(ΨL + ΨR) = Ψ̄Lγ
5∂yΨR + Ψ̄Rγ

5∂yΨL, (3.62)

Serão impostas condições de contorno periódicas:

ΨL,R(xµ, πR) = ΨL,R(xµ,−πR). (3.63)

Seja também a expansão:

e−4σ∂y(Ψ̄γ
5Ψ) = ∂y(e

−4σΨ̄γ5Ψ)− (∂ye
−4σ)Ψ̄γ5Ψ, (3.64)

Segue que o primeiro termo do lado direito, quando integrado em dy, anula-
se, pois resulta na diferença entre (e−4σΨ̄γ5Ψ)(πR) e (e−4σΨ̄γ5Ψ)(−πR), que
são iguais, pelas condições de contorno periódicas.

A equação (3.54), se torna:

Ss =

∫
d4x

∫
dy(e−3σiΨ̄γµ∂µΨ− e−4σΨ̄γ5∂yΨ−

1

2
(∂ye

−4σ)Ψ̄γ5Ψ−

−e−4σm sgn(y)Ψ̄Ψ).(3.65)

A decomposição dos campos:

Ψ = ΨL + ΨR, (3.66)

com o uso também da propriedade:

Ψ̄L,Rγ
5ΨR,L = ±Ψ̄L,RΨR,L, (3.67)
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leva a ação à forma:

Ss =

∫
d4x

∫
dy{e−3σ(Ψ̄Liγ

µ∂µΨL + Ψ̄Riγ
µ∂µΨR)−

−e−4σm sgn(y)(Ψ̄LΨR + Ψ̄RΨL)− 1

2
[2e−4σ(Ψ̄L∂yΨR − Ψ̄R∂yΨL) +

+(∂ye
−4σ)(Ψ̄LΨR − Ψ̄RΨL)]} (3.68)

da qual chega-se a:

Ss =

∫
d4x

∫
dy{e−3σ(Ψ̄Liγ

µ∂µΨL + Ψ̄Riγ
µ∂µΨR)−

−e−4σm sgn(y)(Ψ̄LΨR + Ψ̄RΨL)− 1

2
[Ψ̄L(e−4σ∂y + ∂ye

−4σ)ΨR −

−Ψ̄R(e−4σ∂y + ∂ye
−4σ)ΨL]} (3.69)

Da última expressão para a ação, �ca explícito que a lagrangeana será par
sob transformações y → −y, se ΨL for par e ΨR for ímpar, ou vice-versa.

Sendo a lagrangeana par, sob transformações y → −y, restringe-se o
intervalo de integração a 0 ≤ y ≤ πR �cando dobrado o valor da integral.
Omitindo-se este fator 2, que poderia ser incluído no início e que é irrelevante
para as equações de movimento, seja o Ansatz (decomposição KK):

ΨL,R(xµ, y) =
e2σ

√
πR

∑
n

ψL,Rn (xµ)f̂L,Rn (y), (3.70)

com {f̂L,Rn (y)} dois conjuntos completos e ortonormais para y ∈ [0, πR]. O
que se busca é, após a integração pela dimensão adicional, que a ação adquira
a forma da ação de Dirac para vários férmions:

SD =
∑
n

∫
d4x[ψ̄n(x)iγµ∂µψn(x)−mnψ̄n(x)ψn(x)]. (3.71)

Substituindo a decomposição (3.70) na ação (3.69) (com o intervalo de
integração restrito e omitindo-se o fator 2, como discutido acima) resulta:
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Ss =
1

πR

∑
n

∫
d4x
{
ψ†Ln (x)γ0

∑
m

iγµ∂µψ
L
m(x)

∫
dyeσf̂L∗n (y)f̂Lm(y) +

+ψ†Rn (x)γ0
∑
m

iγµ∂µψ
R
m(x)

∫
dyeσf̂R∗n (y)f̂Rm(y) +

+
[
ψ†Rn (x)γ0

∑
m

ψLm(x)

∫
dy
(1

2
e2σf̂R∗n (y)(e−4σ∂y + ∂ye

−4σ)e2σf̂Lm(y)−

−mf̂R∗n (y)f̂Lm(y)
)
− ψ†Ln (x)γ0

∑
m

ψRm(x)

∫
dy
(1

2
e2σf̂L∗n (y)(e−4σ∂y +

+∂ye
−4σ)e2σf̂Rm(y) +mf̂L∗n (y)f̂Rm(y)

)]}
.(3.72)

Esta última, comparada com (3.71), mostra que, deve valer para a nor-
malização:

1

πR

∫ πR

0

dyekyf̂L,R∗n (y)f̂L,Rm (y) = δnm. (3.73)

Resulta também:

1

πR

∫
d4x

∑
n,m

∫
dy
{
m[ψ†Ln γ

0ψRmf̂
L∗
n f̂Rm + ψ†Rn γ0ψLmf̂

R∗
n f̂Lm] +

+
1

2
[ψ†Ln γ

0e2σf̂L∗n (e−4σ∂y + ∂ye
−4σ)ψRme

2σf̂Rm −

−ψ†Rn γ0e2σf̂R∗n (e−4σ∂y + ∂ye
−4σ)ψLme

2σf̂Lm]
}

=

∫
d4x

∑
n

mnψ̄nψn, (3.74)

que se torna:∫
d4x

∑
n

{∑
m

ψ†Ln γ
0ψRm

∫
dy
[
mf̂L∗n f̂Rm +

1

2
f̂L∗n (e−2σ∂ye

2σ +

+e2σ∂ye
−2σ)f̂Rm −mme

σf̂L∗n f̂Lm

]
+

+ψ†Rn γ0ψLm

∫
dy
[
mf̂R∗n f̂Lm −

1

2
f̂R∗n (e−2σ∂ye

2σ + e2σ∂ye
−2σ)f̂Lm −

−mme
σf̂R∗n f̂Rm

]}
= 0. (3.75)

Com a equação:

(e−2σ∂ye
2σ + e2σ∂ye

−2σ)f̂L,Rm = 2∂yf̂
L,R
m (3.76)
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obtém-se:
(±∂y −m)f̂L,Rn = −mne

kyf̂R,Ln . (3.77)

Como ΨL deve ser par e ΨR ímpar, ou vice-versa, para que a lagrangeana
seja par sob as transformações y → −y, seguem as condições de contorno:

f̂L∗m (0)f̂Rn (0) = f̂L∗m (πR)f̂Rn (πR) = 0. (3.78)

Seja:
t = εeσ ∈ [ε, 1], (3.79)

onde
ε = e−πkR. (3.80)

O componente dependente da dimensão extra se transforma em:

f̂L,Rn (y) = αfL,Rn (t), (3.81)

que, com a imposição da condição de normalização (3.73) leva a:

α =
√
kε (3.82)

e
1

πR

∫ 1

ε

dtfL,R∗m (t)fL,Rn (t) = δmn. (3.83)

A expressão (3.77) torna-se:

(±kt∂t −m)fL,Rn (t) = −mn
t

ε
fR,Ln (t), (3.84)

que as de�nições:
ν =

m

k
(3.85)

e
xn =

mn

εk
=
(mn

k

)
eπkR, (3.86)

levam a:
(±t∂t − ν)fL,Rn (t) = −xntfR,Ln (t) (3.87)

e às condições de contorno:

fL∗m (ε)fRn (ε) = fL∗m (1)fRn (1) = 0. (3.88)
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Para os modos zero mn = 0, n = 0, segue que xn = 0. A substituição na
equação (3.87) resulta em:

(±t∂t − ν)fL,R0 (t) = 0, (3.89)

que tem solução:
fL,R0 (t) = fL,R0 (1)t±ν . (3.90)

Estas funções satisfazem as equações (3.88) se e somente se fL0 (1) = 0 ou
fR0 (1) = 0, se um for nulo, o outro não se anula, mas um dos dois deve ser
nulo. Isto signi�ca que apenas ΨL ou ΨR tem modo zero, se um tiver, o outro
tem modo zero nulo. Como o modo zero corresponde a partícula do Modelo
Padrão, é recuperada a quiralidade dos férmions do MP.

Usando a normalização, resulta para o modo zero:

|fL,R0 (1)|2 = πR
1± 2ν

1− e−πkR(1±2ν)
, (3.91)

que, �nalmente, leva à solução:

fL,R0 (t) =

√
πR(1± 2ν)

1− e−πkR(1±2ν)
t±ν . (3.92)

A substituição para y resulta em:

f̂L,R0 (y) =

√
πkRe−πkR(1± 2ν)

1− e−πkR(1±2ν)
e±kν(y−πR). (3.93)

Para os outros modos, a substituição do lado direito da equação (3.87)
no lado esquerdo, leva a:[

t2∂2
t + x2

nt
2 − ν(ν ∓ 1)

]
fL,Rn (t) = 0. (3.94)

Para:
fL,Rn (t) =

√
tgL,Rn (t), (3.95)

resulta a equação:

t2∂2
t g

L,R
n + t∂tg

L,R
n + x2

n

[
t2 −

(
ν(ν ∓ 1) +

1

4

)
1

x2
n

]
gL,Rn = 0. (3.96)

Com:
z = xnt, (3.97)
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e
ĝL,Rn (z) = gL,Rn (z/xn) = gL,Rn (t), (3.98)

segue a equação:

z2∂2
z ĝ

L,R
n + z∂zĝ

L,R
n + (z2 − µ2

L,R)ĝL,Rn = 0, (3.99)

onde
µ2
L,R = ν(ν ∓ 1) +

1

4
, (3.100)

que pode ser reconhecida como a equação de Bessel.

Para ν 6= 1/2 +N , com N inteiro, vale:

ĝL,Rn (z) = aL,Rn JµL,R
(z) + bL,Rn J−µL,R

(z), (3.101)

que leva a:

fn(t)L,R(t) =
√
t(aL,Rn J1/2∓ν(xnt) + bL,Rn J−1/2±ν(xnt)). (3.102)

Entretanto fL,Rn não são independentes, sendo acoplados pela equação (3.77).

Utilizando as soluções acima na equação (3.77), resultam as soluções:

fLn (t) =
√
t
[
aLnJ1/2−ν(xnt) + aRnJ−1/2+ν(xnt)

]
, (3.103)

fRn (t) =
√
t
[
aRnJ1/2+ν(xnt)− aLnJ−1/2−ν(xnt)

]
. (3.104)

Por �m, para a construção do Modelo Padrão, resta a caracterização do
campo vetorial.

3.2.3 Campo Vetorial

O cálculo será apresentado, por simplicidade, para o caso de um bóson
vetorial que respeita a simetria U(1). A ação é dada por [5]:

Sv =

∫
d4x

∫
dy

√
g

4g2
5

FMNF
MN , (3.105)

onde g5 é a constante de acoplamento de gauge em 5 dimensões1 e:

FMN = ∂MVN − ∂NVM , (3.106)

1Sendo que a partir dela se obtém g, a constante de acoplamento de gauge em 4

dimensões, como será observado adiante.
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ou seja:

Sv =

∫
d4x

∫
dy

√
g

4g2
5

(∂MVN − ∂NVM)(∂PVQ − ∂QVP )gPMgQN . (3.107)

A variação leva a:

δSv =

∫
d4x

∫
dy

√
g

4g2
5

δ

δ∂RVS

[
(∂MVN − ∂NVM)(∂PVQ − ∂QVP )

]
.

