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ABSTRACT

A group theoretical approach to quantum gravity in (A)dS

Zimo Sun

This thesis is devoted to developing a group-theoretical approach towards quantum gravity in

(Anti)-de Sitter spacetime. We start with a comprehensive review of the representation theory of

de Sitter (dS) isometry group, focusing on the construction of unitary irreducible representations

and the computation of characters. The three chapters that follow present the results of novel

research conducted as a graduate student.

Chapter 4 is based on [1]. We provide a general algebraic construction of higher spin

quasinormal modes of de Sitter horizon and identify the boundary operator insertions that source

the quasinormal modes from a local QFT point of view. Quasinormal modes of a single higher

spin field in dSD furnish two nonunitary lowest-weight representations of the dS isometry group

SO(1, D). We also show that quasinormal mode spectrums of higher spin fields are precisely

encoded in the Harish-Chandra characters of the corresponding SO(1, D) unitary irreducible

representations.

Chapter 5 is based on work with D. Anninos, F. Denef and A. Law [2]. With potential

application to constraining UV-complete microscopic models of de Sitter quantum gravity, we

compute de Sitter entropy as the logarithm of the sphere path integral, for any possible low

energy effective field theory containing a massless graviton, in arbitrary dimensions. The path

integral is performed exactly at the one-loop level. The one-loop correction to the dS entropy is

found to take a universal “bulk − edge” form, with the bulk part being an integral transformation

of a Harish-Chandra character encoding quasinormal modes spectrum in a static patch of dS

and the edge part being the same integral transformation of an edge character encoding degrees

of freedom frozen on the dS horizon. In 3D de Sitter spacetime, the one-loop exact entropy is

promoted to an all-loop exact result for truncated higher spin gravity, the latter admitting an

SL(n,C) Chern-Simons formulation with n being the spin cut-off.



Chapter 6 is based on [3]. Inspired by [2], we revisit the one-loop partition function of

any higher spin field in (d + 1)-dimensional Anti-de Sitter spacetime and show that it can be

universally expressed as an integral transform of an SO(2, d) bulk character and an SO(2, d− 2)

edge character. We apply this character integral formula to various higher-spin Vasiliev gravities

and find miraculous (almost) cancellations between bulk and edge characters, leading to striking

agreement with the predictions of higher spin holography. We also comment on the relation

between our character integral formula and Rindler-AdS [4] thermal partition functions.
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Chapter 1: Introduction

Symmetry is ubiquitous in modern physics. It permeates physics at all energy scales, from sub-

eV scales (e.g. condensed matter) up to the Planck scale (e.g. string theory). In these theories,

symmetry has been used as a guiding line for model building, e.g. low energy effective theories

[7, 8], and as a powerful tool to magically simplify computations, e.g. supersymmetric localiza-

tion [9]. The mathematical tool to describe symmetry precisely and rigorously is group theory.

Discrete symmetries are described by finite groups (e.g. the Z2 symmetry in Ising model without

external magnetic field) and continuous symmetries are described by Lie groups/algebras (e.g.

the U(1) symmetry of QED). Apart from the discrete vs. continuous classification, symmetries

in a physical theory can also be divided into spacetime and internal symmetries. While internal

symmetry depends on the dynamical details, spacetime symmetry is determined by the back-

ground spacetime geometry. For example, the spacetime symmetry in a flat spacetime R1,d is

the Poincaré group Rd⋊SO(1, d). As noted in the seminal work of Bargmann and Wigner [10],

the Poincaré group plays a fundamental role in particle physics, classifying elementary particles

by its unitary irreducible representations (UIRs). More precisely, the single-particle Hilbert space

of a free elementary particle in flat spacetime furnishes a UIR of the Poincaré group. These

UIRs can be divided into two classes: massive and massless, which are fundamentally different.

Wigner’s classification can be directly generalized to de Sitter spacetime dSd+1 or Anti-

de Sitter spacetime AdSd+1 which are also maximally symmetric spacetimes like R1,d, under

the condition that the Poincaré group gets replaced by the corresponding isometry groups:

SO(1, d + 1) for dSd+1 and SO(2, d) for AdSd+1. The physically relevant UIRs of SO(2, d)

are familiar to physicists since SO(2, d) is also the symmetry group of a conformal field theory

(CFT) on the flat spacetime R1,d−1. For this reason, studying the UIRs of SO(2, d) is a crucial

step in understanding the structure of CFT Hilbert spaces. A complete classification of these

UIRs can be found in [11, 12]. On the other hand, the UIRs of SO(1, d + 1) are less familiar
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to physicists since they are not contained in the Hilbert space of any unitary Lorentzian CFT.

The mathematical classification problem was solved in the early 60s [13]. More recently, as a

technical tool, the representation theory of SO(1, d + 1) has led to many profound analytical

results in CFTs, e.g. conformal partial wave expansion [14], conformal Regge theory [15] and

CFT inversion formula [16].

This thesis is devoted to developing a group-theoretical approach, based on the represen-

tation theory of SO(1, d + 1) (SO(2, d)), towards quantum gravity with a positive (negative)

cosmological constant. In particular, we will see how quantum corrections to the horizon entropy

are universally calculable from purely group-theoretic data, for arbitrary effective field theories

of quantum gravity. Before that, we want to give the motivation for this work and review some

useful background.

1.1 Motivation

Mathematically, dS (AdS) spacetime is the maximally symmetric vacuum solution of Einstein’s

equations with a positive (negative) cosmological constant Λ. They can be represented as

hypersurfaces in higher dimensional flat space

−X2
0 +X2

1 + · · · +X2
d ±X2

d+1 = ±ℓ2, ℓ ∝ 1√
±Λ

(1.1.1)

where the “+” sign corresponds to dS and the “−” sign corresponds to AdS. More details about

the geometry for (A)dS are shown in their Penrose diagrams (1.1.1). The diamond denoted by

“S” or “N” in the dS Penrose diagram (1.1.1a) is called the southern or northern static patch,

the maximal region accessible to a local observer. The static patch metric is

ds2 = −
(

1 − r2

ℓ2

)
dt2 + dr2

1 − r2

ℓ2

+ r2dΩ2
d−1, 0 ≤ r ≤ ℓ (1.1.2)

where dΩ2
d−1 denotes the standard metric of a (d − 1)-dimensional unit sphere. The de Sitter

horizon sits at r = ℓ and the classical de Sitter horizon entropy is given by the area law [17]

S0 = A

4GN
(1.1.3)
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where A is the area of dS horizon. In global coordinates, which cover the whole strip of (1.1.1b),

the AdS metric takes a similar form, with ℓ → iℓ:

ds2 = −
(

1 + r2

ℓ2

)
dt2 + dr2

1 + r2

ℓ2

+ r2dΩ2
d−1, 0 ≤ r < ∞ (1.1.4)

The AdS boundary is located at r → ∞. Other coordinates and the corresponding metrics of

dS (AdS) can be found in the appendix C.3.2 (D.5).

S N

(a) dS Penrose diagram (“a square”) (b) AdS Penrose diagram (“a strip”)

Figure 1.1.1: In (a): the two horizontal lines (thick blue) denote future and past boundaries, the
two vertical lines (blue) are actually in the interior of spacetime manifold and the two diagonal
lines (red) correspond to cosmological horizon. In (b): the two vertical lines (blue) represent
the cylinder-shaped boundary, the diagonal lines (red) are trajectories of light and the dashed
line correspond to trajectory of a massive particle.

dS is an important realistic model in cosmology while AdS is more like an ideal lab for string

theory/quantum gravity that only exists in our heads. For concreteness, we will focus on dS

in what follows. But one should keep in mind that our strategy towards dS quantum gravity,

which will be discussed below, can also be directly applied to AdS.

According to the recent cosmological experiments, including supernovae observations [18–

20], CMB measurements [21] from Planck and the baryonic acoustic oscillations [22], our uni-

verse is accelerating. In the framework of ΛCDM, this accelerating expansion will persist and

eventually with matter and light diluting away fast and with vacuum energy dominating, the
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observable universe will end up being a de Sitter static patch, surrounded by a sphere-shaped

cosmological horizon. So a local observer is causally disconnected from everything outside

his/her static patch. In view of this and other reasons, it is of evident importance to try to

understand quantum gravity in de Sitter spacetime. However, unlike in the AdS case where,

thanks to the AdS-CFT correspondence [23], quantum gravity (at least in certain examples) can

be microscopically formulated in terms of CFTs, we still do not have a UV-complete microscopic

model of quantum gravity in dS. We even do not know what are the basic ingredients in such

a theory. There have been many attempts towards this problem, including string theoretical

construction of metastable dS vacua [24–27] and holographic considerations [17, 28–40]. But

none of them can answer one of the central problems in dS quantum gravity:

What is the microscopic origin of de Sitter entropy?

In contrast, string theory has been very successful in the microscopic accounting of Bekenstein-

Hawking entropy for certain BPS black holes, starting from the seminal work [41] by Strominger

and Vafa. Roughly speaking, the Bekenstein-Hawking entropy SBH(Q) of a given set of charges

Q can be obtained by counting degeneracy d(Q) of BPS states in large charge limit Q → ∞

SBH(Q) = log d(Q) (1.1.5)

Being completely clueless about the fundamental microscopic theory of quantum gravity in dS,

we would like to take a systematic approach to this problem, using only machinery that is fully

understood, namely quantum field theory. In other words, even though the UV-completed theory

is far from being known, the low-energy theory of quantum gravity is assumed to be perturba-

tively described by low-energy effective fields, including the massless graviton in particular. In

the regime of low-energy effective field theory, we can ask the following two questions:

(a) What effective field theories are allowed?

(b) What can we learn about the underlying microscopic theory of quantum gravity?

The dS isometry group SO(1, d+ 1) and its representation theory appear quite naturally when

we try to answer these questions.
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To answer question (a), we should specify both field content and interactions of the fields.

A fundamental constraint on the field content is unitarity. According to our previous discussion

about Wigner’s classification, the unitarity requirement is the same as the unitarity of the

corresponding SO(1, d + 1) representations. For example, looking at the list of SO(1, d + 1)

UIRs given in section 3.3.6, more specifically the principal and complementary series, we see that

there are massive spin-s UIRs with a lower bound on the mass for s ≥ 2, the unitarity bound for

this family of SO(1, d + 1) representations. From a field theory point of view, the same lower

bound arises as the condition for the theory to be ghost free, famously known as the Higuchi

bound [42]. In addition to these massive spin-s particles/UIRs, there exists a gigantic zoo of

more exotic particle species, including the exceptional and discrete series of UIRs in the list of

section 3.3.6. The corresponding zoo of fields includes p-form gauge fields, massless higher spin

fields, partially massless higher spin fields, etc, many of which do not have an analog in flat

space, but all of which could appear in low-energy effective field theories of dS quantum gravity.

The existence of nontrivial interactions is a very strong constraint, beyond the scope of

representation theory. For example, in flat spacetime, there exist various no-go theorems [43–

47] forbidding interacting massless higher-spin field theories. However, these no-go theorems

can be bypassed by turning on a non-zero cosmological constant and allowing an infinite tower

of higher spin fields. In a series paper by Fradkin and Vasiliev[48–52], a consistent interacting

action up to the cubic order was found on a fixed (A)dS background, and in [53–55] the fully

nonlinear equations of motion for interacting massless higher spin fields (known as the Vasiliev

equations) was written down in the so-called unfolding formalism. The Vasiliev theories of

gravity provide important examples in AdS/CFT, going beyond string theory. For instance, the

type-A Vasiliev gravity in AdS4 whose field content consists of a conformally coupled real scalar

and massless fields of spin s = 0, 1, 2, 3, ...,∞, is conjectured to be dual to free U(N) vector

model on the boundary [56].

Altogether, this illustrates higher-spin fields and more exotic variants thereof can be equally

important as low-spin fields in low-energy theories of quantum gravity in (A)dS, providing further

motivation for a general group-theoretic approach.

For question (b), our toolkit for dS is much more limited compared to flat spacetime and

AdS. There is no S-matrix, there are no boundary correlation functions, and no asymptotic
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physical charges available to define physically meaningful quantities that could be used as sharp

quantitative tests of microscopic models. However, there is at least one physically meaningful

quantity that could serve this purpose: the de Sitter entropy S itself. The entropy, including

quantum corrections, is computed macroscopically as the Euclidean path integral of the effective

field theory [57]

S = log Z Z =
∫

DgDΦ e−SE [g,Φ] (1.1.6)

where g denotes the metric fluctuation, Φ is a collective symbol for other fields, and the path

integral is expanded around its round sphere saddle point which is the Wick rotation of dS static

patch in eq. (1.1.2). Concretely, we wish to extract unambiguously calculable, UV-insensitive

terms in the semiclassical loop expansion of S, for the purpose of comparison with microscopic

models attempting to match this in the form of a large-N expansion or otherwise. At tree level,

the above path integral yields the classical horizon entropy S0 of eq. (1.1.3). But this cannot

be used to constrain microscopic models, because unlike for black holes, it is just a number,

a renormalized dimensionless coupling constant, instead of a function of physical charges like

SBH(Q) in eq. (1.1.5). So we have to go beyond tree level. As we will see in chapter 5, certain

(nonlocal) quantum correction to the dS horizon entropy, including in particular nonlocal 1-loop

corrections, are UV-insensitive, and moreover exactly calculable. Therefore, our goal boils down

to computing the one-loop sphere path integrals, for arbitrary effective field theories.

However, the one-loop sphere path integral is not as innocent as it looks. For a massless

spin-s field, we need to fix a gauge and introduce a spin-(s − 1) ghost field. For a massive

spin-s field, defined using the Stueckelberg trick, we need to introduce a tower of massless

auxiliary fields [58] and each auxiliary field requires the same steps as in the massless case. It

gets extremely involved to keep track of all the off-shell degrees of freedom as the spin increases.

As we will see in section 5.4 and 5.5, by using SO(1, d+ 1) representation theory, we find a way

to compute the one-loop path integral by using only on-shell data. The latter is precisely and

elegantly encoded in SO(1, d + 1) Harish-Chandra characters, which we will review extensively

in chapter 3.

Altogether, the answer to question (b) is that we propose a nontrivial, quantitatively precise
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test constraining possible microscopic models of de Sitter quantum gravity. Let’s illustrate this

test more explicitly with 3D Einstein gravity as an example. Assume that 3D Einstein gravity

is the low energy effective theory of some UV-complete microscopic of quantum gravity in dS.

The path integral of 3D pure gravity as in (1.1.6) yields

S = S0 − 3 log S0 + 5 log(2π) +
∑
n≥1

cnS−2n
0 (1.1.7)

where the leading term is dS horizon entropy and the rest corresponds to exactly calculable,

nonlocal quantum corrections (i.e. cannot be absorbed into local counterterms). S in (1.1.7)

has to be matched by the microscopic entropy spit out by the microscopic model, say Smic =

log d(N), for some degeneracy d(N). This imposes a very strong constraint on the function

d(N), and in turn, the microscopic model. As a simple illustration, consider for instance a

hypothetic microscopic model spitting out d(N) =
(2N
N

)
. Then

Smic = S0 − 1
2 log S0 + log

(
π

2 log 2

)
+ O

(
S−2

0

)
(1.1.8)

where we have identified S0 = N log 4 + O(N−1). The evident discrepancy between (1.1.7)

and (1.1.8) rules out the model.

1.2 Structure of this thesis

This thesis consists of four main parts. The chapter 2 and chapter 3 form an extensive and quasi

self-contained review of the representation theory of the de Sitter isometry group SO(1, d+ 1).

The unitary irreducible representations are constructed and classified. The list of UIRs and their

corresponding de Sitter quantum fields are given in the 3.3.6. The Harish-Chandra characters

of these unitary irreducible representations (and some non-unitary representations) are defined

and computed. More explicitly, given a UIR ρ, the Harish-Chandra character associated to ρ

is defined as Θρ(t) ≡ tr ρ e−itL, where t ∈ R and L is a boost in so(1, d + 1) that generates

time translations in the southern static patch, c.f. (1.1.2) 1. For instance, the Harish-Chandra

1In contrast, the element H in so(2, d) generating AdS global time translation (c.f. (1.1.4)), is positive definite.
So given a UIR R of SO(2, d), the most natural definition (which is also the definitions of character used in CFT
[12]) of an AdS character is tr R e

−tH , where t > 0. With this definition, the character of linearized gravity in
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character corresponding to linearized gravity in dS5 is

Θ(t) = 10 q2

(1 − q)4 , q = e−|t| (1.2.1)

Such characters will be a key ingredient in all of the work presented in this thesis.

Chapter 4 studies higher spin quasinormal modes in the static patch of dSd+1. The traditional

separation of variables method of solving quasinormal modes becomes almost impossible in

practice when the spin is large. We develop an algebraic approach to this problem, based on the

ambient space formalism of higher spin fields and the observation that quasinormal modes of a

single field field in dS furnish two (non-unitary) lowest-weight representation of the dS isometry

group SO(1, d + 1) [59, 60]. In particular, we obtain the explicit expression of the two lowest-

weight quasinormal modes for scalar fields, massive spinning fields and massless spinning fields.

The whole quasinormal spectrum is then built from these lowest-weight quasinormal modes by

using conformal algebra. More importantly, we define a generating function that encodes the

corresponding quasinormal spectrum of any unitary field and we find the generating function

is exactly the Harish-Chandra character associated to this field. This result provides a physical

interpretation for Harish-Chandra characters, namely that the characters count quasinormal

modes in dS. For instance, let’s take the Harish-Chandra character in eq. (1.2.1), expanded

around q = 0

Θ = 10 q2 + 40 q3 + 100 q4 + 200 q5 + O
(
q6
)

(1.2.2)

from which we can immediately read off the quasinormal mode spectrum of linearized gravity

in dS5, i.e. there are 10 quasinormal modes with quasinormal frequency ω0 = −2i, 40 quasi-

normal modes with quasinormal frequency ω1 = −3i, 100 quasinormal modes with quasinormal

frequency ω2 = −4i, etc.

The long chapter 5 is devoted to computing de Sitter entropy from sphere path integral.

We first develop an intuitive thermal picture, i.e. the one-loop path integral on Sd+1 should

be formally equal to the thermal partition function in static patch of dSd+1 up to corrections

AdS5 is 9 q4−4 q5

(1−q)4 , q = e−t. But one should be aware that a character defined in this way is not a group character
because e−tH does not belong to the isometry group SO(2, d).
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associated to the horizon. Harich-Chandra characters naturally appear in the thermal partition

function. Given the physical interpretation of Harish-Chandra characters obtained in the previous

chapter, we get to learn how quasinormal modes contribute to the one-loop partition function.

Then we perform the one-loop sphere partition function rigorously using heat kernel regulariza-

tion for scalars, Dirac spinors and massive/massless higher spin fields, from which we obtain the

one-loop correction to de Sitter entropy for all effective field theories by using eq. (5.1.1). The

result, which is summarized in the eq. (5.1.4), has a universal “bulk-edge” structure for all field

content supplemented by a group volume factor for gauge fields:

S(1) = log
K∏
a=0

(
2πγa)dimGa

volGa
+
∫ ∞

0

dt

2t

(1 + q

1 − q
Θbos

tot −
2√

q

1 − q
Θfer

tot

)
+ Sct (1.2.3)

where Ga denote gauge groups and Θtot = Θbulk − Θedge. The bulk character Θbulk contains a

bunch of SO(1, d+1) Harish-Chandra characters and hence the bulk contribution to S(1) admits

the interpretation as (logarithm of) thermal partition function. In three dimensional de Sitter,

higher spin gravity can be formulated in terms of SL(n,C) Chern Simons theory with n being the

spin cut-off. Classically, we find a landscape of vacua for higher spin gravity, corresponding to

different embeddings of sl(2) into sl(n). At quantum level, as a Chern Simons theory is exactly

solvable, we can compute all-loop quantum entropy and show that is given by the absolute value

squared of a topological string partition function.

The chapter 6 is of independent interest. Inspired by the result of chapter 5 and the higher

spin holography, we revisit the one-loop path integral of higher spin fields in (d+1) dimensional

Euclidean AdS (EAdS) and find a character integral representation for the one-loop free energy.

Compared to the de Sitter case, the “bulk-edge” structure persists but the group volume factor

disappears as the zero modes are non-normalizable in EAdS. The bulk part is captured by

SO(2, d) characters and the edge part is argued to be associated to a EAdSd−1-shaped horizon

in Rindler-AdS coordinate. For example, the Euclidean one-loop path integral of a Maxwell field

in AdS4 is given by (dropping UV regularization)

logZ =
∫ ∞

0

dt

2t
1 + q

1 − q
(Θb − Θe) , q = e−t (1.2.4)

where the bulk character Θb = 3q2−q3

(1−q)3 and the edge character Θe = q
1−q . We apply the character
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integral representation to the one-loop free energy of various Vasiliev theories of gravity. The

vanishing of one-loop free energy of Vasiliev theories, predicted by higher spin holography, is

strikingly realized by the algebraic relation:

total bulk character − total edge character = boundary character

where the boundary character vanishes for non-minimal type-A Vasiliev gravity and is the

SO(1, d) Harish-Chandra character corresponding to a conformally coupled scalar for minimal

type-A Vasiliev gravity.

It should be mentioned that some part of the authors’s work has been left out of this thesis.

It includes the following two papers: [61] with F.Denef, S.Kachru and A. Tripathy, and [40]

with D. Anninos, F. Denef and R. Monten. In [61], we conjecture that the three-center BPS

bound states in type II string theory compactified on K3 × T 2 is counted by the degree three

Siegel modular form. We test the conjecture by checking wall-crossing properties (including the

degenerating limits where one-center and two-center objects appear) and holographic bounds.

In [40], we propose a microscopic model for minimal higher spin de Sitter quantum gravity.

In particular, this model provides a precise definition of the Hilbert space of higher spin dS

quantum gravity, its operator algebra and its Hartle-Hawking vacuum state. This model can

be used to compute late time cosmological correlation functions, probabilities of arbitrary field

configurations (beyond the perturbative regime) and reconstruct bulk Heisenberg algebra (up

to errors exponentially suppressed by de Sitter Bekenstein-Hawking entropy).
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Chapter 2: Representation theory of SO(K)

In this short chapter, we review some basic facts about the irreducible finite-dimensional rep-

resentations of special orthogonal groups. We will also derive a new expression for the Weyl

characters and a relation of Weyl dimension formulae. They are important technical tools when

we study the de Sitter isometry group and perform sphere path integrals of higher spin fields.

2.1 General facts

The special orthogonal group SO(K) (K ≥ 2) consists of K ×K matrices satisfying OTO = 1

and detO = 1 and its Lie algebra so(K) consists of antisymmetric matrices. We choose a basis

LAB = −LBA, 1 ≤ A,B ≤ K of so(K) that satisfy the following commutation relation

[LAB, LCD] = δBCLAD + permutations (2.1.1)

The Cartan subalegbra is generated by J1 ≡ L12, J2 ≡ L34, · · · , Jr ≡ L2r−1,2r for K = 2r or

K = 2r + 1.

Every irreducible finite-dimensional representation of SO(K) with K = 2r or K = 2r+ 1 is

labelled by a highest weight vector s = (s1, . . . , sr) ordered from large to small, satisfying

• Positive condition: all si are nonnegative except sr which can be negative when K = 2r.

Different signs of sr distinguish the chirality of a representation.

• Integral condition: si are either all integer (bosons) or all half-integer (fermions).

For example, the spin-s representation corresponds to s = (s, 0, · · · , 0). In the bosonic case,

we can associate a Young diagram Ys to the highest weight vector s such that there are si
boxes in the i-th row of Ys (ignoring the subtlety when sr becomes negative). We shall use the

shorthand notations Ys and Yn,s when s = (s, 0, · · · , 0) and s = (n, s, 0, · · · , 0) respectively.
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2.2 Weyl dimension formula

For various applications in this thesis we need the dimensionsDK
s of these SO(K) representations

s. The Weyl dimension formula gives a general expression for the dimensions of irreducible

representations of simple Lie groups. For the SO(K) this is

• K = 2r:

DK
s = N −1

K

∏
1≤i<j≤r

(
ℓi + ℓj

)(
ℓi − ℓj

)
, ℓi ≡ si + K

2 − i (2.2.1)

with NK independent of s, hence fixed by DK
0 = 1, i.e. NK =

∏
1≤i<j≤r(K − i− j)(j − i).

• K = 2r + 1:

DK
s = N −1

K

∏
1≤i≤r

(2ℓi)
∏

1≤i<j≤r

(
ℓi + ℓj

)(
ℓi − ℓj

)
, ℓi ≡ si + K

2 − i , (2.2.2)

where NK is fixed as above: NK =
∏

1≤i≤r(K − 2i)
∏

1≤i<j≤r(K − i− j)(j − i).

When s has only one or two nonvanishing entries, DK
s takes a simpler form that works for both

odd and even K

DK
s =

(
s+K − 1
K − 1

)
−
(
s+K − 3
K − 1

)
= (2s+K − 2) Γ(s+K − 2)

Γ(s+ 1)Γ(K − 1) (2.2.3)

DK
n,s = (K + 2n− 2)(K + 2s− 4)(n− s+ 1)(K + n+ s− 3)Γ(K + n− 3)Γ(K + s− 4)

Γ(K − 3)Γ(K − 1)Γ(n+ 2)Γ(s+ 1) (2.2.4)

The expression DK
n,s in eq. (2.2.4) as a function of n and s can be analytically continued to

C × C apart from some discrete poles. In this sense, it satisfies an interesting relation

DK
s,n = −DK

n−1,s+1 (2.2.5)
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For convenience we list here some low-dimensional explicit expressions:

K DK
s DK

n,s DK
k+ 1

2 ,
1
2

2 1 1

3 2s+ 1 2
(k+1

1
)

4 (s+ 1)2 (n− s+ 1) (n+ s+ 1) 2
(k+2

2
)

5 (s+1)(s+2)(2s+3)
6

(2n+3)(n−s+1)(n+s+2)(2s+1)
6 4

(k+3
3
)

6 (s+1)(s+2)2(s+3)
12

(n+2)2(n−s+1)(n+s+3)(s+1)2

12 4
(k+4

4
)

7 (s+1)(s+2)(s+3)(s+4)(2s+5)
120

(n+2)(n+3)(2n+5)(n−s+1)(n+s+4)(s+1)(s+2)(2s+3)
720 8

(k+5
5
)

8 (s+1)(s+2)(s+3)2(s+4)(s+5)
360

(n+2)(n+3)2(n+4)(n−s+1)(n+s+5)(s+1)(s+2)2(s+3)
4320 8

(k+6
6
)

(2.2.6)

Here (k + 1
2 ,

1
2) means (s1, . . . , sr) = (k + 1

2 ,
1
2 , . . . ,

1
2), i.e. the spin s = k + 1

2 representation.

2.3 A new expression for SO(d+ 2) characters

Besides the dimensions DK
s , we also need the characters tr sx

J1
1 · · ·xJr

r of SO(K) representa-

tions. Instead of using the famous Weyl character formula directly, we will show a new expression

that works exclusively for the single-row and two-row representations. This new expression is

based on the following observation:

Claim. The character ΘSO(d+2)
Yns

(x) ≡ tr Ynsx
LAB has the same polar part (i.e. terms of negative

powers in x) and same constant term as the following function

P dn,s(x) ≡
Dd
s x

−n −Dd
n+1 x

1−s

(1 − x)d (2.3.1)

Since ΘSO(d+2)
Yns

(x) is symmetric under x ↔ x−1 by construction, it is then completely encoded

in the function P dn,s(x). In particular, when s = 0, i.e. spin-n representation, the character

ΘSO(d+2)
Yn

(x) is encoded in

Qdn(x) ≡ x−n

(1 − x)d (2.3.2)

More explicitly, let f(x) be a function with well-defined Laurent expansion around x = 0.
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Denote the polar part of f(x) by [f(x)]− and denote the polar part together with the constant

term of f(x) by [f(x)]0. With this notations, the claim implies that

ΘSO(d+2)
Yns

(x) =
[
P dn,s(x)

]
0

+
([
P dn,s(x)

]
−

∣∣∣∣
x→x−1

)
(2.3.3)

A simple way to prove this claim is by induction. It only involves using branching rules of

special orthogonal groups. Here we want to present a more illuminating approach that requires

information about the detailed structure of the representation Yns, which will be reviewed in a

CFT-style language as follows. Mimicking the conformal algebra, we define the following basis

Mij = Lij , H = iL0,d+1, Pi = Ld+1,i + iL0i, Ki = −Ld+1,i + iL0i, (2.3.4)

where 1 ≤ i ≤ d. The new basis leads to some interesting commutators

[Mij , H] = 0, [H,Pi] = Pi, [H,Ki] = −Ki [Ki, Pj ] = 2Mij − 2δijH (2.3.5)

In particular, Pi raises the eigenvalue of H by 1 while Ki lowers the eigenvalue of H by 1.

First, consider spin-n representation of SO(d+2) generated by the lowest weight state |lw⟩ that

satisfies

H|lw⟩ = −n|lw⟩, Ki|lw⟩ = 0, Mij |lw⟩ = 0 (2.3.6)

A generic state in the Verma module generated by |lw⟩ is a linear combination of the descendants

Pi1 · · ·Pik |lw⟩. However, there are very strict constraints on the descendants imposed by the

integralness of n. To see this more explicitly, let’s switch to the wavefunction picture. In this

picture, the representations space consists of degree-n polynomials φ(X) of XA ∈ Rd+2, where

A = 0, 1, · · · , d + 1, satisfying ∂2
Xφ = 0 and the generators LAB act as differential operators

XA∂B −XB∂A. Define complex (lightcone) coordinate z = Xd+1 + iX0, z̄ = Xd+1 − iX0 and

then the differential operator realization of H,Pi,Ki can be expressed as

H = z∂z − z̄∂z̄, Pi = z∂i − 2Xi∂z̄, Ki = −z̄∂i + 2Xi∂z (2.3.7)
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It is easy to check that the lowest weight state |lw⟩ corresponds to a ψlw(z, z̄) = z̄n . One

crucial observation is that all of the states ψi1···ik ≡ Pi1 · · ·Pikψlw with k ≤ n are linearly

independent. To show this, it suffices to notice that the top component of ψi1···ik in Xi is

Xi1 · · ·Xik z̄
n−k for k ≤ n which arises from the −2Xi∂z̄ part of each Pi. It’s apparently that

Xi1 · · ·Xik z̄
n−k are nonvanishing and linearly independent and hence all ψi1···ik with k ≤ n

are linearly independent. Then it’s almost trivial to construct the nonpositive powers in the

character ΘSO(d+2)
Yn

(x) = TrxH

[
ΘSO(d+2)

Yn
(x)
]

0
=

n∑
k=0

(
d+ k − 1
d− 1

)
xk−n =

[ ∞∑
k=0

(
d+ k − 1
d− 1

)
xk−n

]
0

=
[
Qdn(x)

]
0

(2.3.8)

This is exactly the single-row case of the claim. Then the full character is reconstructed using

the x ↔ x−1. For example, due to this symmetry the coefficient of x in ΘSO(d+2)
Yn

(x) should

be
(d+n−2
d−1

)
rather than the native counting

(d+n
d−1
)
. Even more explicitly, we can find what are

these
(d+n−2
d−1

)
states. The subspace H(n)

0 where H = 0 is spanned by all xi1 · · ·xin . Acting Pj
on them yields basis for the subspace H(n)

1 where H = 1

Pjxi1 · · ·xin = zδj(i1xi2 · · ·xin) (2.3.9)

Therefore H(n)
1 is spanned by z xi1 · · ·xin−1 and has dimension

(d+n−2
d−1

)
.

Next, we consider more complicated representations like Yns, for which we have a lowest

weight state |lw⟩i1···is that carries a spin-s representation of SO(d) (rigorously speaking “lowest

weight state” is not the correct terminology here but we’ll stick to it for convenience). As before,

|lw⟩i1···is has quantum number −n under H and is annihilated by Ki. To represent the lowest

weight state as a wavefunction, we need to introduce another copy of Rd+2 with coordinate Y A

such that LAB is realized as

LAB = XA∂XB
−XB∂XA

+ YA∂YB
− YB∂YA

(2.3.10)

and the representation space consists of homogeneous polynomials φ(X,Y ) satisfying

(X · ∂X − n)φ(X,Y ) = (Y · ∂Y − s) = ∂2
Xφ(X,Y ) = X · ∂Y φ(X,Y ) = 0 (2.3.11)
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Define complex (lightcone) coordinate for the Y -space w = Yd+1 + iY0, w̄ = Yd+1 − iY0 and

then H,Pi,Ki can be expressed as

H = z∂z − z̄∂z̄ + w∂w − w̄∂w̄, Pi = z∂Xi − 2Xi∂z̄ + w∂Yi − 2Yi∂w̄

Ki = −z̄∂Xi + 2Xi∂z − w̄∂Yi + 2Yi∂w (2.3.12)

It’s easy to check that the following wavefunction actually corresponds to the lowest weight

state

ψlwi1···is = z̄n−s(z̄Y − w̄X)i1 · · · (z̄Y − w̄X)is − trace (2.3.13)

Introduce a null d-vector ui and then ψlwi1···is can be more efficiently written as

ψlwns(XA, YB;ui) = z̄n−s(z̄ Y · u− w̄ X · u)s (2.3.14)

The claim [ΘSO(d+2)
Yns

(x)]0 = [D
d
sx

−n−Dd
n+1x

1−s

(1−x)d ]0, in particular the x1−s part on the R.H.S, signals

that there should be a constraint on the descendants at level (n+1−s). To show this, let’s focus

on the component of ψlwi1···iswith the highest degree in Xi, which is roughly z̄n−sw̄sXi1 · · ·Xis

up to pure trace component. Similarly, the top Xi components in the descendants of ψlwns come

from −2Xi∂z̄ ∈ Pi with ∂z̄ acting on z̄n−s, that is,

Pi1 · · ·Pikψ
lw
j1···js ∋ (−2)k

(
∂kz̄ z̄

n−s
)
w̄sXi1 · · ·XikXj1 · · ·Xjs (2.3.15)

Therefore for level 0 ≤ k ≤ n− s, all the naive descendants Pi1 · · ·Pikψlwj1···js are nonvanishing

and linearly independent. However at level k = n+ 1 − s, one can easily check that (u ·P )kψlwns
vanishes identically which means the following spin-(n+ 1) wavefunction is actually zero

P(i1 · · ·Pin+1−sψ
lw
j1···js) − trace = 0 (2.3.16)

Without this constraint, the polar part of ΘSO(d+2)
Yns

(x) would simply be encoded in Dd
s

x−n

(1−x)d ,

i.e. the result of s = 0 multiplied by a spin degeneracy. With this constraint, we should subtract

the contribution of itself together with its descendants, which is Dd
n+1

x1−s

(1−x)d from a simple
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counting. Altogether, we get

[
ΘSO(d+2)

Yns
(x)
]

0
=
[
Dd
sx

−n −Dd
n+1x

1−s

(1 − x)d

]
0

=
[
P dn,s(x)

]
0

(2.3.17)

Before moving to the implication of the claim, let’s illustrate it again with the explicit example

Y11. In this case, the lowest weight (vector valued) wavefunction is

ψlwi (X,Y ) = z̄ Yi − w̄ Xi (2.3.18)

and the states at the next level

Pjψ
lw
i (X,Y ) = 2(Xi Yj −Xj Yi) + (w z̄ − z w̄)δij (2.3.19)

where we only have antisymmetric and pure trace components and the symmetric traceless part

is missing. Therefore the character is

ΘSO(d+2)
Y11

(x) = d
(
x+ x−1

)
+ d(d− 1)

2 + 1 (2.3.20)

The claim (2.3) has some important corollaries. We first rewrite P dn,s as

P dn,s(x) = Dd
sQ

d
n(x) −Dd

n+1Q
d
s−1(x) (2.3.21)

Since P dn,s(x) encodes the character of Yn,s and Qdn(x) encodes the character of Yn, the

elementary equation (2.3.21) yields a highly nontrivial relation of characters

ΘSO(d+2)
Yn,s

(x) = Dd
sΘ

SO(d+2)
Yn

−Dd
n+1ΘSO(d+2)

Ys−1
(2.3.22)

It allows us to construct the Weyl characters of two-row representations by only using the Weyl

characters of single-row representations. Taking the limit x → 1 on both sides of (2.3.22), we

obtain a nontrivial relation of dimensions

Dd+2
n,s = Dd

sD
d+2
n −Dd

n+1D
d+2
s−1 (2.3.23)
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which can be checked by using the eqs. (2.2.3) and (2.2.4). We have also checked in mathe-

matica that the eq. (2.3.22) (and hence also eq. (2.3.23)) admits a generalization to a special

type of hook diagrams:

ΘSO(d+2)
Yn,s,1m

(x) = Dd
s,1mΘSO(d+2)

Yn
−Dd

n+1,1mΘSO(d+2)
Ys−1

(2.3.24)

where Yn,s,1m corresponds to the highest weight vector s = (n, s, 1, 1, · · · , 1, 0, · · · , 0) with 1

repeated m times. At the level of dimension, (2.3.24) yields

Dd+2
n,s,1m = Dd

s,1mDd+2
n −Dd

n+1,1mDd+2
s−1 (2.3.25)
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Chapter 3: Representation theory of SO(1, D)

In this chapter we review the representation theory of de Sitter isometry group focusing on

the construction of unitary irreducible representations (UIRs) and computing the corresponding

characters. Instead of being rigorous mathematically, we aim to present an elementary and

physicist-friendly description about the constructions. Therefore for certain technical proofs,

we will simply illustrate the underlying idea with examples and refer the interested readers to

literature. With the conventions specified in the section 3.1, we start the construction of UIRs

of SO(1, 2) in section 3.2 by borrowing ideas from conformal field theory (CFT). Then we

generalize this method to the higher dimensional groups SO(1, d+ 1) in section 3.3. In the last

section, we compute the Harish-Chandra characters [62] of these UIRs. The presentation of this

chapter is mainly inspired by the unpublished note [63] and the book [64].

3.1 Introduction and conventions

The isometry group of (d+1)-dimensional de Sitter spacetime is SO(1, d+1), which is isomorphic

to the d-dimensional Euclidean conformal conformal group. A standard basis for the Lie algebra

so(1, d+ 1) is LAB = −LBA, A = 0, 1, · · · d+ 1, with commutation relations

[LAB, LCD] = ηBCLAD − ηACLBD + ηADLBC − ηBDLAC (3.1.1)

where

ηAB = diag(−1, 1, · · · , 1) (3.1.2)
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The isomorphism between so(1, d + 1) and the d-dimensional Euclidean conformal algebra is

given by the following linear combinations

Lij = Mij , L0,d+1 = D, Ld+1,i = 1
2(Pi +Ki), L0,i = 1

2(Pi −Ki) (3.1.3)

where D is dilatation, Pi (i = 1, 2, · · · d) are translations, Ki are special conformal transforma-

tions and Mij = −Mji are rotations. The commutation relations for the the conformal algebra

following from (3.1.1) and (3.1.3) are

[D,Pi] = Pi, [D,Ki] = −Ki, [Ki, Pj ] = 2δijD − 2Mij

[Mij , Pk] = δjkPi − δikPj , [Mij ,Kk] = δjkKi − δikKj

[Mij ,Mkℓ] = δjkMiℓ − δikMjℓ + δiℓMjk − δjℓMik (3.1.4)

The generators LAB exponentiate to group elements in SO(1, d+ 1)

U(θ) = exp(θABLAB) (3.1.5)

where θAB are real parameters. Some important subgroups of SO(1, d + 1) that will be used

later are

K = SO(d+ 1), M =
{
eω

ijMij = SO(d), ωij ∈ R
}
, A =

{
eλD, λ ∈ R

}
N =

{
eb·K , bi ∈ R

}
, Ñ =

{
ex·P , xi ∈ R

}
(3.1.6)

where K is the maximal compact subgroup of SO(1, d+ 1).

To get a unitary representation of SO(1, d+ 1), the Lie algebra generators must be realized

as anti-hermitian operators on the Hilbert space, i.e.

L†
AB = −LAB (3.1.7)

This is the reality condition relevant to (d+ 1)-dimensional unitary quantum field theories on a

fixed dS background. Notice it is different from the reality conditions relevant to d-dimensional
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unitary (Euclidean) CFTs or (d+1)-dimensional unitary quantum field theories on a fixed (E)AdS

background. The latter corresponds to the reality condition of the so(2, d) algebra obtained by

Wick-rotating the Xd+1 direction. This gives for example P †
i = Ki whereas for so(1, d+ 1) we

have P †
i = −Pi.

Given a representation1, the quadratic Casimir which commutes with all generators, is chosen

to be

C2 = 1
2LABL

AB = −D2 + 1
4(Pi +Ki)2 − 1

4(Pi −Ki)2 + 1
2MijM

ij

= −D2 + 1
2(PiKi +KiPi) + 1

2M
2
ij

= D(d−D) + PiKi + 1
2M

2
ij (3.1.8)

Here 1
2M

2
ij ≡ 1

2MijM
ij is the quadratic Casimir of SO(d) and it is negative-definite for a unitary

representation since Mij are anti-hermitian. For example, for a spin-s representation of SO(d),

it takes the value of −s(s+ d− 2).

3.2 UIRs of SO(1, 2)

When d = 1, the Lie algebra so(1, 2) is generated by {P,D,K} satisfying the following com-

mutation conditions

[D,P ] = P, [D,K] = −K, [K,P ] = 2D (3.2.1)

The quadratic Casimir is C2 = D(1 −D) + PK.

3.2.1 A direct constrction

Define L0 = iL12 = − i
2(P +K) to be the Hermitian operator that generates rotation in dS2. It

takes value in integers if we require a group representation since e2πiL0 is the identity operator

1Rigorously speaking, we do not need a representation to define a Casimir. Instead, it can be defined abstractly
as an element of the universal enveloping algebra.
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in SO(1, 2). 2 As in the SU(2) case, we define ladder operators

L± = − i

2(P −K) ∓D (3.2.2)

and they satisfy

[L0, L±] = ±L±, [L−, L+] = 2L0, L†
− = L+ (3.2.3)

Thus L+ raises the eigenvalue of L0 by 1 while L− lowers it by 1. In terms of the basis {L0, L±},

the quadratic Casimir operator is expressed as

C2 = L+L− + L0(1 − L0) (3.2.4)

To construct the whole representation space of certain unitary irreducible representation R,

we start from an eigenstate of L0, i.e. a state |N⟩ satisfying L0|N⟩ = N |N⟩ where N ∈ Z. By

acting L± on |N⟩ repeatedly, we obtain a whole tower of states: {Lp+
+ |N⟩, Lp−

− |N⟩}p±∈N. It is

possible that the L− action gets truncated. That is, there exist some P such that Lk−|N⟩ = 0 for

k ≥ P + 1. On the other hand, due to the noncompactness of SO(1, 2), the unitary irreducible

representation R has to be infinite dimensional. Thus, in this case, the L+ action cannot be

truncated. In addition, due to the irreducibility, other states with L0-eigenvalue larger than

N −P cannot be annihilated by L−. Altogether, by proper normalization, the action of L− can

be chosen to be

L−|n⟩ = (n− ∆)|n− 1⟩ (3.2.5)

where |n⟩ is the eigenstate (not necessarily normalized) of L0 with eigenvalue n. The truncations

discussed above happen when ∆ hits integers. Acting the quadratic Casimir on |∆⟩ yields the

expected value ∆(1 − ∆) and it can be used to fix the action of L+:

L+|n⟩ = (n+ ∆)|n+ 1⟩ (3.2.6)

2If we consider representations of SL(2,R), the double covering of SO(1, 2), then L0 can be either integers or
half-integers and e2πiL0 ∈ {±1} is a constant in a unitary irreducible representation.
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With the action known, we proceed to analyze the constraint of unitarity which consists of two

parts: (a) the inner product ⟨n|n⟩ is positive definite and (b) L+ is the Hermitian conjugate of

L− with respect to this inner product, i.e.

⟨n|L−|n+ 1⟩ = ⟨n+ 1|L+|n⟩∗ (3.2.7)

The latter implies

⟨n+ 1|n+ 1⟩
⟨n|n⟩

= n+ ∆̄
n+ ∆∗ ≡ λn (3.2.8)

where ∆̄ = 1 − ∆ and ∆∗ is the complex conjugate of ∆. The reality of λn yields two possible

families of solutions:

(i) ∆ = 1
2 + iµ, µ ∈ R, (ii) ∆ ∈ R (3.2.9)

The positivity of λn requires separate discussions for different values of ∆:

• λn is identically equal to 1 when ∆ = 1
2 + iµ. We can consistently choose ⟨n|n⟩ = 1 for

any n ∈ Z and hence the resulting representation, denoted by P∆, is unitary. We call P∆

a (unitary) principal series representation.

• When ∆ ∈ R but ∆ /∈ Z+, n takes value in all integers and we need

λn = n+ ∆
n+ 1 − ∆ =

(n+ 1
2)2 − (∆ + 1

2)2

(n+ 1 − ∆)2 > 0 (3.2.10)

to hold for all n ∈ Z. The most stringent constraint clearly comes from n = 0, which

implies 0 < ∆ < 1. For ∆ in this range, we choose the following normalization

⟨n|n⟩ = Γ(n+ ∆̄)
Γ(n+ ∆) (3.2.11)

Altogether, we obtain a new continuous family of UIRs, denoted by C∆ for each fixed

∆ ∈ (0, 1). They are called complementary series. At ∆ = 1
2 , the intersection point of

principal series and complementary series, the norm (3.2.11) is reduced to ⟨n|n⟩ = 1, i.e.
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the norm we’ve chosen for principal series.

• When ∆ ∈ Z+, the vector space spanned by all |n⟩ contains two so(1, 2)-invariant sub-

spaces:

{|n⟩}n≥∆ : carries a lowest weight representation D+
∆

{|n⟩}n≤−∆ : carries a highest weight representation D−
∆ (3.2.12)

It’s clear that all λn are positive when restricted to these two subspaces. Thus D±
∆ are

also UIRs, called discrete series. In each D±
∆, we choose the normalization to be

⟨n|n⟩D±
∆

= Γ(±n+ ∆̄)
Γ(±n+ ∆) (3.2.13)

• When ∆ takes value in negative integers, the vector space spanned by all |n⟩ contains

only one finite-dimensional so(1, 2)-invariant subspace which furnishes a nonunitary rep-

resentation, When ∆ = 0, |0⟩ carries the trivial representation.

In conclusion, the conformal group SO(1, 2) admits four types of unitary irreducible representa-

tions (the irreducibility is automatically guaranteed by the construction given above): principal

series P∆ for ∆ ∈ 1
2 + iR, complementary series C∆ for 0 < ∆ < 1, discrete series D±

∆ for

∆ ∈ Z+ and the trivial representation. In addition, for principal and complementary series, there

exist an isomorphism between P∆ (C∆) and P∆̄ (C∆̄) which can be realized by the following

invertible intertwining map that preserves the inner product:

S∆ : |n⟩∆ 7−→ Γ(n+ ∆̄)
Γ(n+ ∆) |n⟩∆̄ (3.2.14)

where |n⟩∆ denotes the |n⟩ basis in P∆ (C∆) and similarly for |n⟩∆̄. With this normalization, S∆̄◦

S∆ = 1, where ◦ means the composition of maps. In the CFT terminologies, this intertwining

map S∆ is called a shadow transformation.
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3.2.2 A CFT-type construction

In this section, we will show that all the UIRs of SO(1, 2) constructed above can be realized

in certain function spaces by borrowing ideas from conformal field theory. This method can be

easily generalized to the higher dimension cases.

3.2.2.1 Representation space

We start with a primary state of scaling dimension ∆̄ = 1 − ∆, i.e. a state |∆̄, 0⟩ satisfying:

K|∆̄, 0⟩ = 0, D|∆̄, 0⟩ = ∆̄|∆̄, 0⟩ (3.2.15)

However, unlike in usual unitary CFT, we do not require this state to be normalizable (indeed,

as we shall see, it is not and hence does not belong to the Hilbert spaces we will construct).

Acting by translations on this state produces a family of states

|∆̄, x⟩ = exP |∆̄, 0⟩ (3.2.16)

From this definition and the conformal algebra, we then get (dropping the label ∆̄ for |∆̄, x⟩)

P |x⟩ = ∂x|x⟩, D|x⟩ = (x∂x + ∆̄)|x⟩, K|x⟩ = (x2∂x + 2∆̄x)|x⟩ (3.2.17)

Then a general state |ψ⟩ can be expressed as a linear combination

|ψ⟩ ≡
∫
R
dxψ(x)|x⟩ (3.2.18)

At this point, ψ(x) can be any smooth function 3. The action of the conformal generators

on the wavefunctions ψ(x) is obtained from (3.2.17) and integrating by part. For example,

P |ψ⟩ =
∫
dxψ(x)∂x|x⟩ =

∫
dx (−∂xψ(x))|x⟩. This gives

Pψ(x) = −∂xψ(x), Dψ(x) = −(x∂x + ∆)ψ(x), Kψ(x) = −(x2∂x + 2∆x)ψ(x) (3.2.19)

3We can also consider more general functions, for example ψ(x) = 1
|x|2∆ which gives the shadow of |∆̄, 0⟩,

i.e. a primary state of scaling dimension ∆. But these states are not normalizable.
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The requirement of lifting the Lie algebra action (3.2.19) to a group action imposes constraints

on the wavefunctions. In particular, exponentiating the special conformal transformation yields

(
ebKψ

)
(x) =

( 1
1 + bx

)2∆
ψ

(
x

1 + bx

)
(3.2.20)

By taking the limit x → −1
b , we can read off the asymptotic behavior of ψ(x)

ψ(x)
|x|→∞

≈ 1
|x|2∆

(
cψ + O

( 1
|x|

))
(3.2.21)

where cψ is some constant. Let F∆ be the complex vector space of infinitely differentiable

functions satisfying the asymptotic boundary condition (3.2.21) and it furnishes a representation

of SO(1, 2) whose infinitesimal version is given by (3.2.19).

3.2.2.2 Consequence of unitarity

Given the set of states/wavefunctions, we should define a positive definite inner product ⟨x|y⟩

that respects the dS reality condition, i.e. all generators of SO(1, 2) are anti-Hermitian. First

notice that P † = −P leads to the relation ∂y⟨x|y⟩ = ⟨x|P |y⟩ = −∂x⟨x|y⟩, so (∂x + ∂y)⟨x|y⟩ =

0, i.e. ⟨x|y⟩ = f(x−y) for some function f(x). Likewise the reality of the dilatation and special

conformal transformation requires

(x∂x + y∂y + ∆̄ + ∆̄∗)f(x− y) = 0 (3.2.22)

(x2∂x + y2∂y + 2∆̄y + 2∆̄∗x)f(x− y) = 0 (3.2.23)

where the first equation fixes the scaling property of f(x) as (x∂x + ∆̄ + ∆̄∗)f(x) = 0, which

together with the second equation implies

(∆ − ∆∗)xf(x) = 0 (3.2.24)
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The eq. (3.2.24) holds when either ∆ is real or f(x) ∝ δ(x). The former further implies

f(x) ∝ 1
|x|2∆̄ while the latter implies ∆ + ∆̄ = 1. Thus we arrive at the conclusion that the

reality condition allows two qualitatively different cases

I : ∆ = 1
2 + iµ, µ ∈ R, ⟨x|y⟩ = c δ(x− y)

II : ∆ ∈ R, ⟨x|y⟩ = c

|x− y|2∆̄
(3.2.25)

where c is some ∆-dependent constant. Correspondingly the inner product of two states of the

form (3.2.18) equals (dropping c)

⟨ψ1|ψ2⟩ =


∫
R dxψ

∗
1(x)ψ2(x) ∆ = 1

2 + iµ∫
R×R dx dy

ψ∗
1(x)ψ2(y)
|x−y|2∆̄ ∆ ∈ R

(3.2.26)

In case I, the inner product (3.2.26) defines the usual L2-norm for wavefunctions in the space

F 1
2 +iµ. This norm is clearly well-defined because for any ψ ∈ F 1

2 +iµ, |ψ|2 decays as 1
|x|2

near infinity. Therefore, ψ ∈ F 1
2 +iµ equipped with the L2-norm carries a unitary irreducible

representation of SO(1, 2), which as we shall see is a principal series representation. To analyze

the positivity of (3.2.26) in case II, it is more convenient to rewrite the kernel K∆(x, y) ≡ c
|x−y|2∆̄

in momentum space

K∆(p) =
∫ ∞

−∞
dx

c

|x|2∆̄
eipx = c

Γ(∆̄)

∫ ∞

0

dt

t
t∆̄
∫ ∞

−∞
dx e−tx2+ipx

= c
√
π

Γ(∆̄)

∫ ∞

0

dt

t
t∆̄− 1

2 e− p2
4t = c′

p2∆−1 , c′ = 22∆−1√
π

Γ(∆ − 1
2)

Γ(∆̄)
c (3.2.27)

As long as we choose c properly, the kernel K∆(p) is positive. However, the positivity of K∆(p)

does not necessarily imply that the inner product on the space F∆ defined by K∆(p) is positive

definite. We have to check that all the wavefunctions in F∆ are normalizable with respect to this

inner product, otherwise regularization can destroy the positivity. Since ψ(x) ∈ F∆ is infinitely

differentiable, its Fourier transformation decays rapidly as |p| → ∞. It suffices to check the

normalizability for small p. Let ψ(p) be the Fourier transformation of ψ(x). Its small p behavior

has two types of leading fall-offs: c1 p
0 and c2 p

2∆−1 where c1, c2 are constants. The former
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comes from the regularity of ψ(x) for finite x 4 and the latter arises from the large x asymptotic

behavior of ψ(x). As an explicit example, let’s take ψ(x) = 1
(1+x2)∆ , which clearly lives in the

space F∆. Its Fourier transformation can be performed analytically ψ(p) ∝ p∆− 1
2K 1

2 −∆(p).

Then the two leading fall-offs of ψ(p) are a result of the following property of Bessel K-function

Kα(z) z→0≈ zα
(
2−1−αΓ(−α) + O(z2)

)
+ z−α

(
2−1+αΓ(α) + O(z2)

)
(3.2.28)

Plugging ψ(p)
p→0
≈ c1+c2p

2∆−1 into the inner product
∫ dp

2πK∆(p)|ψ(p)|2 where K∆(p) = c′

p2∆−1 ,

we conclude that ψ(x) ∈ F∆ is normalizable if and only if 2∆ − 1 > −1 and 1 − 2∆ > −1, i.e.

0 < ∆ < 1 (3.2.29)

which is exactly the range for complementary series.

3.2.2.3 A discrete basis of F∆

Thus far we have shown that the function spaces F∆ furnish unitary irreducible representations

of SO(1, 2) when ∆ ∈ 1
2 + iR or 0 < ∆ < 1. Indeed they are the same as principal and

complementary series constructed in the previous section. To prove this claim, we first find the

eigenbasis of L0 = i
(

1+x2

2 ∂x + ∆x
)

in F∆, i.e. wavefunctions ψ(∆)
n satisfying L0ψ

(∆)
n = nψ

(∆)
n

ψ(∆)
n (x) =

(1 − ix

1 + ix

)n 1
(1 + x2)∆ (3.2.30)

In addition, it is straightforward to check

L+ψ
(∆)
n = (n+ ∆)ψ(∆)

n+1, L−ψ
(∆)
n = (n− ∆)ψ(∆)

n−1 (3.2.31)

which take the same form as the action of L± on |n⟩, c.f. (3.2.5) and (3.2.6).

4For example, if ψ(x) = 1
x2∆ which is singular at the origin, then we don not have the p0 behavior.
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For ∆ ∈ 1
2 + iR , the L2(R) inner product yields

(ψ(∆)
n , ψ(∆)

m ) = c

∫
dxψ

(∆)
n (x)ψ(∆)

m (x) = c πδnm (3.2.32)

By choosing c = 1
π , we get to identify ψ(∆)

n (x) as the state |n⟩ in principal series.

For 0 < ∆ < 1 , the inner product can be computed by expanding the kernel K∆(x1 − x2)

in terms of ψ(∆̄)
n . Define xi = tan θi

2 and we rewrite K∆(x1 − x2) as

K∆(x12) = 2∆̄ c

(1 + x2
1)∆̄(1 + x2

2)∆̄
1

(1 − cos θ12)∆̄

= 2∆̄ c

(1 + x2
1)∆̄(1 + x2

2)∆̄
1

Γ(∆̄)

∫ ∞

0

ds

s
s∆̄e−s+sθ12 (3.2.33)

where x12 = x1 − x2 and θ12 ≡ θ1 − θ2. The factor esθ12 admits a harmonic expansion

esθ12 =
∑
n∈Z

In(s) e−inθ12 (3.2.34)

with the coefficients being modified Bessel functions. Plugging the expansion (3.2.34) into

(3.2.33), the s-integral can be evaluated analytically 5

K∆(x12) =
cΓ(∆ − 1

2)
√
πΓ(∆̄)

1
(1 + x2

1)∆̄(1 + x2
2)∆̄

∑
n∈Z

Γ(∆̄ + n)
Γ(∆ + n) e

−inθ12

=
cΓ(∆ − 1

2)
√
π Γ(∆̄)

∑
n∈Z

Γ(∆̄ + n)
Γ(∆ + n) ψ

(∆̄)
n (x1)ψ(∆̄)

n (x2) (3.2.35)

where in the last line we’ve used e−iθi = 1−ixi
1+ixi

. By choosing c = Γ(∆̄)
π

3
2 Γ(∆− 1

2 )
, the basis ψ(∆)

n is

normalized as

(
ψ(∆)
n , ψ(∆)

m

)
= δnm

Γ(∆̄ + n)
Γ(∆ + n) (3.2.36)

and hence we get to identify ψ(∆)
n as |n⟩ in complementary series, c.f. (3.2.11).

5The integral
∫∞

0 ds s−∆In(s)es is convergent when 1
2 < ∆ < 1 and admits an analytic continuation to the

whole complex plane except some single poles.
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3.2.2.4 Discrete series

When ∆ is an positive integer, say ∆ = N ∈ Z+, the function space FN has two invari-

ant subspaces F+
N = Span{ψ(N)

n }n≥N and F−
N = Span{ψ(N)

n }n≤−N , which as we will show

soon correspond to the discrete series D±
N respectively. Similarly, when ∆ ≡ 1 − N is a

nonpositive integer, F1−N contains three invariant subspaces F+
1−N = Span{ψ(N)

n }n≥1−N ,

F−
1−N = Span{ψ(N)

n }n≤N−1 and PN = F+
1−N ∩ F−

1−N , where PN is nothing but the space

of polynomials in x (with coefficients valued in C) up to degree 2N − 2 and hence is annihi-

lated by the differential operator ∂2N−1
x . Indeed, ∂2N−1

x is an intertwining map between F1−N

and FN , as shown in the commuting diagram 3.2.1. In particular, ∂2N−1
x maps ψ(1−N)

n (x) to

ψ
(N)
n (x) up to an overall constant for any |n| ≥ N .

F1−N FN

F1−N FN

∂2N−1
x

LAB LAB

∂2N−1
x

Figure 3.2.1: Intertwining operator ∂2N−1
x : F1−N → FN . LAB denote the action of so(1, 2) in

FN and F1−N .

Group theoretically, this claim follows from L0(∂2N−1
x ψ

(1−N)
n ) = ∂2N−1

x L0ψ
(1−N)
n = n∂2N−1

x ψ
(1−N)
n .

On the other hand, it can also be proved by a direct computation, for example for n ≥ N

∂2N−1
x ψ(1−N)

n (x) = (−)N−1+n∂2N−1
x

(1 + ix− 2)N−1+n

(1 + ix)n+1−N

= (−)N−1+n
N+n−1∑
k=2N−1

(−2)k
(
N + n− 1

k

)
∂2N−1
x (1 + ix)2N−2−k

= i(−)N22N−1 Γ(N + n)
Γ(n−N + 1)ψ

(N)
n (x) (3.2.37)

Taking complex conjugate on both sides of (3.2.37) yields the n ≤ −N cases. Thus F±
N is

isomorphic to the quotient space F±
1−N/PN . Altogether, the relation between FN and F1−N

can be summarized in the following diagram:

To define an inner product on F+
N (and similarly on F−

N ), one would naively expect to use



31

Figure 3.2.2: The relation between F3 and its shadow F−2. The upper red line represents
the space F3 and each dot denotes the basis ψ(3)

k . It contains two invariant subspaces F±
3

corresponding to the discrete series representation D±
3 . The lower blue line represents the space

F−2 and each dot denotes the basis ψ(−2)
k . It contains a 5-dimensional invariant space P3. The

upward arrows denote the intertwining operators ∂5
x. It annihilates the subspace P3 and maps

ψ
(−2)
k to ψ(3)

k for |k| ≥ 3.

the kernel KN (x, y) = (x − y)2(N−1) as in the complementary series case. However, this does

not work because KN is a delta function with some derivatives in momentum space while the

wavefunctions ψ(N)
n (x) in F+

N are supported on p > 0 due to the analyticity of ψ(N)
n (x) in the

lower x-plane when n ≥ N . Therefore, the inner product defined via KN (x, y) is identically zero.

Thanks to the quotient space realization, i.e. F±
N = F±

1−N/PN , we can avoid using KN (x, y) by

working in the space F1−N . The idea is very simple and let’s phrase it in a more general setup.

Given two representations V1 and V2 of some group G and an intertwining map φ : V1 → V2

which can have a nontrivial kernel, then a positive semi-definite G-invariant inner product ( , )1

on V1 induces a positive definite G-invariant inner product ( , )2 on Imφ, if kerφ is orthogonal

to the whole vector space V1 with respect to ( , )1 and ( , )1 is positive for vectors not in kerφ

. With these assumptions, the induced inner product ( , )2 is given by (v2, v2)2 ≡ (v1, v1)1

where vi ∈ Vi and φ(v1) = v2. The choice of v1 is clearly not unique when φ has a nontrivial

kernel but the inner product is independent of such a choice. We can fix v1 by choosing a map

L : V2 → V1 such that φ ◦ L is the identity operator on V2. Then the inner product on V2
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becomes

(v2, v2)2 = (Lv2,Lv2)1 (3.2.38)

Now let’s take V1 = F+
1−N , V2 = F+

N and φ = ∂2N−1
x . The relation (3.2.37) yields a positive

semi-definite inner product on V1 = F+
1−N that satisfies the conditions discussed above

(ψ,ψ)1 ≡ i(−)N cN
∫
dxψ(x) ∂2N−1

x ψ(x) (3.2.39)

where cN is a positive constant. More explicitly, we have

(ψ(1−N)
m , ψ(1−N)

n )1 = 22N−1πcN
Γ(N + n)

Γ(n−N + 1)δmn (3.2.40)

Next we choose a map LN : F+
N → F+

1−N such that ∂2N−1
x ◦ LN is the identity operator on

F+
N . A very natural choice of LN is

(LNψ)(x) = 1
Γ(2N − 1)

∫
R+iϵ

dy

2πi LN (x− y)ψ(y), LN (z) = z2(N−1) log(z) (3.2.41)

where the limit ϵ → 0+ is understood and the branch cut of log z is chosen to be the z < 0

line. When acting ∂2N−1
x on (LNψ)(x), the kernel LN (x − y) becomes Γ(2N−1)

x−y and we can

close the contour in the lower half plane picking up the pole at y = x since ψ(y) is holomorphic

in the lower half plane and decays fast enough at ∞. More explicitly, the action of LN on the

basis ψ(N)
n is computed in the appendix A.1

(
LNψ

(N)
n

)
(x) = (−)N

22N−1i

Γ(n−N + 1)
Γ(N + n) ψ(1−N)

n (x) + PolN,n(x) (3.2.42)

where PolN,n(x) is a polynomial annihilated by ∂2N−1
x . Altogether, the inner product on the

space F+
N induced by (3.2.39) and (3.2.41) is

(ψ,ψ)F+
N

= (LNψ,LNψ) = (−)NcN
2πΓ(2N − 1)

∫
R
dx

∫
R+iϵ

dy ψ̄(x)(x− y)2(N−1) log(x− y)ψ(y)

(3.2.43)



33

In particular, choosing cN = 22N−1

π , we get

(ψ(N)
m , ψ(N)

n )F+
N

= Γ(n−N + 1)
Γ(N + n) δmn (3.2.44)

consistent with the inner product (3.2.13) for discrete series D+
N .

Before moving to the next section, we want to make some remarks about the kernel LN (x, y).

Remark 1. For complementary series of scaling dimension ∆, the inner product is defined

through the kernel K∆(x, y) = 1
|x−y|2∆̄ . As a function of ∆, K∆(x, y) is well-defined on the

whole complex plane as long as x ̸= y. Taylor expansion of K∆(x, y) around ∆ = N yields

K∆(x, y) ∆→N≈ |x− y|2(N−1) + 2(∆ −N)|x− y|2(N−1) log(x− y) + · · · (3.2.45)

The first term on the R.H.S is simply KN (x, y) and we have argued that it leads to a trivial

inner product for F+
N . The second term, with the numerical factor stripped off, is exactly the

kernel LN (x−y) that defines the inner product for discrete series (up to a contour prescription).

Remark 2. Unlike K∆(x, y), LN (x − y) is not SO(1, 2)-invariant. For example, under scaling

transformation

eλD : LN (x− y) → e2λ(1−N)LN (eλx− eλy) = LN (x− y) + λ(x− y)2(N−1) (3.2.46)

and under special conformal transformation

ebK : LN (x− y) → LN

(
x

1 − bx
− y

1 − by

)
(1 − bx)2(N−1)(1 − by)2(N−1)

→ LN (x− y) + (x− y)2(N−1)(log(1 − bx) + log(1 − by)) (3.2.47)

However, these extra terms does not contribute to the inner product (3.2.53).

3.2.2.5 Shadow transformation

In the eq. (3.2.14), we define the so-called shadow transformation as an intertwining map be-

tween the two representations with scaling dimension ∆ and ∆̄ respectively. In the wavefunction

picture, we want to realize S∆ as a linear operator acts on any ψ(x) ∈ F∆ by using a kernel
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function S∆(x, y)

S∆ : ψ(x) 7−→
∫
dyS∆(x, y)ψ(y) (3.2.48)

The intertwining condition imposes nontrivial constrains on S∆(x, y). These constrains are noth-

ing but conformal Ward identities associated to the conformal group SO(1, 2). Thus S∆(x, y)

is the two-point function of a scalar primary operator with scaling dimension ∆̄

S∆(x, y) = N∆

|x− y|2∆̄
, N∆ = 1√

π

Γ(∆̄)
Γ
(

1
2 − ∆̄

) (3.2.49)

where the normalization constant N∆ is chosen such that ψ(∆)
n is mapped to Γ(∆̄+n)

Γ(∆+n)ψ
(∆̄)
n as in

(3.2.14), i.e.

∫ ∞

−∞
dy

N∆

|x− y|2∆̄

(1 − iy

1 + iy

)n 1
(1 + y2)∆ = Γ(∆̄ + n)

Γ(∆ + n)

(1 − ix

1 + ix

)n 1
(1 + x2)∆̄

(3.2.50)

This integral is evaluated using the harmonic expansion of 1
|x−y|2∆̄ given by the eq. (3.2.35).

For ∆ ∈ 1
2 + iµ or 0 < ∆ < 1, the shadow transformation S∆ is an isomorphism between F∆

and F∆̄ because it has a well-defined inverse given by S∆̄, i.e.

∫ ∞

−∞
dz

N∆

|x− z|2∆̄
N∆̄

|z − y|2∆ = δ(x− y) (3.2.51)

Remark 3. For ∆ ∈ Z, the shadow transformation is not an isomorphism between F∆ and F∆̄.

For example, when ∆ = 1 −N is a nonpositive integer, ψ(1−N)
n with n ≤ N − 1 are annihilated

by S1−N . Indeed, in this case, S1−N is equivalent to the differential operator ∂2N−1
x up to

normalization.
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3.2.2.6 Summary

Given a complex constant ∆ which we call scaling dimension, the SO(1, 2) generators act on

the wavefunction space F∆ spanned by {ψ(∆)
n (x) = (1−ix

1+ix)n 1
(1+x2)∆ }n∈Z as follows

Pψ(x) = −∂xψ(x), Dψ(x) = −(x∂x + ∆)ψ(x), Kψ(x) = −(x2∂x + 2∆x)ψ(x) (3.2.52)

The quadratic Casimir takes the value ∆(1 − ∆) acting on F∆. All unitary irreducible repre-

sentations of SO(1, 2) can be realized as either F∆ or its invariant subspace for certain values

of ∆:

• Case I: ∆ = 1
2 + iµ, µ ∈ R with L2(R) inner product (ψ,ψ) =

∫
dxψ̄(x)ψ(x) for any

ψ(x) ∈ F∆. The representations of ∆ = 1
2 ± iµ are equivalent. This is the principal

series.

• Case II: ∆ = 1
2 + ν, −1

2 < ν < 1
2 with inner product (ψ,ψ) =

∫
dxdy 1

|x−y|2∆̄ ψ̄(x)ψ(y)

or equivalently (up to normalization) in momentum space (ψ,ψ) =
∫
dp p1−2∆|ψ(p)|2

for any ψ(x) ∈ F∆. The representations of ∆ = 1
2 ± ν are equivalent. This is the

complementary series.

• Case III: ∆ = N ∈ Z+ with inner product

(ψ,ψ)F±
N

= (−4)N

(2π)2Γ(2N − 1)

∫
R
dx

∫
R±iϵ

dy ψ̄(x)(x− y)2(N−1) log(x− y)ψ(y)

(3.2.53)

where the contour R + iϵ works for ψ(x) ∈ F+
N which is spanned by {ψ(N)

n (x)}n≥N and

the contour R − iϵ works for ψ(x) ∈ F−
N which is spanned by {ψ(N)

n (x)}n≤−N . This is

the discrete series.
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3.3 UIRs of SO(1, d+ 1)

Like in the d = 1 case, we start from a primary state |∆̄, 0⟩α of scaling dimension ∆̄ ≡ d− ∆,

but now in addition we also need to specify the spin (also known as the highest weight vector)

s = (s1, s2, · · · , sr), r ≡
⌊
d
2

⌋
(carried by the index α) associated to the SO(d) subgroup. In

this work, we will focus on the single-row representation of SO(d), i.e. s = (s, 0, 0, · · · ), s ∈ N

which in bulk corresponds to scalar fields and (bosonic) spin-s fields. Let |∆̄, 0⟩i1···is be such a

primary state where the indices i1 · · · is are symmetric and traceless. The action of conformal

algebra is

D|∆̄, 0⟩i1···is = ∆̄|∆̄, 0⟩i1···is , Ki|∆̄, 0⟩i1···is = 0,

Mkℓ|∆̄, 0⟩i1···is =
s∑
j=1

|∆̄, 0⟩i1···ij−1k ij+1···isδℓij − |∆̄, 0⟩i1···ij−1ℓ ij+1···isδkij (3.3.1)

Acting by translations on this state produces a family of position-dependent states (dropping

the label ∆̄ in the kets |∆̄, x⟩i1···is again)

|x⟩i1···is ≡ ex·P |∆̄, 0⟩i1···is (3.3.2)

The action of the so(1, d+ 1) algebra on these states is then easily computed to be:

Pi|x⟩i1···is = ∂i|x⟩i1···is

D|x⟩i1···is = (x · ∂x + ∆̄)|x⟩i1···is

Mkℓ|x⟩i1···is =
(
xℓ∂k − xk∂ℓ + M(s)

kℓ

)
|x⟩i1···is

Kk|x⟩i1···is =
(
2xk(x · ∂x + ∆̄) − x2∂k − 2xℓM(s)

kℓ

)
|x⟩i1···is (3.3.3)

where M(s)
kl is the spin-s representation of so(d)

M(s)
kl |x⟩i1···is =

s∑
j=1

|x⟩i1···ij−1k ij+1···isδℓij − |x⟩i1···ij−1ℓ ij+1···isδkij (3.3.4)
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A general state in the vector space spanned by all |x⟩ is of the form

|ψ⟩ ≡
∫
ddxψi1···is(x)|x⟩i1···is (3.3.5)

where the wavefunction ψi1···is(x) is smooth in xi and symmetric and traceless with respect to

the iα indices. We package all components of ψi1···is(x) into a single x-dependent polynomial

by introducing a complex null vector zi ∈ Cd, i.e.

ψ(x, z) ≡ 1
s!ψi1···is(x) zi1 · · · zis (3.3.6)

The null vector zi can be stripped off while respecting the nullness condition by the following

interior derivative

Dzi ≡ ∂zi − 1
d+ 2(z · ∂z − 1) zi ∂

2
z (3.3.7)

The so(1, d+ 1) action on the wavefunctions ψ(x, z) induced by eq. (3.3.3) is then given by

Piψ(x, z) = −∂iψ(x, z)

Dψ(x, z) = −(x · ∂x + ∆)ψ(x, z)

Mkℓψ(x, z) = (xk∂ℓ − xℓ∂k + zk∂zℓ − zℓ∂zk)ψ(x, z)

Kkψ(x, z) =
(
x2∂k − 2xk(x · ∂x + ∆) − 2xℓ(zk∂zℓ − zℓ∂zk)

)
ψ(x, z) (3.3.8)

where the shorthand notation ∂i means exclusively the derivative with respect to xi. To lift the

so(1, d+ 1) action (3.3.8) to a group action, it suffices to exponentiate translations, dilatation,

rotations and special conformal transformations separately because of the Bruhat decomposi-

tion i.e. SO(1, d + 1) = ÑNAM up to a lower dimensional submanifold in SO(1, d + 1) [64].

The exponentiation of translations, dilatation and rotations is guaranteed by the smoothness

condition imposed on the wavefunctions ψ(x, z). However, the same does not hold for special

conformation transformations. Indeed, granting the exponentiation of Ki to a group action on
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certain subspace CK of smooth functions, we obtain

(
eb·Kψ

)
(x, z) = 1

(1 + 2b · x+ b2x2)∆ ψ

(
xi + bix2

1 + 2b · x+ b2x2 , R(xb)ijR(x)jkz
k

)
(3.3.9)

where

xib ≡ xi

x2 + bi, R(x)ij ≡ 2xixj
x2 − δij (3.3.10)

Replace ψ by ψ1 ≡ e−b·Kψ which also lives in the same subspace CK and rewrite eq. (3.3.9) in

terms of x̃i ≡ xi

x2 (except the combination R(x)ijzj)

ψ(x, z) = 1
(x2)∆

1
(x̃2 + 2b · x̃+ b2)∆ ψ1

(
x̃i + bi

x̃2 + 2b · x̃+ b2 , R(b+ x̃)ijR(x)jkz
k

)
(3.3.11)

The R.H.S of (3.3.11), apart from the factor 1
(x2)∆ , admits a Taylor expansion in x̃i as x → ∞

ψ(x, z) x→∞≈ 1
(x2)∆

∞∑
n=0

Cns
(
x̃i, R(x)ijzj

)
(3.3.12)

where Cns(u, v) is a homogeneous polynomial of degree in ui and degree s in vi. This equation

serves as the universal asymptotic boundary condition for all wavefunctions in CK .

Altogether, let F∆,s be the space of smooth functions on Rd which are simultaneously

polynomials of degree s in the null vector zi and satisfy the asymptotic condition (3.3.12). It

furnishes an SO(1, d + 1) representation whose infinitesimal version is given by (3.3.8). We

want to mention that it is straightforward to construct the more general representation F∆,s

for an arbitrary SO(d) highest weight vector s. It suffices to choose the spin-s action of Mij on

the primary state and then the wavefunction picture follows accordingly. In the mathematical

literature, the representations F∆,s are constructed using the induced representation method,

which is reviewed in the appendix A.2 where we also show explicitly the equivalence of the two

constructions for F∆,s. These representations are important because [64]

• Almost all F∆,s are irreducible apart from some discrete values of ∆. We give an elemen-

tary proof of this claim for F∆ in the appendix A.3. A more general proof for F∆,s can be
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found in [65]6 and a full list of irreducible representations (including the SO(d + 1) con-

tents of each one) is given in a subsequent paper by the same author [13]. Indeed, there

are only four types of reducible representations of this form when s = s is a single-row

representation

F1−t,s, F1−s,t, Fd+t−1,s, Fd+s−1,t (3.3.13)

where s = 1, 2, 3, · · · and t = 0, 1, 2, · · · . We will see why these representations are

reducible in the section 3.3.5. Throughout this paper, for a given spin s, a point in the

∆-plane is called generic if F∆,s is irreducible and called exceptional if F∆,s is reducible.

• Any irreducible representation of SO(1, d+ 1) is equivalent to some subrepresentations of

F∆,s (including F∆,s itself when it is irreducible).

Therefore, in order to understand the underlying representation theory of unitary spin-s fields

in dSd+1, we should study the structure of F∆,s in detail and look for its unitary irreducible

subrepresentations. This will be our main task for the remaining part of this section.

3.3.1 SO(d+ 1) contents of F∆,s

Before imposing the unitarity condition on F∆,s, let’s first focus on the SO(d + 1) subgroup

and see how F∆,s decomposes into irreducible representations of SO(d + 1). A standard and

elegant approach to this problem involves the Iwasawa decomposition, i.e. SO(d + 1) = KNA

[64] and the induced representation construction which is reviewed in the appendix A.2. Using

this approach, it is not hard to see that F∆,s when considered as an SO(d+ 1) representation is

equivalent to the induced representation indSO(d+1)
SO(d) Ys, whose SO(d + 1) contents follow from

Frobenius reciprocity theorem7 [66]. Here we will present a more elementary method that only

depends on our CFT-type construction of F∆,s. The SO(d+ 1) generators are Lij = Mij and

6The method in this paper is essentially equivalent to what we does in the appendix A.3 except that the author
used an abstract basis, instead of the spherical harmonics we use, for each SO(d+ 1) content of F∆,s that works
universally for any s. In addition, this method heavily relies on the fact, which we will prove for F∆,s in the
following section, that each SO(d+ 1) content contained in F∆,s has multiplicity 1.

7Roughly speaking, the Frobenius reciprocity theorem states that given a unitary irreducible representation σ
of H and a unitary irreducible representation ρ of G, then ρ is contained in the induced representation indG

Hσ as
many times as σ contained in the restriction representation ρ|H .
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Ld+1,i = 1
2(Pi +Ki) which act on ψ(x, z) ∈ F∆,s as

Lijψ(x, z) = (xi∂j − xj∂i + zi∂zj − zj∂zi)ψ(x, z)

Ld+1,iψ(x, z) =
(

−1 − x2

2 ∂i − xi(x · ∂x + ∆) + (x · z ∂zi − zi x · ∂z)
)
ψ(x, z) (3.3.14)

One important observation is that the ∆-dependence in the action of Ld+1,i disappears if we per-

form a rescaling for the wavefunction ψ̂(x, z) ≡
(

1+x2

2

)∆−s
ψ(x, z) (the purpose of introducing

“−s” will be clear soon automatically)

Lijψ̂(x, z) = (xi∂j − xj∂i + zi∂zj − zj∂zi)ψ̂(x, z)

Ld+1,iψ̂(x, z) =
(

−1 − x2

2 ∂i − xi (x · ∂x + s) + (x · z ∂zi − zi x · ∂z)
)
ψ̂(x, z) (3.3.15)

We claim that ψ̂(x, z) defines a spin-s tensor on Sd (in the stereographic coordinate). It suffices

to show that so(d + 1) acts on ψ̂(x, z) as Lie derivatives along the Killing vectors of Sd. In

embedding space coordinates, Sd is described as a hypersurface

Y 2
1 + Y 2

2 + · · · + Y 2
d+1 = 1 (3.3.16)

with the space of Killing vectors spanned by Vab = Ya∂Y b − Yb∂Y a , 1 ≤ a, b ≤ d + 1, where

the vector field Vab is generated by the action of Lab. The stereographic coordinates of Sd

correspond to choosing the following embedding

Y a =
(

2xi

x2 + 1 ,
x2 − 1
x2 + 1

)
(3.3.17)

which yields a conformally flat metric gij =
(

2
1+x2

)2
δij . Given an arbitrary vector field V = V i∂i

and an arbitrary tensor φi1···is , the Lie derivative LV is defined as

LV φi1···is = V k∂kφi1···is +
s∑
j=1

∂ijV
kφi1···ij−1kij+1···is (3.3.18)

When φi1···is is an symmetric and traceless tensor, we can use the index-free formalism and

replace it by a polynomial φ(x, z) ≡ 1
s!φi1···isz

i1 · · · zis , where zi is null. Then the Lie derivative
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acting on φ(x, z) becomes

LV φ(x, z) = V k∂kφ(x, z) + (z · ∂xV k)Dzkφ(x, z) (3.3.19)

where Dzi is given by eq. (3.3.7). To compute the Lie derivatives LVab
, we need further to

write out the Killing vectors Vab in terms of stereographic coordinates by using

(Vab)k = gkℓ(Ya∂ℓYb − Yb∂ℓYa) (3.3.20)

We obtain (Vij)k = xiδ
k
j − xjδ

k
i and (Vd+1,i)k = −1−x2

2 δki − xkxi respectively. Plugging these

explicit forms of Vab into eq. (3.3.19) yields

LVijφ(x, z) = (xi∂j − xj∂i + zi∂zj − zj∂zi)φ(x, z)

LVd+1,i
φ(x, z) =

(
−1 − x2

2 ∂i − xi (x · ∂x + s) + (x · z ∂zi − zi x · ∂z)
)
φ(x, z) (3.3.21)

where the number s in the second line comes from z · ∂z acting on φ(x, z). The agreement

between eq. (3.3.15) and eq. (3.3.21) implies that the space F∆,s is isomorphic to the space

of spin-s tensors 8 on Sd. From the latter, we can easily read off the SO(d + 1) contents of

F∆,s. For example, when s = 1, we can decompose a spin-1 tensor into a scalar function and a

transverse spin-1 tensor, i.e. ψ̂i(x) = ∂iξ(x) + ηi(x), ∇iη
i = 0, where ξ admits an expansion

in terms of scalar spherical harmonics excluding the constant one and ηi admits an expansion

in terms of transverse vector spherical harmonics. It is well known that the scalar harmonics on

Sd correspond to all single-row representations, i.e. Yn of SO(d+1) while the transverse vector

harmonics correspond to two-row representations with 1 box in the second row, i.e. Yn,1 [67].

Altogether, F∆,1 as an SO(d+ 1) representation contains the following irreducible components

F∆,1
∣∣
SO(d+1) =

⊕
n≥1

Yn

⊕

⊕
k≥1

Yk,1

 =
⊕
n≥1

⊕
0≤m≤1

Yn,m (3.3.22)

8By spin-s, we mean a symmetric and traceless tensor of rank s.
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For higher s, we decompose ψ̂i1···is into a spin-(s−1) tensor ξi1···is−1 and a transverse spin-s

tensor ηi1···is , i.e.

ψ̂i1···is = ∇(i1ξi2···is) − trace + ηi1···is , ∇i1ηi1···is = 0 (3.3.23)

The latter admits an expansion in terms of transverse spin-s tensor harmonics which group

theoretically correspond to all 2-row representations of SO(d + 1) with s boxes in the second

row. In ξi1···is−1 , we should exclude the modes such that ∇(i1ξi2···is) is pure trace. These

modes are spin-(s−1) conformal Killing tensors on Sd and furnish the representation Ys−1,s−1

of SO(1, d + 1) which becomes
⊕

0≤n≤s−1 Ys−1,n while restricted to the SO(d + 1) subgroup.

By using induction on s, we can immediately conclude that

F∆,s
∣∣
SO(d+1) =

⊕
n≥s

⊕
0≤m≤s

Yn,m (3.3.24)

3.3.2 Shadow transformation

In the SO(1, 2) case, we have shown that there exists a linear intertwining operator S∆, called

shadow transformation, that maps F∆ to F∆̄ and in particular, when ∆ /∈ Z it is an isomorphism.

In this section, we will show that a similar operator also exists for higher d. Assume that S∆′,s′

∆,s :

F∆,s → F∆′,s′ is an intertwining operator defined by a kernel function S∆′,s′

∆,s (x1, x2)i1···is′ ,j1···js

S∆′,s′

∆,s : ψi1···is(x1) ∈ F∆,s 7−→
∫
ddxS∆′,s′

∆,s (x1, x2)i1···is′ ,j1···jsψj1···js(x2) (3.3.25)

The requirement S∆′,s′

∆,s [ψi1···is ] ∈ F∆′,s′ induces a set of differential equations for the kernel

function (Suppress the spin indices of S∆′,s′

∆,s (x, y)i1···is′ ,j1···js for the simplicity of notation. It
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should be clear that M(s′)
kℓ acts on the i indices while M(s)

kℓ acts on the j indices.):

(∂xi + ∂yi)S∆′,s′

∆,s (x, y) = 0 (3.3.26)

(x · ∂x + y · ∂y + ∆′ + ∆̄)S∆′,s′

∆,s (x, y) = 0 (3.3.27)

(xℓ∂xk − xk∂xℓ + yℓ∂yk − yk∂yℓ + M(s)
kℓ + M(s′)

kℓ )S∆′,s′

∆,s (x, y) = 0 (3.3.28)

(x2∂xk − 2xk(x · ∂x + ∆′) + y2∂yk − 2yk(y · ∂y + ∆̄) + 2xℓM(s′)
kℓ + 2yℓM(s)

kℓ )S∆′,s′

∆,s (x, y) = 0

(3.3.29)

These differential equations are exactly the conformal Ward identities for a two-point function

of two primary operators Oi1···is and O′
i1···i′s with scaling dimension ∆̄ and ∆′ respectively. It

is well known that such a two-point function is vanishing unless the two operators have the

same spin and scaling dimension. Therefore S∆′,s′

∆,s exists only when s = s′,∆′ = ∆̄ and in

this case the corresponding kernel function, denoted by S∆,s(x1 − x2)i1···is,j1···js , becomes the

conformal two-point function ⟨Oi1···is(x1)Oj1···js(x2)⟩ which takes the following simple form in

the index-free formalism

S∆,s(x12; z, w) ≡ S∆,s(x12)i1···is,j1···js z
i1 · · · ziswj1 · · ·wjs

= N∆,s
(−z ·R(x12) · w)s(

x2
12
)∆̄ , xi12 ≡ xi1 − xi2 (3.3.30)

where N∆,s is a normalization constant, zi and wi are null vectors and R(x)ij = 2xixj

x2 − δij is

defined in the eq. (3.3.10).

Given shadow transformations S∆,s and S∆̄,s, the composition S∆̄,s ◦ S∆,s is an intertwining

map that maps F∆,s to itself. When F∆,s is irreducible 9, which is true for almost all ∆,

the composition should be proportional to identity map due to Schur’s lemma. We want to

(partially) fix the normalization by requiring S∆̄,s ◦ S∆,s = 1F∆,s
, i.e.

∫
ddx2S∆̄,s(x12)i1···is,j1···jsS∆,s(x23)j1···js,k1···ks = δd(x13)δi1···is,k1···ks (3.3.31)

9At those exceptional points where F∆,s is reducible, the corresponding shadow transformations are not
invertible. We will comment more on these cases later.
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or equivalent in momentum space

S∆̄,s(p)i1···is,j1···jsS∆,s(p)j1···js,k1···ks = δi1···is,k1···ks (3.3.32)

The Fourier transformation S∆,s(p, z;w) ≡
∫
ddx eip·x S∆,s(x, z;w) can be performed by using

the binomial expansion for the numerator of S∆,s(x, z;w) and then applying the following

formula to each term

∫
ddx

1
|x|2∆̄

eip·x = 2d−2∆̄π
d
2

Γ(d2 − ∆̄)
Γ(∆̄)

p2∆̄−d (3.3.33)

The final expression admits a harmonic expansion with respect to SO(d− 1), which is the little
group of a fixed momentum p. For a detailed derivation of such an expansion, we refer to the
book [64]. Here we simply present the result

S∆,s(p; z, w) = π
d
2 N∆,s

Γ( d
2 − ∆̄) ( 1

2p)
2∆̄−d

(∆̄ + s− 1)Γ(∆̄ − 1)

s∑
ℓ=0

κsℓ(∆)Πsℓ(p̂; z, w), κsℓ(∆) = (∆ + ℓ− 1)s−ℓ

(∆̄ + ℓ− 1)s−ℓ

(3.3.34)

where Πsℓ(p̂; z, w) ≡ Πsℓ(p̂)i1···is,j1···jsz
i1 · · · ziswj1 · · ·wjs are (s+ 1) projection operators that

only depend on the unit vector p̂ in the direction of pi and satisfy the following properties

Orthogonality : Πsℓ(p̂)i1···is,j1···jsΠsℓ′(p̂)j1···js,k1···ks = δℓℓ′Πsℓ(p̂)i1···is,k1···ks

Completeness :
s∑
ℓ=0

Πsℓ(p̂; z, w) = (z · w)s

Helicity ℓ : piℓpiℓ+1 · · · pisΠsℓ(p̂)i1···is,j1···js = pjℓpjℓ+1 · · · pjsΠsℓ(p̂)i1···is,j1···js = 0, ℓ ≥ 1

(3.3.35)

As an example, when s = 1, we have

Π10(p̂)i,j = p̂ip̂j , Π11(p̂)i,j = δij − p̂ip̂j (3.3.36)

Remark 4. The set of Πsℓ can be thought as the manifestation of the branching rule from SO(d)

(the full rotation group of p) to SO(d− 1) (the little group of p), i.e. the spin-s representation

of SO(d) can be decomposed into the direct sum of the spin-ℓ representations of SO(d−1) with
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ℓ ranging from 0 to s. Each Πsℓ projects the spin-s SO(d) representation to its spin-ℓ SO(d−1)

summand. For example, in the s = 1 case, Π10 projects a vector to its component along the

direction of p which is clearly invariant under the little group and Π11 yields the transverse part

which carries the spin-1 representation of the little group.

Using the orthogonality and completeness of {Πsℓ} and noticing κsℓ(∆)κsℓ(∆̄) = 1, we find

that the normalization condition (3.3.32) is equivalent to

πd Γ(d2 − ∆̄) Γ(d2 − ∆)N∆N∆̄
(∆̄ + s− 1)(∆ + s− 1)Γ(∆̄ − 1)Γ(∆ − 1)

= 1 (3.3.37)

Apparently, this equation cannot fix the normalization constant N∆,s completely. Two conve-

nient solutions that we will use are

N+
∆,s = (∆̄ + s− 1)Γ(∆̄ − 1)

π
d
2 Γ(d2 − ∆̄)

, N−
∆,s = (∆ + s− 1)Γ(∆ − 1)

π
d
2 Γ(d2 − ∆̄)

(3.3.38)

and the corresponding shadow transformation will be denoted by S±
∆,s. Let’s write out the kernel

for S±
∆,s in momentum space explicitly

S+
∆,s(p; z, w) =

(
p

2

)2∆̄−d s∑
ℓ=0

(∆ + ℓ− 1)s−ℓ
(∆̄ + ℓ− 1)s−ℓ

Πsℓ(p̂; z, w)

S−
∆,s(p; z, w) =

(
p

2

)2∆̄−d Γ(∆ − 1)
Γ(∆̄ − 1)

s∑
ℓ=0

(∆ + ℓ− 1)s−ℓ+1

(∆̄ + ℓ− 1)s−ℓ+1
Πsℓ(p̂; z, w) (3.3.39)

For a generic ∆, the two choices are equivalent since they only differ by a normalization factor.

So we will stick to S+
∆,s in this case. However, at exceptional points, S±

∆,s are completely different

and the corresponding properties are summarized in the table (3.3.1), where s = 1, 2, · · · and

t = 0, 1, · · · , s− 1.

S+
∆′,s′ S−

∆′,s′

(∆′, s′) = (1 − t, s) only contains Πsℓ with t+1 ≤ ℓ ≤ s ill-defined
(∆̄′, s′) = (1 − t, s) ill-defined only contains Πsℓ with 0 ≤ ℓ ≤ t

(∆′, s′) = (1 − s, t) contains all Πtℓ, 0 ≤ ℓ ≤ t ill-defined
(∆̄′, s′) = (1 − s, t) contains all Πtℓ, 0 ≤ ℓ ≤ t δ-function in momentum space

Table 3.3.1: Properties of S±
∆,s at exceptional points.
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Notice that S−
d+s−1,t is special because it is a polynomial in xi of degree 2s− 2

S−
d+s−1,t(x; z, w) = (d+ s+ t− 2)Γ(d+ s− 2)

π
d
2 Γ(d2 + s− 1)

(
x2
)s−t−1 (

x2 z · w − 2x · z x · w
)t

(3.3.40)

Therefore, its Fourier transformation is a δ-function with (2s− 2) derivatives in the momentum

space.

