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In these proceedings, we report on certain ratios of diboson differential cross sections can be
used as high-precision observables at the LHC, motivated by the restoration of SU(2)×U(1)
at high energy. Writing leading-order diboson partonic cross sections in a form that makes
their SU(2) × U(1) and custodial SU(2) structure more explicit than in previous literature,
identifies important aspects of this structure that survive even in hadronic cross sections.
Focusing on higher-order corrections to ratios of γγ, Zγ and ZZ processes, we argue that
these ratios can be predicted to better than 5%, which should make them useful in searches
and characterization of new phenomena. The ratio of Zγ to γγ is especially promising in the
near term, due to large rates and to exceptional cancellations of QCD-related uncertainties.

1 Introduction

In the Standard Model the electroweak (EW) bosons originate from a triplet and singlet of
SU(2)×U(1), becoming massive and mixing after symmetry breaking. But at the high energies
accessible to the LHC, the symmetry breaking effects are moderated, and one might imagine
the underlying SU(2) × U(1) structure might more directly relate diboson processes to one
another. It turns out that although this naive expectation is not automatically satisfied, there
are nevertheless some elegant and interesting relations.

We identify several independent ratios of diboson measurements that are special at tree
level and that offer moderate to excellent potential for both high-precision predictions and high-
precision measurements.1 These ratios, in contrast to the differential cross sections themselves,
are flat or slowly-varying as functions of pT (and other kinematic variables), making them stable
against certain experimental problems. Moreover, many of them receive markedly smaller QCD
corrections then the cross-sections themselves, especially at high pT .

2 Organization at leading order

Well above the scale of EW symmetry breaking, we may rewrite the SM EW bosons W±, Z, γ
as the triplet w±, w3 and singlet b of massless gauge bosons of SU(2) × U(1), along with the
Goldstone scalars φ±, φ3. Dibosons will receive contributions from varying combinations of bb,
wb, ww, and φφ final states. Moreover, the ww contribution can we further decomposed into
an SU(2) singlet (ww1) and triplet piece (ww3). (A quintet ww contribution is also possible,
for states such as W+W+, but they require two final-state jets, and so will not be considered.)
Of the non-Goldstone contribution, only ww3 receives contributions from the s-channel, fabc-
proportional contribution, being the only SU(2)-antisymmetric contribution.

As a result, in the massless limit only three types of amplitudes contribute to all processes:

a1 ∝ M(bb) ∝ M(wb) ∝ M(ww1) , a3 ∝ M(ww3) , aφ ∝ M(φφ) . (1)
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Squared amplitudes relevant for diboson production are then:2
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4ŝ2
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((a1a3) is shorthand for Re(a�1a3).) The ai amplitudes transform simply under t̂ ↔ û exchange:

a1(t̂, û) = a1(û, t̂), a3(t̂, û) = −a3(û, t̂), |aφ(t̂, û)| = |aφ(û, t̂)|. (4)

These properties of a1 and a3, required by Bose statistics and by the fact that ww1 (ww3) is
symmetric (antisymmetric) in the two ws, explain why in eqs. (2)–(3) only (a1a3) is antisymmet-
ric under t̂ ↔ û. These amplitudes allow us to write all the diboson cross-sections in a notation
that makes their symmetry properties manifest.

The neutral bosons are produced by various linear combinations of bb, wb, and ww1, and so
are all proportional to |a1|2. Inserting the appropriate coupling constants and writing V 0 = γ, Z,
the partonic cross sections take the form
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Here, Q is the electric charge of the quark, L = T3 − YL t2W , and R = −YR t2W (with tW the
tangent of the Weinberg angle).

Production of W±γ and W±Z does involve a ww3 contribution, with the resulting cross
sections being
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Because of the smallness of Y 2
L = 1/36 and the relative factor of (8 cW )−1 suppressing |aφ|2, the

|a3|2 terms naively dominate the cross sections. Conversely, by taking differences of cross-sections
with respect to the sign of rapidity difference, sign(η0−η±), of the charged and neutral bosons, all
terms except of the a1a3 interference terms can be made to cancel. The W−W+ processes can be
organized is a similar manner, with analogous statements about anti-symmetrized cross-sections
but no clear dominant term in the symmetric ones.