.gPMgQNδ∂RVS, (3.108)

que se torna:

δSv =

∫
d4x

∫
dy

√
g

4g2
5

[
(gPRgQS − gPSgQR)FPQ +

+FMN(gRMgSN − gSMgRN)
]
∂RδVS. (3.109)

Aplicando a regra da cadeia para derivadas:

δSv =

∫
d4x

∫
dy
{
∂R

[√g
4g2

5

(
(gPRgQS − gPSgQR)FPQ +

+FMN(gRMgSN − gSMgRN)
)
δVS

]
−

−
(
∂R

[√g
4g2

5

(
(gPRgQS − gPSgQR)FPQ +

+FMN(gRMgSN − gSMgRN)
)])

δVS

}
. (3.110)

Da identidade:

(gPRgQS − gPSgQR)FPQ = 2gRPgSQFPQ, (3.111)

segue que:

δSv =

∫
d4x

∫
dy
{
∂R

[√g
g2

5

gRPgQSFPQδVS

]
−

−
[
∂R

(√g
g2

5

gRPgQSFPQ

)]
δVS

}
. (3.112)

Integrando-se o primeiro termo do lado direito, com o uso do teorema de
Gauss e supondo campos que se anulem su�cientemente depressa no in�nito,
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resulta:

δSv =

∫
d4x
(√g
g2

5

g5PgQSFPQδVS

)∣∣∣y=πR

y=0
−

−
∫
d4x

∫
dy
[
∂R

(√g
g2

5

gRPgQSFPQ

)]
δVS, (3.113)

que leva à equação de movimento:

∂R(
√
ggRPgQSFPQ) = 0. (3.114)

Escolhendo um gauge onde:

V5 = 0 (3.115)

com o vínculo:
∂µV

µ = 0, (3.116)

segue a equação de movimento:

ηµν∂µ∂νV
λ − ∂y(e−2σ∂yV

λ) = 0. (3.117)

A decomposição de Kaluza-Klein é:

V λ =
1√
πR

∑
n

V λ(n)(xµ)fn(y), (3.118)

com condição de normalização:

1

πR

∫ πR

0

dyfn(y)fm(y) = δmn. (3.119)

Inserindo a decomposição de KK na equação (3.117) resulta:∑
n

[
(∂µ∂

µV λ(n))fn − V λ(n)∂y(e
−2ky∂yfn)

]
= 0, (3.120)

Da imposição da equação de movimento para vetores massivos:

∂µ∂
µV λ(n) +m2

nV
λ(n) = 0, (3.121)

segue que:
m2
nfn + ∂y(e

−2ky∂yfn) = 0. (3.122)
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Para o modo zero, mn = 0 e n = 0:

e−2ky∂yf0 = C ′ (3.123)

ou seja
f0 = A+Be2ky. (3.124)

O primeiro termo do lado direito de (3.113):∫
d4x
(√g
g2

5

g5PgQSFPQδVS

)∣∣∣y=πR

y=0
(3.125)

determina as condições de contorno. No caso de campo par, sob a transfor-
mação y → −y, como F5λ = ∂yVλ, resulta que:

d

dy
fn

∣∣∣
y=0,πR

= 0, (3.126)

para campos ímpares deve valer:

fn(y)|y=0,πR = 0. (3.127)

Então, no caso de campo par, o modo zero se torna:

f0 = 1, (3.128)

considerando-se a normalização, equação (3.119). Para campo ímpar, não há
modo zero. Substituindo

fn = ekygn, (3.129)

obtém-se:
m2
ne
kygn − k2e−kygn + e−ky∂2

ygn = 0, (3.130)

que, com as de�nições:
z =

mn

k
eky (3.131)

e
gn(y) = hn(z), (3.132)

torna-se:
z2∂2

zhn + z∂zhn + (z2 − 1)hn = 0, (3.133)

que é a equação de Bessel.



44 CAPÍTULO 3. ESPAÇO CURVO COM CINCO DIMENSÕES

Impondo a normalização, equação (3.119) e retornando a f , resulta:

fn(y) =
eky

Nn

[
J1

(mn

k
eky
)

+ b1Y1

(mn

k
eky
)]
, (3.134)

com:

N2
n =

1

πR

∫ πR

0

dye2ky
[
J1

(mn

k
eky
)

+ b1Y1

(mn

k
eky
)]2

. (3.135)

Da equação (3.125), para campo par (eq. (3.126)) segue que:

b1 = −
J1(mn

k
) + mn

k
J′1(mn

k
)

Y1(mn

k
) + mn

k
Y′1(mn

k
)
, (3.136)

com:
b1(mn) = b1(mne

πkR). (3.137)

Essas duas condições determinam b1 e mn. Nota-se que, para o limite
mn << k e kR >> 1, vale a aproximação:

mn ≈
(
n− 1

4

)
πke−πkR, (3.138)

para n > 0.

Para campo ímpar, a equação (3.127) leva a:

b1(mn) = −
J1(mn

k
)

Y1(mn

k
)
, (3.139)

onde vale novamente a equação (3.137). A aproximação para a massa, nesse
caso, torna-se:

mn ≈
(
n+

1

4

)
πke−πkR. (3.140)

Deve ser ressaltado que o fato de um campo (vetorial, neste caso) ser par
ou ímpar, pela transformação y → −y, decorre dos acoplamentos do campo,
de tal forma que a lagrangeana resulte par.

3.3 Solução ao Problema da Hierarquia

Para que o problema da hierarquia seja resolvido, isto é, para que haja
uma explicação para a diferença entre a massa de Planck e a escala eletrofraca



3.3. SOLUÇÃO AO PROBLEMA DA HIERARQUIA 45

(∼ 1 TeV) é su�ciente, neste espaço, localizar o campo de Higgs próximo à
brana TeV, enquanto os demais campos do Modelo Padrão podem se propagar
na quinta dimensão. Para veri�car, seja o caso limite onde o campo está
localizado na brana TeV; a ação do campo de Higgs torna-se:∫

d4x

∫
dy
√
gδ(y − πR)[gµν∂µH̃

†∂νH̃ −
λ

4
(H̃†H̃ − v2

0)2] + ... (3.141)

Da equação 3.7:
gµν = e−2σηµν

segue que: √
g = e−4ky (3.142)

que, substituída na equação 3.141 leva, após a integração pela dimensão
adicional, a:

S =

∫
d4x[e−2πkR∂µH̃

†∂µH̃ − λ

4
(H̃†H̃ − v0)2e−4πkR] + ... (3.143)

Por �m, de�nindo:
H = e−πkRH̃ (3.144)

e
v = e−πkRv0 (3.145)

percebe-se que:

πkR = ln
(v0

v

)
(3.146)

Assim, para v0 = MP , ou seja, se o valor esperado de vácuo do campo de
Higgs, em 5-dimensões, for a massa de Planck, para que o valor observado em
4-dimensões seja v = 246 GeV, deve valer, para a dimensão extra, kR ≈ 12.
O problema da hierarquia �ca então resolvido, uma vez que a diferença entre
a escala da massa de Planck e a escala eletrofraca (246 GeV) �ca explicada
pela curvatura do espaço.

Com o problema da hierarquia resolvido e uma vez que estão caracteriza-
dos os campos na teoria com uma dimensão extra, estes devem ser utilizados
para a obtenção do Modelo Padrão, bem como para a construção de modelos
que o estendam.
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Capítulo 4

Troca de Sabor por Correntes

Neutras

Foi observado no capítulo anterior que, com o uso de teorias com uma
dimensão adicional curva (WED), resolve-se o problema da hierarquia do
Modelo Padrão, com o bóson de Higgs próximo à brana TeV. O próximo
passo é obter a teoria completa que contém o Modelo Padrão como limite a
baixas energias, com os modos zero dos campos representando os campos do
MP e respeitando as mesmas simetrias. Para tanto, é necessário determinar
as constantes características de cada partícula que se pretenda introduzir, o
que permitirá resolver também o problema da hierarquia das massas.

Como o bóson de Higgs ou um condensado de férmions que o substi-
tua deve estar localizado próximo à brana TeV, �cará associada a massa de
cada partícula a sua localização na quinta dimensão, devido à forma parti-
cular de cada função de onda 5-dimensional dos modos zero. Isto porque os
acoplamentos de Yukawa em 4 dimensões resultam de integrais, pela quinta
dimensão, do produto das funções de onda do Higgs (ou do condensado) e do
campo em particular. Assim, quanto maior a superposição da função de onda
de qualquer partícula do Modelo Padrão com a função do bóson de Higgs,
maior será sua massa. Desta maneira, quanto mais massivo o férmion, mais
próxima da brana TeV é sua localização.

Uma vez caracterizado o modelo que contém o Modelo Padrão como limite
a baixas energias, serão observadas interações fortes com o primeiro modo

47
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de Kaluza-Klein do glúon. Este bóson possui, como será observado, função
de onda localizada próxima à brana TeV e, como os acoplamentos com os
férmions dependem de suas massas, este bóson fornece um meio para que haja
interações fortes a ponto de haver condensação de férmions, em particular,
através de acoplamentos com os quarks mais pesados. É esperado que os
quarks mais massivos possam condensar através de interação com o primeiro
modo KK do glúon pois, como este modo do bóson e os quarks mais pesados
estão próximos à brana TeV (os quarks são massivos e a função de onda do
bóson está localizada próxima à brana TeV), grande é a superposição de suas
funções de onda 5-dimensionais, resultando em grandes acoplamentos, que
podem ser tão intensos a ponto de se tornarem supercríticos, resultando na
condensação.

A condensação deve ocorrer na escala TeV, de forma que o problema da
hierarquia seja evitado. Mas, para tanto, é necessário introduzir quarks ainda
mais massivos do que o quark top, ou seja, deve estar presente uma quarta
geração de férmions ainda não detectada. Para a condensação ocorrer na
escala TeV é preciso que o quark que condensa tenha massa aproximadamente
entre 500 e 600 GeV [8].

Outra característica do primeiro modo KK do glúon é a troca de sabor
dos quarks, mesmo sendo esse bóson de gauge uma partícula neutra. Esta
é a principal e, possivelmente, a única característica que permite o exame
experimental de uma teoria com a quebra dinâmica da simetria eletrofraca
gerada por um condensado de férmions [9] e dada a sua importância, será
estudada fenomenologicamente.

Sabe-se que os experimentos em física de partículas são cada vez mais
precisos e novos efeitos sugeridos por modelos teóricos podem violar os re-
sultados do MP apenas no limite de incerteza dos experimentos conhecidos,
ou a energias nas quais o Modelo Padrão não foi testado até então, caso
de experimentos ainda não realizados. Ou seja, os resultados experimen-
tais impõem vínculos à teoria. Qualquer extensão do Modelo Padrão que se
pretenda validar, deve obedecer a tais vínculos.

A troca de sabor por correntes neutras a nível árvore não viola vínculos
experimentais, pois a localização dos férmions leves (que impõem os vín-
culos mais restritivos) é próxima à brana UV (Planck), o que implica em
acoplamentos fracos com o primeiro modo de Kaluza-Klein do glúon, prin-
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cipal responsável pela troca de sabor a nível árvore. Para os férmions mais
pesados, existem simetrias (globais ou de gauge) que podem ser impostas ao
modelo e que inibem a violação de vínculos experimentais, principalmente
originários de BB̄ mixing [30, 31].

A seguir, são apresentados o modelo e resultados para a determinação das
constantes 5-D para os quarks do MP e para a quarta geração de quarks, re-
sultados que respeitam vínculos do Modelo Padrão, bem como resultados que
violam o MP em energias ainda não estudadas, mas que estarão disponíveis
no LHC (Large Hadron Collider) do CERN. São determinados, a partir da
obtenção das constantes dos quarks, os acoplamentos entre o primeiro modo
de Kaluza-Klein do glúon e os quarks, bem como as misturas entre os quarks
pela extensão da matriz CKM.

4.1 Extensão do Grupo de Gauge

A teoria inclui campos que se propagam na dimensão extra e, portanto,
dão origem a modos de Kaluza-Klein. Como a teoria deve se reduzir ao
Modelo Padrão, a baixas energias, os modos zero de seus campos devem ser
idênticos aos campos do MP, respeitando exatamente as mesmas simetrias.
Por outro lado, devem ser analisadas as consequências que o fato de se utilizar
um espaço 5-D curvo (com os outros modos KK) tem sobre os experimentos,
em particular o efeito sobre os parâmetros vinculados do Modelo Padrão.

Do capítulo anterior, sabe-se que há campos em 5-D cujos modos zero
representam escalares, vetores e férmions quirais em 4-D. Desta forma, pode-
se reconstruir o Modelo Padrão como uma teoria efetiva (a baixas energias)
de uma teoria 5-D. O que é necessário então é determinar quais simetrias
devem ser respeitadas pelos campos em 5 dimensões e qual é a alteração
nos parâmetros vinculados do MP. Nota-se, em particular, que os férmions
quirais são apenas os modos zero dos campos espinoriais, os outros modos
não apresentam quiralidade.

O grupo de gauge do Modelo Padrão é, como visto anteriormente,

SU(3)c × SU(2)L × U(1)Y (4.1)

e é este grupo de simetrias que deve ser respeitado pelos modos zero dos
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campos da teoria 5-D. Mas os modos de Kaluza-Klein introduzem novos
efeitos potencialmente perigosos para a teoria, pois poderiam violar medições
muito precisas das interações eletrofracas, tais quais os parâmetros S e T de
Peskin-Takeuchi [32].

Para estabelecer a teoria, deve ser feita a escolha de como inserir os
campos, sendo que os parâmetros S e T têm papel fundamental nesta escolha.
A solução do problema da hierarquia requer apenas que o bóson de Higgs
esteja localizado próximo à brana TeV.

Caso os campos de gauge e os campos fermiônicos possam se propagar no
bulk (os campos possuem dependência na coordenada adicional y diferente
de um impulso δ(y−y0)), a teoria deixa de apresentar problemas graves com
o parâmetro S [33], mas ainda possui contribuições excessivas ao parâmetro
T, com o grupo de gauge usual do Modelo Padrão.