3.3.3 (Nonexceptional) unitary scalar representations

Recall that a wavefunction ψ ∈ F∆ defines a ket |ψ⟩ =
∫
ddxψ(x)|x⟩. So an inner product on

F∆ is fixed by defining a bra ⟨x|:

(ψ1, ψ2) ≡
∫
ddx

∫
ddy ψ1(x)∗K∆(x, y)ψ2(y), K∆(x, y) = ⟨x|y⟩ (3.3.41)

Imposing the reality condition L†
AB = −LAB as in section 3.2.2.2, we find that the function

K∆(x, y) exists only in the following two cases

I : ∆ = d

2 + iµ, µ ∈ R, K∆(x, y) = δd(x− y)

II : ∆ ∈ R, K∆(x, y) = c∆

|x− y|2∆̄
(3.3.42)

where c∆ is a normalization constant. In the case (I), the inner product (3.3.41) is the standard

L2 inner product on Rd. It is positive definite and normalizable since ψ(x) ∈ F∆ falls off as
1

|x|2∆ for large x. Therefore, the function space F d
2 +iµ equipped with the standard L2 inner

product furnishes a unitary irreducible representation of SO(1, d + 1), which is known as the

(unitary) scalar principal series representation of scaling dimension ∆ = d
2 + iµ. In the case (II),

we choose c∆ = N+
∆ = Γ(∆̄)

π
d
2 Γ( d

2 −∆̄)
, so that K∆(x, y) = S+

∆(x, y) , i.e. the kernel of shadow

transformation from F∆ to F∆̄. Using the Fourier transformation of S+
∆(x), c.f. eq.(3.3.39),

we rewrite the inner product (3.3.41) in momentum space as

(ψ1, ψ2) = 1
4∆̄πd

∫
ddp p2∆̄−dψ1(p)∗ψ2(p) (3.3.43)
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where ψi(p) ≡
∫
ddx eip·xψi(x) is the Fourier transformation of ψ(x). This inner product

is positive definite as long as it is convergent. Due to the smoothness of ψ(x), its Fourier

transformation ψ(p) decays exponentially for large p. So the p-integral in (3.3.43) is convergent

around p → ∞. For small p, as we have argued in the SO(1, 2) case, ψ(p) has two types

of leading fall-offs: p0 and p2∆−d. Then the requirement of convergence near p → 0 yields

0 < ∆ < d . Therefore, the representations F∆ with 0 < ∆ < d are unitary, known as the

(unitary) scalar complementary series.

Before moving to spinning representations, we want to present a different way to expand

the kernel K∆ based on our discussion in the section 3.3.1. It yields the same constraint on

the scaling dimension. Using the Weyl transformation ψ(x) =
(

2
1+x2

)∆
ψ̂(x), where ψ̂(x) is a

function on Sd, we rewrite the inner product (3.3.41) as

(ψ1, ψ2) = N+
∆

∫
ddx(

1+x2

2

)d ddy(
1+y2

2

)d
(

(1 + x2)(1 + y2)
2(x− y)2

)∆̄

ψ̂(x)∗ψ̂(y) (3.3.44)

Switch to spherical coordinate Ωi = (sin θ ωi, cos θ), ωi ∈ Sd−1 which is related the stereo-

graphic coordinate xi by xi = cot θ2ω
i and eq. (3.3.44) becomes an integral on Sd × Sd

(ψ1, ψ2) =
∫
ddΩ1 d

dΩ2 K̂(Ω1,Ω2)ψ̂(Ω1)∗ψ̂2(Ω2), K̂∆(Ω1,Ω2) =
N+

∆
(1 − Ω1 · Ω2)∆̄

(3.3.45)

Now we need to perform a harmonic expansion for the new kernel K̂∆. First, write it as an

integral using Schwinger’s trick

K̂∆(Ω1,Ω2) =
N+

∆
Γ(∆̄)

∫ ∞

0

ds

s
s∆̄e−s+sΩ1·Ω2 (3.3.46)

Then plug it in the expansion of plane waves in Gegenbauer polynomials [68]

esΩ1·Ω2 = Γ(α)
(
s

2

)−α∑
ℓ≥0

(α+ ℓ)Iα+ℓ(s)Cαℓ (Ω1 · Ω2), α = d− 1
2 (3.3.47)

Using the addition theorem, Gegenbauer polynomials can thus be expanded in spherical har-
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monics on Sd [69]

Cαℓ (Ω1 · Ω2) = 2π
d+1

2

Γ(α)(ℓ+ α)
∑
m
Yℓm(Ω1)Yℓm(Ω2)∗ (3.3.48)

Therefore if we can perform the s-integral, we have the desired expansion of the kernel K̂∆ in

spherical harmonics

K̂∆(Ω1,Ω2) = 2∆∑
ℓ≥0

∑
m

Γ(ℓ+ ∆̄)
Γ(ℓ+ ∆)Yℓm(Ω1)Yℓm(Ω2)∗ (3.3.49)

where we have plugged in the explicit form of N+
∆ . For K̂∆ to be positive definite, the matrix

element Γ(ℓ+∆̄)
Γ(ℓ+∆) should not oscillate with ℓ, which requires ℓ+∆̄

ℓ+∆ > 0 for any ℓ ≥ 0. The most

stringent constraint comes from ℓ = 0 and it is 0 < ∆ < d , in agreement with what we have

found in momentum space. With this constraint satisfied, Γ(ℓ+∆̄)
Γ(ℓ+∆) stays positive for all ℓ and

hence K̂∆ is positive definite.

Remark 5. When ∆ is a nonpositive integer, Γ(ℓ+∆̄)
Γ(ℓ+∆) vanishes for 0 ≤ ℓ ≤ −∆. Thus the

spherical harmonics Yℓm with 0 ≤ ℓ ≤ −∆ are null states. Indeed, they furnish an irreducible

representation of SO(1, d + 1) which is checked explicitly in the appendix A.3. When ∆̄ is

a nonpositive integer, we choose c∆ = N−
∆ . It amounts to replacing Γ(ℓ+∆̄)

Γ(ℓ+∆) by (∆)ℓ

(∆̄)ℓ
in the

expansion eq. (3.3.49). In this case, all Yℓm with ℓ ≥ 1 − ∆̄ are null and carry an irreducible

representation which is again checked in the appendix A.3.

3.3.4 (Nonexceptional) unitary spinning representations

For a spinning representation F∆,s, the inner product is defined by the kernel

K∆,s(x1, x2)i1···is,j1···js ≡ i1···is⟨x1|x2⟩j1···js (3.3.50)

In the index free formalism, we contract the i-indices with a null vector z and contract the

j-indices with a different null vector w

K∆,s(x1, z;x2, w) ≡ K∆,s(x1, x2)i1···is,j1···js z
i1 · · · ziswj1 · · ·wjs (3.3.51)
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With the de Sitter reality condition imposed, K∆,s(x1, z;x2, w) exists only for two cases (I):

∆ = d
2 + iµ and (II): ∆ ∈ R. In the first case, K∆,s is simply a δ-function (in both spacetime

coordinate and spin indices), i.e.

K∆,s(x1, z;x2, w) = δd(x1, x2)(z · w)s (3.3.52)

and the hence the inner product defined by this K∆,s becomes the L2-inner product for spin-s

tensors on Rd

(ψ,φ)P ≡
∫
ddxψ∗

i1···is(x)φi1···is(x) (3.3.53)

The positivity (and normalizability) of this inner product on F d
2 +iµ,s is guaranteed by the asymp-

totic behavior (3.3.12). Therefore, F d
2 +iµ,s is a unitary irreducible representation, belonging to

the so-called (unitary) spinning principal series. In the second case, the reality condition is

actually equivalent to the conformal Ward identities for two-point functions. Therefore K∆,s is

the same as S∆,s up to normalization, i.e.

K∆,s(x1, z;x2, w) = c∆,s
(−z ·R(x12) · w)s(

x2
12
)∆̄ (3.3.54)

For a generic ∆, we choose c∆,s = N+
∆,s and hence K∆,s = S+

∆,s, which in momentum space is

(c.f. eq. (3.3.39))

S+
∆,s(p; z, w) =

(
p

2

)2∆̄−d s∑
ℓ=0

κsℓ(∆)Πsℓ(p̂; z, w), κsℓ(∆) = (∆ + ℓ− 1)s−ℓ
(∆̄ + ℓ− 1)s−ℓ

(3.3.55)

As in the scalar case, the inner product defined by S+
∆,s is normalizable when 0 < ∆ < d.

However, this condition cannot guarantee the positivity of S+
∆,s. Additionally, for S+

∆,s to be

positive, we need all κsℓ(∆) to have a fixed sign (insert an overall minus sign if negative) which

yields

κs,ℓ+1(∆)
κs,ℓ(∆) = ∆̄ + ℓ− 1

∆ + ℓ− 1 > 0 (3.3.56)
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The eq. (3.3.56) holds for all ℓ if and only if 1 < ∆ < d− 1 . It is also straightforward to check

that all κsℓ(∆) are indeed positive for ∆ in this range. Altogether, F∆,s with the following inner

product

(ψ,φ)C =
∫
ddx1 d

dx2 ψ
∗(x1)i1···is S

+
∆,s(x12)i1···is,j1···jsφ(x2)j1···js (3.3.57)

is a unitary irreducible representation of SO(1, d + 1) when 1 < ∆ < d − 1. It belongs to the

so-called (unitary) spinning complementary series.

3.3.5 Exceptional series (d ≥ 3)

We have studied the constraint of unitarity on F∆,s for generic ∆ and managed to identify the

(unitary) principal and complementary series. In this section, we will look into the four types of

F∆,s at exceptional points by mainly following the book [64]:

F1−t,s, Fd+t−1,s, F1−s,t, Fd+s−1,t (3.3.58)

The first important observation is that the four representations share the same SO(1, d + 1)

(quadratic) Casimir

C2 = −(s− 1)(s+ d− 1) − t(t+ d− 2) (3.3.59)

which is also the Casimir associated to the highest weight representation Ys−1,t of SO(1, d +

1). This observation suggests that these representations are related by a chain of intertwining

maps. For representations in the two pairs (F1−t,s,Fd+t−1,s) and (F1−s,t,Fd+s−1,t), this is

certainly true due to shadow transformations, which have been explored in the section 3.3.2. To

find intertwining representations relating the two pairs, let’s revisit the shadow transformations

S+
1−t,s. At the end of the section 3.3.2 (see the table (3.3.1)), we find that S+

1−t,s(p) only

contains the projection operators Πsℓ with ℓ ≥ t + 1. Due to the third property in the eq.

(3.3.35), it means

pi1 · · · pis−tS+
1−t,s(p)i1···is,j1···js = 0 (3.3.60)
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So the shadow transformation S+
1−t,s has a nontrivial kernel which consists functions of the form

p(i1 · · · pis−tfis−t+1···is) − trace (3.3.61)

in momentum space. Switch back to position space and the kernel can be alternatively expressed

as {(z · ∂x)s−tf(x, z)} in the index-free formalism. Requiring that (z · ∂x)s−tf(x, z) transforms

under the F1−t,s, we find f(x, z) is actually an element in F1−s,t. Therefore, (z · ∂x)s−t

is an intertwining operator mapping F1−s,t to F1−t,s. In bulk, it corresponds to the gauge

transformation for higher spin gauge fields. Similarly, the eq. (3.3.60) also implies that the image

of S+
1−t,s is annihilated by (p · Dz)s−t or equivalently in position space (∂x · Dz)s−t. Again, it is

straightforward to check that Ds,t ≡ (∂x · Dz)s−t is an intertwining operator mapping Fd+t−1,s

to Fd+s−1,t. Altogether, the diagram 3.3.1 shows the six intertwining maps that relate the four

types of exceptional representations

Fd+s−1,t Fd+t−1,s

F1−s,t F1−t,s

S−
d+s−1,t

Ds,t

S−
d+t−1,s

(z·∂x)s−t

S+
1−s,t S+

1−t,s

Figure 3.3.1: A sequence of intertwining maps for the exceptional representations

Apart from commuting with group actions, these intertwining maps are important for the

following reasons

• Each directed sequence of homomorphisms in the diagram 3.3.1 is exact. For exam-

ple, we have just shown the two sequences F1−t,s
S+

1−t,s−−−−→ Fd+t−1,s
Ds,t−−→ Fd+s−1,t and

F1−s,t
(z·∂x)s−t

−−−−−−→ F1−t,s
S+

1−t,s−−−−→ Fd+t−1,s are exact. A detailed proof for the rest sequences

can be found in [64]).

• The kernel and image of each map are irreducible representations of SO(1, d + 1). This

claim can be checked by comparing with the full list of irreducible representations given

in [13].

The exactness of these intertwining maps implies that there are only three inequivalent irreducible
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subrepresentations contained in the four exceptional representations

ker(z · ∂x)s−t, Us,t ≡ ker Ds,t
∼= F1−t,s/Im (z · ∂x)s−t

Vs,t ≡ Im (z · ∂x)s−t ∼= Im S+
1−s,t

∼= F1−s,t/ ker S+
1−s,t (3.3.62)

where ker(z · ∂x)s−t carries the finite dimensional representation Ys−1,t of SO(1, d + 1) which

explains the Casimir (3.3.59). For example, when s = 2, t = 1, ker(z · ∂x)s−t is spanned by

zi, x · z, xizj − xjzi, 2xi x · z − x2zi. Since ker(z · ∂x)s−t is finite dimensional, it cannot be

unitary unless it is a trivial representation which corresponds to s = 1, t = 0. For the rest two

irreducible representations Us,t and Vs,t, by analyzing their SO(d+ 1) contents, i.e.

Us,t|SO(d+1) =
⊕
n≥s

⊕
t+1≤m≤s

Yn,m, Vs,t|SO(d+1) =
⊕
n≥s

⊕
0≤m≤t

Yn,m (3.3.63)

we manage to identify them as the irreducible representation D⌈ d
2 ⌉−2

(Ys,t+1;0) and D⌈ d
2 ⌉−1

(Ys;t) on Hirai’s

list respectively [13].

To define inner product on Us,t and Vs,t, it is more convenient to use their quotient space

realization given in the eq. (3.3.62). 10 For example, we can use S+
1−s,t to define a pairing on

F1−s,t. Since ker S+
1−s,t drops out by construction, it naturally induces a pairing on the quotient

space Vs,t. The explicit form of S+
1−s,t in momentum space is given by the eq. (3.3.39)

S+
1−s,t(p; z, w) =

(
p

2

)d+2s−2 t∑
ℓ=0

(−)t−ℓ (s+ 1 − t)t−ℓ
(d+ s+ ℓ− 2)t−ℓ

Πtℓ(p̂; z, w) (3.3.64)

Due to the alternating sign (−)t−ℓ, the inner product induced by S+
1−s,t is not positive definite

unless t = 0. Therefore, among the irreducible representations Vs,t, only Vs,0 is unitary. In this

case, the inner product becomes more transparent if we write it in spherical coordinate using

10From the bulk point of view, the quotient space realization is quite natural. For example, (z · ∂x)s−t is the
counterpart of the bulk gauge transformation. So factoring out Im (z · ∂x)s−t amounts to getting rid of the pure
gauge degrees of freedom.
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the harmonic expansion (3.3.49)

(ψ1, ψ2) ≡
∫
ddx1 d

dx2 ψ
∗
1(x1)S+

1−s,0(x12)ψ2(x2)

= 21−s∑
ℓ≥s

∑
m

Γ(d+ s+ ℓ− 1)
Γ(ℓ+ 1 − s)

(∫
Sd
ddΩ1ψ̂1(Ω1)Yℓm(Ω1)∗

)∗ (∫
Sd
ddΩ2ψ̂2(Ω2)Yℓm(Ω2)∗

)
(3.3.65)

where ψ̂i(Ω) =
(

1+x2

2

)1−s
ψi(x). Since the sum starts from ℓ = s, the spherical harmonics on

Sd with ℓ ≤ s− 1 get projected out. These spherical harmonics carry the Ys−1 representation

of SO(1, d+ 1) and span the kernel of S+
1−s,0.

Similarly for Us,t, we can define a paring on F1−t,s by S+
1−t,s and it naturally induces a paring

on Us,t. Since

S+
1−t,s(p; z, w) =

(
p

2

)d+2t−2 s∑
ℓ=t+1

(ℓ− t)s−ℓ
(d+ t+ ℓ− 2)s−ℓ

Πsℓ(p̂; z, w) (3.3.66)

is manifestly positive definite with its kernel factored out, the paring on Us,t defined in this

way is positive granting the normalizability. The normalizability is not obvious in this case. For

example, when s = 2, t = 1, the asymptotic behavior of any wavefunction ψ(x, z) in F1−t,s is

ψ(x, z) x→∞≈
∞∑
k=0

Ck
(
x̃i, R(x)ijzj

)
(3.3.67)

where Ck(u, v) is a homogeneous polynomial of degree k in ui and degree 2 in vi. The k = 0

term is potentially problematic because its Fourier transform has a p−d behavior around p = 0

by a simple power counting and the higher k terms are normalizable. Fortunately any second

order tensor in vi ≡ R(x)ijzj is pure gauge, i.e.

vivj = z · ∂x

(
− xi

x2 (2x · z xj − x2zj)
)

(3.3.68)

A rigorous proof about the normalizability for all Us,t can be found in [64]. Altogether, Us,t is a

unitary irreducible representation for any s = 1, 2, 3, · · · and t = 0, 1, · · · , s− 1. Both Us,t and

Vs,0 belong to the (unitary) exceptional series.
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Remark 6. : When d = 3, Us,t is still reducible with respect to SO(1, 4). It can be decomposed

into two irreducible components U±
s,t with the following SO(d+ 1) contents respectively

U±
s,t

∣∣∣
SO(4)

=
⊕
n≥s

⊕
t+1≤m≤s

Yn,±m (3.3.69)

U±
s,t are related by spatial reflection because the SO(4) generator L34 = −1

2(P3 +K3) is mapped

to −L3 under spatial reflection while L12 stays invariant which means that the SO(4) highest

weight vector (n,m) is mapped to (n,−m). Therefore Us,t is still irreducible with respect to

the bigger group O(1, 4). In addition, U±
s,t belong to the discrete series [64]. For higher d, the

exceptional series is completely different from the discrete series [70].

3.3.6 Summary and bulk QFT correspondence

We have identified all unitary irreducible representations contained in F∆,s for the conformal

group SO(1, d+1) with d ≥ 3. In this section, we show a list of these representations and briefly

comment on their bulk QFT realizations. For a spin-s field of mass m, its scaling dimension ∆

satisfies the following equation (see e.g. [71])

s = 0 : m2 = ∆(d− ∆)

s ≥ 1 : m2 = (d+ s− 2 − ∆)(∆ + s− 2) (3.3.70)

Then m = 0 for the photon, the graviton and their higher-spin generalizations, and for s = 1,

m is the familiar spin-1 Proca mass.

• Trivial representation.

• Scalar principal series: F d
2 +iµ (µ ∈ R) equipped with the L2(R) inner product. It

describes a massive scalar field in dSd+1 with mass m ≥ d
2 .
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• Scalar complementary series: F∆ (0 < ∆ < d) equipped with the inner product

(ψ1, ψ2) =
∫
ddx1 d

dx2 ψ1(x1)∗S+
∆(x12)ψ2(x2) (3.3.71)

It describes a massive scalar field in dSd+1 with mass 0 < m < d
2 .

• Spinning principal series: F d
2 +iµ,s (µ ∈ R and s ∈ Z+) equipped with the L2 inner

product. It describes a massive spin-s in dSd+1 with mass m ≥ s+ d
2 − 2.

• Spinning complementary series: F∆,s (1 < ∆ < d− 1 and s ∈ Z+) equipped with the

inner product

(ψ1, ψ2) =
∫
ddx1 d

dx2 ψ1(x1)∗
i1···isS

+
∆,s(x12)i1···is,j1···js ψ2(x2)j1···js (3.3.72)

It describes a massive spin-s field in dSd+1 with mass
√

(s− 1)(s+ d− 3) < m < s+ d
2 −

2. The lower bound
√

(s− 1)(s+ d− 3) is the so-called Higuchi bound [42] which is the

equivalent to the requirement of no negative norm states in bulk canonical quantization

(a concise summary is given in [72] and [73]).

• Exceptional series I: Vs,0 = F1−s/ ker S+
1−s (s ∈ Z+) equipped with the inner product

(ψ1, ψ2) =
∫
ddx1 d

dx2 ψ1(x1)∗S+
1−s(x12)ψ2(x2) (3.3.73)

We believe that it should correspond to the shift symmetric scalars with mass square

m2 = (1 − s)(s+ d− 1) [74]. In particular, when s = 1, it is a massless scalar.

• Exceptional series II: Us,t = F1−t,s/ ker S+
1−t,s (s ∈ Z+ and t = 0, 1, · · · , s−1) equipped

with the inner product

(ψ1, ψ2) =
∫
ddx1 d

dx2 ψ1(x1)∗
i1···isS

+
1−t,s(x12)i1···is,j1···js ψ2(x2)j1···js (3.3.74)

It describes a partially massless spin-s gauge field with mass square m2
s,t = (s−1− t)(d+

s + t − 3). The parameter t is called depth, which is also the spin of the corresponding

ghost field. In particular, when t = s − 1, it describes to a massless spin-s gauge field,
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i.e. photon, graviton etc and we will call Us,s−1 the massless spin-s representation of

SO(1, d+ 1).

• There also exists the so-called discrete series when d is odd [13, 70], which is not covered

in this review. Fields in discrete series are of mixed symmetry.

For principal and complementary series, F∆,s and F∆̄,s are isomorphic due to the shadow

transformations. So in principal series, it suffices to consider µ ≥ 0 and in complementary

series, it suffices to consider ∆ > d
2 .

3.4 Harish-Chandra characters

3.4.1 General theory

With the unitary irreducible representations constructed, the next step is to compute their group

characters which collect the information about the representation in a simple function. We are

all familiar with the idea of characters of finite dimensional representations. For example, given

a finite dimensional representation ρ of a group G, the corresponding group character associated

to certain element g ∈ G is defined as a trace of ρ(g) over the representation space Vρ, i.e.

Θρ(g) ≡ TrVρ ρ(g). This quantity is clearly well-defined and conjugation invariant since it only

involves a finite sum. However, such a trace does not necessarily make sense for an infinite

dimensional representation like F∆,s. To tell when a “trace” can be defined in the infinite

dimensional case, we will need some deep notions and theorems in representation theory [66]:

Definition 1. Let G be a connected reductive Lie group and let K be a maximal compact

subgroup. A representation π of G on a Hilbert space V is called admissible if π|K is unitary

and if each unitary irreducible representation τ of K occurs with only finite multiplicity in π|K.

In particular, SO(1, d + 1) a is connected reductive Lie group and all F∆,s together all its

unitary irreducible subrepresentations are admissible.

Definition 2. We say an admissible representation π of a linear connected reductive group G

has a Harish-Chandra character (or global character) Θπ if π(φ) is of trace class for any

compact supported function φ on G and if φ → Trπ(φ) ≡ Θπ(φ) is a distribution. In this case,

the character Θπ is clearly conjugation invariant.
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Then the following theorem tells us when an admissible representation π has a Harish-

Chandra character

Theorem. Every admissible representation π of a linear connected reductive group G whose

decomposition π|K =
⊕

τ nτ τ satisfies nτ ≤ C dim τ has a Harish-Chandra character.

Since the SO(d + 1) contents of in F∆,s have multiplicity 1, F∆,s and its irreducible com-

ponents have a Harish-Chandra character. We shall also use the heuristic notations

ΘF∆,s
(g) ≡ TrF∆,s

g, ΘF∆,s
(q) ≡ ΘF∆,s

(qD), q > 0 (3.4.1)

which only exist in the distribution sense. In most cases, we shall simply call ΘF∆,s
(q) the

Harish-Chandra character of F∆,s.

3.4.2 Compute ΘF∆,s
(q)

In this section, we show how to compute the character ΘF∆,s
(q). Let’s start from the s = 0

case. By definition, one would find an orthonormal basis of F∆ and compute the matrix element

of D with respect to this basis (which is actually done in the appendix A.3 with the basis being

spherical harmonics). Then exponentiate the infinite dimensional matrix D and compute the

trace. However, this method can be infeasible due to technical difficulty. Instead, we will use

the ket basis |x⟩. The action of qD on |x⟩ is

qD|x⟩ = qD |qx⟩ =
∫
ddy q∆̄δd(qx− y)|y⟩ (3.4.2)

from which we can directly read off the matrix elements of qD with respect to the basis |x⟩. The

integral of the diagonal entries of qD is localized on the fixed points of qD, i.e. 0 and ∞. But the

xi coordinate system only contains the x = 0 point and hence we would miss the contribution

from ∞ in such a computation. We can bypass this problem by working with spherical basis, i.e.

|Ω⟩ =
(

1+x2

2

)∆̄
|x⟩ as in [2]. In this basis, the fixed points of qD become southern and northern

poles of Sd. Alternatively, we compute Tr(e−b·KqDeb·K) . This conjugation maps 0 and ∞ to

two finite points in the x-plane while keeping the trace invariant. The action of e−b·KqDeb·K
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on |x⟩ is given by

e−b·KqDeb·K |x⟩ = Ω(q, x, b)∆̄|x̃(q, x, b)⟩, x̃i = q
xi + (q − 1)x2bi

1 + 2(q − 1)x · b+ (q − 1)2 b2x2
(3.4.3)

where

Ω(q, x, b) = q

1 + 2(q − 1)x · b+ (q − 1)2 b2x2
(3.4.4)

Therefore the character ΘF∆(q) should be

ΘF∆(q) =
∫
ddxΩ(q, x, b)∆̄δd(x̃− x) (3.4.5)

This integral is localized to the fixed points of e−b·KqDeb·K , which are xi = 0 and xi = bi

b2 . At

these points, the scaling factor Ω(q, x, b) becomes

Ω(q, 0, b) = q, Ω(q, bi/b2, b) = q−1 (3.4.6)

and the Jacobian associated to the map xi → x̃i−xi becomes |q−1|d and |1−q−1|d respectively.

Altogether, the integral in the eq. (3.4.5) yields

ΘF∆(q) = q∆̄

|q − 1|d
+ q−∆̄

|1 − q−1|d
= q∆ + q∆̄

|1 − q|d
(3.4.7)

where the b dependence drops out explicitly as expected from the conjugation invariance.

Remark 7. The character ΘF∆(q) given by the eq. (3.4.7) is symmetric under q → q−1. This

property is also a result of the conjugation invariance of Θ since D = L0,d+1 is mapped to −D

by the conjugation of eiπLd+1,i .

Remark 8. One might be tempted to compute the character ΘF∆(q) by diagonalizing D. Its

eigenstates are |ν, ℓm⟩ where D = iν ∈ iR, ℓm labels SO(d) angular momentum quantum

numbers. However this produces a nonsensical result

ΘF∆(q = et) naive=
∑
m

∫
R
dν eiνt δℓ,ℓδm,m = 2πδd(0)δ(t) (3.4.8)
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not even remotely resembling the correct ΘF∆(q). Our correct computation actually illuminates

why this naive computation fails. Notice that the eigenbasis |ν, ℓm⟩ corresponds to wavefunction

ψνℓm(x) = x−(iν+∆)Yℓm(ω), which under Weyl transformation is mapped to

ψ̂νℓm(Ω) =
(

tan Θ
2

)ν
(sin Θ)−∆ Yℓm(ω) (3.4.9)

It is now clear why the naive computation (3.4.8) of ΘF∆(q) in the basis |ν, ℓm⟩ fails to produce

the correct result: the wave functions ψ̂νℓm(Ω) are singular precisely at the fixed points of D.

On the other hand, a proper basis of wavefunctions that are well-defined at the the fixed points

of D are the SO(d+ 1) spherical harmonics used in the appendix A.3.

The generalization of our computation to the spinning case is almost straightforward. Let’s

write the ket basis of F∆,s as |x⟩α where the index α carries the spin-s representation of SO(d).

The action of e−b·KetDeb·K on this basis can be schematically expressed as

e−b·KqDeb·K |x⟩α = Oαβ(q, x, b)Ω(q, x, b)∆̄|x̃(q, x, b)⟩β (3.4.10)

where Oαβ(q, x, b) is an SO(d) rotation matrix in the spin-s representation. In general, Oαβ(q, x, b)

takes a very sophisticated form but while evaluated at the two fixed points, i.e. xi = 0 and

xi = bi

b2 , it becomes an identity matrix. Altogether, we have

ΘF∆,s(q) =
∑
α

∫
ddxOαα(q, x, b)Ω(q, x, b)∆̄δd(x̃− x)

= ΘF∆(q) ×
(∑

α

1
)

= Dd
s
q∆ + q∆̄

|1 − q|d
(3.4.11)

In particular, when s = (s, 0, 0, · · · , 0), the Harish-Chandra character for both principal and

complementary series is

ΘF∆,s
(q) = Dd

s

q∆ + q∆̄

|1 − q|d
(3.4.12)
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3.4.3 Harish-Chandra character of exceptional series

Now we are able to compute the Harish-Chandra characters of exceptional series Vs,0 and Us,t.

For Vs,0, recall that Vs,t ≡ Im (z · ∂x)s−t ∼= F1−s,t/ ker(z · ∂x)s−t, which yields

ΘVs,0(q) = ΘF1−s(q) − Θker(z·∂x)s(q) (3.4.13)

Since ker(z·∂x)s carries the Ys−1 of SO(1, d+1), Θker(z·∂x)s(q) is nothing but the usual SO(d+2)

character corresponding to the highest weight representation Ys−1, denoted by ΘSO(d+2)
Ys−1

(q).

Thus we obtain (assuming 0 < q < 1 to get rid of the absolute value in |1 − q|d)

ΘVs,0(q) = q1−s + qd+s−1

(1 − q)d − ΘSO(d+2)
Ys−1

(q) (3.4.14)

Similarly for Us,t, using the isomorphism Us,t ∼= F1−t,s/Vs,t, we obtain

ΘUs,t(q) = Dd
s

q1−t + qd+t−1

(1 − q)d −Dd
t

q1−s + qd+s−1

(1 − q)d + ΘSO(d+2)
Ys−1,t

(q) (3.4.15)

In general, one can write out the characters like ΘSO(d+2)
Ys−1,t

(q) explicitly by using Weyl character

formula. However, in order to compare with the paper [2], we have derived a slightly different

expression c.f. eq. (2.3.3) for ΘSO(d+2)
Ys−1,t

(q) in the section 2.3. Plugging this new expression into

eq. (3.4.14) and eq. (3.4.15) yields

ΘVs,0(q) =
[
ΘF1−s(q)

]
+ =

[
q1−s + qd+s−1

(1 − q)d

]
+

ΘUs,t(q) =
[
ΘF1−t,s(q) − ΘF1−s,t(q)

]
+

=
[
Dd
s

q1−t + qd+t−1

(1 − q)d −Dd
t

q1−s + qd+s−1

(1 − q)d

]
+

(3.4.16)

where the “flipping” operator [ ]+ acts on an arbitrary Laurent series
∑
k ckq

k as

[∑
k

ckq
k

]
+

=
∑
k<0

(−ck)q−k +
∑
k>0

ckq
k (3.4.17)
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We also derived an interesting formula for the “flipping” operator acting on q∆

(1−q)d by using

Mathematica

[
q∆

(1 − q)d

]
+

= P∆(q)
(1 − q)d

P∆(q) = (−)d+1qd−∆ +
⌊ d

2 ⌋−1∑
m=0

(−)mDd
1−∆,1m

(
q1+m + (−)dqd−1−m

)
(3.4.18)

This equation can be checked by writing outDd
1−∆,1m explicitly using the general Weyl dimension

formula (2.2.1) and (2.2.2). But the computation is somewhat tedious and not especially

illuminating, so we omit it here. Plugging eq. (3.4.18) into the characters in (3.4.16), we obtain

ΘVs,0(q) = (1 − (−)d) q
d+s−1

(1 − q)d +
⌊ d

2 ⌋−1∑
m=0

(−)mDd
s,1m

(
q1+m + (−)dqd−1−m

)
(3.4.19)

and

ΘUs,t
(q) = (1 − (−)d)D

d
sq

d+t−1 −Dd
t q

d+s−1

(1 − q)d
+

⌊ d
2 ⌋−2∑
m=0

(−)mDd
s,t+1,1m

(
q2+m + (−)dqd−2−m

)
(3.4.20)

where we have used Dd
tD

d
s,1m −Dd

sD
d
t,1m = Dd

s,t+1,1m−1 , which again can be checked by using

Weyl dimension formula (2.2.1) and (2.2.2).

Remark 9. (Literature disagreements). The characters (3.4.19) and (3.4.20) agree with the

characters listed in the original work [75], computed by undisclosed methods. They do not

agree with those listed in the more recent work [70], computed by Bernstein-Gelfand-Gelfand

resolutions. Indeed [70] emphasized they disagreed with [75] for even d. More precisely, in their

eq. (2.14) applied to p = 2,Yp = (s, s, 0 · · · , 0),x = 0 (also to p = 1,Yp = (s, 0, · · · , 0),x =

0), they find a factor 2 = (1+(−)d) instead of the factor (1−(−)d) = 0 in (3.4.20). It is stated in

[70] that on the other hand their results do agree with [75] for odd d. Actually we find this is not

quite true either, as in that case eq. (2.13) in [70] applied to p = 2,Yp = (s, s, 0 · · · , 0),x = 0

(also to p = 1,Yp = (s, 0, · · · , 0),x = 0) has a factor 1 instead of the factor (1 − (−)d) = 2.

Our Euclidean path integral result of chapter 5 strongly suggests the original results in [75] and
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(3.4.19), (3.4.20) are the correct versions. Further support is provided in the chapter 4 by direct

construction of higher-spin quasinormal modes.

Remark 10. Some lower d examples are

d = 3 : ΘUs,t(q) = 2 (2s+ 1)qt+2 − (2t+ 1)qs+2

(1 − q)3

d = 4 : ΘUs,t(q) = 2(s− t)(s+ t+ 2) q2

(1 − q)4 (3.4.21)

where the overall factor 2 in the first line arises from the reducibility of Us,t when d = 3.

Remark 11. For the discrete series of SO(1, 2), we use the quotient space realization D+
N

⊕
D−
N =

F1−N/PN where PN carries the spin-(N − 1) representation of SO(1, 2)

ΘD+
N

⊕
D−

N
(q) = ΘF1−N

(q) −
N−1∑

k=1−N
qk = 2 qN

1 − q
(3.4.22)

The character for each summand D±
N is qN

1−q . [66]
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Chapter 4: Higher spin de Sitter quasinormal modes

In the previous chapter, we have derived the Harish-Chandra characters of the dS isometry

group, c.f. eq. 3.4.12, 3.4.19 and 3.4.20 for different UIRs. These expressions admit Taylor

expansions for small q with all Taylor coefficients taking values in positive integers. One might

immediately wonder about the physical meaning of the coefficients in the sense that if they count

any physical objects. In this chapter, we will show that these coefficients count quasinormal

modes in de Sitter spacetime by presenting an algebraic construction of de Sitter quasinormal

modes.

4.1 Introduction

In the framework of general relativity (GR), quasinormal modes can be defined as the damped

modes of some perturbation in a classical gravitational background with a horizon, like black

holes and dS. Astrophysically, they are important because the least damped gravitational quasi-

normal mode of a Schwarzschild black hole is detected and measured by LIGO through grav-

itational waves emitted during the so-called “ringdown” phase [76]. The measured value of

gravitational quasinormal frequency can be used to test GR which predicts that the spin and

mass of a black hole completely fix gravitational quasinormal frequencies.

One standard method of finding quasinormal modes in a generic background with a horizon is

solving the equation of motion for a perturbation, in most cases numerically, and then imposing

in-falling boundary condition at the horizon [77–80]. In the static patch of de Sitter spacetime,

c.f. (4.3.2), by separation of variables the radial parts of quasinormal modes are found to satisfy

hypergeometric functions and hence can be solved analytically (see [81–83] for a summary

and derivation of the analytical results associated to scalars, Dirac spinors, Maxwell fields and

linearized gravity in any dimensions). The underlying reason for the existence of these analytical
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solutions is the large dS isometry group which organizes quasinormal modes according to certain

representation structure. Such a representation structure was first discovered in [59, 60] for a

massive scalar field with mass m2 = ∆(3 − ∆), 0 < ∆ < 3 1 in dS4. In this case, the

quasinormal modes of the scalar field comprise two (non-unitary) lowest-weight representations

of the isometry algebra so(1, 4), which is also the conformal algebra of R3. More explicitly, the

authors built two lowest-weight/primary quasinormal modes of quasinormal frequency iω = ∆

and iω = ∆̄ = 3 − ∆ respectively, as the two leading asymptotic behaviors of vacuum-to-

vacuum bulk two-point function when one point pushed to the northern pole on the future

sphere. Upon each primary quasinormal mode, an infinite tower of quasinormal modes can

be generated as so(1, 4)-descendants and the scaling dimension of every descendant can be

identified as (i× quasinormal frequency). The two towers of quasinormal modes together span

the whole scalar quasinormal spectrum. These results were later reformulated by [84] in the

ambient space formalism and generalized to massive vector fields and Dirac spinors in the same

chapter. We’ll call the way of constructing quasinormal modes using the dS isometry group as

in [59, 60, 84] the algebraic approach.

The separation of variables method in [81, 83] is increasingly cumbersome when applied to

higher spin fields due to the rapidly increasing number of tensor structures. So in this chapter we

will focus on generalizing the algebraic approach to construct quasinormal modes of higher spin

fields, which are formulated in the ambient space (see section 4.2 for a review about the ambient

space formalism). In section 4.3, we first review the algebraic construction of quasinormal modes

of a scalar field φ of mass m in dSd+1 using the ambient space formalism. The quasinormal

spectrum found in this way can be packaged into a “quasinormal character”, cf. (4.5.1)

ΘQN ≡
∑
ω

dω q
iω (4.1.1)

where the sum runs over all quasinormal frequencies and dω is the degeneracy of quasinormal

modes with frequency ω. We show that the quasinormal character of φ is given by

ΘQN
φ (q) = q∆ + q∆̄

(1 − q)d , ∆̄ = d− ∆ (4.1.2)

1The representation carried by such a scalar field is in the (scalar) complementary series.
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where ∆ = d
2 +

√
d2

4 −m2 is the scaling dimension of φ. According to [64, 70, 75], ΘQN
φ (q) is

the Harish-Chandra SO(1, d+ 1) character corresponding to the unitary (scalar) principal series

when m > d
2 and the unitary (scalar) complementary series when 0 < m ≤ d

2 . The (∆ ↔ ∆̄)

symmetry in (4.1.2) manifests the two towers of quasinormal modes. The generalization of the

algebraic construction to massive higher spin fields is straightforward. The only difference is

that the two primary quasinormal modes have spin degeneracy. In this case, the quasinormal

character is given by eq. (4.5.4). However, the generalization to the massless higher spin case is

quite nontrivial because gauge symmetry significantly reshapes quasinormal spectrums compared

to the massive case. For example, the naive (∆ ↔ ∆̄) symmetry would lead to growing modes

instead of damped modes because ∆̄ = 2−s < 0 when s ≥ 3. Moreover the symmetry disagrees

with the result of [83] for s = 1, 2. On the representation side, the underlying reason for the

difficulty in generalization is that the massless higher spin fields are in the exceptional series

for d ≥ 4 and in the discrete series for d = 3 while generic massive fields are in the principal

series or the complementary series 2. In section 4.3.3, we’ll discuss the subtleties associated to

gauge symmetry in more detail and explain how to take into account gauge symmetry properly

while constructing physical quasinormal modes. In particular, the two-tower structure still holds

and the two primary quasinormal modes are given by eq.(4.3.37) and eq.(4.3.39). In addition,

in section 4.4, we argue that the two primary quasinormal modes are produced by insertions

of boundary gauge-invariant conserved currents (of scaling dimension d+ s− 2) and boundary

higher-spin Weyl tensors (of scaling dimension 2) at the southern pole of the past sphere (see

fig. 4.1.1). Other quasinormal modes are sourced by the descendants of these two operators.
Based on the algebraic construction described in section 4.3.3, we extract the physical

quasinormal spectrum of massless higher spin fields in section 4.5 and compute the corresponding
quasinormal character. Here, we list some examples at d = 3, 4, 5 (see eq. (4.5.12) for a general

2We exclude the partially massless fields while talking about massive fields.
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S N

F

P

Figure 4.1.1: The Penrose diagram of de Sitter spacetime. Quasinormal modes (in the southern static
patch “S”) of massless higher spin fields are sourced by certain gauge-invariant operators O inserted at
the southern pole of the past sphere.

expression working in any d):

d = 3 : ΘQN
s (q) = 2 (2s+ 1) q1+s − (2s− 1) q2+s

(1 − q)3

d = 4 : ΘQN
s (q) = 2 (2s+ 1) q2

(1 − q)4 (4.1.3)

d = 5 : ΘQN
s (q) = 1

3(s+ 1)(2s+ 1)(2s+ 3) q
2 − q3

(1 − q)5 + s+ 1
3

(s+ 2)(2s+ 3)qs+3 − s(2s+ 1)qs+4

(1 − q)5

These quasinormal characters coincide with the original computation of Harish-Chandra SO(1, d+

1) characters in [13, 75] and the characters appearing in the one-loop path integral of massless

higher spin fields on Sd+1, the Wick rotation of dSd+1 [2]. Therefore, the quasinormal charac-

ters, which are defined in a pure physics setup, connect nonunitary lowest-weight representations

of so(1, d+ 1) and the unitary representations of SO(1, d+ 1). In addition, in the appendix B.2,

we recover the quasinormal spectrum of Maxwell theory and linearized gravity in [83] by using

ΘQN
1 (q) and ΘQN

2 (q).

When d ≥ 4, the expansion of quasinormal character ΘQN
s (q) always starts from a q2 term

because it corresponds to a boundary higher-spin Weyl tensor insertion. When d = 3, ΘQN
s (q)

starts from q1+s since the spin-s Weyl tensor, which vanishes identically on the 3-dimensional

boundary, gets replaced by the co-called Cotton tensor [85–88], which involves (2s+1) derivatives

on the boundary gauge field of scaling dimension 2 − s.
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4.2 Ambient space formalism for fields in de Sitter

In this section, we review ambient space formalism for higher spin fields in (d+ 1)-dimensional

de Sitter spacetime, which is realized as a hypersurface

ηABX
AXB = 1, ηAB = (−,+, · · · ,+) (4.2.1)

in the ambient space R1,d+1, where A = 0, 1, · · · , d + 1. Local intrinsic coordinates yµ are

defined through an embedding XA(y) that satisfies (4.2.1) and such an embedding induces a

local metric ds2 = gµνdy
µdyν on dSd+1. To gain some intuitions about the ambient space

description in field theory, let’s consider a free scalar field φ(y), defined in the local coordinates

yµ, of mass m2 = ∆(d − ∆) and satisfying equation of motion: ∇2φ = m2φ with ∇2 being

the scalar Laplacian. This scalar field φ admits a unique extension ϕ(X) to the ambient space

such that

ϕ(λX) = λ−κϕ(X), ϕ(X(y)) = φ(y) (4.2.2)

where κ is an arbitrary constant. Define radial coordinate R =
√
X2 and hence any point in

the ambient space can be parameterized by (R, yµ) via a dS foliation. In terms of the radial

coordinate, the extension condition (4.2.2) can be rephrased as ϕ(X) = ϕ(R, yµ) = R−κφ(y)

and the ambient space Laplacian can be expressed as ∂2
X = 1

Rd+1∂R(Rd+1∂R) + 1
R2 ∇2, which

together with the equation of motion of φ, yields

∂2
Xϕ = 1

R2 (∆(d− ∆) − κ(d− κ))ϕ (4.2.3)

In particular, if we choose κ to be ∆ or ∆̄, ϕ(X) becomes a harmonic function in the ambient

space. Altogether, the scalar field φ(y) in dSd+1 of scaling dimension ∆ is equivalent to a

homogeneous harmonic function ϕ(X) in the ambient space R1,d+1, i.e.

(X · ∂X + κ)ϕ(X) = ϕ(X), ∂2
Xϕ(X) = 0 (4.2.4)
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where κ = ∆ or κ = ∆̄. The obvious technical advantage of this ambient space description

is replacing the cumbersome covariant derivative ∇µ by the simple ordinary derivative ∂XA .

Such a simplification is more crucial when we deal with higher spin fields. One can find a very

good review about the ambient space formalism for spinning fields in AdS in [89, 90]; also see

[91, 92] for a more general and systematic discussion using the Howe duality. Here we present

an adapted version of the ambient space description in dS.

4.2.1 Higher spin fields in ambient space formalism

The totally symmetric transverse (on-shell) spin-s field φµ1...µs(y) of scaling dimension ∆ in

dSd+1 is represented uniquely in ambient space by the symmetric tensor ϕA1...As(X),

φµ1···µs(y) = ∂XA1

∂yµ1
· · · ∂X

As

∂yµs
ϕA1···As(X) (4.2.5)

satisfying the following equations:

• Tangentiality to surfaces of constant R =
√
X2:

(X · ∂U )ϕs(X,U) = 0 (4.2.6)

• The homogeneity condition:

(X · ∂X + κ)ϕs(X,U) = 0 (4.2.7)

A convenient choice is κ = ∆ or κ = ∆̄ because, as we’ve seen in the scalar case, it yields

the simplest equation of motion as follows:

• The Casimir condition, i.e. equation of motion

(∂X · ∂X)ϕs(X,U) = 0 (4.2.8)

• The transverse condition:

(∂X · ∂U )ϕs(X,U) = 0 (4.2.9)



69

• The traceless condition:

(∂U · ∂U )ϕs(X,U) = 0 (4.2.10)

where we’ve used the generating function ϕs(X,U) ≡ 1
s!ϕA1···As(X)UA1 · · ·UAs with UA being

a constant auxiliary vector. The first two conditions ensure that ϕs(X,U) is the unique uplift

of φµ1···µs that satisfies (4.2.5) and the last three conditions are equivalent to the Fierz-Pauli

system:

The Casimir condition : ∇2φµ1···µs = (∆(d− ∆) + s)φµ1···µs (4.2.11)

The transverse condition : ∇µ1φµ1···µs = 0 (4.2.12)

The traceless condition : gµ1µ2φµ1···µs = 0 (4.2.13)

In the remaining part of the chapter, we’ll call (4.2.6)-(4.2.7) the uplift conditions and (4.2.8)-

(4.2.10) the Fierz-Pauli conditions.

When φµ1···µs is a massless spin-s bulk field, the uplift conditions and Fierz-Pauli conditions

have a gauge symmetry, with the gauge transformation takes the following simple form if we

choose κ = 2 − s = ∆̄ in eq. (4.2.7):

δξs−1ϕs(X,U) = (U · ∂X) ξs−1(X,U) (4.2.14)

where ξs−1 satisfies

• Tangentiality to surfaces of constant R =
√
X2:

(X · ∂U ) ξs−1(X,U) = 0 (4.2.15)

• The homogeneity condition:

(X · ∂X + 1 − s)ξs−1(X,U) = 0 (4.2.16)
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• The Casimir condition:

(∂X · ∂X) ξs−1(X,U) = 0 (4.2.17)

• The transverse condition:

(∂X · ∂U ) ξs−1(X,U) = 0 (4.2.18)

• The traceless condition:

(∂U · ∂U ) ξs−1(X,U) = 0 (4.2.19)

In the intrinsic coordinate language, this set of equations implies that ξs−1 is a transverse

traceless symmetric spin-(s − 1) field on dSd+1 satisfying on-shell equation of motion (∇2 −

(s− 1)(s+ d− 2))ξs−1 = 0, where spin indices are suppressed.

4.2.2 Isometry group in ambient space formalism

The isometry group SO(1, d + 1) of dSd+1 acts linearly on fields in the ambient space R1,d+1.

In particular, the generators LAB are realized as linear differential operators in both X and U :

LAB = (XA∂XB −XB∂XA) + (UA∂UB − UB∂UA) (4.2.20)

where the first term corresponds to orbital angular momentum and the second term represents

spin angular momentum. The action of Mij , Pi,Ki, D induced by (4.2.20) is

Mij = Xi∂Xj −Xj∂Xi + Ui∂Uj − Uj∂U i (4.2.21)

Ki = X+∂Xi + 2Xi∂X− + U+∂U i + 2Ui∂U− (4.2.22)

Pi = −X−∂Xi − 2Xi∂X+ − U−∂U i − 2Ui∂U+ (4.2.23)

D = −X+∂X+ +X−∂X− − U+∂U+ + U−∂U− (4.2.24)

where we’ve used lightcone coordinates X± ≡ X0 ±Xd+1 and U± ≡ U0 ± Ud+1.
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With a little algebra, one can show that all LAB commute with the following set of differential

operators:

X · ∂U , X · ∂X , ∂2
X , ∂X · ∂U , ∂2

U , U · ∂X (4.2.25)

The first five operators define the uplift conditions and Fierz-Pauli conditions, cf. (4.2.6)-

(4.2.10), and hence the commutation relations imply that the on-shell bulk fields carry represen-

tations of so(1, d+ 1). The last operator defines the gauge transformation of a massless higher

spin field and therefore one implication of [LAB, U · ∂X ] = 0 is that the descendants of a pure

gauge mode are also pure gauge. This observation is crucial when we construct quasinormal

modes for massless higher spin fields.

4.3 Algebraic construction of quasinormal modes

The southern static patch of de Sitter spacetime, which corresponds to the region denoted by

“S” in the fig. (4.1.1), has coordinates

X0 =
√

1 − r2 sinh t, Xi = rΩi, Xd+1 =
√

1 − r2 cosh t (4.3.1)

and shows a manifest spherical horizon at r = 1 or ρ = ∞ in its metric

ds2 = −(1 − r2)dt2 + dr2

1 − r2 + r2dΩ2

= −dt2 + dρ2

cosh2 ρ
+ tanh2 ρ dΩ2 (4.3.2)

where r = tanh ρ and dΩ2 = habdϑ
adϑb is the standard metric on Sd−1 (ϑa are spherical

coordinates on Sd−1). The traditional analytical approach to quasinormal requires solving the

equation of motion in bulk and imposing in-falling boundary condition, i.e. e−iωQN(t−ρ), for the

leading asymptotic behavior near the horizon at ρ = ∞.

An algebraic method of solving quasinormal modes was first used for scalar fields in dS4 in

[59, 60]. In particular, the authors found that all the quasinormal modes fall into two lowest-

weight representations of the conformal algebra so(1, d + 1). Therefore, it suffices to find the
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two lowest-weight/primary quasinormal modes, which are solutions to the equation of motion

and are annihilated by Ki, and the rest of the quasinormal spectrum can be generated as

descendants of them. In this section, we will first reformulate this scalar story using the ambient

space formalism and then generalize it to higher spin fields.

4.3.1 Scalar fields

Let φ(X) be a free scalar field of mass m2 = ∆(d − ∆) > 0 in dSd+1. By construction, the

equation of motion (∇2 −m2)φ = 0 is satisfied by the boundary-to-bulk propagators, which in

ambient space take the following form:

α∆(X; ξ) = 1
(X · ξ)∆ , β∆(X; ξ) = 1

(X · ξ)∆̄
(4.3.3)

where ξA is a constant null vector in R1,d+1 representing a point on the future/past boundary

of dSd+1. Treating α∆ and β∆ as mode functions in XA, they are primary with respect to the

conformal algebra so(1, d + 1) if X · ξ = X+, because Ki only involves derivatives ∂Xi and

∂X− while acting on scalar fields (cf. (4.2.21)). By choosing ξA = (−1, 0, · · · , 0, 1) which is

the southern pole of the past sphere, we obtain the two primary quasinormal modes

α∆(X) = 1
(X+)∆ = (cosh ρ)∆e−∆ t ρ→∞⇝ e−∆(t−ρ)

β∆(X) = 1
(X+)∆̄

= (cosh ρ)∆̄e−∆̄ t ρ→∞⇝ e−∆̄(t−ρ) (4.3.4)

with quasinormal frequency iωα = ∆ and iωβ = ∆̄ respectively. The rest quasinormal modes

can be realized as descendants of α∆(X) and β∆(X). Though not explicitly spoken out in

[59, 60], this claim actually relies on two facts: (a) Pi preserves the equation of motion and (b)

Pi preserves the in-falling boundary condition near horizon. The former is obvious as we’ve seen

at the end of last section that the SO(1, d+1) action preserves uplift conditions and Pauli-Fierz

conditions. The latter holds because Pi is dominated by −2Xi∂X+ near horizon, where Xi ≈ Ωi

and X+ ≈ 2 et−ρ. With the quasinormal modes known, we need to figure out the corresponding

frequency. This is quite straightforward in our formalism. By construction, each quasinormal

mode is an eigenfunction of the dilatation operator D, which is just −∂t in the static patch.
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Using the in-falling boundary condition e−iωQN(t−ρ) near horizon, we can identify the scaling

dimension, i.e. eigenvalue with respect to D, as i× (quasinormal frequency ωQN). For example,

a descendant of α∆ at level n is a quasinormal mode of frequency ωQN = −i(∆ + n) and

similarly for β∆.

To end the discussion about scalar quasinormal modes, let’s compare our construction with

the known result in literature. For example, in [83], the scalar quasinormal modes in dSd+1 are

found to be

φQN
ω (t, r,Ω) = rℓ(1 − r2)

iω
2 F

(
ℓ+ iω + ∆

2 ,
ℓ+ iω + ∆̄

2 ,
d

2 + ℓ, r2
)
Yℓm(Ω)e−iωt (4.3.5)

where Yℓm(Ω) denote spherical harmonics on Sd−1 and the quasinormal frequency ω takes the

following values

ωℓ,n = −i(∆ + ℓ+ 2n), ω̄ℓ,n = −i(∆̄ + ℓ+ 2n), ℓ, n ∈ N (4.3.6)

For fixed ℓ and n, the quasinormal modes of frequency ωℓ,n or ω̄ℓ,n have degeneracy Dd
ℓ , i.e.

the dimension of the spin-ℓ representation of SO(d). In particular, the two quasinormal modes

corresponding to ℓ = n = 0 are

φQN
ω0,0 = 1√

Ad−1

e−∆t

(1 − r2)
∆
2

= 1√
Ad−1

(cosh ρ)∆e−∆t

φQN
ω̄0,0 = 1√

Ad−1

e−∆̄t

(1 − r2)
∆̄
2

= 1√
Ad−1

(cosh ρ)∆̄e−∆̄t (4.3.7)

where Ad−1 is the area of Sd−1. Apart from the normalization constant, these two quasinormal

modes are exactly the primary quasonormal modes α∆ and β∆ respectively. In addition to the

match of the primary quasinormal modes, we can also show that the algebraic construction

reproduces the quasinormal spectrum (4.3.6). Define P =
√
PiPi and P̂i = P−1Pi. Then the

linear independent descendants of α∆ are of the form P 2n+ℓYℓm(P̂ )α∆ with ℓ, n ∈ N. For

fixed ℓ and n, these are quasinormal modes corresponding to ωℓ,n. Similarly P 2n+ℓYℓm(P̂ )β∆

represents quasinormal modes corresponding to ω̄ℓ,n.
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4.3.2 Massive higher spin fields

As in the scalar case, we need to start from a solution of the Pauli-Fierz conditions (4.2.8)-

(4.2.10), subject to the tangential condition and homogeneous condition. A natural candidate

is the higher spin boundary-to-bulk propagator. In AdS, the boundary-to-bulk propagator of a

spin-s field with a generic scaling dimension ∆(̸= d+ s− 2) is given by [90, 93, 94]

KAdS
[∆,s](X,U ; ξ, Z) = [(U · Z)(ξ ·X) − (U · ξ)(Z ·X)]s

(X · ξ)∆+s (4.3.8)

where the null vector ξ ∈ R1,d+1 represents a boundary point and the null vector Z ∈ C1,d+1,

satisfying ξ · Z = 0, encodes the boundary spin. KAdS
[∆,s] in (4.3.8) scales like KAdS

[∆,s](λX) =

λ−∆KAdS
[∆,s](X), which is the analogue of κ = ∆ in eq. (4.2.7). In AdS, this scaling property

corresponds to the choice of ordinary boundary condition. In dS, on the other hand, both

near-boundary fall-offs of a bulk field are dynamical and hence there are two boundary-to-bulk

propagators

KdS
[κ,s](X,U ; ξ, Z) = [(U · Z)(ξ ·X) − (U · ξ)(Z ·X)]s

(X · ξ)κ+s (4.3.9)

where κ ∈ {∆, ∆̄}. Notice that Ki in (4.2.21) doesn’t involve any derivative with respect to

X+ or U+. So we can obtain primary mode functions from KdS
[κ,s](X,U ; ξ, Z) by putting ξA at

the southern pole of the past sphere, i.e. ξA = (−1, 0, · · · , 0, 1) and choosing ZA = (0, zi, 0),

where zi itself is a null vector in Cd:

α[∆,s] = Φs

(X+)∆ , β[∆,s] = Φs

(X+)∆̄
(4.3.10)

where Φ = X+u · z − U+x · z (despite the lower case x and u, indeed xi ≡ Xi and ui ≡ U i).

α[∆,s] and β[∆,s] are clearly primary quasinormal modes since in-falling boundary condition near

horizon naturally follows from the lack of dependence on X− and U−. Given the two primary

quasinormal modes, the whole quasinormal spectrum can be generated by acting Pi on them

repeatedly. In this sense, the algebraic construction of quasinormal modes for massive higher

spin fields is a straightforward generalization of the scalar case. Before moving to massless
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higher spin fields, we want to emphasize that rigorously speaking, “α[∆,s]” or “β[∆,s]” is not one

primary quasinormal mode because varying zi would yield different quasinormal modes. Indeed,

α[∆,s] represents a collection of quasinormal modes with the same frequency and the vector

space spanned by these quasinormal modes furnishes a spin-s representation of SO(d). But for

convenience, in most part of the chapter, we’ll stick to the misnomer by calling, say α[∆,s], the

α-mode.

4.3.3 Massless higher spin fields

When ∆ hits d−2+s, i.e. the massless limit, KAdS
[∆,s] still holds as a boundary-to-bulk propagator

in the so-called de Donder gauge [90, 93]. So we can extract de Sitter primary quasinormal

modes, in de Donder gauge, from KAdS
[∆,s] as in the massive case:

α-mode : α(s)(X,U ; z) = Φs

(X+)2

(
R

X+

)d+2(s−2)

β-mode : β(s)(X,U ; z) = Φs

(X+)2 (4.3.11)

where the SO(1, d + 1)-invariant R =
√
X2 is inserted in α(s) 3 so that it can have the same

scaling property as β(s), which corresponds to κ = 2−s in (4.2.7). With this choice of κ, gauge

transformation acts in the same way on both modes, schematically δα(s) = U · ∂X(· · · ) and

δβ(s) = U · ∂X(· · · ).

Naively, one would expect (4.3.11) to be the end of story since we can generate the rest

quasinormal modes as descendants of α(s) and β(s), just as in the massive case. However, this

expectation is only partially correct because, as we’ll show in the following, the quasinormal

spectrum is significantly affected by gauge symmetry in the massless case compared to its

massive counterpart. For example, the β(s)-mode has quasinormal frequency iω = 2 − s, which

would lead to an exponentially growing rather than damped behavior at future for s ≥ 3. Gauge

symmetry should be the only cure for this pathological growth and indeed, we do find that the

3Including Rd+2(s−2) doesn’t spoil the Fierz-Pauli conditions (4.2.8)-(4.2.10).
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β-mode is pure gauge for any s ≥ 1:

β(s) = U · ∂X (ξs−1) , ξs−1 = Φs−1x · z
X+ (4.3.12)

where the gauge parameter ξs−1 can be realized as a descendant of another mode in the following

sense:

ξs−1 = (z · P )ηs−1, ηs−1 = −1
2Φs−1 logX+ (4.3.13)

As a result, all the quasinormal modes in the β-tower are unphyical. The α-mode itself is not

pure gauge but it has some pure-gauge descendants:

P · D α(s) = s(s+ d− 3)
d
2 + s− 2

U · ∂X

[
Φs−1

(
R

X+

)d+2s−2
]

(4.3.14)

where Di is defined in the eq. (3.3.7). If we write out the indices explicitly, (4.3.14) means

Pi1α
(s)
i1···is(X,U) = 0 up to gauge transformation, which is the reminiscence of a spin-s conserved

current.

In the remaining part of this section, we’ll show that although the β-tower of quasinormal

modes gets killed by gauge transformation, there exist a brand new tower of physical quasinormal

modes.

4.3.3.1 Maxwell fields

The primary β-mode of a massless spin-1 field is β(1)
i = Φi

(X+)2 , where Φi = X+ui − U+xi. It

is pure gauge and the corresponding gauge parameter takes a very special form

β
(1)
i = U · ∂X (Pi η0) (4.3.15)

where η0 is given by eq. (4.3.13) with s = 1. Since so(1, d + 1) action commutes with gauge

transformation, we can switch the order of Pi and U · ∂X in β(1)
i :

β
(1)
i = Pi (U · ∂X η0) (4.3.16)
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This new expression of β(1)
i inspires the following crucial observation. Treating β(1)

i as a vector

field indexed by i and treating Pi as an ordinary derivative like ∂i, then β(1)
i can be thought as

a “pure gauge” mode with the gauge parameter being U · ∂X η0. (We want to emphasize that

this gauge symmetry structure is completely different from the bulk gauge symmetry, which

takes the form δ(· · · ) = U · ∂X(· · · ). To distinguish it from the bulk gauge symmetry, we

call it a “pseudo” gauge symmetry and its connection with the boundary gauge transformation

will be discussed in section 4.4.2). Since β(1)
i is pure gauge with respect to the pseudo gauge

symmetry, the (pseudo) field strength Fij ≡ Piβ
(1)
j −Pjβ

(1)
i vanishes identically. The vanishing

of Fij signals a potential way to obtain the new physical quasinormal modes, which will be

implemented step by step as follows:

• First, we define a different β-mode β̂(1)
i by deforming the scaling dimension of β(1)

i from

1 to ∆ − 1:

β̂
(1)
i (X,U) ≡ Φi

(X+)∆ =
(
X+

)2−∆
β

(1)
i , ∆ ̸= 2 (4.3.17)

From the bulk field theory point of view, it amounts to giving a mass term to the Maxwell

field to break the bulk U(1) gauge symmetry.

• Then the new pseudo field strength F̂ij ≡ Piβ̂
(1)
j − Pj β̂

(1)
i is nonvanishing

F̂ij = 2(∆ − 2)xi uj − ui xj
(X+)∆ (4.3.18)

• Stripping off the numerical factor 2(∆ − 2) and taking the limit ∆ → 2 for the remaining

part, we obtain a new non-pure-gauge mode function that is antisymmetric in i, j

γ
(1)
ij (X,U) ≡ xi uj − ui xj

(X+)2 = 1
2

(
Pi

uj
X+ − Pj

ui
X+

)
(4.3.19)

It’s straightforward to check that γ(1)
ij satisfies all the requirements of being a quasinormal

mode of frequency iω = 2. Written in the form of (4.3.19), γ(1)
ij looks like a descendant of

ui
X+ . However, this descendant structure doesn’t have any physical meaning because ui

X+ fails to
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satisfy the tangentiality condition (4.2.6). Actually, γ(1)
ij is a primary up to gauge transformation:

Kkγ
(1)
ij = U · ∂X

(
δikxj − δjkxi

X+

)
(4.3.20)

Therefore, γ(1)
ij is a physical primary quasinormal mode and we will call the whole Verma module

built from γ
(1)
ij the “γ-tower” of quasinormal modes.

In the framework of pseudo gauge symmetry, γ(1)
ij can be thought as a U(1) field strength

with ui
X+ being the gauge potential. As a field strength, γ(1)

ij satisfies Bianchi identity P[iγ
(1)
jk] = 0

which imposes a nontrivial constraint on the descendants of γ(1)
ij . When d = 3, the field strength

γ
(1)
ij is dual to a vector γ̃(1)

i and the Bianchi identity is equivalent to a conservation equation

Piγ̃
(1)
i = 0. In this case, the representation structure of the γ-tower is exactly the same as the

α-tower.

We’ll leave the comparison with intrinsic coordinate computation of quasinormal modes of

Maxwell theory to appendix B.1.

4.3.3.2 Linearized gravity

d ≥ 4

The primary β-mode associated to a massless spin-2 field is β(2) = Φ2

(X+)2 . According to eq.

(4.3.12) and (4.3.13), β(2) can be alternatively expressed as

β
(2)
ij = Pi

(
U · ∂X ηj1

)
+ Pj

(
U · ∂X ηi1

)
− trace (4.3.21)

where the null vectors z in β(2) are stripped off. Treating Pi as an ordinary derivative, the

first two terms in β(2)
ij have the form of diffeomorphism transformation of (Euclidean) linearized

gravity in Rd. Given this pseudo diffeomorphism structure, we can naturally kill these two terms

by considering the (pseudo) linearized Riemann tensor R[β(2)]ijkℓ , which is defined as

R[β(2)]ijkℓ ≡ 1
2
(
PjPkβ

(2)
iℓ + PiPℓβ

(2)
jk − PiPkβ

(2)
jℓ − PjPℓβ

(2)
ik

)
(4.3.22)

The remaining pure trace term in β
(2)
ij drops out by projecting R[β(2)]ijkℓ to the “linearized

Weyl tensor” C[β(2)]ijkℓ which is defined as the traceless part R[β(2)]ijkℓ and carries the
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representation of SO(d). By construction, C[β(2)]ijkℓ would vanish just as the U(1) field strength

Fij in the spin-1 case. Due to this similarity, it’s quite natural to expect the new spin-2 physical

primary quasinormal mode will be produced by the same “deformation+ limiting” procedure,

whose steps are listed here again for readers’ convenience: (a) deform the β(2) mode by sending

it to β̂(2) ≡ Φ2

(X+)∆ = (X+)2−∆β(2), (b) compute the Weyl tensor C[β̂(2)]ijkℓ associated to β̂(2),

(c) strip off the overall factor (∆−2) in C[β̂(2)]ijkℓ and take the limit ∆ → 2 for the remaining

part. To show the limiting procedure (c) more explicitly, expand, for instance, the first term in

R[β̂(2)]:

PjPkβ̂
(2)
iℓ = 2(∆ − 2)β(2)

iℓ Pj
xk

(X+)∆−1 + 2(∆ − 2)
x(k Pj)β

(2)
iℓ

(X+)∆−1 + PjPkβ
(2)
iℓ

(X+)∆−2 (4.3.23)

where the convention for symmetrization is x(k Pj) = xk Pj + xj Pk. The last term in (4.3.23)

does not contribute to the Riemann tensor R[β̂(2)] and we’ll drop it henceforth. The remaining

terms are proportional to ∆−2, so the limiting procedure is applicable to them

lim
∆→2

PjPkβ̂
(2)
iℓ

∆ − 2 = Pj

(2xk
X+

)
β

(2)
iℓ + 2xk

X+ Pjβ
(2)
iℓ + 2xj

X+ Pkβ
(2)
iℓ

= PjPk(− log(X+)β(2)
iℓ ) + log(X+)PjPk β

(2)
iℓ (4.3.24)

where the last term drops out from Riemann tensor R[β̂(2)]. Therefore the new physical quasi-

normal mode is schematically

γ
(2)
ijkℓ(X,U) ≡ C[h]ijkℓ, hij = − log(X+)β(2)

ij (4.3.25)

which has scaling dimension 2 (or quasinormal frequency iω = 2) and carries the represen-

tation of SO(d). The primariness of γ(2)
ijkℓ is proved in appendix B.3.

d = 3

The d = 3 case is degenerate and requires a separate discussion because the 3D Weyl

tensor C[β̂(2)]ijkℓ vanishes identically for arbitrary choice of ∆. So the deformation and limiting

procedure used above fails to yield any quasinormal mode when d = 3. The solution to this

problem is using Cotton tensor, the 3D analogue of Weyl tensor. On a 3-dimensional Riemann
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manifold with metric gij , the Cotton tensor is given by [85, 86]

Cji [g] = ∇k

(
Riℓ − 1

4Rgiℓ
)
ϵkℓj (4.3.26)

and the vanishing of Cotton tensor is the necessary and sufficient condition for the 3-dimensional

manifold to be conformally flat. (In spite of the abuse of notation C, it will be clear from the

context that C means Weyl tensor when d ≥ 4 and means Cotton tensor when d = 3). At the

linearized level, i.e. gij = δij + ϕij , the Cotton tensor becomes

C[ϕ]ij = ∂kRiℓ[ϕ]ϵkℓj − 1
4ϵkij∂kR[ϕ] (4.3.27)

where R[ϕ]ij , R[ϕ] are linearized Ricci tensor and linearized Ricci scalar respectively. In addition,

the linearized Cotton tensor is actually symmetric in i, j which can be checked by contracting

it with ϵijm

C[ϕ]ijϵijm = 1
2∂mR[ϕ] − ∂iRim = 0 (4.3.28)

where the last step is a well-known result of Bianchi identity of Riemann tensor. Since C[ϕ]ij is

symmetric and traceless, it will be convenient to restore the null vector z

C[ϕ; z] = ∂kRiℓ[ϕ]ϵkℓj zi zj = 1
2ϵkℓj(∂i∂k∂mϕmℓ − ∂2∂kϕiℓ) zi zj (4.3.29)

In the context of quasinormal modes, we can similarly construct a pseudo Cotton tensor with

ordinary derivative ∂i in eq. (4.3.29) replaced by momentum operator Pi

C[ϕ; z] = 1
2ϵkℓj(PiPkPmϕmℓ − P 2Pkϕiℓ) zi zj (4.3.30)

Because Cotton tensor is invariant under diffeomorphism and local Weyl transformation by

construction, C[ϕ; z] vanishes exactly when ϕ = β(2). As a result, applying the deformation and

limiting procedure to the Cotton tensor C[β(2); z] would yield a new physical primary quasinormal
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mode

γ(2)(X,U ; z) = z · (x ∧ u)
(X+)3 (X+U− x · z −X+X− u · z + x2 u · z − (u · x)(x · z)) (4.3.31)

where (x ∧ u)i = ϵijkxjuk. Compared to higher dimensional cases, γ(2) in d = 3 is differ-

ent mainly in two ways: (a) it has scaling dimension 3 because Cotton tensor involves three

derivatives while Weyl tensor only involves 2, (b) it carries a spin-2 representation of SO(3)

and the Bianchi identity in higher dimension becomes a “conservation” equation Piγ
(2)
ij = 0.

Due to these two properties, the γ(2)-tower of quasinormal modes in dS4 is isomorphic to the

α(2)-tower.

4.3.3.3 Massless higher spin fields

With the spin-1 and spin-2 examples worked out explicitly, we’ll continue to show that for any

massless higher spin field, there exist the primary γ-mode. For a massless spin-s field, the

primary β-mode given by eq. (4.3.12) and (4.3.13) can be written as

β
(s)
i1···is = P (i1U · ∂Xηi2···is)

s−1 − trace (4.3.32)

Treating P i as an ordinary derivative, apart from the pure trace part, β(s) has the form of gauge

transformation of d-dimensional linearized spin-s gravity. Such gauge transformation can be

eliminated by using the higher spin Riemann tensor

R[ϕ]i1ℓ1,··· ,isℓs ≡ ΠssPi1 · · ·Pisϕℓ1···ℓs (4.3.33)

where Πss is a projection operator ensuring R[ϕ]i1ℓ1,··· ,isℓs carries the Yss representation of

GL(d,R). More explicitly, Πss can be realized by antisymmetrizing the s pairs of indices:

[i1, ℓ1], · · · [is, ℓs] [87, 95]. The higher spin Weyl tensor C[ϕ]i1ℓ1,··· ,isℓs is defined as the traceless

part of R[ϕ]i1ℓ1,··· ,isℓs and thus it carries the Yss representation of SO(d) 4. Since Weyl tensor

4For simplicity, we assume d ≥ 4 so the higher spin Weyl tensor is nonvanishing. When d = 3, we should use
higher spin Cotton tensor Ci1···is [87, 88] that is symmetric and traceless. The Bianchi identity for Cotton tensor
is a conservation equation Pi1 Ci1···is = 0. In addition, the definition of Cotton tensor involves 2s− 1 momentum
operators and hence the associated primary γ-mode would have scaling dimension 1 + s instead of 2.



82

is invariant under diffeomorphism and local Weyl transformation, C[β(s)] vanishes exactly. Thus

we can apply the deformation procedure to it and obtain the following quasinormal mode

γ
(s)
i1ℓ1,···isℓs(X,U) ≡ C[h(s)]i1ℓ1,··· ,isℓs , h

(s)
ℓ1···ℓs = − log(X+)β(s)

ℓ1···ℓs (4.3.34)

In appendix B.3, we show that γ(s)
i1ℓ1,··· ,isℓs represents Dd

ss primary quasinormal modes of scaling

dimension 2 that carry Yss representation of SO(d), where Dd
ss is the dimension of the Yss

representation. In the same appendix, we also show that these primary quasinormal modes can

alternatively be expressed in the following form

γ(s)(X,U) = Tss(x, u)
(X+)2 (4.3.35)

where Tss(x, u) is a homogeneous polynomial in both x and u of degree s and satisfies (B.3.10).

The space of such Tss carries the Yss representation of SO(d) [96]. One obvious example of

Tss is

Tss(x, u) =
[
(x1 + ix2)(u3 + iu4) − (x3 + ix4)(u1 + iu2)

]s
(4.3.36)

In the representation language, the example given by eq. (4.3.36) is actually the lowest-weight

state in Yss. Therefore, we are able to generate the whole γ-tower by acting Pi and Mij on the

following quansinormal mode:

γ
(s)
lw (X,U) =

[
(X1 + iX2)(U3 + iU4) − (X3 + iX4)(U1 + iU2)

]s
(X+)2 (4.3.37)

This is a strikingly universal expression that works for any s ≥ 1 and d ≥ 4. In static patch
coordinate, the nonvanishing components of (4.3.37) are

γ
(s)
lw,a1···as

(t, r,Ω) = r2se−2 t

(1 − r2) (Ω12∂ϑa1 Ω34 − Ω34∂ϑa1 Ω12) · · · (Ω12∂ϑas Ω34 − Ω34∂ϑas Ω12) (4.3.38)

where Ω12 = Ω1 + iΩ2 and Ω34 = Ω3 + iΩ4. One can check that the Ω-dependent part of

(4.3.38) is actually a divergence-free spin-s tensor harmonics on Sd−1. This is also expected

from the representation side because these tensor harmonics also furnish the Yss representation
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of SO(d).

For the completeness of the final result, we also give the unique lowest-weight state in the

α(s)-tower here

α
(s)
lw (X,U) =

[
X+(U1 + i U2) − U+(X1 + iX2)

]s
(X+)2

(
R

X+

)d+2(s−2)
(4.3.39)

Then all the quasinormal modes are built from α
(s)
lw (cf. (4.3.39)) and γ(s)

lw (cf. (4.3.37)) with

the action of Pi and Mij .

4.4 Quasinormal modes from a QFT point of view

In the previous section, we presented a pure algebraic method to construct quasinormal modes

of scalars and higher spin fields. In this section, we’ll provide a simple physical picture for this

method from a bulk QFT point of view. In particular, we’ll use scalar fields and Maxwell fields

to illustrate this intuitive picture explicitly and then give a brief comment on general massless

higher spin fields. Through out this section, the bulk quantum fields are defined in the southern

past planar coordinate (η, yi) of dSd+1 (the region “S”+“P” in fig. (4.1.1)):

X0 = 1 + y2 − η2

2η , Xi = −yi

η
, Xd+1 = −1 − y2 + η2

2η (4.4.1)

where η < 0 and the quasinormal modes are still defined in the southern static patch, which

corresponds to y < −η in eq. (4.4.1).

4.4.1 Scalar fields

Let φ be a scalar field of scaling dimension ∆. Near the past boundary, it has the following

asymptotic behavior

φ(η, y) ≈ (−η)∆O(α)(y) + (−η)∆̄O(β)(y) (4.4.2)
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Define quantum operators LAB such that LABφ = −[LAB, φ]. Then O(α) and O(β) are primary

operators in the sense that

[D,O(α)(0)] = ∆O(α)(0), [Ki,O(α)(0)] = 0

[D,O(β)(0)] = ∆̄O(β)(0), [Ki,O(β)(0)] = 0 (4.4.3)

The bulk two-point function of φ defined with respect to the Euclidean vacuum |E⟩ is given by

[97]

⟨E|φ(X)φ(X ′)|E⟩ = Γ(∆)Γ(∆̄)
(4π)

d+1
2 Γ(d+1

2 )
F

(
∆, ∆̄, d+ 1

2 ,
1 + P

2

)
(4.4.4)

where P = X · X ′. We push X ′ to the past southern pole, i.e. y′i = 0 and η′ → 0−, then

P is approximately −X+

2η′ → ∞. For P → ∞, the hypergeometric function in (4.4.4) has two

leading asymptotic behaviors: P−∆ and P−∆̄. Schematically, it means

⟨E|φ(X)φ(η′ → 0, y′i = 0)|E⟩ ≈ c∆
(−η′)∆

(X+)∆ + c∆̄
(−η′)∆̄

(X+)∆̄
(4.4.5)

where c∆ and c∆̄ are two constants. Comparing the eq. (4.4.2) and eq. (4.4.5), we find that

⟨E|φ(X)O(α)(0)|E⟩ produces the primary quasinormal mode α∆(X) and ⟨E|φ(X)O(β)(0)|E⟩

produces the primary quasinormal mode β∆(X). Altogether, the scalar primary quasinormal

modes in southern static patch can be produced by inserting primary operator O(α) or O(β) at

the southern pole of the past sphere and other quasinormal modes can be produced by inserting

descendants of O(α) or O(β).

4.4.2 Maxwell fields

We want to derive the two primary quasinormal modes of Maxwell field in dS4 using local

operators. First, let’s pull back α(1)
i and γ(1)

ij to planar patch coordinates.

The α-mode:

α
(1)
i,η = 2 yi η2

(η2 − y2)3 , α
(1)
i,j = −η(2 yi yj + δij (η2 − y2))

(η2 − y2)3 (4.4.6)
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For later convenience, we perform a gauge transformation to kill the timelike component, which

can be done by choosing the following gauge parameter 5

ξ = yi
4 y3

(
y η(η2 + y2)
(η2 − y2)2 − 1

2 log η + y

η − y

)
(4.4.7)

The resulting spatial part of α(1)
i becomes

α̃
(1)
i,j =

(
∂yi∂yj − δij∂

2
y

) log η+y
η−y

8 y (4.4.8)

The γ-mode:

γ
(1)
ij,η = 0, γ

(1)
ij,k = yi δjk − yj δik

(η2 − y2)2 (4.4.9)

The timelike component is automatically vanishing.

Next, we do a mode expansion for a Maxwell field Aµ in the Coulomb gauge [40]:

Ai(η, y) = −
∫

d3k

(2π)3

(
O(α)
i (k) sin(kη)

k
− O(β)

i (k) cos(kη)
)
e ik·y (4.4.10)

where the two primary operators O(α)
i ,O(β)

i capture the leading asymptotic behavior of Ai near

the past boundary

Ai(η → 0−, y) ≈ (−η) O(α)
i (y) + O(β)

i (y) (4.4.11)

5Since quasinormal modes are still defined in the static patch, which corresponds to η + y < 0, we are away
from the branch cut of logarithm and the gauge parameter is real.
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They also satisfy the following vacuum two-point functions in momentum space:

⟨E|O(β)
i (k)O(β)

j (k′)|E⟩ = 1
2k

(
δij − kikj

k2

)
(2π)3δ3(k + k′)

⟨E|O(α)
i (k)O(β)

j (k′)|E⟩ = i

2

(
δij − kikj

k2

)
(2π)3δ3(k + k′)

⟨E|O(α)
i (k)O(α)

j (k′)|E⟩ = k

2

(
δij − kikj

k2

)
(2π)3δ3(k + k′)

⟨E|O(β)
i (k)O(α)

j (k′)|E⟩ = − i

2

(
δij − kikj

k2

)
(2π)3δ3(k + k′) (4.4.12)

Like in the scalar case, we insert the primary operator O(α)
i at the southern pole of the past

sphere and it produces a mode in the bulk:

⟨E|Ai(η, y)O(α)
j (0)|E⟩ = − i

2

∫
d3k

(2π)3

(
δij − kikj

k2

)
eik·y−ikη

= − i

4π2 (∂yi∂yj − δij∂
2
y)
∫ ∞

0

dk

k y
sin(k)e−i η

y
k (4.4.13)

where the integral over k depends on the relative size of y and −η because 6

∫ ∞

0

dk

k
sin(k)ei a k =


i
2 log a+1

a−1 , |a| > 1

π
2 + i

2 log 1+a
1−a , |a| < 1

(4.4.14)

In a physical picture, the jumping at |a| = 1 reflects horizon crossing. For quasinormal modes

defined in southern static patch, which has y < −η, the k-integral in (4.4.13) corresponds to

the top case of (4.4.14):

⟨E|Ai(η, y)O(α)
j (0)|E⟩ = (∂yi∂yj − δij∂

2
y)
( −1

8π2y
log η + y

η − y

)
(4.4.15)

Up to normalization, we precisely reproduce the α(1)
i quasinormal mode given by (4.4.8). Simi-

6The two cases can be uniformly treated if we give a a small positive imaginary part, i.e. a → a + iϵ, ϵ > 0.
With this iϵ prescription, i

2 log a+iϵ+1
a+iϵ−1 works for both cases. In bulk, it amounts to Wick rotating the planar

coordinate time: η → eiϵη.
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larly, we can insert the O(β)
i at the southern pole of the past sphere and it yields

⟨E|Ak(η, y)O(β)
i (0)|E⟩ =

∫
d3k

(2π)3

(
δik − kikk

k2

)
eik·y−ikη

2k (4.4.16)

Due to the extra 1
k in the integrand compared to eq.(4.4.13), this mode suffers from an IR

divergence around k = 0. However, this divergence can be eliminated if we replace O(β)
i (0) by

a “curvature” O(γ)
ij (0) ≡ PiO(β)

j (0) − PjO(β)
i (0) as in the construction of γ(1)

ij . The insertion
of O(γ)

i at southern pole yields

⟨E|Ak(η, y)O(γ)
ij (0)|E⟩ = i

2

∫
d3k

(2π)3
kiδjk − kjδik

k
eik·y−ikη = 1

2π2
yjδik − yiδjk

(η2 − y2)2 (4.4.17)

which is exactly the γ(1)
ij quasinormal mode, cf. (4.4.9), up to normalization. Note that in

the definition of O(γ)
ij , we implicitly use the pseudo gauge symmetry structure. On the other

hand, Pi reduces to ordinary derivative ∂i at boundary and hence O(γ)
ij is indeed the curva-

ture corresponding to the boundary gauge symmetry. Therefore, the classically pseudo gauge

symmetry can be identified as the boundary gauge symmetry in quantum theory. In this sense,

O(γ)
ij ∼ ϵijkBk has the interpretation as a boundary magnetic field and O(α)

i ∼ Ei has the inter-

pretation as a boundary electric field, subject to the constraint ∇ · E = 0. So the quasinormal

modes of Maxwell fields are produced by the electric/magnetic field operator, together with

their derivatives, inserted at the past southern pole, cf. fig (4.1.1).

In general, a free massless higher spin field φµ1···µs in a suitable gauge has the following

asymptotic behavior near the past boundary

φi1···is(η → 0−, y) ≈ (−η)d−2O(α)
i1···is(y) + (−η)2−2sO(β)

i1···is(y) (4.4.18)

where O(α)
i1···is(y) is a gauge-invariant boundary conserved current and O(β)

i1···is(y) is a boundary

gauge field. 7 From O(β)
i1···is(y), we can build a boundary Weyl tensor O(γ)

i1j1,··· ,isjs that is gauge

invariant. Then inserting operators in the conformal family of O(α)
i1···is at the past southern pole

7For a bulk gauge transformation δφµ1···µs = ∇(µ1ξµ2···µs), the asymptotic behavior of ξ near the past
boundary is ξi1···is (η, y) ≈ (−η)d Ai1···is−1 (y) + (−η)2−2sBi1···is−1 (y). O(α)

i1···is
is clearly invariant under this

transformation as the A-mode falls off too fast to affect it. Meanwhile O(β)
i1···is

undergoes an induced boundary
gauge transformation δO(β)

i1···is
= ∂(i1Bi2···is) because the B-mode has the same fall-off as it.
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produces the α-tower of quasinormal modes and inserting operators in the conformal family of

O(γ)
i1j1,··· ,isjs at the past southern pole produces the γ-tower of quasinormal modes

4.5 Quasinormal modes and SO(1, d+ 1) characters

In the section 4.3, we describe a procedure to construct quasinormal modes of scalar fields and

higher spin fields in dSd+1. In this section, we will extract the whole quasinormal spectrum

by using this construction and show that it’s related to the Harish-Chandra group character of

SO(1, d+ 1). To collect the information of quasinormal modes of certain field ϕ in a compact

expression, we define a “quasinormal character” :

ΘQN
ϕ (q) =

∑
ω

dω q
iω, 0 < q < 1 (4.5.1)

where the sum runs over all quasinormal frequencies of ϕ and dω is the degeneracy of quasinormal

modes with frequency ω. Due to the representation structure of the quasinormal modes, the

quasinormal character ΘQN
ϕ (q) naturally splits into two different parts, with each part involves

either the α-tower or β/γ-tower of quasinormal modes. For example, let ϕ be a real scalar field of

scaling dimension ∆. The quasinormal modes in the α-tower have frequencies iω = ∆+n, n ≥ 0

and for each n the degeneracy is
(d+n−1
d−1

)
. Thus the α-part of the quasinormal character is

ΘQN,α
∆ (q) =

∑
n≥0

(
d+ n− 1
d− 1

)
q∆+n = q∆

(1 − q)d (4.5.2)

Similarly, the contribution of β-tower is ΘQN,β
∆ (q) = q∆̄

(1−q)d . Altogether, we obtain the full

quasinormal character of ϕ

ΘQN
∆ (q) = ΘQN,α

∆ (q) + ΘQN,β
∆ (q) = q∆ + q∆̄

(1 − q)d (4.5.3)

where q∆+q∆̄

(1−q)d is exactly the Harish-Chandra character ΘF∆(q) for the scalar principal series, i.e.

∆ ∈ d
2 + iR and the scalar complementary series, i.e. 0 < ∆ < d. Therefore, the quasinormal

character of a unitary scalar field is same as its Harish-Chandra character. For a massive spin-s

field, the story is almost the same except the α-modes and β-modes have spin degeneracy Dd
s .
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Taking into account this spin degeneracy, we obtain the quasinormal character of a spin-s field

of scaling dimension ∆,

ΘQN
[∆,s](q) = Dd

s

q∆ + q∆̄

(1 − q)d (4.5.4)

which is exactly the Harish-Chandra character ΘF∆,s
(q) for the spin-s principal series, i.e. ∆ ∈

d
2 + iR and the spin-s complementary series, i.e. 1 < ∆ < d− 1.

In the remaining part of this section, we’ll compute quasinormal characters for massless

higher spin fields. In this case, the α-part is easy because α
(s)
i1···is is a conserved current in

the sense of (4.3.14). So for iωαn = d + s − 2 + n in the α-tower, the degeneracy is dαn =(n+d−1
d−1

)
Dd
s −

(n+d−2
d−1

)
Dd
s−1, which yields

ΘQN,α
s (q) =

∑
n≥0

dαn q
iωα

n =
Dd
s q

d−2+s −Dd
s−1 q

d−1+s

(1 − q)d (4.5.5)

ΘQN,α
s (q) is the same as the SO(2, d) character associated to a massless spin-s field in AdSd+1[12,

98]. However, this is quite different from the corresponding SO(1, d+ 1) character ΘUs,s−1(q).

To compare the quasinormal character ΘQN
s (q) with the Harish-Chandra character ΘUs,s−1(q),

we still need to figure out quasinormal spectrum of the γ-tower.

Maxwell field

Let’s start from a Maxwell field. At level 0, i.e. iω = 2, the degeneracy is dγ0 =
(d

2
)

because

γ
(1)
ij carries the 2-form representation of SO(d). At level 1, generic descendants are of the form

Pkγ
(1)
ij , corresponding to the SO(d) representation ⊗ . The 3-form representation in this

tensor product is vanishing due to Bianchi identity P[kγ
(1)
ij] = 0. Therefore the degeneracy of

quasinormal modes with frequency iω = 3 is

dγ1 = d

(
d

2

)
−
(
d

3

)
= 2

(
d+ 1

3

)
(4.5.6)

The descendants at level 2 are PkPℓγ(1)
ij , corresponding to the SO(d) representation (• ⊕ ) ⊗

. Due to Bianchi identity, we would exclude terms like PℓP[kγ
(1)
ij] , that carries the ⊗

representation. However, this is overcounting because the 4-form representation in this tensor

product, carried by P[ℓPkγ
(1)
ij] , vanishes automatically without using Bianchi identity. Therefore
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the degeneracy of quasinormal modes with frequency iω = 4 is

dγ2 =
(
d+ 1
d− 1

)(
d

2

)
− d

(
d

3

)
+
(
d

4

)
= 3

(
d+ 2

4

)
(4.5.7)

At any level n, using the same argument, we obtain the degeneracy of quasinormal modes with

frequency iω = 2 + n

dγn =
n∑
k=0

(−)k
(

d

k + 2

)(
n+ d− 1 − k

d− 1

)
= (n+ 1)

(
n+ d

d− 2

)
(4.5.8)

which leads to the γ-tower quasinormal character

ΘQN,γ
1 (q) =

∑
n≥0

(n+ 1)
(
n+ d

d− 2

)
qn+2 = 1 − 1 − dq

(1 − q)d (4.5.9)

Combining eq.(4.5.5) for s = 1 and eq.(4.5.9), we get the full quasinormal character of a

Maxwell field

ΘQN
1 (q) = ΘQN,α

1 (q) + ΘQN,γ
1 (q) = 1 − 1 − dq

(1 − q)d + dqd−1 − qd

(1 − q)d (4.5.10)

On the other hand, the Harish-Chandra character associated to U1,0 is

ΘU1,0(q) =
[
d(q + qd−1) − (1 + qd)

(1 − q)d

]
+

= 1 − 1 − dq

(1 − q)d + dqd−1 − qd

(1 − q)d (4.5.11)

where the flipping operator [ ]+ simply removes the constant −1 in the small q expansion. Again,

quasinormal character=Harish-Chandra character. In appendix B.2, we’ll show that ΘQN
1 (q) is

also consistent with the spin-1 quasinormal spectrum in [83].

Higher spin fields

To check ΘQN
s = ΘUs,s−1(q) for any s ≥ 2, we rewrite the latter as

ΘUs,s−1(q) =
Dd
sq
d+s−2 −Dd

s−1q
s+d−1

(1 − q)d +
[
Dd
sq

2−s −Dd
s−1q

1−s

(1 − q)d

]
+

(4.5.12)

Notice that the first term of ΘUs,s−1(q) is the same as ΘQN,α
s (q), so it suffices to compare the
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second term with ΘQN,γ
s (q). Expand the second term into a Taylor series around q = 0:

[
Dd
sq

2−s −Dd
s−1q

1−s

(1 − q)d

]
+

≡
∑
n≥0

bnq
2+n (4.5.13)

With some simple algebra, one can show that b0 = Dd
ss, b1 = Dd

s+1,s +Dd
s,s−1 and furthermore

bn satisfies the following recurrence relation

bn − bn−2 = Dd
s(Dd

s+n +Dd
s−n−2) −Dd

s−1(Dd
s+n+1 +Dd

s−n−1) (4.5.14)

Using the tensor product decomposition of Ys ⊗ Yt (assuming t ≤ s)

Ys ⊗ Yt =
t⊕

ℓ=0

t−ℓ⊕
m=0

Ys+t−2ℓ−m,m (4.5.15)

the products of dimensions in eq. (4.5.14) can be rewritten as a summation

bn − bn−2 =
s∑
ℓ=0

Dd
s−ℓ+n,s−ℓ −

s−n−1∑
ℓ=0

Dd
s−ℓ−1,s−n−1−ℓ =

 s∑
ℓ=0

−
s∑

ℓ=n+1

 Dd
s−ℓ+n,s−ℓ (4.5.16)

When n ≥ s the second sum in the bracket vanishes and when n ≤ s, the first sum over ℓ gets

truncated at ℓ = n. Altogether,

bn − bn−2 =
min(n,s)∑
ℓ=0

Dd
s−ℓ+n,s−ℓ (4.5.17)

On the quasinormal modes side, since the primary γ(s) carries Yss representation, the degeneracy

at level 0 is dγ0 = Dd
ss = b0. At level 1, the descendants Pkγ(s)

i1j1,··· ,isjs are represented by

Y1 ⊗ Yss = Ys+1,s ⊕ Ys,s−1 ⊕ Ys,s,1. Due to Bianchi identity, the three-row summand in this

tensor product vanishes and the level 1 descendants only carry the Ys+1,s⊕Ys,s−1 representation.

