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ABSTRACT

A group theoretical approach to quantum gravity in (A)dS

Zimo Sun

This thesis is devoted to developing a group-theoretical approach towards quantum gravity in
(Anti)-de Sitter spacetime. We start with a comprehensive review of the representation theory of
de Sitter (dS) isometry group, focusing on the construction of unitary irreducible representations
and the computation of characters. The three chapters that follow present the results of novel
research conducted as a graduate student.

Chapter [4| is based on [I]. We provide a general algebraic construction of higher spin
quasinormal modes of de Sitter horizon and identify the boundary operator insertions that source
the quasinormal modes from a local QFT point of view. Quasinormal modes of a single higher
spin field in dSp furnish two nonunitary lowest-weight representations of the dS isometry group
SO(1, D). We also show that quasinormal mode spectrums of higher spin fields are precisely
encoded in the Harish-Chandra characters of the corresponding SO(1, D) unitary irreducible
representations.

Chapter 5| is based on work with D. Anninos, F. Denef and A. Law [2]. With potential
application to constraining UV-complete microscopic models of de Sitter quantum gravity, we
compute de Sitter entropy as the logarithm of the sphere path integral, for any possible low
energy effective field theory containing a massless graviton, in arbitrary dimensions. The path
integral is performed exactly at the one-loop level. The one-loop correction to the dS entropy is
found to take a universal “bulk — edge"” form, with the bulk part being an integral transformation
of a Harish-Chandra character encoding quasinormal modes spectrum in a static patch of dS
and the edge part being the same integral transformation of an edge character encoding degrees
of freedom frozen on the dS horizon. In 3D de Sitter spacetime, the one-loop exact entropy is
promoted to an all-loop exact result for truncated higher spin gravity, the latter admitting an

SL(n,C) Chern-Simons formulation with n being the spin cut-off.



Chapter [f] is based on [3]. Inspired by [2], we revisit the one-loop partition function of
any higher spin field in (d + 1)-dimensional Anti-de Sitter spacetime and show that it can be
universally expressed as an integral transform of an SO(2, d) bulk character and an SO(2,d — 2)
edge character. We apply this character integral formula to various higher-spin Vasiliev gravities
and find miraculous (almost) cancellations between bulk and edge characters, leading to striking
agreement with the predictions of higher spin holography. We also comment on the relation

between our character integral formula and Rindler-AdS [4] thermal partition functions.
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Chapter 1: Introduction

Symmetry is ubiquitous in modern physics. It permeates physics at all energy scales, from sub-
eV scales (e.g. condensed matter) up to the Planck scale (e.g. string theory). In these theories,
symmetry has been used as a guiding line for model building, e.g. low energy effective theories
[7, 18], and as a powerful tool to magically simplify computations, e.g. supersymmetric localiza-
tion [9]. The mathematical tool to describe symmetry precisely and rigorously is group theory.
Discrete symmetries are described by finite groups (e.g. the Zo symmetry in Ising model without
external magnetic field) and continuous symmetries are described by Lie groups/algebras (e.g.
the U(1) symmetry of QED). Apart from the discrete vs. continuous classification, symmetries
in a physical theory can also be divided into spacetime and internal symmetries. While internal
symmetry depends on the dynamical details, spacetime symmetry is determined by the back-
ground spacetime geometry. For example, the spacetime symmetry in a flat spacetime R4 is
the Poincaré group R? x SO(1,d). As noted in the seminal work of Bargmann and Wigner [10],
the Poincaré group plays a fundamental role in particle physics, classifying elementary particles
by its unitary irreducible representations (UIRs). More precisely, the single-particle Hilbert space
of a free elementary particle in flat spacetime furnishes a UIR of the Poincaré group. These
UIRs can be divided into two classes: massive and massless, which are fundamentally different.

Wigner's classification can be directly generalized to de Sitter spacetime dS;.1 or Anti-
de Sitter spacetime AdSy,; which are also maximally symmetric spacetimes like R'¢, under
the condition that the Poincaré group gets replaced by the corresponding isometry groups:
SO(1,d + 1) for dSg41 and SO(2,d) for AdSg+1. The physically relevant UIRs of SO(2,d)
are familiar to physicists since SO(2, d) is also the symmetry group of a conformal field theory
(CFT) on the flat spacetime R“¥~!. For this reason, studying the UIRs of SO(2,d) is a crucial
step in understanding the structure of CFT Hilbert spaces. A complete classification of these

UIRs can be found in [1I] I2]. On the other hand, the UIRs of SO(1,d + 1) are less familiar



to physicists since they are not contained in the Hilbert space of any unitary Lorentzian CFT.
The mathematical classification problem was solved in the early 60s [13]. More recently, as a
technical tool, the representation theory of SO(1,d + 1) has led to many profound analytical
results in CFTs, e.g. conformal partial wave expansion [14], conformal Regge theory [I5] and
CFT inversion formula [16].

This thesis is devoted to developing a group-theoretical approach, based on the represen-
tation theory of SO(1,d + 1) (SO(2,d)), towards quantum gravity with a positive (negative)
cosmological constant. In particular, we will see how quantum corrections to the horizon entropy
are universally calculable from purely group-theoretic data, for arbitrary effective field theories
of quantum gravity. Before that, we want to give the motivation for this work and review some

useful background.

1.1 Motivation

Mathematically, dS (AdS) spacetime is the maximally symmetric vacuum solution of Einstein’s
equations with a positive (negative) cosmological constant A. They can be represented as

hypersurfaces in higher dimensional flat space

1
X2+ X2+ XX =4 o — 1.1.1
0 1 d d+1 \/H ( )
where the “+" sign corresponds to dS and the “—" sign corresponds to AdS. More details about

the geometry for (A)dS are shown in their Penrose diagrams (1.1.1)). The diamond denoted by
“S" or "N" in the dS Penrose diagram ([1.1.1a)) is called the southern or northern static patch,

the maximal region accessible to a local observer. The static patch metric is

2 (4 _ r? 2 dr? 2 702
ds® = 1 7 dt® + - +redQg_, 0<r</¢ (1.1.2)
vz

where df23_; denotes the standard metric of a (d — 1)-dimensional unit sphere. The de Sitter

horizon sits at » = ¢ and the classical de Sitter horizon entropy is given by the area law [17]

So = —— (1.1.3)



where A is the area of dS horizon. In global coordinates, which cover the whole strip of ({1.1.1b)),

the AdS metric takes a similar form, with ¢ — i¢:

2 r? 2 dr? 2 102
2

The AdS boundary is located at » — oo. Other coordinates and the corresponding metrics of

dS (AdS) can be found in the appendix (D.5]).
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(a) dS Penrose diagram (“a square”) (b) AdS Penrose diagram (“a strip”)

Figure 1.1.1: In (a): the two horizontal lines (thick blue) denote future and past boundaries, the
two vertical lines (blue) are actually in the interior of spacetime manifold and the two diagonal
lines (red) correspond to cosmological horizon. In (b): the two vertical lines (blue) represent
the cylinder-shaped boundary, the diagonal lines (red) are trajectories of light and the dashed
line correspond to trajectory of a massive particle.

dS is an important realistic model in cosmology while AdS is more like an ideal lab for string
theory/quantum gravity that only exists in our heads. For concreteness, we will focus on dS
in what follows. But one should keep in mind that our strategy towards dS quantum gravity,
which will be discussed below, can also be directly applied to AdS.

According to the recent cosmological experiments, including supernovae observations [18-
20], CMB measurements [21] from Planck and the baryonic acoustic oscillations [22], our uni-
verse is accelerating. In the framework of ACDM, this accelerating expansion will persist and

eventually with matter and light diluting away fast and with vacuum energy dominating, the



observable universe will end up being a de Sitter static patch, surrounded by a sphere-shaped
cosmological horizon. So a local observer is causally disconnected from everything outside
his/her static patch. In view of this and other reasons, it is of evident importance to try to
understand quantum gravity in de Sitter spacetime. However, unlike in the AdS case where,
thanks to the AdS-CFT correspondence [23], quantum gravity (at least in certain examples) can
be microscopically formulated in terms of CFTs, we still do not have a UV-complete microscopic
model of quantum gravity in dS. We even do not know what are the basic ingredients in such
a theory. There have been many attempts towards this problem, including string theoretical
construction of metastable dS vacua [24-27] and holographic considerations [17, [28-40]. But

none of them can answer one of the central problems in dS quantum gravity:

What is the microscopic origin of de Sitter entropy?

In contrast, string theory has been very successful in the microscopic accounting of Bekenstein-
Hawking entropy for certain BPS black holes, starting from the seminal work [41] by Strominger
and Vafa. Roughly speaking, the Bekenstein-Hawking entropy Sgn (@) of a given set of charges

@ can be obtained by counting degeneracy d(Q) of BPS states in large charge limit QQ — oo

Ser(Q) = log d(Q) (1.1.5)

Being completely clueless about the fundamental microscopic theory of quantum gravity in dS,
we would like to take a systematic approach to this problem, using only machinery that is fully
understood, namely quantum field theory. In other words, even though the UV-completed theory
is far from being known, the low-energy theory of quantum gravity is assumed to be perturba-
tively described by low-energy effective fields, including the massless graviton in particular. In

the regime of low-energy effective field theory, we can ask the following two questions:

(a) What effective field theories are allowed?
(b) What can we learn about the underlying microscopic theory of quantum gravity?

The dS isometry group SO(1,d + 1) and its representation theory appear quite naturally when

we try to answer these questions.



To answer question (a), we should specify both field content and interactions of the fields.
A fundamental constraint on the field content is unitarity. According to our previous discussion
about Wigner's classification, the unitarity requirement is the same as the unitarity of the
corresponding SO(1,d + 1) representations. For example, looking at the list of SO(1,d + 1)
UIRs given in section [3.3.6] more specifically the principal and complementary series, we see that
there are massive spin-s UIRs with a lower bound on the mass for s > 2, the unitarity bound for
this family of SO(1,d + 1) representations. From a field theory point of view, the same lower
bound arises as the condition for the theory to be ghost free, famously known as the Higuchi
bound [42]. In addition to these massive spin-s particles/UIRs, there exists a gigantic zoo of
more exotic particle species, including the exceptional and discrete series of UIRs in the list of
section [3.3.6] The corresponding zoo of fields includes p-form gauge fields, massless higher spin
fields, partially massless higher spin fields, etc, many of which do not have an analog in flat
space, but all of which could appear in low-energy effective field theories of dS quantum gravity.

The existence of nontrivial interactions is a very strong constraint, beyond the scope of
representation theory. For example, in flat spacetime, there exist various no-go theorems [43}-
47] forbidding interacting massless higher-spin field theories. However, these no-go theorems
can be bypassed by turning on a non-zero cosmological constant and allowing an infinite tower
of higher spin fields. In a series paper by Fradkin and Vasiliev[48452], a consistent interacting
action up to the cubic order was found on a fixed (A)dS background, and in [53-55] the fully
nonlinear equations of motion for interacting massless higher spin fields (known as the Vasiliev
equations) was written down in the so-called unfolding formalism. The Vasiliev theories of
gravity provide important examples in AdS/CFT, going beyond string theory. For instance, the
type-A Vasiliev gravity in AdS4 whose field content consists of a conformally coupled real scalar
and massless fields of spin s = 0,1,2,3,...,00, is conjectured to be dual to free U(N) vector
model on the boundary [56].

Altogether, this illustrates higher-spin fields and more exotic variants thereof can be equally
important as low-spin fields in low-energy theories of quantum gravity in (A)dS, providing further
motivation for a general group-theoretic approach.

For question (b), our toolkit for dS is much more limited compared to flat spacetime and

AdS. There is no S-matrix, there are no boundary correlation functions, and no asymptotic



physical charges available to define physically meaningful quantities that could be used as sharp
quantitative tests of microscopic models. However, there is at least one physically meaningful
quantity that could serve this purpose: the de Sitter entropy S itself. The entropy, including
quantum corrections, is computed macroscopically as the Euclidean path integral of the effective

field theory [57]
S=logZ Z= /Dg D ¢ Irl9:2] (1.1.6)

where g denotes the metric fluctuation, ® is a collective symbol for other fields, and the path
integral is expanded around its round sphere saddle point which is the Wick rotation of dS static
patch in eq. (1.1.2). Concretely, we wish to extract unambiguously calculable, UV-insensitive
terms in the semiclassical loop expansion of S, for the purpose of comparison with microscopic
models attempting to match this in the form of a large- N expansion or otherwise. At tree level,
the above path integral yields the classical horizon entropy Sy of eq. . But this cannot
be used to constrain microscopic models, because unlike for black holes, it is just a number,
a renormalized dimensionless coupling constant, instead of a function of physical charges like
Sen (@) in eq. . So we have to go beyond tree level. As we will see in chapter , certain
(nonlocal) quantum correction to the dS horizon entropy, including in particular nonlocal 1-loop
corrections, are UV-insensitive, and moreover exactly calculable. Therefore, our goal boils down
to computing the one-loop sphere path integrals, for arbitrary effective field theories.

However, the one-loop sphere path integral is not as innocent as it looks. For a massless
spin-s field, we need to fix a gauge and introduce a spin-(s — 1) ghost field. For a massive
spin-s field, defined using the Stueckelberg trick, we need to introduce a tower of massless
auxiliary fields [58] and each auxiliary field requires the same steps as in the massless case. It
gets extremely involved to keep track of all the off-shell degrees of freedom as the spin increases.
As we will see in section and , by using SO(1, d+ 1) representation theory, we find a way
to compute the one-loop path integral by using only on-shell data. The latter is precisely and
elegantly encoded in SO(1,d + 1) Harish-Chandra characters, which we will review extensively
in chapter 3

Altogether, the answer to question (b) is that we propose a nontrivial, quantitatively precise



test constraining possible microscopic models of de Sitter quantum gravity. Let's illustrate this
test more explicitly with 3D Einstein gravity as an example. Assume that 3D Einstein gravity

is the low energy effective theory of some UV-complete microscopic of quantum gravity in dS.

The path integral of 3D pure gravity as in ((1.1.6]) yields

S =8y —3logSy +5log(2m) + > a8y " (1.1.7)

n>1
where the leading term is dS horizon entropy and the rest corresponds to exactly calculable,
nonlocal quantum corrections (i.e. cannot be absorbed into local counterterms). S in ([1.1.7))
has to be matched by the microscopic entropy spit out by the microscopic model, say Smic =
logd(N), for some degeneracy d(NN). This imposes a very strong constraint on the function
d(N), and in turn, the microscopic model. As a simple illustration, consider for instance a

hypothetic microscopic model spitting out d(N) = (2]]\}/') Then

_ 1 7T -2
Smic = So — 5 log So + log (21%2) +0(8?) (1.1.8)

where we have identified So = Nlog4 + O(N~1). The evident discrepancy between ((1.1.7))

and (1.1.8)) rules out the model.

1.2 Structure of this thesis

This thesis consists of four main parts. The chapter[2 and chapter[3|form an extensive and quasi
self-contained review of the representation theory of the de Sitter isometry group SO(1,d + 1).
The unitary irreducible representations are constructed and classified. The list of UIRs and their
corresponding de Sitter quantum fields are given in the [3.3.6] The Harish-Chandra characters
of these unitary irreducible representations (and some non-unitary representations) are defined
and computed. More explicitly, given a UIR p, the Harish-Chandra character associated to p
is defined as ©,(t) = tr,e "L, where t € R and L is a boost in so(1,d + 1) that generates
time translations in the southern static patch, c.f. EI For instance, the Harish-Chandra

!In contrast, the element H in so(2, d) generating AdS global time translation (c.f. ) is positive definite.
So given a UIR R of SO(2, d), the most natural definition (which is also the definitions of character used in CFT
[12]) of an AdS character is tr g e ", where t > 0. With this definition, the character of linearized gravity in



character corresponding to linearized gravity in dSj is

104>

o =g

g=-e It (1.2.1)

Such characters will be a key ingredient in all of the work presented in this thesis.
Chapter[4]studies higher spin quasinormal modes in the static patch of dS4;1. The traditional
separation of variables method of solving quasinormal modes becomes almost impossible in
practice when the spin is large. We develop an algebraic approach to this problem, based on the
ambient space formalism of higher spin fields and the observation that quasinormal modes of a
single field field in dS furnish two (non-unitary) lowest-weight representation of the dS isometry
group SO(1,d + 1) |59, [60]. In particular, we obtain the explicit expression of the two lowest-
weight quasinormal modes for scalar fields, massive spinning fields and massless spinning fields.
The whole quasinormal spectrum is then built from these lowest-weight quasinormal modes by
using conformal algebra. More importantly, we define a generating function that encodes the
corresponding quasinormal spectrum of any unitary field and we find the generating function
is exactly the Harish-Chandra character associated to this field. This result provides a physical
interpretation for Harish-Chandra characters, namely that the characters count quasinormal
modes in dS. For instance, let's take the Harish-Chandra character in eq. , expanded

around ¢ =0
©=10¢>+40¢>+100¢* +200¢° + O (qG) (1.2.2)

from which we can immediately read off the quasinormal mode spectrum of linearized gravity

in dSs, i.e. there are 10 quasinormal modes with quasinormal frequency wy = —2i, 40 quasi-
normal modes with quasinormal frequency w; = —3¢, 100 quasinormal modes with quasinormal
frequency wo = —41i, etc.

The long chapter [5] is devoted to computing de Sitter entropy from sphere path integral.
We first develop an intuitive thermal picture, i.e. the one-loop path integral on S%*! should

be formally equal to the thermal partition function in static patch of dS;y1 up to corrections

4 5 . . . .
AdSs is 9(‘71:;)2 , ¢ = e~ . But one should be aware that a character defined in this way is not a group character
because e~*7 does not belong to the isometry group SO(2,d).



associated to the horizon. Harich-Chandra characters naturally appear in the thermal partition
function. Given the physical interpretation of Harish-Chandra characters obtained in the previous
chapter, we get to learn how quasinormal modes contribute to the one-loop partition function.
Then we perform the one-loop sphere partition function rigorously using heat kernel regulariza-
tion for scalars, Dirac spinors and massive/massless higher spin fields, from which we obtain the
one-loop correction to de Sitter entropy for all effective field theories by using eq. (5.1.1). The
result, which is summarized in the eq. (5.1.4)), has a universal “bulk-edge” structure for all field

content supplemented by a group volume factor for gauge fields:

dim G,

K
27a
SO — 1o [ E T
a=0

o0 dt 1 =+ q s 2 q or
vol G, /0 ( Ot — 2 ®£ot> + Set (1.2.3)

2t\1—g¢q 1—gq

where GG, denote gauge groups and Oyt = Opyuik — Ocqge- The bulk character Oy, contains a
bunch of SO(1,d+ 1) Harish-Chandra characters and hence the bulk contribution to S(') admits
the interpretation as (logarithm of)) thermal partition function. In three dimensional de Sitter,
higher spin gravity can be formulated in terms of SL(n, C) Chern Simons theory with n being the
spin cut-off. Classically, we find a landscape of vacua for higher spin gravity, corresponding to
different embeddings of s[(2) into sl(n). At quantum level, as a Chern Simons theory is exactly
solvable, we can compute all-loop quantum entropy and show that is given by the absolute value
squared of a topological string partition function.

The chapter [f] is of independent interest. Inspired by the result of chapter [§ and the higher
spin holography, we revisit the one-loop path integral of higher spin fields in (d+ 1) dimensional
Euclidean AdS (EAdS) and find a character integral representation for the one-loop free energy.
Compared to the de Sitter case, the “bulk-edge” structure persists but the group volume factor
disappears as the zero modes are non-normalizable in EAdS. The bulk part is captured by
SO(2,d) characters and the edge part is argued to be associated to a EAdS;_1-shaped horizon
in Rindler-AdS coordinate. For example, the Euclidean one-loop path integral of a Maxwell field

in AdSy is given by (dropping UV regularization)

©dt1+¢q —t
log Z = — —— (0, — 06 = 1.2.4
owz= [ G il©-0. g=c (1.2.4)
where the bulk character ©, = % and the edge character ©, = %q. We apply the character
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integral representation to the one-loop free energy of various Vasiliev theories of gravity. The
vanishing of one-loop free energy of Vasiliev theories, predicted by higher spin holography, is

strikingly realized by the algebraic relation:

total bulk character — total edge character = boundary character

where the boundary character vanishes for non-minimal type-A Vasiliev gravity and is the
SO(1,d) Harish-Chandra character corresponding to a conformally coupled scalar for minimal

type-A Vasiliev gravity.

It should be mentioned that some part of the authors’'s work has been left out of this thesis.
It includes the following two papers: [61] with F.Denef, S.Kachru and A. Tripathy, and [40]
with D. Anninos, F. Denef and R. Monten. In [6I], we conjecture that the three-center BPS
bound states in type |l string theory compactified on K3 x T2 is counted by the degree three
Siegel modular form. We test the conjecture by checking wall-crossing properties (including the
degenerating limits where one-center and two-center objects appear) and holographic bounds.
In [40], we propose a microscopic model for minimal higher spin de Sitter quantum gravity.
In particular, this model provides a precise definition of the Hilbert space of higher spin dS
quantum gravity, its operator algebra and its Hartle-Hawking vacuum state. This model can
be used to compute late time cosmological correlation functions, probabilities of arbitrary field
configurations (beyond the perturbative regime) and reconstruct bulk Heisenberg algebra (up

to errors exponentially suppressed by de Sitter Bekenstein-Hawking entropy).
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Chapter 2: Representation theory of SO(K)

In this short chapter, we review some basic facts about the irreducible finite-dimensional rep-
resentations of special orthogonal groups. We will also derive a new expression for the Weyl
characters and a relation of Weyl dimension formulae. They are important technical tools when

we study the de Sitter isometry group and perform sphere path integrals of higher spin fields.

2.1 General facts

The special orthogonal group SO(K) (K > 2) consists of K x K matrices satisfying 07O = 1
and det O = 1 and its Lie algebra so(K) consists of antisymmetric matrices. We choose a basis

Lap=—Lpa,1 <A, B <K of so(K) that satisfy the following commutation relation
[Lap, Lcp) = dpcLap + permutations (2.1.1)

The Cartan subalegbra is generated by J; = L12,J2 = L34, -+ ,Jr = Loy_1,2, for K = 2r or
K=2r+1.
Every irreducible finite-dimensional representation of SO(K) with K = 2r or K =2r +1is

labelled by a highest weight vector s = (s1,...,s,) ordered from large to small, satisfying

» Positive condition: all s; are nonnegative except s, which can be negative when K = 2r.

Different signs of s, distinguish the chirality of a representation.
= Integral condition: s; are either all integer (bosons) or all half-integer (fermions).

For example, the spin-s representation corresponds to s = (s,0,---,0). In the bosonic case,
we can associate a Young diagram Yy to the highest weight vector s such that there are s;
boxes in the i-th row of Yg (ignoring the subtlety when s, becomes negative). We shall use the

shorthand notations Y and Y,, s when s = (s,0,---,0) and s = (n, s,0,--- ,0) respectively.
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2.2 Weyl dimension formula

For various applications in this thesis we need the dimensions DX of these SO(K) representations
s. The Weyl dimension formula gives a general expression for the dimensions of irreducible
representations of simple Lie groups. For the SO(K) this is

o K =2r:

1<i<g<r

with Nk independent of s, hence fixed by D =1, i.e. N = [[j<jcjc, (K —i— j)(j — ).
o K =2r+1:

Df = /\/};1 H (2&) H (fz + gj)(& — Ej) R b = s; + % —1, (2.2.2)

1<i<r 1<i<g<r

where N is fixed as above: N = []j <<, (K — 20) [T1<jcj<, (K — i — J)(j — 7).
When s has only one or two nonvanishing entries, DX takes a simpler form that works for both

odd and even K

DK:<5+K—1>_<3+K—3>:(28+K_2) I'(s+ K —2) (223)

. K—1 K—1 T(s+ 1)K —1)

(K+2n—-2)(K+2s—4)(n—s+ 1)(K+n+s—3) (K +n—-3)['(K+s—4)

DE = 2.2.4
s ['(K —3)[(K — )I'(n+2)(s+1) (2:24)
The expression fos in eq. ([2.2.4)) as a function of n and s can be analytically continued to

C x C apart from some discrete poles. In this sense, it satisfies an interesting relation

DE, =-DF | .| (2.2.5)
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For convenience we list here some low-dimensional explicit expressions:

K K K
K | D! DE, DE 1 4
2 |1 1
3 | 2s+1 Q(k-{-l)
4 | (s+1)? (n—s+1)(n+s+1) 2(F42)
5 (s+1)(s+62)(25+3) (2n+3)(n—8+1)6(n+s+2)(28+1) 4(]6-;}-3)
6 (s+1)(5+2)?(s+3) (n+2)2(n—s+1)(n+s+3)(s+1)? 4(k+4)
12 12 4
7 (s4+1)(s4+2)(s+3)(s+4)(25+5) | (n+2)(n+3)(2n+5)(n—s+1)(n+s+4)(s+1)(s+2)(2s+3) 8(k+5)
120 720 5
8 (s+1)(s4+2)(s+3)2(s+4)(s4+5) | (n+2)(n+3)2(n+4)(n—s+1)(n+s+5)(s+1)(s+2)%(s+3) ] k+6
360 4320 ( 6 )
(2.2.6)
Here (k + %, %) means (s1,...,s,) = (k+ %, %, . %) i.e. the spin s =k + % representation.

2.3 A new expression for SO(d + 2) characters

Besides the dimensions DX, we also need the characters tr s;r‘lh --z)r of SO(K) representa-
tions. Instead of using the famous Weyl character formula directly, we will show a new expression
that works exclusively for the single-row and two-row representations. This new expression is

based on the following observation:

Claim. The character ®§S§d+2) (z) = try, x4 has the same polar part (i.e. terms of negative

powers in x) and same constant term as the following function

Dz — Dgﬂ zls
(1 —x)d

Pyl (z) (2.3.1)

Since ®§S£d+2) (x) is symmetric under x <+ ! by construction, it is then completely encoded
in the function P (x). In particular, when s = 0, i.e. spin-n representation, the character

G)g{g(dﬁ) (x) is encoded in

x*’n

(1 — )

Q4(x) (2.3.2)

More explicitly, let f(z) be a function with well-defined Laurent expansion around = = 0.
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Denote the polar part of f(x) by [f(z)]— and denote the polar part together with the constant

term of f(z) by [f(x)]o. With this notations, the claim implies that

0 (w) = [Ph. @], + ([Pho(o)]

%> (2.3.3)

A simple way to prove this claim is by induction. It only involves using branching rules of

special orthogonal groups. Here we want to present a more illuminating approach that requires
information about the detailed structure of the representation Y,,s, which will be reviewed in a

CFT-style language as follows. Mimicking the conformal algebra, we define the following basis
M;; = Lij, H=1ilLog+1, FPi= Lay1;+iloi, Ki= —Lay1,i+ Lo, (2.3.4)
where 1 < ¢ < d. The new basis leads to some interesting commutators
[M;;,H) =0, [H,P]=P, [HK;=-K; [K;Pj]=2M,;; —2;H (2.3.5)

In particular, P; raises the eigenvalue of H by 1 while K; lowers the eigenvalue of H by 1.
First, consider spin-n representation of SO(d+2) generated by the lowest weight state |lw) that

satisfies
H|lw) = —n|lw), K;llw) =0, M;j|llw) =0 (2.3.6)

A generic state in the Verma module generated by |lw) is a linear combination of the descendants
P;, --- P, |lw). However, there are very strict constraints on the descendants imposed by the
integralness of n. To see this more explicitly, let's switch to the wavefunction picture. In this
picture, the representations space consists of degree-n polynomials ¢(X) of X4 e RH2 where
A=0,1,---,d+ 1, satisfying 93¢ = 0 and the generators L4p act as differential operators
X40p — Xp04. Define complex (lightcone) coordinate z = X441 +iXo, 2z = X411 — i Xp and

then the differential operator realization of H, P;, K; can be expressed as

H=20,—20;, P,=20,—2X,;05, K;=-20;+2X,0, (237)
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It is easy to check that the lowest weight state |lw) corresponds to a 9y, (z,2) = z2" . One
crucial observation is that all of the states v;,..;, = P;, -+ FP;, ¥, with k& < n are linearly
independent. To show this, it suffices to notice that the top component of %;,..;, in Xj is
X - -XZ-kZ"*k’ for k < n which arises from the —2.X;05 part of each P;. It's apparently that
X, ~~-Xik2"_k are nonvanishing and linearly independent and hence all v;,..;, with & < n

are linearly independent. Then it's almost trivial to construct the nonpositive powers in the

character @;S(dw) (x) = Trazf

o], = 3 (VA= [ (15 )] - et o
0

k=0 k=0

This is exactly the single-row case of the claim. Then the full character is reconstructed using

the z <> 2~ !. For example, due to this symmetry the coefficient of x in @;?L(dﬁ)(x) should
be (%" ?) rather than the native counting (%'"). Even more explicitly, we can find what are

these (djgff) states. The subspace H(()") where H = 0 is spanned by all x;, - - - z;,. Acting P;

on them yields basis for the subspace H\" where H = 1

P]l‘u “ee :L‘Z

n

Therefore HYL) is spanned by zx;, ---2;, , and has dimension (dtlf;?).

Next, we consider more complicated representations like Y,,s, for which we have a lowest
weight state |lw);,...;, that carries a spin-s representation of SO(d) (rigorously speaking “lowest
weight state” is not the correct terminology here but we'll stick to it for convenience). As before,
|{w);,...;, has quantum number —n under H and is annihilated by K;. To represent the lowest
weight state as a wavefunction, we need to introduce another copy of R%*? with coordinate Y4

such that L4p is realized as
Lap = XAaxB — XBaxA + YAOYB — YgayA (2.3.10)
and the representation space consists of homogeneous polynomials ¢(X,Y") satisfying

(X -0x —m)p(X,Y) = (Y -0y —5) = Brp(X,Y) = X -dyo(X.Y) =0 (23.11)
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Define complex (lightcone) coordinate for the Y-space w = Yy i1 + iYp, w = Y41 — iYp and

then H, P;, K; can be expressed as

H =20, —265+w8w—w8@, P, :Zaxi —2Xi85+w8yi —2Y;05

Kz' = —58)(1- + 2Xzaz - waYi + QY;Ow (2312)

It's easy to check that the following wavefunction actually corresponds to the lowest weight

state

Y = (ZY — @X), - (BY — @X),, — trace (2.3.13)

Introduce a null d-vector u; and then )™ ; can be more efficiently written as
YI(X 4, YVEiu) = 275 (ZY -u— w0 X - u)® (2.3.14)
The claim [@§S§d+2) (x)]o = [Dgwir(bl__[f;jlxlis]o, in particular the x17* part on the R.H.S, signals

that there should be a constraint on the descendants at level (n+1—s). To show this, let’s focus

on the component of 1% . with the highest degree in X;, which is roughly 2" *w*X;, - -- X;.

i1 lg

up to pure trace component. Similarly, the top X; components in the descendants of ¢)"Y come

from —2X,0; € P; with 0z acting on z"~*, that is,

. (2.3.15)

Pil . Hk ﬁ”js 5 (_2)k (8557173) wSXil . 'XikX]d - Xj

Therefore for level 0 < k < n — s, all the naive descendants F;, - - - Rkwﬁ’,_js are nonvanishing
and linearly independent. However at level k = n+ 1 — s, one can easily check that (u- P)¥!¥

vanishes identically which means the following spin-(n + 1) wavefunction is actually zero

Po P,y Swjl .j,) — trace =0 (2.3.16)

SO(d+2) (2)

Without this constraint, the polar part of O3 would simply be encoded in D¢

S

i.e. the result of s = 0 multiplied by a spin degeneracy. With this constraint, we should subtract

the contribution of itself together with its descendants, which is g+1ﬁ from a simple
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counting. Altogether, we get

ot [ e, s
0

Before moving to the implication of the claim, let's illustrate it again with the explicit example

Y11. In this case, the lowest weight (vector valued) wavefunction is
PXY) =z2Yi -0 X, (2.3.18)
and the states at the next level
P (X,Y) =2(X;Y; — X; Vi) + (wz — 2w)dy (2.3.19)

where we only have antisymmetric and pure trace components and the symmetric traceless part

is missing. Therefore the character is

d(d—1)

@?{?l(d+2)(l,) —d (m + xil) + 5

+1 (2.3.20)
The claim 1D has some important corollaries. We first rewrite Pfl{s as
szl,s(ﬂﬁ) = DiQs(x) — Dy 11 Q1 (x) (2.3.21)

Since Pf (x) encodes the character of Y, and QZ(z) encodes the character of Y, the

elementary equation ([2.3.21)) yields a highly nontrivial relation of characters

@ggfsd+2) (z) = Dg@i)(dw) _ Dg+1@§?ﬁl+2) (2.3.22)

It allows us to construct the Weyl characters of two-row representations by only using the Weyl
characters of single-row representations. Taking the limit x — 1 on both sides of (2.3.22)), we

obtain a nontrivial relation of dimensions

Dit? = DIDI? — D DAY (2.3.23)




18

which can be checked by using the egs. (2.2.3) and (2.2.4). We have also checked in mathe-
matica that the eq. ([2.3.22)) (and hence also eq. (2.3.23))) admits a generalization to a special

type of hook diagrams:

SO(d+2 SO(d+2 SO(d+2
@Yn7(s71m)($) = Dg,lmeYn( )~ Dgﬂ,lm@ys_(l ) (2.3.24)
where Y,, s 1m corresponds to the highest weight vector s = (n,s,1,1,---,1,0,---,0) with 1

repeated m times. At the level of dimension, (2.3.24)) yields

D2, =D . DI? — DI 1 DI (2.3.25)

n,s,1m



19

Chapter 3: Representation theory of SO(1, D)

In this chapter we review the representation theory of de Sitter isometry group focusing on
the construction of unitary irreducible representations (UIRs) and computing the corresponding
characters. Instead of being rigorous mathematically, we aim to present an elementary and
physicist-friendly description about the constructions. Therefore for certain technical proofs,
we will simply illustrate the underlying idea with examples and refer the interested readers to
literature. With the conventions specified in the section @] we start the construction of UIRs
of SO(1,2) in section by borrowing ideas from conformal field theory (CFT). Then we
generalize this method to the higher dimensional groups SO(1,d + 1) in section In the last
section, we compute the Harish-Chandra characters [62] of these UIRs. The presentation of this

chapter is mainly inspired by the unpublished note [63] and the book [64].

3.1 Introduction and conventions

The isometry group of (d+1)-dimensional de Sitter spacetime is SO(1, d+1), which is isomorphic
to the d-dimensional Euclidean conformal conformal group. A standard basis for the Lie algebra

so(l,d+1)is Lap = —Lpa,A=0,1,---d+ 1, with commutation relations
[La,Lcp] =nBcLap —nacLep +napLec —nepLac (3.1.1)
where

NAB :dlag(_]-?l? 71) (312)
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The isomorphism between s0(1,d 4+ 1) and the d-dimensional Euclidean conformal algebra is

given by the following linear combinations

1 1
Lij = M;j, Log1 =D, Lgy1;= i(Pi + K;), Lo; = i(Pi - K;) (3.1.3)

where D is dilatation, P; (¢ = 1,2,---d) are translations, K; are special conformal transforma-

tions and M;; = —Mj; are rotations. The commutation relations for the the conformal algebra

following from ([3.1.1)) and (3.1.3) are

[D,P]=PF;, [D,Kj]=-K; [K;Pj]=26;D—2M;
[Mij, Pr] = 0Py — 0 Py,  [Myj, Ki] = 01K — 031 K

[Mij, Mie] = 65 Mie — 6irsMje + 6 M — 60 M (3.1.4)
The generators L4 p exponentiate to group elements in SO(1,d + 1)

U(9) = exp(04P Lap) (3.1.5)

QAB

where are real parameters. Some important subgroups of SO(1,d + 1) that will be used

later are

K=S0(d+1), M={e"Ms =50(d),w” R}, A={e" \cR}

N = {eb'K,bi € R}, N = {eI'P,xi c R} (3.1.6)

where K is the maximal compact subgroup of SO(1,d + 1).
To get a unitary representation of SO(1,d + 1), the Lie algebra generators must be realized

as anti-hermitian operators on the Hilbert space, i.e.
Ly =—Lap (3.1.7)

This is the reality condition relevant to (d 4 1)-dimensional unitary quantum field theories on a

fixed dS background. Notice it is different from the reality conditions relevant to d-dimensional
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unitary (Euclidean) CFTs or (d-+1)-dimensional unitary quantum field theories on a fixed (E)AdS
background. The latter corresponds to the reality condition of the s0(2,d) algebra obtained by
Wick-rotating the X4*! direction. This gives for example PiT = K; whereas for so(1,d+ 1) we
have P;r =—-F,.
Given a representatiorE], the quadratic Casimir which commutes with all generators, is chosen
to be
1
4
2 1 Lo

1 1 1 .
Cy = 5LABLAB =-D*+ (P + K;)* — il K+ o M MY

1
= D(d - D) + PK; + iij (3.1.8)

Here M7 = $M;; M is the quadratic Casimir of SO(d) and it is negative-definite for a unitary

representation since M;; are anti-hermitian. For example, for a spin-s representation of SO(d),

it takes the value of —s(s+d — 2).

3.2 UIRs of SO(1,2)

When d = 1, the Lie algebra so(1,2) is generated by {P, D, K} satisfying the following com-

mutation conditions
[D,P]=P, [D,K]=-K, [K,P|=2D (3.2.1)
The quadratic Casimir is Co = D(1 — D) + PK.

3.2.1 A direct constrction

Define Ly = il15 = —%(P—kK) to be the Hermitian operator that generates rotation in dSs. It

takes value in integers if we require a group representation since 2710 is the identity operator

!Rigorously speaking, we do not need a representation to define a Casimir. Instead, it can be defined abstractly
as an element of the universal enveloping algebra.
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in SO(1,2). P As in the SU(2) case, we define ladder operators
L= —%(P—K) +D (32.2)
and they satisfy
[Lo,L+]=+Ly, [L_,L.]=2Ly, L =1L, (3.2.3)

Thus L raises the eigenvalue of Ly by 1 while L_ lowers it by 1. In terms of the basis {Lg, L+ },

the quadratic Casimir operator is expressed as
Co=LyL_+ Ly(1l — Ly) (3.2.4)

To construct the whole representation space of certain unitary irreducible representation R,
we start from an eigenstate of Ly, i.e. a state |N) satisfying Lo|N) = N|N) where N € Z. By
acting Ly on |N) repeatedly, we obtain a whole tower of states: {L%"|N), L”"|N)},, en. Itis
possible that the L_ action gets truncated. That is, there exist some P such that L* |N) = 0 for
k > P+ 1. On the other hand, due to the noncompactness of SO(1, 2), the unitary irreducible
representation R has to be infinite dimensional. Thus, in this case, the L action cannot be
truncated. In addition, due to the irreducibility, other states with Lg-eigenvalue larger than
N — P cannot be annihilated by L_. Altogether, by proper normalization, the action of L_ can

be chosen to be
L_|n)y=(n—A)n-1) (3.2.5)

where |n) is the eigenstate (not necessarily normalized) of L with eigenvalue n. The truncations
discussed above happen when A hits integers. Acting the quadratic Casimir on |A) yields the

expected value A(1 — A) and it can be used to fix the action of L, :

Liln)=(n+A)n+1) (3.2.6)

2|f we consider representations of SL(2,R), the double covering of SO(1,2), then Lo can be either integers or
half-integers and e*™*f0 ¢ {#£1} is a constant in a unitary irreducible representation.
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With the action known, we proceed to analyze the constraint of unitarity which consists of two
parts: (a) the inner product (n|n) is positive definite and (b) L is the Hermitian conjugate of

L_ with respect to this inner product, i.e.
(n|L_|n+1) = (n+ 1|Ly|n)* (3.2.7)

The latter implies

(n+1ln+1) n+A

(n|n) on 4 A*

An (3.2.8)

where A =1 — A and A* is the complex conjugate of A. The reality of ), yields two possible

families of solutions:
. 1 ..
(i)A = 5 Tims pE R, (ii)AeR (3.2.9)

The positivity of A\, requires separate discussions for different values of A:

= )\, is identically equal to 1 when A =1 + iy, We can consistently choose (n|n) =1 for
any n € Z and hence the resulting representation, denoted by Pa, is unitary. We call Pa

a (unitary) principal series representation.
= When A € R but A ¢ Z,, n takes value in all integers and we need

n+A  (n+3)2—(A+3)?
n+l-A (n+1—A)2

An = >0 (3.2.10)

to hold for all n € Z. The most stringent constraint clearly comes from n = 0, which

implies 0 < A < 1. For A in this range, we choose the following normalization

(nn) =

CEYN] (3.2.11)

Altogether, we obtain a new continuous family of UIRs, denoted by Can for each fixed
A € (0,1). They are called complementary series. At A = % the intersection point of

principal series and complementary series, the norm ([3.2.11)) is reduced to (njn) =1, i.e.
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the norm we've chosen for principal series.

» When A € Z,, the vector space spanned by all |n) contains two so(1,2)-invariant sub-

spaces:

{|n)}n>a : carries a lowest weight representation D

{|In) }n<—a : carries a highest weight representation D (3.2.12)

It's clear that all \,, are positive when restricted to these two subspaces. Thus DX are

also UIRs, called discrete series. In each Di, we choose the normalization to be

[(+n+ A)

Y (3.2.13)

n|n =

(n| >D§

= When A takes value in negative integers, the vector space spanned by all |n) contains
only one finite-dimensional so(1, 2)-invariant subspace which furnishes a nonunitary rep-

resentation, When A = 0, |0) carries the trivial representation.

In conclusion, the conformal group SO(1,2) admits four types of unitary irreducible representa-
tions (the irreducibility is automatically guaranteed by the construction given above): principal
series Pp for A € % + iR, complementary series Ca for 0 < A < 1, discrete series Di for
A € Z and the trivial representation. In addition, for principal and complementary series, there
exist an isomorphism between Pa (Ca) and Pz (Cx) which can be realized by the following
invertible intertwining map that preserves the inner product:

T(n+ A)

In)x (3.2.14)

where |n) A denotes the |n) basis in Pa (Ca) and similarly for [n) 5. With this normalization, Sz 0
Sa = 1, where o means the composition of maps. In the CFT terminologies, this intertwining

map Sa is called a shadow transformation.
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3.2.2 A CFT-type construction

In this section, we will show that all the UIRs of SO(1,2) constructed above can be realized
in certain function spaces by borrowing ideas from conformal field theory. This method can be

easily generalized to the higher dimension cases.

3.2.2.1 Representation space

We start with a primary state of scaling dimension A =1 — A, i.e. a state ]A, 0) satisfying:
K|A,0) =0, D|A,0) = AJA,0) (3.2.15)

However, unlike in usual unitary CFT, we do not require this state to be normalizable (indeed,
as we shall see, it is not and hence does not belong to the Hilbert spaces we will construct).

Acting by translations on this state produces a family of states
A, z) = e"F|A, 0) (3.2.16)
From this definition and the conformal algebra, we then get (dropping the label A for |A, z))
Plz) = O,|z), Dlz) = (20, + A)|z), Klz) = (2°0, + 2Az)|z) (3.2.17)
Then a general state [¢)) can be expressed as a linear combination

) = /R dap()|) (3.2.18)

At this point, 1 (z) can be any smooth function El The action of the conformal generators

on the wavefunctions v (z) is obtained from (3.2.17)) and integrating by part. For example,
PlyY) = [dxp(x)0z|x) = [dax (—0x1(x))|x). This gives

Pi(a) = —0pp(x), D) = —(w0, + A)la), Kip(a) = —(2°0, + 280)b(x) (3.2.19)

3We can also consider more general functions, for example 3 (x) = \z\ﬁ which gives the shadow of |A,0),

i.e. a primary state of scaling dimension A. But these states are not normalizable.
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The requirement of lifting the Lie algebra action (3.2.19)) to a group action imposes constraints

on the wavefunctions. In particular, exponentiating the special conformal transformation yields

() (a) = (1 Jrlbx>m¢ <1 fm) (3.2.20)

By taking the limit 2 — —3, we can read off the asymptotic behavior of ¢ (x)

o) TR mlm (cw 4O (1)> (3.2.21)

]

where ¢y, is some constant. Let Fa be the complex vector space of infinitely differentiable
functions satisfying the asymptotic boundary condition (3.2.21)) and it furnishes a representation

of SO(1,2) whose infinitesimal version is given by ([3.2.19)).

3.2.2.2 Consequence of unitarity

Given the set of states/wavefunctions, we should define a positive definite inner product (z|y)
that respects the dS reality condition, i.e. all generators of SO(1,2) are anti-Hermitian. First
notice that PT = — P leads to the relation 9, (z|y) = (z|Ply) = —0,(x|y), so (0, + 9y)(z|y) =
0, i.e. (x|ly) = f(z—y) for some function f(z). Likewise the reality of the dilatation and special

conformal transformation requires

(20, + Y0y + A+ A" f(z —y) =0 (3.2.22)

(220, + 420, + 2Ay + 2A%z) f(x —y) =0 (3.2.23)

where the first equation fixes the scaling property of f(z) as (0, + A + A*)f(z) = 0, which

together with the second equation implies

(A~ A%zf(z) =0 (3.2.24)
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The eq. (3.2.24) holds when either A is real or f(z) o d(x). The former further implies

flx) x - ‘m while the latter implies A + A = 1. Thus we arrive at the conclusion that the

reality condition allows two qualitatively different cases

1
DA =5 +ip, peR, (zly) =cilz—y)

I: AeR, (x|y) =

(3.2.25)
|z — y|

where ¢ is some A-dependent constant. Correspondingly the inner product of two states of the

form ([3.2.18]) equals (dropping c)

Jr dz i (z) 2 (@) A=l
(P1lthe) = ® ) P 5220
Jrxr dz dy % AceR

|2A

In case |, the inner product ([3.2.26)) defines the usual L?-norm for wavefunctions in the space

Fi 1

This norm is clearly well-defined because for any ¥ € F1 19|? decays as ik

5 i 5 i

near infinity. Therefore, b € F1 equipped with the L2-norm carries a unitary irreducible

5+ip
representation of SO(1,2), which as we shall see is a principal series representation. To analyze

the positivity of 1’ in case ll, it is more convenient to rewrite the kernel Ka (z,y) = P Zlm

in momentum space

_ o c ipr _ c A —tm +ipx
KA(p)_/ood PESEERTTN / / e
»2
T

w\)—n
S~—

C\f *dt A1, d 2A-1
=—5x1 ¢ =2 \f

p

( ) (3.2.27)

As long as we choose ¢ properly, the kernel ICa (p) is positive. However, the positivity of Ka(p)
does not necessarily imply that the inner product on the space F defined by ICa (p) is positive
definite. We have to check that all the wavefunctions in Fa are normalizable with respect to this
inner product, otherwise regularization can destroy the positivity. Since 1(z) € Fa is infinitely
differentiable, its Fourier transformation decays rapidly as [p| — oo. It suffices to check the
normalizability for small p. Let ¢(p) be the Fourier transformation of ¢ (x). Its small p behavior

has two types of leading fall-offs: ¢; p° and ¢y p?2~1 where ¢1, ¢ are constants. The former
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comes from the regularity of ¢ (x) for finite mE]and the latter arises from the large x asymptotic

behavior of ¥(x). As an explicit example, let's take 1(z) = ﬁ, which clearly lives in the
space Fa. lts Fourier transformation can be performed analytically ¥ (p) pA_%K;_A(p).
2

Then the two leading fall-offs of ¢)(p) are a result of the following property of Bessel K-function
Ko(z) 'R 2% (27171 (=a) + 0(z%)) + 27 (27T (a) + O(?)) (3.2.28)

0 /
Plugging ¢ (p) e~ c1+cop* ~Linto the inner product | g—ilCA(p)h/J(p)P where ICa(p) = Iﬁ,

we conclude that 1 (x) € Fa is normalizable if and only if 2A —1 > —1 and 1 —2A > —1, i.e.
0<A<1 (3.2.29)

which is exactly the range for complementary series.

3.2.2.3 A discrete basis of Fx

Thus far we have shown that the function spaces Fa furnish unitary irreducible representations
of SO(1,2) when A € % + iR or 0 < A < 1. Indeed they are the same as principal and

complementary series constructed in the previous section. To prove this claim, we first find the

eigenbasis of Ly =i (1*'2’”2 Oy + Ax) in Fa, i.e. wavefunctions ¢7(1A) satisfying LowflA) = nwﬁlA)

Uy () = (Hm) DR (3.2.30)

In addition, it is straightforward to check

L™ = (n+ AW, L@ =(n— Al (3.2.31)

n—1

which take the same form as the action of Ly on |n), c.f. (3.2.5) and (3.2.6]).

*For example, if () = 382% which is singular at the origin, then we don not have the p° behavior.
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1
For |A € 3 + iR |, the L%(R) inner product yields

(W), i) —c/ dz P () (@) = ¢ T6m (3.2.32)

By choosing ¢ = % we get to identify ¢£LA) (x) as the state |n) in principal series.

For , the inner product can be computed by expanding the kernel ICa (21 — x2)

in terms of ng). Define z; = tan % and we rewrite Ka(xz1 — x2) as

2
28 ¢ 1
Ka(r12) = A
A(712) (1+x%>A(1+x2) (1—(:08912)
A o0 A
B 25 e 1 / ds A —stsr (3.2.33)
(L+a)3(1+aATA) Jo s

where 215 = 21 — 25 and 015 = 01 — 05. The factor €912 admits a harmonic expansion
%012 = > I(s) e~inb12 (3.2.34)
neZ

with the coefficients being modified Bessel functions. Plugging the expansion (|3.2.34)) into

(13.2.33)), the s-integral can be evaluated analyticaIIyE]

. CF(A — l) 1 F(A + n) —infi2
Ka(z12) = ﬁF(Ai 1+ 2)5(1 + x%)ﬁ 7%‘% I'(A+n) ¢
_ L n) e o
N C\I;E?AF(_Q) XE: EAJF gng)(q;l)wﬁlA)(xQ) (3.2.35)

where in the last line we've used e~ = 1 i By choosing ¢ = # the basis wn
+ix; 7r2F(A——
normalized as
(A +n)
(A) )y =g AT 2
(43,98 ) = dom 3 (3.2.36)

and hence we get to identify 1/17(1A) as |n) in complementary series, c.f. (3.2.11).

5The integral [~ ds S_AIn s)e® is convergent when £ < A < 1 and admits an analytic continuation to the
g 0 g 2 y
whole complex plane except some single poles.
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3.2.2.4 Discrete series

When A is an positive integer, say A = N € Z,, the function space Fn has two invari-
ant subspaces Fj; = Span{wéN)}nzN and Fy = Span{wﬁlN)}nS_N, which as we will show
soon correspond to the discrete series D]j\t, respectively. Similarly, when A = 1 — N is a
nonpositive integer, F1_x contains three invariant subspaces ]-"1+_N = Span{w,gN)}nzl,N,
N = Span{w,(lN)}nSN_l and Py = F;" y N F_ N, where Py is nothing but the space
of polynomials in x (with coefficients valued in C) up to degree 2N — 2 and hence is annihi-
lated by the differential operator 92V ~!. Indeed, 92V ~! is an intertwining map between F;_y
and Fu, as shown in the commuting diagram . In particular, 8§N_1 maps wgl_N)(x) to

ng)(:r) up to an overall constant for any |n| > N.

52N -1

Fi-n ———— Fn
Lagp Lag

fl_NW.FN

Figure 3.2.1: Intertwining operator a};N—l : Fi-N — Fn. Lap denote the action of so(1,2) in
]:N and fl—N-

Group theoretically, this claim follows from LO(E)%N_lwg*N)) = agN—lLowS*N) =n agN—l@z)ﬁ}*N).
On the other hand, it can also be proved by a direct computation, for example for n > N

1+ iz —2)N-1+n

2N—1,(1-N) (. — (_\N—1+n an—1(
RV ) = (N

N+n—1

_ ()Nl 3 (_2)k<N ‘*‘: - 1) O2N=1(1 4 j)2N -2k
k=2N—1

. Woan—1 LN 4n)

s L (3:2.37)

Taking complex conjugate on both sides of (3.2.37)) yields the n < —N cases. Thus ]-"Jj\? is
isomorphic to the quotient space ]-"lifN/PN. Altogether, the relation between Fy and Fi_n
can be summarized in the following diagram:

To define an inner product on F3; (and similarly on Fy ), one would naively expect to use
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7 7 7

N e oo
o3 I

AAAAAAAA AAAAAAAA

dim =5 rep

o)

| R |

F_2

Figure 3.2.2: The relation between F3 and its shadow F_5. The upper red line represents

the space F3 and each dot denotes the basis 1/),(63). It contains two invariant subspaces ]-";E
corresponding to the discrete series representation Dgt. The lower blue line represents the space

F_2 and each dot denotes the basis 1/1,(;2). It contains a 5-dimensional invariant space P3. The
upward arrows denote the intertwining operators 9. It annihilates the subspace P3 and maps

b to P for |k| > 3.

the kernel Ky (z,y) = (x — y)>™ =1 as in the complementary series case. However, this does
not work because Ky is a delta function with some derivatives in momentum space while the
wavefunctions wﬁlN)(x) in 75 are supported on p > 0 due to the analyticity of ng) (x) in the
lower z-plane when n > N. Therefore, the inner product defined via K (z, y) is identically zero.
Thanks to the quotient space realization, i.e. Fx = fft_N/PN, we can avoid using K (z,y) by
working in the space F1_n. The idea is very simple and let's phrase it in a more general setup.
Given two representations V; and V5 of some group G and an intertwining map ¢ : Vi — V5
which can have a nontrivial kernel, then a positive semi-definite G-invariant inner product (, )1
on V1 induces a positive definite G-invariant inner product (, )2 on Im ¢, if ker ¢ is orthogonal
to the whole vector space V; with respect to (, )1 and (, )1 is positive for vectors not in ker ¢

With these assumptions, the induced inner product (, )2 is given by (ve,v2)2 = (vi,v1)1
where v; € V; and ¢(v1) = ve. The choice of v is clearly not unique when ¢ has a nontrivial
kernel but the inner product is independent of such a choice. We can fix v; by choosing a map

£ : Vo — Vi such that ¢ o £ is the identity operator on V5. Then the inner product on V5
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becomes
(v2,v2)2 = (Lv2, Lv2)1 (3.2.38)

Now let's take Vi = Fi" \,Vo = FJ; and ¢ = 92NV=1. The relation (3.2.37) yields a positive

semi-definite inner product on V; = ]-"fQN that satisfies the conditions discussed above

(o = i)V ex [ o) 2 19) (3.2.39)

where cp is a positive constant. More explicitly, we have

I'(N +n)

(1-N) (1-N)y. _ 92N—1
(djm ﬂﬁn )1 2 7"-CNF(n "N+ 1) mn

(3.2.40)

Next we choose a map £y : ]:]J\? — ]_—1+_N such that 92V~1 o £ is the identity operator on

]—7{,. A very natural choice of £y is

(Ene)(z) = lel) /R » % en(z—v(y), Ln(z)=22N"Vlog(z)  (3.2.41)

where the limit ¢ — 0T is understood and the branch cut of log z is chosen to be the z < 0

line. When acting 92V~ on (£x%)(z), the kernel £y (x — y) becomes F(%;l) and we can

close the contour in the lower half plane picking up the pole at y = x since ¥ (y) is holomorphic

in the lower half plane and decays fast enough at co. More explicitly, the action of £y on the

basis ng) is computed in the appendix

W T —
(3904) )= gt g 0+ Pl (3242)

where Poly ,,(x) is a polynomial annihilated by 02N=1 Altogether, the inner product on the

space .7-"; induced by (]3.2.39[) and (]3.2.41[) is

)N _
¥, ¥) pr = (ENY, ENY) = %(F(Q)NJ_VI) /R da /R L o) = y)* N Dlog(z — y)ib(y)

(3.2.43)



33

In particular, choosing cy = 22:71, we get
'(n—N+1)
(N) y(N) - T 244
W ¥ ) = vy Omn (3.2:44)

consistent with the inner product (|3.2.13)) for discrete series ’Dj{,.

Before moving to the next section, we want to make some remarks about the kernel £x(x, ).

Remark 1. For complementary series of scaling dimension A, the inner product is defined

through the kernel Ka(z,y) = — As a function of A, Ka(x,y) is well-defined on the

T a—y2AT

whole complex plane as long as x # y. Taylor expansion of KCa(x,y) around A = N yields

A—N _ _
Kalw,y) "= =PV £ 2(A = Mo — yPY Vlog(a —y) +--- (3.245)

The first term on the R.H.S is simply Kn(x,y) and we have argued that it leads to a trivial
inner product for ]—']\L[. The second term, with the numerical factor stripped off, is exactly the

kernel £ (x —y) that defines the inner product for discrete series (up to a contour prescription).

Remark 2. Unlike Ka(x,y), £n5(z —y) is not SO(1, 2)-invariant. For example, under scaling

transformation
AP ez —y) — 20N ey (e — eMy) = En(z — y) + Az — y)2 VD (3.2.46)

and under special conformal transformation

bK | _ r Y ) 2(N=1) 1 poN2(N-1)
e’ Ln(x y)—>£N(1_bx l—by) (1—bx) (1 —by)

— ex(z —1y) + (. — )V (log(1 — bx) + log(1 — by)) (3.2.47)
However, these extra terms does not contribute to the inner product .

3.2.2.5 Shadow transformation

In the eq. ([3.2.14]), we define the so-called shadow transformation as an intertwining map be-
tween the two representations with scaling dimension A and A respectively. In the wavefunction

picture, we want to realize Sa as a linear operator acts on any ¢(x) € Fa by using a kernel
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function Sa(x,y)

Sa: wla)— [ dySalw.y)v(y) (3.2.48)

The intertwining condition imposes nontrivial constrains on Sa(x,y). These constrains are noth-
ing but conformal Ward identities associated to the conformal group SO(1,2). Thus Sa(z,y)

is the two-point function of a scalar primary operator with scaling dimension A

Na 1 I(A)

=—— NpA=—7o—7——""— 2.4
Sa(z,y) T_pn A ﬁr(%_A) (3.2.49)

I'(A+n) ¢(A)

where the normalization constant Nx is chosen such that wﬁlA) is mapped to T(arm) ¥n ~ as in

(B.2.14), i.e.

oo Na (1—@'y>” 1 T'(A +n) <1—m)" 1
d _ - _ 3.2.50
/_OO Ve —ypA \Itiy) 0+922 T@A+n) \1+iz) (14222 ( )

This integral is evaluated using the harmonic expansion of W given by the eq. ([3.2.35)).

For A € % + i or 0 < A < 1, the shadow transformation Sp is an isomorphism between Fa

and F3 because it has a well-defined inverse given by Sj, i.e.

o0 Na NA _
/_oo dz = 2Rz yP> =d(x—vy) (3.2.51)

Remark 3. For A € 7Z, the shadow transformation is not an isomorphism between F and F .
For example, when A = 1 — N is a nonpositive integer, wﬁll_N) withn < N —1 are annihilated

2N—1
9

by Si_n. Indeed, in this case, S1_n is equivalent to the differential operator up to

normalization.
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3.2.2.6 Summary

Given a complex constant A which we call scaling dimension, the SO(1,2) generators act on

the wavefunction space Fa spanned by {’l/JELA)(l') = (1_”)"( 1

Ttix A tnez as follows

(14a2)2
Py(z) = —0,(x), Di(x) = —(20; + A)e(z), Ky(z) = —(2%0, +2Az)¢(z) (3.252)

The quadratic Casimir takes the value A(1 — A) acting on Fa. All unitary irreducible repre-
sentations of SO(1,2) can be realized as either F or its invariant subspace for certain values

of A:

» Case || A = %‘Hﬂ, p € R with L2(R) inner product (1,1) = [ da(x)ip(x) for any
(x) € Fa. The representations of A = % =+ iu are equivalent. This is the principal

series.

» Case ll: A = % + v, —% <v< % with inner product (1,v) = [ dedy——<1(x)y(y)

lz—y|22
or equivalently (up to normalization) in momentum space (1,v) = [dpp' =22y (p)|?
for any ¥ (x) € Fa. The representations of A = % + v are equivalent. This is the

complementary series.

» Case lll: A = N € Z4 with inner product

(=)~
(2m)2T (2N

(6,) s = gy [ [ dvd @)~ )" ot~ v

(3.2.53)

where the contour R + i€ works for ¢)(z) € F5; which is spanned by {wéN) () }n>n and
the contour R — ie works for ¢(z) € F, which is spanned by {ng) () }n<—n. This'is

the discrete series.
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3.3 UIRs of SO(1,d+ 1)

Like in the d = 1 case, we start from a primary state |A,O>a of scaling dimension A=d— A,
but now in addition we also need to specify the spin (also known as the highest weight vector)
s = (81,82, " ,S), T = {%J (carried by the index «) associated to the SO(d) subgroup. In
this work, we will focus on the single-row representation of SO(d), i.e. s = (s,0,0,---),s € N
which in bulk corresponds to scalar fields and (bosonic) spin-s fields. Let |A,0);,...;, be such a
primary state where the indices i1 - - - i; are symmetric and traceless. The action of conformal

algebra is

DIA, 0)iyiy = AIA, 0)iy iy, KilA,0)iy ., = 0,

S
Mol A, 0)4y.i, = Z 1A, 0)iy iy keijria00i; — 1A, 0)iy i 1005410 Oki; (3.3.1)
j=1

Acting by translations on this state produces a family of position-dependent states (dropping

the label A in the kets |A, z);,...;, again)
’x>i1...is = GI'P‘A,O>Z‘1...Z‘S (332)
The action of the so(1,d + 1) algebra on these states is then easily computed to be:

Pil@)iyiy = O03]) i,
DlaYiy iy = (x - 0p + A) |24,
ng|x>il.._is = (:L‘gak — 210 + MI(:E)) |.I‘>“ZS

Kla)iyoi, = (2wp(z - 0+ A) = 220 — 20" M) |2, (3.3.3)
where /\/l,(j) is the spin-s representation of so0(d)

s
Ml(;)’x>llls = Z |x>i1'“ijflkijJrl“'is(sfij - |x>i1‘“ijfleithl‘“isé-kij (334)
j=1
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A general state in the vector space spanned by all |z) is of the form

) = / A iy ()], (3.3.5)

where the wavefunction v, ...;,(x) is smooth in z* and symmetric and traceless with respect to
the i, indices. We package all components of 1;,..;.(z) into a single z-dependent polynomial

by introducing a complex null vector z* € C?, i.e.

Y(x,z) = %%‘1---1’3 (z) 2% - 2 (3.3.6)

The null vector 2 can be stripped off while respecting the nullness condition by the following

interior derivative

D

0. !

L= — .52
2 =0 S e z; 03 (3.3.7)

The so(1,d + 1) action on the wavefunctions (x, z) induced by eq. (3.3.3) is then given by

Pz’lﬂ(HT,Z) = - ﬂ/ﬁ(%z)
Di(x,z) = —(x - 0p + A)(z, 2)
ngl/)(fli, Z) = (xkae — x00, + Zkaze — Zgazk) l/J(I, Z)

Kyp(w, 2) = (420 — 2wp(w - Oy + A) = 20 (240, — 20.0) ) W(w, 2) (3.3.8)

where the shorthand notation 9; means exclusively the derivative with respect to z*. To lift the
s0(1,d+ 1) action to a group action, it suffices to exponentiate translations, dilatation,
rotations and special conformal transformations separately because of the Bruhat decomposi-
tion i.e. SO(1,d + 1) = NNAM up to a lower dimensional submanifold in SO(1,d + 1) [64].
The exponentiation of translations, dilatation and rotations is guaranteed by the smoothness
condition imposed on the wavefunctions 1 (x, z). However, the same does not hold for special

conformation transformations. Indeed, granting the exponentiation of K; to a group action on
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certain subspace Cg of smooth functions, we obtain

1 x’ + big? , »
b-K _ i ik
= R(z)' R 33.9
() @) (1+2b~x+b2x2)Aw<1+2b-$+b2x2’ ()’ (x)kZ) (3.3.9)

where

. , 20t
+b, R(z)j= "2

j= gt =Y (3.3.10)

7
: xr
)
T -
b 72

Replace 1 by ¥ = e~ ) which also lives in the same subspace C and rewrite eq. | in

terms of & = ;”—; (except the combination R(x)";27)
1 1 40 ; :
= R(b+3);R(z), 2" | (3311
Vi@ ) (:UQ)A(fc?—ka'i’#—b?)Awl<572+2b‘:i+b2’ (b+2)' @)k’z) (3.310)

The R.H.S of (3.3.11)), apart from the factor ﬁ, admits a Taylor expansion in & as  — 0o

(z,2) BT % 3 Cus (a: R(x)ijzj) (3.3.12)

where C,,s(u,v) is a homogeneous polynomial of degree in u’ and degree s in v*. This equation
serves as the universal asymptotic boundary condition for all wavefunctions in Ck.

Altogether, let Fa s be the space of smooth functions on R? which are simultaneously
polynomials of degree s in the null vector 2’ and satisfy the asymptotic condition (3.3.12). It
furnishes an SO(1,d + 1) representation whose infinitesimal version is given by . We
want to mention that it is straightforward to construct the more general representation Fa ¢
for an arbitrary SO(d) highest weight vector s. It suffices to choose the spin-s action of M;; on
the primary state and then the wavefunction picture follows accordingly. In the mathematical
literature, the representations Fa ¢ are constructed using the induced representation method,
which is reviewed in the appendix where we also show explicitly the equivalence of the two

constructions for Fa 5. These representations are important because [64]

= Almost all Fx ¢ are irreducible apart from some discrete values of A. We give an elemen-

tary proof of this claim for FA in the appendix . A more general proof for F ¢ can be
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found in [65[F and a full list of irreducible representations (including the SO(d + 1) con-
tents of each one) is given in a subsequent paper by the same author [13]. Indeed, there
are only four types of reducible representations of this form when s = s is a single-row

representation
Fits, Fiost, Fari—1,s0 Fdys—1,t (3.3.13)

where s = 1,2,3,--- and t = 0,1,2,---. We will see why these representations are
reducible in the section [3.3.5] Throughout this paper, for a given spin s, a point in the

A-plane is called generic if Fp , is irreducible and called exceptional if Fp s is reducible.

= Any irreducible representation of SO(1,d+ 1) is equivalent to some subrepresentations of

Fas (including Fa g itself when it is irreducible).

Therefore, in order to understand the underlying representation theory of unitary spin-s fields
in dSg41, we should study the structure of Fa 4 in detail and look for its unitary irreducible

subrepresentations. This will be our main task for the remaining part of this section.

3.3.1 SO(d+1) contents of Fa

Before imposing the unitarity condition on Fa , let's first focus on the SO(d + 1) subgroup
and see how Fa s decomposes into irreducible representations of SO(d + 1). A standard and
elegant approach to this problem involves the lwasawa decomposition, i.e. SO(d + 1) = KNA
[64] and the induced representation construction which is reviewed in the appendix Using
this approach, it is not hard to see that F ; when considered as an SO(d + 1) representation is
equivalent to the induced representation indgggj;rl)Ys, whose SO(d + 1) contents follow from

Frobenius reciprocity theorenﬂ [66]. Here we will present a more elementary method that only

depends on our CFT-type construction of Fa 5. The SO(d + 1) generators are L;; = M;; and

®The method in this paper is essentially equivalent to what we does in the appendixexcept that the author
used an abstract basis, instead of the spherical harmonics we use, for each SO(d + 1) content of Fa s that works
universally for any s. In addition, this method heavily relies on the fact, which we will prove for Fa s in the
following section, that each SO(d + 1) content contained in Fa s has multiplicity 1.

"Roughly speaking, the Frobenius reciprocity theorem states that given a unitary irreducible representation o
of H and a unitary irreducible representation p of G, then p is contained in the induced representation ind% o as
many times as o contained in the restriction representation p|x.
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Lgy1,; = 3(P; + K;) which act on ¢(z,z) € Fa s as

Lij(z, z) = (2;0; — x;0; + 20,5 — 2;0,:)¢(x, 2)
1— 2

2

Li1,(z,2) = (— O —xi(x-Op +A)+ (x-20, — zix- 82)> Y(x,z)  (3.3.14)

One important observation is that the A-dependence in the action of Ly ; disappears if we per-
R A—
form a rescaling for the wavefunction ¥ (z, z) = (#) S¢(x, z) (the purpose of introducing

“—s" will be clear soon automatically)

Lij(x, 2) = (2,05 — 1j0; + 20,5 — 2;0,:)(x, )
1 — 22

2

Lgs1ib(z, 2) = (— O —xi(x-0p+s)+(x-20, —zix- 8Z)> O(x,z)  (3.3.15)
We claim that ¢)(x, z) defines a spin-s tensor on S% (in the stereographic coordinate). It suffices
to show that so(d + 1) acts on ¢(z, z) as Lie derivatives along the Killing vectors of S%. In

embedding space coordinates, S¢ is described as a hypersurface
YE+YE 4+ Y =1 (3.3.16)

with the space of Killing vectors spanned by V,, = Y0y — Y30ya, 1 < a,b < d + 1, where
the vector field V,; is generated by the action of Lg,. The stereographic coordinates of S¢
correspond to choosing the following embedding

200 2?1
Y“:< i ) (3.3.17)

2+17 2241

2 .
which yields a conformally flat metric g;; = ( ) d;;. Given an arbitrary vector field V = V"'0;

2
1+22
and an arbitrary tensor ¢, ...;,, the Lie derivative Ly is defined as

S
Lyvgiy..i, = ch?kgoil...l-s + Z 8,-jngoil...ij_lkij+1...is (3318)

J=1

When ;,...;, is an symmetric and traceless tensor, we can use the index-free formalism and

replace it by a polynomial ¢(z,2) = ig@il...iszil .- 2% where 2 is null. Then the Lie derivative
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acting on ¢(x, z) becomes
Lvo(z,2) = VEopp(z, 2) + (2 - 0, VF)D,rp(x, 2) (3.3.19)

where D_; is given by eq. (3.3.7). To compute the Lie derivatives Ly;,, we need further to

write out the Killing vectors V; in terms of stereographic coordinates by using

(Van)* = g (YaOrYs, — Y30rYa) (3.3.20)

We obtain (Vl)k = wiéf — :xjéf and (Vd+1,i)k = —1_2“"32 68 — 2%z, respectively. Plugging these
explicit forms of V,; into eq. (3.3.19) yields

Evijﬁp(:c, z) = (.%‘iaj — .%‘jai + 2;0, — Zjazi) ‘10(% Z)

_ 2
Ly, .p(x,2) = (—1 2x O —xi(x-0p+8)+ (v 20, —zx- OZ)> o(r,z)  (3.3.21)

where the number s in the second line comes from z - 0, acting on ¢(z,z). The agreement
between eq. and eq. implies that the space Fa s is isomorphic to the space
of spin-s tensors [}l on S¢. From the latter, we can easily read off the SO(d + 1) contents of
FAs- For example, when s = 1, we can decompose a spin-1 tensor into a scalar function and a
transverse spin-1 tensor, i.e. t;(z) = 8;£(x) 4+ ni(z), Vin' = 0, where & admits an expansion
in terms of scalar spherical harmonics excluding the constant one and 7; admits an expansion
in terms of transverse vector spherical harmonics. It is well known that the scalar harmonics on
S correspond to all single-row representations, i.e. Y,, of SO(d+ 1) while the transverse vector
harmonics correspond to two-row representations with 1 box in the second row, i.e. Y, ; [67].

Altogether, Fa 1 as an SO(d + 1) representation contains the following irreducible components

Failsowin) = (@ Yn) - (@ Yk,l) =P P Yum (3.3.22)

n>1 E>1 n>10<m<1

8By spin-s, we mean a symmetric and traceless tensor of rank s.
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For higher s, we decompose 121211 into a spin-(s—1) tensor &,..,, , and a transverse spin-s

s

tensor 1;,...i ., i.€.
Viris = V(iy Eigeniy) — trace + iy, Vi, = 0 (3.3.23)

The latter admits an expansion in terms of transverse spin-s tensor harmonics which group
theoretically correspond to all 2-row representations of SO(d + 1) with s boxes in the second
row. In &,..;,_,, we should exclude the modes such that V(; &,..;,) is pure trace. These
modes are spin-(s—1) conformal Killing tensors on S¢ and furnish the representation Yo1,6-1
of SO(1,d + 1) which becomes @<, <51 Ys—1,, while restricted to the SO(d + 1) subgroup.

By using induction on s, we can immediately conclude that

‘FA,S|so(d+1) = @ @ Yn,m (3.3.24)

n>s 0<m<s

3.3.2 Shadow transformation

In the SO(1,2) case, we have shown that there exists a linear intertwining operator Sa, called

shadow transformation, that maps Fa to Fx and in particular, when A ¢ 7Z it is an isomorphism.
! o

In this section, we will show that a similar operator also exists for higher d. Assume that Sﬁ‘ ;s :

. . P . . A/ !
Fa,s = Far g is an intertwining operator defined by a kernel function Sy [ (21, 22)i; i j1-j.

SA’;S : wir'-is (1‘1) c ]:A7s — / dda; 527;5 (xhwQ)il"'iS/,j1"'jswj1"'js(xQ) (3.3.25)

o
sS

The requirement Sﬁs [¢i,...i;] € Fars induces a set of differential equations for the kernel

function (Suppress the spin indices of Sﬁ P, Y)iy iy jije for the simplicity of notation. It
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should be clear that M,(CS/) acts on the 7 indices while MS:Z) acts on the j indices.):

(0yi +0,0)Sn 2 (2,) = 0 (3.3.26)
(@00 +y- 0y + A+ D)S3 S (w,9) =0 (3.3.27)
(€D — 230yt + yedy — Yy + M) + M)A (2,9) = 0 (3.3.28)

(€20, — 2042 Oy + A) + 5200 — 2y - 9y + A) + 20 M) + 25 M) SR () = 0
(3.3.29)

These differential equations are exactly the conformal Ward identities for a two-point function
of two primary operators O, ...;, and O;l_,,i,s with scaling dimension A and A’ respectively. It
is well known that such a two-point function is vanishing unless the two operators have the
same spin and scaling dimension. Therefore Sﬁ;’s/ exists only when s = s/, A’ = A and in
this case the corresponding kernel function, denoted by Sa s(z1 — #2)i;...i,,j;.--j,, becomes the

conformal two-point function (O;,...i, (21)Oj,...;,(x2)) which takes the following simple form in

the index-free formalism

SAs (@125 2, W) = SA s(12) i1 i jrogs 200 - 25 W we

—~-R Cw)® . . .
ZNA,S( & (56127) w) , Tlg =] — T (3.3.30)

(x%Q)A

2x;7 4 .
22

where Na ; is a normalization constant, 2z’ and w’ are null vectors and R(z);; =

defined in the eq. ([3.3.10)).

Given shadow transformations Sa ¢ and SAS, the composition SA,S oS s is an intertwining

(Sij is

map that maps Fa ¢ to itself. When Fj , is irreducible EI which is true for almost all A,
the composition should be proportional to identity map due to Schur's lemma. We want to

(partially) fix the normalization by requiring Sas08as=1r,, ie

/ ddxgsA’S(wlz)il...isjjl...jsSA7S(1’23)]'1..A]'57]€1“.]C5 = 5d($13)5i1-~i5,k1~-k5 (3331)

°At those exceptional points where Fa,s is reducible, the corresponding shadow transformations are not
invertible. We will comment more on these cases later.
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or equivalent in momentum space

SR sP)irevisrgsOns (D) jrovgo ks = Oiyevsig oy ks (3.3.32)

The Fourier transformation Sa s(p, z;w) = [ dig e Sa,s(x,z;w) can be performed by using
the binomial expansion for the numerator of S s(x,2;w) and then applying the following

formula to each term

NI

/ ddl' 1 _ eip-a) — 2d—2Aﬂ_% F( i A)pQA—d (3333)
>4 (A)

!

The final expression admits a harmonic expansion with respect to SO(d — 1), which is the little
group of a fixed momentum p. For a detailed derivation of such an expansion, we refer to the

book [64]. Here we simply present the result

Sy LE-D) A g (Ll Dot

San(pizw) = 78 Na, —2 2= st (DI (Bs 2,w), Rge(A) = L=
As(p;z,w) =72 Na, (A+s—1)F(A—1)ZZ=;FM() (P z,w), Kse(A) Atl—1),
(3.3.34)

where T15¢(5; 2, w) = TI%(P) i, jy . 2% -+ - 25w - - wis are (s + 1) projection operators that

only depend on the unit vector p in the direction of p’ and satisfy the following properties

Orthogonality : T1°(p)i, i, ji- 1% (D) jy-ju ks = S0 T (Piy iy by s

S
Completeness : Z 1% (p; 2, w) = (2 - w)*

=0
Helicity ¢ : piepi”“l .- _pisHS@(ﬁ)ilmiS’jlij = pjep”*l .- -ijHSK(ﬁ)il...i&jl...js =0,¢>1
(3.3.35)
As an example, when s = 1, we have
()i, = pipj,  TH(P)iy = 6ij — Did (3.3.36)

Remark 4. The set of II* can be thought as the manifestation of the branching rule from SO(d)
(the full rotation group of p) to SO(d — 1) (the little group of p), i.e. the spin-s representation

of SO(d) can be decomposed into the direct sum of the spin-{ representations of SO(d — 1) with
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( ranging from 0 to s. Each II** projects the spin-s SO(d) representation to its spin-{ SO(d —1)
summand. For example, in the s = 1 case, TI'° projects a vector to its component along the
direction of p which is clearly invariant under the little group and II'!' yields the transverse part

which carries the spin-1 representation of the little group.

Using the orthogonality and completeness of {II*¢} and noticing . (A)kg(A) = 1, we find

that the normalization condition (3.3.32)) is equivalent to

(4 — A)T(¢ — A) Na N

_ - —1 (3.3.37)
(A+s—1)(A+s— DDA - DI(A - 1)

Apparently, this equation cannot fix the normalization constant Np , completely. Two conve-

nient solutions that we will use are

A+s—1DI'(A-1 B A+s—DIA-1
NZ,s:( 5 d)( )7 NA,S=( ’ d) (_ ) (3.3.38)

and the corresponding shadow transformation will be denoted by SX - Let's write out the kernel

+ . ..
for SA75 in momentum space explicitly

2Amd S (A4 L= V)sg
SX (3 2,w) = (p) Z—( ) S (p; 2, w)
=0

2 —~ (A+(—1),_,
2A-d DA 1) S (A+L0— 1),
Sx o (psz,w) = <p> (2 )Z A+t ST (s 2, w) (3.3.39)
’ 2 FA-1) (A4 l—1)srna

For a generic A, the two choices are equivalent since they only differ by a normalization factor.
So we will stick to st in this case. However, at exceptional points, SKS are completely different
and the corresponding properties are summarized in the table (3.3.1)), where s = 1,2,--- and
t=0,1,---,s—1.

