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Abstract

We study the Argyres–Douglas theories realized at the superconformal point in the Coulomb mod-
uli space of N = 2 supersymmetric SU(2) QCD with Nf = 1, 2, 3 hypermultiplets in the Nekrasov–
Shatashvili limit of the Omega-background. The Seiberg–Witten curve of the theory is quantized in this 
limit and the periods receive the quantum corrections. By applying the WKB method for the quantum 
Seiberg–Witten curve, we calculate the quantum corrections to the Seiberg–Witten periods around the su-
perconformal point up to the fourth order in the parameter of the Omega background.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

A large class of N = 2 supersymmetric gauge theories has a superconformal fixed point at 
strong coupling in the Coulomb moduli space, where mutually non-local BPS states become 
massless. This theory becomes an interacting N = 2 superconformal field theory, which is called 
the Argyres–Douglas (AD) theory [1,2]. The BPS spectrum of the AD theory can be studied by 
the Seiberg–Witten (SW) curve, which are obtained from degeneration of the curve of N = 2
gauge theories [1–3]. The dynamics of AD theories is an interesting subject of recent studies 
from the viewpoint of M5-branes compactified on a punctured Riemann surface [4–6] and its 
relation to two-dimensional conformal field theories [7–10].
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In the weak coupling region, one can compute the partition function of N = 2 gauge theories 
based on the microscopic Lagrangian in the �-background, which deforms four-dimensional 
spacetime by the torus action with two parameters (ε1, ε2) [11,12]. The partition function is 
related to conformal blocks of two-dimensional conformal field theories [13,14], the partition 
functions of topological strings [15,16], and the solutions of the Painléve equations [17], where 
the �-deformation parameters enter into the formulas of the central charges and the string cou-
pling. It would be interesting to study the effects of the �-deformations in the strong coupling 
region. However in the strong coupling region such as the superconformal point, we have no 
appropriate microscopic Lagrangian. In the case of the self dual �-background with ε1 = −ε2, 
the Argyres–Douglas theories have been studied by using the holomorphic anomaly equation 
[15,18] and the E-strings [19].

The purpose of this paper is to study the Argyres–Douglas theories in the �-background 
realized at the superconformal point of N = 2 supersymmetric gauge theories. In particular, 
we consider the Nekrasov–Shatashvili (NS) limit [20] of the � background where one of the 
deformation parameters ε2 is set to be zero. In this limit the SW curve becomes a differential 
equation which is obtained by the canonical quantization procedure of the symplectic structure 
induced by the SW differential. The Planck constant h̄ corresponds to the remaining deformation 
parameter ε1. The WKB solution of the differential equation gives the �-deformation of the SW 
periods which is the main subject of this paper.

The quantum SW curve has been studied for N = 2 theories in the weak coupling regions. 
A simple example is SU(2) pure Yang–Mills theory where the quantum SW curve becomes 
the Schrödinger equation with the sine-Gordon potential [21] and the WKB solution is shown to 
agree with that obtained from the NS limit of the Nekrasov function. The expansion of the periods 
around the massless monopole point in the Coulomb moduli space has been studied in [22]. For 
N = 2 SU(2) SQCD with Nf ≤ 4 hypermultiplets, the WKB solutions of the quantum SW 
curves have been studied in [23] in the weak coupling region, while in the strong coupling region 
the solutions around the massless monopole point have been studied in [24]. Generalization to 
other N = 2 theories and their relations to the Nekrasov partition functions have been studied 
extensively [25,23,26–28].

In this paper we will study the quantum SW periods around the superconformal point of 
the moduli space of N = 2 SU(2) SQCD with Nf = 1, 2, 3 hypermultiplets. The SW curve 
degenerates into a simpler curve which represents the SW curve of the Argyres–Douglas theory. 
We will calculate the WKB solution of the quantum SW curve of the AD theory and compute 
the quantum corrections up to the fourth order in h̄.

This paper is organized as follows: In Section 2, we review the SW curve and the SW differ-
ential near the superconformal point of the N = 2 SU(2) SQCD. In Section 3, we quantize the 
SW curve of the AD theories and derive the differential equations satisfied by quantum periods. 
In Section 4, we calculate the quantum corrections to the SW periods near the superconformal 
point, which are expressed in terms of the hypergeometric function. Section 5 is devoted to con-
clusions and discussion. In the Appendix, we present detailed analysis of the fourth order terms 
in the quantum SW periods for the Nf = 3 AD theory.