We must make sure that these partonic relations can still be accessed in physical cross-
sections after convolution against parton distribution functions (PDFs). This turns out to be
the case, even after finite mass effects are included, if cross sections are presented differentially

in m̄T , the average transverse momentum of the bosons, where mT i =
√
p2T i +m2

i . Then
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and the integral over PDFs and kinematic variables factorizes. Because of this fact, along with
the earlier observation that certain anti-symmetric or symmetric cross sections have very similar
kinematic dependences, with only coupling strengths differing, we are naturally lead to consider
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ratios of such differential cross-sections. We propose that the following ratios are of interest for
their ability to highlight dependence on either particular parameters of the EW sector or PDFs,
while suppressing dependence on the other through cancellations between the cross sections:
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where V 0 denotes Z or γ, and σA(WV 0) is some linear combination of σA(W
+V 0) and σA(W

−V 0).
Discussions of the specific merits of each ratio are presented in Frye et al.1

3 Higher-order corrections for neutral dibosons

The preceding statements would not be of much use if they only held at leading order, since
EW processes at the LHC are known to receive large higher-order corrections. For the simplest
of these observables, the R1 ratios, we have carried out a study of these corrections.

NLO QCD corrections were studied with the help of MCFM.3 For fixed-order predictions
to be reliable, cuts must be chosen carefully beyond leading order to avoid the presence of
large logarithms multiplying terms of O(αS), thereby spoiling the reliability of the perturbative
expansion.4 A choice of staggered, sliding cuts makes sure ratios of kinematic variables do not
get too large anywhere in accessible phase space:
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2
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After defining the cuts in this way, most QCD corrections do cancel in these ratios, except
for the region where a final-state jet is collinear with a vector boson. There the photon has
a collinear singularity which must be regulated with, e.g., a fragmentation function, while the
Z singularity is regulated by its mass. A naive cone-based isolation procedure introduces a
large sensitivity to non-perturbative fragmentation functions that are not very well constrained.
This effect can be ameliorated through a “staircase” isolation method,5 where progressively
weaker isolation from hadronic activity is applied at larger angles from the photon, leaving
small theoretical uncertainties.

Large corrections are known to occur at NNLO from gg → V 0
1 V

0
1 contributions. These can

shift the ratios by 5–20%, due in part to an accidental cancellation in gg → Zγ, but the resulting
uncertainties on the shifts are small. Shifts also come from higher-order EW corrections. These
can be 5–10%, but the corresponding uncertainty on that value is also small.

These statements are summarized in fig. 1. This plot shows results for R1a, the ratio of Zγ
to γγ cross sections differential in m̄T , obtained for the 13 TeV LHC. The upper portion of the
plot shows the ratio R1a as would be measured in 6 bins of 5–6% statistical uncertainty; the last
bin includes events with m̄T extending up to the kinematic limit. The open circles indicate a LO
prediction, while the closed circles are our result including NLO and gg-initiated production. The
dominant corrections are driven by the gluon PDF, and decrease with m̄T . The error bars on the
closed circles indicate the expected statistical errors at 300 fb−1. The shaded band indicates the
theoretical uncertainties mentioned in the previous paragraphs, with all uncertainties combined
linearly, except for PDF extraction uncertainties which are combined in quadrature with the
others. This combination gives a conservative estimate of known uncertainties.
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Figure 1 – R1a with higher-order corrections as described in the text. Projections for experimental uncertainties
are also shown for 300 fb−1 (R1a). Analogous results for R1b and R1c are presented in Frye et al.1

4 Conclusions and outlook

We have proposed a wide variety of ratios using LO reasoning about the SU(2)×U(1) structure
of the SM. We have also shown that for the neutral diboson processes, higher-order corrections
do not contradict this reasoning. We are optimistic that a few of the remaining variables will
be as precisely predictable as the R1 ratios. In the meantime, we hope that our methods will
inspire invention of other precision observables, perhaps more sophisticated and less obvious, for
the LHC and for hadron colliders of the future.
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