SX’ s’ SZ’ s’
(A7, s") = (1 —t,s) | only contains IT** with t+1 < ¢ < s ill-defined
(A s') = (1—t,s) ill-defined only contains I1*¢ with 0 < ¢ <t
(A"} s) = (1-s,t) contains all TT,0 < ¢ <t ill-defined
(A", s") = (1 —s,t) contains all TT*#,0 < ¢ <t d-function in momentum space

Table 3.3.1: Properties of Si . at exceptional points.
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Notice that S, ;, is special because it is a polynomial in x' of degree 25 — 2

d t—2)I'(d -2 s—t—1 t
SJ+5—1,t(9U;Z7w):( et JTd+ s )(xZ) <$22-w—2x~zx-w>

W%F(g +s—1)
(3.3.40)

Therefore, its Fourier transformation is a d-function with (2s — 2) derivatives in the momentum

space.

3.3.3 (Nonexceptional) unitary scalar representations

Recall that a wavefunction 1) € Fa defines a ket [¢0) = [ d?xv(x)|z). So an inner product on

Fa is fixed by defining a bra (z|:

(i) = [ ' [ dlyun @) Kateva(), Kale.w) = (o) (33.41)

Imposing the reality condition LLB = —Lp as in section [3.2.2.2 we find that the function

Ka(z,y) exists only in the following two cases

d
A= tip pER, Ka(r,y) = 6%z —y)

I: A €R, Ka(z,y) = —2 (3.3.42)
[z —y[*2

where cp is a normalization constant. In the case (1), the inner product is the standard
L? inner product on R?. It is positive definite and normalizable since v(z) € Fa falls off as
m% for large x. Therefore, the function space f%ﬂ'u equipped with the standard L? inner
product furnishes a unitary irreducible representation of SO(1,d + 1), which is known as the
(unitary) scalar principal series representation of scaling dimension A = %+z’p. In the case (Il),
L(4)

we choose cp = N = ——=,— so that | Ka(z,y) = S{(z,y)| i.e. the kernel of shadow

d —
2T (4-A)

transformation from F to Fx. Using the Fourier transformation of S{(z), c.f. eq.(3.3.39),
we rewrite the inner product ([3.3.41)) in momentum space as

(Y1,12) =

[ r* (o) ) (33.43)

4Axd
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where v;(p) = [ d% e ¥;(x) is the Fourier transformation of 1 (x). This inner product
is positive definite as long as it is convergent. Due to the smoothness of i(z), its Fourier
transformation ¢ (p) decays exponentially for large p. So the p-integral in ([3.3.43) is convergent
around p — oo. For small p, as we have argued in the SO(1,2) case, ¥(p) has two types

2A—d

of leading fall-offs: p° and p . Then the requirement of convergence near p — 0 yields

. Therefore, the representations Fa with 0 < A < d are unitary, known as the
(unitary) scalar complementary series.

Before moving to spinning representations, we want to present a different way to expand
the kernel Kn based on our discussion in the section It yields the same constraint on
the scaling dimension. Using the Weyl transformation ¢ (x) = (H%)A@fj(x) where () is a
function on S?, we rewrite the inner product as

d d 2 2
(¢1,¢2):NZ/ d%x d%y ((1+az)(1+y

() (e | R

Switch to spherical coordinate Q! = (sinfw?, cosf),w’ € S%1 which is related the stereo-

graphic coordinate 2 by 2* = cot Sw’ and eq. (3.3.44) becomes an integral on S¢ x ¢

) A
) baydl)  (3.3.44)

+
NA

To s O3

(Y1,92) = /ddQI A% K (Q1, Q2)th() a(Q2), Ka(,Q) =

Now we need to perform a harmonic expansion for the new kernel KA. First, write it as an

integral using Schwinger's trick

A Ni [®ds A _oisn.
KA(Ql,QQ):F(§>/O £ B emstsnnts (3.3.46)

Then plug it in the expansion of plane waves in Gegenbauer polynomials [68]

M =T (a) (;>_a D (@t Olase(s)CF (- ), a=—— (3.3.47)
>0

Using the addition theorem, Gegenbauer polynomials can thus be expanded in spherical har-
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monics on S¢ [69]

CH Q- Qo) = an )Y (Q2)* (3.3.48)

F(

Therefore if we can perform the s-integral, we have the desired expansion of the kernel KA in

spherical harmonics

. é + A) x
KA(Q1,Q) =24 ZZ ng(mmm(gg) (3.3.49)
(>0 m

where we have plugged in the explicit form of NJr For K'A to be positive definite, the matrix

EH—Ag should not oscillate with ¢, which requires ﬁjtﬁ > 0 for any ¢ > 0. The most

stringent constraint comes from £ =0 and it is |0 < A < d|, in agreement with what we have

found in momentum space. With this constraint satisfied, ;Eﬁﬁg stays positive for all £ and

element

hence KA is positive definite.
Remark 5. When A is a nonpositive integer, E(giiﬁ; vanishes for 0 < ¢ < —A. Thus the

spherical harmonics Yy, with 0 < £ < —A are null states. Indeed, they furnish an irreducible

representation of SO(1,d + 1) which is checked explicitly in the appendix . When A is

a nonpositive integer, we choose cn = N,. It amounts to replacing Eggiﬁg by Eg;z ]
4

expansion eq. . In this case, all Yy, with £ > 1 — A are null and carry an irreducible

representation which is again checked in the appendix|[A.3

3.3.4 (Nonexceptional) unitary spinning representations

For a spinning representation Fx ,, the inner product is defined by the kernel

KA,S(J,‘l, x?)i1~--is7j1~~j5 = G- <.%‘1 |x2>j1'~~j5 (3350)

In the index free formalism, we contract the i-indices with a null vector z and contract the

j-indices with a different null vector w

is

Ka (21,200, w) = KA o(01,22)iy iy jyoge 20+ 2500 w7 (3.3.51)
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With the de Sitter reality condition imposed, Ka s(x1, 2; 22, w) exists only for two cases (I):
A= % +ip and (I1): A € R. In the first case, K s is simply a -function (in both spacetime

coordinate and spin indices), i.e.
K (w1, 2520, w) = 6% (w1, 22) (2 - w)* (3.3.52)

and the hence the inner product defined by this Kz  becomes the L?-inner product for spin-s

tensors on R4

W p)p = [ o @) 01y, (@) (3:3.5)

The positivity (and normalizability) of this inner product on fg+i# < is guaranteed by the asymp-
2 b

totic behavior (3.3.12)). Therefore, ‘7:§+iu,s is a unitary irreducible representation, belonging to

the so-called (unitary) spinning principal series. In the second case, the reality condition is

actually equivalent to the conformal Ward identities for two-point functions. Therefore K ; is

the same as S , up to normalization, i.e.

—2-R cw)®
KA,S(SULZ;fBz,M):CA,s( : ($12—) w) (3.3.54)

($%2)A

For a generic A, we choose cp s = NA7S and hence Kp s = SA,S’ which in momentum space is

(c.f. eq. (3.3:39))

(3.3.55)

p)m‘d : (A+0—1),,
2

SE (32, w) = ( o (AT (s 2, w0), hgg(A) = (27 Dot
& Zﬁ (A+l—1)5y

As in the scalar case, the inner product defined by SZS is normalizable when 0 < A < d.
However, this condition cannot guarantee the positivity of SZ,S. Additionally, for SKS to be
positive, we need all ks(A) to have a fixed sign (insert an overall minus sign if negative) which
yields

H57[+1(A) - A +£ -1
Roo(A) At l—1

>0 (3.3.56)
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The eq. (3.3.56]) holds for all £ if and only if |1 < A < d — 1| Itis also straightforward to check

that all kg (A) are indeed positive for A in this range. Altogether, Fa ; with the following inner

product

(1, p)c = / APy dey O (21)igiy SK (T12)ir i jigo P (2) 1 (3.3.57)

is a unitary irreducible representation of SO(1,d + 1) when 1 < A < d — 1. It belongs to the

so-called (unitary) spinning complementary series.

3.3.5 Exceptional series (d > 3)

We have studied the constraint of unitarity on Fx , for generic A and managed to identify the
(unitary) principal and complementary series. In this section, we will look into the four types of

Fa,s at exceptional points by mainly following the book [64]:
-Flft,& fd—i—t—l,sa flfs,tv fd+s—1,t (3358)

The first important observation is that the four representations share the same SO(1,d + 1)

(quadratic) Casimir
Co=—(s—1)(s+d—1)—t(t+d—2) (3.3.59)

which is also the Casimir associated to the highest weight representation Y,_;; of SO(1,d +
1). This observation suggests that these representations are related by a chain of intertwining
maps. For representations in the two pairs (Fi—ts, Faqt—1,5) and (Fi—s s, Fats—1¢), this is
certainly true due to shadow transformations, which have been explored in the section To
find intertwining representations relating the two pairs, let's revisit the shadow transformations
Si" s At the end of the section w (see the table (3.3.1)), we find that S, (p) only

contains the projection operators II5¢ with ¢ > t 4+ 1. Due to the third property in the eq.

(13.3.35)), it means

Pt 'pis*tsf_t,s(p)il---is,jl---js =0 (3.3.60)
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So the shadow transformation Sf_t,s has a nontrivial kernel which consists functions of the form

Py *** Pia—y fig_yi1is) — trace (3.3.61)

in momentum space. Switch back to position space and the kernel can be alternatively expressed
as {(z-0;)* ' f(x,2)} in the index-free formalism. Requiring that (z - 0,)* ' f(z, z) transforms
under the Fi_; s, we find f(z,z) is actually an element in Fy_5,. Therefore, (z - 9;)**
is an intertwining operator mapping Fi_s: to Fi_ts. In bulk, it corresponds to the gauge
transformation for higher spin gauge fields. Similarly, the eq. also implies that the image

of Sfr_tﬂg is annihilated by (p- D)%~ or equivalently in position space (9, - D,)*~t. Again, it is

straightforward to check that| Dy ; = (0, - DZ)S*t is an intertwining operator mapping Fq4¢—1,s

to Fuys—1,¢- Altogether, the diagram shows the six intertwining maps that relate the four

types of exceptional representations

Ds,t
]:d+s—1,t — ]:d+t—1,s

st ST

+
S 1—t,s dtt—1,s

Sd+sfl,t 1—s,t

fl—s,t fl—t,s

(Z,az)s—t

Figure 3.3.1: A sequence of intertwining maps for the exceptional representations

Apart from commuting with group actions, these intertwining maps are important for the

following reasons

= Each directed sequence of homomorphisms in the diagram is exact. For exam-

. Si‘;t s Ds t
ple, we have just shown the two sequences Fi_;s —— Fgqi—1,s — Fdts—1,¢ and

2:05)5 ¢ S .
Flost % Fiots BN Fatt—1,s are exact. A detailed proof for the rest sequences

can be found in [64]).

» The kernel and image of each map are irreducible representations of SO(1,d + 1). This
claim can be checked by comparing with the full list of irreducible representations given

in [13].

The exactness of these intertwining maps implies that there are only three inequivalent irreducible
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subrepresentations contained in the four exceptional representations

ker(z - 9;)° 1, Usy =kerDyy = Fiys/Im (z - 0,)5t

Veu=Im(z-0,)° " =2 ImS; ,, = Fi_g4/kerS;,, (3.3.62)

where ker(z - 0,)%"" carries the finite dimensional representation Y _;; of SO(1,d + 1) which
explains the Casimir (3.3.59). For example, when s = 2, = 1, ker(z - 9;)*~ is spanned by
2T 2, Ti%j — Tj2, 2T - 2 — 22z Since ker(z - 9;)°t is finite dimensional, it cannot be
unitary unless it is a trivial representation which corresponds to s = 1,¢ = 0. For the rest two

irreducible representations Us; and Vs, by analyzing their SO(d + 1) contents, i.e.

Ustlsorny =D D Yum: Vadsowrn =B @D Yom (3.3.63)

n>st+1<m<s n>s 0<m<t

di_o d1_1q
we manage to identify them as the irreducible representation Dk{j 11150) and D(%flt) on Hirai's

list respectively [13].

To define inner product on U, ; and Vs, it is more convenient to use their quotient space
realization given in the eq. . For example, we can use Slts’t to define a pairing on
Fi—szt. Since ker Sf’_sjt drops out by construction, it naturally induces a pairing on the quotient

space V, ;. The explicit form of SlJr—s,t in momentum space is given by the eq. (3.3.39)

1 (p; z, w) (3.3.64)

>d+282 N e
2

> () (d+s+0—2),¢

p
Staitmizw) = (
=0

Due to the alternating sign (—)*~*, the inner product induced by Sf_st is not positive definite
unless t = 0. Therefore, among the irreducible representations Vs ;, only Vs ¢ is unitary. In this

case, the inner product becomes more transparent if we write it in spherical coordinate using

From the bulk point of view, the quotient space realization is quite natural. For example, (z-0:)%"" is the
counterpart of the bulk gauge transformation. So factoring out Im (z - 8;)*~* amounts to getting rid of the pure
gauge degrees of freedom.
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the harmonic expansion (3.3.49))

(V1) = [ dlor oy gi(e)SE o (r2) (o)
oles I'(d+s+£—1) 5 A . .
=273 "% Fl+1—s) (/Sd d®Q1901 (1) Yon (1) ) (/Sd A1 (Q2) Yon (Q2) )

(>s m

(3.3.65)

where 1;(Q) = (#)ks ¥i(z). Since the sum starts from ¢ = s, the spherical harmonics on
S with ¢ < s—1 get projected out. These spherical harmonics carry the Y,_; representation
of SO(1,d + 1) and span the kernel of 51+—s,0-

Similarly for U ;, we can define a paring on Fi_; s by Sfits and it naturally induces a paring

on U, ;. Since

1% (p; z, w) (3.3.66)

)d+2t—2 S (e o t)s—[

S+ . — E
1-t,s(P5 2, w) ( (d+t4+0—2)s

2 {=t+1

is manifestly positive definite with its kernel factored out, the paring on U, ; defined in this
way is positive granting the normalizability. The normalizability is not obvious in this case. For

example, when s = 2,t = 1, the asymptotic behavior of any wavefunction ¢ (z, z) in Fi_¢ s is

[e.e]
¥(z,2) RN C (7, R@);2) (3.3.67)

k=0
where Cy(u,v) is a homogeneous polynomial of degree k in u’ and degree 2 in v'. The k =0
term is potentially problematic because its Fourier transform has a p~% behavior around p = 0
by a simple power counting and the higher k terms are normalizable. Fortunately any second

order tensor in v’ = R(:E)ijzj is pure gauge, i.e.
v =20, | —— 2722 — 2227) (3.3.68)
x

A rigorous proof about the normalizability for all s, can be found in [64]. Altogether, U, is a
unitary irreducible representation for any s =1,2,3,--- and ¢t =0,1,--- ,s — 1. Both U,; and

Vs.0 belong to the (unitary) exceptional series.
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Remark 6. : When d = 3, Uy, is still reducible with respect to SO(1,4). It can be decomposed

into two irreducible components Z/{sjft with the following SO(d + 1) contents respectively

u:l:

st

50(4):@ P Yiim (3.3.69)

n>st+1<m<s

Uft are related by spatial reflection because the SO(4) generator Lys = —5(Ps+ K3) is mapped
to —Ls under spatial reflection while L1y stays invariant which means that the SO(4) highest
weight vector (n,m) is mapped to (n,—m). Therefore Uy is still irreducible with respect to
the bigger group O(1,4). In addition, Z/{ijt belong to the discrete series [64]. For higher d, the

exceptional series is completely different from the discrete series [70].

3.3.6 Summary and bulk QFT correspondence

We have identified all unitary irreducible representations contained in Fx ¢ for the conformal
group SO(1,d+1) with d > 3. In this section, we show a list of these representations and briefly
comment on their bulk QFT realizations. For a spin-s field of mass m, its scaling dimension A

satisfies the following equation (see e.g. [71])

s=0: m?=A(d-A)

s>1: m?>=(d+s—2—-A)(A+s—2) (3.3.70)
Then m = 0 for the photon, the graviton and their higher-spin generalizations, and for s = 1,
m is the familiar spin-1 Proca mass.
= Trivial representation.

» Scalar principal series: Fa, (1 € R) equipped with the L?(R) inner product. It
2

describes a massive scalar field in dS;4; with mass m > %l.
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= Scalar complementary series: Fa (0 < A < d) equipped with the inner product

(11, 92) :/ddfrl dwy 1 (21)*SE (212) a(22) (3.3.71)

It describes a massive scalar field in dSz11 with mass 0 < m < %.

» Spinning principal series: Fq (1 € R and s € Zy) equipped with the L? inner

5 t+ip,s
product. It describes a massive spin-s in dSgz11 with mass m > s+ % - 2.

= Spinning complementary series: Fa s (1 <A <d—1and s € Z;) equipped with the

inner product

(Y1,102) = / dd$1 ddwz 7/11(xl)flmisSK,S(ﬂflz)z‘l---is,jl---js Ya(22) jy g (3.3.72)

It describes a massive spin-s field in dSq4q with mass /(s —1)(s +d — 3) <m < s+%—

2. The lower bound /(s — 1)(s + d — 3) is the so-called Higuchi bound [42] which is the

equivalent to the requirement of no negative norm states in bulk canonical quantization

(a concise summary is given in [72] and [73]).

= Exceptional series |: Vo = Fi_s/ker Si”, (s € Z,) equipped with the inner product

(Y1,12) = / ddCUl ddﬂ?Q wl(l’l)*Sf—,S(l’m) a(x2) (3.3.73)

We believe that it should correspond to the shift symmetric scalars with mass square

m? = (1 —s)(s+d—1) [74]. In particular, when s = 1, it is a massless scalar.
= Exceptional series II: U ; = fl_tvs/kerSf[tys (s€Z4yandt=0,1,---,s—1) equipped

with the inner product

(V1,42) = / Aoy day r (21)], 5 ST o (212)iy i s V2(2) 1 (3.3.74)

It describes a partially massless spin-s gauge field with mass square m2, = (s —1—t)(d+
s+t —3). The parameter t is called depth, which is also the spin of the corresponding

ghost field. In particular, when ¢t = s — 1, it describes to a massless spin-s gauge field,
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i.e. photon, graviton etc and we will call U 51 the massless spin-s representation of

SO(1,d +1).

= There also exists the so-called discrete series when d is odd [13, [70], which is not covered

in this review. Fields in discrete series are of mixed symmetry.

For principal and complementary series, Fa , and Fj . are isomorphic due to the shadow
transformations. So in principal series, it suffices to consider ;4 > 0 and in complementary

series, it suffices to consider A > %.

3.4 Harish-Chandra characters

3.4.1 General theory

With the unitary irreducible representations constructed, the next step is to compute their group
characters which collect the information about the representation in a simple function. We are
all familiar with the idea of characters of finite dimensional representations. For example, given
a finite dimensional representation p of a group GG, the corresponding group character associated
to certain element g € G is defined as a trace of p(g) over the representation space V,, i.e.
O,(g9) = Try, p(g). This quantity is clearly well-defined and conjugation invariant since it only
involves a finite sum. However, such a trace does not necessarily make sense for an infinite
dimensional representation like Fa 5. To tell when a “trace” can be defined in the infinite

dimensional case, we will need some deep notions and theorems in representation theory [66]:

Definition 1. Let G be a connected reductive Lie group and let K be a maximal compact
subgroup. A representation m of G on a Hilbert space V' is called admissible if 7|k is unitary

and if each unitary irreducible representation T of K occurs with only finite multiplicity in 7|k.

In particular, SO(1,d + 1) a is connected reductive Lie group and all Fx ; together all its

unitary irreducible subrepresentations are admissible.

Definition 2. We say an admissible representation m of a linear connected reductive group G
has a Harish-Chandra character (or global character) O, if w(p) is of trace class for any
compact supported function ¢ on G and if ¢ — Tr7(¢) = Ox(p) is a distribution. In this case,

the character ©, is clearly conjugation invariant.
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Then the following theorem tells us when an admissible representation 7 has a Harish-

Chandra character

Theorem. Every admissible representation w of a linear connected reductive group G whose

decomposition 7|k = @, n, 7 satisfies n, < C'dim 7 has a Harish-Chandra character.

Since the SO(d + 1) contents of in Fa s have multiplicity 1, Fa s and its irreducible com-

ponents have a Harish-Chandra character. We shall also use the heuristic notations

G.FA,S (g) = TI‘]:A’S g, G}—A,s (q) = GJ:A,S (qD)7 q> 0 (341)

which only exist in the distribution sense. In most cases, we shall simply call ©x, (¢) the

Harish-Chandra character of Fa .

3.4.2 Compute O, (q)

In this section, we show how to compute the character ©, (g). Let's start from the s = 0
case. By definition, one would find an orthonormal basis of Fa and compute the matrix element
of D with respect to this basis (which is actually done in the appendixwith the basis being
spherical harmonics). Then exponentiate the infinite dimensional matrix D and compute the
trace. However, this method can be infeasible due to technical difficulty. Instead, we will use

the ket basis |2). The action of ¢” on |z) is
¢"|x) = ¢" |qz) = /ddy g% (qz — y)ly) (3.4.2)

from which we can directly read off the matrix elements of ¢” with respect to the basis |z). The
integral of the diagonal entries of ¢ is localized on the fixed points of ¢, i.e. 0 and co. But the
x' coordinate system only contains the z = 0 point and hence we would miss the contribution
from oo in such a computation. We can bypass this problem by working with spherical basis, i.e.

2\ A
) = (552) |
—-b-K D _b K

poles of S¢. Alternatively, we compute Tr(e q”e”™) . This conjugation maps 0 and oo to

) asin [2]. In this basis, the fixed points of ¢ become southern and northern

two finite points in the z-plane while keeping the trace invariant. The action of et KgPebK
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on |z) is given by

b | % y 2l + (g — 1) 22V
e quDebK]x>:Q(q,x,b)A|x(q,x,b)>, ' =q ( ) RO (3.4.3)
142(q—1)z-b+(¢—1)"b%x

where

q
Q(q,z,b) = 3.4.4

Therefore the character © £, (¢) should be

Or,(q) = / e (g, 2, 0) 254 — 2) (3.4.5)

bK Deb-K

This integral is localized to the fixed points of e *%¢q , which are 2° = 0 and 2' = g—; At

these points, the scaling factor (g, =, b) becomes

Qq,0,b) =q, Qq,b"/b%b) =¢* (3.4.6)

and the Jacobian associated to the map z¢ — ' —z* becomes |¢—1|¢ and [1—¢~!|¢

Altogether, the integral in the eq. (3.4.5)) yields

respectively.

qA qu B qA +qA

+ —
=19 1—q 14 |1—q/

O, (q) = (34.7)

where the b dependence drops out explicitly as expected from the conjugation invariance.

Remark 7. The character © r, (q) given by the eq. is symmetric under ¢ — q~'. This
property is also a result of the conjugation invariance of © since D = Lg 441 is mapped to —D

by the conjugation of ™ Fda+1.i.

Remark 8. One might be tempted to compute the character © r, (q) by diagonalizing D. Its
eigenstates are |v,fm) where D = iv € iR, {m labels SO(d) angular momentum quantum

numbers. However this produces a nonsensical result

Ora(q =) S /]R dv €™ 54 S = 216%(0)6(1) (3.4.8)
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not even remotely resembling the correct © r, (q). Our correct computation actually illuminates
why this naive computation fails. Notice that the eigenbasis |v, fm) corresponds to wavefunction

Yyem(x) = x*(i”*A)ng(w), which under Weyl transformation is mapped to

Dyem (Q) = (tan (;)) ’ (sin ©) ™ Yy (w) (3.4.9)

It is now clear why the naive computation of ©r, (q) in the basis |v, fm) fails to produce
the correct result: the wave functions ﬁygm(Q) are singular precisely at the fixed points of D.
On the other hand, a proper basis of wavefunctions that are well-defined at the the fixed points

of D are the SO(d + 1) spherical harmonics used in the appendix .

The generalization of our computation to the spinning case is almost straightforward. Let's
write the ket basis of Fa s as |x), where the index « carries the spin-s representation of SO(d).

fb-KetDeb-K

The action of e on this basis can be schematically expressed as

eib.KqDeb'K‘l')a == Oaﬁ(Qawvb)Q((Lw b) | (qvx b)> (3410)

where O,5(q, ,b) is an SO(d) rotation matrix in the spin-s representation. In general, O,3(q, x,b)

takes a very sophisticated form but while evaluated at the two fixed points, i.e. 2’ = 0 and

xt = bQ, it becomes an identity matrix. Altogether, we have
Or,.(q) = /d x Oaalq, x,0)Q(q, x, b) 54 (z —x)
=0x,(q (Z 1) quJ“qq‘d (3.4.11)
In particular, when s = (s5,0,0,---,0), the Harish-Chandra character for both principal and
complementary series is
Ors. (@) = qu o (3.4.12)

11 —q|d
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3.4.3 Harish-Chandra character of exceptional series

Now we are able to compute the Harish-Chandra characters of exceptional series Vs o and U, ;.

For Vs, recall that Vy; =Im (2 - 0,)57 " = Fi_s4/ ker(z - 9;)°t, which yields

@Vs,o (q) = @_Fl,s(Q) - @ker(z-az)s(Q) (3413)

Since ker(2-0;)° carries the Ys_1 of SO(1, d+1), Oyer(z.0,)s(¢) is nothing but the usual SO(d+2)

character corresponding to the highest weight representation Y, 1, denoted by @;?E?Q)(q).

Thus we obtain (assuming to get rid of the absolute value in |1 — ¢|%)

Ov,(0) = ql(ltqqd;; -07 ") (3.4.14)

Similarly for U4, using the isomorphism U ; = F1_¢ s/Vs+, we obtain
Ou. () = DS (11(t1+—q:)+‘;1 - gql(th:;;l +er @ (34.15)
In general, one can write out the characters like @;?Eﬁm(q) explicitly by using Weyl character

formula. However, in order to compare with the paper [2], we have derived a slightly different

expression c.f. eq. (2.3.3) for @;?_(Cftm (q) in the section . Plugging this new expression into

eq. (3.4.14) and eq. (3.4.19) yields

1-s d+s—1
q +q
91/5,0(‘]) = [6}'175((])]_._ = [ (1 _ )d ]
q +
ql—t + qd+t—1 ql—s + qd+8—1

@us,xq):[efl_t,s<q>—ef1_s,t<q>}+:[Dz T A ey (2410

where the “flipping” operator [ ]| acts on an arbitrary Laurent series 3. cxg" as

[Z quk] =D (—er)g F+ D ad” (3.4.17)
P

4 k<0 k>0
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A
We also derived an interesting formula for the “flipping” operator acting on (l‘iiq)d by using

Mathematica

[ g ] _ Pal9)
+

(1-q) (1—q)
41
Pa(q) = (_)d+1qd—A + Z (=)™ Dii—A,lm <q1+m+ (_)dqd—l—m> (3.4.18)
m=0

This equation can be checked by writing out Dil_A 1m explicitly using the general Weyl dimension

formula (2.2.1) and (2.2.2). But the computation is somewhat tedious and not especially
illuminating, so we omit it here. Plugging eq. (3.4.18)) into the characters in (|3.4.16]), we obtain

Ov,,(q) = (1 — (—)%) -2

and

ngd+t—1 _ D;iqd—&-s—l
(1—q)

Oue.(@) = (1= (=)°) D ()DL (@ () )

(3.4.20)

where we have used D¢D?,,., — DID¢,,, = D4

4.¢41.1m—1, Which again can be checked by using

Weyl dimension formula (2.2.1)) and (2.2.2).

Remark 9. (Literature disagreements). The characters and agree with the
characters listed in the original work [75], computed by undisclosed methods. They do not
agree with those listed in the more recent work [70], computed by Bernstein-Gelfand-Gelfand
resolutions. Indeed [70] emphasized they disagreed with [75] for even d. More precisely, in their
eq. (2.14) applied top =2,Y, = (s,5,0---,0),x =0 (also top =1,Y, = (5,0,--- ,0),x =
0), they find a factor 2 = (14(—)?) instead of the factor (1—(—)) = 0 in . It is stated in
[70] that on the other hand their results do agree with [75] for odd d. Actually we find this is not
quite true either, as in that case eq. (2.13) in [70] applied top =2,Y, = (s,s,0---,0),x =0
(also top = 1,Y, = (5,0,---,0),x = 0) has a factor 1 instead of the factor (1 — (—)%) = 2.

Our Euclidean path integral result of chapter@ strongly suggests the original results in [75] and
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(3.4.19), (3.4.20) are the correct versions. Further support is provided in the chapter[4 by direct

construction of higher-spin quasinormal modes.
Remark 10. Some lower d examples are

(25 + 1)g!™2 — (2t + 1)g* 2
(1-¢)?

d=4: Oy, (q) =2(s—t)(s+t+2)

d: 3 @us,t(q) =2

q2

T (3.4.21)

where the overall factor 2 in the first line arises from the reducibility of Us; when d = 3.

Remark 11. For the discrete series of SO(1,2), we use the quotient space realization D; @ Dy =

Fi-n~/Pn where Py carries the spin-(N — 1) representation of SO(1,2)

N-1 . 2qN
Opt @y (1) = Or_y(2) - k:;Nq =14 (3.4.22)

The character for each summand D5; is %. [66]
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Chapter 4: Higher spin de Sitter quasinormal modes

In the previous chapter, we have derived the Harish-Chandra characters of the dS isometry

group, c.f. eq. [3.4.12] [3.4.19] and [3.4.20| for different UIRs. These expressions admit Taylor

expansions for small ¢ with all Taylor coefficients taking values in positive integers. One might
immediately wonder about the physical meaning of the coefficients in the sense that if they count
any physical objects. In this chapter, we will show that these coefficients count quasinormal
modes in de Sitter spacetime by presenting an algebraic construction of de Sitter quasinormal

modes.

4.1 Introduction

In the framework of general relativity (GR), quasinormal modes can be defined as the damped
modes of some perturbation in a classical gravitational background with a horizon, like black
holes and dS. Astrophysically, they are important because the least damped gravitational quasi-
normal mode of a Schwarzschild black hole is detected and measured by LIGO through grav-
itational waves emitted during the so-called “ringdown” phase [76]. The measured value of
gravitational quasinormal frequency can be used to test GR which predicts that the spin and
mass of a black hole completely fix gravitational quasinormal frequencies.

One standard method of finding quasinormal modes in a generic background with a horizon is
solving the equation of motion for a perturbation, in most cases numerically, and then imposing
in-falling boundary condition at the horizon [77H80]. In the static patch of de Sitter spacetime,
c.f. , by separation of variables the radial parts of quasinormal modes are found to satisfy
hypergeometric functions and hence can be solved analytically (see [8IH83] for a summary
and derivation of the analytical results associated to scalars, Dirac spinors, Maxwell fields and

linearized gravity in any dimensions). The underlying reason for the existence of these analytical
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solutions is the large dS isometry group which organizes quasinormal modes according to certain
representation structure. Such a representation structure was first discovered in [59, 60] for a
massive scalar field with mass m?> = A(3 — A),0 < A < 3 [[]in dS4. In this case, the
quasinormal modes of the scalar field comprise two (non-unitary) lowest-weight representations
of the isometry algebra so(1,4), which is also the conformal algebra of R3. More explicitly, the
authors built two lowest-weight/primary quasinormal modes of quasinormal frequency iw = A
and iw = A = 3 — A respectively, as the two leading asymptotic behaviors of vacuum-to-
vacuum bulk two-point function when one point pushed to the northern pole on the future
sphere. Upon each primary quasinormal mode, an infinite tower of quasinormal modes can
be generated as s0(1,4)-descendants and the scaling dimension of every descendant can be
identified as (i x quasinormal frequency). The two towers of quasinormal modes together span
the whole scalar quasinormal spectrum. These results were later reformulated by [84] in the
ambient space formalism and generalized to massive vector fields and Dirac spinors in the same
chapter. We'll call the way of constructing quasinormal modes using the dS isometry group as
in [59, 60, [84] the algebraic approach.

The separation of variables method in [81] 83] is increasingly cumbersome when applied to
higher spin fields due to the rapidly increasing number of tensor structures. So in this chapter we
will focus on generalizing the algebraic approach to construct quasinormal modes of higher spin
fields, which are formulated in the ambient space (see section [4.2]for a review about the ambient
space formalism). In section , we first review the algebraic construction of quasinormal modes
of a scalar field ¢ of mass m in dSg,1 using the ambient space formalism. The quasinormal

spectrum found in this way can be packaged into a “quasinormal character’, cf. (4.5.1))
oW =3%"4d, ¢“ (4.1.1)
w

where the sum runs over all quasinormal frequencies and d,, is the degeneracy of quasinormal
modes with frequency w. We show that the quasinormal character of ¢ is given by
U

oM (q) = =g A=d-A (4.1.2)

'The representation carried by such a scalar field is in the (scalar) complementary series.
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where A = g + w% — m? is the scaling dimension of ¢. According to [64, [70, [75], GSN(q) is
the Harish-Chandra SO(1,d + 1) character corresponding to the unitary (scalar) principal series
when m > % and the unitary (scalar) complementary series when 0 < m < g. The (A < A)
symmetry in (4.1.2) manifests the two towers of quasinormal modes. The generalization of the
algebraic construction to massive higher spin fields is straightforward. The only difference is
that the two primary quasinormal modes have spin degeneracy. In this case, the quasinormal
character is given by eq. . However, the generalization to the massless higher spin case is
quite nontrivial because gauge symmetry significantly reshapes quasinormal spectrums compared
to the massive case. For example, the naive (A « A) symmetry would lead to growing modes
instead of damped modes because A = 2—s < 0 when s > 3. Moreover the symmetry disagrees
with the result of [83] for s = 1,2. On the representation side, the underlying reason for the
difficulty in generalization is that the massless higher spin fields are in the exceptional series
for d > 4 and in the discrete series for d = 3 while generic massive fields are in the principal
series or the complementary series P In section we'll discuss the subtleties associated to
gauge symmetry in more detail and explain how to take into account gauge symmetry properly
while constructing physical quasinormal modes. In particular, the two-tower structure still holds
and the two primary quasinormal modes are given by eq.(4.3.37)) and eq.(4.3.39). In addition,
in section [4.4] we argue that the two primary quasinormal modes are produced by insertions
of boundary gauge-invariant conserved currents (of scaling dimension d + s — 2) and boundary
higher-spin Weyl tensors (of scaling dimension 2) at the southern pole of the past sphere (see

fig. . Other quasinormal modes are sourced by the descendants of these two operators.
Based on the algebraic construction described in section [4.3.3] we extract the physical

quasinormal spectrum of massless higher spin fields in section[4.5]and compute the corresponding

quasinormal character. Here, we list some examples at d = 3, 4,5 (see eq. for a general

2We exclude the partially massless fields while talking about massive fields.
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(9]
Figure 4.1.1: The Penrose diagram of de Sitter spacetime. Quasinormal modes (in the southern static
patch “S") of massless higher spin fields are sourced by certain gauge-invariant operators O inserted at
the southern pole of the past sphere.

expression working in any d):

(2s+1) gt — (25 — 1) ¢***

d=3: OMN(g) =2 T

d=4: eN(g) = 2 w (4.1.3)
5. () = L 5 . ¢ —¢ | s+1(s+2)(25+3)¢°" —5(25 +1)¢"™

d=5: OMg) = 30+ DEs+ D@ +3) T 5+ = =L

These quasinormal characters coincide with the original computation of Harish-Chandra SO(1, d+
1) characters in [13, [75] and the characters appearing in the one-loop path integral of massless
higher spin fields on S%*1, the Wick rotation of dSy,; [2]. Therefore, the quasinormal charac-
ters, which are defined in a pure physics setup, connect nonunitary lowest-weight representations
of s0(1,d+ 1) and the unitary representations of SO(1,d+1). In addition, in the appendix[B.2]
we recover the quasinormal spectrum of Maxwell theory and linearized gravity in [83] by using
6 (g) and 63" (q).

When d > 4, the expansion of quasinormal character @SN(q) always starts from a ¢® term
because it corresponds to a boundary higher-spin Weyl tensor insertion. When d = 3, @8'\' (q)
starts from ¢'** since the spin-s Weyl tensor, which vanishes identically on the 3-dimensional
boundary, gets replaced by the co-called Cotton tensor [85H88|, which involves (2s+1) derivatives

on the boundary gauge field of scaling dimension 2 — s.
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4.2 Ambient space formalism for fields in de Sitter

In this section, we review ambient space formalism for higher spin fields in (d + 1)-dimensional

de Sitter spacetime, which is realized as a hypersurface
napXAXP =1, nap=(=+,---,+) (4.2.1)

in the ambient space R14*! where A = 0,1,---,d + 1. Local intrinsic coordinates y* are
defined through an embedding X4 (y) that satisfies and such an embedding induces a
local metric ds?> = g dy*dy” on dSgi 1. To gain some intuitions about the ambient space
description in field theory, let's consider a free scalar field ¢(y), defined in the local coordinates
y*, of mass m? = A(d — A) and satisfying equation of motion: V2p = m2¢ with V? being
the scalar Laplacian. This scalar field ¢ admits a unique extension ¢(X) to the ambient space

such that

PAX) = AT"9(X), o(X(y)) = ¢(y) (4.2.2)

where £ is an arbitrary constant. Define radial coordinate R = v/ X2 and hence any point in
the ambient space can be parameterized by (R, y") via a dS foliation. In terms of the radial
coordinate, the extension condition (4.2.2)) can be rephrased as ¢(X) = ¢(R, y*) = R "p(y)
and the ambient space Laplacian can be expressed as 9% = ﬁ@R(RdH@R) + 32 V2, which

together with the equation of motion of ¢, yields

0% ¢ = %(A(d —A)—k(d—k))p (4.2.3)

In particular, if we choose  to be A or A, $(X) becomes a harmonic function in the ambient
space. Altogether, the scalar field ¢(y) in dS441 of scaling dimension A is equivalent to a

homogeneous harmonic function ¢(X) in the ambient space RL4+! e

(X - 0x + R)(X) = d(X), 0ZH(X)=0 (4.2.4)
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where Kk = A or kK = A. The obvious technical advantage of this ambient space description
is replacing the cumbersome covariant derivative V,, by the simple ordinary derivative Oxa.
Such a simplification is more crucial when we deal with higher spin fields. One can find a very
good review about the ambient space formalism for spinning fields in AdS in [89] [90]; also see
[91] 92] for a more general and systematic discussion using the Howe duality. Here we present

an adapted version of the ambient space description in dS.

4.2.1 Higher spin fields in ambient space formalism

The totally symmetric transverse (on-shell) spin-s field ¢, . (y) of scaling dimension A in
dSg41 is represented uniquely in ambient space by the symmetric tensor ¢4, . 4. (X),

oxA4  gx4

= S By Dan,(X) (4.2.5)

pr--opns (Y)

satisfying the following equations:

» Tangentiality to surfaces of constant R = v X2
(X -0v)os(X,U)=0 (4.2.6)

» The homogeneity condition:

(X - Ox + K)$s(X,U) =0 (4.2.7)

A convenient choice is Kk = A or kK = A because, as we've seen in the scalar case, it yields

the simplest equation of motion as follows:

= The Casimir condition, i.e. equation of motion

(Ox - 0x) ¢s(X,U) =0 (4.2.8)

= The transverse condition:

(Ox - 0u) ¢s(X,U) =0 (4.2.9)
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= The traceless condition:

(O - Oy) ds(X,U) =0 (4.2.10)

where we've used the generating function ¢s(X,U) = L¢a,..a, (X)UA - .- U4 with U being
a constant auxiliary vector. The first two conditions ensure that ¢4(X,U) is the unique uplift
of ¢,,...u, that satisfies (4.2.5)) and the last three conditions are equivalent to the Fierz-Pauli

system:

The Casimir condition : V201 = (A(d — A) 4 8) iy o (4.2.11)
The transverse condition : V¢, ... =0 (4.2.12)
The traceless condition :  ¢"**2¢,,,..,. =0 (4.2.13)

In the remaining part of the chapter, we'll call (4.2.6))-(4.2.7)) the uplift conditions and (4.2.8))-
(4.2.10) the Fierz-Pauli conditions.

When ¢, ..., is a massless spin-s bulk field, the uplift conditions and Fierz-Pauli conditions

have a gauge symmetry, with the gauge transformation takes the following simple form if we

choose‘an—s:A‘in eq. (4.2.7)):

55571¢8(X7 U) = (U : aX) 55—1(X7 U) (4.2.14)

where &;_1 satisfies

» Tangentiality to surfaces of constant R = v X2:

(X 0u) &—1(X,U) =0 (4.2.15)

= The homogeneity condition:

(X -0x+1—58)E_1(X,U)=0 (4.2.16)
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= The Casimir condition:

(0Ox - 0x)&—1(X,U) =0 (4.2.17)
= The transverse condition:

(Ox - 0y) &s—1(X,U) =0 (4.2.18)
= The traceless condition:

(Ou - 0u)€s—1(X,U) =0 (4.2.19)

In the intrinsic coordinate language, this set of equations implies that &_1 is a transverse
traceless symmetric spin-(s — 1) field on dSz,1 satisfying on-shell equation of motion (V2 —
(s —1)(s+d—2))&—1 = 0, where spin indices are suppressed.

4.2.2 Isometry group in ambient space formalism

The isometry group SO(1,d + 1) of dSg; acts linearly on fields in the ambient space R14+1,

In particular, the generators L op are realized as linear differential operators in both X and U:
Lap = (Xa0xs — XpOxa) + (Ua0ys — Updya) (4.2.20)

where the first term corresponds to orbital angular momentum and the second term represents

spin angular momentum. The action of M;;, P;, K;, D induced by (4.2.20)) is

M;; = Xi0x; — X;0xi + UiOyi — U;0y: (4.2.21)
K= X0y +2X;0x- +U" 0y +2U;0y- (4.2.22)
P =X 0xi —2X;0x+ — U 0y — 2U;0y+ (4.2.23)
D=-X"0x+ + X 0x- —UT0y+ +U 9y (4.2.24)

where we've used lightcone coordinates X+ = X0+ X1 and U+ = U0 + Ud+1,
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With a little algebra, one can show that all L 45 commute with the following set of differential

operators:
X -0y, X-0x, 83(, Ox - 0y, 6(2], U-0x (4.2.25)

The first five operators define the uplift conditions and Fierz-Pauli conditions, cf. (4.2.6))-
, and hence the commutation relations imply that the on-shell bulk fields carry represen-
tations of so(1,d + 1). The last operator defines the gauge transformation of a massless higher
spin field and therefore one implication of [Lap,U - Ox| = 0 is that the descendants of a pure
gauge mode are also pure gauge. This observation is crucial when we construct quasinormal

modes for massless higher spin fields.

4.3 Algebraic construction of quasinormal modes

The southern static patch of de Sitter spacetime, which corresponds to the region denoted by

“S" in the fig. (4.1.1)), has coordinates
X%=+1—7r2sinht, X'=rQ) X9%!'=1+/1—r2cosht (4.3.1)

and shows a manifest spherical horizon at 7 =1 or p = oo in its metric

ds? = —(1 — r2)d¢2 dr? 2 702
s =—(1 r)dt+1_T2+rdQ

_ —dt? + dp?

cosh? + tanh? p dQ? (4.3.2)

where r = tanhp and dQ? = hgd9°dd® is the standard metric on S%! (9% are spherical
coordinates on S?~1). The traditional analytical approach to quasinormal requires solving the
equation of motion in bulk and imposing in-falling boundary condition, i.e. e~en(t=P) for the
leading asymptotic behavior near the horizon at p = co.

An algebraic method of solving quasinormal modes was first used for scalar fields in dSy4 in
[59] [60]. In particular, the authors found that all the quasinormal modes fall into two lowest-

weight representations of the conformal algebra so(1,d + 1). Therefore, it suffices to find the
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two lowest-weight/primary quasinormal modes, which are solutions to the equation of motion
and are annihilated by K;, and the rest of the quasinormal spectrum can be generated as
descendants of them. In this section, we will first reformulate this scalar story using the ambient

space formalism and then generalize it to higher spin fields.

4.3.1 Scalar fields

Let p(X) be a free scalar field of mass m? = A(d — A) > 0 in dS4.1. By construction, the
equation of motion (V2 — m?2)p = 0 is satisfied by the boundary-to-bulk propagators, which in

ambient space take the following form:

1 1

an(X;8) = ——F5x, BalX;§) = (X-0h

e (4.3.3)

where &4 is a constant null vector in RV%t1 representing a point on the future/past boundary
of dS4,1. Treating aa and Ba as mode functions in X4, they are primary with respect to the
conformal algebra so(1,d + 1) if X - £ = X, because K; only involves derivatives dx: and
Ox— while acting on scalar fields (cf. ) By choosing £¢4 = (—1,0,---,0,1) which is

the southern pole of the past sphere, we obtain the two primary quasinormal modes

aa(X) = (X-lF)A = (cosh p)Re B 5% o= A=)
1 A A 0 _A(t—
Ba(X) = XA = (cosh p)Re At P30 ¢=Al=p) (4.3.4)

with quasinormal frequency iw, = A and iwg = A respectively. The rest quasinormal modes
can be realized as descendants of aa(X) and Ba(X). Though not explicitly spoken out in
[59, 60], this claim actually relies on two facts: (a) P; preserves the equation of motion and (b)
P; preserves the in-falling boundary condition near horizon. The former is obvious as we've seen
at the end of last section that the SO(1, d+ 1) action preserves uplift conditions and Pauli-Fierz
conditions. The latter holds because P; is dominated by —2.X;0x+ near horizon, where X; ~ §;
and Xt ~ 2¢e!~”. With the quasinormal modes known, we need to figure out the corresponding
frequency. This is quite straightforward in our formalism. By construction, each quasinormal

mode is an eigenfunction of the dilatation operator D, which is just —0; in the static patch.
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Using the in-falling boundary condition e~™an(t=P) near horizon, we can identify the scaling
dimension, i.e. eigenvalue with respect to D, as i x (quasinormal frequency wqn). For example,
a descendant of aa at level n is a quasinormal mode of frequency wqn = —i(A + n) and
similarly for Sa.

To end the discussion about scalar quasinormal modes, let's compare our construction with
the known result in literature. For example, in [83], the scalar quasinormal modes in dS;; are

found to be

(t+iw+ A (+ivw+A d
2 ’ 2 i)

Nt r, Q) = rl(1 —12) 5 F ( +€,r2> Yim(Q)e ™t (4.3.5)

where Yy, (Q) denote spherical harmonics on S%~! and the quasinormal frequency w takes the

following values
Wen = —i(A+€+2n), @pp=—i(A+L+2n), {neN (4.3.6)

For fixed ¢ and n, the quasinormal modes of frequency wy , or wy , have degeneracy DZ, i.e
the dimension of the spin-¢ representation of SO(d). In particular, the two quasinormal modes

corresponding to £ =n =0 are

@QN = ! e 1 cosh p)A —At
w00 VAd-1 (1-— TQ)% VA
1 —At 1 _
¢ coshp At (4.3.7)

o[>

oN _
Spw(]yo /Ad_l (1 _ ,,,,2) /

where A,_; is the area of S%~!. Apart from the normalization constant, these two quasinormal
modes are exactly the primary quasonormal modes aa and A respectively. In addition to the
match of the primary quasinormal modes, we can also show that the algebraic construction
reproduces the quasinormal spectrum . Define P = /PP, and P, = P~1P,. Then the
linear independent descendants of a are of the form PQ"”ng(Jf’)aA with £,n € N. For
fixed ¢ and n, these are quasinormal modes corresponding to wy,. Similarly PZ””ng(P)BA

represents quasinormal modes corresponding to wy ,.
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4.3.2 Massive higher spin fields

As in the scalar case, we need to start from a solution of the Pauli-Fierz conditions (4.2.8))-
(4.2.10), subject to the tangential condition and homogeneous condition. A natural candidate
is the higher spin boundary-to-bulk propagator. In AdS, the boundary-to-bulk propagator of a
spin-s field with a generic scaling dimension A(# d + s — 2) is given by [90, 03, [04]

KA (x,0ie z) = (26 (XX) -;)(AU+;§)(Z = (43.8)

where the null vector £ € R1¥+1 represents a boundary point and the null vector Z € CL4+1
satisfying £ - Z = 0, encodes the boundary spin. K[AAdfg} in ([4.3.8]) scales like KfA‘A‘{SS]()\X) =
)\*AK[AA‘% (X), which is the analogue of kK = A in eq. . In AdS, this scaling property
corresponds to the choice of ordinary boundary condition. In dS, on the other hand, both
near-boundary fall-offs of a bulk field are dynamical and hence there are two boundary-to-bulk

propagators

(U-2)(€-X)—(U-(Z-X)I°

K® (X, U;¢,2) =
( 7U7§7 ) (X_g)n—i-s

[re,5]

(4.3.9)

where k € {A,A}. Notice that K; in (4.2.21)) doesn't involve any derivative with respect to
X or U'. So we can obtain primary mode functions from Kﬁjs] (X,U;€, Z) by putting €4 at
the southern pole of the past sphere, i.e. ¢4 = (—1,0,---,0,1) and choosing Z4 = (0, ;,0),
where z; itself is a null vector in C%:

P P
A 5] = (X+)Aa B[A,s] = (X+)A

(4.3.10)

where ’ dP=X"u-2-U'x- z‘ (despite the lower case x and u, indeed z! = X* and u’ = U?).

aja,s) @and Ba 4 are clearly primary quasinormal modes since in-falling boundary condition near
horizon naturally follows from the lack of dependence on X~ and U~. Given the two primary
quasinormal modes, the whole quasinormal spectrum can be generated by acting P; on them
repeatedly. In this sense, the algebraic construction of quasinormal modes for massive higher

spin fields is a straightforward generalization of the scalar case. Before moving to massless
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higher spin fields, we want to emphasize that rigorously speaking, “a(a 5" or “Bja 4" is not one
primary quasinormal mode because varying z* would yield different quasinormal modes. Indeed,
Q[a,s) represents a collection of quasinormal modes with the same frequency and the vector
space spanned by these quasinormal modes furnishes a spin-s representation of SO(d). But for
convenience, in most part of the chapter, we'll stick to the misnomer by calling, say o 4, the

a-mode.

4.3.3 Massless higher spin fields

When A hits d—2+s, i.e. the massless limit, K[AA‘*SS] still holds as a boundary-to-bulk propagator

in the so-called de Donder gauge [90, 03]. So we can extract de Sitter primary quasinormal

modes, in de Donder gauge, from K[AA‘E] as in the massive case:

Ps R d+2(s—2)
o (7)

S

a-mode : a(s)(X, U;z) =

B-mode : B (X, U; 2) = (4.3.11)

(X*)?
where the SO(1,d + 1)-invariant R = v/ X2 is inserted in o(®) [} so that it can have the same
scaling property as 3(*), which corresponds to k = 2— s in . With this choice of k, gauge
transformation acts in the same way on both modes, schematically §a(®) = U - dx(---) and
6B =U - ax(---).

Naively, one would expect to be the end of story since we can generate the rest
quasinormal modes as descendants of a(*) and 3(%), just as in the massive case. However, this
expectation is only partially correct because, as we'll show in the following, the quasinormal
spectrum is significantly affected by gauge symmetry in the massless case compared to its
massive counterpart. For example, the 3(*)-mode has quasinormal frequency iw = 2 — s, which
would lead to an exponentially growing rather than damped behavior at future for s > 3. Gauge

symmetry should be the only cure for this pathological growth and indeed, we do find that the

3Including R4+2(>=2) doesn’t spoil the Fierz-Pauli conditions (4.2.8)-(4.2.10).
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B-mode is pure gauge for any s > 1:

Tz

B(s) =U- aX (55—1)7 §S—1 = q)s_l X+

(4.3.12)

where the gauge parameter £;_1 can be realized as a descendant of another mode in the following
sense:

1_._
Es—1 = (Z : P)ns—lv Ns—1 = _5(1)5 ! log Xt (4'3'13)

As a result, all the quasinormal modes in the S-tower are unphyical. The a-mode itself is not
pure gauge but it has some pure-gauge descendants:

o d+2s5—2
P-Da® = my.ax [q)s—l (}i) ] (4.3.14)
2

where D; is defined in the eq. ([3.3.7)). If we write out the indices explicitly, (4.3.14) means
Piloé(s) ;

11ts

(X,U) = 0 up to gauge transformation, which is the reminiscence of a spin-s conserved
current.

In the remaining part of this section, we'll show that although the S-tower of quasinormal
modes gets killed by gauge transformation, there exist a brand new tower of physical quasinormal

modes.

4.3.3.1 Maxwell fields
The primary 3-mode of a massless spin-1 field is Bi(l) = (;7;')2, where ®; = XTu;, —UTz;. It

is pure gauge and the corresponding gauge parameter takes a very special form
B = U - ox (Pimo) (4.3.15)

where 1 is given by eq. (4.3.13)) with s = 1. Since so0(1,d + 1) action commutes with gauge

transformation, we can switch the order of P, and U - dx in BZ-(I):

s = P (U - 9x mo) (4.3.16)




7

This new expression of ﬁi(l) inspires the following crucial observation. Treating 51-(1) as a vector
field indexed by ¢ and treating P; as an ordinary derivative like 9;, then ﬁi(l) can be thought as
a "pure gauge" mode with the gauge parameter being U - Ox 19. (We want to emphasize that
this gauge symmetry structure is completely different from the bulk gauge symmetry, which
takes the form 0(---) = U - Ox(---). To distinguish it from the bulk gauge symmetry, we
call it a "pseudo” gauge symmetry and its connection with the boundary gauge transformation
will be discussed in section . Since ﬁfl) is pure gauge with respect to the pseudo gauge
symmetry, the (pseudo) field strength F;; = Piﬁj(l) - P]ﬂi(l) vanishes identically. The vanishing
of F;; signals a potential way to obtain the new physical quasinormal modes, which will be

implemented step by step as follows:

= First, we define a different 8-mode 31(1) by deforming the scaling dimension of Bi(l) from
lto A—-1:
5(1) N et Cat( ¢V
BRXU) = s = (xH)" 7B, Az (4.3.17)
From the bulk field theory point of view, it amounts to giving a mass term to the Maxwell

field to break the bulk U(1) gauge symmetry.
= Then the new pseudo field strength ]:"ij = PiB](.l) — Pjﬁfl) is nonvanishing

xZ; Uj — uix]—

(4.3.18)
= Stripping off the numerical factor 2(A — 2) and taking the limit A — 2 for the remaining
part, we obtain a new non-pure-gauge mode function that is antisymmetric in %, j

(1) _ TiU; — U T 1 Usj Uj
% (X, U) = T 2 (PiX+ - PjX+> (4.3.19)

It's straightforward to check that 'y.(l)

i satisfies all the requirements of being a quasinormal

mode of frequency iw = 2. Written in the form of (4.3.19)), ’yi(jl) looks like a descendant of

Uj

Xt

Uj

However, this descendant structure doesn’t have any physical meaning because - fails to
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satisfy the tangentiality condition (4.2.6)). Actually, fy-(D is a primary up to gauge transformation:

2,

(4.3.20)

0ikTj — OjkL;
Kk%'(jl) =U-0x (kw] L )

X+

Therefore, fyl(]l )

built from %-(.1) the “~-tower” of quasinormal modes.

is a physical primary quasinormal mode and we will call the whole Verma module

In the framework of pseudo gauge symmetry, 'y@ can be thought as a U(1) field strength

7
with - being the gauge potential. As a field strength, ’y(»l) satisfies Bianchi identity F; j(lld) =

)

which imposes a nontrivial constraint on the descendants of 71-(]-1). When d = 3, the field strength
%(jl) is dual to a vector %(1) and the Bianchi identity is equivalent to a conservation equation
Pfyi(l) = 0. In this case, the representation structure of the y-tower is exactly the same as the
a-tower.

We'll leave the comparison with intrinsic coordinate computation of quasinormal modes of

Maxwell theory to appendix [B.1]

4.3.3.2 Linearized gravity

d>4

The primary $-mode associated to a massless spin-2 field is B2 = %. According to eq.

(4.3.12)) and (4.3.13)), 3® can be alternatively expressed as
B =P (U-0xn)+ P, (U-0xn}) — trace (4.3.21)

where the null vectors z in 3) are stripped off. Treating P; as an ordinary derivative, the
first two terms in Bi(?) have the form of diffeomorphism transformation of (Euclidean) linearized
gravity in R?. Given this pseudo diffeomorphism structure, we can naturally kill these two terms

by considering the (pseudo) linearized Riemann tensor R[3)];ix, , which is defined as
1
RIBPNigne = 5 (PPSY + PR — PP — PRBT) (4.3.22)

The remaining pure trace term in ﬁg) drops out by projecting R[B(z)]ijkg to the “linearized

Wey! tensor” C[3®)];;xe which is defined as the traceless part R[3(®)];;x and carries the H}
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representation of SO(d). By construction, C[3(?)];;x¢ would vanish just as the U(1) field strength
Fi; in the spin-1 case. Due to this similarity, it's quite natural to expect the new spin-2 physical
primary quasinormal mode will be produced by the same “deformation+ limiting” procedure,
whose steps are listed here again for readers’ convenience: (a) deform the 5(2) mode by sending
it to 52 = % = (X1)225®) (b) compute the Weyl tensor C[B(Q)]ijkg associated to 3%,
(¢) strip off the overall factor (A—2) in C[B(Q)]ijkg and take the limit A — 2 for the remaining
part. To show the limiting procedure (c) more explicitly, expand, for instance, the first term in

A

R[p?):

Tk
(X‘F)Afl

25 PpBy PP

5(2) _ 2 p.
PijBM =2(A-2) Bié P; (X*)Aﬂ (X+)A—2

+2(A—2) (4.3.23)

where the convention for symmetrization is x(;, Pj) = zx P; + xj Py. The last term in (4.3.23)
does not contribute to the Riemann tensor R[3®] and we'll drop it henceforth. The remaining
terms are proportional to A—2, so the limiting procedure is applicable to them
. P'PkB‘(gQ) 22K\ L2) , 2Tk 5 A2) |, 275 o A(2)
i = () 6+ SR + s
2 2
= P;Py(~log(X™) A7) + log(X ") P, Py, 3] (4.3.24)

where the last term drops out from Riemann tensor R[BQ)]. Therefore the new physical quasi-
normal mode is schematically

V21X, U) = Clhlsjre, hij = —log(X ™) B (4.3.25)

which has scaling dimension 2 (or quasinormal frequency iw = 2) and carries the H} represen-

tation of SO(d). The primariness of ’Yi(j‘lez is proved in appendix .

d=3

The d = 3 case is degenerate and requires a separate discussion because the 3D Weyl
tensor 0[3(2)]”“ vanishes identically for arbitrary choice of A. So the deformation and limiting
procedure used above fails to yield any quasinormal mode when d = 3. The solution to this

problem is using Cotton tensor, the 3D analogue of Weyl tensor. On a 3-dimensional Riemann
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manifold with metric g;;, the Cotton tensor is given by [85, [86]
j 1 Kkt

Cilgl = Vi ( Bie = 7R gue ) € (4.3.26)

and the vanishing of Cotton tensor is the necessary and sufficient condition for the 3-dimensional
manifold to be conformally flat. (In spite of the abuse of notation C, it will be clear from the
context that C means Weyl tensor when d > 4 and means Cotton tensor when d = 3). At the

linearized level, i.e. g;; = d;; + ¢;;, the Cotton tensor becomes

Cl#lij = Ok Rie[lexej — iekijakR[(z)] (4.3.27)

where R[¢];;, R[¢] are linearized Ricci tensor and linearized Ricci scalar respectively. In addition,
the linearized Cotton tensor is actually symmetric in i, which can be checked by contracting

it with €ijm
Clelijeijm = %{%RM — 0iRim, = 0 (4.3.28)

where the last step is a well-known result of Bianchi identity of Riemann tensor. Since C[¢];; is

symmetric and traceless, it will be convenient to restore the null vector z
1
Clo; 2] = OpRiv|@leres i 2 = iekéj(aiakam(bmf — O 0pdir) 7 2 (4.3.29)

In the context of quasinormal modes, we can similarly construct a pseudo Cotton tensor with

ordinary derivative 0; in eq. (4.3.29]) replaced by momentum operator P;
1
Clo;z] = §€Mj(Pz‘PkPm¢m£ — P?Pyobir) 2 2 (4.3.30)

Because Cotton tensor is invariant under diffeomorphism and local Weyl transformation by
construction, C[¢; 2] vanishes exactly when ¢ = 3(2). As a result, applying the deformation and

limiting procedure to the Cotton tensor C[ﬁ@); z] would yield a new physical primary quasinormal
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mode

z-(zANu)

@ON(X U:2) =

(XTU 22— X"X u-z24+2%u-2— (u-x)(x-2) (43.31)

where (z A u); = €jpxjur. Compared to higher dimensional cases, 72 in d = 3 is differ-
ent mainly in two ways: (a) it has scaling dimension 3 because Cotton tensor involves three
derivatives while Weyl tensor only involves 2, (b) it carries a spin-2 representation of SO(3)
&) _ o,

and the Bianchi identity in higher dimension becomes a “conservation” equation P;y;

Due to these two properties, the v(2)-tower of quasinormal modes in dS, is isomorphic to the

2)

a( -tower.

4.3.3.3 Massless higher spin fields

With the spin-1 and spin-2 examples worked out explicitly, we'll continue to show that for any

massless higher spin field, there exist the primary ~-mode. For a massless spin-s field, the

primary [3-mode given by eq. (4.3.12)) and (4.3.13]) can be written as
51(18)1 = Py 3X7722_”1'i5) — trace (4.3.32)

Treating P? as an ordinary derivative, apart from the pure trace part, 3(*) has the form of gauge
transformation of d-dimensional linearized spin-s gravity. Such gauge transformation can be

eliminated by using the higher spin Riemann tensor
R[¢]i121,--- Jisls = HSSPi1 e Pis(bgl---gs (4333)

where I, is a projection operator ensuring R[], ¢, ... i,e, carries the Y5 representation of
GL(d,R). More explicitly, II;s can be realized by antisymmetrizing the s pairs of indices:
li1,01], - - [is, L] [87,195]. The higher spin Weyl tensor C[¢];,y, ... i.¢, is defined as the traceless

part of R[@]i ¢, .- i.e, and thus it carries the Y, representation of SO(d) EI Since Weyl tensor

*For simplicity, we assume d > 4 so the higher spin Weyl tensor is nonvanishing. When d = 3, we should use
higher spin Cotton tensor C;,...;; |87, [88] that is symmetric and traceless. The Bianchi identity for Cotton tensor
is a conservation equation P;, C;;...;;, = 0. In addition, the definition of Cotton tensor involves 2s — 1 momentum
operators and hence the associated primary -mode would have scaling dimension 1 + s instead of 2.
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is invariant under diffeomorphism and local Weyl transformation, C[3(*)] vanishes exactly. Thus

we can apply the deformation procedure to it and obtain the following quasinormal mode

’71,(182116 (X,U) = Ch iy it héf)g = —log(X+)ﬁ§f,)__ZS (4.3.34)

In appendix , we show that 72.(1"’21 . i.0, Fepresents DY, primary quasinormal modes of scaling

dimension 2 that carry Y, representation of SO(d), where D% is the dimension of the Y,
representation. In the same appendix, we also show that these primary quasinormal modes can

alternatively be expressed in the following form

Tss(x,u)

AON(X,U) = X2 (4.3.35)

where Tgs(x,u) is a homogeneous polynomial in both = and u of degree s and satisfies (B.3.10)).
The space of such T carries the Y, representation of SO(d) [96]. One obvious example of

Tss is
Tos(w,u) = [(2" +ia?) (0 + iut) — (o +ia®) (! +iu?)] (4.3.36)

In the representation language, the example given by eq. (4.3.36)) is actually the lowest-weight
state in Y,,. Therefore, we are able to generate the whole y-tower by acting P; and M;; on the

following quansinormal mode:

(XY +iX?)(U2 +iU%) — (X3 +iXH (U +iU?)]°
(X*)2

Y(X,U) = (4.3.37)

This is a strikingly universal expression that works for any s > 1 and d > 4. In static patch
coordinate, the nonvanishing components of ((4.3.37)) are

T25672 t

(s) _
(t,m,Q) = m(

fylw,al Qg

91281904 Qg4 — (234819“ 912) e (912819% Q34 — 934619115 ng) (4338)

where Q15 = Qq + i€ and Q34 = Q3 + i€24. One can check that the 2-dependent part of
(4.3.38)) is actually a divergence-free spin-s tensor harmonics on S%~!. This is also expected

from the representation side because these tensor harmonics also furnish the Y, representation
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of SO(d).
For the completeness of the final result, we also give the unique lowest-weight state in the

a(8)_tower here

[X+(U1—|—iU2)_U+(X1+Z-X2)]S < R >d+2(s_2)

(X+)? X+

Oé(s) (X, U) — Xt

lw

(4.3.39)

Then all the quasinormal modes are built from O‘z(jj) (cf. (4.3.39)) and fyl(;) (cf. (4.3.37))) with

the action of P; and M;;.

4.4 Quasinormal modes from a QFT point of view

In the previous section, we presented a pure algebraic method to construct quasinormal modes
of scalars and higher spin fields. In this section, we'll provide a simple physical picture for this
method from a bulk QFT point of view. In particular, we'll use scalar fields and Maxwell fields
to illustrate this intuitive picture explicitly and then give a brief comment on general massless

higher spin fields. Through out this section, the bulk quantum fields are defined in the southern
past planar coordinate (1, y’) of dSg,1 (the region “S"4"P" in fig. (4.1.1)):

R et/ M D A TO U e e

XU
2n n 2n

(4.4.1)

where 17 < 0 and the quasinormal modes are still defined in the southern static patch, which

corresponds to y < —n in eq. (4.4.1).

4.4.1 Scalar fields

Let ¢ be a scalar field of scaling dimension A. Near the past boundary, it has the following

asymptotic behavior

p(1,y) = (—)2 0 (y) + (=) > 0P (y) (4.4.2)
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Define quantum operators £ 45 such that Lapy = —[LaB, ¢]. Then O and OB are primary

operators in the sense that

[D,0)(0)] = AO(0), [K;, 0)(0)] =0
D, 0P (0)] = A0P(0), [Ki;, 0P (0)] =0 (4.4.3)

The bulk two-point function of ¢ defined with respect to the Euclidean vacuum |E) is given by
[97]
~d+1 1+P
Elo(X X’E:—)F AA —— —— 444
(Elp(X)p(X')|E) d(dﬂ)(,,Q,z) (4.4.)

where P = X - X’. We push X’ to the past southern pole, i.e. 3 = 0 and ' — 07, then

X+
27’

P is approximately — — o0. For P — 00, the hypergeometric function in (4.4.4]) has two

leading asymptotic behaviors: P~* and pPA, Schematically, it means

(Elo(X)o( — 0.5 = 0)|E) ~ ea T1 0 4 ¢4 (4.4.5)

where ca and ¢ are two constants. Comparing the eq. and eq. (4.4.5), we find that
(E|o(X)O@)(0)|E) produces the primary quasinormal mode aa(X) and (E|o(X)O0W)(0)|E)
produces the primary quasinormal mode A (X). Altogether, the scalar primary quasinormal
modes in southern static patch can be produced by inserting primary operator O(® or O(®) at
the southern pole of the past sphere and other quasinormal modes can be produced by inserting

descendants of 0@ or OB,

4.4.2 Maxwell fields

We want to derive the two primary quasinormal modes of Maxwell field in dS4 using local

El) and 'y-(D to planar patch coordinates.

operators. First, let's pull back « i

The a-mode:
e 2y; n? (1) n(2yiy; + 0ij (N* — y?))

(1) _ ol = 446
o (2 —y?)3 o (n? —y?)3 (4.4.6)
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For later convenience, we perform a gauge transformation to kill the timelike component, which

can be done by choosing the following gauge parameter[ﬂ

yi (ynm*+y?) 1. n+y
€ = ~ Zlog 1Y 4.47
43\ (2 —=9%)?2 2 Tn—y (4.4.7)

The resulting spatial part of agl) becomes

(1) o\ log 1
a\) = (0,0, - 6,,02) 5 (4.4.8)

The y-mode:
a 1) Yil0jk — Yj ik
7@']'777 =0, 7'j,k = —(7]2 — y2)2 (4.4.9)
The timelike component is automatically vanishing.
Next, we do a mode expansion for a Maxwell field A, in the Coulomb gauge [40]:
Pk ( @)y 0K 9) ik
Ai(n,y) = —/ 2n)? ((’)i (k) — O;" (k) cos(kn)) ey (4.4.10)

)

where the two primary operators (’)Z(a), (’)Zw capture the leading asymptotic behavior of A; near

the past boundary

Ai(n = 07,y) ~ (- O\ (y) + 07 (y) (4.4.11)

®Since quasinormal modes are still defined in the static patch, which corresponds to 17+ y < 0, we are away
from the branch cut of logarithm and the gauge parameter is real.
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They also satisfy the following vacuum two-point functions in momentum space:

(10 ()0 ()| E) = = (51.]._’3:‘:’;]‘)(%)353(% )

(IO WO 0)1B) = 5 (5 - S22 mPa 0k + )
(B0 WO )18 = & (5 - B5) (om0 + 1)
(BIOP (k)0 (k)| B) = — ¢ (5@- - kkljﬂ) (2353 (k + 1) (4.4.12)

(a)

Like in the scalar case, we insert the primary operator ;" at the southern pole of the past

sphere and it produces a mode in the bulk:

. (o) _ _z dgk ( L kik]) ik-y—ikn
(Bl O O)1E) =~ [ a7 (0 e

2
) © dk 3 1k
= 0.0, — 607 | sin(k)e™ 4.4.1
= (0yi Oy i0y) ; kysm( Je v ( 3)

where the integral over k depends on the relative size of y and —n because E]

— sin(k)et ¥

0o , i 5 log atl al >1
/ dkk _ a1 [al (4.4.12)
0

2+’logi+g, la] <1

In a physical picture, the jumping at |a| = 1 reflects horizon crossing. For quasinormal modes

defined in southern static patch, which has y < —n, the k-integral in (4.4.13)) corresponds to

the top case of (4.4.14)):

(E|4i(n, )0 (0)|E) = (ayiayjaijaj)(g;;y logZi—z) (4.4.15)

Up to normalization, we precisely reproduce the agl) quasinormal mode given by 1) Simi-

®The two cases can be uniformly treated if we give a a small positive imaginary part, i.e. a — a + i€, e > 0.
With this ie prescription, log ‘”““ works for both cases. In bulk, it amounts to Wick rotating the planar

coordinate time: 7 — e®7).
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(8)

larly, we can insert the O, at the southern pole of the past sphere and it yields

3 . ezk-y—zkn
Bl Ol O1E) = [ 555 (-5 ) 5 (4.4.16)

Due to the extra % in the integrand compared to eq., this mode suffers from an IR
divergence around k = 0. However, this divergence can be eliminated if we replace OZ(B) (0) by
a “curvature” (’)Z(;)(O) = PZ»(’)j(»ﬁ)(O) — Pj(’)z@(O) as in the construction of ’yi(;). The insertion
of (’)E“’) at southern pole yields

i Bk kidjx — kidik iy 1 0 — yidjn
<E|Ak(n7y)o§;>(o)|E>:§/ ok by Sk ,kn:ﬁw (4.4.17)

which is exactly the ,y(l)

i quasinormal mode, cf. (4.4.9), up to normalization. Note that in

the definition of 07, we implicitly use the pseudo gauge symmetry structure. On the other

17 !
hand, P, reduces to ordinary derivative 0; at boundary and hence (95’)

is indeed the curva-
ture corresponding to the boundary gauge symmetry. Therefore, the classically pseudo gauge
symmetry can be identified as the boundary gauge symmetry in quantum theory. In this sense,
(91(]7) ~ €1 By, has the interpretation as a boundary magpnetic field and Ol(a) ~ FE; has the inter-
pretation as a boundary electric field, subject to the constraint V- E = 0. So the quasinormal
modes of Maxwell fields are produced by the electric/magnetic field operator, together with
their derivatives, inserted at the past southern pole, cf. fig .

In general, a free massless higher spin field ¢,,...,, in a suitable gauge has the following

asymptotic behavior near the past boundary

Pirein (1= 07, 9) = (=) 20, () + (—m)* 0L, (v) (4.4.18)

(8)

where 0% (y) is a gauge-invariant boundary conserved current and O, . (y) is a boundary

111 111s
gauge field. I From (’)l(l)Z (y), we can build a boundary Weyl tensor (’)Z(Wj)1 isj. that is gauge

)

invariant. Then inserting operators in the conformal family of Oz(la at the past southern pole

g

"For a bulk gauge transformation 8¢, ..., = V(u1€pa--pus), the asymptotic behavior of £ near the past
boundary is &, .....(1,%) = (=) Aiy i, () + (—=0)> 2 Byyci_, (1) Off‘)i is clearly invariant under this

transformation as the A-mode falls off too fast to affect it. Meanwhile Off),_is undergoes an induced boundary

gauge transformation s0%)

iriy = O(iy Biy..i,) because the B-mode has the same fall-off as it.
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produces the a-tower of quasinormal modes and inserting operators in the conformal family of

™) ;
Oi1j17,__7isjs at the past southern pole produces the y-tower of quasinormal modes

4.5 Quasinormal modes and SO(1,d + 1) characters

In the section |4.3, we describe a procedure to construct quasinormal modes of scalar fields and
higher spin fields in dS4y1. In this section, we will extract the whole quasinormal spectrum
by using this construction and show that it’s related to the Harish-Chandra group character of
SO(1,d+ 1). To collect the information of quasinormal modes of certain field ¢ in a compact

expression, we define a “quasinormal character” :

oMN(g) => " dug®, 0<g<1 (4.5.1)

where the sum runs over all quasinormal frequencies of ¢ and d,, is the degeneracy of quasinormal
modes with frequency w. Due to the representation structure of the quasinormal modes, the
quasinormal character @(?N (¢) naturally splits into two different parts, with each part involves
either the a-tower or /3 /~-tower of quasinormal modes. For example, let ¢ be a real scalar field of
scaling dimension A. The quasinormal modes in the a-tower have frequencies iw = A+n,n >0

and for each n the degeneracy is (dj;f;l). Thus the a-part of the quasinormal character is

d+n-—1 >
o (@) =" ( ) ¢t =y (45.2)
Similarly, the contribution of S-tower is ®§N’B(q) = (1‘@)4. Altogether, we obtain the full

quasinormal character of ¢

QN QN,« QN,3 >+ qA
OA (0) =O0x""(q) +O5 " (q) = =g (4.5.3)
A +g® L o o
where (g7 1S exactly the Harish-Chandra character © z, (¢) for the scalar principal series, i.e.

A€ % + iR and the scalar complementary series, i.e. 0 < A < d. Therefore, the quasinormal
character of a unitary scalar field is same as its Harish-Chandra character. For a massive spin-s

field, the story is almost the same except the a-modes and 3-modes have spin degeneracy D¢.
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Taking into account this spin degeneracy, we obtain the quasinormal character of a spin-s field

of scaling dimension A,

>+

o (4.5.4)

@[QA'\L] (Q) = Dg

which is exactly the Harish-Chandra character @;A’S(q) for the spin-s principal series, i.e. A €
% 4+ ¢ R and the spin-s complementary series, i.e. 1 <A <d— 1.

In the remaining part of this section, we'll compute quasinormal characters for massless

higher spin fields. In this case, the a-part is easy because agf,)uis is a conserved current in

the sense of (4.3.14). So for iwl = d + s — 2 + n in the a-tower, the degeneracy is dff =

(n+d4&)l)g 47(n+d42)l)d

d—1 d—1 ¢_1, which yields

d ,d—2+s d d—1+s
‘Dsq __[%71

O (q) =D dy g =

» L (4.5.5)

O®N-2(¢) is the same as the SO(2, d) character associated to a massless spin-s field in AdS, 1 [12,
98]. However, this is quite different from the corresponding SO(1,d + 1) character Oy, ,_, (q).
To compare the quasinormal character ©2V(q) with the Harish-Chandra character 6y, , (q),
we still need to figure out quasinormal spectrum of the ~-tower.

Maxwell field

Let's start from a Maxwell field. At level 0, i.e. iw = 2, the degeneracy is dg = (g) because

fyl-(jl) carries the 2-form representation of SO(d). At level 1, generic descendants are of the form

Pmi(l), corresponding to the SO(d) representation [ ® H The 3-form representation in this
tensor product is vanishing due to Bianchi identity P[k'yz.(jl]) = 0. Therefore the degeneracy of

quasinormal modes with frequency iw = 3 is

LA\ (4 [d+1
o) (3 (") st

The descendants at level 2 are PkPm.(-l), corresponding to the SO(d) representation (e &) ®

1
H. Due to Bianchi identity, we would exclude terms like PZP[k’YZ-(;]), that carries the [] ®@

representation. However, this is overcounting because the 4-form representation in this tensor

product, carried by P[ZP;C%.(J.I]), vanishes automatically without using Bianchi identity. Therefore
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the degeneracy of quasinormal modes with frequency iw = 4 is

LA e

At any level n, using the same argument, we obtain the degeneracy of quasinormal modes with

frequency iw =2+n
L d n+d—1—k n+d

which leads to the ~-tower quasinormal character

O () =Y (n+1) (Z i Z) ¢t =1 (1 = Z;]d (45.9)
n>0

Combining eq.(4.5.5) for s = 1 and eq.(4.5.9)), we get the full quasinormal character of a
Maxwell field

1— dq dqd—l o qd

ON(g) = 0N () + @MY (g) =1 — + 4.5.10
1 () 1 () 1 () (1_q)d (1_Q)d ( )
On the other hand, the Harish-Chandra character associated to U g is
dlg+q¢“ ") - (1449 1—dq | dg* ' —¢°
ta(4) (1-q) N 1-qt  (1—gq¢ (4511

where the flipping operator [ |4 simply removes the constant —1 in the small ¢ expansion. Again,
quasinormal character=Harish-Chandra character. In appendix , we'll show that @?N(q) is
also consistent with the spin-1 quasinormal spectrum in [83].