2. Seiberg–Witten curve at the superconformal point

In this section we study the Argyres–Douglas theory which appears at the superconformal 
point in the moduli space of N = 2 SU(2) SQCD with Nf = 1, 2, 3 hypermultiplets. We begin 
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with the Seiberg–Witten curve for the N = 2 SU(2) gauge theory with Nf (= 1, 2, 3) hypermul-
tiplets which is given by

C(p) −
�

2− Nf
2

Nf

2

(
z + G(p)

z

)
= 0, (2.1)

where �Nf
is the QCD scale parameter. C(p) and G(p) are defined by

C(p) =

⎧⎪⎨
⎪⎩

p2 − u, Nf = 1,

p2 − u + �2
2

8 , Nf = 2,

p2 − u + �3
4

(
p + m1+m2+m3

2

)
, Nf = 3,

(2.2)

G(p) =
Nf∏
i=1

(p + mi), (2.3)

where u is the Coulomb moduli parameter and m1, . . . , mNf
are the mass parameters of the 

hypermultiplets. The SW differential is defined by

λSW = p (d logG(p) − 2d log z) . (2.4)

The SW periods �(0) := (a(0), a(0)
D ) are

a(0)(u) =
∮
α

λSW, a
(0)
D (u) =

∮
β

λSW (2.5)

where α and β are the canonical one-cycles on the curve. Here the superscript (0) refers the 
“undeformed” (or classical) period. The SW curve (2.1) can be written into the standard form 
[29]

y2 = C(p)2 − �
4−Nf

Nf
G(p) (2.6)

by introducing

y = �
2− Nf

2
Nf

z − C(p). (2.7)

The SW differential (2.4) is expressed as

λSW = pd log

(
C(p) − y

C(p) + y

)
. (2.8)

The u-derivative of the SW differential becomes the holomorphic differential:

∂λSW

∂u
= 2∂uz

z
dp + d(∗) = 2dp

y
+ d(∗) (2.9)

where ∂u := ∂
∂u

. Differentiating the SW period �(0) with respect to u, one obtains the periods 
for the curve:

∂ua
(0)(u) =

∮
α

2∂uz

z
dp =

∮
α

2

y
dp, ∂ua

(0)
D (u) =

∮
β

2∂uz

z
dp =

∮
β

2

y
dp. (2.10)
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The period ∂u�
(0) is evaluated as the elliptic integral. For the curve of the form y2 =∏4

i=1(x − ei), it is convenient to introduce the variables

D =
∑
i<j

e2
i e

2
j − 6

4∏
i=1

ei −
∑

i<j<k

(e2
i ej ek + eie

2
j ek + eiej e

2
k), (2.11)

w = − 27


4D3 , (2.12)

where 
 is of the discriminant


 =
∏
i<j

(ei − ej )
2, (2.13)

and w is inverse of the modular J -function of the curve [30]. Then it is shown that the integral 
F = (−D)

1
4
∫

dx
y

obeys the hypergeometric differential equation

w(1 − w)
d2F

dw2 + (γ − (α + β + 1)w)
dF

dw
− αβF = 0 (2.14)

with α = 1
12 , β = 5

12 and γ = 1. For the SW curve (2.6) this leads to the Picard–Fuchs equation 
for �(0) [31–33,24] as the third order differential equation with respect to u.

There are singularities on the u-plane where some BPS particles become massless and the 
discriminant 
 (2.13) becomes zero. We consider the superconformal or Argyres–Douglas (AD) 
point on the u-plane where mutually nonlocal BPS particles become massless [1,2]. For the 
SU(2) theory with Nf hypermultiplets, the squark and monopole/dyon are both massless at the 
AD point, where the SW curve degenerates and has higher order zero. For the SU(2) theories 
with Nf = 1, 2, 3 hypermultiplets, the AD points are given as follows: For Nf = 1, the Coulomb 
moduli and the mass are chosen as

u = 3

4
�2

1, m1 = 3

4
�1. (2.15)