So the degeneracy of quasinormal frequency iω = 3 is dγ1 = Dd
s+1,s + Dd

s,s−1 = b1. At higher

levels, we aim to derive a recurrence relation for the degeneracy dγn. For example, at level n,

the descendants are of the form Pℓ1 · · ·Pℓnγ
(s)
i1j1,··· ,isjs , where Pℓ1 · · ·Pℓn should be understood

group theoretically the symmetrized tensor product of n spin-1 representations. Compared

to level (n − 2), the new representation structure is Yn ⊗ Yss where Yn corresponds to the
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traceless part of Pℓ1 · · ·Pℓn and Yss corresponds to γ(s). Due to Bianchi identity, only two-row

representations in the tensor product decomposition of Yn ⊗ Yss are nonvanishing. These two-

row representations are exactly ⊕min(n,s)
ℓ=0 Ys−ℓ+n,s−ℓ, which yields dγn − dγn−2 = bn − bn−2 and

furthermore bn = dγn for n ≥ 0. Altogether, we can conclude

ΘQN
s (q) = ΘUs,s−1(q) (4.5.18)

4.6 Conclusion and outlook

In this chapter, we present an algebraic method of constructing quasinormal modes of massless

higher spin fields in the southern static patch of dSd+1 using ambient space formalism. With

the action of isometry group SO(1, d + 1), the whole quasinormal spectrum can be built from

two primary quasinormal modes, whose properties are summarized in the table. 4.6.1 (assuming

d ≥ 4)

Primaries i ωQN SO(d) representation constraint
αµ1···µs
i1···is d+ s− 2 Ys conservation law

γµ1···µs
i1j1,··· ,isjs 2 Yss Bianchi identity

Table 4.6.1: A brief summary about the physical primary quasinormal modes of a massless
spin-s gauge field in dSd+1 (d ≥ 4). µk are bulk spin indices and ik, jk indicate the SO(d)
representation whose dimension gives the degeneracy.

For example, when s = 2, the primary α-modes αµνi1i2 have quasinormal frequency ωQN =

−id and degeneracy Dd
2 = (d+2)(d−1)

2 because the i1, i2 indices transform as a spin-2 rep-

resentation of SO(d). The conservation law means that Pi1α
µν
i1i2

is pure gauge and hence

should be excluded from the physical spectrum of quasinormal modes. On the other hand,

the primary γ-modes γµνi1j1,i2j2 have quasinormal frequency ωQN = −2i and degeneracy Dd
22 =

1
12(d + 2)(d + 1)d(d − 3) because the indices [i1, j1], [i2, j2] transform as Weyl tensor under

SO(d). This also explains the Bianchi identity P[kγ
µν
i1j1],i2j2 = 0.

With the higher spin quasinormal modes known, we define a quasinormal character ΘQN
s (q),

cf. (4.5.1) that encodes precisely the information of quasinormal spectrum. We show that

ΘQN
s (q) is equal to the Harish-Chandra character ΘUs,s−1(q) of the unitary massless spin-s

SO(1, d+ 1) representation. In other words, the pure group theoretical object ΘUs,s−1(q) knows
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everything about the physical quasinormal spectrum.

Our algebraic approach to quasinormal modes has some potential generalizations and appli-

cations which will be left to investigate in the future:

• Construct quasinormal modes of fields carrying other unitary representations, for example

partially massless fields or discrete series fields. The generalization to partially massless

fields should be more or less straightforward. In particular, the construction of the primary

α-modes would be the same except the conservation law being replaced by a multiply-

conservation equation [99]:

Pi1 · · ·Pis−tα
µ1···µs
i1···is = pure gauge (4.6.1)

where t is the depth. For the primary γ-modes, the higher spin Weyl tensor used in

eq. (4.3.34) is expected to be replaced by its partially massless counterpart which carries

Ys,t+1 representation of SO(d) [71]. The discrete series case should be different because it

is labelled by a maximal height Young diagram. As a result, neither of the primary quasi-

normal modes can be a curvature like object. This is also confirmed from the character

side [70].

• Generalize the “quasinormal quantization” [59, 60] to massless higher spin gauge fields in

any higher dimension. It’s well known that quasinormal modes are nonnormalizable with

respect to the standard Klein-Gordon inner product. However, it is noticed in [59, 60]

that, at least for light scalar fields in dS4, there is the so-called “R-norm” such that

the quasinormal modes become normalizable and SO(1, 4) is effectively Wick rotated to

SO(2, 3). Granting the existence of “R-norm” in higher dimensions for massless higher

spin fields that maps SO(1, d + 1) to SO(2, d), then the γ-tower of quasinormal modes

carries the [∆ = 2,Yss] representation of SO(2, d), that is below the unitarity bound for

sufficiently large s. This simple argument seems to question the naive generalization of

“R-norm”.

• In this chapter, we have focused on Harish-Chandra character ΘR(q) = trR qD with only

the scaling operator D turned on, where R denotes some unitary irreducible representation.
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In general, we can also include SO(d) generators in the definition of characters:

ΘR(q, x) = trR
(
qDxJ1

1 · · · , xJr
r

)
, r =

⌊
d

2

⌋
(4.6.2)

where Ji = L2i−1,2i span the Cartan algebra of SO(d) and xi are auxiliary variables. For

example, for spin-s principal series or complementary series, the full character (4.6.2) reads

[70, 75]

ΘF∆,s
(q)(q, x) = (q∆ + q∆̄)ΘSO(d)

Ys
(x)Pd(q, x) (4.6.3)

where ΘSO(d)
Ys

(x) ≡ tr Y x
J1
1 · · ·xJr

r denotes the SO(d) character of spin-s representation

and

Pd(q, x) = 1∏r
i=1(1 − xiq)(1 − x−1

i q)
×


1, d = 2r

1
1−q , d = 2r + 1

(4.6.4)

For massless spin-s representation, the full character originally computed in [75] is:

d = 2r + 1 : ΘUs,s−1(q, x) = 2
(

ΘSO(d)
Ys

(x) qs+d−2 − ΘSO(d)
Ys−1

(x) qs+d−1
)
Pd(q, x)

+
r∑

n=2
(−)n(qn − qd−n)ΘSO(d)

Y(ss,1n−2)
(x)Pd(q, x) (4.6.5)

and

d = 2r : ΘUs,s−1(q, x) =
r−1∑
n=2

(−)n(qn + qd−n)ΘSO(d)
Y(ss,1n−2)

(x)Pd(q, x)

+ (−)r qr
(

ΘSO(d)
Y(ss1,··· ,+1)

(x) + ΘSO(d)
Y(ss1,··· ,−1)

(x)
)
Pd(q, x) (4.6.6)

We conjecture that the full Harish-Chandra character encodes spin content of quasinormal

modes. More precisely, expand ΘUs,s−1(q, x) in terms of q and xi

ΘUs,s−1(q, x) =
∑
ω, j

dω,j q
iω xj11 · · ·xjrr , j = (j1, · · · , jr) (4.6.7)

then dω,j is conjectured to be the degeneracy of quasinormal modes with frequency ω and
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SO(d) spin content j.
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Chapter 5: Quantum de Sitter horizon entropy

5.1 Introduction

As seen by local inhabitants [17, 57, 100–104] of a cosmology accelerated by a cosmological con-

stant, the observable universe is evolving towards a semiclassical equilibrium state asymptotically

indistinguishable from a de Sitter static patch, enclosed by a horizon of area A = Ωd−1ℓ
d−1,

ℓ ∝ 1/
√

Λ, with the de Sitter universe globally in its Euclidean vacuum state. A picture is

shown in fig. 5.1.1b, and the metric in (5.2.1)/(C.3.5)S. The semiclassical equilibrium state

locally maximizes the observable entropy at a value S semiclassically given by [57]

S = log Z , (5.1.1)

where Z =
∫
e−SE [g,··· ] is the effective field theory Euclidean path integral, expanded about the

round sphere saddle related by Wick-rotation (C.3.7) to the de Sitter universe of interest. At

tree level in Einstein gravity, the familiar area law is recovered:

S(0) = A

4GN
. (5.1.2)

The interpretation of S as a (metastable) equilibrium entropy begs for a microscopic under-

standing of its origin. By aspirational analogy with the Euclidean AdS partition function for

effective field theories with a CFT dual (see [105] for a pertinent discussion), a natural question

is: are there effective field theories for which the semiclassical expansion of S corresponds to a

large-N expansion of a microscopic entropy? Given a proposal, how can it be tested?

In contrast to EAdS, without making any assumptions about the UV completion of the

effective field theory, there is no evident extrinsic data constraining the problem. The sphere has

no boundary, all symmetries are gauged, and physically meaningful quantities must be gauge
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b ca

Figure 5.1.1: a: Cartoon of observable universe evolving to its maximal-entropy equilibrium state. The
horizon consumes everything once seen, growing until it reaches its de Sitter equilibrium area A. (The
spiky dot is a reference point for b, c; it will ultimately be gone, too.) b: Penrose diagram of dS static
patch. c: Wick-rotated (b) = sphere. Metric details are given in appendix C.3.2 + fig. C.3.1c,d.

and field-redefinition invariant, leaving little. In particular there is no invariant information

contained in the tree-level S(0) other than its value, which in the low-energy effective field

theory merely represents a renormalized coupling constant; an input parameter. However, in

the spirit of [105–114], nonlocal quantum corrections to S do offer unambiguous, intrinsic

data, directly constraining models. To give a simple example, discussed in more detail under

(5.8.17), say someone posits that for pure 3D gravity, the sought-after microscopic entropy is

Smicro = log d(N), where d(N) is the number of partitions of N . This is readily ruled out.

Both macroscopic and microscopic entropy expansions can uniquely be brought to a form

S = S0 − a log S0 + b+
∑
n cn S−2n

0 + O(e−S0/2) , (5.1.3)

characterized by absence of odd (=local) powers of 1/S(0). The microscopic theory predicts

(a, b) =
(
2, log(π2/6

√
3)
)
, refuted by the macroscopic one-loop result (a, b) =

(
3, 5 log(2π)

)
.

Some of the models in [27, 31, 36, 97, 115–124] are sufficiently detailed to be tested along these

lines.

In this work, we focus exclusively on collecting macroscopic data, more specifically the exact

one-loop (in some cases all-loop) corrected S = log Z. The problem is old, and computations

for s ≤ 1 are relatively straightforward, but for higher spin s ≥ 2, sphere-specific complications

crop up. Even for pure gravity [125–134], virtually no complete, exact results have been obtained

at a level brining tests of the above kind to their full potential.
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Building on results and ideas from [70, 135–144], we obtain a universal formula solving this

problem in general, for all d ≥ 2 parity-invariant effective field theories, with matter in arbitrary

representations, and general gauge symmetries including higher-spin:

S(1) = log
K∏
a=0

(
2πγa)dimGa

volGa
+
∫ ∞

0

dt

2t

(1 + q

1 − q
Θbos

tot −
2√

q

1 − q
Θfer

tot

)
+ Sct (5.1.4)

q ≡ e−t/ℓ. Below we explain the ingredients in sufficient detail to allow application in practice.

A sample of explicit results is listed in (5.1.12). We then summarize the content of the paper

by section, with more emphasis on the physics and other results of independent interest.

G0 is the subgroup of (possibly higher-spin) gravitational gauge transformations acting triv-

ially on the Sd+1 saddle. This includes rotations of the sphere. volG0 is the volume for the

invariant metric normalized such that the standard rotation generators have unit norm, implying

in particular vol SO(d+ 2) = (C.3.2). The other Gi, i = 1, . . . ,K are Yang-Mills group factors,

with volGi the volume in the metric defined by the trace in the action, as in (C.3.3). The γa
are proportional to the (algebraically defined) gauge couplings:

γ0 ≡
√

8πGN
Ad−1

=
√

2π
S(0) , γi ≡

√
g2
i

2πAd−3
, (5.1.5)

with An ≡ Ωnℓ
n, Ωn = (C.3.1) for n ≥ 0, and A−1 ≡ 1/2πℓ for γi in d = 2.

The functions Θtot(t) are determined by the bosonic/fermionic physical particle spectrum

of the theory. They take the form of a “bulk” minus an “edge” character:

Θtot = Θbulk − Θedge . (5.1.6)

The bulk character Θbulk(t) is defined as follows. Single-particle states on global dSd+1 furnish

a representation R of the isometry group SO(1, d + 1). The content of R is encoded in its

Harish-Chandra character Θ(g) ≡ trR g (see section 3.4). Restricted to SO(1, 1) isometries

g = e−itH acting as time translations on the static patch, Θ(g) becomes Θbulk(t) ≡ trR e−itH .
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For example for a massive integer spin-s particle it is given by ΘFd/2+iν,s
(q) (3.4.12):

Θbulk,s = Dd
s

q
d
2 +iν + q

d
2 −iν

(1 − q)d , q ≡ e−|t|/ℓ , (5.1.7)

where ν is related to the mass:

s = 0 : ν2 = m2ℓ2 −
(
d
2
)2
, s ≥ 1 : ν2 = m2ℓ2 −

(
d
2 + s− 2

)2
. (5.1.8)

For arbitrary massive matter Θbulk is given by ΘF∆,s(q) (3.4.11). Massless spin-s characters

are more intricate, but can be obtained by applying a simple “flipping” recipe (3.4.17) to

ΘF2−s,s(q) − ΘF1−s,s−1(q). Some low (d, s) examples are

(d, s) (2, 1) (2, 2) (3, 1) (3, 2) (4, 1) (4, 2)

Θbulk,s
2 q

(1 − q)2 0 6 q2 − 2 q3

(1 − q)3
10 q3 − 6 q4

(1 − q)3
6 q2

(1 − q)4
10 q2

(1 − q)4

(5.1.9)

The q-expansion of Θbulk gives the static patch quasinormal mode degeneracies, its Fourier

transform gives the normal mode spectral density, and the bulk part of (5.1.4) is the quasi-

canonical ideal gas partition function at β = 2πℓ, as we explain below (5.1.15).

The edge character Θedge(t) is inferred from path integral considerations in sections 5.3-5.5.

It vanishes for spin s < 1. For integer s ≥ 1 we get (5.4.8):

Θedge,s = Ns · q
d−2

2 +iν + q
d−2

2 −iν

(1 − q)d−2 , Ns = Dd+2
s−1 , (5.1.10)

e.g. N1 = 1, N2 = d+ 2. Note this is the bulk character of Ns scalars in two lower dimensions.

Thus the edge correction effectively subtracts the degrees of freedom of Ns scalars living on

Sd−1, the horizon “edge” of static time slices (yellow dot in fig. 5.1.1). (5.4.14) yields analogous

results for more general matter; e.g. bulk field → edge field, bulk → (d+ 2) × edge.

For massless spin-s, use (C.6.23). The edge companions of (5.1.9) are

(d, s) (2, 1) (2, 2) (3, 1) (3, 2) (4, 1) (4, 2)

Θedge,s 0 0 2 q
1 − q

10 q2 − 2 q3

1 − q

2 q
(1 − q)2

10 q
(1 − q)2

(5.1.11)

The edge correction extends observations of [5, 6, 137, 145–160], reviewed in appendix C.4.5.
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Figure 5.1.2: Contributions to dS3 one-loop entropy from gravity and massive s = 0, 1, 2.

The general closed-form evaluation of the integral in (5.1.4) is given by (C.2.19) in heat

kernel regularization. In even d, the finite part is more easily obtained by summing residues.

Finally, Sct in (5.1.4) is a local counterterm contribution fixed by a renormalization condition

specified in section 5.8, which in practice boils down to Sct(ℓ) canceling all divergences and finite

terms growing polynomially with ℓ in S(1)(ℓ).

For concreteness here are some examples readily obtained from (5.1.4):

content S(1)

3D grav −3 log S(0) + 5 log(2π)

3D (s,m) π
3
(
ν3−(mℓ)3+ 3(s−1)2

2 mℓ
)
−2
∑2

k=0
νk

k!
Li3−k(e−2πν )

(2π)2−k −s2(π(mℓ− ν)−log(1−e−2πν)
)

4D grav −5 log S(0) − 571
45 log(ℓ/L) − log 8π

3 + 715
48 − 47

3 ζ
′(−1) + 2

3ζ
′(−3)

5D su(4) ym − 15
2 log(ℓ/g2) − log 256π9

3 + 75 ζ(3)
16 π2 + 45 ζ(5)

16 π4

5D ( ,m) −15 log(2πmℓ) + 5 ζ(5)
8π4 + 65 ζ(3)

24π2 (mℓ → 0) , 5
12 (mℓ)4 e−2πmℓ (mℓ → ∞)

11D grav −33 log S(0)+log
( 4! 6! 8! 10!

24 (2π)63)+ 1998469 ζ(3)
50400 π2 + 135619 ζ(5)

60480 π4 − 34463 ζ(7)
3840 π6 + 11 ζ(9)

6π8 − 11 ζ(11)
256 π10

3D HSn −(n2 − 1) log S(0) + log
[ 1

n

(n(n2−1)
6

)n2−1
G(n+ 1)2 (2π)(n−1)(2n+1)]

(5.1.12)
Comparison to previous results for 3D and 4D gravity is discussed under (5.5.25).1

The second line is the contribution of a 3D massive spin-s field, with ν given by (5.1.8). The

term ∝ s2 is the edge contribution. It is negative for all mℓ and dominates the bulk contribution

(fig. 5.1.2). It diverges at the unitarity/Higuchi bound mℓ = s− 1.

In the 4D gravity example, L is a minimal subtraction scale canceling out of S(0) + S(1). In

this case, constant terms in S(1) cannot be distinguished from constants in S(0) and are as such

1In the above and in (5.1.4) we have dropped Polchinski’s phase [131] kept in (5.5.25) and generalized in
(5.5.17).
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Figure 5.1.3: Regularized dS2 scalar mode density with ν = 2, Λuvℓ ≈ 4000. Blue line = Fourier
transform of Θbulk: ρ(ω)/ℓ = 2

π log(Λuvℓ) − 1
2π

∑
ψ
( 1

2 ± iν ± iωℓ). Red dots = inverse eigenvalue
spacing of numerically diagonalized 4000 × 4000 matrix H in globally truncated model (appendix C.1.2).
Rightmost panel = |ρ(ω)| on complex ω-plane, with quasinormal mode poles at ωℓ = ±i( 1

2 ± iν + n).

physically ambiguous.2 The term α4 log(ℓ/L) with α4 = −571
45 arises from the log-divergent

term α4 log(ℓ/ϵ) of the regularized character integral.

For any d, in any theory, the coefficient αd+1 of the log-divergent term can simply be read

off from the t → 0 expansion of the integrand in (5.1.4):

integrand = · · · + αd+1
t

+O(t0) (5.1.13)

For a 4D photon, this gives α4 = α4,bulk + α4,edge = −16
45 − 1

3 = −31
45 . The bulk-edge split

in this case is the same as the split investigated in [147, 153, 161]. Other illustrations include

(partially) massless spin s around (5.5.21), the superstring in (5.9.21), and conformal spin s in

(5.9.22).

3D HSn = higher-spin gravity with s = 2, 3, . . . , n (section 5.6). G is the Barnes G-function.

Overview

We summarize the content of sections 5.2-5.9, highlighting other results of interest, beyond

(5.1.4).

Quasicanonical bulk thermodynamics of the static patch (section 5.2)

The global dS bulk character Θbulk(t) = tr e−itH locally encodes the quasinormal spectrum and

normal mode density of the static patch ds2 = −(1 − r2/ℓ2)dT 2 + (1 − r2/ℓ2)−1dr2 + r2dΩ2

2Comparing different saddles, unambiguous linear combinations can however be extracted, cf. (C.8.70).
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on which e−itH acts as a time translation T → T + t. Its expansion in powers of q = e−|t|/ℓ,

Θbulk =
∑
r

Nr q
r , (5.1.14)

yields the number Nr of quasinormal modes decaying as e−rT/ℓ, in resonance with [1, 59, 60].

The density of normal modes ∝ e−iωT is formally given by its Fourier transform

ρ(ω) ≡ 1
2π

∫ ∞

−∞
dtΘbulk(t) eiωt. (5.1.15)

Because Θbulk is singular at t = 0, this is ill-defined as it stands. However, a standard Pauli-

Villars regularization of the QFT renders it regular (5.2.15), yielding a manifestly covariantly

regularized mode density, analytically calculable for arbitrary particle content, including gravitons

and higher-spin matter. Some simple examples are shown in figs. 5.1.3, 5.2.2. Quasinormal

modes appear as resonance poles at ω = ±ir, seen by substituting (5.1.14) into (5.1.15).

This effectively solves the problem of making covariant sense of the formally infinite normal

mode density universally arising in the presence of a horizon [162]. Motivated by the fact that

semiclassical information loss can be traced back to this infinity, [162] introduced a rough model

getting rid of it by shielding the horizon by a “brick wall” (reviewed together with variants in

C.4.3). Evidently this alters the physics, introduces boundary artifacts, breaks covariance, and

is, unsurprisingly, computationally cumbersome. The covariantly regularized density (5.1.15)

suffers none of these problems.

In particular it makes sense of the a priori ill-defined canonical ideal gas partition function,

logZcan(β) =
∫ ∞

0
dω
(
−ρbos(ω) log

(
eβω/2 − e−βω/2)+ ρfer(ω) log

(
eβω/2 + e−βω/2)) .

(5.1.16)

Substituting (5.1.15) and integrating out ω, this becomes

logZbulk(β) =
∫ ∞

0

dt

2t

( 1 + e−2πt/β

1 − e−2πt/β Θbos
bulk(t) − 2 e−πt/β

1 − e−2πt/β Θfer
bulk(t)

)
(5.1.17)

At the static patch equilibrium β = 2πℓ, this is precisely the bulk contribution to the one-loop

Euclidean partition function log Z(1) in (5.1.4). Although Zbulk is not quite a standard canonical
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partition function, calling it a quasicanonical partition function appears apt.

From (5.1.17), covariantly regularized quasicanonical bulk thermodynamic quantities can be

analytically computed for general particle content, as illustrated in section 5.2.3. Substituting

the expansion (5.1.14) expresses these quantities as a sum of quasinormal mode contributions,

generalizing and refining [163]. In particular the contribution to the entropy and heat capacity

from each physical quasinormal mode is finite and positive (fig. 5.2.4).

Sbulk can alternatively be viewed as a covariantly regularized entanglement entropy between

two hemispheres in the global dS Euclidean vacuum (red and blue lines in figs. 5.2.1, C.3.1). In

the spirit of [60], the quasinormal modes can then be viewed as entangled quasiqubits.

Sphere partition functions (sections 5.3,5.4,5.5)

In sections 5.3-5.5 we obtain character integral formulae computing exact heat-kernel regularized

one-loop sphere partition functions Z(1)
PI for general field content, leading to (5.1.4).

For scalars and spinors (section 5.3), this is easy. For massive spin s (section 5.4), the

presence of conformal Killing tensors on the sphere imply naive reduction to a spin-s Laplacian

determinant is inconsistent with locality [139]. The correct answer can in principle be obtained

by path integrating the full off-shell action [58], but this involves an intricate tower of spin

s′ < s Stueckelberg fields. Guided by intuition from section 5.2, we combine locality and

unitary constraints with path integral considerations to find the terms in logZ missed by naive

reduction. They turn out to be obtained simply by extending the spin-s Laplacian eigenvalue

sum to include its “subterranean” levels with formally negative degeneracies, (5.4.6). The extra

terms capture contributions from unmatched spin s′ < s conformal Killing tensor ghost modes

in the gauge-fixed Stueckelberg path integral. The resulting sum yields the bulk−edge character

integral formula (5.4.7). Locality and unitarity uniquely determine the generalization to arbitrary

parity-symmetric matter representations, (5.4.14).

In the massless case (section 5.5), new subtleties arise: negative modes requiring contour

rotations (which translate into the massless character “flipping” recipe mentioned above (5.1.9)),

and ghost zeromodes which must be omitted and compensated by a carefully normalized group

volume division. Non-universal factors cancel out, yielding (5.5.17) modulo renormalization.
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Figure 5.1.4: One- and all-loop entropy corrections, and dual topological string t, gs, for 3D HSn

theory in its maximal-entropy de Sitter vacuum, for different values of n at fixed S(0) = 108, l = 0.

3D de Sitter HSn quantum gravity and the topological string (section 5.6)

The sl(2) Chern-Simons formulation of 3D gravity [164, 165] can be extended to an sl(n)

Chern-Simons formulation of s ≤ n higher-spin (HSn) gravity [166–169]. The action for positive

cosmological constant is given by (5.6.1). It has a real coupling constant κ ∝ 1/GN, and an

integer coupling constant l ∈ {0, 1, 2, . . .} if a gravitational Chern-Simons term is included.

This theory has a landscape of dS3 vacua, labeled by partitions m = {m1,m2, . . .} of n.

Different vacua have different values of ℓ/GN, with tree-level entropy

S(0)
m = 2πℓ

4GN

∣∣∣∣
m

= 2πκ · Tm , Tm = 1
6
∑
ama(m2

a − 1) . (5.1.18)

The number of vacua grows as Nvac ∼ e2π
√
n/6. The maximal entropy vacuum is m = {n}.

We obtain the all-loop exact quantum entropy Sm = log Zm by analytic continuation k± →

l ± iκ of the SU(n)k+ × SU(n)k− Chern-Simons partition function on S3, (5.6.7). In the

weak-coupling limit κ → ∞, this reproduces S(1) as computed by (5.1.4) in the metric-like

formulation of the theory, given in (5.1.12) for the maximal-entropy vacuum m = {n}.

When n grows large and reaches a value n ∼ κ, the 3D higher-spin gravity theory becomes

strongly coupled. (In the vacuum m = {n} this means n4 ∼ ℓ/GN.) In this regime, Gopakumar-

Vafa duality [170, 171] can be used to express the quantum de Sitter entropy S in terms of a

weakly-coupled topological string partition function on the resolved conifold, (5.6.8):

Sm = log
∣∣∣Z̃top(gs, t) e−πTm·2πi/gs

∣∣∣2 (5.1.19)

where gs = 2π
n+l+iκ , and the conifold Kähler modulus t ≡

∫
S2 J + iB = igsn = 2πin

n+l+iκ .
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Euclidean thermodynamics of the static patch (section 5.7)

In section 5.7 we consider the Euclidean thermodynamics of a QFT on a fixed static patch/sphere

background. The partition function ZPI is the Euclidean path integral on the sphere of radius ℓ,

the Euclidean energy density is ρPI = −∂V logZPI, where V = Ωd+1ℓ
d+1 is the volume of the

sphere, and the entropy is SPI = logZPI + 2πℓUPI = logZPI + V ρPI = (1 − V ∂V ) logZPI, or

SPI =
(
1 − 1

d+1ℓ∂ℓ
)

logZPI (5.1.20)

Using the exact one-loop sphere partition functions obtained in sections 5.3-5.5, this allows

general exact computation of the one-loop Euclidean entropy S(1)
PI , illustrated in section 5.7.2.

Euclidean Rindler results are recovered in the limit mℓ → ∞. The sphere computation avoids

introducing the usual conical deficit angle, varying the curvature radius ℓ instead.

For minimally coupled scalars, S(1)
PI = Sbulk, but more generally this is false, due to edge

(and other) corrections. Our results thus provide a precise and general version of observations

made in the work reviewed in appendix C.4.5. Of note, these “corrections” actually dominate

the one-loop entropy, rendering it negative, increasingly so as s grows large.

Quantum gravitational thermodynamics (section 5.8)

In section 5.8 (with details in appendix C.8), we specialize to theories with dynamical gravity.

Denoting ZPI, ρPI and SPI by Z, ϱ and S in this case, (5.1.20) trivially implies ϱ = 0, S = log Z,

reproducing (5.1.1). All UV-divergences can be absorbed into renormalized coupling constants,

rendering the Euclidean thermodynamics well-defined in an effective field theory sense.

Integrating over the geometry is similar in spirit to integrating over the temperature in

statistical mechanics, as one does to extract the microcanonical entropy S(U) from the canonical

partition function.3 The analog of this in the case of interest is

S(ρ) ≡ log
∫

Dg · · · e−SE [g,...] + ρ
∫√

g , (5.1.21)

for some suitable metric path integration contour. In particular S(0) = S. The analog of the

3Along the lines of S(U) = log
(

1
2πi

∫
dβ
β

Tr e−βH+βU
)
, with contour β = β∗ + iy, y ∈ R, for any β∗ > 0.
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microcanonical β ≡ ∂US is V ≡ ∂ρS, and the analog of the microcanonical free energy is the

Legendre transform logZ ≡ S − V ρ, satisfying ρ = −∂V logZ. If we furthermore define ℓ by

Ωd+1ℓ
d+1 ≡ V , the relation between logZ, ρ and S is by construction identical to (5.1.20).

Equivalently, the free energy Γ ≡ − logZ can be thought of as a quantum effective action

for the volume. At tree level, Γ equals the classical action SE evaluated on the round sphere of

radius ℓ. For example for 3D Einstein gravity,

logZ(0) = 2π2

8πG
(
−Λ ℓ3 + 3 ℓ

)
, S(0) =

(
1 − 1

3ℓ∂ℓ
)

logZ(0) = 2πℓ
4G . (5.1.22)

The tree-level on-shell radius ℓ0 maximizes logZ(0), i.e. ρ(0)(ℓ0) = 0.

We define renormalized Λ, G, . . . from the ℓd+1, ℓd−1, . . . coefficients in the ℓ → ∞ expansion

of the quantum logZ, and fix counterterms by equating tree-level and renormalized couplings

for the UV-sensitive subset. For 3D Einstein, the renormalized one-loop correction is

logZ(1) = −3 log 2πℓ
4G + 5 log(2π) . (5.1.23)

The quantum on-shell radius ℓ̄ = ℓ0 + O(G) maximizes logZ, i.e. ρ(ℓ̄) = 0. The on-shell

entropy can be expressed in two equivalent ways to this order:

S = S(0)(ℓ̄) + S(1) = S(0)(ℓ0) + logZ(1) (5.1.24)

This clarifies why the one-loop correction S(1) ≡ S − S(0) to the dS entropy is given by logZ(1)

rather than S(1): the extra term −V ρ(1) accounts for the change in entropy of the reservoir (=

geometry) due to energy transfer to the system (= quantum fluctuations).

The final result is (5.1.4). We work out several examples in detail. We consider higher-

order curvature corrections and discuss invariance under local field redefinitions, identifying

the invariants S(0)
M = −SE [gM ] for different saddles M as and their large-ℓ expanded quantum

counterparts SM as the Λ > 0 analogs of tree-level and quantum scattering amplitudes, defining

invariant couplings and physical observables of the low-energy effective field theory.
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dS, AdS±, and conformal higher-spin gravity (section 5.9)

Massless g = hs(so(d + 2)) higher-spin gravity theories on dSd+1 or Sd+1 [53, 55, 172] have

infinite spin range and infinite dim g, obviously posing problems for the one-loop formula (5.1.4):

1. Spin sum divergences untempered by the UV cutoff, for example dimG = 1
3
∑
s s(4s2 −1)

for d = 3 and Θtot =
∑
s (2s+ 1) 2q2

(1−q)4 −
∑
s
s(s+1)(2s+1)

6
2q

(1−q)2 for d = 4.

2. Unclear how to make sense of volG.

We compare the situation to analogous one-loop expressions [3, 144, 173] for Euclidean AdS with

standard (AdS+
d+1) [111–113] and alternate (AdS−

d+1) [138] gauge field boundary conditions, and

to the associated conformal higher-spin theory on the boundary Sd (CHSd) [139, 174]. For AdS+

the above problems are absent, as g is not gauged and ∆s > s. Like a summed KK tower,

the spin-summed bulk character has increased UV dimensionality dbulk
eff = 2d− 2. However, the

edge character almost completely cancels this, leading to a reduced deff = d − 1 in (5.9.10)-

(5.9.12). This realizes a version of a stringy picture painted in [5] repainted in fig. C.4.4. A HS

“swampland” is identified: lacking a holographic dual, characterized by deff > d− 1.

For AdS− and CHS, the problems listed for dS all reappear. g is gauged, and the character

spin sum divergences are identical to dS, as implied by the relations (5.9.16):

Θs(CHSd) = Θs(AdS−
d+1) − Θs(AdS+

d+1) = Θs(dSd+1) − 2 Θs(AdS+
d+1) (5.1.25)

The spin sum divergences are not UV. Their origin lies in low-energy features: an infinite

number of quasinormal modes decaying as slowly as e−2T/ℓ for d ≥ 4 (cf. discussion below

(C.6.4)). We see no justification for zeta-regularizing such divergences away. However, in certain

supersymmetric extensions, the spin sum divergences cancel in a rather nontrivial way, leaving a

finite residual as in (5.9.23). This eliminates problem 1, but leaves problem 2. Problem 2 might

be analogous to volG = ∞ for the bosonic string or volG = 0 for supergroup Chern-Simons:

removed by appropriate insertions. This, and more, is left to future work.
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Figure 5.2.1: a: Penrose diagram of global dS, showing flows of SO(1, 1) generator H = M0,d+1, S
= southern static patch. b: Wick-rotated S = sphere; Euclidean time = angle. c: Pelagibacter ubique
inertial observer in dS with ℓ = 1.2µm finds itself immersed in gas of photons, gravitons and higher-spin
particles at a pleasant 30◦C. More details are provided in fig. C.3.1 and appendix C.3.2.

5.2 Quasicanonical bulk thermodynamics

5.2.1 Problem and results

From the point of view of an inertial observer, such as Pelagibacter ubique in fig. 5.2.1c, the

global de Sitter vacuum appears thermal [17, 57, 175]: P. ubique perceives its universe, the

southern static patch (S in fig. 5.2.1a),

ds2 = −(1 − r2/ℓ2)dT 2 + (1 − r2/ℓ2)−1dr2 + r2dΩ2
d−1, (5.2.1)

as a static ball of finite volume, whose boundary r = ℓ is a horizon at temperature T =

1/2πℓ, and whose bulk is populated by field quanta in thermal equilibrium with the horizon.

P. ubique wishes to understand its universe, and figures the easiest thing to understand should

be the thermodynamics of its thermal environment in the ideal gas approximation. The partition

function of an ideal gas is

Tr e−βH = exp
∫ ∞

0
dω
(
−ρ(ω)bos log

(
eβω/2 − e−βω/2)+ ρ(ω)fer log

(
eβω/2 + e−βω/2)),

(5.2.2)

where ρ(ω) = ρ(ω)bos + ρ(ω)fer is the density of bosonic and fermionic single-particle states at

energy ω. However to its dismay, it immediately runs into trouble: the dS static patch mode

spectrum is continuous and infinitely degenerate, leading to a pathologically divergent density
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ρ(ω) = δ(0)
∑
ℓm···. It soon realizes the unbounded redshift is to blame, so it imagines a brick

wall excising the horizon, or some variant thereof (appendix C.4.3). Although this allows some

progress, it is aware this alters what it is computing and depends on choices. To check to what

extent this matters, it tries to work out nontrivial examples. This turns out to be painful. It

feels there should be a better way, but its efforts come to an untimely end.

Here we will make sense of the density of states and the static patch bulk thermal partition

function in a different way, manifestly preserving the underlying symmetries, allowing general

exact results for arbitrary particle content. The main ingredient is the Harish-Chandra group

character (reviewed in the section 3.4) of the SO(1, d + 1) representation R furnished by the

physical single-particle Hilbert space of the free QFT quantized on global dSd+1. Letting H(≡

iD) be the global SO(1, 1) generator acting as time translations in the southern static patch

and globally as in fig. 5.2.1a, the character restricted to group elements e−itH is

Θ(t) ≡ trG e−itH . (5.2.3)

Here trG traces over the global dS single-particle Hilbert space furnishing R. (More generally

we denote tr ≡ single-particle trace, Tr ≡ multi-particle trace, G ≡ global, S ≡ static patch.

Our default units set the dS radius ℓ ≡ 1 .)

For example for a scalar field of mass m2 = (d2)2 + ν2, as computed in (3.4.7),

Θ(t) = e−t∆+ + e−t∆−

|1 − e−t|d
, ∆± = d

2 ± iν . (5.2.4)

For a massive spin-s field this simply gets an additional spin degeneracy factor Dd
s , (3.4.12).

Massless spin-s characters take a similar but somewhat more intricate form, (3.4.16)-(3.4.17).

As mentioned in the introduction, (5.1.14), the character has a series expansion

Θ(t) =
∑
r

Nr e
−r|t| (5.2.5)

encoding the degeneracy Nr of quasinormal modes ∝ e−rT of the dS static patch background.

For example expanding the scalar character yields two towers of quasnormal modes with rn± =
d
2 ± iν + n and degeneracy Nn± =

(n+d−1
n

)
.
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Figure 5.2.2: Regularized scalar ρ(ω), d = 2, ν = 2, i/2, 0.9 i; top: ω ∈ R; bottom: ω ∈ C, showing
quasinormal mode poles. See figs. C.1.1, C.1.4 for details.

Our main result, shown in 5.2.2 below, is the observation that

logZbulk(β) ≡
∫ ∞

0

dt

2t

( 1 + e−2πt/β

1 − e−2πt/β Θ(t)bos − 2 e−πt/β

1 − e−2πt/β Θ(t)fer

)
, (5.2.6)

suitably regularized, provides a physically sensible, manifestly covariant regularization of the

static patch bulk thermal partition. The basic idea is that ρ(ω) can be obtained as a well-defined

Fourier transform of the covariantly UV-regularized character Θ(t), which upon substitution in

the ideal gas formula (5.2.2) yields the above character integral formula. Arbitrary thermody-

namic quantities at the horizon equilibrium β = 2π can be extracted from this in the usual

way, for example Sbulk = (1−β∂β) logZbulk|β=2π, which can alternatively be interpreted as the

“bulk” entanglement entropy between the northern and southern Sd hemispheres (red and blue

lines fig. 5.2.1a).4 We work out various examples of such thermodynamic quantities in section

5.2.3. General exact solution are easily obtained. The expansion (5.2.5) also allows interpreting

the results as a sum over quasinormal modes along the lines of [163].

4In part because subregion entanglement entropy does not exist in the continuum, an infinity of different notions
of it exist in the literature [176]. Based on [161], Sbulk appears perhaps most akin to the “extractable”/“distillable”
entropy considered there. Either way, our results are nomenclature-independent.
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We conclude this part with some comments on the relation with the Euclidean partition

function. As reviewed in appendix C.4, general physics considerations, or formal considerations

based on Wick-rotating the static patch to the sphere and slicing the sphere path integral along

the lines of fig. 5.2.1b, suggests a relation between the one-loop Euclidean path integral Z(1)
PI

on Sd+1 and the bulk ideal gas thermal partition function Zbulk at β = 2π. More refined

considerations suggest

logZ(1)
PI = logZbulk + edge corrections , (5.2.7)

where the edge corrections are associated with the Sd−1 horizon edge of the static patch time

slices, i.e. the yellow dot in fig. 5.2.1. The formal slicing argument breaks down here, as does

the underlying premise of spatial separability of local field degrees of freedom (for fields of spin

s ≥ 1). Similar considerations apply to other thermodynamic quantities and in other contexts,

reviewed in appendix C.4 and more specifically C.4.5.

In sections 5.3-5.5 we will obtain the exact edge corrections by direct computation, logically

independent of these considerations, but guided by the physical expectation (5.2.7) and more

generally the intuition developed in this section.

5.2.2 Derivation

We first give a formal derivation and then refine this by showing the objects of interest become

rigorously well-defined in a manifestly covariant UV regularization of the QFT.

Formal derivation

Our starting point is the observation that the thermal partition function Tr e−βH of a bosonic

resp. fermionic oscillator of frequency ω has the integral representation (C.4.14):

− log
(
eβω/2 − e−βω/2) = +

∫ ∞

0

dt

2t
1 + e−2πt/β

1 − e−2πt/β
(
e−iωt + eiωt

)
log
(
eβω/2 + e−βω/2) = −

∫ ∞

0

dt

2t
2 e−πt/β

1 − e−2πt/β
(
e−iωt + eiωt

)
.

(5.2.8)
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with the pole in the factor f(t) = c t−2 +O(t0) multiplying e−iωt + eiωt resolved by

t−2 → 1
2
(
(t− iϵ)−2 + (t+ iϵ)−2). (5.2.9)

Now consider a free QFT on some space of finite volume, viewed as a system S of bosonic and/or

fermionic oscillator modes of frequencies ω with mode (or single-particle) density ρS(ω) =

ρS(ω)bos + ρS(ω)fer. The system is in thermal equilibrium at inverse temperature β. Using the

above integral representation, we can write its thermal partition function (5.2.2) as

log TrS e−βHS =
∫ ∞

0

dt

2t

( 1 + e−2πt/β

1 − e−2πt/β ΘS(t)bos − 2 e−πt/β

1 − e−2πt/β ΘS(t)fer

)
, (5.2.10)

where we exchanged the order of integration, and we defined

ΘS(t) ≡
∫ ∞

0
dω ρS(ω)

(
e−iωt + eiωt

)
(5.2.11)

We want to apply (5.2.10) to a free QFT on the southern static patch at inverse temperature

β, with the goal of finding a better way to make sense of it than P. ubique’s approach. To

this end, we note that the global dSd+1 Harish-Chandra character Θ(t) defined in (5.2.3) can

formally be written in a similar form by using the general property Θ(t) = Θ(−t):

Θ(t) = trG e−iHt =
∫ ∞

−∞
dω ρG(ω) e−iωt =

∫ ∞

0
dω ρG(ω)

(
e−iωt + eiωt

)
, (5.2.12)

This looks like (5.2.11), except ρG(ω) = trG δ(ω−H) is the density of single-particle excitations

of the global Euclidean vacuum, while ρS(ω) is the density of single-particle excitations of the

southern vacuum. The global and southern vacua are very different. Nevertheless, there is a

simple kinematic relation between their single-particle creation and annihilation operators: the

Bogoliubov transformation (C.4.10) (suitably generalized to d > 0 [175]). This provides an

explicit one-to-one, inner-product-preserving map between southern and global single-particle

states with H = ω > 0. Hence, formally,

ρS(ω) = ρG(ω) (ω > 0) , ρS(ω) = 0 (ω < 0) . (5.2.13)
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While formal in the continuum, this relation becomes precise whenever ρ is rendered effectively

finite, e.g. by a brick-wall cutoff or by considering finite resolution projections (say if we restrict

to states emitted/absorbed by some apparatus built by P. ubique).

At first sight this buys us nothing though, as computing ρG(ω) = trG δ(ω−H) for say a scalar

in dS4 in a basis |ωℓm⟩G immediately leads to ρG(ω) = δ(0)
∑
ℓm, in reassuring but discouraging

agreement with P. ubique’s result for ρS(ω). On second thought however, substituting this into

(5.2.12) leads to a nonsensical Θ(t) = 2πδ(t)δ(0)
∑
ℓm, not remotely resembling the correct

expression (5.2.4). How could this happen? As explained in the remark 8, the root cause is the

seemingly natural but actually ill-advised idea of computing Θ(t) = trG e−iHt by diagonalizing

H: despite its lure of seeming simplicity, |ωℓm⟩G is in fact the worst possible choice of basis

to compute the character trace. Its wave functions on the global future boundary Sd of dSd+1

are singular at the north and south pole, exactly the fixed points of H at which the correct

computation of Θ(t) in the section 3.4.2 localizes. Although |ωℓm⟩ is a perfectly fine basis on

the cylinder obtained by a conformal map from sphere, the information needed to compute Θ

is irrecoverably lost by this map.

However we can turn things around, and use the properly computed Θ(t) to extract ρG(ω)

as its Fourier transform, inverting (5.2.12). As it stands, this is not really possible, for (5.2.4)

implies Θ(t) ∼ |t|−d as t → 0, so its Fourier transform does not exist. Happily, this problem

is automatically resolved by standard UV-regularization of the QFT, as we will show explicitly

below. For now let us proceed formally, as at this level we have arrived at our desired result:

combining (5.2.13) with (5.2.12) and (5.2.11) implies ΘS(t) = Θ(t), which by (5.2.10) yields

TrS e−βHS = Zbulk(β) (formal) (5.2.14)

with Zbulk(β) as defined in (5.2.6). The above equation formally gives it its claimed thermal

interpretation. In what follows we will make this a bit more precise, and spell out the UV

regularization explicitly.
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Covariant UV regularization of ρ and Zbulk

We begin by showing that ρG(ω) in (5.2.12) becomes well-defined in a suitable standard UV-

regularization of the QFT. As in [177], it is convenient to consider Pauli-Villars regularization,

which is manifestly covariant and has a conceptually transparent implementation on both the

path integral and canonical sides. For e.g. a scalar of mass m2 = (d2)2 + ν2, a possible

implementation is adding
(k
n

)
, n = 1, . . . , k ≥ d

2 fictitious particles of mass m2 = (d2)2+ν2+nΛ2

and positive/negative norm for even/odd n,5 turning the character Θν2(t) of (5.2.4) into

Θν2,Λ(t) = trGΛ e
−itH =

k∑
n=0

(−1)n
(
k
n

)
Θν2+nΛ2(t). (5.2.15)

This effectively replaces Θ(t) ∼ |t|−d by ΘΛ(t) ∼ |t|2k−d with 2k−d ≥ 0, hence, assuming Θ(t)

falls off exponentially at large t, which is always the case for unitary representations [13, 65, 75],

ΘΛ(t) has a well-defined Fourier transform, analytic in ω:

ρG,Λ(ω) = 1
2π

∫ ∞

−∞
dtΘΛ(t) eiωt = 1

2π

∫ ∞

0
dtΘΛ(t)

(
eiωt + e−iωt) . (5.2.16)

The above character regularization can immediately be transported to arbitrary massive SO(1, d+

1) representations, as their characters Θs,ν2 (3.4.11) only differ from the scalar one by an overall

spin degeneracy factor.6

Although we won’t need to in practice for computations of thermodynamic quantities (which

are most easily extracted directly as character integrals), ρG,Λ(ω) can be computed explicitly.

For the dSd+1 scalar, using (5.2.4) regularized with k = 1, we get for ω ≪ Λ

d = 1 : ρG,Λ(ω) = 2
π

log Λ − 1
2π
∑
±,±

ψ
(1

2 ± iν ± iω) +O(Λ−1)

d = 2 : ρG,Λ(ω) = Λ − 1
2
∑
±

(ω ± ν) coth
(
π(ω ± ν)

)
+O(Λ−1)

(5.2.17)

where ψ(x) = Γ′(x)/Γ(x). Denoting the Λ-independent parts of the above ω ≪ Λ expansions

5This is equivalent to inserting a heat kernel regulator f(τΛ2) =
(
1 − e−τΛ2)k in (5.3.2), with k ≥ d

2 + 1.
6For massless spin-s, the PV-regulating characters to add to the physical character (e.g. (5.5.7),(C.6.2)) are

Θ̂s,n = Θs,ν2
ϕ

+nΛ2 − Θs−1,ν2
ξ

+nΛ2 where ν2
ϕ = −(s − 2 + d

2 )2 and ν2
ξ = −(s − 1 + d

2 )2, based on (5.5.2) and
(5.5.4).
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Figure 5.2.3: ρG,Λ(ω) for dSd+1 scalar of mass m2 = ( d
2 )2 + ν2, ν = 10, for d = 1, 2 in k = 1, 2 Pauli-

Villars regularizations (5.2.15). Faint part is unphysical UV regime ω ≳ Λ. The peaks/kinks appearing
at ω =

√
ν2 + nΛ2 are related to quasinormal mode resonances discussed in appendix C.1.3.

by ρ̃ν2(ω), the exact ρG,Λ(ω) for general ω and k is ρG,Λ(ω) =
∑k
n=0(−1)n

(k
n

)
ρ̃ν2+nΛ2(ω),

illustrated in fig. 5.2.3 for k = 1, 2. The ω ≪ Λ result is independent of k up to rescaling of

Λ. The result for massive higher-spin fields is the same up to an overall degeneracy factor Dd
s

from (3.4.12).

To make sense of the southern static patch density ρS(ω) directly in the continuum, we

define its regularized version by mirroring the formal relation (5.2.13), thus ensuring all of the

well-defined features and physics this relation encapsulates are preserved:

ρS,Λ(ω) ≡ ρG,Λ(ω) = (5.2.16) (ω > 0) . (5.2.18)

This definition of the regularized static patch density evidently inherits all of the desirable

properties of ρG(ω): manifest general covariance, independence of arbitrary choices such as

brick wall boundary conditions, and exact analytic computability. The physical sensibility of

this identification is also supported by the fact that the quasinormal mode expansion (5.2.5)

of Θ(t) produces the physically expected static patch quasinormal resonance pole structure

ρS(ω) = 1
2π
∑
r,±

Nr
r±iω , cf. appendix C.1.3.

Putting things together in the way we obtained the formal relation (5.2.14), the correspond-

ingly regularized version of the static patch thermal partition function (5.2.10) is then

logZbulk,Λ(β) ≡
∫ ∞

0

dt

2t

( 1 + e−2πt/β

1 − e−2πt/β ΘΛ(t)bos − 2 e−πt/β

1 − e−2πt/β ΘΛ(t)fer

)
(5.2.19)
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Note that if we take k ≥ d
2 + 1, then ΘΛ(t) ∼ t2k−d with 2k − d ≥ 2 and we can drop the

iϵ prescription (5.2.9). Zbulk (or equivalently Θ) can be regularized in other ways, including

by cutting off the integral at t = Λ−1, or by cutting off the angular momentum as in the

appendix C.1.2, or by dimensional regularization. For most of the paper we will use yet another

variant, defined in section 5.3, equivalent, like Pauli-Villars, to a manifestly covariant heat-kernel

regularization of the path integral.

In view of the above observations, Zbulk,Λ(β) is naturally interpreted as a well-defined, co-

variantly regularized and ambiguity-free definition of the static patch ideal gas thermal partition

in the continuum. However we refrain from denoting Zbulk(β) as TrS,Λ e−βHS , because it is not

constructed as an actual sum over states of some definite regularized static patch Hilbert space

HS,Λ. This (together with the role of quasinormal modes) is also why we referred to Zbulk(β)

as a “quasi”-canonical partition function in the introduction.

5.2.3 Example computations

In this section we illustrate the use and usefulness of the character formalism by computing some

examples of bulk thermodynamic quantities at the equilibrium inverse temperature β = 2π of

the static patch. The precise relation of these quantities with their Euclidean counterparts will

be determined in 5.3-5.5 and 5.7.

Character formulae for bulk thermodynamic quantities at β = 2π

At β = 2π, the bulk free energy, energy, entropy and heat capacity are obtained by taking

the appropriate derivatives of (5.2.6) and putting β = 2π, using the standard thermodynamic

relations F = − 1
β logZ, U = −∂β logZ, S = logZ + βU , C = −β∂βS. Denoting q ≡ e−t,

logZbulk =
∫ ∞

0

dt

2t

( 1 + q

1 − q
Θbos −

2√
q

1 − q
Θfer

)
, (5.2.20)

2πUbulk =
∫ ∞

0

dt

2

(
−

2√
q

1 − q

√
q

1 − q
Θbos + 1 + q

1 − q

√
q

1 − q
Θfer

)
, (5.2.21)

and similarly for Sbulk and Cbulk. The characters Θ for general massive representation are

given by (3.4.11), and for (partially massless) (s, s′) representations by (3.4.20) with t = s′.

Regularization is implicit here.
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Leading divergent term

The leading t → 0 divergence of the scalar character (5.2.4) is Θ(t) ∼ 2/td. For more general

representations this becomes Θ(t) ∼ 2n/td with n the number of on-shell internal (spin) degrees

of freedom. The generic leading divergent term of the bulk (free) energy is then given by

Fbulk, Ubulk ∼ − 1
π (nbos − nfer)

∫ dt
td+2 ∼ ±Λd+1ℓd, while for the bulk heat capacity and entropy

we get Cbulk, Sbulk ∼ (1
3nbos + 1

6nfer)
∫ dt
td

∼ +Λd−1ℓd−1, where we reinstated the dS radius ℓ.

In particular Sbulk ∼ +Λd−1 × horizon area, consistent with an entanglement entropy area law.

The energy diverges more strongly because we included the QFT zero point energy term in its

definition, which drops out of S and C.

Coefficient of log-divergent term

The coefficient of the logarithmically divergent part of these thermodynamic quantities is univer-

sal. A pleasant feature of the character formalism is that this coefficient can be read off trivially

as the coefficient of the 1/t term in the small-t expansion of the integrand, easily computed for

any representation. In odd d + 1, the integrand is even in t, so log-divergences are absent. In

even d + 1, the integrand is odd in t, so generically we do get a log-divergence = a log Λ. For

example the logZ integrand for a dS2 scalar is expanded as

1
2t

1 + e−t

1 − e−t
e−t( 1

2 +iν) + e−t( 1
2 −iν)

1 − e−t = 2
t3

+
1
12 − ν2

t
+ · · · ⇒ a = 1

12 − ν2 . (5.2.22)

For a ∆ = d
2 + iν spin-s particle in even d+1, the log Λ coefficient for Ubulk is similarly read off

as aUbulk = −Dd
s

1
π(d+1)!

∏d
n=0(∆−n). For a conformally coupled scalar, ν = i/2, so aUbulk = 0.

Some examples of aSbulk = alogZbulk in this case are

d+ 1 2 4 6 8 10 · · · 100 · · · 1000 · · ·

aSbulk
1
3 − 1

90
1

756 − 23
113400

263
7484400 · · · −8.098 × 10−34 · · · −3.001 × 10−306 · · ·

Finite part and exact results

• Energy: For future reference (comparison to previously obtained results in section 5.7), we

consider dimensional regularization here. The absence of a 1/t factor in the integral (5.2.21) for
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Ubulk then allows straightforward evaluation for general d. For a scalar of mass m2 = (d2)2 +ν2,

Ufin
bulk =

m2 cosh(πν) Γ(d2 + iν) Γ(d2 − iν)
2π Γ(d+ 2) cos(πd2 )

(dim reg) . (5.2.23)

For example for d = 2, this becomes

Ufin
bulk = − 1

12(ν2 + 1)ν coth(πν) . (5.2.24)

• Free energy: The UV-finite part of the logZbulk integral (5.2.20) for a massive field in even d

can be computed simply by extending the integration contour to the real line avoiding the pole,

closing the contour and summing residues. For example for a d = 2 scalar this gives

logZfin
bulk = πν3

6 −
2∑

k=0

νk

k!
Li3−k(e−2πν)

(2π)2−k , (5.2.25)

where Lin is the polylogarithm, Lin(x) ≡
∑∞
k=1 x

k/kn. For future reference, note that

Li1(e−2πν) = − log(1 − e−2πν) , Li0(e−2πν) = 1
e2πν − 1 = 1

2 coth(πν) − 1
2 . (5.2.26)

For odd d, the character does not have an even analytic extension to the real line, so a different

method is needed to compute logZbulk. The exact evaluation of arbitrary character integrals, for

any d and any Θ(t) is given in (C.2.19) in terms of Hurwitz zeta functions. Simple examples are

given in (C.2.21)-(C.2.22). In (C.2.19) we use the covariant regularization scheme introduced in

section 5.3. Conversion to PV regularization is obtained from the finite part as explained below.

• Entropy: Combined with our earlier result for the bulk energy Ubulk, the above also gives the

finite part of the bulk entropy Sbulk = logZbulk + 2πUbulk. In the Pauli-Villars regularization

(5.2.15), the UV-divergent part is obtained from the finite part by mirrorring (5.2.15). For

example for k = 1, Sbulk,Λ = Sfin
bulk|ν2 − Sfin

bulk|ν2+Λ2 . For the d = 2 example this gives for

ν ≪ Λ

Sbulk,Λ = π

6 (Λ − ν) − π

3 ν Li0(e−2πν) −
3∑

k=0

νk

k!
Li3−k(e−2πν)

(2π)2−k , (5.2.27)
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where we used (5.2.26). Sbulk decreases monotonically with m2 = 1 + ν2. In the massless limit

m → 0, it diverges logarithmically: Sbulk = − logm + · · · . For ν ≫ 1, Sbulk = π
6 (Λ − ν)

up to exponentially small corrections. Thus Sbulk > 0 within the regime of validity of the low-

energy field theory, consistent with its quasi-canonical/entanglement entropy interpretation. For

a conformally coupled scalar ν = i
2 , this gives Sfin

bulk = 3ζ(3)
16π2 − log(2)

8 .

Quasinormal mode expansion

Substituting the quasinormal mode expansion (5.2.5),

Θ(t) =
∑
r

Nre
−rt (5.2.28)

in the PV-regularized logZbulk(β) (5.2.19), rescaling t → β
2π t, and using (C.2.31) gives

logZbulk(β) =
∑
r

Nbos
r log Γ(br + 1)

(bµ)br
√

2πbr
−N fer

r log
Γ(br + 1

2)
(bµ)br

√
2π

, b ≡ β

2π . (5.2.29)

Truncating the integral to the IR part (C.2.31) is justified because the Pauli-Villars sum (5.2.15)

cancels out the UV part. The dependence on µ likewise cancels out, as do some other terms,

but it is useful to keep the above form. At the equilibrium β = 2π, logZbulk is given by (5.2.29)

with b = 1. This provides a PV-regularized version of the quasinormal mode expansion of [163].

Since it is covariantly regularized, it does not require matching to a local heat kernel expansion.

Moreover it applies to general particle content, including spin s ≥ 1.7

QNM expansions of other bulk thermodynamic quantities are readily derived from the

eq. (5.2.29) by taking derivatives β∂β = b∂b = µ∂µ + r∂r. For example Sbulk = (1 −

β∂β) logZbulk|β=2π is

Sbulk =
∑
r

Nbos
r sbos(r) +N fer

r sfer(r) (5.2.30)

7The expansion of [163] pertains to ZPI for s ≤ 1
2 . In the following sections we show ZPI = Zbulk for s ≤ 1

2
but not for s ≥ 1. Hence in general the QNM expansion of [163] computes Zbulk, not ZPI.
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sbos(r)/ log 2 sfer(r)/ log 2 cfer(r)cbos(r)

Figure 5.2.4: Contribution to β = 2π bulk entropy and heat capacity of a quasinormal mode ∝ e−rT ,
r ∈ C, Re r > 0. Only the real part is shown here because complex r come in conjugate pairs rn,± =
d
2 + n± iν. The harmonic oscillator case corresponds to the imaginary axis.

where the entropy s(r) carried by a single QNM ∝ e−rT at β = 2π is given by

sbos(r) = r + (1 − r∂r) log Γ(r + 1)√
2πr

, sfer(r) = −r − (1 − r∂r) log
Γ(r + 1

2)√
2π

. (5.2.31)

Note the µ-dependence has dropped out, reflecting the fact that the contribution of each indi-

vidual QNM to the entropy is UV-finite, not requiring any regularization. For massive represen-

tations, r can be complex, but will always appear in a conjugate pair rn± = d
2 +n± iν. Taking

this into account, all contributions to the entropy are real and positive for the physical part of

the PV-extended spectrum. The small and large r asymptotics are

r → 0 : sbos → 1
2 log e

2πr , sfer → log 2
2 , r → ∞ : sbos → 1

6 r , sfer → 1
12 r .

(5.2.32)

The QNM entropies at general β are obtained simply by replacing

r → β

2π r . (5.2.33)

The entropy of a normal bosonic mode of frequency ω, s̃(ω) = − log
(
1 − e−βω) + βω

eβω−1 ,

is recovered for complex conjugate pairs r± in the scaling limit β → 0, βν = ω fixed, and

likewise for fermions. At any finite β, the n → ∞ UV tail of QNM contributions is markedly
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different however. Instead of falling off exponentially, if falls off as s ∼ 1/n. PV or any other

regularization effectively cuts off the sum at n ∼ Λℓ, so since Nn ∼ nd−1, Sbulk ∼ Λd−1ℓd−1.

The bulk heat capacity Cbulk = −β∂βSbulk, so the heat capacity of a QNM at β = 2π is

c(r) = −r∂rs(r) . (5.2.34)

The real part of s(r) and c(r) on the complex r-plane are shown in fig. 5.2.4.

An application of the quasinormal expansion

The above QNM expansions are less useful for exact computations of thermodynamic quantities

than the direct integral evaluations discussed earlier, but can be very useful in computations of

certain UV-finite quantities. A simple example is the following. In thermal equilibrium with a

4D dS static patch horizon, which set of particle species has the largest bulk heat capacity: (A)

six conformally coupled scalars + graviton, (B) four photons? The answer is not obvious, as

both have an equal number of local degrees of freedom: 6 + 2 = 4 × 2 = 8. One could compute

each in full, but the above QNM expansions offers a much easier way to get the answer. From

(5.2.4) and (C.6.2) we read off the scalar and massless spin-s characters:

Θ0 = q + q2

(1 − q)3 , Θs = 2(2s+ 1) qs+1 − 2(2s− 1) qs+2

(1 − q)3 , (5.2.35)

where q = e−|t|. We see ΘA− ΘB = Θ2 + 6 Θ0 − 4 Θ1 = 6 q, so ΘA and ΘB are almost exactly

equal: A has just 6 more quasinormal modes than B, all with r = 1. Thus, using (5.2.34),

CAbulk − CBbulk = 6 · cbos(1) = π2 − 9 . (5.2.36)

Pretty close, but π > 3, so A wins. The difference is ∆C ≈ 0.87. Along similar lines,

∆S = 6 sbos(1) = 3(2γ + 1 − log(2π)) ≈ 0.95.
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Another UV-finite example: relative entropies of graviton, photon, neutrino

Less trivial to compute but more real-world in flavor is the following UV-finite linear combination

of the 4D graviton, photon, and (assumed massless) neutrino bulk entropies:

Sgraviton + 60
7 Sneutrino − 37

7 Sphoton = 48
7 ζ

′(−1) − 60
7 ζ

′(−3) + 6γ + 149
56 − 33

14 log(2π) ≈ 0.61

(5.2.37)

Finiteness can be checked from the small-t expansion of the total integrand computing this, and

the integral can then be evaluated along the lines of (C.2.15)-(C.2.16). We omit the details.

Vasiliev higher-spin example

Non-minimal Vasiliev higher-spin gravity on dS4 has a single conformally coupled scalar and a

tower of massless spin-s particles of all spins s = 1, 2, 3, . . .. The prospect of having to compute

bulk thermodynamics for this theory by brick wall or other approaches mentioned in appendix

C.4.3 would be terrifying. Let us compare this to the character approach. The total character

obtained by summing the characters of (5.2.35) takes a remarkably simple form:

Θtot = Θ0 +
∞∑
s=1

Θs = 2 ·
(
q1/2 + q3/2

(1 − q)2

)2
− q

(1 − q)2 = q + q3

(1 − q)4 + 3 · 2q2

(1 − q)4 . (5.2.38)

The first expression is two times the square of the character of a 3D conformally coupled scalar,

plus the character of 3D conformal higher-spin gravity (5.9.17).8 The second expression equals

the character of one ν = i and three ν = 0 scalars on dS5. Treating the character integral as

such, we immediately get, in k = 3 Pauli-Villars regularization (5.2.15),

logZdiv
bulk = a0Λ5 + a2Λ3 − a4Λ , logZfin

bulk = ζ(5)
4π4 − ζ(3)

24π2

Sdiv
bulk = 25

4 a2Λ3 − 103
20 a4Λ , Sfin

bulk = ζ(5)
4π4 − ζ(3)

24π2 + 1
20 .

(5.2.39)

8 For AdS4, the analogous Θtot equals one copy of the 3D scalar character squared, reflecting the single-trace
spectrum of its holographic dual U(N) model (see section 5.9.2). The dS counterpart thus encodes the single-
trace spectrum of two copies of this 3D CFT + 3D CHS gravity, reminiscent of [32]. This is generalized by
(5.9.16).
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where a0 = 1−4
√

2+3
√

3
10 π ≈ 0.17, a2 = −1−2

√
2+

√
3

12 π ≈ 0.025, and a4 = 3−3
√

2+
√

3
48 π ≈ 0.032.

The tower of higher-spin particles alters the bulk UV dimensionality much like a tower of KK

modes would. (We will later see edge “corrections” rather dramatically alter this.)

5.3 Sphere partition function for scalars and spinors

5.3.1 Problem and result

In this section we consider the one-loop Gaussian Euclidean path integral Z(1)
PI of scalar and

spinor field fluctuations on the round sphere. For a free scalar of mass m2 on Sd+1,

ZPI =
∫

Dϕ e− 1
2

∫
ϕ(−∇2+m2)ϕ , (5.3.1)

A convenient UV-regularized version is defined using standard heat kernel methods [178]:

logZPI,ϵ =
∫ ∞

0

dτ

2τ e
−ϵ2/4τ Tr e−τ(−∇2+m2) . (5.3.2)

The insertion e−ϵ2/4τ implements a UV cutoff at length scale ∼ ϵ. We picked this regulator for

convenience in the derivation below. We could alternatively insert the PV regulator of footnote

5, which would reproduce the PV regularization (5.2.15). However, being uniformly applicable to

all dimensions, the above regulator is more useful for the purpose of deriving general evaluation

formulae, as in appendix C.2.

In view of (5.2.7) we wish to compare ZPI to the corresponding Wick-rotated dS static

patch bulk thermal partition function Zbulk(β) (5.2.6), at the equilibrium inverse temperature

β = 2π. Here and henceforth, Zbulk by default means Zbulk(2π):

logZbulk ≡
∫ ∞

0

dt

2t

( 1 + e−t

1 − e−t Θ(t)bos − 2 e−t/2

1 − e−t Θ(t)fer

)
(5.3.3)

Below we show that for free scalars and spinors,

ZPI = Zbulk (5.3.4)



124

with the specific regularization (5.3.2) for ZPI mapping to a specific regularization (5.3.9) for

Zbulk. The relation is exact, for any ϵ. This makes the physical expectation (5.2.7) precise, and

shows that for scalars and spinors, there are in fact no edge corrections.

In appendix C.2 we provide a simple recipe for extracting both the UV and IR parts in the

ϵ → 0 limit in the above regularization, directly from the unregularized form of the character

formula (5.3.3). This yields the general closed-form solution (C.2.19) for the regularized ZPI in

terms of Hurwitz zeta functions. The heat kernel coefficient invariants are likewise read off from

the character using (C.2.20). For simple examples see (C.2.21), (C.2.22), (C.2.32)-(C.2.33).

5.3.2 Derivation

The derivation is straightforward:

Scalars:

The eigenvalues of −∇2 on a sphere of radius ℓ ≡ 1 are λn = n(n+d), n ∈ N, with degeneracies

Dd+2
n given by (2.2.3), that is Dd+2

n =
(n+d+1
d+1

)
−
(n+d−1
d+1

)
. Thus (5.3.2) can be written as

logZPI =
∫ ∞

0

dτ

2τ e
−ϵ2/4τe−τν2

∞∑
n=0

Dd+2
n e−τ(n+ d

2 )2
, ν ≡

√
m2 − d2

4 . (5.3.5)

To perform the sum over n, we use the Hubbard-Stratonovich trick, i.e. we write

∞∑
n=0

Dd+2
n e−τ(n+ d

2 )2 =
∫
A
du

e−u2/4τ
√

4πτ
f(u) , f(u) ≡

∞∑
n=0

Dd+2
n eiu(n+ d

2 ) . (5.3.6)

with integration contour A = R + iδ, δ > 0, as shown in fig. 5.3.1. The sum evaluates to

f(u) = 1 + eiu

1 − eiu
ei

d
2u

(1 − eiu)d , (5.3.7)

We first consider the case m > d
2 , so ν is real and positive. Then, keeping Im u = δ < ϵ, we

can perform the τ -integral first in (5.3.5) to get

logZPI =
∫
A

du

2
√
u2 + ϵ2

e−ν
√
u2+ϵ2 f(u) . (5.3.8)

Deforming the contour by folding it up along the two sides of the branch cut to contour B in
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A

B
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u t
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Figure 5.3.1: Integration contours for ZPI. Orange dots are poles, yellow dots branch points.

fig. 5.3.1, changing variables u = it and using that the square root takes opposite signs on both

sides of the cut, we transform this to an integral over C in fig. 5.3.1:

logZPI =
∫ ∞

ϵ

dt

2
√
t2 − ϵ2

1 + e−t

1 − e−t
e− d

2 t+iν
√
t2−ϵ2 + e− d

2 t−iν
√
t2−ϵ2

(1 − e−t)d , (5.3.9)

The result for 0 < m ≤ d
2 , i.e. ν = iµ with 0 ≤ µ < d

2 can be obtained from this by analytic

continuation. Putting ϵ = 0, this formally becomes

logZPI =
∫ ∞

0

dt

2t
1 + e−t

1 − e−t Θ(t) , Θ(t) = e−( d
2 −iν)t + e−( d

2 +iν)t

(1 − e−t)d , (5.3.10)

which we recognize as (5.3.3) with Θ(t) the scalar character (5.2.4). Thus we conclude that for

scalars, ZPI = Zbulk, with ZPI regularized as in (5.3.2) and Zbulk as in (5.3.9).

Spinors:

For a Dirac spinor field of mass m we have ZPI =
∫

Dψ e−
∫
ψ̄( /∇+m)ψ. The relevant formulae

for spectrum and degeneracies for general d can be found in the section 2.2. For concreteness

we just consider the case d = 3 here, but the conclusions are valid for Dirac spinors in general.

The spectrum of /∇+m on S4 is λn = m± (n+2)i, n ∈ N, with degeneracy D5
n+ 1

2 ,
1
2

= 4
(n+3

3
)
,

so ZPI regularized as in (5.3.2) is given by

logZPI = −
∫ ∞

0

dτ

τ
e−ϵ2/4τ

∞∑
n=0

4
(n+3

3
)
e−τ((n+2)2+m2) (5.3.11)
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Following the same steps as for the scalar case, this can be rewritten as

logZPI = −
∫ ∞

ϵ

dt

2
√
t2 − ϵ2

2 e−t/2

1 − e−t · 4 · e
− 3

2 t+im
√
t2−ϵ2 + e− 3

2 t−im
√
t2−ϵ2

(1 − e−t)3 . (5.3.12)

Putting ϵ = 0, this formally becomes

logZPI = −
∫ ∞

0

dt

2t
2 e−t/2

1 − e−t Θ(t) , Θ(t) = 4 · e
−( 3

2 +im)t + e−( 3
2 −im)t

(1 − e−t)3 , (5.3.13)

which we recognize as the fermionic (5.3.3) with Θ(t) the character of the ∆ = 3
2 + im unitary

SO(1, 4) representation carried by the single-particle Hilbert space of a Dirac spinor quantized on

dS4, given by twice the character (3.4.11) of the irreducible representation F∆,s with s = (1
2).

Thus we conclude ZPI = Zbulk. The comment below (5.4.16) generalizes this to all d.

5.4 Massive higher spins

We first formulate the problem, explaining why it is not nearly as simple as one might have

hoped, and then state the result, which turns out to be much simpler than one might have

feared. The derivation of the result is detailed in appendix C.5.1.

5.4.1 Problem

Consider a massive spin-s ≥ 1 field, more specifically a totally symmetric tensor field ϕµ1···µs on

dSd+1 satisfying the Fierz-Pauli equations of motion:

(
−∇2 +m2

s

)
ϕµ1···µs = 0 , ∇νϕνµ1···µs−1 = 0 , ϕννµ1···µs−2 = 0 . (5.4.1)

Upon quantization, the global single-particle Hilbert space furnishes a massive spin-s represen-

tation of SO(1, d+ 1) with ∆ = d
2 + iν, related to the effective mass ms appearing above (see

e.g. [89]), and to the more commonly used definition of mass m (see e.g. [71]) as

m2
s = (d2)2 + ν2 + s , m2 = (d2 + s− 2)2 + ν2 = (∆ + s− 2)(d+ s− 2 − ∆) . (5.4.2)

The massive spin-s bulk thermal partition function is immediately obtained by substituting
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the massive spin-s character (3.4.12) into the character formula (5.3.3) for Zbulk. For d ≥ 3,9

logZbulk =
∫ ∞

0

dt

2t
1 + q

1 − q
Dd
s · q

d
2 +iν + q

d
2 −iν

(1 − q)d , q = e−t , (5.4.3)

with spin degeneracy factor read off from (2.2.3) or (2.2.6).

The corresponding free massive spin-s Euclidean path integral on Sd+1 takes the form

ZPI =
∫

DΦ e−SE [Φ]. (5.4.4)

where Φ includes at least ϕ. However it turns out that in order to write down a local, manifestly

covariant action for massive fields of general spin s, one also needs to include a tower of

auxiliary Stueckelberg fields of all spins s′ < s [58], generalizing the familiar Stueckelberg action

(C.5.19) for massive vector fields. These come with gauge symmetries, which in turn require

the introduction of a gauge fixing sector, with ghosts of all spins s′ < s. The explicit form of

the action and gauge symmetries is known, but intricate [58].

Classically, variation of the action with respect the Stueckelberg fields merely enforces the

transverse-traceless (TT) constraints in (5.4.1), after which the gauge symmetries can be used

to put the Stueckelberg fields equal to zero. One might therefore hope the intimidating off-shell

ZPI (5.4.4) likewise collapses to just the path integral ZTT over the TT modes of ϕ with kinetic

term given by the equations of motion (5.4.1). This is easy to evaluate. The TT eigenvalue

spectrum on the sphere follows from SO(d + 2) representation theory. As detailed in eqs.

(C.5.1)-(C.5.2), we can then follow the same steps as in section 5.3, ending up with10

logZTT =
∫ ∞

0

dt

2t
(
qiν + q−iν)∑

n≥s
Dd+2
n,s q

d
2 +n . (5.4.5)

Here Dd+2
n,s is the dimension of the SO(d + 2) representation labeled by the two-row Young

diagram Yn,s.

Unfortunately, ZTT is not equal to ZPI on the sphere. The easiest way to see this is to

consider an example in odd spacetime dimensions, such as (C.5.3), and observe the result has a

9For d = 2, the single-particle Hilbert space splits into (∆,±s) with D2
±s = 1, so D2

s →
∑

± D
2
±s = 2.

10For d = 2, D4
n,s →

∑
± D

4
n,±s = 2D4

n,s.
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logarithmic divergence. A manifestly covariant local QFT path integral on an odd-dimensional

sphere cannot possibly have logarithmic divergences. Therefore ZPI ̸= ZTT. The appearance of

such nonlocal divergences in ZTT can be traced to the existence of (normalizable) zeromodes in

tensor decompositions on the sphere [128, 139]. For example the decomposition ϕµ = ϕTµ +∇µφ

has the constant φmode as a zeromode, ϕµν = ϕTT
µν +∇(µφν)+gµνφ has conformal Killing vector

zeromodes, and ϕµ1···µs = ϕTT
µ1···µs

+ ∇(µ1φµ2···µs) + g(µ1µ2φµ3···µs) has rank s − 1 conformal

Killing tensor zeromodes. As shown in [128, 139], this implies logZTT contains a nonlocal

UV-divergent term cs log Λ, where cs is the number of rank s − 1 conformal Killing tensors.

This divergence cannot be canceled by a local counterterm. Instead it must be canceled by

contributions from the non-TT part. Thus, in principle, the full off-shell path integral must be

carefully evaluated to obtain the correct result. Computing ZPI for general s on the sphere is

not as easy as one might have hoped.

5.4.2 Result

Rather than follow a brute-force approach, we obtain ZPI in appendix C.5.1 by a series of

relatively simple observations. In fact, upon evaluating the sum in (5.4.5), writing it in a way

that brings out a term logZbulk as in (5.4.3), and observing a conspicuous finite sum of terms

bears full responsibility for the inconsistency with locality, the answer suggests itself right away:

the non-TT part restores locality simply by canceling this finite sum. This turns out to be

equivalent to the non-TT part effectively extending the sum n ≥ s in (5.4.5) to n ≥ −1:11

logZPI =
∫ ∞

0

dt

2t
(
qiν + q−iν) ∑

n≥−1
Dd+2
n,s q

d
2 +n , (5.4.6)

where Dd+2
n,s is given by eq. (2.2.4). For n < s, this is no longer the dimension of an SO(d+ 2)

representation, but it can be rewritten as minus the dimension of such a representation, as

Dd+2
n,s = −Dd+2

s−1,n+1. This extension also turns out to be exactly what is needed for consistency

with the unitarity bound (C.5.18) and more refined unitarity considerations. A limited amount

of explicit path integral considerations combined with the observation that the coefficients

11For d = 2 use (5.4.14): D4
n,s →

∑
± D

4
n,±s = 2D4

n,s for n > −1, and D4
−1,s →

∑
±

1
2D

4
−1,±s = D4

−1,s =
D4

s−1.
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Dd+2
s−1,n+1 count conformal Killing tensor mode mismatches between ghosts and longitudinal

modes then suffice to establish this is indeed the correct answer. We refer to appendix C.5.1

for details.

Using the identity (C.5.8), we can write this in a rather suggestive form:

logZPI = logZbulk − logZedge =
∫ ∞

0

dt

2t
1 + q

1 − q

(
Θbulk − Θedge

)
, (5.4.7)

where Θbulk and Θedge are explicitly given by12

Θbulk ≡ Dd
s

q
d
2 +iν + q

d
2 −iν

(1 − q)d , Θedge ≡ Dd+2
s−1

q
d−2

2 +iν + q
d−2

2 −iν

(1 − q)d−2 (5.4.8)

The logZbulk term is the character integral for the bulk partition function (5.4.3). Strikingly,

the correction logZedge also takes the form a character integral, but with an “edge” character

Θedge in two lower dimensions. By our results of section 5.3 for scalars, Zedge effectively equals

the Euclidean path integral of Dd+2
s−1 scalars of mass m̃2 =

(
d−2

2
)2 + ν2 on Sd−1:

Zedge =
∫

Dϕ e− 1
2

∫
Sd−1 ϕ

a(−∇2+m̃2)ϕa

, a = 1, . . . , Dd+2
s−1 , (5.4.9)

In particular this gives 1 scalar for s = 1 and d + 2 scalars for s = 2. The Sd−1 is naturally

identified as the static patch horizon, the edge of the global dS spatial Sd hemisphere at time

zero, the yellow dot in fig. 5.2.1. Thus (5.4.7) realizes in a precise way the somewhat vague

physical expectation (5.2.7). Notice the relative minus sign here and in (5.4.7): the edge

corrections effectively subtract degrees of freedom. We do not have a physical interpretation

of these putative edge scalars for general s along the lines of the work reviewed in appendix

C.4.5.3. Some clues are that their multiplicity equals the number of conformal Killing tensor

modes of scalar type appearing in the derivation in appendix C.5.1 (the -modes for s = 4 in

(C.5.14)), and that they become massless at the unitarity bound ν = ±i(d2 − 1), eq. (C.5.18),

where a partially massless field emerges with a scalar gauge parameter.

12For d = 2, D2
s →

∑
± D

2
s = 2 in Θbulk as in (5.4.3). Θedge remains unchanged.
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Independent of any interpretation, we can summarize the result (5.4.7)-(5.4.8) as

logZd+1
PI (s) = logZd+1

bulk(s) −Dd+2
s−1 logZd−1

PI (0) . (5.4.10)

Examples

For a d = 2 spin-s ≥ 1 field of mass m2 = (s − 1)2 + ν2, logZPI =
∫ dt

2t
1+q
1−q (Θbulk − Θedge)

with

Θbulk = 2 q
1+iν + q1−iν

(1 − q)2 , Θedge = s2(qiν + q−iν) . (5.4.11)

That is, ZPI = Zbulk/Zedge, with the finite part of logZbulk explicitly given by twice (5.2.25),

and with Zedge equal to the Euclidean path integral of D4
s−1 = s2 harmonic oscillators of

frequency ν on S1, naturally identified with the S1 horizon of the dS3 static patch, with finite

part

Zfin
edge =

(
e−πν

1 − e−2πν

)s2

. (5.4.12)

The heat-kernel regularized ZPI is then, restoring ℓ and recalling ν =
√
m2ℓ2 − (s− 1)2,

logZPI = 2
(
πν3

6 −
2∑

k=0

νk

k!
Li3−k(e−2πν)

(2π)2−k − πν2ℓ

4ϵ + πℓ3

2ϵ3
)

− s2
(
−πν − log(1 − e−2πν) + πℓ

ϵ

)
(5.4.13)

The d = 3 spin-s case is worked out as another example in (C.2.27).

General massive representations

(5.4.6) has a natural generalization, presented in appendix C.5.2, to arbitrary parity-invariant

massive SO(1, d+ 1) representations R = ⊕a(∆a, sa), ∆a = d
2 + iνa, sa = (sa1, . . . , sar):

logZPI =
∫ ∞

0

dt

2t
∑
a

(−1)Fa
(
qiνa + q−iνa

) ∑
n∈ Fa

2 +Z

θ
(
d
2 + n

)
Dd+2
n,sa

q
d
2 +n (5.4.14)
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where θ(x) is the Heaviside step step function with θ(0) ≡ 1
2 , and Fa = 0, 1 for bosons

resp. fermions. This is the unique TT eigenvalue sum extension consistent with locality and

unitarity constraints. As in the s = (s) case, this can be rewritten as a bulk-edge decomposition

logZPI = logZbulk − logZedge. For example, using (2.3.25), the analog of (5.4.10) for an

s = (s, 1m) field becomes

logZd+1
PI (s, 1m) = logZd+1

bulk(s, 1m) −Dd+2
s−1 logZd−1

PI (1m) , (5.4.15)

so here Zedge is the path integral of Dd+2
s−1 massive m-form fields living on the Sd−1 edge. In

particular this implies the recursion relation logZd+1
PI (1p) = logZd+1

bulk(1p) − logZd−1
PI (1p−1).

Similarly for a spin s = k + 1
2 Dirac fermion, in the notation explained under table (2.2.6)

logZd+1
PI (s, 1

2) = logZd+1
bulk(s, 1

2) − 1
2D

d+2
s−1,1

2
logZd−1

PI (1
2) , (5.4.16)

where Zbulk now takes the form of the fermionic part of (5.3.3), with Θbulk as in (3.4.11) with

Dd
s = 2Dd

s,1
2
, the factor 2 due to the field being Dirac. The edge fields are Dirac spinors. Note

that because Dd+2
− 1

2 ,
1
2

= 0, the above implies in particular ZPI(1
2) = Zbulk(1

2).

We do not have a systematic group-theoretic or physical way of identifying the edge field

content. For evaluation of ZPI using (C.2.19), this identification is not needed however. Actually

the original expansions (5.4.6), (5.4.14) are more useful for this, as illustrated in (C.2.23)-

(C.2.27).

5.5 Massless higher spins

5.5.1 Problems

Bulk thermal partition function Zbulk

Massless spin-s fields on dSd+1 are in many ways quite a bit more subtle than their massive

spin-s counterparts. This manifests itself already at the level of the characters Θbulk,s needed

to compute the bulk ideal gas thermodynamics along the lines of section 5.2. The SO(1, d+ 1)

unitary representations furnished by their single-particle Hilbert space belong to the discrete
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series for d = 3 and to the exceptional series for d ≥ 4 [70]. The corresponding characters,

discussed in the section 3.4.3, are more intricate than their massive (principal and complementary

series) counterparts. A brief look at the general formula (3.4.20) with t = s− 1 or the table of

examples (C.6.2) suffices to make clear they are far from intuitively obvious — as is, for that

matter, the identification of the representation itself. Moreover, [70] reported their computation

of the exceptional series characters disagrees with the original results in [13, 65, 75].

As noted in section 5.2 and appendix C.1.3, the expansion Θbulk(q) =
∑
qNkq

k can be

interpreted as counting the number Nk of static patch quasinormal modes decaying as e−kT/ℓ.

This gives some useful physics intuition for the peculiar form of these characters, explained in the

section 4.5. The characters Θbulk,s(q) can in principle be computed by explicitly constructing

and counting physical quasinormal modes of a massless spin-s field. This is a rather nontrivial

problem, however.

Thus we see that for massless fields, complications appear already in the computation of

Zbulk. Computing ZPI adds even more complications, due to the presence of negative and zero

modes in the path integral. Happily, as we will see, the complications of the latter turn out to

be the key to resolving the complications of the former. Our final result for ZPI confirms the

identification of the representation made in [70] and the original results for the corresponding

characters in [13, 65, 75]. This is explicitly verified by counting quasinormal modes in [1].

Euclidean path integral ZPI

We consider massless spin-s fields in the metric-like formalism, that is to say totally symmetric

double-traceless fields ϕµ1···µs , with linearized gauge transformation

δ
(0)
ξ ϕµ1···µs = αs∇(µ1ξµ2···µs) , (5.5.1)

with ξ is traceless symmetric in its s′ = s− 1 indices, and αs picked by convention.13

We use the notation s′ ≡ s − 1 as it makes certain formulae more transparent and readily

13As explained in appendix C.6.4, for compatibility with certain other conventions we adopt, we will pick
αs ≡

√
s with symmetrization conventions such that ϕ(µ1···µs) = ϕµ1···µs .
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generalizable to the partially massless (0 ≤ s′ < s) case. The dimensions of ϕs and ξs′ are

d
2 + iνϕ = ∆ϕ = s′ + d− 1 , d

2 + iνξ = ∆ξ = s+ d− 1 . (5.5.2)

Note that this value of νϕ assign a mass m = 0 to ϕ according to (5.4.2). The Euclidean path

integral of a collection of (interacting) gauge fields ϕ on Sd+1 is formally given by

ZPI =
∫

Dϕ e−S[ϕ]

vol(G) (5.5.3)

where G is the group of local gauge transformations. At the one-loop (Gaussian) level S[ϕ] is

the quadratic Fronsdal action [179]. Several complications arise compared to the massive case:

1. For s ≥ 2, the Euclidean path integral has negative (“wrong sign” Gaussian) modes,

generalizing the well-known issue arising for the conformal factor in Einstein gravity [180].

These can be dealt with by rotating field integration contours. A complication on the

sphere is that rotations at the local field level ensuring positivity of short-wavelength

modes causes a finite subset of low-lying modes to go negative, requiring these modes to

be rotated back [131].

2. The linearized gauge transformations (5.5.1) have zeromodes: symmetric traceless tensors

ξ̄µ1...µs−1 satisfying ∇(µ1 ξ̄µ2···µs) = 0, the Killing tensors of Sd+1. This requires omitting

associated modes from the BRST gauge fixing sector of the Gaussian path integral. As

a result, locality is lost, and with it the flexibility to freely absorb various normalization

constants into local counterterms without having to keep track of nonlocal residuals.

3. At the nonlinear level, the Killing tensors generate a subalgebra of the gauge algebra.

The structure constants of this algebra are determined by the TT cubic couplings of the

interacting theory [140]. At least when it is finite-dimensional, as is the case for Yang-Mills,

Einstein gravity and the 3D higher-spin gravity theories of section 5.6, the Killing tensor

algebra exponentiates to a group G. For example for Einstein gravity, G = SO(d + 2).

To compensate for the zeromode omissions in the path integral, one has to divide by the

volume of G. The appropriate measure determining this volume is inherited from the path

integral measure, and depends on the UV cutoff and the coupling constants of the theory.
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Precisely relating the path integral volume vol(G)PI to the “canonical” vol(G)c defined

by a theory-independent invariant metric on G requires considerable care in defining and

keeping track of normalization factors.

Note that these complications do not arise for massless spin-s fields on AdS with standard

boundary conditions. In particular the algebra generated by the (non-normalizable) Killing

tensors in this case is a global symmetry algebra, acting nontrivially on the Hilbert space.

These problems are not insuperable, but they do require some effort. A brute-force path

integral computation correctly dealing with all of them for general higher-spin theories is compa-

rable to pulling a molar with a plastic fork: not impossible, but necessitating the sort of stamina

some might see as savage and few would wish to witness. The character formalism simplifies

the task, and the transparency of the result will make generalization obvious.

5.5.2 Ingredients and outline of derivation

We derive an exact formula for ZPI in appendix C.6.2-C.6.4. In what follows we merely give a

rough outline, just to give an idea what the origin is of various ingredients appearing in the final

result. To avoid the d = 2 footnotes of section 5.4 we assume d ≥ 3 in what follows.

Naive characters

Naively applying the reasoning of section 5.4 to the massless case, one gets a character formula

of the form (5.4.7), with “naive” bulk and edge characters Θ̂ given by

Θ̂ ≡ Θϕ − Θξ , (5.5.4)

where Θϕ, Θξ are the massive bulk/edge characters for the spin-s, ∆ = s′ +d−1 field ϕ and the

spin-s′, ∆ = s+ d− 1 gauge parameter (or ghost) field ξ, recalling s′ ≡ s− 1. The subtraction

−Θξ arises from the BRST ghost path integral. More explicitly, from (5.4.8),

Θ̂bulk,s = Dd
s

qs
′+d−1 + q1−s′

(1 − q)d −Dd
s′
qs+d−1 + q1−s

(1 − q)d

Θ̂edge,s = Dd+2
s−1

qs
′+d−2 + q−s′

(1 − q)d−2 −Dd+2
s′−1

qs+d−2 + q−s

(1 − q)d−2 .

(5.5.5)
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For example for s = 2 in d = 3,

Θ̂bulk,2 = 5 (q3 + 1) − 3 (q4 + q−1)
(1 − q)3 , Θ̂edge,2 = 5 (q2 + q−1) − (q3 + q−2)

1 − q
. (5.5.6)

Because of the presence of non-positive powers of q, Θ̂bulk is manifestly not the character of

any unitary representation of SO(1, d + 1). Indeed, the character integral (5.4.7) using these

naive Θ̂ is badly IR-divergent, due to the presence of non-positive powers of q.

Flipped characters

In fact this pathology is nothing but the character integral incarnation of the negative and

zeromode mode issues of the path integral mentioned under (5.5.3). The zeromodes must be

omitted, and the negative modes are dealt with by contour rotations. These prescriptions turn

out to translate to a certain “flipping” operation at the level of the characters. More specifically

the flipped character is obtained by acting the flipping operator [ ]+ (see eq. (3.4.17)) on the

native character Θ̂. In particular,
[
Θ̂bulk,s

]
+ is the Harish-Chandra character of the exceptional

series representation Us,s−1, noticing that Θ̂bulk,s = ΘF2−s,s − ΘF1−s,s−1 . Explicit expressions

for the edge characters are [Θ̂edge]+ = (C.6.23). Some simple examples are

d s
[
Θ̂bulk,s

]
+ · (1 − q)d

[
Θ̂edge,s

]
+ · (1 − q)d−2

2 ≥ 2 0 0

3 ≥ 1 2(2s+ 1) qs+1 − 2(2s− 1) qs+2 1
3s(s+ 1)(2s+ 1) qs − 1

3 (s− 1)s(2s− 1) qs+1

4 ≥ 1 2(2s+ 1) q2 1
3s(s+ 1)(2s+ 1) q

≥ 3 1 d (qd−1 + q) − qd + 1 + (1 − q)d qd−2 + 1 − (1 − q)d−2

(5.5.7)

Contributions to ZPI

To be more precise, after implementing the appropriate contour rotations and zeromode sub-

tractions, we get the following expression for the path integral:

ZPI = 1
vol(G)PI

∏
s

(
As i

−Ps Zchar,s
)ns

. (5.5.8)
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where ns is the number of massless spin-s fields in the theory, and the different factors appearing

here are defined as follows:

1. Zchar,s is defined by the character integral

logZchar,s ≡
∫ ×

0

dt

2t
1 + q

1 − q

([
Θ̂bulk,s

]
+ −

[
Θ̂edge,s

]
+ − 2Dd+2

s−1,s−1

)
, (5.5.9)

where
∫×

0 means
∫∞

0 with the IR divergence due to the constant term removed:

∫ ×

0

dt

t
f(t) ≡ lim

L→∞

∫ ∞

0

dt

t
f(t) e−t/L − f(∞) logL . (5.5.10)

The flipped
[
Θ̂bulk,s

]
+ turns out to be precisely the massless spin-s exceptional series

character Θbulk,s: (3.4.20). Thus the Θbulk contribution = ideal gas partition function

Zbulk, pleasingly consistent with the physics picture. The second term is an edge correction

as in the massive case. The third term has no massive counterpart, tied to the presence

of gauge zeromodes: Dd+2
s−1,s−1 counts rank s− 1 Killing tensors on Sd+1.

2. As is due to the zeromode omissions. Denoting M = 2e−γ/ϵ as in (C.2.30),

log As ≡ Dd+2
s−1,s−1

∫ ×

0

dt

2t
(
2 + q2s+d−4 + q2s+d−2) = 1

2D
d+2
s−1,s−1 log M4

(2s+d−4)(2s+d−2)

(5.5.11)

This term looks ugly. Happily, it will drop out of the final result.

3. i−Ps is the spin-s generalization of Polchinski’s phase of the one-loop path integral of

Einstein gravity on the sphere [131]. It arises because every negative mode contour

rotation adds a phase factor −i to the path integral. Explicitly,

Ps =
s−2∑
n=0

Dd+2
s−1,n +

s−2∑
n=0

Dd+2
s−2,n = Dd+3

s−1,s−1 −Dd+2
s−1,s−1 +Dd+3

s−2,s−2 . (5.5.12)

In particular P1 = 0, P2 = Dd+2
1 +Dd+2

0 = d+ 3 in agreement with [131]. For d+ 1 = 4,

Ps = 1
3s
(
s2 − 1

)2 and i−Ps = 1,−1, 1, 1, 1,−1, 1, 1, . . .. For d+ 1 = 2 mod 4, i−Ps = 1.