O problema é resolvido pela imposição de simetria de gauge adicional
(chamada custodial) com campos que se propagam no bulk [33]. Esta simetria
adicional eleva o grupo de gauge do modelo, em 5-D, para:

SU(3)c × SU(2)L × SU(2)R × U(1)X (4.2)

onde, para recuperar o grupo do Modelo Padrão, o grupo SU(2)R é quebrado
a U(1)R por condições de contorno na brana de Planck e o grupo resultante
é quebrado espontaneamente na brana de Planck U(1)R × U(1)X → U(1)Y ,
recuperando-se o grupo de hipercarga.

Os detalhes das possíveis representações fermiônicas podem variar, não
sendo crucial neste ponto a escolha de uma representação particular. A título
de exemplo, a referência [33] introduz uma representação onde os férmions
de mão direita passam a fazer parte de dubletos com outros férmions de mão
direita, mas que não possuem modo zero e portanto não foram detectados
experimentalmente.

Pode ser observado, também na referência [33], que o parâmetro S não
apresenta problemas nesta teoria, para férmions leves localizados próximos
à brana de Planck, se as massas dos primeiros modos de Kaluza-Klein dos
bósons de gauge forem O (TeV). O parâmetro T também não apresenta
problemas neste caso, para um determinado intervalo de valores possíveis
para a massa do bóson de Higgs. O modelo foi construído para evitar as
enormes contribuições ao parâmetro T vindas da mistura de Z(0) (o modo
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zero do campo Z, que representa o campo do bóson Z do MP) com os outros
modos de Kaluza-Klein do próprio campo (Z(n)), contribuições estas que
estariam presentes caso a simetria SU(2)R não fosse incluída. A esta última
simetria está associado um campo Z ′ que não possui modo zero, mas cujos
modos KK se misturam com o Z(0) de tal forma que estas misturas cancelam,
aproximadamente, as misturas de Z(0) com os modos Z(n).

Apesar de a extensão do grupo de gauge representar complicações, em
particular os férmions de mão direita fazem parte de dubletos, as constan-
tes características de suas funções de onda em 5-D, que determinam suas
localizações, são determinadas para o dubleto, mas são as mesmas para o
férmion de mão direita correspondente. Assim, para caracterizar os férmions
do Modelo Padrão basta determinar as constantes das funções de onda dos
dubletos.

Um método distinto para se evitar problemas com os parâmetros de pre-
cisão eletrofracos, atualmente em estudo, consiste em uma modi�cação na
métrica 3.3, de tal forma que o problema da hierarquia ainda seja resolvido,
mas as contribuições aos parâmetros S e T sejam reduzidas, com a localização
do bóson de Higgs próxima à brana TeV [34], porém não tanto quanto para
a métrica de Randall-Sundrum. Neste método, não é introduzido o grupo de
simetria SU(2)R.

O problema da hierarquia também é resolvido caso o bóson de Higgs
não seja elementar, mas sim composto, sendo na verdade um condensado
de quarks. Entretanto, mesmo com o condensado, a simetria custodial deve
estar presente, sendo a métrica dada pela equação (3.3). Esta é a abordagem
adotada para esta teoria, onde os férmions que condensam são apenas os
modos zero dos quarks do tipo up de uma quarta geração mais massiva.

Para implementação do mecanismo de condensação, será utilizada outra
característica favorável da teoria, que são os acoplamentos não universais
dos modos excitados dos bósons de gauge com os modos zero dos férmions.
Como será observado, as funções de onda dos modos de Kaluza-Klein dos
bósons localizam-se próximas à brana TeV. Assim, como cada férmion possui
localização distinta na quinta dimensão, cada férmion possuirá acoplamentos
distintos com os modos KK dos bósons e, quanto mais massivo for o férmion,
mais intenso será seu acoplamento com estes modos KK. O acoplamento do
quark mais massivo (tomado como o quark do tipo up da quarta geração)
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com o primeiro modo de Kaluza-Klein do glúon será mais intenso do que os
acoplamentos deste bóson com os demais quarks, portanto, será este o quark
que condensa. Poderia ocorrer a condensação de outros quarks, por exemplo
o quark do tipo down da quarta geração, mas este caso não será aqui tratado.

4.2 Modo KK do Glúon

O modelo introduz novos acoplamentos, com os modos de Kaluza-Klein
(KK) dos bósons de gauge. De particular interesse são os acoplamentos
entre os quarks e o primeiro modo KK do glúon. Esses acoplamentos são
interessantes pois, para os quarks mais pesados (tais quais o top e os quarks
da quarta geração), são acoplamentos mais fortes do que o acoplamento com
o glúon, como será observado. Além disso, esse modo excitado do glúon torna
quirais as interações fortes e apresenta correntes neutras que trocam sabor.

Retomando as expansões em modos KK para os férmions:

Ψ(x, y) =
1√
πR

∑
n

e2kyfn(y)ψ(n)(x) (4.3)

e para os bósons vetoriais:

Aaµ(x, y) =
1√
πR

∑
n

χn(y)Aa(n)
µ (x), (4.4)

onde, o índice a indica que a simetria respeitada pelo campo de gauge pode
ser não-abeliana.

O termo de interação entre bóson e férmion, obtido da derivada covari-
ante, é dado por:

Sfb = −g5

∫
d4x

∫ πR

0

dy
√
gΨ̄(x, y)ekyγµTaΨ(x, y)Aaµ(x, y), (4.5)

com Ta os geradores do grupo de simetria respeitado. Desse termo se obtém,
substituindo a expansão de KK para os campos, as constantes de acoplamento
entre os modos i dos férmions e os modos n dos bósons:

gin =
g

πR

∫ πR

0

dyeky|fi(y)|2χn(y), (4.6)
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onde
g =

g5√
πR

, (4.7)

levando à expansão:

Sfb = −g00

∫
d4xψ̄(0)(x)γµTaψ(0)(x)Aa(0)

µ (x)−

−g01

∫
d4xψ̄(0)(x)γµTaψ(0)(x)Aa(1)

µ (x) + ... (4.8)

da qual é interessante, para este trabalho, apenas os termos exibidos (os dois
primeiros), pois são termos que relacionam os modos zero dos férmions com
os primeiros modos KK dos bósons.

As funções de onda são, para os modos zero dos férmions, dadas pela
equação (3.93):

fL,R0 (y) =

√
πkRe−πkR(1∓ 2cL,R)

1− e−πkR(1∓2cL,R)
e∓kcL,R(y−πR), (4.9)

sendo a constante c relacionada ao parâmetro de massa 5-dimensional dos
férmions, como observa-se no capítulo 3 e, pela equação acima, evidentemente
determina a localização do férmions na quinta dimensão por determinar a
forma da função de onda. Para n ≥ 1, vale para os bósons:

χn(y) =
eky

Nn

[
J1

(mn

k
eky
)

+ b1Y1

(mn

k
eky
)]
, (4.10)

com:

N2
n =

1

πR

∫ πR

0

dye2ky
[
J1

(mn

k
eky
)

+ b1Y1

(mn

k
eky
)]2

(4.11)

e

b1 = −
J1(mn

k
) + mn

k
J′1(mn

k
)

Y1(mn

k
) + mn

k
Y′1(mn

k
)
, (4.12)

valendo também:
b1(mn) = b1(mne

πkR), (4.13)

pois da equação (4.5), �ca claro que para a dada interação, o campo vetorial
deve ser par sob as transformações y → −y. Caso n = 0, χ0(y) = 1.

Segue que:
g00 = g (4.14)
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e

g01 = g

∫ πkR

0

dy
(1∓ 2cL,R)

(e(1∓2cL,R)πkR − 1)

e2(1∓cL,R)y

N1

.

.
[
J1

(mn

k
ey
)

+ b1Y1

(mn

k
ey
)]
. (4.15)

Para que o termo (4.5) acomode as interações eletrofracas, Ψ(x, y) deve
ser um dubleto de SU(2)L. Ou seja, na equação (4.9), nota-se que cada
constante c dos campos fL0 caracteriza o campo L de cada dubleto de SU(2)L.
A partícula propriamente dita, �ca caracterizada por duas constantes: cL
do dubleto do qual faz parte e cR do singleto, constante exclusiva para a
partícula.

Comparando o a equação (4.5) com as interações da QCD, segue que
g00 é o próprio acoplamento da QCD e g01 é o acoplamento do primeiro
modo excitado de Kaluza-Klein (primeiro modo KK) do glúon, proporcional
ao acoplamento da QCD, mas distinto para cada quark e mesmo para cada
quiralidade do mesmo quark.

4.3 Geração de Massas

Como discutido anteriormente, será adotado kR = 12, valendo, para a
dimensão compacti�cada em orbifold, 0 ≤ y ≤ πR, de tal forma que MW ∼
MP e

−πkR. Para que o modelo �que de�nido, é necessário obter as massas
e misturas dos quarks corretamente, ou seja, com os valores determinados
experimentalmente, antes de aplicar o modelo a cálculos de seções de choque
por exemplo. Para tanto, é necessário determinar o mecanismo de geração
de massa.

No mecanismo de geração de massas que será adotado, o bóson de Higgs
surge da condensação do quark do tipo up de uma quarta geração, mais
massiva do que as demais. Há, além das interações de gauge, interações por
operadores de dimensão superior no bulk (ou seja, que não estão localizados
apenas nas branas), que não são renormalizáveis, estando suprimidos por
elevada escala de energias, em comparação à escala eletrofraca.

Como indicado na referência [8], interações induzidas por operadores de
dimensão superior podem estar presentes. De particular interesse, o operador



4.3. GERAÇÃO DE MASSAS 55

de quatro férmions:

O =

∫
dy
√
g
Cijkl

M3
P

Ψ̄i
L(x, y)Ψj

R(x, y)Ψ̄k
R(x, y)Ψl

L(x, y), (4.16)

(onde os índices i, j, k, l indicam o sabor do férmion), dá origem ao operador
dos modos zero de quatro férmions, em quatro dimensões (com a quinta
dimensão integrada) [5]:

O4 = Cijkl k

M3
P

(eπkR(4−ciL+cjR+ckR−c
l
L) − 1)

(4− ciL + cjR + ckR − clL)

ψ̄
i(0)
L (x)ψ

j(0)
R (x)ψ̄

k(0)
R (x)ψ

l(0)
L (x)

N i
LN

j
RN

k
RN

l
L

,

(4.17)
sendoN i

L as constantes de normalização dos modos zero dos férmions, obtidas
da equação (3.93).

Como será observado, os acoplamentos mais fortes são aqueles do modo
KK do glúon com os quarks da quarta geração, em particular com o quark
(positivamente carregado) u4, que é suposto mais massivo. Isto ocorre por
causa da superposição das funções de onda 5-dimensionais do férmion e do
modo KK do bóson; quanto mais massivo for o férmion, maior será esta
superposição e, portanto, maior será o acoplamento.

Para energias abaixo da massa do modo KK do glúon, escala de energia
de�nida para a teoria efetiva, o acoplamento efetivo para interações de quatro
férmions, induzido pelo primeiro modo de Kaluza-Klein do glúon é, para o
quark u4:

O4g = −g
L
01g

R
01

M2
KK

(ū4LγµT
au4L)(ū4Rγ

µTau4R), (4.18)

sendo gL,R01 o acoplamento entre o primeiro modo de Kaluza-Klein do glúon e
o campo do quark u4, componente L ou R e Ta representando os geradores
de SU(3)c. Este termo pode ser reescrito (mediante o re-arranjo de Fierz)
como:

O4g =
gL01g

R
01

M2
KK

(
ūa4Lu

a
4Rū

b
4Ru

b
4L −

1

Nc

ūa4Lu
b
4Rū

b
4Ru

a
4L

)
, (4.19)

sendo a, b índices de SU(3)c, o primeiro termo um singleto de cor, o segundo
um octeto e suprimido por 1/Nc, onde Nc é o número de cores. Assim, será
considerado apenas o primeiro termo.

Então, para o quark u4, considerando-se termos da equação (4.19) e da
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equação (4.17) [8] segue o acoplamento efetivo entre quatro férmions:

g2
U ≡ gL01g

R
01 +

(
MKK

ke−πkR

)2

C4444
uu

(
k

MP

)3
(1− 2c4

L)(1 + 2c4
R)

2(2− c4
L + c4

R)
. (4.20)

Há um valor para gU acima do qual se forma um condensado:

< ū4Lu4R >6= 0, (4.21)

que leva à quebra da simetria eletrofraca.