The SW curve (2.6) becomes

y2 =
(

p − 2

3
�1

)(
p + 1

2
�1

)3

. (2.16)

For Nf = 2, we have

u = 3

8
�2

2, m1 = m2 = �2

2
, (2.17)

so that the SW curve (2.6) becomes

y2 =
(

p − 3

2
�2

)(
p + �2

2

)3

. (2.18)

For Nf = 3, the superconformal point is given by

u = 1

32
�2

3, m1 = m2 = m3 = �3

8
, (2.19)
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where the SW curve (2.6) becomes

y2 =
(

p − 7

8
�3

)(
p + �3

8

)3

. (2.20)

Let us study the SW curve and the SW differential around the superconformal point. By taking 
the scaling limit, we identify the operators and couplings which deform the superconformal point. 
Their scaling dimensions are determined by the SW curve and the fact that the SW differential has 
the scaling dimension one. We first consider in the Nf = 1 theory. The branch point p = −�1

2

of the curve (2.16) corresponds to z = ±�
1
2
1

2 . We expand the curve (2.1) around z = −�
1
2
1

2 by 
introducing

p =εp̃ − �1

2
, z = i2

1
2 ε

3
2

�1
z̃ − ε2M̃

�
1
2
1

− εp̃

�
1
2
1

− �
1
2
1

2
,

u =ε3ũ + ε2M̃�1 + 3

4
�2

1, m1 = ε2M̃ + 3

4
�1, (2.21)

and consider the scaling limit ε → 0 with fixed ũ and M̃ . At the leading order in ε we obtain the 
curve for the AD theory of (A1, A2)-type:

z̃2 = p̃3 − M̃�1p̃ − �1

2
ũ. (2.22)

Substituting (2.21) into the SW differential (2.4) and expanding around ε = 0, the SW differ-
ential becomes

λSW = iε
5
2

2
1
2 �

1
2
1

λ̃SW + . . . , (2.23)

λ̃SW := − 8

�1
z̃dp̃. (2.24)

We read off the scaling dimension of ũ and M̃ as 6
5 and 4

5 , respectively, from the curve (2.22). 
Here ũ is the operator and M̃ is the corresponding coupling parameter.

For Nf = 2, defining the new variables as

p = εp̃ − εM̃

3
− �2

2
, z = i2

1
2 ε

3
2

�
1
2
2

z̃ − εp̃ − 2εM̃

3
,

u = ε2ũ − (εM̃)2

3
+ �2εM̃ + 3�2

2

8
,

m1 = �2

2
+ εM̃ + ε

3
2 ã, m2 = �2

2
+ εM̃ − ε

3
2 ã, (2.25)

and expanding the curve around ε = 0, we find that the curve (2.1) become

z̃2 = p̃3 − ũp̃ − 2

3
M̃ũ + 8

27
M̃3 − C̃2�2

4
. (2.26)

Here ũ is the operator, M̃ is the coupling and C̃2 := 2ã2 is the Casimir invariant of the U(2)

flavor symmetry. The corresponding AD theory is of (A1, A3)-type.
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Substituting (2.25) into (2.4), the SW differential around the superconformal point is

λSW = iε
3
2

2
1
2 �

1
2
2

λ̃SW + · · · (2.27)

up to the total derivatives where

λ̃SW = −4z̃ d log

(
p̃ + 2

3
M̃

)
. (2.28)

The scaling dimension of ũ, M̃ and C̃2 are 4
3 , 2

3 and 2, respectively.
For Nf = 3, we define the scaling variables as

p = ε2p̃ − εM̃ +
4
(
(εM̃)2 + ε3ũ

)
3�3

+ 16(εM̃)3

9�2
3

− �3

8
,

z = ε3iz̃ − 4(εM̃)3

3�
3
2
3

− 2(εM̃)(ε2p̃)