4. vol(G)PI is discussed below.
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Volume of G

As mentioned under (5.5.3), G is the subgroup of gauge transformations generated by the Killing

tensors ξ̄s−1 in the parent interacting theory on the sphere. Equivalently it is the subgroup of

gauge transformations leaving the background invariant. For Einstein gravity, we have a single

massless s = 2 field ϕ2. The Killing vectors ξ̄1 generate diffeomorphisms rigidly rotating the

sphere, hence G = SO(d + 2). For SU(N) Yang-Mills, we have N2 − 1 massless s = 1

fields ϕa1. The N2 − 1 Killing scalars ξ̄a0 generate constant SU(N) gauge transformations,

hence G = SU(N).14 For the 3D higher-spin gravity theories introduced in section 5.6, we

have massless fields ϕs of spin s = 2, . . . , n. The Killing tensors ξ̄s−1 turn out to generate

G = SU(n)+ × SU(n)−.

vol(G)PI is the volume of G according to the QFT path integral measure. We wish to

relate it to a “canonical” vol(G)c. We use the word “canonical” in the sense of defined in a

theory-independent way. We determine vol(G)PI/vol(G)c given our normalization conventions

in appendix C.6.4. Below we summarize the most pertinent definitions and results.

For Einstein gravity, the Killing vector Lie algebra is g = so(d + 2). Picking a standard

basis MIJ satisfying [MIJ ,MKL] = δIKMJL + δJLMIK − δILMJK − δJKMIL, we define the

“canonical” bilinear form ⟨·|·⟩c on g to be the unique invariant bilinear normalized such that

⟨MIJ |MIJ⟩c ≡ 1 (I ̸= J, no sum) . (5.5.13)

This invariant bilinear on g = so(d + 2) defines an invariant metric ds2
c on G = SO(d + 2).

Closed orbits generated by MIJ then have length
∮
dsc = 2π, and vol(G)c is given by (C.3.2).

For higher-spin gravity, the Killing tensor Lie algebra g contains so(d + 2) as a subalgebra

with generators MIJ . We define ⟨·|·⟩c on g to be the unique g-invariant bilinear form [140, 141]

normalized by (5.5.13). vol(G)c is defined using the corresponding metric ds2
c on G.

The Killing tensor commutators are determined by the local gauge algebra [δξ, δξ′ ] = δ[ξ,ξ′]

as in [140]. For Einstein or HS gravity, in our conventions (canonical ϕ + footnote 13), this

14or a quotient thereof, such as SU(N)/ZN , depending on other data such as additional matter content. Here
and in other instances, we will not try to be precise about the global structure of G.
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gives for the so(d+ 2) Killing vector (sub)algebra of g

[ξ̄1, ξ̄
′
1] =

√
16πGN [ξ̄′

1, ξ̄1]Lie , (5.5.14)

where [·, ·]Lie is the standard vector field Lie bracket. In Einstein gravity, GN is the Newton

constant. In Einstein + higher-order curvature corrections (section 5.8) or in higher-spin gravity

we take it to define the Newton constant. It is related to a “central charge” C in (C.6.51).

Building on [140, 143], we find the bilinear ⟨·|·⟩c determining vol(G)c can then be written

as

〈
ξ̄|ξ̄
〉

c = 4GN
Ad−1

∑
s

ns∑
α=1

(2s+ d− 4)(2s+ d− 2)
∫
Sd+1

ξ̄
(α)
s−1 · ξ̄(α)

s−1 , (5.5.15)

where Ad−1 = vol(Sd−1) is the dS horizon area. On the other hand, the path integral measure

computing vol(G)PI is derived from the bilinear ⟨ξ|ξ̄⟩PI = M4

2π
∫
ξ̄ · ξ̄. From this we can read

off the ratio vol(G)c/vol(G)PI: an awkward product of factors determined by the HS algebra.

This turns out to cancel the awkward eigenvalue product of (5.5.11), up to a universal factor:

vol(G)c
vol(G)PI

∏
s

Ans
s =

(8πGN
Ad−1

) 1
2 dimG

, (5.5.16)

for all theories covered by [140], i.e. all parity-invariant HS theories consistent at cubic level.

For Yang-Mills, vol(G)c is computed using the metric ds2
c on g defined by the canonically

normalized YM action S =: 1
4
∫

⟨F |F ⟩c. For example for SU(N) YM with S = −1
4
∫

TrN F 2,

this gives vol(G)c = vol(SU(N))TrN
= (C.3.3). A similar but simpler computation gives the

analog of (5.5.16). See appendix C.6.4 for details on all of the above.

5.5.3 Result and examples

Thus we arrive at the following universal formula for the one-loop Euclidean path integral for

parity-symmetric (higher-spin) gravity and Yang-Mills gauge theories on Sd+1, d ≥ 3:

Z
(1)
PI = i−P

K∏
a=0

γdimGa
a

volGa
· exp

∫ ×

0

dt

2t
1 + q

1 − q

(
Θbulk − Θedge − 2 dimG

)
(5.5.17)
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• G = G0 × G1 × · · ·GK is the subgroup of (higher-spin) gravitational and Yang-Mills gauge

transformations acting trivially on the background,

γ0 ≡
√

8πGN
Ad−1

, γ1 ≡
√

g2
1

2πAd−3
, · · · (5.5.18)

where An ≡ Ωnℓ
n, Ωn = (C.3.1), the gravitational and YM coupling constants GN and

g1, . . . , gK are defined by the canonically normalized so(d + 2) and YM gauge algebras as

explained around (5.5.14), and volGa is the canonically normalized volume of Ga, defined in

the same part.

• For a theory with ns massless spin-s fields

Θ =
∑
s

nsΘs , dimG =
∑
s

nsD
d+2
s−1,s−1 , P =

∑
s

nsPs , (5.5.19)

where Θs = [Θ̂s]+ are the flipped versions of the naive characters (5.5.5), with examples

in (5.5.7) and general formulae in (3.4.20) and (C.6.23), and Ps = (5.5.12) is the spin-s

generalization of the s = 2 phase P2 = d+ 3 found in [131].

• The heat-kernel regularized integral can be evaluated using (C.2.19), as spelled out in appendix

C.2.3. For odd d+ 1, the finite part can alternatively be obtained by summing residues.∫×
0 means integration with the IR log-divergence from the constant −2 dimG term removed as

in (5.5.10). The constant term contribution is then dimG ·
(
c ϵ−1 + log(2π)

)
, so when keeping

track of linearly divergent terms is not needed, one can replace (5.5.17) by

Z
(1)
PI = i−P

∏
a

(2πγa)dimGa

volGa
· exp

∫ ∞

0

dt

2t
1 + q

1 − q

(
Θbulk − Θedge

)
(mod ϵ−1) (5.5.20)

• The case d = 2 requires some minor amendments, discussed in appendix C.7.1: for s ≥ 2,

nothing changes except Ps, and Θ = 0, resulting in (C.7.5). Yang-Mills gives (C.7.8), or mod

ϵ−1 (C.7.9), equivalent to putting A−1 ≡ 1/2πℓ in (5.5.18), and Chern-Simons (C.7.11).

• The above can be extended to more general theories. For examples (s, s′) partially massless

gauge fields have characters given by (3.4.20) and (C.6.23), and contribute Dd+2
s−1,s′ to dimG.

Fermionic counterparts can be derived following the same steps, with Θ̂edge given by (5.4.16).

Fermionic (s, s′) PM fields give negative contributions −Dd+2
s−1,s′, 1

2 ,...,
1
2

to dimG.
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Example: coefficient αd+1 of log-divergent term

The heat kernel coefficient αd+1, i.e. the coefficient of the log-divergent term of logZ, can be

read off simply as the coefficient of the 1/t term in the small-t expansion of the integrand. As

explained in C.2.3, we can just use the original, naive integrand F̂ (t) = 1
2t(Θ̂bulk − Θ̂edge) for

this purpose, obtained from (5.5.5). For e.g. a massless spin-s field on S4 this immediately gives

α
(s)
4 = − 1

90
(
75 s4 − 15 s2 + 2

)
, in agreement with eq. (2.32) of [139]. For s = 1, 2,

d 3 5 7 9 11 13 15

α
(1)
d+1 −31

45 −1271
1890 −4021

6300 −456569
748440 −1199869961

2043241200 − 893517041
1571724000 −17279945447657

31261590360000

α
(2)
d+1 −571

45 −3181
140 −198851

5670 −74203873
1496880 −75059846731

1135134000 −114040703221
1347192000 −821333912103503

7815397590000
(5.5.21)

Another case of general interest is a partially massless field with (s, s′) = (42, 26) on S42:

α
(42,26)
42 = −5925700837995152105818399547396345088821635783305199815444602762021561970991151947221547

5348867203248512743202760066455665920000000000

∼ −1042

Example: SU(4) Yang-Mills on S5

As a simple illustration and test of (5.5.17), consider SU(4) YM theory on S5 of radius ℓ with

action S = 1
4g2
∫

Tr4 F
2, so G = SU(4), n1 = dimG = 15, vol(G)c = (2π)9

6 as given by

(C.3.3), γ =
√

g2

(2π)2ℓ , and P = 0. Bulk and edge characters are read off from table (5.5.7).

Thus

logZ(1)
PI = log

(
g/

√
ℓ
)15

(2π)15 · (2π)9

6

+ 15 ·
∫ ×

0

dt

2t
1 + q

1 − q

( 6 q2

(q − 1)4 − 2 q
(q − 1)2 − 2

)
. (5.5.22)

The finite part can be evaluated by simply summing residues, similar to (5.2.25):

logZfin
PI = log

(
g/

√
ℓ
)15

1
6(2π)9 + 15 ·

( 5 ζ(3)
16π2 + 3 ζ(5)

16π4

)
. (5.5.23)

The U(1) version of this agrees with [181] eq. (2.27). We could alternatively use (C.2.19) as

in C.2.3, which includes the UV divergent part: logZ(1)
PI = logZfin

PI + 15
(9π

8 ϵ
−5ℓ5 − 5π

8 ϵ
−3ℓ3 −
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7π
16 ϵ

−1ℓ
)
.

Example: Einstein gravity on S3, S4 and S5

The exact one-loop Euclidean path integral for Einstein gravity on the sphere can be worked out

similarly. The S3 case is obtained in (C.7.7). The S4 and S5 cases are detailed in C.2.3, with

results including UV-divergent terms given in (C.7.5), (C.2.44), (C.2.47). The finite parts are:

Zfin
PI = i−P · 1

vol(G)c

(8πGN
Ad−1

) 1
2 dimG

· Zfin
char , (5.5.24)

Sd+1 i−P vol(G)c Ad−1 dimG logZfin
char

S3 −i (2π)4 2πℓ 6 6 log(2π)

S4 −1 2
3(2π)6 4πℓ2 10 −571

45 log(ℓ/L) + 715
48 − log 2 − 47

3 ζ
′(−1) + 2

3ζ
′(−3)

S5 i 1
12(2π)9 2π2ℓ3 15 15 log(2π) + 65 ζ(3)

48π2 + 5 ζ(5)
16π4

(5.5.25)

Checks: We rederive the S3 result in the Chern-Simons formulation of 3D gravity [164] in

appendix C.7.2, and find precise agreement, with the phase matching for odd framing of the

Chern-Simons partition function (it vanishes for even framing). The coefficient −571
45 of the

log-divergent term of the S4 result agrees with [127]. The phases agree with [131]. The powers

of GN agree with zeromode counting arguments of [135, 138]. The full one-loop partition

function on S4 was calculated using zeta-function regularization in [134]. Upon correcting an

error in the second number of their equation (A.36) we find agreement. As far as we know, the

zeta-function regularized Z(1)
PI has not been explicitly computed before for Sd+1, d ≥ 4.

Higher-spin theories

Generic Vasiliev higher-spin gravity theories have infinite spin range and dimG = ∞, evidently

posing problems for (5.5.17). We postpone discussion of this case to section 5.9. Below we

consider a 3D higher-spin gravity theory with finite spin range s = 2, . . . , n.
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5.6 3D HSn gravity and the topological string

As reviewed in appendix C.7.2, 3D Einstein gravity with positive cosmological constant in

Lorentzian or Euclidean signature can be formulated as an SL(2,C) resp. SU(2) × SU(2)

Chern-Simons theory [164].15 This has a natural extension to an SL(n,C) resp. SU(n)×SU(n)

Chern-Simons theory, discussed in appendix C.7.3, which can be viewed as an s ≤ n dS3 higher-

spin gravity theory, analogous to the AdS3 theories studied e.g. in [166–169, 182, 183]. The

Lorentzian/Euclidean actions SL/SE are

SL = iSE = (l + iκ)SCS[A+] + (l − iκ)SCS[A−] , l ∈ N, κ ∈ R+ , (5.6.1)

where SCS[A] = 1
4π
∫

Trn
(
A ∧ dA + 2

3A ∧ A ∧ A
)

and A± are sl(n)-valued connections with

reality condition A∗
± = A∓ for the Lorentzian theory and A†

± = A± for the Euclidean theory.

The Chern-Simons formulation allows all-loop exact results, providing a useful check of our

result (5.5.17) for Z(1)
PI obtained in the metric-like formulation. Besides this, we observed a

number of other interesting features, collected in appendix C.7.3, and summarized below.

Landscape of vacua (C.7.3.1)

The theory has a set of dS3 vacua (or round S3 solutions in the Euclidean theory), corresponding

to different embeddings of sl(2) into sl(n), labeled by n-dimensional representations

R = ⊕ama , n =
∑
a

ma . (5.6.2)

of su(2), i.e. by partitions of n =
∑
ama. The radius in Planck units ℓ/GN and Z(0) = e−SE

depend on the vacuum R as

logZ(0) = 2πℓ
4GN

= 2πκTR , TR = 1
6
∑
a

ma(m2
a − 1) . (5.6.3)

15Or more precisely an SO(1, 3) = SL(2,C)/Z2 or SO(4) =
(
SU(2) × SU(2)

)
/Z2 CS theory. For the higher-

spin extensions, we could similarly consider quotients. We will use the unquotiented groups here.
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Note that S(0) = logZ(0) takes the standard Einstein gravity horizon entropy form. The entropy

is maximized for the principal embedding, i.e. R = n, for which Tn = 1
6n(n2 − 1). The number

of vacua equals the number of partitions of n:

Nvac ∼ e2π
√
n/6 . (5.6.4)

For, say, n ∼ 2 × 105, we get Nvac ∼ 10500, with maximal entropy S(0)|R=n ∼ 1015κ.

Higher-spin algebra and metric-like field content (C.7.3.2)

As worked out in detail for the AdS analog in [182], the fluctuations of the Chern-Simons

connection for the principal embedding vacuum R = n correspond in a metric-like description

to a set of massless spin-s fields with s = 2, 3, . . . , n. The Euclidean higher-spin algebra is

su(n)+ ⊕ su(n)−, which exponentiates to G = SU(n)+ × SU(n)−. The higher-spin field

content of the R = n vacuum can also be inferred from the decomposition of su(n) into

irreducible representations of su(2), with S ∈ su(2) acting on L ∈ su(n) as δL = ϵ[R(S), L],

to wit,

(n2 − 1)su(n) =
n−1∑
r=1

(2r + 1)su(2) . (5.6.5)

The (2r + 1,1) and (1,2r + 1) of so(4) = su(2)+ ⊕ su(2)− correspond to rank-r self-dual and

anti-self-dual Killing tensors on S3, the zeromodes of (5.5.1) for a massless spin-(r + 1) field,

confirming R = n has ns = 1 massless spin-s field for s = 2, . . . , n. For different vacua R, one

gets decompositions different from (5.6.5), associated with different field content. For example

for n = 12 and R = 6 ⊕ 4 ⊕ 2, we get n1 = 2, n2 = 7, n3 = 8, n4 = 6, n5 = 3, n6 = 1.

One-loop and all-loop partition function (C.7.3.3-C.7.3.4)

In view of the above higher-spin interpretation, we can compute the one-loop Euclidean path

integral on S3 for l = 0 from our general formula (5.5.17) for higher-spin gravity theories in the

metric-like formalism. The dS3 version of (5.5.17) is worked out in (C.7.4)-(C.7.6), and applied
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to the case of interest in (C.7.43), using (5.6.3) to convert from ℓ/GN to κ. The result is

Z
(1)
PI = in

2−1 ·
(
2π/

√
κ
)dimG

vol(G)Trn

, (5.6.6)

where vol(G)Trn =
(√
n
∏n
s=2(2π)s/Γ(s)

)2 as in (C.3.3).

This can be compared to the weak-coupling limit of the all-loop expression (C.7.45)-(C.7.47),

obtained from the known exact partition function of SU(n)k+ ×SU(n)k− Chern-Simons theory

on S3 by analytic continuation k± → l ± iκ,

Z(R)r = eirϕ ·

∣∣∣∣∣∣ 1√
n

1
(n+ l + iκ)

n−1
2

n−1∏
p=1

(
2 sin πp

n+ l + iκ

)(n−p)
∣∣∣∣∣∣
2

· e2πκTR . (5.6.7)

Here ϕ = π
4
∑

± c(l± iκ) with c(k) ≡ (n2 −1)
(
1− n

n+k
)
, and r ∈ Z labels the choice of framing

needed to define the Chern-Simons theory as a QFT, discussed in more detail below (C.7.25).

Canonical framing corresponds to r = 0. Z(R) is interpreted as the all-loop quantum-corrected

Euclidean partition function of the dS3 static patch in the vacuum R.

The weak-coupling limit κ → ∞ of (5.6.7) precisely reproduces (5.6.6), with the phase

matching for odd framing r. Alternatively this can be seen more directly by a slight variation

of the computation leading to (C.7.11). This provides a check of (5.5.17), in particular its

normalization in the metric-like formalism, and of the interpretation of (5.6.1) as a higher-spin

gravity theory.

Large-n limit and topological string dual (C.7.3.5)

Vasliev-type hs(so(d + 2)) higher-spin theories (section 5.9) have infinite spin range but finite

ℓd−1/GN. To mimic this case, consider the n → ∞ limit of the theory at l = 0. The semiclassical

expansion is reliable only if n ≪ κ. Using ℓ/GN ∼ κTR, this translates to nTR ≪ ℓ/GN, which

becomes n4 ≪ ℓ/GN for the principal vacuum R = n, and n ≪ ℓ/GN at the other extreme for

R = 2 ⊕ 1 ⊕ · · · ⊕ 1. Either way, the Vasiliev-like limit n → ∞ at fixed S(0) = 2πℓ/4GN is

strongly coupled.

However (5.6.7) continues to make sense in any regime, and in particular does have a weak

coupling expansion in the n → ∞ ’t Hooft limit. Using the large-n duality between U(n)k
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Chern-Simons on S3 and closed topological string theory on the resolved conifold [170, 171],

the partition function (5.6.7) of de Sitter higher-spin quantum gravity in the vacuum R can be

expressed in terms of the weakly-coupled topological string partition function Z̃top, (C.7.50):

Z(R)0 =
∣∣∣Z̃top(gs, t) e−πTR·2πi/gs

∣∣∣2 (5.6.8)

where (in the notation of [171]) the string coupling constant gs and the resolved conifold Kähler

modulus t ≡
∫
S2 J + iB are given by

gs = 2π
n+ l + iκ

, t = igsn = 2πin
n+ l + iκ

. (5.6.9)

Note that
∣∣e−πTR·2πi/gs

∣∣2 = e2πκTR = eS(0) , and that κ > 0 implies
∫
S2 J > 0 and Im gs ̸= 0.

The dependence on n at fixed S(0) is illustrated in fig. 5.1.4. We leave further exploration of

the dS quantum gravity - topological string duality suggested by these observations to future

work.

5.7 Euclidean thermodynamics

In section 5.2.3 we defined and computed the bulk partition function, energy and entropy of

the static patch ideal gas. In this section we define and compute their Euclidean counterparts,

building on the results of the previous sections.

5.7.1 Generalities

Consider a QFT on a dSd+1 background with curvature radius ℓ. Wick-rotated to the round

sphere metric gµν of radius ℓ (see appendix C.3.2), we get the Euclidean partition function:

ZPI(ℓ) ≡
∫

DΦ e−SE [Φ] (5.7.1)

where Φ collectively denotes all fields. The quantum field theory is to be thought of here as a

(weakly) interacting low-energy effective field theory with a UV cutoff ϵ.

Recalling the path integral definition (C.4.18) of the Euclidean vacuum |O⟩ paired with its
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dual ⟨O| as ZPI = ⟨O|O⟩, the Euclidean expectation value of the stress tensor is

⟨Tµν⟩ ≡ ⟨O|Tµν |O⟩
⟨O|O⟩

= − 2
√
g

δ

δgµν
logZPI = −ρPI gµν , (5.7.2)

The last equality, in which ρPI is a constant, follows from SO(d + 2) invariance of the round

sphere background. Denoting the volume of the sphere by V = vol(Sd+1
ℓ ) = Ωd+1ℓ

d+1,

−ρPIV = 1
d+1

∫√
g
〈
Tµµ
〉

= 1
d+1ℓ∂ℓ logZPI = V ∂V logZPI (5.7.3)

Reinstating the radius ℓ, the sphere metric in the S coordinates of (C.3.7) takes the form

ds2 = (1 − r2/ℓ2)dτ2 + (1 − r2/ℓ2)−1dr2 + r2dΩ2 , (5.7.4)

where τ ≃ τ + 2πℓ. Wick rotating τ → iT yields the static patch metric. Its horizon at r = ℓ

has inverse temperature β = 2πℓ. On a constant-T slice, the vacuum expectation value of the

Killing energy density corresponding to translations of T equals ρPI at the location r = 0 of

the inertial observer. Away from r = 0, it is redshifted by a factor
√

1 − r2/ℓ2. The Euclidean

vacuum expectation value UPI of the total static patch energy then equals ρPI
√

1 − r2/ℓ2

integrated over a constant-T slice:

UPI = ρPI Ωd−1

∫ ℓ

0
dr rd−1 = ρPI v , v = Ωd−1ℓ

d

d
= V

2πℓ . (5.7.5)

Note that v is the volume of a d-dimensional ball of radius ℓ in flat space, so effectively we can

think of UPI as the energy of an ordinary ball of volume v with energy density ρPI.

Combining (5.7.3) and (5.7.5), the Euclidean energy on this background is obtained as

2πℓUPI = V ρPI = − 1
d+1 ℓ∂ℓ logZPI (5.7.6)

and the corresponding Euclidean entropy SPI ≡ logZPI + β UPI is

SPI =
(
1 − 1

d+1ℓ∂ℓ
)

logZPI =
(
1 − V ∂V

)
logZPI (5.7.7)
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SPI can thus be viewed as the Legendre transform of logZPI trading V for ρPI:

d logZPI = −ρPI dV, SPI = logZPI + V ρPI , dSPI = V dρPI . (5.7.8)

The above differential relations express the first law of (Euclidean) thermodynamics for the

system under consideration: using V = βv and ρPI = UPI/v, they can be rewritten as

d logZPI = −UPI dβ − βρPI dv , dSPI = β dUPI − βρPI dv . (5.7.9)

Viewing v as the effective thermodynamic volume as under (5.7.5), these take the familiar form

of the first law, with pressure p = −ρ, the familiar cosmological vacuum equation of state.

The expression (5.7.7) for the Euclidean entropy and (5.7.8) naturally generalize to Euclidean

partition functions ZPI(ℓ) for arbitrary background geometries gµν(ℓ) ≡ ℓ2g̃µν with volume

V (ℓ) = ℓd+1Ṽ . In contrast, the expression (5.7.6) for the Euclidean energy is specific to the

sphere. A generic geometry has no isometries, so there is no notion of Killing energy to begin

with. On the other hand, the density ρPI appearing in (5.7.8) does generalize to arbitrary

backgrounds. The last equality in (5.7.2) and the physical interpretation of ρPI as a Killing

energy density no longer apply, but (5.7.3) remains valid.

5.7.2 Examples

Free d = 0 scalar

To connect to the familiar and to demystify the ubiquitous Lin(e−2πν) =
∑
k e

−2πkν/kn terms

encountered later, consider a scalar of mass m on an S1 of radius ℓ, a.k.a. a harmonic oscillator

of frequency m at β = 2πℓ = V . Using (C.2.32) and applying (5.7.6)-(5.7.7) with ν(ℓ) ≡ mℓ,

logZPI = πℓ

ϵ
− πν + Li1(e−2πν)

2πℓUPI = V ρPI = −πℓ

ϵ
+ πν coth(πν)

SPI = Li1(e−2πν) + 2πν Li0(e−2πν) ,

(5.7.10)

Mod ∆E0 ∝ −ϵ−1, these are the textbook canonical formulae turned into polylogs by (5.2.26).
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Free scalar in general d

The Euclidean action of a free scalar on Sd+1 is

SE [ϕ] = 1
2

∫√
g ϕ
(
−∇2 +m2 + ξR

)
ϕ , (5.7.11)

with R = d(d+ 1)/ℓ2 the Sd+1 Ricci scalar. The total effective mass m2
eff =

(
(d2)2 + ν2)/ℓ2 is

m2
eff = m2 + ξR ⇒ ν =

√
(mℓ)2 − η , η ≡

(
d
2

)2
− d(d+ 1) ξ . (5.7.12)

Neither ZPI nor the bulk thermodynamic quantities of section 5.2 distinguish between the m2

and ξR contributions to m2
eff , but UPI and SPI do, due to the ∂ℓ derivatives in (5.7.6)-(5.7.7).

This results in an additional explicit dependence on ξ, as

ℓ∂ℓ logZPI =
(
−ϵ∂ϵ + J · ν∂ν

)
logZPI , J = ℓ∂ℓν

ν
= (mℓ)2

ν2 = ν2 + η

ν2 . (5.7.13)

For the minimally coupled case ξ = 0, the Euclidean and bulk thermodynamic quantities agree,

but in general not if ξ ̸= 0. To illustrate this we consider the d = 2 example. Using (5.2.25)

and (C.2.22), restoring ℓ, and putting ν ≡
√

(mℓ)2 − η with η = 1 − 6ξ,

logZPI = πℓ3

2ϵ3 − πν2ℓ

4ϵ + πν3

6 −
2∑

k=0

νk

k!
Li3−k(e−2πν)

(2π)2−k . (5.7.14)

The corresponding Euclidean energy UPI = ρPI πℓ
2 (5.7.6) is given by

2πℓUPI = V ρPI = −πℓ3

2ϵ3 +
π(ν2 + 2

3η)ℓ
4ϵ − π

6 (ν2 + η)ν coth(πν) (5.7.15)

where V = vol(S3
ℓ ) = 2π2ℓ3. For minimal coupling ξ = 0 (i.e. η = 1), Ufin

PI equals Ufin
bulk

(5.2.24), but not for ξ ̸= 0. For general d, ξ, Ufin
PI is given by (5.2.23) with the overall factor

m2 the mass m2 appearing in the action rather than m2
eff , in agreement with [184, 185] or

(6.178)-(6.180) of [186]. The entropy SPI = logZPI + 2πℓUPI (5.7.7) is

SPI = πη

6
(ℓ
ϵ

− ν coth(πν)
)

−
3∑

k=0

νk

k!
Li3−k(e−2πν)

(2π)2−k , (5.7.16)
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where we used coth(πν) = 1 + 2 Li0(e−2πν) (5.2.26). Since ZPI = Zbulk in general for scalars

and UPI = Ubulk for minimally coupled scalars, SPI = Sbulk for minimally coupled scalars.

Indeed, after conversion to Pauli-Villars regularization, (5.7.16) equals (5.2.27) if η = 1. As a

check on the results, the first law dSPI = V dρPI (5.7.8) can be verified explicitly.

In the mℓ → ∞ limit, SPI → π
6 η(ϵ−1 − m)ℓ, reproducing the well-known scalar one-

loop Rindler entropy correction computed by a Euclidean path integral on a conical geometry

[5, 6, 145, 146, 150, 187]. Note that SPI < 0 when η < 0. Indeed as reviewed in the Rindler

context in appendix C.4.5, SPI does not have a statistical mechanical interpretation on its own.

Instead it must be interpreted as a correction to the large positive classical gravitational horizon

entropy. We discuss this in the de Sitter context in section 5.8.

A pleasant feature of the sphere computation is that it avoids replicated or conical ge-

ometries: instead of varying a deficit angle, we vary the sphere radius ℓ, preserving manifest

SO(d+ 2) symmetry, and allowing straightforward exact computation of the Euclidean entropy

directly from ZPI(ℓ), for arbitrary field content.

Free 3D massive spin s

Recall from (5.4.13) that for a d = 2 massive spin-s ≥ 1 field of mass m, the bulk part of

logZPI is twice that of a d = 2 scalar (5.7.14) with ν =
√

(mℓ)2 − η, η = (s − 1)2, while

the edge part is −s2 times that of a d = 0 scalar, as in (5.7.10), with the important difference

however that ν =
√

(mℓ)2 − η instead of ν = mℓ. Another important difference with (5.7.10)

is that in the case at hand, (5.7.6) stipulates V ρPI = 2πℓUPI = − 1
d+1ℓ∂ℓ logZPI with d = 2

instead of d = 0. As a result, for the bulk contribution, we can just copy the scalar formulae

(5.7.15) and (5.7.16) for UPI and SPI setting η = (s− 1)2, while for the edge contribution we

get something rather different from the harmonic oscillator energy and entropy (5.7.10):

V ρPI = 2 × (5.7.15) − s2(−π
3

1
ϵ ℓ+ π

3
(
ν2 + η

)
ν−1 coth(πν)

)
(5.7.17)

SPI = 2 × (5.7.16) − s2(2π
3 (1

ϵ ℓ− ν) + π
3 ην

−1 coth(πν) + Li1(e−2πν) + 2π
3 ν Li0(e−2πν)

)
(5.7.18)

The edge contribution renders SPI negative for all ℓ. In particular, in the mℓ → ∞ limit,

SPI → π
3
(
(s − 1)2 − 2s2) (ϵ−1 − m

)
ℓ → −∞: although the bulk part gives a large positive
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contribution for s ≥ 2, the edge part gives an even larger negative contribution. Going in the

opposite direction, to smaller mℓ, we hit the d = 2, s ≥ 1 unitarity bound at ν = 0, i.e. at

mℓ = √
η = s − 1. Approaching this bound, the bulk contribution remains finite, while the

edge part diverges, again negatively. For s = 1, SPI → log(mℓ), due to the Li1(e−2πν) term,

while for s ≥ 2, more dramatically, we get a pole SPI → − s2(s−1)
6

(
mℓ − (s − 1)

)−1, due to

the ην−1 coth(πν) term. Below the unitarity bound, i.e. when ℓ < (s − 1)/m, SPI becomes

complex. To be consistent as a perturbative low-energy effective field theory valid down to some

length scale ls, massive spin-s ≥ 2 particles on dS3 must satisfy m2 > (s− 1)2/l2s .

Massless spin 2

From the results and examples in section 5.5.3, logZ(1)
PI = logZ(1)

PI,div + logZ(1)
PI,fin − (d+3)π

2 i,

logZ(1)
PI,fin(ℓ) = −Dd

2 log A(ℓ)
4GN

+ α
(2)
d+1 log ℓ

L
+Kd+1 (5.7.19)

Dd = dim so(d+2) = (d+2)(d+1)
2 , A(ℓ) = Ωd−1ℓ

d−1, α(2)
d+1 = 0 for even d and given by (5.5.21)

for odd d. L is an arbitrary length scale canceling out of the sum of finite and divergent parts,
and Kd+1 an exactly computable numerical constant. Explicitly for d = 2, 3, 4, from (5.5.25):

d logZ(1)
PI,div logZ(1)

PI,fin

2 0 − 9π
2

1
ϵ ℓ −3 log( π

2GN
ℓ) + 5 log(2π)

3 8
3

1
ϵ4 ℓ

4− 32
3

1
ϵ2 ℓ

2− 571
45 log( 2e−γ

ϵ L) −5 log( π
GN
ℓ2)− 571

45 log( 1
Lℓ)−log( 8π

3 )+ 715
48 − 47 ζ′(−1)

3 + 2 ζ′(−3)
3

4 15π
8

1
ϵ5 ℓ

5 − 65π
24

1
ϵ3 ℓ

3 − 105π
16

1
ϵ ℓ − 15

2 log( π2

2GN
ℓ3) + log(12) + 27

2 log(2π) + 65 ζ(3)
48 π2 + 5 ζ(5)

16 π4

(5.7.20)

The one-loop energy and entropy (5.7.6)-(5.7.7) are split accordingly. The finite parts are

S
(1)
PI,fin = logZ(1)

PI,fin + V ρ
(1)
fin , V ρ

(1)
fin = 1

2
d−1
d+1 Dd − 1

d+1α
(2)
d+1 , (5.7.21)
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where as always 2πℓU = V ρ with V = Ωd+1ℓ
d+1. For d = 2, 3, 4:

d V ρ
(1)
div V ρ

(1)
fin S

(1)
PI,div

2 0 + 3π
2

1
ϵ ℓ 1 −3π 1

ϵ ℓ

3 −8
3

1
ϵ4 ℓ

4 + 16
3

1
ϵ2 ℓ

2 5
2 + 571

180 −16
3

1
ϵ2 ℓ

2 − 571
45 log(2e−γ

ϵ L)

4 −15π
8

1
ϵ5 ℓ

5 + 13π
8

1
ϵ3 ℓ

3 + 21π
16

1
ϵ ℓ

9
2 −13π

12
1
ϵ3 ℓ

3 − 21π
4

1
ϵ ℓ

(5.7.22)

Like their quasicanonical bulk counterparts, the Euclidean quantities obtained here are UV-

divergent, and therefore ill-defined from a low-energy effective field theory point of view. How-

ever if the metric itself, i.e. gravity, is dynamical, these the UV-sensitive terms can be absorbed

into standard renormalizations of the gravitational coupling constants, rendering the Euclidean

thermodynamics finite and physically meaningful. We turn to this next.

5.8 Quantum gravitational thermodynamics

In section 5.7 we considered the Euclidean thermodynamics of effective field theories on a fixed

background geometry. In general the Euclidean partition function and entropy depend on the

choice of background metric; more specifically on the background sphere radius ℓ. Here we

specialize to field theories which include the metric itself as a dynamical field, i.e. we consider

gravitational effective field theories. We denote ZPI, ρPI and SPI by Z, ϱ and S in this case:

Z =
∫

Dg · · · e−SE [g,...] , SE [g, . . .] = 1
8πG

∫√
g
(
Λ − 1

2R+ · · ·
)
. (5.8.1)

The geometry itself being dynamical, we have ∂ℓZ = 0, so (5.7.6)-(5.7.7) reproduce (5.1.1):

ϱ = 0 , S = log Z , (5.8.2)

We will assume d ≥ 2, but it is instructive to first consider d = 0, i.e. 1D quantum gravity

coupled to quantum mechanics on a circle. Then Z =
∫ dβ

2β Tr e−βH , where β is the circle size

and H is the Hamiltonian of the quantum mechanical system shifted by the 1D cosmological

constant. To implement the conformal factor contour rotation of [180] implicit in (5.8.2), we
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pick an integration contour β = 2πℓ + iy with y ∈ R and ℓ > 0 the background circle radius.

Then Z = πiN (0) where N (E) is the number of states with H < E. This being ℓ-independent

implies ϱ = 0. A general definition of microcanonical entropy is Smic(E) = log N (E). Thus,

modulo the content-independent πi factor in Z, S = log Z is the microcanonical entropy at

zero energy in this case.

Of course d = 0 is very different from the general-d case, as there is no classical saddle

of the gravitational action, and no horizon. For d ≥ 2 and Λ → 0, the path integral has a

semiclassical expansion about a round sphere saddle or radius ℓ0 ∝ 1/
√

Λ, and S is dominated

by the leading tree-level horizon entropy (5.1.2). As in the AdS-Schwarzschild case reviewed

in C.4.5.1, the microscopic degrees of freedom accounting for the horizon entropy, assuming

they exist, are invisible in the effective field theory. A natural analog of the dual large-N CFT

partition function on S1 × Sd−1 microscopically computing the AdS-Schwarzschild free energy

may be some dual large-N quantum mechanics coupled to 1D gravity on S1 microscopically

computing the dS static patch entropy. These considerations suggest interpreting S = log Z as a

macroscopic approximation to a microscopic microcanonical entropy, with the semiclassical/low-

energy expansion mapping to some large-N expansion.

The one-loop corrected Z is obtained by expanding the action to quadratic order about its

sphere saddle. The Gaussian Z(1)
PI was computed in previous sections. Locality and dimensional

analysis imply that one-loop divergences are ∝
∫
Rn with 2n ≤ d + 1. Picking counterterms

canceling all (divergent and finite) local contributions of this type in the limit ℓ0 ∝ 1/
√

Λ → ∞,

we get a well-renormalized S = log Z to this order. Proceeding along these lines would be

the most straightforward path to the computational objectives of this section. However, when

pondering comparisons to microscopic models, one is naturally led to wondering what the actual

physics content is of what has been computed. This in turn leads to small puzzles and bigger

questions, such as:

1. A natural guess would have been that the one-loop correction to the entropy S is given

by a renormalized version of the Euclidean entropy S(1)
PI (5.7.7). However (5.8.2) says it is

given by a renormalized version of the free energy logZ(1)
PI . In the examples given earlier,

these two look rather different. Can these considerations be reconciled?

2. Besides local UV contributions absorbed into renormalized coupling constants determining
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the tree-level radius ℓ0, there will be nonlocal IR vacuum energy contributions (pictorially

Hawking radiation in equilibrium with the horizon), shifting the radius from ℓ0 to ℓ̄ by

gravitational backreaction. The effect would be small, ℓ̄ = ℓ0 + O(G), but since the

leading-order horizon entropy is S(ℓ) ∝ ℓd−1/G, we have S(ℓ̄) = S(ℓ0) + O(1), a shift

at the one-loop order of interest. The horizon entropy term in (5.8.2) is S(0) = S(ℓ0),

apparently not taking this shift into account. Can these considerations be reconciled?

3. At any order in the large-ℓ0 perturbative expansion, UV-divergences can be absorbed

into a renormalization of a finite number of renormalized coupling constants, but for

the result to be physically meaningful, these must be defined in terms of low-energy

physical “observables”, invariant under diffeomorphisms and local field redefinitions. In

asymptotically flat space, one can use scattering amplitudes for this purpose. These are

unavailable in the case at hand. What replaces them?

To address these and other questions, we follow a slghtly less direct path, summarized below,

and explained in more detail including examples in appendix C.8.

Free energy/quantum effective action for volume

We define an off-shell free energy/quantum effective action Γ(V ) = − logZ(V ) for the volume,

the Legendre transform of the off-shell entropy/moment-generating function S(ρ):16

S(ρ) ≡ log
∫

Dg e−SE [g]+ρ
∫√

g , logZ(V ) ≡ S − V ρ , V = ∂ρS =
〈 ∫√

g
〉
ρ
. (5.8.3)

At large V , the geometry semiclassically fluctuates about a round sphere. Parametrizing the

mean volume V by a corresponding mean radius ℓ as V (ℓ) ≡ Ωd+1ℓ
d+1, we have

Z(ℓ) =
∫
tree dρ

∫
Dg e−SE [g]+ρ(

∫√
g−V (ℓ)) , (5.8.4)

where
∫

tree dρ means saddle point evaluation, i.e. extremization. The Legendre transform (5.8.3)

16Non-metric fields in the path integral are left implicit. Note “off-shell” = on-shell for c.c. Λ′ = Λ − 8πGρ.
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is the same as (5.7.8), so we get thermodynamic relations of the same form as (5.7.6)-(5.7.8):

dS = V dρ , d logZ = −ρ dV , ρ = − 1
d+1ℓ∂ℓ logZ /V , S =

(
1 − 1

d+1ℓ∂ℓ
)

logZ .

(5.8.5)

On-shell quantities are obtained at ρ = 0, i.e. at the minimum ℓ̄ of the free energy − logZ(ℓ):

ϱ = ρ(ℓ̄) = 0 , S = S(ℓ̄) = logZ(ℓ̄) ,
〈 ∫√

g
〉

= Ωd+1ℓ̄
d+1 . (5.8.6)

Tree level

At tree level (5.8.4) evaluates to

logZ(0)(ℓ) = −SE [gℓ] , gℓ = round Sd+1 metric of radius ℓ , (5.8.7)

readily evaluated for any action using Rµνρσ = (gµρgνσ − gµσgνρ)/ℓ2, taking the general form

logZ(0) = Ωd+1ℓ
d+1

8πG
(
−Λ + d(d+1)

2 ℓ−2 + z1 l
2
s ℓ

−4 + z2 l
4
s ℓ

−6 + · · ·
)
. (5.8.8)

The zn are Rn+1 coupling constants and ls ≪ ℓ is the length scale of UV-completing physics.

The off-shell entropy and energy density are obtained from logZ(0) as in (5.8.5).

S(0) = Ωd−1ℓ
d−1

4G
(
1+s1 l

2
s ℓ

−2+· · ·
)
, ρ(0) = 1

8πG
(
Λ− d(d−1)

2 ℓ−2+ρ1 l
2
s ℓ

−4+· · ·
)

(5.8.9)

where sn, ρn ∝ zn and we used Ωd+1 = 2π
d Ωd−1. The on-shell entropy and radius are given by

S(0) = S(0)(ℓ0) , ρ(0)(ℓ0) = 0 , (5.8.10)

either solved perturbatively for ℓ0(Λ) or, more conveniently, viewed as parametrizing Λ(ℓ0).

One loop

The one-loop order, (5.8.4) is a by construction tadpole-free Gaussian path integral, (C.8.31):

logZ = logZ(0) + logZ(1) , logZ(1) = logZ(1)
PI + logZct , (5.8.11)
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with Z(1)
PI as computed in sections 5.4-5.5 and logZct(ℓ) = −SE,ct[gℓ] a polynomial counterterm.

We define renormalized coupling constants as the coefficients of the ℓd+1−2n terms in the ℓ → ∞

expansion of logZ, and fix logZct by equating tree-level and renormalized coefficients of the

polynomial part, which amounts to the renormalization condition

lim
ℓ→∞

∂ℓ logZ(1) = 0 , (5.8.12)

in even d+1 supplemented by logZct(0) ≡ −αd+1 log(2e−γL/ϵ), implying L∂L logZ(0) = αd+1.

Example: 3D Einstein gravity + minimally coupled scalar (C.8.4.1), putting ν ≡
√
m2ℓ2 − 1,

logZ(1) = −3 log 2πℓ
4G + 5 log(2π) −

2∑
k=0

νk

k!
Li3−k(e−2πν)

(2π)2−k + πν3

6 − πm3ℓ3

6 + πmℓ

4 .

(5.8.13)

The last two terms are counterterms. The first two are nonlocal graviton terms. The scalar part

is O(1/mℓ) for mℓ ≫ 1 but goes nonlocal at mℓ ∼ 1, approaching − log(mℓ) for mℓ ≪ 1.

Defining ρ(1) and S(1) from logZ(1) as in (5.8.5), and the quantum on-shell ℓ̄ = ℓ0 +O(G) as

in (5.8.6), the quantum entropy can be expressed in two equivalent ways, (C.8.38)-(C.8.39):

A : S = S(0)(ℓ̄) + S(1)(ℓ̄) + · · · , B : S = S(0)(ℓ0) + logZ(1)(ℓ0) + · · · (5.8.14)

where the dots denote terms neglected in the one-loop approximation. This simultaneously

answers questions 1 and 2 on our list, reconciling intuitive (A) and (5.8.2)-based (B) expecta-

tions. To make this physically obvious, consider the quantum static patch as two subsystems,

geometry (horizon) + quantum fluctuations (radiation), with total energy ∝ ρ = ρ(0) +ρ(1) = 0.

If ρ(0) = 0, the horizon entropy is S(0)(ℓ0). But here we have ρ = 0, so the horizon entropy is

actually S(0)(ℓ̄) = S(0)(ℓ0) + δS(0), where by the first law (5.8.5), δS(0) = V δρ(0) = −V ρ(1).

Adding the radiation entropy S(1) and recalling logZ(1) = S(1) − V ρ(1) yields S = A = B.

Thus A = B is just the usual small+large = system+reservoir approximation, the horizon being

the reservoir, and the Boltzmann factor e−V ρ(1) = e−βU(1) in Z(1) accounting for the reservoir’s

entropy change due to energy transfer to the system.

Viewing the quantum contributions as (Hawking) radiation has its picturesque merits and
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correctly conveys their nonlocal/thermal character, e.g. Li(e−2πν) ∼ e−βm for mℓ ≫ 1 in

(5.8.13), but might incorrectly convey a presumption of positivity of ρ(1) and S(1). Though

positive for minimally coupled scalars (fig. C.8.1), they are in fact negative for higher spins (figs.

C.8.2, C.8.3), due to edge and group volume contributions. Moreover, although the negative-

energy backreaction causes the horizon to grow, partially compensating the negative S(1) by a

positive δS(0) = −V ρ(1), the former still wins: S(1) ≡ S − S(0) = S(1) − V ρ(1) = logZ(1) < 0.

Computational recipe and examples

For practical purposes, (B) is the more useful expression in (5.8.14). Together with (5.8.10)

computing S(0), the exact results for Z(1)
PI obtained in previous sections (with γ0 =

√
2π/S(0),

see (5.8.16) below), and the renormalization prescription outlined above, it immediately gives

S = S(0) + S(1) + · · · , S(0) = S(0)(ℓ0) , S(1) = logZ(1)(ℓ0) (5.8.15)

in terms of the renormalized coupling constants, for general effective field theories of gravity

coupled to arbitrary matter and gauge fields.

For 3D gravity, this gives S = S(0)−3 log S(0)+5 log(2π)+O(1/S(0)). We work out and plot

several other concrete examples in appendix C.8.4: 3D Einstein gravity + scalar (C.8.4.1, fig.

C.8.1), 3D massive spin s (C.8.4.2, fig. C.8.2), 2D scalar (C.8.4.3), 4D massive spin s (C.8.4.4,

fig. C.8.3), and 3D,4D,5D gravity (including higher-order curvature corrections) (C.8.4.5). Table

5.1.12 in the introduction lists a few more sample results.

Local field redefinitions, invariant coupling constants and physical observables

Although the higher-order curvature corrections to the tree-level dS entropy S(0) = S(0)(ℓ0)

(5.8.9) seem superficially similar to curvature corrections to the entropy of black holes in asymp-

totically flat space [188, 189], there are no charges or other asymptotic observables available

here to endow them with physical meaning. Indeed, they have no intrinsic low-energy physi-

cal meaning at all, as they can be removed order by order in the ls/ℓ expansion by a metric

field redefinition, bringing the entropy to pure Einstein form (5.1.2). In Z(0)(ℓ) (5.8.8), this

amounts to setting all zn ≡ 0 by a redefinition ℓ → ℓ
∑
n cnℓ

−2n (C.8.21). The value of

S(0) = maxℓ≫ls logZ(0)(ℓ) remains of course unchanged, providing the unique field-redefinition
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invariant combination of the coupling constants G,Λ(or ℓ0), z1, z2, . . ..

Related to this, as discussed in C.8.4.5, caution must be exercised when porting the one-

loop graviton contribution in (5.5.17) or (5.7.19): GN appearing in γ0 =
√

8πGN/A is the

algebraically defined Newton constant (5.5.14), as opposed to G defined by the Ricci scalar

coefficient 1
8πG in the low-energy effective action. The former is field-redefinition invariant; the

latter is not. In Einstein frame (zn = 0) the two definitions coincide, hence in a general frame

γ0 =
√

2π/S(0) . (5.8.16)

Since log S(0) = log A
4G + log(1 + O(l2s/ℓ20)), this distinction matters only at O(l2s/ℓ20), however.

In d = 2, S(0) is in fact the only invariant gravitational coupling: because the Weyl tensor

vanishes identically, any 3D parity-invariant effective gravitational action can be brought to

Einstein form by a field redefinition. In the Chern-Simons formulation of C.7.2, S(0) = 2πκ.

In d ≥ 3, the Weyl tensor vanishes on the sphere, but not identically. As a result, there are

coupling constants not picked up by the sphere’s S(0) = −SE [gℓ0 ]. Analogous S(0)
M ≡ −SE [gM ]

for different saddle geometries gM , approaching Einstein metrics in the limit Λ ∝ ℓ−2
0 → 0,

can be used instead to probe them, and analogous SM ≡ log ZM expanded about gM provide

quantum observables. Section C.8.5 provides a few more details, and illustrates extraction of

unambiguous linear combinations of the 4D one-loop correction for 3 different M .

This provides the general picture we have in mind as the answer, in principle, to question 3

on our list below (5.8.2): the tree-level S(0)
M are the analog of tree-level scattering amplitudes,

and the analog of quantum scattering amplitudes are the quantum SM .

Constraints on microscopic models

For pure 3D gravity S(0) = 2π
4G
(
ℓ0 + s1ℓ

−1
0 + s2 ℓ

−3
0 + · · ·

)
, and to one-loop order we have

(C.8.62):

S = S(0) − 3 log S(0) + 5 log(2π) + · · · . (5.8.17)

Granting17 (C.7.24) with l = 0 gives the all-loop expansion of pure 3D gravity, taking into

17This does not affect the 1-loop based conclusions below, but does affect the cn. One could leave l general.



158

account G ≡ SO(4) here while G ≡ SU(2) × SU(2) there, to all-loop order,

S = S0 + log
∣∣∣√ 4

2+iS0/2π sin
(

π
2+iS0/2π

)∣∣∣2 = S0 − 3 log S0 + 5 log(2π) +
∑
n cn S−2n

0 (5.8.18)

where S0 ≡ S(0) to declutter notation. Note all quantum corrections are strictly nonlocal, i.e.

no odd powers of ℓ0 appear, reflected in the absence of odd powers of 1/S0.

Though outside the scope of this paper, let us illustrate how such results may be used to

constrain microscopic models identifying large-ℓ0 and large-N expansions in some way. Say a

modeler posits a model consisting of 2N spins σi = ±1 with H ≡
∑
i σi = 0. The microscopic

entropy is Smic = log
(2N
N

)
= 2 log 2 · N − 1

2 log(πN) +
∑
n c

′
nN

1−2n. There is a unique

identification of S0 bringing this in a form with the same analytic/locality structure as (5.8.18),

to wit, S0 = log 4 ·N +
∑
n c

′
nN

1−2n, resulting in

Smic = S0 − 1
2 log S0 + log( π

2 log 2) +
∑
n c

′′
n S−2n

0 , (5.8.19)

where c′′
1 = −1

8 log 2, c′′
2 = 3

64(log 2)2 + 1
48(log 2)3, . . ., fully failing to match (5.8.18), starting

at one loop. The model is ruled out.

A slightly more sophisticated modeler might posit Smic = log d(N), where d(N) is the N -th

level degeneracy of a chiral boson on S1. To leading order Smic ≈ 2π
√
N/6 ≡ K. Beyond,

Smic = K − a′ logK + b′ +
∑
n c

′
nK

−n + O(e−K/2), where a′ = 2, b′ = log(π2/6
√

3) and

c′
n given by [190]. Identifying S0 = K +

∑
n c

′
2n−1K

−(2n−1) brings this to the form (5.8.18),

yielding Smic = S0 − a′ log S0 + b′ +
∑
n c

′′
nS−2n

0 + O(e−S0/2), with c′′
1 = −5

2 , c′′
2 = 37

12 , . . . —

ruled out.

We actually did not need the higher-loop corrections at all to rule out the above models. In

higher dimensions, or coupled to more fields, one-loop constraints moreover become increasingly

nontrivial, evident in (5.1.12). For pure 5D gravity (C.8.62),

S = S(0) − 15
2 log S(0) + log(12) + 27

2 log(2π) + 65 ζ(3)
48π2 + 5 ζ(5)

16π4 . (5.8.20)

It would be quite a miracle if a microscopic model managed to match this.
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5.9 dS, AdS±, and conformal higher-spin gravity

Vasiliev higher-spin gravity theories [53, 55, 172] have infinite spin range and an infinite-

dimensional higher-spin algebra, g = hs(so(d + 2)), leading to divergences in the one-loop

sphere partition function formula (5.5.17) untempered by the UV cutoff. In this section we take

a closer look at these divergences. We contrast the situation to AdS with standard boundary

conditions (AdS+), where the issue is entirely absent, and we point out that, on the other hand,

for AdS with alternate HS boundary conditions (AdS−) as well as conformal higher-spin (CHS)

theories, similar issues arise. We end with a discussion of their significance.

5.9.1 dS higher-spin gravity

Nonminimal type A Vasiliev gravity on dSd+1 has a tower of massless spin-s fields for all s ≥ 1

and a ∆ = d − 2 scalar. We first consider d = 3. The total bulk and edge characters are

obtained by summing (5.5.7) and adding the scalar, as we did for the bulk part in (5.2.38):

Θbulk = 2 ·
(
q1/2 + q3/2

(1 − q)2

)2
− q

(1 − q)2 , Θedge = 2 ·
(
q1/2 + q3/2

(1 − q)2

)2
. (5.9.1)

Quite remarkably, the bulk and edge contributions almost exactly cancel:

Θbulk − Θedge = − q

(1 − q)2 . (5.9.2)

For d = 4 however, we see from (5.5.7) that due to the absence of overall qs suppression factors,

the total bulk and edge characters each diverge separately by an overall multiplicative factor:

Θbulk =
∑
s

(2s+ 1) · 2 q2

(1 − q)4 , Θedge =
∑
s

1
6s(s+ 1)(2s+ 1) · 2 q

(1 − q)2 . (5.9.3)

This pattern persists for all d ≥ 4, as can be seen from the explicit form of bulk and edge

characters in (3.4.20), (C.6.2) and (C.6.23). For any d, there is moreover an infinite-dimensional

group volume factor in (5.5.17) to make sense of, involving a divergent factor (ℓd−1/GN)dimG/2

and the volume of an object of unclear mathematical existence [191].

Before we continue the discussion of what, if anything, to make of this, we consider AdS±
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and CHS theories within the same formalism. Besides independent interest, this will make clear

the issue is neither intrinsic to the formalism, nor to de Sitter.

5.9.2 AdS± higher-spin gravity

AdS characters for standard and alternate HS boundary conditions

Standard boundary conditions on massless higher spin fields φ in AdSd+1 lead to quantization

such that spin-s single-particle states transform in a UIR of so(2, d) with primary dimension

∆φ = ∆+ = s + d − 2. Higher-spin Euclidean AdS one-loop partition functions with these

boundary conditions were computed in [111–113]. In [138], the Euclidean one-loop partition

function for alternate boundary conditions (∆φ = ∆− = 2 − s) was considered. In the EAdS+

case, the complications listed under (5.5.3) are absent, but for EAdS− close analogs do appear.

EAdS path integrals can be expressed as character integrals [3, 144, 173], in a form exactly

paralleling the formulae and bulk/edge picture of the present work [3].18 The AdS analog of the

dS bulk and edge characters (5.4.8) for a massive spin-s field φ with ∆φ = ∆± is [3]

ΘAdS±
bulk,φ ≡ Dd

s

q∆±

(1 − q)d , ΘAdS±
edge,φ ≡ Dd+2

s−1
q∆±−1

(1 − q)d−2 , (5.9.4)

where ∆− = d− ∆+. Thus, as functions of q,

ΘdS
φ = ΘAdS+

φ + ΘAdS−
φ . (5.9.5)

The AdS analog of (5.5.4) for a massless spin-s field ϕs with gauge parameter field ξs′ is

Θ̂AdS±
s ≡ ΘAdS±

ϕ − ΘAdS±
ξ , (5.9.6)

18In this picture, EAdS is viewed as the Wick-rotated AdS-Rindler wedge, with dSd static patch boundary
metric, as in [192, 193]. The bulk character is Θ ≡ trG q

iH , with H the Rindler Hamiltonian, not the global
AdS Hamiltonian. Its q-expansion counts quasinormal modes of the Rindler wedge. The one-loop results are
interpreted as corrections to the gravitational thermodynamics of the AdS-Rindler horizon [3, 192, 193].
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where ∆ϕ,+ = s′ + d− 1, ∆ξ,+ = s+ d− 1, s′ ≡ s− 1. More explicitly, analogous to (5.5.5),

Θ̂AdS+
bulk,s = Dd

s q
s′+d−1 −Dd

s′ qs+d−1

(1 − q)d , Θ̂AdS+
edge,s =

Dd+2
s−1 q

s′+d−2 −Dd+2
s′−1 q

s+d−2

(1 − q)d−2 (5.9.7)

Θ̂AdS−
bulk,s = Dd

s q
1−s′ −Dd

s′ q1−s

(1 − q)d , Θ̂AdS−
edge,s =

Dd+2
s−1 q

−s′ −Dd+2
s′−1 q

−s

(1 − q)d−2 . (5.9.8)

The presence of non-positive powers of q in ΘAdS− has a similar path integral interpretation as

in the dS case summarized in section 5.5.2. The necessary negative mode contour rotation and

zeromode subtractions are again implemented at the character level by flipping characters. In

particular the proper Θs to be used in the character formulae for EAdS± are

ΘAdS−
s =

[
Θ̂AdS−
s

]
+ , ΘAdS+

s =
[
Θ̂AdS+
s

]
+ = Θ̂AdS+

s , (5.9.9)

with [Θ̂]+ defined as in (3.4.17). The omission of Killing tensor zeromodes for alternate boundary

conditions must be compensated by a a division by the volume of the residual gauge group G

generated by the Killing tensors. Standard boundary conditions on the other hand kill these

Killing tensor zeromodes: they are not part of the dynamical, fluctuating degrees of freedom.

The group G they generate acts nontrivially on the Hilbert space as a global symmetry group.

AdS+

For standard boundary conditions, the character formalism reproduces the original results of

[111–113] by two-line computations [3]. We consider some examples:

For nonmimimal type A Vasiliev with ∆0 = d − 2 scalar boundary conditions, dual to the

free U(N) model, using (5.9.7) and the scalar Θ0 = qd−2/(1 − q)d, the following total bulk and

edge characters are readily obtained:

ΘAdS+
bulk =

∞∑
s=0

ΘAdS+
bulk,s =

(
q

d
2 −1 + q

d
2

(1 − q)d−1

)2
, ΘAdS+

edge =
∞∑
s=0

ΘAdS+
edge,s =

(
q

d
2 −1 + q

d
2

(1 − q)d−1

)2
. (5.9.10)

The total bulk character takes the singleton-squared form expected from the Flato-Fronsdal

theorem [194]. More interestingly, the edge characters sum up to exactly the same. Thus the
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generally negative nature of edge “corrections” takes on a rather dramatic form here:

ΘAdS+
tot = ΘAdS+

bulk − ΘAdS+
edge = 0 ⇒ logZAdS+

PI = 0 . (5.9.11)

As ZAdS+
bulk has an Rindler bulk ideal gas interpretation analogous to the static patch ideal gas

of section 5.2 [3], the exact bulk-edge cancelation on display here is reminiscent of analogous

one-loop bulk-edge cancelations expected in string theory according to the qualitative picture

reviewed in appendix C.4.5.2.

For minimal type A, dual to the free O(N) model, the sum yields an expression which

after rescaling of integration variables t → t/2 is effectively equivalent to the so(2, d) singleton

character, which is also the so(1, d) character of a conformally coupled (ν = i/2) scalar on

Sd. Using (5.3.10), this means ZAdS+
PI equals the sphere partition function on Sd, immediately

implying the N → N − 1 interpretation of [111–113].

For nonminimal type A with ∆0 = 2 scalar boundary conditions, dual to an interacting U(N)

CFT, the cancelation is almost exact but not quite:

ΘAdS+
tot =

∑d−3
k=2 q

k

(1 − q)d−1 . (5.9.12)

AdS+ higher-spin swampland

In the above examples it is apparent that although the spin-summed Θbulk has increased effective

UV-dimensionality dbulk
eff = 2d− 2, as if we summed KK modes of a compactification manifold

of dimension d − 2, the edge subtraction collapses this back down to a net deff = d − 1,

decreasing the original d. Correspondingly, the UV-divergences of Z(1)
PI are not those of a d+ 1

dimensional bulk-local theory, but rather of a d-dimensional boundary-local theory. In fact this

peculiar property appears necessary for quantum consistency, in view of the non-existence of

a nontrivially interacting local bulk action [195]. It appears to be true for all AdS+ higher

spin theories with a known holographic dual [3], but not for all classically consistent higher-spin

theories. Thus it appears to be some kind of AdS higher-spin “swampland” criterion:

AdSd+1 HS theory has holographic dual ⇒ deff = d− 1 . (5.9.13)
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Higher-spin theories violating this criterion do exist. Theories with a tower of massless spins

s ≥ 2 and an a priori undetermined number n of real scalars can be constructed in AdS3

[196, 197]. Assuming all integer spins s ≥ 2 are present, the total character sums up to

Θtot = 2 q2

(1 − q)2 − 4 q
(1 − q)2 +

n∑
i=1

q∆i

(1 − q)3 . (5.9.14)

For t → 0 diverges as ΘHS ∼ (n − 2)/t2 + O(1/t). To satisfy (5.9.13), the number of scalars

must be n = 2. This is inconsistent with the n = 4 AdS3 theory originally conjectured in [197]

to be dual to a minimal model CFT2, but consistent with the amended conjecture of [198–200].

AdS−

For alternate boundary conditions, one ends up with a massless higher-spin character formula

similar to (5.5.17). The factor γdimG in (5.5.17) is consistent with logZAdS−
PI ∝ (GN)

1
2
∑

s
NKT

s−1

found in [138]. (5.9.5) implies the massless AdS± and dS bulk and edge characters are related

as

ΘAdS−
s = ΘdS

s − ΘAdS+
s (5.9.15)

hence we can read off the appropriate flipped ΘAdS−
s = [Θ̂AdS−

s ]+ characters from our earlier

explicit results (3.4.20) and (C.6.23) for ΘdS
s . Just like in the dS case, the final result involves

divergent spin sums when the spin range is infinite.

5.9.3 Conformal higher-spin gravity

Conformal HS characters

Conformal (higher-spin) gravity theories [201] have (higher-spin extensions of) diffeomorphisms

and local Weyl rescalings as gauge symmetries. If one does not insist on a local action, a general

way to construct such theories is to view them as induced theories, obtained by integrating out

the degrees of freedom of a conformal field theory coupled to a general background metric and

other background fields. In particular one can consider a free U(N) CFTd in a general metric and

higher-spin source background. For even d, this results in a local action, which at least at the
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free level can be rewritten as a theory of towers of partially massless fields with standard kinetic

terms [139, 174]. Starting from this formulation of CHS theory on Sd (or equivalently dSd),

using our general explicit formulae for partially massless higher-spin field characters (3.4.20) and

(C.6.23), and summing up the results, we find

ΘCdSd
s = ΘAdSd+1−

s − ΘAdSd+1+
s = ΘdSd+1

s − 2 ΘAdSd+1+
s (5.9.16)

where ΘCdSd
s are the CHS bulk and edge characters and the second equality uses (5.9.15). Since

we already know the explicit dS and AdS HS bulk and edge characters, this relation also provides
the explicit CHS bulk and edge characters. For example

d s ΘCdSd
bulk,s · (1 − q)d ΘCdSd

edge,s · (1 − q)d−2

2 ≥ 2 −4qs(1 − q) −2
(
s2qs−1 − (s− 1)2qs

)
3 ≥ 1 0 0

3 0 −q(1 − q) 0

4 ≥ 0 2(2s+1) q2+2s2qs+3−2(s+1)2qs+2 s(s+1)(2s+1)
3 q+ (s−1)s2(s+1)

6 qs+2− s(s+1)2(s+2)
6 qs+1

5 ≥ 0 (s+1)(2s+1)(2s+3)
3 q2(1 − q) s(s+1)(s+2)(2s+1)(2s+3)

30 q(1 − q)
(5.9.17)

The bulk SO(1, d) q-characters ΘCdSd
bulk,s computed from (5.9.16) agree with the so(2, d) q-

characters obtained in [202]. Edge characters were not derived in [202], as they have no role in

the thermal S1 × Sd−1 CHS partition functions studied there.19

The one-loop Euclidean path integral of the CHS theory on Sd is given by (5.5.17) using

the bulk and edge CHS characters ΘCdSd
s and with G the CHS symmetry group generated by

the conformal Killing tensors on Sd (counted by Dd+3
s−1,s−1). The coefficient of the log-divergent

term, the Weyl anomaly of the CHS theory, is extracted as usual, by reading off the coefficient

of the 1/t term in the small-t expansion of the integrand in (5.5.17), or more directly from

the “naive” integrand 1
2t

1+q
1−q Θ̂. For example for conformal s = 2 gravity on S2 coupled to

D massless scalars, also known as bosonic string theory in D spacetime dimensions, we have

19A priori the interpretation of the bulk characters in (5.9.17) and those in [202] is different. Their mathematical
equality is a consequence of the enhanced so(2, d) symmetry allowing to map Sd → R × Sd−1.
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dimG =
∑

±D
4
1,±1 = 6, generating G = SO(1, 3), and from the above table (5.9.17),

Θtot = D · 1 + q

1 − q
− 4q2

1 − q
+ 2(4q − q2) . (5.9.18)

The small-t expansion of the integrand in (5.5.17) for this case is

1
2t

1 + q

1 − q

(
Θtot − 12

)
→ 2(D − 2)

t3
+ D − 26

3 t + · · · , (5.9.19)

reassuringly informing us the critical dimension for the bosonic string is D = 26. Adding a

massless s = 3
2 field, we get 2D conformal supergravity. For half-integer conformal spin s,

Θbulk = −4qs/(1 − q) and Θedge = −2
(
(s− 1

2)(s+ 1
2)qs−1 − (s− 3

2)(s− 1
2)qs

)
. Furthermore

adding D′ massless Dirac spinors, the total fermionic character is

Θfer
tot = D′ · 2 q1/2

1 − q
− 4 q3/2

1 − q
+ 4 q1/2 . (5.9.20)

The symmetry algebra has
∑

±D
4
1
2 ,±

1
2

= 4 fermionic generators, contributing negatively to

dimG in (5.5.17). Putting everything together,

1
2t

1 + q

1 − q

(
Θbos

tot − 2(6 − 4)
)

− 1
2t

√
q

1 − q
Θfer

tot → 2(D −D′)
t3

+ 2D +D′ − 30
6 t + · · · , (5.9.21)

from which we read off supersymmetry + conformal symmetry requires D′ = D = 10.

More systematically, the Weyl anomaly αd,s can be read off by expanding 1
2t

1+q
1−q Θ̂CSd with

Θ̂CSd = Θ̂AdSd+1− − Θ̂AdSd+1+ given by (5.9.7)-(5.9.8) for integer s. For example,

d −αd,s

2 2(6s2−6s+1)
3

4 s2(s+1)2(14s2+14s+3)
180

6 (s+1)2(s+2)2(22s6+198s5+671s4+1056s3+733s2+120s−50)
151200

8 (s+1)(s+2)2(s+3)2(s+4)(150s8+3000s7+24615s6+106725s5+261123s4+351855s3+225042s2+31710s−14560)
2286144000

(5.9.22)

This reproduces the d = 2, 4, 6 results of [139, 174] and generalizes them to any d.
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Physics pictures

Cartoonishly speaking, the character relation (5.9.16) translates to one-loop partition function

relations of the form ZCSd ∼ ZEAdSd+1−/ZEAdSd+1+ and ZS
d+1 ∼ ZCSd(

ZEAdSd+1+)2. The

first relation can then be understood as a consequence of the holographic duality between AdSd+1

higher-spin theories and free CFTd vector models [138, 139, 174], while the second relation can

be understood as an expression at the Gaussian/one-loop level of ZSd+1 ∼
∫

Dσ
∣∣ψHH(σ)

∣∣2,

where ψHH(σ) = ψHH(0) e− 1
2σKσ+··· is the late-time dS Hartle-Hawking wave function, related

by analytic continuation to the EAdS partition function with boundary conditions σ [203]. The

factor
(
ZEAdSd+1+)2 can then be identified with the bulk one-loop contribution to |ψHH(0)|2,

and Zcnf Sd with
∫

Dσ e−σKσ, along the lines of [138]. Along the lines of footnote 8, perhaps

another interpretation of the spin-summed relation (5.9.16) exists within the picture of [32].

5.9.4 Comments on infinite spin range divergences

Let us return now to the discussion of section 5.9.1. Above we have seen that for EAdS+,

summing spin characters leads to clean and effortless computation of the one-loop partition

function. The group volume factor is absent because the global higher-spin symmetry algebra

g generated by the Killing tensors is not gauged. The character spin sum converges, and no

additional regularization is required beyond the UV cutoff at t ∼ ϵ we already had in place. The

underlying reason for this is that in AdS+, the minimal energy of a particle is bounded below by

its spin, hence a UV cutoff is effectively also a spin cutoff. In contrast, for dS, AdS− and CHS

theories alike, g is gauged, leading to the group volume division factor, and moreover, for d ≥ 4,

the quasinormal mode levels (or energy levels for CHS on R × Sd−1) are infinitely degenerate,

not bounded below by spin, leading to character spin sum divergences untempered by the UV

cutoff. The geometric origin of quasinormal modes decaying as slowly as e−2T/ℓ for every spin

s in d ≥ 4 was explained below (C.6.4).

One might be tempted to use some form of zeta function regularization to deal with divergent

sums
∑
s Θs such as (5.9.3), which amounts to inserting a convergence factor ∝ e−δs and

discarding the divergent terms in the limit δ → 0. This might be justified if the discarded

divergences were UV, absorbable into local counterterms, but that is not the case here. The
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divergence is due to low-energy features, the infinite multiplicity of slow-decaying quasinormal

modes, analogous to the divergent thermodynamics of an ideal gas in a box with an infinite

number of different massless particle species. Zeta function regularization would give a finite

result, but the result would be meaningless.

As discussed at the end of section 5.6, the Vasiliev-like20 limit of the 3D HSn higher-

spin gravity theory, n → ∞ with l = 0 and S(0) fixed, is strongly coupled as a 3D QFT.

Unsurprisingly, the one-loop entropy “correction” S(1) = logZ(1) diverges in this limit: writing

the explicit expression for the maximal-entropy vacuum R = n in (5.1.12) as a function of

dimG = 2(n2 − 1), one gets S(1) = dimG · log
(
dimG/

√
S(0)) + · · · → ∞. The higher-spin

decomposition (C.7.41) might inspire an ill-advised zeta function regularization along the lines

of dimG = 2
∑∞
r=1 2r + 1 = 4 ζ(−1) + 2 ζ(0) = −4

3 . This gives S(1) = 2
3 log S(0) + c with c

a computable constant — a finite but meaningless answer. In fact, using (5.6.7), the all-loop

quantum correction to the entropy can be seen to vanish in the limit under consideration, as

illustrated in fig. 5.1.4. As discussed around (5.6.8), there are more interesting n → ∞ limits one

can consider, taking S(0) → ∞ together with n. In these cases, the weakly-coupled description

is not a 3D QFT, but a topological string theory.

Although these and other considerations suggest massless higher-spin theories with infinite

spin range cannot be viewed as weakly-coupled field theories on the sphere, one might wonder

whether certain quantities might nonetheless be computable in certain (twisted) supersymmetric

versions. We did observe some hints in that direction. One example, with details omitted, is

the following. First consider the supersymmetric AdS5 higher-spin theory dual to the 4D N = 2

supersymmetric free U(N) model, i.e. the U(N) singlet sector of N massless hypermultiplets,

each consisting of two complex scalars and a Dirac spinor. The AdS5 bulk field content is

obtained from this following [204]. In their notation, the hypermultiplet corresponds to the

so(2, 4) representation Di + 2 Rac. Decomposing (Di + 2 Rac) ⊗ (Di + 2 Rac) into irreducible

so(2, 4) representations gives the AdS5 free field content: four ∆ = 2 and two ∆ = 3 scalars,

one ∆ = 3, S = (1,±1) 2-form field, six towers of massless spin-s fields for all s ≥ 1, one tower

of massless S = (s,±1) fields for all s ≥ 2, one ∆ = 5
2 Dirac spinor, and four towers of massless

spin s = k+ 1
2 fermionic gauge fields for all k ≥ 1. Consider now the same field content on S5.

20“Vasiliev-like” is meant only in a superficial sense here. The higher-spin algebras are rather different [141].
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The bulk and edge characters are obtained paralleling the steps summarized in section 5.5.2,

generalized to the present field content using (5.4.15) and (5.4.16). Each individual spin tower

gives rise to a badly divergent spin sum similar to (5.9.3). However, a remarkable conspiracy

of cancelations between various bosonic and fermionic bulk and edge contributions in the end

leads to a finite, unambiguous net integrand:21

∫
dt

2t

(1 + q

1 − q
Θbos

tot −
2√

q

1 − q
Θfer

tot

)
= −3

4

∫
dt

2t
1 + q

1 − q

q

(1 − q)2 . (5.9.23)

Note that the effective UV dimensionality is reduced by two in this case.

An analogous construction for S4 starting from the 3D N = 2 U(N) model, gives two ∆± =

1, 2 scalars, a ∆ = 3
2 Dirac spinor and two massless spin-1, 3

2 , 2,
5
2 , . . . towers, as in [205, 206].

The fermionic bulk and edge characters cancel and the bosonic part is twice (5.9.2). In this case

we moreover get a finite and unambiguous dimG = limδ→0
∑∞
s∈ 1

2N
(−1)2s 2D5

s−1,s−1 e
−δs = 1

4 .

The above observations are tantalizing, but leave several problems unresolved, including what

to make of the supergroup volume volG. Actually supergroups present an issue of this kind

already with a finite number of generators, as their volume is generically zero. In the context of

supergroup Chern-Simons theory this leads to indeterminate 0/0 Wilson loop expectation values

[207]. In this case the indeterminacy is resolved by a construction replacing the Wilson loop

by an auxiliary worldline quantum mechanics [207]. Perhaps in this spirit, getting a meaningful

path integral on the sphere in the present context may require inserting an auxiliary “observer”

worldline quantum mechanics, with a natural action of the higher-spin algebra on its phase

space, allowing to soak up the residual gauge symmetries.

One could consider other options, such as breaking the background isometries, models with

a finite-dimensional higher-spin algebra [208–211], models with an α′-like parameter breaking

the higher-spin symmetries, or models of a different nature, perhaps along the lines of [40], or

bootstrapped bottom-up. We leave this, and more, to future work.

21The spin sums are performed by inserting a convergence factor such as e−δs, but the end result is finite and
unambiguous when taking δ → 0, along the lines of limδ→0

∑
s∈ 1

2 N (−1)2s(2s+ 1) e−δs = 1
4 .
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Chapter 6: AdS one-loop partition functions from bulk
and edge characters

In the previous chapter, we have derived a character integral representation for the Euclidean

one-loop path integral on de Sitter spacetime. In this chapter, we first extend the dS character

integral representation to AdS spacetime. In particular, we show this extension amounts to

replacing the bulk SO(1, d + 1) characters by the corresponding SO(2, d) characters and the

replacing the edge SO(1, d− 1) characters by the corresponding SO(2, d− 2) characters. Then

we apply the AdS character integral representation to Vasiliev higher spin gravities.

6.1 One-loop partition functions and heat kernels on AdS

The one-loop partition function Z of a (real bosonic) quantum field theory is given by a functional

determinant

logZ = −1
2 log det(D) (6.1.1)

where D is the “Laplacian” in the quadratic Lagrangian L2 = 1
2ϕDϕ. (There might be some

nontrivial factors that are not captured by the functional determinant due to subtleties like

zero modes when the quantum field theory is defined on a compact manifold. We ignore these

subtleties in this general discussion as they will not appear in this paper). When the theory

has a gauge symmetry, we should also subtract the functional determinant of the corresponding

ghost field. In general, the functional determinant is UV-divergent and needs to be regularized.

The regularization scheme for logZ we’ll use in this paper is

logZ = 1
2

∫ ∞

0

dt

t
e− ϵ2

4t KD(t) (6.1.2)
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where KD(t) ≡ Tr e−tD is the heat kernel of D. In terms of the spectrum of D, the heat kernel

is formally 1 defined as

KD(t) =
∑
n≥0

dne
−tλn (6.1.3)

where λn is the eigenvalue of D of degeneracy dn. Performing a Mellin transformation for the

heat kernel KD(t) yields the spectral zeta function

ζD(z) ≡
∑
n≥0

dn
λzn

= 1
Γ(z)

∫ ∞

0

dt

t
tzKD(t) (6.1.4)

which is also a common tool to regularize partition function.

Given a free field in AdSd+1 carrying a generic so(2, d) 2 UIR of scaling dimension ∆ = d
2 +ν

and spin s, denoted by [∆, s], the corresponding heat kernel Ks,ν(t) is constructed explicitly

in [212] by a group theoretical method. Alternatively, we can infer the heat kernel from the

associated spectral zeta function (see [144, 213] for explicit expressions) by an inverse Mellin

transformation:

logZs,ν = Vol(AdSd+1)
Vol(Sd)

Dd
s

2d−1Γ(d+1
2 )2

∫ ∞

0

dt

2t e
− ϵ2

4t

∫ ∞

0
dλµ

(d)
s (λ)e−t(λ2+ν2) (6.1.5)

Explanations of the various notations appearing in eq. (6.1.5) are given as follows:

• Vol(Sd): the volume of a d-dimensional sphere.

Vol(Sd) = 2π
d+1

2

Γ(d+1
2 )

(6.1.6)

• Vol(AdSd+1): the regularized volume of a (d + 1)-dimensional Euclidean AdS [138, 149,

214, 215]. For example, in [214] the authors used unit ball realization of Euclidean AdS

1If the spectrum of D is continuous, the sum over n gets replaced by an integral and the degeneracy dn gets
replaced by the density of eigenmodes.

2In CFT language, the single-particle Hilbert space of such a field is equivalent to the Verma module build from
a primary state. The Verma module cannot be lifted to an SO(2, d) representation unless the scaling dimension
∆ is an integer. Therefore in this chapter, we only consider UIRs of so(2, d) rather than SO(2, d).
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and computed the volume by dimensional regularization.

Vol(AdSd+1) =


2(−π)

d
2

Γ( d
2 +1) logR, d even

π
d
2 Γ(−d

2), d odd
(6.1.7)

• Dd
s : the dimension of SO(d) representation of highest weight vector s, c.f. eq. (2.2.1)

and (2.2.2).

• µ
(d)
s (λ): the spin-s spectral density up to normalization [213] (but we will stick to the

name “spectral density” for simplicity)

µ
(d)
s (λ) =


∏r
j=1(λ2 + ℓ2j ), d = 2r∏r
j=1(λ2 + ℓ2j )λ tanhϵ(πλ), d = 2r + 1

(6.1.8)

where ℓj ≡ sj+ d
2 −j, and ϵ = ±1 for bosonic/fermionic fields. The so(d) spin label s will

be dropped when we deal with a scalar field. We focus on bosonic fields in the main text

of this paper and an example about Dirac spinors can be found in the appendix D.1. The

spectral density µ(d)
s (λ) with a Wick rotation λ → iλ, is also the Plancherel measure on

the principal series of SO(1, d+1) [64]. The simplest way to derive it [212] is based on an

analytical continuation of the SO(d+ 2) Plancherel measure, which is proportional to the

dimension of SO(d+2) representation (we also provide a physical derivation/interpretation

of the spectral density in the appendix D.2). As a result of this analytical continuation,

the polynomial part Ps(λ) ≡ λ
∏r
j=1(λ2 + ℓ2j ) of the spectral density also appears in the

following formula that relates Dd+2
(s0,s) and Dd

s [144]

Dd+2
(s0,s) = 2Dd

s
d!

(
s0 + d

2

) r∏
j=1

[(
s0 + d

2

)2
− ℓ2j

]
(6.1.9)

with s0 replaced by −d
2 + iλ. This equation is extremely useful when we compare the

character integral representations for AdS and dS in appendix D.3.

The various Γ-functions in (6.1.5) can be greatly simplified for integer dimension d and we
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are left with

logZs,ν = Dd
s
d!

∫ ∞

0

dt

t
e− ϵ2

4t

∫ ∞

0
dλµ

(d)
s (λ) e−t(λ2+ν2) ×


(−)

d
2 logR
π , d even

(−)
d+1

2
2 , d odd

(6.1.10)

Starting from this equation, we’ll show that all partition functions logZs,ν can be expressed as

a integral transformations of so(2, d) characters up to edge mode corrections.

6.2 Warm-up example: scalar fields in even dimensional AdS

6.2.1 Scalar fields in AdS2

As a warm-up, let’s consider a scalar field φ of mass m2 = ν2 − 1
4 in AdS2 which corresponds

to the scaling dimension ∆+ = 1
2 + ν representation of so(2, 1). Applying (6.1.10) to this field

yields the partition function

logZν = −1
4

∫ ∞

0

dt

t
e− ϵ2

4t

∫ ∞

−∞
dλλ tanh(πλ)e−t(λ2+ν2) (6.2.1)

where we’ve extended the integration domain of λ to the whole real line. To perform the integral

over λ, we use the Hubbard-Stratonovich trick:

logZν = −1
4

∫ ∞

−∞
du

∫ ∞

0

dt

2
√
π t3/2 e

− ϵ2+u2
4t

−tν2
∫ ∞

−∞
dλλ tanh(πλ)eiλu

= −1
2

∫ ∞

0

du√
ϵ2 + u2

e−ν
√
ϵ2+u2

W (u) (6.2.2)

where

W (u) ≡
∫ ∞

−∞
dλλ tanh(πλ)eiλu (6.2.3)

The naive Fourier transformation (6.2.3) is ill-defined. However for our practical purpose i.e.

to get the character integral formula as soon as possible, we pretend that it’s well-defined and

the contour can be closed at infinity. A more rigorous treatment is postponed until section 6.4

and 6.5 where we give a fully regularized character integral and justify our naive result obtained



173

here is indeed reasonable and sufficient for most applications, in particular the total partition

function of Vasiliev theories. From now on, keeping the above comments in mind, we’re free

to close the λ-contour in W (u) in either upper or lower half-plane depending on the sign of

u and we also write the partition function logZν in the unregularized form by putting ϵ = 0

formally. When u > 0, we close the contour in the upper half-plane picking up simple poles at

λ = i(n + 1
2), n ∈ N and when u < 0, we close the contour in the lower half-plane picking up

simple poles at λ = −i(n+ 1
2), n ∈ N. By summing over residues in both cases, we find

W (u) = −1 + e−u

1 − e−u
e− 1

2u

1 − e−u (6.2.4)

Thus the unregularized partition function is given by

logZν =
∫ ∞

0

du

2u
1 + e−u

1 − e−u ΘAdS2
∆+

(u), ΘAdS2
∆+

(u) = e−∆+u

1 − e−u (6.2.5)

ΘAdS2
∆+

(u) ≡ tr e−uH , with H being the (hermitian and positive) Hamiltonian, is the character

of scaling dimension ∆+ representation of so(2, 1). Before moving to the higher dimensional

examples, let’s notice that when evaluating the t-integral in eq. (6.2.2), we implicitly assume

ν > 0, so ∆+ = 1
2 + ν corresponds to the “standard quantization” in bulk. On the other hand,

we can safely send ν to −ν in eq. (6.2.5) by analytic continuation, as long as 0 < ν < 1
2 .

Altogether we conclude that, with the standard boundary condition, the partition function of φ

is

logZν =
∫ ∞

0

du

2u
1 + e−u

1 − e−u ΘAdS2
∆+

(u) (6.2.6)

and with the alternate boundary condition, the partition function is

logZ−ν =
∫ ∞

0

du

2u
1 + e−u

1 − e−u ΘAdS2
∆−

(u) (6.2.7)

where ∆− = 1
2 − ν.
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6.2.2 Scalar fields in AdS2r+2

The computation above in AdS2 can be generalized straightforwardly to scalar field in any

AdSd+1 with d = 2r+1 odd. Assuming that the scalar field has scaling dimension ∆+ = d
2 +ν,

its partition function is given by

logZν = (−)r+1

2 d!

∫ ∞

0

dt

t
e− ϵ2

4t

∫ ∞

0
dλµ(d)(λ) e−t(λ2+ν2) (6.2.8)

where the scalar spectral density is

µ(d)(λ) =
r−1∏
j=0

[
λ2 +

(
j + 1

2

)2
]
λ tanh(πλ) (6.2.9)

Following the same steps as in section 6.2.1, we obtain

logZν = (−)r+1

d!

∫ ∞

0

du

2u W
(d)(u) e−ν u (6.2.10)

where W (d)(u) ≡
∫∞

−∞ dλµ(d)(λ)eiλu. The “Fourier transform” W (d)(u) can be evaluated

according to the comments below eq. (6.2.3)

W (d)(u) = (−)r+1d! e− d
2u

(1 − e−u)d
1 + e−u

1 − e−u (6.2.11)

Plugging (6.2.11) into (6.2.10) yields a character integral expression for the unregularized logZν

logZν =
∫ ∞

0

du

2u
1 + e−u

1 − e−u ΘAdSd+1
∆+

(u), ΘAdSd+1
∆+

(u) = e−∆+u

(1 − e−u)d (6.2.12)

where ΘAdSd+1
∆+

(u) is the character of scaling dimension ∆+ representation of so(2, d). Before

turning to the higher spin case, let’s comment on the relation between the character integral

and the original heat kernel integral. The heat kernel in AdS is defined through the spectral

density µ(λ) whose explicit construction is given in [213]. Briefly speaking, the authors of [213]

found a complete set of δ-function normalizable eigenfunctions of the Laplacian operator −∇2
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in EAdSd+1:

−∇2h(λσ)(x) =
(
d2

4 + λ2
)
h(λσ)(x) (6.2.13)

⟨h(λσ), h(λσ′)⟩ ≡
∫
dd+1x

√
g h(λσ)∗(x)h(λσ′)(x) = δσσ′δ(λ− λ′) (6.2.14)

where σ is a discrete label for distinguishing eigenfunctions of the same λ. (Note that the inner

product for h(λσ) involves an integration over the whole EAdS rather than a spatial slice as in the

standard Klein-Gordon inner product). The spectral density is defined via these eigenfunctions:

µ(λ) ∝
∑
σ h

(λσ)∗h(λσ′)(0). Therefore the original heat kernel method involves an integral over

the whole continuous spectrum labeled by (λ, σ). On the other hand, the character can be

expanded into a discrete sum

ΘAdSd+1
∆+

(u) =
∑
n≥0

(
d+ n− 1
d− 1

)
e−(∆++n)u (6.2.15)

This expansion encodes a whole tower of solutions to the equation of motion (−∇2 +∆+(∆+ −

d))ϕ = 0 in global AdS that furnish a representation of so(2, d). More explicitly, ϕ0 = e−i∆+t

(1+r2)∆+/2

is the primary mode, i.e. ground state, in the global coordinate: ds2 = −(1 + r2)dt2 + dr2

1+r2 +

r2dΩ2. It solves the equation of motion, falls like r−∆+ at the boundary but its Wick rotation

under t → −iτ is not normalizable in the sense of (6.2.14). By acting the conformal algebra

so(2, d) on ϕ0 repeatedly, we get a collection of modes that also solve the equation of motion

and have the same boundary condition. At each frequency ωn = ∆+ + n, the degeneracy of

these modes are exactly
(d+n−1
d−1

)
. Therefore while switching from the heat kernel integral to

the character integral, we effectively turn a continuous spectrum into a discrete spectrum and

curiously both of them encode the information of partition function. This observation is the

main point of [192]. Actually the character integral representation we found is equivalent to

the “zero mode method” used in that paper. For example, using the unregularized expression

(6.2.12), we obtain formally

logZν =
∑
n≥0

Dd+2
n

∫ ∞

0

du

2ue
−(∆++n)u = −1

2
∑
n≥0

Dd+2
n log(∆+ + n) (6.2.16)
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which recovers the result in [192] up to some holomorphic function denoted by Pol(∆+) there.

Pol(∆+) is a polynomial in ∆+ and depends on the UV-cutoff. In section 6.5, we’ll show that

it can also be recovered if we use the fully regularized character integral.

6.3 Higher spin fields in AdS2r+2

In this section, we turn to the character integral representation of higher spin fields in AdSd+1

with d = 2r + 13. Unlike scalar fields, a spin-s field φµ1···µs in AdS can carry either massive or

massless irreducible representations [70] depending on the scaling dimension. When ∆ = ∆s,t ≡

d+t−1 with t ∈ {0, 1, · · · , s − 1}, φµ1···µs is a partially massless field of depth t and it has a

gauge symmetry δφµ1···µs = ∇(µt+1···µs
ξµ1···µt) + · · · [99]. In this case, we should include the

contribution of the ghost field, which has spin-t and scaling dimension ∆t,s = d+ s− 1, in the

one-loop partition function. When ∆ = d
2 + ν is not in the discrete set {∆s,t}, the field φµ1···µs

falls into the massive representations and does not have gauge symmetry. Since the character is

supposed to count only the physical degrees of freedom, it takes very different forms for massive

and massless representations [70]:

massive [∆, s] : ΘAdSd+1
[∆,s] (u) = Dd

s

e−∆u

(1 − e−u)d

massless [∆s,t, s] : ΘAdSd+1
[∆s,t,s] (u) = Dd

se
−(d+t−1)u −Dd

t e
−(d+s−1)u

(1 − e−u)d (6.3.1)

Let’s start computing the partition function of a spin-s field in the massive representations

logZs,ν = (−)
d+1

2

2
Dd
s

d!

∫ ∞

0

dt

t
e− ϵ2

4t

∫ ∞

0
dλµ(d)

s (λ) e−t(λ2+ν2) (6.3.2)

where the spin-s spectrum density is

µ(d)
s (λ) =

r−2∏
j=0

[
λ2 +

(
j + 1

2

)2
] [
λ2 +

(
s+ r − 1

2

)2
]
λ tanh(πλ) (6.3.3)

3We will focus on the r ≥ 1 case because there is a discrete spectrum for each higher spin STT Laplacian in
AdS2 which corresponds to the discrete series of SO(2, 1) and doesn’t have any analogue in higher dimensions
[106, 213].
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Following the same steps as in the scalar case, we obtain

logZs,ν = (−)
d+1

2

d! Dd
s

∫ ∞

0

du

2u W
(d)
s (u) e−ν u (6.3.4)

where W (d)
s (u) ≡

∫∞
−∞ dλµ

(d)
s (λ) eiλu is an even function in u and when u > 0, it is

W (d)
s (u) = (−)

d−1
2 (d− 2)! e

−( d
2 −1)u

(1 − e−u)d
1 + e−u

1 − e−u

[
s(s+ d− 2)(1 − e−u)2 − d(d− 1)e−u

]
(6.3.5)

Plugging (6.3.5) into (6.3.4) yields a new character integral

logZs,ν =
∫ ∞

0

du

2u
1 + e−u

1 − e−u

(
ΘAdSd+1

[∆,s] (u) −Dd+2
s−1

e−( d−2
2 +ν)u

(1 − e−u)d−2

)
(6.3.6)

The second term in the bracket corresponds to subtracting the partition function of Dd+2
s−1 scalars

on EAdSd−1 with scaling dimension d−2
2 + ν since it involves an so(2, d− 2) character of scalar

representation. As in the de Sitter case, we tend to identify these scalar degrees of freedom

as edge modes living on the horizon of Rindler-AdS [4] which is a Lorentzian Wick rotation of

EAdS and has a EAdSd−1 shaped horizon. More discussions about Rindler-AdS will be left to

section 6.8 and appendix D.5. We can also write logZs,ν in terms of an so(2, d) character and

an so(2, d+ 2) character

logZs,ν =
∫ ∞

0

du

2u
1 + e−u

1 − e−u

(
ΘAdSd+1

[∆,s] (u) −
(
e

u
2 − e− u

2
)4

ΘAdSd+3
[∆+1,s−1](u)

)
(6.3.7)

This form of character integral representation doesn’t have the physically meaningful edge char-

acter structure but it turns out to be much more convenient than (6.3.6) computationally, in

particular when we sum over all field contents in Vasiliev higher spin gravities.

Finally, let’s move to our main interest: (partially) massless fields. Due to gauge symmetry,

the partition function of a PM field with spin-s and depth t ∈ {0, 1, · · · , s− 1} is given by

logZs,νt = (−)
d+1

2

d!