Para obter o valor crítico, considera-se o modelo de Nambu-Jona-Lasinio
(NJL) [35], modelo simpli�cado para a condensação de férmions e quebra
dinâmica da simetria eletrofraca, tal qual o desenvolvimento de [21]. Inicia-
se com a lagrangeana [8]:

Lcond = ū4Liγ
µDµu4L + ū4Riγ

µDµu4R +
g2
U

M2
KK

(ū4Lu4Rū4Ru4L), (4.22)

que pode ser obtida da lagrangeana:

LcondH = ū4Liγ
µDµu4L + ū4Riγ

µDµu4R + gU q̄4LHu4R −M2
KKH

†H + h.c.,

(4.23)
mediante a eliminação por integração (processo de integrate-out) do campo
H (conforme referência [2]), onde q4L ≡ (u4L, d4L)T , H é um campo auxiliar
que não se propaga, dubleto de SU(2)L e os termos cinéticos para d4 foram
omitidos.

Correções de ordem superior que envolvem loops de u4, como, por exem-
plo, a correção da contribuição dada pelo diagrama da �gura 4.1, a energias
µ < MKK , levam ao surgimento de termo cinético para H e a lagrangeana à
forma:

LcondH = Zu4Lū4Liγ
µDµu4L + Zu4R ū4Riγ

µDµu4R + ...+

+ZgUgU q̄4LHu4R + h.c.+ ZH(DµH)†DµH −M2
HH

†H − λ

2
(H†H)2, (4.24)

sendo os Zi 's resultantes das renormalizações. A contribuição mais relevante
para MH leva a:

M2
H = M2

KK

(
1− g2

UNc

8π2

)
+ ... (4.25)
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Figura 4.1: Contribuição quântica à massa do campo auxiliar H.

Fica claro, então, que o potencial efetivo para H desenvolve um valor
esperado de vácuo não trivial para:

g2
U >

8π2

Nc

. (4.26)

No caso de condensação do quark u4, os campos u4L e u4R condensam,
o que faz com que o operador da equação (4.16) se torne um operador de 2
férmions, que gera massa a matriz de massa para todos os demais.

Assim sendo, as matrizes de massa podem ser colocadas na forma [36]:

M ij
Q = λijQm1f(ciL)f(−cjR)α(ciL,−c

j
R), (4.27)

onde

f(c) =

√
1− 2c

1− x1−2c
, (4.28)

corresponde à constante de normalização dos modos zero dos quarks (lem-
brando que os modos zero dos férmions é que correspondem a férmions do
MP) e:

x = e−πkR, (4.29)

α(ci,−cj) =
f(c4

q)f(−c4
u)(1− x4−c4q+c4u−ci+cj)

(4− c4
q + c4

u − ci + cj)
, (4.30)

m1 =
< ū

4(0)
L u

4(0)
R >

k2x2

(
k

MP

)
, (4.31)
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sendo, para a completa determinação do modelo a seguir, m1 tratado como
parâmetro a ser determinado para o ajuste das funções de onda dos modos
zero. Para se evitar o problema da hierarquia das massas, deve valer |λijQ| ∼
O(1).

A referência [36] traz ainda expressões correspondentes no caso de um
bóson de Higgs fundamental. É mostrado [8] que quando a escala da teoria
(a massa de modos de Kaluza-Klein do glúon, responsável pela condensação)
é da ordem de poucos TeV, é necessário que as massas dos quarks que con-
densam estejam no intervalo 500 ∼ 600 GeV. Além disso, para que sejam
respeitados vínculos no parâmetro T, as massas de u4 e de d4 devem satis-
fazer: |mu4 −md4| < MW .

Então a condensação de u4 gera as matrizes de massa para todos os
quarks (na verdade para todos os férmions, mas enfatiza-se, nesta tese, o setor
dos quarks), dependentes das constantes 5-dimensionais (cq) de cada quark.
Para cálculos de seções de choque de processos, devem ser determinadas as
constantes cL,R para se obterem os acoplamentos correspondentes. Isto é feito
através da diagonalização das matrizes de massa, com o vínculo de se obter
o setor conhecido no Modelo Padrão da matriz CKM e as corretas massas
dos quarks.

4.4 Parâmetros dos Quarks

Com a inclusão da quarta geração, a lagrangeana para o termo de massas
dos quarks é dada por:

−Lmassa = Ū ′LM′
UU
′
R + D̄′LM′

DD
′
R + h.c. (4.32)

onde
U
′T = (u′, c′, t′, u′4), (4.33)

D
′T = (d′, s′, b′, d′4). (4.34)

Os termos com linha, u′ por exemplo, são campos do quark correspon-
dente na base de interação, na qual se escrevem os termos que respeitam as
simetrias de gauge na lagrangeana da teoria e as matrizes M′ não são dia-
gonais. Tal qual no Modelo Padrão, as bases de interação e de massa (sem
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linha) estão relacionadas:
U ′L = SuLUL, (4.35)

U ′R = SuRUR, (4.36)

D′L = SdLDL, (4.37)

D′R = SdRDR, (4.38)

com as matrizes S unitárias, relação que induz as diagonalizações bi-unitárias
das matrizes de massa:

M′
U = SuLMUSu†R , (4.39)

M′
D = SdLMDSd†R (4.40)

onde as matrizes M são diagonais, por exemplo:

MD =


md 0 0 0

0 ms 0 0

0 0 mb 0

0 0 0 md4

 , (4.41)

de forma que a lagrangeana (4.32) se reescreve como:

−Lmassa = ŪLMUUR + D̄LMDDR + h.c. (4.42)

Para a matriz de massa diagonal (que é real), ao quadrado, vale:

M2
Q = M†

QMQ = MQM†
Q, (4.43)

e da primeira igualdade segue que:

MQM†
Q = (Sq†L M′

QSqR)(Sq†RM
′†
QSqL) = Sq†L M′

QMQ
′†SqL, (4.44)

usando a uniteriedade de SR. Segue também que:

M†
QMQ = (Sq†RM

′†
QSqL)(Sq†L M′

QSqR) = Sq†RM
′†
QM′

QSqR. (4.45)

Ou seja, as matrizes S, apesar de não diagonalizarem M′, diagonalizam
M
′2. Então, da equação (4.27) determinam-se os parâmetros c numerica-

mente, tais que os auto-valores de M2 sejam as massas ao quadrado dos
quarks. Mesmo que os parâmetros não sejam determinados univocamente,
mas haja um espaço de parâmetros que satisfaçam os vínculos de massa
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e mistura, há pequena variação signi�cativa nos novos acoplamentos, para
parâmetros dentro desse espaço.

As massas dos quarks são determinadas, indiretamente, por experimentos.
A referência [1] apresenta os resultados para as três gerações do MP, com as
incertezas:

Tabela 1 - Massas dos Quarks
Sabor Massa (MeV)
u 1,5 a 3,3
d 3,5 a 6,0
c 1, 27+0,07

−0,11.103

s 104+26
−34

t 171, 2(21).103

b 4, 20+0,17
−0,07.103

Também valem os vínculos:

mu/md = 0, 35 a 0, 60 (4.46)

ms/md = 17 a 22 (4.47)

(ms − (mu +md)/2) /(md −mu) = 30 a 50. (4.48)

Uma vez que, pela variação numérica dos parâmetros c e λij (parâmetros
da matriz de massa, equação 4.27), foram obtidos os valores corretos de
massa ao quadrado para os quarks, como auto-valores de M2, determina-se a
matriz que diagonaliza M2 obtendo-se os seus auto-vetores. Para os quarks
do tipo u e do tipo d, estas matrizes levam a SuL e SdL, o que possibilita a
determinação da extensão 4x4 da matriz CKM, dada por:

V = Su†L SdL. (4.49)

Antes da determinação de todos os parâmetros, é comparada essa exten-
são da matriz CKM com os valores experimentais da matriz CKM. Após essa
comparação, �cam determinados os parâmetros que caracterizam os férmions
e que servirão para a determinação de novos acoplamentos que levam a novas
interações e seções de choque, objetos de estudo experimental.
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Para o Modelo Padrão, com apenas três gerações, os valores experimentais
são dados por:

V =

 0, 97418(27) 0, 2255(19) 0, 00393(36)

0, 230(11) 1, 04(6) 0, 0412(11)

Vtd Vts Vtb

 (4.50)

com |Vtd/Vts| = 0, 21(4) e |Vtb| > 0, 74.

Estão sob estudo dois casos representativos da teoria, o primeiro no qual
a massa do quark do tipo up vale mu4 = 500 GeV e md4 = 450 GeV e
o segundo caso, no qual mu4 = 600 GeV e md4 = 550 GeV. Estes valores
para as massas são representativos do intervalo de massas obtido de [8] e
as diferenças de massas entre u4 e d4 são menores que MW , para evitar
contribuições excessivas ao parâmetro T e tendo como consequência a inibição
do processo u4 → d4W

+. Então, serão determinados dois conjuntos (um
para cada caso mencionado acima) de parâmetros, que são as constantes c
que estão presentes na equação equação (4.28)1:

f(c) =

√
1− 2c

1− x1−2c
.

1As demais constantes presentes na equação (4.27) (λij × m1) são todas da mesma

ordem, para que se resolva o problema da hierarquia das massas. Sua determinação

é essencial mas a importância de se conhecer seus valores é indireta, uma vez que só

aparecem combinadas para formar observáveis relevantes como as corretas massas dos

quarks ou a matriz CKM, sendo, portanto, estes valores derivados mostrados em lugar

dessas constantes.
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Para o primeiro caso resultam:

Tabela 2 - Caso 1: mu4 = 500 GeV

Campo Constante c
u4L e d4L cq4 = 0, 02

u4R cu4R = −0, 135

d4R cd4R = −0, 105

tL e bL cq3 = 0, 07

tR ctR = −0, 2

bR cbR = −0, 501

cL e sL cq2 = 0, 501

cR ccR = −0, 501

sR csR = −0, 525

uL e dL cq1 = 0, 51

uR cuR = −0, 5865

dR cdR = −0, 545

A matriz CKM estendida é, nesse caso (desconsiderando-se as fases decor-
rentes da diagonalização das matrizes de massa):

V =


0, 97419 0, 2257 0, 00357 0, 00126984

0, 226 0, 973 0, 0393 0, 00103526

0, 0051 0, 039 0, 984 0, 174425

0, 00193009 0, 00554734 0, 174334 0, 984669

 . (4.51)

Para o segundo caso:
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Tabela 3 - Caso 2: mu4 = 600 GeV

Campo Constante c
u4L e d4L cq4 = 0, 02

u4R cu4R = −0, 0245

d4R cd4R = −0, 04

tL e bL cq3 = 0, 09

tR ctR = −0, 22

bR cbR = −0, 501

cL e sL cq2 = 0, 501

cR ccR = −0, 501

sR csR = −0, 525

uL e dL cq1 = 0, 51

uR cuR = −0, 5865

dR cdR = −0, 545

A matriz CKM estendida é, nesse caso:

V =


0, 97424 0, 2255 0, 00382 0, 00122927

0, 225 0, 97 0, 0410 0, 00105882

0, 0055 0, 041 0, 998 0, 0566325

0, 00127034 0, 00100608 0, 0566326 0, 998394

 . (4.52)

Em ambos os casos, as matrizes CKM estendidas são compatíveis com a
matriz CKM determinada experimentalmente, equação (4.50), como era de
se esperar pela própria construção.

4.5 Acoplamentos

Com os parâmetros c's dos quarks determinados, bem como suas matrizes
de massa e a matriz CKM estendida, podem ser veri�cadas as consequên-
cias fenomenológicas do modelo. Retomando alguns dos resultados mais
relevantes, segue que a expansão da interação entre o campo do glúon e os
quarks tem a forma:

Sfb = −g00

∫
d4xψ̄(0)(x)γµTaψ(0)Aa(0)

µ (x)−

−g01

∫
d4xψ̄(0)(x)γµTaψ(0)Aa(1)

µ (x) + ... (4.53)
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e os novos acoplamentos introduzidos pelo modelo podem ser colocados na
forma (retomando a equação (4.15)):

g00 = g (4.54)

sendo este o acoplamento do glúon (modo zero) da QCD e

g01 = g

∫ πkR

0

dy
(1∓ 2cL,R)

(e(1∓2cL,R)πkR − 1)

e2(1∓cL,R)y

N1

.

.
[
J1

(mn

k
ey
)

+ b1Y1

(mn

k
ey
)]
, (4.55)

com:

N2
n =

1

πR

∫ πR

0

dye2ky
[
J1

(mn

k
eky
)

+ b1Y1

(mn

k
eky
)]2

(4.56)

e

b1 = −
J1(mn

k
) + mn

k
J′1(mn

k
)

Y1(mn

k
) + mn

k
Y′1(mn

k
)
, (4.57)

com:
b1(mn) = b1(mne

πkR), (4.58)

relembrando que dada a forma da interação, o campo vetorial deve ser par
sob as transformações y → −y.