�
1
2
3

− ε3ũ

�
1
2
3

,

u = ε3ũ − 4(εM̃)3

3�3
+ (εM̃)2 + 3�3εM̃

8
+ �2

3

32
,

m1 = �3

8
+ εM̃ + ε2c̃1, m2 = �3

8
+ εM̃ + ε2c̃2,

m3 = �3

8
+ εM̃ − ε2(c̃1 + c̃2), (2.29)

and then consider the limit ε → 0 limit with keeping ũ, M̃ , c̃1 and c̃2 finite. Rescaling the curve 
(2.1) we obtain the curve of the AD theory of (A1, D4) type:

z̃2 = p̃3 − p̃

(
C̃2

2
+ 4M̃ũ

�3

)
− ũ2

�3
− 8M̃3ũ

3�2
3

+ 16M̃6

27�3
3

− 2C̃2M̃
2

3�3
+ C̃3

3
(2.30)

where

C̃2 :=2
(
c̃2

1 + c̃1c̃2 + c̃2
2

)
, C̃3 := −3

(
c̃2

1 c̃2 + c̃1c̃
2
2

)
. (2.31)

Here ũ is the operator and M̃ is the coupling. C̃2 and C̃3 are the Casimir invariants associated with 
the U(3) flavor symmetry. Then the SW differential (2.4) at the superconformal point becomes

λSW = iε2

�
1
2
3

λ̃SW + · · · (2.32)

up to the total derivatives where

λ̃SW = i�
1
2
3

⎧⎨
⎩2p̃ d log

⎛
⎝iz̃ − 2M̃p̃

�
1
2
3

− 4M̃3

3�
3
2
3

− ũ

�
1
2
3

⎞
⎠ −

3∑
i=1

p̃ d log(p̃ + m̃i)

⎫⎬
⎭ . (2.33)

m̃i (i = 1, . . . , 3) are defined by

m̃1 =4M̃2

3�3
+ c̃1, m̃2 = 4M̃2

3�3
+ c̃2, m̃3 = 4M̃2

3�3
− (c̃1 + c̃2). (2.34)
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These parameters are interpreted as the mass parameters at the superconformal point. We see that 
the scaling dimensions of ũ, M̃ , C̃2, C̃3 are 3

2 , 1
2 , 2 and 3, respectively.

We now study the SW periods for the AD theories associated with SU(2) theory with Nf

hypermultiplets. We write the SW curves in the form of

z̃2 = p̃3 − ρNf
p̃ − σNf

(2.35)

for the Nf AD theory. Here ρNf
and σNf

are read off from (2.22), (2.26) and (2.30). We have 
normalized the SW differential λ̃SW (2.24), (2.28) and (2.33) such that

∂

∂ũ
λ̃SW = 2dp̃

z̃
. (2.36)

The SW periods are defined by

�̃(0) = (ã(0), ã
(0)
D ) =

⎛
⎜⎝∫

α̃

λ̃SW ,

∫
β̃

λ̃SW

⎞
⎟⎠ , (2.37)

where α̃ and β̃ are canonical 1-cycles on the curve (2.35). Differentiating the SW periods with 
respect to ũ, we have the period integral 

∫ dp̃
z̃

of the holomorphic differential dp̃
z̃

:

ω =
∫
α̃

dp̃

z̃
, ωD =

∫
β̃

dp̃

z̃
. (2.38)

As in the case of SU(2) SQCD, the period integral is expressed in terms of the hypergeometric 
functions of the argument:

w̃Nf
:= −27
̃Nf

4D̃3
Nf

= 1 −
27σ 2

Nf

4ρ3
Nf

. (2.39)

Here 
̃Nf
and D̃Nf

correspond to 
 in (2.13) and D in (2.11), respectively, which are defined 
by


̃Nf
= 4ρ3

Nf
− 27σ 2

Nf
, (2.40)

D̃Nf
= −3ρNf

. (2.41)

For example, we will evaluate the integrals (2.38) around the point w̃Nf
= 0, where the 

α̃-cycle is chosen as a vanishing cycle. Using the quadratic and cubic transformation [34,35], 
the periods are given by

ω0(w̃, D̃) =2π
(
−D̃

)− 1
4
F

(
1

12
,

5

12
;1; w̃

)
, (2.42)

ω0
D(w̃, D̃) = − 2iπ

(
−D̃

)− 1
4
(

3 log 12

2π
F

(
1

12
,

5

12
;1; w̃

)
− 1

2π
F∗

(
1

12
,

5

12
;1; w̃

))
,

(2.43)

where F(α, β; γ ; z) is the hypergeometric function. F∗(α, β; 1; z) is defined by

F∗(α,β;1; z) = F(α,β;1; z) log z + F1(α,β;1; z) (2.44)
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and

F1(α,β;1; z) =
∞∑

n=0

(α)n(β)n

(n!)2

n−1∑
r=0

(
1

α + r
+ 1

β + r
− 2

1 + r

)
zn. (2.45)

We have omitted the subscript Nf of w̃ and D̃ for brevity. Since the dual period has logarithmic 
divergence around w̃ = 0, it does not represent the expansion around the superconformal point, 
where ũ and M̃ have fractional scaling dimensions.