∫ ∞

0

du

u

(
Dd
se

−( d
2 +t−1)uW (d)

s (u)−Dd
t e

−( d
2 +s−1)uW

(d)
t (u)

)
(6.3.8)
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where the first term corresponds to the spin-s gauge field and the second term arises from the

spin-t ghost field. By using the explicit expression of W (d)
s derived in eq. (6.3.5), we can rewrite

(6.3.8) in the same form as (6.3.7)

logZs,νt =
∫ ∞

0

du

2u
1 + e−u

1 − e−u

(
ΘAdSd+1

[d+t−1,s](u) −
(
e

u
2 − e− u

2
)4

ΘAdSd+3
[d+t,s−1](u)

)
(6.3.9)

where the characters of PM fields are

ΘAdSd+1
[d+t−1,s](u) = Dd

se
−(d+t−1)u −Dd

t e
−(d+s−1)u

(1 − e−u)d (6.3.10)

ΘAdSd+3
[d+t,s−1](u) =

Dd+2
s−1e

−(d+t)u −Dd+2
t−1 e

−(d+s)u

(1 − e−u)d+2 (6.3.11)

Note [d+ t, s−1] is a massless representation of SO(2, d+2) with spin-(s−1) and depth-(t−1).

6.4 Regularization, contour prescription and odd dimensional AdS

In the previous sections, we’ve derived a formal character integral formula for the unregularized

one-loop partition functions of both scalar fields and higher spin fields in even dimensional

AdS. However, to make sense of the character integral mathematically and apply it to actual

computation of renormalized partition functions, we have to use a well-defined and efficient

regularization scheme. In this section, we’ll sort out this issue. Surprisingly the resolution turns

out to have a very important byproduct: a character integral representation that works in odd

dimensional AdS.

6.4.1 Regularization and contour prescription

We use a real scalar field to illustrate the regularization scheme. But it will be clear in the end

that the same regularization also works for higher spin fields.

6.4.1.1 d = 2r + 1

It’s mentioned in section 6.2.1 that W (d)(u), Fourier transformation of the scalar spectral density

µ(d)(λ), is not well-defined. As a manifestation of this point, W (d)(u) is singular at u = 0. This
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singularity may lead to two inequivalent definitions of inverse Fourier transformation of W (d)(u)

since the contour can either go above or below u = 0:

µ̃
(±)
d (λ) ≡

∫
R±iδ

du

2π W
(d)(u) e−iλu = (−)r+1d!

∫
R±iδ

du

2π
1 + e−u

1 − e−u
e−( d

2 +iλ)u

(1 − e−u)d (6.4.1)

where δ is a small positive number. (At this stage, the size of δ is not important as long as it’s

smaller than 2π. We’ll later impose a more stringent constraint on it). It’s clear that the two

definitions of inverse Fourier transformation differ by the residue of the integrand at u = 0. In

terms of the notation Hd,ν(u) ≡ 1+e−u

1−e−u
e−( d

2 +ν)u

(1−e−u)d introduced in the appendix D.4, the function

µ̃
(±)
d (λ) can also expressed as

µ̃
(±)
d (λ) = (−)r+1d!

∫
R±iδ

du

2π Hd,iλ(u) (6.4.2)

We use the function Hd,iλ(u) here because its residue at u = 0 is given by eq. (D.4.8) and

the residues at other poles u = 2πin, n ∈ Z can be easily inferred by using its quasi-periodicity

Hd,iλ(u + 2πin) = (−e2πλ)nHd,iλ(u). With the information of residues known, we close the

contour at infinity and get

µ̃
(±)
d (λ) =

r−1∏
j=0

(
λ2 +

(
j + 1

2

)2
)

(λ tanh(πλ) ± λ) (6.4.3)

Therefore in order to recover the spectral density µ(d), cf. (6.2.9), the contour prescription

should be the average of
∫
R±iδ:

µ(d)(λ) = 1
2(µ̃(+)

d + µ̃
(−)
d ) = 1

2

(∫
R+iδ

+
∫
R−iδ

)
du

2π W
(d)(u) e−iλu (6.4.4)

Plugging this equation into the scalar partition function (6.2.8) , we obtain

logZν = (−)r+1

4 d!

(∫
R+iδ

+
∫
R−iδ

)
du

4π W
(d)(u)

∫ ∞

0

dt

t
e− ϵ2

4t
−tν2

∫ ∞

−∞
dλ e−tλ2−iλu

= 1
4

(∫
R+iδ

+
∫
R−iδ

)
du

2
√
u2 + ϵ2

1 + e−u

1 − e−u
e− d

2u−ν
√
ϵ2+u2

(1 − e−u)d (6.4.5)
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where δ has to be smaller than ϵ, otherwise the contours would cross the branch cut of
√
u2 + ϵ2,

which has two disconnected pieces with one piece going upwards from iϵ to i∞ and the other

going downwards from −iϵ to −i∞. Due to the manifest u → −u symmetry of the integrand

for odd d, the two contours R ± iδ are actually equivalent and it suffices to use one of them

logZν = 1
2

∫
R+iδ

du

2
√
u2 + ϵ2

1 + e−u

1 − e−u
e− d

2u−ν
√
ϵ2+u2

(1 − e−u)d (6.4.6)

The computation above also works for higher spin fields. It suffices to show that the higher spin

generalization of (6.4.4) holds. Notice that W (d)
s (u) corresponding to a spin-s field is related

to the scalar version W (d)(u) by

W (d)
s (u) = W (d)(u) + s(s+ d− 2)W (d−2)(u) (6.4.7)

Applying the integral (6.4.4) to this relation indeed yields

1
2

(∫
R+iδ

+
∫
R−iδ

)
du

2π W
(d)
s (u) e−iλu = µ(d)

s (6.4.8)

Therefore the regularized character integral for a spin-s field in massive representations is

logZs,ν =
∫
R+iδ

du

4
√
u2 + ϵ2

1 + e−u

1 − e−u

Dd
s e

− d
2u−ν

√
ϵ2+u2

(1 − e−u)d −
Dd+2
s−1 e

− d−2
2 u−ν

√
ϵ2+u2

(1 − e−u)d−2

 (6.4.9)

Starting from the eq. (6.4.9), we’ll derive a complete expression for the regularized partition

function Zs,ν in section 6.5.

6.4.1.2 d = 2r

The odd d case above tells us the correct strategy to get a regularized character integral. First,

we pick a function W (d)(u) ∝ 1+e−u

1−e−u
e− d

2 u

(1−e−u)d and compute its inverse Fourier transformations

defined by two different contour choices. Then one proper linear combination of these choices

can give the correct spectral density. Plug this integral expression of spectral density into the

original partition function (6.1.10) and we finally obtain the regularized character integral. Now
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let’s apply this strategy to the d = 2r case where we choose W (d)(u) to be

W (d)(u) = (−)r+1d!1 + e−u

1 − e−u
e− d

2u

(1 − e−u)d (6.4.10)

The two possible inverse Fourier transformations defined as in eq. (6.4.1) are

µ̃
(±)
d (λ) = i

r−1∏
j=0

(λ2 + j2)(coth(πλ) ± 1) (6.4.11)

Therefore the spectral density µ(d)(λ) =
∏r−1
j=0(λ2 + j2) in AdS2r+1 is given by

µ(d)(λ) = i

2(µ̃(−)
d − µ̃

(+)
d ) = i

2

(∫
R−iδ

−
∫
R+iδ

)
du

2π W
(d)(u) e−iλu (6.4.12)

Substituting this equation into (6.1.10) and performing the t, λ integrals, we end up with

logZν
logR = i(−)r

2πd!

(∫
R−iδ

−
∫
R+iδ

)
du

2
√
u2 + ϵ2

W (d)(u)e−ν
√
u2+ϵ2 (6.4.13)

Since there is no poles in the strip bounded by R ± iδ, we can further deform the contour to

be a small circle C0 around u = 0. Then the integral is equivalent to evaluating the residue at

u = 0:

logZν
logR = Resu→0

(
e−ν

√
u2+ϵ2

2
√
u2 + ϵ2

1 + e−u

1 − e−u
e− d

2u

(1 − e−u)d

)
(6.4.14)

Similarly for higher spin fields, by using appropriate square root regularization, we can also get

logZs,ν
logR = Resu→0

 e−ν
√
ϵ2+u2

2
√
u2 + ϵ2

1 + e−u

1 − e−u

 Dd
s e

− d
2u

(1 − e−u)d −
Dd+2
s−1 e

− d−2
2 u

(1 − e−u)d−2

 (6.4.15)

Conclusion

Altogether, we can conclude that the regularized one-loop partition function (with the UV

regularization introduced by e− ϵ2
4t in the original definition (6.1.5)) of a field in the [d2 + ν, s]
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(a) odd d (b) even d

Figure 6.4.1: u-contours for even dimensional AdS (left) and odd dimensional AdS (right). The
black wavy lines represent branch cuts.

massive representation of SO(2, d) is

logZs,ν = Ad
2

∫
Cd

du
e−ν

√
ϵ2+u2

√
u2 + ϵ2

1 + e−u

1 − e−u

 Dd
s e

− d
2u

(1 − e−u)d −
Dd+2
s−1 e

− d−2
2 u

(1 − e−u)d−2

 (6.4.16)

where the overall constant and contour choice, fig. (6.4.1), are

Ad =


logR
2πi d even

1
2 d odd

Cd =


a counterclockwise circle around 0 d even

R + iδ d odd
(6.4.17)

For a field in massless representations, we need to include the corresponding ghost contribution

logZs,νt = Ad

2

∫
Cd

du√
u2 + ϵ2

1 + e−u

1 − e−u

e− d
2 u

(1 − e−u)d

(
Dd

s e
−νt

√
u2+ϵ2 −Dd

t e
−νs

√
u2+ϵ2

)
− Ad

2

∫
Cd

du√
u2 + ϵ2

1 + e−u

1 − e−u

e− d−2
2 u

(1 − e−u)d−2

(
Dd+2

s−1 e
−νt

√
u2+ϵ2 −Dd+2

t−1 e
−νs

√
u2+ϵ2

)
(6.4.18)

where νt = d
2 + t− 1 and νs = d

2 + s− 1.

6.5 Evaluation of the regularized character integrals

In this section, we give an efficient and general recipe to compute the regularized character

integral formula following the appendix C of [2]. For the simplicity of notation, we’ll use scalar
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fields as an illustration of this recipe. But our reasoning and final result can be easily generalized

to fields of arbitrary spin. In addition, the result can be used to justify that the unregularized

character integral is sufficient for the application to Vasiliev gravities. First, let’s briefly review

the standard heat kernel method in computing one-loop partition functions

logZν(ϵ) =
∫ ∞

0

dt

2te
− ϵ2

4tKν(t), Kν(t) = Vol(AdSd+1)
2dπ

d+1
2 Γ(d+1

2 )

∫ ∞

0
dλµ(d)(λ) e−t(λ2+ν2) (6.5.1)

where I’ve plugged in the explicit form of Vol(Sd) compared to eq. (6.1.5). By using the small

t expansion of heat kernel, say Kν(t) =
∑d+1
k=0 αk t

− d+1−k
2 + O(t), we can separate it into UV

and IR parts without ambiguity

Kuv
ν (t) ≡

d+1∑
k=0

αk t
− d+1−k

2 , K ir
ν (t) = Kν(t) −Kuv

ν (t) (6.5.2)

The UV-part of the heat kernel expansion in AdS is fairly simple. When d is even, Kν(t) can

be evaluated exactly because it’s a Gaussian integral in λ. When d is odd, using tanh πλ =

1 − 2
1+e2πλ we can split the heat kernel into two parts. The first part is a simple Gaussian

integral as in the even d case. The second part is of O(t0) and hence we can put t = 0 which

yields an exactly solvable integral. In addition, by direct computation, one can show that αk
is nonvanishing only for even k. For example, in d = 3, we obtain the nonzero heat kernel

coefficients: α0 = 1
12 , α2 = 1−4ν2

48 and α4 = − 17
5760 − ν2

48 + ν4

24 .

Introducing an infinitesimal IR cutoff κ → 0, we can further separate logZν(ϵ) into two

parts

logZuv
ν (ϵ) =

∫ ∞

0

dt

2tK
uv
ν (t)e− ϵ2

4t
−κ2t, logZ ir

ν =
∫ ∞

0

dt

2tK
ir
ν (t)e−κ2t (6.5.3)

where the UV regulator has been dropped in the IR integral because it’s by construction UV
finite. The IR regulator e−κ2t is inserted in the UV integral because the integrand has a 1

t term
when αd+1 ̸= 0, i.e. when d is odd. In the end, the log κ terms in logZuv

ν and logZ ir
ν will cancel

out and we’re left with

logZν(ϵ) = 1
2

d∑
k=0

αk Γ
(
d+ 1 − k

2

)(
2
ϵ

)d+1−k

+ αd+1 log
(

2
eγϵ

)
+ 1

2ζ
′
ν(0) (6.5.4)
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where ζν(z) ≡ 1
Γ(z)

∫∞
0

dt
t t
zKν(t) is the spectral zeta function and αd+1 = ζν(0). Next,

we’ll apply this UV-IR separation idea to the evaluation of partition function in the regularized

character integral formalism.

6.5.1 Even dimensional AdS2r+2

In section 6.4.1.1, we’ve found that the square-root regularized partition function in AdS2r+2 is

given by

logZν(ϵ) = 1
2

∫
R+iδ

du

2
√
u2 + ϵ2

1 + e−u

1 − e−u e
− d

2u−ν
√
u2+ϵ2 (6.5.5)

where d = 2r + 1. Putting ϵ = 0 we recover the formal UV-divergent character formula:

logZν(ϵ = 0) =
∫ ∞

0

du

2uHd,ν(u), Hd,ν(u) = 1 + e−u

1 − e−u
e−( d

2 +ν)u

(1 − e−u)d (6.5.6)

The unregularized integrand 1
2uHd,ν(u) admits a Laurent expansion around u = 0 with coeffi-

cients being polynomials in ν:

1
2uHd,ν(u) = 1

u

∑
k≥0

bk(ν)u−(d+1−k), bk(ν) =
k∑
ℓ=0

bkℓν
ℓ (6.5.7)

where bkℓ vanishes when k+ℓ is odd due to the symmetry Hd,−ν(−u) = Hd,ν(u) for odd d. The

terms corresponding to 0 ≤ k ≤ d+ 1 in Hd,ν(u) are UV divergent in logZν(ϵ = 0). Therefore

we separate them from the remaining UV-finite terms

Huv
d,ν(u) ≡ 2

∑
k≥d+1

bk(ν)u−(d+1−k), H ir
d,ν(u) ≡ Hd,ν(u) −Huv

d,ν(u) (6.5.8)

Similarly using an infinitesimal IR regulator κ → 0+, we obtain a UV-IR separation for the

regularized partition function logZν(ϵ) = logZuv
ν (ϵ) + logZ ir

ν :

logZuv
ν (ϵ) = 1

4

∫
R+iδ

du

ru
Huv
d,rν(u)e−κ|u|, logZ ir

ν =
∫ ∞

0

du

2uH
ir
d,ν(u)e−κu (6.5.9)
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where r =
√
u2 + ϵ2/u. In the IR part of the partition function, we’ve deformed the contour

and safely put ϵ = 0. The log κ terms will drop out at the end when summing up logZuv
ν and

logZ ir
ν .

Evaluation of UV part

Using the expansion (6.5.8), the UV part of logZν(ϵ) can be written as

logZuv
ν (ϵ) = 1

2

d∑
k=0

k∑
ℓ=0

bkℓ ν
ℓ
∫
R+iδ

du

ru
rℓu−(d+1−k) + 1

2

d+1∑
ℓ=0

bd+1,ℓ ν
ℓ
∫
R+iδ

du

ru
rℓe−κ|u|

(6.5.10)

where the IR regulator κ is not necessary for 0 ≤ k ≤ d. Then it suffices to evaluate the

following two u-integrals

Iϵ(k, ℓ) ≡
∫
R+iδ

du

2ru r
ℓu−(d+1−k) = ϵ−(d+1−k) 1

2

∫
R+iδ

du
(1 + u2)

ℓ−1
2

ud+ℓ+1−k

Jϵ(ℓ) ≡
∫
R+iδ

du

2ru r
ℓe−κ|u| = 1

2

∫
R+iδ

du
(1 + u2)

ℓ−1
2

uℓ
e−ϵκ|u| (6.5.11)

When ℓ is odd in Iϵ(k, ℓ), we can close the contour in the upper half plane (fig. 6.5.1a) and the
integral vanishes because (1 + u2)

ℓ−1
2 has no pole in this case. Thus Iϵ(k, ℓ) is nonvanishing

only when ℓ is even. On the other hand, the coefficient of Iϵ(k, ℓ), i.e. bkℓ, vanishes for k + ℓ

odd. Therefore, only terms with even k, ℓ survive in logZuv
ν (ϵ). When ℓ is even in Iϵ(k, ℓ), the

previous “no poles” argument doesn’t hold any more due to the presence of a branch cut from
i to i∞ in the upper half plane. However, we can deform the contour to integrate along the
branch cut (fig. 6.5.1b) which yields

Iϵ(k, ℓ) = 1
2(−)

d+1−k
2 B

(
d+ 1 − k

2 ,
1 + ℓ

2

)
(6.5.12)

where the B-function is B(a, b) = Γ(a)Γ(b)
Γ(a+b) .

For the integral Jϵ(ℓ), we split it into an IR-divergent part and an IR-finite part. In the
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(a) odd ℓ (b) even ℓ

Figure 6.5.1: Contour for the integral Iϵ(k, ℓ). When ℓ is odd, the contour is closed at infinity.
When ℓ is even, the red contour in deformed to the blue one running along the branch cut of√
u2 + 1.

IR-finite part, we can drop the IR regulator e−κu.

Jϵ(ℓ) = 1
2

∫
R+iδ

du√
1 + u2

(
(1 + u−2)

ℓ
2 − 1

)
+ 1

2

∫
R+iδ

du√
1 + u2

e−ϵκ|u|

= 1
2

∫
R+iδ

du√
1 + u2

(
(1 + u−2)

ℓ
2 − 1

)
+
∫ ∞

0

du√
1 + u2

e−ϵκu (6.5.13)

Since the coefficient of Jϵ(ℓ) is bd+1,ℓ, it suffices to consider even ℓ which implies that (1+u−2)
ℓ
2

can be expanded into a polynomial of u−2 and for each term in the polynomial we can use the

same contour trick as in the Iϵ case to evaluate the integral. The IR-divergent part can be

analytically evaluated in mathematica and it has a very simple small ϵ behavior. Altogether, the

final result for Jϵ(ℓ) is

Jϵ(ℓ) = 1
2

ℓ/2∑
n=1

(−)n
(
ℓ
2
n

)
B

(
n,

1
2

)
+ log 2

eγϵκ

= −
(
Hℓ − 1

2Hℓ/2 + log e
γϵκ

2

)
(6.5.14)

where Hℓ is the harmonic number of order ℓ. Plugging (6.5.12) and (6.5.14) into (6.5.10) yields
the regularized UV-part of the partition function

logZuv
ν (ϵ) = 1

2

r∑
k=0

(−)r+1−kϵ−(d+1−2k)
2k∑

ℓ=0
b2k,ℓB

(
d+ 1

2 − k,
ℓ+ 1

2

)
νℓ

−
d+1∑
ℓ=0

bd+1,ℓ

(
Hℓ − 1

2Hℓ/2

)
νℓ − bd+1(ν) log e

γϵκ

2 (6.5.15)
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For example, for d = 3, we get

logZuv
ν (ϵ) = 2

3 ϵ4 + 1 − 4ν2

24 ϵ2 +
(
ν2

48 − ν4

18

)
+
(
ν4

24 + ν2

48 − 17
5760

)
log 2

eγϵκ
(6.5.16)

which reproduces the Pol(∆) part of logZν in [192] 4 without using the heat kernel coeffi-
cients αk. In fact, by comparing (6.5.16) and (6.5.4), we can express the nonzero heat kernel
coefficients αk in terms of bkl

α2k = (−4)k− d+1
2

2k∑
ℓ=0

Γ( ℓ+1
2 )

Γ( d+ℓ
2 + 1 − k)

b2k,ℓ ν
ℓ (6.5.17)

Evaluation of IR part

The IR part can be evaluated through certain zeta function method as in [2]

logZ ir
ν = 1

2 ζ̄
′
ν(0) + bd+1(ν) log(κ), ζ̄ν(z) ≡ 1

Γ(z)

∫ ∞

0

du

u
uzHd,ν(u) (6.5.18)

Notice that the “character zeta function” ζ̄ν(z) is originally defined by the integral above for z
sufficiently large and then analytically continued to small z. bd+1(ν) is related to the character
zeta function as bd+1(ν) = 1

2 ζ̄ν(0). Combing the UV part (6.5.15) and IR part (6.5.18) leads to

logZν(ϵ) = 1
2

r∑
k=0

(−)r+1−kϵ−(d+1−2k)
2k∑

ℓ=0
b2k,ℓB

(
d+ 1

2 − k,
ℓ+ 1

2

)
νℓ

−
d+1∑
ℓ=0

bd+1,ℓ

(
Hℓ − 1

2Hℓ/2

)
νℓ + bd+1(ν) log

(
2
eγϵ

)
+ 1

2 ζ̄
′
ν(0) (6.5.19)

Compared to the standard heat kernel results, we find the discrepancy between the character

zeta function ζ̄ν(z) and the spectral zeta function ζν(z) = 1
Γ(z)

∫∞
0

dt
t t
zKν(t):

1
2ζ

′
ν(0) = 1

2 ζ̄
′
ν(0) −

d+1∑
ℓ=0

bd+1,ℓ

(
Hℓ − 1

2Hℓ/2

)
νℓ (6.5.20)

This difference is the multiplicative anomaly. Multiplicative anomaly is computed specifically

for fields in AdS in [144], where it’s called “secondary contribution”. Though the information

4There is an overall 1
2 factor difference because [192] computes the partition function of a complex scalar

rather than a real scalar.
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about multiplicative anomaly is lost, the formal factorization makes the evaluation of ζ̄ν(z) much

simpler than ζν(z). For example, we can expand Hd,ν(u) with respect to e−u as Hd,ν(u) =∑
n≥0D

d+2
n e−(∆+n)u and for each fixed n, the u-integral yields (n + ∆)−z. Then we can

immediately express ζ̄ν(z) as a finite sum of Hurwitz zeta functions

ζ̄ν(z) =
∑
n≥0

Dd+2
n

(n+ ∆)z = Dd+2
δ−∆ ζ(z,∆) (6.5.21)

where δ is an operator defined as δnζ(z,∆) ≡ ζ(z − n,∆). When d = 3, we have Dd+2
δ−∆ =

δ3

3 − νδ2 + 12ν2−1
12 δ + ν−4ν3

12 and thus

ζ̄ν(z) = 1
3ζ(z − 3,∆) − νζ(z − 2,∆) +

(
ν2 − 1

12

)
ζ(z − 1,∆) + ν − 4ν3

12 ζ(z,∆) (6.5.22)

Altogether, the full one-loop partition function of a real scalar field with scaling dimension

∆ = 3
2 + ν in AdS4 is

logZν(ϵ) = 2
3 ϵ4 + 1 − 4ν2

24 ϵ2 +
(
ν2

48 − ν4

18

)
+
(
ν4

24 + ν2

48 − 17
5760

)
log 2

eγϵ

+ 1
6ζ

′(−3,∆) − ν

2 ζ
′(−2,∆) + 1

2

(
ν2 − 1

12

)
ζ ′(−1,∆) + ν − 4ν3

24 ζ ′(0,∆) (6.5.23)

consistent with [192].

6.5.2 Odd dimensional AdS2r+1

The UV-regularized partition function in AdS2r+1 can be written in terms of the following

character integral

logZν(ϵ)
logR = 1

2πi

∫
C0

du

2
√
u2 + ϵ2

1 + e−u

1 − e−u e
− d

2u−ν
√
u2+ϵ2 (6.5.24)

where d = 2r. As in the even dimensional AdS case, we can separate Hd,ν(u) into a UV-part

and an IR-part. But the resulting IR partition function logZ ir
ν = Resu→0

1
2uH

ir
d,ν(u) vanishes

because 1
2uH

ir
d,ν(u) doesn’t have a pole at u = 0 by our prescription for the UV-IR separation.
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Therefore, it suffices to compute the UV-part of the partition function

logZν(ϵ)
logR = logZuv

ν (ϵ)
logR =

d+1∑
k=0

k∑
ℓ=0

bkℓν
ℓ 1
2πi

∫
C0

du

u

rℓ−1

ud+1−k

=
d+1∑
k=0

k∑
ℓ=0

bkℓ ν
ℓ ϵ−(d+1−k)Resu→0

(1 + u2)
ℓ−1

2

ud+ℓ+1−k (6.5.25)

where bkℓ is nonvanishing only when k + ℓ is even. By evaluating the residue explicitly, we find

logZν(ϵ)
logR =

d
2∑

k=0
ϵ−(d+1−2k)

2k∑
ℓ=0

b2k,ℓ

(
ℓ−1

2
d−ℓ+2k

2

)
νℓ + bd+1(ν)

=
d
2∑

k=0
ϵ−(d+1−2k)

2k∑
ℓ=0

b2k,ℓ

(
ℓ−1

2
d−ℓ+2k

2

)
νℓ + Resu→0

( 1
2uHd,ν(u)

)
(6.5.26)

where we rewrite bd+1(ν) as a residue. As expected, there is no log ϵ divergence or multiplica-

tive anomaly and hence we can define a renormalized partition function by subtracting all the

divergent terms unambiguously

logZren
ν

logR = Resu→0

( 1
2uHd,ν(u)

)
(6.5.27)

where the residue is evaluated in appendix D.4:

logZren
ν

logR = − 1
(2r)!

r∑
n=1

an(r)
2n+ 1ν

2n+1,
r−1∏
j=0

(x− j2) =
r∑

n=1
an(r)xn (6.5.28)

For example, according to this expression, the renormalized scalar partition function in AdS3 is

−ν3

6 , consistent with [216].

6.5.3 Summary

The computations in this section provide a well-defined and efficient rule to obtain a regularized

partition function using only the unregularized character integral formula derived in section 6.2

and section 6.3. Here we summarize this rule for both even and odd dimensional AdS.

Odd dimensional AdS: d = 2r
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Given the total character Θtot(u) = Θb(u) − Θe(u), where Θb(u),Θe(u) are bulk character and

edge character respectively, the renormalized partition function (with all negative powers of ϵ

dropped) is given by

logZren = Resu→0

(
1

2u
1 + e−u

1 − e−uΘtot(u)
)

logR (6.5.29)

For example, a massive spin-s field with ∆ = 2 + ν on AdS5 has bulk character Θb(u) =

D4
s
e−(2+ν)u

(1−e−u)4 and edge character Θe(u) = D6
s−1

e−(1+ν)u

(1−e−u)2 . Therefore according to (6.5.29)

logZren
s,ν = (s+ 1)2ν3

360
(
5(s+ 1)2 − 3ν2

)
logR (6.5.30)

This result agrees with the computation of [112] based on direct spectral zeta function reg-

ularization. Another interesting example is linearized gravity in AdS3. In this case, the bulk

character is Θb(u) = 2 e−2u−e−3u

(1−e−u)2 , where the overall factor 2 is spin degeneracy for any field of

nonzero spin, and the edge character is Θe(u) = 4 e−u − e−2u. Therefore, according to eq.

(6.5.29) the renormalized partition function of 3D gravity is 13
3 logR, consistent with [216].

Even dimensional AdS: d = 2r + 1

For odd d, we need to consider massive and massless representations separately because in mass-

less representations both gauge field and ghost field can contribute to the total multiplicative

anomaly. Given a massive representation
[
d
2 + ν, s

]
, the unregularized partition function is

logZs,ν =
∫ ∞

0

du

2u
(
f bs,ν(u) − fes,ν(u)

)
(6.5.31)

where

f bs,ν(u) = Dd
s

1 + e−u

1 − e−u
e−( d

2 +ν)u

(1 − e−u)d , fes,ν(u) = Dd+2
s−1

1 + e−u

1 − e−u
e−( d−2

2 +ν)u

(1 − e−u)d−2 (6.5.32)

f bs,ν(u) induces the bulk character zeta function ζ̄bs,ν(z) ≡ 1
Γ(z)

∫∞
0

du
u u

zf bs,ν(u) and fes,ν(u)
induces the edge character zeta function ζ̄es,ν(z) ≡ 1

Γ(z)
∫∞

0
du
u u

zfes,ν(u). The renormalized
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partition function (with all negative powers of ϵ dropped) is

logZren
s,ν = 1

2
(
ζ̄b

s,ν(0) − ζ̄e
s,ν(0)

)
log(2e−γ/ϵ) + 1

2

(
ζ̄b′

s,ν(0) − ζ̄e′

s,ν(0)
)

−
d+1∑
ℓ=0

bℓ(s)
(
Hℓ − 1

2Hℓ/2

)
νℓ

(6.5.33)

where
∑d+1
ℓ=0 bℓ(s)νℓ = 1

2(ζ̄bs,ν(0)−ζ̄es,ν(0)). Using the expansion f bs,ν(u) =
∑
n≥0 P

b
s,ν(n)e−(∆+n)t,

where ∆ = d
2 + ν, the bulk character zeta function ζ̄bs,ν(z) can be written as a finite sum of

Hurwitz zeta functions

ζ̄bs,ν(z) = P bs,ν(δ − ∆)ζ(z,∆) (6.5.34)

and similarly for ζ̄es,ν(z). In AdS4, for example, the bulk and edge character zeta functions are

ζ̄bs,ν(z) = (2s+ 1)
(

1
3ζ(z − 3,∆) − ν ζ(z − 2,∆) + (ν2 − 1

12)ζ(z − 1,∆) + ν(1 − 4ν2)
12 ζ(z,∆)

)

ζ̄es,ν(z) = 1
3s(s+ 1)(2s+ 1) (ζ(z − 1,∆ − 1) − ν ζ(z,∆ − 1)) (6.5.35)

For a massless representation of spin-s and depth-t, the unregularized partition consists of

four parts

logZs,νt =
∫ ∞

0

du

2u
(
f bs,νt

(u) − fes,νt
(u) − f bt,νs

(u) + fes,νt
(u)
)

(6.5.36)

The renormalized partition function can be expressed as

logZren
s,νt

= 1
2
(
ζ̄b

s,νt
(0) − ζ̄e

s,νt
(0) − ζ̄b

t,νs
(0) + ζ̄e

t,νs
(0)
)

log(2e−γ/ϵ) + 1
2

(
ζ̄b′

s,νt
(0) − ζ̄e′

s,νt
(0) − ζ̄b′

t,νs
(0) + ζ̄e′

t,νs
(0)
)

−

(
d+1∑
ℓ=0

bℓ(s)
(
Hℓ − 1

2Hℓ/2

)
νℓ

t −
d+1∑
ℓ=0

bℓ(t)
(
Hℓ − 1

2Hℓ/2

)
νℓ

s

)
(6.5.37)

For example, the renormalized partition function of linearized gravity in AdS4 is

logZren
gravity = 47 log A

6 + 1
3ζ

′(−3) + 1957
288 − log 2

2 − 5 log(2π) − 571
90 log(2e−γ/ϵ) (6.5.38)

where A is the Glaisher-Kinkelin constant. (6.5.38) reproduces the s = 2 result in [111].



192

Remark 12. Apart from the multiplicative anomaly, the remaining part of the partition function

for both massive and massless representations is completely captured by the character zeta

function 1
Γ(z)

∫∞
0

du
u1−z

1+e−u

1−e−u Θtot(u), where Θtot(u) consists of bulk and edge characters. Thus,

by inserting a UV regulator uz in the unregularized partition function, we recover the correct

log-divergence and finite part up to multiplicative anomaly, which was proved to vanish when

summing up the whole spectrum of Vasiliev theories [144]. We will also show in section 6.7

the vanishing of multiplicative anomaly for type-A Vasiliev gravity using the character integral

formalism. Keeping this comment in mind, we are free to use the unregularized character integral

formula to compute the full partition function of Vasiliev theories in section 6.7.

6.6 Double trace deformation

A large N CFTd where a primary operator O has scaling dimension ∆O can flow to another

CFTd where O has the shadow scaling dimension ∆̄O ≡ d− ∆O by turning on a double trace

deformation O2 in the Lagrangian [217, 218]. On the AdS side, this RG flow is equivalent to

switching the boundary conditions when we quantize the dual bulk field. Due to AdS/CFT

duality, the effect of this RG flow on the partition function of the large N CFTd living on Sd

can be computed from both boundary and bulk sides [138, 214, 218–221]. In particular, in [138]

the authors thoroughly computed the effect of any higher spin currents. Let Oµ1···µs be a spin-s

current and they found the change of free energy induced by Oµ1···µsOµ1···µs has log-divergence

when ∆O = d + s − 2, i.e. O is a conserved current, and the change is of order 1 when ∆O

takes other values. In this section, we’ll reproduce the main results of [138] on bulk side by using

character integral formula (6.4.9). As we’ve just mentioned that the double trace deformation

induces the dual boundary condition, it suffices to compute logZs,ν − logZs,−ν . We’ll focus

on the odd d case (the even d case can be analyzed similarly) and see that it’s extremely

convenient to use the character integral representation to do this computation because flipping

the boundary condition is equivalent to switching to the character of the dual representation,

i.e. ΘAdSd+1
[∆,s] → ΘAdSd+1

[∆̄,s] .

We’ll start from considering a scalar field with complex scaling dimension ∆ = d
2 + iν and

then Wick rotate ∆ to a real number. Before performing any actual computation, we want
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to mention the following observation which is based on the explicit evaluation in last section,

that the UV-divergent part including multiplicative anomaly of logZν is an even function in ν

when d is odd (see equation (6.5.16) as an explicit example). This observation implies that

logZiν − logZ−iν is UV finite. In addition, in the difference

logZiν(ϵ) − logZ−iν(ϵ) = 1
2

∫
R+iδ

du

2
√
u2 + ϵ2

1 + e−u

1 − e−u
e− d

2u(e−iν
√
u2+ϵ2 − e+iν

√
u2+ϵ2)

(1 − e−u)d

(6.6.1)

the integrand is indeed a single-valued function because when u goes around one of the branch

points of
√
u2 + ϵ2, the combination e−iν

√
u2+ϵ2 −e+iν

√
u2+ϵ2

√
u2+ϵ2 keeps invariant though

√
u2 + ϵ2

itself picks an extra minus sign. Then we are free to shift the u-contour upwards such that

δ > ϵ. With this new contour and using the UV-finiteness of logZiν − logZ−iν , we can safely

put ϵ → 0 which amounts to sending
√
u2 + ϵ2 to u:

logZiν − logZ−iν = 1
2

∫
R+iδ

du

2u
1 + e−u

1 − e−u
e− d

2u(e−iνu − e+iνu)
(1 − e−u)d (6.6.2)

To proceed further, we introduce a new integral that can eliminate u in the denominator of

(6.6.2) and then switch the order of integrals

logZiν − logZ−iν = − i

4

∫ ν

−ν
dλ

∫
R+iδ

du
1 + e−u

1 − e−u
e− d

2u−iλu

(1 − e−u)d (6.6.3)

After these manipulations, the u-integral is essentially the definition of µ̃(+)
d (λ), cf. (6.4.1)

logZiν − logZ−iν = iπ(−)
d−1

2

2 d!

∫ ν

−ν
dλ µ̃

(+)
d (λ) = i(−)r

d!

∫ ν

0
dλµ(d)(λ) (6.6.4)

where we’ve used that the even part of µ̃(+)
d (λ) is the spectral density µ(d)(λ). It’s straight-

forward to generalize this method to higher spin fields by including the edge-mode contribution

and using eq. (6.4.8)

logZs,iν − logZs,−iν = iπ(−)r

d! Dd
s

∫ ν

0
dλµ(d)

s (λ) (6.6.5)
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Surprisingly, the change of free energy triggered by the higher spin double trace deformation at

large N is completely encoded in the higher spin spectral density. Given the eq. (6.6.5), we

make a Wick rotation ν → iν to obtain result for real scaling dimension ∆ = d
2 + ν

logZs,ν − logZs,−ν = π(−)r

d! Dd
s

∫ ν

0
dλµ(d)

s (iλ) (6.6.6)

For example, at d = 3 we get

logZs,ν − logZs,−ν = (2s+ 1)π
6

∫ ∆

3
2

dx(x− 3
2)(x+ s− 1)(x− s− 2) cot(πx) (6.6.7)

where we’ve changed variable λ = x− 3
2 . This equation agrees with the result in [138]. When

ν reaches some half integer number, say νs−1 = d
2 + s− 2, which corresponds to a double trace

deformation triggered by a spin-s conserved current in free U(N) vector model, the integral

(6.6.6) is divergent no matter what contour we use because the singularity ν = νs−1 is at the

end point of the integration contour. To extract the leading divergence, we need the singular

behavior of µ(d)
s (iλ) near λ = νs−1

π(−)r

d! Dd
s µ

(d)
s (iλ) = −

Dd+2
s−1,s−1

2(λ− νs−1) + O((λ− νs−1)0) (6.6.8)

which is a consequence of eq. (2.2.4) and Dd+2
p−1,s = −Dd+2

s−1,p. Since Dd+2
s−1,s−1 = nKT

s−1 is the

number of spin-(s−1) Killing tensors on Sd+1 and also the number of spin-(s − 1) conformal

Killing tensors on Sd [138]. Therefore if we truncate the integral (6.6.6) at ν = νs − ϵ, the

change of logZ induced by a spin-s conserved current has a log-divergence part 1
2n

KT
s−1 log(ϵ).

6.7 Application to Vasiliev theories

With the character integral method developed in the previous sections, we’re finally able to

compute partition function of Vasiliev theories in all even dimensional AdS (The odd dimensional

AdS case can be analyzed similarly and is indeed much simpler). We’ll use (non)minimal type-Aℓ
theory and type-B Vasiliev theory, which are reviewed below, to illustrate the application of the

character integral method. Before that we want to stress again, due to the comment at the end
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of the section 6.5, the unregularized version of character integral formula is sufficient.

6.7.1 A brief review of Vasiliev theories and Flato-Fronsdal theorems

The simplest and best understood higher spin theory is the nonminimal type-A Vasiliev theory

in AdSd+1, which contains a ∆ = d − 2 real scalar and a tower of massless higher spin gauge

fields. This theory is believed to be dual to a free U(N) vector model on boundary described by

Lagrangian L = 1
2ϕ

∗
i □ϕi, 1 ≤ i ≤ N . The U(N) fundamental field ϕi is in the scalar singleton

representation
[
d−2

2 , 0
]

≡ Rac of so(2, d). One direct result of the duality is a one-to-one

correspondence between the field content in bulk and the single-trace operators in U(N) vector

model. In representation theory, this is confirmed by Flato-Fronsdal theorem [194]:

Rac ⊗ Rac =
∞⊕
s=0

[d+ s− 2, s] (6.7.1)

which can be proved by using the following identity of characters

(
Θso(2,d)

Rac (u)
)2

=
∞∑
s=0

ΘAdSd+1
[d+s−2,s](u) ≡ ΘAdSd+1

A , Θso(2,d)
Rac = eu − e−u

(e
u
2 − e− u

2 )d
(6.7.2)

There are a lot of variants of the original type-A Vasiliev theory. For example, if we relax the

requirement of unitarity, we can take the boundary CFT to be L = 1
2ϕ

∗
i □ℓ ϕi, where each ϕi

is in the representation [d−2ℓ
2 , 0] ≡ Racℓ of so(2, d). For more details about the □ℓ theory, we

refer readers to [99, 222]. The bulk dual of this nonunitary CFT is called the type-Aℓ higher

spin gravity with field content given by a generalized Flato-Fronsdal theorem [222–224]

Racℓ ⊗ Racℓ =
2ℓ−1⊕

p=1,3,···

∞⊕
s=0

[d+ s− p− 1, s] (6.7.3)

where [d+ s− p− 1, s] corresponds to a PM field of spin-s and depth-(s− p) for p ≤ s. At the

level of characters, this tensor product decomposition is equivalent to

(
Θso(2,d)

Racℓ
(u)
)2

=
2ℓ−1∑

p=1,3,···

∞∑
s=0

ΘAdSd+1
[d+s−2,s](u) ≡ ΘAdSd+1

Aℓ
, Θso(2,d)

Racℓ
= eℓu − e−ℓu

(e
u
2 − e− u

2 )d
(6.7.4)
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In type-Aℓ theory, we can further replace the complex scalars by real scalars that are in the

fundamental representation of O(N). The resulting AdS dual is called the minimal type-Aℓ
theory and its field content can be extracted from the symmetrized tensor product of two Racℓ:

Racℓ ⊙ Racℓ =
2ℓ−1⊕

p=1,3,···

∞⊕
s=0,2,···

[d+ s− p− 1, s] (6.7.5)

where only fields even spin exist. Summing over the characters for representations appearing in

the tensor product decomposition (6.7.5) leads to

ΘAdSd+1
Amin

ℓ

≡
2ℓ−1∑

p=1,3,···

∞∑
s=0,2,···

ΘAdSd+1
[d+s−2,s](u) = 1

2
(
Θso(2,d)

Racℓ
(u)
)2

+ 1
2Θso(2,d)

Racℓ
(2u) (6.7.6)

Another important variant of the original nonminimal type-A theory is the so-called type-B

theory. It is the AdS-dual of free U(N) Dirac fermions restricted to U(N) singlet sector. Each

Dirac fermion carries the spinor singleton representation [d−1
2 , 1

2 ] ≡ Di of so(2, d), where 1
2

denotes the spin-1
2 representation of so(d). The bulk field content is given by Di ⊗ Di, which

takes the following for odd d [194]

Di ⊗ Di = [d− 1, 0]
⊕ d−3

2⊕
m=0

∞⊕
s=1

[d− 2 + s, (s, 1m)] (6.7.7)

When d = 3, all (s, 1m) are reduced to a spin-s representation of so(3). Thus in AdS4, the

spectra of the type-A and type-B theory are the same except that the m2 = −2 scalar is

quantized with ∆− = 1 in the former and ∆+ = 2 in the latter. However, for higher d,

the spectrum type-B theory is much more complicated due to the presence of fields of mixed

symmetry. Let’s call the collection of fields of “spin” (s, 1m) the m-sector. The m = 0 sector is

almost the same as spectrum of type-A theory except the scaling dimension of the scalar. For

the m ≥ 1 sectors, fields with s ≥ 2 are massless gauge fields with the corresponding ghost

fields in the representation [d−1+s, (s−1, 1m)] of so(2, d) while the s = 1 fields are massive

and totally antisymmetric.
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6.7.2 Type-A higher spin gravity

Nonminimal theory: Field content of the nonmonimal type-A higher spin gravity is given by

eq. (6.7.1). Using (6.2.12) for the ∆ = d − 2 scalar and (6.3.9) for the massless gauge fields,

we get

logZAdSd+1
A =

∫ ∞

0

du

2u
1 + e−u

1 − e−u

∑
s≥0

ΘAdSd+1
[d+s−2,s](u) −

(
e

u
2 − e− u

2
)4∑

s≥0
ΘAdSd+3

[d+2+s−2,s](u)


(6.7.8)

where s is shifted by 1 in the edge character to match with the bulk part. Due to the Flato-

Fronsdal theorem (6.7.2), both sums in (6.7.8) give the square of a Rac-character. Plugging in

the explicit form of these Rac-characters, it’s clear that the bulk and edge contributions exactly

cancel out and hence the total one-loop free energy of type-A theory vanishes:

logZAdSd+1
A =

∫ ∞

0

du

2u
1 + e−u

1 − e−u

[(
Θso(2,d)

Rac (u)
)2

−
(
e

u
2 − e− u

2
)4 (

Θso(2,d+2)
Rac (u)

)2
]

= 0

(6.7.9)

Before moving to the minimal case, we want to check that the total multiplicative anomaly

indeed vanishes. To do this, we should use the fully regularized character integral formula, with

which the exact cancellation between bulk and edge contributions doesn’t hold any more at the

integrand level. Instead, we get

logZAdSd+1
A = 4−d

∫
R+iδ

du

ru

1 + e−u

1 − e−u
(1 + cosh(ru))(cosh(ru) − cosh(u))

(sinh u
2 sinh ru

2 )d (6.7.10)

where r =
√
u2 + ϵ2/u. The multiplicative anomaly, if exists, should appear as the coefficient

of ϵ0 in the small ϵ expansion of (6.7.10), which can be realized by a change of variable u → ϵ u

and expanding the integrand around small ϵ:

logZAdSd+1
A = 4−d

∫
R+iδ

du√
u2 + 1

1 + e−ϵu

1 − e−ϵu

(1 + cosh(ϵ
√

1 + u2))(cosh(ϵ
√

1 + u2) − cosh(ϵu))
(sinh ϵu

2 sinh ϵ
√

1+u2

2 )d

(6.7.11)



198

Notice that the integrand of (6.7.11) is an odd function of ϵ and hence cannot have any ϵ0 term

in small ϵ expansion. This observation leads to the vanishing of the total multiplicative anomaly

in nonminimal type-A theory.

Minimal theory: Since minimal type-A theory contains only fields of even spins, its total

partition function can be written as

logZAdSd+1
Amin =

∫ ∞

0

du

2u
1 + e−u

1 − e−u

( ∑
s even

ΘAdSd+1
[d+s−2,s](u) −

(
e

u
2 − e− u

2
)4 ∑

s odd
ΘAdSd+3

[d+2+s−2,s](u)
)

(6.7.12)

where the spin in edge characters is shifted by 1. The sum over all bulk characters lead to

ΘAdSd+1
Amin

ΘAdSd+1
Amin (u) = 1

2ΘAdSd+1
A (u) + 1

2Θso(2,d)
Rac (2u) (6.7.13)

where we’ve used eq. (6.7.2) and (6.7.6). The sum of edge characters, since only odd spin fields

are involved, yields the difference between the nonminimal character and minimal character in

AdSd+3:

ΘAdSd+3
A (u) − ΘAdSd+3

Amin (u) = 1
2ΘAdSd+3

A (u) − 1
2Θso(2,d+2)

Rac (2u) (6.7.14)

Plugging eq. (6.7.13) and (6.7.14) into (6.7.12), the type-A characters cancel out as in the

nonminimal theory and thus the remaining term is

logZAdSd+1
Amin = 1

2

∫ ∞

0

du

2u
1 + e−u

1 − e−u

(
Θso(2,d)

Rac (2u) +
(
e

u
2 − e− u

2
)4

Θso(2,d+2)
Rac (2u)

)

=
∫ ∞

0

du

2u
1 + e−u

1 − e−u
e−( d−1

2 + 1
2 )u + e−( d−1

2 − 1
2 )u

(1 − e−u)d−1 (6.7.15)

where in the second line u has been rescaled u → u
2 . Notice that e− d

2 u+e−( d
2 −1)u

(1−e−u)d−1 is the Harish-

Chandra character of the ∆ = d−2
2 representation of SO(1, d). Then according to the character

integral representation of the sphere partition functions found in [2], the partition function of

minimal type-A theory on AdSd+1 is the same as the partition function of a conformally coupled
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scalar on Sd. This result agrees with [111], where the appearance of this scalar partition function

is interpreted as an N → N−1 shift in the identification of Newton’s constant GN ∼ 1
N . Again,

starting from the square root regularized character and following the same argument as in the

nonminimal case, one can also show the vanishing of total multiplicative anomaly for minimal

type-A theory. Let’s also mention that when d = 2r is even, the analogue of (6.7.15) implies

the coefficient of logR of minimal type-A theory in AdS2r+1 matches the Weyl anomaly of a

conformally couple scalar on the boundary, which is a d-dimensional sphere of radius R.

6.7.3 Type-Aℓ higher spin gravities

Nonminimal theory: Given the spectrum of nonminimal type-Aℓ theory (6.7.3), the total
partition function can be written as

logZAdSd+1
Aℓ

=
∫ ∞

0

du

2u
1 + e−u

1 − e−u

 2ℓ−1∑
p=1,3

∑
s≥0

ΘAdSd+1
[d+s−p−1,s](u) −

(
e

u
2 − e− u

2
)4

2ℓ−1∑
p=1,3

∑
s≥0

ΘAdSd+3
[d+2+s−p−1,s](u)


(6.7.16)

where the spin label s is shifted by 1 in the sum of edge characters. Using the generalized Flato-

Fronsdal theorem (6.7.4), it’s straightforward to show that the bulk and edge contributions

exactly cancel out

logZAdSd+1
Aℓ

=
∫ ∞

0

du

2u
1 + e−u

1 − e−u

[(
Θso(2,d)

Racℓ
(u)
)2

−
(
e

u
2 − e− u

2
)4 (

Θso(2,d+2)
Racℓ

(u)
)2
]

= 0

(6.7.17)

Therefore the total free energy of nonminimal type-Aℓ also vanishes.

Minimal theory: Following the same steps as in the minimal type-A case, we can directly write

down the result for minimal type-Aℓ theory

logZAdSd+1
Amin

ℓ

= 1
2

∫ ∞

0

du

2u
1 + e−u

1 − e−u

(
Θso(2,d)

Racℓ
(2u) +

(
e

u
2 − e− u

2
)4

Θso(2,d+2)
Racℓ

(2u)
)

=
∫ ∞

0

du

2u
1 + e−u

1 − e−u
e− d

2u (eℓu − e−ℓu)
(1 − e−u)d (6.7.18)

where u is rescaled in the second line. Naively speaking, eq. (6.7.18) doesn’t look like any
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character integral. But using the expansion 1−e−2ℓu = (1−e−u)
∑2ℓ−1
n=0 e

−nu, we can transform

it into a finite sum of character integrals in the dS sense

logZAdSd+1
Amin

ℓ

=
ℓ∑

n=1

∫ ∞

0

du

2u
1 + e−u

1 − e−u
e−( d−1

2 +(n− 1
2 ))u + e−( d−1

2 −(n− 1
2 ))u

(1 − e−u)d−1 (6.7.19)

where e−( d−1
2 +(n− 1

2 ))u+e−( d−1
2 −(n− 1

2 ))u

(1−e−u)d−1 is the Harish-Chandra character of the ∆ = d−1
2 + n− 1

2

representation of SO(1, d) and the corresponding character integral represents the one-loop

partition function of a scalar field of mass m2
n = (d2 − n)(d−2

2 + n) on Sd [2]. Defining a

collection of scalar Laplacians {−∇2 + m2
n}1≤n≤ℓ, the partition function logZAdSd+1

Amin
ℓ

can be

rewritten as

logZAdSd+1
Amin

ℓ

=
ℓ∑

n=1
log det(−∇2 +m2

n)− 1
2 = log det

(
□ℓSd

)− 1
2 , □ℓSd ≡

ℓ∏
n=1

(−∇2 +m2
n)

(6.7.20)

where we are allowed to put the Laplacian into a product form because there is no multiplicative

anomaly on an odd dimensional manifold. Notice that □ℓ
Sd , the Weyl-covariant generalization of

□ℓ, is a GJMS operator on Sd [225–228] and when ℓ = 1 it is reduced to the conformal Laplacian

on Sd. Therefore, the one-loop partition function of minimal type-Aℓ theory on AdSd+1 is the

same as the one-loop partition function of the □ℓ-theory on Sd. This is again consistent with

the N → N − 1 interpretation.

6.7.4 Type-B higher spin gravities

AdS4: Let’s start considering the type-B theory in AdS4. Its has the same spectrum as type-A

theory except the boundary condition imposed on the scalar is flipped. Using logZAdS4
A = 0, we

are left with

logZAdS4
B =

∫ ∞

0

du

2u
1 + e−u

1 − e−u

(
ΘAdS4

∆=2(u) − ΘAdS4
∆=1(u)

)
= −

∫ ∞

0

du

2u
1 + e−u

1 − e−u
e−u

(1 − e−u)2

(6.7.21)

which represents the change of partition function induced by a double-trace deformation. To

evaluate this integral, we can either regularize it by inserting uz and express it in terms of
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Hurwitz zeta function or directly use eq. (6.6.7)

logZAdS4
B = π

6

∫ 2

3
2

(x− 1)(x− 3
2)(x− 2) cot(πx) = ζ(3)

8π2 (6.7.22)

AdS6 and higher: The spectrum of type-B theory in AdS6 can be divided into the m = 0

sector and the m = 1 sector.[4, 0]
⊕⊕

s≥1
[3 + s, (s, 0)]


︸ ︷︷ ︸

m=0 sector

⊕⊕
s≥1

[3 + s, (s, 1)]


︸ ︷︷ ︸

m=1 sector

(6.7.23)

In the m = 0 sector we can turn to the result of type-A theory because the only difference

is scaling dimension of the scalar field. Using logZAdS6
A = 0, we obtain the following result

without any extra effort

logZAdS6
m=0 =

∫ ∞

0

du

2u
1 + e−u

1 − e−u
e−4u − e−3u

(1 − e−u)5 = −
∫ ∞

0

du

2u
1 + e−u

1 − e−u
e−3u

(1 − e−u)4 (6.7.24)

Unlike in AdS4, the m = 0 partition function logZAdS6
m=0 itself doesn’t have the double trace-

deformation interpretation because ∆ = 3 and ∆ = 4 are not conjugate scaling dimensions.
We’ll see that the double-trace deformation pattern can be restored with the m = 1 sector
taken into account. The m = 1 sector is more involving since it consists of fields with mixed
symmetry. Following the same steps as in section 6.3, we derive the character integral formula
for fields in massive representation

[
5
2 + ν, (s, 1)

]

logZ(s,1),ν =
∫ ∞

0

du

2u
1 + e−u

1 − e−u

[
D5

s,1
e−( 5

2 +ν)u

(1 − e−u)5 −D7
s−1

(
3 e−( 3

2 +ν)u

(1 − e−u)3 − e−( 1
2 +ν)u

1 − e−u

)]
(6.7.25)

Unlike the spin-s case, the edge part of logZ(s,1),ν should be interpreted as the 1-loop path

integral of D7
s−1 massive spin-1 fields of scaling dimension d

2 + ν living on EAdS4, which is the

horizon of the Rindler patch of AdS6. Though this new observation 5 of edge modes is intriguing

and may help to sharpen the understanding about edge modes, we’ll not try to provide a precise

5More generally, we find that for a massive field with hook-like spin (s, 1m) and scaling dimension ∆ = d
2 + ν

in AdSd+1, the edge part of the 1-loop partition function corresponds to Dd+2
s−1 new massive fields with totally

antisymmetric spin (1m) and scaling dimension ∆ = d−2
2 + ν living on EAdSd−1.
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interpretation for it. Summing over all the fields in the m = 1 sector, including the ghosts

associated with the s ≥ 2 ones, we end up with a very simple expression

logZAdS6
m=1 =

∫ ∞

0

du

2u
1 + e−u

1 − e−u
e−2u + e−3u

(1 − e−u)4 (6.7.26)

Combing (6.7.24) and (6.7.26) leads to the total partition function of type-B theory in AdS6

logZAdS6
B = logZAdS6

m=0 + logZAdS6
m=1 =

∫ ∞

0

du

2u
1 + e−u

1 − e−u
e−2u − e−3u

(1 − e−u)5 (6.7.27)

which apparently has the interpretation of double-trace deformation of a conformally coupled

scalar field on S5. In higher dimensions, the partition function of m = 0 sector is still trivial.

For m ≥ 1, the partition function restricted to the m sector is given by

logZAdSd+1
m = (−)m−1

∫ ∞

0

du

2u
1 + e−u

1 − e−u
e−(d−1−m)u + e−(d−2−m)u

(1 − e−u)d−1 (6.7.28)

which we’ve checked up to AdS16 by mathematica. Summing over all logZAdSd+1
m , we recover

the structure of double-trace deformation of a conformally coupled scalar on Sd up to a sign

[113]

logZAdSd+1
B =

d−3
2∑

m=0
logZAdSd+1

m = (−)
d−1

2

∫ ∞

0

du

2u
1 + e−u

1 − e−u
e− d−1

2 u − e− d+1
2 u

(1 − e−u)d (6.7.29)

More explicitly, when d−1
2 is odd, eq. (6.7.29) means that we turn on a double-trace deformation

O2
∆−
,∆− = d−1

2 which induces an RG flow from the original UV fixed point to a new IR fixed

point and when d−1
2 is even, it means that we turn on a double-trace deformation O2

∆+
,∆+ =

d+1
2 which triggers an RG flow from the original IR fixed point to a new UV fixed point. Using

eq. (6.6.6) for ν = 1
2 and s = 0, logZAdSd+1

B is alternatively expressed as

logZAdSd+1
B = π

d!

∫ 1
2

0
dλ

d−3
2∏
j=0

[(
j + 1

2

)2
− λ2

]
λ tanh(πλ) (6.7.30)
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For some lower dimensions, say d = 3, 5, 7, eq. (6.7.30) yields

logZAdS4
B = ζ(3)

8π2 , logZAdS6
B = ζ(3)

96π2 + ζ(5)
32π4 , logZAdS8

B = ζ(3)
720π2 + ζ(5)

192π4 + ζ(7)
128π6 (6.7.31)

consistent with [112]. For completeness, let’s also give the explicit result for any even dimensional

AdS

logZAdS2r+2
B =

r∑
n=1

(−)n+r

2(2π)2n
(2n)!
(2k)!an(r)ζ(2n+ 1) (6.7.32)

where {an(r)} are defined as
∏r−1
j=0(x − j2) =

∑r
n=1 an(r)xn. This result contracts with the

proposed boundary duality which predicts vanishing one-loop free energy and meanwhile it is

too complicated to be accommodated by a shift of N .

6.8 Comments on thermal interpretations

In chapter 5, with the help of character integral representations like, it is argued that the one-

loop partition function Z(1)
PI of a field φ on Sd+1 is related to the bulk quasi-canonical partition

function of φ in the static patch of dSd+1, subject to possible edge corrections localized on the

dS cosmological horizon. In this section, we will explore the generalization to the path integral

on EAdSd+1.

6.8.1 AdS2

In the 2D Lorentzian AdS, there exist a black hole solution [192] with coordinates, cf. (D.5.5)

X0 = ρ, X1 =
√
ρ2 − 1 cosh tS , X2 =

√
ρ2 − 1 sinh tS (6.8.1)

and metric ds2 = −(ρ2−1)dt2S+ dρ2

ρ2−1 , which shows a point-like horizon at ρ = 1 of temperature

T = 1
2π . Wick rotation tS → −iτ and identification τ ∼ τ + 2π yield the 2D Euclidean AdS.

Compared to the conformal global coordinate of AdS2
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X0 = cos tG
cos θ , X1 = tan θ, X2 = sin tG

cos θ (6.8.2)

the black hole solution (6.8.1) covers the region: θ ∈ (0, π2 ) and sin θ > | sin tG|, cf. fig (6.8.1).

Figure 6.8.1: A portion of the periodic AdS2 Penrose diagram near tG = 0. The two vertical lines
θ = ± π

2 are the boundaries of AdS2. The black hole solution in eq. (6.8.1) corresponds to the red region
denoted by “S”. The region “N” is the image of “S” under the map X1 → −X1. The red lines represent
the bifurcate Killing horizon.

This scenario is very similar to its dS counter part and hence we’re allowed to use the dS

argument to claim that the thermal partition function of a field φ in the black hole patch of

AdS2 is given by

log TrS e−2πL21 =
∫ ∞

0

du

2u
1 + e−u

1 − e−u ΘS(u) (6.8.3)

where the noncompact Lorentz generator L21 ∈ so(2, 1) generates time translation tS → tS +

const and ΘS(u) is the “character” defined with respect to the single-particle Hilbert space in

the black hole patch. Using the Bogoliubov transformations [175], ΘS(u) can be replaced by

the SO(2, 1) Harish-Chandra character ΘHC
φ (u) = trG e−iuL21 which is traced over the global
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single-particle Hilbert space:

log TrS e−2πL21 =
∫ ∞

0

du

2u
1 + e−u

1 − e−u ΘHC
φ (u) (6.8.4)

At this stage, we want to emphasize that the Harish-Chandra character ΘHC
φ (u), by defi-

nition, is completely different from the characters we’ve used in the previous sections, like

ΘAdS2
∆ (u) = e−∆

1−e−u . The latter are defined as trG e−uH for positive u, where H is the global

Hamiltonian generating global time translation tG → tG + const. Indeed, these characters are

not group characters. So it seems that we cannot naively identify the thermal partition function

TrS e−2πL21 as the one-loop path integral on Euclidean AdS2. However, in the appendix D.6,

we explicitly compute the Harish-Chandra character ΘHC
φ (u) when φ is a scalar field of scaling

dimension ∆ and we find perhaps surprisingly

ΘHC
φ (u) = ΘAdS2

∆ (|u|) (6.8.5)

which yields

log TrS e−2πL21 =
∫ ∞

0

du

2u
1 + e−u

1 − e−u
e−∆u

1 − e−u (6.8.6)

in agreement with the path integral result cf. (6.2.5). Therefore the one-loop path integral

on EAdS2 can be interpreted as the quasi-canonical partition function TrS e−2πL21 in the black

hole patch. To further understand why the Harish-Chandra character ΘHC
φ (u) appears in the

quasi-canonical partition function Trs e−2πL21 , we explore the underlying physical meanings of

ΘHC
φ (u) in appendix D.7. In section D.7.1, we show that ΘHC

φ (u) encodes the quasinormal

spectrum of φ in the black hole patch of AdS2 and in section D.7.2, we extract a well-defined

single-particle density of states in the black patch from ΘHC
φ (u) and show numerically that it

can be realized as the continuous limit of the density of states in some simple model with a

finite dimensional Hilbert space.
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6.8.2 Higher dimensions

In higher dimensional AdSd+1, the universe perceived by an accelerating observer is called (south-

ern) Rindler-AdS due to the presence of a Rindler horizon [4]. The Rindler-AdS admits a dSd+1

foliation, cf. appendix D.5:

ds2 = dη2 + sinh η2
(

−(1 − r2)dt2S + dr2

1 − r2 + r2dΩ2
d−2

)
(6.8.7)

and hence has temperature T = 1
2π . In the Rindler-AdS patch, we can use the dS type argument

to show that the quasi-canonical partition function of φ with spin-s and scaling dimension ∆ is

log TrS e−2πLd+1,d =
∫ ∞

0

du

2u
1 + e−u

1 − e−u ΘHC
φ (u) (6.8.8)

where the noncompact Lorentz generator Ld+1,d ∈ so(2, d) generates time translation tS →

tS + const and ΘHC
φ (u) is the Harish-Chandra character trG e−iuLd+1,d . In the appendix D.6,

we argue that ΘHC
φ (u) = ΘAdSd+1

∆ (|u|) = e−∆|u|

(1−e−|u|)d when φ is a scalar field and we believe

ΘHC
φ (u) = ΘAdSd+1

[∆,s] (|u|) should still hold when φ is a spin-s field. Granting this relation, we are

left with

log TrS e−2πLd+1,d =
∫ ∞

0

du

2u
1 + e−u

1 − e−u ΘAdSd+1
[∆,s] (u) (6.8.9)

When d is odd, (6.8.9) exhibits the the agreement between TrS e−2πLd+1,d and the bulk part of

the one-loop path integral on Euclidean AdS. However, when d is even, (6.8.9) is different from

the path integral result (6.5.29), including the volume dependence and the contour choice. We

believe that the key of solving this difference is computing the properly IR regulated path integral

on Euclidean AdS and understanding the mixing of UV and IR divergences. More explicitly, a

functional determinant of an operator D can be represented as an integral transformation of the

corresponding (integrated) heat kernel KD(t) =
∫
M dDx

√
g KD(t;x, x), cf. (6.1.2). If the base

manifold M is maximally symmetric and the operator D also preserves the isometry group of M ,

then KD(t;x, x) is independent of x and hence the integral
∫
M dDx

√
g simply yields the volume

ofM . WhenM is a compact manifold like sphere, the factorizationKD(t) = VolM KD(t;x0, x0)
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is well-defined but when M is a noncompact manifold like flat space and Euclidean AdS, the

naive factorization suffers from an IR divergence VolM → ∞. Such an IR divergence is not a

big issue while computing the free energy of ideal gas in flat space if we only care about the

leading large-volume behavior, i.e. the extensive part. However, in the AdS case, as we want to

extract the R0 or logR piece 6, it’s apparently more appropriate to introduce a radial cutoff R

and impose certain boundary conditions on the cutoff surface. This procedure would spoil the

SO(2, d) symmetry and discretize the spectrum of Laplacian operators. The symmetry breaking

can lead to considerable technical difficulties in computing the heat kernel KD(t;x, x). Another

approach to this difference is dimensional regularization which works for both the UV and IR

divergences, along the line of [214, 229]. But the physical picture is not clear if we implement

this formal regularization scheme. We will leave this to future work.

6It’s very likely to have a R0 piece even when d is even if we implement the IR regulator properly. Of course,
the R0 piece in this case is ambiguous because it is contaminated by the logR piece.
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Appendix A: Appendix for chapter 3

A.1 The explicit action of LN on ψ(N)
n (x)

In the section 3.2.2.4, we have defined an operator LN : F+
N → F+

1−N such that the composition

∂2N−1
x ◦LN gives the identity operator on F+

N . In this appendix, we aim to compute the action

of LN on the basis ψ(N)
n (x) of F+

N , c.f. eq.(3.2.41)

(
LNψ

(N)
n

)
(x) = 1

Γ(2N − 1)

∫
R+iϵ

dy

2πi (x− y)2(N−1) log(x− y)ψ(N)
n (y) (A.1.1)

As shown in the fig. (A.1.1), we can deform the contour to go around the branch cut and then

log(x− y) is replaced by its discontinuity along the branch cut

(
LNψ

(N)
n

)
(x) = − 1

Γ(2N − 1)

∫ ∞

x
dy (y − x)2(N−1) (1 − iy)n−N

(1 + iy)n+N (A.1.2)

(a) Original contour (b) Deformed contour

Figure A.1.1: The contour deformation for the y-integral in eq. (A.1.1). The black wavy line
denotes the branch cut of log(x− y).
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Next, we rewrite (1 − iy)n−N as polynomials of 1 + iy and evaluate the y-integral for each

monomial by using integration by part repeatedly

(
LNψ

(N)
n

)
(x) = (−)n−N+1

Γ(2N − 1)

n−N∑
k=0

(−2)k
(
n−N

k

)∫ ∞

x
dy

(y − x)2(N−1)

(1 + iy)2N+k

= i(−)n+1

1 + ix

n−N∑
k=0

(
n−N

k

)
k!

(2N + k − 1)!

( −2
1 + ix

)k
(A.1.3)

To compute the remaining series of k, we can extend the sum to k = 1 − 2N and subtract

these extra terms by hand. The sum from k = 1 − 2N to k = n−N is nothing but a binomial

expansion

(
LNψ

(N)
n

)
(x) = (−)N

22N−1i

Γ(n−N + 1)
Γ(N + n) ψ(1−N)

n (x) + PolN,n(x) (A.1.4)

where PolN,n(x) is a polynomial in x annihilated by ∂2N−1
x

PolN,n(x) = (−)n+1i

2
Γ(n−N + 1)

Γ(N + n)

2(N−1)∑
k=0

(
n+N − 1

2(N − 1) − k

)(1 + ix

−2

)k
(A.1.5)

As a quick consistency check, combining eq. (3.2.37) and (A.1.4), we obtain the expected

property

∂2N−1
x

(
LNψ

(N)
n

)
(x) = ψ(N)

n (x) (A.1.6)

A.2 Induced representation

In this appendix, we review the simple idea of induced representation and its applications in the

SO(1, d + 1) case. Let H be a subgroup of G and let ρ be a representation of H on some

vector space V . The induced representation indGHρ of G operates on the following space of

equivariant maps from G to V

MapH(G,V ) ≡
{

Ψ : G → V |Ψ(gh) = ρ(h)−1Ψ(g), g ∈ G, h ∈ H
}

(A.2.1)
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by

(g ◦ Ψ)(g′) ≡ Ψ
(
g−1g′

)
(A.2.2)

In the case of G = SO(1, d + 1), we take H to be the minimal parabolic subgroup S ≡ NAM

and V to be the space Ps[zi] of homogeneous polynomials in a null vector zi of degree s, which

is also equivalent to the space of symmetric and traceless tensors of rank s. The representation

ρ = ρ∆,s of S is chosen to be

ρ∆,s
(
neλDm

)
f(z) = e−λ∆f

(
ρ1(m)−1z

)
(A.2.3)

where n ∈ N, m ∈ M and ρ1(m) is the fundamental representation of M = SO(d), i.e.

ρ1
(
e

1
2 θ

ijMij

)
: zk → zk + θkjzj + O(Θ2) (A.2.4)

The induced representation indGS ρ∆,s then acts on the space of polynomial-valued functions

Ψ(g, z) that satisfy

Ψ(gs, z) = ρ∆,s(s)−1Ψ(g, z), s ∈ S (A.2.5)

Due to the Bruhat decomposition and the equivariant condition (A.2.5), such a function Ψ(g, z)

is completely fixed by its value on Ñ, which is geometrically a flat space Rd.1 Define ψ(x, z) ≡

Ψ(ex·P , z) and we will show that the (infinitesimal version of) induced representation indGS ρ∆,s

agrees with the previous construction, c.f. eq.(3.3.8).

• Translations:

(
ea·P ◦ ψ

)
(x, z) =

(
ea·P ◦ Ψ

)
(ex·P , z) = Ψ(e(x−a)·P , z) = ψ(x− a, z) (A.2.6)

Derivative with respect to ai yields Piψ(x, z) = −∂iψ(x, z)

1The Bruhat decomposition says that SO(1, d+ 1), up to a lower dimensional submanifold, can be written as
a product ÑS . This lower dimensional manifold corresponds to the infinity point of Rd when we quotient out
the S dependence.
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• Dilatations:

(
eλD ◦ ψ

)
(x, z) = Ψ(e−λDex·P , z) (A.2.7)

Using e−λDPie
λD = e−λPi, we obtain

(
eλD ◦ ψ

)
(x, z) = ρ∆,s(eλD)ψ(e−λx, z) = e−λ∆ψ(e−λx, z) (A.2.8)

which leads to Dψ(x, z) = −(x · ∂x + ∆)ψ(x, z) .

• Rotations m = e
1
2 θ

ijMij :

m ◦ ψ(x, z) = ρ∆,s(m)Ψ(m−1ex·Pm, z) = Ψ(exm·P , ρ1(m)−1z) (A.2.9)

where xm is defined via m−1ex·Pm = exm·P . Infinitesimally, we have

xim = xi − θijxj + O(θ2), ρ1(m)−1zi = zi − θijzj + O(θ2) (A.2.10)

and hence Mijψ(x, z) = (xi∂j − xj∂i + zi∂zj − zj∂zi)ψ(x, z) .

• Special conformal transformations:

(
eb·K ◦ ψ

)
(x, z) = Ψ(e−b·Kex·P , z) (A.2.11)

For our purpose, we can replace e−b·K by 1 − b ·K and then use

−e−x·P b ·K ex·P = −b ·K − 2x · bD + 2bixjMij + (x2bi − 2x · b xi)Pi (A.2.12)

which yields

(
eb·K ◦ ψ

)
(x, z) = Ψ

(
e((1−2x·b)x+x2b)·P e−b·Ke−2x·bDe2bixjMij , z

)
+ O(b2)

= e−2∆x·bψ((1 − 2x · b)x+ x2b, 2x · z b− 2 b · z x) + O(b2) (A.2.13)
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Take derivative with respect to bi and we obtain

Kiψ(x, z) =
(
x2∂i − 2xi(x · ∂x + ∆) + 2(x · z ∂zi − zi x · ∂z)

)
ψ(x, z) (A.2.14)

A.3 Irreducibility of F∆

In this section we will give an elementary proof about the irreducibility of F∆ for a generic

∆. The argument heavily relies on the result of the section 3.3.1 where we have learned that

the SO(d + 1) contents of F∆ are all single-row representations. Assuming the existence of

a nontrivial SO(1, d + 1) subspace W∆ of F∆, it admits a decomposition into SO(d + 1)

representations

W∆ =
⊕
n∈σ

Yn (A.3.1)

where σ is a nontrivial subset of N. We will show that this assumption is invalid because given

an arbitrary wavefunction ψ(x) in certain Yn, by acting the dilatation operators repeatedly, it

can get components in any SO(d+ 1) content of F∆.

Pick any ψ(x) ∈ F∆. According to the section 3.3.1, it is a function ψ̂ on Sd (in stere-

ographic coordinate) multiplied by a Weyl factor, i.e. ψ(x) =
(

2
1+x2

)∆
ψ̂(x). Switching to

spherical coordinates xi = ωi cot θ2 , ω
i ∈ Sd−1, the action of the dilatation operator on ψ̂(θ, ω)

becomes

D ψ̂(θ, ω) = (sin θ∂θ + ∆ cos θ) ψ̂(θ, ω) (A.3.2)

The function ψ̂ can be expanded in terms of spherical harmonics on Sd

Ynℓm(θ, ω) = Nnℓ sinℓ θ Cℓ+
d−1

2
n−ℓ (cos θ)Yℓm(ω), n ≥ ℓ (A.3.3)

where Yℓm(ω) denote the normalized spherical harmonics on Sd−1 and Nnℓ is a constant such
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that Ynℓm is normalized

Nnℓ = 2ℓ−1+ d
2 Γ

(
ℓ+ d− 1

2

)√√√√ (n− ℓ)!(n+ d−1
2 )

π Γ(n+ ℓ+ d− 1) (A.3.4)

For a fixed n, all
(

2
1+x2

)∆
Ynℓm(θ, ω) span the Yn part of F∆. Next, we need to figure out

the action of D on all the spherical harmonics. This computation can be done by using the

following recurrence relations of Gegenbauer polynomials

∂xC
λ
n(x) = 2λCλ+1

n−1(x), xCλn(x) = n+ 1
2(n+ λ)C

λ
n+1(x) + n− 1 + 2λ

2(n+ λ) Cλn−1(x)

(1 − x)2Cλ+1
n−1(x) = n+ 2λ

2λ xCλn(x) − (n+ 1)
2λ Cλn+1(x) (A.3.5)

which yield

DYnℓm = (∆ + n)

√
(n+ 1 − ℓ)(n+ ℓ+ d− 1)
(2n+ d− 1)(2n+ d+ 1) Yn+1,ℓm

+ (1 − ∆̄ − n)

√
(n− ℓ)(n+ ℓ+ d− 2)

(2n+ d− 3)(2n+ d− 1)Yn−1,ℓm (A.3.6)

The coefficients of Yn±1,ℓm are nonvanishing except ∆ ∈ {d, d+1, d+2, · · · }∪{0,−1,−2, · · · }. There-

fore, according to the argument at the beginning of this appendix, the representation F∆ is irreducible

when ∆ is away form these integers. For ∆ ∈ {d, d + 1, d + 2, · · · }, the subspace with SO(d + 1)

contents
⊕

n≥1−∆̄ Yn is irreducible with respect to SO(1, d + 1) and for ∆ ∈ {0,−1,−2, · · · }, the

finite dimensional subspace
⊕

0≤n≤−∆ Yn is irreducible and it carries the spin (−∆) representation of

SO(1, d+ 1). These finite dimensional representations are nonunitary except the ∆ = 0 one which is the

trivial representation.
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Appendix B: Appendix for chapter 4

B.1 From ambient space to intrinsic coordinate: Maxwell field

In this appendix, we show the agreement between our algebraically constructed primary quasnormal

modes and their intrinsic coordinate counterparts in literature for free Maxwell fields. According to [83],

the quasinormal modes of Maxwell theory can be divided into the following two types:

I : A(I)
t = 0, A(I)

r = R(I)(r)Yℓme
−iωt, A(I)

a = r3−d(1 − r2)
ℓ(ℓ+ d− 2) ∂r(rd−1 R(I)(r))∂ϑaYℓme

−iωt (B.1.1)

where ϑa are the spherical coordinates on Sd−1 and Yℓm are scalar spherical harmonics on Sd−1.

II : A(II)
t = A(II)

r = 0, A(II)
a = R(II)(r)Y ℓm

a e−iωt (B.1.2)

where Y ℓm
a are divergence-free vector spherical harmonics on Sd−1. In type I solutions, the

radial function R(I)(r) is given by

R(I)(r) = rℓ−1(1 − r2)
iω
2 F

(
ℓ+ iω + d− 2

2 ,
ℓ+ iω + 2

2 ,
d

2 + ℓ, r2
)

(B.1.3)

with the quasinormal frequency ω valued in

iωIℓ,n = ℓ+ d− 2 + 2n, iω̃Iℓ,n = ℓ+ 2 + 2n (B.1.4)

In type II solutions, the radial function R(II)(r) is given by

R(II)(r) = rℓ+1(1 − r2)
iω
2 F

(
ℓ+ iω + d− 1

2 ,
ℓ+ iω + 1

2 ,
d

2 + ℓ, r2
)

(B.1.5)
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with the quasinormal frequency ω valued in

iωIIℓ,n = ℓ+ d− 1 + 2n, iω̃IIℓ,n = ℓ+ 1 + 2n (B.1.6)

In both type I and II, ℓ ≥ 1 and n ≥ 0. In the following, we show that the primary quasinormal

modes α(1)
i agree with the type I solutions of frequency iωI1,0 and γ(1)

ij agrees with the type II

solutions of frequency iω̃II1,0.

Match the primary α(1)
i -mode

Using eq. (B.1.3), the type I quasinormal modes with ℓ = 1 and iω = iωI1,0 = d− 1 are

A
(I)
t = 0, A(I)

r = e−(d−1)t

(1 − r2)
d−1

2
Y1m(Ω), A(I)

a = r e−(d−1)t

(1 − r2)
d−1

2
∂ϑaY1m(Ω) (B.1.7)

On the other hand, the pull-back of α(1)
i = X+ui−U+xi

(X+)d Rd−2 yields

α
(1)
i,t = −xi∂tX

+

(X+)d = −rΩi e
−(d−1)t

(1 − r2)
d−1

2

α
(1)
i,r = X+∂rxi − xi∂rX

+

(X+)d = Ωi e
−(d−1)t

(1 − r2)
d+1

2

α
(1)
i,a = X+∂ϑaxi

(X+)d = r ∂ϑaΩi e
−(d−1)t

(1 − r2)
d−1

2
(B.1.8)

Naively, A(I)
µ and αi,µ look different. This is because the former is solved in a modified Feynman

gauge [230] while the latter follows from boundary-to-bulk propagator in de Donder gauge, which

for spin-1 field is simply the Lorenz gauge. To compare the two results, we perform a gauge

transformation α(1)
i,µ → α̃

(1)
i,µ = αi,µ + ∂µξi to set the t-component zero. The simplest choice of

the gauge parameter is ξi = 1
d−1αi,t. Due to this gauge choice, the new α

(1)
i modes become

α̃
(1)
i,t = 0, α̃

(1)
i,r = d− 2

d− 1
Ωi e

−(d−1)t

(1 − r2)
d−1

2
, α̃

(1)
i,a = d− 2

d− 1
r ∂ϑaΩi e

−(d−1)t

(1 − r2)
d−1

2
(B.1.9)

Since {Ωi}i and {Y1m}m are just different basis for the same vector space of spherical harmonics

of eigenvalue −(d− 1) with respect to ∇2
Sd−1 , eq.(B.1.7) and eq. (B.1.9) actually represent the

same set of quasinormal modes.
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Match the primary γ(1)
ij -mode

Using eq. (B.1.5), the type II quasinormal modes with ℓ = 1 and iω = iω̃II1,0 = 2 are

A
(II)
t = A(II)

r = 0, A(II)
a = r2 e−2t

1 − r2 Y
1m
a (Ω) (B.1.10)

On the other hand, the pull-back of γ(1)
ij = xiuj−xjui

(X+)2 yields

γ
(1)
ij,t = γ

(1)
ij,r = 0, γ

(1)
ij,a = r2 e−2t

1 − r2 (Ωi∂ϑaΩj − Ωj∂ϑaΩi) (B.1.11)

One can check directly that Σij,a ≡ Ωi∂ϑaΩj − Ωj∂ϑaΩi are indeed divergence-free vector

harmonics of ℓ = 1. For example, let’s consider the d = 3 case where the vector harmonics are

given by Y ℓm
a = 1√

ℓ(ℓ+1)
ϵab∇bYℓm [231]:

Y 1,0
a = 1

2

√
3

2π (0, sin2 θ), Y 1,±1
a = 1

4

√
3
π
e±iφ(−i,± sin θ cos θ) (B.1.12)

where ϑa = (θ, φ) are the usual spherical coordinates on S2. Meanwhile, by working out Σij,a

explicitly, we obtain

Σ12,a = (0, sin2 θ), Σ23,a ± iΣ31,a = ∓e±iφ(−i,± sin θ cos θ) (B.1.13)

Therefore, γ(1)
ij,µ in (B.1.11) and A(II)

µ in (B.1.10) represent the same quasinormal modes.

B.2 Match quasinormal spectrums

In the section 4.5, we defined a quasinormal character ΘQN for a given quasinormal spectrum

{ω, dω}, cf. (4.5.1). By definition, the correspondence between quasinormal characters and

quasinormal spectrums is one-to-one . In this appendix, by using quasinormal characters, we

show that our algebraic construction yields the same quasinormal spectrum as [83] for Maxwell

fields and linearized gravity. On the algebraic side, the quasinormal character of a massless

spin-s field is shown to be given by eq. (4.5.12). In particular, for s = 1 and s = 2, the
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quasinormal characters read

ΘQN
1 (q) = dqd−1 − qd

(1 − q)d + dq − 1
(1 − q)d + 1 (B.2.1)

and

ΘQN
2 (q) = Dd

2 q
d −Dd

1 q
d+1

(1 − q)d + Dd
2 −Dd

1 q
−1

(1 − q)d + d(q + q−1) + d2 − d+ 2
2 (B.2.2)

where Dd
1 = d, Dd

2 = 1
2(d+ 2)(d− 1).

Maxwell fields

In the previous appendix, we’ve summarized the quasinormal modes of Maxwell fields computed

in [83]. Here let’s briefly recap the information about quasinormal frequencies:

type I : iωIℓ,n = ℓ+ d− 2 + 2n, iω̃Iℓ,n = ℓ+ 2 + 2n

type II : iωIIℓ,n = ℓ+ d− 1 + 2n, iω̃IIℓ,n = ℓ+ 1 + 2n (B.2.3)

where ℓ ≥ 1 and n ≥ 0. For fixed ℓ and n, each frequency of type I quasinormal modes

has degeneracy Dd
ℓ because ℓ labels scalar spherical harmonics while each frequency of type

II quasinormal modes has degeneracy Dd
ℓ1 because ℓ labels divergence-free vector spherical

harmonics. So the quasinormal character associated to the spectrum (B.2.3) is

ΘQN,intrin
1 (q) ≡

∞∑
ℓ=1

∞∑
n=0

Dd
ℓ (qiω

I
ℓ,n + qiω̃

I
ℓ,n) +Dd

ℓ1(qiω
II
ℓ,n + qiω̃

II
ℓ,n)

= q2 + qd−2

1 − q2

∑
ℓ≥1

Dd
ℓ q

ℓ + q + qd−1

1 − q2

∑
ℓ≥1

Dd
ℓ1 q

ℓ (B.2.4)

where the first sum over ℓ simply follows from

∑
ℓ≥0

Dd
ℓ q

ℓ = 1 + q

(1 − q)d−1 (B.2.5)

The second sum over ℓ in (B.2.4) can be derived using

Dd
ℓs = Dd

ℓD
d−2
s −Dd

s−1D
d−2
ℓ+1 (B.2.6)
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In particular, when s = 1, Dd
ℓ1 = (d− 2)Dd

ℓ −Dd−2
ℓ+1 and hence the second sum reduces to the

(B.2.5) type:

∑
ℓ≥1

Dd
ℓ1 q

ℓ = (d− 2) 1 + q

(1 − q)d−1 −
(

1 + q−1

(1 − q)d−3 − q−1
)

(B.2.7)

Plugging (B.2.5) and (B.2.7) into the quasinormal character (B.2.4) yields

ΘQN,intrin
1 (q) = dqd−1 − qd

(1 − q)d + dq − 1
(1 − q)d + 1 = ΘQN

1 (q) (B.2.8)

which shows the agreement between our algebraic method and the traditional analytical method

on the quasinormal spectrum for Maxwell theory.

Linearized gravity

Quasinormal modes of linearized gravity are divided into three categories. The three types

of fluctuation can be solved simultaneously by using the so-called Ishibashi-Kodama equation

[77, 83, 232]. The quasinormal frequencies are:

Scalar type fluctuation : iωSℓ,n = ℓ+ d− 2 + 2n, iω̃Sℓ,n = ℓ+ 2 + 2n

Vector type fluctuation : iωVℓ,n = ℓ+ d− 1 + 2n, iω̃Vℓ,n = ℓ+ 1 + 2n

Tensor type fluctuation : iωTℓ,n = ℓ+ d+ 2n, iω̃Tℓ,n = ℓ+ 2n (B.2.9)

where ℓ ≥ 2 and n ≥ 0. In these 3 types of fluctuations, ℓ labels scalar spherical harmonics,

divergence-free vector spherical harmonics and divergence-free tensor spherical harmonics on

Sd−1 respectively and hence for fixed ℓ and n, each frequency has degeneracy Dd
ℓ , D

d
ℓ1 and Dd

ℓ2

respectively. Altogether, the quasinormal character associated to the spectrum (B.2.9) is given

by

ΘQN,intrin
2 (q) ≡

∑
ℓ≥2,n≥0

Dd
ℓ (qiωS

ℓn + qiω̃
S
ℓn)+Dd

ℓ1(qiωV
ℓn + qiω̃

V
ℓn) +Dd

ℓ2(qiωT
ℓn + qiω̃

T
ℓn)

= q2 + qd−2

1 − q2

∑
ℓ≥2

Dd
ℓ q

ℓ + q + qd−1

1 − q2

∑
ℓ≥2

Dd
ℓ1 q

ℓ + 1 + qd

1 − q2

∑
ℓ≥2

Dd
ℓ2 q

ℓ (B.2.10)

where the first two series of ℓ are essentially computed in the Maxwell field case and the last
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series follows from eq.(B.2.6) with s = 2:

∑
ℓ≥2

Dd
ℓ2 q

ℓ = Dd
2

1 + q

(1 − q)d−1 − d

(
1 + q−1

(1 − q)d−3 − q−1
)

+ d(d− 1)
2 (B.2.11)

Combine the three series of ℓ in (B.2.10) and we obtain

ΘQN,intrin
2 (q) = Dd

2 q
d −Dd

1 q
d+1

(1 − q)d + Dd
2 −Dd

1 q
−1

(1 − q)d + d(q + q−1) + d2 − d+ 2
2 (B.2.12)

which is exactly ΘQN
2 (q). This computation confirms the match of quasinormal spectrum for

linearized gravity. 1

B.3 Details of γ(s)
i1ℓ1,··· ,isℓs

The higher spin quasinormal mode γ(s)
i1ℓ1,··· ,isℓs defined by eq. (4.3.34) is rather schematic. In

this appendix, we will write out its explicit form and then show various properties of it. Let’s

start from recollecting the definitions

γ
(s)
i1ℓ1,··· ,isℓs(X,U) = ΠssPi1 · · ·Pis(− log(X+)β(s)

ℓ1···ℓs) − trace (B.3.1)

β
(s)
ℓ1···ℓs(X,U) = 1

(X+)2 (X+uℓ1 − U+xℓ1) · · · (X+uℓs − U+xℓs) − trace (B.3.2)

Pi = −X−∂xi − 2xi ∂X+ − U−∂ui − 2ui ∂U+ (B.3.3)

where the projection operator Πss antisymmetrizes [i1, ℓ1], · · · , [is, ℓs]. Notice that X−∂xi and

U−∂ui would introduce terms proportional δijik and δijℓk . The former is killed by Πss and the

latter as a pure trace term also drops out in γ
(s)
i1ℓ1,··· ,isℓs . Therefore only 2xi∂X+ and 2ui∂U+

can have nonvanishing contributions to γ
(s)
i1ℓ1,··· ,isℓs and γ

(s)
i1ℓ1,··· ,isℓs is independent of X− and

1When d = 3, the tensor type fluctuations doesn’t exist because there is no divergence-free tensor harmonics
on S2. However, one can still recover the quasinormal character ΘQN

2 (q) for d = 3 by counting quasinormal
modes in the scalar and vector type fluctuations in this case.
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U−. As a result, γ(s)
i1ℓ1,··· ,isℓs has to be of the following form

γ
(s)
i1ℓ1,··· ,isℓs(X,U) = χ

(s)
i1ℓ1,··· ,isℓs(x, u)f(X+, U+) (B.3.4)

χ
(s)
i1ℓ1,··· ,isℓs(x, u) ≡ (xi1uℓ1 − ui1xℓ1) · · · (xisuℓs − uisxℓs) − trace (B.3.5)

where f(X+, U+) is an unknown function to be fixed. With xi, uℓ being SO(d) vectors, the

tensor χ(s)
i1ℓ1,··· ,isℓs(x, u) carries the Yss representation of SO(d). In particular, it satisfies the

following set of equations which can be thought as the SO(d) analogue of uplift conditions and

Pauli-Fierz conditions:

∂2
x χ

(s)(x, u) = ∂2
u χ

(s)(x, u) = ∂x · ∂u χ(s)(x, u) = 0

x · ∂u χ(s)(x, u) = u · ∂x χ(s)(x, u) = (x · ∂x − s)χ(s)(x, u) = (u · ∂u − s)χ(s)(x, u) = 0

(B.3.6)

where the subscripts of χ(s)
i1ℓ1,··· ,isℓs are suppressed.

Using the definition (B.3.1), it’s easy to check that γ(s)
i1ℓ1,··· ,isℓs satisfies the same conditions

(4.2.6)—(4.2.10) as β(s)
ℓ1···ℓs . In particular, the homogeneity condition and the tangentiality

condition yields

X+∂U+f(X+, U+) = 0, X+∂X+f(X+, U+) = −2f(X+, U+) (B.3.7)

which have solution f(X+, U+) = 1
(X+)2 . Therefore, up to an unimportant normalization factor

cs, the explicit form of γ(s)
i1ℓ1,···isℓs is

γ
(s)
i1ℓ1,··· ,isℓs = cs

χ
(s)
i1ℓ1,··· ,isℓs(x, u)

(X+)2 = cs
(xi1uℓ1 − ui1xℓ1) · · · (xisuℓs − uisxℓs) − trace

(X+)2

(B.3.8)

For example, for a Maxwell filed, (B.3.8) is consistent with (4.3.19). More generally, all the
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γ-primaries that are generated by SO(d) action on (B.3.8) can be collectively expressed as

γ(s)(X,U) = Tss(x, u)
(X+)2 (B.3.9)

where Tss(x, u) is a polynomial in xi, ui carrying the Yss representation of SO(d) 2, i.e. it

satisfies

Tss(ax, bu) = (a b)sTss(x, u), u · ∂xTss(x, u) = ∂2
uTss(x, u) = 0 (B.3.10)

All the linearly independent choices of Tss correspond to the degeneracy of γ(s).

Near horizon γ
(s)
i1ℓ1,··· ,isℓs becomes singular because X+ → 0. This singular behavior also

shows the following in-going boundary condition:

γ
(s)
i1ℓ1,··· ,isℓs(ρ → ∞) ∼ 1

(X+)2 ∼ e−2(T−ρ) (B.3.11)

where we can directly read off the quasinormal frequency iω = 2.

The next task is to show that γ(s)
i1ℓ1,··· ,isℓs is primary up to gauge transformation by using

its explicit form (B.3.8) (we can also use (B.3.9) with Tss(x, u) subject to (B.3.10)). Acting

the special conformal transformation Km on γ
(s)
i1ℓ1,··· ,isℓs , we get (dropping the normalization

constant cs)

Km γ
(s)
i1ℓ1,··· ,isℓs = 1

X+∂xmχ
(s)
i1ℓ1,··· ,isℓs + U+

(X+)2∂umχ
(s)
i1ℓ1,··· ,isℓs

= U · ∂X

−
∂umχ

(s)
i1ℓ1,··· ,isℓs
X+

+ 1
X+ (u · ∂x∂um + ∂xm)χ(s)

i1ℓ1,··· ,isℓs (B.3.12)

where we’ve replaced U · ∂X by u · ∂x in the second term of the second line because χ(s)
i1ℓ1,···isℓs

only depends on xi, ui. In addition, noticing that u ·∂x kills χ(s)
i1ℓ1,···isℓs , the product of operators

u ·∂x∂um can be replaced by the corresponding commutator [u ·∂x, ∂um ] = −∂xm which cancels

the other derivative with respect to xm. Altogether, γ(s)
i1ℓ1,···isℓs is a primary quasinormal mode

2Taking eq. (B.3.9) as an ansatz of quasinormal modes (which satisfy the in-going boundary condition
automatically as we will see below), then it’s easy to show that uplift conditions and Pauli-Fierz conditions are
equivalent to Tss(x, u) carrying the Yss representation of SO(d).
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in the sense that Kmγ
(s)
i1ℓ1,···isℓs can be removed by a gauge transformation

Km γ
(s)
i1ℓ1,··· ,isℓs(X,U) = U · ∂X

−cs
∂umχ

(s)
i1ℓ1,··· ,isℓs(x, u)
X+

 (B.3.13)

where we’ve restored the normalization constant cs.
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Appendix C: Appendix for chapter 5

C.1 Density of states and quasinormal mode resonances

The review in the section 3.4 focuses mostly on mathematical and computational aspects of

the Harish-Chandra character Θ(t) = tr e−itH . Here we focus on its physics interpretation,

in particular the density of states ρ(ω) obtained as its Fourier transform. We define this in a

general and manifestly covariant way using Pauli-Villars regularization in section 5.2. Here we

will not be particularly concerned with general definitions or manifest covariance, taking a more

pedestrian approach. At the end we briefly comment on an “S-matrix” interpretation and a

possible generalization of the formalism including interactions.