O acoplamento g01, dos modos de Kaluza-Klein do glúon com os modos
zero dos quarks, é o principal a ser analisado neste projeto, uma vez que é
o mais forte e que interações desse tipo trocam sabor por correntes neutras
(dado também que a escala de energias é ∼ 1 TeV). Isto torna importantes,
para veri�cação experimental, os processos que envolvem esse acoplamento,
porque devem ser os primeiros a serem observados no LHC e porque per-
mitem descartar toda uma classe de modelos, caso esteja em desacordo com
os experimentos. Assim sendo, o trabalho em curso caminha para a deter-
minação de seções de choque de alguns processos, visando testar essa teoria.

Se a condensação de quarks por meio de uma interação forte é o meca-
nismo de quebra da simetria eletrofraca e de geração das massas dos férmions,
o sinal mais distintivo dessa teoria é a troca de sabor a nível árvore pelas
interações com o primeiro modo KK do glúon [9].

Pela equação (4.54), percebe-se que os acoplamentos entre os quarks e o
glúon (modo zero do campo) são os mesmos para todos os quarks. Entretanto
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a equação (4.55) mostra que, como cada campo tem uma constante cL,R e
mais ainda, como cada constante depende da quiralidade, a interação entre
o modo KK do glúon e cada quark é quiral e não universal, ou seja, depende
do sabor.

Desta maneira, não é possível fazer a composição como na equação (4.33),
sabendo que na equação (4.53) cada um dos campos u′, c′, t′, u′4 possui um
acoplamento g10 correspondente, diferente, em geral, dos demais, implicando
que cada campo desses respeita individualmente SU(3)c mas não o vetor U ′,
após a integração da dimensão extra.

Este impedimento em se compor o vetor U ′ implica, por sua vez, que não
pode haver o cancelamento, nas interações do segundo termo do lado direito
da equação (4.53), dado pela unitariedade das matrizes S, que aparecem, por
exemplo, na equação (4.35), cancelamento que, como foi visto, é responsável
pela ausência de correntes neutras que trocam sabor no Modelo Padrão.

Deve-se decompor o vetor U ′ e cada componente seu deve-se escrever
como combinação linear dos outros campos do mesmo tipo (tipo u ou tipo d)
e de mesma quiralidade. Procedendo dessa forma, segue que, para o quark
up de mão esquerda vale:

u′L = (SuL)11uL + (SuL)12cL + (SuL)13tL + (SuL)14u4L, (4.59)

e de maneira análoga ocorre para todos os outros campos de quark, sabendo
que as matrizes S foram determinadas para a caracterização dos próprios
quarks (conforme a seção anterior, onde as matrizes S são combinadas para
compor a matriz CKM estendida).

Assim os acoplamentos entre quarks e o primeiro modo KK do glúon, para
os quarks agora na base de auto-estados de massa, serão obtidos a partir da
lagrangeana:

−L = g01uLūLγµT
a
[
(SuL)11uL + (SuL)12cL + (SuL)13tL + (SuL)14u4L

]
Aaµ + ...

(4.60)
Nessa equação foi mostrado apenas o primeiro acoplamento, para o quark up.
Os termos omitidos são os acoplamentos faltantes, ou seja, os acoplamentos
para os demais quarks do tipo up (c, t, u4) e para todos os quarks do tipo
d (d, s, b, d4). Os acoplamentos, efetivamente, vão depender não apenas do
valor obtido da equação (4.15), mas também dos componentes das matrizes
S.
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Deve ser observada uma aproximação na equação (4.60), usual na litera-
tura, de que apenas o campo à direita da matriz γµ foi expandido em termos
dos outros quarks na base de massa, correspondendo à aproximação de que,
os coe�cientes da expansão, são pequenos e quando multiplicados entre si
resultam em termos desprezíveis em comparação ao termo dominante. Falta
então, para completar o modelo, a determinação das constantes de acopla-
mento g01. As constantes foram introduzidas na equação 4.15;

g01 = g

∫ πkR

0

dy
(1∓ 2cL,R)

(e(1∓2cL,R)πkR − 1)

e2(1∓cL,R)y

N1

.

.
[
J1

(mn

k
ey
)

+ b1Y1

(mn

k
ey
)]
.

Seja a equação acima e g01u4L = ggu4L , com g o acoplamento do glúon (e
de maneira análoga para todos os outros quarks). Esta de�nição, aplicada
às constantes da tabela 2, resulta (para o caso 1) em:

Tabela 4 - Caso 1: mu4 = 500 GeV

gu4L = gd4L = 4, 11166 gu4R = 3, 4859 gd4R = 3, 66193

gtL = gbL = 3, 85543 gtR = 3, 06862 gbR = 0, 380096

gcL = gsL = 0, 380096 gcR = 0, 380096 gsR = 0, 272814

guL = gdL = 0, 330327 guR = 0, 214052 gdR = 0, 233931

e para o caso 2, aplicando a equação (4.15) à tabela 3:

Tabela 5 - Caso 2: mu4 = 600 GeV

gu4L = gd4L = 4, 11166 gu4R = 4, 08951 gd4R = 4, 01187

gtL = gbL = 3, 74636 gtR = 2, 92933 gbR = 0, 380096

gcL = gsL = 0, 380096 gcR = 0, 380096 gsR = 0, 272814

guL = gdL = 0, 330327 guR = 0, 214052 gdR = 0, 233931

Pode ser notado também que os acoplamentos aumentam, em geral, con-
forme aumenta a massa da partícula, re�exo da localização da função de onda
do férmion na quinta dimensão. Deve ser enfatizado que para se obter essas
constantes de acoplamento é necessário determinar as constantes caracterís-
ticas de todos os quarks a partir da correta determinação de suas matrizes
de massa e da matriz CKM. Para possibilitar a veri�cação da teoria, faz-se
necessário um estudo fenomenológico dos resultado obtidos até o presente.



Capítulo 5

Fenomenologia

O Modelo Padrão segue como limite, em baixas energias, da teoria de-
senvolvida até aqui, em particular no capítulo anterior. O passo seguinte
é submeter a teoria a testes experimentais. O que se busca é a observação
de sinais experimentais desta teoria que tem o setor eletrofraco fortemente
acoplado e do mecanismo de geração de massas.

Para viabilizar os testes da teoria e dos modelos aqui apresentados, bem
como para orientar as procuras de sinais experimentais, é necessário um es-
tudo fenomenológico, cujos resultados servirão para cumprir os dois objetivos.

Devido à impossibilidade de observação do primeiro modo KK do glúon
como uma ressonância [9], é necessário utilizar o fato de este modo trocar
sabor a nível árvore por correntes neutras (FCNC). Neste capítulo são estu-
dados dois processos onde ocorre troca de sabor e que podem ser postos à
prova no LHC, a saber: pp→ u4t̄ e pp→ d4b̄.

Por simulação pelo método de Monte Carlo são obtidas seções de choque
para os dois processos e, com o decaimento dos quarks a estados �nais con-
venientes, são estudadas distribuições de grandezas relacionadas aos decai-
mentos, tais quais momento transverso ou massas invariantes. O fundo é
comparado com o sinal para essas distribuições, levando ao desenvolvimento
de estratégias de cortes para a diminuição do fundo e, por �m, mostrando
a viabilidade de observação do sinal no LHC. Os principais resultados apre-
sentados no �nal do capítulo anterior e principalmente neste, são divulgados
na referência [37].

67
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5.1 Processos

Para as simulações, serão adotados valores para a massa do primeiro modo
de Kaluza-Klein do glúon, m1, que até o presente �cou indeterminada. Sabe-
se, por um lado, que m1 deve ser maior do que 2 TeV, para evitar problemas
com parâmetros de precisão eletrofracos (S e T) [33]. Por outro lado, m1

não deve ser muito superior a 3 TeV, pois seria recuperado o problema da
hierarquia, como pode ser observado pela relação entre m1 e k, na equação
(3.138). Serão estudados inicialmente dois casos: m1 = 2 TeV e m1 = 3 TeV,
por serem representativos dos limites de massa esperados para o primeiro
modo de Kaluza-Klein do glúon.

Os processos de interesse para testes do modelo empregado são aqueles
onde se pode observar o modo KK do glúon, pois uma suposta quarta gera-
ção pode estar presente, independente de qual seja o modelo que substitui
o Modelo Padrão, mas modos de Kaluza-Klein, se observados, constituem
evidência em favor do modelo aqui proposto.

Como foi observado, os maiores acoplamentos do primeiro modo KK do
glúon (G1) são aqueles com os quarks u4 e d4. A seção de choque �ca, então,
favorecida para processos que envolvam o u4, o d4 e o G1. Os processos mais
óbvios, dados os acoplamentos e os elementos da CKM estendida, seriam
pp → u4ū4 e pp → d4d̄4, mostrando o G1 como uma ressonância. Entre-
tanto, no LHC, o fundo irredutível da QCD domina os processos (ref. [9])
e, portanto, a descoberta da quarta geração de quarks deve ocorrer antes da
detecção de G1.

A largura do modo KK do glúon é alta, devido aos altos acoplamentos, o
que des�gura a distribuição de Breit-Wigner de seu espalhamento. O fundo é
muito expressivo no LHC e, dadas as incertezas nas distribuições, o sinal, que
apareceria como excesso à distribuição do fundo, não pode ser diferenciado
de �utuações estatísticas da distribuição do fundo, a menos que se obtenha
su�ciente luminosidade acumulada no LHC. Mostra-se, na referência [9], que
a luminosidade necessária para a observação é proibitiva, não sendo viável
identi�car o sinal por este método.

Outro método utiliza o fato de o G1 violar a conservação de sabor dos
quarks. Isto é uma característica destes modelos (derivados de Randall-
Sundrum) e a primeira (e possivelmente a única) maneira de se observar o
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primeiro modo excitado do glúon (o que signi�ca uma interação forte que con-
densa um ou dois quarks da quarta geração). Nesta direção foram estudados
dois processos, a saber: pp→ u4t̄ e pp→ d4b̄.

Como este modelo é a única realização conhecida de teorias onde ocorre a
condensação de uma quarta geração de quarks por meio de interação forte, a
importância da detecção de processos que trocam sabor se torna clara, pois
esta é, possivelmente, a única maneira de veri�cação experimental da classe
de teorias à qual pertence o modelo, no LHC.

5.1.1 Processo pp→ u4t̄

Um dos processos mais interessantes, pois deve ser um dos primeiros a
serem observados no LHC é:

pp→ u4t̄, (5.1)

que inclui, como um de seus sub-processos principais:

qq̄ → u4t̄,

com o diagrama de Feynman mostrado na �gura 5.1. Nota-se, em particular,
a troca de sabor por meio do G1 (o primeiro modo de Kaluza-Klein do glúon),
que é neutro.

Figura 5.1: Diagrama de Feynman para o processo qq̄ → u4t̄.

Esse processo de troca de sabor domina sobre os outros pois o acopla-
mento de u4 com G1 e a troca de sabor de u4 por t dada pelo elemento da
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matriz de rotação S, são altos, o que eleva a seção de choque de sua produção.
Portanto, deve ser um dos primeiros a ser observados.

Inicialmente são calculadas as seções de choque, variando os parâmetros
que foram determinados para o modelo. Para tanto foi utilizado um sistema
de simulação computacional, baseado no método de Monte Carlo [10]. O
software que implementa tal simulação é o MadEvent [38], que, utilizando-se
de integração por Monte Carlo, fornece arquivos com os 4-momentos de cada
partícula envolvida no estado �nal. Além disso, fornece a seção de choque
total com a respectiva incerteza, consequência da incerteza estatística no
método de Monte Carlo.

Todos os eventos foram gerados aplicando-se o corte de seleção de
pT (b) > 30 GeV. Evidentemente processos que não possuam b's antes de com-
pletado o decaimento não são afetados por este corte. Foram usados outros
cortes padronizados na versão 4.2.11 do MadEvent. Esta versão utiliza, como
padrão, a PDF de código cteq6l1. Foram utilizadas as escalas de renorma-
lização e de fatorização �xas e iguais a 91,1880 GeV (massa do bóson Z),
também escalas padrão na versão referida do software.

As seções de choque são:

Tabela 6 - Seções de choque (em fb) pp→ u4t̄; ECM = 14 TeV
massas mu4 = 500 GeV mu4 = 600 GeV

m1 = 2 TeV 232 91
m1 = 3 TeV 44 18

para a energia do centro de massa (CM) E = 14 TeV, máximo esperado para
o LHC, utilizando-se os cortes básicos do MadEvent.

Para a energia do centro de massa ECM = 7 TeV:

Tabela 7 - Seções de choque (em fb) pp→ u4t̄; ECM = 7 TeV
massas mu4 = 500 GeV mu4 = 600 GeV

m1 = 2 TeV 29,5 10,6
m1 = 3 TeV 4,8 1,7
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5.1.2 Processo pp→ d4b̄

O segundo processo estudado:

pp→ d4b̄, (5.2)

mostrou-se ainda mais interessante do que o primeiro, por causa de sua
topologia, como será visto na próxima seção.