Higher spin fields

To check ORN = Oy, (q) for any s > 2, we rewrite the latter as

qud—i-s—? _ Dd 1qs—&-d—l qu2—s _ Dd 1ql—s
S S— S S—
@Us,s—l(Q) = d d

(1—q) (1-9) N

(4.5.12)

Notice that the first term of Oy, ,_,(g) is the same as ©N?(q), so it suffices to compare the
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second term with ©RN7(¢). Expand the second term into a Taylor series around ¢ = 0:

Dég?=s — D¢ ¢t~ 24n
i) = bug (4.5.13)
+ n>0

With some simple algebra, one can show that by = D%, b = D‘Si+1’5 + D?78_1 and furthermore

b, satisfies the following recurrence relation
b —bp—a = DYDYy, + DY, _5) — DI (D&\, 1 + DL_,,_y) (4.5.14)

Using the tensor product decomposition of Yy ® Y; (assuming t < s)

t t—¢

Ys ® Yy = @ @ Ys-l—t—%—m,m (4515)
£=0 m=0

the products of dimensions in eq. (4.5.14)) can be rewritten as a summation

s—n—1

S S S
d d d
bn—=bn2=> D yinse— > Dipasnae=d~ > D¢ yinse (4.5.106)

When n > s the second sum in the bracket vanishes and when n < s, the first sum over ¢ gets
truncated at £ = n. Altogether,

min(n,s

)
bp — bp2 = Z Dg_g+n7s_g (4517)
=0

On the quasinormal modes side, since the primary (%) carries Y, representation, the degeneracy
at level 0 is dg = Dgs = bg. At level 1, the descendants Pk%'(sy)'l,---,z‘sjs are represented by
Y1 ® Y5 = Y116 ® Y51 Ys51. Due to Bianchi identity, the three-row summand in this
tensor product vanishes and the level 1 descendants only carry the Yy 1 ;@Y 51 representation.
So the degeneracy of quasinormal frequency iw = 3 is d] = D§+175 + Dg75_1 = by. At higher

levels, we aim to derive a recurrence relation for the degeneracy d). For example, at level n,

the descendants are of the form Py, - - - Pgn’yl-(sj)-1 e igjsr Where Py, -+ Py, should be understood
group theoretically the symmetrized tensor product of n spin-1 representations. Compared

to level (n — 2), the new representation structure is Y,, ® Yss where Y,, corresponds to the
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traceless part of P, --- P, and Y4 corresponds to ~(5) Due to Bianchi identity, only two-row

representations in the tensor product decomposition of Y,, ® Y5 are nonvanishing. These two-

min(n,s)Y

row representations are exactly ®,_, s—t+n,s—¢, Which yields dY — d] o = b, — b,_2 and

furthermore b,, = d} for n > 0. Altogether, we can conclude

oM (q) = O, (9) (4.5.18)

4.6 Conclusion and outlook

In this chapter, we present an algebraic method of constructing quasinormal modes of massless
higher spin fields in the southern static patch of dS;.1 using ambient space formalism. With
the action of isometry group SO(1,d + 1), the whole quasinormal spectrum can be built from
two primary quasinormal modes, whose properties are summarized in the table. (assuming
d>4)

Primaries T WQN SO(d) representation constraint
aft T ld4s =2 Ys conservation law
Vi i 2 Yss Bianchi identity

Table 4.6.1: A brief summary about the physical primary quasinormal modes of a massless
spin-s gauge field in dSgz1 (d > 4). py are bulk spin indices and iy, ji indicate the SO(d)
representation whose dimension gives the degeneracy.

jn%

For example, when s = 2, the primary a-modes Qg

(d+2)(d—1)
2

, have quasinormal frequency won =

—id and degeneracy Dg = because the 1,49 indices transform as a spin-2 rep-

ol

resentation of SO(d). The conservation law means that P oy ;.

is pure gauge and hence
should be excluded from the physical spectrum of quasinormal modes. On the other hand,

the primary y-modes v/ have quasinormal frequency wgy = —2i and degeneracy DY, =

171,822
L(d + 2)(d 4+ 1)d(d — 3) because the indices [i1, j1], [i2, jo] transform as Weyl tensor under
SO(d). This also explains the Bianchi identity P[kyi“ll;.leQ =0

With the higher spin quasinormal modes known, we define a quasinormal character @8N (g),
cf. that encodes precisely the information of quasinormal spectrum. We show that
O8N (q) is equal to the Harish-Chandra character Ou,,_,(q) of the unitary massless spin-s

SO(1,d+1) representation. In other words, the pure group theoretical object Oy, , ,(q) knows
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everything about the physical quasinormal spectrum.
Our algebraic approach to quasinormal modes has some potential generalizations and appli-

cations which will be left to investigate in the future:

» Construct quasinormal modes of fields carrying other unitary representations, for example
partially massless fields or discrete series fields. The generalization to partially massless
fields should be more or less straightforward. In particular, the construction of the primary
a-modes would be the same except the conservation law being replaced by a multiply-
conservation equation [99]:

Py - P, a7 = pure gauge (4.6.1)

is—t Xiponig

where t is the depth. For the primary v-modes, the higher spin Weyl tensor used in
eq. is expected to be replaced by its partially massless counterpart which carries
Y, 141 representation of SO(d) [71]. The discrete series case should be different because it
is labelled by a maximal height Young diagram. As a result, neither of the primary quasi-
normal modes can be a curvature like object. This is also confirmed from the character

side [70].

= Generalize the “quasinormal quantization” [59, [60] to massless higher spin gauge fields in
any higher dimension. It's well known that quasinormal modes are nonnormalizable with
respect to the standard Klein-Gordon inner product. However, it is noticed in [59, [60]
that, at least for light scalar fields in dS4, there is the so-called “R-norm” such that
the quasinormal modes become normalizable and SO(1,4) is effectively Wick rotated to
SO(2,3). Granting the existence of “R-norm” in higher dimensions for massless higher
spin fields that maps SO(1,d + 1) to SO(2,d), then the ~-tower of quasinormal modes
carries the [A = 2, Y] representation of SO(2,d), that is below the unitarity bound for
sufficiently large s. This simple argument seems to question the naive generalization of

“R-norm”.

= In this chapter, we have focused on Harish-Chandra character ©(q) = tr g ¢” with only

the scaling operator D turned on, where R denotes some unitary irreducible representation.
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In general, we can also include SO(d) generators in the definition of characters:

M (4.6.2)

where J; = Lo;_1 9; span the Cartan algebra of SO(d) and x; are auxiliary variables. For

(—)R(qam) =trp (quih Ty ;’IT) , T

example, for spin-s principal series or complementary series, the full character (4 reads
[70, 75]

07, (0)(a,7) = (¢® + ¢*)0P ) (2) Py(g, ) (4.6.3)

where @;?(d) (z) = tryay® - 2 denotes the SO(d) character of spin-s representation

and

Piq.2) 1 1, d=2r ( )
(9, ) = = — X 4.6.4
i—1(I—2ig)(1 —z; q) l%q’ d=2r+1

For massless spin-s representation, the full character originally computed in [75] is:

d=2r+1: Oy, (g2 >f2(@5°‘d>< )a 72 = 03 V(@) ) Palq, )

s—1

+Z "(q" —q* e, (@) Palg.) (4.6.5)
and
r—1 o
d=2r: Oy, ., (¢,2) =Y (-)"(¢" +¢" 0P, (2)Palg.)
n=2

O (000400 )R (00

We conjecture that the full Harish-Chandra character encodes spin content of quasinormal

modes. More precisely, expand Oy, , (g, ) in terms of ¢ and z;
Guss 1 Q7 Z d w,j qzw lel ! x]ra .] = (jlv e 7j7") (467)

then d,, j is conjectured to be the degeneracy of quasinormal modes with frequency w and



SO(d) spin content j.
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Chapter 5: Quantum de Sitter horizon entropy

5.1 Introduction

As seen by local inhabitants [17} [57) [LI00H104] of a cosmology accelerated by a cosmological con-
stant, the observable universe is evolving towards a semiclassical equilibrium state asymptotically
indistinguishable from a de Sitter static patch, enclosed by a horizon of area A = Qg4_; 0?1,
l x 1/\/K with the de Sitter universe globally in its Euclidean vacuum state. A picture is

shown in fig. [5.1.1p, and the metric in (5.2.1))/(C.3.5)S. The semiclassical equilibrium state

locally maximizes the observable entropy at a value S semiclassically given by [57]
S=logZ, (5.1.1)

where Z = fe_SE[g"“} is the effective field theory Euclidean path integral, expanded about the
round sphere saddle related by Wick-rotation ((C.3.7]) to the de Sitter universe of interest. At

tree level in Einstein gravity, the familiar area law is recovered:

so_ A4

: 1.2
1Cn (5.1.2)

The interpretation of S as a (metastable) equilibrium entropy begs for a microscopic under-
standing of its origin. By aspirational analogy with the Euclidean AdS partition function for
effective field theories with a CFT dual (see [105] for a pertinent discussion), a natural question
is: are there effective field theories for which the semiclassical expansion of S corresponds to a
large- N expansion of a microscopic entropy? Given a proposal, how can it be tested?

In contrast to EAdS, without making any assumptions about the UV completion of the
effective field theory, there is no evident extrinsic data constraining the problem. The sphere has

no boundary, all symmetries are gauged, and physically meaningful quantities must be gauge
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Figure 5.1.1: a: Cartoon of observable universe evolving to its maximal-entropy equilibrium state. The
horizon consumes everything once seen, growing until it reaches its de Sitter equilibrium area A. (The
spiky dot is a reference point for b, c; it will ultimately be gone, too.) b: Penrose diagram of dS static

patch. c: Wick-rotated (b) = sphere. Metric details are given in appendix + fig. ,d.

and field-redefinition invariant, leaving little. In particular there is no invariant information
contained in the tree-level S other than its value, which in the low-energy effective field
theory merely represents a renormalized coupling constant; an input parameter. However, in
the spirit of [I05H114], nonlocal quantum corrections to S do offer unambiguous, intrinsic
data, directly constraining models. To give a simple example, discussed in more detail under
, say someone posits that for pure 3D gravity, the sought-after microscopic entropy is
Smicro = logd(N), where d(N) is the number of partitions of N. This is readily ruled out.

Both macroscopic and microscopic entropy expansions can uniquely be brought to a form
S=38)—alogSy+b+3,cnSy2 + Oe™5/?), (5.1.3)

characterized by absence of odd (=local) powers of 1/8(0). The microscopic theory predicts
(a,b) = (2,log(m%/6+/3)), refuted by the macroscopic one-loop result (a,b) = (3,5log(27)).
Some of the models in [27, 31}, 36], 07| [115-124] are sufficiently detailed to be tested along these
lines.

In this work, we focus exclusively on collecting macroscopic data, more specifically the exact
one-loop (in some cases all-loop) corrected S = log Z. The problem is old, and computations
for s <1 are relatively straightforward, but for higher spin s > 2, sphere-specific complications
crop up. Even for pure gravity [125H134], virtually no complete, exact results have been obtained

at a level brining tests of the above kind to their full potential.
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Building on results and ideas from [70}, [I35H144], we obtain a universal formula solving this
problem in general, for all d > 2 parity-invariant effective field theories, with matter in arbitrary

representations, and general gauge symmetries including higher-spin:

K dim G
1) _ (27[-’}/(1) . odt (1 +4q bos 2\/a fer
SW =log [] —%— + /0 BT (1 i Oy — T, =, ofr ) 1+ 8 (5.1.4)

q = e Yt Below we explain the ingredients in sufficient detail to allow application in practice.
A sample of explicit results is listed in . We then summarize the content of the paper
by section, with more emphasis on the physics and other results of independent interest.

G is the subgroup of (possibly higher-spin) gravitational gauge transformations acting triv-
ially on the S9! saddle. This includes rotations of the sphere. vol Gy is the volume for the
invariant metric normalized such that the standard rotation generators have unit norm, implying
in particular vol SO(d +2) = (C.3.2). The other G;, i =1,..., K are Yang-Mills group factors,
with vol G; the volume in the metric defined by the trace in the action, as in (C.3.3). The v,

are proportional to the (algebraically defined) gauge couplings:

_ [8nGNn | 2w ] 91‘2

with A4, = Q,¢", Q, = (C.3.1) forn >0, and A_; = 1/27/ for ; in d = 2.

The functions Oy (t) are determined by the bosonic/fermionic physical particle spectrum

of the theory. They take the form of a “bulk” minus an “edge” character:
Otot = Opuk — Gedge . (516)

The bulk character O,k () is defined as follows. Single-particle states on global dS;; furnish
a representation R of the isometry group SO(1,d + 1). The content of R is encoded in its

Harish-Chandra character ©(g) = trrg (see section [3.4). Restricted to SO(1,1) isometries

—itH

g=e acting as time translations on the static patch, ©(g) becomes Op () = trg e 7.
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For example for a massive integer spin-s particle it is given by ©%, , (q) (3.4.12):

iy 44y
2 + g2 _
@bulk,s = Dgl ﬁ s q =€ |t‘/f’ (517)
where v is related to the mass:
s=0:u2:m2€2—(%)2, 521:V2:m2€2—(%+s—2)2. (5.1.8)

For arbitrary massive matter Opyui is given by © 7, (¢) (3.4.11). Massless spin-s characters
are more intricate, but can be obtained by applying a simple “flipping” recipe (3.4.17) to

Or, ..(q) —Orx_,, ,(q). Some low (d,s) examples are

@s9| @1 22 (3,1) (3,2) 41 (42
o 2(] 6(]2 _2q3 10q3_6q4 6(]2 10(]2 (519)
s (1= )2 1-9¢3 (1-¢)p 1-9* (1—g

The g-expansion of Oy gives the static patch quasinormal mode degeneracies, its Fourier
transform gives the normal mode spectral density, and the bulk part of is the quasi-
canonical ideal gas partition function at 5 = 27¢, as we explain below ((5.1.15)).

The edge character Ogqgc(t) is inferred from path integral considerations in sections .
It vanishes for spin s < 1. For integer s > 1 we get (5.4.8):

a—2 . a—2_,
q2+w_|_q2 w

—_ d+2
Togrr—  Ne=D (5.1.10)

s—1»

@cdgo,s = Nj

e.g. Ny =1, Ny = d+ 2. Note this is the bulk character of N scalars in two lower dimensions.
Thus the edge correction effectively subtracts the degrees of freedom of Ny scalars living on

S9=1 the horizon “edge" of static time slices (yellow dot in fig.|5.1.1)). (5.4.14) yields analogous
results for more general matter; e.g. @ bulk field — H edge field, Hj bulk — (d+2) x ] edge.

For massless spin-s, use ((C.6.23). The edge companions of (5.1.9) are

(d,s)‘ 2,1) (22)  (3,1) (3,2) A1) (4,2)
2¢  10¢2—243 24 10¢ (5.1.11)
Oetes | 0 0 T UL [T—qf (-gP

The edge correction extends observations of 5] 6, 137, [145H160], reviewed in appendix C.4.5]
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gravity (G =107°) spin 0 , spin 2
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Figure 5.1.2: Contributions to dS3 one-loop entropy from gravity and massive s = 0,1, 2.

The general closed-form evaluation of the integral in (5.1.4)) is given by ((C.2.19)) in heat

kernel regularization. In even d, the finite part is more easily obtained by summing residues.
Finally, S¢t in (5.1.4]) is a local counterterm contribution fixed by a renormalization condition

specified in section , which in practice boils down to Sc¢(¢) canceling all divergences and finite

terms growing polynomially with £ in S™(¢).

For concreteness here are some examples readily obtained from :

content | S()
3D grav | —31log S(®) + 5log(27)
3D (s,m) | 5 (8~ (me)*+ 25 me) ~2 577 o Mokl ST 2 (n(md — v) —log(1—e ™))
4D grav | —51og S(©) — 5 Jog(¢/L) — log &% 4 T2 — 4T¢/(—1) + 2¢'(—3)
5D su(4)ym —12—5 log(¢/g?) — log 25?3”9 + 71564752) + 4156<,$i)
5D (B},m) —15log(2mml) + 58<7§Z?) + 6254253) (mf —0), %(m€)4 e~ 2™t (ml — c0)
11 grav | 531055+l AU 27 SO BEmBD spnn iy
3D HS,, | —(n? — 1)1og S© + log[L (22=0)"" "1 G( 4 1)2 (27r) (=D (En+1)]

(5.1.12)
Comparison to previous results for 3D and 4D gravity is discussed under 5.5.25.E|

The second line is the contribution of a 3D massive spin-s field, with v given by (5.1.8)). The
term o s? is the edge contribution. It is negative for all m¢ and dominates the bulk contribution
(fig. [5.1.2). It diverges at the unitarity/Higuchi bound m¢ = s — 1.

In the 4D gravity example, L is a minimal subtraction scale canceling out of S +S®_ In

this case, constant terms in S(!) cannot be distinguished from constants in S(9) and are as such

YIn the above and in l) we have dropped Polchinski's phase [I3I] kept in ([5.5.25) and generalized in

E51)
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Figure 5.1.3: Regularized dSs scalar mode density with v = 2, Ay ¢ = 4000. Blue line = Fourier

transform of Opu: p(w)/l = 2log(Aul) — 5= > ¥(5 + iv + iwl). Red dots = inverse eigenvalue

spacing of numerically diagonalized 4000 x 4000 matrix H in globally truncated model (appendix.

Rightmost panel = |p(w)| on complex w-plane, with quasinormal mode poles at w/ = +i($ % iv + n).
physically ambiguousEI The term ay4log(¢/L) with oy = —% arises from the log-divergent

term ay log(¢/e€) of the regularized character integral.
For any d, in any theory, the coefficient o411 of the log-divergent term can simply be read

off from the t — 0 expansion of the integrand in (5.1.4):

integrand = - - - 4 adtH +O0(t") (5.1.13)
For a 4D photon, this gives ay = aypuk + Q4edge = —i—g — % = —%. The bulk-edge split

in this case is the same as the split investigated in [147] [153, [161]. Other illustrations include
(partially) massless spin s around (5.5.21)), the superstring in (5.9.21]), and conformal spin s in
(5.9.22).

3D HS,, = higher-spin gravity with s = 2,3,...,n (section5.6). G is the Barnes G-function.
Overview
We summarize the content of sections [5.215.9] highlighting other results of interest, beyond
G1.4).
Quasicanonical bulk thermodynamics of the static patch (section b

The global dS bulk character Opyk (t) = tr e~ itH locally encodes the quasinormal spectrum and

normal mode density of the static patch ds? = —(1 — 72/£2)dT? + (1 — r2/02)~Ldr? + r2dQ?

2Comparing different saddles, unambiguous linear combinations can however be extracted, cf. (|C.8.70 .
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—itH

on which e acts as a time translation T — T + t. Its expansion in powers of ¢ = e~ [tI/¢,

Opuk = Y Npq", (5.1.14)
T

yields the number N, of quasinormal modes decaying as e_"T/f, in resonance with [I}, 59, [60].

The density of normal modes oc e =7 is formally given by its Fourier transform

1 o -
p(w) = %/ dt Opunc (t) ™. (5.1.15)

Because Oy is singular at ¢ = 0, this is ill-defined as it stands. However, a standard Pauli-
Villars regularization of the QFT renders it regular (5.2.15)), yielding a manifestly covariantly
regularized mode density, analytically calculable for arbitrary particle content, including gravitons
and higher-spin matter. Some simple examples are shown in figs. 5.1.3] 5.2.2] Quasinormal
modes appear as resonance poles at w = =ir, seen by substituting into (5.1.15).

This effectively solves the problem of making covariant sense of the formally infinite normal
mode density universally arising in the presence of a horizon [162]. Motivated by the fact that
semiclassical information loss can be traced back to this infinity, [162] introduced a rough model
getting rid of it by shielding the horizon by a “brick wall” (reviewed together with variants in
. Evidently this alters the physics, introduces boundary artifacts, breaks covariance, and
is, unsurprisingly, computationally cumbersome. The covariantly regularized density
suffers none of these problems.

In particular it makes sense of the a priori ill-defined canonical ideal gas partition function,

log Zean(B) = / dw (—pbos(w) log;(eﬁw/2 - 6_5“’/2) + pter(w) log(em/2 + 6_5“/2)) )

0
(5.1.16)
Substituting (5.1.15)) and integrating out w, this becomes
o dt (1428 | 2 e /B ]

At the static patch equilibrium 5 = 2x/, this is precisely the bulk contribution to the one-loop
Euclidean partition function log Z(1) in 1} Although Zy, is not quite a standard canonical
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partition function, calling it a quasicanonical partition function appears apt.

From (55.1.17)), covariantly regularized quasicanonical bulk thermodynamic quantities can be
analytically computed for general particle content, as illustrated in section [5.2.3] Substituting
the expansion expresses these quantities as a sum of quasinormal mode contributions,
generalizing and refining [163]. In particular the contribution to the entropy and heat capacity
from each physical quasinormal mode is finite and positive (fig. .

Sbulk can alternatively be viewed as a covariantly regularized entanglement entropy between
two hemispheres in the global dS Euclidean vacuum (red and blue lines in figs. [5.2.1] [C.3.1)). In

the spirit of [60], the quasinormal modes can then be viewed as entangled quasiqubits.

Sphere partition functions (sections ,

In sections[5.3 we obtain character integral formulae computing exact heat-kernel regularized
one-loop sphere partition functions ZF(’ll) for general field content, leading to (5.1.4)).

For scalars and spinors (section , this is easy. For massive spin s (section , the
presence of conformal Killing tensors on the sphere imply naive reduction to a spin-s Laplacian
determinant is inconsistent with locality [139]. The correct answer can in principle be obtained
by path integrating the full off-shell action [58], but this involves an intricate tower of spin
s’ < s Stueckelberg fields. Guided by intuition from section , we combine locality and
unitary constraints with path integral considerations to find the terms in log Z missed by naive
reduction. They turn out to be obtained simply by extending the spin-s Laplacian eigenvalue
sum to include its “subterranean” levels with formally negative degeneracies, . The extra
terms capture contributions from unmatched spin s’ < s conformal Killing tensor ghost modes
in the gauge-fixed Stueckelberg path integral. The resulting sum yields the bulk—edge character
integral formula . Locality and unitarity uniquely determine the generalization to arbitrary
parity-symmetric matter representations, (5.4.14).

In the massless case (section , new subtleties arise: negative modes requiring contour
rotations (which translate into the massless character “flipping” recipe mentioned above )
and ghost zeromodes which must be omitted and compensated by a carefully normalized group

volume division. Non-universal factors cancel out, yielding (5.5.17)) modulo renormalization.
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Figure 5.1.4: One- and all-loop entropy corrections, and dual topological string t, gs, for 3D HS,
theory in its maximal-entropy de Sitter vacuum, for different values of n at fixed S(9 = 10%, I = 0.

3D de Sitter HS,, quantum gravity and the topological string (section

The sl(2) Chern-Simons formulation of 3D gravity [164, [165] can be extended to an sl(n)
Chern-Simons formulation of s < n higher-spin (HS,,) gravity [166H169]. The action for positive
cosmological constant is given by . It has a real coupling constant k x 1/Gy, and an
integer coupling constant [ € {0,1,2,...} if a gravitational Chern-Simons term is included.
This theory has a landscape of dS3 vacua, labeled by partitions m = {my,ma,...} of n.

Different vacua have different values of £/Gy, with tree-level entropy

(o) 2wl

o 1
Sm —@m—%ﬂ‘i'Tm, Tm—ézama(mg_l)' (5'1'18)

The number of vacua grows as Nyae ~ ¢2™V/"/6 The maximal entropy vacuum is m = {n}.

We obtain the all-loop exact quantum entropy Sy, = log Z,,, by analytic continuation k4 —
[ + ik of the SU(n), x SU(n),_ Chern-Simons partition function on 53, (5.6.7). In the
weak-coupling limit k — oo, this reproduces SW as computed by in the metric-like
formulation of the theory, given in for the maximal-entropy vacuum m = {n}.

When n grows large and reaches a value n ~ «, the 3D higher-spin gravity theory becomes
strongly coupled. (In the vacuum m = {n} this means n* ~ ¢/Gx.) In this regime, Gopakumar-
Vafa duality [170, [I7I] can be used to express the quantum de Sitter entropy S in terms of a
weakly-coupled topological string partition function on the resolved conifold, :

2

Sm = log ‘Ztop(gs, t) e~ Tm 2mi/gs

(5.1.19)

and the conifold Kahler modulus t = [g. J +iB = igyn = 228

where g5 = n+l+is

27
n-+l+ik’
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Euclidean thermodynamics of the static patch (section

In sectionwe consider the Euclidean thermodynamics of a QFT on a fixed static patch/sphere
background. The partition function Zpy is the Euclidean path integral on the sphere of radius ¢,
the Euclidean energy density is ppy = —0y log Zp1, where V = Qg,1£4%! is the volume of the

sphere, and the entropy is Sp; = log Zp1 + 2wf Upy = log Zpr + Vppr = (1 — VOy) log Zpy, or

Spr = (1 — 74740y) log Zpr (5.1.20)

Using the exact one-loop sphere partition functions obtained in sections [5.3}[5.5] this allows
general exact computation of the one-loop Euclidean entropy Sl(jll), illustrated in section .
Euclidean Rindler results are recovered in the limit m{ — oo. The sphere computation avoids
introducing the usual conical deficit angle, varying the curvature radius ¢ instead.

)

For minimally coupled scalars, 51(311 = Shulk, but more generally this is false, due to edge
(and other) corrections. Our results thus provide a precise and general version of observations
made in the work reviewed in appendix [C.4.5 Of note, these “corrections” actually dominate

the one-loop entropy, rendering it negative, increasingly so as s grows large.

Quantum gravitational thermodynamics (section )

In section (with details in appendix [C.8]), we specialize to theories with dynamical gravity.
Denoting Zpr, ppr and Spy by Z, o and S in this case, trivially implies o = 0, S = log Z,
reproducing . All UV-divergences can be absorbed into renormalized coupling constants,
rendering the Euclidean thermodynamics well-defined in an effective field theory sense.
Integrating over the geometry is similar in spirit to integrating over the temperature in
statistical mechanics, as one does to extract the microcanonical entropy S(U) from the canonical

partition function] The analog of this in the case of interest is
S(p) = log/Dg eiSE[g""pr\/g, (5.1.21)

for some suitable metric path integration contour. In particular S(0) = S. The analog of the

3Along the lines of S(U) = log( 1 f % Tre_ﬁH*'ﬂU), with contour 8 = B, + 1y, y € R, for any 8, > 0.

27
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microcanonical 8 = 0y S is V = 0,5, and the analog of the microcanonical free energy is the
Legendre transform log Z = S — Vp, satisfying p = —0y log Z. If we furthermore define ¢ by
Q101 =V, the relation between log Z, p and S is by construction identical to ((5.1.20)).
Equivalently, the free energy I' = —log Z can be thought of as a quantum effective action
for the volume. At tree level, I" equals the classical action SE evaluated on the round sphere of

radius ¢. For example for 3D Einstein gravity,

272 B 27l

kgzwh:§Rﬂ—Aﬁ+3@, SO = (1 - 100y) log 2V TR (5.1.22)

The tree-level on-shell radius £y maximizes log Z(?), i.e. p(©)(¢y) = 0.

We define renormalized A, G, . .. from the ¢4F1 ¢d=1 coefficients in the £ — oo expansion
of the quantum log Z, and fix counterterms by equating tree-level and renormalized couplings
for the UV-sensitive subset. For 3D Einstein, the renormalized one-loop correction is

2l
log ZV) = —31log % +5log(2n). (5.1.23)

The quantum on-shell radius ¢ = ¢y + O(G) maximizes log Z, i.e. p(f) = 0. The on-shell

entropy can be expressed in two equivalent ways to this order:

S =5000) + 510 = 5O (g5) +1og ZzW (5.1.24)

This clarifies why the one-loop correction SV = & — SO to the dS entropy is given by log Z(1)
rather than S(): the extra term —V p(1) accounts for the change in entropy of the reservoir (=
geometry) due to energy transfer to the system (= quantum fluctuations).

The final result is (5.1.4). We work out several examples in detail. We consider higher-
order curvature corrections and discuss invariance under local field redefinitions, identifying
the invariants S](\?,) = —Sglgn] for different saddles M as and their large-¢ expanded quantum

counterparts Sy as the A > 0 analogs of tree-level and quantum scattering amplitudes, defining

invariant couplings and physical observables of the low-energy effective field theory.
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dS, AdS™, and conformal higher-spin gravity (section

Massless g = hs(so(d + 2)) higher-spin gravity theories on dSg,1 or S4*! [53, 55, [172] have

infinite spin range and infinite dim g, obviously posing problems for the one-loop formula (5.1.4)):

1. Spin sum divergences untempered by the UV cutoff, for example dim G = % S, s(4s2—1)

for d =3 and Oy = 3, (25 + 1) (12_‘12)4 — ¥, Setl)@etl) (1331)2 for d = 4.

2. Unclear how to make sense of vol GG.

We compare the situation to analogous one-loop expressions [3| 144}, [173] for Euclidean AdS with
standard (AdS, ;) [I11H113] and alternate (AdS, ;) [L38] gauge field boundary conditions, and
to the associated conformal higher-spin theory on the boundary S¢ (CHS,) [139, [174]. For AdS™
the above problems are absent, as g is not gauged and A; > s. Like a summed KK tower,
the spin-summed bulk character has increased UV dimensionality d°§# = 2d — 2. However, the
edge character almost completely cancels this, leading to a reduced deg = d — 1 in ((5.9.10))-
(5.9.12). This realizes a version of a stringy picture painted in [5] repainted in fig. [C.4.4, A HS
“swampland” is identified: lacking a holographic dual, characterized by deg > d — 1.

For AdS™ and CHS, the problems listed for dS all reappear. g is gauged, and the character
spin sum divergences are identical to dS, as implied by the relations ((5.9.16)):

0,(CHSy) = O4(AdSy, ) — ©4(AdS,, ) = O4(dSa11) — 20,(AdSE, ) (5.1.25)

The spin sum divergences are not UV. Their origin lies in low-energy features: an infinite
number of quasinormal modes decaying as slowly as e 27/¢ for d > 4 (cf. discussion below
(C.6.4)). We see no justification for zeta-regularizing such divergences away. However, in certain
supersymmetric extensions, the spin sum divergences cancel in a rather nontrivial way, leaving a
finite residual as in . This eliminates problem 1, but leaves problem 2. Problem 2 might
be analogous to vol G = oo for the bosonic string or vol G = 0 for supergroup Chern-Simons:

removed by appropriate insertions. This, and more, is left to future work.
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C

Figure 5.2.1: a: Penrose diagram of global dS, showing flows of SO(1,1) generator H = My 411, S
= southern static patch. b: Wick-rotated S = sphere; Euclidean time = angle. c: Pelagibacter ubique
inertial observer in dS with ¢ = 1.2 ym finds itself immersed in gas of photons, gravitons and higher-spin
particles at a pleasant 30°C. More details are provided in fig. @l and appendix@

5.2 Quasicanonical bulk thermodynamics

5.2.1 Problem and results

From the point of view of an inertial observer, such as Pelagibacter ubique in fig. , the

global de Sitter vacuum appears thermal [17, 57, [I75]: P. ubique perceives its universe, the

southern static patch (S in fig. [5.2.1p),
ds®* = —(1 —r?/6)dT? + (1 — /03 rdr® 4 r2dQ3%_ |, (5.2.1)

as a static ball of finite volume, whose boundary r = /¢ is a horizon at temperature T =
1/27¢, and whose bulk is populated by field quanta in thermal equilibrium with the horizon.
P. ubique wishes to understand its universe, and figures the easiest thing to understand should
be the thermodynamics of its thermal environment in the ideal gas approximation. The partition

function of an ideal gas is

Tre A = exp/O dw(_ﬁ’(w)bos 1Og(€ﬂw/2 — G_BW/Q) + p(W)fer log(eﬁ“’” + 6_'8“)/2)),

(5.2.2)

where p(w) = p(wW)pos + p(wW)ter is the density of bosonic and fermionic single-particle states at
energy w. However to its dismay, it immediately runs into trouble: the dS static patch mode

spectrum is continuous and infinitely degenerate, leading to a pathologically divergent density
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p(w) = 3(0) > y,,.... It soon realizes the unbounded redshift is to blame, so it imagines a brick
wall excising the horizon, or some variant thereof (appendix . Although this allows some
progress, it is aware this alters what it is computing and depends on choices. To check to what
extent this matters, it tries to work out nontrivial examples. This turns out to be painful. It
feels there should be a better way, but its efforts come to an untimely end.

Here we will make sense of the density of states and the static patch bulk thermal partition
function in a different way, manifestly preserving the underlying symmetries, allowing general
exact results for arbitrary particle content. The main ingredient is the Harish-Chandra group
character (reviewed in the section of the SO(1,d + 1) representation R furnished by the
physical single-particle Hilbert space of the free QFT quantized on global dS;;1. Letting H(=
iD) be the global SO(1,1) generator acting as time translations in the southern static patch
and globally as in fig. , the character restricted to group elements e~ s

O(t) = trge (5.2.3)

Here trg traces over the global dS single-particle Hilbert space furnishing R. (More generally
we denote tr = single-particle trace, Tr = multi-particle trace, G = global, S = static patch.

Our default units set the dS radius )

For example for a scalar field of mass m? = (%)2 + 12, as computed in (3.4.7)),

AL | A
o(t) = e|1+et|d Ar=9tiv, (5.2.4)
J— 6_

For a massive spin-s field this simply gets an additional spin degeneracy factor DY, (3.4.12).

Massless spin-s characters take a similar but somewhat more intricate form, ([3.4.16[)-(3.4.17)).
As mentioned in the introduction, (5.1.14]), the character has a series expansion

o) => N,e (5.2.5)

encoding the degeneracy N, of quasinormal modes oc e="7 of the dS static patch background.

For example expanding the scalar character yields two towers of quasnormal modes with 7,4 =

d—1
n+n )

% + iv + n and degeneracy N+ = (
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Figure 5.2.2: Regularized scalar p(w), d = 2, v = 2,i/2,0.94; top: w € R; bottom: w € C, showing

quasinormal mode poles. See figs. @ for details.

Our main result, shown in below, is the observation that

(5.2.6)

o dt (14 e 2/P 2T
— t)bos - =7z O(t)fer
1 — e—2nt/B 1 — e—27t/B

log Zyui () E/o 2%

suitably regularized, provides a physically sensible, manifestly covariant regularization of the
static patch bulk thermal partition. The basic idea is that p(w) can be obtained as a well-defined
Fourier transform of the covariantly UV-regularized character O(t), which upon substitution in
the ideal gas formula yields the above character integral formula. Arbitrary thermody-
namic quantities at the horizon equilibrium 3 = 27 can be extracted from this in the usual
way, for example Spyic = (1 — 30p) log Zypuik|g=2+, Which can alternatively be interpreted as the
“bulk” entanglement entropy between the northern and southern S¢ hemispheres (red and blue
lines fig. )El We work out various examples of such thermodynamic quantities in section
[6.2.3] General exact solution are easily obtained. The expansion also allows interpreting

the results as a sum over quasinormal modes along the lines of [163].

“In part because subregion entanglement entropy does not exist in the continuum, an infinity of different notions
of it exist in the literature [176]. Based on [161], Stuix appears perhaps most akin to the “extractable” /“distillable”
entropy considered there. Either way, our results are nomenclature-independent.
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We conclude this part with some comments on the relation with the Euclidean partition
function. As reviewed in appendix [C.4] general physics considerations, or formal considerations
based on Wick-rotating the static patch to the sphere and slicing the sphere path integral along
the lines of fig. , suggests a relation between the one-loop Euclidean path integral ZI(DII)
on S and the bulk ideal gas thermal partition function Zpg at f = 2x. More refined

considerations suggest
log ZP(>11) = log Zpu + edge corrections, (5.2.7)

where the edge corrections are associated with the S?~! horizon edge of the static patch time
slices, i.e. the yellow dot in fig. [5.2.1] The formal slicing argument breaks down here, as does
the underlying premise of spatial separability of local field degrees of freedom (for fields of spin
s > 1). Similar considerations apply to other thermodynamic quantities and in other contexts,
reviewed in appendix and more specifically [C.4.5]

In sections [5.3 we will obtain the exact edge corrections by direct computation, logically
independent of these considerations, but guided by the physical expectation and more

generally the intuition developed in this section.

5.2.2 Derivation

We first give a formal derivation and then refine this by showing the objects of interest become

rigorously well-defined in a manifestly covariant UV regularization of the QFT.

Formal derivation

Our starting point is the observation that the thermal partition function Tre ? of a bosonic

resp. fermionic oscillator of frequency w has the integral representation ((C.4.14)):

o dt 14e2mt/8 ,
_ log(eﬁw/2 — e_ﬁw/2> — +/ 5 1+€f27rt//5 (e—zwt + ezwt)
" e (5.2.8)

e 2) -7t/ ) ]
log (/2 4 ¢=Pul2) — _ / dt _2e ey

0 ?t 1— e—27rt/ﬂ
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with the pole in the factor f(t) = ct=2 + O(t°) multiplying e~ + ¢! resolved by

2 — %((t — €)%+ (t +ie)2). (5.2.9)

Now consider a free QF T on some space of finite volume, viewed as a system S of bosonic and/or
fermionic oscillator modes of frequencies w with mode (or single-particle) density pg(w) =
P (W)bos + Ps(W)ter- The system is in thermal equilibrium at inverse temperature 3. Using the
above integral representation, we can write its thermal partition function ([5.2.2)) as
< dt [ 1+ e 2mt/B 2 mt/B
—BHs _ il _

log Trg e _/0 275(1 s OO — @S(t)fer>, (5.2.10)

where we exchanged the order of integration, and we defined

Os(t) = /OOO dw ps(w) (e ™! 4 et) (5.2.11)

We want to apply (5.2.10) to a free QFT on the southern static patch at inverse temperature
B, with the goal of finding a better way to make sense of it than P. ubique’s approach. To
this end, we note that the global dS,;;1 Harish-Chandra character ©(t) defined in (5.2.3) can

formally be written in a similar form by using the general property ©(t) = O(—t):
O(t) = trge tHt = / dw pg(w) e ™ = / dw pi(w) (e + et | (5.2.12)
— 00 0

This looks like (5.2.11]), except pg(w) = tre §(w—H) is the density of single-particle excitations
of the global Euclidean vacuum, while pg(w) is the density of single-particle excitations of the
southern vacuum. The global and southern vacua are very different. Nevertheless, there is a
simple kinematic relation between their single-particle creation and annihilation operators: the
Bogoliubov transformation ((C.4.10) (suitably generalized to d > 0 [I75]). This provides an
explicit one-to-one, inner-product-preserving map between southern and global single-particle

states with H = w > 0. Hence, formally,

ps(w) =pcw)  (w>0), ps(w) =0 (w<0). (5.2.13)
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While formal in the continuum, this relation becomes precise whenever p is rendered effectively
finite, e.g. by a brick-wall cutoff or by considering finite resolution projections (say if we restrict
to states emitted/absorbed by some apparatus built by P. ubique).

At first sight this buys us nothing though, as computing pg(w) = trg 6 (w—H) for say a scalar
in dS4 in a basis |wfm) ¢ immediately leads to pg(w) = d(0) >, in reassuring but discouraging
agreement with P. ubique’s result for pg(w). On second thought however, substituting this into
leads to a nonsensical ©(t) = 27d(t)d(0) >,,,, not remotely resembling the correct
expression . How could this happen? As explained in the remark , the root cause is the
seemingly natural but actually ill-advised idea of computing ©(t) = trg e~*#* by diagonalizing
H': despite its lure of seeming simplicity, |wfm)¢ is in fact the worst possible choice of basis
to compute the character trace. Its wave functions on the global future boundary S? of dSg4
are singular at the north and south pole, exactly the fixed points of H at which the correct
computation of ©(t) in the section localizes. Although |wfm) is a perfectly fine basis on
the cylinder obtained by a conformal map from sphere, the information needed to compute ©
is irrecoverably lost by this map.

However we can turn things around, and use the properly computed O(t) to extract pg(w)
as its Fourier transform, inverting (5.2.12). As it stands, this is not really possible, for (5.2.4)
implies ©(t) ~ |t|~@ as t — 0, so its Fourier transform does not exist. Happily, this problem
is automatically resolved by standard UV-regularization of the QFT, as we will show explicitly

below. For now let us proceed formally, as at this level we have arrived at our desired result:

combining (5.2.13]) with (5.2.12)) and ((5.2.11)) implies ©g(t) = ©(t), which by (5.2.10) yields

Trg e PHs — Zyuk(B) (formal) (5.2.14)

with Zpuk(3) as defined in (5.2.6). The above equation formally gives it its claimed thermal
interpretation. In what follows we will make this a bit more precise, and spell out the UV

regularization explicitly.
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Covariant UV regularization of p and Zy i

We begin by showing that pg(w) in becomes well-defined in a suitable standard UV-
regularization of the QFT. As in [I77], it is convenient to consider Pauli-Villars regularization,
which is manifestly covariant and has a conceptually transparent implementation on both the
path integral and canonical sides. For e.g. a scalar of mass m? = (%)2 + 12, a possible
implementation is adding (2) n=1,...,k > ¢ fictitious particles of mass m? = (4)?+v2+nA?
and positive/negative norm for even/odd nE] turning the character ©,2(t) of into

k
O,24(t) = trg, e =3 (1" (£) 0,2 2 (8). (5.2.15)

n=0
This effectively replaces ©(t) ~ [t|=¢ by ©,(t) ~ |t|?*~¢ with 2k —d > 0, hence, assuming ©(t)
falls off exponentially at large ¢, which is always the case for unitary representations [13} [65], [75],

O (t) has a well-defined Fourier transform, analytic in w:

Lo ; Lo ; —iw
poa() = o / a0 (1) e = - /O dt O (1) (e + e~ . (5.2.16)
—00

The above character regularization can immediately be transported to arbitrary massive SO(1, d+
1) representations, as their characters O, 2 only differ from the scalar one by an overall
spin degeneracy factor.ﬁ]

Although we won't need to in practice for computations of thermodynamic quantities (which
are most easily extracted directly as character integrals), p; a(w) can be computed explicitly.

For the dSg41 scalar, using (5.2.4)) regularized with k = 1, we get for w < A

2 1 . . _
d=1: pG7A(w):;logA—%Zw(%iwizw)—i—O(A h
+,+
(5.2.17)

d=2: pgplw)=A— %Z(w + v) coth(r(w £ v)) + O(A™1)
+

where ¢(x) = I'(x)/T'(x). Denoting the A-independent parts of the above w < A expansions

®This is equivalent to inserting a heat kernel regulator f(7A%) = (1 — e’TAQ)k in (5.3.2), with k& > 4 + 1.

®For massless spin-s, the PV-regulating characters to add to the physical character (e.g. ,(C.6.2 ) are

Osn = G)S’U(%_n,\z - @S_I,V§+nA2 where v = —(s =2+ £)? and ¥ = —(s — 1 + £)?, based on (5.5.2) and
(554).
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Figure 5.2.3: pg a(w) for dS411 scalar of mass m? = (4)2+1v2, v =10, for d = 1,2 in k = 1,2 Pauli-
Villars regularizations ([5.2.15)). Faint part is unphysical UV regime w > A. The peaks/kinks appearing
at w = /12 + nA? are related to quasinormal mode resonances discussed in appendix

by p,2(w), the exact pg a(w) for general w and k is pga(w) = ZZZO(—I)”(ﬁ) Pu2ynaz(w),
illustrated in fig. for k = 1,2. The w < A result is independent of k up to rescaling of
A. The result for massive higher-spin fields is the same up to an overall degeneracy factor D¢
from ([3.4.12)).

To make sense of the southern static patch density ps(w) directly in the continuum, we
define its regularized version by mirroring the formal relation , thus ensuring all of the

well-defined features and physics this relation encapsulates are preserved:

ps.a(w) = paa(w) = (5.2.16) (w>0). (5.2.18)

This definition of the regularized static patch density evidently inherits all of the desirable
properties of pg(w): manifest general covariance, independence of arbitrary choices such as
brick wall boundary conditions, and exact analytic computability. The physical sensibility of
this identification is also supported by the fact that the quasinormal mode expansion ((5.2.5))
of ©(t) produces the physically expected static patch quasinormal resonance pole structure
ps(w) = % - T]ivﬁ cf. appendix .

Putting things together in the way we obtained the formal relation , the correspond-
ingly regularized version of the static patch thermal partition function is then

oo dt( 14+ e—27‘rt/,8 26—7rt/,8

log Zbulk,A(ﬂ) E/O %A\ 1_e2nt/B OA(t)bos — 1_ e—2nt/B @A(t)fer> (5.2.19)




116

Note that if we take &k > % + 1, then ©,(t) ~ t?*=4 with 2k — d > 2 and we can drop the
1€ prescription . Zyuk (or equivalently ©) can be regularized in other ways, including
by cutting off the integral at ¢t = A~!, or by cutting off the angular momentum as in the
appendix [C.1.2] or by dimensional regularization. For most of the paper we will use yet another
variant, defined in section[5.3} equivalent, like Pauli-Villars, to a manifestly covariant heat-kernel
regularization of the path integral.

In view of the above observations, Zy, ik () is naturally interpreted as a well-defined, co-
variantly regularized and ambiguity-free definition of the static patch ideal gas thermal partition
in the continuum. However we refrain from denoting Z,ux () as Trg a e BHs  because it is not
constructed as an actual sum over states of some definite regularized static patch Hilbert space
Hs . This (together with the role of quasinormal modes) is also why we referred to Zy,u(5)

as a “quasi”-canonical partition function in the introduction.

5.2.3 Example computations

In this section we illustrate the use and usefulness of the character formalism by computing some
examples of bulk thermodynamic quantities at the equilibrium inverse temperature § = 27 of

the static patch. The precise relation of these quantities with their Euclidean counterparts will

be determined in 5.3/5.5] and [5.71

Character formulae for bulk thermodynamic quantities at § = 27

At 5 = 2m, the bulk free energy, energy, entropy and heat capacity are obtained by taking
the appropriate derivatives of (5.2.6)) and putting 5 = 27, using the standard thermodynamic
relations F' = —%log Z,U=—0glogZ, S=logZ+ U, C = —p303S. Denoting q = et

©dt/1+q 2\/6 )

1 Zhulk = o\ 7T os — 7 _ er | 2.2

08 Zbulk /0 2t(1_q@b 1_q9f (5.2.20)
< dt 2 1

QﬂUbulk:/ (_\/a\/q@bos++(1\/a@fer>7 (5.2.21)
0o 2 l1-qgl—gq 1—-ql—gq

and similarly for Spuk and Cpu. The characters © for general massive representation are

given by (3.4.11)), and for (partially massless) (s,s’) representations by (3.4.20) with ¢t = .

Regularization is implicit here.
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Leading divergent term

The leading t — 0 divergence of the scalar character is ©(t) ~ 2/t. For more general
representations this becomes ©(t) ~ 2n/t? with n the number of on-shell internal (spin) degrees
of freedom. The generic leading divergent term of the bulk (free) energy is then given by
Foue, Upuik ~ —%(nbos — Nfer) ftdd% ~ +A%1gd while for the bulk heat capacity and entropy
we get Chulk, Sbulk ~ (%nbos + %nfer) f—ﬁ ~ 4+A%1¢d=1 \where we reinstated the dS radius /.
In particular Sy ~ +A?~1 x horizon area, consistent with an entanglement entropy area law.
The energy diverges more strongly because we included the QFT zero point energy term in its

definition, which drops out of S and C.

Coefficient of log-divergent term

The coefficient of the logarithmically divergent part of these thermodynamic quantities is univer-
sal. A pleasant feature of the character formalism is that this coefficient can be read off trivially
as the coefficient of the 1/¢ term in the small-¢ expansion of the integrand, easily computed for
any representation. In odd d + 1, the integrand is even in ¢, so log-divergences are absent. In
even d + 1, the integrand is odd in ¢, so generically we do get a log-divergence = alog A. For
example the log Z integrand for a dS, scalar is expanded as

11+et e t(5+iv) _i_e—t(%—iu) 9 L _ .2 ) ,

12
21 — et 1— et Bt T “TmT ( )

Fora A = %—l—iy spin-s particle in even d+ 1, the log A coefficient for Upyy is similarly read off
as ay,,, = —ng [1¢_o(A —n). For a conformally coupled scalar, v = i/2, so ar;,,,, = 0.

Some examples of ag, ,, = Giog 7, IN this case are

d+1‘2 4 6 8 10 100 1000

11 23 263 -34 —306
—95 756 —1isi00 Tastioo - —3:098 x 10 -+ —=3.001 x 10

ol

A Spuik

Finite part and exact results

e Energy: For future reference (comparison to previously obtained results in section [5.7]), we

consider dimensional regularization here. The absence of a 1/t factor in the integral ((5.2.21)) for



118

Upuik then allows straightforward evaluation for general d. For a scalar of mass m? = (%)2 + 12,

fin m? cosh(mv) (¢ +iv) (¢ —iv)

U = dim reg). 5.2.23
bulk 27 T(d + 2) cos(Z2) ( g) ( )
For example for d = 2, this becomes
fin 1 2
Uik = —ﬁ(y + 1)v coth(mv). (5.2.24)

e Free energy: The UV-finite part of the log Z,,k integral (5.2.20)) for a massive field in even d
can be computed simply by extending the integration contour to the real line avoiding the pole,

closing the contour and summing residues. For example for a d = 2 scalar this gives

T3 2k Lig_g(e

6 T (9n)2—k
6 =k (2m)

—27ru)

log Zfin, = (5.2.25)

where Li, is the polylogarithm, Li,(z) = >.32, ¥ /k™. For future reference, note that

1
Lij(e7?™) = —log(1 — e 2™), Lig(e™2™) =

2

For odd d, the character does not have an even analytic extension to the real line, so a different
method is needed to compute log Z,,ik. The exact evaluation of arbitrary character integrals, for

any d and any ©(t) is given in ((C.2.19) in terms of Hurwitz zeta functions. Simple examples are

given in ((C.2.21)-(C.2.22). In ((C.2.19)) we use the covariant regularization scheme introduced in

section[5.3] Conversion to PV regularization is obtained from the finite part as explained below.

e Entropy: Combined with our earlier result for the bulk energy Upyik, the above also gives the
finite part of the bulk entropy Shuik = log Zpuk + 2nUpuk. In the Pauli-Villars regularization
(5.2.15), the UV-divergent part is obtained from the finite part by mirrorring (5.2.15)). For
example for k = 1, Spunea = S |,2 — SE0 |24 42, For the d = 2 example this gives for
v A

" Lok Lig ()

™ ™
A —v) — = vLig(e”?™) — — 2.2
6( 1/) 3 v 10(6 ) ];) k! (2ﬂ—>2—/€ ) (5 7)

Shulk,A =
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where we used (5.2.26]). Spuc decreases monotonically with m2 =1+ 2. In the massless limit
m — 0, it diverges logarithmically: Spux = —logm +---. For v > 1, Spux = §(A —v)
up to exponentially small corrections. Thus Spuk > 0 within the regime of validity of the low-

energy field theory, consistent with its quasi-canonical /entanglement entropy interpretation. For
gfin - _ 3¢(3)  log(2)

a conformally coupled scalar v = 3, this gives Syt = T 3

Quasinormal mode expansion

Substituting the quasinormal mode expansion ((5.2.5)),

O@t)=> Ne (5.2.28)

in the PV-regularized log Zyuix () (5.2.19)), rescaling t — %t, and using ((C.2.31)) gives

T(br+1) T(br + 1) &
log Ziu =N NP oe T T Nferjge 27 b= . 2.2
0g 4y, lk(ﬁ) zr: r og (bu)’”‘\/m r og (bﬂ)br\/%’ o0 (5 9)

Truncating the integral to the IR part is justified because the Pauli-Villars sum ({5.2.15))
cancels out the UV part. The dependence on p likewise cancels out, as do some other terms,
but it is useful to keep the above form. At the equilibrium 8 = 27, log Z,u1x is given by
with b = 1. This provides a PV-regularized version of the quasinormal mode expansion of [163].
Since it is covariantly regularized, it does not require matching to a local heat kernel expansion.
Moreover it applies to general particle content, including spin s > 1

QNM expansions of other bulk thermodynamic quantities are readily derived from the
eq. by taking derivatives 303 = b0, = pd, + r0,. For example Spux = (1 —
B0g) log Zpuik|g=2x is

Shulk = Z NPOSSbos(T) + quersfer(r) (5230)

r

"The expansion of [I63] pertains to Zp1 for s < % In the following sections we show Zp; = Zpuk for s <
but not for s > 1. Hence in general the QNM expansion of [163] computes Zpyik, not Zpr.

1l
2
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Figure 5.2.4: Contribution to 3 = 27 bulk entropy and heat capacity of a quasinormal mode o e¢="7,

r € C, Rer > 0. Only the real part is shown here because complex r come in conjugate pairs 7, + =
% + n £ iv. The harmonic oscillator case corresponds to the imaginary axis.

where the entropy s(r) carried by a single QNM o e~"T at 3 = 27 is given by

r 1
Sbos(r) =7+ (1 —r0,) log er—? , Ster(1) = —17 — (1 — r0,) log % . (5.2.31)

Note the p-dependence has dropped out, reflecting the fact that the contribution of each indi-
vidual QNM to the entropy is UV-finite, not requiring any regularization. For massive represen-
tations, r can be complex, but will always appear in a conjugate pair r,+ = %l—l—nzl:iy. Taking
this into account, all contributions to the entropy are real and positive for the physical part of

the PV-extended spectrum. The small and large r asymptotics are

—0: — 11 c — log 2 — 00 : — ! —
r * Sbos 9 og oy’ Sfer 5 r 00t Sbos 671’ Ster 2
(5.2.32)
The QNM entropies at general 3 are obtained simply by replacing
g
S5 2 5.2.33
T ( )
The entropy of a normal bosonic mode of frequency w, 3(w) = —log(1 — e™#) + gﬁ%

is recovered for complex conjugate pairs r+ in the scaling limit 5 — 0, Svr = w fixed, and

likewise for fermions. At any finite 3, the n — oo UV tail of QNM contributions is markedly
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different however. Instead of falling off exponentially, if falls off as s ~ 1/n. PV or any other
regularization effectively cuts off the sum at n ~ Af, so since N,, ~ n% 1, Spux ~ Ad~1¢d=1,

The bulk heat capacity Chux = —393Sbulk, so the heat capacity of a QNM at § = 27 is
c(r) = —rops(r). (5.2.34)
The real part of s(r) and ¢(r) on the complex r-plane are shown in fig. [5.2.4]

An application of the quasinormal expansion

The above QNM expansions are less useful for exact computations of thermodynamic quantities
than the direct integral evaluations discussed earlier, but can be very useful in computations of
certain UV-finite quantities. A simple example is the following. In thermal equilibrium with a
4D dS static patch horizon, which set of particle species has the largest bulk heat capacity: (A)
six conformally coupled scalars + graviton, (B) four photons? The answer is not obvious, as
both have an equal number of local degrees of freedom: 64+2 = 4 x 2 = 8. One could compute

each in full, but the above QNM expansions offers a much easier way to get the answer. From

(5.2.4)) and (/C.6.2]) we read off the scalar and massless spin-s characters:

2(25 + 1) ¢*t1 —2(25 — 1) ¢* 12
(1—¢q)? ’

_at7 _
M A

(5.2.35)

where ¢ = eIl Wesee ©4— 05 = O, +600—40; =6¢q, so ©4 and Op are almost exactly
equal: A has just 6 more quasinormal modes than B, all with » = 1. Thus, using (5.2.34)),

Cinik — Caie = 6 chos(1) = 7° = 9. (5.2.36)

Pretty close, but m > 3, so A wins. The difference is AC' ~ 0.87. Along similar lines,
AS =6 Spos(1) = 3(2y + 1 —log(2m)) ~ 0.95.



122

Another UV-finite example: relative entropies of graviton, photon, neutrino

Less trivial to compute but more real-world in flavor is the following UV-finite linear combination

of the 4D graviton, photon, and (assumed massless) neutrino bulk entropies:

Sgraviton + 6705neutrino - 3*775photon = 478C/<_1) - ?CI(—?)) + 6’}/ + % - % 10g(27r) ~ 0.61
(5.2.37)

Finiteness can be checked from the small-t expansion of the total integrand computing this, and

the integral can then be evaluated along the lines of ((C.2.15))-(C.2.16)). We omit the details.

Vasiliev higher-spin example

Non-minimal Vasiliev higher-spin gravity on dS4 has a single conformally coupled scalar and a
tower of massless spin-s particles of all spins s =1,2,3,.... The prospect of having to compute
bulk thermodynamics for this theory by brick wall or other approaches mentioned in appendix
would be terrifying. Let us compare this to the character approach. The total character
obtained by summing the characters of takes a remarkably simple form:

1/2 3/2+ 2 3 2
' +q ) q q+q 2q

- = +3.— . (5.2.38
(1—q)* ( 4 ( )

Oiot = O + @3:2-(
o = Gt Ty Al e R Al e

The first expression is two times the square of the character of a 3D conformally coupled scalar,
plus the character of 3D conformal higher-spin gravity 5.9.17.F_§] The second expression equals
the character of one v = i and three v = 0 scalars on dS5. Treating the character integral as

such, we immediately get, in k = 3 Pauli-Villars regularization ((5.2.15]),

log ngflk = ao\® + agA® — a4/, log Z{}Slk = % — %
; \ (5.2.39)
div fi
Spulk = %GZA?) - %m/\? Shulk = % - % + Tlo'

8 For AdS,, the analogous Oyt equals one copy of the 3D scalar character squared, reflecting the single-trace
spectrum of its holographic dual U(N) model (see section [5.9.2)). The dS counterpart thus encodes the single-
trace spectrum of two copies of this 3D CFT 4 3D CHS gravity, reminiscent of [32]. This is generalized by

E919)
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where ag = 1=4V2EYS 10 0 017, gy = — 122205 1 & 0,025, and aq = 3=3Y2EY5 1 0,032,
The tower of higher-spin particles alters the bulk UV dimensionality much like a tower of KK

modes would. (We will later see edge “corrections” rather dramatically alter this.)

5.3 Sphere partition function for scalars and spinors

5.3.1 Problem and result

In this section we consider the one-loop Gaussian Euclidean path integral Zl(gll) of scalar and

spinor field fluctuations on the round sphere. For a free scalar of mass m? on S4t1,
Zp1 = /D¢e—%f¢<—v2+m2>¢, (5.3.1)
A convenient UV-regularized version is defined using standard heat kernel methods [178]:

log Zp1e = / T e /ar qy (=r(-V24m?) (5.3.2)
0 T

. . 2
The insertion e~ € /47

implements a UV cutoff at length scale ~ e. We picked this regulator for
convenience in the derivation below. We could alternatively insert the PV regulator of footnote
, which would reproduce the PV regularization . However, being uniformly applicable to
all dimensions, the above regulator is more useful for the purpose of deriving general evaluation
formulae, as in appendix [C.2]

In view of we wish to compare Zp; to the corresponding Wick-rotated dS static
patch bulk thermal partition function Zyyi(3) (5.2.6)), at the equilibrium inverse temperature
B = 2m. Here and henceforth, Zp,i by default means Zp i (27):

odt(1+et 2et/?
log Z = — s — . 3.
Og Zbulk /0 ot < 1_ et @(t)bos 1_ et @(t)fe ) (5 3 3)

Below we show that for free scalars and spinors,

(5.3.4)
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with the specific regularization (5.3.2)) for Zp; mapping to a specific regularization (5.3.9) for
Zbulk- The relation is exact, for any e. This makes the physical expectation ([5.2.7)) precise, and

shows that for scalars and spinors, there are in fact no edge corrections.
In appendix [C.2] we provide a simple recipe for extracting both the UV and IR parts in the
€ — 0 limit in the above regularization, directly from the unregularized form of the character

formula (5.3.3). This yields the general closed-form solution | (C.2.19) | for the regularized Zpy in

terms of Hurwitz zeta functions. The heat kernel coefficient invariants are likewise read off from

the character using ((C.2.20)). For simple examples see ((C.2.21)), (IC.2.22)), (C.2.32)-(/C.2.33).

5.3.2 Derivation
The derivation is straightforward:

Scalars:

The eigenvalues of —V? on a sphere of radius £ = 1 are \,, = n(n-+d), n € N, with degeneracies

D+2 given by |D that is Di+? = (”;ﬁrl) - (”;ﬁ;l). Thus 1' can be written as

oo s
log Zp1 = ; i o€ /AT Z Di+2 e T(n+5)’ , v=1/m?— % : (5.3.5)

n=0

To perform the sum over n, we use the Hubbard-Stratonovich trick, i.e. we write

00 —u? /AT 00 ) 4
D+ o—T(nt5)? :/ du u), u) = DH2 giu(nt3) 5.3.6
3o K (OO R W (536)

with integration contour A = R +i§, 6 > 0, as shown in fig.[5.3.I] The sum evaluates to

u

ol

B 1+4+ev ¢
- 1 — etu (17€iu)d’

f(u) (5.3.7)

We first consider the case m > %, so v is real and positive. Then, keeping Imu = 6 < ¢, we

can perform the 7-integral first in (5.3.5) to get

du Vv )
log Zp1 = / — e rVvuTte . 5.3.8
0g 4p1 " 2\/m € f(u) ( )

Deforming the contour by folding it up along the two sides of the branch cut to contour B in
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Figure 5.3.1: Integration contours for Zp;. Orange dots are poles, yellow dots branch points.

fig. [5.3.1} changing variables u = it and using that the square root takes opposite signs on both
sides of the cut, we transform this to an integral over C in fig. [5.3.1}

o dt 14t e StV | —ft-inV/iT-e
logZﬁI:l/

5.3.9
WE Bl =y - 639

The result for 0 < m < g, ie. v=r1pwith 0 < pu< g can be obtained from this by analytic

continuation. Putting e = 0, this formally becomes

o gt 1 —t —(2—iv)t —(g+av)t
m%F/ te cr e (5.3.10)

— Ot o(t) =

2t 1 —et ®), ®) (1—et)d ’
which we recognize as (/5.3.3]) with O(¢) the scalar character (5.2.4)). Thus we conclude that for
scalars, Zp1 = Zpui, with Zp; regularized as in (5.3.2) and Zpyux as in (5.3.9).

Spinors:

For a Dirac spinor field of mass m we have Zp; = [ Dy e~ JPY+m)Y  The relevant formulae
for spectrum and degeneracies for general d can be found in the section 2.2 For concreteness
we just consider the case d = 3 here, but the conclusions are valid for Dirac spinors in general.
The spectrum of ¥ +m on S*is A\, = m+ (n+2)i, n € N, with degeneracy Df’w%’% = 4(”;3),

so Zpr regularized as in (5.3.2)) is given by

T

oo &
log Zp; = _/0 77_6752/47- Z 4(71})&-3) e—r((n+2)2+m2) (5.3.11)

n=0
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Following the same steps as for the scalar case, this can be rewritten as

e—%t—i—im\/tz—&z + e—%t—im\/tQ—EQ

log Z, ©_dt 2 5.3.12
o8 P'__/e WE_El—et (1—et)? (5:3.12)
Putting e = 0, this formally becomes
o Jt 9 e—t/2 e~ (3 +im)t + o~ (3—im)t
log Zpr = — — Ot Oit)=4- 5.3.13
Og 4p1 0 2t 1— et ()7 ( ) (1_€_t)3 ) ( )

which we recognize as the fermionic (5.3.3)) with ©(¢) the character of the A = % + ¢m unitary
SO(1,4) representation carried by the single-particle Hilbert space of a Dirac spinor quantized on
dSy4, given by twice the character (3.4.11)) of the irreducible representation Fa ¢ with s = (%)

Thus we conclude Zp; = Zpuik. The comment below ((5.4.16]) generalizes this to all d.

5.4 Massive higher spins

We first formulate the problem, explaining why it is not nearly as simple as one might have
hoped, and then state the result, which turns out to be much simpler than one might have

feared. The derivation of the result is detailed in appendix [C.5.1]

5.4.1 Problem

Consider a massive spin-s > 1 field, more specifically a totally symmetric tensor field ¢, ...,, on

dSg1 satisfying the Fierz-Pauli equations of motion:

(=V2 +m2) bpyoope = 0, VY buprps 1 =0, O yproa s =0 (5.4.1)

Upon quantization, the global single-particle Hilbert space furnishes a massive spin-s represen-
tation of SO(1,d + 1) with A = & + v, related to the effective mass 77, appearing above (see

e.g. [89]), and to the more commonly used definition of mass m (see e.g. [71]) as

me=(92+17+s, mP=(4+s-2 2+ =(A+s5-2)(d+s—2-A). (54.2)

s — \2

The massive spin-s bulk thermal partition function is immediately obtained by substituting
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the massive spin-s character ([3.4.12) into the character formula (5.3.3) for Zyuy. For d > 3[

d - d .
R L (543
201—q ° 1—g® 7 a

log Zhuik =

with spin degeneracy factor read off from ([2.2.3)) or (2.2.6).

The corresponding free massive spin-s Euclidean path integral on S9! takes the form
Zpp = / D e8], (5.4.4)

where ® includes at least ¢. However it turns out that in order to write down a local, manifestly
covariant action for massive fields of general spin s, one also needs to include a tower of
auxiliary Stueckelberg fields of all spins s < s [58], generalizing the familiar Stueckelberg action
for massive vector fields. These come with gauge symmetries, which in turn require
the introduction of a gauge fixing sector, with ghosts of all spins s’ < s. The explicit form of
the action and gauge symmetries is known, but intricate [58].

Classically, variation of the action with respect the Stueckelberg fields merely enforces the
transverse-traceless (TT) constraints in , after which the gauge symmetries can be used
to put the Stueckelberg fields equal to zero. One might therefore hope the intimidating off-shell
Zp1 likewise collapses to just the path integral Zp1 over the TT modes of ¢ with kinetic
term given by the equations of motion . This is easy to evaluate. The TT eigenvalue

spectrum on the sphere follows from SO(d + 2) representation theory. As detailed in egs.
(C.5.1)-(C.5.2)), we can then follow the same steps as in section , ending up witI“ET]
o dt —w d+2 7+n
log Zrr = % (¢"+q ™) Di?qz (5.4.5)
0 n>s
Here Dfﬁf is the dimension of the SO(d + 2) representation labeled by the two-row Young
diagram Y, ;.
Unfortunately, Zp1 is not equal to Zpy on the sphere. The easiest way to see this is to

consider an example in odd spacetime dimensions, such as , and observe the result has a

°For d = 2, the single-particle Hilbert space splits into (A, £s) with D3, = 1, so D? — Zi D3, =2.
YFord =2, Dy, — >, Dpy,=2D; .
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logarithmic divergence. A manifestly covariant local QFT path integral on an odd-dimensional
sphere cannot possibly have logarithmic divergences. Therefore Zp; # Zpr. The appearance of
such nonlocal divergences in Zpr can be traced to the existence of (normalizable) zeromodes in
tensor decompositions on the sphere [128, [139]. For example the decomposition ¢,, = ¢>Z+VMP
has the constant ¢ mode as a zeromode, ¢, = quyT—%V(ugoy)—l—gWgo has conformal Killing vector
zeromodes, and ¢,...,, = ¢E1T---us + Vi Pus-ps) T 9(u1p2Pus-us) has rank s — 1 conformal
Killing tensor zeromodes. As shown in [128] [139], this implies log Z11 contains a nonlocal
UV-divergent term cs log A, where ¢4 is the number of rank s — 1 conformal Killing tensors.
This divergence cannot be canceled by a local counterterm. Instead it must be canceled by
contributions from the non-TT part. Thus, in principle, the full off-shell path integral must be
carefully evaluated to obtain the correct result. Computing Zp; for general s on the sphere is

not as easy as one might have hoped.

5.4.2 Result

Rather than follow a brute-force approach, we obtain Zp; in appendix by a series of
relatively simple observations. In fact, upon evaluating the sum in (5.4.5)), writing it in a way
that brings out a term log Zyqx as in , and observing a conspicuous finite sum of terms
bears full responsibility for the inconsistency with locality, the answer suggests itself right away:
the non-TT part restores locality simply by canceling this finite sum. This turns out to be

equivalent to the non-TT part effectively extending the sum n > s in (5.4.5) to n > —I:E

©dt . , d
log Zpy = / — (@ +q™) Y Dt g, (5.4.6)
o 2t ’
n>—1
where D7“ is given by eq. 1' For n < s, this is no longer the dimension of an SO(d + 2)
representation, but it can be rewritten as minus the dimension of such a representation, as
D32 = —D¥*? |, This extension also turns out to be exactly what is needed for consistency
with the unitarity bound (|C.5.18)) and more refined unitarity considerations. A limited amount

of explicit path integral considerations combined with the observation that the coefficients

“Ford=2use (5.4.14): Dy, — > Dy, =2D; forn>—1,and DY, — % 1D, , =D, =
Di_ ;.
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D2 n+1 count conformal Killing tensor mode mismatches between ghosts and longitudinal
modes then suffice to establish this is indeed the correct answer. We refer to appendix
for details.

Using the identity ((C.5.8)), we can write this in a rather suggestive form:

< dt 1+
log Zp1 = log Zyuik — log Zeqge = o 17_;] (Obulk — Oedge) | » (5.4.7)
where Oy and Ogqge are explicitly given byF—_ZI
dyiy —iv 2 fiv 2 v
q2 -+ q2 d+2 q 2 —+ q 2
@blk—D T d Ocd _D 5.4.8
" (1—q) edge 1—qi? (5.4.8)

The log Zpuk term is the character integral for the bulk partition function (5.4.3). Strikingly,
the correction log Zeqge also takes the form a character integral, but with an “edge” character
Oedge in two lower dimensions. By our results of section [5.3 E 3| for scalars, Z.qqe effectively equals
the Euclidean path integral of D%*? scalars of mass m2 = (452)° + 12 on §41;

Zedge = Do 3 Jsan VIS g g DI (5.4.9)

s—1»

In particular this gives 1 scalar for s = 1 and d + 2 scalars for s = 2. The S ! is naturally
identified as the static patch horizon, the edge of the global dS spatial S? hemisphere at time
zero, the yellow dot in fig. . Thus realizes in a precise way the somewhat vague
physical expectation (5.2.7). Notice the relative minus sign here and in (5.4.7): the edge
corrections effectively subtract degrees of freedom. We do not have a physical interpretation
of these putative edge scalars for general s along the lines of the work reviewed in appendix
Some clues are that their multiplicity equals the number of conformal Killing tensor
modes of scalar type appearing in the derivation in appendix (the CTTFmodes for s = 4 in
), and that they become massless at the unitarity bound v = :l:i(%l —1), eq. (C.5.18),

where a partially massless field emerges with a scalar gauge parameter.

PFord=2, D} — %, D2 =2in Opux as in (5.4.3). Ocage remains unchanged.
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Independent of any interpretation, we can summarize the result (5.4.7)-(5.4.8) as
log Zp ™ (s) = log Zy i (s) — Dy log Zp ' (0). (5.4.10)

Examples
For a d = 2 spin-s > 1 field of mass m? = (s — 1)? + 12, log Zp; = | %}%g(@bulk — Oedge)
with

ql—i-iu + ql—il/

Obulk = 2 A—q?

Ocdge = 52 (¢" +q7"). (5.4.11)

That is, Zp1 = Zpuik/Zedge, With the finite part of log Zyuk explicitly given by twice ((5.2.25)),
and with Z.gee equal to the Euclidean path integral of D? | = s? harmonic oscillators of
frequency v on S', naturally identified with the S' horizon of the dSs static patch, with finite

part

f e~V S
n _

The heat-kernel regularized Zp is then, restoring ¢ and recalling v = /m202 — (s — 1)2,

3 2 kT —2mv 2 3
v V¥ Lig_g(e ) wvl wl ) 2( 9 7r€>
log Zpr = 2| — — — — ) = _ -1 1— TV nt
8 2Pl ( 6 kz:% k' (2m)2k I 28 {7 —log(1—e™) + €
(5.4.13)

The d = 3 spin-s case is worked out as another example in (|C.2.27]).

General massive representations

(5.4.6) has a natural generalization, presented in appendix to arbitrary parity-invariant
massive SO(1,d + 1) representations R = @4(Aq,Sq), Ay = g + Ve, Sq = (Sals- -+, Sar):

> dt : » g
log Zp1 = /0 57 (D (@ +a™™) >0 0(5+n) DL gz tn (5.4.14)
a ne%—FZ
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where 0(z) is the Heaviside step step function with |(0) = 3| and F, = 0,1 for bosons

resp. fermions. This is the unique TT eigenvalue sum extension consistent with locality and
unitarity constraints. As in the s = (s) case, this can be rewritten as a bulk-edge decomposition

log Zp1 = log Zyuik — log Zeqge. For example, using ([2.3.25)), the analog of (5.4.10) for an

s = (s,1™) field becomes
log ZgHt (s,1™) = log Z{HH (s, 1™) — DT log Z& 1 (1™) (5.4.15)

so here Z.ggc is the path integral of Dgff massive m-form fields living on the S%! edge. In
particular this implies the recursion relation log ngl(lp) = log Zglﬁll((lp) — log Zgl_l(lp_l).
Similarly for a spin s =k + % Dirac fermion, in the notation explained under table 1)
log Zp1 (5, 3) = log Zy (s, 3) — §DLF 1 log Z87 (%), (5.4.16)
where Zpuix now takes the form of the fermionic part of (5.3.3), with Opyk as in (3.4.11)) with
D¢ =2 Dgl, the factor 2 due to the field being Dirac. The edge fields are Dirac spinors. Note
2
that because Ddffl =0, the above implies in particular Zpl(%) = Zbulk(%).
2’2
We do not have a systematic group-theoretic or physical way of identifying the edge field
content. For evaluation of Zpg using ((C.2.19)), this identification is not needed however. Actually

the original expansions (5.4.6)), (5.4.14) are more useful for this, as illustrated in (|C.2.23)-
(C.2.27).

5.5 Massless higher spins

5.5.1 Problems

Bulk thermal partition function Zy,

Massless spin-s fields on dS441 are in many ways quite a bit more subtle than their massive
spin-s counterparts. This manifests itself already at the level of the characters Oy s needed
to compute the bulk ideal gas thermodynamics along the lines of section 5.2l The SO(1,d + 1)

unitary representations furnished by their single-particle Hilbert space belong to the discrete
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series for d = 3 and to the exceptional series for d > 4 [70]. The corresponding characters,
discussed in the section , are more intricate than their massive (principal and complementary
series) counterparts. A brief look at the general formula with t = s — 1 or the table of
examples suffices to make clear they are far from intuitively obvious — as is, for that
matter, the identification of the representation itself. Moreover, [70] reported their computation

of the exceptional series characters disagrees with the original results in [13] [65] [75].

As noted in section and appendix , the expansion Opuk(q) = >q Ni¢* can be
interpreted as counting the number N}, of static patch quasinormal modes decaying as e ¥7/¢.
This gives some useful physics intuition for the peculiar form of these characters, explained in the
section . The characters Ok s(¢) can in principle be computed by explicitly constructing
and counting physical quasinormal modes of a massless spin-s field. This is a rather nontrivial
problem, however.

Thus we see that for massless fields, complications appear already in the computation of
Zvulk- Computing Zp1 adds even more complications, due to the presence of negative and zero
modes in the path integral. Happily, as we will see, the complications of the latter turn out to
be the key to resolving the complications of the former. Our final result for Zp; confirms the

identification of the representation made in [70] and the original results for the corresponding

characters in [13, [65) [75]. This is explicitly verified by counting quasinormal modes in [1].

Euclidean path integral Zp;

We consider massless spin-s fields in the metric-like formalism, that is to say totally symmetric

double-traceless fields ¢, ...,,,, with linearized gauge transformation

5§0)¢“1'”ﬂ8 - O‘Sv(mémmus) ) (5.5.1)

with £ is traceless symmetric in its s’ = s — 1 indices, and o picked by convention.ﬁ

We use the notation s’ = s — 1 as it makes certain formulae more transparent and readily

13As explained in appendix ‘ for compatibility with certain other conventions we adopt, we will pick
as = 4/s with symmetrization conventions such that ¢, .....) = Ppuy--p,-
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generalizable to the partially massless (0 < s’ < s) case. The dimensions of ¢ and &y are
Ctivy=0Ns=5+d—1, Stive=Ac=s+d—1. (5.5.2)

Note that this value of v4 assign a mass m = 0 to ¢ according to (5.4.2)). The Euclidean path

integral of a collection of (interacting) gauge fields ¢ on S9! is formally given by

[ DpeS9)

Zpr vol(G) (5.5.3)

where G is the group of local gauge transformations. At the one-loop (Gaussian) level S[¢] is

the quadratic Fronsdal action [I79]. Several complications arise compared to the massive case:

1. For s > 2, the Euclidean path integral has negative (“wrong sign” Gaussian) modes,
generalizing the well-known issue arising for the conformal factor in Einstein gravity [180].
These can be dealt with by rotating field integration contours. A complication on the
sphere is that rotations at the local field level ensuring positivity of short-wavelength
modes causes a finite subset of low-lying modes to go negative, requiring these modes to

be rotated back [131].

2. The linearized gauge transformations have zeromodes: symmetric traceless tensors
EM_,,HH satisfying V(MEM...MS) = 0, the Killing tensors of S%1. This requires omitting
associated modes from the BRST gauge fixing sector of the Gaussian path integral. As
a result, locality is lost, and with it the flexibility to freely absorb various normalization

constants into local counterterms without having to keep track of nonlocal residuals.

3. At the nonlinear level, the Killing tensors generate a subalgebra of the gauge algebra.
The structure constants of this algebra are determined by the TT cubic couplings of the
interacting theory [140]. At least when it is finite-dimensional, as is the case for Yang-Mills,
Einstein gravity and the 3D higher-spin gravity theories of section the Killing tensor
algebra exponentiates to a group G. For example for Einstein gravity, G = SO(d + 2).
To compensate for the zeromode omissions in the path integral, one has to divide by the
volume of G. The appropriate measure determining this volume is inherited from the path

integral measure, and depends on the UV cutoff and the coupling constants of the theory.
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Precisely relating the path integral volume vol(G)p; to the “canonical” vol(G), defined
by a theory-independent invariant metric on G requires considerable care in defining and

keeping track of normalization factors.

Note that these complications do not arise for massless spin-s fields on AdS with standard
boundary conditions. In particular the algebra generated by the (non-normalizable) Killing
tensors in this case is a global symmetry algebra, acting nontrivially on the Hilbert space.
These problems are not insuperable, but they do require some effort. A brute-force path
integral computation correctly dealing with all of them for general higher-spin theories is compa-
rable to pulling a molar with a plastic fork: not impossible, but necessitating the sort of stamina
some might see as savage and few would wish to witness. The character formalism simplifies

the task, and the transparency of the result will make generalization obvious.

5.5.2 Ingredients and outline of derivation

We derive an exact formula for Zp; in appendix C.6.4] In what follows we merely give a

rough outline, just to give an idea what the origin is of various ingredients appearing in the final

result. To avoid the d = 2 footnotes of section we assume in what follows.

Naive characters

Naively applying the reasoning of section to the massless case, one gets a character formula

of the form l) with “naive” bulk and edge characters © given by
O=04-06, (5.5.4)

where ©4, O are the massive bulk/edge characters for the spin-s, A = s’ +d—1 field ¢ and the
spin-s’, A = s+ d — 1 gauge parameter (or ghost) field &, recalling s’ = s — 1. The subtraction

—O¢ arises from the BRST ghost path integral. More explicitly, from (5.4.8)),

é)b N B Dd qS,"rd—l _|_ ql—S, B d q8+d—1 + ql—s
ulk,s — g s’
J 1—¢g)d 1—a)d
s('+d—g) —s ( S+d(i)2 —s (555)
A q +q d+2 4 +q
@edge,s = Dg—l_% -D

W s'—1 W )
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For example for s =2 in d = 3,

5@ +1)-3(¢"+¢7") A S +a )= (@ +a?)