In C.1.1, we contrast the spectral features encoded in the characters of unitary represen-

tations of the so(1, d + 1) isometry algebra of global dSd+1 with the perhaps more familiar

characters of unitary representations of the so(2, d) isometry algebra of AdSd+1: in a sentence,

the latter encodes bound states, while the former encodes scattering states. In C.1.2 we ex-

plicitly compare ρ(ω) obtained as the Fourier transform of Θ(t) for dS2 to the coarse-grained

eigenvalue density obtained by numerical diagonalization of a model discretized by global angular

momentum truncation, and confirm the results match at large N . In C.1.3 we identify the poles

of ρ(ω) in the complex ω plane as scattering resonances/quasinormal modes, counted by the

power series expansion of the character. As a corollary this implies the relation ZPI = Zbulk of

(5.3.4) can be viewed as a precise version of the formal quasinormal mode expansion of logZPI

proposed in [163].

C.1.1 Characters and the density of states: dS vs AdS

We begin by highlight some important differences in the spectrum encoded in the characters

of unitary so(1, d + 1) representations furnished by global dSd+1 single-particle Hilbert spaces
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and the characters of unitary so(2, d) representations furnished by global AdSd+1 single-particle

Hilbert spaces. Although the discussion applies to arbitrary representations, for concreteness we

consider the example of a scalar of mass m2 = (d2)2 + ν2 on dSd+1. Its character as computed

in (3.4.7) is

ΘdS(t) ≡ tr e−itH = e−∆+t + e−∆−t

|1 − e−t|d
, ∆± = d

2 ± iν , t ∈ R. (C.1.1)

where tr traces over the global single-particle Hilbert space and we recall H = M0,d+1 is a

global SO(1, 1) boost generator, which becomes a spatial momentum operator in the future

wedge and the energy operator in the southern static patch (cf. fig. C.3.1c). This is to be

contrasted with the familiar character of the unitary lowest-weight representation of a scalar of

mass m2 = −(d2)2 + µ2 on global AdSd+1 with standard boundary conditions:

ΘAdS(t) ≡ tr e−itH = e−i∆+t

(1 − e−it)d , ∆+ = d
2 + µ , Im t < 0 . (C.1.2)

Here the so(2) generator H is the energy operator in global AdSd+1. Besides the occurrence of

both ∆± in (C.1.1), another notable difference is the absence of factors of i in the exponents.

The physics content of ΘAdS is clear: ΘAdS(−iβ) = tr e−βH is the single-particle partition

function at inverse temperature β for a scalar particle trapped in the global AdS gravitational

potential well. Equivalently for Im t < 0, the expansion

ΘAdS(t) =
∑
λ

Nλ e
−itλ , λ = ∆+ + n , n ∈ N , (C.1.3)

counts normalizable single-particle states of energy H = λ, or equivalently global normal modes

of frequency λ. The corresponding density of single-particle states is

ρAdS(ω) =
∫ ∞

−∞

dt

2π ΘAdS(t) eiωt =
∑
λ

Nλ δ(ω − λ) . (C.1.4)

For dS, we can likewise expand the character as in (C.1.3). For t > 0,

ΘdS(t) =
∑
λ

Nλ e
−itλ , λ = −i(∆± + n) = −i(d2 + n) ± ν , n ∈ N . (C.1.5)
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Figure C.1.1: Density of states ρΛ(ω) for dS3 scalars with ∆ = 1 + 2i, ∆ = 1
2 , ∆ = 1

10 , and UV
cutoff Λ = 100, according to (C.1.7). The red dotted line represents the term 2Λ/π. The peak visible
at ∆ = 1

10 is due to a resonance approaching the real axis, as explained in section C.1.3.

However λ is now complex, so evidently Nλ does not count physical eigenstates of the hermitian

operator H. Rather, as further discussed in section C.1.3, it counts resonances, or quasinormal

modes. The density of physical states with H = ω ∈ R is formally given by

ρdS(ω) =
∫ ∞

−∞

dt

2π ΘdS(t) eiωt =
∫ ∞

0

dt

2π ΘdS(t)
(
eiωt + e−iωt) , (C.1.6)

where ω can be interpreted as the momentum along the T -direction of the future wedge (F

in fig. C.3.1 and table C.3.5). Alternatively for ω > 0 it can be interpreted as the energy in

the southern static patch, as discussed in section 5.2.2. A manifestly covariant Pauli-Villars

regularization of the above integral is given by (5.2.16). For our purposes here a simple t > Λ−1

cutoff suffices. For example for dS3,

ρdS3,Λ(ω) ≡
∫ ∞

Λ−1

dt

2π
e−(1+iν)t + e−(1−iν)t

(1 − e−t)2
(
eiωt + e−iωt) (C.1.7)

= 2Λ
π

− 1
2
∑
±

(ω ± ν) coth
(
π(ω ± ν)

)
.

Some examples are illustrated in fig. C.1.1. In contrast to AdS, ρdS(ω) is continuous. Indeed

energy eigenkets |ωσ⟩ of the static patch form a continuum of scattering states, coming out of

and going into the horizon, instead of the discrete set of bound states one gets in the global AdS

potential well. Note that although the above ρdS3,Λ(ω) formally goes negative in the large-ω

limit, it is positive within its regime of validity, that is to say for ω, ν ≪ Λ.
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Figure C.1.2: Density of states for a ∆ = 1
2 + iν scalar with ν = 2 in dS2. The red dots show the

local eigenvalue density ρ̄N (ω), (C.1.10), of the truncated model with global angular momentum cutoff
N = 2000, obtained by numerical diagonalization. The blue line shows ρ(ω) obtained as the Fourier
transform of Θ(t), explicitly (C.1.8) with e−γΛ ≈ 4000. The plot on the right zooms in on the IR region.
The peaks are due to the proximity of quasinormal mode poles in ρ(ω), discussed in C.1.3.

C.1.2 Coarse-grained density of states in globally truncated model

For a ∆ = 1
2 + iν scalar on dS2, the density of states regularized by as in (C.1.7) is

ρ(ω) = 2
π

log(e−γΛ) − 1
2π
∑
±,±

ψ
(1

2 ± iν ± iω)
)
, (C.1.8)

where γ is the Euler constant, ψ(x) = Γ′(x)/Γ(x) is the digamma function, and the sum is over

the four different combinations of signs. To ascertain it makes physical sense to identify this

as the density of states, we would like to compare this to a model with discretized spectrum of

eigenvalues ω.

An efficient discretization — which does not require solving bulk equations of motion and

is quite natural from the point of view of dS-CFT approaches to de Sitter quantum gravity

[38, 39, 203] — is obtained by truncating the global dSd+1 angular momentum SO(d + 1) of

the single-particle Hilbert space, considering instead of H a finite-dimensional matrix

hσ̄σ̄′ ≡ ⟨σ̄|H|σ̄′⟩ , (C.1.9)

where σ̄ are SO(d+ 1) quantum numbers. For dS2 this is SO(2) and σ̄ = n ∈ Z, truncated e.g.

by |n| ≤ N . The matrix h is sparse and can be computed either directly using |n⟩ ∝
∫
dφ einφ|φ⟩

and the explicit form of H, i.e. H = i(sinφ∂φ + ∆ cosφ), or algebraically.



252

Figure C.1.3: Comparison of d = 1 character Θ(t) defined in (C.1.1) (blue) to the coarse-grained
discretized character Θ̄N,δ(t) defined in (C.1.11) (red), with δ = 0.1 and other parameters as in fig.
C.1.2. Plot on the right shows wider range of t. Plot in the middle smaller range of t, but larger Θ.

The algebraic way goes as follows. A normalizable basis |n⟩ of the global dS2 scalar single-

particle Hilbert space can be constructed from the SO(1, 2) conformal algebra (3.2.1)1, using a

basis of generators L0, L± related to H, K and P as L0 = 1
2(P +K), L± = 1

2(P −K) ± iH.

Then L0 is the global angular momentum generator i∂ϕ along the future boundary S1 and L±

are its raising and lowering operators. In some suitable normalization of the L0 eigenstates |n⟩,

we have L0|n⟩ = n|n⟩, L±|n⟩ = (n ± ∆)|n ± 1⟩. Cutting off the single-particle Hilbert space

at −N < n ≤ N ,2 the operator H = i
2(L− − L+) acts as a sparse 2N × 2N matrix on the

truncated basis |n⟩.

A minimally coarse-grained density of states can then be defined as the inverse spacing of

its eigenvalues ωi, i = 1, . . . , 2N , obtained by numerical diagonalization:

ρ̄N (ωi) ≡ 2
ωi+1 − ωi−1

. (C.1.10)

The continuum limit corresponds to N → ∞ in the discretized model, and to Λ → ∞ in (C.1.8).

To compare to (C.1.8), we adjust Λ, in the spirit of renormalization, to match the density of

states at some scale ω, say ω = 0. The results of this comparison for ν = 2, N = 2000 are

shown in fig. C.1.2. Clearly they match remarkably well indeed in the regime where they should,

i.e. well below the UV cutoff scale.

1Notice that the definitions of P,K,H differ by an overall factor i from the convention in chapter 3.
2The asymmetric choice here allows us to use the simple coarse graining prescription (C.1.10) and keep this

discussion short. A symmetric choice |n| ≤ N would lead to an enhanced Z2 and two families of eigenvalues
distinguished by their Z2 parity, inducing persistent microstructure in the level spacing. The most efficient way
to proceed then is to compute ρ̄N,±(ω) as the inverse level spacing for these two families separately and then add
the contributions together as interpolated functions. For dS3 with SO(3) cutoff ℓ ≤ N one similarly gets 2N + 1
families of eigenvalues, labeled by SO(2) angular momentum m, and one can proceed analogously. Alternatively,
one can compute ρ̄N (ω) directly by binning and counting, but this requires larger N .
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We can make a similar comparison directly at the (UV-finite) character level. The discrete

character is
∑
i e

−iωit, which is a wildly oscillating function. At first sight this seems very

different from the character Θ(t) = tr e−iHt in (C.1.6). However to properly compare the two,

we should coarse grain this at a small but finite resolution δ. We do this by convolution with a

Gaussian kernel, that is to say we consider

Θ̄N,δ(t) ≡ 1√
2πδ

∫ ∞

−∞
dt′ e−(t−t′)2/2δ2 ∑

i

e−iωit
′ =

∑
i

e−itωi−δ2ω2
i /2 . (C.1.11)

A comparison of Θ̄N,δ to Θ is shown in fig. C.1.3 for δ = 0.1. The match is nearly perfect for |t|

not too large and not too small. For small t, the Θ̄N,δ(t) caps off at a finite value, the number

of eigenvalues |ωi| ≲ 1/δ, while Θ(t) ∼ 1/|t| → ∞. The approximation gets better here when

δ is made smaller. For larger values of t, Θ̄N,δ(t) starts showing some oscillations again. These

can be eliminated by increasing δ, at the cost of accuracy at smaller t. In the N → ∞ limit,

the discretized approximation gets increasingly better over increasingly large intervals of t, with

limδ→0 limN→∞ Θ̄N,δ(t) = Θ(t).

Note that there is no reason to expect any discretization scheme will converge to Θ(t) or

ρ(ω). For example it is not clear a brick wall discretization along the lines described in section

C.4.3 would. On the other hand, the convergence of the above global angular momentum cutoff

scheme to the continuum Θ(t) was perhaps to be expected.

C.1.3 Resonances and quasinormal mode expansion

Substituting the expansion (C.1.5) of the dS character,

Θ(t) =
∑
λ

Nλ e
−itλ (t > 0) , (C.1.12)

into (C.1.6), ρ(ω) = 1
2π
∫∞

0 dtΘ(t) (eiωt + e−iωt), we can formally express the density of states

as

ρ(ω) = 1
2πi

∑
λ

Nλ

( 1
λ− ω

+ 1
λ+ ω

)
, (C.1.13)
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Figure C.1.4: Plot of |ρ(ω)| in complex ω-plane corresponding to the dS3 examples of fig. C.1.1,
that is ∆± = {1 + 2i, 1 − 2i}, { 1

2 ,
3
2 }, {0.1, 1.9}, and 2Λ/π ≈ 64. Lighter is larger with plot range

58 (black) < |ρ| < 67 (white). Resonance poles are visible at ω = ∓i(∆± + n), n ∈ N.

From this we read off that ρ(ω) analytically continued to the complex plane has poles at

ω = ±λ which for massive representations means ω = ∓i(∆± + n). This can also be checked

from explicit expressions such as the dS3 scalar density of states (C.1.7), illustrated in fig.

C.1.4. These values of ω are precisely the frequencies of the (anti-)quasinormal field modes

in the static patch, that is to say modes with purely ingoing/outgoing boundary conditions at

the horizon, regular in the interior. If we think of the normal modes as scattering states, the

quasinormal modes are to be thought of as scattering resonances. Indeed the poles of ρ(ω) are

related to the poles/zeros of the static patch S-matrix S(ω), cf. (C.1.14) below. Thus we see

the coefficients Nλ in (C.1.12) count resonances (or quasinormal modes), rather than states (or

normal modes) as in AdS. This expresses at the level of characters the observations made in [59].

It holds for any SO(1, d + 1) representation, including massless representations, as explored in

more depth in [1] (see also appendix C.6.1). Some corresponding quasinormal mode expansions

of bulk thermodynamic quantities are given in (5.2.31) and (5.2.34), and related there to the

quasinormal mode expansion of [163] for scalar and spinor path integrals.

“S-matrix” formulation

The appearance of resonance poles in the analytically continued density of states is well-known

in quantum mechanical scattering off a fixed potential V . They are directly related to the
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poles/zeros in the S-matrix S(ω) at energy ω through the relation [233]

ρ(ω) − ρ0(ω) = 1
2πi

d

dω
tr logS(ω) , (C.1.14)

where ρ0(ω) is the density of states at V = 0.

Using the explicit form of the dS2 dimension-∆ scalar static patch mode functions (C.4.24)

ϕ∆
ωℓ(r, T ), expanding these for r =: tanhX → 1 as

ϕ∆
ωℓ(r) → A∆

ℓ (ω) e−iω(T+X) +B∆
ℓ (ω) e−iω(T−X) , (C.1.15)

and defining S∆
ℓ (ω) ≡ B∆

ℓ (ω)/A∆
ℓ (ω), one can check that ρ∆(ω) as obtained in (C.1.8) satisfies

ρ∆(ω) − ρ0(ω) = 1
2πi

d

dω

∑
ℓ=0,1

logS∆
ℓ (ω) , (C.1.16)

where ρ0(ω) = 1
π (ψ(iω) + ψ(−iω)) + const. does not depend on ∆. This can be viewed as a

rough analog of (C.1.14), although the interpretation of ρ0(ω) in the present setting is not clear

to us. Similar observations can be made in higher dimensions.

In [234], a general (flat space) S-matrix formulation of statistical mechanics for interacting

QFTs was developed. In this formulation, the canonical partition function is expressed as

logZ − logZ0 = 1
2πi

∫
dE e−βE d

dE

[
Tr logS(E)

]
c
, (C.1.17)

where the subscript c indicates restriction to connected diagrams (where “connected” is defined

with the rule that particle permutations are interpreted as interactions [234]). Combined with the

above observations, this hints at a possible generalization of our free QFT results to interacting

theories.

C.2 Evaluation of character integrals

The most straightforward way of UV-regularizing character integrals is to simply cut off the

t-integral at some small t = ϵ. However to compare to the standard heat kernel (or spectral

zeta function) regularization for Gaussian Euclidean path integrals [178], it is useful to have
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explicit results in the latter scheme. In this appendix we give an efficient and general recipe

to compute the exact heat kernel-regularized one-loop Euclidean path integral, with regulator

e−ϵ2/4τ as in (5.3.2), requiring only the unregulated character formula as input. For concreteness

we consider the scalar case in the derivation, but because the scalar character Θ0(t) provides the

basic building block for all other characters ΘS(t), the final result will be applicable in general.

We spell out the derivation is some detail, and summarize the final result together with some

examples in section C.2.2. Application to the massless higher-spin case is discussed in section

C.2.3, where we work out the exact one-loop Euclidean path integral for Einstein gravity on S4

as an example. In section C.2.4 we consider different regularizations, such as the simple t > ϵ

cutoff.

C.2.1 Derivation

As shown in section 5.3, the scalar Euclidean path integral regularized as

logZϵ =
∫ ∞

0

dτ

2τ e
− ϵ2

4τ FD(τ) , FD(τ) ≡ Tr e−τD =
∑
n

Dd+2
n e−(n+ d

2 +iν)(n+ d
2 −iν) ,

(C.2.1)

where D = −∇2 + d2

4 + ν2, can be written in character integral form as

logZϵ =
∫ ∞

ϵ

dt

2
√
t2 − ϵ2

∑
n

Dd+2
n

(
e−(n+ d

2 )t−iν
√
t2−ϵ2 + e−(n+ d

2 )t+iν
√
t2−ϵ2

)
(C.2.2)

=
∫ ∞

ϵ

dt

2
√
t2 − ϵ2

1 + e−t

1 − e−t
e− d

2 t−iν
√
t2−ϵ2 + e− d

2 t+iν
√
t2−ϵ2

(1 − e−t)d , (C.2.3)

Putting ϵ = 0 we recover the formal (UV-divergent) character formula

logZϵ=0 =
∫ ∞

0

dt

2t Fν(t) ,

Fν(t) ≡
∑
n

Dd+2
n

(
e−(n+ d

2 +iν)t + e−(n+ d
2 −iνn)t

)
= 1 + e−t

1 − e−t
e−( d

2 +iν)t + e−( d
2 −iν)t

(1 − e−t)d .

(C.2.4)
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To evaluate (C.2.3), we split the integral into UV and IR parts, each of which can be evaluated

in closed form in the limit ϵ → 0.

Separation into UV and IR parts

The separation of the integral in UV and IR parts is analogous to the usual procedure in heat

kernel regularization, where one similarly separates out the UV part of the τ integral by isolating

the leading terms in the τ → 0 heat kernel expansion

FD(τ) := Tr e−τD →
d+1∑
k=0

αk τ
−(d+1−k)/2 =: F uv

D (τ) . (C.2.5)

Introducing an infinitesimal IR cutoff µ → 0, we may write logZϵ = logZuv
ϵ + logZ ir where

logZuv
ϵ ≡

∫ ∞

0

dτ

2τ e
− ϵ2

4τ F uv
D (τ) e−µ2τ , logZ ir ≡

∫ ∞

0

dτ

2τ
(
FD(τ) − F uv

D (τ)
)
e−µ2τ . (C.2.6)

Dropping the UV regulator in the IR integral is allowed because all UV divergences have been

removed by the subtraction. The factor e−µ2τ serves as an IR regulator needed for the separate

integrals when F uv has a term αd+1
2τ ̸= 0, that is to say when d + 1 is even. The resulting

logµ terms cancel out of the sum at the end. Evaluating this using the specific UV regulator

of (C.2.1) gives

logZϵ = 1
2ζ

′
D(0) + αd+1 log

( 2
eγϵ

)
+ 1

2

d∑
k=0

αk Γ
(
d+1−k

2
) (2

ϵ

)d+1−k
, (C.2.7)

where ζD(z) = TrD−z = 1
Γ(z)

∫ dτ
τ τ

z Tr e−τD is the zeta function of D and αd+1 = ζD(0).

We can apply the same idea to the square-root regulated character formula (C.2.3) for Zϵ.

The latter is obtained from the simpler integrand of the formal character formula (C.2.4) for

Zϵ=0 by dividing it by r(ϵ, t) ≡
√
t2 − ϵ2/t and replacing ν by νr(ϵ, t):

logZϵ=0 =
∫ ∞

0

dt

2t Fν(t) ⇒ logZϵ =
∫ ∞

ϵ

dt

2rt Frν(t) , r ≡
√
t2 − ϵ2

t
. (C.2.8)

Note that 0 < r < 1 for all t > ϵ, r ∼ O(1) for t ∼ ϵ and r → 1 for t ≫ ϵ. Therefore, given
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the t → 0 behavior of the integrand in the formal character formula for Zϵ=0,

1
2tFν(t) → 1

t

d+1∑
k=0

bk(ν) t−(d+1−k) =: 1
2tF

uv
ν (t) , bk(ν) =

k∑
ℓ=0

bkℓ ν
ℓ , (C.2.9)

we get the t ∼ ϵ → 0 behavior of the integrand for the exact Zϵ:

1
2rt Frν(t) → 1

2rt F
uv
rν (t) = 1

rt

∑
k,ℓ

bkℓ ν
ℓ rℓ t−(d+1−k) . (C.2.10)

Thus we can separate logZϵ = log Z̃uv
ϵ + log Z̃ ir, with

log Z̃uv
ϵ ≡

∫ ∞

ϵ

dt

2rt F
uv
rν (t) e−µt , log Z̃ ir ≡

∫ ∞

0

dt

2t
(
Fν(t) − F uv

ν (t)
)
e−µt . (C.2.11)

Again the limit µ → 0 is understood. We were allowed to put ϵ = 0 in the IR part because it is

UV finite.

Evaluation of UV part

Using the expansion (C.2.10), the UV part can be evaluated explicitly as

log Z̃uv
ϵ = 1

2
∑
ℓ,k≤d

bkℓB
(
d+1−k

2 , ℓ+1
2
)
νℓ ϵ−(d+1−k) −

∑
ℓ

bd+1,ℓ
(
Hℓ − 1

2Hℓ/2 + log( e
γ ϵ µ
2 )

)
νℓ

(C.2.12)

where B(x, y) = Γ(x)Γ(y)
Γ(x+y) is the Euler beta function and Hx = γ + Γ′(1+x)

Γ(1+x) which for integer x

is the x-th harmonic number Hx = 1 + 1
2 + · · · + 1

x . For example for d = 3, we get

log Z̃uv
ϵ = 4

3 ϵ
−4 − 4ν2+1

12 ϵ−2 −
(
ν4

9 + ν2

24
)

−
(
ν4

12 + ν2

24 − 17
2880

)
log
( eγϵµ

2
)
. (C.2.13)

This gives an explicit expression for the part of logZ denoted Pol(∆) in [163], without having to

invoke an independent computation of the heat kernel coefficients. Indeed, turning this around,

by comparing (C.2.12) to (C.2.7), we can express the heat kernel coefficients αk explicitly in

terms of the character coefficients bk,ℓ. In particular the Weyl anomaly coefficient is simply given

by the coefficient bd+1 =
∑
ℓ bd+1,ℓν

ℓ of the 1/t term in the integrand of the formal character
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formula (C.2.4). More generally,

αk =
∑
ℓ

Γ( ℓ+1
2 )

2d+1−kΓ(d+1−k+ℓ+1
2 )

bkℓ ν
ℓ . (C.2.14)

For example for d = 3, this becomes α0 = 1
12b00, α2 = 1

2b20 + ν2

6 b22 and α4 = b4. From the

small-t expansion 1
2tFν(t) →

∑
k bkt

3−k in (C.2.4) we read off b0 = 2, b2 = − 1
12 − ν2 and

b4 = − 17
2880 + 1

24ν
2 + 1

12ν
4. Thus α0 = 1

6 , α2 = − 1
24 − 1

6ν
2 and α4 = − 17

2880 + 1
24ν

2 + 1
12ν

4.

Evaluation of IR part

As we explain momentarily, the IR part can be evaluated as

log Z̃ ir = 1
2ζ

′
ν(0) + bd+1 logµ , ζν(z) ≡ 1

Γ(z)

∫ ∞

0

dt

t
tz Fν(t) , (C.2.15)

where like for the spectral zeta function ζD(z), the “character zeta function” ζν(z) is defined

by the above integral for z sufficiently large and by analytic continuation for z → 0. This

zeta function representation of logZ ir follows from the following observations. If we define

ζ ir
ν (z) ≡ 1

Γ(z)
∫∞

0
dt
t t

z
(
Fν(t) − F uv

ν (t)
)
e−µt, then since the integral remains finite for z → 0,

while Γ(z) ∼ 1/z and ∂z(1/Γ(z)) → 1, we trivially have 1
2∂zζ

ir
ν (z)|z=0 = log Z̃ ir. Moreover

for z sufficiently large we have in the limit µ → 0 that 1
2ζ

uv(z) ≡ 1
Γ(z)

∫∞
0

dt
2t t

zF uv
ν (t) e−µt =

bd+1µ
−z, so upon analytic continuation we have 1/2∂zζuv(z)|z=0 = −bd+1 logµ, and (C.2.15)

follows.

In contrast to the spectral zeta function, the character zeta function can straightforwardly

be evaluated in terms of Hurwitz zeta functions. Indeed, denoting ∆± = d
2 ± iν, we have

FD(t) =
∑
nQ(n) e−t(n+∆+)(n+∆−) where the spectral degeneracy Q(n) is some polynomial in

n, and ζD(z) =
∑∞
n=0Q(n)

(
(n+ ∆+)(n+ ∆−)

)−z, which is quite tricky to evaluate, whereas

Fν(t) =
∑
nQ(n)

(
e−t(n+∆+) + e−t(n+∆−)), and we can immediately express the associated

character zeta function as a finite sum of Hurwitz zeta functions ζ(z,∆) =
∑∞
n=0(n+ ∆)−z:

ζν(z) =
∑
±

∞∑
n=0

Q(n)(n+ ∆±)−z =
∑
±
Q(δ̂ − ∆±) ζ(z,∆±) . (C.2.16)

Here δ̂ is the unit z-shift operator acting as δ̂nζ(z,∆) = ζ(z−n,∆); for example if Q(n) = n2
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we have Q(δ̂−∆) ζ(z,∆) = (δ̂2−2∆δ̂+∆2)ζ(z,∆) = ζ(z−2,∆)−2∆ζ(z−1,∆)+∆2ζ(z,∆).

C.2.2 Result and examples

Result

Altogether we conclude that given a formal character integral formula

logZPI =
∫ ∞

0

dt

2t Fν(t) , (C.2.17)

for a field corresponding to a dSd+1 irrep of dimension d
2 + iν, with IR and UV expansions

Fν(t) =
∑
∆

∞∑
n=0

P∆(n) e−(n+∆)t ,
1
2tFν(t) = 1

t

d+1∑
k=0

bk(ν) t−(d+1−k) + O(t0) , (C.2.18)

where bk(ν) =
∑
ℓ bkℓ ν

ℓ, we obtain the exact ZPI with heat kernel regulator e−ϵ2/4τ as

logZPI,ϵ =1
2
∑
∆
P∆(δ̂ − ∆) ζ ′(0,∆) −

d+1∑
ℓ=0

bd+1,ℓ
(
Hℓ − 1

2Hℓ/2
)
νℓ + bd+1(ν) log(2e−γ/ϵ)

+ 1
2

d∑
k=0

k∑
ℓ=0

bkℓB
(
d+1−k

2 , ℓ+1
2
)
νℓ ϵ−(d+1−k) .

(C.2.19)

Here B(x, y) = Γ(x)Γ(y)
Γ(x+y) , Hx = γ + Γ′(1+x)

Γ(1+x) , which for integer x is the x-th harmonic number

Hx = 1 + 1
2 + · · · + 1

x , and δ̂ is the unit shift operator acting on the first argument of the

Hurwitz zeta function ζ(z,∆): the polynomial P∆(δ̂ − ∆) is to be expanded in powers of δ̂,

setting δ̂nζ ′(0,∆) ≡ ζ ′(−n,∆). Finally the heat kernel coefficients are

αk =
∑
ℓ

Γ( ℓ+1
2 )

2d+1−kΓ(d+1−k+ℓ+1
2 )

bkℓ ν
ℓ . (C.2.20)

If we are only interested in the finite part of logZ, only the first three terms in (C.2.19) matter.

Note that the third and the second term Mν ≡
∑
ℓ bd+1,ℓ

(
Hℓ− 1

2Hℓ/2
)

is in general nonvanishing

for even d+1. By comparing (C.2.19) to (C.2.7), say in the scalar case discussed earlier, we see

that ζ ′
D(0) = ζ ′

ν(0)+2Mν . Thus 2Mν can be thought of as correcting the formal factorization∑
n log(n+∆+)(n+∆−) =

∑
n log(n+∆+)+

∑
n log(n+∆−) in zeta function regularization.
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For this reason Mν is called the multiplicative “anomaly”, as reviewed in [235]. The above thus

generalizes the explicit formulae in [235] for Mν to fields of arbitrary representation content.

Examples

1. A scalar on S2 (d = 1) with ∆± = 1
2 ± iν has Fν(t) = 1+e−t

1−e−t
e−∆+t+e−∆−t

1−e−t so the IR and

UV expansions are Fν(t) =
∑

±
∑∞
n=0(2n + 1)e−(∆±+n)t and 1

2t Fν(t) = 2
t3 +

1
12 −ν2

t + O(t0).

Therefore according to (C.2.19)

logZPI,ϵ =
∑

∆= 1
2 ±iν

(
ζ ′(−1,∆) − (∆ − 1

2)ζ ′(0,∆)
)

+ ν2 +
( 1

12 − ν2) log
(
2 e−γ/ϵ

)
+ 2
ϵ2
.

(C.2.21)

The heat kernel coefficients are obtained from (C.2.20) as α0 = 1 and α2 = 1
12 − ν2.

2. For a scalar on S3, Fν(t) =
∑

±
∑∞
n=0(n+ 1)2e−(∆±+n)t, 1

2tFν(t) → 2
t4 − ν2

t2 + O(t0), so

logZPI,ϵ =
∑
±

(
1
2ζ

′(−2, 1 ± iν) ∓ iνζ ′(−1, 1 ± iν) − 1
2ν

2ζ ′(0, 1 ± iν)
)

− πν2

4ϵ + π

2ϵ3 .

(C.2.22)

The heat kernel coefficients are α0 =
√
π

4 , α2 = −
√
π

4 ν
2. In particular for a conformally coupled

scalar, i.e. ∆ = 1
2 ,

3
2 or equivalently ν = i/2, we get for the finite part the familiar result

logZPI = 3ζ(3)
16π2 − log(2)

8 . For ∆ = 1, i.e. ν = 0, we get logZPI = − ζ(3)
4π2 . Notice that the finite

part looks quite different from (5.2.25) obtained by contour integration. Nevertheless they are

in fact the same function.

3. A more interesting example is the massive spin-s field on S4 with ∆± = 3
2 ± iν. In this case,
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(5.4.6) combined with (C.5.8) or equivalently (5.4.7) gives Fν = Fbulk − Fedge with

Fbulk(t) =
∑

∆= 3
2 ±iν

∞∑
n=−1

D3
sD

5
n e

−(n+∆)t = D3
s

1 + e−t

1 − e−t
e−( 3

2 +iν)t + e−( 3
2 −iν)t

(1 − e−t)3 , (C.2.23)

Fedge(t) =
∑

∆= 1
2 ±iν

∞∑
n=−1

D5
s−1D

3
n+1 e

−(n+∆)t = D5
s−1

1 + e−t

1 − e−t
e−( 1

2 +iν)t + e−( 1
2 −iν)t

(1 − e−t) ,

(C.2.24)

where D3
p = 2p+1, D5

p = 1
6(2p+3)(p+2)(p+1). In particular note that with gs ≡ D3

s = 2s+1,

we have D5
s−1 = 1

24gs(g
2
s − 1). The small-t expansions are

1
2tFbulk(t) → gs

(
2 t−5 −

(
ν2 + 1

12
)
t−3 +

(
ν4

12 + ν2

24 − 17
2880

)
t−1 + O(t0)

)
(C.2.25)

1
2tFedge(t) → 1

24gs(g
2
s − 1)

(
2 t−3 +

( 1
12 − ν2)t−1 + O(t0)

)
. (C.2.26)

Thus the exact partition function for a massive spin-s field is

logZPI,ϵ = gs
∑

∆= 3
2 ±iν

(
1
6ζ

′(−3,∆) ∓ 1
2 iνζ

′(−2,∆) −
(1

2ν
2 + 1

24
)
ζ ′(−1,∆) ± i

( 1
24ν + 1

6ν
3)ζ ′(0,∆)

)

− 1
24gs(g

2
s − 1)

∑
∆= 1

2 ±iν

(
ζ ′(−1,∆) ∓ iνζ ′(0,∆)

)
− 1

24g
3
sν

2 − 1
9gsν

4 (C.2.27)

+
(
g3
s

( 1
24ν

2 − 1
288
)

+ gs
( 1

12ν
4 − 7

2880
))

log(2 e−γ/ϵ) −
( 1

12g
3
s + 1

3gsν
2)ϵ−2 + 4

3gsϵ
−4 .

Finally the heat kernel coefficients are

α0 = 1
6gs , α2 = − 1

24g
3
s − 1

6gsν
2 , α4 = g3

s

( 1
24ν

2 − 1
288
)

+ gs
( 1

12ν
4 − 7

2880
)
. (C.2.28)

Single-mode contributions

Contributions from single path integral modes and contributions of single quasinormal modes

are of use in some of our derivations and applications. These are essentially special cases of the

above general results, but for convenience we collect some explicit formulae here:

• Path integral single-mode contributions: For our choice of heat-kernel regulator e−ϵ2/4τ ,



263

the contribution to logZPI,ϵ from a single bosonic eigenmode with eigenvalue λ is

Iλ =
∫ ∞

0

dτ

2τ e
−ϵ2/4τ e−τλ = K0(ϵ

√
λ) → −1

2 log λ

M2 , M ≡ 2e−γ

ϵ
, (C.2.29)

Different regulator insertions lead to a similar result in the limit ϵ → 0, with M = c/ϵ for some

regulator-dependent constant c. A closely related formula is obtained for the contribution from

an individual term in the sum (C.2.2) or equivalently in the IR expansion of (C.2.18), which

amounts to computing (C.2.17) with Fν(t) ≡ e−ρt, ρ = a ± iν. The small-t expansion is
1
2tFν(t) = 1

2t + O(t0), so the UV part is given by the log term in (C.2.19) with coefficient 1
2 ,

and the IR part is 1
2ζ

′
ν(0) = −1

2 log ρ as in (C.2.15). Thus

I ′
ρ =

∫ ∞

0

dt

2t e
−ρt → −1

2 log ρ

M
, M = 2e−γ

ϵ
, (C.2.30)

where the integral is understood to be regularized as in (C.2.2), I ′
ρ =

∫∞
ϵ

dt
2
√
t2−ϵ2 e

−ta−iν
√
t2−ϵ2 ,

left implicit here. The similarities between (C.2.29) and (C.2.30) are of course no accident,

since in our setup, the former splits into the sum of two integrals of the latter type: writing

λ = a2 + ν2 = (a+ iν)(a− iν), we have Iλ = I ′
a+iν + I ′

a−iν .

• Quasinormal mode contributions: Considering a character quasinormal mode expansion

Θ(t) =
∑
rNr e

−r|t| as in (5.1.14), the IR contribution from a single bosonic/fermionic QNM is

∫ ∞

0

dt

2t
1 + e−t

1 − e−t e
−r t
∣∣∣∣
IR

= log Γ(r + 1)
µr

√
2πr

, −
∫ ∞

0

dt

2t
2e−t/2

1 − e−t e
−r t
∣∣∣∣
IR

= − log
Γ(r + 1

2)
µr

√
2π

(C.2.31)

• Harmonic oscillator: The character of a d = 0 scalar of mass ν is Θ(t) = e−iνt + eiνt, hence

logZPI,ϵ =
∫ ∞

0

dt

2t
1 + e−t

1 − e−t
(
e−iνt + eiνt

)
= π

ϵ
− log

(
eπν − e−πν) . (C.2.32)

The finite part gives the canonical bosonic harmonic oscillator thermal partition function Tr e−βH =∑
n e

−βν(n+ 1
2 ) =

(
eβν/2 − e−βν/2)−1 at β = 2π. The fermionic version is

logZPI,ϵ = −
∫ ∞

0

dt

2t
2e−t/2

1 − e−t
(
e−iνt + eiνt

)
= −π

ϵ
+ log

(
eπν + e−πν) . (C.2.33)
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C.2.3 Massless case

Here we give a few more details on how to use (C.2.19) to explicitly evaluate ZPI in the massless

case, and work out the exact ZPI for Einstein gravity on S4 as an example.

Our final result for the massless one-loop ZPI = ZG · Zchar is given by (5.5.17):

ZPI = i−P
γdimG

vol(G)c
· exp

∫ × dt

2t F , F = 1 + q

1 − q

([
Θ̂bulk

]
+ −

[
Θ̂edge

]
+ − 2 dimG

)
,

(C.2.34)

where for s = 2 gravity γ =
√

8πGN
Ad−1

, P = d+ 3, G = SO(d+ 2) and vol(G)c = (C.3.2).

• UV part: As always, the coefficient of the log-divergent term simply equals the coefficient of

the 1/t term in the small-t expansion of the integrand in (C.2.34). For the other UV terms in

(C.2.19) (including the “multiplicative anomaly”), a problem might seem to be that we need a

continuously variable dimension parameter ∆ = d
2 + iν, whereas massless fields, and our explicit

formulae for Θ̂ → [Θ̂]+, require fixed integer dimensions. This problem is easily solved, as the

UV part can actually be computed from the original naive character formula (C.6.7):

logZPI
∣∣
UV =

∫
dt

2t F̂
∣∣∣
UV

, F̂ = 1 + q

1 − q

(
Θ̂bulk − Θ̂edge

)
, (C.2.35)

Indeed since F̂ → F = {F̂}+ in (C.6.9) affects just a finite number of terms ckqk → ckq
−k,

it does not alter the small-t (UV) part of the integral. Moreover Θ̂s = Θ̂s,νϕ
− Θ̂s,νξ

, where

Θ̂s,ν is a massive spin-s character. Thus the UV part may be obtained simply by combining the

results of (C.2.19) for general ν and s, substituting the values νϕ, νξ set by (5.5.2).

• IR part: The IR part is the ζ ′ part of (C.2.19), obtained from the q-expansion of F (q) in

(C.2.34). This can be found in general by using

1 + q

1 − q

q∆

(1 − q)k =
∞∑
n=0

P (n) qn+∆ , P (n) = Dk+2
n , (C.2.36)

with Dk+2
n the polynomial given in (2.2.3). For k = 0, (C.2.31) is useful. In particular, using

the
∫× prescription (C.6.15), the IR contribution from the last term in (C.2.34) is obtained by
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considering the r → 0 limit of the bosonic formula in (C.2.31):

∫ × dt

2t
1 + q

1 − q

(
−2 dimG

)∣∣∣∣
IR

= dimG · log(2π) . (C.2.37)

Example: Einstein gravity on S4

As a simple application, let us compute the exact one-loop Euclidean path integral for pure

gravity on S4. In this case G = SO(5), dimG = 10, d = 3 and s = 2. From (5.5.2) we read

off iνϕ = 3
2 , iνξ = 5

2 , and from (5.5.7) we get

Θbulk =
[
Θ̂bulk

]
+ = 10 q3 − 6 q4

(1 − q)3 , Θedge =
[
Θ̂edge

]
+ = 10 q2 − 2 q3

1 − q
. (C.2.38)

The small-t expansion of the integrand in (C.2.34) is 1
2tF = 4 t−5 − 47

3 t
−3 − 571

45 t
−1 + O(t0).

The coefficient of the log-divergent part of logZPI is the coefficient of t−1:

logZPI|log div = −571
45 log

(
2e−γϵ−1) , (C.2.39)

in agreement with [127]. The complete heat-kernel regularized UV part of (C.2.19) can be read

off directly from our earlier results for massive spin-s in d = 3 as

logZPI
∣∣
UV = logZPI(s = 2, ν = 3

2 i)
∣∣
UV − logZPI(s = 1, ν = 5

2 i)
∣∣
UV

= 8
3 ϵ

−4 − 32
3 ϵ−2 − 571

45 log
(
2e−γϵ−1)+ 715

48 . (C.2.40)

Here M = 715
48 is the “multiplicative anomaly” term. The integrated heat kernel coefficients are

similarly obtained from (C.2.28): α0 = 1
3 , α2 = −16

3 , α4 = −571
45 .

The IR (ζ ′) contributions from bulk and edge characters are obtained from the expansions

1 + q

1 − q

(
Θbulk − Θedge

)
=
∑
n

Pb(n)
(
10 q3+n − 6 q4+n)−

∑
n

Pe(n)
(
10 q2+n − 2 q3+n) ,

(C.2.41)

where Pb(n) = D5
n = 1

6(n+ 1)(n+ 2)(2n+ 3), Pe(n) = D3
n = 2n+ 1. According to (C.2.19)
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this gives a contribution to logZchar|IR equal to

5Pb(δ̂ − 3) ζ ′(0, 3) − 3Pb(δ̂ − 4) ζ ′(0, 4) − 5Pe(δ̂ − 2) ζ ′(0, 2) + Pe(δ̂ − 3) ζ ′(0, 3) , (C.2.42)

where the polynomials are to be expanded in powers of δ̂, putting δ̂nζ ′(0,∆) ≡ ζ ′(−n,∆).

Working this out and adding the contribution (C.2.37), we find

logZchar
∣∣
IR = − log 2 − 47

3 ζ ′(−1) + 2
3 ζ

′(−3) . (C.2.43)

Combining this with the UV part and reinstating ℓ, we get3

logZchar =8
3
ℓ4

ϵ4
− 32

3
ℓ2

ϵ2
− 571

45 log 2e−γL

ϵ

− 571
45 log ℓ

L
+ 715

48 − log 2 − 47
3 ζ

′(−1) + 2
3ζ

′(−3) , (C.2.44)

where L is an arbitrary length scale introduced to split off a finite part:

logZfin
char = −571

45 log(ℓ/L) + 715
48 − log 2 − 47

3 ζ
′(−1) + 2

3ζ
′(−3) , (C.2.45)

To compute the group volume factor ZG in (C.2.34), we use (C.3.2) for G = SO(5) to get

vol(G)c = 2
3(2π)6, and γ =

√
8πGN/4πℓ2. Finally, i−P = i−(d+3) = −1. Thus we conclude

that the one-loop Euclidean path integral for Einstein gravity on S4 is

ZPI = −(8πGN/4πℓ2)5 Zchar
2
3(2π)6 , (C.2.46)

where Zchar is given by (C.2.44).

3This splits as logZchar = 10 log(2π)+logZbulk −logZedge where logZbulk = 8ℓ4

3ϵ4 − 8ℓ2

3ϵ2 − 331
45 log 2e−γ ℓ

ϵ
+ 475

48

− 23
3 ζ

′(−1) + 2
3ζ

′(−3) − 5 log(2π) and logZedge = 8ℓ2

ϵ2 + 16
3 log 2e−γ ℓ

ϵ
− 5 + 8ζ′(−1) + log 2 + 5 log(2π).



267

Example: Einstein gravity on S5

For S5 an analogous (actually simpler) computation gives ZPI = i−7ZGZchar with

logZchar = 15π
8

ℓ5

ϵ5
− 65π

24
ℓ3

ϵ3
− 105π

16
ℓ

ϵ
+ 65 ζ(3)

48π2 + 5 ζ(5)
16π4 + 15 log(2π)

logZG = 15
2 log 8πGN

2π2ℓ3
− log (2π)9

12 .

(C.2.47)

C.2.4 Different regularization schemes

If we simply cut off the character integral at t = ϵ, we get the following instead of (C.2.19):

logZϵ =1
2
∑
∆
P∆(δ̂ − ∆) ζ ′(0,∆) + bd+1(ν) log(e−γ/ϵ) +

d∑
k=0

bk(ν)
d+ 1 − k

ϵ−(d+1−k) , (C.2.48)

with bk(ν) defined as before, 1
2tFν(t) =

∑d+1
k=0 bk(ν) t−(d+2−k) + O(t0). Unsurprisingly, this

differs from (C.2.19) only in its UV part, more specifically in the terms polynomial in ν, including

the “multiplicative anomaly” term discussed below (C.2.20). The transcendental (ζ ′) part and

the log ϵ coefficient remain unchanged. This remains true in any other regularization.

If we stick with heat-kernel regularization but pick a different regulator f(τ/ϵ2) instead

of e−ϵ2/4τ (e.g. the f = (1 − e−τΛ2)k PV regularization of section 5.2) or use zeta function

regularization, more is true: the same finite part is obtained for any choice of f provided

logarithmically divergent terms (arising in even d + 1) are expressed in terms of M defined as

in (C.2.29) with e−ϵ2/4τ → f . The relation M(ϵ) will depend on f , but nothing else.

In dimensional regularization, some polynomial terms in ν will be different, including the

“multiplicative anomaly” term. Of course no physical quantity will be affected by this, as long

as self-consistency is maintained. In fact any regularization scheme (even (C.2.48)) will lead

to the same physically unambiguous part of the one-loop corrected dS entropy/sphere partition

function of section 5.8. However to go beyond this, e.g. to extract more physically unambiguous

data by comparing different saddles along the lines of (C.8.67) and (C.8.70), a portable covari-

ant regularization scheme, like heat-kernel regularization, must be applied consistently to each

saddle. A sphere-specific ad-hoc regularization as in (C.2.48) is not suitable for such purposes.
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C.3 Some useful volumes and metrics

C.3.1 Volumes

The volume of the unit sphere Sn is

Ωn ≡ vol(Sn) = 2π
n+1

2

Γ
(
n+1

2
) = 2π

n− 1 · Ωn−2 (C.3.1)

The volume of SO(d + 2) with respect to the invariant group metric normalized such that

minimal SO(2) orbits have length 2π is

vol
(
SO(d+ 2)

)
c =

d+2∏
k=2

vol(Sk−1) =
d+2∏
k=2

2π
k
2

Γ(k2 )
. (C.3.2)

This follows from the fact that the unit sphere Sn−1 = SO(n)/SO(n − 1), which implies

vol(SO(n))c = vol(Sn−1) vol(SO(n− 1))c in the assumed normalization.

The volume of SU(N) with respect to the invariant metric derived from the matrix trace

norm on the Lie algebra su(N) viewed as traceless N ×N matrices is (see e.g. [236])

vol
(
SU(N)

)
TrN

=
√
N

N∏
k=2

(2π)k

Γ(k) =
√
N

(2π)
1
2 (N−1)(N+2)

G(N + 1) . (C.3.3)

C.3.2 de Sitter and its Wick rotations to the sphere

Global dSd+1 has a convenient description as a hyperboloid embedded in R1,d+1,

XIXI ≡ ηIJX
IXJ ≡ −X2

0 +X2
1 + · · · +X2

d+1 = ℓ2 , ds2 = ηIJdX
IdXJ . (C.3.4)
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Figure C.3.1: Penrose diagrams of dSd+1 and Sd+1 with coordinates C.3.5, C.3.7. Each point corre-
sponds to an Sd−1, contracted to zero size at thin-line boundaries. a: Global dSd+1 in slices of constant
T̄ . b: Wick rotation of global dSd+1 to Sd+1. c: S/N = southern/northern static patch, F/P =
future/past wedge; slices of constant T (gray) and r (blue/red) = flows generated by H. Yellow dot =
horizon r = 1. d: Wick-rotation of static patch S to Sd+1; slices of constant τ and constant r.

Below we set ℓ ≡ 1 . The isometry group is SO(1, d+1), with generators MIJ = XI∂J−XJ∂I .

Various coordinate patches are shown in fig. C.3.1a,c, with coordinates and metric given by

co embedding (X0, . . . , Xd+1) coordinate range metric ds2 = ηIJdX
IdXJ

G (sinh T̄ , cosh T̄ Ω̄) T̄ ∈ R, Ω̄ ∈ Sd −dT̄ 2 + cosh2 T̄ dΩ̄2

S (
√

1−r2 sinhT, rΩ,
√

1−r2 coshT ) T ∈ R, 0 ≤r<1, Ω ∈ Sd−1 −(1−r2)dT 2+ dr2

1−r2 +r2dΩ2

F (
√
r2−1 coshT, rΩ,

√
r2−1 sinhT ) T ∈ R, r > 1, Ω ∈ Sd−1 − dr2

r2−1 +(r2−1)dT 2+r2dΩ2

(C.3.5)

illustrated in fig. C.3.1a,c. N is obtained from S by Xd+1 → −Xd+1, and P from F by

X0 → −X0. The southern static patch S is the part of de Sitter causally accessible to an

inertial observer at the south pole of the global spatial Sd. The metric in this patch is static,

with the observer at r = 0 and a horizon at r = 1. The SO(1, 1) generator H = M0,d+1

acts by translation of the coordinate T , which is timelike in S,N and spacelike in F, P . From

the direction of the flow lines in fig. C.3.1c, it can be seen that the positive energy operator

is H in S, whereas it is −H in N . In F/P , r is the time coordinate, and H is the operator

corresponding to spatial momentum along the T -axis of the R × Sd−1 spatial slices.

A Wick rotation X0 → −iX0 maps (C.3.4) to the round sphere Sd+1:

δIJX
IXJ = ℓ2 , ds2 = δIJdX

IdXJ . (C.3.6)

The full Sd+1 can be obtained either from global dS G by Wick rotating global time T̄ → −iτ̄ ,
or from a single static patch S by Wick rotating static time T → −iτ , as illustrated in fig.
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C.3.1b,d. The corresponding sphere coordinates and metric are, again setting ℓ ≡ 1

co embedding (X0, X1, . . . , Xd+1) coordinate range metric ds2 = δIJdX
IdXJ

G (sin τ̄ , cos τ̄ , Ω̄) − π
2 ≤ τ̄ ≤ π

2 , Ω̄ ∈ Sd dτ̄2 + cos2 τ̄ dΩ̄2

S (
√

1−r2 sin τ, rΩ,
√

1−r2 cos τ) 0 ≤ r < 1, τ ≃ τ+2π, Ω ∈ Sd−1 (1−r2)dτ2+ dr2

1−r2 +r2dΩ2

(C.3.7)

C.4 Euclidean vs canonical: formal & physics expectations

Given a QFT on a static spacetime R × M with metric ds2 = −dt2 + ds2
M , Wick rotating

t → −iτ yields a Euclidean QFT on a space with metric ds2 = dτ2 + ds2
M . The Euclidean

path integral ZPI(β) =
∫

DΦ e−S[Φ] on S1
β × M obtained by identifying τ ≃ τ + β equals the

thermal partition function: ZPI(β) = Tr e−βH , as follows from cutting the path integral along

constant-τ slices and viewing e−τH as the Euclidean time evolution operator.

At least for noninteracting theories, it is in practice much more straightforward to compute

the partition function as the state sum Tr e−βH of an ideal gas in a box M than as a one-loop

path integral ZPI =
∫

DΦ e−S[Φ] on S1
β ×M , in particular for higher-spin fields. In view of this,

it is reasonable to wonder if a free QFT path integral on the sphere could perhaps similarly be

computed as a simple state sum, by viewing the sphere as the Wick-rotated static patch (fig.

C.3.1d), with inverse temperature β = 2π given by the period of the angular coordinate τ :

ZPI
?= TrS e−2πH . (C.4.1)

Below we review the formal path integral slicing argument suggesting the above relation and

why it fails, emphasizing the culprit is the presence of a fixed-point locus of H, the yellow dot

in fig. C.3.1. At the same formal level, we show the above relation is equivalent to ZPI
?= Zbulk,

with Zbulk defined as a character integral as in section 5.2. This improves the situation, but is

still incorrect for spin s ≥ 1. In more detail, the content is as follows:

In C.4.1 we consider the d = 0 case: a scalar of mass ω on dS1 in its Euclidean vacuum

state, i.e. an entangled pair of harmonic oscillators. Though surely superfluous to most readers,

we use the occasion to provide a pedagogical introduction to some standard constructions.

In C.4.2 we formally apply the same template to general d, ignoring yellow-dot issues, leading
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to the standard formal “thermofield double” description of the static patch of de Sitter [175],

and more specifically to ZPI ≃ Tr e−2πH ≃ Zbulk. We review the pathological divergences

that ensue when one attempts to evaluate the trace, and some of its proposed fixes such as

the “brick-wall” cutoff [162] and refinements thereof. We contrast these to Zbulk defined as a

character integral.

In C.4.5, we turn to the edge corrections missed by such formal arguments, explaining from

various points of view why they are to be expected.

C.4.1 S1

Though slightly silly, it is instructive to first consider the d = 0 case: a free scalar field of mass

ω on dS1 (fig. C.4.1). Global dS1 is the hyperbola X2
0 − X2

1 = 1 according to (C.3.4), which

consists of two causally disconnected lines, globally parametrized according to table C.3.5 by

(T̄ , Ω̄) where Ω̄ ∈ S0 = {−1,+1} ≡ {N,S}. The pictures of fig. C.3.1 still apply, except there

are no interior points, resulting in fig. C.4.1. Putting a free scalar of mass ω on this space just

means we consider two harmonic oscillators ϕS and ϕN , with action

SL = 1
2

∫ ∞

−∞
dT̄
(
ϕ̇2
S − ω2ϕ2

S + ϕ̇2
N − ω2ϕ2

N

)
. (C.4.2)

The dS1 isometry group is SO(1, d + 1) = SO(1, 1), generated by H ≡ M01, which acts as

forward/backward time translations on ϕS/ϕN , to be contrasted with the global Hamiltonian

H ′, which acts as forward time translations on both. The southern and northern static patch

are parametrized by T , and each contains one harmonic oscillator, respectively ϕS and ϕN .

Introducing creation and annihilation operators aSω, aS†
ω , a

N
−ω, a

N†
−ω satisfying [a, a†] = 1, we have

H = HS −HN , H ′ = HS +HN , HS = ω
(
aS†
ω a

S
ω + 1

2
)
, HN = ω

(
aN†

−ωa
N
−ω + 1

2
)
.

(C.4.3)

The subscript ±ω refers to the H eigenvalue: [H, a†
±ω] = ±ω a†

±ω, [H, a±ω] = ∓ω a±ω. The

southern and northern Hilbert spaces HS , HN each have a positive energy eigenbasis |n) with

energies En = (n + 1
2)ω. In QFT language, |0) is the static patch “vacuum”, and each patch

has one “single-particle” state, |1) = a†|0). The global Hilbert space is HG = HS ⊗ HN , with
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Figure C.4.1: dS1 version of fig. C.3.1 (in c we only show S here). Wick rotation of global time
T̄ → −iτ̄ maps a → b while wick rotation of static patch time T → −iτ maps c → d. Coordinates are
as defined in tables C.3.5 and C.3.7 with d = 0.

basis |nS , nN ⟩ = |nS) ⊗ |nN ) satisfying H|nS , nN ⟩ = ω(nS − nN )|nS , nN ⟩.

Wick-rotating dS1 produces an S1 of radius ℓ = 1. If we consider this as the Wick rotation

of the static patch as in fig. C.3.1d/C.4.1d, S in table (C.3.7), the S1 is parametrized by the

periodic Euclidean time coordinate τ ≃ τ + 2π. The corresponding Euclidean action for the

scalar is

SE = 1
2

∫ 2π

0
dτ
(
ϕ̇2 + ω2ϕ2) ϕ(2π) = ϕ(0) . (C.4.4)

The Euclidean path integral ZPI on S1 is most easily computed by reverting to the canonical

formalism with e−τHS = e−τH as the Euclidean time evolution operator, which maps it to the

harmonic oscillator thermal partition function at inverse temperature β = 2π:

ZPI =
∫

Dϕ e−SE [ϕ] = TrHS
e−2πH =

∑
n

e−2πω(n+ 1
2 ) = e−2πω/2

1 − e−2πω . (C.4.5)

We can alternatively consider the S1 to be obtained as the Wick rotation of global dS1 as in fig.

C.3.1b/C.4.1b, G in (C.3.7), parametrizing the S1 by (τ̄ , Ω̄), −π
2 ≤ τ̄ ≤ π

2 , Ω̄ ∈ S0 = {S,N},

identifying (±π
2 , S) = (±π

2 , N). The global action (C.4.2) then Wick rotates to

SE = 1
2

∫ π/2

−π/2
dτ̄
(
ϕ̇2
S + ω2ϕ2

S + ϕ̇2
N + ω2ϕ2

N

)
, ϕS(±π

2 ) = ϕN (±π
2 ) , (C.4.6)

which is identical to (C.4.4), just written in a slightly more awkward form. This form naturally

leads to an interpretation of ZPI as computing the norm squared of the Euclidean vacuum

state |O⟩ of the scalar on the global dS1 Hilbert space HG, by cutting the path integral at the
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Figure C.4.2: Global time evolution of PT̄ (ϕS , ϕN ) =
∣∣⟨ϕS , ϕN |e−iH′T̄ |O⟩

∣∣2 for free ω = 0.1 scalar on
dS1, from T̄ = 0 to T̄ = π/ω. P (ϕS) =

∫
dϕN PT̄ (ϕS , ϕN ) is thermal and time-independent.

S0 = {N,S} equator τ̄ = 0 of the S1 (cf. fig. C.4.1b):

ZPI =
∫
d2ϕ0 ⟨O|ϕ0⟩⟨ϕ0|O⟩ ≡ ⟨O|O⟩ , ⟨ϕ0|O⟩ ≡

∫
τ̄≤0

Dϕ|ϕ0 e
−SE [ϕ] , (C.4.7)

where ϕ0 = (ϕS,0, ϕN,0). The notation
∫
τ̄≤0 Dϕ|ϕ0 means the path integral of ϕ = (ϕS , ϕN ) is

performed on the lower hemicircle τ̄ ≤ 0 (orange part in fig. C.4.1b), with boundary conditions

ϕ|τ̄=0 = ϕ0. ⟨O|ϕ0⟩ is similarly defined as a path integral on the upper hemicircle (green part).

It is not too difficult to explicitly compute |O⟩ in the |ϕS,0, ϕN,0⟩ basis, but it is easier to compute

it in the oscillator basis |nS , nN ⟩, noticing that slicing the path integral defining |O⟩ allows us

to write it as ⟨nS , nN |O⟩ = (nS |e−πH |nN ) = e−πω(nS+ 1
2 ) δnS ,nN . Thus

|O⟩ =
∑
n

e−πω(n+ 1
2 )|n, n⟩ = e−πω/2 exp

(
e−πωaS†

ω a
N†
−ω
)
|0, 0⟩ . (C.4.8)

In the Schrödinger picture, |O⟩ is to be thought of as an initial state at T̄ = 0 for global

dS1: pictorially, we are gluing the bottom half of fig. C.4.1b to the top half of fig. C.4.1a.

This state evolves nontrivially in global time T̄ : though invariant under SO(1, 1) generated by

H = HS−HN , it is not invariant under forward global time translations generated by the global

Hamiltonian H ′ = HS + HN . For viewing pleasure this is illustrated in fig. C.4.2, which also

visually exhibits the north-south entangled nature of |O⟩.

Note that ZPI = ⟨O|O⟩ =
∑
n e

−2πω(n+ 1
2 ), reproducing the dS1 static patch thermal parti-

tion function (C.4.18). Indeed from the point of view of the static patch, the global Euclidean

vacuum state looks thermal with inverse temperature β = 2π: the southern reduced density

matrix ϱ̂S obtained by tracing out the northern degree of freedom ϕN in the global Euclidean

vacuum |O⟩ is ϱ̂S =
∑
n e

−2πω(n+ 1
2 )|n)(n| = e−2πHS . In contrast to the global |O⟩, the reduced

density matrix is time-independent.
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The path integral slicing arguments we used did not rely on the precise form of the action.

In particular the conclusions remain valid when we add interactions:

|O⟩ =
∑
n

e−βEn/2|n, n⟩ , ϱ̂S = e−βHS , ZPI = ⟨O|O⟩ = TrS e−βH (β = 2π)

(C.4.9)

Actually in the d = 0 case at hand, we can generalize all of the above to arbitrary values

of β. (For d > 0 this would create a conical singularity at r = 1 on Sd+1, but for S1 the

point r = 1 does not exist.) Note that since the reduced density matrix is thermal, the

north-south entanglement entropy in the Euclidean vacuum |O⟩ equals the thermal entropy:

Sent = −trS ϱS log ϱS = Sth = (1 − β∂β) logZ, where ϱS ≡ ϱ̂S/Z, Z = TrS ϱ̂S .

Despite appearing distinctly non-vacuous from the point of view of a local observer, and

being globally time-dependent, the state |O⟩ does deserve its “vacuum” epithet. As already

mentioned, it is invariant under the global SO(1, 1) isometry group: H|O⟩ = 0. Moreover, for

the free scalar, (C.4.8) implies |O⟩ is itself annihilated by a pair of global annihilation operators

aG related related to aS , aS†, aN and aN† by a Bogoliubov transformation:

aG±ω|O⟩ = 0 , aGω ≡
aSω − e−πωaN†

−ω√
1 − e−2πω

, aG−ω ≡
aN−ω − e−πωaS†

ω√
1 − e−2πω

, (C.4.10)

normalized such that [aG±ω, a
G†
±ω] = δ±,±. From (C.4.3) we get H = ω aG†

ω aGω −ω aG†
−ωa

G
−ω. Thus

we can construct the global Hilbert space HG as a Fock space built on the Fock vacuum |O⟩,

by acting with the global creation operators aG†
±ω. The Hilbert space H(1)

G of “single-particle”

excitations of the global Euclidean vacuum is two-dimensional, spanned by

|±ω⟩ ≡ aG†
±ω|O⟩, H|±ω⟩ = ±ω |±ω⟩ . (C.4.11)

The character Θ(t) of the SO(1, 1) representation furnished by H(1)
G is

Θ(t) ≡ trG e−itH = e−itω + eitω . (C.4.12)

The above constructions are straightforwardly generalized to fermionic oscillators. The character
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of a collection of bosonic and fermionic oscillators of frequencies ωi and ω′
j is

Θ(t) = trG e−iHt = Θ(t)bos + Θ(t)fer =
∑
i,±

e±iωi +
∑
j,±

e±iω′
j . (C.4.13)

Character formula

For a single bosonic resp. fermionic oscillator of frequency ω, log Tr e−βH has the following

integral representation:4

log
(
e−βω/2(1 − e−βω)−1) = +

∫ ∞

0

dt

2t
1 + e−2πt/β

1 − e−2πt/β
(
e−iωt + eiωt

)
log
(
e+βω/2(1 + e−βω)) = −

∫ ∞

0

dt

2t
2 e−πt/β

1 − e−2πt/β
(
e−iωt + eiωt

)
.

(C.4.14)

Combining this with (C.4.13) expresses the thermal partition function of a collection of bosonic

and harmonic oscillators as an integral transform of its SO(1, 1) character:

log Tr e−βH =
∫ ∞

0

dt

2t

(1 + e−2πt/β

1 − e−2πt/β Θ(t)bos − 2 e−πt/β

1 − e−2πt/β Θ(t)fer

)
. (C.4.15)

The Euclidean path integral on an S1 of radius ℓ = 1 for a collection of free bosons and fermions

(the latter with thermal, i.e. antiperiodic, boundary conditions) is then given by putting β = 2π

in the above:

logZPI =
∫ ∞

0

dt

2t

(1 + e−t

1 − e−t Θ(t)bos − 2 e−t/2

1 − e−t Θ(t)fer

)
. (C.4.16)

C.4.2 Sd+1

The arguments in this section will be formal, following the template of section C.4.1 while

glossing over some important subtleties, the consequence of which we discuss in section C.4.5.

Wick-rotating a QFT on dSd+1 to Sd+1, we get the Euclidean path integral

ZPI =
∫

DΦ e−SE [Φ] , (C.4.17)

4 The t−2 pole of the integrand is resolved by the iϵ-prescription t−2 → 1
2

(
(t− iϵ)−2 + (t+ iϵ)−2), left

implicit here and in the formulae below. The integral formula can be checked by observing the integrand is even
in t, extending the integration contour to the real line, closing the contour, and summing residues.
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where Φ collects all fields in the theory. Just like in the d = 0 case, the two different paths

from dSd+1 to Sd+1, i.e. Wick-rotating global time T̄ or static patch time T (cf. fig. C.3.1 and

table C.3.7), naturally give rise to two different dS Hilbert space interpretations: one involving

the global Hilbert space HG and one involving the static patch Hilbert space HS .

The global Wick rotation of fig. C.3.1b leads to an interpretation of ZPI as computing

⟨O|O⟩, analogous to (C.4.7), by cutting the path integral on the globlal Sd equator τ̄ = 0:

ZPI =
∫
τ̄=0

dΦ0 ⟨O|Φ0⟩⟨Φ0|O⟩ ≡ ⟨O|O⟩ , ⟨Φ0|O⟩ ≡
∫
τ̄≤0

DΦ|Φ0 e
−SE [Φ] , (C.4.18)

where
∫
τ̄≤0 Dϕ|ϕ0 means the path integral is performed on the lower hemisphere τ̄ ≤ 0 of Sd+1

(orange region in fig. C.3.1b) with boundary conditions Φ|τ̄=0 = Φ0. ⟨O|Φ0⟩ is similarly defined

as a path integral on the upper hemisphere τ̄ ≥ 0 (green region). This defines the Hartle-

Hawking/Euclidean vacuum state |O⟩ [237] of global dSd+1, with ZPI computing the natural

pairing of |O⟩ with ⟨O|.5

The static patch Wick rotation of fig. C.3.1d on the other hand leads to an interpretation of

ZPI as a thermal partition function at inverse temperature β = 2π, analogous to (C.4.5): slicing

the path integral along constant-τ slices as in fig. C.3.1d, and viewing e−τH with H = M0,d+1

as the Euclidean time evolution operator acting on HS , we formally get6

ZPI ≃ TrHS
e−βH (β = 2π) . (C.4.19)

Like in the d = 0 case, this interpretation can be related to the global interpretation (C.4.18).

Picking suitable bases of HS and HN diagonalizing H, and applying a similar slicing argument,

5For kind enough theories, such as a scalar field theory, this pairing can be identified with the Hilbert space
inner product. However not all theories are kind enough, as is evident from the negative-mode rotation phase
i−(d+3) in the one-loop graviton contribution to ZPI = ⟨O|O⟩ according to (5.5.17) and [131]. Indeed for gravity
this pairing is not in an obvious way related to the semiclassical inner product of [238]. On the other hand, in the
CS formulation of 3D gravity it appears to be framing-dependent, vanishing in particular for canonical framing
(cf. (C.7.28) and discussion below it). The phase also drops out of ⟨A⟩ ≡ ⟨O|A|O⟩/⟨O|O⟩.

6 The notation ≃ means “equal according to these formal arguments”. Besides the default deferment of
dealing with divergences, we are ignoring some additional important points here, including in particular the fixed
points of H: the Sd−1 at r = 1 (yellow dot in fig. C.3.1), where the equal-τ slicing of (C.4.19) degenerates, and
the HG = HN ⊗ HS factorization implicit in (C.4.20) breaks down. We return to these points in section C.4.5.
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we formally get the analog of (C.4.9):

|O⟩ ≃ “
∑
n

”e−βEn/2|En, En⟩ , ϱ̂S ≃ e−βHS (β = 2π) , (C.4.20)

where we have put the sum in quotation marks because the spectrum is actually continuous, as

we will describe more precisely for free QFTs below. Granting this, we conclude that an inertial

observer in de Sitter space sees the global Euclidean vacuum as a thermal state at inverse

temperature β = 2π, the Hawking temperature of the observer’s horizon [17, 57, 175].

Applying (C.4.19) to a free QFT on dSd+1, we can write the corresponding Gaussian ZPI

on Sd+1 as the thermal partition function of an ideal gas in the southern static patch:

logZPI ≃ log TrS e−2πH =
∑
±

∓
∫ ∞

0
dω ρS(ω)±

(
log(1 ∓ e−2πω) + 2πω/2

)
, (C.4.21)

where ρS(ω) ≡ trS δ(ω −H) is the density of single-particle states at energy ω > 0 above the

vacuum energy in the static patch, split into bosonic and fermionic parts as ρS = ρS+ + ρS−.

Using Θ(t) = Θ(−t), we can write the character for arbitrary SO(1, d+ 1) representations as

Θ(t) = trG e−itH =
∫ ∞

0
ρG(ω)

(
e−iωt + eiωt

)
(C.4.22)

where ρG(ω) ≡ trG δ(ω − H). The Bogoliubov map (C.4.10) formally implies ρG(ω) ≃ ρS(ω)

for ω > 0, hence, following the reasoning leading to (C.4.16),

logZPI ≃ logZbulk ≡
∫ ∞

0

dt

2t

( 1 + e−t

1 − e−t Θ(t)bos − 2 e−t/2

1 − e−t Θ(t)fer

)
. (C.4.23)

C.4.3 Brick wall regularization

Here we review how attempts at evaluating the ideal gas partition function (C.4.21) directly

hit a brick wall. Consider for example a scalar field of mass m2 on dSd+1. Denoting ∆± =
d
2 ±

(
(d2)2 −m2)1/2, the positive frequency solutions on the static patch are of the form

ϕωσ(T,Ω, r) ∝ e−iωT Yσ(Ω) rℓ
(
1 − r2

)iω/2
2F1

( ℓ+∆++iω
2 , ℓ+∆−+iω

2 ; d2 + ℓ; r2), (C.4.24)
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where ω > 0, and Yσ(Ω) is a basis of spherical harmonics on Sd−1 labeled by σ, which includes

the total SO(d) angular momentum quantum number ℓ. A basis of energy and SO(d) angular

momentum eigenkets is therefore given by |ωσ) satisfying (ωσ|ω′σ′) = δ(ω − ω′) δσσ′ . Naive

evaluation of the density of states in this basis gives a pathologically divergent result ρS(ω) =∫
dω′∑

σ(ω′σ|δ(ω − ω′)|ω′σ) =
∑
σ δ(0), and commensurate nonsense in (C.4.21).

Pathological divergences of this type are generic in the presence of a horizon. Physically

they can be thought of as arising from the fact that the infinite horizon redshift enables the

existence of field modes with arbitrary angular momentum and energy localized in the vicinity of

the horizon. One way one therefore tries to deal with this is to replace the horizon by a “brick

wall” at a distance δ away from the horizon [162], with some choice of boundary conditions, say

ϕ(T,Ω, 1 − 1
2δ

2) = 0 in the example above. This discretizes the energy spectrum and lifts the

infinite angular momentum degeneracy, allowing in principle to control the divergences as δ → 0.

However, inserting a brick wall alters what one is actually computing, introduces ambiguities (e.g.

Dirichlet/Neumann), potentially leads to new pathologies (e.g. Dirichlet boundary conditions

for the graviton are not elliptic [239]), and breaks most of the symmetries in the problem.

A more refined version of the idea considers the QFT in Pauli-Villars regularization [177].

This eliminates the dependence on δ in the limit δ → 0 at fixed PV-regulator scale Λ. It was

shown in [177] that for scalar fields the remaining divergences for Λ → ∞ agree with those of the

PV-regulated path integral.7 A somewhat different approach, reviewed in [150, 240], first maps

the equations of motion in the metric ds2 = gµνdx
µdxν by a (singular) Weyl transformation

to formally equivalent equations of motion in the “optical” metric ds̄2 = |g00|−1ds2. In the

case at hand this would be ds̄2 = −dT 2 + (1 − r2)−2dr2 + (1 − r2)−1r2dΩ2, corresponding to

R × hyperbolic d-ball. The thermal trace is then mapped to a path integral on the Euclidean

optical geometry with an S1 of constant radius β and a Weyl-transformed action. (This is

not a standard covariant path integral. In the case at hand, unless the theory happens to be

conformal, non-metric r-dependent terms break the SO(1, d) symmetry of the hyperbolic ball

to SO(d).) This path integral can be expressed in terms of a heat kernel trace
∫
x⟨x|e−τD̄|x⟩.

The divergences encountered earlier now arise from the fact that the optical metric ds̄2 has

infinite volume near r = 1. This is regularized by cutting the
∫
x integral off at r = 1 − δ,

7This work directly inspired the use of Pauli-Villars regularization in section 5.2.
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analogous to the brick wall cutoff, though computationally more convenient. For scalars and

spinors, Pauli-Villars or dimensional regularization again allows trading the δ → 0 divergences

for the standard UV divergences [240].

Unfortunately, certainly for general field content and in the absence of conformal invariance,

none of these variants offers any simplification compared to conventional Euclidean path integral

methods. In the case of interest to us, the large underlying SO(1, d + 1) symmetry is broken,

and with it one’s hope for easy access to exact results. Generalization to higher-spin fields, or

even just the graviton, appears challenging at best.

C.4.4 Character regularization

The character formula (C.4.23) is formally equivalent to the ideal gas partition function (C.4.21),

and indeed at first sight, naive evaluation in a global single-particle basis |ωσ⟩ = aG†
ωσ|0⟩ diag-

onalizing H = ω ∈ R, obtained e.g. by quantization of the natural cylindrical mode func-

tions of the future wedge (F in fig. C.3.1 and table C.3.5), gives a similarly pathological

Θ(t) = trG e−iHt =
∫∞

−∞ dω
∑
σ⟨ωσ|e−iωt|ωσ⟩ = 2πδ(t)

∑
σ δ(0); hardly a surprise in view

of the Bogoliubov relation ρG(ω) ≃ ρS(ω) and our earlier result ρS(ω) =
∑
σ δ(0). Thus the

conclusion would appear to be that the situation is as bad, if not worse, than it was before.

However this is very much the wrong conclusion. As reviewed in the section 3.4, Θ(t),

properly defined as a Harish-Chandra character, is in fact rigorously well-defined, analytic in t

for t ̸= 0, and moreover easily computed. For example for a scalar of mass m2 on dSd+1, we

get (3.4.7:

Θ(t) = e−t∆+ + e−t∆−

|1 − e−t|d
∆± ≡ d

2 ±
√(

d
2
)2 −m2 (C.4.25)

as explicitly computed in 3.4.2. The reason why naive computation by diagonalization of H

fails so badly is explained in detail in the remark 8: it is not the trace itself that is sick, but

rather the basis |ωσ⟩ used in the naive computation.

Substituting the explicit Θ(t) into the character integral (C.4.23), we still get a UV-divergent

result, but this divergence is now easily regularized in a standard, manifestly covariant way,

as explained in section 5.2.2. Keeping the large underlying symmetry manifest allows exact
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evaluation, for arbitrary particle content.

In section 5.3 we show that for scalars and spinors, the Euclidean path integral ZPI on Sd+1,

regularized as in (5.3.2), exactly equals Zbulk as defined in (C.4.23), regularized as in (5.3.9):

ZPI,ϵ = Zbulk,ϵ (scalars and spinors) , (C.4.26)

One might wonder how it is possible the switch to characters makes such a dramatic dif-

ference. After all, (C.4.21) and (C.4.23) are formally equal. Yet the former first evaluates to

nonsense and then hits a brick wall, while the latter somehow ends up effortlessly producing

sensible results upon standard UV regularization. The discussion in the remark 8, provides

some clues: character regularization can be thought of, roughly speaking, as being akin to a

regularization cutting off global SO(d+ 1) angular momentum.

This goes some way towards explaining why the character formalism fits naturally with the

Euclidean path integral formalism on Sd+1, as covariant (e.g. heat kernel) regularization of the

latter effectively cuts off the SO(d+ 2) ⊃ SO(d+ 1) angular momentum.

It also goes some way towards explaining what happened above. One way of thinking about

the origin of the pathological divergences encountered in section C.4.3 is that, as mentioned in

footnote 6, the formal argument implicitly starts from the premise that the QFT Hilbert space

can be factorized as HG = HS ⊗ HN , like in the S1 toy model. However this cannot be done

in the continuum limit of QFT: locally factorized states, such as the formal state |O) ⊗ |O) in

which both the southern and the northern static patch are in their minimal energy state, are

violently singular objects [241]. Cutting off the global SO(d+1) angular momentum does indeed

smooth out the sharp north-south divide: SO(d+ 1) is the isometry group of the global spatial

slice at T̄ = 0 (fig. C.3.1b). The angular momentum cutoff means we only have a finite number

of spherical harmonics available to build our field modes. This makes it impossible in particular

to build field modes sharply localized in the southern or northern hemisphere: the harmonic

expansion of a localized mode always has infinitely many terms. Cutting off this expansion will

necessarily leave some support on the other hemisphere. Quite similar in this way again to the

Euclidean path integral, this offers some intuition on why the UV-regularized character integral

avoids the pathological divergences induced by sharply cutting space.
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C.4.5 Edge corrections

In view of all this and (C.4.26), one might be tempted at this point to jump to the conclusion

that the arguments of section C.4.2, while formal and glossing over some subtle points, are

apparently good enough to give the right answer provided we use the character formulation, and

that likewise Z(1)
PI on the sphere for a field of arbitrary spin s, despite its off-shell baroqueness, is

just the ideal gas partition function Zbulk on the dS static patch, calculable with on-shell ease:

mission accomplished. As further evidence in favor of declaring footnote 6 overly cautious,

one might point to the fact that in the context of theories of quantum gravity, identifying

Zgrav
PI = TrH e−βH elegantly reproduces the thermodynamics of horizons inferred by other means

[57], and that such identifications are moreover known to be valid in a quantitatively precise way

in many well-understood cases in string theory and AdS-CFT. If the formal argument is good

enough for quantum gravity, then surely it is good enough for field theory, one might think.

These naive considerations are wrong: the formal relation ZPI ≃ Zbulk for fields of spin

s ≥ 1 receives “edge” corrections. In sections 5.4 and 5.5, we determine these for massive resp.

massless spin-s fields on Sd+1 by direct computation. The results are eqs. (5.4.7) and (5.5.17).

The corrections we find exhibit a concise and suggestive structure: again taking the form of a

character formula like (C.4.23), but encoding instead a path integral on a sphere in two lower

dimensions, i.e. on Sd−1 rather than Sd+1. This Sd−1 is naturally identified with the horizon

r = 1, i.e. the edge of the static patch hemisphere, the yellow dot in fig. C.3.1. The results of

section 5.7 then imply SPI ≃ Sbulk likewise receives edge corrections (besides corrections due

to nonminimal coupling to curvature, which arise already for scalars).

Similar edge corrections, to the entropy SPI ≃ Sbulk in the conceptually analogous case

of Rindler space, were anticipated long ago in [5] and explicitly computed shortly thereafter

for massless spin-1 fields in [6]. The result of [6] was more recently revisited in several works

including [137, 160], relating it to the local factorization problem of constrained QFT Hilbert

spaces [154–159] and given an interpretation in terms of the edge modes arising in this context.

We leave the precise physical interpretation of the explicit edge corrections we obtain in this

paper to future work. Below we will review why they were to be expected, and how related

corrections can be interpreted in analogous, better-understood contexts in quantum gravity and

QFT. We begin by explaining why the quantum gravity argument was misleading and what
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its correct version actually suggests, first from a boundary CFT point of view in the precise

framework of AdS-CFT, then from a bulk point of view in a qualitative picture based on string

theory on Rindler space. Finally we return to interpretations within QFT itself, clarifying more

directly why the caution expressed in footnote 6 was warranted indeed.

C.4.5.1 AdS-CFT considerations

As mentioned above, there are reasons to believe that in theories of quantum gravity, the

identification Zgrav
PI = TrH e−βH is exact as a semiclassical (small-GN) expansion.

However, the key point here is that H is the Hilbert space of the fundamental microscopic

degrees of freedom, not the Hilbert space of the low energy effective field theory. This can be

made very concrete in the context of AdS-CFT, where H has a precise boundary CFT defini-

tion. For example for asymptotically Euclidean AdSd+1 geometries with S1
β × Sd−1 conformal

boundary, certain analogs of the formal relations (C.4.19) and (C.4.20) then become exact in

the semiclassical/large-N expansion [242, 243]:

Zgrav
PI = TrH e−βH = ⟨O|O⟩ , |O⟩ =

∑
n

e−βEn/2|En)H ⊗ |En)H . (C.4.27)

Crucially, H here is the complete boundary CFT Hilbert space, and |O⟩ is the Euclidean vacuum

state of two disconnected copies of the boundary CFT, constructed exactly like in the dS1 toy

model of section C.4.1, but with the hemicircle 1
2S

1 replaced by 1
2S

1×Sd−1. From a semiclassical

bulk dual point of view this can be viewed as the Euclidean vacuum of two disconnected copies

of global AdS or of the eternal AdS-Schwarzchild geometry [243], depending on whether β lies

above or below the Hawking-Page phase transition point βc [244].

When β > βc, where βc ∼ O(1) assuming the low-energy gravity theory is approximately

Einstein with GN ≪ ℓd−1 = 1, Zgrav
PI is dominated by the thermal EAdS saddle [244], with

on-shell action SE ≡ 0, so in the limit GN → 0, Zgrav
PI = Z

(1)
PI . Thus in this case, the relation

Zgrav
PI = TrH e−βH of (C.4.27) indeed implies Z(1)

PI equals a statistical mechanical partition

function. There is no need to invoke quantum gravity to see this, of course: the thermal S1

is noncontractible in the bulk geometry, so the bulk path integral slicing argument is free of

subtleties, directly implying Z(1)
PI equals the partition function Tr e−βH of an ideal gas in global
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bc d

Figure C.4.3: AdS-Schwarzschild analogs of c,b,d in fig. C.3.1. Black dotted line = singularity. Thick
brown line = conformal boundary.

AdS.

On the other hand if β < βcrit, the dominant saddle is the Euclidean Schwarzschild geometry

(fig. C.4.3), with on-shell action S̃E ∝ − 1
GN

, so in the limit GN → 0, Zgrav
PI = Z

(0)
PI = e−S̃E .

In this case the identification Zgrav
PI = TrH e−βH of (C.4.27) no longer implies the one-loop

correction Z
(1)
PI can be identified as a statistical mechanical partition function. In particular

the bulk one-loop contributions S(1) = (1 − β∂β) logZ(1)
PI to the entropy need not be positive.

(More specifically its leading divergent term, which in a UV-complete description of the bulk

theory would become finite but generically still dominant, need not be positive.) From the CFT

point of view, these are just O(1) corrections in the large-N expansion of the statistical entropy.

Although the total entropy must of course be positive, corrections can come with either sign.

From the bulk point of view, since the Euclidean geometry is the Wick-rotated exterior of a

black hole, the thermal circle is contractible, shrinking to a point analogous to the yellow dot

in fig. C.3.1d, leading to the same issues as those mentioned in footnote 6.

C.4.5.2 Strings on Rindler considerations

To gain some insight from a bulk point of view, we consider the simplest example of a spacetime

with a horizon: the Rindler wedge ds2 = −ρ2dt2 + dρ2 + dx2
⊥ of Minkowski space. While not

quite at the level of AdS-CFT, we do have a perturbative theory of quantum gravity in Minkowski

space: string theory. In fact, that Z(1)
PI on a Euclidean geometry with a contractible thermal

circle cannot be interpreted as a statistical mechanical partition function in general, even if the

full Zgrav
PI has such an interpretation, was anticipated long ago in [5], in an influential attempt

at developing a string theoretic understanding of the thermodynamics of the Rindler horizon.
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Figure C.4.4: Closed/open string contributions to the total Euclidean Rindler (ds2 = ρ2dτ2+dρ2+dx2)
partition function according to the picture of [5]. τ = angle around yellow axis ρ = 0; blue|red plane is
τ = π|0. a,b,c contribute to the entropy. Sliced along Euclidean time τ , a and b can be viewed as free
bulk resp. edge string thermal traces contributing positively to the entropy, while c can be viewed as an
edge string emitting and reabsorbing a bulk string, contributing a (negative) interaction term.

Rindler space Wick rotates to

ds2 = ρ2dτ2 + dρ2 + dx2
⊥, τ ≃ τ + β, β = 2π − ϵ . (C.4.28)

with the conical defect ϵ = 0 on-shell. The argument given in [5] is based on the point of view

developed in their work that loop corrections in the semiclassical expansion of the Rindler entropy

SPI ≡ (1 − β∂β) logZgrav
PI |β=2π are equivalent to loop corrections to the Newton constant,

ensuring the entropy S = A/4GN involves the physically measured GN rather than than the

bare GN. In N = 4 compactifications of string theory to 4D Minkowski space (and in N = 4

supergravity theories more generally), loop corrections to the Newton constant vanish. By the

above observation, this implies loop corrections to SPI vanish as well. Hence there must be

cancelations between different particle species, and in particular the one-loop contribution to

the entropy of some fields in the supergravity theory must be negative. Since statistical entropy

is always positive, the one-loop Z(1)
PI of such fields cannot be equal to a statistical mechanical

partition function.

In the same work [5], a qualitative stringy picture was sketched giving some bulk intuition

about the nature of such negative contributions to SPI when the total SPI is a statistical

entropy. In this picture, all relevant microscopic fundamental degrees of freedom are presumed

to be realized in the bulk quantum gravity theory as weakly coupled strings. More specifically
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it is presumed that Zgrav
PI = TrH e−βH where H is the string Hilbert space on Rindler space

and H is the Rindler Hamiltonian, so SPI = S, the statistical entropy. Tree level and one-loop

contributions to logZPI are shown in fig. C.4.4. Diagrams d,e do not contribute to the entropy

SPI = (1 − β∂β) logZPI as their logZPI ∝ β. Cutting b along constant-τ slices gives it an

interpretation as a thermal trace over “bulk” string states away from ρ = 0 (closed strings in

top row).8 Similarly, a can be viewed as a thermal trace over “edge” string states stuck to

ρ = 0 (open strings in top row). On the other hand c represents an interaction between bulk

and edge strings, with no thermal or state counting interpretation on its own. Being statistical

mechanical partition functions, a and b contribute positively to SPI, whereas c may contribute

negatively. In fact in the N = 4 case discussed above, c must be negative, canceling b to render

S
(1)
PI = 0. From an effective field theory point of view, b and e correspond to the bulk ideal

gas partition function inferred from formal arguments along the lines of section C.4.2, while c

represents “edge” corrections missed by such arguments.

This picture is qualitative, as the individual contributions corresponding to a sharp split of

the worldsheet path integrals along these lines are likely ill-defined/divergent [245]. Moreover,

even without any splitting, an actual string theory calculation of SPI = (1 − β∂β) logZPI|β=2π

is problematic, as Euclidean Rindler with a generic conical defect ϵ = 2π−β is off-shell. Shortly

after [5], [246] proposed to compute ZPI on the orbifold R2/ZN for general integer N and

then analytically continue the result to N → 1 + ϵ. Unfortunately such orbifolds have closed

string tachyons leading to befuddling IR-divergences [246, 247]. Recently, progress was made in

resolving some of these issues: in an open string version of the idea, arranged in type II string

theory by adding a sufficiently low-dimensional D-brane, it was shown in [248] that upon careful

analytic continuation, the tachyon appears to disappear at N = 1 + ϵ.

8As a simple analog of what is meant here, consider a free scalar field on S1 parametized by τ ≃ τ + β.
Then logZPI =

∫∞
0

ds
2s

Tr e−s 1
2 (−∂2

τ +m2) =
∑

n

∫
ds
2s

∫
Dτ |n exp[− 1

2

∫ s

0 (τ̇2 + m2)] =
∑

n
1

2|n| e
−|n|βm. Here

n labels the winding number sector of the particle worldline path integral with target space S1. Discarding the
UV-divergent 1

0 term, this sums to logZPI = − log(1−e−βm)− 1
2βm = log Tr e−βH as in (C.4.5). b is analogous

to the |n| = 1 contribution e−βm, e is analogous to n = 0, and higher winding versions of b correspond to |n| > 1.
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Figure C.4.5: Tree-level and one-loop contributions to logZPI for massless vector field in Euclidean
Rindler (C.4.28). These can be viewed as field theory limits of fig. C.4.4, with verbatim the same
comments applicable to a-e. The worldline path integral c appears with a sign opposite to b in logZ(1)

PI
[6].

C.4.5.3 QFT considerations

The problem of interest to us is really just a problem involving Gaussian path integrals in free

quantum field theory, so there should be no need to invoke quantum gravity to gain some insight

in what kind of corrections we should expect to the naive ZPI ≃ Zbulk. Indeed the above stringy

Rindler considerations have much more straightforwardly computable low-energy counterparts

in QFT.

Motivated by [5], [6] computed Z(1)
PI for scalars, spinors and Maxwell fields on Rindler space.

For scalars and spinors, this was found to coincide with the ideal gas partition function, whereas

for Maxwell an additional contact term was found, expressible in terms of a “edge” worldline

path integral with coincident start and end points at ρ = 0, fig. C.4.5c. This term contributes

negatively to S(1)
PI = (1 − β∂β) logZPI|β=2π and thus has no thermal interpretation on its own.

In fact it causes the total S(1)
PI to be negative in less than 8 dimensions. The results of [6]

and more generally the picture of [5] were further clarified by low-energy effective field theory

analogs in [145], emphasizing in particular that whereas SPI remains invariant under Wilsonian

RG, the division between contributions with or without a low-energy statistical interpretation

does not, the former gradually turning into the latter as the UV-cutoff Λ is lowered. At Λ = 0,

only the tree-level contribution S = A/4GN of fig. C.4.5a is left.

The contact/edge correction of fig. C.4.5c to logZPI can be traced to the presence of a

curvature couplingX linear in the Riemann tensor in SE =
∫
A(−∇2+X)A+· · · [145, 146, 150].

Such terms appear for any spin s ≥ 1 field, massless or not. Hence, as one might have anticipated

from the stringy picture of fig. C.4.4, they are the norm rather than the exception.

The result of [6] was more recently revisited in [137], relating the appearance of edge
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X ⇥ ⇥X

Rc R

Figure C.4.6: Candidate classical initial electromagnetic field configurations (phase space points), with
A0 = 0, Ai = 0, showing electric field Ei = Πi = Ȧi. Gauss’ law requires continuity E⊥ across the
boundary, disqualifying the two candidates on the right.

corrections to the local factorization problem of QFT Hilbert spaces with gauge constraints

[154–159] like Gauss’ law ∇ · E = 0 in Maxwell theory. This problem arises more generally

when contemplating the definition of entanglement entropy SR = −Tr ϱR log ϱR of a spatial

subregion R in gauge theories. In principle ϱR is obtained by factoring the global Hilbert space

HG = HR ⊗ HRc and tracing out HRc . As mentioned at the end of C.4.4, local factorization

is impossible in the continuum limit of any QFT, including scalar field theories, but the issue

raised there can be dealt with by a suitable regularization. However for a gauge theory such

as free Maxwell theory, there is an additional obstruction to local factorization, which persists

after regularization, and indeed is present already at the classical phase space level: the Gauss

law constraint ∇ ·E = 0 prevents us from picking independent initial conditions in both R and

Rc (fig. C.4.6), unless the boundary is a physical object that can accommodate compensating

surface charges — but this is not the case here. One way to resolve this is to decompose the

global phase space into sectors labeled by “center” variables located at the boundary surface

[154–159], for example the normal component E⊥ of the electric field. The center variables

Poisson-commute with all local observables inside R and Rc. In any given sector, factorization

then becomes possible.

Building on this framework it was shown in [137] that in a suitable brick wall-like regulariza-

tion scheme and for some choice of measure DE⊥, the edge correction of [6] arises as a classical

contribution
∫

DE⊥ e
−SE [E⊥] to the thermal statistical partition function. Here SE [E⊥] is the

on-shell action for static electromagnetic field modes in Euclidean Rindler space with prescribed

E⊥, localized vanishingly close to ρ = 0 when the brick-wall cutoff is taken to zero, and thus

interpreted as edge modes. They also find a more precise form for the result of [6] for Rindler

with its transverse dimensions compactified on a torus, which is identical in form to our de Sitter
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result (5.5.17) for s = 1, G = U(1).

Similar results for massive vector fields were obtained in [160]. (The Stueckelberg action

for a massive vector has a U(1) gauge symmetry, so from that point of view it may fit into the

above considerations.) An open string realization of the above ideas was proposed in [249]. It

has been suggested that edge modes and “soft hair” might be related [250].

C.5 Derivations for massive higher spins

C.5.1 Massive spin-s fields

Here we derive (5.4.7) and (5.4.6). The starting point is the path integral (5.4.4). To get

a result guaranteed to be consistent with QFT locality and general covariance, we should in

principle start with the full off-shell system [58] involving auxiliary Stueckelberg fields of all spin

s′ < s.

Transverse-traceless part ZTT

One’s initial hope might be that ZPI ends up being equal to the path integral ZTT restricted to

the propagating degrees of freedom, the transverse traceless modes of ϕ, with kinetic operator

given by the second-order equation of motion in (5.4.1). Regularized as in (5.3.2), this is

logZTT ≡
∫ ∞

0

dτ

2τ e
−ϵ2/4τ TrTT e

−τ(−∇2
s,TT+m2

s) . (C.5.1)

The index TT indicates the object is defined on the restricted space of transverse traceless

modes. This turns out to be correct for Euclidean AdS with standard boundary conditions

[138]. However, this is not quite true for the sphere, related to the presence of normalizable

tensor decomposition zeromodes.