O diagrama de Feynman de um dos principais sub-processos é mostrado
na �gura 5.2. Nota-se, novamente, a troca de sabor por meio do G1.

Figura 5.2: Diagrama de Feynman para o processo qq̄ → d4b̄.

Simulações com o MadEvent levam às seções de choque para a energia do
centro de massa (CM) E = 14 TeV.

Tabela 8 - Seções de choque (em fb) pp→ d4b̄; ECM = 14 TeV
massas md4 = 450 GeV md4 = 550 GeV

m1 = 2 TeV 78,6 47,0
m1 = 3 TeV 15,2 9,1
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Para a energia do centro de massa ECM = 7 TeV:

Tabela 9 - Seções de choque (em fb) pp→ d4b̄; ECM = 7 TeV
massas md4 = 450 GeV md4 = 550 GeV

m1 = 2 TeV 10,47 5,64
m1 = 3 TeV 1,73 0,91

A análise e os cortes adicionais, para ambos os processos, serão estudados
para o caso onde mu4 = 500 GeV, m1 = 2 TeV e para a energia, no centro
de massa, de 14 TeV. A análise pode ser prontamente realizada para os
demais casos mostrados nesta tese e ainda mais, pode ser realizada para
casos de valores intermediários. Contudo, por de�nição e para demonstrar
a viabilidade de detecção deste tipo de processo no LHC e, portanto, da
observação da interação forte que gera a condensação dos quarks, o estudo
foi especializado para um caso, neste trabalho.

5.2 Detecção de pp→ d4b̄

A topologia deste processo é distinta daquela para o processo pp → u4t̄,
havendo, para o processo que envolve d4, um jato de b que provém direta-
mente de G1, enquanto nenhum dos jatos de b para o processo que envolve
u4 possui tal procedência. O processo pp → d4b̄ possui ainda um diferen-
cial para a detecção de G1: o jato de b que se origina diretamente de G1

é muito energético (leva grande parte da energia de G1), comparado com
as demais partículas e jatos, sendo esta a principal característica distintiva
deste processo.

5.2.1 Decaimento

Primeiramente, considera-se o decaimento d4 → tW−, por ser o único
apreciável, visto que o vértice envolve a quarta coluna da matriz CKM au-
mentada, da qual apenas os elementos V44 e V34 são relevantes, sendo apenas
o último aquele que representa a mistura que envolve o W−.

Foi exigido um lépton carregado do decaimento do W , para passar por
um dos triggers do LHC. Do W− resultante de d4, foi exigido o decaimento
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em léptons, particularmente em elétrons, pois o elétron resultante seria mais
energético do que o pósitron do decaimento subsequente de W+ proveniente
de t̄. A consideração do múon dobra os valores aqui apresentados (para o
sinal e para o fundo) e processos envolvendo o tau não foram considerados
por resultarem em decaimentos que tornam complicada sua identi�cação.

Por �m, o único decaimento relevante para o quark top é o decaimento
em quark bottom, por razões análogas às do decaimento de d4, requerendo-se
que o W+ resultante decaia em jatos.

Então, dentre os possíveis produtos de decaimento do processo, foi estu-
dado o decaimento dado pelo diagrama de Feynman da �gura 5.3.

Figura 5.3: Diagrama de Feynman de canal de decaimento para detecção de
qq̄ → d4b̄.

Apesar de não possuir fundo irredutível, o processo apresenta fundo re-
dutível muito grande, sendo necessária sua identi�cação e a elaboração de
estratégias de corte para sua redução. O principal fundo identi�cado para
este sinal é dado pelo processo no diagrama de Feynman da �gura 5.4.

Como mencionado anteriormente, para o estudo dos decaimentos e de-
senvolvimento da estratégia de cortes, a discussão foi especializada para um
dos casos introduzidos neste capítulo e no anterior, o caso onde m1 = 2 TeV
e mu4 = 500 GeV, além de ser utilizada a energia de 14 TeV no centro de
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Figura 5.4: Diagrama de Feynman de canal de decaimento para tt̄, como
fundo para d4b̄.

massa. Uma vez que o LHC foi projetado para trabalhar por tempo limitado
a 7 TeV, a luminosidade acumulada deve ser menor do que para 14 TeV,
o que torna a observação do processo mais favorável nesta última situação.
Para a geração dos eventos foi utilizado o programa MadEvent [38], cujos
eventos foram utilizados nos programas Bridge [39] e Decay para gerar os
decaimentos.

As seções de choque para o sinal e para o fundo decaídos aos estados
�nais mostrados nas �guras 5.3 e 5.4 são dadas na tabela 10, para 14 TeV
no centro de massa. Foram gerados 2 × 105 eventos para o sinal e 2 × 106

eventos para o fundo.

Tabela 10 - Seções de choque (em fb) para sinal e fundo de pp→ d4b̄

ECM = 14 TeV
sinal fundo

σS = 5, 4 fb σB = 5, 4.104 fb
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5.2.2 Análise e cortes

A análise do decaimento foi realizada para 14 TeV de energia no centro
de massa. Foram consideradas as seguintes variáveis:

• pT (i): momento transverso da partícula i (componente do momento no
plano transverso à direção do feixe).

• HT : de�nida como a soma escalar do momento transverso de todas as
partículas mais ET ausente (missing ET ).

• m(i, j, k, ...): massa invariante das partículas i, j, k, ..., de�nida por:

m(i, j, k, ...) =
√
p2
i,j,k,..., (5.3)

onde
pi,j,k,... = pi + pj + pk + ... (5.4)

e pi é o 4-momento da partícula i.

• ∆Rij: distância das partículas i, j no plano ∆ϕij∆ηij:

∆Rij =
√

∆ϕ2
ij + (ηi − ηj)2, (5.5)

onde ∆ϕij é o ângulo entre as partículas no plano transversal ao feixe
e ηi é a pseudo-rapidez da partícula i, dada por:

ηi = − ln [tan (θi/2)] (5.6)

sendo θi o ângulo entre a trajetória da partícula i e a direção do feixe.

Além destas variáveis, algumas outras (rapidez, ângulo) são mostradas
como padrão pelo MadAnalysis e foram estudadas, a princípio, para com-
parar sinal e fundo e auxiliar o desenvolvimento da estratégia de cortes, para
observação do sinal. Entretanto, as variáveis listadas acima se mostraram
mais interessantes e, na verdade, foram as únicas utilizadas para os cortes.

Para este processo, as �guras 5.5, 5.6, 5.7, 5.8 e 5.9 mostram as dis-
tribuições mais relevantes para o presente estudo, antes de qualquer corte.
Nesta nomenclatura, b1 signi�ca o jato de bottom mais energético, b2 seria
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o segundo jato de bottom mais energético e assim sucessivamente, inclusive
para as demais partículas. São mostradas, simultaneamente, as distribuições
para o sinal (preto) e fundo (vermelho).

Para encontrar a estratégia de cortes é necessário eliminar o máximo
possível do fundo pela imposição de limites para as grandezas determinadas,
enquanto se mantém o máximo possível de sinal. Isto equivale a um problema
de otimização, entretanto resolvido de maneira artesanal, sem o formalismo
associado.

Como nos detectores não há maneira clara de vincular experimentalmente
cada jato a um determinado processo, b1 pode representar ora o bottom que
vem diretamente de G1, ora o bottom que vem de t. Assim sendo, ocorre a
dispersão dos valores pela distribuição.

Figura 5.5: HT antes dos cortes.

O grá�co da �gura 5.5 mostra distinção clara entre sinal e fundo, este
último possui um pico em HT para valores menores, característica não apre-
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sentada pelo sinal.

Figura 5.6: pT (b1) antes dos cortes.

Na �gura 5.6 nota-se que o pico do fundo, para valores menores de pT ,
é mais pronunciado para o pT (b1) do que para HT , sendo então um melhor
candidato ao primeiro corte, por serem eliminados mais eventos do fundo
com respeito ao sinal.
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Figura 5.7: ∆Rj1b1 antes dos cortes.

A �gura 5.7 mostra um excesso para o fundo, com respeito ao sinal, para
pequenos valores de Delta R, mas os picos das duas distribuições estão no
mesmo valor da abscissa e as diferenças não são muito distintivas, de maneira
que esta distribuição não é uma candidata muito interessante a um primeiro
corte.
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Figura 5.8: ∆Rb1l1 antes dos cortes.

Novamente a distribuição de Delta R, agora entre b(1) e o elétron, não
mostra grandes distinções entre sinal e fundo, de forma que esta distribuição
também não oferece boa possibilidade de um primeiro corte.
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Figura 5.9: m(j1, j2, b2, l1) antes dos cortes.

A distribuição da massa invariante entre os dois jatos, o bottom menos
energético e o elétron tem como característica, para o sinal, queda brusca
no número de eventos (denominada limite ou endpoint) para m = 450 GeV,
denunciando a origem destas partículas como sendo o D4. Este tipo de
distribuição ocorre por que o decaimento tem ainda um neutrino, que não é
detectado. O fundo não possui tal característica, mas por outro lado é muito
superior ao sinal. Esta distribuição é, mesmo assim, muito distintiva do sinal
com relação ao fundo.

Inicialmente poder-se-ia, pela análise das �guras, aplicar o corte em HT .
Entretanto, utilizando-se o fato de o b1 ser muito energético, o primeiro corte
foi aplicado em pT (b1). Desta maneira, foram considerados, após o primeiro
corte, apenas eventos com pT (b1) > 500 GeV.
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As �guras 5.10, 5.11, 5.12, 5.13 e 5.14 mostram as mesmas variáveis após
o primeiro corte.

Figura 5.10: HT , pT (b1) > 500 GeV.

Observa-se, após o primeiro corte, a drástica redução do fundo, que pas-
sou a contar com cerca de mil eventos (1025 eventos restantes) em sua dis-
tribuição, que inicialmente possuía 2× 106 eventos, enquanto o sinal perdeu
menos da metade de seus 200 mil eventos iniciais (restaram 108327 eventos).
A forma das distribuições não sugere um corte em HT .
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Figura 5.11: pT (b1), pT (b1) > 500 GeV.

A distribuição tem a mudança óbvia que o corte introduziu, ou seja, ape-
nas eventos nos quais o bottom mais energético possuir momento transverso
maior do que 500 GeV são considerados. As distribuições não sugerem novos
cortes.
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Figura 5.12: ∆Rj1b1, pT (b1) > 500 GeV.

Após o primeiro corte, a distribuição de Delta R (j1,b1) apresenta ca-
racterística muito distintiva entre sinal e fundo: o fundo possui dois picos,
sendo um deles para pequenos valores de Delta R, o que sugere um novo
corte, pelo qual se elimina grande quantidade de fundo e pequena de sinal.
Há, para o fundo, a presença de dois picos, caso um dos quarks b do de-
caimento (�gura 5.4) seja muito energético (pT > 500 GeV). Neste caso há,
então, duas situações distintas predominantes: em uma delas, o jato mais
energético (não proveniente de b) está em direção muito próxima à do jato
mais energético de b (ambos provêm predominantemente do mesmo top) ou,
na segunda situação possível, a direção do jato dista de um ângulo de apro-
ximadamente Θ ≈ ∆R ≈ π (cada um provém de um top distinto). Este é
o único caso predominante para o sinal (caso em que o jato mais energético
de b se origina de G1 e o jato mais energético (não b-jet) tem origem no
decaimento de t, predominantemente).
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Figura 5.13: ∆Rb1l1, pT (b1) > 500 GeV.

Nesta distribuição de Delta R (b1,l1) há a presença de dois picos na
distribuição do fundo, com apenas um pico para o sinal, o que também a torna
discriminante. Entretanto, a distribuição anterior se mostra mais favorável
a aplicação de cortes. Como no caso anterior, a razão de dois picos para o
fundo está na origem do b-jet mais energético e do lépton mais energético;
caso se originem do mesmo top, Delta R deve ser menor (próximo a zero),
caso se originem um de t o outro de t̄, deve predominar ∆R ≈ π, único caso
que predomina para o sinal.
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Figura 5.14: m(j1, j2, b2, l1), pT (b1) > 500 GeV.

Nota-se, na distribuição de massa invariante das quatro partículas, que o
sinal mostra claramente (devido ao limite da massa invariante) a origem co-
mum das quatro como sendo uma partícula de massa 450 GeV (d4), enquanto
o fundo não apresenta nada semelhante.

Deve ser enfatizado que após o primeiro corte, dos 2 × 106 eventos pre-
sentes inicialmente no fundo, restaram apenas ∼ 103 (1025) eventos, uma
redução muito signi�cativa (cerca de 2000 vezes). O sinal teve uma redução
de cerca de metade dos seus eventos presentes inicialmente, de 2× 105 para
cerca de ∼ 105 (1, 08327× 105) eventos.