Obulk2 = e ) Oedge,2 = - (5.5.6)

Because of the presence of non-positive powers of ¢, Opuik is manifestly not the character of
any unitary representation of SO(1,d + 1). Indeed, the character integral (5.4.7)) using these

naive O is badly IR-divergent, due to the presence of non-positive powers of gq.

Flipped characters

In fact this pathology is nothing but the character integral incarnation of the negative and
zeromode mode issues of the path integral mentioned under . The zeromodes must be
omitted, and the negative modes are dealt with by contour rotations. These prescriptions turn
out to translate to a certain “flipping” operation at the level of the characters. More specifically
the flipped character is obtained by acting the flipping operator | |; (see eq. (3.4.17))) on the
native character ©. In particular, [@bulk’sh is the Harish-Chandra character of the exceptional
series representation Us s—1, noticing that (:)bulk78 =0Or, ..~ Or_,,, Explicit expressions

for the edge characters are [(:)edge]+ = (|C.6.23). Some simple examples are

d S [A bulk,s]+ : (1 - Q)d [éedge,s]+ : (]- - q)d72

2 |>2]0 0

3| =21(22s+1)¢ ™ =225 —1)¢""? | $s(s+1)(2s+1)¢° — $(s — 1)s(2s — 1) ¢° !
4 | >11225+1)¢? is(s+1)(2s+1)¢q

3|1 |d@™ - +1+ 01— | ¢"P+1-(1 -

(5.5.7)

Contributions to Zp;

To be more precise, after implementing the appropriate contour rotations and zeromode sub-

tractions, we get the following expression for the path integral:

[T (A" Zehars) - (5.5.8)
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where ng is the number of massless spin-s fields in the theory, and the different factors appearing
here are defined as follows:

1. Zchar,s is defined by the character integral

*dt 1+q /A R
IOg Zchar,s = A ?t T_q ([(_)bulk,s]_i_ - [Gedge,s]_i_ - 2D§ﬁ1275_1) ) (5-5-9)

where [;° means [;° with the IR divergence due to the constant term removed:

/thf(t) = lim oo@f(t)e—'f/L — f(c0) log L. (5.5.10)
o ¢ L—oo Jg

The flipped [(:)bulk,s]+ turns out to be precisely the massless spin-s exceptional series
character Opy,s: (3.4.20). Thus the Oy contribution = ideal gas partition function
Zpulk, pleasingly consistent with the physics picture. The second term is an edge correction
as in the massive case. The third term has no massive counterpart, tied to the presence

of gauge zeromodes: D?*2 | counts rank s — 1 Killing tensors on S%+1.

2. A is due to the zeromode omissions. Denoting M = 2e~7 /e as in (|C.2.30]),

< dt 1 4
_ d+2 2s+d—4 2s+d—2 d+2 M
log As = D77 /0 5 QT ) = oD +1.5-1108 Grra R e

(5.5.11)

This term looks ugly. Happily, it will drop out of the final result.

3. i~ is the spin-s generalization of Polchinski's phase of the one-loop path integral of
Einstein gravity on the sphere [I31]. It arises because every negative mode contour

rotation adds a phase factor —i to the path integral. Explicitly,

s—1,n s—2,n

s—2 s—2
d d d d d
PS = § : D o] + § : D o = Dsi_is—l - Dsi_lz,s—l + Dsi_g,s—Q : (5512)
n=0 n=0

In particular P, =0, P, = D‘f“ —i—DE‘f‘F2 = d+ 3 in agreement with [I3I]. For d+1 =4,
Py =1s(s*— 1)®andi~P~=1,-1,1,1,1,-1,1,1,.... Ford+1 =2 mod 4, i P+ = 1.

4. vol(G)p; is discussed below.
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Volume of GG

As mentioned under , G is the subgroup of gauge transformations generated by the Killing
tensors &1 in the parent interacting theory on the sphere. Equivalently it is the subgroup of
gauge transformations leaving the background invariant. For Einstein gravity, we have a single
massless s = 2 field ¢o. The Killing vectors &, generate diffeomorphisms rigidly rotating the
sphere, hence G = SO(d + 2). For SU(N) Yang-Mills, we have N? — 1 massless s = 1
fields ¢¢. The N2 — 1 Killing scalars ég generate constant SU(N) gauge transformations,
hence G = SU(N).E] For the 3D higher-spin gravity theories introduced in section , we
have massless fields ¢ of spin s = 2,...,n. The Killing tensors _; turn out to generate
G=SU(n); x SU(n)-_.

vol(G)p; is the volume of G according to the QFT path integral measure. We wish to
relate it to a “canonical” vol(G).. We use the word “canonical” in the sense of defined in a
theory-independent way. We determine vol(G)p;/vol(G),.. given our normalization conventions
in appendix [C.6.4] Below we summarize the most pertinent definitions and results.

For Einstein gravity, the Killing vector Lie algebra is g = so(d + 2). Picking a standard
basis My satisfying [Mrj, Mkr] = drxMyr + .Mk — d1. My — 65 Mrr, we define the

canonical” bilinear form (-|-)c on g to be the unique invariant bilinear normalized such that
<M[J|M[J>C =1 (I 75 J, no sum) . (5.5.13)

This invariant bilinear on g = so(d + 2) defines an invariant metric ds?> on G' = SO(d + 2).
Closed orbits generated by M;; then have length § ds. = 2, and vol(G), is given by (C.3.2).
For higher-spin gravity, the Killing tensor Lie algebra g contains so(d + 2) as a subalgebra
with generators My;. We define (-|-). on g to be the unique g-invariant bilinear form [140, 141]
normalized by . vol(G), is defined using the corresponding metric ds? on G.
The Killing tensor commutators are determined by the local gauge algebra [J¢, 6¢/] = dj¢ ¢/

as in [140]. For Einstein or HS gravity, in our conventions (canonical ¢ + footnote [13)), this

Yora quotient thereof, such as SU(N)/Zxn, depending on other data such as additional matter content. Here

and in other instances, we will not try to be precise about the global structure of G.
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gives for the so(d + 2) Killing vector (sub)algebra of g

[glvgi] = \/M[f_iagl]ue, (5514)
where [, ] e is the standard vector field Lie bracket. In Einstein gravity, G is the Newton

constant. In Einstein + higher-order curvature corrections (section|5.8]) or in higher-spin gravity
we take it to define the Newton constant. It is related to a “central charge” C in ((C.6.51)).

Building on [140] [143], we find the bilinear (:|-). determining vol(G). can then be written

C

as

jGN ZZ (25 +d—4)(2s +d - 2)/ LA -an, (5.5.15)
d—1

s a=1

(€1€).

where Ay 1 = vol(S91) is the dS horizon area. On the other hand, the path integral measure
computing vol(G)p; is derived from the bilinear (¢|€)pr = ]g[—;fﬁ_ ¢. From this we can read
off the ratio vol(G),/vol(G)py: an awkward product of factors determined by the HS algebra.

This turns out to cancel the awkward eigenvalue product of (5.5.11)), up to a universal factor:

1 3
vol(G e 8rGy\ 2 4 ¢
(G E[A = <Ad1> : (5.5.16)

for all theories covered by [140], i.e. all parity-invariant HS theories consistent at cubic level.

For Yang-Mills, vol(G).,
normalized YM action S =: 1 [(F|F).. For example for SU(N) YM with S = —% [ Try F?,
this gives vol(G), = vol(SU(N))tr, = (C-3.3). A similar but simpler computation gives the
analog of (5.5.16]). See appendlxu C.6.4] for details on all of the above.

is computed using the metric ds? on g defined by the canonically

5.5.3 Result and examples

Thus we arrive at the following universal formula for the one-loop Euclidean path integral for

parity-symmetric (higher-spin) gravity and Yang-Mills gauge theories on S%+1, d > 3:

K dimG, X dt1 4+
Zel =" 1 e, / E T (O — Ocdge — 2dim G 5.5.17
br = 1§ IE=ren P | 5T g (Obuik — Oedge im G) ( )
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e G =Gy x Gy X ---Gg is the subgroup of (higher-spin) gravitational and Yang-Mills gauge

transformations acting trivially on the background,

STI'GN g%
=/ =4/ 5.5.18
70 Adfl ’ 7 27TAd,3 s ( )

where A, = Q0" Q, = (C.3.1), the gravitational and YM coupling constants Gx and

g1,--.,9k are defined by the canonically normalized so(d 4+ 2) and YM gauge algebras as
explained around (|5.5.14]), and vol G, is the canonically normalized volume of G,, defined in
the same part.

e For a theory with ns massless spin-s fields
0= Z ngOy , dim G = Znngfisfl , P = Z ngPs , (5.5.19)
S S S

where O, = [@s]+ are the flipped versions of the naive characters , with examples
in (5.5.7) and general formulae in and (C.6.23), and P, = is the spin-s
generalization of the s = 2 phase P, = d + 3 found in [13I].

e The heat-kernel regularized integral can be evaluated using , as spelled out in appendix
[C.2.3] For odd d+ 1, the finite part can alternatively be obtained by summing residues.

Jo© means integration with the IR log-divergence from the constant —2 dim G term removed as
in (5.5.10). The constant term contribution is then dim G - (¢ e+ log(27)), so when keeping
track of linearly divergent terms is not needed, one can replace by

W) _ —p 1 (2m7a) G ©dil+gq .

a

e The case d = 2 requires some minor amendments, discussed in appendix [C.7.1} for s > 2,
nothing changes except Ps, and © = 0, resulting in . Yang-Mills gives (|C.7.8]), or mod
e ! , equivalent to putting A_; = 1/27( in , and Chern-Simons .

e The above can be extended to more general theories. For examples (s, s") partially massless
gauge fields have characters given by (]3.4.20[) and (]C.6.23l), and contribute Dgfis, to dim @G.
Fermionic counterparts can be derived following the same steps, with @edge given by .

Fermionic (s,s") PM fields give negative contributions —Djflz g1 1 todimG.
’ 727"'72
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Example: coefficient o4, of log-divergent term

The heat kernel coefficient aig41, i.e. the coefficient of the log-divergent term of log Z, can be
read off simply as the coefficient of the 1/t term in the small-¢ expansion of the integrand. As
explained in , we can just use the original, naive integrand F(t) = %(@bulk — éedge) for
this purpose, obtained from . For e.g. a massless spin-s field on 5% this immediately gives
az(f) = —g5 (75s* = 155% + 2), in agreement with eq. (2.32) of [139]. For s = 1,2,

d ‘ 3 5 7 9 11 13 15
oM | 81 _12m1 4021 _ 456569 1199869961 893517041 _17279945447657
d+1 15 1890 6300 748440 2043241200 1571724000 31261590360000
o@D | 571 3181 198851 _ 74203873 _ 75050846731 _ 114040703221 _ 821333912103503
d+1 5 140 5670 1496330 1135134000 1347192000 7815397590000
(5.5.21)

Another case of general interest is a partially massless field with (s, s') = (42,26) on S42:

(42,26) _5925700837995152105818399547396345088821635783305199815444602762021561970991151947221547

Qyo 5348867203248512743202760066455665920000000000

~ _1042

Example: SU(4) Yang-Mills on S°

As a simple illustration and test of (5.5.17)), consider SU(4) YM theory on S° of radius ¢ with
action S = 4—!1]2[”[%4F2, so G = SU4), m = dimG = 15, vol(G), = 22 as given by

c 6
C33), v = ,/%, and P = 0. Bulk and edge characters are read off from table (5.5.7)).
Thus

15 )
n (9/Vt) ./th1+q( 64>  2¢ )
log Zpy = log 7(2@15 ' (27609 +15 ) AT —g\g=D1F  (g=17 2). (5.5.22)

The finite part can be evaluated by simply summing residues, similar to (5.2.25):

o o (gD 5¢(3) | 3¢(5)
log Z81 = log L(3m)0 +15- ( 62 + 6 ) (5.5.23)

The U(1) version of this agrees with [I8I] eq. (2.27). We could alternatively use (C.2.19) as
in , which includes the UV divergent part: log Zl(jll) = log Zg? + 15(9%6*555 — %6*363 —
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%e‘lﬁ).

Example: Einstein gravity on 53, S* and S°

The exact one-loop Euclidean path integral for Einstein gravity on the sphere can be worked out

similarly. The S® case is obtained in (C.7.7). The S* and S° cases are detailed in [C.2.3] with
results including UV-divergent terms given in ((C.7.5), (C.2.44)), (C.2.47). The finite parts are:

1dimG
gd+1 | ;=P vol(G), | Ag—1 |dimG | log Zgﬁlar
S3 =i | (@2m* |2r¢ |6 |6 log(2)
St =1 | 302m)° [4n? |10 | =S log(¢/L) + G2 —log2 — F('(=1) + 5¢'(=3)
$5 i | &em?|2r |15 | 15log(em) + BSQ 4 3¢0)
(5.5.25)

Checks: We rederive the S result in the Chern-Simons formulation of 3D gravity [164] in
appendix and find precise agreement, with the phase matching for odd framing of the
Chern-Simons partition function (it vanishes for even framing). The coefficient —% of the
log-divergent term of the S* result agrees with [127]. The phases agree with [I31]. The powers
of GN agree with zeromode counting arguments of [135], [138]. The full one-loop partition
function on S* was calculated using zeta-function regularization in [I34]. Upon correcting an
error in the second number of their equation (A.36) we find agreement. As far as we know, the

(1)

zeta-function regularized ZplI has not been explicitly computed before for S4+1, d > 4.

Higher-spin theories

Generic Vasiliev higher-spin gravity theories have infinite spin range and dim G = oo, evidently
posing problems for (5.5.17)). We postpone discussion of this case to section . Below we

consider a 3D higher-spin gravity theory with finite spin range s = 2,...,n.
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5.6 3D HS, gravity and the topological string

As reviewed in appendix [C.7.2] 3D Einstein gravity with positive cosmological constant in
Lorentzian or Euclidean signature can be formulated as an SL(2,C) resp. SU(2) x SU(2)
Chern-Simons theory [164] E] This has a natural extension to an SL(n, C) resp. SU(n)x SU(n)
Chern-Simons theory, discussed in appendix [C.7.3} which can be viewed as an s < n dSs higher-
spin gravity theory, analogous to the AdSs theories studied e.g. in [166-169, 182, [183]. The

Lorentzian/Euclidean actions S,/Sg are
Sy =iSg = (I +ir) Scs[A+] + (I — i) Scs[A-], leN, rkeR", (5.6.1)

where Scg[A] = £ [Tr,(AAdA+ 2AN AN A) and Ay are sl(n)-valued connections with

reality condition A% = A+ for the Lorentzian theory and .Al = A4 for the Euclidean theory.
The Chern-Simons formulation allows all-loop exact results, providing a useful check of our

result 1' for ZSI) obtained in the metric-like formulation. Besides this, we observed a

number of other interesting features, collected in appendix [C.7.3] and summarized below.

Landscape of vacua (C.7.3.1

The theory has a set of dS3 vacua (or round S solutions in the Euclidean theory), corresponding

to different embeddings of s[(2) into sl(n), labeled by n-dimensional representations
R =®,m,, n= Zma ) (5.6.2)

of su(2), i.e. by partitions of n = Y, m,. The radius in Planck units ¢//Gx and 70) = ¢=5E

depend on the vacuum R as

2ml 1
log Z 1Gn 21k TR, Tr G Ea ma(m; —1). (5.6.3)

>Or more precisely an SO(1,3) = SL(2,C)/Z2 or SO(4) = (SU(Q) X SU(Q))/ZQ CS theory. For the higher-
spin extensions, we could similarly consider quotients. We will use the unquotiented groups here.



143

Note that S(© = log Z(©) takes the standard Einstein gravity horizon entropy form. The entropy
is maximized for the principal embedding, i.e. R = n, for which T3, = %n(n2 —1). The number

of vacua equals the number of partitions of n:
Noae ~ 276 (5.6.4)

For, say, n ~ 2 x 10°, we get Nyae ~ 10°%°, with maximal entropy S(O)|R=n ~ 1015,

Higher-spin algebra and metric-like field content (C.7.3.2

As worked out in detail for the AdS analog in [I82], the fluctuations of the Chern-Simons
connection for the principal embedding vacuum R = n correspond in a metric-like description
to a set of massless spin-s fields with s = 2,3,...,n. The Euclidean higher-spin algebra is
su(n)y @ su(n)_, which exponentiates to G = SU(n)y x SU(n)—. The higher-spin field
content of the R = n vacuum can also be inferred from the decomposition of su(n) into
irreducible representations of su(2), with S € su(2) acting on L € su(n) as L = €[R(S), L],

to wit,

n—1

(n2 - 1)su(n) = Z (21‘ + 1>su(2) . (5'6'5)

r=1

The (2r +1,1) and (1,2r + 1) of s0(4) = su(2)4 ©su(2)_ correspond to rank-r self-dual and
anti-self-dual Killing tensors on S3, the zeromodes of for a massless spin-(r + 1) field,
confirming R = n has ng; = 1 massless spin-s field for s = 2,...,n. For different vacua R, one
gets decompositions different from , associated with different field content. For example
forn=12and R=6®4P2, wegetn =2, no=7,n3=8 n4=06n5=3 ng=1.

One-loop and all-loop partition function (C.7.3.31C.7.3.4

In view of the above higher-spin interpretation, we can compute the one-loop Euclidean path

integral on S3 for I = 0 from our general formula ((5.5.17)) for higher-spin gravity theories in the
metric-like formalism. The dS3 version of ((5.5.17) is worked out in (C.7.4)-(C.7.6)), and applied
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to the case of interest in (C.7.43)), using (5.6.3)) to convert from ¢/G to k. The result is

(1) 2 (QW/\/E)dimG
Zpf =1 L, 4V01(G)T7rn , (5.6.6)
where vol(G)m,, = (vt [T (27)%/T(s))” as in (C.3.3).

This can be compared to the weak-coupling limit of the all-loop expression ((C.7.45))-(C.7.47)),

obtained from the known exact partition function of SU(n)i, x SU(n);_ Chern-Simons theory

on S3 by analytic continuation k+ — [ £ ik,

2
Z(R), =€ = ! ﬁ(Q sin L) Rl 2™ In (5.6.7)
' VI (n 4+ 1+ ik) T o n+l+ik ' -

Here ¢ = 25", c(l+ik) with ¢(k) = (n? —1)(1— +4%), and r € Z labels the choice of framing
needed to define the Chern-Simons theory as a QFT, discussed in more detail below ((C.7.25]).
Canonical framing corresponds to » = 0. Z(R) is interpreted as the all-loop quantum-corrected
Euclidean partition function of the dSs3 static patch in the vacuum R.

The weak-coupling limit x — oo of precisely reproduces (5.6.6]), with the phase
matching for odd framing 7. Alternatively this can be seen more directly by a slight variation
of the computation leading to (C.7.11)). This provides a check of (5.5.17), in particular its
normalization in the metric-like formalism, and of the interpretation of as a higher-spin

gravity theory.

Large-n limit and topological string dual (/C.7.3.5

Vasliev-type hs(so(d + 2)) higher-spin theories (section have infinite spin range but finite
¢7=1/Gy. To mimic this case, consider the n — oo limit of the theory at [ = 0. The semiclassical
expansion is reliable only if n < k. Using {/GN ~ kTR, this translates to n Tr < /Gy, which
becomes n* < ¢/G\ for the principal vacuum R = n, and n < £/Gy at the other extreme for
R=2®1®---® 1. Either way, the Vasiliev-like limit n — oo at fixed S = 2l /AGY is
strongly coupled.

However ([5.6.7]) continues to make sense in any regime, and in particular does have a weak

coupling expansion in the n — oo 't Hooft limit. Using the large-n duality between U(n)
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Chern-Simons on S and closed topological string theory on the resolved conifold [170, [171],
the partition function (§5.6.7)) of de Sitter higher-spin quantum gravity in the vacuum R can be
expressed in terms of the weakly-coupled topological string partition function Ztop, (C.7.50):

~ . 2
Z(R)o = | Zuop(gs, t) =T 2710 (5.6.8)

where (in the notation of [171]) the string coupling constant g5 and the resolved conifold Kahler

modulus t = [q2 J + iB are given by

2 2min

n+l+ik’ t9sm n+l+ik (5.6.9)

gs =

Note that |e=™Tr27/9s ? = TR = ¢S and that & > 0 implies Js2J >0 and Im g5 # 0.

The dependence on n at fixed S is illustrated in fig. [5.1.4, We leave further exploration of

the dS quantum gravity - topological string duality suggested by these observations to future

work.

5.7 Euclidean thermodynamics

In section we defined and computed the bulk partition function, energy and entropy of
the static patch ideal gas. In this section we define and compute their Euclidean counterparts,

building on the results of the previous sections.

5.7.1 Generalities

Consider a QFT on a dS;y1 background with curvature radius ¢. Wick-rotated to the round

sphere metric g,,, of radius ¢ (see appendix |C.3.2)), we get the Euclidean partition function:
Zp1(0) = [D® e 5#1®] (5.7.1)

where @ collectively denotes all fields. The quantum field theory is to be thought of here as a
(weakly) interacting low-energy effective field theory with a UV cutoff e.
Recalling the path integral definition ((C.4.18)) of the Euclidean vacuum |O) paired with its
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dual (O] as Zp; = (O|0O), the Euclidean expectation value of the stress tensor is

O\T,.,|0 2 6
(Tyw) <<|OTO|>> = _ﬁw log Zp1 = —pp1 Gy (5.7.2)

The last equality, in which ppy is a constant, follows from SO(d + 2) invariance of the round

sphere background. Denoting the volume of the sphere by V' = vol(Sng) = Qg 04,

_pPIV — ﬁf\/g <T/j> = d—il&?@ log ZPI = Vav log ZPI (573)

Reinstating the radius ¢, the sphere metric in the S coordinates of ((C.3.7)) takes the form
ds® = (1 —7?/0)dr® + (1 — r?/0%) " dr® + r?dQ?, (5.7.4)

where 7 ~ 7 4 27¢. Wick rotating 7 — ¢ yields the static patch metric. Its horizon at r =/
has inverse temperature 8 = 27wf. On a constant-T slice, the vacuum expectation value of the
Killing energy density corresponding to translations of 1" equals ppr at the location r = 0 of
the inertial observer. Away from r = 0, it is redshifted by a factor \/1 — 72/¢2. The Euclidean
vacuum expectation value Up; of the total static patch energy then equals pplm

integrated over a constant-7" slice:

Qe v
== (5.7.5)

¢
Up1 = pp1 Qd*l/o drr®=! = ppro, v

Note that v is the volume of a d-dimensional ball of radius ¢ in flat space, so effectively we can

think of Upy as the energy of an ordinary ball of volume v with energy density ppr.

Combining (5.7.3]) and (5.7.5)), the Euclidean energy on this background is obtained as

4 UPI = Vpp[ = —ﬁ Eag log Zp[ (5.7.6)

and the corresponding Euclidean entropy Spr = log Zpr + 5 Upy is

SPI = (1 - ﬁfag) log ZPI = (1 - Vav> log ZPI (5.7.7)
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Spr can thus be viewed as the Legendre transform of log Zp1 trading V' for ppr:
dlog Zpy = —pprdV, Sp1 = log Zp1 + V ppr1, dSp1 = Vdppr . (5.7.8)

The above differential relations express the first law of (Euclidean) thermodynamics for the

system under consideration: using V' = v and ppr = Upy/v, they can be rewritten as
dlog ZPI = _UPI dﬁ — ,Bppl d’U, dSpI = BdUPI — ,Bppl dv. (5.7.9)

Viewing v as the effective thermodynamic volume as under ([5.7.5]), these take the familiar form

of the first law, with pressure p = —p, the familiar cosmological vacuum equation of state.

The expression ((5.7.7)) for the Euclidean entropy and ((5.7.8]) naturally generalize to Euclidean

partition functions Zpi(¢) for arbitrary background geometries g, (¢) = ¢2§,, with volume
V(0) = 41V In contrast, the expression for the Euclidean energy is specific to the
sphere. A generic geometry has no isometries, so there is no notion of Killing energy to begin
with. On the other hand, the density ppr appearing in does generalize to arbitrary

backgrounds. The last equality in (5.7.2) and the physical interpretation of ppr as a Killing
energy density no longer apply, but (5.7.3)) remains valid.

5.7.2 Examples

Free d = 0O scalar

To connect to the familiar and to demystify the ubiquitous Li, (e~?™) = 3", e 2™ /k" terms

encountered later, consider a scalar of mass m on an S! of radius ¢, a.k.a. a harmonic oscillator

of frequency m at f = 2n¢ = V. Using ((C.2.32)) and applying (5.7.6)-(5.7.7)) with v(¢) = m/,

4
log Zp1 = ™ o av+Li (e=2™)
€

l
270 Upy = V pp1 = —— + 7w coth(7v) (5.7.10)
€

Spr = Lij (e ™) + 27w Lig(e *™) ,

Mod AFEy oc —e~ !, these are the textbook canonical formulae turned into polylogs by ((5.2.26)).
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Free scalar in general d

The Euclidean action of a free scalar on S9! is
1
- 5/\/ggzs(—VQ+7~n2+§R)¢>, (5.7.11)
with R = d(d + 1)/¢? the S+ Ricci scalar. The total effective mass m%; = (($)2 +v2) /62 is
2 . 2 _ 2 _ (d)?
m¥=m?+ER = v=\/mO)2-n, n=(4) —dd+1)€. (5.7.12)

Neither Zpr nor the bulk thermodynamic quantities of section distinguish between the m?
and ¢R contributions to m2;, but Upy and Spy do, due to the 9, derivatives in (5.7.6)-(5.7.7).

This results in an additional explicit dependence on &, as

2 2
00y log Zpy = (—€de + J - vd,) log Zpr , J = CO = (m0) _rtn . (5.7.13)

v v2 v2

For the minimally coupled case £ = 0, the Euclidean and bulk thermodynamic quantities agree,
but in general not if £ # 0. To illustrate this we consider the d = 2 example. Using (j5.2.25]
and (/C.2.22)), restoring ¢, and putting v = \/(mf)? — n with n = 1 — 6¢,

VAR 7l 7TI/ y L13 k( 27”’)
The corresponding Euclidean energy Upy = ppy ¢ (5.7.6)) is given by
03 24 20y
2l Upy = Vppr = L Gt )L z(V2 + n)v coth(mv) (5.7.15)

2€3 4e 6

where V' = vol(S3) = 27%¢3. For minimal coupling ¢ = 0 (i.e. n = 1), UM equals Ufi,
(5.2.24)), but not for £ # 0. For general d,¢, Ug? is given by (5.2.23)) with the overall factor

m? the mass m? appearing in the action rather than m?2;, in agreement with [184, [185] or

(6.178)-(6.180) of [186]. The entropy Spr = log Zp1 + 2w¢ Ups (5.7.7) is

3 k T1: —27v
L V¥ Lig_g(e )
SPI = F(g — VCOth(ﬂ'V)) - k:E . y W s (5716)
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where we used coth(mv) = 1 + 2Lig(e=2™) (5.2.26). Since Zp; = Zpui in general for scalars
and Up; = Upuxk for minimally coupled scalars, Sp; = Spu for minimally coupled scalars.
Indeed, after conversion to Pauli-Villars regularization, equals ifn=1 Asa
check on the results, the first law dSp; = Vdppy (5.7.8]) can be verified explicitly.

In the m¢ — oo limit, Spr — Zn(e~! — m)¢, reproducing the well-known scalar one-
loop Rindler entropy correction computed by a Euclidean path integral on a conical geometry
[5, [6l 145 146, (150} [187]. Note that Spr < 0 when 7 < 0. Indeed as reviewed in the Rindler
context in appendix[C.4.5] Spy does not have a statistical mechanical interpretation on its own.
Instead it must be interpreted as a correction to the large positive classical gravitational horizon
entropy. We discuss this in the de Sitter context in section [5.8]

A pleasant feature of the sphere computation is that it avoids replicated or conical ge-
ometries: instead of varying a deficit angle, we vary the sphere radius ¢, preserving manifest
SO(d + 2) symmetry, and allowing straightforward exact computation of the Euclidean entropy

directly from Zpy(¢), for arbitrary field content.

Free 3D massive spin s

Recall from (5.4.13) that for a d = 2 massive spin-s > 1 field of mass m, the bulk part of

log Zpy is twice that of a d = 2 scalar (5.7.14) with v = /(mf)2 —n, n = (s — 1)?, while
the edge part is —s? times that of a d = 0 scalar, as in (5.7.10)), with the important difference

however that v = \/(mf)? — 1 instead of v = mf. Another important difference with (/5.7.10))

is that in the case at hand, 1| stipulates Vppr = 27l Upr = —ﬁﬁ@g log Zp1 with d = 2

instead of d = 0. As a result, for the bulk contribution, we can just copy the scalar formulae

(5.7.15) and (5.7.16)) for Up; and Spr setting = (s — 1)2, while for the edge contribution we
get something rather different from the harmonic oscillator energy and entropy (|5.7.10)):

Vopr =2 x (5.7.15) — s*(—= %10+ Z(v* + n)v ! coth(mv)) (5.7.17)
Spr =2 x (5.7.16) — s*(2 (20 — v) + Znv " coth(mv) + Liy (e *™) + Zv Lig(e >™))
(5.7.18)

The edge contribution renders Sp; negative for all £. In particular, in the m¢ — oo limit,

Spr = Z((s — 1) = 2¢?) (€1 —m)l — —oo: although the bulk part gives a large positive
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contribution for s > 2, the edge part gives an even larger negative contribution. Going in the
opposite direction, to smaller m¢, we hit the d = 2, s > 1 unitarity bound at v = 0, i.e. at
mf = /n = s — 1. Approaching this bound, the bulk contribution remains finite, while the
edge part diverges, again negatively. For s = 1, Sp; — log(m/), due to the Li;(e2™) term,
while for s > 2, more dramatically, we get a pole Sp; — —%(mé —(s— 1))_1, due to
the nv~! coth(mv) term. Below the unitarity bound, i.e. when ¢ < (s — 1)/m, Sp; becomes
complex. To be consistent as a perturbative low-energy effective field theory valid down to some

length scale s, massive spin-s > 2 particles on dS3 must satisfy m? > (s — 1)2/I2.

Massless spin 2

1)

From the results and examples in section [5.5.3} log Zl(PI ) (d+3)m

1 1 .
= log ZI(DI?div + log Zl(DLﬁn -3 b

Dy, A(t ¢
log Zpy, (¢) = — =" log 4((;) +ag) log 7 + Ko (5.7.19)

Dy = dimso(d+2) = 2D - ap) = 9, 14771, oY), = 0 for even d and given by (5.5.21)
for odd d. L is an arbitrary length scale canceling out of the sum of finite and divergent parts,

and K41 an exactly computable numerical constant. Explicitly for d = 2, 3,4, from (|5.5.25)):

d 1Ong(Dll)div long(Dll),ﬁn

210-2dy —3log(5&<¢) + 5log(2)

3 %%E 33251252 57110g(2" 7L) —510g(ié2) 571log( E)—log(%”)—f—%—ugg_l)—&-QCIS_?’)

4| 1mlps _Somlgs _Womly | _Log( 2 3) +log(12) + & log(2m) + LG 4+ 3¢6)
(5.7.20)

The one-loop energy and entropy (5.7.6)-(5.7.7)) are split accordingly. The finite parts are

1 1 1 1 2
51(31),ﬁn = log ZI(DI?ﬁn + Vpgn) ) VP( )= %gT% Dq — dil O‘El+)1 ) (5.7.21)



151

where as always 20U = Vp with V = Qg 104!, For d = 2,3, 4:

() (1) (1)
d Vpdiv Vg, SPI,div
20+ 3Ly 1 —3mie
4 | 16 1 42 5, 571 | 161 42 2e=7 (5.722)
3| —Salt+ ¥l 3+ 3% |~ 2l®— % log(*—L)
Lsm 1 g5 1313 271, 9 137 143 21r1
| —Fal+5al+Tged| s T2 &t —Tﬂzg

Like their quasicanonical bulk counterparts, the Euclidean quantities obtained here are UV-
divergent, and therefore ill-defined from a low-energy effective field theory point of view. How-
ever if the metric itself, i.e. gravity, is dynamical, these the UV-sensitive terms can be absorbed
into standard renormalizations of the gravitational coupling constants, rendering the Euclidean

thermodynamics finite and physically meaningful. We turn to this next.

5.8 Quantum gravitational thermodynamics

In section we considered the Euclidean thermodynamics of effective field theories on a fixed
background geometry. In general the Euclidean partition function and entropy depend on the
choice of background metric; more specifically on the background sphere radius £. Here we
specialize to field theories which include the metric itself as a dynamical field, i.e. we consider

gravitational effective field theories. We denote Zp1, ppr and Spr by Z, ¢ and S in this case:

1
Z=[Dg .- el Splg,.. ] = 7/@ (A—3R+--). (5.8.1)
8rG
The geometry itself being dynamical, we have 9,2 = 0, so (5.7.6))-(5.7.7)) reproduce (5.1.1)):
0=0, S=logZ, (5.8.2)

We will assume d > 2, but it is instructive to first consider d = 0, i.e. 1D quantum gravity
coupled to quantum mechanics on a circle. Then Z = [ % Tre PH  where f3 is the circle size
and H is the Hamiltonian of the quantum mechanical system shifted by the 1D cosmological

constant. To implement the conformal factor contour rotation of [180] implicit in (5.8.2)), we
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pick an integration contour § = 27¢ + iy with y € R and ¢ > 0 the background circle radius.
Then Z = wi N (0) where N'(FE) is the number of states with H < E. This being /-independent
implies o = 0. A general definition of microcanonical entropy is Smic(E) = log N (E). Thus,
modulo the content-independent i factor in Z, & = log Z is the microcanonical entropy at
zero energy in this case.

Of course d = 0 is very different from the general-d case, as there is no classical saddle
of the gravitational action, and no horizon. For d > 2 and A — 0, the path integral has a
semiclassical expansion about a round sphere saddle or radius ¢y 1/\/K and § is dominated
by the leading tree-level horizon entropy (5.1.2). As in the AdS-Schwarzschild case reviewed
in [C.4.5.7] the microscopic degrees of freedom accounting for the horizon entropy, assuming
they exist, are invisible in the effective field theory. A natural analog of the dual large-N CFT
partition function on S x S9! microscopically computing the AdS-Schwarzschild free energy
may be some dual large-N quantum mechanics coupled to 1D gravity on S' microscopically
computing the dS static patch entropy. These considerations suggest interpreting S = log Z as a
macroscopic approximation to a microscopic microcanonical entropy, with the semiclassical /low-
energy expansion mapping to some large-N expansion.

The one-loop corrected Z is obtained by expanding the action to quadratic order about its
sphere saddle. The Gaussian ZP(>11) was computed in previous sections. Locality and dimensional
analysis imply that one-loop divergences are oc [ R™ with 2n < d 4+ 1. Picking counterterms
canceling all (divergent and finite) local contributions of this type in the limit £y o< 1/v/A — o0,
we get a well-renormalized & = log Z to this order. Proceeding along these lines would be
the most straightforward path to the computational objectives of this section. However, when
pondering comparisons to microscopic models, one is naturally led to wondering what the actual
physics content is of what has been computed. This in turn leads to small puzzles and bigger

questions, such as:

1. A natural guess would have been that the one-loop correction to the entropy S is given

by a renormalized version of the Euclidean entropy SSI) {) However 1} says it is

given by a renormalized version of the free energy log Z}(DII). In the examples given earlier,

these two look rather different. Can these considerations be reconciled?

2. Besides local UV contributions absorbed into renormalized coupling constants determining
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the tree-level radius ¢y, there will be nonlocal IR vacuum energy contributions (pictorially
Hawking radiation in equilibrium with the horizon), shifting the radius from ¢, to £ by
gravitational backreaction. The effect would be small, £ = £y + O(G), but since the
leading-order horizon entropy is S(£) o« £471/G, we have S(£) = S(g) + O(1), a shift
at the one-loop order of interest. The horizon entropy term in is SO = S (),
apparently not taking this shift into account. Can these considerations be reconciled?

3. At any order in the large-¢y perturbative expansion, UV-divergences can be absorbed
into a renormalization of a finite number of renormalized coupling constants, but for
the result to be physically meaningful, these must be defined in terms of low-energy
physical “observables”, invariant under diffeomorphisms and local field redefinitions. In
asymptotically flat space, one can use scattering amplitudes for this purpose. These are

unavailable in the case at hand. What replaces them?

To address these and other questions, we follow a slghtly less direct path, summarized below,

and explained in more detail including examples in appendix [C.8]

Free energy/quantum effective action for volume

We define an off-shell free energy/quantum effective action I'(V') = —log Z (V) for the volume,

the Legendre transform of the off-shell entropy/moment-generating function S(p)E]
S(p) =log [Dge Sl r Vi ogZ(V)=S-Vp,  V=0,5=([\3), (583)

At large V, the geometry semiclassically fluctuates about a round sphere. Parametrizing the

mean volume V' by a corresponding mean radius £ as V (£) = Qq41£%t!, we have
Z(0) = ke dp [Dg e STV O, (5.8.4)

where [, .. dp means saddle point evaluation, i.e. extremization. The Legendre transform ((5.8.3))

®Non-metric fields in the path integral are left implicit. Note “off-shell” = on-shell for c.c. A’ = A — 87G p.
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is the same as ((5.7.8]), so we get thermodynamic relations of the same form as ((5.7.6))-(5.7.8]):

dS =Vdp, dlogZ =—pdV, p=—a5l0log Z |V, S=(1— 37Ld)logZ.
(5.8.5)

On-shell quantities are obtained at p = 0, i.e. at the minimum £ of the free energy — log Z(0):

o=p(f)=0, S=SO=logZ(D), ([V3)=Qunl"". (586

Tree level

At tree level (5.8.4)) evaluates to

log Z(0) = —Sglgl g¢ = round S9! metric of radius ¢, (5.8.7)

readily evaluated for any action using Ryupo = (9up9ve — Guodup)/L?, taking the general form

B Qd+1£d+l

- 87G

log Z© (A4 M =2 4o 20t g 2 ) (5.8.8)

The 2, are R"*! coupling constants and I, < £ is the length scale of UV-completing physics.
The off-shell entropy and energy density are obtained from log Z( as in ((5.8.5).

_ Qd_lgd—l

(0)
S 4G

1 _
(145120724, p<0>:R(AfWﬁ%plzgrﬂm) (5.8.9)

where sy, py, X 2z, and we used Q411 = %’er_l. The on-shell entropy and radius are given by
SO =50y, pOw) =0, (5.8.10)

either solved perturbatively for £5(A) or, more conveniently, viewed as parametrizing A(4p).

One loop

The one-loop order, (5.8.4)) is a by construction tadpole-free Gaussian path integral, (C.8.31)):

log Z =log Z© +1og 2V | log 2z =log 2 + log Ze , (5.8.11)
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with ZSI) as computed in sections and log Z(¢) = —SE.ct[g¢] a polynomial counterterm.

We define renormalized coupling constants as the coefficients of the £4+1=2" terms in the £ — oo
expansion of log Z, and fix log Z.; by equating tree-level and renormalized coefficients of the

polynomial part, which amounts to the renormalization condition
lim dylog ZM =0, (5.8.12)
{—00

in even d+1 supplemented by log Z.((0) = —ay11 log(2e~7L/¢), implying LAy, log Z© = argyy.
Example: 3D Einstein gravity + minimally coupled scalar (C.8.4.1)), putting v = vVm?2¢? — 1,

—2my 3 am363  mmd

Hoo@eoEr T 6 4
(5.8.13)

2l 2 Uk Lig_p(e
(CORN “rt _ vr Lz
log Z 3log e + 5log(2m) ,;:0

The last two terms are counterterms. The first two are nonlocal graviton terms. The scalar part

is O(1/mL) for mf > 1 but goes nonlocal at m¢ ~ 1, approaching — log(m/) for m¢ < 1.

Defining p™) and SO from log Z() as in 1) and the quantum on-shell £ = ¢y + O(G) as
in (5.8.6)), the quantum entropy can be expressed in two equivalent ways, ((C.8.38))-(C.8.39):

A: S=SOD) +5D@D)+-..,  B: S=50)+1logzW () +---  (5.8.14)

where the dots denote terms neglected in the one-loop approximation. This simultaneously
answers questions [1] and [2 on our list, reconciling intuitive (A) and ((5.8.2))-based (B) expecta-
tions. To make this physically obvious, consider the quantum static patch as two subsystems,
geometry (horizon) 4 quantum fluctuations (radiation), with total energy o p = p(o) +p = 0.
If p(©) =0, the horizon entropy is S (£y). But here we have p = 0, so the horizon entropy is
actually SO (2) = SO (¢y) + 65©), where by the first law (5.8.5), 50 = Vp® = —vp(1).
Adding the radiation entropy S(!) and recalling log Z(1) = (1) — Vo) yields S = A = B.
Thus A = B is just the usual small+large = system-+reservoir approximation, the horizon being
the reservoir, and the Boltzmann factor eV = e=BUY iy Zz(1) accounting for the reservoir’s
entropy change due to energy transfer to the system.

Viewing the quantum contributions as (Hawking) radiation has its picturesque merits and
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correctly conveys their nonlocal/thermal character, e.g. Li(e™2™) ~ e ™ for mf > 1 in
, but might incorrectly convey a presumption of positivity of p(!) and S™). Though
positive for minimally coupled scalars (fig. [C.8.1), they are in fact negative for higher spins (figs.
[C.8.2] [C.8.3)), due to edge and group volume contributions. Moreover, although the negative-
energy backreaction causes the horizon to grow, partially compensating the negative S(!) by a

positive 65 = —Vp(M)  the former still wins: SO =8 -S5O = 1) _ (1) = 1og Z( < 0.

Computational recipe and examples

For practical purposes, (B) is the more useful expression in (5.8.14). Together with ([5.8.10))
computing S(©), the exact results for Z\\) obtained in previous sections (with vo = 1/27/S(©),

see ([5.8.16)) below), and the renormalization prescription outlined above, it immediately gives
S=894+sW ... SO =3O, S =logzW () (5.8.15)

in terms of the renormalized coupling constants, for general effective field theories of gravity
coupled to arbitrary matter and gauge fields.

For 3D gravity, this gives S = S(©) —310g S© +5log(27)+0(1/S(®)). We work out and plot
several other concrete examples in appendix : 3D Einstein gravity + scalar , fig.
[C.8.1)), 3D massive spin s (C.8.4.2] fig.[C.8.2), 2D scalar (C.8.4.3)), 4D massive spin s (C.8.4.4]
fig.[C.8.3), and 3D,4D,5D gravity (including higher-order curvature corrections) ((C.8.4.5)). Table

5.1.12]in the introduction lists a few more sample results.

Local field redefinitions, invariant coupling constants and physical observables

Although the higher-order curvature corrections to the tree-level dS entropy S© = S0)(¢)
seem superficially similar to curvature corrections to the entropy of black holes in asymp-
totically flat space [188] [189], there are no charges or other asymptotic observables available
here to endow them with physical meaning. Indeed, they have no intrinsic low-energy physi-
cal meaning at all, as they can be removed order by order in the I5/¢ expansion by a metric
field redefinition, bringing the entropy to pure Einstein form ((5.1.2). In Z(O)(E) , this
amounts to setting all z, = 0 by a redefinition £ — ¢3", el . The value of

SO = maxgs., log AS) (¢) remains of course unchanged, providing the unique field-redefinition
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invariant combination of the coupling constants G, A(or ), z1, 22, - - ..

Related to this, as discussed in [C.8.4.5 caution must be exercised when porting the one-
loop graviton contribution in (5.5.17)) or (5.7.19): Gx appearing in 79 = /87Gx/A is the
algebraically defined Newton constant , as opposed to GG defined by the Ricci scalar

coefficient % in the low-energy effective action. The former is field-redefinition invariant; the

latter is not. In Einstein frame (z, = 0) the two definitions coincide, hence in a general frame

o = \/21/S0O) . (5.8.16)

Since log S© = log % +log(1+ O(I2/¢3)), this distinction matters only at O(I2/¢2), however.

In d =2, S© is in fact the only invariant gravitational coupling: because the Weyl tensor
vanishes identically, any 3D parity-invariant effective gravitational action can be brought to
Einstein form by a field redefinition. In the Chern-Simons formulation of , SO = 27k,
In d > 3, the Weyl tensor vanishes on the sphere, but not identically. As a result, there are
coupling constants not picked up by the sphere’'s S(0 = —SElg¢,]. Analogous S](\g) = —Sk(gm]
for different saddle geometries gas, approaching Einstein metrics in the limit A 652 — 0,
can be used instead to probe them, and analogous Sy; = log Z;; expanded about g provide
quantum observables. Section provides a few more details, and illustrates extraction of
unambiguous linear combinations of the 4D one-loop correction for 3 different M.

This provides the general picture we have in mind as the answer, in principle, to question

(0)

on our list below ([5.8.2)): the tree-level S;,” are the analog of tree-level scattering amplitudes,

and the analog of quantum scattering amplitudes are the quantum Sy;.

Constraints on microscopic models

For pure 3D gravity SO = i—g(ﬁo + 31651 + s 553 + --+), and to one-loop order we have

(C.8.62)):

S =8 _31og SO + 5log(2m) + - - - . (5.8.17)

Grantin (C.7.24) with I = 0 gives the all-loop expansion of pure 3D gravity, taking into

"This does not affect the 1-loop based conclusions below, but does affect the c¢,. One could leave [ general.
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account G = SO(4) here while G = SU(2) x SU(2) there, to all-loop order,

2
8:So+log’msin(2+i§0/%)‘ = Sy — 3log Sy + 5log(2m) + 3, cn Sy 2" (5.8.18)

where Sy = S to declutter notation. Note all quantum corrections are strictly nonlocal, i.e.
no odd powers of ¢y appear, reflected in the absence of odd powers of 1/Sy.

Though outside the scope of this paper, let us illustrate how such results may be used to
constrain microscopic models identifying large-¢y and large-N expansions in some way. Say a
modeler posits a model consisting of 2N spins 0; = =1 with H = >, 0, = 0. The microscopic
entropy is Smic = log (2]<,V) = 2log2 - N — Jlog(mN) + 3, ¢, N'=2". There is a unique
identification of Sy bringing this in a form with the same analytic/locality structure as ([5.8.18)),

to wit, So = log4 - N + 3, ¢/, N1727 resulting in
Smic = So — 310880 +log(55) + X ch S 7 (5.8.19)

where ¢/ = —%log2,c” = %(logQ)2 + 4—18(10g2)37 ..., fully failing to match , starting
at one loop. The model is ruled out.

A slightly more sophisticated modeler might posit Spic = log d(N), where d(N) is the N-th
level degeneracy of a chiral boson on S!'. To leading order Spi. ~ 27/N/6 = K. Beyond,
Smic = K —d'logK + 0 + 3, ¢, K" 4+ O(e%/2), where o’ = 2, ¥/ = log(7%/6+/3) and
¢/, given by [190]. Identifying Sy = K + 3, ¢4, 1K~V brings this to the form ,
yielding Smic = So — a’log Sy + ' + 3, 1Sy 2" + O(e5/2), with ¢f = -3, ¢ = 3T, ... —
ruled out.

We actually did not need the higher-loop corrections at all to rule out the above models. In

higher dimensions, or coupled to more fields, one-loop constraints moreover become increasingly

nontrivial, evident in (5.1.12)). For pure 5D gravity ((C.8.62]),

65¢(3) , 5¢()

48 72 1674 (5.8:20)

§ =80~ ogS® +log(12) + %7 log(27) +

It would be quite a miracle if a microscopic model managed to match this.



159

5.9 dS, AdS+, and conformal higher-spin gravity

Vasiliev higher-spin gravity theories [53, (55, [172] have infinite spin range and an infinite-
dimensional higher-spin algebra, g = hs(so(d + 2)), leading to divergences in the one-loop
sphere partition function formula (5.5.17)) untempered by the UV cutoff. In this section we take
a closer look at these divergences. We contrast the situation to AdS with standard boundary
conditions (AdS+), where the issue is entirely absent, and we point out that, on the other hand,
for AdS with alternate HS boundary conditions (AdS—) as well as conformal higher-spin (CHS)

theories, similar issues arise. We end with a discussion of their significance.

5.9.1 dS higher-spin gravity

Nonminimal type A Vasiliev gravity on dS;11 has a tower of massless spin-s fields for all s > 1

and a A = d — 2 scalar. We first consider d = 3. The total bulk and edge characters are
obtained by summing (5.5.7)) and adding the scalar, as we did for the bulk part in ([5.2.38]):

2 2
Obui = 2- (ql/2 * q32/2) L Ouge =2 (qm”z/z) (5.9.1)
(1-4q) (1-q) (1-4q)
Quite remarkably, the bulk and edge contributions almost exactly cancel:
@bulk - eedge = - 1 3 (592)
(1-4q)

For d = 4 however, we see from (55.5.7)) that due to the absence of overall ¢° suppression factors,

the total bulk and edge characters each diverge separately by an overall multiplicative factor:

2
Obuk = »_(2s+1) - (12_(1(])4 : Ocdge = Y _ (s +1)(25+ 1) - i 2_qq)2 . (5.9.3)

This pattern persists for all d > 4, as can be seen from the explicit form of bulk and edge

characters in (3.4.20)), (C.6.2]) and ((C.6.23). For any d, there is moreover an infinite-dimensional

group volume factor in ([5.5.17)) to make sense of, involving a divergent factor (¢£4~1 /Gy )dim G/2

and the volume of an object of unclear mathematical existence [191].

Before we continue the discussion of what, if anything, to make of this, we consider AdS+
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and CHS theories within the same formalism. Besides independent interest, this will make clear

the issue is neither intrinsic to the formalism, nor to de Sitter.

5.9.2 AdS+ higher-spin gravity
AdS characters for standard and alternate HS boundary conditions

Standard boundary conditions on massless higher spin fields ¢ in AdS;y1 lead to quantization
such that spin-s single-particle states transform in a UIR of s0(2,d) with primary dimension
A, = Ay = s+ d — 2. Higher-spin Euclidean AdS one-loop partition functions with these
boundary conditions were computed in [111H113]. In [138], the Euclidean one-loop partition
function for alternate boundary conditions (A, = A_ = 2 — s) was considered. In the EAdS+
case, the complications listed under (5.5.3)) are absent, but for EAdS— close analogs do appear.

EAdS path integrals can be expressed as character integrals [3| [144] 173], in a form exactly
paralleling the formulae and bulk/edge picture of the present work [3]{1—_8-] The AdS analog of the
dS bulk and edge characters for a massive spin-s field ¢ with A, = Ay is [3]

A Ag—1
AdS+ _ nd 4 AdS+ _ nd+2 4
T C] =D ———— (5.9.4)

(1—q)d’ edge,p s7L(1 — g)d-27
where A_ =d — A4. Thus, as functions of g,
0% = 035t + 0%, (5.9.5)

The AdS analog of (5.5.4]) for a massless spin-s field ¢5 with gauge parameter field &, is

OAdSE — ®£d8i _ @?dSi 7 (5.9.6)

8 this picture, EAdS is viewed as the Wick-rotated AdS-Rindler wedge, with dS, static patch boundary
metric, as in [I192, 193]. The bulk character is © = trg qu, with H the Rindler Hamiltonian, not the global
AdS Hamiltonian. Its g-expansion counts quasinormal modes of the Rindler wedge. The one-loop results are
interpreted as corrections to the gravitational thermodynamics of the AdS-Rindler horizon |3} 192, [193].
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where Ay . =5 +d—1, A¢ . =s+d—1, s =s— 1. More explicitly, analogous to ((5.5.5)),

I d— _ d+2  s'4+d—2 d+2 d—2
Dg qs +d—1 _ Df/ qs+d 1 Ds—l qs + _ Ds’—l qs+

AAdS+ _ AAdS+
@bulk,s - (1 IR q)d ) edge,s — (1 — q>d72 (597)
—s' — d+2 —s' d+2 —
GAdS— _ Di¢"" - D¢ aads—  Dslia® =Dy g (5.9.8)
bulk,s — (1 _ Q)d 9 edge,s — (1 — q)d72 Y.

The presence of non-positive powers of ¢ in ©295~ has a similar path integral interpretation as
in the dS case summarized in section [5.5.2] The necessary negative mode contour rotation and
zeromode subtractions are again implemented at the character level by flipping characters. In

particular the proper O, to be used in the character formulae for EAdS+ are

@AdS— _ [HAdS-] QAdS+ _ [HAdS+H)

= L =658t (5.9.9)

with [(:)]+ defined as in . The omission of Killing tensor zeromodes for alternate boundary
conditions must be compensated by a a division by the volume of the residual gauge group G
generated by the Killing tensors. Standard boundary conditions on the other hand kill these
Killing tensor zeromodes: they are not part of the dynamical, fluctuating degrees of freedom.

The group G they generate acts nontrivially on the Hilbert space as a global symmetry group.

AdS+

For standard boundary conditions, the character formalism reproduces the original results of
[11IHI13] by two-line computations [3]. We consider some examples:

For nonmimimal type A Vasiliev with Ag = d — 2 scalar boundary conditions, dual to the
free U(N) model, using (5.9.7) and the scalar © = ¢?~2/(1 — ), the following total bulk and
edge characters are readily obtained:

0 d_q a2 0o d_q d 2
AdS+ _ Ads+ _ (42 +q? AdS+ _ Ads+ _ (92t @2
Obul” = Z bulk,s ™ ((1 _ q)d—1> J @edge - Z edge,s — (1—¢q)d-1) - (5.9.10)
s=0 s=0
The total bulk character takes the singleton-squared form expected from the Flato-Fronsdal

theorem [194]. More interestingly, the edge characters sum up to exactly the same. Thus the
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generally negative nature of edge “corrections” takes on a rather dramatic form here:

@Ads-l- @AdS+ _ @AdS+ =0 =

AdS
tot bulk edge IOg ZPI t=0. (5911)

As ZbAdSJr has an Rindler bulk ideal gas interpretation analogous to the static patch ideal gas
of section [3], the exact bulk-edge cancelation on display here is reminiscent of analogous
one-loop bulk-edge cancelations expected in string theory according to the qualitative picture
reviewed in appendix [C.4.5.2]

For minimal type A, dual to the free O(N) model, the sum vyields an expression which
after rescaling of integration variables ¢ — t/2 is effectively equivalent to the s0(2, d) singleton
character, which is also the so(1,d) character of a conformally coupled (v = i/2) scalar on
5S¢, Using , this means ZﬁIdSJ“ equals the sphere partition function on S?, immediately
implying the N — N — 1 interpretation of [IIIHI13].

For nonminimal type A with Ay = 2 scalar boundary conditions, dual to an interacting U(N)

CFT, the cancelation is almost exact but not quite:

d—3  k
AdS+ _ Ek; 2 q
Ot (1- q)d T (5.9.12)

AdS+ higher-spin swampland

In the above examples it is apparent that although the spin-summed Oy, has increased effective
UV-dimensionality dbulk = 2d — 2, as if we summed KK modes of a compactification manifold
of dimension d — 2, the edge subtraction collapses this back down to a net deg = d — 1,
decreasing the original d. Correspondingly, the UV-divergences of Z}(>11) are not those of a d + 1
dimensional bulk-local theory, but rather of a d-dimensional boundary-local theory. In fact this
peculiar property appears necessary for quantum consistency, in view of the non-existence of
a nontrivially interacting local bulk action [195]. It appears to be true for all AdS+ higher
spin theories with a known holographic dual 3], but not for all classically consistent higher-spin

theories. Thus it appears to be some kind of AdS higher-spin “swampland” criterion:

AdS .1 HS theory has holographic dual = deg=d—1. (5.9.13)
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Higher-spin theories violating this criterion do exist. Theories with a tower of massless spins
s > 2 and an a priori undetermined number n of real scalars can be constructed in AdSs
[196, 197]. Assuming all integer spins s > 2 are present, the total character sums up to

2¢° 4q g%

O =T gf T qF TP (5:9.14)

For t — 0 diverges as Ong ~ (n — 2)/t? + O(1/t). To satisfy (5.9.13]), the number of scalars
must be n = 2. This is inconsistent with the n = 4 AdSs theory originally conjectured in [197]

to be dual to a minimal model CFT2, but consistent with the amended conjecture of [198-H200].

AdS—

For alternate boundary conditions, one ends up with a massless higher-spin character formula
similar to (5.5.17)). The factor y4™& in (5.5.17)) is consistent with log Zfélds_ x (GN)% 2 NG
found in [138]. (5.9.5)) implies the massless AdS+ and dS bulk and edge characters are related

as

QAdS— _ gdS _ gAds+ (5.9.15)

hence we can read off the appropriate flipped @?ds* = [@?ds*h characters from our earlier
explicit results ((3.4.20) and ((C.6.23)) for ©95. Just like in the dS case, the final result involves

divergent spin sums when the spin range is infinite.

5.9.3 Conformal higher-spin gravity
Conformal HS characters

Conformal (higher-spin) gravity theories [201] have (higher-spin extensions of) diffeomorphisms
and local Weyl rescalings as gauge symmetries. If one does not insist on a local action, a general
way to construct such theories is to view them as induced theories, obtained by integrating out
the degrees of freedom of a conformal field theory coupled to a general background metric and
other background fields. In particular one can consider a free U(NN) CFT, in a general metric and

higher-spin source background. For even d, this results in a local action, which at least at the
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free level can be rewritten as a theory of towers of partially massless fields with standard kinetic
terms [139, [174]. Starting from this formulation of CHS theory on S¢ (or equivalently dS,),
using our general explicit formulae for partially massless higher-spin field characters and
(C.6.23), and summing up the results, we find

@Sdsd _ @sAde+1_ . (_)sAde-&-l'f‘ _ @gsd-s-l _9 @SAde+l+ (5.9.16)

where ©¢954 are the CHS bulk and edge characters and the second equality uses (5.9.15)). Since
we already know the explicit dS and AdS HS bulk and edge characters, this relation also provides

the explicit CHS bulk and edge characters. For example

dls |G- (1-9* Ocigers (1= 0"

2| >2| —4¢°(1 —q) —2(s%¢" 1 = (s — 1)%¢°)

312110 0

310 —q(1—q) 0

41>0]2(25+1) 2425253 —2(s+1)2¢5 2 5(5+1)3(25+1) a+ (371)562(5%»1) qs+2_%2(3+2) o+
5]>0 (s+1)(28~§1)(2s+3) 21— q) s(s+1)(8+2)3(§s+1)(28+3) o(1—q)

(5.9.17)

The bulk SO(1,d) g-characters @gﬁiﬁs computed from agree with the s0(2,d) ¢-

characters obtained in [202]. Edge characters were not derived in [202], as they have no role in
the thermal S x §9=1 CHS partition functions studied there[T]

The one-loop Euclidean path integral of the CHS theory on S¢ is given by using

the bulk and edge CHS characters ©§95¢ and with G' the CHS symmetry group generated by

d+3

the conformal Killing tensors on S¢ (counted by DS™Y s—1)- The coefficient of the log-divergent

term, the Weyl anomaly of the CHS theory, is extracted as usual, by reading off the coefficient

of the 1/t term in the small-t expansion of the integrand in (5.5.17)), or more directly from

1 14q

51 6. For example for conformal s = 2 gravity on S? coupled to

the “naive” integrand

D massless scalars, also known as bosonic string theory in D spacetime dimensions, we have

19 A priori the interpretation of the bulk characters in (5.9.17)) and those in [202] is different. Their mathematical
equality is a consequence of the enhanced s0(2, d) symmetry allowing to map S — R x §¢71.
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dim G = Y4 Di 4, = 6, generating G = SO(1,3), and from the above table (5.9.17)),

1+q  4¢°

Otot = D -
tot 1—(] 1—(]

+2(4qg — ¢%). (5.9.18)

The small-t expansion of the integrand in (5.5.17|) for this case is

11+4+g¢
ﬂiq(@wt — 12) —

2D-2) D-26
t3 3t

o (5.9.19)

reassuringly informing us the critical dimension for the bosonic string is D = 26. Adding a
massless s = % field, we get 2D conformal supergravity. For half-integer conformal spin s,
Opuik = —4¢°/(1 — q) and Oegge = —2((s — %)(s + %)q“”*1 —(s— %)(s — %)qs). Furthermore
adding D’ massless Dirac spinors, the total fermionic character is

9 q1/2 4 q3/2

I AR 9.2
1—q 1_q+ q (5.9.20)

fer __ !
@tot =D

The symmetry algebra has 3", D} b1 =4 fermionic generators, contributing negatively to
2772

dim G in (5.5.17)). Putting everything together,

20D—D') 2D+D' —30

1 14¢
t3 + 61

1 q .
3 Tt eks 26— 1) - 5, YL ol

2t 1—q

+---, (5.9.21)

from which we read off supersymmetry + conformal symmetry requires D' = D = 10.

More systematically, the Weyl anomaly a4 s can be read off by expanding %% 68" with

OCS? — HAdSat1— _ GAdSar1+ given by 1)1) for integer s. For example,

d| —ogs
9 2(6s2—65+1)
3
4 s2(s+1)2 (1452 +145+3)
180
6 (54+1)2(5+2)%(225+19855+6715*+10565%+7335241205—50)
151200
8 (s+1)(54+2)2(5+3)2(s+4) (150584300057 +2461555 410672555 +26112354+35185553+22504252 4317105 —14560)
2286144000

(5.9.22)

This reproduces the d = 2,4, 6 results of [139] [174] and generalizes them to any d.
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Physics pictures

Cartoonishly speaking, the character relation translates to one-loop partition function
relations of the form ZOS" ~ ZBAdSayi—/7BAdSasi+ and 75"  7C8"(ZBAdSa1+)? The
first relation can then be understood as a consequence of the holographic duality between AdSg41
higher-spin theories and free CFT; vector models [138, [139] [174], while the second relation can
be understood as an expression at the Gaussian/one-loop level of Z5'"" ~ fDaWHH(a)IQ,
where Yy (o) = ¥ur(0) e~29K7+ is the late-time dS Hartle-Hawking wave function, related
by analytic continuation to the EAdS partition function with boundary conditions o [203]. The
factor (ZEAde+1+)2 can then be identified with the bulk one-loop contribution to |1y (0)|?,
and Z™ 5 with [ Do e=K7 along the lines of [I38]. Along the lines of footnote [8) perhaps

another interpretation of the spin-summed relation (5.9.16)) exists within the picture of [32].

5.9.4 Comments on infinite spin range divergences

Let us return now to the discussion of section 5.9.1] Above we have seen that for EAdS+,
summing spin characters leads to clean and effortless computation of the one-loop partition
function. The group volume factor is absent because the global higher-spin symmetry algebra
g generated by the Killing tensors is not gauged. The character spin sum converges, and no
additional regularization is required beyond the UV cutoff at ¢ ~ ¢ we already had in place. The
underlying reason for this is that in AdS+, the minimal energy of a particle is bounded below by
its spin, hence a UV cutoff is effectively also a spin cutoff. In contrast, for dS, AdS— and CHS
theories alike, g is gauged, leading to the group volume division factor, and moreover, for d > 4,
the quasinormal mode levels (or energy levels for CHS on R x S%~1) are infinitely degenerate,
not bounded below by spin, leading to character spin sum divergences untempered by the UV
cutoff. The geometric origin of quasinormal modes decaying as slowly as e=2Z/¢ for every spin
s in d > 4 was explained below (|C.6.4]).

One might be tempted to use some form of zeta function regularization to deal with divergent

% and

sums Y . O, such as (5.9.3), which amounts to inserting a convergence factor o e~
discarding the divergent terms in the limit 6 — 0. This might be justified if the discarded

divergences were UV, absorbable into local counterterms, but that is not the case here. The
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divergence is due to low-energy features, the infinite multiplicity of slow-decaying quasinormal
modes, analogous to the divergent thermodynamics of an ideal gas in a box with an infinite
number of different massless particle species. Zeta function regularization would give a finite
result, but the result would be meaningless.

As discussed at the end of section [5.6] the Vasiliev-like®™] limit of the 3D HS, higher-
spin gravity theory, n — oo with [ = 0 and S fixed, is strongly coupled as a 3D QFT.
Unsurprisingly, the one-loop entropy “correction” SV = log Z() diverges in this limit: writing
the explicit expression for the maximal-entropy vacuum R = n in (5.1.12) as a function of
dim G = 2(n? — 1), one gets SV = dim G - log(dim G/@) + .-+ — 00. The higher-spin
decomposition ({C.7.41)) might inspire an ill-advised zeta function regularization along the lines
of diimG = 2302, 2r + 1 = 4{(—1) + 2¢(0) = —3. This gives SU = Z21og S© + ¢ with ¢
a computable constant — a finite but meaningless answer. In fact, using , the all-loop
quantum correction to the entropy can be seen to vanish in the limit under consideration, as
illustrated in fig. . As discussed around , there are more interesting n — oo limits one
can consider, taking S(®) — oo together with n. In these cases, the weakly-coupled description
is not a 3D QFT, but a topological string theory.

Although these and other considerations suggest massless higher-spin theories with infinite
spin range cannot be viewed as weakly-coupled field theories on the sphere, one might wonder
whether certain quantities might nonetheless be computable in certain (twisted) supersymmetric
versions. We did observe some hints in that direction. One example, with details omitted, is
the following. First consider the supersymmetric AdSs higher-spin theory dual to the 4D N = 2
supersymmetric free U(N) model, i.e. the U(N) singlet sector of N massless hypermultiplets,
each consisting of two complex scalars and a Dirac spinor. The AdSs bulk field content is
obtained from this following [204]. In their notation, the hypermultiplet corresponds to the
50(2,4) representation Di 4+ 2 Rac. Decomposing (Di 4+ 2 Rac) ® (Di + 2 Rac) into irreducible
50(2,4) representations gives the AdSs free field content: four A = 2 and two A = 3 scalars,
one A =3, S = (1,£1) 2-form field, six towers of massless spin-s fields for all s > 1, one tower
of massless S = (s, £1) fields for all s > 2, one A = % Dirac spinor, and four towers of massless

spin s =k —i—% fermionic gauge fields for all k£ > 1. Consider now the same field content on S°.

20Vasiliev-like” is meant only in a superficial sense here. The higher-spin algebras are rather different [141].
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The bulk and edge characters are obtained paralleling the steps summarized in section [5.5.2]
generalized to the present field content using and (5.4.16). Each individual spin tower
gives rise to a badly divergent spin sum similar to . However, a remarkable conspiracy
of cancelations between various bosonic and fermionic bulk and edge contributions in the end
leads to a finite, unambiguous net integrand:@
/‘;(T_Z ebos _ 12\_/6(1 @ﬁgl;) - —Z % ig ﬁ . (5.9.23)
Note that the effective UV dimensionality is reduced by two in this case.
An analogous construction for S* starting from the 3D A = 2 U(NN) model, gives two Ay =
1,2 scalars, a A = % Dirac spinor and two massless spin-1, %,2, %, ... towers, as in [205, 206].
The fermionic bulk and edge characters cancel and the bosonic part is twice (5.9.2). In this case

=

we moreover get a finite and unambiguous dim G = lim;_,¢ ZEZ%N (—1)% 2D§_178_1 e =

The above observations are tantalizing, but leave several problems unresolved, including what
to make of the supergroup volume vol G. Actually supergroups present an issue of this kind
already with a finite number of generators, as their volume is generically zero. In the context of
supergroup Chern-Simons theory this leads to indeterminate 0/0 Wilson loop expectation values
[207]. In this case the indeterminacy is resolved by a construction replacing the Wilson loop
by an auxiliary worldline quantum mechanics [207]. Perhaps in this spirit, getting a meaningful
path integral on the sphere in the present context may require inserting an auxiliary “observer”
worldline quantum mechanics, with a natural action of the higher-spin algebra on its phase
space, allowing to soak up the residual gauge symmetries.

One could consider other options, such as breaking the background isometries, models with
a finite-dimensional higher-spin algebra [208-211], models with an «’-like parameter breaking
the higher-spin symmetries, or models of a different nature, perhaps along the lines of [40], or

bootstrapped bottom-up. We leave this, and more, to future work.

2T he spin sums are performed by inserting a convergence factor such as e %%, but the end result is finite and

unambiguous when taking § — 0, along the lines of lims o Y 1, (—=1)**(2s + 1) e’ =1
2
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Chapter 6: AdS one-loop partition functions from bulk
and edge characters

In the previous chapter, we have derived a character integral representation for the Euclidean
one-loop path integral on de Sitter spacetime. In this chapter, we first extend the dS character
integral representation to AdS spacetime. In particular, we show this extension amounts to
replacing the bulk SO(1,d + 1) characters by the corresponding SO(2,d) characters and the
replacing the edge SO(1,d — 1) characters by the corresponding SO(2, d — 2) characters. Then

we apply the AdS character integral representation to Vasiliev higher spin gravities.

6.1 One-loop partition functions and heat kernels on AdS

The one-loop partition function Z of a (real bosonic) quantum field theory is given by a functional

determinant
1
log Z = —§logdet(D) (6.1.1)

where D is the “Laplacian” in the quadratic Lagrangian Lo = %dﬂ)d). (There might be some
nontrivial factors that are not captured by the functional determinant due to subtleties like
zero modes when the quantum field theory is defined on a compact manifold. We ignore these
subtleties in this general discussion as they will not appear in this paper). When the theory
has a gauge symmetry, we should also subtract the functional determinant of the corresponding
ghost field. In general, the functional determinant is UV-divergent and needs to be regularized.

The regularization scheme for log Z we'll use in this paper is

1 [o° 2
log Z — 7/ &5 Kp(t) (6.1.2)
2 Jo t
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where Kp(t) = Tre~'P is the heat kernel of D. In terms of the spectrum of D, the heat kernel

is formally [[] defined as

Kp(t) = dye ™" (6.1.3)
n>0
where )\, is the eigenvalue of D of degeneracy d,,. Performing a Mellin transformation for the

heat kernel Kp(t) yields the spectral zeta function

(p(z) =3 i’z = F(lz)/ooo + KD () (6.1.4)

n>0

which is also a common tool to regularize partition function.

Given a free field in AdS,41 carrying a generic s0(2, d) [f|UIR of scaling dimension A = %—i—u
and spin s, denoted by [A,s], the corresponding heat kernel K, (t) is constructed explicitly
in [212] by a group theoretical method. Alternatively, we can infer the heat kernel from the
associated spectral zeta function (see [144], 213] for explicit expressions) by an inverse Mellin

transformation:

Vol(AdSg+1) D4 /OO dt _ e /Oo (d) (A2 412
log Zs.,, = s — d\ e tATHYY) 6.1.5
0g Zsg, VO|(Sd) 2d—11“(d%1)2 0 o e 4t A Hs ( )e ( )

Explanations of the various notations appearing in eq. (6.1.5) are given as follows:

= VolI(59): the volume of a d-dimensional sphere.

a+1

272

Vol(S9) = =y

(6.1.6)

» Vol(AdS4+1): the regularized volume of a (d + 1)-dimensional Euclidean AdS [138, 149]
214, [215]. For example, in [214] the authors used unit ball realization of Euclidean AdS

1If the spectrum of D is continuous, the sum over n gets replaced by an integral and the degeneracy d,, gets
replaced by the density of eigenmodes.

2|n CFT language, the single-particle Hilbert space of such a field is equivalent to the Verma module build from
a primary state. The Verma module cannot be lifted to an SO(2,d) representation unless the scaling dimension
A is an integer. Therefore in this chapter, we only consider UIRs of s0(2, d) rather than SO(2,d).
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and computed the volume by dimensional regularization.

d
2

2002 1o R, d
g R, even
Vol(AdSqy1) = F(d%“) (6.1.7)
m2D(-9), d odd

= DZ: the dimension of SO(d) representation of highest weight vector s, c.f. eq. (2.2.1)
and (2:22).

. ,ugd)()\): the spin-s spectral density up to normalization [213] (but we will stick to the

name “spectral density” for simplicity)

rN ), d=2r
= 7 (6.1.8)

T (A + )M tanh (1)),  d=2r+1

where £; = s;+ % —j, and € = %1 for bosonic/fermionic fields. The so(d) spin label s will
be dropped when we deal with a scalar field. We focus on bosonic fields in the main text
of this paper and an example about Dirac spinors can be found in the appendix[D.I} The
spectral density uéd)(/\) with a Wick rotation A — ¢J, is also the Plancherel measure on
the principal series of SO(1,d+ 1) [64]. The simplest way to derive it [212] is based on an
analytical continuation of the SO(d + 2) Plancherel measure, which is proportional to the
dimension of SO(d+2) representation (we also provide a physical derivation/interpretation
of the spectral density in the appendix . As a result of this analytical continuation,
the polynomial part Ps(\) = )\ngl()\Q + EJQ) of the spectral density also appears in the

following formula that relates D?;gzs) and D¢ [144]

a+2 _ 2Dg

d T
o s
D(so,s) = 7 (SO + 2) H

j=1

(so - Z)Q - eﬂ (6.1.9)

with s replaced by —% + 4X. This equation is extremely useful when we compare the

character integral representations for AdS and dS in appendix [D.3]

The various I'-functions in (6.1.5)) can be greatly simplified for integer dimension d and we
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are left with
Dd ) 5 F)%ﬂ’ d even
log Zs,, = d—f/ —e® / X S (N) et i (6.1.10)
-0 S . d odd

Starting from this equation, we'll show that all partition functions log Zs ,, can be expressed as

a integral transformations of s0(2,d) characters up to edge mode corrections.

6.2 Warm-up example: scalar fields in even dimensional AdS

6.2.1 Scalar fields in AdS,

As a warm-up, let’s consider a scalar field ¢ of mass m? = v? — i in AdSs which corresponds

to the scaling dimension A, = % + v representation of s0(2,1). Applying (6.1.10) to this field

yields the partition function
log Z, = 4/0 e u/ dA X tanh(mA)e A7) (6.2.1)

where we've extended the integration domain of X to the whole real line. To perform the integral

over A\, we use the Hubbard-Stratonovich trick:

62+

1 o0 "0 dt _ u? —t2 & i
log Z :7/ du/ NEL / d\ A tanh(rA)e

eTIVETE Y (y 6.2.2
2 / 62 Ve2 +u? (W) ( )

where
W(u) = / dX X tanh(m\)ei® (6.2.3)

The naive Fourier transformation (§6.2.3) is ill-defined. However for our practical purpose i.e.
to get the character integral formula as soon as possible, we pretend that it's well-defined and
the contour can be closed at infinity. A more rigorous treatment is postponed until section

and [6.5] where we give a fully regularized character integral and justify our naive result obtained
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here is indeed reasonable and sufficient for most applications, in particular the total partition
function of Vasiliev theories. From now on, keeping the above comments in mind, we're free
to close the A-contour in W (u) in either upper or lower half-plane depending on the sign of
u and we also write the partition function log Z,, in the unregularized form by putting € = 0
formally. When u > 0, we close the contour in the upper half-plane picking up simple poles at
A=i(n+ %),n € N and when u < 0, we close the contour in the lower half-plane picking up

simple poles at A = —i(n + %),n € N. By summing over residues in both cases, we find

_1
14+e % e 2%

W(u) = 6.2.4
(u) l—e ¥l —e¥ ( )
Thus the unregularized partition function is given by
_ [Fdulte™ ags, AdSy, € OF
log Z, = o = On 2 (1), Ox7%(u) = = (6.2.5)

@2‘152 (u) = tre " with H being the (hermitian and positive) Hamiltonian, is the character
of scaling dimension A representation of s0(2,1). Before moving to the higher dimensional
examples, let's notice that when evaluating the t-integral in eq. , we implicitly assume
v>0,s0 AL = % + v corresponds to the “standard quantization” in bulk. On the other hand,
we can safely send v to —v in eq. by analytic continuation, as long as 0 < v < %
Altogether we conclude that, with the standard boundary condition, the partition function of ¢
is

O dy l+e ™
201 —e ¥

log Z, = O8> (u) (6.2.6)

and with the alternate boundary condition, the partition function is

Xduyl+e™ AdS
logZ_, = — 2 2.
057, = [ Gr T O (W) (62.7)

— V.

[N

where A_ =
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6.2.2 Scalar fields in AdS,, -

The computation above in AdS; can be generalized straightforwardly to scalar field in any
AdS411 with d = 2r4+1 odd. Assuming that the scalar field has scaling dimension A = g—i—y,
its partition function is given by

(_)r+1

log Z, = 5 dl

o 62 o
/0 at -5 i X pD(\) et %) (6.2.8)

where the scalar spectral density is

r—1 2
1
DOy =TT |2+ (j + 2) Atanh(m\) (6.2.9)
j=0
Following the same steps as in section [6.2.1] we obtain
_ (_)T+l /OO du (d) —vu
log 2, =~ | 5o W) e (6.2.10)

where W@ (u) = [* d\p@(N)ei™. The “Fourier transform” W9 (u) can be evaluated
according to the comments below eq. (/6.2.3)

€5 14 e
(1—ev)dl—eu

WD () = (=)l (6.2.11)

Plugging ((6.2.11]) into ((6.2.10)) yields a character integral expression for the unregularized log 7,

e—A+u

0 d7u 1+e™ ©"dSa+1

AdSqi1 .
duT—cwOa (W O (u

) = 5= (6.2.12)

log Z, =
0
where @gdfd“(u) is the character of scaling dimension A, representation of so(2,d). Before
turning to the higher spin case, let's comment on the relation between the character integral
and the original heat kernel integral. The heat kernel in AdS is defined through the spectral
density 1(\) whose explicit construction is given in [213]. Briefly speaking, the authors of [213]

found a complete set of d-function normalizable eigenfunctions of the Laplacian operator —V?