The easiest way to convince oneself that ZPI ̸= ZTT on the sphere is to just compute ZTT

and observe it is inconsistent with locality, in a sense made clear below. To evaluate ZTT, all we

need is the spectrum of −∇2
TT +m2

s [213, 251]. The eigenvalues are λn =
(
n+ d

2

)2
+ν2, n ≥ s

with degeneracy given by the dimension Dd+2
n,s of the so(d+ 2) representation corresponding to

the two-row Young diagram Yn,s
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Following the same steps as for the scalar case in section 5.3, we end up with

logZTT =
∫ ∞

0

dt

2t
(
qiν + q−iν) fTT(q) , fTT(q) ≡

∑
n≥s

Dd+2
n,s q

d
2 +n . (C.5.2)

Now let us evaluate this explicitly for the example of a massive vector on S5, i.e. d = 4, s = 1.

From (2.2.6) we read off D6
n,1 = 1

3n(n+ 2)2(n+ 4). Performing the sum we end up with

fTT(q) = 1 + q

1 − q

( 4 q2

(1 − q)4 − q

(1 − q)2

)
+ q (d = 4, s = 1) . (C.5.3)

The first term inside the brackets can be recognized as the d = 4 massive spin-1 bulk character.

The small-t expansion of the integrand in (C.5.2) contains a term 1/t. This term arises from

the term +q in the above expression, as the other parts give contributions to the integrand that

are manifestly even under t → −t. The presence of this 1/t term in the small-t expansion implies

logZTT has a logarithmic UV divergence logZTT|log div = logM where M is the UV cutoff

scale. More precisely in the heat-kernel regularization under consideration, the contribution of

the term +q to logZTT is, according to (C.2.30),

∫ ∞

0

dt

2t
(
q1+iν + q1−iν) = log M√

1 + ν2
, M ≡ 2e−γ

ϵ
. (C.5.4)

Note that m =
√

1 + ν2 is the Proca mass (5.4.2) of the vector field. The presence of a

logarithmic divergence means ZPI ̸= ZTT, for logZPI itself is defined as a manifestly covariant,

local QFT path integral on S5, which cannot have any logarithmic UV divergences, as there are

no local curvature invariants of mass dimension 5.

For s = 2 and d = 4 we get similarly

fTT(q) = 1 + q

1 − q

( 9 q2

(1 − q)4 − 6 q
(1 − q)2

)
+ 6 q + 15 q2 (d = 4, s = 2) . (C.5.5)

The terms 6 q + 15 q2 produce a nonlocal logarithmic divergence logZTT|log div = c logM ,

where c = 6 + 15 = 21, so again ZPI ̸= ZTT. Note that 21 = 7×6
2 = dim so(1, 6), the number

of conformal Killing vectors on S5. That this is no coincidence can be ascertained by repeating
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the same exercise for general d ≥ 3 and s = 2:

f
(s=2)
TT (q) = 1 + q

1 − q

(
Dd

2 · q
d
2

(1 − q)d −Dd+2
1 · q

d−2
2

(1 − q)d−2

)
+Dd+2

1 q +Dd+2
1,1 q2 . (C.5.6)

The q, q2 terms generate a log-divergence c2 logM , c2 = Dd+2
1 +Dd+2

1,1 = (d+2)+ 1
2(d+2)(d+

1) = 1
2(d + 3)(d + 2) = Dd+3

1,1 = dim so(1, d + 2), the number of conformal Killing vectors on

Sd+1. The identity NCKV = Dd+3
1,1 = Dd+2

1,1 + Dd+2
1,0 and its generalization to the spin-s case

will be a crucial ingredient in establishing our claims. It has a simple group theoretic origin. As

a complex Lie algebra, the conformal algebra so(1, d + 2) generated by the conformal Killing

vectors is the same as so(d + 3), which is generated by antisymmetric matrices and therefore

forms the irreducible representation with Young diagram of so(d+ 3). This decomposes into

irreps of so(d+ 2) by the branching rule

→ + , (C.5.7)

implying in particular Dd+3
1,1 = Dd+2

1,1 +Dd+2
1 . Geometrically this reflects the fact that the con-

formal Killing modes split into two types: (i) transversal vector modes φi1µ , i1 = 1, . . . , Dd+2
1,1 ,

satisfying the ordinary Killing equation ∇(µφ
i1
ν) = 0, spanning the eigenspace of the transver-

sal vector Laplacian, and (ii) longitudinal modes φi0µ = ∇µφ
i, i0 = 1, . . . , Dd+2

1 , satisfying

∇µ∇νφ
i0 + gµνφ

i0 = 0, with the scalar φi0 modes spanning the eigenspace of the scalar

Laplacian on Sd+2.

We can extend the above to general s, d by using the eq. (2.3.23), which is copied here

Dd+2
n,s = Dd+2

n Dd
s −Dd+2

s−1D
d
n+1 (C.5.8)

This relation is crucial and together with the explicit expression (2.2.3) for Dd
s with d ≥ 3

immediately leads to

fTT(q) =
∑
n≥−1

Dd+2
n,s q

d
2 +n −

s−1∑
n=−1

Dd+2
n,s q

d
2 +n (C.5.9)

= 1 + q

1 − q

(
Dd
s · q

d
2

(1 − q)d −Dd+2
s−1 · q

d−2
2

(1 − q)d−2

)
+

s−2∑
n=−1

Dd+2
s−1,n+1 q

d
2 +n . (C.5.10)
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To rewrite the finite sum we used Dd+2
n,s = −Dd+2

s−1,n+1 and Dd+2
s−1,s = 0, both of which follow

from (C.5.8). Substituting this into the integral (C.5.2), we get

logZTT = logZbulk − logZedge + logZres , (C.5.11)

where logZbulk and logZedge are the character integrals defined in (5.4.7)-(5.4.8), and, evalu-

ating the integral of the remaining finite sum as in (C.5.4),

logZres =
s−2∑
n=−1

Dd+2
s−1,n+1

∫
dt

2t
(
q

d
2 +n+iν + q

d
2 +n−iν) =

s−2∑
n=−1

Dd+2
s−1,n+1 log M√

(d2 + n)2 + ν2

(C.5.12)

The term logZres has a logarithmic UV-divergence:

logZres = cs logM + · · · , cs =
s−2∑
n=−1

Dd+2
s−1,n+1 = Dd+3

s−1,s−1 = NCKT , (C.5.13)

where NCKT = Dd+3
s−1,s−1 is the number of rank s− 1 conformal Killing tensors on Sd+1 [252].

This identity has a group theoretic origin as an so(d+3) → so(d+2) branching rule generalizing

(C.5.7). For example for s = 4:

→ + + + . (C.5.14)

Geometrically this reflects the fact that the rank s − 1 = 3 Killing tensor modes split up into

4 types: Schematically φi3µ1µ2µ3 , i3 = 1, . . . , D3,3; φi2µ1µ2µ3 ∼ ∇(µ1φ
i2
µ2µ3), i2 = 1, . . . , D3,2;

φi1µ1µ2µ3 ∼ ∇(µ1∇µ2φ
i1
µ3), i1 = 1, . . . , D3,1; φi0µ1µ2µ3 ∼ ∇(µ1∇µ2∇µ3)φ

i0 , i0 = 1, . . . , D3, where

the φirµ1···µr
span the eigenspace of the TT spin-r Laplacian labeled by the above Young diagrams.

As pointed out in examples above and discussed in more detail below, the log-divergence of

logZres is inconsistent with locality, hence ZPI ̸= ZTT: locality must be restored by the non-TT

part of the path integral. Below we argue this part in fact exactly cancels the logZres term,

thus ending up with logZPI = logZbulk − logZedge, i.e. the character formula (5.4.7).
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Full path integral ZPI: locality constraints

The full, manifestly covariant, local path integral takes the form (a simple example is (C.5.21)):

ZPI = ZTT · Znon-TT = Zbulk · Z−1
edge · Zres · Znon-TT . (C.5.15)

All UV-divergences of logZPI are local, in the sense they can be canceled by local counterterms,

more specifically local curvature invariants of the background metric. In particular for odd

d+ 1, this implies there cannot be any logarithmic divergences at all, as there are no curvature

invariants of odd mass dimension. Recall from (C.5.13) that the term logZres is logarithmically

divergent. For odd d + 1, this is clearly the only log-divergent contribution to logZTT, as the

integrands of both logZbulk and logZedge are even in t in this case. More generally, for even or

odd d + 1, logZres is the only nonlocal log-divergent contribution to logZTT, as follows from

the result of [128, 139] mentioned below (5.4.4), combined with the observation in (C.5.13)

that cs = NCKT. Therefore the log-divergence of logZres must be canceled by an equal log-

divergence in logZnon-TT of the opposite sign.

The simplest way this could come about is if Znon-TT exactly cancels Zres, that is if

Znon-TT = Z−1
res =

s−2∏
n=−1

(
M−1

√
(d2 + n)2 + ν2

)Dd+2
s−1,n+1

⇒ ZPI = Zbulk
Zedge

. (C.5.16)

Note furthermore that from (C.5.9), or from (C.5.12) and Dd+2
s−1,n+1 = −Dd+2

n,s , it follows this

identification is equivalent to the following simple prescription: The full ZPI is obtained from

ZTT by extending the TT eigenvalue sum
∑
n≥s in (C.5.2) down to

∑
n≥−1:

logZPI =
∫ ∞

0

dt

2t
(
qiν + q−iν) ∑

n≥−1
Dd+2
n,s q

d
2 +n , (C.5.17)

i.e. (5.4.6). In what follows we establish this is indeed the correct identification. We start by

showing it precisely leads to the correct spin-s unitarity bound, and that it moreover exactly

reproduces the critical mass (“partially massless”) thresholds at which a new set of terms in the

action defining the path integral Znon-TT fails to be positive definite. Assisted by those insights,

it will then be rather clear how (C.5.16) arises from explicit path integral computations.



293

Unitarity constraints

A significant additional piece of evidence beyond consistency with locality is consistency with

unitarity. It is clear that both the above integral (C.5.17) for logZPI and the integral (C.5.2) for

logZTT are real provided ν is either real or imaginary. Real ν corresponds to the principal series

∆ = d
2 + iν, while imaginary ν = iµ corresponds to the complementary series ∆ = d

2 − µ ∈ R.

In the latter case there is in addition a bound on |µ| beyond which the integrals cease to make

sense, due to the appearance of negative powers of q = e−t and the integrand blowing up at

t → ∞. The bound can be read off from the term with the smallest value of n in the sum. In

the ZTT integral (C.5.2) this is the n = s term ∝ q
d
2 +s±µ, yielding a bound |µ| < d

2 + s. In

the ZPI integral (C.5.17), assuming s ≥ 1, this is the n = −1 term ∝ q
d
2 −1±µ, so the bound

becomes much tighter:

|µ| < d

2 − 1 (s ≥ 1) . (C.5.18)

This is exactly the correct unitarity bound for the spinning complementary series representations

of SO(1, d+1) found in the chapter 3 . In terms of the mass m2 = (d2 +s−2)2−µ2 in (5.4.2), this

becomes m2 > (s− 1)(d− 3 + s), also known as the Higuchi bound [42]. From a path integral

perspective, this bound can be understood as the requirement that the full off-shell action

is positive definite [58], so indeed logZPI should diverge exactly when the bound is violated.

Moreover, we get new divergences in the integral formula for logZnon-TT, according to the above

identifications, each time |µ| crosses a critical value µ∗n = d
2 +n, where n = −1, 0, 1, 2, . . . , s−2.

These correspond to critical masses m2
∗n = (d2 +s−2)2 − (d2 +n)2 = (s−2−n)(d+s−2+n),

which on the path integral side precisely correspond to the points where a new set of terms in

the action fails to be positive definite. [58].

This establishes the terms in the integrand of (C.5.12), or equivalently the extra terms

n = −1, . . . , s− 2 in (C.5.17), have exactly the correct powers of q to match with logZnon-TT.

It does not yet confirm the precise values of the coefficients Dd+2
n,s — except for their sum

(C.5.13), which was fixed earlier by the locality constraint. To complete the argument, we

determine the origin of these coefficients from the path integral point of view in what follows.
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Explicit path integral considerations

Complementary to but guided by the above general considerations, we now turn to more concrete

path integral calculations to confirm the expression (C.5.16) for Znon−TT, focusing in particular

on the origin of the coefficients Dd+2
n,s .

Spin 1:

We first consider the familar s = 1 case, a vector field of mass m, related to ν by (5.4.2)

as m =
√

(d2 − 1)2 + ν2. The local field content in the Stueckelberg description consists of a

vector ϕµ and a scalar Θ, with action and gauge symmetry given by

S0 =
∫

∇[µϕν]∇[µϕν] + 1
2(∇µΘ −mϕµ)(∇µΘ −mϕµ) ; δΘ = mξ , δϕµ = ∇µξ .

(C.5.19)

Gauge fixing the path integral by putting Θ ≡ 0, we get the gauge-fixed action

S =
∫

∇[µϕν]∇[µϕν] + 1
2m

2ϕµϕ
µ +mc̄c , (C.5.20)

with BRST ghosts c, c̄. Decomposing ϕµ into a transversal and longitudinal part, ϕµ = ϕTµ +ϕ′
µ,

we can decompose the path integral as ZPI = ZTT · Znon-TT with

ZTT =
∫

DϕT e− 1
2

∫
ϕT (−∇2+m̄2

1)ϕT

, Znon-TT =
∫

Dϕ′DcDc̄ e−
∫

1
2m

2ϕ′2+mc̄c , (C.5.21)

Both the ghosts and the longitudinal vectors ϕ′
µ = ∇µφ have an mode decomposition in terms

of orthonormal real scalar spherical harmonics Yi.9 In our heat kernel regularization scheme,

each longitudinal vector mode integral gives a factor M/m, which is exactly canceled by a factor

m/M from integrating out the corresponding ghost mode.10 However there is one ghost mode

which remains unmatched: the constant mode. A constant scalar does not map to a longitudinal

vector mode, because ϕ′
µ = ∇µφ = 0 for constant φ. Thus we end up with a ghost factor m/M

9Explicitly, c =
∑

i
ciYi, c̄ =

∑
i
c̄iYi, ϕ′

µ =
∑

i:λi ̸=0 ϕ
′
i∇µYi/

√
λi where ∇2Yi = −λiYi,

∫
YiYj = δij .

10A priori there might be a relative numerical factor κ between ghost and longitudinal factors, depending
on the so far unspecified normalization of the measure Dc. But because c is local, unconstrained, rescaling
Dc =

∏
i
dci →

∏
i
(λdci) merely amounts to a trivial constant shift of the bare cc. So we are free to take κ = 1.
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in excess, and

Znon-TT = m/M = M−1
√

(d2 − 1)2 + ν2 , (C.5.22)

in agreement with (C.5.16) for s = 1.

Spin 2:

For s = 2, the analogous Stueckelberg action involves a symmetric tensor ϕµν , a vector χµ, and

a scalar χ, subject to the gauge transformations [58]

δχ = a−1 ξ , δχµ = a0 ξµ +
√

d−1
2d ∇µξ , δϕµν = ∇µξν + ∇νξµ +

√
2

d(d−1) a0 ξ ,

(C.5.23)

where a0 ≡ m and a−1 ≡
√
m2 − (d− 1). Equivalently, recalling (5.4.2), an =

√
(d2 + n)2 + ν2.

Gauge fixing by putting χ = 0, χµ = 0, we get a ghost action

Sgh =
∫
a−1 c̄c+ a0 c̄

µcµ . (C.5.24)

We can decompose ϕµν into a TT part and a non-TT part orthogonal to it as ϕµν = ϕTT
µν +ϕ′

µν ,

where ϕ′
µν can be decomposed into vector and scalar modes as ϕ′

µν = ∇(µφν)+gµνφ. Analogous

to the s = 1 example, we should expect that integrating out ϕ′ cancels against integrating out

the ghosts, up to unmatched modes of the latter. The unmatched modes correspond to mixed

vector-scalar modes solving ∇(µφν) + gµνφ = 0. This is equivalent to the conformal Killing

equation. Hence the unmatched modes are the conformal Killing modes. As discussed below

(C.5.7), the conformal Killing modes split according to → + into Dd+2
1,1 vector -modes

and Dd+2
1 scalar -modes. Integrating out the -modes of the vector ghost cµ then yields an

unmatched factor (a0/M)D
d+2
1,1 , while integrating out the -modes of the scalar ghost c yields

an unmatched factor (a−1/M)D
d+2
1 . All in all, we get

Znon-TT = (a−1/M)D
d+2
1 (a0/M)D

d+2
1,1 =

(
M−1

√
(d2 − 1)2 + ν2

)Dd+2
1
(
M−1

√
(d2)2 + ν2

)Dd+2
1,1

(C.5.25)
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in agreement with (C.5.16) for s = 2.

Spin s:

The pattern is now clear: according to [58], the Stueckelberg system for a massive spin-s field

consists of an unconstrained symmetric s-index tensor ϕ(s) and of a tower of unconstrained

symmetric s′-index auxiliary Stueckelberg fields χ(s′) with s′ = 0, 1, . . . , s − 1, with gauge

symmetries of the form

δχ(s′) = as′−1 ξ
(s′) + · · · , δϕ(s) = · · · , an ≡

√
(d2 + n)2 + ν2 , (C.5.26)

where the dots indicate terms we won’t technically need — which is to say, as transpired from

s = 1, 2 already, we need very little indeed. The ghost action is S =
∑s−1
s′=0 as′−1c̄

(s′)c(s′). The

unmatched modes correspond to the conformal Killing tensors modes on Sd+1, decomposed for

say s = 4 as in (C.5.14) into Dd+2
3,3 -modes, Dd+2

3,2 -modes, Dd+2
3,1 -modes, and

Dd+2
3 -modes. The corresponding unmatched modes of respectively c(3), c(2), c(1) and c(0)

then integrate to unmatched factors (a2/M)D
d+2
3,3 (a1/M)D

d+2
3,2 (a0/M)D

d+2
3,1 (a−1/M)D

d+2
3 . For

general s:

Znon-TT =
s−1∏
s′=0

(
as′−1/M

)Dd+2
s−1,s′ =

s−2∏
n=−1

(
M−1

√
(d2 + n)2 + ν2

)Dd+2
s−1,n+1

, (C.5.27)

in agreement with (C.5.16) for general s. This establishes our claims.

The above computation was somewhat schematic of course, and one could perhaps still

worry about missed purely numerical factors independent of ν, perhaps leading to an additional

finite constant term being added to our final formulae (5.4.7) -(5.4.6) for logZPI. However

at fixed UV-regulator scale, the limit ν → ∞ of these final expressions manifestly approaches

zero, as should be the case for particles much heavier than the UV cutoff scale. This would not

be true if there was an additional constant term. Finally, we carefully checked the analogous

result in the massless case (which has a more compact off-shell formulation [179]), discussed in

section 5.5, by direct path integral computations in complete gory detail [253], for all s.

Also, the result is pretty.
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C.5.2 General massive representations

Here we give a generalization of (5.4.6) for arbitrary massive representations of the dSd+1

isometry group SO(1, d+ 1).

Massive irreducible representations of SO(1, d + 1), i.e. F∆,s, are labeled by a dimension

∆ = d
2 + iν and an so(d) highest weight =(s1, . . . , sr). The massive spin-s case considered in

(5.4.6) corresponds to s = (s, 0, . . . , 0), a totally symmetric tensor field. More general irreps

correspond to more general mixed-symmetry fields. The analog of (C.5.1) in this generalized

setup is

logZ“TT”
PI = ±

∫ ∞

0

dτ

2τ e
−ϵ2/4τ ∑

n≥s1

Dd+2
n,s e−τ((n+ d

2 )2+ν2) , (C.5.28)

where for bosons the sum runs over integer n with an overall + sign and for fermions the sum

runs over half-integer n with an overall − sign. The dimensions of the so(d+2) irreps (n, s) are

given explicitly as polynomials in (n, s1, . . . , sr) by the Weyl dimension formulae (2.2.1)-(2.2.2).

From this it can be seen that Dd+2
n,S is (anti-)symmetric under reflections about n = −d

2 , more

precisely

Dd+2
n,s = (−1)dDd+2

−d−n,s. (C.5.29)

Moreover the exponent in (C.5.28) is symmetric under the same reflection. The most natural

extension of the sum is therefore to all (half-)integer n, taking into account the sign in (C.5.29)

for odd d, and adding an overall factor 1
2 to correct for double counting, suggesting

logZPI = ±1
2

∫ ∞

0

dτ

2τ e
−ϵ2/4τ ∑

n

σd(d2 + n)Dd+2
n,s e−τ((n+ d

2 )2+ν2) , (C.5.30)

where σd(x) ≡ 1 for even d and σd(x) ≡ sign(x) for odd d. Equivalently, in view of (C.5.29)

logZPI = ±
∫ ∞

0

dτ

2τ e
−ϵ2/4τ ∑

n

θ(d2 + n)Dd+2
n,s e−τ((n+ d

2 )2+ν2) (C.5.31)
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where n ∈ Z for bosons and n ∈ 1
2 + Z for fermions, and

θ(x) = 1 for x > 0, θ(0) = 1
2 , θ(x) = 0 for x < 0. (C.5.32)

At first sight this seems to be different from the extension to n ≥ −1 in (5.4.6) for the spin-

s case s = (s, 0, . . . , 0). However it is actually the same, as (2.2.1)-(2.2.2) imply that Dn,s

vanishes for 2 − d ≤ n ≤ −2 when s = (s, 0, . . . , 0).

The obvious conjecture is then that (C.5.31) is true for general massive representations.

Here are some consistency checks, which are satisfied precisely for the sum range in (C.5.31):

• Locality: For even d, the summand in (C.5.30) is analytic in n. Applying the Euler-Maclaurin

formula to extract the τ → 0 asymptotic expansion of the sum gives in this case

∑
n

Dd+2
n,s e−τ(n+ d

2 )2 ∼
∫ ∞

−∞
dnDd+2

n,s e−τ(n+ d
2 )2

. (C.5.33)

The symmetry (C.5.29) tells us that the integrand on the right hand side is even in x ≡ n+ d
2 .

Since
∫
dxx2k e−τx2 ∝ τ−k−1/2, this implies the absence of 1/τ terms in the τ → 0 expansion

of the integrand in (C.5.30), and therefore, in contrast to (C.5.28), the absence of nonlocal

log-divergences, as required by locality of ZPI in odd spacetime dimension d+ 1.

• Bulk − edge structure: By following the usual steps, we can rewrite (C.5.31) as

logZPI =
∫
dt

2t F (e−t) , F (q) = ±
(
qiν + q−iν)∑

n

θ
(
d
2 + n

)
Dd+2
n,s q

d
2 +n (C.5.34)

Using (2.2.1)-(2.2.2), this can be seen to sum up to the form logZPI = logZbulk − logZedge,

where Zbulk is the physically expected bulk character formula for an ideal gas in the dSd+1

static patch consisting of massive particles in the F∆,s UIR of SO(1, d + 1), and Zedge can be

interpreted as a Euclidean path integral of local fields living on the Sd−1 edge/horizon.

• Unitarity: Note that for ∆ = d
2 + µ with µ ≡ iν real, we get a bound on µ from requiring

t → ∞ (IR) convergence of the integral (C.5.34), generalizing (C.5.18), namely

|µ| < d

2 + n∗(s) , (C.5.35)
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where n∗(s) is the lowest value of n in the sum for which Dd+2
n,s is nonvanishing. This coincides

again with the unitarity bound on µ for massive representations of SO(1, d+1) [70, 75]. Recalling

the discussion below (C.5.18), this can be viewed as a generalization of the Higuchi bound to

arbitrary representations.

Combining (C.5.31) with (C.2.19), we thus arrive at an exact closed-form solution for the

Euclidean path integral on the sphere for arbitrary massive field content.

C.6 Derivations for massless higher spins

In this appendix we derive (5.5.17) and provide details of various other points summarized in

section 5.5.

C.6.1 Bulk partition function: Zbulk

The bulk partition function Zbulk as defined in (5.3.3) for a massless spin-s field is given by

Zbulk =
∫
dt

2t
1 + q

1 − q
Θbulk,s(q) , (C.6.1)

where q = e−t, and Θbulk,s(q) = tr qiH = ΘUs,s−1(q) in the case at hand is the (restricted)

q-character of the massless spin-s SO(1, d+ 1) UIR (a.k.a., Us,s−1). These characters are quite

a bit more intricate than their massive counterparts and the explicit forms are given by the

eq.(3.4.20) with t = s− 1. Here we show some low-dimensional examples

d r (1 − q)d Θbulk,s(q)

3 1 2D3
s q

s+1 − 2D3
s−1 q

s+2

4 2 D4
s,s 2 q2

5 2 D5
s,s

(
q2 − q3)+ 2D5

sq
s+3 − 2D5

s−1q
s+4

6 3 D6
s,s

(
q2 + q4)−D6

s,s,1 2 q3

7 3 D7
s,s

(
q2 − q5)−D7

s,s,1
(
q3 − q4)+ 2D7

s q
s+5 − 2D7

s−1 q
s+6 ,

(C.6.2)

where D3
s = 2s+1, D4

s,s = 2s+1, D5
s = 1

6(s+1)(s+2)(2s+3), D5
s,s = 1

3(2s+1)(s+1)(2s+3),

D6
s,s = 1

12(s+ 1)2(s+ 2)2(2s+ 3), D6
s,s,1 = 1

12s(s+ 1)(s+ 2)(s+ 3)(2s+ 3), etc. For s = 1,
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the character can be expressed more succinctly as

Θbulk,1(q) = d · q
d−1 + q

(1 − q)d − qd + 1
(1 − q)d + 1 . (C.6.3)

With the exception of the d = 3 case, the above so(1, d + 1) q-characters encoding the H-

spectrum of massless spin-s fields in dSd+1 are very different from the so(2, d) characters encod-

ing the energy spectrum of massless spin-s fields in AdSd+1 with standard boundary conditions,

the latter being ΘAdSd+1
bulk,s = (Dd

s q
s+d−2 − Dd

s−1 q
s+d−1)/(1 − q)d. In particular for d ≥ 4, the

lowest power q∆ appearing in the q-expansion of the character is ∆ = 2, and is associated with

the so(d) representation s = (s, s, 0, · · · , 0), i.e. , , , . . . for s = 1, 2, 3, . . ., whereas for

the so(2, d) character this is ∆ = s+ d− 2 and s = (s, 0, · · · , 0). An explanation for this was

given in [70]: in dS, s should be thought of as associated with the higher-spin Weyl curvature

tensor of the gauge field rather than the gauge field itself.

This fits well with the interpretation of the expansion

Θ(q) =
∑
r

Nrq
r , (C.6.4)

as counting the number Nr of physical static patch quasinormal modes decaying as e−rT (cf.

section 5.2 and appendix C.1.3). Indeed for d ≥ 4, the longest-lived physical quasinormal modes

of a massless spin-s field in the static patch of dSd+1 always decay as e−2T as we have shown

in the section 4.3.3, which can be understood as follows. Physical quasinormal modes of the

southern static patch can be thought of as sourced by insertions of gauge-invariant11 local

operators on the past conformal boundary T = −∞ of the static patch, or equivalently at the

south pole of the past conformal boundary (or alternatively the north pole of future boundary) of

global dSd+1 [1, 59, 60]. By construction, the dimension r of the operator maps to the decay rate

r of the quasinormal mode ∝ e−rT . For s = 1, the gauge-invariant operator with the smallest

dimension r = ∆ is the magnetic field strength Fij = ∂iAj − ∂jAi of the boundary gauge field

Ai, which has ∆ = dim ∂ + dimA = 1 + 1 = 2. For s = 2 in d ≥ 4, the gauge-invariant

operator with smallest dimension is the Weyl tensor of the boundary metric: ∆ = 2 + 0 = 2.

Similarly for higher-spin fields we get the spin-s Weyl tensor, with ∆ = s+2−s = 2. The reason

11More precisely, invariant under linearized gauge transformations acting on the conformal boundary.
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d = 3 is special is that the Weyl tensor vanishes identically in this case. To get a nonvanishing

gauge-invariant tensor, one has to act with at least 2s − 1 derivatives (spin-s Cotton tensor),

yielding ∆ = (2s− 1) + (2 − s) = s+ 1. An extensive analysis is given in the section 4.4.

C.6.2 Euclidean path integral: ZPI = ZGZchar

The Euclidean path integral of a collection of gauge fields ϕ on Sd+1 is formally given by

ZPI =
∫

Dϕ e−S[ϕ]

vol(G) (C.6.5)

where G is the local gauge group generated by the local field ξ appearing in (5.5.1). This

ill-defined formal expression is turned into something well-defined by BRST gauge fixing. A

convenient gauge for higher-spin fields is the de Donder gauge. At the Gaussian level, the

resulting analog of (C.5.1) is12

logZTT ≡
∑
s

∫ ∞

0

dτ

2τ e
−ϵ2/4τ

(
TrTT e−τ

(
−∇2

s,TT+m2
ϕ,s

)
− TrTT e−τ

(
−∇2

s−1,TT+m2
ξ,s

))
,

(C.6.6)

where
∑
s sums over the spin-s gauge fields in the theory (possibly with multiplicities) and m2

ϕ,s

and m2
ξ,s are obtained from the relations below (5.4.1) using (5.5.2). The first term arises from

the path integral over the TT modes of ϕ, while the second arises from the TT part of the

gauge fixing sector in de Donder gauge — a combination of integrating out the TT part of the

spin-(s − 1) ghost fields and the corresponding longitudinal degrees of freedom of the spin-s

gauge fields. The above (C.6.6) is the difference of two expressions of the form (C.5.1). Naively

applying the formula (C.5.34) or (5.4.6) for the corresponding full ZPI, we get

ZPI = exp
∑
s

∫
dt

2t F̂s(e
−t) (naive) (C.6.7)

12A detailed discussion of normalization conventions left implicit here is given above and below (C.6.29).
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where (assuming d ≥ 3)

F̂s(q) =
∑
n≥−1

Dd+2
n,s

(
qs+d−2+n + q2−s+n)−

∑
n≥−1

Dd+2
n,s−1

(
qs+d−1+n + q1−s+n) (C.6.8)

However this is clearly problematic. One problem is that for s ≥ 2, the above F̂s(q) contains

negative powers of q = e−t, making (C.6.7) exponentially divergent at t → ∞. The appearance

of such “wrong-sign” powers of q is directly related to the appearance of “wrong-sign” Gaussian

integrals in the path integral, as can be seen for instance from the relation between (C.5.34) and

the heat kernel integral (C.5.31). In the path integral framework, one deals with this problem by

analytic continuation, generalizing the familiar contour rotation prescription for negative modes

in the gravitational Euclidean path integral [125]. Thus one defines
∫
dx e−λx2/2 for λ < 0 by

rotating x → ix, or equivalently by rotating τ → −τ in the heat kernel integral. Essentially this

just boils down to flipping any λ < 0 to −λ > 0. Since the Laplacian eigenvalues are equal to the

products of the exponents appearing in the pairs
(
q∆+n+qd−∆+n) in (C.6.8), the implementation

of this prescription in our setup is to flip the negative powers qk in F̂s(q) =
∑
k ck q

k to positive

powers q−k, that is to say replace

F̂s(q) → Fs(q) ≡
{
F̂s(q)

}
+ =

{∑
k

ck q
k
}

+
≡
∑
k<0

ck q
−k +

∑
k≥0

ck q
k . (C.6.9)

In addition, each negative mode path integral contour rotation produces a phase ±i, resulting in

a definite, finite overall phase in ZPI [131]. The analysis of [131] translates to each corresponding

flip in (C.6.9) contributing with the same sign,13 hence to an overall phase i−Ps with Ps the

total degeneracy of negative modes in (C.6.8). Using Dd+2
n,s = −Dd+2

s−1,n+1:

ZPI → i−PsZPI , Ps =
s−2∑
n′=0

Dd+2
s−1,n′ +

s−2∑
n′=0

Dd+2
s−2,n′ = Dd+3

s−1,s−1 −Dd+2
s−1,s−1 +Dd+3

s−2,s−2

(C.6.10)

In particular this implies P1 = 0 and P2 = d+ 3 in agreement with [131].

After having taken care of the negative powers of q, the resulting amended formula ZPI =

13This can be seen in a more careful path integral analysis [253].
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∫ dt
2t Fs(q) is still problematic, however, as Fs(q) still contains terms proportional to q0, causing

the integral to diverges (logarithmically) for t → ∞. These correspond to zeromodes in the

original path integral. Indeed such zermodes were to be expected: they are due to the existence of

normalizable rank s−1 traceless Killing tensors ξ̄(s−1), which by definition satisfy ∇(µ1 ξ̄µ2···µs) =

0, and therefore correspond to vanishing gauge transformations (5.5.1), leading in particular to

ghost zeromodes. Zeromodes of this kind must be omitted from the Gaussian path integral.

They are easily identified in (C.6.8) as the values of n for which a term proportional to q0

appears. Since we are assuming d > 2, this is n = s− 2 in the first sum and n = s− 1 in the

second. Thus we should refine (C.6.9) to

F̂s → Fs − F 0
s , (C.6.11)

where F 0
s = Dd+2

s−2,s(q2s+d−4 + 1) − Dd+2
s−1,s−1(q2s+d−2 + 1). Noting that Dd+2

s−2,s = −Dd+2
s−1,s−1

and Dd+2
s−1,s−1 is the number NKT

s−1 of rank s−1 traceless Killing tensors on Sd+1, we can rewrite

this as

F 0
s = −NKT

s−1
(
q2s+d−4 + 1 + q2s+d−2 + 1

)
, NKT

s−1 = Dd+2
s−1,s−1 , (C.6.12)

making the relation to the existence of normalizable Killing tensors manifest. For example

NKT
0 = 1, corresponding to constant U(1) gauge transformations; NKT

1 = 1
2(d + 2)(d +

1) = dim SO(d + 2), corresponding to the linearly independent Killing vectors on Sd+1; and

NKT
s−1 ∝ s2d−3 for s → ∞, corresponding to large-spin generalizations thereof.

We cannot just drop the zeromodes and move on, however. The original formal path integral

expression (C.6.5) is local by construction, as both numerator and denominator are defined with

a local measure on local fields. In principle BRST gauge fixing is designed to maintain manifest

locality, but if we remove any finite subset of modes by hand, including in particular zeromodes,

locality is lost. Indeed the −F (0)
s subtraction results in nonlocal log-divergences in the character

integral, i.e. divergences which cannot be canceled by local counterterms. From the point

of view of (C.6.5), the loss of locality is due the fact that we are no longer dividing by the

volume of the local gauge group G, since we are effectively omitting the subgroup G generated

by the Killing tensors. To restore locality, and to correctly implement the idea embodied in



304

(C.6.5), we must divide by the volume of G by hand. This volume must be computed using

the same local measure defining vol(G), i.e. the invariant measure on G normalized such that

integrating the gauge fixing insertion in the path integral over the gauge orbits results in a factor

1. Hence the appropriate measure defining the volume of G in this context is inherited from

the BRST path integral measure. As such we will denote it by vol(G)PI. A detailed general

discussion of the importance of these specifications for consistency with locality and unitarity in

the case of Maxwell theory can be found in [136]. Relating vol(G)PI to a “canonical”, theory-

independent definition of the group volume vol(G)c (such as for example vol(U(1))c ≡ 2π)

is not trivial, requiring considerable care in keeping track of various normalization factors and

conventions. Moreover vol(G)PI depends on the nonlinear interaction structure of the theory,

as this determines the Lie algebra of G. We postpone further analysis of vol(G)PI to section

C.6.4.

Conclusion

To summarize, instead of the naive (C.6.7), we get the following formula for the 1-loop Euclidean

path integral on Sd+1 for a collection of massless spin-s gauge fields:

ZPI = i−Ps
(
vol(G)PI

)−1 exp
∑
s

∫
dt

2t
(
Fs − F 0

s

)
, (C.6.13)

where Fs = {F̂s}+ and F 0
s were defined in (C.6.8), (C.6.9) and (C.6.12); G is the subgroup

of gauge transformations generated by the Killing tensors ξ̄(s−1), i.e. the zeromodes of (5.5.1);

and i−Ps is the phase (C.6.10). We can split up the integrals by introducing an IR regulator:

ZPI = i−Ps ZG Zchar , ZG ≡
exp

(
−
∑
s

∫× dt
2tF

0
s

)
vol(G)PI

, Zchar ≡ exp
∑
s

∫ × dt

2t Fs

(C.6.14)

where the notation
∫× means we IR regulate by introducing a factor e−µt, take µ → 0, and

subtract the logµ divergent term. For a function f(t) such that limt→∞ f(t) = c, this means

∫ × dt

t
f(t) ≡ lim

µ→0

(
c logµ+

∫
dt

t
f(t) e−µt

)
(C.6.15)
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For example for f(t) = t
t+1 this gives

∫×
0

dt
t

t
t+1 = logµ − log(eγµ) = −γ, and for f(t) = 1

with the integral UV-regularized as in (C.2.30) we get
∫× dt

t = log(2e−γ/ϵ).

In section C.6.3 we recast Zchar as a character integral formula. In section C.6.4 we express

ZG in terms of the canonical group volume vol(G)c and the coupling constant of the theory.

C.6.3 Character formula: Zchar = Zbulk/ZedgeZKT

In this section we derive a character formula for Zchar in (C.6.14). If we start from the naive F̂s
given by (C.6.8) and follow the same steps as those bringing (5.4.6) to the form (5.4.7), we get

F̂s = 1 + q

1 − q
Θ̂s , Θ̂s = Θ̂bulk,s − Θ̂edge,s , (C.6.16)

where

Θ̂bulk,s = Dd
s

qs+d−2 + q2−s

(1 − q)d −Dd
s−1

qs+d−1 + q1−s

(1 − q)d (C.6.17)

Θ̂edge,s = Dd+2
s−1

qs+d−3 + q1−s

(1 − q)d−2 −Dd+2
s−2

qs+d−2 + q−s

(1 − q)d−2 . (C.6.18)

Note that Θ̂bulk,s and Θ̂edge,s take the form of “field − ghost” characters obtained respectively

by substituting the values of νϕ and νξ given by (5.5.2) into the massive spin s and spin s− 1

characters (5.4.8). The naive bulk characters Θ̂bulk,s thus obtained cannot possibly be the

character of any UIR of SO(1, d+ 1), as is obvious from the presence of negative powers of q.

Indeed, it is equal to ΘF2−s,s − ΘF1−s,s−1 which differs from the character ΘUs,s−1(q) by the

flipping procedure (3.4.16). Now let us consider the actual Fs = {F̂s}+ appearing in (C.6.14).

Then we find14

Fs =
{1 + q

1 − q
Θ̂s

}
+

= 1 + q

1 − q

([
Θ̂s
]
+ − 2NKT

s−1

)
, (C.6.19)

14To check (C.6.19) starting from (C.6.9), observe that
{ 1+q

1−q

(
qk + q−k − 2

)}
+

= 0 for any integer k, so{ 1+q
1−q

qk
}

+
= 1+q

1−q

(
−q−k + 2

)
for k < 0, while of course

{ 1+q
1−q

qk
}

+
= 1+q

1−q
qk for k ≥ 0, . This accounts for

the k < 0 and k > 0 terms in the expansion
∑

k
ck q

k of (C.6.19). The coefficient 2NKT
s−1 of the q0 term is most

easily checked by comparing the q0 terms on the left and right hand sides of (C.6.19), taking into account that,
by definition, [Θ]+ has no q0 term, and that the q0 terms of the left hand side are given by (C.6.12).
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where the flipping operator [ ]+ is defined by the eq. (3.4.17) and hence the
[
Θ̂bulk,s

]
+ part

in
[
Θ̂s
]
+ is exactly the Harish-Chandra character ΘUs,s−1 of the massless spin-s representation

. Thus this flipping prescription can be thought of as the character analog of contour rotations

for “wrong-sign” Gaussians in the path integral15. Notice the slight differences in the map

Θ̂ → [Θ̂]+ and the related but different map F̂ → {F̂}+ defined in (C.6.9).

Substituting (C.6.19) into (C.6.14), we conclude

logZchar =
∑
s

∫ × dt

2t
1 + q

1 − q

([
Θ̂bulk,s

]
+ −

[
Θ̂edge,s

]
+ − 2NKT

s−1

)
(C.6.20)

Bulk characters for (partially) massless fields

Now let us apply this to a slight generalization of the massless Θ̂bulk,s given in (C.6.17),

Θ̂bulk
ss′ (q) ≡ Dd

s

q1−s′ + qd−1+s′

(1 − q)d −Dd
s′
q1−s + qd−1+s

(1 − q)d . (C.6.21)

This is the naive bulk character for a partially massless spin-s field ϕµ1···µs with a spin-s′ (0 ≤

s′ ≤ s − 1) gauge parameter field ξµ1···µs′ [222]. The massless case (C.6.17) corresponds to

s′ = s − 1. Applying the flipping procedure to it yields the Harish-Chandra character ΘUss′ (q)

of the exceptional UIR Uss′ , c.f. eq. (3.4.16) and eq. (3.4.20).

Edge characters for (partially) massless fields

For the edge correction we proceed analogously. The naive PM edge character is

Θ̂edge
ss′ (q) = Dd+2

s−1
q−s′ + qd−2+s′

(1 − q)d−2 −Dd+2
s′−1

q−s + qd−2+s

(1 − q)d−2 , (C.6.22)

15In representation theory, we have seen that the flipping prescription arises as we overcount the kernel of z ·∂x,
which is the boundary counterpart of the bulk gauge transformation.
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reducing to the massless case (C.6.18) for s′ = s−1. Applying (3.4.18) gives, still with r = ⌊d2⌋,

(1 − q)d−2[Θ̂edge
ss′ (q)

]
+ =

(
1 + (−1)d+1)(Dd+2

s−1 q
d−2+s′ −Dd+2

s′−1 q
d−2+s)

+
r−2∑
m=0

(−1)m D̃m
(
q1+m + (−1)dqd−3−m) (C.6.23)

where D̃m ≡ Dd+2
s−1 D

d−2
s′+1,1m −Dd+2

s′−1D
d−2
s+1,1m .

Note that in the massless spin-1 case

[
Θ̂edge

1 (q)
]
+ = qd−2 + 1

(1 − q)d−2 − 1 . (C.6.24)

It is the SO(1, d − 1) Harish-Chandra character of the exceptional UIR Vs,0 with s = 1 — the

irreducible representation indeed of a massless scalar on dSd−1 with its zeromode removed. The

fact that s = 1 is analogous to what happens in the 2D CFT of a massless free scalar X: the

actual CFT primary operators are the spin ±1 derivatives ∂±X(0).

In contrast to (3.4.20), we did not find a way of rewriting D̃m for general spin to suggest an

interpretation along these lines in general. Indeed unlike (3.4.20),
[
Θ̂edge
ss′ (q)

]
+ in general does

not appear to be proportional to the character of a single exceptional series irrep of SO(1, d−1).

This is not in conflict with the picture of edge corrections as a Euclidean path integral of some

collection of local fields on Sd−1, since if the fields have nontrivial spins / so(d−2) weights, the

corresponding character integrals will have a complicated structure, involving sums of iterations

of SO(1, d− 1 − 2k) characters with k = 0, 1, 2, . . ., exhibiting patterns that might be hard to

discern without knowing what to look for. It should also be kept in mind we have not identified

a reason the edge correction must have a local QFT path integral interpretation. On the other

hand, the coefficients of the q-expansion of the effective edge character do turn out to be

positive, consistent with an interpretation in terms of some collection of fields corresponding to

unitary representations of dSd−1. A more fundamental group-theoretic or physics understanding

of the edge correction would evidently be desirable.

For practical purposes, the interpretation does not matter of course. The formula (C.6.23)

gives a general formula for Θedge, which is all we need. For example for d = 3, this gives[
Θ̂edge
s (q)

]
+ = 2 D5

s−1 q
s−D5

s−2 q
s+1

1−q = 2D5
s−1 q

s + 2D4
s−1

qs+1

1−q , where D5
s−1 = 1

6s(s+ 1)(2s+ 1)
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and D4
s−1 = D5

s−1 −D5
s−2 = s2. The second form makes positivity of coefficients manifest. For

d = 4 we get
[
Θ̂edge
s (q)

]
+ = D5

s−1
2 q

(1−q)2 .

Conclusion

We conclude that (C.6.20) can be written as

logZchar = logZbulk − logZedge − logZKT , (C.6.25)

where the bulk and edge contributions are explicitly given by (3.4.20)-(C.6.23) with s′ = s−1,16

and

logZKT = dimG

∫ × dt

2t
1 + q

1 − q
· 2 , dimG =

∑
s

NKT
s−1 =

∑
s

Dd+2
s−1,s−1 . (C.6.26)

The finite (IR) part of ZKT is given by (C.2.37): ZKT|IR = (2π)− dimG.

C.6.4 Group volume factor: ZG

The remaining task is to compute the factor ZG defined in (C.6.14), that is

ZG =
(
vol(G)PI

)−1 exp
∑
s

NKT
s−1

∫ × dt

2t
(
q2s+d−4 + q2s+d−2 + 2

)
(C.6.27)

We imagine the spin range to be finite, or cut off in some way. (The infinite spin range case

is discussed in section 5.9.) In the heat kernel regularization scheme of appendix C.2, we can

then evaluate the integral using (C.2.30):

ZG =
(
vol(G)PI

)−1∏
s

(
M4

(2s+ d− 4)(2s+ d− 2)

) 1
2N

KT
s−1

, M ≡ 2e−γ

ϵ
, (C.6.28)

On general grounds, the nonlocal UV-divergent factors M appearing here in ZG should cancel

against factors of M in vol(G)PI, as we will explicitly confirm below.

16In the partially massless case logZKT takes the same form, but with Dd+2
s−1,s−1 replaced by Dd+2

s−1,s′ .
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Generalities

Recall thatG is the group of gauge transformations generated by the Killing tensors. Equivalently

it is the subgroup of gauge transformations leaving the background invariant. vol(G)PI is the

volume of G with respect to the path integral induced measure. This is different from what we

shall call the “canonical” volume vol(G)c, defined with respect to the invariant metric normalized

such that the generators of some standard basis of the Lie algebra have unit norm. (In the case

of Yang-Mills, this coincides with the metric defined by the canonically normalized Yang-Mills

action, providing some justification for the (ab)use of the word canonical.) In particular, in

contrast to vol(G)c, vol(G)PI depends on the coupling constants and UV cutoff of the field

theory.

As mentioned at the end of section C.6.2, the computation of ZG brings in a series of

new complications. One reason is that the Lie algebra structure constants defining G are not

determined by the free part of the action, but by its interactions, thus requiring data going beyond

the usual one-loop Gaussian level. Another reason is that due to the omission of zeromodes

and the ensuing loss of locality in the path integral, a precise computation of vol(G)PI requires

keeping track of an unpleasantly large number of normalization factors, such as for instance

constants multiplying kinetic operators, as these can no longer be automatically discarded by

adjusting local counterterms. Consequently, exact, direct path integral computationz of ZG for

general higher-spin theories requires great care and considerable persistence, although it can be

done [253]. Below we obtain an exact expression for ZG in terms of vol(G)c and the Newton

constant in a comparatively painless way, by combining results and ideas from [135, 136, 138,

140–143], together with the observation that the form of (C.6.6) actually determines all the

normalization factors we need. Although the expressions at intermediate stages are still a bit

unpleasant, the end result takes a strikingly simple and universal form.

If G is finite-dimensional, as is the case for example for Yang-Mills, Einstein gravity and

certain (topological) higher-spin theories [166–169, 182, 208–211] including the dS3 higher-

spin theory analyzed in section 5.6, we can then proceed to compute vol(G)c, and we are

done. If G is infinite-dimensional, as is the case in generic higher-spin theories, one faces

the remaining problem of making sense of vol(G)c itself. Glossing over the already nontrivial

problem of exponentiating the higher-spin algebra to an actual group [191], the obvious issue



310

is that vol(G)c is going to be divergent. We discuss and interpret this and other infinite spin

range issues in section 5.9. In what follows we will continue to assume the spin range is finite

or cut off in some way as before, so G is finite-dimensional.

We begin by determining the path integral measure to be used to compute vol(G)PI in

(C.6.28). Then we compute ZG in terms of vol(G)c and the coupling constant of the theory,

first for Yang-Mills, then for Einstein gravity, and finally for general higher-spin theories.

Path integral measure

To determine vol(G)PI we have to take a quick look at the path integral measure. This is

fixed by locality and consistency with the regularized heat kernel definition of Gaussian path

integrals we have been using throughout. For example for a scalar field as in (5.3.2), we have∫
Dϕ e− 1

2ϕ(−∇2+m2)ϕ ≡ exp
∫ dτ

2τ e
−ϵ2/4τ Tr e−τ(−∇2+m2). An eigenmode of −∇2 + m2 with

eigenvalue λi contributes a factor M/
√
λi to the right hand side of this equation, with M =

exp
∫ dτ

2τ e
−ϵ2/4τe−τ = 2e−γ/ϵ, the same parameter as in (C.6.28) (essentially by definition). To

ensure the left hand side matches this, we must use a path integral measure derived from the local

metric ds2
ϕ = M2

2π
∫

(δϕ)2. To see this, expand ϕ(x) =
∑
i φiψi(x) with ψi(x) an orthonormal

basis of eigenmodes of −∇2 +m2 on Sd+1. The metric in this basis becomes ds2 =
∑
i
M2

2π dφ
2
i ,

so a mode with eigenvalue λi contributes a factor
∫
dφi

M√
2π e

− 1
2λiφ

2
i = M/

√
λi to the left hand

side, as required.

We work with canonically normalized fields. For a spin-s field ϕ this means the quadratic

part of the action evaluated on its transverse-traceless part ϕTT takes the form

S
[
ϕTT] = 1

2

∫
ϕTT(−∇2 +m2)ϕTT. (C.6.29)

Consistency with (C.5.1) or (C.6.6) then requires the measure for ϕ to be derived again from

the metric ds2
ϕ = M2

2π
∫

(δϕ)2. If ϕ has a gauge symmetry, the formal division by the volume

of the gauge group G is conveniently implemented by BRST gauge fixing. For example for

a spin-1 field with gauge symmetry δϕµ = ∂µξ, we can gauge fix in Lorenz gauge by adding

the BRST-exact action SBRST =
∫
iB∇µϕµ − c̄∇2c. This requires specifying a measure for

the Lagrange multiplier field B and the ghosts c, c̄. It is straightforward to check that a ghost
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measure derived from ds2
c̄c = M2 ∫ δc̄ δc (which translates to a mode measure

∏
i

1
M2dc̄i dci)

combined with a B-measure derived from ds2
B = 1

2π
∫

(δB)2, reproduces precisely the second

term in (C.6.6) upon integrating out B, c, c̄ and the longitudinal modes of ϕ. It is likewise

straightforward to check that BRST gauge fixing is then formally equivalent to dividing by the

volume of the local gauge group G with respect to the measure derived from the following metric

on the algebra of local gauge transformations:

ds2
ξ = M4

2π

∫
(δξ)2 . (C.6.30)

Note that all of these metrics take the same form, with the powers of M fixed by dimensional

analysis. An important constraint in the above was that the second term in (C.6.6) is exactly

reproduced, without some extra factor multiplying the Laplacian. This matters when we omit

zeromodes. For this to be the case with the above measure prescriptions, it was important that

the gauge transformation took the form δϕµ = α1∂µξ with α1 = 1 as opposed to some different

value of α1, as we a priori allowed in (5.5.1). For a general α1, we would have obtained an

additional factor α1 in the ghost action, and a corresponding factor α2
1 in the kinetic term in

the second term of (C.6.6). To avoid having to keep track of this, we picked α1 ≡ 1. For

Yang-Mills theories, everything remains the same, with internal index contractions understood,

e.g. S[ϕTT] = 1
2
∫
ϕaTT(−∇2 +m2)ϕaTT, ds2

ϕ = M2

2π
∫

(δϕa)2, ds2
ξ = M4

2π
∫

(δξa)2.

For higher-spin fields, we gauge fix in the de Donder gauge. All metrics remain unchanged,

except for the obvious additional spacetime index contractions. The second term of (C.6.6) is

exactly reproduced upon integrating out the TT sector of the BRST fields together with the

corresponding longitudinal modes of ϕ, provided we pick

αs =
√
s (C.6.31)

in (5.5.1), with symmetrization conventions such that ϕ(µ1···µs) = ϕµ1···µs . (Technically the

origin of the factor s can be traced to the fact that if ϕµ1···µs = ∇(µ1ξµ2···µs) for a TT ξ, we

have
∫
ϕ2 = s−1 ∫ ξ(−∇2 + cs)ξ.) Equation (C.6.31) fixes the normalization of ξ, and (C.6.30)

then determines unambiguously the measure to be used to compute vol(G)PI in (C.6.28). We

will see more concretely how this works in what follows, first spelling out the basic idea in detail
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in the familiar YM and GR examples, and then moving on to the general higher-spin gauge

theory case considered in [140].

Yang-Mills

Consider a Yang-Mills theory with with a simple Lie algebra

[La, Lb] = fabcLc , (C.6.32)

with the La some standard basis of anti-hermitian matrices and fabc real and totally antisym-

metric. For example for su(2) Yang-Mills, La = −1
2 iσ

a and [La, Lb] = ϵabcLc. Consistent with

our general conventions, we take the gauge fields ϕµ = ϕaµL
a to be canonically normalized: the

curvature takes the form F aµνL
a = Fµν = ∂µϕν − ∂νϕµ + g[ϕµ, ϕν ], and the action is

S = 1
4

∫
F a · F a (C.6.33)

The quadratic part of S is invariant under the linearized gauge transformations δ(0)
ξ ϕµ = ∂µξ,

where ξ = ξaLa, taking the form (5.5.1) with α1 = 1 as required. The full S is invariant under

local gauge transformations δξϕµ = ∂µξ + g[ϕµ, ξ], generating the local gauge algebra

[δξ, δξ′ ] = δg[ξ′,ξ] . (C.6.34)

The rank-0 Killing tensors ξ̄ satisfy ∂µξ̄ = 0: they are the constant gauge transformations

ξ̄ = ξ̄aLa on the sphere, forming the subalgebra g of local gauge transformations acting trivially

on the background ϕµ = 0, generating the group G whose volume we have to divide by. The

bracket of g, denoted [[·, ·]] in [140], is inherited from the local gauge algebra (C.6.34):

[[ξ̄, ξ̄′]] = g[ξ̄′, ξ̄] . (C.6.35)

Evidently this is isomorphic to the original YM Lie algebra. Being a simple Lie algebra, g has

an up to normalization unique invariant bilinear form/metric. The path integral metric ds2
PI of
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(C.6.30) corresponds to such an invariant bilinear form with a specific normalization:

⟨ξ̄|ξ̄′⟩PI = M4

2π

∫
ξ̄aξ̄′a = M4

2π vol(Sd+1) ξ̄aξ̄′a . (C.6.36)

We define the theory-independent “canonical” invariant bilinear form ⟨·|·⟩c on g as follows.

First pick a “standard” basis Ma of g, i.e. a basis satisfying the same commutation relations

as (C.6.32): [[Ma,M b]] = fabcM c. This fixes the normalization of the Ma. Then we fix the

normalization of ⟨·|·⟩c by requiring these standard generators have unit norm, i.e.

⟨Ma|M b⟩c ≡ δab . (C.6.37)

The explicit form of (C.6.35) implies such a basis is given by the constant functionsMa = −La/g

on the sphere. Thus we have ⟨La|Lb⟩c = g2δab and

⟨ξ̄|ξ̄′⟩c = g2ξ̄aξ̄′a (C.6.38)

Comparing (C.6.38) and (C.6.36), we see the path integral and canonical metrics on G and

their corresponding volumes are related by

ds2
PI = M4

2π
vol(Sd+1)

g2 ds2
c ⇒ vol(G)PI

vol(G)c
=
(
M4

2π
vol(Sd+1)

g2

) 1
2 dimG

. (C.6.39)

From (C.6.28), we get ZG = vol(G)−1
PI
(

M4

(d−2)d
) 1

2 dimG, hence

ZG = γdimG

vol(G)c
, γ ≡ g√

(d− 2)Ad−1
, Ad−1 ≡ vol(Sd−1) = 2π

d
2

Γ(d2)
, (C.6.40)

where we used vol(Sd+1) = 2π
d vol(Sd−1). (Recall we have been assuming d > 2. The case

d = 2 is discussed in appendix C.7.1.) The quantity γ may look familiar: the Coulomb potential

energy for two unit charges at a distance r in flat space is V (r) = γ2/rd−2.

Practically speaking, the upshot is that ZG is given by (C.6.40), with vol(G)c the volume of

the Yang-Mills gauge group with respect to the metric defined by the Yang-Mills action (C.6.33).

For example for G = SU(2) with fabc = ϵabc as before, vol(G)c = 16π2, because SU(2) in this
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metric is the round S3 with circumference 4π, hence radius 2.

The relation (C.6.35) can be viewed as defining the coupling constant g given our normal-

ization conventions for the kinetic terms and linearized gauge transformations. Of course the

final result is independent of these conventions. Conventions without explicit factors of g in

the curvature and gauge transformations are obtained by rescaling ϕ → ϕ/g, ξ → ξ/g. Then

there won’t be a factor g in (C.6.35), but instead g is read off from the action S = 1
4g2
∫

(F a)2.

We could also write this without explicit reference to a basis as S = 1
4g2
∫

TrF 2, where the

trace “Tr” is normalized such that Tr(LaLb) ≡ δab. Then we can say the canonical bilin-

ear/metric/volume is defined by the trace norm appearing in the YM action. We could choose

a differently normalized trace Tr′ = λ2Tr. The physics remains unchanged provided g′ = λg.

Then vol(G)′
c = λdimGvol(G)c, hence, consistently, Z ′

G = ZG.

As a final example, for SU(N) Yang-Mills with su(N) viewed as anti-hermitian N × N

matrices, S = − 1
4g2
∫

TrNF 2 in conventions without a factor g in the gauge algebra, and TrN
the ordinary N ×N matrix trace, vol(SU(N))c = (C.3.3).

Einstein gravity

The Einstein gravity case proceeds analogously. Now we have single massless spin-2 field ϕµν .

The gauge transformations are diffeomorphisms generated by vector fields ξµ. The subgroup G

of diffeomorphisms leaving the background Sd+1 invariant is SO(d + 2), generated by Killing

vectors ξ̄µ. The usual standard basis MIJ = −MJI , I = 1, . . . , d + 2 of the so(d + 2) Lie

algebra satisfies [M12,M23] = M13 etc. We define the canonical bilinear ⟨·|·⟩c to be the unique

invariant form normalized such that the MIJ have unit norm:

⟨M12|M12⟩c = 1 . (C.6.41)

With respect to the corresponding metric ds2
c , orbits g(φ) = eφM12 with φ ranging from 0 to

2π have length 2π. The canonical volume is then given by (C.3.2).

To identify the standard generators MIJ more precisely in our normalization conventions for

ξ̄, we need to look at the field theory realization in more detail. The so(d+2) algebra generated

by the Killing vectors ξ̄ is realized in the interacting Einstein gravity theory as a subalgebra of
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the gauge (diffeomorphism) algebra. As in the Yang-Mills case (C.6.35), the bracket [[·, ·]] of

this subalgebra is inherited from the gauge algebra. Writing the Killing vectors as ξ̄ = ξ̄µ∂µ,

the standard Lie bracket is [ξ̄, ξ̄′]L =
(
ξ̄µ∂µξ̄

′ν − ξ̄′µ∂µξ̄
ν
)
∂ν . If we had normalized ϕµν as

ϕµν ≡ gµν −g0
µν with g0

µν the background sphere metric, and if we had normalized ξµ by putting

α2 ≡ 1 in (5.5.1), the bracket [[·, ·]] would have coincided with the Lie bracket [·, ·]L. However,

we are working in different normalization conventions, in which ϕµν is canonically normalized

and α2 =
√

2 according to (C.6.31). In these conventions we have instead

[[ξ̄, ξ̄′]] =
√

16πGN [ξ̄′, ξ̄]L , (C.6.42)

where GN is the Newton constant. This can be checked by starting from the Einstein-Hilbert

action, expanding to quadratic order (see e.g. [254] for convenient and reliable explicit ex-

pressions in dSd+1), and making the appropriate convention rescalings. This is the Einstein

gravity analog of (C.6.35). To be more concrete, let us consider the ambient space descrip-

tion of the sphere Sd+1, i.e. XIXI = 1 with X ∈ Rd+2. Then the basis of Killing vec-

tors MIJ ≡ −(XI∂J − XJ∂I)/
√

16πGN satisfy our standard so(d + 2) commutation rela-

tions [[M12,M23]] = M13 etc, hence by (C.6.41), ⟨M12|M12⟩c = 1. The path integral metric

(C.6.30) on the other hand corresponds to the invariant bilinear ⟨ξ̄|ξ̄′⟩PI = M4

2π
∫
ξ̄ · ξ̄′, so

⟨M12|M12⟩PI = M4

2π
1

16πGN

∫
Sd+1(X2

1 + X2
2 ) = M4

2π
1

16πGN
2
d+2vol(Sd+1). Thus we obtain the

following relation between PI and canonical metrics and volumes for G = SO(d+ 2):

ds2
PI = Ad−1

4GN

1
d(d+ 2)

M4

2π ds2
c ⇒ vol(G)PI

vol(G)c
=
(
Ad−1
4GN

1
d(d+ 2)

M4

2π

) 1
2 dimG

(C.6.43)

where dimG = 1
2(d + 2)(d + 1), Ad−1 = vol(Sd−1) as in (C.6.40), and we again used

vol(Sd+1) = 2π
d vol(Sd−1). Combining this with (C.6.28), we get our desired result:

ZG = γdimG

vol(G)c
, γ ≡

√
8πGN
Ad−1

. (C.6.44)



316

Higher-spin gravity

We follow the same template for the higher-spin case. In the interacting higher-spin theory,

the Killing tensors generate a subalgebra of the nonlinear gauge algebra, with bracket [[·, ·]]

inherited from the gauge algebra, just like in the Yang-Mills and Einstein examples, except the

gauge algebra is much more complicated in the higher-spin case. Fortunately it is not necessary

to construct the exact gauge algebra to determine the Killing tensor algebra: it suffices to

determine the lowest order deformation of the linearized gauge transformation (5.5.1) fixed by

the transverse-traceless cubic couplings of the theory [140]. The Killing tensor algebra includes

in particular an so(d+2) subalgebra, that is to say an algebra of the same general form (C.6.42)

as in Einstein gravity, with some constant appearing on the right-hand side determined by the

spin-2 cubic coupling in the TT action. We define the “Newton constant” GN of the higher-

spin theory to be this constant, that is to say we read off GN from the so(d+ 2) Killing vector

subalgebra by writing it as

[[ξ̄, ξ̄′]] =
√

16πGN [ξ̄′, ξ̄]L . (C.6.45)

The standard Killing vector basis is then again given by MIJ ≡ −(XI∂J − XJ∂I)/
√

16πGN,

satisfying [[M12,M23]] = M13 etc.

It was argued in [140] that for the most general set of consistent parity-preserving cubic

interactions, assuming the algebra does not split as a direct sum of subalgebras, i.e. assuming

the algebra is simple, there exists an up to normalization unique invariant bilinear form ⟨·|·⟩c on

the Killing tensor algebra. We fix its normalization again by requiring the standard so(d + 2)

Killing vectors MIJ have unit norm,

⟨M12|M12⟩c ≡ 1 . (C.6.46)

Expressed in terms of the bilinears ⟨ξ̄s−1|ξ̄s−1⟩PI = M4

2π
∫
ξ̄s−1 · ξ̄(s−1) corresponding to (C.6.30),

the invariant bilinear on the Killing tensor algebra takes the general form

⟨ξ̄|ξ̄′⟩c =
∑
s

Bs ⟨ξ̄s−1|ξ̄′
s−1⟩PI , (C.6.47)
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where Bs are certain constants fixed in principle by the algebra. The arguments given in [140]

moreover imply that up to overall normalization, the coefficients Bs are independent of the

coupling constants in the theory. More specifically, adapted (with some work, as described

below) to our setting and conventions, and correcting for what we believe is a typo in [140], the

coefficients are Bs ∝ (2s+d−4)(2s+d−2). We confirmed this by comparison to [143], where

the invariant bilinear form for minimal Vasiliev gravity in AdSd+1, dual to the free O(N) model,

was spelled out in detail, building on [140–142]. Analytically continuing to positive cosmological

constant, implementing their ambient space X-contractions by a Gaussian integral, and reducing

this integral to the sphere by switching to spherical coordinates, the expression in [143] can be

brought to the form (C.6.47). This transformation almost completely cancels the factorials in

the analogous coefficients bs in [143], reducing to the simple Bs ∝ (2s+d−4)(2s+d−2). (The

alternating signs of [143] are absent here due to the analytic continuation to positive cc.) Taking

into account our normalization prescription (C.6.46) (which is different from the normalization

chosen in [143]), we thus get

〈
ξ̄|ξ̄
〉

c = 2π
M4 · 4GN

Ad−1

∑
s

(2s+ d− 4)(2s+ d− 2)
〈
ξ̄(s−1)∣∣ξ̄(s−1)〉

PI , (C.6.48)

with Ad−1 = vol(Sd−1) as before. In view of the independence of the coefficients Bs of the

couplings within the class of theories considered in [140], i.e. all parity-invariant massless higher-

spin gravity theories consistent to cubic order, this result is universal, valid for this entire class.

As before for Einstein gravity and Yang Mills, from (C.6.48) we get the ratio

vol(G)PI
vol(G)c

=
∏
s

(
M4

2π · Ad−1
4GN

· 1(
2s+ d− 4

)(
2s+ d− 2

)) 1
2N

KT
s−1

. (C.6.49)

Combining this with (C.6.28) we see that, rather delightfully, all the unpleasant-looking factors

cancel, leaving us with

ZG = γdimG

vol(G)c
, γ ≡

√
8πGN
Ad−1

(C.6.50)

This takes exactly the same form as the Einstein gravity result (C.6.44) except G is now the
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higher-spin symmetry group rather than the SO(d+ 2) spin-2 symmetry group.

The cancelation of the UV divergent factors M is as expected from consistency with lo-

cality. The cancelation of the s-dependent factors on the other hand seems surprising, in view

of the different origin of the numerator (spectrum of quadratic action) and the denominator

(invariant bilinear form on higher spin algebra of interactions). Apparently the former somehow

knows about the latter. We do not see an obvious reason why this is the case, although the

simplicity and universality of the result suggests we should, and that this entire section should

be replaceable by a one-line argument. Perhaps it is obvious in a frame-like formalism.

Newton constant from central charge

Recall that the Newton constant GN appearing in (C.6.50) was defined by the so(d+2) algebra

(C.6.45) in our normalization conventions. An analogous definition can be given in dSd+1 or

AdSd+1 where the algebra becomes so(1, d+ 1) resp. so(2, d). Starting from this definition, GN

can also be formally related to the Cardy central charge C of a putative17 boundary CFT for AdS

or dS, defined as the coefficient of the CFT 2-point function of the putative energy-momentum

tensor. With our definition of GN, the computation of [255] remains unchanged, so we can just

copy the result obtained there:

C = (±1)
d−1

2 Γ(d+ 2)
(d− 1) Γ

(
d
2
)2 · Ad−1

8πGN
(C.6.51)

where as before Ad−1 = 2πd/2ℓd−1/Γ(d2), and ±1 = +1 for AdS and −1 for dS. The central

charge of N free real scalars equals C = d
2(d−1) N in the conventions used here. Note that

(C.6.51) reduces to the Brown-Henneaux formula C = 3ℓ/2GN for d = 2. In [39] it was

argued that the Hartle-Hawking wave function of minimal Vasiliev gravity in dS4 is perturbatively

computed by a d = 3 CFT of N free Grassmann scalars. This CFT has central charge C = −3
4N ,

hence according to (C.6.51), GN = 25/πN and γ =
√

2GN = 8/
√
πN .

The final result of this appendix, putting everything together, is stated in (5.5.17).

17There is no assumption whatsoever this CFT actually exists. One just imagines it exists and uses the formal
holographic dictionary to infer the two-point function of this imaginary CFT’s stress tensor. In dS, this “dual
CFT” can be thought of as computing the Hartle-Hawking wave function of the universe [203].
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C.7 One-loop and exact results for 3D theories

C.7.1 Character formula for Z(1)
PI

For d = 2, i.e. dS3 / S3, some of the generic-d formulae in sections 5.4 and 5.5 become a

bit degenerate, requiring separate discussion. One reason d = 2 is a bit more subtle is that

the spin-s irreducible representation of SO(2) actually comes in two distinct chiral versions

±s, as do the corresponding SO(1, 3) irreducible representations (∆,±s). Likewise the field

modes of a spin s field in the path integral on S3 split into chiral irreps (n,±s) of SO(4).

The dimensions D2
s = D2

−s = 1 and D4
n,s = D4

n,−s = (1 + n − s)(1 + n + s) of the SO(2)

and SO(4) irreps are correctly reproduced by the Weyl dimension formula (2.2.1), rather than

(2.2.3). It should however be kept in mind that the single-particle Hilbert space of for instance a

massive spin-s ≥ 1 Pauli-Fierz field on dS3 carries both helicity versions (∆,±s) of the massive

spin-s SO(1, 3) irrep, hence the character Θ to be used in expressions for ZPI in this case is

Θ = Θ+s + Θ−s = 2Θ+s = 2(q∆ + q2−∆)/(1 − q)2. On the other hand for a real scalar field,

we just have Θ = Θ0 = (q∆ + q2−∆)/(1 − q)2.

For massless higher-spin gauge fields of spin s ≥ 2, a similar reasoning implies we should

include an overall factor of 2 in (C.6.17)-(C.6.18). For an s = 1 Maxwell field on the other hand,

we get a factor of 2 in the first term but not in the second term (since the gauge parameter/ghost

field is a scalar). The proper massless spin-s bulk and edge characters are then obtained from

these by the polar term flip (3.4.17) as usual. This results in

Θbulk,s = 0 (s ≥ 2) , Θ(s=1)
bulk = 2q

(1 − q)2 , Θedge,s = 0 (all s) , (C.7.1)

expressing the absence of propagating degrees of freedom (i.e. particles) for massless spin-s ≥ 2

fields on dS3.

This can also be derived more directly from the general path integral formula (C.5.34),
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taking into account the ±s doubling. In particular for massless s ≥ 2, (C.6.8) gets replaced by

F̂s =
∑
n≥−1

θ(1 + n) 2D4
n,s

(
qs+n + q2−s+n)−

∑
n≥−1

θ(1 + n) 2D4
n,s−1

(
qs+1+n + q1−s+n),

(C.7.2)

which matters for the n = −1 term because θ(0) ≡ 1
2 . For s = 1, we get instead

F̂1 =
∑
n≥−1

θ(1 + n) 2D4
n,1
(
q1+n + q1+n)−

∑
n≥0

D4
n,0
(
q2+n + qn

)
. (C.7.3)

For s ≥ 2, the computation of Zchar and ZG remains essentially unchanged. For s = 1 there

are some minor changes. The edge character in (C.6.18) acquires an extra q0 term in d = 2

because qs+d−3 = q0, so the map Θ̂edge → [Θ̂edge]+ gets an extra −1 subtraction, as a result

of which the factor −2 in (C.6.19) becomes a −3. Relatedly we get an extra q0 term in

q2s+d−4 + q2s+d−2 + 2 = q2 + 3 in (C.6.27), and we end up with ZG = γ̃dimG/vol(G)c with

γ̃ = gℓ/
√
A1 = g

√
ℓ/

√
2π instead of (C.6.40). Everything else remains the same.

Finally, the phase i−Ps (C.6.10) is somewhat modified. For s ≥ 2, from (C.7.2),

Ps = −
s−3∑
n=−1

θ(1 + n) 2D4
n,s −

s−2∑
n=−1

θ(1 + n) 2D4
n,s−1 = 1

3(2s− 3)(2s− 1)(2s+ 1) (C.7.4)

Note that P2 = 5, in agreement with [131]. P1 = 0 as before, since there are no negative

modes.

Conclusion

The final result for Z(1)
PI = ZGZchar in dS3 replacing (5.5.17)-(5.5.18) is:

• For Einstein and HS gravity theories with s ≥ 2,

Z
(1)
PI = i−P

γdimG

vol(G)c
· Zchar , Zchar = e

−2 dimG
∫ × dt

2t
1+q
1−q = (2π)dimGe− dimG·c ℓ ϵ−1

,

(C.7.5)

where as before γ =
√

8πGN/A1 =
√

4GN/ℓ, P =
∑
s Ps, and vol(G)c is the volume

with respect to the metric for which the standard so(4) generators MIJ have norm 1. We
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used (C.2.37) to evaluate Zchar. The coefficient c of the linearly divergent term is an order

1 constant depending on the regularization scheme. (For the heat kernel regularization of

appendix C.2, following section C.2.3, c = 3π
4 . For a simple cutoff at t = ϵ as in section

C.2.4, c = 2.) The finite part is

Z
(1)
PI,fin = i−P

(2πγ)dimG

vol(G)c
, γ =

√
8πGN
2πℓ (C.7.6)

For example for Einstein gravity with G = SO(4), we get

Z
(1)
PI,fin = i−5 (2πγ)6

(2π)4 = −i 4π2γ6 . (C.7.7)

• For Yang-Mills theories with gauge group G and coupling constant g, we get

Z
(1)
PI = γ̃dimG

vol(G)c
· e

dimG
∫ × dt

2t
1+q
1−q

(
2q

(1−q)2 −3
)
, γ̃ = g

√
ℓ√

2π
. (C.7.8)

Using (C.2.19), (C.2.37), the finite part evaluates to

Z
(1)
PI,fin = (2πg

√
ℓ Z1)dimG

vol(G)c
, Z1 = e− ζ(3)

4π2 . (C.7.9)

As in (5.5.17), vol(G)c is the volume of G with respect to the metric defined by the trace

appearing in the Yang-Mills action. As a check, for G = U(1) we have vol(G)c = 2π, so

Z = g e−ζ(3)/4π2√
ℓ in agreement with [256] eq. (3.25).

• We could also consider the Chern-Simons partition function on S3,

Zk =
∫

DAei k SCS[A] , SCS[A] ≡ 1
4π

∫
Tr(A ∧ dA+ 2

3A ∧A ∧A) , (C.7.10)

with k > 0 suitably quantized (k ∈ Z for G = SU(N) with Tr the trace in the N -

dimensional representation). Because in this case the action is first order in the derivatives

and not parity-invariant, it falls outside the class of theories we have focused on in this

paper. It is not too hard though to generalize the analysis to this case. The main difference

with Yang-Mills is that Θbulk = 0 = Θedge: like in the s ≥ 2 case, the s = 1 Chern-Simons
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theory has no particles. The function F̂1 is no longer given by the Maxwell version (C.7.3),

but rather by (C.7.2), except without the factors of 2, related to the fact that the CS

action is first order in the derivatives. This immediately gives F1 = F̂1 = −2 1+q
1−q . The

computation of the volume factor is analogous to our earlier discussions. The result (in

canonical framing [257]) is

Z
(1)
k = γ̃dimG

vol(G)Tr
e

−2 dimG
∫ × dt

2t
1+q
1−q , Z

(1)
k,fin = (2πγ̃)dimG

vol(G)Tr
, γ̃ = 1√

k
, (C.7.11)

where vol(G)Tr is the volume with respect to the metric defined by the trace appearing in

the Chern-Simons action (C.7.10). This agrees with the standard results in the literature,

nicely reviewed in section 4 of [258].

C.7.2 Chern-Simons formulation of Einstein gravity

3D Einstein gravity can be reformulated as a Chern-Simons theory [164, 259]. Although well-

known, we briefly review some of the basic ingredients and conceptual points here to facilitate

the discussion of the higher-spin generalization in section C.7.3. A more detailed review of

certain aspects, including more explicit solutions, can be found in section 4 of [260]. Explicit

computations using the Chern-Simons formulation of Λ > 0 Euclidean quantum gravity with

emphasis on topologies more sophisticated than the sphere can be found in [261–263].

Lorentzian gravity

For the Lorentzian theory with positive cosmological constant, amplitudes are computed by path

integrals
∫

DAeiSL with real Lorentzian SL(2,C) Chern-Simons action [165]

SL = (l + iκ)SCS[A+] + (l − iκ)SCS[A−] , A∗
+ = A−, (C.7.12)

where SCS is as in (C.7.10) with A± an sl(2,C)-valued connection and Tr = Tr2. The vielbein

e and spin connection ω are the real and imaginary parts of the connection:

A± = ω ± ie/ℓ , ds2 = 2 Tr2 e
2 = ηije

iej . (C.7.13)
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For the last equality we decomposed e = eiLi in a basis Li of sl(2,R), say

(L1, L2, L3) ≡ (1
2σ1,

1
2 iσ2,

1
2σ3) ⇒ ηij ≡ 2 Tr2(LiLj) = diag(1,−1, 1) . (C.7.14)

Note that [Li, Lj ] = −ϵijkLk with Lk ≡ ηkk
′
Lk′ . When l = 0, the action reduces to the firs-

order form of the Einstein action with Newton constant GN = ℓ/4κ and cosmological constant

Λ = 1/ℓ2. The equations of motion stipulate A± must be flat connections:

dA± +A± ∧A± = 0 , (C.7.15)

equivalent with the Einstein gravity torsion constraint (with ωij ≡ ηilϵljkω
k) and the Einstein

equations of motion [164]. Turning on l deforms the action by parity-odd terms of gravitational

Chern-Simons type. This does not affect the equations of motion (C.7.15). We can take l ≥ 0

without loss of generality. The part of the action multiplied by l has a discrete ambiguity forcing

l to be integrally quantized, like k in (C.7.10). Summarizing,

0 ≤ l ∈ Z , 0 < κ = 2πℓ
8πGN

∈ R , (C.7.16)

dS3 vacuum solution

A flat connection corresponding to the de Sitter metric can be obtained as follows. (We will be

brief because the analog for the sphere below will be simpler and make this more clear.) Define

Q(X) ≡ 2 (X4L4 + iXiLi) with L4 ≡ 1
21 and note that detQ = X2

4 + ηijX
iXj =: ηIJXIXJ ,

so M ≡ {X| detQ(X) = 1} is the dS3 hyperboloid, and Q is a map from M into SL(2,C). Its

square root h ≡ Q1/2 is then a map from M into SL(2,C)/Z2 ≃ SO(1, 3), so A+ ≡ h−1dh is a

flat sl(2,C)-valued connection on M. Moreover on M we have Q∗ = Q−1, so h∗ = h−1, A− =

A∗
+ = −(dh)h−1, and ds2 = −1

2ℓ
2 Tr(A+ − A−)2 = −1

2ℓ
2 Tr (Q−1dQ)2 = ℓ2ηIJdX

IdXJ ,

which is the de Sitter metric of radius ℓ on M.

Euclidean gravity

Like the Einstein-Hilbert action — or any other action for that matter — (C.7.12) may have

complex saddle points, that is to say flat connections A± which do not satisfy the reality
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constraint (C.7.12), or equivalently solutions for which some components of the vielbein and spin

connection are not real. Of particular interest for our purposes is the solution corresponding to

the round metric on S3. This can be obtained from the dS3 solution as usual by a Wick rotation

of the time coordinate. Given our choice of sl(2,R) basis (C.7.14), this means X2 → −iX2.

At the level of the vielbein e = eiLi such a Wick rotation is implemented as e2 → −ie2.

Similarly, recalling ωij = ϵijkω
k, the spin connection ω = ωiLi rotates as ω1 → iω1, ω3 → iω3.

Equivalently, A± → (ωi ± ei/ℓ)Si where Si ≡ 1
2 iσi. Notice the Si are the generators of su(2),

satisfying [Si, Sj ] = −ϵijkSk, −2 Tr2(SiSj) = δij and S†
i = −Si. Thus the Lorentzian metric

ηij gets replaced by the Euclidean metric δij , the Lorentzian sl(2,C) = so(1, 3) reality condition

gets replaced by the Euclidean su(2) ⊕ su(2) = so(4) reality condition, and the Lorentzian path

integral
∫

DAeiSL becomes a Euclidean path integral
∫

DAe−SE , where SE ≡ −iSL is the

Euclidean action:

SE = (κ− il)SCS[A+] − (κ+ il)SCS[A−] , A†
± = −A± . (C.7.17)

This can be interpreted as the Chern-Simons formulation of Euclidean Einstein gravity with

positive cosmological constant. The su(2) ⊕ su(2)-valued connection (A+, A−) encodes the

Euclidean vielbein, spin connection and metric as

A± = ω ± e/ℓ = (ωi ± ei/ℓ)Si , Si ≡ 1
2 iσi , ds2 = −2 Tr2 e

2 = δije
iej . (C.7.18)

The Euclidean counterpart of the reality condition of the Lorentzian action is that SE gets

mapped to S∗
E under reversal of orientation. Reversal of orientation maps SCS[A] → −SCS[A],

and in addition here it also exchanges the ± parts of the decomposition so(4) = su(2)+⊕su(2)−

into self-dual and anti-self-dual parts, that is to say it exchanges A+ ↔ A−. Thus orientation

reversal maps SE → −(κ− il)SCS[A−] + (κ+ il)SCS[A+] = S∗
E , as required.
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Round sphere solutions

Parametrizing S3 by g ∈ SU(2) ≃ S3, it is easy to write down a flat su(2) ⊕ su(2) connection

yielding the round metric of radius ℓ:

(A+, A−) = (g−1dg, 0) ⇒ e/ℓ = 1
2g

−1dg = ω , ds2 = −1
2ℓ

2 Tr(g−1dg)2 .

(C.7.19)

The radius can be checked by observing that along an orbit g(φ) = eφS3 , we get g−1dg =

dφS3 so ds = 1
2ℓdφ and the orbit length is

∫ 4π
0 ds = 2πℓ. The on-shell action is SE =

−κ−il
12π

∫
S3 Tr2(g−1dg)3 = −2(κ−il)

3πℓ3
∫
eiejek Tr2(SiSjSk) = −κ−il

6πℓ3
∫
eiejek ϵijk = −2π(κ − il),

so

exp(−SE) = exp
(
2πκ+ 2πil

)
= exp

( 2πℓ
4GN

)
, (C.7.20)

where we used (C.7.16). This reproduces the standard Gibbons-Hawking result [57] for dS3.

More generally we can consider flat connections of the form (A+, A−) = (h−1
+ dh+, h

−1
− dh−)

with h± = gn± , where n± ∈ Z if we take the gauge group to be G = SU(2) × SU(2).

These are all related to the trivial connection (0, 0) by a large gauge transformation g ∈ S3 →

(h+, h−) ∈ G. All other flat connections on S3 are obtained from these by gauge transformations

continuously connected to the identity, which are equivalent to diffeomorphisms and vielbein

rotations continuously connected to the identity in the metric description [164]. Large gauge

transformations on the other hand are in general not equivalent to large diffeomorphisms. Indeed,

e−SE = e2πnκ+2πiñl = e2πnκ , n ≡ n+ − n−, ñ ≡ n+ + n− , (C.7.21)

so evidently different values of n are physically inequivalent. Conversely, for a fixed value of n but

different values of ñ, we get the same metric, so these solutions are geometrically equivalent. In

particular the n = 1 solutions all produce the same round metric (C.7.19). For n = 0, the metric

vanishes. For n < 0, we get a vielbein with negative determinant. Only vielbeins with positive

determinant reproduce the Einstein-Hilbert action with the correct sign, so from the point of

view of gravity we should discard the n < 0 solutions. Finally the cases n > 1 correspond to
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a metric describing a chain of n spheres connected by throats of zero size, presumably more

appropriately thought of as n disconnected spheres.

Euclidean path integral

The object of interest to us is the Euclidean path integral Z =
∫

DAe−SE [A], defined perturba-

tively around an n = n+ − n− = 1 round sphere solution (Ā+, Ā−) = (g−n+dgn+ , g−n−dgn−),

such as the (1, 0) solution (C.7.19). Physically, this can be interpreted as the all-loop quantum-

corrected Euclidean partition function of the dS3 static patch. For simplicity we take G =

SU(2) × SU(2), so n± ∈ Z and we can formally factorize Z as an SU(2)k+ × SU(2)k− CS

partition function where k± = l ± iκ, with l ∈ Z+ and κ ∈ R+:

Z =
∫

(n+,n−)
DAeik+SCS[A+]+ik−SCS[A−] = ZCS

(
SU(2)k+ |Ān+

)
ZCS

(
SU(2)k− |Ān−

)
,

(C.7.22)

Here the complex-k CS partition function ZCS(SU(2)k|Ām) ≡
∫
m DAeikSCS[A] is defined pertur-

batively around the critical point Ā = g−mdgm. It is possible, though quite nontrivial in general,

to define Chern-Simons theories at complex level k on general 3-manifolds M3 [264, 265]. Our

goal is less ambitious, since we only require a perturbative expansion of Z around a given saddle,

and moreover we restrict to M3 = S3. In contrast to generic M3, at least for integer k, the CS

action on S3 has a unique critical point modulo gauge transformations, and its associated per-

turbative large-k expansion is not just asymptotic, but actually converges to a simple, explicitly

known function: in canonical framing [257],

ZCS
(
SU(2)k|Ā

)
0 =

√
2

2+k sin
(
π

2+k
)
ei(2+k)SCS[Ā] (k ∈ Z+) . (C.7.23)

The dependence on the choice of critical point Ā = g−mdgm actually drops out for integer k,

as SCS[Ā] = −2πm ∈ 2πZ. We have kept it in the above expression to because this is no

longer the case for complex k. Analytic continuation to k± = l ± iκ with l ∈ Z+ and κ ∈ R+

in (C.7.22) then gives:

Z0 =
∣∣∣√ 2

2+l+iκ sin
(

π
2+l+iκ

)∣∣∣2 e2πnκ−2πi ñ(2+l) =
∣∣∣√ 2

2+l+iκ sin
(

π
2+l+iκ

)
· eπκ

∣∣∣2 . (C.7.24)
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Framing dependence of phase and one-loop check

For a general choice of S3 framing with SO(3) spin connection ω̂, (C.7.23) gets replaced by

[257]

ZCS
(
SU(2)k|Ā

)
= exp

(
i

24c(k)I(ω̂)
)
ZCS

(
SU(2)k|Ā

)
0 , c(k) = 3

(
1 − 2

2+k
)
, (C.7.25)

where I(ω̂) = 1
4π
∫

Tr3(ω̂ ∧ dω̂ + 2
3 ω̂ ∧ ω̂ ∧ ω̂) is the gravitational Chern-Simons action. The

action I(ω̂) can be defined more precisely as explained under (2.22) of [266], by picking a

4-manifold M with boundary ∂M = S3 and putting

I(ω̂) ≡ IM ≡ 1
4π

∫
M

Tr(R ∧R) , (C.7.26)

where R is the curvature form of M , Rµν = 1
2R

µ
νρσdx

ρ ∧ dxσ. Taking M to be a flat 4-ball

B, the curvature vanishes so IB = 0, corresponding to canonical framing. Viewing B as a

4-hemisphere with round metric has Tr(R ∧ R) = 0 pointwise so again IB = 0. Gluing any

other 4-manifold M with boundary S3 to B, we get a closed 4-manifold X = M − B, with

IM−IB = 1
4π
∫
X Tr(R∧R) = 2πp1(X), where p1(X) is the Pontryagin number of X. According

to the Hirzebruch signature theorem, the signature σ(X) = b+
2 − b−

2 of the intersection form of

the middle cohomology of X equals 1
3p1(X). Therefore, for any choice of M ,

IM = 6πr , r = σ(X) ∈ Z . (C.7.27)

For example r = 1 for X = CP2 and r = p−q for X = pCP2#qCP2. Thus for general framing,

(C.7.25) becomes ZCS(k|m) = ZCS(k|m)0 exp
(
r c(k) iπ4

)
and (C.7.24) becomes

Zr = eirϕ
∣∣∣√ 2

2+l+iκ sin
(

π
2+l+iκ

)
eπκ
∣∣∣2 , r ∈ Z , (C.7.28)

where, using c(k) = 3
(
1 − 2

2+k
)
, the phase is given by

rϕ = r
(
c(l + iκ) + c(l − iκ)

)π
4 = r

(
1 − 2(2+l)

(2+l)2+κ2
)3π

2 . (C.7.29)
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In the weak-coupling limit κ → ∞,

Zr → (−i)r 2π2

κ3 · e2πκ . (C.7.30)

Using (C.7.16) and taking into account that we took G = SU(2) × SU(2) here, the absolute

value agrees with our general one-loop result (C.7.6) in the metric formulation, with the phase

(−i)r matching Polchinski’s phase i−P = i−5 = −i in (5.5.17) for odd framing r.18 We do

not have any useful insights into why (or whether) CS framing and the phase i−P might have

anything to do with each other, let alone why odd but not even framing should reproduce the

phase of [131]. Perhaps different contour rotation prescriptions as those assumed in [131] might

reproduce the canonically framed (r = 0) result in the metric formulation of Euclidean gravity.

We leave these questions open.

Comparison to previous results: The Chern-Simons formulation of gravity was applied to calcu-

late Euclidean Λ > 0 partition functions in [261–263]. The focus of these works was on summing

different topologies. Our one-loop (C.7.30) in canonical framing agrees with [261] up to an un-

specified overall normalization constant in the latter, agrees with Z(S3)/Z(S1 × S2) in [262]

combining their eqs. (13),(32), and disagrees with eq. (4.39) in [263], Z(1)(S3) = π3/(25κ).

C.7.3 Chern-Simons formulation of higher-spin gravity

The SL(2,C) Chern-Simons formulation of Einstein gravity (C.7.12) has a natural extension

to an SL(n,C) Chern-Simons formulation of higher-spin gravity — the positive cosmological

constant analog of the theories studied e.g. in [166–169, 182, 183]. The Lorentzian action is

SL = (l + iκ)SCS[A+] + (l − iκ)SCS[A−] , A∗
+ = A− , (C.7.31)

where SCS[A] = 1
4π
∫

Trn
(
A∧dA+ 2

3A∧A∧A
)
, an A is an sl(n,C)-valued connection, κ ∈ R+

and l ∈ Z+. The corresponding Euclidean action SE = −iSL extending (C.7.17) is given by

SE = (κ− il)SCS[A+] − (κ+ il)SCS[A−] , A†
± = −A± , (C.7.32)

18Strictly speaking for r = 1 mod 4, but iP vs i−P in (5.5.17) is a matter of conventions, so there is no
meaningful distinction we can make here.
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where A± are now independent su(n)-valued connections.

C.7.3.1 Landscape of dS3 vacua

The solutions A of the original (n = 2) Einstein gravity theory can be lifted to solutions

A = R(A) of the extended (n > 2) theory by choosing an embedding R of (2) into (n). More

concretely, such lifts are specified by picking an n-dimensional representation R of su(2),

R = ⊕ama ,
∑
a

ma = n , Si = R(Si) = ⊕aJ
(ma)
i . (C.7.33)

Here J
(m)
i are the standard anti-hermitian spin j = m−1

2 representation matrices of su(2),

satisfying the same commutation relations and reality properties as the spin-1
2 generators Si

in (C.7.18). Then the matrices Li ≡ R(Li) with the Li as in (C.7.14) are real, generating

the corresponding n-dimensional representation of sl(2,R). The Casimir eigenvalue of the spin

j = m−1
2 irrep is j(j + 1) = 1

4(m2 − 1), so

Trn(SiSj) = −1
2TR δij , Trn(LiLj) = 1

2TR ηij , TR ≡ 1
6
∑
a

ma(m2
a − 1) ; (C.7.34)

A general SL(2,C) connection A = AiLi has curvature dA+A ∧A =
(
dAi − 1

2ϵ
i
jkA

jAk
)
Li,

and an SL(n,C) connection of the form A = R(A) = AiLi has curvature dA + A ∧ A =(
dAi− 1

2ϵ
i
jkA

jAk
)
Li, hence A = R(A) solves the equations of motion of the extended SL(n,C)

theory iff A solves the equations of motion of the original Einstein SL(2,C) theory. In other

words, restricting to connections A = AiLi amounts to a consistent truncation, which may be

interpreted as the gravitational subsector of the n > 2 theory. Substituting A = R(A) into the

action (C.7.31) gives the consistently truncated action

SL = (l + iκ)TR SCS[A+] + (l − iκ)TR SCS[A−] , A∗
+ = A− , (C.7.35)

which is of the exact same form as the original Einstein CS gravity theory (C.7.12), except

l + iκ is replaced by (l + iκ)TR. Thus we can naturally interpret the components Ai± again as

metric/vielbein/spin connection degrees of freedom, just like in (C.7.18), i.e. Ai± = ωi ± iei/ℓ,

ds2 = ηije
iej , and the lift A = R(A) of the original solution A corresponding to the dS3 metric
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again as a solution corresponding to the dS3 metric. The difference is that the original relation

(C.7.16) between κ and ℓ/GN gets modified to

κTR = 2πℓ
8πGN

. (C.7.36)

Since κ is fixed, this means the dimensionless ratio ℓ/GN depends on the choice of R. Thus the

different solutions A = R(A) of the SL(n,C) theory can be thought of as different de Sitter

vacua of the theory, labeled by R, with different values of the curvature radius in Planck units

ℓ/GN. These are the dS analog of the AdS vacua discussed in [183]. The total number of vacua

labeled by R = ⊕ama equals the number of partitions of n =
∑
ama,

Nvac ∼ e2π
√
n/6 (n ≫ 1) . (C.7.37)

For, say, n ∼ 2 × 105, this gives Nvac ∼ 10500.