São notáveis ainda outras características: as 2 distribuições de ∆R (após o
primeiro corte), mostrados nos grá�cos 5.12 e 5.13, apresentam, para o fundo,
dois picos distintos, o que sugere novos cortes. Também pode ser notado que
a forma da distribuição da massa invariante para as quatro partículas (grá�co
5.14) tem, no caso do sinal, um limite em 450 GeV, o que é sinal característico
do decaimento em 5 partículas a partir de uma partícula de massa 450 GeV
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(d4), servindo como clara distinção entre sinal e fundo e mostrando a origem
das 5 partículas (com o neutrino não detectado) sendo o d4.

O próximo corte é feito em ∆Rj1b1. A presença de dois picos no grá�co
5.12, em particular do pico para valores menores de ∆R, sugere que seja feito
um corte na região, de forma a eliminar mais fundo do que sinal. Então,
aplicando o corte ∆Rj1b1 > 0, 7 resultam os grá�cos 5.15, 5.16, 5.17, 5.18 e
5.19.

Figura 5.15: HT , pT (b1) > 500 GeV, ∆Rj1b1 > 0, 7.

Após o segundo corte, a única característica notável das novas distribuições
de HT é a redução do fundo e praticamente a manutenção do sinal.
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Figura 5.16: pT (b1), pT (b1) > 500 GeV, ∆Rj1b1 > 0, 7.

Como no caso anterior, nota-se apenas a redução do fundo no novo grá�co
de pT (b1).
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Figura 5.17: ∆Rj1b1, pT (b1) > 500 GeV, ∆Rj1b1 > 0, 7.

Nesta nova distribuição de Delta R (j1,b1) percebe-se o corte removendo
tanto eventos do sinal quanto do fundo. O pico que ocorre para valores mais
altos de Delta R (para o fundo) permanece, assim como o pico para o sinal.
Retomando a interpretação em termos do decaimento da �gura 5.4, elimina-
se grande parte dos eventos com a característica de o jato mais energético de
b estar (predominantemente) numa direção próxima à do jato mais energético
não proveniente de b, característica ausente no sinal, mas presente no fundo.



5.2. DETECÇÃO DE PP → D4B̄ 89

Figura 5.18: ∆Rb1l1, pT (b1) > 500 GeV, ∆Rj1b1 > 0, 7.

Pode ser observado que nesta nova distribuição de Delta R (b1,l1) o pico
permanece, na distribuição do fundo, para valores pequenos de Delta R, en-
quanto o outro pico foi eliminado pelo corte. A permanência deste pico sugere
um corte �nal. Nota-se a consistência da interpretação em termos da direção
dos jatos: após a eliminação dos eventos com o jato mais energético de b na
direção do jato mais energético (não originário de b), restam, para o fundo,
eventos onde o jato mais energético de b está na direção do lépton, portanto
o pico remanescente do fundo está em Delta R ∼ 0. Esta característica está
ausente no sinal, onde o jato de b mais energético está (predominantemente)
afastado tanto do jato mais energético (não originário de b) quanto do lépton.
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Figura 5.19: m(j1, j2, b2, l1), pT (b1) > 500 GeV, ∆Rj1b1 > 0, 7.

Nota-se a redução pela metade do número de eventos do fundo
∼ 5 × 102 (527) eventos restantes, sem perda relevante de eventos do sinal
∼ 105 (108182) eventos restantes.

Finalizando os cortes para este processo, utiliza-se ∆Rb1l1 > 0, 8, para
reduzir o pico remanescente do fundo, no grá�co 5.18. As �guras 5.20, 5.21,
5.22, 5.23 e 5.24 mostram os grá�cos resultantes para o conjunto de cortes
determinado neste estudo, para viabilizar a observação experimental do pro-
cesso pp→ d4b̄.
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Figura 5.20: HT , pT (b1) > 500 GeV, ∆Rj1b1 > 0, 7, ∆Rb1l1 > 0, 8.

Observa-se a redução ainda mais drástica do número de eventos do fundo
e perdas desprezíveis de eventos do sinal, característica desejável para o con-
junto de cortes.
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Figura 5.21: pT (b1), pT (b1) > 500 GeV, ∆Rj1b1 > 0, 7, ∆Rb1l1 > 0, 8.

Da mesma maneira, observa-se o fundo muito reduzido, mostrando que
o conjunto de cortes serviu ao objetivo de otimizar o sinal com respeito ao
fundo.
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Figura 5.22: ∆Rj1b1, pT (b1) > 500 GeV, ∆Rj1b1 > 0, 7, ∆Rb1l1 > 0, 8.

Para evitar perdas excessivas de eventos do sinal, o pico central na dis-
tribuição do fundo foi reduzido mas não eliminado, mesmo assim resultando
em estratégia de cortes bem sucedida.



94 CAPÍTULO 5. FENOMENOLOGIA

Figura 5.23: ∆Rb1l1, pT (b1) > 500 GeV, ∆Rj1b1 > 0, 7, ∆Rb1l1 > 0, 8.

Nota-se o efeito do último corte; eventos com ∆Rb1l1 < 0, 8 não são in-
cluídos. Observa-se também que o pico na distribuição do fundo foi reduzido
mas, para evitar a demasiada perda de eventos do sinal, não foi completa-
mente eliminado.
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Figura 5.24: m(j1, j2, b2, l1), pT (b1) > 500 GeV, ∆Rj1b1 > 0, 7, ∆Rb1l1 >

0, 8.

Para este corte �nal, pode ser veri�cada a característica do decaimento de
d4 pela massa invariante das quatro partículas, no caso do sinal, bem como
a redução dos eventos do fundo.

Observa-se que restaram apenas ∼ 100 eventos no fundo (82) e ∼ 100 mil
eventos do sinal (107849), ou seja, o que resta do sinal é cerca de 103 vezes a
quantidade de eventos do fundo. Há grande diferença nas seções de choque,
cuja razão entre fundo e sinal é de 104 e foram gerados 10 vezes mais eventos
para o fundo do que para o sinal.

Seja de�nido o fator de rejeição pela razão entre o número de eventos que
restam após a aplicação de cortes e o número de eventos iniciais:

rN =
N

N0

. (5.7)



96 CAPÍTULO 5. FENOMENOLOGIA

Então, com a aplicação do conjunto de cortes: pT (b1) > 500 GeV,
∆Rj1b1 > 0, 7 e ∆Rb1l1 > 0, 8, além do corte inicial aplicado sobre o momento
transverso de b's (pT > 30 GeV), os fatores de rejeição para sinal e fundo são,
respectivamente:

rS = 0, 53 ≈ 0, 5 (5.8)

e
rB = 4, 1× 10−5 ≈ 4× 10−5. (5.9)

O número de eventos se relaciona à seção de choque e à luminosidade por:

N = σL, (5.10)

Para gerar o número inicial de eventos do fundo, a luminosidade necessária
é:

Lb =
2× 106

5, 4× 104
fb−1 ≈ 37 fb−1

e para o sinal

Ls =
2× 105

5, 4
fb−1 ≈ 37× 103 fb−1.

Como a seção de choque não depende do número de eventos medidos e a
luminosidade deve ser a mesma, para comparar sinal e fundo no mesmo grá-
�co, ou seja, comparando-se eventos para a mesma luminosidade, o número
de eventos do sinal deve ser multiplicado por 10−3. Como restaram 82 even-
tos do fundo, o número de eventos do sinal para a mesma luminosidade do
fundo é S = 108. Portanto a razão entre o número de eventos do sinal e do
fundo é:

S

B
= 1, 3.

A signi�cância estatística, de�nida por:

ρ =
S√
S +B

, (5.11)

deve valer ao menos 5, para justi�car a descoberta do processo em compara-
ção com o fundo.

Seja a relação do número de eventos (do sinal ou do fundo) com a lumi-
nosidade, seção de choque do decaimento e fração de eventos após os cortes,
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relação que generaliza a equação 5.10:

N = LσNrN . (5.12)

A aplicação desta equação aos eventos do sinal e do fundo leva a:

S = LσSrS (5.13)

para o sinal e:
B = LσBrB (5.14)

para o fundo. Inserindo as duas últimas expressões na equação 5.11, resulta
a luminosidade acumulada necessária como função da signi�cância requerida:

L =
ρ2

σ2
Sr

2
S

(σSrS + σBrB). (5.15)

Com os resultados da tabela 10 e as equações (5.8) e (5.9), requerendo-se
signi�cância ρ = 5, para se con�rmar eventos deste processo no LHC, será
necessária luminosidade acumulada de Lc ≈ 15 fb−1, com o LHC funcionando
com 14 TeV de energia no centro de massa.

Fica con�rmada então a viabilidade da veri�cação experimental do pro-
cesso, com a estratégia de cortes acima descrita.

Pode ser estimada também a viabilidade de detecção do processo a 7 TeV.
Por simulação, são determinadas as seções de choque para os decaimentos
dos processos do sinal e do fundo a 7 TeV:

σ′S = 0, 76 fb (5.16)

σ′B = 9, 4× 103 fb (5.17)

Após a aplicação do principal corte obtido para o caso de 14 TeV, ou
seja pT (b1) > 500 GeV, resultam os fatores de rejeição para sinal e fundo,
respectivamente:

r′S = 0, 31 (5.18)

r′B = 1, 2× 10−4. (5.19)

Com o uso da equação 5.15, segue que, para se detectar eventos deste
processo, a 7 TeV no LHC, será necessária uma luminosidade de aproxima-
damente L′ = 605 fb−1, sendo, portanto, inviável a observação de pp → d4b̄

no LHC a 7 TeV, requerendo-se seu funcionamento a 14 TeV para observação
do processo.
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5.3 Detecção de pp→ u4t̄

A vantagem da busca por este processo, comparado com o anterior é que,
neste, utiliza-se o fato de o acoplamento entre o quark t e o primeiro modo de
Kaluza-Klein do glúon (G1) ser maior do que o acoplamento do quark b com
G1, aumentando signi�cativamente a seção de choque do sinal, sendo que a
seção de choque do fundo permanece praticamente inalterada. A principal
desvantagem é que, nos decaimentos decorrentes, a topologia e o estado �nal
são idênticos aos do fundo, não havendo, como havia no caso anterior, alguma
partícula muito energética que diferencie o fundo do sinal.

5.3.1 Decaimento

Considera-se o decaimento u4 → bW+, por ser o único apreciável, uma
vez que o vértice envolve a quarta linha da matriz CKM aumentada, da
qual apenas V44 e V43 são relevantes, dos quais o primeiro é considerado
apenas no decaimento u4 → d4W

+ que é suprimido cinematicamente (mu4 <

md4 +mW ).

Novamente, foi exigido um lépton carregado no decaimento, com W+

decaindo em pósitron e neutrino. O pósitron indica que o lépton provém
de decaimento de u4. A consideração do múon dobra os valores de seções de
choque aqui apresentados. Processos envolvendo o τ não foram considerados,
pois resultariam em decaimentos que tornariam complicada sua identi�cação.
O decaimento relevante para o t̄ é em b̄, por razão análoga ao decaimento de
u4.

Dentre os possíveis produtos de decaimento para o processo, a �gura 5.25
mostra o diagrama de Feynman para o processo �nal presentemente estudado.

O principal fundo identi�cado é mostrado na �gura 5.26 e, comparação
com a �gura 5.25, mostra que a topologia dos dois decaimentos é a mesma,
di�cultando a separação de fundo e sinal.

Os pacotes MadEvent + Bridge foram utilizados, como anteriormente,
para decair as partículas do processo. As seções de choque, para sinal e
fundo decaídos, são mostradas na tabela 11, para 14 TeV no centro de massa.
Foram gerados, tanto para o sinal quanto para o fundo, 105 eventos. Observa-
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Figura 5.25: Diagrama de Feynman de canal de decaimento para o processo
qq̄ → u4t̄.

Figura 5.26: Diagrama de Feynman de canal de decaimento para tt̄, como
fundo para u4t̄.

se que a seção de choque é cerca de 3 vezes maior do que para o decaimento
anterior, decorrente de pp→ d4b̄. Vale enfatizar que, para de�nição do caso
a ser tratado, a análise e o estudo dos cortes foram especializados para o caso
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no qual mu4 = 500 GeV, m1 = 2 TeV e para a energia de 14 TeV no centro
de massa.

Tabela 11 - Seções de choque (em fb) para sinal e fundo decaídos de
pp→ u4t̄; ECM = 14 TeV

sinal fundo
1, 7.10−2 5, 4.101

5.3.2 Análise e cortes

Os grá�cos 5.27, 5.28, 5.29 e 5.30 mostram, respectivamente, HT , pT (b1),
∆Rj1b1 e m(b1, l1), antes de qualquer corte.