175

in EAde+12
d2
—V2pP9) (g) = (4 + )\2) h29) (1) (6.2.13)
(WO WO = [ a1 RO (@) (@) = bgpr(A — N) (6.2.14)

where o is a discrete label for distinguishing eigenfunctions of the same A. (Note that the inner
product for h(*?) involves an integration over the whole EAdS rather than a spatial slice as in the
standard Klein-Gordon inner product). The spectral density is defined via these eigenfunctions:
p(A) o< 3, hA*R(A) (). Therefore the original heat kernel method involves an integral over
the whole continuous spectrum labeled by (A, o). On the other hand, the character can be

expanded into a discrete sum

-1
@/ded+1(u) _ Z <d_;f ) )6—(A++”)“ (6.2.15)

n>0

This expansion encodes a whole tower of solutions to the equation of motion (—V24+A (A, —
—iAyt

d))¢ = 0in global AdS that furnish a representation of s0(2, d). More explicitly, ¢pg = Wreﬂw

is the primary mode, i.e. ground state, in the global coordinate: ds? = —(1 + 72)dt? + f_l:jz +
r2d02. It solves the equation of motion, falls like 72+ at the boundary but its Wick rotation
under ¢ — —i7 is not normalizable in the sense of . By acting the conformal algebra
50(2,d) on ¢q repeatedly, we get a collection of modes that also solve the equation of motion
and have the same boundary condition. At each frequency w, = A, + n, the degeneracy of

these modes are exactly (dgﬁzl)

. Therefore while switching from the heat kernel integral to
the character integral, we effectively turn a continuous spectrum into a discrete spectrum and
curiously both of them encode the information of partition function. This observation is the
main point of [I92]. Actually the character integral representation we found is equivalent to

the “zero mode method"” used in that paper. For example, using the unregularized expression

(6.2.12)), we obtain formally

o g 1
log Z, = > Dt / 27“6*@#")“ =—3 > " D log(Ay +n) (6.2.16)
n>0 0 U n>0
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which recovers the result in [192] up to some holomorphic function denoted by Pol(A) there.
Pol(AL) is a polynomial in Ay and depends on the UV-cutoff. In section we'll show that

it can also be recovered if we use the fully regularized character integral.

6.3 Higher spin fields in AdS,, -

In this section, we turn to the character integral representation of higher spin fields in AdS;1
with d = 2r + 1E] Unlike scalar fields, a spin-s field ¢, ...,, in AdS can carry either massive or
massless irreducible representations [70] depending on the scaling dimension. When A = A, =
d+t—1 with t € {0,1,--- ;s — 1}, pu;.....; is a partially massless field of depth ¢ and it has a

gauge symmetry 6¢y, ..., = V¢ y + -+ [99]. In this case, we should include the

ut+1'--us§,u1---,ut
contribution of the ghost field, which has spin-t and scaling dimension A; s = d + s —1, in the
one-loop partition function. When A = %—k v is not in the discrete set {A;;}, the field ¢, ...,
falls into the massive representations and does not have gauge symmetry. Since the character is

supposed to count only the physical degrees of freedom, it takes very different forms for massive

and massless representations [70]:

—Au
massive [A,s]: @f‘zs;f“(u) = Dg(le_w
Dle—(dtt—1u _ pd,—(d+s—1)u
massless [Aqz, 5] : Ot} (u) = =2 = ng (6.3.1)

Let's start computing the partition function of a spin-s field in the massive representations

(—)% D4 oo gt 2 oo 2, 2
log Zs.,, = —5/ —e W / A\ D (\) et (6.3.2)
’ 2 d' Jo t 0

where the spin-s spectrum density is

/\2+<'+1)2
7Ty

3We will focus on the 7 > 1 case because there is a discrete spectrum for each higher spin STT Laplacian in
AdS2 which corresponds to the discrete series of SO(2,1) and doesn’t have any analogue in higher dimensions
[106] 213).

@ r—2 ) 1 2
(N = J];[O N+ (s +r— 2) ] Atanh (7)) (6.3.3)
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Following the same steps as in the scalar case, we obtain

a+1

log Zs,, = (_;,2 D / Uy @) () e (6.3.4)
! 0

where Ws(d)(u) = [ _d\ ugd)()\) ¢ is an even function in u and when u > 0, it is

—00

| e~ (5= Du 1+e @

W) = ()5 =2 —

[s(s+d—2)(1 = e™)? = d(d—1)e ]

(6.3.5)
Plugging (6.3.5)) into (6.3.4) yields a new character integral
d—2
dul+e™ AdS, A2 6_(T+V)u
1 Zs v = _— +1 - D +2 & < 3
Og ) 0 2U 1 — e_u <®[A’S] (u) s—1 (1 _ e_u)d_2 (6 3 6)

The second term in the bracket corresponds to subtracting the partition function of ngf scalars

on EAdS,_; with scaling dimension % + v since it involves an so(2,d — 2) character of scalar
representation. As in the de Sitter case, we tend to identify these scalar degrees of freedom
as edge modes living on the horizon of Rindler-AdS [4] which is a Lorentzian Wick rotation of
EAdS and has a EAdS,; 1 shaped horizon. More discussions about Rindler-AdS will be left to
section [6.8 and appendix [D.5] We can also write log Zq ,, in terms of an s0(2, d) character and

an s0(2,d + 2) character

© dul4 e

u _u 4 Ade+3
%m G[A,s] (U) — (62 — € 2) (—)[A—‘rl,s—l] (U) (637)
This form of character integral representation doesn’t have the physically meaningful edge char-
acter structure but it turns out to be much more convenient than (6.3.6) computationally, in
particular when we sum over all field contents in Vasiliev higher spin gravities.
Finally, let's move to our main interest: (partially) massless fields. Due to gauge symmetry,

the partition function of a PM field with spin-s and depth ¢ € {0,1,---,s — 1} is given by

dtl 00
10g Zs, = (_;!2 /0 %“ (Dge*(%*l)u WD (u) — Dde= (s Du Wt(d)(u)) (6.3.8)
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where the first term corresponds to the spin-s gauge field and the second term arises from the

spin-t ghost field. By using the explicit expression of Ws(d) derived in eq. (6.3.5)), we can rewrite

(6.3.8)) in the same form as ((6.3.7))

O dul+e ¥ AdS u _u\4 _AdS
g Zow = | oo (@[d+f_+1178](u) — (ef —e7%) @[dﬂfﬁu(u)) (6.3.9)

where the characters of PM fields are

B Dglef(dthfl)u _ Dglef(d+sfl)u

AdS
@[dthdjll,s] (u) = (1= ) (6.3.10)
Dd+267(d+t)u _ Dd+267(d+s)u
AdS il il
Oy (u) = == L (6.3.11)

(1 _ e—u)d—i—Q

Note [d+t,s— 1] is a massless representation of SO(2, d +2) with spin-(s—1) and depth-(t—1).

6.4 Regularization, contour prescription and odd dimensional AdS

In the previous sections, we've derived a formal character integral formula for the unregularized
one-loop partition functions of both scalar fields and higher spin fields in even dimensional
AdS. However, to make sense of the character integral mathematically and apply it to actual
computation of renormalized partition functions, we have to use a well-defined and efficient
regularization scheme. In this section, we'll sort out this issue. Surprisingly the resolution turns
out to have a very important byproduct: a character integral representation that works in odd

dimensional AdS.

6.4.1 Regularization and contour prescription

We use a real scalar field to illustrate the regularization scheme. But it will be clear in the end
that the same regularization also works for higher spin fields.

6.41.1 d=2r+1

It's mentioned in section that W (%) (u), Fourier transformation of the scalar spectral density

D (N), is not well-defined. As a manifestation of this point, W (%) (u) is singular at u = 0. This
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singularity may lead to two inequivalent definitions of inverse Fourier transformation of W (% (v,)

since the contour can either go above or below u = 0:

—u —(Z+4iNu
7)) :/ du 1 (d) —ixu _ _r+1d,/ dul+e™ e 2 il
KR R-+id 27TW (u)e =) CJrtis 2m 1l —e % (1 — e w)d (6.4.1)

where ¢ is a small positive number. (At this stage, the size of J is not important as long as it's
smaller than 27. We'll later impose a more stringent constraint on it). It's clear that the two

definitions of inverse Fourier transformation differ by the residue of the integrand at u = 0. In

—u g (E+v)u .
terms of the notation Hy,(u) = }J_rg ﬁ introduced in the appendix [D.4} the function
(+)

fig ' (A) can also expressed as

A7) = (=)t /Rﬂa ;i: Hg iz (u) (6.4.2)

We use the function Hyg;y(u) here because its residue at u = 0 is given by eq. (D.4.8) and
the residues at other poles u = 2win,n € Z can be easily inferred by using its quasi-periodicity
Hyiz(u + 2min) = (=¥ )" Hy ;) (u). With the information of residues known, we close the

contour at infinity and get
r—1 1 2
= H ()\2 + (j + 2> > (Atanh(7A) + A) (6.4.3)
§=0

Therefore in order to recover the spectral density u(@, cf. 1) the contour prescription

should be the average of [, s

1 »
WO =57 i =5 ([ [ ) EwOmet (eaa
R+i6 —id
Plugging this equation into the scalar partition function (6.2.8]) , we obtain
7“+1 )
log Z, = (/ / ) @ (u) / B [T gy e ti—idu
4d' R+1id —id 0 t —00

1 du 1+e™ e_g“_”m
- 6.4.5
4 (/R+'L6 / 15) 2V u? +e€ 21 —e~ (1 - e—u)d ( )
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where § has to be smaller than ¢, otherwise the contours would cross the branch cut of vVu?2 + €2,
which has two disconnected pieces with one piece going upwards from e to ico and the other
going downwards from —ie to —ioco. Due to the manifest u — —u symmetry of the integrand
for odd d, the two contours R £ ¢ are actually equivalent and it suffices to use one of them
du 14e Y e—gu—l/\/elﬁ-iu2

1
log Z, = =
BT e viZr el et (1—e vy

(6.4.6)

The computation above also works for higher spin fields. It suffices to show that the higher spin

generalization of holds. Notice that Ws(d) (u) corresponding to a spin-s field is related

to the scalar version W4 (u) by
WD (u) = WD (u) + s(s + d — 2)W 42 (1) (6.4.7)
Applying the integral (6.4.4) to this relation indeed yields

1 du )
5 Zwd) —idu _  (d) 4
2 (/R—i—i6 +/IR<—2‘6) 2 WO (u)e = Hs (6.4.8)

Therefore the regularized character integral for a spin-s field in massive representations is

du 1+e® [ Die —gu—vVetu? Dd+2 —42u—vVe+u?
log Zs.p = 6.4.9
08 Lo /RJrié AIVu +e21—e v (1 —eu)d (1— e w)d2 ( )

Starting from the eq. (6.4.9)), we'll derive a complete expression for the regularized partition
function Zs, in section .

6.4.1.2 d=2r

The odd d case above tells us the correct strategy to get a regularized character integral. First,

d
—u —Qu . . . .
e ”_¢ 2 and compute its inverse Fourier transformations

we pick a function W% (u) o et (I—e— )2

defined by two different contour choices. Then one proper linear combination of these choices
can give the correct spectral density. Plug this integral expression of spectral density into the

original partition function ((6.1.10)) and we finally obtain the regularized character integral. Now
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let’s apply this strategy to the d = 2r case where we choose W@ (u) to be

d
l+e™ e 2"
@D () = (=) *a 4.1
The two possible inverse Fourier transformations defined as in eq. (6.4.1)) are
r—1
AP =i JTO2 + 52)(coth(rA) + 1) (6.4.11)
j=0

Therefore the spectral density p(®(\) = ;;é()@ +42) in AdSa,.11 is given by

W0 = 5@ - = ([ [ ) G (6.4.12)

Substituting this equation into (6.1.10|) and performing the ¢, A integrals, we end up with

logZ, i(—

U 2 2
_ B W@ ()~ Ve Fe 6.4.13
logR  2md! ( R—i6 /R—‘,-i5> 22 + €2 (W) ( )

Since there is no poles in the strip bounded by R + id, we can further deform the contour to
be a small circle Cy around v = 0. Then the integral is equivalent to evaluating the residue at

u=0:

(6.4.14)

log Z, R e Vi | | omu U
logR =0\ 5 a2 +e2l—e v (1 —eu)d

Similarly for higher spin fields, by using appropriate square root regularization, we can also get

logZsy _ eVERE e [ plemiv DHEe (6.4.15)
= es - . .
log R 0 Wil re2l—eu | (1—ew)d (1—eu)d2
Conclusion

Altogether, we can conclude that the regularized one-loop partition function (with the UV

2
regularization introduced by e % in the original definition (6.1.5))) of a field in the [% + v, 5]
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—€ —€

(a) odd d (b) even d

Figure 6.4.1: u-contours for even dimensional AdS (left) and odd dimensional AdS (right). The
black wavy lines represent branch cuts.

massive representation of SO(2,d) is

log Z,, =

(1 _ e—u)d (1 _ e—u)d—Q

Ay e vVt | 4 o D¢ e 3t Dgi‘f e Fu
Zd g — (6.4.16)
2 Jog Vui+4el—e

where the overall constant and contour choice, fig. (6.4.1)), are

p 135”3 d even c a counterclockwise circle around 0 d even (6.4.17)
L= = 417
1 d odd R +i6 d odd

For a field in massless representations, we need to include the corresponding ghost contribution

@/ du 14e v e 5v (Dde_wm B Dde—us\/m)
2 Jo, Vit El—e v (l—ew)d \7s f

Aqg du  1e™ e d+2 v JuT e d+2 —veVuZteZ

-4 /C - [ e (Ds_l e _ DH2e ) (6.4.18)

log Z, ,,, =

whereut:%+t—land us:%+s—1.

6.5 Evaluation of the regularized character integrals

In this section, we give an efficient and general recipe to compute the regularized character

integral formula following the appendix C of [2]. For the simplicity of notation, we'll use scalar
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fields as an illustration of this recipe. But our reasoning and final result can be easily generalized
to fields of arbitrary spin. In addition, the result can be used to justify that the unregularized
character integral is sufficient for the application to Vasiliev gravities. First, let’s briefly review

the standard heat kernel method in computing one-loop partition functions

o dt 2 Vol(AdS 00 NP
long,(e):/O 7€ "KL (), Kl,(t)—w/ dA D () e V) (65.1)
2

where I've plugged in the explicit form of Vol(S¢) compared to eq. (6.1.5). By using the small

t expansion of heat kernel, say K, (t) = Zd“ o (t), we can separate it into UV

and IR parts without ambiguity

d+1
KW(t Zak = KT = K (t) — KW (1) (6.5.2)

The UV-part of the heat kernel expansion in AdS is fairly simple. When d is even, K, (t) can
be evaluated exactly because it's a Gaussian integral in \. When d is odd, using tanh 7w\ =

1 — —=— we can split the heat kernel into two parts. The first part is a simple Gaussian

1+e 27r

integral as in the even d case. The second part is of O(t°) and hence we can put ¢ = 0 which
yields an exactly solvable integral. In addition, by direct computation, one can show that oy

is nonvanishing only for even k. For example, in d = 3, we obtain the nonzero heat kernel

- _ 2 2 4
coefficients: ag = %,ag =1 4‘§V and ay = 7% — ng + %4_

Introducing an infinitesimal IR cutoff k — 0, we can further separate log Z,(¢) into two

parts

>t 2 L[t
log Z"(e) = | 5, K (t)e” Tt og ZI = i 3 (e e Rt (6.5.3)

where the UV regulator has been dropped in the IR integral because it's by construction UV

finite. The IR regulator et is inserted in the UV integral because the integrand has a % term
when g1 # 0, i.e. when d is odd. In the end, the log x terms in log Z!¥ and log ZI will cancel

out and we're left with

d d+1—-k
d -‘r 1—k 2 1

€
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where (,(z) = F(lz) I %tZKZ,(t) is the spectral zeta function and agy1 = (,(0). Next,
we'll apply this UV-IR separation idea to the evaluation of partition function in the regularized

character integral formalism.

6.5.1 Even dimensional AdS., .,
In section [6.4.1.1] we've found that the square-root regularized partition function in AdSo,1 9 is

given by

1 du 1+e ¥ Cdy e
log Z,(¢) = = u—vVuste 6.5.5
) =3 fpsavr Bl (655)

where d = 2r + 1. Putting ¢ = 0 we recover the formal UV-divergent character formula:

© du 14+e ¥ 67(%“’)“

08 Zy(€=0) /0 o v () Hay(u) 1—eu(l—eu)d

(6.5.6)

The unregularized integrand in’,,(u) admits a Laurent expansion around u = 0 with coeffi-

cients being polynomials in v:

1 1 (41 .

5 Ha(u) = = be()um R b () = > bt (6.5.7)

u u
k>0 =0

where by, vanishes when £+ is odd due to the symmetry Hy _,,(—u) = Hg,, (u) for odd d. The

terms corresponding to 0 < k < d+1 in Hg,(u) are UV divergent in log Z, (e = 0). Therefore

we separate them from the remaining UV-finite terms

HY () =2 > bp(w)u @R HY (w) = Hyy(u) — HYY(u) (6.5.8)
k>d+1
Similarly using an infinitesimal IR regulator x — 0T, we obtain a UV-IR separation for the

regularized partition function log Z,(¢) = log Z% (¢) + log Z!':

uv 1 du uv —K|u ir > du ir —KU
mawzgwﬁﬁmmw'hmazoﬂﬁmw (6.5.9)
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where r = Vu? 4+ €2/u. In the IR part of the partition function, we've deformed the contour
and safely put € = 0. The log x terms will drop out at the end when summing up log Z;" and
log ZI.

Evaluation of UV part

Using the expansion ([6.5.8)), the UV part of log Z,(€) can be written as

log Z"" (e) ZZbMV / au ply—(d+1=F) QZbLHlZVe/ ‘ ﬁréefﬁltﬂ

2 50i=0 Rtis TU =0 Rtis TU

(6.5.10)

where the IR regulator k is not necessary for 0 < k < d. Then it suffices to evaluate the

following two u-integrals

£4—1

_ du o —(d+1-k) _ _—(d+1—k) / (1+u?)7
Le(k,0) = /R+i6 o (e
: du , _ 1 ( ) _
@g;/ A—w%ﬂwzf/ e~ erlul 6.5.11
®) R-+id 27U 2 Jr+is ( )

When ¢ is odd in Z(k, ¢), we can cIose the contour in the upper half plane (fig. m ) and the
integral vanishes because (1 4+ u ) * has no pole in this case. Thus Z.(k,{) is nonvanishing
only when £ is even. On the other hand, the coefficient of Z(k,¢), i.e. by, vanishes for k + ¢
odd. Therefore, only terms with even k, ¢ survive in log Z1V(€). When £ is even in Z(k, (), the
previous “no poles” argument doesn't hold any more due to the presence of a branch cut from

i to 400 in the upper half plane. However, we can deform the contour to integrate along the
branch cut (fig. [6.5.1b]) which yields

(6.5.12)

1 d+1—k d+1—-k 14+/
ik - K )

2 T2

where the B-function is B(a,b) = 2(83)1;)_

For the integral J.(¢), we split it into an IR-divergent part and an IR-finite part. In the
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(a) odd ¢ (b) even ¢

Figure 6.5.1: Contour for the integral Z.(k,¢). When ¢ is odd, the contour is closed at infinity.
When £ is even, the red contour in deformed to the blue one running along the branch cut of

vus + 1.

IR-finite part, we can drop the IR regulator e=*%,

(SIS

1 du 1 du
() 2 Jrtis V1 +u? (( w) ) 2 JrR+is \/1+u26

1 du ¢ ©  du
== — ((1+u 2 -1 —|—/ —e 6.5.13

2 Jr+is V1 + u? <( ) ) 0 V14 u? ( )
Since the coefficient of J.(¢) is bg41 ¢, it suffices to consider even ¢ which implies that (1+u‘2)%
can be expanded into a polynomial of u=2 and for each term in the polynomial we can use the
same contour trick as in the Z. case to evaluate the integral. The IR-divergent part can be
analytically evaluated in mathematica and it has a very simple small € behavior. Altogether, the

final result for 7.(¢) is

1 &2 ¢ 1 2
) =3 S (1)5 () < s
__<H L H,, 410 676“) (6.5.14)
= ? o 114/2 g 9 -9-

where Hy is the harmonic number of order ¢. Plugging (6.5.12)) and ([6.5.14]) into (6.5.10)) yields
the regularized UV-part of the partition function

T 2k
uv 1 S ()it § d+1 (41
IOg Zy (6) —_ 5 (7) +1 ké (d+1—2k) kaIB <2 — k, 2) yz
k=0 £=0
d+1

evek

1
= batie <Hz - 2H5/2> V' —bay1(v)log (6.5.15)

£=0
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For example, for d = 3, we get

2 1— 402 v2oout vt 17 2
29 =5at gt (48 18) * <24 T8 5760) %8 er (6.5.16)

which reproduces the Pol(A) part of log Z, in [192] [f] without using the heat kernel coeffi-

cients ay. In fact, by comparing (6.5.16)) and ([6.5.4]), we can express the nonzero heat kernel

coefficients «y, in terms of by,

bok,e " (6.5.17)

Evaluation of IR part

The IR part can be evaluated through certain zeta function method as in [2]

v 1o - 1 ®du
lo8 7 = 5L(0) + ban () o8(x), &(2) = 575 /0 S Hyo () (6.5.18)
Notice that the “character zeta function” (,(z) is originally defined by the integral above for z

sufficiently large and then analytically continued to small z. bg11(v) is related to the character

zeta function as by11(v) = 3¢, (0). Combing the UV part (6.5.15) and IR part (6.5.18) leads to

T

2k
1 rbl—k — _ d+1 L+1
logZu(E):§Z<—) 11—k —(d+1 Qk)zb%,zB (Q_k’> A

2
k=0 £=0
s 1 . 2 1.,
_ Zderl,g Hy — ng/g V" + bay1(v)log e + 5@,(0) (6.5.19)
=0

Compared to the standard heat kernel results, we find the discrepancy between the character

zeta function (,(z) and the spectral zeta function (,(z) = ﬁ I LK, (t):

1 1- d+1 1
5(1//(0) = 5(;’/(0) = bas1e (Hz — 2He/2> vt (6.5.20)
=0

This difference is the multiplicative anomaly. Multiplicative anomaly is computed specifically

for fields in AdS in [144], where it's called “secondary contribution”. Though the information

*There is an overall % factor difference because [192] computes the partition function of a complex scalar
rather than a real scalar.



188

about multiplicative anomaly is lost, the formal factorization makes the evaluation of ¢, (z) much
simpler than (,(z). For example, we can expand Hg,(u) with respect to e™" as Hg,(u) =
Spso DEF2e~(A+m and for each fixed n, the u-integral yields (n + A)™*. Then we can

immediately express (,(z) as a finite sum of Hurwitz zeta functions

G(z)=>" D = D12 ((2,A) (6.5.21)
=0 (n+ A)*

where ¢ is an operator defined as §"((z,A) = ((z — n,A). When d = 3, we have Dgfi =

3 2 3
% — v 4+ 12’12*15 + ”7142” and thus

v— 43

Go(z) = ;C(z C3A) = u((2—2,A) + (V - 112> C(z—1,A)+ ((z,A) (65.22)

Altogether, the full one-loop partition function of a real scalar field with scaling dimension

A:%—l—yinAdS4 is

Y 3 et 242 48 18 48 5760 eve
1
2

v — ) —1,A) + — v’

1
£C(=3,8) = 2¢(-2,8) + -

2 ¢'(0,A) (6.5.23)

consistent with [192].

6.5.2 0Odd dimensional AdS,,

The UV-regularized partition function in AdSs,.1+1 can be written in terms of the following

character integral

log ZV(G) _ i/ d’LL 1 + e_u e*%U*V\/m (6 5 24)
logR 27 Jo, 2v/u2 + €21 —e v ~

where d = 2r. As in the even dimensional AdS case, we can separate H,, (u) into a UV-part
and an IR-part. But the resulting IR partition function log ZI' = Resu_,oﬁHg,V(u) vanishes

because %H('jy(u) doesn't have a pole at u = 0 by our prescription for the UV-IR separation.
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Therefore, it suffices to compute the UV-part of the partition function

log Z,(e) _ log ZY (e di:lzk: b / du rt1
log R log R =i k¥ 2772 u ydt1-k
d+1 k -1
14+ u*)2
= ZZ bul/ € (d+1- k)ReSu_m( d+€+1) % (6.5.25)
k=0¢=0

where by is nonvanishing only when k + ¢ is even. By evaluating the residue explicitly, we find

d
log 7., 2 =1
log Zy(€) _ S e (dri=2n me 0 fHk v+ bas1 (v)
log R =0 =0
d
g -
=2 1
=3 e (di=2h) Zb%f( e k)z/ + Res, 0 (2Hd,u(u)) (6.5.26)
k=0 £=0 2 "

where we rewrite by 1(v) as a residue. As expected, there is no log e divergence or multiplica-
tive anomaly and hence we can define a renormalized partition function by subtracting all the

divergent terms unambiguously

10 Zren 1
lig;ﬂ = ReSu_>o <2qu,l/(u)> (6527)
where the residue is evaluated in appendix
log Z7" (r) oni r—1 \ ” )
B )= 6.5.28
log R 2r ! Z on + 1 ) JHO(CU J°) 7; an(r)x ( )

For example, according to this expression, the renormalized scalar partition function in AdSs is
—%3, consistent with [216].
6.5.3 Summary

The computations in this section provide a well-defined and efficient rule to obtain a regularized
partition function using only the unregularized character integral formula derived in section

and section [6.3] Here we summarize this rule for both even and odd dimensional AdS.

Odd dimensional AdS: d = 2r
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Given the total character Oot(u) = Op(u) — Oc(u), where Op(u), ©(u) are bulk character and
edge character respectively, the renormalized partition function (with all negative powers of €

dropped) is given by
11 U
lOg zren — Resu*)() (u—’—e@tot(u)> IOgR (6529)

For example, a massive spin-s field with A = 2 + v on AdSs has bulk character ©,(u) =

D;‘% and edge character ©.(u) = D¢ _; (617_(;2))1;. Therefore according to (6.5.29

(s +1)%3

1 Zren —
08 Zsw 360

(5(s+1)? —3v*) log R (6.5.30)

This result agrees with the computation of [112] based on direct spectral zeta function reg-
ularization. Another interesting example is linearized gravity in AdSs. In this case, the bulk
character is Op(u) = 2%, where the overall factor 2 is spin degeneracy for any field of
nonzero spin, and the edge character is ©.(u) = 4e™" — e~ Therefore, according to eq.

(6.5.29)) the renormalized partition function of 3D gravity is 1—3? log R, consistent with [216].

Even dimensional AdS: d = 2r + 1
For odd d, we need to consider massive and massless representations separately because in mass-
less representations both gauge field and ghost field can contribute to the total multiplicative

anomaly. Given a massive representation [% + v, s}, the unregularized partition function is

o2 = [ o (F200) = 72 (w) (6.5.31)

where

_ —(¢4p — —(424p
glre et ¢ (u):Dd+21+eu e (T

b _
f&V(u) =D 1—eu(l-— e—u)d’ s,V s=11 _ c—u (1— e_“)d_2

(6.5.32)

?,(u) induces the bulk character zeta function ,(2) = F(lz) (fo%”uzfgy(u) and f¢,(u)

induces the edge character zeta function ffy(z) = F(lz) Io° %“uszvl,(u). The renormalized
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partition function (with all negative powers of € dropped) is

ren 1 ~b ~e —y ! 1
tog 225 = 1 (£4,/(0) — G2, (0)) Tog(2e 7 /e) + 5 (,(0) ~ &L, (0)) - > b (He—2HZ/2)u
(6.5.33)
where S35 be(s)! = 3(C2,(0) =5, (0)). Using the expansion 2, (u) = 32,59 P2, (m)e™ (A7),

where A = £ 4 v, the bulk character zeta function fg,j(z) can be written as a finite sum of

Hurwitz zeta functions

Con(2) = PLy(8 — A)((2,A) (6.5.34)

and similarly for Egy(z) In AdS4, for example, the bulk and edge character zeta functions are

14 — V2
&) = (254 1) <§<<z 3,8) v (-2, A) + (P - (-1 A) + (1124)<<z,A>>
Eul2) = Ssls + D@8+ 1) (C(z - LA-1) ~v((z. A~ 1)) (65.35)

For a massless representation of spin-s and depth-t, the unregularized partition consists of

four parts

108 Zuw = [ o (£200(0) = £, (0) = £, 1)+ 50, 0) (6.5.36)

The renormalized partition function can be expressed as

1Og Z;elr:t = % (75,14 (0) — Ss l/t( ) Ct Vg ( ) + g—;ys (0)) 1Og(2€_’y/6) (Cs Vt( ) S Vt( ) Ct Vg ( ) + 61?,/1/5 (0))

d+1 1 d+1 1
- (Z be(s) (Hz - 2fnrm) vE— 3 bolt) <He - 2%) u§> (6.5.37)
=0 £=0
For example, the renormalized partition function of linearized gravity in AdSy is

47log A 1 1957  log?2
10g Zgravity = —5 T gCI(—?)) T35 ~

o971
— 5log(2m) — 00 log(2¢77/e) (6.5.38)

where A is the Glaisher-Kinkelin constant. ([6.5.38]) reproduces the s = 2 result in [I11].
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Remark 12. Apart from the multiplicative anomaly, the remaining part of the partition function
for both massive and massless representations is completely captured by the character zeta

: 1 0o du l4e ™
function T Jo aitrite=

Otot(u), where Oor(u) consists of bulk and edge characters. Thus,
by inserting a UV regulator v* in the unregularized partition function, we recover the correct
log-divergence and finite part up to multiplicative anomaly, which was proved to vanish when
summing up the whole spectrum of Vasiliev theories [144]. We will also show in section
the vanishing of multiplicative anomaly for type-A Vasiliev gravity using the character integral

formalism. Keeping this comment in mind, we are free to use the unregularized character integral

formula to compute the full partition function of Vasiliev theories in section 6.7}

6.6 Double trace deformation

A large N CFT, where a primary operator O has scaling dimension Axn can flow to another
CFT4 where O has the shadow scaling dimension Ap = d — Ay by turning on a double trace
deformation O2 in the Lagrangian [217, 218]. On the AdS side, this RG flow is equivalent to
switching the boundary conditions when we quantize the dual bulk field. Due to AdS/CFT
duality, the effect of this RG flow on the partition function of the large N CFT, living on S¢
can be computed from both boundary and bulk sides [138] 214}, 218-221]. In particular, in [138]
the authors thoroughly computed the effect of any higher spin currents. Let O, ..., be a spin-s
current and they found the change of free energy induced by O, ...,,O#*""#s has log-divergence
when Ap = d+ s — 2, i.e. O is a conserved current, and the change is of order 1 when Ap
takes other values. In this section, we'll reproduce the main results of [138] on bulk side by using
character integral formula . As we've just mentioned that the double trace deformation
induces the dual boundary condition, it suffices to compute log Z,,, — log Z, _,,. We'll focus
on the odd d case (the even d case can be analyzed similarly) and see that it's extremely
convenient to use the character integral representation to do this computation because flipping

the boundary condition is equivalent to switching to the character of the dual representation,

. AdSii1 AdSg 1
i.e. ®[A,s] Q[A,s] )

We'll start from considering a scalar field with complex scaling dimension A = % + v and

then Wick rotate A to a real number. Before performing any actual computation, we want
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to mention the following observation which is based on the explicit evaluation in last section,
that the UV-divergent part including multiplicative anomaly of log Z,, is an even function in v
when d is odd (see equation ([6.5.16)) as an explicit example). This observation implies that

log Z;, — log Z_;,, is UV finite. In addition, in the difference

1 du 1+e ¥ 67%“4(6—1'1/\/@ _ e—l—il/\/m)
T2 R+is 2vVu2 +e2 1 —e ¥ (1—euw)d

log Zi,(€) — log Z_;,(€)

(6.6.1)

the integrand is indeed a single-valued function because when u goes around one of the branch

. . . —iu\/u2 62_ +iu\/u2 €2 . .
points of v/u2 + €2, the combination & J:/UQJ‘;Q "~ keeps invariant though vuZ + €2

itself picks an extra minus sign. Then we are free to shift the u-contour upwards such that

0 > €. With this new contour and using the UV-finiteness of log Z;,, — log Z_;,,, we can safely

put € — 0 which amounts to sending vu? + €2 to u:

log Ziy — log Z_ iy =

1 / du 14+ e 4 e—%u(efiuu _ eJriuu) (662)
R

2 Jryis 2u 1 —eu (1—ew)d

To proceed further, we introduce a new integral that can eliminate u in the denominator of

(6.6.2)) and then switch the order of integrals

d .

7 v 14e ¥ e*gufz)\u
log Z;, —log Z_;,, = —— dA d 6.6.3
o8 °8 4 /_V /Rﬂ-(s T v (i—e vyl (6.63)

After these manipulations, the u-integral is essentially the definition of ﬂgr)()\), cf. 1)

d—1

‘ _am(=) T gy )T @
log Zi, —log Z-1 = - | a0 = S /0 A\ D () (6.6.4)

where we've used that the even part of /1((;)()\) is the spectral density ;(¥(\). It's straight-

forward to generalize this method to higher spin fields by including the edge-mode contribution

and using eq. (6.4.8))

im(=)"

log Zs,iu - IOg Zs,—iy = d!

Dg/o A D (N (6.6.5)
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Surprisingly, the change of free energy triggered by the higher spin double trace deformation at
large N is completely encoded in the higher spin spectral density. Given the eq. ([6.6.5)), we
make a Wick rotation v — i to obtain result for real scaling dimension A = g +v

log Zs,, —log Zs _,, = ”(d')Dg / dX il (iN) (6.6.6)
. 0

For example, at d = 3 we get

2 1 A 3
log Z,, —log Zs .\, = (s—(f;)w/a dz(x — 5)(3: +s—1)(z — s —2)cot(mx) (6.6.7)
2

where we've changed variable A = = — % This equation agrees with the result in [138]. When
v reaches some half integer number, say vs_1 = %—i— s — 2, which corresponds to a double trace
deformation triggered by a spin-s conserved current in free U(N) vector model, the integral
(6.6.6) is divergent no matter what contour we use because the singularity v = v5_; is at the
end point of the integration contour. To extract the leading divergence, we need the singular

behavior of ugd) (1\) near A = vs_1

) pd @ (i\) = —% +O((A—vs1)?) (6.6.8)
ar s ks 20\ — 5_1) 51 >
which is a consequence of eq. |D and Dgfis = —Dgfip. Since Dgfis_l = nKXT, is the

number of spin-(s—1) Killing tensors on S9! and also the number of spin-(s — 1) conformal
Killing tensors on S [138]. Therefore if we truncate the integral at v = vg — ¢, the

change of log Z induced by a spin-s conserved current has a log-divergence part %nSKL log(e).

6.7 Application to Vasiliev theories

With the character integral method developed in the previous sections, we're finally able to
compute partition function of Vasiliev theories in all even dimensional AdS (The odd dimensional
AdS case can be analyzed similarly and is indeed much simpler). We'll use (non)minimal type-A,
theory and type-B Vasiliev theory, which are reviewed below, to illustrate the application of the

character integral method. Before that we want to stress again, due to the comment at the end
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of the section [6.5], the unregularized version of character integral formula is sufficient.

6.7.1 A brief review of Vasiliev theories and Flato-Fronsdal theorems

The simplest and best understood higher spin theory is the nonminimal type-A Vasiliev theory
in AdSg.1, which contains a A = d — 2 real scalar and a tower of massless higher spin gauge
fields. This theory is believed to be dual to a free U () vector model on boundary described by
Lagrangian £ = %gz&j O¢i,1 <i < N. The U(N) fundamental field ¢; is in the scalar singleton
representation [%,O] = Rac of s0(2,d). One direct result of the duality is a one-to-one

correspondence between the field content in bulk and the single-trace operators in U(N) vector

model. In representation theory, this is confirmed by Flato-Fronsdal theorem [194]:

o0

Rac ® Rac = @[d +5s—2,9] (6.7.1)
5=0

which can be proved by using the following identity of characters

—Uu
50 2 d Ade+1 Ade+1 50(2 d) 6 —€
(®Rac ) Z S} ®A ’ GRac =

d+s 28] (6% %)d (672)

There are a lot of variants of the original type-A Vasiliev theory. For example, if we relax the
requirement of unitarity, we can take the boundary CFT to be £ = %qbf [0¢ ¢;, where each ¢;
is in the representation [%,0] = Racy of 50(2,d). For more details about the [ theory, we
refer readers to [99, 222]. The bulk dual of this nonunitary CFT is called the type-A; higher

spin gravity with field content given by a generalized Flato-Fronsdal theorem [222-224]

20—1 oo
Rac; ® Racy = EB @d+s— — 1, 5] (6.7.3)
p=1,3,

where [d+ s —p— 1, s] corresponds to a PM field of spin-s and depth-(s — p) for p < s. At the

level of characters, this tensor product decomposition is equivalent to

s0(2, d & Ads AdS 50(2,d) el — e~tu

d+1 d+1 )
(@Race ) Z Z @[dJrs +2 s] = " ’ ®Racz = Tm _—mog (674)
p=1,3, (e2 —e™2)
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In type-A; theory, we can further replace the complex scalars by real scalars that are in the
fundamental representation of O(NN). The resulting AdS dual is called the minimal type-Ay

theory and its field content can be extracted from the symmetrized tensor product of two Racy:

20—1 0
Rac; ® Racy = @ @ [d+s—p—1,s] (6.7.5)
p=13, 5=0,2,-

where only fields even spin exist. Summing over the characters for representations appearing in

the tensor product decomposition (6.7.5]) leads to

20—-1
1
Omt= 3 > e 0 = 5 (620w) + R w670
- 5=0,2,--

Another important variant of the original nonminimal type-A theory is the so-called type-B
theory. It is the AdS-dual of free U(NN) Dirac fermions restricted to U(IV) singlet sector. Each
Dirac fermion carries the spinor singleton representation [%, 1] = Di of s0(2,d), where 1
denotes the spin—% representation of so(d). The bulk field content is given by Di ® Di, which
takes the following for odd d [194]

d—3
2
Di@Di:[d—Lo]@@@d 2+s,(s,1™)] (6.7.7)
m=0 s=1
When d = 3, all (s,1™) are reduced to a spin-s representation of s0(3). Thus in AdSy, the
spectra of the type-A and type-B theory are the same except that the m? = —2 scalar is
quantized with A_ = 1 in the former and A,y = 2 in the latter. However, for higher d,

the spectrum type-B theory is much more complicated due to the presence of fields of mixed
symmetry. Let's call the collection of fields of “spin” (s, 1) the m-sector. The m = 0 sector is
almost the same as spectrum of type-A theory except the scaling dimension of the scalar. For
the m > 1 sectors, fields with s > 2 are massless gauge fields with the corresponding ghost
fields in the representation [d—1+s, (s—1,1™)] of s0(2,d) while the s = 1 fields are massive

and totally antisymmetric.
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6.7.2 Type-A higher spin gravity

Nonminimal theory: Field content of the nonmonimal type-A higher spin gravity is given by

eq. (6.7.1). Using (6.2.12)) for the A = d — 2 scalar and (|6.3.9)) for the massless gauge fields,

we get

AdS ©dulte ¥ AdS u AdS
log Z a1 _ ; oS = (Z@d_i_?r;s ( — e 2) ng-&-;j—i 28 ))
s>0

(6.7.8)

where s is shifted by 1 in the edge character to match with the bulk part. Due to the Flato-
Fronsdal theorem ([6.7.2)), both sums in (6.7.8) give the square of a Rac-character. Plugging in
the explicit form of these Rac-characters, it's clear that the bulk and edge contributions exactly

cancel out and hence the total one-loop free energy of type-A theory vanishes:

e [ () ]

(6.7.9)

Before moving to the minimal case, we want to check that the total multiplicative anomaly
indeed vanishes. To do this, we should use the fully regularized character integral formula, with
which the exact cancellation between bulk and edge contributions doesn't hold any more at the

integrand level. Instead, we get

dul+ e (1+ cosh(ru))(cosh(ru) — cosh(u))
Riis Tu 1l —e 4 (sinh § sinh )4

AdSg41

log Z), =474 (6.7.10)
where 7 = Vu? + €2 /u. The multiplicative anomaly, if exists, should appear as the coefficient
of € in the small € expansion of (6.7.10)), which can be realized by a change of variable v — e u

and expanding the integrand around small e

log ZAdsdJrl _ 47d/ du 14 e (14 cosh(ev/1 + u?))(cosh(ev/1 + u2) — cosh(eu))
R+is Vu? +11—e"< (sinh £ 75\/12‘"7)51

S sinh

(6.7.11)
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Notice that the integrand of (6.7.11)) is an odd function of € and hence cannot have any €” term
in small € expansion. This observation leads to the vanishing of the total multiplicative anomaly

in nonminimal type-A theory.

Minimal theory: Since minimal type-A theory contains only fields of even spins, its total

partition function can be written as

AdS ©dul+e™ AdS u AdS
logZAmand+1: 2u1—6_“<z @[d+s+;5] u) — ( 2 —e” 2) Z@d—&—;—-&ti 25 ))

0 s even s odd

(6.7.12)

where the spin in edge characters is shifted by 1. The sum over all bulk characters lead to

Ade_,_l
@Amin

1
O () = 3O () + HORE (2u) (6:7.13)

where we've used eq. ((6.7.2)) and (6.7.6)). The sum of edge characters, since only odd spin fields
are involved, yields the difference between the nonminimal character and minimal character in

Ade+3I

1 1
*@ﬁd5d+3 (u) — 7@f?oa(c27d+2) (2u) (67 14)

OR () — O () = 5 2

Amin

Plugging eq. (6.7.13)) and (6.7.14) into (6.7.12)), the type-A characters cancel out as in the

nonminimal theory and thus the remaining term is

AdS 1 >dul+e™ 50(2,d) w _u\4 50(2,d+2)
log ZAminCH—1 = 5 0 % 1 — e—u (@Rac (2u) + <62 —¢€ 2) ®Rac (2u)

©dul+e ¥ e%%*%)“ + e*(%l*%)”
/0 21— et (1 —ew)d-1

(6.7.15)

(4 -1)u
where in the second line u has been rescaled v — %. Notice that %

(—e-wya—1 1S the Harish-

Chandra character of the A = 422 representation of SO(l d). Then according to the character
integral representation of the sphere partition functions found in [2], the partition function of

minimal type-A theory on AdS;; is the same as the partition function of a conformally coupled
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scalar on S?. This result agrees with [111], where the appearance of this scalar partition function
is interpreted as an N — NN —1 shift in the identification of Newton's constant G ~ % Again,
starting from the square root regularized character and following the same argument as in the
nonminimal case, one can also show the vanishing of total multiplicative anomaly for minimal
type-A theory. Let's also mention that when d = 2r is even, the analogue of implies
the coefficient of log R of minimal type-A theory in AdSs,+1 matches the Weyl anomaly of a

conformally couple scalar on the boundary, which is a d-dimensional sphere of radius R.

6.7.3 Type-A, higher spin gravities

Nonminimal theory: Given the spectrum of nonminimal type-A; theory (6.7.3)), the total

partition function can be written as

o . (21 L 21
AdSqi1 dul+e ™ AdSys1 s _u AdS
o= [Tt (8 S - 8 et o)

p=1,35>0 p=1,3 5>0

(6.7.16)

where the spin label s is shifted by 1 in the sum of edge characters. Using the generalized Flato-
Fronsdal theorem ([6.7.4)), it's straightforward to show that the bulk and edge contributions

exactly cancel out

AdS X dul+e ™ 2 u _un4 2
og 7y = [ S (om0 - (8 - ) (02 w) ] =0

(6.7.17)
Therefore the total free energy of nonminimal type-A; also vanishes.

Minimal theory: Following the same steps as in the minimal type-A case, we can directly write

down the result for minimal type-A; theory

AdS I [°dul+e™ (2,d) u\4 s0(2,d+2)
log ZA?indH =3 N = (Gf;ac@ (2u) + (62 —e 2) GSRUan (2u)

[ dul+e e 5u (efn — ety
CJo 2ul—e v (1—eu)d

(6.7.18)

where u is rescaled in the second line. Naively speaking, eq. (|6.7.18)) doesn’t look like any
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character integral. But using the expansion 1 —e~ 2% = (1—e™%) 2%_01 e~ ™, we can transform

n=

it into a finite sum of character integrals in the dS sense

log Z' i — .7.19
08 £ ppin 2ul —e v (1 — e w)d-1 (6 )

L

A1 _ 3~ [l e (FHO- DI 4 o~ =0 P
n=1 0

where

(=~ —(n—Pu . d-1 1
(—e—uya=T is the Harish-Chandra character of the A = 5= +n — 5

representation of SO(1,d) and the corresponding character integral represents the one-loop

partition function of a scalar field of mass m2 = (4 — n)(42 + n) on S [2]. Defining a

n 2
. . . . AdS
collection of scalar Laplacians {—V2 + m%}1<n<g, the partition function log Z..*™" can be
- 14

rewritten as

¢ ¢
log 7295441 — N7 160 det(—V2 +m2) "2 = logdet (O04,) 2, O = T (=V2 + m?2
08 Zpmin Z ogdet(—V*+m;) 2 = logde ( Sd) , gd H( Ve +m;)

n=1 n=1

D=

(6.7.20)

where we are allowed to put the Laplacian into a product form because there is no multiplicative
anomaly on an odd dimensional manifold. Notice that ng, the Weyl-covariant generalization of
0%, is a GIMS operator on S¢ [225H228] and when ¢ = 1 it is reduced to the conformal Laplacian
on S%. Therefore, the one-loop partition function of minimal type-A, theory on AdSy,; is the
same as the one-loop partition function of the [J*-theory on S?. This is again consistent with

the N — N — 1 interpretation.

6.7.4 Type-B higher spin gravities

AdS,: Let's start considering the type-B theory in AdSy4. Its has the same spectrum as type-A
theory except the boundary condition imposed on the scalar is flipped. Using log Zﬁds‘* =0, we

are left with

—Uu

tog 78951 = [ T (0 ) - A () = - [T ST
0

T Jo 2ul—eu \TA=2 A=l Ul —eu (1—ev)2

(6.7.21)

which represents the change of partition function induced by a double-trace deformation. To

evaluate this integral, we can either regularize it by inserting u® and express it in terms of
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Hurwitz zeta function or directly use eq. (6.6.7)

log 72951 — g/;(x )z — g)(x _ 2) cot(mz) = Q;i) (6.7.22)

AdSg and higher: The spectrum of type-B theory in AdSg can be divided into the m = 0

sector and the m = 1 sector.

(4,00 EPI3 +5.(5,0)] | B | PI3 + 5. (s, 1)] (6.7.23)

s>1 s>1

m=0 sector m=1 sector

In the m = 0 sector we can turn to the result of type-A theory because the only difference
is scaling dimension of the scalar field. Using log Zﬁds@ = 0, we obtain the following result

without any extra effort

AdSs _ /°° dul+e e 4w — g3u /°° dul+e™® e3¢
0 0

1 IS¢ _ or — or
©8 Zm=0 20l —eu (1—eu)p 2ul —eu(l_ eu)

(6.7.24)

ZAdSG

m—o itself doesn’t have the double trace-

Unlike in AdS4, the m = 0 partition function log
deformation interpretation because A = 3 and A = 4 are not conjugate scaling dimensions.
We'll see that the double-trace deformation pattern can be restored with the m = 1 sector
taken into account. The m = 1 sector is more involving since it consists of fields with mixed
symmetry. Following the same steps as in section [6.3] we derive the character integral formula

for fields in massive representation [% + v, (s, 1)}

Pdultem | 5 e G 7 Je~(GH+u o= (GGHv)u
og (s,1),v A 2ul —eu [ s,1 (1 _ e—u)S s—1 (1 _ e_u)g 1_eu (6 5)

Unlike the spin-s case, the edge part of log Z, 1), should be interpreted as the 1-loop path

integral of DY_; massive spin-1 fields of scaling dimension % + v living on EAdSy, which is the
horizon of the Rindler patch of AdSg. Though this new observation E]of edge modes is intriguing

and may help to sharpen the understanding about edge modes, we'll not try to provide a precise

®More generally, we find that for a massive field with hook-like spin (s,1™) and scaling dimension A = g +v
in AdS4+1, the edge part of the 1-loop partition function corresponds to D;iff new massive fields with totally
antisymmetric spin (1) and scaling dimension A = % + v living on EAdS,4_1.
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interpretation for it. Summing over all the fields in the m = 1 sector, including the ghosts

associated with the s > 2 ones, we end up with a very simple expression

© dul+4e e 2 4 e 3U
log ZA4%6 — / — 6.7.26
08 “m=1 0 2ul—e v (1—eu)4 ( )

Combing (6.7.24)) and (6.7.26)) leads to the total partition function of type-B theory in AdSg

©dul4e e 2 g3

AdS AdS AdS
log ZB ¢ = log Zm:(? + log Zme = % 1—eu (1 _ e—u)5

(6.7.27)

which apparently has the interpretation of double-trace deformation of a conformally coupled
scalar field on S°. In higher dimensions, the partition function of m = 0 sector is still trivial.

For m > 1, the partition function restricted to the m sector is given by

AdSgq1 _1 [ dul+e ¥ e*(dflfm)u 4 67(d727m)“
log Zp, ~ = (=)™ /0 ]l —e-u (1- 6_“)d_1 (6.7.28)
which we've checked up to AdSig by mathematica. Summing over all log Z’r’%de-‘rl, we recover

the structure of double-trace deformation of a conformally coupled scalar on S¢ up to a sign

[113]

d—3
71’!1, d+1u

== _ 7d _
log Zédsd“ _ i log 72541 — (_)% /00 dul+e e T U_e

— 7.2
0 2ul—ev (1—eu) (6.7.29)

m=0

More explicitly, when % is odd, eq. (|6.7.29)) means that we turn on a double-trace deformation

0% ,A_= % which induces an RG flow from the original UV fixed point to a new IR fixed

point and when % is even, it means that we turn on a double-trace deformation (92A+,A+ =

d—;l which triggers an RG flow from the original IR fixed point to a new UV fixed point. Using
eq. 1@) for v =% and s =0, log Zédsd“ is alternatively expressed as

d—3

1 5
log ZBAGlS"lel = %/02 d\ H
! =0

(j + ;)2 — )\2] Atanh (7)) (6.7.30)
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For some lower dimensions, say d = 3,5,7, eq. ((6.7.30)) yields

tog 225 — SO o g _ SO CO) s CB) L C6) ()

- - 6.7.31
sr2r 108287 = ga goris 108287 = 7o+ qggrt Figgpe (673D)

consistent with [112]. For completeness, let’s also give the explicit result for any even dimensional

AdS

(=) (2n)!
log ZEA;d52r+2 _ nz::l 2((2)702” gk;;an(r)g@n +1) (6.7.32)

where {a,(r)} are defined as ;;(1)(:1: —32) =3 _, an(r) 2™ This result contracts with the
proposed boundary duality which predicts vanishing one-loop free energy and meanwhile it is

too complicated to be accommodated by a shift of V.

6.8 Comments on thermal interpretations

In chapter B with the help of character integral representations like, it is argued that the one-
loop partition function ZF(,ll) of a field ¢ on S9! is related to the bulk quasi-canonical partition
function of ¢ in the static patch of dS4y1, subject to possible edge corrections localized on the
dS cosmological horizon. In this section, we will explore the generalization to the path integral

on EAdS4.

6.8.1 AdS;

In the 2D Lorentzian AdS, there exist a black hole solution [192] with coordinates, cf. (D.5.5)

XY=p, X'=,/p2—1coshtg, X?=/p?— lsinh tg (6.8.1)

and metric ds? = —(pz—l)dt%+p§—p_21, which shows a point-like horizon at p = 1 of temperature

T = % Wick rotation tg — —i7 and identification 7 ~ 7 + 27 yield the 2D Euclidean AdS.

Compared to the conformal global coordinate of AdS»
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cost
C= 7 X'=tamf, X*=
CcoS

sintg

8.2
cos (6.82)

the black hole solution (/6.8.1]) covers the region: § € (0, %) and sin @ > |sintg|, cf. fig (6.8.1)).

Figure 6.8.1: A portion of the periodic AdS, Penrose diagram near tg = 0. The two vertical lines
) = £7 are the boundaries of AdS,. The black hole solution in eq. (6.8.1]) corresponds to the red region
denoted by “S". The region “N” is the image of “S” under the map XT — —X'. The red lines represent
the bifurcate Killing horizon.

This scenario is very similar to its dS counter part and hence we're allowed to use the dS
argument to claim that the thermal partition function of a field ¢ in the black hole patch of

AdSs is given by

® duyl+e

e es(w) (6.8.3)

log Trg e~ 2ml21 :/
0

where the noncompact Lorentz generator Lo; € s0(2,1) generates time translation tg — tg +
const and ©g(u) is the “character” defined with respect to the single-particle Hilbert space in
the black hole patch. Using the Bogoliubov transformations [175], ©g(u) can be replaced by

the SO(2, 1) Harish-Chandra character @gc(u) = trge ™21 which is traced over the global
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single-particle Hilbert space:

© du1+€_“ HC

log TI'S C_ZWLQI :/0 ﬂm @SO (U) (684)

At this stage, we want to emphasize that the Harish-Chandra character @gc(u), by defi-

nition, is completely different from the characters we've used in the previous sections, like

@2‘152 (u) = 16__6:- The latter are defined as trge ! for positive u, where H is the global
Hamiltonian generating global time translation ¢ — tg + const. Indeed, these characters are
not group characters. So it seems that we cannot naively identify the thermal partition function
Trge~27L21 as the one-loop path integral on Euclidean AdS,. However, in the appendix ,

we explicitly compute the Harish-Chandra character @gc(u) when ¢ is a scalar field of scaling

dimension A and we find perhaps surprisingly

O (u) = O™ (Jul) (6.85)

which yields

© dul+4e v e Bu
2ul —e %1 —e ¥

log Trg e 2™kt — / (6.8.6)
0

in agreement with the path integral result cf. . Therefore the one-loop path integral
on EAdS, can be interpreted as the quasi-canonical partition function Trg e 2721 in the black
hole patch. To further understand why the Harish-Chandra character @Zc(u) appears in the
quasi-canonical partition function Tr, e 27221 we explore the underlying physical meanings of
@gc(u) in appendix . In section , we show that @gc(u) encodes the quasinormal
spectrum of ¢ in the black hole patch of AdSy and in section [D.7.2] we extract a well-defined
single-particle density of states in the black patch from @Ec(u) and show numerically that it
can be realized as the continuous limit of the density of states in some simple model with a

finite dimensional Hilbert space.
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6.8.2 Higher dimensions

In higher dimensional AdS4. 1, the universe perceived by an accelerating observer is called (south-

ern) Rindler-AdS due to the presence of a Rindler horizon [4]. The Rindler-AdS admits a dSg1
foliation, cf. appendix [D.5

dr?

ds? = dn? + sinh n? (—(1 —r?)dt% + 2
—r

- r2dQ§_2> (6.8.7)

and hence has temperature 7' = % In the Rindler-AdS patch, we can use the dS type argument

to show that the quasi-canonical partition function of ¢ with spin-s and scaling dimension A is

Fdult e gue
2ul—eu ¥

log Trg e 2™hat+1.d = / (u) (6.8.8)
0

where the noncompact Lorentz generator Lgi1,4 € s0(2,d) generates time translation tg —
ts + const and G)Ec(u) is the Harish-Chandra character trge " d+1.d_ |n the appendix ,
we argue that ©C(u) = @gdsd“(\m) = % when ¢ is a scalar field and we believe
@Ec(u) = @?Eif+1(|u|) should still hold when ¢ is a spin-s field. Granting this relation, we are

left with

© dul+e ™ Ads
ﬁm G[A,STA (U) (689)

log Trg e 2™ lat1d — /
0

When d is odd, exhibits the the agreement between Trg e~2mLa+1,d and the bulk part of
the one-loop path integral on Euclidean AdS. However, when d is even, is different from
the path integral result , including the volume dependence and the contour choice. We
believe that the key of solving this difference is computing the properly IR regulated path integral
on Euclidean AdS and understanding the mixing of UV and IR divergences. More explicitly, a
functional determinant of an operator D can be represented as an integral transformation of the
corresponding (integrated) heat kernel Kp(t) = [,, d°z /g Kp(t;z,z), cf. . If the base
manifold M is maximally symmetric and the operator D also preserves the isometry group of M,
then Kp(t;z, ) is independent of = and hence the integral [,, dPx ,/g simply yields the volume

of M. When M is a compact manifold like sphere, the factorization K'p(t) = Voly Kp(t; zo, o)
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is well-defined but when M is a noncompact manifold like flat space and Euclidean AdS, the
naive factorization suffers from an IR divergence Voly; — oo. Such an IR divergence is not a
big issue while computing the free energy of ideal gas in flat space if we only care about the
leading large-volume behavior, i.e. the extensive part. However, in the AdS case, as we want to
extract the R or log R piece E] it's apparently more appropriate to introduce a radial cutoff R
and impose certain boundary conditions on the cutoff surface. This procedure would spoil the
SO(2,d) symmetry and discretize the spectrum of Laplacian operators. The symmetry breaking
can lead to considerable technical difficulties in computing the heat kernel K'p(t; z,x). Another
approach to this difference is dimensional regularization which works for both the UV and IR
divergences, along the line of [214] [229]. But the physical picture is not clear if we implement

this formal regularization scheme. We will leave this to future work.

b1t’s very likely to have a R° piece even when d is even if we implement the IR regulator properly. Of course,
the R® piece in this case is ambiguous because it is contaminated by the log R piece.
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Appendix A: Appendix for chapter 3

A.1 The explicit action of £y on ¢\V)(x)

In the section|(3.2.2.4] we have defined an operator £ : ]:Jt — ]:1+_N such that the composition

ON=1o €y gives the identity operator on Fy. In this appendix, we aim to compute the action

of £y on the basis ng)(x) of i, cf. eq.

(2N¢7(1N)) (z) = 11(2]\}_1) /RHE % (z — y)>V "V log(z — y)p M (y) (A.1.1)

As shown in the fig. (A.1.1]), we can deform the contour to go around the branch cut and then

log(z — y) is replaced by its discontinuity along the branch cut

1 0o B (1 _ Z-y)n—N
(N) e R S R i — A12
(enuiV) @) = —pam—p [ w2V (A12)
~ o £ :4
(a) Original contour (b) Deformed contour

Figure A.1.1: The contour deformation for the y-integral in eq. {' The black wavy line
denotes the branch cut of log(z — y).
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Next, we rewrite (1 — iy)" " as polynomials of 1 + iy and evaluate the y-integral for each

monomial by using integration by part repeatedly
_\n—N+1 n—N N 00 _ \2(N-1)
M) () = TSN g N / (y — ™Y

(=)t i - N k! —2 \*
1+ k;( k )(2N+k—1)!(1+im) (A.13)

To compute the remaining series of k, we can extend the sum to £k = 1 — 2N and subtract
these extra terms by hand. The sum from k =1—2N to k =n — N is nothing but a binomial

expansion

N Tn—
(eve™) () = 2(2N)—1i F(F(N]—Vk :)l)w’(ll_m () + Poly(z) (A.1.4)

where Poly ,,(z) is a polynomial in x annihilated by 927!

()T - N4+ 1) e N1 1z
Poln n(z) = 5 T(N +n) ];) <2(N - k‘) (_2 > (A.1.5)

As a quick consistency check, combining eq. (3.2.37)) and (A.1.4), we obtain the expected
property

RN (eneV) (@) = N (@) (A.L6)

A.2 Induced representation

In this appendix, we review the simple idea of induced representation and its applications in the
SO(1,d + 1) case. Let H be a subgroup of G and let p be a representation of H on some
vector space V. The induced representation ind%p of GG operates on the following space of

equivariant maps from G to V

Mapy (G, V) = {\p LG = VI|¥(gh) = p(h) "W (g), g€ G, h € H} (A.2.1)
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(900)(g) =7 (97'¢) (A.2.2)

In the case of G = SO(1,d + 1), we take H to be the minimal parabolic subgroup S = NAM
and V to be the space P[2"] of homogeneous polynomials in a null vector 2’ of degree s, which
is also equivalent to the space of symmetric and traceless tensors of rank s. The representation

p = pa,s of Siis chosen to be

pas (ne*Pm) f(2) = e A f (pr(m)~'2) (A2.3)
where n € N, m € M and p;(m) is the fundamental representation of M = SO(d), i.e.

P1 (eéeijMi) 2R 2P 0N 2+ 0(02) (A.2.4)

The induced representation indgpAﬁ then acts on the space of polynomial-valued functions

U(g, z) that satisfy
U(gs,2) = pas(s) W(g,2), s€S (A.25)

Due to the Bruhat decomposition and the equivariant condition (A.2.5]), such a function ¥(g, z)
is completely fixed by its value on N, which is geometrically a flat space Rd Define ¢ (x, z) =

(e P, z) and we will show that the (infinitesimal version of) induced representation indgpAys

agrees with the previous construction, c.f. eq.(3.3.8).

= Translations:

Derivative with respect to a’ yields ‘ Pp(z,z) = —0ip(x, 2) ‘

The Bruhat decomposition says that SO(1,d + 1), up to a lower dimensional submanifold, can be written as
a product NS . This lower dimensional manifold corresponds to the infinity point of R? when we quotient out
the S dependence.



= Dilatations:

(e/\D o ¢) (z,2) = U(e PP 2)
Using e AP p.erD — ¢=AP; we obtain

(P 09) (@,2) = pas(P)u(e e, 2) = e Mpp(e e, 2)

which leads to ’ Dip(z,2) = —(x - 0z + A)Y(z, 2) ‘

. 10ij Mf.
Rotations m = e3%”Mij .

moth(x,2) = pas(m)U(m e m, z) = (e P, py(m) ')

where z,, is defined via m~te*Pm = e’ Infinitesimally, we have

=2t =07+ 00%), pi(m)7'2" =2 =072+ O0(6%)

and hence | M (z, 2) = (2;0; — xj0; + 20,5 — 2j0,:)¢(x, 2) |

Special conformal transformations:

For our purpose, we can replace e % by 1 — b - K and then use

—e b Ke"! = —b- K —2x-bD + 202/ My; + (2°b" — 22 - ba') P

which yields

(eb-K o ¢) (z,2) =T (6((172x-b)x+xzb)-Pefb-Kefo-bDe%iszij72) + (’)(bZ)

236

(A.2.7)

(A.2.8)

(A.2.9)

(A.2.10)

(A.2.11)

(A2.12)

= e (1 = 22 - b)w + 2%b, 22 - 2b— 2b- z2) + O(V) (A2.13)
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Take derivative with respect to b’ and we obtain

Kip(z,z) = (x28i —2xi(x -0+ A)+2(x- 20, — 2z x - 83)) P(z, 2) (A.2.14)

A.3 Irreducibility of Fa

In this section we will give an elementary proof about the irreducibility of Fa for a generic
A. The argument heavily relies on the result of the section where we have learned that
the SO(d + 1) contents of Fa are all single-row representations. Assuming the existence of
a nontrivial SO(1,d + 1) subspace Wa of Fa, it admits a decomposition into SO(d + 1)

representations

Wa =Y, (A.3.1)

neo

where ¢ is a nontrivial subset of N. We will show that this assumption is invalid because given
an arbitrary wavefunction v (z) in certain Y, by acting the dilatation operators repeatedly, it
can get components in any SO(d + 1) content of FAx.

Pick any ¢(z) € Fa. According to the section , it is a function 1/; on S? (in stere-
ographic coordinate) multiplied by a Weyl factor, i.e. 9(z) = (H%)Aiﬁ(x) Switching to

spherical coordinates 2° = w' cot §,w’ € S971, the action of the dilatation operator on (0, w)

becomes
D1)(0,w) = (sin 03y 4+ A cos 0) (6, w) (A3.2)
The function 7) can be expanded in terms of spherical harmonics on S¢
¢ (41
Yiem (0, w) = Ny sin® 0 C — )2 (cos0)Yem(w), n >4 (A.3.3)

where Yy, (w) denote the normalized spherical harmonics on S9=1 and N, is a constant such
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that Y,,pm is normalized

_ €—1+% d—l) (n_£)|<n+%)
= F<K+ 2 m0(n+{+d—1) (A3.4)

A
For a fixed n, all (H%) Yiem(0,w) span the Y,, part of Fo. Next, we need to figure out

the action of D on all the spherical harmonics. This computation can be done by using the

following recurrence relations of Gegenbauer polynomials

n+1 n—142X

A _ A+1 A — S
2 1
(1 -2 @) = "L 20w - CH e @) (A35)
which yield
B (n+1—0n+€+d—1)
D¥ntm = (A +n) \/ 2n+d—-1)2n+d+1) "

_ (n—0n+L0+d—2)
+1-A-n) \/(2n +d—3)2n+d— 1)Y"‘“Zm (A.36)

The coefficients of Y;,11, ¢m are nonvanishing except A € {d,d+1,d+2,---}U{0,—1,—2,---}. There-
fore, according to the argument at the beginning of this appendix, the representation Fa is irreducible
when A is away form these integers. For A € {d,d + 1,d + 2,---}, the subspace with SO(d + 1)
contents P, _x Y, is irreducible with respect to SO(1,d + 1) and for A € {0,—1,-2,---}, the
finite dimensional subspace P, < A Yy is irreducible and it carries the spin (—A) representation of
SO(1,d +1). These finite dimensional representations are nonunitary except the A = 0 one which is the

trivial representation.
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Appendix B: Appendix for chapter 4

B.1 From ambient space to intrinsic coordinate: Maxwell field

In this appendix, we show the agreement between our algebraically constructed primary quasnormal
modes and their intrinsic coordinate counterparts in literature for free Maxwell fields. According to [83],

the quasinormal modes of Maxwell theory can be divided into the following two types:

3—d(1 _ .2
124D — 0, AD = RO () Yyme—t, AD =T (1—72)

d—1 p(I) . —iwt 1.
b +d—2) O, (r*=" RY(r))0g9aYrme (B.1.1)

where 9% are the spherical coordinates on S%~! and Yy, are scalar spherical harmonics on S%~1.

s AUD = 40D =, AUD = RUD (p)ytm it (B.1.2)

r

where Y™ are divergence-free vector spherical harmonics on S%~!. In type | solutions, the

radial function R (r) is given by

R(I)(T):T’E_l(l—TQ)%)F(£+ZW+d_2,€+Zw+2,d E,T2> (B.1.3)
2 2 2
with the quasinormal frequency w valued in
iwi, =0+d—2+2n, iv], =0+2+2n (B.1.4)
In type Il solutions, the radial function RUY)(r) is given by
iw ) -1 ) 1
RUID(p) = p41(1 = p2) 5 F (5 a “"; d=1 L+ = * ,g —|—€,r2> (B.L5)
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with the quasinormal frequency w valued in
zwgn—€+d—1+2n zwén—€+1+2n (B.1.6)

In both type | and Il, £ > 1 and n > 0. In the following, we show that the primary quasinormal

) agree with the type | solutions of frequency iw{yo and 7(1)

modes o ij

agrees with the type Il

solutions of frequency sz

(1)

Match the primary o, -mode

Using eq. lb the type | quasinormal modes with £ =1 and iw = iw{}o =d—1 are

—(d-1)t —(d-1)t
AD g A = eiyhn(g) AD = L 90 Vim(Q) (B.1.7)

(- (-
On the other hand, the pull-back of al(- ) = wRd 2 yields

(XH)4

(1) :El'atX—i_ _ rQ-e (d-1)t
1

Qi = (Xt — W
LU _ XPoi - g Xt Qe (V!

i,r (X+)d (1 B T2)4+1

(1) Xt0gpax; 1 0paQe (@D
Ya TN T T o) E (B.1.8)

Naively, AELI) and «; ;, look different. This is because the former is solved in a modified Feynman
gauge [230] while the latter follows from boundary-to-bulk propagator in de Donder gauge, which

for spin-1 field is simply the Lorenz gauge. To compare the two results, we perform a gauge

(1) (1)

transformation Q= Q= Qi+ 0,&; to set the t-component zero. The simplest choice of

(1)

the gauge parameter is & = 1104” Due to this gauge choice, the new «;” modes become

al) =0, ) _d—2 Qe d(1):d—2r&9a§2ie—(d—1)t ©.19)
R 1

@,

Since {€2;}; and {Y1m }m are just different basis for the same vector space of spherical harmonics

of eigenvalue —(d — 1) with respect to V%d_l, eq. and eq. 1} actually represent the

same set of quasinormal modes.
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Match the primary 7-(1)-m0de

(2

Using eq. lb the type Il quasinormal modes with ¢ =1 and iw = i@{,lo =2 are

7,2 e—2t

17
AUD 40D _ g AUD R (8] (B.1.10)

TiUj—TjU;

On the other hand, the pull-back of 7!’ = TS yields

2 ,—2t

) n _me
r= 0, ryij,a == 1_,2 (Qi&gan - Qj&gaQi) (Blll)

L _
Yije = ig,

One can check directly that 3;;, = ;09.€); — Q;09a€2; are indeed divergence-free vector

harmonics of £ = 1. For example, let's consider the d = 3 case where the vector harmonics are

given by Y™ = e(1£+1)eabvb}/gm [231]:
1 /3 1 /3 4
Y0 = 5\/ %(0, sin?g), Y = 4\/;eiw(—i, +sin 6 cos ) (B.1.12)

where 9% = (6, ¢) are the usual spherical coordinates on S?. Meanwhile, by working out Yija

explicitly, we obtain

12,4 = (0, sin? 0), Yoz, E£i¥31,, = :Feiw(—i, +sin 6 cos 0) (B.1.13)

Therefore, fy( ) in (B.1.11) and A,(fl) in (B.1.10]) represent the same quasinormal modes.

1
i,

B.2 Match quasinormal spectrums

In the section , we defined a quasinormal character ©QN for a given quasinormal spectrum
{w,d,}, cf. . By definition, the correspondence between quasinormal characters and
quasinormal spectrums is one-to-one . In this appendix, by using quasinormal characters, we
show that our algebraic construction yields the same quasinormal spectrum as [83] for Maxwell
fields and linearized gravity. On the algebraic side, the quasinormal character of a massless

spin-s field is shown to be given by eq. (4.5.12). In particular, for s = 1 and s = 2, the
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quasinormal characters read

dqd—l _ qd dq -1

OfN(g) = + +1 B.2.1
@ 1—g? ~ (1-g)F (B.21)
and
D¢ ¢t — D4 g+l DI — DI gt d>—d+2
Ny _ P2d 14 2 19 d -1 B2.2
05" (q) i=q i—q) +dlg+q )+ —— (B.2.2)

where D¢ =d, DY = 1(d+2)(d—1).
Maxwell fields
In the previous appendix, we've summarized the quasinormal modes of Maxwell fields computed

in [83]. Here let's briefly recap the information about quasinormal frequencies:

type | : dwl, =0+d—2+2n, id;, =(+2+2n

type I+ iwyl, =0+d—1+2n, i@}, =(+1+2n (B.2.3)

s

where ¢ > 1 and n > 0. For fixed ¢ and n, each frequency of type | quasinormal modes
has degeneracy Dg because ¢ labels scalar spherical harmonics while each frequency of type
Il quasinormal modes has degeneracy Dgl because /¢ labels divergence-free vector spherical

harmonics. So the quasinormal character associated to the spectrum (|B.2.3)) is

0o 0o
@?Nnntmn(q) = Z Z D;l (q“’"l{,n + qlwl{,n) + D;ll (q“’"t{fn + qzwl{fn)

¢=1n=0
2 d—2 d—1
9 +q d ¢, 914 d ¢
=g > " Dfq + T > Dfq (B.2.4)
7 = 7 >

where the first sum over £ simply follows from

144¢
S D= e (B.25)
>0 (1 - q)

The second sum over £ in (B.2.4)) can be derived using

Di, = DiDI- — Dl Dl (B.26)
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In particular, when s = 1, D}, = (d — 2)D¢ — DgHQ and hence the second sum reduces to the

(B.2.5) type:

Y D q" =(d-2) Lha —( 1+q_1_ —q1> (B.2.7)

= I=gt \(1-g?

Plugging (B.2.5) and (B.2.7) into the quasinormal character (B.2.4) yields

intrin dqd_l - qd dq -1
ORI (g) = I—qf " (1—gi " 1=6"(q) (B.2.8)

which shows the agreement between our algebraic method and the traditional analytical method
on the quasinormal spectrum for Maxwell theory.

Linearized gravity

Quasinormal modes of linearized gravity are divided into three categories. The three types
of fluctuation can be solved simultaneously by using the so-called Ishibashi-Kodama equation

[77, 83, 232]. The quasinormal frequencies are:

Scalar type fluctuation : iwgn =0+d—2+ 2n, iwgn =f{+2+2n
Vector type fluctuation : z‘an =l+d—1+42n, zdz}/n ={+142n

Tensor type fluctuation : iwgn ={+d+2n, z'w;{n =0+2n (B.2.9)

where £ > 2 and n > 0. In these 3 types of fluctuations, ¢ labels scalar spherical harmonics,
divergence-free vector spherical harmonics and divergence-free tensor spherical harmonics on
S4=1 respectively and hence for fixed ¢ and n, each frequency has degeneracy D?,D;fll and DgQ
respectively. Altogether, the quasinormal character associated to the spectrum is given
by

G(ZQN,intrm E Z DE ZwZn + qlwén)‘f'Dg ( zwz‘; + qzdle) + DziZ(qiwg; + quDZTn)
£>2,n>0
Q+qd2 D Z 1+qd Dd 4 B.2.10
v 22 + S Dy (B210)
>2 >2 4 =3

where the first two series of £ are essentially computed in the Maxwell field case and the last
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series follows from eq.(B.2.6]) with s = 2:

1+gq 1+q7! 1 d(d—1)
Y Dhq =D —— —d (H —g )+ R (B.2.11)
= (1—q) (1-q) 2
Combine the three series of £ in (B.2.10)) and we obtain
. . Dd d,Dd d+1 Dd*Dd -1 d27d+2
@2QN7ZntT’7,n(q) — 24 14 + 2 19 + d(q + qfl) 4 (8212)

(1-q) (1-q) 2

which is exactly @SN(q). This computation confirms the match of quasinormal spectrum for

linearized gravity. E]

B.3 Details of ~°)

i1y, sisls

The higher spin quasinormal mode 71.(821 .

i.0, defined by eq. (4.3.34) is rather schematic. In

this appendix, we will write out its explicit form and then show various properties of it. Let’s

start from recollecting the definitions

%(leze (X,U) =1l Py - P (— 10g(X+)Bc§f-)--zs) — trace (B.3.1)
1
B, (X, U) = (X+)? (X Tug, = UTg,) - (X Tup, — U'ag,) — trace (B.3.2)
where the projection operator I, antisymmetrizes [i1, ¢1],- - , [is, {s]. Notice that X~ 0, and

U~ 9, would introduce terms proportional 5ijik and 5Z'jgk. The former is killed by Il and the

latter as a pure trace term also drops out in fyi(le R Therefore only 2z;0x+ and 2u;0p+
(s) (s)

can have nonvanishing contributions to Vi g ials and 7; 1o il is independent of X~ and

When d = 3, the tensor type fluctuations doesn’t exist because there is no divergence-free tensor harmonics
on S?. However, one can still recover the quasinormal character O$V(q) for d = 3 by counting quasinormal
modes in the scalar and vector type fluctuations in this case.
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U-. As a result, 4\*)

b0y isls has to be of the following form

77'(;3217 77;sés (X7 U) = ngél, ,isés (x7 u)f(X+7 U+) (834)
(s)

Xiy by o il (x,u) = (x5, up, — uiyxe,) -+ (Ti ug, — wi xp,) — trace (B.3.5)

where f(XT,U™") is an unknown function to be fixed. With z;,u, being SO(d) vectors, the
()

tensor X; u. . 0. (z,u) carries the Yy, representation of SO(d). In particular, it satisfies the
following set of equations which can be thought as the SO(d) analogue of uplift conditions and

Pauli-Fierz conditions:

85 X(S) (z,u) = 85 X(S) (x,u) = Oy - Oy X(S) (z,u) =0
-0, X(S)(ZL‘,U) =u-0; x(s)(x,u) = (x -0y — 5) X(S)(x,u) = (u-0y —8) X(S)(x, u) =0
(B.3.6)

(s)

where the subscripts of x; . ..

i.0, are suppressed.

Using the definition (|B.3.1)), it's easy to check that ’yi(fgl .. i1, Satisfies the same conditions

—4.2.10 as Béf.)nzs. In particular, the homogeneity condition and the tangentiality

condition yields

X* 0y f(XF,UF) =0, Xtoy f(XHU) = —2f(X*,U%)  (B37)
which have solution f(X*,U™) = ﬁ Therefore, up to an unimportant normalization factor
cs, the explicit form of 'yi(lsgl it 1S

(s)
(s) _ Xifgl,.,.,isgs (z,u) (miug, —ug ) - (T g, — Ui, Tp,) — trace
,yilely"' 77;szs - CS (X+)2 o CS (X+)2

(B.3.8)

For example, for a Maxwell filed, (B.3.8)) is consistent with (4.3.19)). More generally, all the
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~-primaries that are generated by SO(d) action on (|B.3.8)) can be collectively expressed as

Tss(x,u)

(X, U) = )2 (B.3.9)

where Tys(z,u) is a polynomial in %, u’ carrying the Y representation of SO(d) [} i.e. it

satisfies
Tss(ax,bu) = (ab)’Tss(z,u), u-0yTss(x,u) = BgTss(x,u) =0 (B.3.10)

All the linearly independent choices of T, correspond to the degeneracy of v(9).

Near horizon 7(5)

> ., becomes singular because X — 0. This singular behavior also
1161, yisls

shows the following in-going boundary condition:

s 1 o
72‘(121,...,2‘363 (p = 00) ~ xre e 2T=p) (B.3.11)

where we can directly read off the quasinormal frequency iw = 2.

The next task is to show that fy(s)

il
its explicit form (B.3.8) (we can also use (B.3.9)) with Tss(x,u) subject to (B.3.10])). Acting

the special conformal transformation K, on %.(321 il

. 4.0, 1S Primary up to gauge transformation by using

we get (dropping the normalization

constant ¢;)

() _ ! (5) Ut (s)
Ko Vi st = 7 00X, ot T (X+)28“mxif€1,---,zses
D X 1
= U0 [ - )y (0 0,00 4 Oe) X, e, (B312)

(s)

where we've replaced U - dx by u - d, in the second term of the second line because Xiy by sl

(s)

only depends on ', u’. In addition, noticing that - d, kills x; ;.

.i.0,» the product of operators
u- 0,y Oym can be replaced by the corresponding commutator [u- 0, Oym| = —0,m which cancels

the other derivative with respect to 2™. Altogether, 7(5)

i10y s, 1S @ Primary quasinormal mode

2Taking eq. 1} as an ansatz of quasinormal modes (which satisfy the in-going boundary condition
automatically as we will see below), then it's easy to show that uplift conditions and Pauli-Fierz conditions are
equivalent to Tss(z,u) carrying the Y, representation of SO(d).
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in the sense that Km*yz-(fgl ..i,¢, €an be removed by a gauge transformation

et (B.3.13)

s aumXES) e (m,u)
K 71'(1621,-.. Jists (Xv U) =U-0x (_Cs nan L

where we've restored the normalization constant cs.
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Appendix C: Appendix for chapter 5

C.1 Density of states and quasinormal mode resonances

The review in the section focuses mostly on mathematical and computational aspects of
the Harish-Chandra character O(t) = tre *#. Here we focus on its physics interpretation,
in particular the density of states p(w) obtained as its Fourier transform. We define this in a
general and manifestly covariant way using Pauli-Villars regularization in section [5.2] Here we
will not be particularly concerned with general definitions or manifest covariance, taking a more
pedestrian approach. At the end we briefly comment on an “S-matrix” interpretation and a
possible generalization of the formalism including interactions.