Analogous considerations hold for the Euclidean version of the theory. For example the

round sphere solution (C.7.19) is lifted to

(A+,A−) =
(
R(A+), 0

)
=
(
R(g)−1dR(g), 0

)
, R(eαiSi) ≡ eα

iSi , (C.7.38)

with the sphere radius ℓ in Planck units given again by (C.7.36). The tree-level contribution of

the solution (C.7.38) to the Euclidean path integral is

exp(−SE) = exp
(
2πκTR

)
= exp

( 2πℓ
4GN

)
. (C.7.39)

Note that S(0) ≡ −SE = 2πℓ
4GN

is the usual dS3 Gibbons-Hawking horizon entropy [57]. Its value

S(0) = 2πκTR depends on the vacuum R = ⊕ama through TR as given by (C.7.34). The

vacuum R maximizing e−SE corresponds to the partition of n =
∑
ama maximizing TR. Clearly

the maximum is achieved for R = n:

max
R

TR = Tn = n(n2 − 1)
6 . (C.7.40)

The corresponding embedding of su(2) into su(n) is called the “principal embedding”. Thus the
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“principal vacuum” maximizes the entropy at SGH,n = 1
6n(n2−1) 2πκ, exponentially dominating

the Euclidean path integral in the semiclassical (large-κ) regime. In the remainder we focus on

the Euclidean version of the theory.

C.7.3.2 Higher-spin field spectrum and algebra

Of course for n > 2, there are more degrees of freedom in the 2(n2−1) independent components

of A± than just the 3+3 vielbein and spin connection degrees of freedom Ai
±Si. The full set

of fluctuations around the vacuum solution can be interpreted in a metric-like formalism as

higher-spin field degrees of freedom. The precise spectrum depends on the vacuum R. For

the principal vacuum R = n, we get the higher-spin vielbein and spin connections of a set

of massless spin-s fields of s = 2, 3, . . . , n, as was worked out in detail for the AdS analog in

[182]. Indeed su(n) decomposes under the principally embedded su(2) subalgebra into spin-

r irreps, r = 1, 2, . . . , n − 1, generated by the traceless symmetric products Si1···ir of the

generators Si. As reviewed in [141], this means we can identify the su(n)+ ⊕ su(n)− Lie

algebra of the theory (C.7.32) with the higher-spin algebra hsn(su(2))+ ⊕ hsn(su(2))−, where

su(2)+ ⊕su(2)− = so(4) is the principally embedded gravitational subalgebra. In the metric-like

formalism the spin-r generators correspond to (anti-)self-dual Killing tensors of rank r. These

are the Killing tensors of massless symmetric spin-s fields with s = r+ 1. As a check, recall the

number of (anti-)self-dual rank r Killing tensors on S3 equals D4
r,±r = 2r + 1, correctly adding

up to

∑
±

n−1∑
r=1

D4
r,±r = 2

n−1∑
r=1

(2r + 1) = 2(n2 − 1) . (C.7.41)

For different choices of embedding R, we get different su(2) decompositions of su(n). For

example for n = 12, while the principal embedding R = 12 considered above gives the su(2)

decomposition 143su(12) = 3+5+7+9+11+13+15+17+19+21+23, taking R = 6⊕4⊕2

gives 143su(12) = 2 · 1 + 7 · 3 + 8 · 5 + 6 · 7 + 3 · 9 + 11. Interpreting these as Killing tensors for

ns massless spin-s fields, we get for the former n2 = 1, n3 = 1, . . . , n12 = 1, and for the latter

n1 = 2, n2 = 7, n3 = 8, n4 = 6, n5 = 3, n6 = 1. The tree-level entropy S(0) = 2πℓ/4GN for

R = 12 is S(0) = 286 · 2πκ, and for R = 6 ⊕ 4 ⊕ 2 it is S(0) = 46 · 2πκ.
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C.7.3.3 One-loop Euclidean path integral from metric-like formulation

In view of the above higher-spin interpretation of the theory, we can apply our general massless

HS formula (C.7.6) with G = SU(n) × SU(n) to obtain the one-loop contribution to the

Euclidean path integral (for l = 0). In combination with (C.7.36) this takes the form

Z
(1)
PI = i−P

(2πγ)dimG

vol(G)c
, γ =

√
8πGN
2πℓ = 1√

κTR
. (C.7.42)

Recall that vol(G)c is the volume of G with respect to the metric normalized such that

⟨M |M⟩c = 1, where M is one of the standard so(4) = su(2) ⊕ su(2) generators, which we can

for instance take to be the rotation generator M = S3 ⊕ S3. In the context of Chern-Simons

theory, it is more natural to consider the volume vol(G)Trn with respect to the metric defined

by the trace appearing in the Chern-Simons action (C.7.32). Using the definition of TR in

(C.7.35), we see the trace norm of M is ⟨M |M⟩Trn = −2 Trn(S3S3) = TR = TR⟨M |M⟩c,

hence vol(G)Trn = (
√
TR)dimG vol(G)c. Note that upon substituting this in (C.7.42), the TR-

dependent factors cancel out. Finally, using (C.7.4), we get P =
∑n
s=2 Ps = 1

3(2s − 3)(2s −

1)(2s+ 1) = 2
3n

2(n− 1)(n+ 1) − (n2 − 1). Because (n− 1) · n · (n+ 1) is divisible by 3, the

first term is an integer, and moreover a multiple of 8 because either n2 or (n + 1)(n − 1) is a

multiple of 4. Hence i−P = i(n
2−1), which equals −i for even n and +1 for odd n. Thus we

get

Z
(1)
PI = in

2−1 (2πγ̃)dimG

vol(G)Trn

, γ̃ ≡ 1√
κ
. (C.7.43)

C.7.3.4 Euclidean path integral from CS formulation

As in the SU(2) × SU(2) Einstein gravity case, we can derive an all-loop expression for the

Euclidean partition function Z(R) of the SU(n) × SU(n) higher-spin gravity theory (C.7.32)

expanded around a lifted round sphere solution Ā = R(Ā) such as (C.7.38), by naive analytic

continuation of the exact SU(n)k+ ×SU(n)k− partition function on S3 to k± = l±iκ, paralleling

(C.7.22) and the subsequent discussion there. The SU(n)k generalization of the canonically
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framed SU(2)k result (C.7.23) as spelled out e.g. in [171, 267] is

ZCS(SU(n)k|Ā)0 = 1√
n

1
(n+ k)

n−1
2

n−1∏
p=1

(
2 sin πp

n+ k

)(n−p)
· ei(n+k)SCS[Ā] . (C.7.44)

The corresponding higher-spin generalization of (C.7.24) is therefore

Z(R)0 =
∣∣∣∣ 1√
n

1
(n+ l + iκ)

n−1
2

n−1∏
p=1

(
2 sin πp

n+ l + iκ

)(n−p) ∣∣∣∣2 · e2πκTR . (C.7.45)

Physically this can be interpreted as the all-loop quantum-corrected Euclidean partition function

of the dS3 static patch in the vacuum labeled by R. The analog of the result (C.7.25) for more

general framing IM is

ZCS(SU(n)k|Ā) = exp
(
i

24c(k)IM
)
ZCS(SU(n)k|Ā)0 , c(k) = (n2 − 1)

(
1 − n

n+k
)
,

(C.7.46)

hence the generalization of (C.7.28) for arbitrary framing IM = 6πr, r ∈ Z, is

Z(R)r = eirϕ Z(R)0 , (C.7.47)

where ϕ =
(
c(l + iκ) + c(l − iκ)

)
π
4 =

(
1 − 2(n+l)

(n+l)2+κ2
)
(n2 − 1)π2 . In the limit κ → ∞,

Z(R)r → ir(n
2−1) 1

n

1
κn−1

n−1∏
r=1

(2πr
κ

)2(n−r)
= ir(n

2−1)
( 2π√

κ

)2(n2−1) ( 1√
n

n∏
s=2

Γ(s)
(2π)s

)2
.

(C.7.48)

Recognizing n2 − 1 = dimSU(n) and
√
n
∏n
s=2(2π)s/Γ(s) = vol(SU(n))Trn (C.3.3), we see

this precisely reproduces the one-loop result (C.7.43). Like in the original n = 2 case, the phase

again matches for odd framing r. (The agreement at one loop can also be seen more directly

by a slight variation of the computation leading to (C.7.11).) This provides a nontrivial check

of our higher-spin gravity formula (C.7.6) and more generally (5.5.17).
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C.7.3.5 Large-n limit and topological string description

In generic dSd+1 higher-spin theories, dimG = ∞. To mimic this case, consider the n → ∞

limit of SU(n) × SU(n) dS3 higher-spin theory with l = 0. A basic observation is that the

loop expansion is only reliable then if n/κ ≪ 1. Using (C.7.36), this translates to TR n ≪ ℓ
GN

For the exponentially dominant principal vacuum R = n, this becomes n4 ≪ ℓ/GN while at

the other extreme, for the nearly-trivial R = 2 ⊕ 1 ⊕ · · · ⊕ 1, this becomes n ≪ ℓ/GN. Either

way, for fixed ℓ/GN , the large-n limit is necessarily strongly coupled, and the one-loop formula

(C.7.42), or equivalently (C.7.43) or (C.7.48), becomes unreliable. Indeed, according to this

formula, logZ(1) ∼ log
(
n
κ

)
· n2 in this limit, whereas the exact expression (C.7.45) actually

implies logZ(loops) → 0.

In fact, the partition function does have a natural weak coupling expansion in the n → ∞

limit — not as a 3D higher-spin gravity theory, but rather as a topological string theory. U(n)k
Chern-Simons theory on S3 has a description [268] as an open topological string theory on the

deformed conifold T ∗S3 with n topological D-branes wrapped on the S3, and a large-n ’t Hooft

dual description [170] as a closed string theory on the resolved conifold. Both descriptions are

reviewed in [171], whose notation we follow here. The string coupling constant is gs = 2π/(n+k)

and the Kähler modulus of the resolved conifold is t =
∫
S2 J + iB = igsn = 2πin/(n + k).

Under this identification,

ZCS(SU(n)k)0 =
√

n+k
n ZCS(U(n)k)0 =

√
2πi
t Ztop(gs, t) ≡ Z̃top(gs, t) . (C.7.49)

Thus we can write the SU(n)l+iκ × SU(n)l−iκ higher-spin Euclidean gravity partition function

(C.7.45) expanded around the round S3 solution Ā = R(Ā) as

Z(R)0 =
∣∣∣Z̃top(gs, t) e−πTR·2πi/gs

∣∣∣2 (C.7.50)

where TR was defined in (C.7.34), maximized for R = n at Tn = 1
6n(n2 − 1), and

gs = 2π
n+ l + iκ

, t = igsn = 2πin
n+ l + iκ

. (C.7.51)

Note that t takes values inside a half-disk of radius 1
2 centered at t = iπ, with Re t > 0. The
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higher-spin gravity theory (or the open string theory description on the deformed conifold) is

weakly coupled when κ ≫ n, which implies |t| ≪ 1. In the free field theory limit κ → ∞,

we get gs ∼ −2πi/κ → 0 and t ∼ 2πn/κ → 0, which is singular from the closed string point

of view. In the ’t Hooft limit n → ∞ with t kept finite, the closed string is weakly coupled

and sees a smooth geometry. The earlier discussed Vasiliev-like limit n → ∞ with l = 0 and

ℓ/GN ∼ Tnκ ∼ n3κ fixed, infinitely strongly coupled from the 3D field theory point of view,

maps to gs ∼ 2π/n → 0 and t ∼ 2πi + 2πκ/n → 2πi, which is again singular from the

closed string point of view, differing from the 3D free field theory singularity by a mere B-field

monodromy, reflecting the more general n ↔ l + iκ, t ↔ 2πi− t level-rank symmetry.

C.8 Quantum dS entropy: computations and examples

Here we provide the details for section 5.8.

C.8.1 Classical gravitational dS thermodynamics

C.8.1.1 3D Einstein gravity example

For concreteness we start with pure 3D Einstein gravity as a guiding example, but we will phrase

the discussion so generalization will be clear. The Euclidean action in this case is

SE [g] = 1
8πG

∫
d3x

√
g
(
Λ − 1

2R
)
, (C.8.1)

with Λ > 0. The tree-level contribution to the entropy (5.8.2) is

S(0) = log Z(0) , Z(0) =
∫
tree Dg e−SE [g] . (C.8.2)

The dominant saddle of (C.8.2) is a round S3 metric gℓ of radius ℓ= ℓ0 minimizing SE(ℓ) ≡

SE [gℓ]:

Z(0) =
∫
tree dℓ e

−SE(ℓ) , SE(ℓ) = 2π2

8πG
(
Λℓ3 − 3ℓ

)
, (C.8.3)
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where
∫

tree means evaluation at the saddle point, here at the on-shell radius ℓ = ℓ0:

∂ℓSE(ℓ0) = 0 ⇒ Λ = 1
ℓ20
, S(0) = −SE(ℓ0) = 2πℓ0

4G , (C.8.4)

reproducing the familiar area law S(0) = A/4G for the horizon entropy.

We now recast the above in a way that will allow us to make contact with the formulae of

section 5.7.1 and will naturally generalize beyond tree level in a diffeomorphism-invariant way.

To this end we define an “off-shell” tree-level partition function at fixed (off-shell) volume V :

Z(0)(V ) ≡
∫
tree dσ

∫
tree Dg e−SE [g]+σ(

∫√
g−V ) . (C.8.5)

Evaluating the integral is equivalent to a constrained extremization problem with Lagrange

multiplier σ enforcing the constraint
∫√

g = V . The dominant saddle is the round sphere

g = gℓ of radius ℓ(V ) fixed by the volume constraint:

Z(0)(V ) = e−SE(ℓ) , 2π2ℓ3 = V . (C.8.6)

Paralleling (5.7.6) and (5.7.7), we define from this an off-shell energy density and entropy,

ρ(0) ≡ −∂V logZ(0) = −1
3ℓ∂ℓ logZ(0) / V =

(
Λ − ℓ−2)/8πG

S(0) ≡
(
1 − V ∂V

)
logZ(0) =

(
1 − 1

3ℓ∂ℓ
)

logZ(0) = 2πℓ
4G .

(C.8.7)

ρ(0) is the sum of the positive cosmological constant and negative curvature energy densities.

S(0) is independent of Λ. It is the Legendre transform of logZ(0):

S(0) = logZ(0) + V ρ(0) , d logZ(0) = −ρ(0)dV , dS(0) = V dρ(0) , (C.8.8)

Note that evaluating
∫

tree dσ in (C.8.5) sets σ = −∂V logZ(0) = ρ(0)(V ). On shell,

ρ(0)(ℓ0) = 0 , S(0) = logZ(0)(ℓ0) = S(0)(ℓ0) = 2πℓ0
4G . (C.8.9)

Paralleling (5.7.8), the differential relations in (C.8.8) can be viewed as the first law of tree-level
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de Sitter thermodynamics. We can also consider variations of coupling constants such as Λ.

Then d logZ(0) = −ρ(0)dV − 1
8πGV dΛ, dS(0) = V dρ(0)− 1

8πGV dΛ. On shell, dS(0) = − V0
8πG dΛ.

C.8.1.2 General d and higher-order curvature corrections

The above formulae readily extend to general dimensions and to gravitational actions SE [g] with

general higher-order curvature corrections. Using that Rµνρσ = (gµρgνσ − gµσgνρ)/ℓ2 for the

round19 Sd+1, Z(0)(V ) (C.8.5) can be evaluated explicitly for any action. It takes the form

logZ(0)(V ) = −SE [gℓ] = Ωd+1
8πG

(
−Λℓd+1 + d(d+1)

2 ℓd−1 + · · ·
)
, Ωd+1ℓ

d+1 = V , (C.8.10)

where + · · · is a sum of Rn higher-order curvature corrections ∝ ℓ−2n and Ωd+1 = (C.3.1).

The off-shell energy density and entropy are defined as in (C.8.7)

ρ(0) = − 1
d+1ℓ∂ℓ logZ(0) / V =

(
Λ − d(d−1)

2 ℓ−2 + · · ·
)
/8πG

S(0) =
(
1 − 1

d+1ℓ∂ℓ
)

logZ(0) = A

4G
(
1 + · · ·

)
.

(C.8.11)

where A = Ωd−1ℓ
d−1 and + · · · are 1/ℓ2n curvature corrections. The on-shell radius ℓ0 solves

ρ(0)(ℓ0) = 0, most conveniently viewed as giving a parametrization Λ(ℓ0).

As an example, consider the general action up to order R2 written as

SE = 1
8πG

∫√
g
(
Λ − 1

2R− l2s
(
λC2CµνρσCµνρσ + λR2R2 + λE2EµνEµν

))
, (C.8.12)

where Eµν ≡ Rµν − 1
d+1Rgµν , Cµνρσ is the Weyl tensor, ls is a length scale and the λi are

dimensionless. The Weyl tensor vanishes on the round sphere and Rµν = d gµν/ℓ
2, hence

logZ(0) = Ωd+1
8πG

(
−Λ ℓd+1 + 1

2d(d+ 1) ℓd−1 + λR2 d2(d+ 1)2 l2s ℓ
d−3 ) , (C.8.13)

19By virtue of its SO(d+ 2) symmetry, the round sphere metric gℓ with Ωd+1ℓ
d+1 = V is a saddle of (C.8.5).

Spheres of dimension ≥ 5 admit a plentitude of Einstein metrics that are not round [269–272], but as explained
e.g. in [273], by Bishop’s theorem [274], these saddles are subdominant in Einstein gravity. In the large-size limit,
higher-order curvature corrections are small, hence the round sphere dominates in this regime.
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For example for d = 2,

logZ(0) = π

4G
(
−Λ ℓ3 + 3 ℓ+ 36 l2sλR2

ℓ

)
, (C.8.14)

hence, using (C.8.11) and ρ(0)(ℓ0) = 0,

S(0) = S(0)(ℓ0) = 2πℓ0
4G

(
1 + 24 l2sλR2

ℓ20

)
, Λ = 1

ℓ20

(
1 − 12 l2sλR2

ℓ20

)
. (C.8.15)

C.8.1.3 Effective field theory expansion and field redefinitions

Curvature corrections such as those considered above naturally appear as terms in the derivative

expansion of low-energy effective field theories of quantum gravity, with ls the characteristic

length scale of UV-completing physics and higher-order curvature corrections terms suppressed

by higher powers of l2s/ℓ2 ≪ 1. The action (C.8.12) is then viewed as a truncation at order l2s ,

and (C.8.15) can be solved perturbatively to obtain ℓ0 and S(0) as a function of Λ.

Suppose someone came up with some fundamental theory of de Sitter quantum gravity,

producing both a precise microscopic computation of the entropy and a precise low-energy

effective action, with the large-ℓ0/ls expansion reproduced as some large-N expansion. At least

superficially, the higher-order curvature-corrected entropy obtained above looks like a Wald

entropy [188]. In the spirit of for instance the nontrivial matching of R2 corrections to the

macroscopic BPS black hole entropy computed in [275] and the microscopic entropy computed

from M-theory in [276], it might seem then that matching microscopic 1/N -corrections and

macroscopic l2s/ℓ20-corrections to the entropy such as those in (C.8.15) could offer a nontrivial

way of testing such a hypothetical theory.

However, this is not the case. Unlike the Wald entropy, there are no charges Q (such as

energy, angular momentum or gauge charges) available here to give these corrections physical

meaning as corrections in the large-Q expansion of a function S(Q). Indeed, the detailed

structure of the ls/ℓ0 expansion of S(0) = S(0)(ℓ0) has no intrinsic physical meaning at all,

because all of it can be wiped out by a local metric field redefinition, order by order in ls/ℓ0,

bringing the entropy to pure Einstein area law form, and leaving only the value of S(0) itself as

a physically meaningful, field-redefinition invariant, dimensionless quantity.
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This is essentially a trivial consequence of the fact that in perturbation theory about the

round sphere, the round sphere itself is the unique solution to the equations of motion. Let us

however recall in more detail how this works at the level of local field redefinitions, and show how

this is expressed at the level of logZ(0)(ℓ), as this will be useful later in interpreting quantum

corrections. For concreteness, consider again (C.8.12) viewed as a gravitational effective field

theory action expanded to order l2sR2. Under a local metric field redefinition

gµν → gµν + δgµν +O(l4s) , δgµν ≡ l2s
(
u0 Λ gµν + u1Rgµν + u2Rµν

)
, (C.8.16)

where the ui are dimensionless constants, the action transforms as

SE → SE + 1
16πG

∫√
g
(
Rµν − 1

2Rg
µν + Λgµν

)
δgµν + O(l4s) , (C.8.17)

shifting λR2 , λE2 and rescaling G,Λ in (C.8.12). A suitable choice of ui brings SE to the form

SE = 1
8πG

∫√
g
(
Λ′ − 1

2R− l2sλC2CµνρσCµνρσ +O(l4s)
)
, Λ′ = Λ

(
1 − 4(d+1)2

(d−1)2 λR2 l2sΛ
)
.

(C.8.18)

Equivalently, this is obtained by using the O(l0s) equations of motion Rµν = 2
d−1Λgµν in the

O(l2s) part of the action. Since λ′
R2 = 0, the entropy computed from this equivalent action

takes a pure Einstein area law form S(0) = Ωd+1ℓ
′ d−1
0 /4G, with ℓ′0 =

√
d(d− 1)/2Λ′. The

on-shell value S(0) itself remains unchanged of course under this change of variables.

In the above we picked a field redefinition keeping G′ = G. Further redefining gµν → α gµν

leads to another equivalent set of couplings G′′,Λ′′, . . . rescaled with powers of α according to

their mass dimension. We could then pick α such that instead Λ′′ = Λ, or such that ℓ′′0 = ℓ0,

now with G′′ ̸= G. If we keep ℓ′′0 = ℓ0, we get

S(0) = Ωd+1ℓ
d−1
0

4G′′ , Λ′′ = d(d− 1)
2ℓ20

, (C.8.19)

where for example in d = 2 starting from (C.8.15), G′′ = G
(
1 − 24λR2 l2s/ℓ

2
0 +O(l4s)

)
.

At the level of logZ(0)(ℓ) in (C.8.13) the metric redefinition (C.8.16) amounts to a radius

redefininition ℓ → ℓ f(ℓ) with f(ℓ) = 1 + l2s
(
v10Λ + v11ℓ

−2)+O(l4s). For suitable vi this brings
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logZ(0) and therefore S(0) to pure Einstein form. E.g. for the d = 2 example (C.8.14),

ℓ =
(
1 − 12λR2 l2s

(
Λ + ℓ′ −2))ℓ′ ⇒ logZ(0) = π

4G
(
−Λ′ ℓ′ 3 + 3 ℓ′ +O(l4s)

)
.

(C.8.20)

The above considerations generalize to all orders in the ls expansion. Rn corrections to logZ(0)

are ∝ (ls/ℓ)2n and can be removed order by order by a local metric/radius redefinition

ℓ → α f(ℓ) ℓ , f(ℓ) = 1+ l2s
(
v10Λ+v11ℓ

−2)+ l4s(v20Λ2 +v21Λℓ−2 +v22ℓ
−4)+ · · · (C.8.21)

bringing logZ(0) and thus S(0) to Einstein form to any order in the ls expansion.

In d = 2, the Weyl tensor vanishes identically. The remaining higher-order curvature invari-

ants involve the Ricci tensor only, so can be removed by field redefinitions, reducing the action

to Einstein form in general. Thus in d = 2, S(0) is the only tree-level invariant in the theory,

i.e. the only physical coupling constant. In the Chern-Simons formulation of C.7.2, S(0) = 2πκ.

In d ≥ 3, there are infinitely many independent coupling constants, such as the Weyl-squared

λC2 in (C.8.12), which are not picked up by S(0), but are analogously probed by invariants

S(0)
M = log Z(0)[gM ] = −SE [gM ] for saddle geometries gM different from the round sphere. We

comment on those and their role in the bigger picture in section C.8.5.

The point of considering quantum corrections to the entropy S is that these include nonlocal

contributions, not removable by local redefinitions, and thus, unlike the tree-level entropy S(0),

offering actual data quantitatively constraining candidate microscopic models.

C.8.2 Quantum gravitational thermodynamics

The quantum off-shell partition function Z(V ) generalizing the tree-level Z(0)(V ) (C.8.5) is

defined by replacing
∫

tree Dg →
∫

Dg in that expression:20

Z(V ) ≡
∫
tree dσ

∫
Dg e−SE [g]+σ(

∫√
g−V ) . (C.8.22)

20Z(V ) is reminiscent of but different from the fixed-volume partition function considered in the 2D quantum
gravity literature, e.g. (2.20) in [277]. The latter would be defined as above but with 1

2πi

∫
iR dσ instead of

∫
tree dσ,

constraining the volume to V , whereas Z(V ) constrains the expectation value of the volume to V .
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The quantum off-shell energy density and entropy generalizing (C.8.7) are

ρ(V ) ≡ −∂V logZ , S(V ) ≡
(
1 − V ∂V ) logZ . (C.8.23)

S is the Legendre transform of logZ:

S = logZ + V ρ , d logZ = −ρ dV , dS = V dρ . (C.8.24)

Writing e−Γ(V ) ≡ Z(V ), the above definitions imply that as a function of ρ,

S(ρ) = log
∫
tree dV e

−Γ(V )+ρV = log
∫

Dg e−SE [g]+ρ
∫√

g (C.8.25)

hence S(ρ) is the generating function for moments of the volume. In particular

V =
〈∫√

g
〉
ρ

= ∂ρS(ρ) (C.8.26)

is the expectation value of the volume in the presence of a source ρ shifting the cosmological

constant Λ
8πG → Λ

8πG − ρ. Γ(V ) can be viewed as a quantum effective action for the volume,

in the spirit of the QFT 1PI effective action [278–280] but taking only the volume off-shell. At

tree level it reduces to SE [gℓ] appearing in (C.8.10). At the quantum on-shell value V = V̄ =〈∫√
g
〉

0,

ρ(V̄ ) = 0 , S = logZ(V̄ ) = S(V̄ ) . (C.8.27)

It will again be convenient to work with a linear scale variable ℓ instead of V , defined by

Ωd+1ℓ
d+1 ≡ V , (C.8.28)

Since the mean volume V =
〈∫√

g
〉
ρ

is diffeomorphism invariant, (C.8.28) gives a manifestly

diffeomorphism-invariant definition of the “mean radius” ℓ of the fluctuating geometry. Given
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Z(ℓ) ≡ Z(V (ℓ)), the off-shell energy density and entropy are then computed as

ρ(ℓ) = −
1
d+1ℓ∂ℓ logZ

V
, S(ℓ) =

(
1 − 1

d+1ℓ∂ℓ
)

logZ . (C.8.29)

The quantum on-shell value of ℓ is denoted by ℓ̄ and satisfies ρ(ℓ̄) = 0.

The magnitude of quantum fluctuations of the volume about its mean value is given by

δV 2 ≡
〈(∫√

g−V
)2〉

ρ
= S′′(ρ) = 1/Γ′′(V ) = 1/ρ′(V ) = V/S′(V ). At large V , δV/V ∝ 1/

√
S.

C.8.3 One-loop corrected de Sitter entropy

The path integral (C.8.22) for logZ can be computed perturbatively about its round sphere

saddle in a semiclassical expansion in powers of G. To leading order it reduces to logZ(0)

defined in (C.8.5). For 3D Einstein gravity,

logZ(V ) = logZ(0)(V ) + O(G0) = Ω3
8πG

(
−Λ ℓ3 + 3 ℓ

)
+ O(G0) , (C.8.30)

To compute the one-loop O(G0) correction, recall that evaluation of
∫

tree dσ in (C.8.22) is

equivalent to extremization with respect to σ, which sets σ = −∂V logZ(V ) = ρ(V ) and

logZ(V ) = log
∫

Dg e−SE [g]+ρ(V )(
∫√

g−V ) . (C.8.31)

To one-loop order, we may replace ρ by its tree-level approximation ρ(0) = −∂V logZ(0). By

construction this ensures the round sphere metric g = gℓ of radius ℓ(V ) given by (C.8.28) is

a saddle. Expanding the action to quadratic order in fluctuations about this saddle then gives

a massless spin-2 Gaussian path integral of the type solved in general by (5.5.17), or more

explicitly in (5.7.19)-(5.7.20). For 3D Einstein gravity, using (5.7.20),

logZ = −
( Λ

8πG + c′
0

)
Ω3ℓ

3 +
( 1

8πG + c′
2 − 3

4πϵ
)
3Ω3ℓ− 3 log 2πℓ

4G + 5 log(2π) + O(G)

(C.8.32)



343

Here c′
0 and c′

2 arise from O(G0) local counterterms

SE,ct =
∫√

g
(
c′

0 − c′
2
2 R

)
, (C.8.33)

split off from the bare action (C.8.1) to keep the tree-level couplngs Λ and G equal to their

“physical” (renormalized) values to this order. We define these physical values as the coefficients

of the local terms ∝ ℓ3, ℓ in the V → ∞ asymptotic expansion of the quantum logZ(V ). That

is to say, we fix c′
0 and c′

2 by imposing the renormalization condition

logZ(V ) = Ω3
8πG

(
−Λ ℓ3 + 3 ℓ

)
+ · · · (V → ∞) . (C.8.34)

This renormalization prescription is diffeomorphism invariant, since Z(V ), V and ℓ were all

defined in a manifestly diffeomorphism-invariant way. In (C.8.32) it fixes c′
0 = 0, c′

2 = 3
4πϵ ,

hence logZ(ℓ) = logZ(0) + logZ(1) + O(G), where

logZ(1) = −3 log 2πℓ
4G + 5 log(2π) . (C.8.35)

We can express the renormalization condition (C.8.34) equivalently as

logZ(1) = logZ(1)
PI + logZct , lim

ℓ→∞
∂ℓ logZ(1) = 0 (C.8.36)

where logZct = −SE,ct[gℓ] with gℓ the round sphere metric of volume V . On S3 we have

logZct = c0ℓ
3 + c2ℓ, and the ℓ → ∞ condition fixes c0 and c2. Recalling (5.7.6), we can

physically interpret this as requiring the renormalized one-loop Euclidean energy U (1) of the

static patch vanishes in the ℓ → ∞ limit.

For general d, the UV-divergent terms in logZ(1)
PI come with non-negative powers ∝ ℓd+1−2n,

canceled by counterterms consisting of n-th order curvature invariants. For example on S5,

logZct = c0ℓ
5 + c2ℓ

3 + c4ℓ. In odd d + 1, the renormalization prescription (C.8.36) then fixes

the c2n. In even d + 1, logZct has a constant term cd+1, which is not fixed by (C.8.36). As

we will make explicit in examples later, it can be fixed by limℓ→∞ Z(1) = 0 for massive field

contributions, and for massless field contributions by minimal subtraction at scale L, cd+1 =

−αd+1 log(MϵL), Mϵ = 2e−γ/ϵ (C.2.29), with L∂L logZ = 0, i.e. L∂L logZ(0) = αd+1.
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The renormalized off-shell ρ and S are obtained from logZ as in (C.8.29). For 3D Einstein,

ρ(1) = 1
2π2ℓ3

, S(1) = −3 log 2πℓ
4G + 5 log(2π) + 1 . (C.8.37)

The on-shell quantum dS entropy S = logZ(ℓ̄) = S(ℓ̄) (C.8.27) is

S = S(ℓ̄) = S(0)(ℓ̄) + S(1)(ℓ̄) + O(G) (C.8.38)

where ℓ̄ is the quantum mean radius satisfying ρ(ℓ̄) ∝ ∂ℓ logZ(ℓ̄) = 0. For 3D Einstein,

S = 2πℓ̄
4G − 3 log 2πℓ̄

4G + 5 log(2π) + 1 + O(G) , Λ = 1
ℓ̄2

− 4G
πℓ̄3

+ O(G2) . (C.8.39)

Alternatively, S can be expressed in terms of the tree-level ℓ0, ρ(0)(ℓ0) ∝ ∂ℓ logZ(0)(ℓ0) = 0,

using S = logZ(0)(ℓ̄) + logZ(1)(ℓ̄) + O(G), ℓ̄ = ℓ0 + O(G) and Taylor expanding in G:

S = logZ(ℓ̄) = S(0)(ℓ0) + logZ(1)(ℓ0) + O(G) (C.8.40)

This form would be obtained from (5.8.2) by a more standard computation. For 3D Einstein,

S = 2πℓ0
4G − 3 log 2πℓ0

4G + 5 log(2π) + O(G) , Λ = 1
ℓ20
. (C.8.41)

The equivalence of (C.8.38) and (C.8.40) can be checked directly here noting ℓ̄ = ℓ0 − 2
πG +

O(G2), so 2πℓ̄
4G = 2πℓ0

4G − 1 + O(G). The −1 cancels the +1 in (C.8.39), reproducing (C.8.41).

More generally and more physically, the relation between these two expressions can be

understood as follows. At tree level, the entropy equals the geometric horizon entropy S(0)(ℓ0),

with radius ℓ0 such that the geometric energy density ρ(0) vanishes. At one loop, we get

additional contributions from quantum field fluctuations. The UV contributions are absorbed

into the gravitational coupling constants. The remaining IR contributions shift the entropy by

S(1) and the energy density by ρ(1). The added energy backreacts on the fluctuating geometry:

its mean radius changes from ℓ0 to ℓ̄ such that the geometric energy density changes by δρ(0) =

−ρ(1), ensuring the total energy density vanishes. This in turn changes the geometric horizon
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Figure C.8.1: One-loop contributions to the dS3 entropy from metric and scalars with η = 1, 1
4 ,

5
4 ,

i.e. ξ = 0, 1
8 ,−

1
24 . Blue dotted line = renormalized entropy S(1). Green dotted line = horizon entropy

change δS(0) = 2πδℓ/4G = −V ρ(1) due to quantum backreaction ℓ0 → ℓ̄ = ℓ0 + δℓ, as dictated by first
law. Solid red line = total δS = S(1) −V ρ(1) = logZ(1). The metric contribution is negative within the
semiclassical regime of validity ℓ ≫ G. The renormalized scalar entropy and energy density are positive
for mℓ ≫ 1, and for all mℓ if η = 1. If η>1 and ℓ0 → ℓ∗ ≡

√
η−1
m , the correction δℓ ∼ − G

3π
ℓ∗

ℓ0−ℓ∗
→ −∞,

meaning the one-loop approximation breaks down. The scalar becomes tachyonic beyond this point. If
a ϕ4 term is included in the action, two new dominant saddles emerge with ϕ ̸= 0.

entropy by an amount dictated by the first law (C.8.8),

δS(0) = V0 δρ
(0) = −V0 ρ

(1) . (C.8.42)

We end up with a total entropy S = S(0)(ℓ̄) + S(1) = S(0)(ℓ0) − V0 ρ
(1) + S(1) = S(0)(ℓ0) +

logZ(1), up to O(G) corrections, relating (C.8.38) to (C.8.40). (See also fig. C.8.1.)

More succinctly, obtaining (C.8.40) from (C.8.38) is akin to obtaining the canonical descrip-

tion of a thermodynamic system from the microcanonical description of system + reservoir. The

analog of the canonical partition function is Z(1) = eS
(1)−V0 ρ(1) , with −V0 ρ

(1) capturing the

reservoir (horizon) entropy change due to energy transfer to the system.

C.8.4 Examples

C.8.4.1 3D scalar

An example with matter is 3D Einstein gravity + scalar ϕ as in (5.7.11). Putting ξ ≡ 1−η
6 ,

SE [g, ϕ] = 1
8πG

∫√
g
(
Λ − 1

2R
)

+ 1
2

∫√
g ϕ
(
−∇2 +m2 + 1−η

6 R
)
ϕ , (C.8.43)
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The metric contribution to logZ(1) remains logZ(1)
metric = −3 log 2πℓ

4G + 5 log(2π) as in (C.8.35).

The scalar Z(1)
PI was given in (5.7.14). Its finite part is

logZ(1)
PI,fin,scalar = πν3

6 −
2∑

k=0

νk

k!
Li3−k(e−2πν)

(2π)2−k , ν ≡
√
m2ℓ2 − η . (C.8.44)

The polynomial logZct(ℓ) = c0ℓ
3 + c2ℓ corresponding to the counterterm action (C.8.33) is

fixed by the renormalization condition (C.8.36), resulting in

logZ(1)
scalar = logZ(1)

PI,fin,scalar − π

6 m
3ℓ3 + πη

4 mℓ . (C.8.45)

The finite polynomial cancels the local terms ∝ ℓ3, ℓ in the large-ℓ asymptotic expansion of the

finite part: logZ(1)
scalar = πη2

16 (mℓ)−1 + πη3

96 (mℓ)−3 + · · · when mℓ → ∞. The (mℓ)−2n−1 terms

have the ℓ-dependence of Rn terms in the action and can effectively be thought of as finite shifts

of higher-order curvature couplings in the mℓ ≫ 1 regime. In the opposite regime mℓ ≪ 1,

IR bulk modes of the scalar becomes thermally activated and logZ(1)
scalar ceases to have a local

expansion. In particular in the minimally-coupled case η = 1,

logZ(1)
scalar ≃ − log(mℓ) (mℓ → 0) . (C.8.46)

The total energy density is ρ = −1
3ℓ∂ℓ logZ/V = 1

8πG
(
Λ − ℓ−2)+ 1 + ρ

(1)
scalar where

V ρ
(1)
scalar = −π

6 (mℓ)2ν coth(πν) + π

6 (mℓ)3 − πη

12 mℓ . (C.8.47)

The on-shell quantum dS entropy is given to this order by (C.8.40) or by (C.8.38) as

S = S(0) + S(1) = S(0)(ℓ0) + logZ(1) = S(0)(ℓ0) − V ρ(1) + S(1) = S(0)(ℓ̄) + S(1) , (C.8.48)

where ℓ−2
0 = Λ = ℓ̄−2 − 8πGρ(1)(ℓ̄) and S(1) = S

(1)
PI,fin + 1

6πηmℓ, with the scalar contribution

to S(1)
PI,fin given by the finite part of (5.7.16). Some examples are shown in fig. C.8.1.

For a massless scalar, m = 0, the renormalized scalar one-loop correction to S is a constant

independent of ℓ0 given by (C.8.44) evaluated at ν =
√

−η, and ρ(1)
scalar = 0. For example for a

massless conformally coupled scalar, η = 1
4 , Z(1)

scalar = 3 ζ(3)
16π2 − log(2)

8 .
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Figure C.8.2: Contributions to the dS3 entropy from massive spin s = 1, 2, 3 fields, as a function of
mℓ0, with coloring as in fig. C.8.1. Singularities = Higuchi bound, as discussed under (5.7.16).

C.8.4.2 3D massive spin s

The renormalized one-loop correction S(1)
s = logZ(1)

s to the dS3 entropy from a massive spin-s

field is obtained similarly from (5.4.13):

S(1)
s = logZ(1)

s,bulk − logZ(1)
s,edge , (C.8.49)

where logZ(1)
s,bulk equals twice the contribution of an η = (s − 1)2 scalar as given in (C.8.45),

while the edge contribution is, putting ν ≡
√
m2ℓ2 − (s− 1)2,

logZ(1)
s,edge = s2(π(mℓ− ν) − log(1 − e−2πν)

)
. (C.8.50)

The edge contribution to (C.8.49) is manifestly negative. It dominates the bulk part, and

increasingly so as s grows. Examples are shown in fig. C.8.2.



348

C.8.4.3 2D scalar

As mentioned below (C.8.36), the counterterm polynomial logZ(0)
ct has a constant term in even

spacetime dimensions d + 1, which is not fixed yet by the renormalization prescription given

there. Let us consider the simplest example: a d = 1 scalar with action (5.7.11). Denoting

f(ν) ≡
∑
±
ζ ′(−1, 1

2 ± iν) ∓ iνζ ′(0, 1
2 ± iν) , , (C.8.51)

and Mϵ = 2e−γ/ϵ as in (C.2.29), we get from (C.2.21) with ν ≡
√
m2ℓ2 − η, η ≡ 1

4 − 2ξ,

logZ(1)
PI =

(
2ϵ−2 −m2 log(Mϵℓ) +m2) ℓ2 +

(
η + 1

12
)

log
(
Mϵℓ

)
− η + f(ν) , (C.8.52)

In the limit mℓ → ∞, using the asymptotic expansion of the Hurwitz zeta function [281],

logZ(1)
PI =

(
2ϵ−2 −m2 log(Mϵ/m) − 1

2m
2) ℓ2 + (η + 1

12) log(Mϵ/m) + O((mℓ)−2) .

(C.8.53)

Notice the log ℓ dependence apparent in (C.8.52) has canceled out. The counterterm action

to this order is again of the form (C.8.33), corresponding to logZct = 4π(−c′
0ℓ

2 + c′
2). The

renormalization condition (C.8.36) fixes c′
0 but leaves c′

2 undetermined. Its natural extension

here is to pick c2 = 4πc′
2 to cancel off the constant term as well, that is

c2 = −(η + 1
12) log(Mϵ/m) ⇒ lim

ℓ→∞
logZ(1) = 0 , (C.8.54)

ensuring the tree-level G equals the renormalized Newton constant to this order, as in (C.8.34).

The renormalized scalar one-loop contribution to the off-shell partition function is then

logZ(1) =
(3

2 − log(mℓ)
)
(mℓ)2 + (η + 1

12) log(mℓ) − η + f(ν) . (C.8.55)
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Figure C.8.3: Edge contributions to the dS4 entropy from massive spin s = 1, 2, 3 fields, as a function of
mℓ0, with coloring as in fig. C.8.1. The Higuchi/unitarity bound in this case is (mℓ0)2 − (s− 1

2 )2 > − 1
4 .

In the large-mℓ limit, logZ(1) = 240 η2+40 η+7
960 (mℓ)−2 + · · · > 0, while in the small-mℓ limit

logZ(1) ≃
(
η + 1

12
)

log(mℓ) (η < 1
4) , logZ(1) ≃

(1
4 + 1

12 − 1
)

log(mℓ) (η = 1
4) .

(C.8.56)

The extra − log(mℓ) in the minimally-coupled case η = 1
4 is the same as in (C.8.46) and has the

same thermal interpretation. The energy density is ρ(1) = −1
2ℓ∂ℓ logZ(1)/V with V = 4πℓ2:

V ρ(1) = −1
2(η + 1

12) + 1
2(mℓ)2(2 log(mℓ) −

∑
±ψ

(0)(1
2 ± iν

))
(C.8.57)

In the massless case m = 0, ν =
√

−η is ℓ-independent, and we cannot use the asymptotic

expansion (C.8.53), nor the renormalization prescription (C.8.54). Instead we fix c2 by minimal

subtraction, picking a reference length scale L and putting (with Mϵ = 2e−γ

ϵ (C.2.29) as before)

c2(L) ≡ −(η + 1
12) log(MϵL) , (C.8.58)

The renormalized G then satisfies ∂L( 4π
8πG + c2) = 0, i.e. L∂L 1

2G = η + 1
12 , and

logZ(1) = (η + 1
12) log(ℓ/L) − η + f

(√
−η
)
, V ρ(1) = −1

2(η + 1
12) . (C.8.59)

The total logZ = 1
2G(−Λℓ2 + 1) + logZ(1) is of course independent of the choice of L.

C.8.4.4 4D massive spin s

4D massive spin-s fields can be treated similarly, starting from (C.2.27). In particular the edge

contribution logZ(1)
edge equals minus the logZ(1) of D5

s−1 = 1
6s(s + 1)(2s + 1) scalars on S2,
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computed earlier in (C.8.55), with the same ν =
√
m2ℓ2 − ηs as the bulk spin-s field, which

according to (5.4.2) means ηs = (s− 1
2)2. The corresponding contribution to the renormalized

energy density is ρ(1)
edge = −1

4ℓ∂ℓ logZ(1)
edge/V with V = Ω4ℓ

4, so V ρ(1)
edge equals −1

2D
5
s−1 times

the scalar result (C.8.57).

As in the d = 2 case, the renormalized one-loop edge contribution S(1)
edge to the entropy is

negative and dominant. Some examples are shown in fig. C.8.3.

C.8.4.5 Graviton contribution for general d

For d ≥ 3, UV-sensitive terms in the loop expansion renormalize higher-order curvature couplings

in the gravitational action, prompting the inclusion of such terms in SE [g]. Some caution is in

order then if we wish to apply (5.5.17) or (5.7.19)-(5.7.20) to compute logZ(1). The formula

(5.5.17) for Z(1)
PI depends on γ =

√
8πGN/Ad−1, gauge-algebraically defined by (5.5.14) and

various normalization conventions. We picked these such that in pure Einstein gravity, γ =√
8πG/A(ℓ0), ℓ0 =

√
d(d− 1)/2Λ, with G and Λ read off from the gravitational Lagrangian.

However this expression of γ in terms of Lagrangian parameters will in general be modified in

the presence of higher-order curvature terms. This is clear from the discussion in C.8.1.3, and

(C.8.19) in particular. Since γ0 is field-redefinition invariant, and since after transforming to a

pure Einstein frame we have γ0 =
√

2π/S(0), with the right hand side also invariant, we have

in general (for Einstein + perturbative higher-order curvature corrections)

γ =
√

2π/S(0) . (C.8.60)

From (5.7.19) we thus get (ignoring the phase)

S = S(0) − Dd

2 log S(0) + α
(2)
d+1 log ℓ0

L
+Kd+1 + O

(
1/S(0)) (C.8.61)

where Dd = (d+2)(d+1)
2 , α(2)

d+1 = 0 for even d and given by (5.5.21) for odd d, and Kd+1 a

numerical constant obtained by evaluating (5.5.20). For odd d the constant in the counterterm

logZct(ℓ) is fixed by minimal subtraction at a scale L, cd+1(L) ≡ −αd+1 log(MϵL), with

Mϵ = 2e−γ/ϵ determined by the heat kernel regulator as in (C.2.29), and L∂LS = 0, i.e.
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L∂LS(0) = α
(2)
d+1. Explicitly for d = 2, 3, 4, using (5.7.20), (5.1.12)

d S

2 S(0) − 3 log S(0) + 5 log(2π)

3 S(0) − 5 log S(0) − 571
90 log( ℓ0L ) − log(8π

3 ) + 715
48 − 47

3 ζ
′(−1) + 2

3ζ
′(−3)

4 S(0) − 15
2 log S(0) + log(12) + 27

2 log(2π) + 65 ζ(3)
48π2 + 5 ζ(5)

16π4

(C.8.62)

For a d = 3 action (C.8.12) up to O(l2sR2), with dots denoting O(l4s) terms,

S(0) = π

G

(
ℓ20 + 48λR2 l2s + · · ·

)
, Λ = 3

ℓ20
+ · · · . (C.8.63)

where L∂LλR2 = − G
48π l2s

· 571
45 . Putting L = ℓ0, and defining the scale ℓR2 by λR2(ℓR2) = 0,

S = S(0) − 5 log S(0) +K4 + O
(
1/S(0)) , S(0) = πℓ20

G
− 571

45 log ℓ0
ℓR2

+ · · · . (C.8.64)

The constant K4 could be absorbed into λR2 at this level. Below, in (C.8.70), we will give it

relative meaning however, by considering saddles different from the round S4.

C.8.5 Classical and quantum observables

Here we address question 3 in our list below (5.8.2). To answer this, we need “observables” of the

Λ > 0 Euclidean low-energy effective field theory probing independent gravitational couplings

(for simplicity we restrict ourselves to purely gravitational theories here), i.e. diffeomorphism

and field-redefinition invariant quantities, analogous to scattering amplitudes in asymptotically

flat space. For this to be similarly useful, an infinite amount of unambiguous data should be

extractable, at least in principle, from these observables.

As discussed above, S(0) = log Z(0) = −SE [gℓ0 ] invariantly probes the dimensionless cou-

pling given by ℓd−1
0 /G ∝ 1/GΛ(d−1)/2 in Einstein frame. The obvious tree-level invariants

probing different couplings in the gravitational low-energy effective field theory are then the

analogous S(0)
M ≡ log Z(0)

M = −SE [gM ] evaluated on saddles gM different from the round

sphere, in the parametric ℓ0 ≫ ls regime of validity of the effective field theory, with gM

asymptotically Einstein in the ℓ0 → ∞ limit. These are the analogs of tree-level scattering
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amplitudes. The obvious quantum counterparts are the corresponding generalizations of S, i.e.

SM ≡ log ZM evaluated in large-ℓ0 perturbation theory about the saddle gM . These are the

analogs of quantum scattering amplitudes. Below we make this a bit more concrete in examples.

3D

In d = 2, the Weyl tensor vanishes identically, so higher-order curvature invariants involve Rµν
only and can be removed from the action by a field redefinition in large-ℓ0 perturbation theory,

reducing it to pure Einstein form in general. As a result, S(0) is the only independent invariant

in pure 3D gravity, all gM are Einstein, and the S(0)
M are all proportional to S0 ≡ S(0)

S3 .

As discussed under (5.8.17), the quantum S = SS3 takes the form

S = S0 = S0 − 3 log S0 + 5 log(2π) +
∑
n cn S−2n

0 (C.8.65)

The corrections terms in the expansion are all nonlocal (no odd powers of ℓ0), and the coefficients

provide an unambiguous, infinite data set.

odd D ≥ 5

In 5D gravity, there are infinitely many independent coupling constants. There are also infinitely

many different Λ > 0 Einstein metrics on S5, including a discrete infinity of Böhm metrics

with SO(3) × SO(3) symmetry [270] amenable to detailed numerical analysis [271], and 68

Sasaki-Einstein families with moduli spaces up to real dimension 10 [272]. Unlike the round

S5, these are not conformally flat, and thus, unlike S(0), the corresponding S(0)
M will pick up

couplings such as the Weyl-squared coupling λC2 in (C.8.12). It is plausible that this set of

known Einstein metrics (perturbed by small higher-order corrections to the Einstein equations

of motion at finite ℓ0) more than suffices to invariantly probe all independent couplings of the

gravitational action, delivering moreover infinitely many quantum observables SM , providing

an infinity of unambiguous low-energy effective field theory data to any order in perturbation

theory, without ever leaving the sphere — at least in principle.

The landscape of known Λ > 0 Einstein metrics on odd-dimensional spheres becomes in-

creasingly vast as the dimension grows, with double-exponentially growing numbers [272]. For
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example there are at least 8610 families of Sasaki-Einstein manifolds on S7, spanning all 28 dif-

feomorphism classes, with the standard class admitting a 82-dimensional family, and there are

at least 10828 distinct families of Einstein metrics on S25, featuring moduli spaces of dimension

greater than 10833.

4D

4D gravity likewise has infinitely many independent coupling constants. It is not known if S4

has another Einstein metric besides the round sphere. In fact the list of 4D topologies known to

admit Λ > 0 Einstein metrics is rather limited [282]: S4, S2 ×S2, CP2, and the connected sums

CP2#kCP2, 1 ≤ k ≤ 8. However for k ≥ 5 these have a moduli space of nonzero dimension

[283, 284], which might suffice to probe all couplings. (The moduli space would presumably

be lifted at sufficiently high order in the ls expansion upon turning on higher-order curvature

perturbations.)

Below we illustrate in explicit detail how the Weyl-squared coupling can be extracted from

suitable linear combinations of pairs of S(0)
M with M ∈ {S4, S2 × S2,CP2}, and how a suitable

linear combination of all three can be used to extract an unambiguous linear combination of the

constant terms arising at one loop.

The Weyl-squared coupling λC2 in SE [g] = (C.8.12) + · · · is invisible to S(0) (C.8.63) but

it is picked up by S(0)
M by M = S2 × S2:

S(0)
S2×S2 = 2

3 · π
G

(
ℓ20 + 48λR2 l2s + 16λC2 l2s + · · ·

)
, (C.8.66)

with the dots denoting O(l4s) terms and ℓ0 =
√

3/Λ+· · · as in (C.8.63). Physically, S(0)
S2×S2 is the

horizon entropy of the dS2 ×S2 static patch, i.e. the Nariai spacetime between the cosmological

and maximal Schwarzschild-de Sitter black hole horizons, both of area A = 1
3 ·4πℓ20. Comparing

to (C.8.63), the linear combination

S(0)
C2 ≡ 3 S(0)

S2×S2 − 2 S(0) = 32πl2s
G

(
λC2 + · · ·

)
(C.8.67)

extracts the Weyl-squared coupling of SE [g]. Analogously, for the Einstein metric on CP2, we
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get S̃(0)
C2 ≡ 8 S(0)

CP2 − 6 S(0) = 48πl2s
G (λC2 + · · · ). Then

S(0)
cub ≡ 2 S̃(0)

C2 − 3 S(0)
C2 = 16 S(0)

CP2 − 9 S(0)
S2×S2 − 6 S(0) = 0 + · · · , (C.8.68)

which extracts some curvature-cubed coupling in the effective action.

To one loop, the quantum SM = log ZM can be expressed in a form paralleling (C.8.61):

SM = S(0)
M − DM

2 log S(0)
M + αM log ℓ0

L
+KM + · · · , (C.8.69)

where DM is the number of Killing vectors of M : DS4 = 10, DS2×S2 = 6, DCP2 = 8,

and αM can be obtained from the local expressions in [127]: αS4 = −571
45 , αS2×S2 = −98

45 ,

αCP2 = −359
60 . Computing the constants KM generalizing KS4 given in (C.8.62) would require

more work. Moreover, computing them for one or two saddles would provide no unambigu-

ous information because they may be absorbed into λC2 and λR2 . However, since there only

two undetermined coupling constants at this order, computing them for all three does provide

unambiguous information, extracted by the quantum counterpart of (C.8.68):

Scub ≡ 16 SCP2 − 9 SS2×S2 − 6 SS4 = −7 log S(0) + 16KCP2 − 9KS2×S2 − 6KS4 + · · ·

(C.8.70)

The log(ℓ0/L) terms had to cancel in this linear combination because the tree-level parts at this

order cancel by design and L∂LScub = 0.
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Appendix D: Appendix for chapter 6

D.1 Partition function of Dirac spinors

As an example of applying the character integral method to fermions, let’s consider a complex

Dirac spinor of scaling dimension ∆ = d
2 + ν in AdSd+1 with d = 2r + 1. It carries a highest

weight representation s = 1
2 of SO(d) which has real dimension 2r+1. The one-loop partition

function of this field is given by

logZ = (−2)r

d!

∫ ∞

0

dt

t
e− ϵ2

4t

∫ ∞

0
dλµ1

2
(λ) e−t(λ2+ν2) (D.1.1)

where the spinor spectral function µ1
2
(λ) is

µ1
2
(λ) =

r∏
j=1

(
λ2 + j2

) λ

tanh(πλ) (D.1.2)

After using the standard Hubbard-Stratonovich trick, the partition function is completely en-

coded in W1
2
(u) =

∫∞
−∞ dλµ1

2
(λ) eiλu:

logZ = (−2)r

d!

∫ ∞

0

du

u
W1

2
(u) e−νu (D.1.3)

To perform the λ-integral in W1
2
(u) , we can close the contour in the upper half plane and pick

up the poles at λ = in, n ≥ r + 1, where λ
tanh(πλ) has residue in

π .

W1
2
(u) = 2(−)r+1 ∑

n≥r+1
n

r∏
j=1

(n2 − j2)e−nu = (−1)r+1d! 2 e− d+1
2 u

(1 − e−u)d+1 (D.1.4)
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Plugging (D.1.4) into (D.1.3) yields the unregularized partition function

logZ =
∫ ∞

0

du

u

−e− u
2

1 − e−uΘAdSd+1
[∆,1

2 ] (u), ΘAdSd+1
[∆,1

2 ] (u) = 2r+1e−∆u

(1 − e−u)d (D.1.5)

We can also easily write down the regularized version following the derivation in section 6.4

logZ = −1
2

∫
R+iδ

du√
u2 + ϵ2

e− u
2

1 − e−u
2r+1e− d

2u−ν
√
u2+ϵ2

(1 − e−u)d (D.1.6)

Compared to the bosonic case, the only difference is that the representation-independent factor
1+e−u

1−e−u gets replaced by −2e− u
2

1−e−u .

D.2 Physical interpretation of spectral density/Plancherel mea-

sure

In an ordinary quantum mechanical system, given a Hamiltonian H, the associated density of

state (DOS) is defined as ρ(E) = Tr δ(H − E) where we trace over the whole Hilbert space.

Using the well-known distributional identity 1
x±iϵ = P( 1

x)∓iπδ(x), the DOS can also be formally

expressed

ρ(E) = 1
2πi (R(E + iϵ) −R(E − iϵ)) (D.2.1)

where R(E) ≡ Tr 1
H−E is the so-called resolvent and the limit ϵ → 0+ is understood. In

this appendix, we will show that the (scalar) Plancherel measure given by eq. (6.1.8) can be

interpreted as a DOS in the sense of (D.2.1).

For a real scalar field in EAdSd+1, we choose Hamiltonian H to be the Laplace-Beltrami

operator −∇2 which has a continuous spectrum Eλ ≡ d2

4 + λ2 for all λ ∈ R≥0 [213]. In

this case, the operator 1
H−E is nothing but a scalar Green function G∆(X,X ′) with mass

m2 = −E ≡ ∆(∆ − d) [285–287]:

G∆(X,X ′) = G∆(P ) = Γ(∆)(−2P )−∆

2π
d
2 Γ(∆ − d−2

2 )
F

(∆
2 ,

∆ + 1
2 ,∆ − d− 2

2 ,
1
P 2

)
, P = X ·X ′

(D.2.2)
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where X,X ′ are points in the embedding space representation of EAdSd+1. Plugging in E =

Eλ ± iϵ, the corresponding resolvent R(Eλ ± iϵ) is given by

R(Eλ ± iϵ) =
∫

EAdSd+1
dd+1X G d

2 ∓iλ(X,X) = Vol(AdSd+1)G d
2 ∓iλ(X,X) (D.2.3)

Therefore, combining eq. (D.2.1) and (D.2.3), we find that the DOS per volume of −∇2 in

EAdSd+1 is simply

ρd+1(Eλ)
Vol(AdSd+1) = − 1

2πi lim
P→−1−

(
G d

2 +iλ(P ) −G d
2 −iλ(P )

)
(D.2.4)

where P → −1− means that P approaches −1 from the left. (Technically the direction of limit

is important, and physically the direction is also fixed because X ·X ′ ≤ −1 for any two points

on EAdSd+1). Before showing the main result extracted from eq. (D.2.4), let’s digress a bit and

discuss some properties of hypergeometric functions appearing in eq. (D.2.2). In general, the

hypergeometric function F (a, b, c;x) with Re(c− (a+ b)) < 0 is singular around x = 1 [288]

lim
x→1−

F (a, b, c, x)
(1 − x)c−a−b = −Γ(c)Γ(a+ b− c)

Γ(a)Γ(b) (D.2.5)

which implies that the two Green functions in (D.2.4) have singularity as P approaches −1−.

However, amazingly all the divergences cancel out in the end when we take the difference (which

of course is expected since the DOS per volume should be well-defined). We list some lower

dimensional examples here

ρ2(Eλ)
Vol(AdS2) = 1

4π tanh(πλ), d = 1

ρ4(Eλ)
Vol(AdS4) = 1

16π2

(
λ2 + 1

4

)
tanh(πλ), d = 3

ρ6(Eλ)
Vol(AdS6) = 1

128π3

(
λ2 + 1

4

)(
λ2 + 9

4

)
tanh(πλ), d = 5 (D.2.6)
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and

ρ3(Eλ)
Vol(AdS3) = 1

4π2λ, d = 2

ρ5(Eλ)
Vol(AdS5) = 1

24π3λ(1 + λ2), d = 4

ρ7(Eλ)
Vol(AdS7) = 1

240π4λ
(
λ2 + 1

) (
λ2 + 4

)
, d = 6 (D.2.7)

Notice that what we’ve obtained here is the number of states per unit “energy” Eλ rather than

spectral density because the latter is the number of states per unit λ. However, they can be

easily mapped to each other by a change of integral measure dEλ = 2λ dλ. This observation

suggests us to define the spectral density as

ρ̃d+1(λ) ≡ 2λ ρd+1(Eλ)
Vol(AdSd+1) = 1

2d−1Γ(d+1
2 )2Vol(Sd)

|Γ(d2 + iλ)|2

|Γ(iλ)| (D.2.8)

where the λ-dependent factor |Γ( d
2 +iλ)|2

|Γ(iλ)| is exactly what we call µ(d)(λ) in eq. (6.2.9). As a

final consistency check, let’s reconstruct the scalar heat kernel associated to (−∇2 + ν2 − d2

4 )

from its canonical definition, i.e. “summing” over all energy eigenfunctions

Kν(t) ≡ Tr e−(−∇2+ν2− d2
4 ) =

∫ ∞

d2
4

dEλ ρd+1 (Eλ)e−(Eλ+ν2− d2
4 )

= Vol(AdSd+1)
∫ ∞

0
dλ ρ̃d+1(λ)e−t(λ2+ν2)

= Vol(AdSd+1)
Vol(Sd)

1
2d−1Γ(d+1

2 )2

∫ ∞

0
dλµ(d)(λ)e−t(λ2+ν2) (D.2.9)

Altogether, the computations in this appendix help us to identify the spectral density or the

Plancherel measure of SO(1, d + 1) which has a rigorous mathematical definition in the pure

group theory setup [64, 66], as the density of states associated to the Hamiltonian H = −∇2

in a unit volume of EAdSd+1 up to some representation-independent normalization factors.
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D.3 Comparison with dS character integral

In sections 6.2 and 6.3, we derived character integral formulae for one-loop partition functions of

both scalars and spin-s fields in even dimensional AdS. These formulae are very similar with their

dS counterpart derived in [[chapter ?]] , where the unregularized one-loop partition function of

a massive spin-s field with scaling dimension ∆ = d
2 + iν is given by

logZPI =
∫ ∞

0

du

2u (e−( d
2 +iν)u + e−( d

2 −iν)u)
∑
n≥−1

Dd+2
n,s e

−nu (D.3.1)

Here the extension of the sum to n = −1 is a result of locality. Summing over n yields a

(bulk+edge) type contribution as in W (d)
s :

logZPI =
∫ ∞

0

du

2u
1 + e−u

1 − e−u

(
Dd
s

e−( d
2 +iν)u + e−( d

2 −iν)u

(1 − e−u)d −Dd+2
s−1

e−( d−2
2 +iν)u + e−( d−2

2 −iν)u

(1 − e−u)d−2

)
(D.3.2)

In this appendix, we will show that the origin of such similarity between AdS and dS can be

traced back to the eq. (6.1.9).

On the AdS side, we know that the unregularized partition function of a field carrying the

massive representation [∆ = d
2 + ν, s] of SO(2, d) is given by (assuming d = 2r + 1)

logZs,ν = (−)r+1

d!

∫ ∞

0

du

2u D
d
s W

(d)
s (u) e−ν u (D.3.3)

where W (d)
s (u) ≡

∫
dλµ

(d)
s (λ)eiλu can be written as a series by closing the contour at infinity:

W
(d)
s (u) = 2(−)r+1 ∑

n≥0

(
n+ 1

2

) r∏
j=1

((
n+ 1

2

)2
− ℓ2j

)
e−(n+ 1

2 )u (D.3.4)

Using the eq. (6.1.9), we obtain (−)r+1

d! Dd
sW

(d)
s (u) =

∑
n≥0D

d+2
n,s e

−(n+ 1
2 )u which yields

logZs,ν =
∫ ∞

0

du

2u e
−ν u∑

n≥0
Dd+2
n−r,s e

−(n+ d
2 )u

=
∫ ∞

0

du

2u e
−∆u

∑
n≥−r

Dd+2
n,s e−nu (D.3.5)
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where in the second line we have shifted n by r. Now let’s focus on the spin-s representation,

i.e. s = (s, 0, · · · , 0). In this case Dd+2
n,s vanishes for n ∈ {−r,−(r − 1), · · · ,−2} (and also

n = s− 1 but this is irrelevant to our discussion) and hence the sum in eq. (D.3.5) effectively

starts from n = −1

logZs,ν =
∫ ∞

0

du

2u e
−∆u

∑
n≥−1

Dd+2
n,s e−nu (D.3.6)

Compared to (D.3.1), it’s clear that the only difference is the absence of e−∆̄u because in AdS

only one boundary mode is dynamical and the other one is identified as a source.

D.4 Evaluation of various residues

This appendix is a collection of technical proofs and results about residues of certain functions

appearing in the character integrals. The ultimate goal here is to compute the residue of

Fd,ν(u) = 1
2u

1 + e−u

1 − e−u
e−( d

2 +ν)u

(1 − e−u)d (D.4.1)

at u = 0 for even dimension d, which is closely related to the one-loop partition functions in odd

dimensional AdS. For most of the discussions in this section, we consider a general dimension d

and only restrict the result to even d in the end. An intermediate step to Resu→0Fd,ν(u) is the

residue of the following function

Gd,ν(u) ≡ e−( d
2 +ν)u

(1 − e−u)d+1 (D.4.2)

which itself is also very interesting because we need it to verify the contour prescription proposed

in section 6.4.

First we show by induction that

Resu→0Gd,ν(u) = (−)d

d!
Γ(ν + d

2)
Γ(ν − d

2)
(D.4.3)

It’s straightforward to check that eq. (D.4.3) holds for d = 1. Assuming the induction condition
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(D.4.3), we show that it also works for d + 1. Let C0 be a small circle around u = 0, i.e. it

doesn’t enclose any other poles of Gd,ν(u) except u = 0. Then the residue of Gd+1,ν(u) at

u = 0 can be expressed as a contour integral along C0 counterclockwisely

Resu→0Gd+1,ν(u) =
∮
C0

du

2πi
e−( d+1

2 +ν)u

(1 − e−u)d+2 (D.4.4)

To use the induction condition, we should lower the power in the denominator which can be

realized by integration by part:

Resu→0Gd+1,ν(u) = − 1
d+ 1

∮
C0

du

2πie
−( d

2 +ν− 1
2 )u d

du

1
(1 − e−u)d+1

= −
d−1

2 + ν

d+ 1

∮
C0

du

2πi
e−( d

2 +ν− 1
2 )u

(1 − e−u)d+1 = −
d−1

2 + ν

d+ 1 Resu→0Gd,ν− 1
2
(u)

(D.4.5)

Applying the induction condition (D.4.3) to eq. (D.4.5) yields

Resu→0Gd+1,ν(u) = (−)d+1

(d+ 1)!
Γ(ν + d+1

2 )
Γ(ν − d+1

2 )
(D.4.6)

This confirms that (D.4.3) holds for all d.

To bridge the gap between Resu→0Gd,ν(u) and Resu→0Fd,ν(u), we need to define another

function

Hd,ν(u) ≡ 1 + e−u

1 − e−u
e−( d

2 +ν)u

(1 − e−u)d = Gd,ν(u) +Gd,ν+1(u) (D.4.7)

It’s direct to write down the residue of Hd,ν(u) at u = 0 by using its relation with the G-functions

Resu→0Hd,ν(u) = 2(−)d

d! ν
Γ(ν + d

2)
Γ(ν + 1 − d

2)
(D.4.8)

which is a polynomial in ν for positive integer d. In addition, the R.H.S of eq. (D.4.8) is an even
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function in ν when d is even and an odd function when d is odd. More explicitly, for d = 2r,

Resu→0Hd,ν(u) = 2
d!

r−1∏
j=0

(ν2 − j2) (D.4.9)

and for d = 2r + 1,

Resu→0Hd,ν(u) = −2ν
d!

r−1∏
j=0

(
ν2 −

(
j + 1

2

)2
)

(D.4.10)

To achieve our original goal, the residue of Fd,ν(u) at u = 0 for even d, we need the following

differential relation between Fd,ν(u) and Hd,ν(u)

∂νFd,ν(u) = −1
2Hd,ν(u) (D.4.11)

which yields

Resu→0Fd,ν(u) = (−)d+1

d!

∫ ν

0
dxx

Γ(x+ d
2)

Γ(x+ 1 − d
2)

+ const (D.4.12)

The unknown constant can be easily fixed for even d without any extra effort. This claim follows

from the observation that F2r,0(u) is an even function in u. Thus Resu→0F2r,ν(u) vanishes when

ν = 0 and the integration constant has to be zero:

Resu→0F2r,ν(u) = − 1
(2r)!

∫ ν

0
dx

r−1∏
j=0

(x2 − j2)

= − 1
(2r)!

r∑
n=1

an(r)
2n+ 1ν

2n+1 (D.4.13)

where the numerical coefficients {an(r)} are defined through the following generating function

r−1∏
j=0

(x− j2) =
r∑

n=1
an(r)xn (D.4.14)
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D.5 Various coordinate systems in Euclidean/Lorentzian AdS

We begin with the embedding space representation of Lorentzian AdSd+1 of unit radius

−(X0)2 + (X1)2 + · · · + (Xd)2 − (Xd+1)2 = −1 (D.5.1)

By Wick rotation Xd+1 → −iXd+1, we obtain Euclidean AdS in embedding space

−(X0)2 + (X1)2 + · · · + (Xd+1)2 = −1 (D.5.2)

The global coordinate for Euclidean AdS is chosen to be

X0 = cosh η, Xa = sinh ηΩa
d, 1 ≤ a ≤ d+ 1 (D.5.3)

where η ≥ 0 and Ωd denotes a point on Sd. In this coordinate, the metric is given by

ds2
EAdSd+1 = dη2 + sinh2 η dΩ2

d (D.5.4)

In particular when d = 1, choosing Ω1 = (cosφ, sinφ), the metic is ds2
EAdS2

= dη2+sinh2 η dφ2.

Under the Wick rotation φ → it, we transform back to Lorentzian signature. In embedding

space, it means we choose the following coordinate systems on two patches that cover different

portions of Lorentzian AdS

Southern :


X0 = ρ

X1 =
√
ρ2 − 1 cosh tS

X2 =
√
ρ2 − 1 sinh tS

, Northern :


X0 = ρ

X1 = −
√
ρ2 − 1 cosh tN

X2 =
√
ρ2 − 1 sinh tN

(D.5.5)

where I’ve replaced cosh η by ρ ≥ 1. The metric of southern/northern patch can be expressed

as

ds2
AdS2 = −(ρ2 − 1)dt2 + dρ2

ρ2 − 1 , t = tS , tN (D.5.6)
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which describes a black hole solution with a point-like horizon at ρ = 1, the intersection of the

southern and northern patches. The temperature of this black hole is T = 1
2π .

When d ≥ 2, there exists a similar Wick rotation that describes a spacetime of the same tem-

perature. Notice that the global coordinate system (D.5.3) realizes a Sd foliation of EAdSd+1.

By using the Wick rotation between de Sitter static patch and sphere, we obtain a dS foliation

of AdSd+1. More explicitly, we choose the following coordinate system for Ωd

Ωd = (rΩd−2,
√

1 − r2 cosφ,
√

1 − r2 sinφ), 0 ≤ r ≤ 1 (D.5.7)

where Ωd−2 denotes the usual spherical coordinates of Sd−2. Upon a Wick rotation φ → it,

Ωd becomes a point on dSd and (D.5.4) becomes the Rindler-AdS metric [4]. As before, the

Wick-rotated coordinate system describes two patches of Lorentzian AdS

Southern :



X0 = cosh η

X ī = r sinh ηΩī
d−2

Xd = sinh η cosh tS
√

1 − r2

Xd+1 = sinh η sinh tS
√

1 − r2

, Northern :



X0 = cosh η

X ī = r sinh ηΩī
d−2

Xd = − sinh η cosh tN
√

1 − r2

Xd+1 = sinh η sinh tN
√

1 − r2

(D.5.8)

in either of which the metric is

ds2
AdSd+1 = dη2 + sinh2 η

(
−(1 − r2)dt2 + dr2

1 − r2 + r2dΩ2
d−2

)
, t = tS , tN (D.5.9)

The two patches intersect at the horizon r = 1 which has the geometry of EAdSd−1.

Finally, let’s also introduce the global coordinate of AdS

Global :


X0 =

√
R2 + 1 cos tG

Xi = RΩi
d−1

Xd+1 =
√
R2 + 1 sin tG

(D.5.10)

At time tG = tS = tN = 0, i.e. Xd+1 = 0, the southern and northern patches cover the Xd ≥ 0
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and Xd ≤ 0 parts of the global spatial slice respectively.

D.6 SO(2, d) Harish-Chandra characters

SO(2, d) is the isometry group of AdSd+1. In conventions in which the generators of SO(2, d)

are hermitian operators LMN , 0 ≤ M,N ≤ d+ 1, they are subject to commutation relations

[LMN , LPQ] = i(ηMPLNQ + ηNQLMP − ηMQLNP − ηNPLMQ) (D.6.1)

where ηMN = diag(−,+, · · · ,+,−). The physical interpretation of this algebra will be clear

using the following Cartan-Weyl type basis

H = L0,d+1, L±
i = Li0 ∓ iLi,d+1, Mij = Lij (D.6.2)

with commutation relations

[H,L±
i ] = ±L±

i , [L−
i , L

+
j ] = 2δijH − 2iMij , [Lij , L±

k ] = i(δikL±
j − δjkL

±
i ) (D.6.3)

where the trivial commutation relations are omitted. While acting on the AdSd+1 quantum

Hilbert space, H can be identified with the Hamiltonian which generates time translation in

global coordinates, and Mij can be identified with angular momentum operators. The L±
i can

then be viewed as raising/lowering operators for energy eigenstates. We’re mainly interested

in single-particle Hilbert space H∆ built from a primary state |∆⟩ (also known as the lowest

energy state), i.e. H|∆⟩ = ∆|∆⟩, L−
i |∆⟩ = 0. By construction the Hilbert space H∆ furnishes

a representation of so(2, d).

In most of the physics literature [12, 70, 289, 290], the so(2, d) character of representation

H∆ is computed with respect to a compact Cartan algebra, in particular Hamiltonian and

rotations. Here, for our purpose of thermal interpretations in section 6.8, we illustrate in (unitary)

scalar primary representations how to compute so(2, d) character associated to a noncompact

generator, i.e. generator of boost in AdSd+1.
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D.6.1 SO(2, 1) character

As shown in eq. (D.6.2) and (D.6.3), the Lie algebra so(2, 1) is generated by {H,L±} with

commutation relations [H,L±] = 2L±, [L−, L+] = 2H. Starting from the primary state |∆⟩,

we build a tower of descendants |n⟩ ≡ (L+)n|∆⟩, n ≥ 0 which is a basis of the Hilbert space

H∆. Then the character associated to a noncompact generator, say L12 = i
2(L+ − L−), is

defined as

TrH∆ e
itL12 ≡

∑
n≥0

⟨n|eitL12 |n⟩
⟨n|n⟩

, t ∈ R (D.6.4)

Though defined through a simple and transparent way physically, it’s technically very hard to

figure out the character by computing this sum. Therefore, we’ll use a different realization of

the same representation that makes the same computation doable.

Disc realization: In [289], by using the standard coadjoint orbit method, Witten showed that

the Hilbert space H∆ can be mapped to the space of normalizable holomorphic function f(z)

on disc D = {z ∈ C : |z| < 1} with inner product

||f ||2 =
∫
D

|f(z)|2 (1 − zz̄)2(∆−1)d2z (D.6.5)

On these holomorphic function, the generators of so(2, 1) act as

H = z ∂z + ∆, L− = −i∂z, L+ = −i(z2∂z + 2∆z) (D.6.6)

The normalizable function f(z) = zk is an eigenfunction of H with eigenvalue ∆ +k and hence

the character associated to H is

TrH∆ q
H =

∞∑
k=0

q∆+k = q∆

1 − q
, 0 < |q| < 1 (D.6.7)

Upper half-plane realization: Using a fractional linear transformation z → w = 1−iz
z−i , we can

map the disc D to the upper half-plane H = {x + iy ∈ C : y > 0} and the new Hilbert space
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consists of normalizable holomorphic functions f(w) on H with inner product [66, 291]

||f ||2 =
∫
H

dxdy

y2 y2∆ |f(w)|2, w = x+ iy, y > 0 (D.6.8)

When acting on a holomorphic function f(w) on H, the algebra so(2, 1) is realized as

H = −i
(

1 + w2

2 ∂w + ∆w

)
, L10 = i

(
w2 − 1

2 ∂w + ∆w

)
, L12 = i(w∂w + ∆) (D.6.9)

The eigenfunctions of H are ϕk(w) ≡ (w − i)k(w + i)−2∆−k, k ∈ N, with Hϕk = (∆ + k)ϕk.

R+ realization [291] and evaluation of character: Given a holomorphic function f(w) on

the upper half-plane, we can define a new function F on R+:

F (ξ) =
∫

Im (w)=const

dw

2π f(w)−iwξ, ξ ∈ R+ (D.6.10)

and the inverse transformation is given by

f(w) ≡
∫ ∞

0
dξ F (ξ)eiwξ, Im (w) > 0 (D.6.11)

Under the integral transformation (D.6.10), the inner product (D.6.8) is mapped to

||F ||2 =
∫ ∞

0
dξ ξ1−2∆|F (ξ)|2 (D.6.12)

and the so(2, 1) action (D.6.9) is mapped to

H = 1
2ξ(1 − ∂2

ξ ) + (∆ − 1)∂ξ, L10 = 1
2ξ(1 + ∂2

ξ ) + (1 − ∆)∂ξ

L12 = −i(ξ ∂ξ + 1 − ∆) (D.6.13)

To find all eigenfunctions of H in (D.6.13), let’s start from the primary state ϕ0(w) = (w+i)−2∆

in the upper half plane realization. ϕ0 can be expressed as a Schwinger parameterization:

(w + i)−2∆ = 1
i2∆Γ(2∆)

∫ ∞

0

dξ

ξ
ξ2∆e−ξ(1−iw) (D.6.14)
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Comparing (D.6.14) with (D.6.11), we immediately get that the dual function of ϕ0(w) in R+

is G0(ξ) = ξ2∆−1e−ξ (dropping unimportant normalization constants). For the dual function

of ϕk(w), we use the ansatz Gk(ξ) = G0(ξ)Pk(ξ), where Pk(ξ) is a polynomial in ξ. Then the

eigenequation HGk = (∆ + k)Gk yields a second order differential equation of Pk(ξ)

ξ

2 Pk(ξ)
′′ + (∆ − ξ)Pk(ξ)′ + k Pk(ξ) = 0 (D.6.15)

whose polynomial solution is the generalized Laguerre polynomial Pk(ξ) = L
(2∆−1)
k (2ξ). Thus

the spectrum of H is given by

HGk = (∆ + k)Gk, Gk(ξ) = ξ2∆−1 L
(2∆−1)
k (2ξ) e−ξ (D.6.16)

By using the recurrence relation of Laguerre polynomial, we can also show that L± indeed

behaves like lower/raise operator

L−Gk(ξ) = (1 − 2∆ − k)Gk−1(ξ), L+Gk(ξ) = −(k + 1)Gk+1(ξ) (D.6.17)

As another self-consistency check of this representation, we show the Fourier/Laplace transfor-

mation (D.6.11) of Gk(ξ) is ϕk(w) up to normalization factors. To do this, we need the series

expansion of a generalized Laguerre polynomial L(α)
n (x) =

∑n
ℓ=0

(−)ℓ

ℓ!
(n+α
n−ℓ

)
xℓ, which yields

∫ ∞

0
dξ Gk(ξ)ei ξ w =

k∑
ℓ=0

(−2)ℓ

ℓ!

(
2∆ + k − 1

k − ℓ

)∫ ∞

0

dξ

ξ
ξ2∆+ℓe−(1−iw)ξ

= Γ(2∆ + k)i2∆

k!(w + i)2∆

k∑
ℓ=0

(
k

ℓ

)( −2
1 − iw

)ℓ
= Γ(2∆ + k)i2∆

k! ϕk(w) (D.6.18)

Finally, we are at a stage of actually evaluating the character associated with L12 by using

the new basis Gk(ξ) of H∆:

Tr eitL12 =
∑
k≥0

(Gk, eitL12Gk)
(Gk, Gk)

(D.6.19)

where (eitL12Gk)(ξ) = e(1−∆)tGk(etξ) is obtained by exponentiating the action of L12 in

(D.6.13) and (Gk, Gk) = Γ(2∆+k)
22∆ k! is a result of the orthogonality of generalized Laguerre poly-
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nomial:

∫ ∞

0
xαL(α)

n L(α)
m e−x dx = Γ(n+ α+ 1)

n! δnm (D.6.20)

Thus the character Tr eitL12 can be expressed as

Tr eitL12 = e∆t∑
k≥0

k!
Γ(2∆ + k)

∫ ∞

0
dξξ2∆−1e− 1+et

2 ξL
(2∆−1)
k (ξ)L(2∆−1)

k (etξ) (D.6.21)

If we switch the order of summation and integration mindlessly, the sum is not convergent. To

makes sense of this procedure, we introduce a factor (1 − δ)k, δ > 0

∑
k≥0

k!
Γ(2∆ + k)L

(2∆−1)
k (ξ)L(2∆−1)

k (etξ)(1 − δ)k

= (1 − δ)
1
2 −∆

δ

e( 1
2 −∆)t

ξ2∆−1 e−( 1
δ

−1)(1+et)ξI2∆−1

(
2e

t
2
√

1 − δ

δ
ξ

)
(D.6.22)

This equation is called “Hardy-Hille formula” [292]. With the summation regularized and eval-

uated, the remaining integral can be computed by using the result on page 91 of [288]

Tr eitL12 = (1 − δ)
1
2 −∆

δ
e

t
2

∫ ∞

0
dξe−AξI2∆−1(Bξ)

= (1 − δ)
1
2 −∆e

t
2

(
B

A+
√
A2 −B2

)2∆−1 1
δ
√
A2 −B2

(D.6.23)

where

A =
(2
δ

− 1
)

cosh(t/2)e
t
2 , B = 2

√
1 − δ

δ
e

t
2 (D.6.24)

Expanding around δ = 0 and keeping the leading term yield

Tr eitL12 = (cosh(t/2) + sinh(|t|/2))1−2∆

2 sinh(|t|/2) (D.6.25)

When t > 0, it’s reduced to Tr eitL12 = e−∆t

1−e−t and when t < 0, it’s Tr eitL12 = e∆t

1−et . Altogether,
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the character associated to the noncompact generator L12 can be summarized as

Tr eitL12 = e−∆|t|

1 − e−|t| = Tr e−|t|H (D.6.26)

This equation also holds if L12 is replaced by L10 since they are related by a conjugation of H.

D.6.2 SO(2, d) character

In higher dimensional, we fix an so(2, 1) subalgebra, i.e. generated by {H,L±
1 } and decompose

the so(2, d)-invariant Hilbert space HAdSd+1
∆ into so(2, 1)-invariant subspaces where the formula

(D.6.26) can be used. For concreteness, we use so(2, 2) scalar representations to illustrate

how this decomposition procedure works. Let |∆⟩ be the scalar primary state of an so(2, 2)

representation

H|∆⟩ = ∆|∆⟩, L−
1 |∆⟩ = 0, L−

2 |∆⟩ = 0, M12|∆⟩ = 0 (D.6.27)

Decomposition of HAdS3
∆ into so(2, 1)-invariant subspaces is equivalent to finding so(2, 2) de-

scendants that are so(2, 1) primary. Suppose |ψn⟩ =
∑n
k=0 ck(L+

1 )n−k(L+
2 )k|∆⟩ with cn = 1 is

such a state. Then the so(2, 1) primary condition L−
1 |ψ⟩ = 0 imposes a nontrivial recurrence

relation relation on ck

(n− k)(2∆ + n+ k − 1)ck = (k + 1)(k + 2)ck+2 (D.6.28)

which fixes the coefficients {ck} completely, for example

|ψ1⟩ = L+
2 |∆⟩, |ψ2⟩ = (L+

2 )2|∆⟩ + 1
2∆ + 1(L+

1 )2|∆⟩

|ψ3⟩ = (L+
2 )3|∆⟩ + 3

2∆ + 3(L+
1 )2 L+

2 |∆⟩

|ψ4⟩ = (L+
2 )4|∆⟩ + 6

2∆ + 5(L+
1 )2 (L+

2 )2|∆⟩ + 3
(2∆ + 3)(2∆ + 5)(L+

1 )4|∆⟩ (D.6.29)
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Each |ψn⟩ induces an so(2, 1) representation HAdS2
∆+n of scaling dimension ∆ + n. Thus we have

HAdS3
∆ ⊇

⊕
n≥0

HAdS2
∆+n (D.6.30)

Counting the dimension of H-eigenspace with eigenvalue ∆ + K for any K ∈ N on the two

sides of (D.6.30), we find it should be an isomorphism of vector spaces

HAdS3
∆

∼=
⊕
n≥0

HAdS2
∆+n (D.6.31)

Applying the SO(2, 1) character formula (D.6.26) to the decomposition (D.6.31) yields the

SO(2, 2) character associated with L10

TrHAdS3
∆

eitL10 =
∞∑
n=0

TrHAdS2
∆+n

eitL10 = e−∆|t|

(1 − e−|t|)2 (D.6.32)

In higher dimensions, the decomposition formula (D.6.31) is generalized to

HAdSd+1
∆

∼=
⊕
n≥0

(
HAdS2

∆+n

)⊕Dn

, Dn =
(
d+ n− 2

n

)
(D.6.33)

and thus the corresponding character becomes

Tr
H

AdSd+1
∆

eitL10 =
∞∑
n=0

Dn TrHAdS2
∆+n

eitL10 = e−∆|t|

(1 − e−|t|)d
(D.6.34)

Though we’ve only computed character of a noncompact generator for scalar representations in

this appendix, we believe

TrH[∆,s] e
itL10 = TrH[∆,s] q

H , q = e−|t| (D.6.35)

holds for any unitary representation [∆, s], massive or massless.
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D.7 Physics of SO(2, d) character

We will try to build up some physical intuitions about the character Θ(t) ≡ Tr eitLd,d+1 that

is computed by brutal force in the last appendix. In section D.7.1, we construct quansinormal

modes in Rinder-AdS and show that they are counted by the character Θ(t). In section D.7.2,

we compute the density of L21 eigenstates numerically in AdS2 by imposing an upper bound on

the eigenvalues of the global Hamiltonian H and compare it with the density of states defined

as the Fourier transformation of Θ(t).

D.7.1 Quasinormal modes in Rindler-AdS

It is clear that the character Tr eitH , Im t > 0 counts normal modes in AdSd+1 because H

is the Hamiltonian in global coordinate. However, the same interpretation does not hold for

Tr eitLd,d+1 because Ld,d+1 is not a positive definite opeator. Instead, as we will show in the

following, it counts resonances/quasinormal modes in Rindler-AdS.

To construct quasinormal modes in an efficient algebraic way [1], it’s convenient to define

the following dS-type conformal generators:

D = −iLd,d+1, Pµ = i(Lµ,d + Lµ,d+1), Kµ = i(Lµ,d − Lµ,d+1) (D.7.1)

subject to commutation relations (we only show the nontrivial ones that will be used in the

derivation):

[D,Pµ] = Pµ, [D,Kµ] = −Kµ (D.7.2)

where 0 ≤ µ ≤ d − 1. In terms of embedding space coordinates, the differential operator

realization of D,Pµ,Kµ is

D = −(Xd∂Xd+1 +Xd+1∂Xd), Pµ = Xµ(∂Xd + ∂Xd+1) + (Xd+1 −Xd)∂Xµ ,

Kµ = Xµ(∂Xd − ∂Xd+1) − (Xd+1 +Xd)∂Xµ (D.7.3)

Consider a scalar field of scaling dimension ∆. Then its “primary mode” i.e. eigenfunction of
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D with eigenvalue ∆ which is annihilated by Kµ, is given by

ψ∆(X) ≡
(
Xd +Xd+1

)−∆
(D.7.4)

In the southern Rindler coordinate of AdS 1, this “primary mode” ψ∆(X) descends to

ψ∆(η, tS , r) = (sinh η)−∆(1 − r2)− ∆
2 e−∆tS (D.7.5)

ψ∆ has e−∆η-type fall-off at the future boundary and satisfies in-going boundary condition

at horizon with quasinormal frequency identified as iω = ∆. The other quasinormal modes

are descendants of ψ∆
2 because the equation of motion and in-going boundary condition are

invariant under the action of SO(2, d). At level n, there are
(n+d−1
d−1

)
linearly independent

quasinormal modes whose quasinormal frequency ωn is related to their scaling dimension under

D by iωn = ∆ + n. Notice that

Tr e−tD = e−∆t

(1 − e−t)d =
∑
n≥0

(
n+ d− 1
d− 1

)
e−iωnt, t > 0 (D.7.6)

and thus the character Tr e−tD counts quasinormal modes. The same construction can be easily

generalized to higher spin fields, either massive of massless.

D.7.2 Numerical computation of density of state

For the southern Rindler-AdS Hamiltonian Ld+1,d, the associated density of (single-particle)

states can be formally defined as

ρ(ω) = tr δ(Ld+1,d − ω), ω > 0 (D.7.7)

1In the AdS2 case, we should actually use the black hole coordinate (D.5.5) and then the “primary mode”
becomes ψ∆(tS , ρ) = (ρ2 − 1)−∆/2 e−∆ tS .

2There are two different definitions of descendants depending on the choice of Hamiltonian: either L0,d+1 or
Ld+1,d. Since the Hamiltonian in Rindler-AdS is Ld+1,d, the descendants are obtained by acting Pµ on ψ∆.
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which is also a Fourier transformation of the character Θ(t) = Tr eitLd,d+1

ρ(ω) =
∫
dt

2π Θ(t) eiωt =
∫ ∞

0

dt

2π Θ(t)
(
eiωt + e−iωt

)
(D.7.8)

The Fourier transformation above is UV-divergent but it can be easily regularized by using a

hard cutoff 1
Λ for the lower bound of the t integral. For example, for a scalar field of scaling

dimension ∆ in AdS2, this regularization yields

ρΛ(ω) = 1
π

log
(
e−γE Λ

)
− 1

2π
∑
±
ψ(∆ ± iω) (D.7.9)

where γE is the Euler constant and ψ(x) = Γ′(x)/Γ(x) is the digamma function.

On the other hand, approximating ρΛ(ω) by a model of finite dimensional Hilbert space would

provide a more physical interpretation for it. Such an approximation can be easily implemented

by imposing a UV cutoff on the spectrum of H. For example in the AdS2 case, consider a

truncated Hilbert space HK generated by Gk(ξ) with 0 ≤ k ≤ K and thus the highest energy

of H is ∆ +K. Normalizing Gk(ξ) and using the recurrence relations (D.6.17), L± are realized

as finite dimensional matrices in HK

L+
k+1,k = −

√
(k + 1)(k + 2∆), L−

k,k+1 = −
√

(k + 1)(k + 2∆) (D.7.10)

Altogether, in this truncated model, the noncompact “Hamiltonian” L21 = i
2(L− − L+) is a

sparse (K+ 1) × (K+ 1) matrix, which admits an efficient numerical diagonalization. With the

eigenspectrum {ωk}0≤k≤K (which is ordered such that ωk+1 ≥ ωk) obtained from diagonaliza-

tion, a coarse-grained density of eigenstates can be defined as

ρ̄K(ωk) ≡ 2
ωk+1 − ωk−1

(D.7.11)

To compare the character induced density ρΛ and the discretized density ρ̄K for a fixed K, we

adjust the UV cut-off Λ such that they coincide around ω ≈ 0, i.e. more precisely at the lowest

non-negative eigenvalue of L21. Such a comparison for ∆ = 3 and K = 2999 is shown in fig.

D.7.1. They agree fairly well in the IR region and hence the UV truncated model is a pretty
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Figure D.7.1: Density of states for a ∆ = 3 scalar in AdS2. The red dots show the coarse-
grained density of states ρ̄K(ω), cf. (D.7.11), of the truncated model with global energy cut-off
K = 2999. The blue lines show the character induced density of states ρΛ(ω), cf. (D.7.9), with
the UV cut-off being e−γE Λ ≈ 5981. The plot on the left shows the two densities for the full
spectrum of the truncated model while the plot on the right zooms in on the deep IR region.

good approximation for computing density of states.
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