Figura 5.27: HT antes de corte.

O grá�co mostra um pico na distribuição do fundo para valores pequenos
de HT , enquanto na distribuição do sinal o pico está ausente.
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Figura 5.28: pT (b1) antes de corte.

Novamente a distribuição do fundo apresenta um pico, agora para pe-
quenos valores de pT (b1). O pico é mais acentuado do que o pico do sinal
e devido à grande quantidade de eventos com pequeno pT para o fundo, a
distribuição sugere um corte onde muitos eventos do fundo serão eliminados.
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Figura 5.29: ∆Rj1b1, antes de corte.

Os grá�cos de Delta R para sinal e para fundo são distintos, com o sinal
apresentanto dois picos e o fundo apenas um. Contudo, devido à grande
sobreposição entre as distribuições, não há possibilidade de corte e�caz neste
grá�co.
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Figura 5.30: m(b1, l1) antes de corte.

Os limites das distribuições para sinal e fundo mostram claramente que
o bottom e o pósitron têm origens distintas nos dois casos; para o fundo as
duas partículas têm origem no quark top e para o sinal a origem é o quark
u4, que é mais massivo. Este é outro fato distintivo para sinal e fundo, que
possibilitaria a identi�cação da quarta geração de quarks.

Com base no estudo do processo anterior, pois o fundo é similar, o corte
aplicado é tal que apenas eventos com pT (b1) > 500 GeV foram considerados.
Observa-se o resultado nas �guras 5.31, 5.32, 5.33 e 5.34.
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Figura 5.31: HT , pT (b1) > 500 GeV.

Observa-se que grande quantidade de eventos do sinal permaneceu (apro-
ximadamente um quarto), enquanto o fundo �cou muito reduzido, restando
apenas uma fração de cerca de 5× 10−4 de seus eventos.



5.3. DETECÇÃO DE PP → U4T̄ 105

Figura 5.32: pT (b1), pT (b1) > 500 GeV.

Nota-se o corte aplicado e a drástica redução do fundo.
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Figura 5.33: ∆Rj1b1, pT (b1) > 500 GeV.

Neste grá�co observa-se, nas duas distribuições, dois picos desconexos
em cada e a forma de ambas é similar (re�etindo a idêntica topologia dos
decaimentos), com a distribuição do fundo muito menor do que a do sinal.
Não oferece boas possibilidades de cortes.
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Figura 5.34: m(b1, l1), pT (b1) > 500 GeV.

Graças à permanência de grande quantidade de eventos do sinal, a massa
invariante de b1 e e+ continua denunciando a origem comum destas partículas
como sendo o u4. A grande redução de eventos do fundo não mais permite
identi�car a origem das duas partículas, neste caso.

Vale destacar que dos N0 = 105 eventos presentes inicialmente no sinal e
no fundo, com o corte pT (b1) > 500 GeV, restaram cerca de 25 mil (26075)
eventos para o sinal e 51 eventos para o fundo. Estes resultados implicam
nos fatores de rejeição para sinal e fundo, respectivamente:

rS = 0, 26 (5.20)

rB = 5, 1× 10−4 (5.21)

Outro fator notável é a distribuição de ∆Rj1b1, onde veri�ca-se que,
mesmo com o fundo reduzido, ambos os grá�cos (sinal e fundo) apresen-
tam dois picos desconexos. Isto se deve a eventos com o jato (não b-jet)
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mais energético e o jato de bottom mais energético ora na mesma direção
(∆R ∼ 0), ora em direções opostas (∆R ∼ π) considerando-se o corte, tanto
para sinal quanto para o fundo, o que re�ete a topologia idêntica dos decai-
mentos para sinal e fundo.

Por �m, uma maneira de identi�car este sinal característico é observar
o limite para a massa invariante entre b e l. Essa massa tem limite de 500

GeV para o sinal (massa de u4) enquanto o limite é de 174 GeV para o
fundo (massa do top). O fato de haver eventos após o limite é devido a,
por vezes, o bottom mais energético provir de t̄ e não de u4 (caso do sinal)
ou o bottom mais energético não ser gerado a partir do mesmo top que o
lépton (caso do fundo). O fato de as distribuições entre massa invariante de
b1 e l serem distintas, para este sinal e seu fundo, pode ser veri�cado pelos
experimentalistas, como característica deste sinal.

Considerando ainda o número de eventos, podem ser analisadas as seções
de choque para o sinal e para o fundo. Para serem observados 105 eventos
do fundo, é necessário uma luminosidade de:

Lf =
105

5, 4× 104
fb−1 = 1, 8 fb−1

e para o sinal:

Ls =
105

16, 8
fb−1 = 5, 9× 103 fb−1.

Para comparação dos números de eventos entre sinal e fundo, deve ser
levado em consideração que a luminosidade será a mesma para ambos, o que
signi�ca que, para comparação dos processos no mesmo grá�co, o número
de eventos do sinal (antes e depois dos cortes) deve ser multiplicado por
3, 090× 10−4.

Desta maneira nota-se que, após os cortes, a razão de eventos observados
do sinal com respeito ao fundo, passa a ser:

26075

51
× 3, 090× 10−4 = 0, 16.

Com o uso da equação 5.15 veri�ca-se que, para se obter signi�cância
ρ = 5, con�rmando-se a observação do processo, é necessária luminosidade
acumulada de Lc ≈ 42 fb−1 a 14 TeV, �cando demonstrada a observabilidade
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do processo no LHC. O processo possui ainda características distintivas como
o limite para a massa invariante de b1 e l1.

Em resumo, tanto o processo pp → d4b̄ quanto o processo pp → u4t̄

poderão ser observados no LHC com as estratégias de cortes aqui apresen-
tadas.
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Capítulo 6

Conclusão

O objetivo desta tese é mostrar a viabilidade da contrução e observação
experimental de modelos da quebra da simetria eletrofraca e das massas dos
férmions, por meio de acoplamentos fortes na escala TeV, através o estudo
de sua fenomenologia. Algumas extensões do Modelo Padrão (seção 2.4) que
resolvem o problema da hierarquia são mencionadas, tendo em vista possíveis
extensões deste trabalho com a inclusão de ideias destas extensões.

Dentre as extensões possíveis do Modelo Padrão, trabalha-se aqui com um
espaço com uma dimensão extra curva compacti�cada em orbifold (capítulo
3), como realização de teoria com acoplamentos que são fortes, mas não com
todas as gerações de férmions (acoplamentos não-universais), possibilitando
a condensação de quarks de uma quarta geração. Assim, é introduzido o
modelo de Randall-Sundrum [4]. O trabalho segue com a descrição e estudo
de campos escalares, espinoriais e vetoriais no espaço estendido, incluindo
a determinação das "funções de onda"dos campos em cinco dimensões. O
problema da hierarquia é resolvido (seção 3.3), neste modelo modi�cado, com
a localização da função de onda do bóson de Higgs próxima a um dos pontos
�xos do espaço, a brana TeV, enquanto os demais campos se propagam por
toda a dimensão extra.

Para que os campos estendidos à quinta dimensão realizem a extensão
do Modelo Padrão (MP), é necessário estender o grupo de simetria do MP,
de forma a adequar o modelo estendido aos vínculos de precisão eletrofra-
cos. Além disso, é necessário caracterizar as funções de onda 5-dimensionais

111
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das partículas do MP, de forma que este seja obtido como caso limite da
nova teoria a baixas energias. Para tanto é incluída uma quarta geração de
férmions (capítulo 4), focando-se, neste trabalho, nos quarks, dos quais o
quark do tipo up condensa e o condensado gera massa para todas as partícu-
las. Nota-se que os acoplamentos nesta teoria não são universais, com o
primeiro modo de Kaluza-Klein do glúon se acoplando fortemente à quarta
geração de quarks e misturando sabor, apesar de ser uma partícula neutra.
É também o responsável pela condensação dos quarks do tipo up da quarta
geração.

Para a completa determinação do modelo que, a baixas energias, reduz-
se ao Modelo Padrão, foi necessário agregar ao modelo 5-dimensional, com
o mecanismo de condensação, os valores de todas as constantes dos quarks
(tabelas 2 e 3) com as condições de serem obtidas suas corretas massas e
o setor experimentalmente conhecido da matriz CKM, constantes obtidas
numericamente. Resulta desta parte do trabalho a matriz CKM estendida
(equações 4.51 e 4.52), que possibilita cálculos de processos envolvendo a
mistura de quarks da quarta geração.

Uma vez impostos esses vínculos sobre as constantes, resulta que, com
uma estimativa para a massa do primeiro modo de Kaluza-Klein do glúon,
são obtidos acoplamentos para todos os quarks, como função do acoplamento
do modo zero do glúon (tabelas 4 e 5). Os acoplamentos obtidos permitiram
o cálculo de processos envolvendo os quarks da quarta geração, possibilitando
seu estudo fenomenológico (capítulo 5).

Os resultados fenomenológicos foram obtidos com base no modelo deter-
minado no capítulo 4, utilizando-se os valores de constantes que determinam
as funções de onda 5-dimensionais dos quarks e dos acoplamentos decor-
rentes. A obtenção dos resultados se deu por meio de simulações computa-
cionais para processos que são muito distintivos de uma categoria de modelos,
por apresentarem troca de sabor através de correntes neutras, característica
que permite eliminar grande parte do fundo, originário da QCD, presente no
LHC.

Foram estudados dois processos com potencial de observação no LHC
(capítulo 5): pp → u4t̄ e pp → d4b̄. Os estudos incluem a determinação
das seções de choque, por simulações computacionais, cujas partículas resul-
tantes (u4, d4 e t̄) tiveram que ser, porteriormente, decaídas a estados �nais
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observáveis experimentalmente. Estratégias de cortes tiveram que ser deter-
minadas para a observação dos sinais contra fundos formidáveis da QCD que
estarão presentes no acelerador.

Tal determinação, realizada nas seções 5.2 e 5.3, foi baseada nas dis-
tribuições de eventos como funções de grandezas convenientes (por exem-
plo, distribuição de eventos como função do momento transverso de uma
partícula). Os cortes foram determinados pela observação de tais distribuições
e pela busca da otimização do número de eventos do sinal com respeito ao
número de eventos do fundo.

Segue então um estudo que busca estimar a viabilidade de observação de
ambos os processos no LHC, após a aplicação dos cortes convenientes. Fica
con�rmada a observabilidade dos processos no LHC com menos de 20 fb−1

de luminosidade acumulada, com o acelerador funcionando a energia máxima
(14 TeV), sendo os principais resultados divulgados na referência [37].

Nota-se que os resultados obtidos com base na equação (5.15), seguindo-
se a estratégia de cortes apresentada na seção 5.2, mostram que será possível
con�rmar eventos com signi�cância superior a 5 σ para o processo pp→ d4b̄

com aproximadamente 15 fb−1 de luminosidade acumulada, com o LHC fun-
cionando a 14 TeV. Com o LHC a 7 TeV não será possível tal con�rmação,
uma vez que a luminosidade acumulada nesta fase de operação não será su�-
ciente para permitir a con�rmação de eventos, considerando-se o fundo. Isto
se deve ao fato de ser considerado apenas casos onde m1 > 2 TeV, consis-
tentes com o modelo utilizado. Estão sob estudos casos mais gerais, onde não
considera-se o modelo aqui utilizado, mas sim modelos que como este apre-
sentam troca de sabor por correntes neutras, por meio de um octeto de cor.
Nestes estudos, consideram-se casos onde moc ≥ 1 TeV e poderiam resultar
em eventos observáveis no LHC a 7 TeV. Tais estudos serão divulgados na
referência [37].

Na seção 5.3 nota-se que será possível con�rmar eventos também do pro-
cesso pp → u4t̄ com luminosidade acumulada de aproximadamente 42 fb−1,
a 14 TeV. Pode ser notado também que esta con�rmação deve ser posterior,
uma vez que a topologia deste processo é idêntica à do fundo, tornando mais
difícil a aplicação de cortes.

A fenomenologia de modelos de quebra da simetria eletrofraca foi es-
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tudada, cumprindo-se também a tarefa de mostrar a viabilidade de obser-
vação experimental dos processos no LHC. Dada a diversidade de processos
disponíveis a energias mais elevadas, faz-se necessário o estabelecimento de
estratégias de observação e a cautelosa escolha de processos que sirvam como
guia aos experimentalistas, com base em teorias e princípios físicos.

As técnicas utilizadas neste trabalho podem ser úteis no contexto de ou-
tros modelos com troca de sabor na produção de férmions pesados. Outros as-
pectos fenomenológicos desses modelos �cam ainda a serem estudados, como,
por exemplo, o setor escalar composto, tanto trocando quanto conservando
sabor.
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