In we contrast the spectral features encoded in the characters of unitary represen-
tations of the so(1,d + 1) isometry algebra of global dS;.; with the perhaps more familiar
characters of unitary representations of the s0(2, d) isometry algebra of AdS,;1: in a sentence,
the latter encodes bound states, while the former encodes scattering states. In we ex-
plicitly compare p(w) obtained as the Fourier transform of ©(t) for dSs to the coarse-grained
eigenvalue density obtained by numerical diagonalization of a model discretized by global angular
momentum truncation, and confirm the results match at large N. In[C.1.3|we identify the poles
of p(w) in the complex w plane as scattering resonances/quasinormal modes, counted by the
power series expansion of the character. As a corollary this implies the relation Zp; = Zpu of
can be viewed as a precise version of the formal quasinormal mode expansion of log Zp;
proposed in [163].

C.1.1 Characters and the density of states: dS vs AdS

We begin by highlight some important differences in the spectrum encoded in the characters

of unitary so(1,d + 1) representations furnished by global dS;. single-particle Hilbert spaces
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and the characters of unitary so(2, d) representations furnished by global AdS;. single-particle
Hilbert spaces. Although the discussion applies to arbitrary representations, for concreteness we

consider the example of a scalar of mass m? = (%)2 + 12 on dSy. 1. Its character as computed
in (3.4.7) is

o= Dt | o—At

— —itH __
@ds(t):tre ' —W,

Ay=9%+iv, teR (C.1.1)

where tr traces over the global single-particle Hilbert space and we recall H = My 441 is a
global SO(1,1) boost generator, which becomes a spatial momentum operator in the future
wedge and the energy operator in the southern static patch (cf. fig. ) This is to be
contrasted with the familiar character of the unitary lowest-weight representation of a scalar of

mass m? = —(£)? + 112 on global AdS,;1 with standard boundary conditions:

6—iA+t

— —itH __
@Ads(t) =tre’ = mv

Ay=%+4u,  Imt<O. (C1.2)

Here the s0(2) generator H is the energy operator in global AdS;1. Besides the occurrence of
both Ay in (C.1.1]), another notable difference is the absence of factors of i in the exponents.

The physics content of @aqg is clear: ©aq5(—i3) = tre P is the single-particle partition
function at inverse temperature 3 for a scalar particle trapped in the global AdS gravitational

potential well. Equivalently for Im¢ < 0, the expansion
Opas(t) = > Nye ™, A=A_+n, neN, (C.1.3)
A

counts normalizable single-particle states of energy H = ), or equivalently global normal modes

of frequency A. The corresponding density of single-particle states is

pads(w) = /OO ;i;i Oaas(t) et = ZN)\ d(w—N). (C.1.4)
oo S

For dS, we can likewise expand the character as in ((C.1.3]). For ¢t > 0,

@ds(t):ZN/\e_“’\, A=—i(AL +n) :—i(%+n):|:y, n e N. (C.1.5)
A
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Figure C.1.1: Density of states pj(w) for dSs scalars with A = 1+ 24, A = % A = %, and UV
cutoff A = 100, according to ((C.1.7). The red dotted line represents the term 2A/w. The peak visible
at A = 1—10 is due to a resonance approaching the real axis, as explained in section |C.1.3

However X is now complex, so evidently N does not count physical eigenstates of the hermitian
operator H. Rather, as further discussed in section [C.1.3] it counts resonances, or quasinormal
modes. The density of physical states with H = w € R is formally given by

© dt > © 4 _iw
pds(w) = /_ % @dS(t) et = A — @ds(t) (€Wt +e t) , (C16)

where w can be interpreted as the momentum along the T-direction of the future wedge (F
in fig. and table [C.3.5). Alternatively for w > 0 it can be interpreted as the energy in
the southern static patch, as discussed in section A manifestly covariant Pauli-Villars
regularization of the above integral is given by . For our purposes here a simple t > A~!

cutoff suffices. For example for dSgs,

[ dt e~ 1+t + e—(1—iv)t it np
pdss A(w) = /Ai1 o (=rE (e 4 e7t) (C.1.7)
_ A % (w £ v)coth(r(w £ v)).
m

+

Some examples are illustrated in fig. In contrast to AdS, pgs(w) is continuous. Indeed
energy eigenkets |wo) of the static patch form a continuum of scattering states, coming out of
and going into the horizon, instead of the discrete set of bound states one gets in the global AdS
potential well. Note that although the above pqg, A(w) formally goes negative in the large-w

limit, it is positive within its regime of validity, that is to say for w,v < A.
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Figure C.1.2: Density of states for a A = 1 + iv scalar with v = 2 in dS,. The red dots show the
local eigenvalue density py(w), (C.1.10)), of the truncated model with global angular momentum cutoff
N = 2000, obtained by numerical diagonalization. The blue line shows p(w) obtained as the Fourier
transform of O(¢), explicitly with e A = 4000. The plot on the right zooms in on the IR region.
The peaks are due to the proximity of quasinormal mode poles in p(w), discussed in

C.1.2 Coarse-grained density of states in globally truncated model

Fora A = % + v scalar on dSs, the density of states regularized by as in ((C.1.7)) is
p(w) = 2 log(e™7A) — L > Y3 +iv +iw)) (C.1.8)
T 2r 2 ’

where v is the Euler constant, ¢(z) = I''(z)/T'(z) is the digamma function, and the sum is over
the four different combinations of signs. To ascertain it makes physical sense to identify this
as the density of states, we would like to compare this to a model with discretized spectrum of
eigenvalues w.

An efficient discretization — which does not require solving bulk equations of motion and
is quite natural from the point of view of dS-CFT approaches to de Sitter quantum gravity
[38, 39, [203] — is obtained by truncating the global dS;y; angular momentum SO(d + 1) of

the single-particle Hilbert space, considering instead of H a finite-dimensional matrix
hss = (a|H|5'), (C.1.9)

where & are SO(d+ 1) quantum numbers. For dSs this is SO(2) and ¢ = n € Z, truncated e.g.
by [n| < N. The matrix h is sparse and can be computed either directly using |n) [ dip e™?|p)

and the explicit form of H, i.e. H = i(sin 0, + A cos ¢), or algebraically.
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Figure C.1.3: Comparison of d = 1 character O(t) defined in (C.1.1) (blue) to the coarse-grained
discretized character O 5(t) defined in (C.1.11)) (red), with 6 = 0.1 and other parameters as in fig.
Plot on the right shows wider range of ¢. Plot in the middle smaller range of ¢, but larger ©.

The algebraic way goes as follows. A normalizable basis |n) of the global dSs scalar single-
particle Hilbert space can be constructed from the SO(1,2) conformal algebra , using a
basis of generators Ly, Ly related to H, K and P as Loy = %(P+ K), Ly = %(P — K)+iH.
Then Ly is the global angular momentum generator iJ; along the future boundary St and Ly
are its raising and lowering operators. In some suitable normalization of the L eigenstates |n),
we have Lo|n) = n|n), Li|ln) = (n £ A)|n = 1). Cutting off the single-particle Hilbert space
at —-N <n < N, the operator H = %(L_ — L) acts as a sparse 2N x 2N matrix on the
truncated basis |n).

A minimally coarse-grained density of states can then be defined as the inverse spacing of

its eigenvalues w;, i = 1,...,2N, obtained by numerical diagonalization:

2

_. C.1.10
Wi+l — Wi—1 ( )

PN (wi) =

The continuum limit corresponds to N — oo in the discretized model, and to A — oo in (|C.1.8]).
To compare to (|C.1.8), we adjust A, in the spirit of renormalization, to match the density of
states at some scale w, say w = 0. The results of this comparison for v = 2, N = 2000 are
shown in fig. Clearly they match remarkably well indeed in the regime where they should,

i.e. well below the UV cutoff scale.

!Notice that the definitions of P, K, H differ by an overall factor i from the convention in chapter

2The asymmetric choice here allows us to use the simple coarse graining prescription and keep this
discussion short. A symmetric choice |n| < N would lead to an enhanced Z2 and two families of eigenvalues
distinguished by their Z2 parity, inducing persistent microstructure in the level spacing. The most efficient way
to proceed then is to compute pn,+(w) as the inverse level spacing for these two families separately and then add
the contributions together as interpolated functions. For dS3 with SO(3) cutoff £ < N one similarly gets 2N + 1
families of eigenvalues, labeled by SO(2) angular momentum m, and one can proceed analogously. Alternatively,
one can compute pn(w) directly by binning and counting, but this requires larger N.
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We can make a similar comparison directly at the (UV-finite) character level. The discrete
character is 3, e~™if, which is a wildly oscillating function. At first sight this seems very
different from the character O(t) = tre~** in . However to properly compare the two,
we should coarse grain this at a small but finite resolution §. We do this by convolution with a

Gaussian kernel, that is to say we consider

— 1 o0 / sy 4! —tw; — 04 w*
Ons(t) = \/%/ e G S e e (C.1.11)

A comparison of (:)N75 to © is shown in fig. for 0 = 0.1. The match is nearly perfect for |¢|
not too large and not too small. For small ¢, the C:)N,J(t) caps off at a finite value, the number
of eigenvalues |w;| < 1/, while ©(t) ~ 1/|t| — oo. The approximation gets better here when
¢ is made smaller. For larger values of t, éN,é(t) starts showing some oscillations again. These
can be eliminated by increasing J, at the cost of accuracy at smaller . In the N — oo limit,
the discretized approximation gets increasingly better over increasingly large intervals of ¢, with
lims_y0 impy 00 On 5(t) = O(2).

Note that there is no reason to expect any discretization scheme will converge to O(t) or
p(w). For example it is not clear a brick wall discretization along the lines described in section
[C.4.3|would. On the other hand, the convergence of the above global angular momentum cutoff

scheme to the continuum ©(t) was perhaps to be expected.

C.1.3 Resonances and quasinormal mode expansion

Substituting the expansion ((C.1.5)) of the dS character,
o) =Y Nae ™ (t>0), (C.1.12)
)

into (C.1.6), p(w) = 5= [o° dt O(t) (e™! + =), we can formally express the density of states

as

pw) = 5— S Ny SN ), (C.1.13)
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Figure C.1.4: Plot of |p(w)| in complex w-plane corresponding to the dS3 examples of fig. |C.1.1
that is Ay = {1+ 2i,1 — 2}, {1,2}, {0.1,1.9}, and 2A/7 ~ 64. Lighter is larger with plot range
58 (black) < |p| < 67 (white). Resonance poles are visible at w = Fi(AyL +n), n € N.

From this we read off that p(w) analytically continued to the complex plane has poles at
w = £\ which for massive representations means w = Fi(A4 + n). This can also be checked
from explicit expressions such as the dSs scalar density of states , illustrated in fig.
These values of w are precisely the frequencies of the (anti-)quasinormal field modes
in the static patch, that is to say modes with purely ingoing/outgoing boundary conditions at
the horizon, regular in the interior. If we think of the normal modes as scattering states, the
quasinormal modes are to be thought of as scattering resonances. Indeed the poles of p(w) are
related to the poles/zeros of the static patch S-matrix S(w), cf. below. Thus we see
the coefficients Ny in ((C.1.12)) count resonances (or quasinormal modes), rather than states (or
normal modes) as in AdS. This expresses at the level of characters the observations made in [59)].
It holds for any SO(1,d + 1) representation, including massless representations, as explored in
more depth in [I] (see also appendix. Some corresponding quasinormal mode expansions
of bulk thermodynamic quantities are given in and , and related there to the

quasinormal mode expansion of [163] for scalar and spinor path integrals.

“S-matrix” formulation

The appearance of resonance poles in the analytically continued density of states is well-known

in quantum mechanical scattering off a fixed potential V. They are directly related to the
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poles/zeros in the S-matrix S(w) at energy w through the relation [233]
1 d
p(w) — po(w) = 27 do trlog S(w), (C.1.14)
s

where pg(w) is the density of states at V' = 0.
Using the explicit form of the dSs dimension-A scalar static patch mode functions ((C.4.24))
A, (r,T), expanding these for r =: tanh X — 1 as

o5 (1) = AR (w) e @ THX) 4 BB () emw(T=X) (C.1.15)

wl

and defining S2 (w) = B2 (w)/A% (w), one can check that p®(w) as obtained in (C.1.8) satisfies

1 d
A(w) - po(w) = i dw E IOgSzA(w)a (C.1.16)
£=0,1

P

where po(w) = 2 (¥ (iw) + ¥(—iw)) + const. does not depend on A. This can be viewed as a
rough analog of (C.1.14), although the interpretation of py(w) in the present setting is not clear
to us. Similar observations can be made in higher dimensions.

In [234], a general (flat space) S-matrix formulation of statistical mechanics for interacting

QFTs was developed. In this formulation, the canonical partition function is expressed as

1 d
log Z — log Zp = 5 /dE e PE _—_ [Trlog S(E)],, (C.1.17)
i

dE
where the subscript ¢ indicates restriction to connected diagrams (where “connected” is defined
with the rule that particle permutations are interpreted as interactions [234]). Combined with the
above observations, this hints at a possible generalization of our free QFT results to interacting

theories.

C.2 Evaluation of character integrals

The most straightforward way of UV-regularizing character integrals is to simply cut off the
t-integral at some small ¢ = ¢. However to compare to the standard heat kernel (or spectral

zeta function) regularization for Gaussian Euclidean path integrals [178], it is useful to have
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explicit results in the latter scheme. In this appendix we give an efficient and general recipe
to compute the exact heat kernel-regularized one-loop Euclidean path integral, with regulator
e~ /47 asin 1} requiring only the unregulated character formula as input. For concreteness
we consider the scalar case in the derivation, but because the scalar character ©¢(t) provides the
basic building block for all other characters Og(t), the final result will be applicable in general.
We spell out the derivation is some detail, and summarize the final result together with some
examples in section [C.2.2] Application to the massless higher-spin case is discussed in section
, where we work out the exact one-loop Euclidean path integral for Einstein gravity on S4
as an example. In section [C.2.4 we consider different regularizations, such as the simple ¢ > ¢

cutoff.

C.2.1 Derivation

As shown in section the scalar Euclidean path integral regularized as

(o) 2 . .
oz = [T E Eo(r), Folr) = TreTP = 0 Dt el g
0o 27 —
(C2.1)
where D = —V? 4 % + 12, can be written in character integral form as

o0 dt At IV —iNVE=E | (D)=
log Z. :/ ZDZ+2(6 (n+35)t—ivvit?—e +e (n+35)t+ivvit2—e ) (C22)
€ 2\/ 12 — €2 n

:‘/002 dt 14 et e StowVIE=E | —gtrinV/iE—e (€23)
€

JE2_e2 1—ect (I—et)yd v

Putting e = 0 we recover the formal (UV-divergent) character formula

oo dt
log Zero = | — F,(1),
ogZo = [ 5 FAD

1+4et e—(%—i—iu)t_‘_e—(%—il/)t
STt 1=ty

F(t) =) Dit? (e—(n+%+z‘u)t i e—(n+g—iun)t>

n

(C.2.4)
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To evaluate ((C.2.3)), we split the integral into UV and IR parts, each of which can be evaluated

in closed form in the limit ¢ — 0.

Separation into UV and IR parts

The separation of the integral in UV and IR parts is analogous to the usual procedure in heat
kernel regularization, where one similarly separates out the UV part of the 7 integral by isolating

the leading terms in the 7 — 0 heat kernel expansion

d+1
Fp(r) :=Tre ™ — Z o T EFIER)/2 s v (7 (C.2.5)
k=0

Introducing an infinitesimal IR cutoff 4 — 0, we may write log Z. = log Z + log Z'¥ where

&2 . e¢}
log Z1 = / T =% FY(r)e T, logZ" = / dl(FD(T) — Fp () e #7. (C2.6)
0 27 0o 27

Dropping the UV regulator in the IR integral is allowed because all UV divergences have been

removed by the subtraction. The factor e "7 serves as an IR regulator needed for the separate

«

integrals when F'V has a term =gt # 0, that is to say when d + 1 is even. The resulting

log 1+ terms cancel out of the sum at the end. Evaluating this using the specific UV regulator

of (C21) gives

d
1 1 B d+1—k
log Ze = 5¢h(0) + aay1log(Z) + 5 > an T(457+) (2) : (C.2.7)
k=0
where (p(z) =Tr D% = F(lz) J L 77 Tre~™P is the zeta function of D and agi1 = (p(0).

We can apply the same idea to the square-root regulated character formula ((C.2.3) for Z..
The latter is obtained from the simpler integrand of the formal character formula ((C.2.4]) for
Ze—o by dividing it by r(e,t) = V2 — €2/t and replacing v by vr(e, t):

t2—€2

o dt o dt
F,(t logZ. = | — F.(t), =Y " (c2
0 = lZo= [ oiR.0. =S (C29)

log Ze:O = %

Note that 0 < r < 1 forallt > €, r ~ O(1) for t ~ € and r — 1 for ¢t > €. Therefore, given
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the t — 0 behavior of the integrand in the formal character formula for Z._g,

1 d+1

k
2 Zbk —(@ri=k) = QtFﬁlv( ) be(v) = b v (C.2.9)

we get the ¢ ~ € — 0 behavior of the integrand for the exact Z,:

1

By F.,(t) —

1
o = S b vttt AR (C.2.10)

Thus we can separate log Z, = log Z" + log Z™, with

logZ = [~ 2L puvigy e ogZ" = [ X (1)~ Fv()e st C.2.11
084, = 27‘75 rl/()e ) 0g - 0 Qt( V() v ())e : ( e )
€

Again the limit © — 0 is understood. We were allowed to put € = 0 in the IR part because it is

UV finite.

Evaluation of UV part

Using the expansion ([C.2.10]), the UV part can be evaluated explicitly as

log ZW = )t

S VE e TR N by o (He — 1 Hy o + log (52
2 %2a ]

(C.2.12)

where B(z,y) = (E"’x)ig%) is the Euler beta function and H, = v + F((ll—::)) which for integer x

is the x-th harmonic number H, =1 + % + -+ i For example for d = 3, we get

2 _ v 2 v V2
logZuV % —4 %6 2_(§+24)_<ﬁ+ﬂ 2880)log(

1Y (C.2.13)

This gives an explicit expression for the part of log Z denoted Pol(A) in [163], without having to

invoke an independent computation of the heat kernel coefficients. Indeed, turning this around,

by comparing (C.2.12)) to ((C.2.7)), we can express the heat kernel coefficients oy, explicitly in

terms of the character coefficients by . In particular the Weyl anomaly coefficient is simply given

by the coefficient bgy; = >, bd+17guf of the 1/t term in the integrand of the formal character



259

formula (C.2.4)). More generally,

L5 ¢
ap = Z 2d+1 k]:‘( a1 k—i—@—i—l) buu . (C214)
For example for d = 3, this becomes oy = 11—2b00, g = bgo + £ b22 and ay = by. From the
small-t expansion %F (t) — L bet> ™ in (C.2.4) we read off by = 2, by = —% — 12 and
by = 2880 + 24V + 121/ Thus ap = % Qg = —i — %1/2 and oy = 2880 + 24V + 12y4
Evaluation of IR part
As we explain momentarily, the IR part can be evaluated as
log Z™* 1C’(0)+b 1 G (2) ! / dttZF(t) (C.2.15)
o} = og 1, Z) = —— ) 2.
g o ov d+1 108 [ v ) Jo ¢

where like for the spectral zeta function (p(z), the “character zeta function” (,(z) is defined
by the above integral for z sufficiently large and by analytic continuation for z — 0. This

zeta function representation of log Z'" follows from the following observations. If we define

r(z) = F 7 Jo” g dt 12(F,(t) — FV(t)) e ", then since the integral remains finite for z — 0,
while T'(z) ~ 1/z and 9.(1/T'(z)) — 1, we trivially have 0.(¥(2)|.—0 = log Z™. Moreover
for z sufficiently large we have in the limit 4 — 0 that 3¢V (z) = F(lz) I g—;tzF,}“’(t) e =
bg+1p~ %, so upon analytic continuation we have 1/20,("V(z)|,—0 = —bg+1log p, and

follows.

In contrast to the spectral zeta function, the character zeta function can straightforwardly
be evaluated in terms of Hurwitz zeta functions. Indeed, denoting AL = g =+ v, we have
Fp(t) =%, Q(n) e tntA+)(n+A-) where the spectral degeneracy Q(n) is some polynomial in
n, and (p(2) = 0, Q(n) ((n+ Ay)(n+ A_))" ", which is quite tricky to evaluate, whereas

E,(t) = %, Qn) (e A+ 4 ¢=#(+4-)) " and we can immediately express the associated

character zeta function as a finite sum of Hurwitz zeta functions ((z,A) =Y >° (n + A)~?
=22 Qn)(n+As)” ZQ (0= As) (2 As). (C.2.16)
+ n=0

Here § is the unit z-shift operator acting as 6"((z, A) = ((z —n, A); for example if Q(n) = n2
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we have Q(6—A) (2, A) = (82—2A0+A2)((2,A) = ((2—2,A)—2A(z—1, A)+A2((z, A).

C.2.2 Result and examples
Result
Altogether we conclude that given a formal character integral formula

o dt

5 B (D). (C.2.17)

log ZPI =
0

for a field corresponding to a dS;.1 irrep of dimension g + ¢v, with IR and UV expansions
S (n+A)t 1 15 (d+1—F) 0
F,(t) =YY Pa(n)e , o7 Fv(t) = Zkz::obk(u)t +0(Y), (C.2.18)

A n=0

where by (v) = >, bye ', we obtain the exact Zp; with heat kernel regulator e~ /AT ag

d+1

1 A
log Zp1.c =3 STPAG = A)C(0,A) = > bagre(He — $Hyp)v' + bas (v) log(2e 7 fe)
A =0

1Ak
T Z ZbkéB(dJr;fk’ HTI) = (d+1-k)
2 12010

(C2.19)

Here B(z,y) = % H, =~v+ % which for integer x is the z-th harmonic number

Hy=1+35+4--+1

=, and § is the unit shift operator acting on the first argument of the

Hurwitz zeta function ((z,A): the polynomial PA(S — A) is to be expanded in powers of 5,
setting 6¢’(0, A) = ¢’(—n, A). Finally the heat kernel coefficients are

NG

_ 2
X = Zg: 91—k (LH=EEEET

b v’ (C.2.20)

If we are only interested in the finite part of log Z, only the first three terms in ({C.2.19|) matter.

Note that the third and the second term M, =3, bd+17g(Hg—%Hg/2) is in general nonvanishing

for even d+1. By comparing (C.2.19) to ((C.2.7)), say in the scalar case discussed earlier, we see

that ¢},(0) = ¢/, (0) +2M,,. Thus 2M,, can be thought of as correcting the formal factorization
Yoplog(n+AL)(n+A_) =5, log(n+ A1)+, log(n+ A_) in zeta function regularization.
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For this reason M,, is called the multiplicative “anomaly”, as reviewed in [235]. The above thus

generalizes the explicit formulae in [235] for M, to fields of arbitrary representation content.

Examples

1. Ascalaron 52 (d = 1) with Ay = L +iv has F,(t) = Lbe—te-®+de 2! o the IR and

l—e—t 1—e—t

V2

1
UV expansions are F),(t) = 34 S0 o(2n + 1)e- (ATt and L F, (1) = & + 2= + O(t0).

Therefore according to ((C.2.19)

log Zpre = ) (C'(—l, A) = (A = 3)¢(0, A)) + 12+ (5 —v?) log(2e 7 /e) + 632
A:%:I:iu

(C.2.21)

The heat kernel coefficients are obtained from ((C.2.20) as ag = 1 and ap = & — /2.

2. For a scalar on S3, F,(t) = 4 %0 o(n + 1)%e~(A=+n)t, =E,(t) = t% B O(tY), so

t2
2
. . . ) v T
log Zp1.c = > (3¢(=2,1 + i) Fiv¢'(=1,1 +iv) — 1070, £ iv)) — s
+
(C.2.22)
The heat kernel coefficients are ag = @, g = —@V? In particular for a conformally coupled
scalar, i.e. A = %,% or equivalently v = i/2, we get for the finite part the familiar result
log Zp1 = %5?2) — %. For A =1, ie v =0, we get log Zp; = —%. Notice that the finite

part looks quite different from ([5.2.25)) obtained by contour integration. Nevertheless they are

in fact the same function.

3. A more interesting example is the massive spin-s field on S* with Ay = %:l:il/. In this case,
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(5.4.6)) combined with (C.5.8)) or equivalently (5.4.7)) gives F,, = Fiuik — Fedge With

B 14 et e—(%—i—zu) +e (§—zy)t
F D3D5 e~ (At — 3 C.2.23
bulk (¢ R z;i nzzl 51 _ gt (1—et)3 ) ( )
w 't

1, - 1
1+ et e~ (gt + e—(z—w)t
At 5
Feage(t) = ) Z D \Djye " =D7 1—et (1—e) ’
A= 1:*:11/"*_1

(C.2.24)

where D3 = 2p+1, D5 = §(2p+3)(p+2)(p+1). In particular note that with g, = D3 = 2s+1,

we have D3_; = 2g,(g? — 1). The small-t expansions are

S Fou(t) = g5(2677 = (P4 L3+ (S5 + 5 — 2+ 0() (C.2.25)

g Feage(t) = 2105(a2 = 1) (2673 4+ (F5 - 1/2)15_1 +0()) . (C.2.26)

Thus the exact partition function for a massive spin-s field is

log Zpre = g5 . (8¢/(=3,8) F 3ivC'(=2,8) = (32 + §) (-1, A) £i( v + §7)C(0,4))

A:%:l:il/
— 3052 = 1) Y (((-L,A)Fi((0,4)) = Fg¥? — Fgt  (C227)
A:%:ﬁ:iu
+ (92(2*14 ? 288) +gs( vt 2880)) log(2e™7/e) — (11292 + %981/2)6_2 + %956_4-
Finally the heat kernel coefficients are
040:%95, Q2 = —ig?—%gslﬂ, as = g3 (57 288)+95( v 2880) (C.2.28)

Single-mode contributions

Contributions from single path integral modes and contributions of single quasinormal modes
are of use in some of our derivations and applications. These are essentially special cases of the
above general results, but for convenience we collect some explicit formulae here:

e Path integral single-mode contributions: For our choice of heat-kernel regulator e /4T,
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the contribution to log Zp; . from a single bosonic eigenmode with eigenvalue A is

A 2e 7
—_— M = C.2.29
M2’ e ( )

) 1
I, = / OT g=e/Am o=Th = Ko(eVA\) = —=log
0o 27 2
Different regulator insertions lead to a similar result in the limit ¢ — 0, with M = ¢/e for some
regulator-dependent constant c. A closely related formula is obtained for the contribution from
an individual term in the sum (|C.2.2) or equivalently in the IR expansion of ({C.2.18]), which
amounts to computing (C.2.17) with F,(t) = e, p = a + iv. The small-t expansion is
= F,(t) = & + O(t°), so the UV part is given by the log term in (C.2.19) with coefficient £,
and the IR part is %{,’/(O) = —% log p as in ((C.2.15)). Thus

< dt _ 1 0
I’:/ —e Pt 5 —Zlog — M = 2.
0= 5 € T Tglog g, > (C.2.30)

J‘OO dt e—ta—ivy 12 —¢2
€ 2/12_¢2 '

left implicit here. The similarities between (|C.2.29]) and ({C.2.30) are of course no accident,

where the integral is understood to be regularized as in (C.2.2]), Ir,) =

since in our setup, the former splits into the sum of two integrals of the latter type: writing
A=a*+v?*=(a+iv)(a—iv), we have I\ =1/ ,, +1,_,,

e Quasinormal mode contributions: Considering a character quasinormal mode expansion

O(t) =3, N,e " asiin (5.1.14), the IR contribution from a single bosonic/fermionic QNM is

<dtl4e! ! Zlog T(r+1) _/OOdt 2et/2 et~ _log L(r+3)
0 2t1—e? IR /2w 0 2t1—et IR U/ 27
(C.2.31)

e Harmonic oscillator: The character of a d = 0 scalar of mass v is O(t) = e~/ 4 ¢!, hence

oodtl“‘e_t vt it ™ s -7
log Zp1,e = /0 Py - (e +e™) = i log(e™ —e ™). (C.2.32)
The finite part gives the canonical bosonic harmonic oscillator thermal partition function Tre=#H# =
> e Brinty) = (efr/2 — 6_3"/2)_1 at 8 = 2. The fermionic version is

T

©dt 2072 . L _
2 1ot (e™™ +e™) = —z—i—log(em’—i—e ™. (C.2.33)

log Zp1e = —
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C.2.3 Massless case

Here we give a few more details on how to use ((C.2.19) to explicitly evaluate Zpr in the massless
case, and work out the exact Zp; for Einstein gravity on S% as an example.

Our final result for the massless one-loop Zpr = Zg - Zehar is given by (5.5.17)):

P ,YdimG X dt 1+ q

g ) zF F= Tq([@bmkh ~ [Ocage] , —2dimG),

Zpr =1
C

(C.2.34)

where for s = 2 gravity v = i;rda_lj, P=d+3,G=50(d+2) and vol(G), = (C.3.2).

e UV part: As always, the coefficient of the log-divergent term simply equals the coefficient of
the 1/t term in the small-¢ expansion of the integrand in (C.2.34)). For the other UV terms in
(C.2.19) (including the "multiplicative anomaly™), a problem might seem to be that we need a
continuously variable dimension parameter A = %—i—iu, whereas massless fields, and our explicit
formulae for © — 6], require fixed integer dimensions. This problem is easily solved, as the

UV part can actually be computed from the original naive character formula ((C.6.7)):

dt ~
logZplfUV :/?tF

Indeed since [' — F = {F}+ in 1' affects just a finite number of terms cxq* — g™,

A 1
B
Uv 1—g¢q

(@bulk - @edge) ) (C.2.35)

it does not alter the small-¢ (UV) part of the integral. Moreover (:)8 = @57% - ésﬂjg, where
(:)S,,, is a massive spin-s character. Thus the UV part may be obtained simply by combining the
results of for general v and s, substituting the values v, ve set by (5.5.2).

e IR part: The IR part is the ¢’ part of , obtained from the g-expansion of F(q) in
. This can be found in general by using

1
1t ¢ ZP ¢S, P(n) = D2, (C.2.36)
1-— (1 —q)k =

with DF+2 the polynomial given in 1} For k£ = 0, (C.2.31)) is useful. In particular, using
the [* prescription ((C.6.15)), the IR contribution from the last term in (C.2.34)) is obtained by
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considering the r — 0 limit of the bosonic formula in (C.2.31)):

a 1+q( 2dimG)| = dim G -log(2n). (C.2.37)
%1 "

Example: Einstein gravity on 5S4

As a simple application, let us compute the exact one-loop Euclidean path integral for pure

gravity on S*. In this case G = SO(5), dimG = 10, d = 3 and s = 2. From (5.5.2) we read
off ivy = % W = % and from (|5.5.7]) we get

1043 —6¢* A _10¢%* -2

('—)bulk = [ébulk}+ - W s ®edge = [Qedge]+ 11— p (C238)

The small-t expansion of the integrand in 1) is 2tF =4t75 — 47 =3 — %til +O(tY).

The coefficient of the log-divergent part of log Zp is the coefficient of t~1:

o71

Bl Vel
5 log(2e™7e ), (C.2.39)

log Zp1iog div = —

in agreement with [I127]. The complete heat-kernel regularized UV part of ((C.2.19)) can be read

off directly from our earlier results for massive spin-s in d = 3 as

log Zp1|yy, = log Zp1(s = 2,v = 34) Dyy — log Zpi(s = 1,v = o) oy

8 ., 32 ., 571 715

— 42 - Vel -
3¢ 7€ 5 log(2e e ") + 5 (C.2.40)

Here M = 715 is the “multiplicative anomaly” term. The integrated heat kernel coefficients are

similarly obtained from ((C.2.28): ag = % Qg = —%, aq = 54751

The IR (¢’) contributions from bulk and edge characters are obtained from the expansions

1+g¢
T (O~ Ouae) = 3 Ro(m) (10677 —64") = 3 Rulm) (104" —247).

(C.2.41)

where P,(n) = D} = &(n+ 1)(n+2)(2n+3), Po(n) = D3 = 2n+ 1. According to (C.2.19)
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this gives a contribution to log Zepar|r equal to
5P,(0 —3)¢'(0,3) =3P, (6 —4)¢'(0,4) — 5 P.(6 — 2) ¢'(0,2) + Po(6 — 3) ¢'(0,3), (C.2.42)

where the polynomials are to be expanded in powers of 5, putting S"C’(O,A) = ('(—n,A).
Working this out and adding the contribution ((C.2.37]), we find

47 2
log Zchar’ﬂ:{ == 10g2 - ? CI(_I) + g CI(_3> : (C243)

Combining this with the UV part and reinstating ¢, we geiE]

8¢+ 3202 571. 2L

log Zahar =3 7~ 5 3~ 45 108
571 J4 715 47 2
— 2 log— 4+ —= —log2 — —('(~1) + =¢'(— C.2.44
15 g7+ o —log 5 ¢ (=) +50(=3), ( )

where L is an arbitrary length scale introduced to split off a finite part:

¢ 715 47 2

To compute the group volume factor Zg in ((C.2.34)), we use ((C.3.2) for G = SO(5) to get
vol(G), = 2(27)5, and v = \/87Gn/4rl2. Finally, i = i=(4+3) = —1. Thus we conclude

that the one-loop Euclidean path integral for Einstein gravity on S* is

87TGN 471‘52 5 Z, h
Zop — é )” Zear (C.2.46)
g(27{')6
where Z.pa; is given by ((C.2.44)).
3This splits as log Zepar = 10 log(27) +log Zbuik —10g Zedge Where log Zpuix = % — % — %1 log Lﬁ” + %

— B¢(—1) 4 2¢'(—3) — 5log(27) and log Zeqge = 35 + L log 22 — 54 8¢'(~1) + log 2 + 5 log(2).
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Example: Einstein gravity on S°
For S® an analogous (actually simpler) computation gives Zp; = i =" Zg Zepar With

157 65 657 £3 1057r§+65g(3) 5¢(5)

low 7. BT 657 15log(2
08 Zchar 8 & 924 ¢3 16 e 48x2 " 1omt T og(2m) (C.2.47)
log Zg = E10 SnGn _ lo (2r)
8AG Ty B T % g

C.2.4 Different regularization schemes

If we simply cut off the character integral at ¢ = ¢, we get the following instead of ((C.2.19)):

log Z. :% %: PaA(6 — A)C'(0,A) 4 bgi1(v) log(e /) + k}: di’fﬁk e (dF1=k) | (C.2.48)
with by (v) defined as before, o F,(t) = S04l by (v) t=(@+27%) + O(t%). Unsurprisingly, this
differs from only in its UV part, more specifically in the terms polynomial in v, including
the “multiplicative anomaly” term discussed below . The transcendental (¢’) part and
the log e coefficient remain unchanged. This remains true in any other regularization.

If we stick with heat-kernel regularization but pick a different regulator f(7/€?) instead
of e /47 (e.g. the f = (1 — e ™*)* PV regularization of section or use zeta function
regularization, more is true: the same finite part is obtained for any choice of f provided
logarithmically divergent terms (arising in even d + 1) are expressed in terms of M defined as
in (C.2.29)) with e~/ f. The relation M(€) will depend on f, but nothing else.

In dimensional regularization, some polynomial terms in v will be different, including the
“multiplicative anomaly” term. Of course no physical quantity will be affected by this, as long
as self-consistency is maintained. In fact any regularization scheme (even ((C.2.48))) will lead
to the same physically unambiguous part of the one-loop corrected dS entropy/sphere partition

function of section 5.8, However to go beyond this, e.g. to extract more physically unambiguous

data by comparing different saddles along the lines of (C.8.67)) and ((C.8.70)), a portable covari-

ant regularization scheme, like heat-kernel regularization, must be applied consistently to each

saddle. A sphere-specific ad-hoc regularization as in (|C.2.48)) is not suitable for such purposes.
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C.3 Some useful volumes and metrics

C.3.1 Volumes

The volume of the unit sphere S™ is

ons 9

n T2 s

Q,, = vol(S") = ] T i Qo (C.3.1)
2

The volume of SO(d + 2) with respect to the invariant group metric normalized such that

minimal SO(2) orbits have length 27 is

d+2
vol(SO(d + 2)) H vol(S*1)

+

2 k
2m2

L(5)

(C3.2)

e
[|

2

This follows from the fact that the unit sphere S"~! = SO(n)/SO(n — 1), which implies
vol(SO(n))e = vol(S™ 1) vol(SO(n — 1)), in the assumed normalization.
The volume of SU(N) with respect to the invariant metric derived from the matrix trace

norm on the Lie algebra su(/V) viewed as traceless N x N matrices is (see e.g. [236])

1)(N+2)

(C.3.3)

vol(SU(N)) RO ey

TI‘N

_ \/Nﬁ (27T)k _ \/ﬁ(%)
k=2

C.3.2 de Sitter and its Wick rotations to the sphere

Global dS4;1 has a convenient description as a hyperboloid embedded in R4+,

XXy =X X7 =-X3+ X7+ + X3, =0, ds*=ndX'dx’. (C3.4)
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O O
T=-c0 T=-3
a b C d

Figure C.3.1: Penrose diagrams of dS;,; and S9! with coordinates Each point corre-
sponds to an S?1, contracted to zero size at thin-line boundaries. a: Global dS,. in slices of constant
T. b: Wick rotation of global dS4;; to S*!. c: S/N = southern/northern static patch, F/P =
future/past wedge; slices of constant T (gray) and r (blue/red) = flows generated by H. Yellow dot =
horizon r = 1. d: Wick-rotation of static patch S to S*t1; slices of constant 7 and constant r.

Below we set . The isometry group is SO(1,d+1), with generators M;; = X;0;— X ;0;.

Various coordinate patches are shown in fig. [C:3.1k, c, with coordinates and metric given by

co | embedding (X©,..., Xt1) coordinate range metric ds® = nr;dX1dX’

G | (sinh T, cosh T Q) TeR, Qe s —dT? + cosh? T dQ?

S | (V1—r2sinh T,7Q,v/1—rZcoshT) | T € R,0<r<1, Q€ 541 —(1—7"2)dT2—&—1‘Z;22 +r2d0?

F | (V/r2=1coshT,7Q,v/r2—1sinhT) | T €R, r > 1, Q € 541 —Td;fl +(r2=1)dT?+r2d0?
(C.3.5)

illustrated in fig. ,c. N is obtained from S by X1 — —X9*+1 and P from F by
X% — — X0 The southern static patch S is the part of de Sitter causally accessible to an
inertial observer at the south pole of the global spatial S%. The metric in this patch is static,
with the observer at 7 = 0 and a horizon at » = 1. The SO(1,1) generator H = My 4+1
acts by translation of the coordinate T, which is timelike in S, N and spacelike in F', P. From
the direction of the flow lines in fig. [C.3.Tk, it can be seen that the positive energy operator
is H in S, whereas it is —H in N. In F/P, r is the time coordinate, and H is the operator
corresponding to spatial momentum along the T-axis of the R x S9! spatial slices.

A Wick rotation X — —i X% maps (C.3.4) to the round sphere S4+1:
Sy XIx? =02, ds? = 6rdXTdx” . (C.3.6)

The full S4*1 can be obtained either from global dS G by Wick rotating global time T' — —i7,
or from a single static patch S by Wick rotating static time 7' — —i7, as illustrated in fig.
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o ,d. The corresponding sphere coordinates and metric are, again setting

co | embedding (X°, X1 ..., X% | coordinate range metric ds® = 6;;dXTd X"

G | (sin7,cos7,Q) —I<7<ZI Qese d7? + cos® 7 dQ?

S | (V1—rZsinT,rQ,v/1—r2cos7) |0 <7 < 1,7~ 7421, Q€ 91 (1—7‘2)d7'2+1d_77,—'22+r2d§22
(C3.7)

C.4 Euclidean vs canonical: formal & physics expectations

Given a QFT on a static spacetime R x M with metric ds*> = —dt®> + ds%/[, Wick rotating
t — —ir yields a Euclidean QFT on a space with metric ds?> = dr% + ds3,. The Euclidean
path integral Zpi(5) = [ D® e5[®] on Sé x M obtained by identifying 7 ~ 7 + /3 equals the
thermal partition function: Zpy(3) = Tre ?H, as follows from cutting the path integral along

TH 35 the Euclidean time evolution operator.

constant-7 slices and viewing e~

At least for noninteracting theories, it is in practice much more straightforward to compute
the partition function as the state sum Tre ? of an ideal gas in a box M than as a one-loop
path integral Zp; = [ D® e5[® on Sé; x M, in particular for higher-spin fields. In view of this,
it is reasonable to wonder if a free QFT path integral on the sphere could perhaps similarly be

computed as a simple state sum, by viewing the sphere as the Wick-rotated static patch (fig.

C.3.14), with inverse temperature 3 = 2 given by the period of the angular coordinate 7:
Zp1 = Trge 278 (C.4.1)

Below we review the formal path integral slicing argument suggesting the above relation and
why it fails, emphasizing the culprit is the presence of a fixed-point locus of H, the yellow dot
in fig. . At the same formal level, we show the above relation is equivalent to Zpg L Zbulk,
with Zpu defined as a character integral as in section [5.2] This improves the situation, but is
still incorrect for spin s > 1. In more detail, the content is as follows:

In we consider the d = 0 case: a scalar of mass w on dS; in its Euclidean vacuum
state, i.e. an entangled pair of harmonic oscillators. Though surely superfluous to most readers,
we use the occasion to provide a pedagogical introduction to some standard constructions.

In[C.4.2)we formally apply the same template to general d, ignoring yellow-dot issues, leading
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to the standard formal “thermofield double” description of the static patch of de Sitter [175],
and more specifically to Zp; ~ Tre 2™ ~ Z, 1. We review the pathological divergences
that ensue when one attempts to evaluate the trace, and some of its proposed fixes such as
the “brick-wall" cutoff [162] and refinements thereof. We contrast these to Zy,j defined as a
character integral.

In we turn to the edge corrections missed by such formal arguments, explaining from

various points of view why they are to be expected.

c41 St

Though slightly silly, it is instructive to first consider the d = 0 case: a free scalar field of mass
w on dS; (fig. . Global dS; is the hyperbola X3 — X? = 1 according to (C.3.4)), which
consists of two causally disconnected lines, globally parametrized according to table by
(T,Q) where Q € S = {—1,41} = {N, S}. The pictures of fig. still apply, except there
are no interior points, resulting in fig. Putting a free scalar of mass w on this space just

means we consider two harmonic oscillators ¢g and ¢y, with action
S—} OOdT'2—22 h2 — w2’ C4.2
L=3 (95 — w'ds + o — w ) - (C.4.2)
—00

The dS; isometry group is SO(1,d + 1) = SO(1, 1), generated by H = Mjy;, which acts as
forward /backward time translations on ¢g/¢n, to be contrasted with the global Hamiltonian
H’, which acts as forward time translations on both. The southern and northern static patch
are parametrized by T, and each contains one harmonic oscillator, respectively ¢g and ¢n.

S oSt gN Nt

Introducing creation and annihilation operators a2, a>t,a¥ , a” satisfying [a,al] = 1, we have

H=Hg—Hy, H =Hg+Hy, HS:w(agTai—i—%), HN:w(a],VlaJ,Vw—F%).
(C.4.3)

The subscript 4w refers to the H eigenvalue: [H,ak, ] = twal,, [H, at,] = Fwat,. The
southern and northern Hilbert spaces Hg, H each have a positive energy eigenbasis |n) with
energies FE, = (n + %)w In QFT language, |0) is the static patch “vacuum”, and each patch

has one “single-particle” state, |1) = a'|0). The global Hilbert space is Hg = Hs @ Hy, with
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Figure C.4.1: dS; version of fig. [C.3.1| (in ¢ we only show S here). Wick rotation of global time
T — —iT maps a — b while wick rotation of static patch time T" — —i7 maps ¢ — d. Coordinates are

as defined in tables and with d = 0.

basis [ng,nn) = |ng) ® |ny) satisfying H|ng,ny) = w(ng —ny)|ns, ny).

Wick-rotating dS; produces an S' of radius £ = 1. If we consider this as the Wick rotation
of the static patch as in fig. , S in table , the S! is parametrized by the
periodic Euclidean time coordinate 7 ~ 7 + 27. The corresponding Euclidean action for the

scalar is

Sp = % /0 7 dr(¢* + w?¢?) b(2m) = $(0). (C.4.4)

The Euclidean path integral Zpy on S' is most easily computed by reverting to the canonical

—T7H

formalism with e "Hs = ¢ as the Euclidean time evolution operator, which maps it to the

harmonic oscillator thermal partition function at inverse temperature 5 = 27:

e—27rw/2

(C.4.5)

Zoi= [ DoeSeld) = Ty, o2l = S el = £
— €
n

We can alternatively consider the S! to be obtained as the Wick rotation of global dS; as in fig.
. , G in (C.3.7)), parametrizing the S! by (?,Q), -3 <73, Qes= {S,N},
identifying (£%,S) = (75, N). The global action ((C.4.2) then Wick rotates to

/2 . .
Sp = %/_ B d7 (9% +w’d5 + Of +wiey) . os(£]) = on(£]), (C.4.6)

which is identical to ((C.4.4)), just written in a slightly more awkward form. This form naturally
leads to an interpretation of Zp; as computing the norm squared of the Euclidean vacuum

state |O) of the scalar on the global dS; Hilbert space H, by cutting the path integral at the
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Figure C.4.2: Global time evolution of Py (¢s, ¢n) = |(¢s, (;51\/|6*“LI'T_|O>|2 for free w = 0.1 scalar on
dS;, from T =0to T = m/w. P(¢s) = [ don Pr(¢s, ¢n) is thermal and time-independent.

SY = {N, S} equator 7 = 0 of the St (cf. fig. ):
Zp) = / d*0 (Ogo)(#0]0) = (0[0),  (¢0|O) = / _ Dloge ™ (C4T)

where ¢9 = (¢5,0,¢n0). The notation ffgo De¢|4, means the path integral of ¢ = (¢g, Pn) is
performed on the lower hemicircle 7 < 0 (orange part in fig. ) with boundary conditions
¢l7=0 = ¢o. (Olgo) is similarly defined as a path integral on the upper hemicircle (green part).
It is not too difficult to explicitly compute |O) in the |50, ¢n o) basis, but it is easier to compute
it in the oscillator basis |ng,ny), noticing that slicing the path integral defining |O) allows us

to write it as (ng, ny|0) = (ngle ™ |ny) = e—m(ns+3) Ongmy- Thus
0)y=>" e*m"(”+%)]n, n) = e /2 exp(e*m"afﬁa],vl) 10,0) . (C.4.8)

In the Schrédinger picture, |O) is to be thought of as an initial state at 7 = 0 for global
dS;: pictorially, we are gluing the bottom half of fig. to the top half of fig. [C.4.Tk.
This state evolves nontrivially in global time T though invariant under SO(1,1) generated by
H = Hg— Hy, it is not invariant under forward global time translations generated by the global
Hamiltonian H' = Hg + Hy. For viewing pleasure this is illustrated in fig. , which also
visually exhibits the north-south entangled nature of |O).

Note that Zp;r = (0|0) =3, e 2mu(ntsy), reproducing the dS; static patch thermal parti-
tion function ((C.4.18)). Indeed from the point of view of the static patch, the global Euclidean
vacuum state looks thermal with inverse temperature § = 2m: the southern reduced density

matrix gg obtained by tracing out the northern degree of freedom ¢y in the global Euclidean

vacuum |O) is gs = >, e‘wa("+%)|n)(n\ = e~ ?™s_In contrast to the global |O), the reduced

density matrix is time-independent.
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The path integral slicing arguments we used did not rely on the precise form of the action.

In particular the conclusions remain valid when we add interactions:

0) = Ze—ﬂEnﬂ‘n’ ny, o5 = e PHs Zpr = (0]|0) = Trg e BH (B = 2n)

(C.4.9)

Actually in the d = 0 case at hand, we can generalize all of the above to arbitrary values
of B. (For d > 0 this would create a conical singularity at » = 1 on S9! but for S' the
point r = 1 does not exist.) Note that since the reduced density matrix is thermal, the
north-south entanglement entropy in the Euclidean vacuum |O) equals the thermal entropy:
Sent = —trg 0glog os = Sin = (1 — B0g) log Z, where o5 = 05/Z, Z = Trg ds.

Despite appearing distinctly non-vacuous from the point of view of a local observer, and
being globally time-dependent, the state |O) does deserve its “vacuum” epithet. As already
mentioned, it is invariant under the global SO(1,1) isometry group: H|O) = 0. Moreover, for
the free scalar, implies |O) is itself annihilated by a pair of global annihilation operators

a% related related to a®, a5T, a™ and a1 by a Bogoliubov transformation:
S —7w Nt N —nw , St
a’ —e ™q at, —e ™q
aﬁw\O) =0, aff e e (C.4.10)

V1 = e—2mw ’ w V1 — e—2mw ’

normalized such that [a$,, aﬂ)] = 04+ +. From 1’ we get H = waStaG —w aﬁ}agw. Thus
we can construct the global Hilbert space H¢ as a Fock space built on the Fock vacuum |O),

by acting with the global creation operators af The Hilbert space 7—[8) of “single-particle”

w*

excitations of the global Euclidean vacuum is two-dimensional, spanned by

T0),  H|tw)=4w|tw). (C.4.11)

w

|+w) = af_i
The character O(t) of the SO(1, 1) representation furnished b; HD s
Yy ig
O(t) = trg e M = g7itw 4 gitw (C.4.12)

The above constructions are straightforwardly generalized to fermionic oscillators. The character
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of a collection of bosonic and fermionic oscillators of frequencies w; and wg» is
@(t) = trg e_th = @<t)bos + @(t>fer = Z eiiwi + Z €iiw; . (C.4.13)
i+ P

Character formula
For a single bosonic resp. fermionic oscillator of frequency w, log Tre # has the following
integral representation{]
—2mt/B
—Bw/2(1 _ —Bwy—1 _ o @ L+e —iwt iwt
Iog(e (1—e"¥) ) +/0 5 1 o=2ri/B (e7™" +e'")

_ o dt 2e /B
bﬁf””“+emU:‘A %T o p

(C.4.14)
(efiwt + eiwt) )

Combining this with (|C.4.13]) expresses the thermal partition function of a collection of bosonic
and harmonic oscillators as an integral transform of its SO(1,1) character:

oo dt (1+ e 2mt/B 2e~m/8
—BH _ weprrTe s
o Tre = [ (L Ot — 1 O] (€419

The Euclidean path integral on an S' of radius ¢ = 1 for a collection of free bosons and fermions
(the latter with thermal, i.e. antiperiodic, boundary conditions) is then given by putting 5 = 27

in the above:

©dt (1+e! 2¢e7t/2
= — t — er | - C41
log Zp1 /O o <1 - O(t)bos 1 — ot O(t)se > ( 6)

C.4.2 Git!

The arguments in this section will be formal, following the template of section while
glossing over some important subtleties, the consequence of which we discuss in section [C.4.5]

Wick-rotating a QFT on dSz;1 to S, we get the Euclidean path integral

Zpp = /ch e 5Bl (C.4.17)

* The t~? pole of the integrand is resolved by the ic-prescription t~2 — + ((t —ie) 2 + (t—|—ie)_2), left
implicit here and in the formulae below. The integral formula can be checked by observing the integrand is even
in t, extending the integration contour to the real line, closing the contour, and summing residues.
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where ® collects all fields in the theory. Just like in the d = 0 case, the two different paths
from dSg,1 to S%t1, i.e. Wick-rotating global time T or static patch time T (cf. fig. and
table [C.3.7)), naturally give rise to two different dS Hilbert space interpretations: one involving
the global Hilbert space H and one involving the static patch Hilbert space Hg.

The global Wick rotation of fig. leads to an interpretation of Zp; as computing
(0|0), analogous to , by cutting the path integral on the globlal S equator 7 = 0:

ZPI:/ dDq (O|P0) (B0|0) = (0[0) | <q>o\o>z/ DB|g, e 55(® | (C.4.18)
7=0 7<0

where ffgo De|s, means the path integral is performed on the lower hemisphere 7 < 0 of S+l
(orange region in fig. [C.3.1p) with boundary conditions ®|7—¢ = ®g. (O|®o) is similarly defined
as a path integral on the upper hemisphere 7 > 0 (green region). This defines the Hartle-
Hawking/Euclidean vacuum state |O) [237] of global dS;41, with Zp; computing the natural
pairing of |O) with <O|EI

The static patch Wick rotation of fig. on the other hand leads to an interpretation of
Zpr1 as a thermal partition function at inverse temperature 8 = 27, analogous to : slicing
the path integral along constant-7 slices as in fig. , and viewing e~ with H = Mo g+1

as the Euclidean time evolution operator acting on Hg, we formally geiﬂ
Zp1 > TI‘HS e PH (ﬁ = 271') . (C419)

Like in the d = 0 case, this interpretation can be related to the global interpretation ((C.4.18)).

Picking suitable bases of Hg and H  diagonalizing H, and applying a similar slicing argument,

®For kind enough theories, such as a scalar field theory, this pairing can be identified with the Hilbert space
inner product. However not all theories are kind enough, as is evident from the negative-mode rotation phase
i~(@*3) in the one-loop graviton contribution to Zp; = (O|O) according to and [131]]. Indeed for gravity
this pairing is not in an obvious way related to the semiclassical inner product of [238]. On the other hand, in the
CS formulation of 3D gravity it appears to be framing-dependent, vanishing in particular for canonical framing
(cf. (C.7.28) and discussion below it). The phase also drops out of (4) = (O] A|O)/(0|0).

® The notation ~ means “equal according to these formal arguments”. Besides the default deferment of
dealing with divergences, we are ignoring some additional important points here, including in particular the fixed
points of H: the S¢~! at r = 1 (yellow dot in fig. , where the equal-7 slicing of degenerates, and
the Hg = Hny ® Hs factorization implicit in breaks down. We return to these points in section
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we formally get the analog of ((C.4.9)):
0) =N e P2, By, bs~ePHs (B=27), (C.4.20)

where we have put the sum in quotation marks because the spectrum is actually continuous, as
we will describe more precisely for free QFTs below. Granting this, we conclude that an inertial
observer in de Sitter space sees the global Euclidean vacuum as a thermal state at inverse
temperature 5 = 27, the Hawking temperature of the observer's horizon [17) 57| [175].
Applying to a free QFT on dS;. 1, we can write the corresponding Gaussian Zpg

on S%1 as the thermal partition function of an ideal gas in the southern static patch:
o0
log Zpy ~ log Trg e 2™H = Z;/ dw ps(w)+ (log(1F e 2™) 4 27w/2) (C.4.21)
T 0

where pg(w) = trg d(w — H) is the density of single-particle states at energy w > 0 above the
vacuum energy in the static patch, split into bosonic and fermionic parts as ps = ps+ + ps—.

Using O(t) = ©(—t), we can write the character for arbitrary SO(1,d + 1) representations as
O(t) = trge i = / pe(w) (€7 4 ™) (C.4.22)
0

where pg(w) = trg d(w — H). The Bogoliubov map (C.4.10) formally implies pg(w) =~ ps(w)
for w > 0, hence, following the reasoning leading to ((C.4.16)),

_edt(14e? 2et/2
log Zp1 =~ log Zpuk = ./o 2t( T o=t OWbos — T @(t)fcr> : (C.4.23)

C.4.3 Brick wall regularization

Here we review how attempts at evaluating the ideal gas partition function ((C.4.21)) directly
hit a brick wall. Consider for example a scalar field of mass m? on dSz, 1. Denoting Ay =

% + ((%)2 — mz)l/z, the positive frequency solutions on the static patch are of the form

. iw /2 ) )
¢wa’(T7 Q, 7") x e—sz YG(Q> T( (1 _ TQ)W/ 2F1(Z+A2++zw, E—i—A;—Hw; %i + ¢ 7“2), (C.4.24)
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where w > 0, and Y, (Q) is a basis of spherical harmonics on S¢~! labeled by &, which includes
the total SO(d) angular momentum quantum number ¢. A basis of energy and SO(d) angular
momentum eigenkets is therefore given by |wo) satisfying (wo|w'c’) = d(w — W) d5er. Naive
evaluation of the density of states in this basis gives a pathologically divergent result pg(w) =
[dw' S (wo|d(w—w')|w'o) =3, 8(0), and commensurate nonsense in ((C.4.21)).

Pathological divergences of this type are generic in the presence of a horizon. Physically
they can be thought of as arising from the fact that the infinite horizon redshift enables the
existence of field modes with arbitrary angular momentum and energy localized in the vicinity of
the horizon. One way one therefore tries to deal with this is to replace the horizon by a “brick
wall" at a distance ¢ away from the horizon [162], with some choice of boundary conditions, say
o(T,Q,1 — %52) = 0 in the example above. This discretizes the energy spectrum and lifts the
infinite angular momentum degeneracy, allowing in principle to control the divergences as § — 0.
However, inserting a brick wall alters what one is actually computing, introduces ambiguities (e.g.
Dirichlet/Neumann), potentially leads to new pathologies (e.g. Dirichlet boundary conditions
for the graviton are not elliptic [239]), and breaks most of the symmetries in the problem.

A more refined version of the idea considers the QFT in Pauli-Villars regularization [177].
This eliminates the dependence on ¢ in the limit § — 0 at fixed PV-regulator scale A. It was
shown in [177] that for scalar fields the remaining divergences for A — oo agree with those of the
PV-regulated path integral.[] A somewhat different approach, reviewed in [150, 240], first maps
the equations of motion in the metric ds?> = gudxtdz” by a (singular) Weyl transformation
to formally equivalent equations of motion in the “optical” metric ds?> = |goo| 'ds?. In the
case at hand this would be ds? = —dT? + (1 — r2)~2dr? + (1 — r2)~1r2dQ?, corresponding to
R x hyperbolic d-ball. The thermal trace is then mapped to a path integral on the Euclidean
optical geometry with an S' of constant radius 3 and a Weyl-transformed action. (This is
not a standard covariant path integral. In the case at hand, unless the theory happens to be
conformal, non-metric r-dependent terms break the SO(1,d) symmetry of the hyperbolic ball
to SO(d).) This path integral can be expressed in terms of a heat kernel trace fx<:p|e_TD\x>.
The divergences encountered earlier now arise from the fact that the optical metric ds? has

infinite volume near = 1. This is regularized by cutting the [, integral off at » = 1 — 4,

"This work directly inspired the use of Pauli-Villars regularization in section
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analogous to the brick wall cutoff, though computationally more convenient. For scalars and
spinors, Pauli-Villars or dimensional regularization again allows trading the § — 0 divergences
for the standard UV divergences [240].

Unfortunately, certainly for general field content and in the absence of conformal invariance,
none of these variants offers any simplification compared to conventional Euclidean path integral
methods. In the case of interest to us, the large underlying SO(1,d + 1) symmetry is broken,
and with it one's hope for easy access to exact results. Generalization to higher-spin fields, or

even just the graviton, appears challenging at best.

C.4.4 Character regularization

The character formula ((C.4.23)) is formally equivalent to the ideal gas partition function (|C.4.21J),
and indeed at first sight, naive evaluation in a global single-particle basis |wo) = aGl|0) diag-
onalizing H = w € R, obtained e.g. by quantization of the natural cylindrical mode func-

tions of the future wedge (F in fig. and table [C.3.5), gives a similarly pathological
Ot) = trge Mt = [% dwY (wole ™! |wo) = 276(t) 3, 6(0); hardly a surprise in view
of the Bogoliubov relation pg(w) ~ pg(w) and our earlier result ps(w) = >, 6(0). Thus the
conclusion would appear to be that the situation is as bad, if not worse, than it was before.
However this is very much the wrong conclusion. As reviewed in the section [3.4, (%),
properly defined as a Harish-Chandra character, is in fact rigorously well-defined, analytic in ¢

for t # 0, and moreover easily computed. For example for a scalar of mass m? on dSy;, we

get B4}

et 4 o tA-

o(t) = 11— e t[d

Ar=4+/(9)7 —m? (C.4.25)

as explicitly computed in The reason why naive computation by diagonalization of H
fails so badly is explained in detail in the remark it is not the trace itself that is sick, but
rather the basis |wo) used in the naive computation.

Substituting the explicit ©(t) into the character integral , we still get a UV-divergent
result, but this divergence is now easily regularized in a standard, manifestly covariant way,

as explained in section Keeping the large underlying symmetry manifest allows exact
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evaluation, for arbitrary particle content.
In section we show that for scalars and spinors, the Euclidean path integral Zp; on S9*1,

regularized as in ((5.3.2)), exactly equals Zy,x as defined in (C.4.23)), regularized as in ((5.3.9)):
ZpLe = Zbulk,e (scalars and spinors), (C.4.26)

One might wonder how it is possible the switch to characters makes such a dramatic dif-
ference. After all, ((C.4.21]) and are formally equal. Yet the former first evaluates to
nonsense and then hits a brick wall, while the latter somehow ends up effortlessly producing
sensible results upon standard UV regularization. The discussion in the remark [ provides
some clues: character regularization can be thought of, roughly speaking, as being akin to a
regularization cutting off global SO(d + 1) angular momentum.

This goes some way towards explaining why the character formalism fits naturally with the
Euclidean path integral formalism on S9!, as covariant (e.g. heat kernel) regularization of the
latter effectively cuts off the SO(d + 2) D SO(d + 1) angular momentum.

It also goes some way towards explaining what happened above. One way of thinking about
the origin of the pathological divergences encountered in section is that, as mentioned in
footnote [ the formal argument implicitly starts from the premise that the QFT Hilbert space
can be factorized as Hg = Hg ® Huy, like in the S* toy model. However this cannot be done
in the continuum limit of QFT: locally factorized states, such as the formal state |O) ® |O) in
which both the southern and the northern static patch are in their minimal energy state, are
violently singular objects [241]. Cutting off the global SO(d+1) angular momentum does indeed
smooth out the sharp north-south divide: SO(d + 1) is the isometry group of the global spatial
slice at T = 0 (fig. ) The angular momentum cutoff means we only have a finite number
of spherical harmonics available to build our field modes. This makes it impossible in particular
to build field modes sharply localized in the southern or northern hemisphere: the harmonic
expansion of a localized mode always has infinitely many terms. Cutting off this expansion will
necessarily leave some support on the other hemisphere. Quite similar in this way again to the
Euclidean path integral, this offers some intuition on why the UV-regularized character integral

avoids the pathological divergences induced by sharply cutting space.
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C.4.5 Edge corrections

In view of all this and , one might be tempted at this point to jump to the conclusion
that the arguments of section while formal and glossing over some subtle points, are
apparently good enough to give the right answer provided we use the character formulation, and
that likewise Zl(jll) on the sphere for a field of arbitrary spin s, despite its off-shell baroqueness, is
just the ideal gas partition function Zy, g on the dS static patch, calculable with on-shell ease:
mission accomplished. As further evidence in favor of declaring footnote [6] overly cautious,
one might point to the fact that in the context of theories of quantum gravity, identifying
Z3™ = Try e PH elegantly reproduces the thermodynamics of horizons inferred by other means
[57], and that such identifications are moreover known to be valid in a quantitatively precise way
in many well-understood cases in string theory and AdS-CFT. If the formal argument is good
enough for quantum gravity, then surely it is good enough for field theory, one might think.

These naive considerations are wrong: the formal relation Zp; ~ Zy, for fields of spin
s > 1 receives “edge” corrections. In sections[5.4] and we determine these for massive resp.
massless spin-s fields on S¢*1 by direct computation. The results are egs. and .
The corrections we find exhibit a concise and suggestive structure: again taking the form of a
character formula like , but encoding instead a path integral on a sphere in two lower
dimensions, i.e. on S%! rather than ST, This S9! is naturally identified with the horizon
r =1, i.e. the edge of the static patch hemisphere, the yellow dot in fig. [C.3.1] The results of
section then imply Spy ~ Spux likewise receives edge corrections (besides corrections due
to nonminimal coupling to curvature, which arise already for scalars).

Similar edge corrections, to the entropy Sp; =~ Shuk in the conceptually analogous case
of Rindler space, were anticipated long ago in [5] and explicitly computed shortly thereafter
for massless spin-1 fields in [6]. The result of [6] was more recently revisited in several works
including [137, 160], relating it to the local factorization problem of constrained QFT Hilbert
spaces [154H159] and given an interpretation in terms of the edge modes arising in this context.

We leave the precise physical interpretation of the explicit edge corrections we obtain in this
paper to future work. Below we will review why they were to be expected, and how related
corrections can be interpreted in analogous, better-understood contexts in quantum gravity and

QFT. We begin by explaining why the quantum gravity argument was misleading and what
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its correct version actually suggests, first from a boundary CFT point of view in the precise
framework of AdS-CFT, then from a bulk point of view in a qualitative picture based on string
theory on Rindler space. Finally we return to interpretations within QFT itself, clarifying more

directly why the caution expressed in footnote [6] was warranted indeed.

C.4.5.1 AdS-CFT considerations

As mentioned above, there are reasons to believe that in theories of quantum gravity, the
identification Z&™ = Try e #H is exact as a semiclassical (small-Gx) expansion.

However, the key point here is that H is the Hilbert space of the fundamental microscopic
degrees of freedom, not the Hilbert space of the low energy effective field theory. This can be
made very concrete in the context of AdS-CFT, where H has a precise boundary CFT defini-

tion. For example for asymptotically Euclidean AdS;;1 geometries with Sé x 891 conformal

boundary, certain analogs of the formal relations ((C.4.19)) and (|C.4.20]) then become exact in

the semiclassical/large-N expansion [242], [243]:
ZEY =Ty e PP =(010),  [0) = e PP 2B )0 @ |En)y . (C.4.27)
n

Crucially, H here is the complete boundary CFT Hilbert space, and |O) is the Euclidean vacuum
state of two disconnected copies of the boundary CFT, constructed exactly like in the dS; toy
model of section|C.4.1} but with the hemicircle 1.5 replaced by 35 x5%~1. From a semiclassical
bulk dual point of view this can be viewed as the Euclidean vacuum of two disconnected copies
of global AdS or of the eternal AdS-Schwarzchild geometry [243], depending on whether 53 lies
above or below the Hawking-Page phase transition point (3. [244].

When 8 > ., where 8. ~ O(1) assuming the low-energy gravity theory is approximately
Einstein with Gy < (471 = 1, Z&™ is dominated by the thermal EAdS saddle [244], with
on-shell action Sg = 0, so in the limit Gy — 0, Z&" = Z}(>11)- Thus in this case, the relation
Z5" = Try e PH of indeed implies ZI(DII) equals a statistical mechanical partition
function. There is no need to invoke quantum gravity to see this, of course: the thermal S!
is noncontractible in the bulk geometry, so the bulk path integral slicing argument is free of

subtleties, directly implying Zl(gll) equals the partition function Tre # of an ideal gas in global
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Figure C.4.3: AdS-Schwarzschild analogs of c,b,d in fig. Black dotted line = singularity. Thick
brown line = conformal boundary.

AdS.

On the other hand if 8 < Bit, the dominant saddle is the Euclidean Schwarzschild geometry

(fig. |C.4.3]), with on-shell action gE x —GLN, so in the limit Gy — 0, Z}%ﬁav = Zl(pol) = e_SE.

In this case the identification Z5™ = Try e P of (C.4.27) no longer implies the one-loop
correction Zl(jll) can be identified as a statistical mechanical partition function. In particular
the bulk one-loop contributions ™) = (1 — p03) log Z}(DII) to the entropy need not be positive.
(More specifically its leading divergent term, which in a UV-complete description of the bulk
theory would become finite but generically still dominant, need not be positive.) From the CFT
point of view, these are just O(1) corrections in the large-IN expansion of the statistical entropy.
Although the total entropy must of course be positive, corrections can come with either sign.
From the bulk point of view, since the Euclidean geometry is the Wick-rotated exterior of a
black hole, the thermal circle is contractible, shrinking to a point analogous to the yellow dot

in fig. [C.3.1, leading to the same issues as those mentioned in footnote [6]

C.4.5.2 Strings on Rindler considerations

To gain some insight from a bulk point of view, we consider the simplest example of a spacetime
with a horizon: the Rindler wedge ds? = —p?dt? + dp? + dx? of Minkowski space. While not
quite at the level of AdS-CFT, we do have a perturbative theory of quantum gravity in Minkowski
space: string theory. In fact, that Zl(gll) on a Euclidean geometry with a contractible thermal
circle cannot be interpreted as a statistical mechanical partition function in general, even if the
full ZE™ has such an interpretation, was anticipated long ago in [5], in an influential attempt

at developing a string theoretic understanding of the thermodynamics of the Rindler horizon.
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o®

:

Figure C.4.4: Closed/open string contributions to the total Euclidean Rindler (ds? = p2d72+dp?+dz?)
partition function according to the picture of [5]. 7 = angle around yellow axis p = 0; blue|red plane is
7 =ml|0. a,b,c contribute to the entropy. Sliced along Euclidean time 7, a and b can be viewed as free
bulk resp. edge string thermal traces contributing positively to the entropy, while c can be viewed as an
edge string emitting and reabsorbing a bulk string, contributing a (negative) interaction term.

Rindler space Wick rotates to
ds® = p2dr® + dp* +do’,  T~T+B, B=2r—c. (C.4.28)

with the conical defect € = 0 on-shell. The argument given in [5] is based on the point of view
developed in their work that loop corrections in the semiclassical expansion of the Rindler entropy
Sp1 = (1 — B9s)log ZE1™ |3=2r are equivalent to loop corrections to the Newton constant,
ensuring the entropy S = A/4Gy involves the physically measured G rather than than the
bare GN. In N = 4 compactifications of string theory to 4D Minkowski space (and in ' =4
supergravity theories more generally), loop corrections to the Newton constant vanish. By the
above observation, this implies loop corrections to Spr vanish as well. Hence there must be
cancelations between different particle species, and in particular the one-loop contribution to
the entropy of some fields in the supergravity theory must be negative. Since statistical entropy
is always positive, the one-loop ZSI) of such fields cannot be equal to a statistical mechanical
partition function.

In the same work [5], a qualitative stringy picture was sketched giving some bulk intuition
about the nature of such negative contributions to Spr when the total Spy is a statistical
entropy. In this picture, all relevant microscopic fundamental degrees of freedom are presumed

to be realized in the bulk quantum gravity theory as weakly coupled strings. More specifically
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it is presumed that Z5|" = Try e #H where H is the string Hilbert space on Rindler space
and H is the Rindler Hamiltonian, so Sp; = S, the statistical entropy. Tree level and one-loop
contributions to log Zpr are shown in fig. Diagrams d, e do not contribute to the entropy
Spr = (1 — B0g)log Zpy as their log Zpy o< 3. Cutting b along constant-7 slices gives it an
interpretation as a thermal trace over “bulk” string states away from p = 0 (closed strings in
top row).ﬂ Similarly, a can be viewed as a thermal trace over “edge” string states stuck to
p = 0 (open strings in top row). On the other hand c represents an interaction between bulk
and edge strings, with no thermal or state counting interpretation on its own. Being statistical
mechanical partition functions, a and b contribute positively to Spy, whereas ¢ may contribute
negatively. In fact in the N' = 4 case discussed above, ¢ must be negative, canceling b to render
Sl(jll) = 0. From an effective field theory point of view, b and e correspond to the bulk ideal
gas partition function inferred from formal arguments along the lines of section [C.4.2] while c
represents “edge” corrections missed by such arguments.

This picture is qualitative, as the individual contributions corresponding to a sharp split of
the worldsheet path integrals along these lines are likely ill-defined /divergent [245]. Moreover,
even without any splitting, an actual string theory calculation of Sp; = (1 — 503) log Zp1|g=2x
is problematic, as Euclidean Rindler with a generic conical defect € = 27 — 3 is off-shell. Shortly
after [5], [246] proposed to compute Zp; on the orbifold R?/Zy for general integer N and
then analytically continue the result to N — 1 + e. Unfortunately such orbifolds have closed
string tachyons leading to befuddling IR-divergences [246), 247]. Recently, progress was made in
resolving some of these issues: in an open string version of the idea, arranged in type Il string
theory by adding a sufficiently low-dimensional D-brane, it was shown in [248] that upon careful

analytic continuation, the tachyon appears to disappear at N =1 + €.

8As a simple analog of what is meant here, consider a free scalar field on S* parametized by 7 ~ 7 + 3.
[e) _sl(_52 2 Y EN —
Then log Zpr = [~ £ Tre s3(=07+m?) — S S [Drnexp—4 [(# +m*)] =3, 5t e ™™ Here

0 n 2[n]
n labels the winding number sector of the particle worldline path integral with target space S'. Discarding the
UV-divergent % term, this sums to log Zp; = — log(l—e’ﬂm)— %Bm =logTre ?H asin 1) b is analogous

to the |n| = 1 contribution e =™, e is analogous to n = 0, and higher winding versions of b correspond to |n| > 1.
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Figure C.4.5: Tree-level and one-loop contributions to log Zp; for massless vector field in Euclidean

Rindler (C.4.28)). These can be viewed as field theory limits of fig. with verbatim the same

comments applicable to a-e. The worldline path integral c appears with a sign opposite to b in log ZSI)

[6].

C.4.5.3 QFT considerations

The problem of interest to us is really just a problem involving Gaussian path integrals in free
quantum field theory, so there should be no need to invoke quantum gravity to gain some insight
in what kind of corrections we should expect to the naive Zp; ~ Z,x. Indeed the above stringy
Rindler considerations have much more straightforwardly computable low-energy counterparts
in QFT.

Motivated by [5], [6] computed ZI(DII) for scalars, spinors and Maxwell fields on Rindler space.
For scalars and spinors, this was found to coincide with the ideal gas partition function, whereas
for Maxwell an additional contact term was found, expressible in terms of a “edge” worldline
path integral with coincident start and end points at p = 0, fig. [C.4.5c. This term contributes

negatively to Sl(jll) = (1 — B0g) log Zp1|g=2~ and thus has no thermal interpretation on its own.

In fact it causes the total SSI) to be negative in less than 8 dimensions. The results of [6]
and more generally the picture of [5] were further clarified by low-energy effective field theory
analogs in [145], emphasizing in particular that whereas Sp; remains invariant under Wilsonian
RG, the division between contributions with or without a low-energy statistical interpretation
does not, the former gradually turning into the latter as the UV-cutoff A is lowered. At A =0,
only the tree-level contribution S = A/4Gy of fig. is left.

The contact/edge correction of fig. to log Zpr can be traced to the presence of a
curvature coupling X linear in the Riemann tensor in S = [ A(—V?+X)A+- - - [145, 146, [150].
Such terms appear for any spin s > 1 field, massless or not. Hence, as one might have anticipated

from the stringy picture of fig. [C.4.4] they are the norm rather than the exception.

The result of [6] was more recently revisited in [I37], relating the appearance of edge
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B e b
v v X X

Figure C.4.6: Candidate classical initial electromagnetic field configurations (phase space points), with
Ap = 0, A; = 0, showing electric field F; = I, = A;. Gauss' law requires continuity | across the
boundary, disqualifying the two candidates on the right.

corrections to the local factorization problem of QFT Hilbert spaces with gauge constraints
[154H159] like Gauss' law V - E' = 0 in Maxwell theory. This problem arises more generally
when contemplating the definition of entanglement entropy Sg = —Tr orlog or of a spatial
subregion R in gauge theories. In principle gp is obtained by factoring the global Hilbert space
He = Hr ® Hpe and tracing out Hpe. As mentioned at the end of [C.4.4] local factorization
is impossible in the continuum limit of any QFT, including scalar field theories, but the issue
raised there can be dealt with by a suitable regularization. However for a gauge theory such
as free Maxwell theory, there is an additional obstruction to local factorization, which persists
after regularization, and indeed is present already at the classical phase space level: the Gauss
law constraint V - E = 0 prevents us from picking independent initial conditions in both R and
Re (fig. , unless the boundary is a physical object that can accommodate compensating
surface charges — but this is not the case here. One way to resolve this is to decompose the
global phase space into sectors labeled by “center” variables located at the boundary surface
[154H159], for example the normal component E; of the electric field. The center variables
Poisson-commute with all local observables inside R and R°. In any given sector, factorization
then becomes possible.

Building on this framework it was shown in [I37] that in a suitable brick wall-like regulariza-
tion scheme and for some choice of measure DE |, the edge correction of [6] arises as a classical
contribution [ DE, e~32[F1L] to the thermal statistical partition function. Here Sgp[F,] is the
on-shell action for static electromagnetic field modes in Euclidean Rindler space with prescribed
E |, localized vanishingly close to p = 0 when the brick-wall cutoff is taken to zero, and thus
interpreted as edge modes. They also find a more precise form for the result of [6] for Rindler

with its transverse dimensions compactified on a torus, which is identical in form to our de Sitter
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result (5.5.17)) for s =1, G = U(1).

Similar results for massive vector fields were obtained in [160]. (The Stueckelberg action
for a massive vector has a U(1) gauge symmetry, so from that point of view it may fit into the
above considerations.) An open string realization of the above ideas was proposed in [249]. It

has been suggested that edge modes and “soft hair” might be related [250].

C.5 Derivations for massive higher spins

C.5.1 Massive spin-s fields

Here we derive (5.4.7) and (5.4.6). The starting point is the path integral (5.4.4). To get

a result guaranteed to be consistent with QFT locality and general covariance, we should in
principle start with the full off-shell system [58] involving auxiliary Stueckelberg fields of all spin

s < s.

Transverse-traceless part Zpp

One’'s initial hope might be that Zp; ends up being equal to the path integral Zpr restricted to

the propagating degrees of freedom, the transverse traceless modes of ¢, with kinetic operator

given by the second-order equation of motion in (5.4.1)). Regularized as in (5.3.2)), this is

> dr
—e

5 —e?/dr Trpp e_T(_v:TT—Fmg) . (C51)
T

IOg ZTT = /
0

The index TT indicates the object is defined on the restricted space of transverse traceless
modes. This turns out to be correct for Euclidean AdS with standard boundary conditions
[138]. However, this is not quite true for the sphere, related to the presence of normalizable
tensor decomposition zeromodes.

The easiest way to convince oneself that Zp; # Z1 on the sphere is to just compute Zp1
and observe it is inconsistent with locality, in a sense made clear below. To evaluate Zpr, all we
need is the spectrum of — V2. +m?2 [213,251]. The eigenvalues are )\, = (n + %)2—1—1/2, n>s
with degeneracy given by the dimension Dﬁfsz of the so(d + 2) representation corresponding to

the two-row Young diagram Y, ,
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Following the same steps as for the scalar case in section [5.3] we end up with

log Ztr = /OOO ;Zi (@ +q") frr(q) fro(g) =) Dd+2 qz ™" (C5.2)

n>s

Now let us evaluate this explicitly for the example of a massive vector on S% ie.d=4, s=1.

From 1-) we read off D | = fn(n +2)2(n + 4). Performing the sum we end up with

2
frr(q) = 1J_FZ((14_Q(J)4 -4 _qq)2> +q (d=4,5=1). (C5.3)

The first term inside the brackets can be recognized as the d = 4 massive spin-1 bulk character.

The small-t expansion of the integrand in ((C.5.2)) contains a term 1/¢. This term arises from
the term +¢q in the above expression, as the other parts give contributions to the integrand that
are manifestly even under ¢ — —t. The presence of this 1/t term in the small-¢ expansion implies
log Z1T has a logarithmic UV divergence log Z17|i0gdiv = log M where M is the UV cutoff
scale. More precisely in the heat-kernel regularization under consideration, the contribution of

the term +q to log Zpr is, according to (|C.2.30)),

dt, e 1 M %
Vgl =log — . M= C.5.4
/0 o q ") =log T - (C.5.4)

Note that m = /1 + 12 is the Proca mass of the vector field. The presence of a
logarithmic divergence means Zpy # Zp, for log Zpy itself is defined as a manifestly covariant,
local QFT path integral on S°, which cannot have any logarithmic UV divergences, as there are
no local curvature invariants of mass dimension 5.

For s =2 and d = 4 we get similarly

frr(q) =

1+q< 9¢> 6q
(

1—gq 1—q)4_(1—q)2> +6g+15¢° (d=4,5=2). (C.5.5)

The terms 6 + 15¢% produce a nonlocal logarithmic divergence log ZTT|1OgdiV = clog M,
where ¢ = 6 + 15 = 21, so again Zp; # Zp7. Note that 21 = % = dimso(1,6), the number

of conformal Killing vectors on S®. That this is no coincidence can be ascertained by repeating
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the same exercise for general d > 3 and s = 2:

d a—2

q2 d+2 q 2 > d+2 d+2 2
D2 __D | + D7 g+ D7 g . C5.6
( 2 (1- Q)d ! (1- Q)d72 ! b ( )

_1+gq

s=2
e =1,

The ¢, ¢ terms generate a log-divergence ¢y log M, ¢y = Df+2+Dilj2 = (d+2)+ %(d+2)(d+
1) =3(d+3)(d+2) = Dﬁ?’ = dimso(1,d + 2), the number of conformal Killing vectors on
S91L The identity Noxy = Dilj?’ = D‘lif + D‘fjgz and its generalization to the spin-s case
will be a crucial ingredient in establishing our claims. It has a simple group theoretic origin. As
a complex Lie algebra, the conformal algebra so(1,d + 2) generated by the conformal Killing
vectors is the same as so(d + 3), which is generated by antisymmetric matrices and therefore
forms the irreducible representation with Young diagram H of s0(d + 3). This decomposes into

irreps of so(d + 2) by the branching rule

H - H + [ ], (C.5.7)

implying in particular Dﬁ?’ = DﬁQ + Dil”. Geometrically this reflects the fact that the con-
formal Killing modes split into two types: (i) transversal vector modes gof}, i1=1,... ,ij{Q,
satisfying the ordinary Killing equation V(Mapf}) = 0, spanning the H eigenspace of the transver-
sal vector Laplacian, and (i7) longitudinal modes @ff = Mcpi, g = 1,...,Df+2, satisfying
Vuvygoio + g,wcpio = 0, with the scalar ¢’ modes spanning the [ | eigenspace of the scalar
Laplacian on S4+2.

We can extend the above to general s, d by using the eq. ([2.3.23]), which is copied here

Dyt = Dyt Di - DDy (C.5.8)

This relation is crucial and together with the explicit expression (2.2.3) for D? with d > 3

immediately leads to

s—1

d d
fro(g) = > Dit?q2™ — > Dit? ¢zt (C.5.9)
n>—1 n=-—1
1+ 5 4 =2
_ q( d, _ 4 a2 4 ) d+2 din
= Dg - -DHY ———— )+ > DHF ¢z (C5.10)
_ _q)d 1 _ q)d—2 1,n+1
g\ =gt 1 (I-g) 2 Dt
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2

To rewrite the finite sum we used D32 = —DI*? | and DI? = 0, both of which follow

from ((C.5.8)). Substituting this into the integral (C.5.2)), we get

log Zp1 = log Zpuk — log Zedge + log Zyes , (C.5.11)

where log Zy,y1k and log Zeqge are the character integrals defined in (5.4.7)-(5.4.8), and, evalu-

ating the integral of the remaining finite sum as in (|C.5.4)),

= d+2 dt 2yntiv din_gu = d+2 M
log Zies = Z DS,17n+1 2715 (q2 +4q2 ) = Z D5*1,n+1 log d
n=-1 n=—1 (§+mn)2+12
(C.5.12)
The term log Z,es has a logarithmic UV-divergence:
s—2
10g Zyes = cslog M + - -+ | cs= > DI . =D} | =Nekr, (C.5.13)
n=-—1

where NogT = D3

s—1s—1 is the number of rank s — 1 conformal Killing tensors on Sd+1 [252].

This identity has a group theoretic origin as an so(d+3) — so0(d+2) branching rule generalizing

(C.5.7). For example for s = 4:

N N L (C.5.14)

Geometrically this reflects the fact that the rank s — 1 = 3 Killing tensor modes split up into

4 types: Schematically /3, .., i3 = 1,...,D33; @2, . ~ V(mgoifz%), io = 1,...,D39;
(,031#2#3 ~ V(mvu2(p23), il = 1, e ,Dg,l; SOLOIHZNZE ~ V(MVMQVHS)QOZO, io = 1, .. .,Dg, where
the gpffl,,,m span the eigenspace of the TT spin-r Laplacian labeled by the above Young diagrams.

As pointed out in examples above and discussed in more detail below, the log-divergence of
log Zyes is inconsistent with locality, hence Zp; # Zp1: locality must be restored by the non-TT
part of the path integral. Below we argue this part in fact exactly cancels the log Z,.s term,

thus ending up with log Zpr = log Zyik — 108 Zedge, i.€. the character formula (5.4.7)).
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Full path integral Zpi: locality constraints

The full, manifestly covariant, local path integral takes the form (a simple example is ((C.5.21))):

ZPI = ZTT : Znon—TT = Zbulk : Z(;ilge : Zres : Znon—TT . (C515)

All UV-divergences of log Zpy are local, in the sense they can be canceled by local counterterms,
more specifically local curvature invariants of the background metric. In particular for odd
d + 1, this implies there cannot be any logarithmic divergences at all, as there are no curvature
invariants of odd mass dimension. Recall from that the term log Z,s is logarithmically
divergent. For odd d + 1, this is clearly the only log-divergent contribution to log Zrr, as the
integrands of both log Zy,,1x and log Zegge are even in t in this case. More generally, for even or
odd d + 1, log Z,es is the only nonlocal log-divergent contribution to log Zr, as follows from
the result of [128, [139] mentioned below (5.4.4), combined with the observation in (C.5.13)
that ¢s = Nckr. Therefore the log-divergence of log Z.os must be canceled by an equal log-
divergence in log Z,on-TT Of the opposite sign.

The simplest way this could come about is if Z,on.TT exactly cancels Z,qg, that is if

d+2
52 Ds 1,n+1 Zbulk

ZoonTT = Zes = || (M_l (5 +n)%+ VQ) = Zpr =

n=-—1

. (C.5.16)
edge

Note furthermore that from 1| or from (|C.5.12)) and Dg+12n+1 = —Dgtz, it follows this
identification is equivalent to the following simple prescription: The full Zpy is obtained from
Z11 by extending the TT eigenvalue sum Y=, - in down to 3,5 i:

o dt fw d+ +n

log Zpy = (¢" +q Z Dn q2 (C.5.17)

0 2 n>—1
i.e. (5.4.6). In what follows we establish this is indeed the correct identification. We start by
showing it precisely leads to the correct spin-s unitarity bound, and that it moreover exactly
reproduces the critical mass (“partially massless”) thresholds at which a new set of terms in the

action defining the path integral Z,on.7T fails to be positive definite. Assisted by those insights,

it will then be rather clear how ((C.5.16|) arises from explicit path integral computations.
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Unitarity constraints

A significant additional piece of evidence beyond consistency with locality is consistency with
unitarity. It is clear that both the above integral for log Zp1 and the integral for
log Zt are real provided v is either real or imaginary. Real v corresponds to the principal series
A= % + iv, while imaginary v = iu corresponds to the complementary series A = % —pneR
In the latter case there is in addition a bound on |u| beyond which the integrals cease to make

t and the integrand blowing up at

sense, due to the appearance of negative powers of ¢ = e~
t — oo. The bound can be read off from the term with the smallest value of n in the sum. In
the Zpr integral 1} this is the n = s term q%+5i“, yielding a bound |u| < g—i- s. In
the Zpr integral ({C.5.17)), assuming s > 1, this is the n = —1 term q%_li“, so the bound

becomes much tighter:

d

This is exactly the correct unitarity bound for the spinning complementary series representations
of SO(1,d+1) found in the chapter. In terms of the mass m? = (%+s—2)2—u2 in , this
becomes m? > (s —1)(d — 3+ s), also known as the Higuchi bound [42]. From a path integral
perspective, this bound can be understood as the requirement that the full off-shell action
is positive definite [58], so indeed log Zp; should diverge exactly when the bound is violated.
Moreover, we get new divergences in the integral formula for log Z,on- 1T, according to the above
identifications, each time || crosses a critical value ., = %—i—n, wheren = —-1,0,1,2,...,5—2.
These correspond to critical masses m2, = (4 +s—2)2 = (4 +n)? = (s—2—n)(d+s—2+n),
which on the path integral side precisely correspond to the points where a new set of terms in
the action fails to be positive definite. [58].

This establishes the terms in the integrand of , or equivalently the extra terms
n=—1,...,s—2in (C5.17), have exactly the correct powers of ¢ to match with log Znon-TT.
It does not yet confirm the precise values of the coefficients Dgﬂf — except for their sum

(C.5.13)), which was fixed earlier by the locality constraint. To complete the argument, we

determine the origin of these coefficients from the path integral point of view in what follows.
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Explicit path integral considerations

Complementary to but guided by the above general considerations, we now turn to more concrete
path integral calculations to confirm the expression (|C.5.16)) for Z,,,,_ 1T, focusing in particular

on the origin of the coefficients DI12.

Spin 1:
We first consider the familar s = 1 case, a vector field of mass m, related to v by (5.4.2)
asm = (% —1)2 4+ 2. The local field content in the Stueckelberg description consists of a

vector ¢, and a scalar ©, with action and gauge symmetry given by

So = / Vb VH¢" + 3(Vu0 —m @) (V'O —m¢h); 60 =mE, ¢, =V,uE.
(C.5.19)

Gauge fixing the path integral by putting ©® = 0, we get the gauge-fixed action
S — /v[ﬂgby]v[“qb”} + 1m2p, 6" + méc, (C.5.20)

with BRST ghosts ¢, ¢. Decomposing ¢,, into a transversal and longitudinal part, ¢, = qbf—i—qﬁ’ .

we can decompose the path integral as Zp; = Z71 - Zpon-TT With
ZTT = /D(bT 67% f¢T(7v2+m%)¢T , Znon-TT = /D¢/Dcpéeif%m2¢l2+méc, (C521)

Both the ghosts and the longitudinal vectors gb;L = V¢ have an mode decomposition in terms
of orthonormal real scalar spherical harmonics YZE] In our heat kernel regularization scheme,
each longitudinal vector mode integral gives a factor M /m, which is exactly canceled by a factor
m/M from integrating out the corresponding ghost mode.m However there is one ghost mode
which remains unmatched: the constant mode. A constant scalar does not map to a longitudinal

vector mode, because gsz =V, = 0 for constant . Thus we end up with a ghost factor m /M

Explicitly, c =Y. ¢;Ys, e =Y. &Yi, ¢}, = D a0 $iV,.Yi/VAi where V2Y; = —\Y;, [YiY; =6y

A priori there might be a relative numerical factor x between ghost and longitudinal factors, depending
on the so far unspecified normalization of the measure Dc. But because c is local, unconstrained, rescaling
Dc = Hl de; — Hi()\dci) merely amounts to a trivial constant shift of the bare cc. So we are free to take k = 1.
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in excess, and
ZnonTT =m/M = M1/(4 - 1)2 4012, (C.5.22)

in agreement with ((C.5.16|) for s = 1.

Spin 2:
For s = 2, the analogous Stueckelberg action involves a symmetric tensor ¢,,,, a vector x,, and

a scalar x, subject to the gauge transformations [58]

x=a-1&,  Oxp=a& 5 Vil 8u = Vb + Vil gy a0 €

(C.5.23)
where ag = manda_1 = \/m? — (d — 1). Equivalently, recalling (5.4.2), a,, = (%l +n)? 4 v2.
Gauge fixing by putting x = 0, x, = 0, we get a ghost action

Sen = /a_l cc+apct'ey. (C.5.24)

/

We can decompose ¢,,,, into a TT part and a non-TT part orthogonal to it as ¢, = EVT + O

where (;5;“, can be decomposed into vector and scalar modes as (f)LV = V(uv)+gup. Analogous
to the s = 1 example, we should expect that integrating out ¢’ cancels against integrating out
the ghosts, up to unmatched modes of the latter. The unmatched modes correspond to mixed
vector-scalar modes solving V(,¢,) + guwp = 0. This is equivalent to the conformal Killing
equation. Hence the unmatched modes are the conformal Killing modes. As discussed below
, the conformal Killing modes split according to H — H—I—D into Dﬁ2 vector ELmodes
and Df” scalar [Fmodes. Integrating out the H—modes of the vector ghost ¢, then yields an
unmatched factor (ao/M)Dﬁ2, while integrating out the [-modes of the scalar ghost ¢ yields

d+2
an unmatched factor (a,l/M)Dl+ . All'in all, we get

d+2 Da+2

d+2 d+2 _ D _ 7
Znon 7T = (a1 /M)P a0/ M)V = (MTH/(§ =12 02) (M ()2 4+02)

(C.5.25)
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in agreement with ((C.5.16]) for s = 2.

Spin s:

The pattern is now clear: according to [58], the Stueckelberg system for a massive spin-s field
consists of an unconstrained symmetric s-index tensor ¢*) and of a tower of unconstrained
symmetric s'-index auxiliary Stueckelberg fields x(*) with s/ = 0,1,...,s — 1, with gauge

symmetries of the form

) =ag 166D 4. 5 = ... an

(4 +n)2 402, (C.5.26)

where the dots indicate terms we won't technically need — which is to say, as transpired from
s = 1,2 already, we need very little indeed. The ghost action is S = Zz,;lo ag—1257¢) . The
unmatched modes correspond to the conformal Killing tensors modes on S%!, decomposed for
say s = 4 as in into DgEQ Hﬂ—modes, DgEQ H}lmodes, ngQ lemodes, and
Dg” [TTTFmodes. The corresponding unmatched modes of respectively ¢®®), ¢(2), ¢() and ¢(©

then integrate to unmatched factors (ag/M)Dgzz(al/M)DgEZ(ag/M)Dg?(a_l/M)DgH. For

general s:
s—1 s—2 D2
Dd+2 , _ s—1,n+1
Znontt = [[ (ay—1/M) 1 = ] (M ! (g+n)2+y2) . (C527)
s'=0 n=-—1

in agreement with for general s. This establishes our claims.

The above computation was somewhat schematic of course, and one could perhaps still
worry about missed purely numerical factors independent of v, perhaps leading to an additional
finite constant term being added to our final formulae -(5.4.6) for log Zp1. However
at fixed UV-regulator scale, the limit v — oo of these final expressions manifestly approaches
zero, as should be the case for particles much heavier than the UV cutoff scale. This would not
be true if there was an additional constant term. Finally, we carefully checked the analogous
result in the massless case (which has a more compact off-shell formulation [179]), discussed in
section , by direct path integral computations in complete gory detail [253], for all s.

Also, the result is pretty.
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C.5.2 General massive representations

Here we give a generalization of for arbitrary massive representations of the dSgiq
isometry group SO(1,d + 1).
Massive irreducible representations of SO(1,d + 1), i.e. Fa, are labeled by a dimension
A =% +iv and an so(d) highest weight =(s1,...,s,). The massive spin-s case considered in
corresponds to s = (s,0,...,0), a totally symmetric tensor field. More general irreps
correspond to more general mixed-symmetry fields. The analog of in this generalized
setup is
log Zpl T = + / T ey 3" DI2 g (C.5.28)

0o 27 el

where for bosons the sum runs over integer n with an overall + sign and for fermions the sum

runs over half-integer n with an overall — sign. The dimensions of the so(d+2) irreps (n,s) are

given explicitly as polynomials in (n, s1,..., s,) by the Weyl dimension formulae (2.2.1))-(2.2.2)).

From this it can be seen that Dg? is (anti-)symmetric under reflections about n = —%, more
precisely
d+2 _ d ryd+2
Dy =(-1)DT7, (C.5.29)

Moreover the exponent in (|C.5.28]) is symmetric under the same reflection. The most natural
extension of the sum is therefore to all (half-)integer n, taking into account the sign in (C.5.29)

for odd d, and adding an overall factor % to correct for double counting, suggesting
1 [®dr _o _ 42,2
log Zpy = i§/0 o€ /4T znj oa($ +n) DI e (TR (C.5.30)

where o4(x) = 1 for even d and o4(x) = sign(z) for odd d. Equivalently, in view of ((C.5.29))

< dr —e2 /47 d d+2 —7((n+2)2+412
logZplzi/O 5 € / zn:e(§+n)Dn; e~ T((n+3)" %) (C.5.31)
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where n € Z for bosons and n € % + Z for fermions, and
1
O(x)=1forx >0, 0(0)= o O(z) =0 for x < 0. (C.5.32)

At first sight this seems to be different from the extension to n > —1 in for the spin-
s case s = (s,0,...,0). However it is actually the same, as (2.2.1)-(2.2.2) imply that D,
vanishes for 2 —d < n < —2 when s = (s,0,...,0).

The obvious conjecture is then that is true for general massive representations.
Here are some consistency checks, which are satisfied precisely for the sum range in (C.5.31):
e Locality: For even d, the summand in is analytic in n. Applying the Euler-Maclaurin

formula to extract the 7 — 0 asymptotic expansion of the sum gives in this case
Z Dd+2 -7 n+ ~ / dn Dd+2 efT(TH*%)Q . (C533)

The symmetry tells us that the integrand on the right hand side is even in z = n + %.
Since [ dx 2?* e~ o 77F=1/2] this implies the absence of 1/7 terms in the 7 — 0 expansion
of the integrand in (C.5.30), and therefore, in contrast to (C.5.28), the absence of nonlocal
log-divergences, as required by locality of Zpr in odd spacetime dimension d + 1.

e Bulk — edge structure: By following the usual steps, we can rewrite ((C.5.31)) as

dt

— 77,1/ d+2 S+n
P, Flo= (¢ +q Ze +n) D2 g5+ (C.5.34)

log Zp[ =

Using (2.2.1))-(2.2.2)), this can be seen to sum up to the form log Zp; = log Zpuik — log Zedge,

where Zp,ik is the physically expected bulk character formula for an ideal gas in the dSg41
static patch consisting of massive particles in the Fa ¢ UIR of SO(1,d + 1), and Z.qge can be
interpreted as a Euclidean path integral of local fields living on the S¢~! edge/horizon.

e Unitarity: Note that for A = g + u with p = iv real, we get a bound on pu from requiring
t — oo (IR) convergence of the integral ((C.5.34)), generalizing ((C.5.18)), namely

d
0l < 5 +na(9), (C.5.35)
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where n.(s) is the lowest value of n in the sum for which Dg:';Q is nonvanishing. This coincides
again with the unitarity bound on i for massive representations of SO(1, d+1) |70, [75]. Recalling
the discussion below (|C.5.18)), this can be viewed as a generalization of the Higuchi bound to

arbitrary representations.

Combining (|C.5.31)) with (|C.2.19)), we thus arrive at an exact closed-form solution for the

Euclidean path integral on the sphere for arbitrary massive field content.

C.6 Derivations for massless higher spins

In this appendix we derive (5.5.17|) and provide details of various other points summarized in
section .0l

C.6.1 Bulk partition function: 7}

The bulk partition function Zpy,x as defined in (5.3.3)) for a massless spin-s field is given by

dt 14+¢q

Zoe = [ 2199 (q), C6.1
bulk 2t1_q®blk,(Q) (C6.1)

where ¢ = €', and Opus(q) = trq = Oy, ,_,(g) in the case at hand is the (restricted)
g-character of the massless spin-s SO(1,d+ 1) UIR (a.k.a., Us s—1). These characters are quite
a bit more intricate than their massive counterparts and the explicit forms are given by the

eq.(3.4.20) with ¢ = s — 1. Here we show some low-dimensional examples

d r|(1-q)"Ouuks(q)

3 1|2D3¢gtt —2D3 | 512

4 2| Dj,2q¢° (C62)
5 2| D, (¢ —q°) +2D¢"? —2D7_ ¢°

6 3|DS (> +q*)—DS,12¢°

7 3Dl (*-¢°)— DI, (¢*—q") +2D]¢*® —2D7 | ¢**F,

where D3 =2s+1, D, =2s+1, D = {(s+1)(5+2)(25+3), D, = £(2s+1)(s+1)(25+3),
DS, = H(s+1)%(s+2)%(2s+3), DS,

5s(s+1)(s+2)(s+3)(2s + 3), etc. For s =1,
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the character can be expressed more succinctly as

d—1 d
¢“+qg q"+1
Obulk,1(q) = d - =g =97 +1. (C.6.3)

With the exception of the d = 3 case, the above so0(1,d + 1) g-characters encoding the H-
spectrum of massless spin-s fields in dS,;; are very different from the s0(2, d) characters encod-
ing the energy spectrum of massless spin-s fields in AdS;; with standard boundary conditions,
the latter being @ﬁjli‘f;“l = (DIg#t4=2 — D | ¢*+91) /(1 — q)L. In particular for d > 4, the
lowest power ¢® appearing in the g-expansion of the character is A = 2, and is associated with
the so(d) representation s = (s,5,0,---,0), i.e. H,E,HEB, ...fors=1,2,3,..., whereas for
the s0(2, d) character thisis A =s+d—2 and s = (s,0,---,0). An explanation for this was
given in [70]: in dS, s should be thought of as associated with the higher-spin Weyl curvature
tensor of the gauge field rather than the gauge field itself.

This fits well with the interpretation of the expansion
O(g) = > Nq", (C.6.4)

as counting the number N, of physical static patch quasinormal modes decaying as e~"7 (cf.
section and appendix|C.1.3). Indeed for d > 4, the longest-lived physical quasinormal modes

2T 35 we have shown

of a massless spin-s field in the static patch of dS;.; always decay as e~
in the section [4.3.3] which can be understood as follows. Physical quasinormal modes of the
southern static patch can be thought of as sourced by insertions of gauge—invarianﬂzr] local
operators on the past conformal boundary T' = —oo of the static patch, or equivalently at the
south pole of the past conformal boundary (or alternatively the north pole of future boundary) of
global dS;41 [1,59] 60]. By construction, the dimension r of the operator maps to the decay rate
r of the quasinormal mode o e™"". For s = 1, the gauge-invariant operator with the smallest
dimension r = A is the magnetic field strength F;; = 0;A; — 0;A; of the boundary gauge field
A;, which has A = dim0d +dimA =1+ 1 = 2. For s = 2 in d > 4, the gauge-invariant
operator with smallest dimension is the Weyl tensor of the boundary metric: A =2+ 0 = 2.

Similarly for higher-spin fields we get the spin-s Weyl tensor, with A = s+2—s = 2. The reason

1 More precisely, invariant under linearized gauge transformations acting on the conformal boundary.
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d = 3 is special is that the Weyl tensor vanishes identically in this case. To get a nonvanishing
gauge-invariant tensor, one has to act with at least 2s — 1 derivatives (spin-s Cotton tensor),

yielding A = (2s — 1) + (2 — s) = s + 1. An extensive analysis is given in the section

C.6.2 Euclidean path integral: Zp; = Z¢Zqa;

The Euclidean path integral of a collection of gauge fields ¢ on S%*! is formally given by

f D¢ e_S[Cb]

Zp1 vol(G)

(C.6.5)

where G is the local gauge group generated by the local field £ appearing in (5.5.1). This
ill-defined formal expression is turned into something well-defined by BRST gauge fixing. A

convenient gauge for higher-spin fields is the de Donder gauge. At the Gaussian level, the

resulting analog of ((C.5.1) isF—_ZI

> dr 2 (2 2 (o2 2
log ZTT = Z/ E 6_6 /4T (TI'TT e T( Vs,TT+WL<j>,s) — TTTT e T( stl,TT+m§,s)) ,
0
S

(C.6.6)

where Y, sums over the spin-s gauge fields in the theory (possibly with multiplicities) and mivs
and mg,s are obtained from the relations below ([5.4.1)) using . The first term arises from
the path integral over the TT modes of ¢, while the second arises from the TT part of the
gauge fixing sector in de Donder gauge — a combination of integrating out the TT part of the
spin-(s — 1) ghost fields and the corresponding longitudinal degrees of freedom of the spin-s

gauge fields. The above ((C.6.6) is the difference of two expressions of the form ((C.5.1)). Naively

applying the formula ((C.5.34)) or (5.4.6)) for the corresponding full Zpy, we get

Zn=enY | %Fs(e*t) (naive) (C.6.7)

12A detailed discussion of normalization conventions left implicit here is given above and below (C.6.29)).
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where (assuming d > 3)

Fs(q) _ Z D;l:i;Q (qs+d—2+n + q2—s+n) _ Z Dg—;g (qs+d—1+n + ql—s-i-n) (C.6.8)
n>—1 n>—1

However this is clearly problematic. One problem is that for s > 2, the above Fs(q) contains
negative powers of ¢ = e, making exponentially divergent at ¢ — oco. The appearance
of such “wrong-sign” powers of ¢ is directly related to the appearance of “wrong-sign” Gaussian
integrals in the path integral, as can be seen for instance from the relation between and
the heat kernel integral . In the path integral framework, one deals with this problem by
analytic continuation, generalizing the familiar contour rotation prescription for negative modes
in the gravitational Euclidean path integral [125]. Thus one defines [ dz e **/2 for A < 0 by
rotating * — ix, or equivalently by rotating 7 — —7 in the heat kernel integral. Essentially this
just boils down to flipping any A < 0 to —\ > 0. Since the Laplacian eigenvalues are equal to the
products of the exponents appearing in the pairs (qA+”+qd_A+") in , the implementation
of this prescription in our setup is to flip the negative powers ¢* in Fi(q) = Y, cx ¢" to positive

powers ¢ ¥, that is to say replace

FS(Q) — Fs(Q) = {Fs(q)}+ = {Z Ck qk}+ = Z Ck q_k + ch qk . (C69)
k

k<0 k>0

In addition, each negative mode path integral contour rotation produces a phase +1i, resulting in
a definite, finite overall phase in Zpy [131]. The analysis of [131] translates to each corresponding

flip in (C.6.9) contributing with the same sign[| hence to an overall phase i =" with Py the

total degeneracy of negative modes in ((C.6.8)). Using DflL‘ZQ = —D;Hf ntl:
s—2
—P. _ d+2 d+2 D3 d+2 d+3
Zpr — 1 " Zpr, PS_ZD 1n’+ZDS 2.n/ 51751 D —1,5— 1+Ds—2,s—2
n’=0

(C.6.10)

In particular this implies P, =0 and P, = d + 3 in agreement with [I31].

After having taken care of the negative powers of g, the resulting amended formula Zp; =

3This can be seen in a more careful path integral analysis [253].
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% F4(q) is still problematic, however, as F(q) still contains terms proportional to ¢", causing
the integral to diverges (logarithmically) for ¢ — co. These correspond to zeromodes in the
original path integral. Indeed such zermodes were to be expected: they are due to the existence of

normalizable rank s—1 traceless Killing tensors €61 which by definition satisfy v(mém...ﬂs)
0, and therefore correspond to vanishing gauge transformations , leading in particular to
ghost zeromodes. Zeromodes of this kind must be omitted from the Gaussian path integral.
They are easily identified in (C.6.8) as the values of n for which a term proportional to ¢°

appears. Since we are assuming d > 2, this is n = s — 2 in the first sum and n = s — 1 in the

second. Thus we should refine (|C.6.9) to

F, — F,— F?, (C.6.11)
where FO = Dgiris(c]%*d_‘1 +1) — Dgfis_l(qQS*d_Q +1). Noting that fois = —Dglfis_l

and D2 is the number NX7 of rank s — 1 traceless Killing tensors on S%+1, we can rewrite

this as

FS _ _NstTl (q25+d74 +14 q23+d72 + 1) ’ N£T1 — pd+2 (C.6.12)

s—1,s—1>

making the relation to the existence of normalizable Killing tensors manifest. For example
NET = 1, corresponding to constant U(1) gauge transformations; NEKT = 1(d + 2)(d +
1) = dim SO(d + 2), corresponding to the linearly independent Killing vectors on S%*!: and
NSK_TI o 52473 for s — 0o, corresponding to large-spin generalizations thereof.

We cannot just drop the zeromodes and move on, however. The original formal path integral
expression ((C.6.5)) is local by construction, as both numerator and denominator are defined with
a local measure on local fields. In principle BRST gauge fixing is designed to maintain manifest
locality, but if we remove any finite subset of modes by hand, including in particular zeromodes,
locality is lost. Indeed the —FS(O) subtraction results in nonlocal log-divergences in the character
integral, i.e. divergences which cannot be canceled by local counterterms. From the point
of view of (C.6.5)), the loss of locality is due the fact that we are no longer dividing by the
volume of the local gauge group G, since we are effectively omitting the subgroup G generated

by the Killing tensors. To restore locality, and to correctly implement the idea embodied in
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(C.6.5), we must divide by the volume of G by hand. This volume must be computed using
the same local measure defining vol(G), i.e. the invariant measure on G normalized such that
integrating the gauge fixing insertion in the path integral over the gauge orbits results in a factor
1. Hence the appropriate measure defining the volume of G in this context is inherited from
the BRST path integral measure. As such we will denote it by vol(G)p;. A detailed general
discussion of the importance of these specifications for consistency with locality and unitarity in
the case of Maxwell theory can be found in [I36]. Relating vol(G)p; to a “canonical”, theory-
independent definition of the group volume vol(G). (such as for example vol(U(1)). = 2)
is not trivial, requiring considerable care in keeping track of various normalization factors and
conventions. Moreover vol(G)p; depends on the nonlinear interaction structure of the theory,
as this determines the Lie algebra of G. We postpone further analysis of vol(G)p; to section

C.6.4

Conclusion

To summarize, instead of the naive ((C.6.7]), we get the following formula for the 1-loop Euclidean

path integral on St for a collection of massless spin-s gauge fields:
Zpr =i (vol(G)py) ™ epo/ (Fs— FY), (C.6.13)

where Fy = {F.,}, and F? were defined in (C.6.8), (C.6.9) and (C.6.12); G is the subgroup

of gauge transformations generated by the Killing tensors £5~1 | i.e. the zeromodes of 1)
and i~ is the phase (C.6.10)). We can split up the integrals by introducing an IR regulator:

dt 170
_ P, _exp(=X, [T 5 FY) _ /X dt
Zp1 =1 2G Lehar Zg = VO](G)PI > ZLchar = expzs: ot

(C.6.14)

where the notation [* means we IR regulate by introducing a factor e !, take u — 0, and

subtract the log v divergent term. For a function f(¢) such that lim;_, f(¢) = ¢, this means

/X &y =1 lin 0(clogu+/‘fff(t) e ) (C.6.15)
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For example for f(t) = 7L this gives [ % ;1o = log i — log(e7p) = —, and for f(t) = 1
with the integral UV-regularized as in (C.2.30) we get [~ % = log(2e77/e).
In section [C.6.3] we recast Za, as a character integral formula. In section [C.6.4] we express

Z¢ in terms of the canonical group volume vol(G), and the coupling constant of the theory.

C.6.3 Character formula: Zchar = Zbulk/ZedgeZKT

In this section we derive a character formula for Z.,,, in (C.6.14)). If we start from the naive FS
given by ((C.6.8) and follow the same steps as those bringing ([5.4.6|) to the form (5.4.7)), we get

Fs = ﬂ Os, és = ébulk,s - éedge,s > (C616)
where
. qs+d72 4 q275 qs+d71 4 qlfs
®bu1k,s = Dg w - Dg_l w (C.6.17)
R g2 qs+d—3 +q1—s dio qs+d—2 +q—s
Oecdge,s = Dsi_l W - si_g W (C.6.18)

Note that @bulk,s and (:)edgeﬁ take the form of “field — ghost” characters obtained respectively
by substituting the values of v4 and v¢ given by into the massive spin s and spin s — 1
characters (5.4.8). The naive bulk characters (:)bulk,s thus obtained cannot possibly be the
character of any UIR of SO(1,d + 1), as is obvious from the presence of negative powers of q.
Indeed, it is equal to ©f, ., — ©r_,, , which differs from the character Oy, , ,(q) by the

flipping procedure ([3.4.16)). Now let us consider the actual F = {FS}+ appearing in ((C.6.14)).
Then we find]

Fo={{726,} - ig([ésh —2NKT), (C.6.19)

1To check (C.6.19)) starting from ((C.6.9), observe that {g(qk +q k- 2)}+ = 0 for any integer k, so

%gq’“ L= %(—q*k + 2) for k < 0, while of course {%Z g~ L= %qu for k > 0, . This accounts for
the £ < 0 and k > 0 terms in the expansion Zk cx ¢° of (C.6.19). The coefficient 2NXT of the ¢° term is most
easily checked by comparing the ¢° terms on the left and right hand sides of (C.6.19)), taking into account that,

by definition, [@]1 has no ¢° term, and that the ¢° terms of the left hand side are given by ((C.6.12)).
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where the flipping operator | | is defined by the eq. and hence the [@bulk,sh part
in [(:)3]+ is exactly the Harish-Chandra character ©y, ,_, of the massless spin-s representation
. Thus this flipping prescription can be thought of as the character analog of contour rotations
for “wrong-sign” Gaussians in the path integraE]. Notice the slight differences in the map
© — O], and the related but different map F' — {F'} defined in (C.6.9).

Substituting (C.6.19) into (C.6.14)), we conclude

Xdt 1+ A
log Zchar = Z / CTh. q @bulks] + — [Oedgess] . —2N§<_T1) (C.6.20)

Bulk characters for (partially) massless fields
Now let us apply this to a slight generalization of the massless ébulk,s given in (|C.6.17)),

1—s' + qd71+s’ qlfs + qdflJrs

— D4

6t (g = D1 :
(@) (1—q)? (1—q)?

(C.6.21)

This is the naive bulk character for a partially massless spin-s field ¢,,...,, with a spin-s’ (0 <
s < s — 1) gauge parameter field {,,..,, [222]. The massless case ((C.6.17)) corresponds to

s’ = s — 1. Applying the flipping procedure to it yields the Harish-Chandra character Ou,. (q)
of the exceptional UIR Uy, c.f. eq. (3.4.16]) and eq. (3.4.20]).
Edge characters for (partially) massless fields

For the edge correction we proceed analogously. The naive PM edge character is

éedge(q) — Dd+12 q + qd 2+ - Dd+2 q—s + qd s
s—

' Y e v Rl C.6.22
s A=gr= P (022

%1n representation theory, we have seen that the flipping prescription arises as we overcount the kernel of z-9,,
which is the boundary counterpart of the bulk gauge transformation.
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reducing to the massless case ((C.6.18|) for s’ = s—1. Applying (3.4.18]) gives, still with r = L%j

ss’

(1- q)d—2[(:)edge(q)}+ = (1 + (—1)d+1)(D§lif qd—2+s D;l/+21 d— 2+s)

2 ~ (C.6.23)
+ Z (_l)m Dm(ql-i-m + (_1)dqd—3—m)
m=0
where Dy, = DI} DE7A |, — DI DET

Note that in the massless spin-1 case

. d—2
[65%°(q)], = (611_(1;:1_12 ~1. (C.6.24)

It is the SO(1,d — 1) Harish-Chandra character of the exceptional UIR Vs ¢ with s =1 — the
irreducible representation indeed of a massless scalar on dS;_1 with its zeromode removed. The
fact that s = 1 is analogous to what happens in the 2D CFT of a massless free scalar X: the
actual CFT primary operators are the spin £1 derivatives 9+ X (0).

In contrast to , we did not find a way of rewriting D,,, for general spin to suggest an
interpretation along these lines in general. Indeed unlike (3.4.20)), [@i‘j}z’ﬂe(q)}+ in general does
not appear to be proportional to the character of a single exceptional series irrep of SO(1,d—1).
This is not in conflict with the picture of edge corrections as a Euclidean path integral of some
collection of local fields on S?~1, since if the fields have nontrivial spins / so(d —2) weights, the
corresponding character integrals will have a complicated structure, involving sums of iterations
of SO(1,d — 1 — 2k) characters with £ = 0,1,2,..., exhibiting patterns that might be hard to
discern without knowing what to look for. It should also be kept in mind we have not identified
a reason the edge correction must have a local QFT path integral interpretation. On the other
hand, the coefficients of the g-expansion of the effective edge character do turn out to be
positive, consistent with an interpretation in terms of some collection of fields corresponding to
unitary representations of dS;_1. A more fundamental group-theoretic or physics understanding
of the edge correction would evidently be desirable.

For practical purposes, the interpretation does not matter of course. The formula
gives a general formula for ©cqge, which is all we need. For example for d = 3, this gives

“ 5 s_ 15 s+1 s+
O3z (q)], =2 P17 02 — 98 g 42D} 17 where DY) = bs(s +1)(2s + 1)
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and D | = D5 | — D3 , = 5% The second form makes positivity of coefficients manifest. For

d =4 we get [égdge(q)} =D5 |

(1 q)
Conclusion

We conclude that ((C.6.20)) can be written as
log Zehar = log Zyuik — 10g Zeqge — log Zx T, (C.6.25)
where the bulk and edge contributions are explicitly given by (3.4.20)-(/C.6.23) with s’ = s— 1,[11)—]

and

th1+q 9

logZKT:dimG/ 21 _q 2

dimG =Y N =>"DIH} . (C.6.26)
The finite (IR) part of Zkr is given by (C.2.37): Zxr|r = (2r)~ 4mC.

C.6.4 Group volume factor: Z;

The remaining task is to compute the factor Zg defined in ({C.6.14)), that is
Za = (vol(G)py) exp Z / q25+d 4y gPstd=2 4 2) (C.6.27)

We imagine the spin range to be finite, or cut off in some way. (The infinite spin range case
is discussed in section [5.9]) In the heat kernel regularization scheme of appendix [C.2] we can
then evaluate the integral using ((C.2.30)):

KT
B . M4 3N 2
Zg = (vol(G)p;) g<(23+d—4)(23+d—2)> . M==—, (C629

On general grounds, the nonlocal UV-divergent factors M appearing here in Zg should cancel

against factors of M in vol(G)p;, as we will explicitly confirm below.

d+2
s—1,s""

%1 the partially massless case log Zkr takes the same form, but with D4t , replaced by D

919
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Generalities

Recall that G is the group of gauge transformations generated by the Killing tensors. Equivalently
it is the subgroup of gauge transformations leaving the background invariant. vol(G)py is the
volume of G with respect to the path integral induced measure. This is different from what we
shall call the “canonical” volume vol(G),, defined with respect to the invariant metric normalized
such that the generators of some standard basis of the Lie algebra have unit norm. (In the case
of Yang-Mills, this coincides with the metric defined by the canonically normalized Yang-Mills
action, providing some justification for the (ab)use of the word canonical.) In particular, in

contrast to vol(G),, vol(G)p; depends on the coupling constants and UV cutoff of the field

o
theory.

As mentioned at the end of section [C.6.2] the computation of Zg brings in a series of
new complications. One reason is that the Lie algebra structure constants defining G are not
determined by the free part of the action, but by its interactions, thus requiring data going beyond
the usual one-loop Gaussian level. Another reason is that due to the omission of zeromodes
and the ensuing loss of locality in the path integral, a precise computation of vol(G)p; requires
keeping track of an unpleasantly large number of normalization factors, such as for instance
constants multiplying kinetic operators, as these can no longer be automatically discarded by
adjusting local counterterms. Consequently, exact, direct path integral computationz of Zg for
general higher-spin theories requires great care and considerable persistence, although it can be
done [253]. Below we obtain an exact expression for Zg in terms of vol(G). and the Newton
constant in a comparatively painless way, by combining results and ideas from [135] (136 [138]
140H143], together with the observation that the form of actually determines all the
normalization factors we need. Although the expressions at intermediate stages are still a bit
unpleasant, the end result takes a strikingly simple and universal form.

If G is finite-dimensional, as is the case for example for Yang-Mills, Einstein gravity and
certain (topological) higher-spin theories [166H169| 182, 208-211] including the dSs higher-
spin theory analyzed in section , we can then proceed to compute vol(G),, and we are
done. If G is infinite-dimensional, as is the case in generic higher-spin theories, one faces

the remaining problem of making sense of vol(G). itself. Glossing over the already nontrivial

C

problem of exponentiating the higher-spin algebra to an actual group [191], the obvious issue
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is that vol(G),. is going to be divergent. We discuss and interpret this and other infinite spin

c
range issues in section 5.9 In what follows we will continue to assume the spin range is finite
or cut off in some way as before, so GG is finite-dimensional.

We begin by determining the path integral measure to be used to compute vol(G)py in
. Then we compute Zg in terms of vol(G), and the coupling constant of the theory,

first for Yang-Mills, then for Einstein gravity, and finally for general higher-spin theories.

Path integral measure

To determine vol(G)p; we have to take a quick look at the path integral measure. This is
fixed by locality and consistency with the regularized heat kernel definition of Gaussian path
integrals we have been using throughout. For example for a scalar field as in (5.3.2)), we have
J Dpe39-V24mAeé = oxpy K= e~ /AT Ty e=7(=V?+m*) " An eigenmode of —V2 + m? with
eigenvalue \; contributes a factor M/\/); to the right hand side of this equation, with M =
exp [ e~</4Te=T — 2¢77 /¢, the same parameter as in (C.6.28)) (essentially by definition). To
ensure the left hand side matches this, we must use a path integral measure derived from the local
metric ds?b = Ag—;f(éqb)? To see this, expand ¢(z) = >, piti(x) with ¥;(x) an orthonormal

basis of eigenmodes of —V2+m?2 on S%1. The metric in this basis becomes ds? = 3", 2 d2,

127
1
so a mode with eigenvalue \; contributes a factor [ dyp; \/% e 3N%; = M /+/\; to the left hand

side, as required.
We work with canonically normalized fields. For a spin-s field ¢ this means the quadratic

part of the action evaluated on its transverse-traceless part ¢1 ' takes the form

ST =5 [TV 4o, (C.6.20)

Consistency with ((C.5.1]) or ([C.6.6)) then requires the measure for ¢ to be derived again from

the metric dsg5 = ]\24—: [(6¢)2. If ¢ has a gauge symmetry, the formal division by the volume
of the gauge group G is conveniently implemented by BRST gauge fixing. For example for
a spin-1 field with gauge symmetry ¢, = 0,§, we can gauge fix in Lorenz gauge by adding
the BRST-exact action Sgrst = [iB VF¢, — cV?2c. This requires specifying a measure for

the Lagrange multiplier field B and the ghosts ¢, c. It is straightforward to check that a ghost



311

measure derived from ds2, = M? [ 6céc (which translates to a mode measure []; 7z dc; dc;)
combined with a B-measure derived from d.92B = #f(éB)% reproduces precisely the second
term in upon integrating out B, ¢, ¢ and the longitudinal modes of ¢. It is likewise
straightforward to check that BRST gauge fixing is then formally equivalent to dividing by the
volume of the local gauge group G with respect to the measure derived from the following metric
on the algebra of local gauge transformations:

2 _ M*

ds¢ = 4 — (66)%. (C.6.30)

Note that all of these metrics take the same form, with the powers of M fixed by dimensional
analysis. An important constraint in the above was that the second term in is exactly
reproduced, without some extra factor multiplying the Laplacian. This matters when we omit
zeromodes. For this to be the case with the above measure prescriptions, it was important that
the gauge transformation took the form 6¢, = a10,¢ with a1 = 1 as opposed to some different
value of a1, as we a priori allowed in (5.5.1)). For a general o, we would have obtained an
additional factor o in the ghost action, and a corresponding factor a7 in the kinetic term in
the second term of . To avoid having to keep track of this, we picked vy = 1. For
Yang-Mills theories, everything remains the same, with internal index contractions understood,
e.g. S[OTT] = § [ ¢TI (=Y + M) TT, dsf = 4T [(59°)%, ds? = 4 [(66)2.

For higher-spin fields, we gauge fix in the de Donder gauge. All metrics remain unchanged,
except for the obvious additional spacetime index contractions. The second term of is
exactly reproduced upon integrating out the T'T sector of the BRST fields together with the

corresponding longitudinal modes of ¢, provided we pick

s = /5 (C.6.31)

in (5.5.1)), with symmetrization conventions such that ¢, ...,y = ¢us--p,- (Technically the

origin of the factor s can be traced to the fact that if ¢,,.... = V(s fora TT &, we

have [ ¢? = s7! [£(—=V?2 +¢,)€.) Equation ((C.6.31)) fixes the normalization of ¢, and ((C.6.30)
then determines unambiguously the measure to be used to compute vol(G)p; in (C.6.28). We

will see more concretely how this works in what follows, first spelling out the basic idea in detail
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in the familiar YM and GR examples, and then moving on to the general higher-spin gauge

theory case considered in [140].

Yang-Mills

Consider a Yang-Mills theory with with a simple Lie algebra
(L%, L' = feLe, (C.6.32)

with the L some standard basis of anti-hermitian matrices and f®° real and totally antisym-
metric. For example for su(2) Yang-Mills, L® = —1ic® and [L¢, L?] = €®*“L¢. Consistent with
our general conventions, we take the gauge fields ¢, = ¢, L” to be canonically normalized: the

curvature takes the form Fjj L = F, = 0,0y — Oydy + g[du, ¢uv], and the action is
1 a a
S:Z/F'F (C.6.33)

The quadratic part of S is invariant under the linearized gauge transformations 5§0)¢u = 0,€,
where £ = £%L%, taking the form (5.5.1f) with a; = 1 as required. The full S is invariant under

local gauge transformations d¢¢,, = 0,.& + g[du, ], generating the local gauge algebra

The rank-0 Killing tensors & satisfy 8u§: = 0: they are the constant gauge transformations
€ = £°L% on the sphere, forming the subalgebra g of local gauge transformations acting trivially
on the background ¢, = 0, generating the group G' whose volume we have to divide by. The
bracket of g, denoted [-,-] in [140], is inherited from the local gauge algebra ((C.6.34)):

[[gv 7]] = g[ ,’ 7] : (C635)

Evidently this is isomorphic to the original YM Lie algebra. Being a simple Lie algebra, g has

an up to normalization unique invariant bilinear form/metric. The path integral metric dS%I of
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(C.6.30)) corresponds to such an invariant bilinear form with a specific normalization:

e = 2L 5 [ &= vol(sd“)f‘“é’“- (C6.36)

We define the theory-independent “canonical” invariant bilinear form (-|-). on g as follows.
First pick a “standard” basis M® of g, i.e. a basis satisfying the same commutation relations
s (C.6.32): [M?, MP] = febeMe. This fixes the normalization of the M®. Then we fix the

normalization of (:|-). by requiring these standard generators have unit norm, i.e.
(MM, = 6. (C.6.37)

The explicit form of ((C.6.35)) implies such a basis is given by the constant functions M* = —L%/g
on the sphere. Thus we have (L?|L%), = ¢?6% and

(€& = g?¢nee (C.6.38)

Comparing ((C.6.38) and (/C.6.36)), we see the path integral and canonical metrics on G and

their corresponding volumes are related by

M* vol(SHH) vol(G) M4 vol(§d+1)\ 2 4im@
dshy = ———— ds° — P () . C.6.39
PLT on g° % ~ vol(G). 27 g2 ( )

1, M* \idimG
From (C.6.28), we get Zg = vol(G)p; (m) 2 , hence
A G g a1y _ 27f

T = , =9 Ay =vol(St) = : C.6.40
CTvi@, T Vg T ) Ergy (6040

where we used vol(S%t1) = ZTvol(5971). (Recall we have been assuming d > 2. The case
d = 2 is discussed in appendix|C.7.1}) The quantity v may look familiar: the Coulomb potential

energy for two unit charges at a distance 7 in flat space is V(1) = ~2/r¢=2.

Practically speaking, the upshot is that Z¢ is given by ((C.6.40)), with vol(G),. the volume of
the Yang-Mills gauge group with respect to the metric defined by the Yang-Mills action ((C.6.33)).
For example for G = SU(2) with fa%¢ = ¢a%¢ as before, vol(G). = 1672, because SU(2) in this
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metric is the round S3 with circumference 4, hence radius 2.

The relation ((C.6.35)) can be viewed as defining the coupling constant g given our normal-
ization conventions for the kinetic terms and linearized gauge transformations. Of course the
final result is independent of these conventions. Conventions without explicit factors of g in
the curvature and gauge transformations are obtained by rescaling ¢ — ¢/g, &€ — £/g. Then
there won't be a factor g in , but instead g is read off from the action S = ﬁ [(F*)2
We could also write this without explicit reference to a basis as S = ﬁfT‘rFQ, where the
trace “Tr" is normalized such that Tr(L®L’) = §%°. Then we can say the canonical bilin-
ear/metric/volume is defined by the trace norm appearing in the YM action. We could choose
a differently normalized trace Tt = A?Tr. The physics remains unchanged provided ¢’ = Ag.
Then vol(G),, = A4™m%yol(G),, hence, consistently, Z, = Zg.

As a final example, for SU(N) Yang-Mills with su(N) viewed as anti-hermitian N x N
matrices, S = —é [ Try F? in conventions without a factor g in the gauge algebra, and Try

the ordinary N x N matrix trace, vol(SU(N)). = (C.3.3).

Einstein gravity

The Einstein gravity case proceeds analogously. Now we have single massless spin-2 field ¢,,,.
The gauge transformations are diffeomorphisms generated by vector fields £,,. The subgroup G
of diffeomorphisms leaving the background S9! invariant is SO(d + 2), generated by Killing
vectors E#. The usual standard basis My; = —My;, I = 1,...,d + 2 of the so(d + 2) Lie
algebra satisfies [Mj9, Maos] = Mj3 etc. We define the canonical bilinear (-|-). to be the unique

invariant form normalized such that the M7y have unit norm:

(Mi2|Mig)e = 1. (C.6.41)

2

c!

27 have length 2. The canonical volume is then given by (/C.3.2)).

With respect to the corresponding metric ds?, orbits g(y) = e?M12 with ¢ ranging from 0 to
To identify the standard generators M7y more precisely in our normalization conventions for
£, we need to look at the field theory realization in more detail. The so(d+2) algebra generated

by the Killing vectors ¢ is realized in the interacting Einstein gravity theory as a subalgebra of
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the gauge (diffeomorphism) algebra. As in the Yang-Mills case (C.6.35)), the bracket [-,-] of
this subalgebra is inherited from the gauge algebra. Writing the Killing vectors as & = &9,
the standard Lie bracket is [£,&'];, = (€19, — £10,£Y)0,. If we had normalized ¢, as
O = gyy—ggy with ggy the background sphere metric, and if we had normalized &, by putting
as = 1in (5.5.1)), the bracket [-,-] would have coincided with the Lie bracket [-,-]r,. However,
we are working in different normalization conventions, in which ¢, is canonically normalized

and as = v/2 according to ((C.6.31)). In these conventions we have instead

[£,6 = V1i6rGx [€, €, (C.6.42)

where Gy is the Newton constant. This can be checked by starting from the Einstein-Hilbert
action, expanding to quadratic order (see e.g. [254] for convenient and reliable explicit ex-
pressions in dSg44+1), and making the appropriate convention rescalings. This is the Einstein
gravity analog of . To be more concrete, let us consider the ambient space descrip-
tion of the sphere S ie. X'X; = 1 with X € R%2. Then the basis of Killing vec-
tors My = —(X;0; — X;0;)/\/16mGy satisfy our standard so(d + 2) commutation rela-
tions [Mya, Mas] = M3 etc, hence by , (Mj2|Mi2). = 1. The path integral metric
1} on the other hand corresponds to the invariant bilinear (£|¢)p; = ]‘2/‘[—; [€-€, so

M4 M4 .
<M12‘M12>PI = ?ﬁ fsd+1(X12 + X22) = ?1671’1GN %HVOI(SdJ’_l). Thus we obtain the

following relation between Pl and canonical metrics and volumes for G = SO(d + 2):

1 dim
Ag 1 MY vol(G)py <Ad_1 1 M4>2d “

dspr= - —————d = —
I dondd+2) 27 T NAl(G),  \ 4Gy d(d +2) 27

(C.6.43)

where dimG = 3(d + 2)(d + 1), Ag_1 = vol(S971) as in (C.6.40), and we again used
vol(S4t1) = 2Zvol(S¢1). Combining this with (C.6.28)), we get our desired result:

dim G

¥ TGN
Zg = \/ : C.6.44
@ vol(G),’ v Ag1q (C.6.44)
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Higher-spin gravity

We follow the same template for the higher-spin case. In the interacting higher-spin theory,
the Killing tensors generate a subalgebra of the nonlinear gauge algebra, with bracket [, -]
inherited from the gauge algebra, just like in the Yang-Mills and Einstein examples, except the
gauge algebra is much more complicated in the higher-spin case. Fortunately it is not necessary
to construct the exact gauge algebra to determine the Killing tensor algebra: it suffices to
determine the lowest order deformation of the linearized gauge transformation fixed by
the transverse-traceless cubic couplings of the theory [140]. The Killing tensor algebra includes
in particular an so(d+2) subalgebra, that is to say an algebra of the same general form (C.6.42)
as in Einstein gravity, with some constant appearing on the right-hand side determined by the
spin-2 cubic coupling in the TT action. We define the “Newton constant” G of the higher-
spin theory to be this constant, that is to say we read off G from the so(d + 2) Killing vector

subalgebra by writing it as

[£,6] = Vi6rGx €, € - (C.6.45)

The standard Killing vector basis is then again given by M;; = —(X;0; — X;0;7)/v/167Gx,
satisfying [Mi2, Mas] = M3 etc.

It was argued in [140] that for the most general set of consistent parity-preserving cubic
interactions, assuming the algebra does not split as a direct sum of subalgebras, i.e. assuming
the algebra is simple, there exists an up to normalization unique invariant bilinear form (-|-). on
the Killing tensor algebra. We fix its normalization again by requiring the standard so(d + 2)

Killing vectors My have unit norm,
(Miz|My2). = 1. (C.6.46)

Expressed in terms of the bilinears (£,_1|€,_1)pr = Jg—; fés,l -5(5_1) corresponding to (|C.6.30)),

the invariant bilinear on the Killing tensor algebra takes the general form

<g|£,>c = Z Bs <§sfl|§;—1>PI ) (C.6.47)
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where Bj are certain constants fixed in principle by the algebra. The arguments given in [140]
moreover imply that up to overall normalization, the coefficients B, are independent of the
coupling constants in the theory. More specifically, adapted (with some work, as described
below) to our setting and conventions, and correcting for what we believe is a typo in [140], the
coefficients are By o< (2s+d—4)(2s+d—2). We confirmed this by comparison to [143], where
the invariant bilinear form for minimal Vasiliev gravity in AdS441, dual to the free O(N) model,
was spelled out in detail, building on [140-142]. Analytically continuing to positive cosmological
constant, implementing their ambient space X -contractions by a Gaussian integral, and reducing
this integral to the sphere by switching to spherical coordinates, the expression in [143] can be
brought to the form (C.6.47). This transformation almost completely cancels the factorials in
the analogous coefficients b in [143], reducing to the simple Bs o (2s+d—4)(2s+d—2). (The
alternating signs of [143] are absent here due to the analytic continuation to positive cc.) Taking
into account our normalization prescription ((C.6.46|) (which is different from the normalization

chosen in [143]), we thus get

p— 2 4GN

NS st d- s+ d =D EIET), (Coas)

S

with Ag_; = vol(S9~!) as before. In view of the independence of the coefficients B; of the
couplings within the class of theories considered in [140], i.e. all parity-invariant massless higher-
spin gravity theories consistent to cubic order, this result is universal, valid for this entire class.

As before for Einstein gravity and Yang Mills, from ({C.6.48|) we get the ratio

1 A7KT
§N571

vol(Gpy _ I1 <M4 A1 ! ) : (C.6.49)

vol(G) 21 4AGN (25 +d—4)(2s +d — 2)

¢ S

Combining this with ({C.6.28)) we see that, rather delightfully, all the unpleasant-looking factors

cancel, leaving us with

,ydim G 87TGN

T =
CTYIG), . T\ A

(C.6.50)

This takes exactly the same form as the Einstein gravity result ((C.6.44)) except G is now the
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higher-spin symmetry group rather than the SO(d 4 2) spin-2 symmetry group.

The cancelation of the UV divergent factors M is as expected from consistency with lo-
cality. The cancelation of the s-dependent factors on the other hand seems surprising, in view
of the different origin of the numerator (spectrum of quadratic action) and the denominator
(invariant bilinear form on higher spin algebra of interactions). Apparently the former somehow
knows about the latter. We do not see an obvious reason why this is the case, although the
simplicity and universality of the result suggests we should, and that this entire section should

be replaceable by a one-line argument. Perhaps it is obvious in a frame-like formalism.

Newton constant from central charge

Recall that the Newton constant G appearing in ((C.6.50]) was defined by the so(d + 2) algebra
(C.6.45)) in our normalization conventions. An analogous definition can be given in dSg41 or
AdS;;1 where the algebra becomes so(1,d+ 1) resp. s0(2,d). Starting from this definition, Gx
can also be formally related to the Cardy central charge C of a putativ boundary CFT for AdS
or dS, defined as the coefficient of the CFT 2-point function of the putative energy-momentum
tensor. With our definition of Gy, the computation of [255] remains unchanged, so we can just

copy the result obtained there:

_ (il)% L(d+2) Ay
“- (d—1)T (%) 887Gy (C.6.51)

where as before A;_1 = 27Td/2€d_1/F(%), and +1 = +1 for AdS and —1 for dS. The central
charge of N free real scalars equals C = W‘%N in the conventions used here. Note that
(C.6.51) reduces to the Brown-Henneaux formula C' = 3¢/2Gy for d = 2. In [39] it was
argued that the Hartle-Hawking wave function of minimal Vasiliev gravity in dSy is perturbatively

computed by a d = 3 CFT of N free Grassmann scalars. This CFT has central charge C' = —%N,
hence according to (C.6.51)), Gx = 2%/7N and v = /2Gx = 8/V/7N.

The final result of this appendix, putting everything together, is stated in (5.5.17]).

" There is no assumption whatsoever this CFT actually exists. One just imagines it exists and uses the formal
holographic dictionary to infer the two-point function of this imaginary CFT's stress tensor. In dS, this “dual
CFT” can be thought of as computing the Hartle-Hawking wave function of the universe [203].
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C.7 One-loop and exact results for 3D theories

C.7.1 Character formula for ZI(DII)

For d = 2, i.e. dS3 / S3, some of the generic-d formulae in sections and become a
bit degenerate, requiring separate discussion. One reason d = 2 is a bit more subtle is that
the spin-s irreducible representation of SO(2) actually comes in two distinct chiral versions
+s, as do the corresponding SO(1,3) irreducible representations (A, £s). Likewise the field
modes of a spin s field in the path integral on S3 split into chiral irreps (n,+s) of SO(4).
The dimensions D2 = D? = 1and D) = D; = (1+n—s)(1+n+s) of the SO(2)
and SO(4) irreps are correctly reproduced by the Weyl dimension formula (2.2.1)), rather than
(2.2.3)). It should however be kept in mind that the single-particle Hilbert space of for instance a
massive spin-s > 1 Pauli-Fierz field on dSgs carries both helicity versions (A, £s) of the massive
spin-s SO(1, 3) irrep, hence the character © to be used in expressions for Zp; in this case is
O=0,,+0_,=20,,=2(¢" +¢*2)/(1 — q)%. On the other hand for a real scalar field,
we just have ©@ = ©g = (¢® + ¢*72)/(1 — ¢)%.

For massless higher-spin gauge fields of spin s > 2, a similar reasoning implies we should

include an overall factor of 2 in ([C.6.17))-(C.6.18). For an s = 1 Maxwell field on the other hand,

we get a factor of 2 in the first term but not in the second term (since the gauge parameter/ghost
field is a scalar). The proper massless spin-s bulk and edge characters are then obtained from

these by the polar term flip ([3.4.17)) as usual. This results in

5= 2
@bulk,s =0 (5 > 2) 5 @}(Juu{l) = ﬁ s @edge,s =0 (aII 8) s (C?l)

expressing the absence of propagating degrees of freedom (i.e. particles) for massless spin-s > 2
fields on dSs.
This can also be derived more directly from the general path integral formula ({C.5.34)),
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taking into account the s doubling. In particular for massless s > 2, ({C.6.8)) gets replaced by

o= 30 001+m)2D8 (@ + ¢4 = 30 0(1+n) 2D}y (¢ 4 g1,

n>—1 n>—1
(C.7.2)
which matters for the n = —1 term because 6(0) = % For s = 1, we get instead
Fr=% 0(1+n)2Dy, (""" +¢""") = Dpo(@®" +q"). (C.7.3)
n>—1 n>0

For s > 2, the computation of Z . and Zg remains essentially unchanged. For s = 1 there
are some minor changes. The edge character in (C.6.18) acquires an extra ¢" term in d = 2

=3 — 0 50 the map Ocdge — [Oedge]+ gets an extra —1 subtraction, as a result

because ¢
of which the factor —2 in (C.6.19) becomes a —3. Relatedly we get an extra ¢ term in
T L 252 L9 — 2 £ 3in , and we end up with Zg = 44m ¢ /vol(G),, with
5 = gl/JA] = gv/{/\/2 instead of . Everything else remains the same.

Finally, the phase i~ ((C.6.10)) is somewhat modified. For s > 2, from {i

s—3 s—2
1
Po=— > 01+4n)2Dy,— > 0(1+n)2D;, ; =-(25s—3)(2s—1)(2s+1) (C.7.4)
n=—1 n=-—1 3
Note that P, = 5, in agreement with [I3I]. P, = 0 as before, since there are no negative

modes.

Conclusion

The final result for ZSI) = ZGZehar in dSsg replacing (5.5.17))-(5.5.18)) is:

= For Einstein and HS gravity theories with s > 2,

,ydim G

—2dime>< % }J%g _ (QW)dimGe—dimG.cfe_l
vol(G),

7 ="

« Zchar Zchar = €

)

(C.7.5)

where as before v = /81Gn/A1 = VAGN /L, P = >, Ps, and vol(G), is the volume

with respect to the metric for which the standard so(4) generators M have norm 1. We
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used (|C.2.37)) to evaluate Z.ha,. The coefficient ¢ of the linearly divergent term is an order

1 constant depending on the regularization scheme. (For the heat kernel regularization of
appendix following section , c= %Tﬂ- For a simple cutoff at ¢ = € as in section
C.2.4, ¢ = 2.) The finite part is

W _.op 2ry)ime _ 8GN
e =T i@, T 2 (C.7:6)

For example for Einstein gravity with G = SO(4), we get

5 (2777)6

)t = —i4n?45. (C.7.7)

(1) .
ZPI,ﬁn =1

For Yang-Mills theories with gauge group G and coupling constant g, we get

W _ 3G amo[ g (2m-) gVl c78)
PL ™ vol(G), ’ V2r o
Using (IC.2.19)), (C.2.37)), the finite part evaluates to
2wg\/221)dimG @
70 _ | 7y = e it | 7.
PLfin VOI(G)C ’ 1 e 4 ( 9)

As in (5.5.17)), vol(G), is the volume of G with respect to the metric defined by the trace
appearing in the Yang-Mills action. As a check, for G = U(1) we have vol(G). = 27, so
Z = ge<®/47* /1 in agreement with [256] eq. (3.25).

We could also consider the Chern-Simons partition function on S3,
Z = /pAeikscsm . Ses|A] = 4i /Tr(A A dA + §A NANA),  (C.7.10)
T

with k& > 0 suitably quantized (k € Z for G = SU(N) with Tr the trace in the N-
dimensional representation). Because in this case the action is first order in the derivatives
and not parity-invariant, it falls outside the class of theories we have focused on in this
paper. It is not too hard though to generalize the analysis to this case. The main difference

with Yang-Mills is that Oy = 0 = Ocgge: like in the s > 2 case, the s = 1 Chern-Simons
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theory has no particles. The function F7 is no longer given by the Maxwell version (C.7.3),
but rather by , except without the factors of 2, related to the fact that the CS
action is first order in the derivatives. This immediately gives F} = Fl = -2 %g. The
computation of the volume factor is analogous to our earlier discussions. The result (in

canonical framing [257]) is

Fdim G —2dim G [* 41t

)dimG
_r 2t 1—q , Z’gg —
VOI(G)Tr Hn

(27

1
— V= — 7.11

Vi

zM =

where vol(G)y is the volume with respect to the metric defined by the trace appearing in
the Chern-Simons action ((C.7.10]). This agrees with the standard results in the literature,

nicely reviewed in section 4 of [258].

C.7.2 Chern-Simons formulation of Einstein gravity

3D Einstein gravity can be reformulated as a Chern-Simons theory [164] [259]. Although well-
known, we briefly review some of the basic ingredients and conceptual points here to facilitate
the discussion of the higher-spin generalization in section A more detailed review of
certain aspects, including more explicit solutions, can be found in section 4 of [260]. Explicit
computations using the Chern-Simons formulation of A > 0 Euclidean quantum gravity with

emphasis on topologies more sophisticated than the sphere can be found in [261H263].

Lorentzian gravity

For the Lorentzian theory with positive cosmological constant, amplitudes are computed by path

integrals [ DA €T with real Lorentzian SL(2,C) Chern-Simons action [165]
S = (1+im)Sos[Ay] + (1 — im)Ses[A_], A=A, (C7.12)

where Scg is as in ((C.7.10) with A1 an s[(2, C)-valued connection and Tr = Trs. The vielbein

e and spin connection w are the real and imaginary parts of the connection:

Ay =wtie/l, ds* = 2 Try e? = njeel . (C.7.13)
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For the last equality we decomposed e = €'L; in a basis L; of s[(2,R), say

(Ll,LQ,Lg) = (%O’l,%idg,%ag) = Nij = QTI‘Q(LZ'LJ') = diag(l,—l,l). (C714)
Note that [L;, L;] = —e;;, L with LF = #**¥ L;,. When [ = 0, the action reduces to the firs-
order form of the Einstein action with Newton constant G = ¢/4k and cosmological constant

A = 1/£2. The equations of motion stipulate A must be flat connections:
dAy + AL NAL = 0, (C.7.15)

equivalent with the Einstein gravity torsion constraint (with w'; = n'e;;5w") and the Einstein
equations of motion [164]. Turning on [ deforms the action by parity-odd terms of gravitational
Chern-Simons type. This does not affect the equations of motion ((C.7.15)). We can take [ > 0

without loss of generality. The part of the action multiplied by [ has a discrete ambiguity forcing
I to be integrally quantized, like k in (|C.7.10). Summarizing,

27l

0<lez, 0< k= eER,
- & 8GN

(C.7.16)

dS3 vacuum solution

A flat connection corresponding to the de Sitter metric can be obtained as follows. (We will be
brief because the analog for the sphere below will be simpler and make this more clear.) Define
Q(X) = 2(X*Ly+1iX'L;) with Ly = 11 and note that det Q = X3 +1;; X' XJ =: n;; X X7,
so M = {X|det Q(X) = 1} is the dS3 hyperboloid, and @ is a map from M into SL(2,C). Its
square root h = Q'/? is then a map from M into SL(2,C)/Zy ~ SO(1,3),s0 A, = h~'dhis a
flat s[(2, C)-valued connection on M. Moreover on M we have Q* = Q™ !, soh* =h™!, A_ =
A% = —(dn)h7!, and ds? = —JP2Tr(Ay — A_)? = -1 Tr (Q71dQ)? = PyrdXTdX,

which is the de Sitter metric of radius ¢ on M.

Euclidean gravity

Like the Einstein-Hilbert action — or any other action for that matter — (|C.7.12)) may have

complex saddle points, that is to say flat connections AL which do not satisfy the reality
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constraint ((C.7.12]), or equivalently solutions for which some components of the vielbein and spin
connection are not real. Of particular interest for our purposes is the solution corresponding to
the round metric on S3. This can be obtained from the dS3 solution as usual by a Wick rotation

of the time coordinate. Given our choice of sI(2,R) basis (C.7.14), this means X? — —iX?2.

2 2

At the level of the vielbein e = €’L; such a Wick rotation is implemented as 2 — —ie?.

Similarly, recalling w;; = eijkwk, the spin connection w = w'L; rotates as w! — iw!, w3 — w3.
Equivalently, A, — (w' % €'/¢)S; where S; = Lio;. Notice the S; are the generators of su(2),
satisfying [S;, S;] = —€ijik Sk, —2Tra(5;5;) = di5 and SJ = —S5;. Thus the Lorentzian metric
1ij gets replaced by the Euclidean metric §;;, the Lorentzian sl(2, C) = so(1, 3) reality condition
gets replaced by the Euclidean su(2) @ su(2) = so(4) reality condition, and the Lorentzian path
integral [DA ¢"SL becomes a Euclidean path integral /DA e %8, where Sp = —iSy, is the

Euclidean action:
Sg = (k —il) Scs[AL] — (k+il) Scs[A_], AL =—Ay. (C.7.17)

This can be interpreted as the Chern-Simons formulation of Euclidean Einstein gravity with
positive cosmological constant. The su(2) & su(2)-valued connection (A4, A_) encodes the

Euclidean vielbein, spin connection and metric as
Ar =wte/l = (W' +e'/0)S;, S; = 3oy, ds? = —2Trge* = §;je'e! . (C.7.18)

The Euclidean counterpart of the reality condition of the Lorentzian action is that Sg gets
mapped to S}, under reversal of orientation. Reversal of orientation maps Scs[A] — —Scs[A],
and in addition here it also exchanges the £ parts of the decomposition s0(4) = su(2) ®su(2)_
into self-dual and anti-self-dual parts, that is to say it exchanges Ay <> A_. Thus orientation

reversal maps Sg — —(k —il) Scs[A—] + (k + il) Scs[A+] = S}, as required.
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Round sphere solutions

Parametrizing S3 by g € SU(2) ~ S3, it is easy to write down a flat su(2) @ su(2) connection

yielding the round metric of radius ¢:

(A, A) = (971dg,0) =  e/t=39 'dg=w, ds°=—32Tr(g""dg)*.
(C.7.19)

The radius can be checked by observing that along an orbit g() = €93, we get g~ 'dg =
dp S3 so ds = %ngp and the orbit length is f(;l’r ds = 2mwf. The on-shell action is Sg =

—’Efrl Jgs Tro(g~tdg)3 = —72%';;[) [elelek Tro(5;5;Sk) = —’g;g [elelek €ijk = —2m(k —il),

SO

2t ). (C.7.20)

exp(—Sg) = exp(2mk + 2mil) = exp(ﬁ
N

where we used ([C.7.16). This reproduces the standard Gibbons-Hawking result [57] for dSs.
More generally we can consider flat connections of the form (A, A_) = (h'dhy, h='dh_)
with hy = ¢"*, where ny € Z if we take the gauge group to be G = SU(2) x SU(2).
These are all related to the trivial connection (0,0) by a /arge gauge transformation g € S3 —
(hy,h_) € G. All other flat connections on S? are obtained from these by gauge transformations
continuously connected to the identity, which are equivalent to diffeomorphisms and vielbein
rotations continuously connected to the identity in the metric description [164]. Large gauge

transformations on the other hand are in general not equivalent to large diffeomorphisms. Indeed,

e 8 = Fmmnd2minl _ p2mnr n=ny—n_, N=n4y+n_, (C.7.21)
so evidently different values of n are physically inequivalent. Conversely, for a fixed value of n but
different values of 7, we get the same metric, so these solutions are geometrically equivalent. In
particular the n = 1 solutions all produce the same round metric (C.7.19). For n = 0, the metric
vanishes. For n < 0, we get a vielbein with negative determinant. Only vielbeins with positive
determinant reproduce the Einstein-Hilbert action with the correct sign, so from the point of

view of gravity we should discard the n < 0 solutions. Finally the cases n > 1 correspond to
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a metric describing a chain of n spheres connected by throats of zero size, presumably more

appropriately thought of as n disconnected spheres.

Euclidean path integral

The object of interest to us is the Euclidean path integral Z = [ DA e—5el4] | defined perturba-
tively around an n = n, —n_ = 1 round sphere solution (A;, A_) = (g7 "+dg™+, g " dg"-),
such as the (1,0) solution ([C.7.19). Physically, this can be interpreted as the all-loop quantum-
corrected Euclidean partition function of the dS3 static patch. For simplicity we take G =
SU(2) x SU(2), so n+ € Z and we can formally factorize Z as an SU(2)x, x SU(2);_ CS

partition function where k4 = [ + ik, with [ € ZT and Kk € RT:

7 — DA et*+Scs[At]+ik-Scs[A-] — Zcs (SU(Q)k+ |An+) Zcs (SU(2)IL ‘Anf) )

(n4,n—)

(C.7.22)

Here the complex-k CS partition function Zcs(SU (2)|Ay) = [, DA e#5cslAl s defined pertur-
batively around the critical point A = g~™dg™. It is possible, though quite nontrivial in general,
to define Chern-Simons theories at complex level k on general 3-manifolds M3 [264, 265]. Our
goal is less ambitious, since we only require a perturbative expansion of Z around a given saddle,
and moreover we restrict to M3 = S3. In contrast to generic M3, at least for integer k, the CS
action on S3 has a unique critical point modulo gauge transformations, and its associated per-
turbative large-k expansion is not just asymptotic, but actually converges to a simple, explicitly

known function: in canonical framing [257],

Zcs(SU(2)k]A)y = /725 sin(55%) e!2h)SeslA] (e 7t (C.7.23)

The dependence on the choice of critical point A = ¢g~™dg™ actually drops out for integer k,

as Scg[A] = —2mm € 27Z. We have kept it in the above expression to because this is no

longer the case for complex k. Analytic continuation to k4 = [ & ik with [ € ZT and kK € RT

in (|C.7.22)) then gives:

_ 2 : s
Zo = ‘\/ i S0 (ari)

2
2+1+ik

K

2mnr—2mi i (2+1) _ e

€ =

(C.7.24)

sin(

2 v
‘ 2+l+m)
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Framing dependence of phase and one-loop check

For a general choice of S% framing with SO(3) spin connection &, (C.7.23)) gets replaced by
[257]

Zcs(SU(2)k|A) = exp(55¢(k) (@) Zes(SU(2)kIA), , c(k)=3(1—5%), (C7.25)

where I(@) = &= [ Tr3(& A d@ + 2& A& A &) is the gravitational Chern-Simons action. The
action I(@) can be defined more precisely as explained under (2.22) of [266], by picking a
4-manifold M with boundary OM = S3 and putting

I(@) = Iy = ﬁ /M Te(R A R), (C.7.26)

where R is the curvature form of M, R*, = %R“,}pgdwp A dz?. Taking M to be a flat 4-ball
B, the curvature vanishes so Ig = 0, corresponding to canonical framing. Viewing B as a
4-hemisphere with round metric has Tr(R A R) = 0 pointwise so again Ip = 0. Gluing any
other 4-manifold M with boundary S3 to B, we get a closed 4-manifold X = M — B, with
Iy—Ip = ﬁ Jx Tr(RAR) = 27p1(X), where p1 (X) is the Pontryagin number of X. According
to the Hirzebruch signature theorem, the signature o(X) = by — b, of the intersection form of

the middle cohomology of X equals %pl(X). Therefore, for any choice of M,
Iy = 677, r=o(X)eZ. (C.7.27)

For example r = 1 for X = CP? and r = p—q for X = pCPQ#qﬁz. Thus for general framing,
(C.7.25) becomes Zcs(k|m) = Zos(k|m)o exp(r (k) 2) and (C.7.24) becomes

2 : T K
\V 2¥i+ir Sm(2+l+m)€

where, using ¢(k) = 3(1 — Hik) the phase is given by

2

Z, =" , re’z, (C.7.28)

. . 3
r¢ =r(c(l+ir) +c(l — m))% =r(l- @2&%)% ) (C.7.29)
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In the weak-coupling limit kK — oo,
e, (C.7.30)

Using and taking into account that we took G' = SU(2) x SU(2) here, the absolute
value agrees with our general one-loop result in the metric formulation, with the phase
(—i)" matching Polchinski's phase i~ = i = —i in for odd framing r.ﬁ We do
not have any useful insights into why (or whether) CS framing and the phase i~ might have
anything to do with each other, let alone why odd but not even framing should reproduce the
phase of [131]. Perhaps different contour rotation prescriptions as those assumed in [131] might
reproduce the canonically framed (r = 0) result in the metric formulation of Euclidean gravity.

We leave these questions open.

Comparison to previous results: The Chern-Simons formulation of gravity was applied to calcu-
late Euclidean A > 0 partition functions in [261H263]. The focus of these works was on summing
different topologies. Our one-loop in canonical framing agrees with [261] up to an un-
specified overall normalization constant in the latter, agrees with Z(S5%)/Z(S! x S?) in [262]

combining their eqs. (13),(32), and disagrees with eq. (4.39) in [263], Z()(S3) = 73/(2%K).

C.7.3 Chern-Simons formulation of higher-spin gravity

The SL(2,C) Chern-Simons formulation of Einstein gravity (C.7.12)) has a natural extension
to an SL(n,C) Chern-Simons formulation of higher-spin gravity — the positive cosmological

constant analog of the theories studied e.g. in [166H169, [182] [183]. The Lorentzian action is
Sy = (L+ k) ScslAs] + (L — ir) ScslA-], AT = AL, (C.7.31)

where Scs[A] = & [ Trn(ANdA+2ANANA), an A'is an sl(n, C)-valued connection, x € R*
and [ € ZT. The corresponding Euclidean action Sg = —iS, extending ((C.7.17)) is given by

Sk = (k —il) Scs[As] — (5 +il) Ses[A_], AL =—A., (C.7.32)

BStrictly speaking for ¥ = 1 mod 4, but i¥ vs ¥ in (5.5.17)) is a matter of conventions, so there is no
meaningful distinction we can make here.
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where A are now independent su(n)-valued connections.

C.7.3.1 Landscape of dS3 vacua

The solutions A of the original (n = 2) Einstein gravity theory can be lifted to solutions
A = R(A) of the extended (n > 2) theory by choosing an embedding R of (2) into (n). More

concretely, such lifts are specified by picking an n-dimensional representation R of su(2),
R=®um,, > ma=n, & =R(S)=d.J ", (C.7.33)

Here Ji(m) are the standard anti-hermitian spin j = ’”T_l representation matrices of su(2),

satisfying the same commutation relations and reality properties as the spin—% generators S;

in (C.7.18)). Then the matrices £; = R(L;) with the L; as in ((C.7.14) are real, generating

the corresponding n-dimensional representation of s[(2,R). The Casimir eigenvalue of the spin

m—1

j="lirrepis j(j + 1) = 1(m?® — 1), so
1
Tl"n(S,’Sj) = —%TR 5ij s Tl"n(ﬁiﬁj) = %TR nij s TR = 6 Zma(m?l — 1) N (C.7.34)

A general SL(2,C) connection A = A'L; has curvature dA + AN A = (dA® — €', ATA¥)L;,
and an SL(n,C) connection of the form A = R(A) = A'L; has curvature dA + AN A =
(dA'—1et;, AT AR)LC;, hence A = R(A) solves the equations of motion of the extended SL(n, C)
theory iff A solves the equations of motion of the original Einstein SL(2,C) theory. In other
words, restricting to connections A = A'L; amounts to a consistent truncation, which may be
interpreted as the gravitational subsector of the n > 2 theory. Substituting A = R(A) into the

action ((C.7.31)) gives the consistently truncated action
Sp = (l4+ik)Tr Scs[A+] + (I —ir)TR Scs[A-], Ai =A_, (C.7.35)

which is of the exact same form as the original Einstein CS gravity theory ((C.7.12)), except
[ + ik is replaced by (I + ix)Tr. Thus we can naturally interpret the components A% again as
metric/vielbein /spin connection degrees of freedom, just like in (C.7.18)), i.e. A% = w! 4 e’ /Y,

ds® = n;jele’, and the lift A = R(A) of the original solution A corresponding to the dS3 metric
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again as a solution corresponding to the dSs metric. The difference is that the original relation

(C.7.16)) between k and ¢/GN gets modified to

(C.7.36)

Since k is fixed, this means the dimensionless ratio £/GN depends on the choice of R. Thus the
different solutions A = R(A) of the SL(n,C) theory can be thought of as different de Sitter
vacua of the theory, labeled by R, with different values of the curvature radius in Planck units
¢/Gx. These are the dS analog of the AdS vacua discussed in [183]. The total number of vacua

labeled by R = ©,m, equals the number of partitions of n =), m,,
Noge ~ €2TV6 (> 1), (C.7.37)

For, say, n ~ 2 x 10°, this gives Nyac ~ 10°%.

Analogous considerations hold for the Euclidean version of the theory. For example the

round sphere solution ((C.7.19)) is lifted to
(A, AD) = (R(A4),0) = (R(g9)'dR(g),0),  R(e”%) = e, (C.7.38)

with the sphere radius ¢ in Planck units given again by ((C.7.36]). The tree-level contribution of
the solution ({C.7.38)) to the Euclidean path integral is

2
exp(—Sg) = exp(2nrTR) = exp(élgi) . (C.7.39)

Note that SO = —Sp = % is the usual dS3 Gibbons-Hawking horizon entropy [57]. Its value

S = 27k Ty depends on the vacuum R = @®,m, through Tk as given by (C.7.34). The
vacuum R maximizing e =% corresponds to the partition of n. = 3_, m, maximizing Tx. Clearly
the maximum is achieved for R = n:

n(n? —1)

- (C.7.40)

ml%x Tr=Tn =

The corresponding embedding of su(2) into su(n) is called the “principal embedding”. Thus the
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“principal vacuum" maximizes the entropy at Sgun = %n(nQ—l) 27k, exponentially dominating
the Euclidean path integral in the semiclassical (large-x) regime. In the remainder we focus on

the Euclidean version of the theory.

C.7.3.2 Higher-spin field spectrum and algebra

Of course for n > 2, there are more degrees of freedom in the 2(n?—1) independent components
of A than just the 343 vielbein and spin connection degrees of freedom A%LS;. The full set
of fluctuations around the vacuum solution can be interpreted in a metric-like formalism as
higher-spin field degrees of freedom. The precise spectrum depends on the vacuum R. For
the principal vacuum R = n, we get the higher-spin vielbein and spin connections of a set
of massless spin-s fields of s = 2,3,...,n, as was worked out in detail for the AdS analog in
[182]. Indeed su(n) decomposes under the principally embedded su(2) subalgebra into spin-
r irreps, r = 1,2,...,n — 1, generated by the traceless symmetric products S;,...;. of the
generators S;.  As reviewed in [141], this means we can identify the su(n)y @ su(n)_ Lie
algebra of the theory with the higher-spin algebra hs,, (51(2))+ @ hs,(su(2))_, where
su(2)4 @su(2)_ = so(4) is the principally embedded gravitational subalgebra. In the metric-like
formalism the spin-r generators correspond to (anti-)self-dual Killing tensors of rank r. These
are the Killing tensors of massless symmetric spin-s fields with s =+ 1. As a check, recall the
number of (anti-)self-dual rank 7 Killing tensors on S3 equals Df:ir = 2r 41, correctly adding

up to

Zni Dy = 27121(27’ +1) =2(n" - 1). (C.7.41)
r=1

+ r=1

For different choices of embedding R, we get different su(2) decompositions of su(n). For
example for n = 12, while the principal embedding R = 12 considered above gives the su(2)
decomposition 1434,(12) = 3+5+7+9+11+13+15+17+19+21+23, taking R = 604©2
gives 143,,(12) =2-1+7-3+8-5+6-7+3-9+11. Interpreting these as Killing tensors for
ns massless spin-s fields, we get for the former no = 1,n3 =1,...,n12 = 1, and for the latter
ny =2,n9 =7,n3 =8 ng =6,n5 = 3,ng = 1. The tree-level entropy SO = 27l /4Gy for
R=12is S =286 - 27k, and for R=6®4® 2 it is S©) = 46 - 27x.
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C.7.3.3 One-loop Euclidean path integral from metric-like formulation

In view of the above higher-spin interpretation of the theory, we can apply our general massless
HS formula (C.7.6) with G = SU(n) x SU(n) to obtain the one-loop contribution to the
Euclidean path integral (for [ = 0). In combination with ([C.7.36]) this takes the form

1) _ ._p (2my)dim@ 8TGN 1
Zpp = = =

vol(G), ' TN 2w T VETR (C.7.42)

Recall that vol(G), is the volume of G with respect to the metric normalized such that

c
(M|M). =1, where M is one of the standard so(4) = su(2) @ su(2) generators, which we can
for instance take to be the rotation generator M = S5 @ S3. In the context of Chern-Simons
theory, it is more natural to consider the volume vol(G)y, with respect to the metric defined
by the trace appearing in the Chern-Simons action (C.7.32). Using the definition of T in
(C.7.35), we see the trace norm of M is (M|M)y,, = —2Tr,(S383) = Tr = Tr(M|M),,
hence vol(G) 1y, = (VTR)E™ % vol(G),. Note that upon substituting this in , the Txr-
dependent factors cancel out. Finally, using , we get P =>" , P = %(23 —3)(2s —
1)(2s+1) = 2n*(n — 1)(n + 1) — (n? — 1). Because (n—1)-n - (n+ 1) is divisible by 3, the

first term is an integer, and moreover a multiple of 8 because either n? or (n + 1)(n — 1) is a

multiple of 4. Hence i * = i™*=1) which equals —i for even n and +1 for odd n. Thus we
get
o 27T,~},)dimG ~ 1
OB Gl il =, C.7.43
LY oG, = Uk (C.7.43)

C.7.3.4 Euclidean path integral from CS formulation

As in the SU(2) x SU(2) Einstein gravity case, we can derive an all-loop expression for the
Euclidean partition function Z(R) of the SU(n) x SU(n) higher-spin gravity theory
expanded around a lifted round sphere solution A = R(A) such as , by naive analytic
continuation of the exact SU(n)y, x SU(n)j,_ partition function on S® to ky = l+ix, paralleling

(C.7.22)) and the subsequent discussion there. The SU(n); generalization of the canonically
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framed SU(2)j, result ((C.7.23)) as spelled out e.g. in [171], 267] is

T 1 1 n m \®m-p) i
- : . i(n+k)Scs[A]
Zcs(SU(n)gl Ao \/ﬁi(n+ e pl;[l<2 sin ——— k:) e : (C.7.44)

The corresponding higher-spin generalization of ((C.7.24]) is therefore

1 1 nt ™ (n—p) |2
Z(R)o=|—F= — 2sin ———— - e?™ TR (C.7.45)
\/ﬁ(n+l+m)21pl;[1< n—I—l—l—m)

Physically this can be interpreted as the all-loop quantum-corrected Euclidean partition function
of the dS3 static patch in the vacuum labeled by R. The analog of the result ({C.7.25]) for more

general framing I/ is

Zcs(SU(n)i A) = exp(sge(k)In) Zes(SU ()il Ao, c(k) = (n® — 1) (1 — -24)
(C.7.46)

hence the generalization of ((C.7.28)) for arbitrary framing Iy; = 67r, r € Z, is
Z(R), = €™ Z(R)o, (C.7.47)

where ¢ = (c(l +ik) + c(l —ir)) G = (1 - (ni(giﬂr)ﬁz)(ng —1)%. In the limit K — oo,

n—1 _ 2(n271) n 2
ez 11 2P\ 2nr) ey (27r) ( 1 F(S))
Z(R)r — i =1 Tl_[ ( o ) ¢ Jn H (2r)s)

=1 k

(C.7.48)

Recognizing n? — 1 = dim SU(n) and /n [l (27)%/T(s) = vol(SU(n))1y, (C.3.3), we see
this precisely reproduces the one-loop result ((C.7.43|). Like in the original n = 2 case, the phase
again matches for odd framing r. (The agreement at one loop can also be seen more directly

by a slight variation of the computation leading to ((C.7.11]).) This provides a nontrivial check

of our higher-spin gravity formula (C.7.6) and more generally (5.5.17)).
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C.7.3.5 Large-n limit and topological string description

In generic dS441 higher-spin theories, dim G = co. To mimic this case, consider the n — oo
limit of SU(n) x SU(n) dS3 higher-spin theory with [ = 0. A basic observation is that the
loop expansion is only reliable then if n/k < 1. Using ((C.7.36]), this translates to Tpn < G%q
For the exponentially dominant principal vacuum R = n, this becomes n* < ¢/Gx while at
the other extreme, for the nearly-trivial R=2® 1@ --- @ 1, this becomes n <« ¢/Gy. Either
way, for fixed /G, the large-n limit is necessarily strongly coupled, and the one-loop formula
(C.7.42), or equivalently (C.7.43]) or (C.7.48]), becomes unreliable. Indeed, according to this
formula, log ZW) ~ log (%) -n? in this limit, whereas the exact expression ((C.7.45|) actually

implies log Z(1o°ps) — (.

In fact, the partition function does have a natural weak coupling expansion in the n — oo
limit — not as a 3D higher-spin gravity theory, but rather as a topological string theory. U(n)
Chern-Simons theory on S2 has a description [268] as an open topological string theory on the
deformed conifold 7% 5 with n topological D-branes wrapped on the S3, and a large-n 't Hooft
dual description [170] as a closed string theory on the resolved conifold. Both descriptions are
reviewed in [I71], whose notation we follow here. The string coupling constant is g5 = 27/ (n+k)
and the Kahler modulus of the resolved conifold is t = [¢» J + iB = igsn = 2min/(n + k).

Under this identification,

ZCS(SU(n)k)O = nTM ZCS(U(n)k)O = @Ztop(QSa t) = Ztop(QSat) . (C749)

Thus we can write the SU(n);1;x x SU(n);_;x higher-spin Euclidean gravity partition function
(C.7.45) expanded around the round S solution A = R(A) as

- 2
Z(R)o = ]Ztop(gs,t) e 2mi/ s (C.7.50)
where T was defined in (C.7.34), maximized for R = n at T, = in(n? — 1), and
27 2min
= t=1 = C.7.51
Oy e Ry e (C.7.51)

Note that ¢ takes values inside a half-disk of radius % centered at ¢t = im, with Ret > 0. The
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higher-spin gravity theory (or the open string theory description on the deformed conifold) is
weakly coupled when k > n, which implies |[t| < 1. In the free field theory limit k — oo,
we get gs ~ —2mi/k — 0 and t ~ 2mn/k — 0, which is singular from the closed string point
of view. In the 't Hooft limit n — oo with ¢ kept finite, the closed string is weakly coupled
and sees a smooth geometry. The earlier discussed Vasiliev-like limit n — oo with [ = 0 and
{/Gx ~ Tuk ~ n3k fixed, infinitely strongly coupled from the 3D field theory point of view,
maps to gs ~ 27/n — 0 and ¢t ~ 2mi + 27k/n — 2mi, which is again singular from the
closed string point of view, differing from the 3D free field theory singularity by a mere B-field

monodromy, reflecting the more general n <> [ + ik, t <> 2mi — t level-rank symmetry.
C.8 Quantum dS entropy: computations and examples
Here we provide the details for section [5.8]

C.8.1 Classical gravitational dS thermodynamics

C.8.1.1 3D Einstein gravity example

For concreteness we start with pure 3D Einstein gravity as a guiding example, but we will phrase

the discussion so generalization will be clear. The Euclidean action in this case is

S Aoz 8.
Selo) = 5 [ Pova(a-5R). (C81)
with A > 0. The tree-level contribution to the entropy (55.8.2)) is

SO =10gz® 2O = [ Dge el (C.8.2)
The dominant saddle of (C.8.2) is a round S® metric g, of radius £ = £y minimizing Sg(¢) =

Sklge):

2
3O = fedte 5O, 550 = 2 (00 -3 (C83)
s
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where [, ., means evaluation at the saddle point, here at the on-shell radius ¢ = /y:

uSpl) =0 = A=r. 89 = Su(ly) =
0

27l

il (C.8.4)

reproducing the familiar area law S(©) = A/AG for the horizon entropy.
We now recast the above in a way that will allow us to make contact with the formulae of
section [5.7.1] and will naturally generalize beyond tree level in a diffeomorphism-invariant way.

To this end we define an “off-shell” tree-level partition function at fixed (off-shell) volume V:
ZO(V) = freedo free Dg e etV (C.85)

Evaluating the integral is equivalent to a constrained extremization problem with Lagrange
multiplier o enforcing the constraint [,/g = V. The dominant saddle is the round sphere

g = gy of radius ¢(V') fixed by the volume constraint:

ZOW)y=e50 o2 =v. (C.8.6)

Paralleling (5.7.6]) and (5.7.7]), we define from this an off-shell energy density and entropy,

P(O) = —0ylog AR —%gaé log Z /V=(A~ 5_2)/8776;

SO =(1-Vvoy)logZ® = (1 - L0d,)log 2V = 24%5 :

(C.8.7)

p'9 is the sum of the positive cosmological constant and negative curvature energy densities.

5 is independent of A. It is the Legendre transform of log Z(0):
SO =106 20 4 VO qlog 2@ = —pOqv 45D = vgp (C.8.8)

Note that evaluating [, do in (C.8.5) sets ¢ = —dy log Z(® = p(O (V). On shell,

271'50

POy =0, 8O =1og 20 (1) = SO (4y) = TR (C.8.9)

Paralleling (5.7.8]), the differential relations in ((C.8.8]) can be viewed as the first law of tree-level
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de Sitter thermodynamics. We can also consider variations of coupling constants such as A.

Then dlog Z(®) = —p©0dV —1-VdA, dS© = Vdp® — 1 VdA. Onshell, dS© = — 2 dA.

C.8.1.2 General d and higher-order curvature corrections

The above formulae readily extend to general dimensions and to gravitational actions Sg[g] with
general higher-order curvature corrections. Using that Ryup0 = (GupGve — Guogup)/t? for the
round!¥ S9+1, Z(O)(V) (C.8.5)) can be evaluated explicitly for any action. It takes the form

Q
log ZO(V) = —Sglgi = ﬁ(—Md“ gD gty Q0 =V (C8.10)

where + -+ is a sum of R™ higher-order curvature corrections  £~2" and Q441 = (C.3.1).
The off-shell energy density and entropy are defined as in ([C.8.7))

P = —WlléﬁglogZ(o) JV=(A- @5_2 +---)/87G

(C.8.11)

A
SO = (1 - 1500, log 2 = et

where A = Q41041 and +--- are 1/£%™ curvature corrections. The on-shell radius ¢y solves
P9 (£y) = 0, most conveniently viewed as giving a parametrization A(£p).

As an example, consider the general action up to order R? written as
1
Sp = 871G /\/§(A — 3R = E(A2C"P7 Cpypr + A2 R + )\E2EWEW)> , (C.8.12)

where E,, = Ry, — ﬁng, Clvpo is the Weyl tensor, [, is a length scale and the A; are

dimensionless. The Weyl tensor vanishes on the round sphere and R,,, = d g,.,/¢?, hence

Q0
log Z(©) = sfal (A 4 2d(d + 1) 07 4 Ao dP(d + 1)2 120473, (C.8.13)

9By virtue of its SO(d + 2) symmetry, the round sphere metric g, with Qg1 = V is a saddle of .
Spheres of dimension > 5 admit a plentitude of Einstein metrics that are not round [269H272], but as explained
e.g. in [273], by Bishop's theorem [274], these saddles are subdominant in Einstein gravity. In the large-size limit,
higher-order curvature corrections are small, hence the round sphere dominates in this regime.
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For example for d = 2,

2
(0) . T . 3 36lSAR2
log 20 = —4G( A 4304 =R ). (C.8.14)
hence, using (C.8.11)) and p© (¢y) = 0,
27l 24 12\ p2 1 1212\ g2
©0) — g(0)(g.) — =T*0 sAR _ (1 AR
8O = 5Ot) = 7 (1+ 7 ). A 7 (1 7 ). (C.8.15)

C.8.1.3 Effective field theory expansion and field redefinitions

Curvature corrections such as those considered above naturally appear as terms in the derivative
expansion of low-energy effective field theories of quantum gravity, with [; the characteristic
length scale of UV-completing physics and higher-order curvature corrections terms suppressed
by higher powers of I2/¢? < 1. The action ((C.8.12)) is then viewed as a truncation at order 12,
and 1' can be solved perturbatively to obtain £y and (¥ as a function of A.

Suppose someone came up with some fundamental theory of de Sitter quantum gravity,
producing both a precise microscopic computation of the entropy and a precise low-energy
effective action, with the large-¢y/ls expansion reproduced as some large-N expansion. At least
superficially, the higher-order curvature-corrected entropy obtained above looks like a Wald
entropy [188]. In the spirit of for instance the nontrivial matching of R? corrections to the
macroscopic BPS black hole entropy computed in [275] and the microscopic entropy computed
from M-theory in [276], it might seem then that matching microscopic 1/N-corrections and
macroscopic [2/¢3-corrections to the entropy such as those in (C.8.15)) could offer a nontrivial
way of testing such a hypothetical theory.

However, this is not the case. Unlike the Wald entropy, there are no charges @ (such as
energy, angular momentum or gauge charges) available here to give these corrections physical
meaning as corrections in the large-Q) expansion of a function S(Q). Indeed, the detailed
structure of the I,/¢y expansion of S = S(©)(¢y) has no intrinsic physical meaning at all,
because all of it can be wiped out by a local metric field redefinition, order by order in I /4y,
bringing the entropy to pure Einstein area law form, and leaving only the value of S itself as

a physically meaningful, field-redefinition invariant, dimensionless quantity.



339

This is essentially a trivial consequence of the fact that in perturbation theory about the
round sphere, the round sphere itself is the unique solution to the equations of motion. Let us
however recall in more detail how this works at the level of local field redefinitions, and show how
this is expressed at the level of log Z(©)(¢), as this will be useful later in interpreting quantum
corrections. For concreteness, consider again ((C.8.12)) viewed as a gravitational effective field

theory action expanded to order [2R?. Under a local metric field redefinition
G = Guv + 0Guw + O(l;l) ) OGuv = 13 (uo A g +u1 R g + u2 Ryuw) (C.8.16)
where the u; are dimensionless constants, the action transforms as

Sp — Sp+ ﬁ Vg (R — Rg" + Ag") 6g,u + O(13), (C.8.17)

shifting Ap2, Ag2 and rescaling G, A in (|C.8.12)). A suitable choice of u; brings Sg to the form

Sk = 7&3(; / VAN = LR = A2 CPP7Cpy + O(Y), N = A(L— U A2,
(C.8.18)

Equivalently, this is obtained by using the O(I?) equations of motion R, = %Agwj in the
O(I2) part of the action. Since /\;%2 = 0, the entropy computed from this equivalent action
takes a pure Einstein area law form S© = Qu 14,471 /4G, with ¢ = \/d(d —1)/2A". The
on-shell value S itself remains unchanged of course under this change of variables.

In the above we picked a field redefinition keeping G’ = G'. Further redefining g, — a g
leads to another equivalent set of couplings G”, A”, ... rescaled with powers of a according to
their mass dimension. We could then pick « such that instead A” = A, or such that ¢ = ¢y,
now with G” # G. If we keep £ = £y, we get

5O _ Qanilg ", dd—1)

AG" 202

where for example in d = 2 starting from (C.8.15), G” = G(1 — 24 Ap212/03 + O(12)).
At the level of log Z(O)(E) in (|C.8.13)) the metric redefinition (|C.8.16)) amounts to a radius
redefininition ¢ — ¢ f(¢) with f(¢) = 1+ 12(vioA + v11£72) + O(I2). For suitable v; this brings
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log Z©) and therefore S to pure Einstein form. E.g. for the d = 2 example ((C.8.14)),

(= 1—-12Agl2(A+ 072 = logZ(O):%(—Alﬁlg—i-?)ﬁ/—l—O(l;l)).
(C.8.20)

The above considerations generalize to all orders in the I expansion. R™ corrections to log Z(©)

are o< (I5/£)*™ and can be removed order by order by a local metric/radius redefinition
= af(l)e, F(0) = 1+ 12 (vioA+v11072) +13 (vao A% + v AL 2 Fvgel ™) + -+ (C.8.21)

bringing log Z(®) and thus S to Einstein form to any order in the I, expansion.

In d = 2, the Weyl tensor vanishes identically. The remaining higher-order curvature invari-
ants involve the Ricci tensor only, so can be removed by field redefinitions, reducing the action
to Einstein form in general. Thus in d = 2, S is the only tree-level invariant in the theory,
i.e. the only physical coupling constant. In the Chern-Simons formulation of, SO = 27k,
In d > 3, there are infinitely many independent coupling constants, such as the Weyl-squared
Acz in ((C.8.12), which are not picked up by S, but are analogously probed by invariants
Sj(\g) = log Z0[grs] = —Sg[gn] for saddle geometries gy different from the round sphere. We
comment on those and their role in the bigger picture in section [C.8.5]

The point of considering quantum corrections to the entropy S is that these include nonlocal
contributions, not removable by local redefinitions, and thus, unlike the tree-level entropy S(©,

offering actual data quantitatively constraining candidate microscopic models.

C.8.2 Quantum gravitational thermodynamics

The quantum off-shell partition function Z(V) generalizing the tree-level Z(©) (V) 1D is
defined by replacing [, .. Pg — [ Dg in that expression:@

Z(V) = fyee do [Dg e Selolto([Va-V) (C.8.22)

2 7Z(V) is reminiscent of but different from the fixed-volume partition function considered in the 2D quantum
gravity literature, e.g. (2.20) in [277]. The latter would be defined as above but with 5= LR do instead of ftree do,

271

constraining the volume to V, whereas Z (V') constrains the expectation value of the volume to V.
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The quantum off-shell energy density and entropy generalizing are
p(V)=—-dylogZ, S(V)=(1-Voy)logZ. (C.8.23)
S is the Legendre transform of log Z:
S=logZ+Vp, dlog Z = —pdV , dsS =Vdp. (C.8.24)
Writing e T(V) = Z(V), the above definitions imply that as a function of p,
S(p) =108 free dV e TVIHPV — 1og [Dg ¢~ Seldl+e [Va (C.8.25)
hence S(p) is the generating function for moments of the volume. In particular

V= (J\/a), = 0,5(p) (C.8.26)

is the expectation value of the volume in the presence of a source p shifting the cosmological
constant % — % — p. T'(V) can be viewed as a quantum effective action for the volume,
in the spirit of the QFT 1Pl effective action [278-280] but taking only the volume off-shell. At
tree level it reduces to Sg[g¢] appearing in . At the quantum on-shell value V=V =

(JVa)
p(V)=0, S=logZ(V)=S(V). (C.8.27)
It will again be convenient to work with a linear scale variable ¢ instead of V', defined by

Qup it =v, (C.8.28)

Since the mean volume V = <f\/§>p is diffeomorphism invariant, ((C.8.28) gives a manifestly

diffeomorphism-invariant definition of the “mean radius” £ of the fluctuating geometry. Given
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Z(€) = Z(V (L)), the off-shell energy density and entropy are then computed as

09, log Z

p(f) = —4+1 % ;S =(1— 209 log Z . (C.8.29)

T d+1

The quantum on-shell value of £ is denoted by ¢ and satisfies p(¢) = 0.
The magnitude of quantum fluctuations of the volume about its mean value is given by

V2= <(f\/§—V)2>p = S"(p) = 1/T"(V) =1/p' (V) =V/S' (V). Atlarge V, 6V/V o 1/V/S.

C.8.3 One-loop corrected de Sitter entropy

The path integral ({C.8.22)) for log Z can be computed perturbatively about its round sphere

saddle in a semiclassical expansion in powers of G. To leading order it reduces to log Z(©)

defined in ((C.8.5)). For 3D Einstein gravity,

Q
log Z(V) =log ZO(V) + O(G°) = ﬁ(—A B +36) + 0(GY), (C.8.30)

To compute the one-loop O(GP®) correction, recall that evaluation of Jireo do in (C.8.22)) is

equivalent to extremization with respect to o, which sets 0 = —dy log Z(V') = p(V') and
log Z(V) = log [ Dg e~ SEl+»(V)([vVa-V) (C.8.31)
To one-loop order, we may replace p by its tree-level approximation p(®) = —8y log Z(0). By

construction this ensures the round sphere metric g = g, of radius ¢(V') given by (|C.8.28) is

a saddle. Expanding the action to quadratic order in fluctuations about this saddle then gives

a massless spin-2 Gaussian path integral of the type solved in general by (5.5.17)), or more

explicitly in (5.7.19))-(5.7.20)). For 3D Einstein gravity, using ((5.7.20)),

A 1 3 2ml
log Z = —(% + c{)) Q303 + <% +ch — 4—7“)3Q3€ —3log % + 5log(2m) + O(G)

(C.8.32)
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Here ¢}, and ¢ arise from O(GP) local counterterms

Sper = [Vi(ch— ZR), (C.8.33)

split off from the bare action (C.8.1)) to keep the tree-level couplngs A and G equal to their
“physical” (renormalized) values to this order. We define these physical values as the coefficients
of the local terms oc £3, £ in the V' — 0o asymptotic expansion of the quantum log Z(V'). That

is to say, we fix ¢{, and ¢ by imposing the renormalization condition

Q
log Z(V) = ﬁ(—zxewsew--. (V = 00). (C.8.34)

This renormalization prescription is diffeomorphism invariant, since Z(V'), V and ¢ were all
defined in a manifestly diffeomorphism-invariant way. In (C.8.32) it fixes ¢, = 0, ¢ = 4%5'
hence log Z(£) = log Z(®) +1og Z(0) + O(G), where

om0
log ZV) = —3log % +5log(2n). (C.8.35)

We can express the renormalization condition ([C.8.34]) equivalently as

log ZM) = log ZSI) + log Z¢t , Elim dlogzM =0 (C.8.306)
—00
where log Z.. = —SE.ct[ge] with g¢ the round sphere metric of volume V. On S3 we have

log Zy = col® + cof, and the £ — oo condition fixes ¢y and co. Recalling (5.7.6)), we can
physically interpret this as requiring the renormalized one-loop Euclidean energy U of the
static patch vanishes in the £ — oo limit.

)

For general d, the UV-divergent terms in log Zl(jlI come with non-negative powers oc £¢+1-27,
canceled by counterterms consisting of n-th order curvature invariants. For example on S°,
log Zet = col® + 23 4 c4f. In odd d + 1, the renormalization prescription ((C.8.36|) then fixes
the co,. In even d + 1, log Zct has a constant term cq41, which is not fixed by (C.8.36). As
we will make explicit in examples later, it can be fixed by lim; ., Z() = 0 for massive field

contributions, and for massless field contributions by minimal subtraction at scale L, cg41 =

—agy1 log(M.L), M, = 2e=7/e (C.2.29), with Ly log Z = 0, i.e. Ldzlog Z) = ayyy.
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The renormalized off-shell p and .S are obtained from log Z as in ((C.8.29)). For 3D Einstein,

! +5log(2m) + 1. (C.8.37)

1 27
p S 3log — e

2m2¢3’

The on-shell quantum dS entropy S = log Z(¢) = S(¢) (C.8.27) is

S=25()=890)+sV) + 0G) (C.8.38)

where £ is the quantum mean radius satisfying p(£) oc 9y log Z(¢) = 0. For 3D Einstein,

27T€ 21l 1 4G 9
Alternatively, S can be expressed in terms of the tree-level £y, p{%(¢) o 9;log Z(O)(¢y) = 0,

using S = log ZO) () +log ZW(€) + O(G), £ = £y + O(G) and Taylor expanding in G-

S =1log Z(f) = SO (ty) +log 2V (Ly) + O(G) (C.8.40)

This form would be obtained from (5.8.2)) by a more standard computation. For 3D Einstein,

2mly 27ty 1
= —— —3log log(2 A=—. .8.41
S 1C 3 Tel + 5log(2m) + O(G), 2 (C.8.41)

The equivalence of and ( 8 40 D can be checked directly here noting ¢ = (o — 2G +

O(G?), so i’g = 2Ié° — 14 O(G). The —1 cancels the +1 in 1} reproducing ( m

More generally and more physically, the relation between these two expressions can be

understood as follows. At tree level, the entropy equals the geometric horizon entropy S(©) (4o),
with radius ¢y such that the geometric energy density p(®) vanishes. At one loop, we get
additional contributions from quantum field fluctuations. The UV contributions are absorbed
into the gravitational coupling constants. The remaining IR contributions shift the entropy by
S and the energy density by p™). The added energy backreacts on the fluctuating geometry:
0) —

its mean radius changes from £, to £ such that the geometric energy density changes by

—pW)| ensuring the total energy density vanishes. This in turn changes the geometric horizon
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Figure C.8.1: One-loop contributions to the dSs entropy from metric and scalars with = 1, %, %,

ie. £ =0, %, —i. Blue dotted line = renormalized entropy S(!). Green dotted line = horizon entropy
change 65 = 276¢/4G = —V p(!) due to quantum backreaction £y — £ = £y + 6/, as dictated by first
law. Solid red line = total 6S = S — Vp(1) =log Z(1). The metric contribution is negative within the
semiclassical regime of validity £ > G. The renormalized scalar entropy and energy density are positive
formf¢ > 1, and forallmlifn=1. fn>1land {y — ¢, = \/an the correction ¢ ~ *%eoz—*e* — —00,
meaning the one-loop approximation breaks down. The scalar becomes tachyonic beyond this point. If

a ¢* term is included in the action, two new dominant saddles emerge with ¢ # 0.

entropy by an amount dictated by the first law (|C.8.8)),
65O = vy 6p0 = v p) . (C.8.42)

We end up with a total entropy S = S©(¢) + S1 = 5O (¢5) — Vg pM) + SM = SO (¢5) +
log ZM, up to O(G) corrections, relating (C.8.38) to ((C.8.40). (See also fig. |C.8.1])
More succinctly, obtaining ((C.8.40)) from (|C.8.38)) is akin to obtaining the canonical descrip-

tion of a thermodynamic system from the microcanonical description of system + reservoir. The

analog of the canonical partition function is Z(!) = S —Vo p(l), with —V; p(!) capturing the

reservoir (horizon) entropy change due to energy transfer to the system.

C.8.4 Examples
C.8.4.1 3D scalar

An example with matter is 3D Einstein gravity + scalar ¢ as in (5.7.11]). Putting £ = I_T”,

Selg.d) = oo [VA(A=3R) + 5 [Vao(-V2+m? + 5IR)e,  (C8.43)
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The metric contribution to log Z!) remains log Zr(je)tric = —3log 2 + 5log(2n) as in (C.8.35).
The scalar ZSI) was given in (5.7.14]). Its finite part is

3

2 k13 —2nv
1 TV v"® Liz_g(e ) .
10g Zé’l?ﬁn,scalar = T — Z H W 5 UV = m2€2 — 77 . (C844)

k=0

The polynomial log Zi () = cof® + col corresponding to the counterterm action (C.8.33)) is
fixed by the renormalization condition (|C.8.36]), resulting in

= log A T 363 + e, (C.8.45)

1
log Z. PLfin,scalar — 6 4

scalar

The finite polynomial cancels the local terms o £3, ¢ in the large-¢ asymptotic expansion of the

finite part: log Zs(clglar = %’g(mﬁ)fl + %f(mﬁ)fg +--- when mf — oco. The (mf)=2"~! terms

have the ¢-dependence of R™ terms in the action and can effectively be thought of as finite shifts
of higher-order curvature couplings in the m¢ > 1 regime. In the opposite regime m¢ < 1,

IR bulk modes of the scalar becomes thermally activated and log 71 ceases to have a local

scalar

expansion. In particular in the minimally-coupled case n =1,

log ZV, ~ —log(ml)  (mf—0). (C.8.46)

scalar

scalar

The total energy density is p = —éeag log Z)V = ﬁ(A — 0 +1+ p(l) where

= —%(mﬁ)zy coth(mv) + z(mE)3 UL (C.8.47)

Vi 6 12

scalar

The on-shell quantum dS entropy is given to this order by ((C.8.40)) or by (|C.8.38)) as
S =80 4+80 = 5O (g5) +10g 2V = SO (45) — V) + 5B = 5O (7) 4 5 (C.8.48)

where (52 = A = (72 — 871G pM)(£) and S = S(ll),ﬁn + $mnml, with the scalar contribution

to S](;I)ﬁn given by the finite part of (5.7.16). Some examples are shown in fig. |C.8.1|

For a massless scalar, m = 0, the renormalized scalar one-loop correction to S is a constant

independent of ¢ given by (|C.8.44]) evaluated at v = \/—n, and pgiilar = 0. For example for a

1
massless conformally coupled scalar, n = %, Zs(cilar = %7(1_32) — 10%(2).
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Figure C.8.2: Contributions to the dS3 entropy from massive spin s = 1,2, 3 fields, as a function of
mly, with coloring as in fig. Singularities = Higuchi bound, as discussed under ([5.7.16)).

C.8.4.2 3D massive spin s

The renormalized one-loop correction Sgl) = log Zs(l) to the dS3 entropy from a massive spin-s

field is obtained similarly from ([5.4.13)):

S =log 7). —log 2. (C.8.49)

s,edge ?

where log Zgl}zulk equals twice the contribution of an 7 = (s — 1)? scalar as given in ([C.8.45)),

while the edge contribution is, putting v = /m?202 — (s — 1)2,

log Z1) = 2 (x(ml — v) —log(1 — e 2™)) . (C.8.50)

s,edge

The edge contribution to ((C.8.49)) is manifestly negative. It dominates the bulk part, and
increasingly so as s grows. Examples are shown in fig.[C.8.2]
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C.8.4.3 2D scalar

As mentioned below (|C.8.36]), the counterterm polynomial log ZC(?) has a constant term in even

spacetime dimensions d + 1, which is not fixed yet by the renormalization prescription given

there. Let us consider the simplest example: a d = 1 scalar with action ([5.7.11]). Denoting

Zg —1,% +iv) Fivd (0,1 Liv), , (C.8.51)

and M, = 2e 7 /e as in (C.2.29), we get from (C.2.21)) with v = \/m2(2 —n, n = 1 — 2¢,
log Z3) = (2672 — m2log(Mct) + m?) 2 + (n + &) log(M.0) —n+ £(v),  (C.8.52)
In the limit m¢ — oo, using the asymptotic expansion of the Hurwitz zeta function [281],

log Z5) = (2672 — m2log(M./m) — 1m?) & + (n+ £5) log(Mc/m) + O((mf)~?).
(C.8.53)

Notice the log ¢ dependence apparent in ((C.8.52) has canceled out. The counterterm action
to this order is again of the form ((C.8.33)), corresponding to log Z.x = 4m(—cht? + c). The
renormalization condition ((C.8.36|) fixes ¢{, but leaves ¢, undetermined. Its natural extension

here is to pick co = 4mc), to cancel off the constant term as well, that is
= —(n + 13) log(Me/m) = glgglo log zM =0, (C.8.54)

ensuring the tree-level G equals the renormalized Newton constant to this order, as in ((C.8.34]).

The renormalized scalar one-loop contribution to the off-shell partition function is then

log ZW = (3 —log(ml))(ml)? + (n + ) log(ml) —n + £(v). (C.8.55)
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Figure C.8.3: Edge contributions to the dS, entropy from massive spin s = 1,2, 3 fields, as a function of
mlp, with coloring as in fig. The Higuchi/unitarity bound in this case is (mfy)* — (s — 3)* > —1.

In the large-m/ limit, log Z(1) = %(mﬁ)_2 + -+ >0, while in the small-m/ limit

log ZM ~ (n + L)log(me) (n< 1), log ZW) ~ (3+4 —1log(mt) (n=1).
(C.8.56)

The extra — log(m/{) in the minimally-coupled case n = i is the same as in ((C.8.46)) and has the

same thermal interpretation. The energy density is p1) = —%E@g log Z(l)/V with V = 470?:
Vo) = —5(n + 1) + 5(mt)* (2log(mt) — .00 (5 £iv)) (C.8.57)

In the massless case m = 0, v = /—n is {-independent, and we cannot use the asymptotic

expansion (|C.8.53)), nor the renormalization prescription (|C.8.54)). Instead we fix co by minimal

_ 2e 7

subtraction, picking a reference length scale L and putting (with M. = =¢— (/C.2.29) as before)

co(L) = —(n + 13) log(ML) , (C.8.58)
The renormalized G then satisfies OL(S‘:T—“G +c2) =0, e L@L% =n-+ % and

log ZM) = (n+ $5)log(¢/L) —n+£(v=n), Vo) ==+ ). (C.8.59)
The total log Z = %(—Aéz +1) +log Z(M is of course independent of the choice of L.

C.8.4.4 4D massive spin s

4D massive spin-s fields can be treated similarly, starting from ((C.2.27)). In particular the edge

contribution log Z'%) equals minus the log Z(1) of D5_, = £s(s+ 1)(2s + 1) scalars on 52,

edge
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computed earlier in ((C.8.55)), with the same v = /m?2¢2 — 7, as the bulk spin-s field, which
according to 1} means 75 = (s — %)2 The corresponding contribution to the renormalized
energy density is pgi)ge = — 108, log Zéé;e/v with V = ¢4, so Vpgi)ge equals —3D3_; times

the scalar result ((C.8.57).

As in the d = 2 case, the renormalized one-loop edge contribution sW

edge O the entropy is

negative and dominant. Some examples are shown in fig. [C.8.3
C.8.4.5 Graviton contribution for general d

For d > 3, UV-sensitive terms in the loop expansion renormalize higher-order curvature couplings

in the gravitational action, prompting the inclusion of such terms in Sg[g]. Some caution is in

order then if we wish to apply (5.5.17) or (5.7.19)-(5.7.20) to compute log Z(!). The formula

(5.5.17)) for Zl(jll) depends on v = /87GN/A4_1, gauge-algebraically defined by (5.5.14]) and

various normalization conventions. We picked these such that in pure Einstein gravity, v =

V8TG/A(Ly), by = v/d(d —1)/2A, with G and A read off from the gravitational Lagrangian.

However this expression of « in terms of Lagrangian parameters will in general be modified in

the presence of higher-order curvature terms. This is clear from the discussion in and
(C.8.19)) in particular. Since g is field-redefinition invariant, and since after transforming to a
pure Einstein frame we have 79 = 1/27/S(©), with the right hand side also invariant, we have

in general (for Einstein + perturbative higher-order curvature corrections)

y = /21/80). (C.8.60)

From (5.7.19)) we thus get (ignoring the phase)
© _ D50 L @ 1oL (0)
§=S8 —?logS +ad+llogf+Kd+1 + O(1/8") (C.8.61)

where D, = w, 041(12421 = 0 for even d and given by (5.5.21)) for odd d, and K41 a

numerical constant obtained by evaluating (5.5.20]). For odd d the constant in the counterterm
log Z.(¢) is fixed by minimal subtraction at a scale L, c411(L) = —agyqlog(ML), with
M, = 2e77/e determined by the heat kernel regulator as in (C.2.29), and LO;S = 0, i.e.
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LarS© = aff)|. Explicitly for d = 2,3, 4, using (5.7.20), (5.1.12)

d|S
2 | SO —310g SO + 5log(2m
. 8(2m) (C.8.62)
3180 —510gSO) — 5 jog() —log(8F) + T3 — 4T¢/(—1) + 2¢'(-3)
4|80 — L log SO 4 log(12) + 277 log(2m) + 658475:;) + ig‘fﬁ
For a d = 3 action ((C.8.12)) up to O(I2R?), with dots denoting O(I%) terms,
8(0):g(£§+48)\3213+---), A:%Jr---. (C.8.63)
0
where LOLAp2 = _48L7Tl§ : %. Putting L = {y, and defining the scale {z2 by Ap2(fg2) = 0,

2
S=89 _—510g8O + K, + 0(1/8©), SO = o _ 571 log€—0 +---. (C.8.64)
G 45 Clp

The constant K4 could be absorbed into Ag2 at this level. Below, in ([C.8.70]), we will give it

relative meaning however, by considering saddles different from the round S*.

C.8.5 Classical and quantum observables

Here we address questionin our list below . To answer this, we need “observables” of the
A > 0 Euclidean low-energy effective field theory probing independent gravitational couplings
(for simplicity we restrict ourselves to purely gravitational theories here), i.e. diffeomorphism
and field-redefinition invariant quantities, analogous to scattering amplitudes in asymptotically
flat space. For this to be similarly useful, an infinite amount of unambiguous data should be
extractable, at least in principle, from these observables.

As discussed above, S(© = log 2(0) = —SE[ge,] invariantly probes the dimensionless cou-
pling given by ¢471/G o 1/GA=1/2 in Einstein frame. The obvious tree-level invariants
probing different couplings in the gravitational low-energy effective field theory are then the
analogous S](S[) = logZ](\E)[) = —Sglgm] evaluated on saddles gy, different from the round

sphere, in the parametric {o > [, regime of validity of the effective field theory, with g,

asymptotically Einstein in the ¢y — oo limit. These are the analogs of tree-level scattering
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amplitudes. The obvious quantum counterparts are the corresponding generalizations of S, i.e.
Sy = log Zjs evaluated in large-£y perturbation theory about the saddle gj;. These are the

analogs of quantum scattering amplitudes. Below we make this a bit more concrete in examples.

3D

In d = 2, the Weyl tensor vanishes identically, so higher-order curvature invariants involve R,
only and can be removed from the action by a field redefinition in large-¢y perturbation theory,
reducing it to pure Einstein form in general. As a result, S is the only independent invariant
in pure 3D gravity, all gys are Einstein, and the S](\?[) are all proportional to Sy = Sé%).

As discussed under (5.8.17)), the quantum & = Sgs takes the form
S =8y =Sy —3log Sy + 5log(2m) + 3, cn Sy " (C.8.65)

The corrections terms in the expansion are all nonlocal (no odd powers of ¢j), and the coefficients

provide an unambiguous, infinite data set.

odd D > 5

In 5D gravity, there are infinitely many independent coupling constants. There are also infinitely
many different A > 0 Einstein metrics on S°, including a discrete infinity of Béhm metrics
with SO(3) x SO(3) symmetry [270] amenable to detailed numerical analysis [271], and 68
Sasaki-Einstein families with moduli spaces up to real dimension 10 [272]. Unlike the round
S®, these are not conformally flat, and thus, unlike S(O), the corresponding S](\g) will pick up
couplings such as the Weyl-squared coupling A2 in ((C.8.12)). It is plausible that this set of
known Einstein metrics (perturbed by small higher-order corrections to the Einstein equations
of motion at finite £y) more than suffices to invariantly probe all independent couplings of the
gravitational action, delivering moreover infinitely many quantum observables Sy, providing
an infinity of unambiguous low-energy effective field theory data to any order in perturbation
theory, without ever leaving the sphere — at least in principle.

The landscape of known A > 0 Einstein metrics on odd-dimensional spheres becomes in-

creasingly vast as the dimension grows, with double-exponentially growing numbers [272]. For
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example there are at least 8610 families of Sasaki-Einstein manifolds on S”, spanning all 28 dif-
feomorphism classes, with the standard class admitting a 82-dimensional family, and there are
at least 10%2® distinct families of Einstein metrics on S2°, featuring moduli spaces of dimension

greater than 10833,

4D

4D gravity likewise has infinitely many independent coupling constants. It is not known if S*
has another Einstein metric besides the round sphere. In fact the list of 4D topologies known to
admit A > 0 Einstein metrics is rather limited [282]: S*, S? x S2, CIP?, and the connected sums
(C]P’Q#k@, 1 < k < 8. However for k£ > 5 these have a moduli space of nonzero dimension
[283, 1284], which might suffice to probe all couplings. (The moduli space would presumably
be lifted at sufficiently high order in the [; expansion upon turning on higher-order curvature
perturbations.)

Below we illustrate in explicit detail how the Weyl-squared coupling can be extracted from
suitable linear combinations of pairs of S](\E)[) with M € {S%, 5% x §2,CP?}, and how a suitable
linear combination of all three can be used to extract an unambiguous linear combination of the
constant terms arising at one loop.

The Weyl-squared coupling Ac2 in Sglg] = (C8.12) + - - - is invisible to S(») (C.8.63) but
it is picked up by S](\?[) by M = S? x S2:

S© m

2
sixs? = 3 gl B8 AR L+ 1602 I + ), (C.8.66)

with the dots denoting O(I%) terms and {g = /3/A+- - - asin (C.8.63). Physically, Sé%)xs2 is the

horizon entropy of the dSy x S? static patch, i.e. the Nariai spacetime between the cosmological

and maximal Schwarzschild-de Sitter black hole horizons, both of area A = % -4m(3. Comparing

to ((C.8.63)), the linear combination

32ml2
58 =380 —280 = =2 (0 + ) (C.8.67)

extracts the Weyl-squared coupling of Sg[g]. Analogously, for the Einstein metric on CP?, we
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get S0 =850, — 650 = B (N0 +---). Then

50 =288 ~ 388 =168, —98Y) 650 =0+ -, (C.8.68)

which extracts some curvature-cubed coupling in the effective action.

To one loop, the quantum Sy = log Zj; can be expressed in a form paralleling ((C.8.61)):
_ <0 _ Dm (0) fo
Su =S8y, —TlogSM —i—aMlogf—i—KM—i--‘-, (C.8.69)

where D) is the number of Killing vectors of M: Dgs = 10, Dg2yg2 = 6, Dep2 = 8,
and ays can be obtained from the local expressions in [127]: ags = —%, g2y g2 = —%,
Qep2 = —%. Computing the constants Kj; generalizing Kga given in 1} would require
more work. Moreover, computing them for one or two saddles would provide no unambigu-
ous information because they may be absorbed into A2 and Ap2. However, since there only

two undetermined coupling constants at this order, computing them for all three does provide

unambiguous information, extracted by the quantum counterpart of ((C.8.68]):

Scub = 168(CIP’2 — 98452452 —685g4 = —7 logS(O) + 16K(CIP2 —9Kg2yg2 —6Kga+ -+
(C.8.70)

The log(¢p/L) terms had to cancel in this linear combination because the tree-level parts at this

order cancel by design and LOrScup = 0.
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Appendix D: Appendix for chapter 6

D.1 Partition function of Dirac spinors

As an example of applying the character integral method to fermions, let’s consider a complex
Dirac spinor of scaling dimension A = g + v in AdSgy1 with d = 2r + 1. It carries a highest
weight representation s = % of SO(d) which has real dimension 2"*1. The one-loop partition

function of this field is given by

_ r go e} 62 0.)
log 7 = (=2 / dtew/ dA i (N) e~ +) (D.1.1)
d! o t 0 2

where the spinor spectral function p1(\) is
2

Ha(\) :j];[1 (3 +7%) mnhA(M) (D.1.2)

After using the standard Hubbard-Stratonovich trick, the partition function is completely en-

coded in Wy (u) = o dA g (M) e

_ (_2)T * du —vu
log Z =+ /0 Ly (e (D.1.3)

To perform the A-integral in Wi (u) , we can close the contour in the upper half plane and pick
2

up the poles at A =in,n > r +1, where m has residue 2.
r _dtl
w -9 r+1 H( 2 ~2) —nu __ (*1)T+1d'u (D 1 4)
%(u)— (—) Z n n® —j%)e = ST 1.

n>r+1  j=1
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Plugging (D.1.4)) into ([D.1.3)) yields the unregularized partition function

Lﬁ

w —Au
u —e 2 Ad5d+1 AdSg41 — L
log 2 = / P NG N T (e Ok (>:19)

We can also easily write down the regularized version following the derivation in section

1 du e~%  ortlemgu—vVilte
2 Jryis VuZ fe21—e v (1—eu)d

logZ = — (D.1.6)

Compared to the bosonic case, the only difference is that the representation-independent factor

262
1—

1+e w

- gets replaced by

D.2 Physical interpretation of spectral density/Plancherel mea-

sure

In an ordinary quantum mechanical system, given a Hamiltonian H, the associated density of
state (DOS) is defined as p(E) = Tr§(H — E) where we trace over the whole Hilbert space.

Using the well-known distributional identity = P()Find(z), the DOS can also be formally

xile

expressed

1

5 (R(E +i€) — R(E — ic)) (D.2.1)

p(E) =

where R(E) = T&"ﬁ is the so-called resolvent and the limit ¢ — 0T is understood. In
this appendix, we will show that the (scalar) Plancherel measure given by eq. can be
interpreted as a DOS in the sense of (D.2.1)).

For a real scalar field in EAdS;41, we choose Hamiltonian H to be the Laplace-Beltrami
operator —V? which has a continuous spectrum E) = % + A2 for all A € Rxg [213]. In
this case, the operator ﬁ is nothing but a scalar Green function Ga (X, X’) with mass

m? = —E = A(A — d) [285H287):

GA(XvX/) - GA(P> =

F(A)(—2P)—AF<A A+1 d—2 1

!/
202 5T T2 ’P2>’ P=Xx-X

(D.2.2)
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where X, X’ are points in the embedding space representation of EAdS;, ;. Plugging in £ =

E) =+ i¢, the corresponding resolvent R(E) =+ ie€) is given by

R(E» + i€) — / d™IX Gy (X, X) = Vol(AdSus1) Guy (X, X)  (D.2.3)

EAdS.. 2 FiA

Therefore, combining eq. (D.2.1) and (D.2.3), we find that the DOS per volume of —V? in
EAdS 1 is simply

_pan(BEy) 1 B
Vol(AdSg+1) 2w plm_ (G%H)\(P) Gg—m(P)) (D.2.4)

where P — —1~ means that P approaches —1 from the left. (Technically the direction of limit
is important, and physically the direction is also fixed because X - X’ < —1 for any two points
on EAdS,1). Before showing the main result extracted from eq. , let’s digress a bit and
discuss some properties of hypergeometric functions appearing in eq. (D.2.2). In general, the
hypergeometric function F'(a, b, c;x) with Re(c — (a + b)) < 0 is singular around = = 1 [288]

. F(a,b,c,x)  T(c)T(a+b—c)
zligl— (1—2)c—a=b —  T(a)[(b) (D-2:5)

which implies that the two Green functions in (D.2.4)) have singularity as P approaches —1~.
However, amazingly all the divergences cancel out in the end when we take the difference (which
of course is expected since the DOS per volume should be well-defined). We list some lower

dimensional examples here

GV B
Vol(AdSy) — 4r tanh(m), d=1
p4(E)\) o 1 ( 2 1) B
Vol(AdS;) — 1672 A° 4+ 1 tanh(m\), d=3
Bt (1) (+2) :
Vol(Adsg) — 12875 \M T7) (M +7 ) tanh(m), d=5 (D.2.6)
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and
_palBy) L o
Vol(AdS3) ~ 4x2”
Vgl5((A€I/\SL) B 241773“1 A7), d=14
vgr((A]ilASl) - 24;71'4)\ (R 1) (1), d=6 (D-2.7)

Notice that what we've obtained here is the number of states per unit “energy” FE) rather than
spectral density because the latter is the number of states per unit A. However, they can be
easily mapped to each other by a change of integral measure dEy = 2AdA. This observation

suggests us to define the spectral density as

_ 2Apani(Ey) _ 1 T4 + 0
1

Pa+1(A) = Vol(AdSy1) 24-1T(EE1)2Vol(54)  [T(iN)] (D.2.8)

d_ )2
where the A\-dependent factor % is exactly what we call u(d)()\) ineq. (6.2.9). As a

, : : . 2
final consistency check, let's reconstruct the scalar heat kernel associated to (—V?2 + 1% — %)

from its canonical definition, i.e. “summing” over all energy eigenfunctions

2 [ee) 9
K, (t) =Tr e~ (VA 2 AEXpat1 (EA)e*(EhLuLdT)

4

— Vol(AdSy1) / AN fas1 (Ve tOP)
0

_ Vol(AdSqy,) 1 /°° (@ (yy—t 2 +7)
~ Vol(S9)  2d-1p(dfy2 Jy A i (A)e (D.2.9)

Altogether, the computations in this appendix help us to identify the spectral density or the
Plancherel measure of SO(1,d + 1) which has a rigorous mathematical definition in the pure
group theory setup [64, 66], as the density of states associated to the Hamiltonian H = —V?

in a unit volume of EAdS;41 up to some representation-independent normalization factors.
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D.3 Comparison with dS character integral

In sections[6.2] and [6.3] we derived character integral formulae for one-loop partition functions of
both scalars and spin-s fields in even dimensional AdS. These formulae are very similar with their
dS counterpart derived in [[chapter ?]] , where the unregularized one-loop partition function of

a massive spin-s field with scaling dimension A = %l + v is given by

logZPI _ /oo dﬁ( —(4 +zy)u+e (i—zy)u Z Dd+2 —nu (D31)
Jo 2u
n>—1
Here the extension of the sum to n = —1 is a result of locality. Summing over n yields a

(bulk+edge) type contribution as in Wi

log Zp| =

o dulte [ ey (i pi+2 e~ (FEHu g (G2 —iw)u
2ul—e \ 7 (1 —eu)d s (1— e u)d=2

(D.3.2)

In this appendix, we will show that the origin of such similarity between AdS and dS can be

traced back to the eq. (6.1.9).
On the AdS side, we know that the unregularized partition function of a field carrying the

massive representation [A = ¢ + v, s] of SO(2,d) is given by (assuming d = 2r + 1)

_\r+1
log Zs, = ( ()1' / B gy ) () = (D.3.3)
! 0

where W(d)( )= [dA ,ugd)()\)e”‘“ can be written as a series by closing the contour at infinity:

Wi (u) = 2(—)r > (n + ) H ((n + ;)2 - E?) e~ (nt3)u (D.3.4)

n>0

Using the eq. (6.1.9)), we obtain (7) " DIWLD () = >0 Dﬂfe_(’”%)“ which yields

o0

d
o8 2 = [~ et X Dt et

:/ emdu 3 pit2enu (D.3.5)
0

n>-—r
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where in the second line we have shifted n by . Now let's focus on the spin-s representation,
iie. s = (s,0,---,0). In this case ng;? vanishes for n € {—r,—(r — 1),---,—2} (and also
n = s — 1 but this is irrelevant to our discussion) and hence the sum in eq. (D.3.5) effectively

starts from n = —1

> du —Au d+2 —nu

log Zs, = | 5-e 2" ) Diite (D.3.6)
0 u n>—1

Compared to (|D.3.1)), it's clear that the only difference is the absence of e~ because in AdS

only one boundary mode is dynamical and the other one is identified as a source.

D.4 Evaluation of various residues

This appendix is a collection of technical proofs and results about residues of certain functions

appearing in the character integrals. The ultimate goal here is to compute the residue of

11+e™ e~ (5FV)u

Fa(u) = 2ul —eu(l—eu)d

(D.4.1)

at u = 0 for even dimension d, which is closely related to the one-loop partition functions in odd
dimensional AdS. For most of the discussions in this section, we consider a general dimension d
and only restrict the result to even d in the end. An intermediate step to Res, ,0F},(u) is the

residue of the following function

e—(%—i—l/)u

Gap(u) = (I —ew)dt (D.4.2)

which itself is also very interesting because we need it to verify the contour prescription proposed
in section

First we show by induction that

Resu_mGd,,,(u) = — (D43)

It's straightforward to check that eq. (D.4.3)) holds for d = 1. Assuming the induction condition



361

(ID.4.3), we show that it also works for d + 1. Let Cy be a small circle around v = 0, i.e. it
doesn’t enclose any other poles of G, (u) except u = 0. Then the residue of Ggy1,(u) at

u = 0 can be expressed as a contour integral along Cy counterclockwisely

du e—(%-ﬁ-u)u

PR — (D.4.4)

Resu—>0 Gd+1,1/ (u) = %
Co

To use the induction condition, we should lower the power in the denominator which can be

realized by integration by part:

1 du d 1y, d 1
__ e Gt
ResusoCarnn (W) = =37 1 am® 7 7 Gu (i = emwyan
d-1 —(g5+v—3)u d-1
d
) +Vj{ 7“ e _ 2d - __2 +UResuﬁoGd,,,;(U)
d+1 Jo, 2mi (1 — e w)dtl d+1 Y3
(D.4.5)
Applying the induction condition (D.4.3) to eq. (D.4.5)) yields
(£)"! T+ 44
R G = D.4.6
€Su—0 d+l,u(u) (d+1)! I'(v— %) ( )

This confirms that (D.4.3)) holds for all d.
To bridge the gap between Res, 0G4, (u) and Res,0Fy,(u), we need to define another
function

14eu e (50
l—ev(1—ev)

Hyy(u) = = Gap(u) + Gayyr (u) (D.4.7)

It's direct to write down the residue of Hy, (u) at u = 0 by using its relation with the G-functions

2(-)¢ T(v+9)
Resy—0Hg,(u) = v
A Tv+1-49)

(D.4.8)

which is a polynomial in v for positive integer d. In addition, the R.H.S of eq. (D.4.8) is an even
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function in v when d is even and an odd function when d is odd. More explicitly, for d = 2r,
Resy—0H g, (u = H v — ) (D.4.9)
and for d = 2r + 1,
Resy0H g, (u) = —% :: (]/2 _ (j + ;>2> (D.4.10)

To achieve our original goal, the residue of F;,(u) at u = 0 for even d, we need the following

differential relation between Fy;, (u) and Hy, (u)
1
8I/FWd,z/(u) = _in,u(u) (D411)

which yields

d+1 d)
Resyo0Fq,(u) = / dzx _—@ty) d) + const (D.4.12)
T2
The unknown constant can be easily fixed for even d without any extra effort. This claim follows

from the observation that F5, o(u) is an even function in u. Thus Res,_,0Fb,,(u) vanishes when

v = 0 and the integration constant has to be zero:

1 v .
Resy—0F2,, (u) = — o)l /0 dzr ] (z* - 5?)
! 0
1 &< ay
=y an(r) ot (D.4.13)

H(w — ) = Z an(r) z™ (D.4.14)
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D.5 Various coordinate systems in Euclidean/Lorentzian AdS
We begin with the embedding space representation of Lorentzian AdS;, 1 of unit radius
(X2 (X2 (X2 (X2 = (D.5.1)
By Wick rotation X%+1 — —i X1 we obtain Euclidean AdS in embedding space
(X924 (X2 (X2 = (D.5.2)
The global coordinate for Euclidean AdS is chosen to be
X% =coshn, X% =sinhnQ%, 1<a<d+1 (D.5.3)
where 7 > 0 and € denotes a point on S?. In this coordinate, the metric is given by
dsgads,,, = dn° + sinh® 7 dS); (D.5.4)

In particular when d = 1, choosing 1 = (cos ¢, sin ¢), the metic is ds%AdS2 = dn?+sinh? n dy?.
Under the Wick rotation ¢ — it, we transform back to Lorentzian signature. In embedding
space, it means we choose the following coordinate systems on two patches that cover different

portions of Lorentzian AdS

X0=p X%=p
Southern : )(1 = /p2 — 1 cosh tS s Northern : )(1 — 4 /p2 — 1cosh tN (D55)

X2 = /p? —1sinhtg X2 =/p? —1sinhty

where |'ve replaced coshn by p > 1. The metric of southern/northern patch can be expressed

as

dp?
dspgs, = —(p* — 1)dt* + 2T

t=tg,tn (D.5.6)
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which describes a black hole solution with a point-like horizon at p = 1, the intersection of the

southern and northern patches. The temperature of this black hole is T' = %

When d > 2, there exists a similar Wick rotation that describes a spacetime of the same tem-
perature. Notice that the global coordinate system realizes a S¢ foliation of EAdS 1.
By using the Wick rotation between de Sitter static patch and sphere, we obtain a dS foliation

of AdS411. More explicitly, we choose the following coordinate system for €24
Qa=(rQq-2,V1I—1r2cosp,V1—r2sinp), 0<r<1 (D.5.7)

where Q4_» denotes the usual spherical coordinates of S%~2. Upon a Wick rotation ¢ — it,
24 becomes a point on dS; and (D.5.4]) becomes the Rindler-AdS metric [4]. As before, the

Wick-rotated coordinate system describes two patches of Lorentzian AdS

X% = coshp X0 = coshp
Xg:rsinhnflgf Xg:rsinthzf

Southern : - ,  Northern : =2
Xd:sir1h17cosht5\/1—7‘2 Xd:—sinhncoshtN\/l—r2
X4 = sinhnsinhtgy/1 — 72 X4 = sinh g sinh tyv/1 — 72

(D.5.8)

in either of which the metric is

dr?

dsags,,, = dn® +sinh? 7 (—(1 —r?)dt? + oz er§2§2> . t=tg, ty (D.5.9)

The two patches intersect at the horizon » = 1 which has the geometry of EAdS,;_;.

Finally, let's also introduce the global coordinate of AdS

X% =R +1costg
Global : § X% = R, | (D.5.10)

X! = \/R2 + Isintg

Attimetg =tg =ty =0, i.e. X1 = 0, the southern and northern patches cover the X4 >0
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and X¢ < 0 parts of the global spatial slice respectively.

D.6 SO(2,d) Harish-Chandra characters

SO(2,d) is the isometry group of AdS;;1. In conventions in which the generators of SO(2,d)

are hermitian operators Ly;n,0 < M, N < d+ 1, they are subject to commutation relations

[Lvn, Lpg) = i(mvupLng + nvoLyvp — nuQLne — nnpLug) (D.6.1)

where nyny = diag(—,+, -+ ,+,—). The physical interpretation of this algebra will be clear

using the following Cartan-Weyl type basis
H=Logi1, Lf =LioFiLigr1, M= Ly (D.6.2)
with commutation relations
[H,L7]=+L, [Ly,L7]=26;H —2iMy, [Lyj, L] =1i(6xl; —6;L;)  (D.6.3)

where the trivial commutation relations are omitted. While acting on the AdS441 quantum
Hilbert space, H can be identified with the Hamiltonian which generates time translation in
global coordinates, and M;; can be identified with angular momentum operators. The L;t can
then be viewed as raising/lowering operators for energy eigenstates. We're mainly interested
in single-particle Hilbert space Ha built from a primary state |A) (also known as the lowest
energy state), i.e. H|A) = A|A), L7 |A) = 0. By construction the Hilbert space Ha furnishes
a representation of so(2,d).

In most of the physics literature [12] 70, 289, [290], the so0(2, d) character of representation
Ha is computed with respect to a compact Cartan algebra, in particular Hamiltonian and
rotations. Here, for our purpose of thermal interpretations in section , we illustrate in (unitary)
scalar primary representations how to compute s0(2,d) character associated to a noncompact

generator, i.e. generator of boost in AdSgy1.
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D.6.1 SO(2,1) character

As shown in eq. (D.6.2) and (D.6.3), the Lie algebra s0(2,1) is generated by {H,L*} with

commutation relations [H, L¥] = 2L*,[L~, L*] = 2H. Starting from the primary state |A),
we build a tower of descendants |n) = (LT)"|A),n > 0 which is a basis of the Hilbert space
Ha. Then the character associated to a noncompact generator, say Lis = %(L+ —L7), is
defined as

(ne™t12]n)

) teR (D.6.4)

Try, eithiz = Z

n>0

Though defined through a simple and transparent way physically, it's technically very hard to
figure out the character by computing this sum. Therefore, we'll use a different realization of

the same representation that makes the same computation doable.

Disc realization: In [289], by using the standard coadjoint orbit method, Witten showed that
the Hilbert space Ha can be mapped to the space of normalizable holomorphic function f(z)

ondisc D ={z € C: |z| < 1} with inner product

1P = [ 17 (= 223Dz (D.6.5)
D
On these holomorphic function, the generators of s0(2,1) act as

H=20,+A, L™ =—id,, L' =—i(2°0,+2A2) (D.6.6)

k

The normalizable function f(z) = 2" is an eigenfunction of H with eigenvalue A 4+ k and hence

the character associated to H is

% A
q
Trg g =3 ¥ = 7 0<al <1 (D.6.7)
k=0

1—iz

Upper half-plane realization: Using a fractional linear transformation z — w = < =%, we can

map the disc D to the upper half-plane H = {x + iy € C : y > 0} and the new Hilbert space
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consists of normalizable holomorphic functions f(w) on H with inner product [66), [291]

dxdy )
Hf|’2—/Hy2y2A]f(w)\2, w=x+1wy, y>0 (D.6.8)

When acting on a holomorphic function f(w) on H, the algebra s0(2,1) is realized as

1+ w? 21
Hz—i( J;w 6w+Aw>, L10:i<w2 8w—|—Aw>, Lis = i(wdy + A) (D.6.9)

The eigenfunctions of H are ¢p(w) = (w — i)F(w + 1) 7227% k € N, with Hoy, = (A + k).

R realization [291] and evaluation of character: Given a holomorphic function f(w) on

the upper half-plane, we can define a new function F' on R;:

d .
FE = | & fw)y=mE, cery (D.6.10)
Im (w)=const 2m
and the inverse transformation is given by
f(w) z/ de F(€)e™s, TIm (w) >0 (D.6.11)
0

Under the integral transformation (D.6.10]), the inner product (|D.6.8)) is mapped to
2 > 1-2A 2
PR = [ g2 F (o) (D6.12)
and the so(2,1) action is mapped to

Ho= J60-38)+ (A~ 1), Lup= 26(1+22) + (1 - A)o%

To find all eigenfunctions of H in (D.6.13), let's start from the primary state ¢o(w) = (w+i)~ 22

in the upper half plane realization. ¢g can be expressed as a Schwinger parameterization:

N 24 1 ®d€ oA —e(1—iw



368

Comparing (D.6.14) with (D.6.11]), we immediately get that the dual function of ¢g(w) in Ry

is Go(€) = €227 1e~¢ (dropping unimportant normalization constants). For the dual function
of ¢r(w), we use the ansatz G (&) = Go(&)Px(§), where Py(§) is a polynomial in £&. Then the
eigenequation HGj = (A + k)G}, yields a second order differential equation of Pj(€)

S PO+ (A~ &) Pule) + k Pi() = 0 (D.6.15)

whose polynomial solution is the generalized Laguerre polynomial Py(§) = L,E?A_l)(Zf). Thus

the spectrum of H is given by
HGy = (A+k)Gr, Gi(&) =27 L2 V(2g) ¢ (D.6.16)

By using the recurrence relation of Laguerre polynomial, we can also show that L* indeed

behaves like lower/raise operator
L™Gi(§) = (1 =28 = k)G1(§), LTGr(§) = —(k + 1)Gr41(€) (D.6.17)

As another self-consistency check of this representation, we show the Fourier/Laplace transfor-
mation (D.6.11)) of G(§) is ¢r(w) up to normalization factors. To do this, we need the series

expansion of a generalized Laguerre polynomial L( () =>7 K, (’:fog)xz, which yields

ew D 2A +k—1\ [ dE C(eiw
R o A A

=0
24 + k)i*A & —2 \* T(2A+k)i?®
’i'w“m ;<)<1—¢w) - Kl " gew) (D6.18)

Finally, we are at a stage of actually evaluating the character associated with Lis by using

the new basis G (§) of Ha:

- G, et12Gy)
Ty eitliz — (k’—k D6.1
re kzzo (G Cn) (D.6.19)

where (e112G) (&) = e1=2)1G,(e€) is obtained by exponentiating the action of Lis in
(D.6.13) and (Gg, Gk) = ngzﬁz!k) is a result of the orthogonality of generalized Laguerre poly-
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nomial:

/ 2°L@) [(@e=2 do = dem (D.6.20)
0 .

Thus the character Tr 12 can be expressed as

Tre itLio eAt Z
k>0

2A+k / d§§2A 1 ,1+e L(?A 1)(5) (2A-1) ( tf) (D62]_)

If we switch the order of summation and integration mindlessly, the sum is not convergent. To

makes sense of this procedure, we introduce a factor (1 —§)*,6 >0

k! (2A-1) (2A-1), ¢ k
Domon e ©OLTT ()1 - 9)
kzoF(QA + k)
1 1 L
1-6 5—A e(ﬁ—A)t 1 ¢ 265m
_( 5) e (G-DO+eep =l (D.6.22)

This equation is called “Hardy-Hille formula” [292]. With the summation regularized and eval-

uated, the remaining integral can be computed by using the result on page 91 of [288]

1

) 1-90)2
Tr etz — (72 %/ dée” 'EIQA 1(BE)
—a-ataet (—2) (0623)
= AT VB2 VA= B2 -
where
9 t 2v/1 -6 t
A= (5 — 1) cosh(t/2)e2, B = 5 ez (D.6.24)
Expanding around § = 0 and keeping the leading term yield
. —2A
Ty gitliz _ (cosh(t/2) + sinh(|t|/2))} 2 (D.6.25)

2sinh(|t]|/2)

L . _A . . A
When t > 0, it's reduced to Tr ef*l12 = f_e_tt and when t < 0, it's Trel12 = fﬁ—; Altogether,
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the character associated to the noncompact generator L1o can be summarized as

e_A‘tl

Treitle = £
1— eIt

= Tre A (D.6.26)
This equation also holds if Lis is replaced by L1g since they are related by a conjugation of H.

D.6.2 SO(2,d) character

In higher dimensional, we fix an s0(2,1) subalgebra, i.e. generated by {H, L{} and decompose
the s0(2, d)-invariant Hilbert space ’Hgdsd“ into 50(2, 1)-invariant subspaces where the formula
(D.6.26)) can be used. For concreteness, we use s0(2,2) scalar representations to illustrate
how this decomposition procedure works. Let |A) be the scalar primary state of an s0(2,2)

representation

HIA) = AJA), Li|A) =0, Ly]A) =0, MilA)=0 (D.6.27)

Decomposition of H2d53 into s0(2, 1)-invariant subspaces is equivalent to finding s0(2,2) de-

scendants that are 50(2, 1) primary. Suppose |1,,) = S 7_o cx (L) F(L3)*|A) with ¢, = 1 is
such a state. Then the so0(2,1) primary condition L |1)) = 0 imposes a nontrivial recurrence

relation relation on ¢,
(n—k)2A+n+k—1)cp = (k+ 1)(k+ 2)cps2 (D.6.28)

which fixes the coefficients {c;} completely, for example

1
2A +1

(L) L3 |A)

1) = LE|A), [u2) = (L3)%|A) + (LT)%1A)

) = (L3)°|A) + A T3

6
2A+5

3
(2A 1 3)(2A + 5)

1) = (L3)4A) + (L) (L3)?1A) + (L1)*A)  (D.6.29)
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Each [¢,,) induces an s0(2, 1) representation ’HAAdfz of scaling dimension A + n. Thus we have

HAS D @ HA? (D.6.30)
n>0

Counting the dimension of H-eigenspace with eigenvalue A + K for any K € N on the two
sides of (|D.6.30)), we find it should be an isomorphism of vector spaces

HA = (P HA? (D.6.31)
n>0

Applying the SO(2,1) character formula (D.6.26) to the decomposition (D.6.31)) yields the

SO(2,2) character associated with Ly

e_AM

o
Tr,HAdSS efthio — Z TrHAdSQ eltho — — (D.6.32)
A

Pt (1= e )2

In higher dimensions, the decomposition formula (|D.6.31)) is generalized to

AdS i1 ~ @Dy, d+n—2
HAT = @ (HAS2) T, D= < ; ) (D.6.33)
n>0
and thus the corresponding character becomes
itL el it e_AltI
7 _ 2 —
TrH/zisd+l ettlio — T;)Dn TI‘H/Zi_‘st etth1o — m (D634)

Though we've only computed character of a noncompact generator for scalar representations in

this appendix, we believe
Trpy €910 = Tryg, ¢, a =V (D.6.35)

holds for any unitary representation [A, s], massive or massless.
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D.7 Physics of SO(2,d) character

We will try to build up some physical intuitions about the character ©(t) = Treftrad+1 that
is computed by brutal force in the last appendix. In section [D.7.1} we construct quansinormal
modes in Rinder-AdS and show that they are counted by the character ©(t). In section [D.7.2}
we compute the density of Lo eigenstates numerically in AdSy by imposing an upper bound on
the eigenvalues of the global Hamiltonian H and compare it with the density of states defined

as the Fourier transformation of O(t).

D.7.1 Quasinormal modes in Rindler-AdS

It is clear that the character Tre Imt¢ > 0 counts normal modes in AdS;,; because H
is the Hamiltonian in global coordinate. However, the same interpretation does not hold for
Tr ef*lda.dt1 because Lgq+1 is not a positive definite opeator. Instead, as we will show in the
following, it counts resonances/quasinormal modes in Rindler-AdS.

To construct quasinormal modes in an efficient algebraic way [I], it's convenient to define

the following dS-type conformal generators:
D = _iLd,d+1a PM = i(Lu,d + Lﬂ7d+1)7 KM = i(L%d — Lﬂ7d+1) (D?l)

subject to commutation relations (we only show the nontrivial ones that will be used in the

derivation):
[D,P,)] =P,, [D,K,=-K, (D.7.2)

where 0 < p < d — 1. In terms of embedding space coordinates, the differential operator

realization of D, P,, K, is

D= —(Xd8Xd+1 + Xd“axd), PM = Xu(axd + 8Xd+1) + (Xd+1 — Xd)axu,

K, = X, (0xa — Oxar1) — (X 4+ XD oxu (D.7.3)

Consider a scalar field of scaling dimension A. Then its “primary mode” i.e. eigenfunction of
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D with eigenvalue A which is annihilated by K, is given by
_ (yd o yd+1) 7
Ya(X) = (X4 X9 (D.7.4)
In the southern Rindler coordinate of AdS E] this “primary mode” 1A (X) descends to
Yaln.ts,r) = (sinhn)B(1 = 1?)"Fe A (D.7.5)

ha has e A-type fall-off at the future boundary and satisfies in-going boundary condition
at horizon with quasinormal frequency identified as iw = A. The other quasinormal modes
are descendants of szE] because the equation of motion and in-going boundary condition are
invariant under the action of SO(2,d). At level n, there are ("zlriizl) linearly independent

quasinormal modes whose quasinormal frequency w,, is related to their scaling dimension under

D by iw, = A + n. Notice that

—At

vd—1\ _
TretP = ¢ _ " —iwnt 45 () D.7.6
re =) n%%( J_1 e , > ( )

D

and thus the character Tre~*¥ counts quasinormal modes. The same construction can be easily

generalized to higher spin fields, either massive of massless.

D.7.2 Numerical computation of density of state

For the southern Rindler-AdS Hamiltonian L4414, the associated density of (single-particle)

states can be formally defined as

pw) = tré(Lay1,qd —w), w>0 (D.7.7)

'In the AdS: case, we should actually use the black hole coordinate 1) and then the “primary mode”
becomes ¥ (ts,p) = (p* — 1) 2/2 e Ats,

2There are two different definitions of descendants depending on the choice of Hamiltonian: either Lo 411 or
Lg41,4. Since the Hamiltonian in Rindler-AdS is Lq4 1,4, the descendants are obtained by acting P, on ¢a.
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which is also a Fourier transformation of the character ©(t) = Tr ¢?ld.a+1

o) = [ 2

. ¢ . .
wt wi —iwt
= [ 3-0e _/0 5. O (et + ) (D.7.8)

The Fourier transformation above is UV-divergent but it can be easily regularized by using a
hard cutoff % for the lower bound of the t integral. For example, for a scalar field of scaling

dimension A in AdS,, this regularization yields

pa(w) = %log (€77 8) — = 3 (A £ iw) (D.7.9)

2m
where g is the Euler constant and ¢(z) = I'/(z)/T'(z) is the digamma function.

On the other hand, approximating pa (w) by a model of finite dimensional Hilbert space would
provide a more physical interpretation for it. Such an approximation can be easily implemented
by imposing a UV cutoff on the spectrum of H. For example in the AdS, case, consider a
truncated Hilbert space Hx generated by G (§) with 0 < k& < K and thus the highest energy
of H is A+ K. Normalizing G (§) and using the recurrence relations , L* are realized

as finite dimensional matrices in H g

L= —(k+1)(k+28), L, =—/(k+1)(k+24) (D.7.10)

Altogether, in this truncated model, the noncompact “Hamiltonian” Loy = i(L* — L*) is a

2
sparse (K 4 1) x (K 4 1) matrix, which admits an efficient numerical diagonalization. With the

eigenspectrum {wy, }o<k<x (which is ordered such that wyy1 > wy) obtained from diagonaliza-

tion, a coarse-grained density of eigenstates can be defined as

2
or(wp) = —mM8— D.7.11
PK (W) T ( )

To compare the character induced density pp and the discretized density px for a fixed K, we
adjust the UV cut-off A such that they coincide around w = 0, i.e. more precisely at the lowest
non-negative eigenvalue of Loj. Such a comparison for A = 3 and K = 2999 is shown in fig.

[D.7.1] They agree fairly well in the IR region and hence the UV truncated model is a pretty
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Figure D.7.1: Density of states for a A = 3 scalar in AdSs. The red dots show the coarse-
grained density of states g (w), cf. (D.7.11), of the truncated model with global energy cut-off
K =2999. The blue lines show the character induced density of states py (w), cf. , with
the UV cut-off being e 772 A = 5981. The plot on the left shows the two densities for the full
spectrum of the truncated model while the plot on the right zooms in on the deep IR region.

good approximation for computing density of states.
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