We will perform the analytic continuation of the solutions around w̃ = 0 to those of w̃ = ∞
by using the connection formula [34]

F(α,β;γ ; z) =�(γ )�(β − α)

�(β)�(γ − α)
(1 − z)−αF

(
α,γ − β;α − β + 1; 1

1 − z

)

+ �(γ )�(α − β)

�(α)�(γ − β)
(1 − z)−βF

(
β,γ − α;−α + β + 1; 1

1 − z

)
,

(2.46)

where | arg(1 − z)| < π . We then find that the periods (2.42) and (2.43) become

ω∞(w̃, D̃) =2π(−D̃)−
1
4

⎛
⎝ �

( 1
3

)
�

(
5
12

)
�

( 11
12

) (1 − w̃)−
1
12 F

(
1

12
,

7

12
; 2

3
; 1

1 − w̃

)

+ �
(− 1

3

)
�

( 1
12

)
�

( 7
12

) (1 − w̃)−
5
12 F

(
5

12
,

11

12
; 4

3
; 1

1 − w̃

))
,

(2.47)

ω∞
D (w̃, D̃) =2iπ(−D̃)−

1
4

⎛
⎝ (−1)

5
6 �

( 1
3

)
�

(
5
12

)
�

( 11
12

) (1 − w̃)−
1
12 F

(
1

12
,

7

12
; 2

3
; 1

1 − w̃

)

+ (−1)
1
6 �

(− 1
3

)
�

( 1
12

)
�

( 7
12

) (1 − w̃)−
5
12 F

(
5

12
,

11

12
; 4

3
; 1

1 − w̃

))
,

(2.48)

respectively. Similarly we can perform the analytic continuation to the solutions around w̃ = 1. 
By using the connection formula

F (α,β;γ ; z) = (1 − z)−α−β+γ �(γ )�(α + β − γ )

�(α)�(β)

× F(γ − α,γ − β;−α − β + γ + 1;1 − z)

+ �(γ )�(−α − β + γ )

�(γ − α)�(γ − β)
F (α,β;α + β − γ + 1;1 − z),

(2.49)

we obtain expansion around w̃ = 1:

ω1(w̃, D̃) =π− 1
2 (−D̃)−

1
4

(
6�

(
5

12

)
�

(
13

12

)
F

(
1

12
,

5

12
; 1

2
;1 − w̃

)

−(1 − w̃)
1
2 �

(
7

12

)
�

(
11

12

)
F

(
7

12
,

11

12
; 3

2
;1 − w̃

))
,

(2.50)

ω1
D(w̃, D̃) = − iπ− 1

2 (−D̃)−
1
4

(
6�

(
5

12

)
�

(
13

12

)
F

(
1

12
,

5

12
; 1

2
;1 − w̃

)

+(1 − w̃)
1
2 �

(
7

)
�

(
11

)
F

(
7

,
11 ; 3 ;1 − w̃

))
.

(2.51)
12 12 12 12 2
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Based on these formulas, we discuss the SW periods for the AD theories. For the Nf = 1
theory, w̃1 and D̃1 are given by

w̃1 = 1 − 27ũ2

16�1M̃3
, (2.52)

D̃1 = −3�1M̃. (2.53)

The superconformal point corresponds to w̃′
1 := 1

1−w̃1
= 0. Therefore eqs. (2.47) and (2.48) give 

the expansion around the superconformal point:

∂ã

∂ũ
= 2ω∞(w̃1, D̃1),

∂ãD

∂ũ
= 2ω∞

D (w̃1, D̃1). (2.54)

By integrating them over ũ, we obtain the SW periods

ã(0) = 3
1
2 �

3
2
1

2
1
2 · 5π

1
2

(
ũ

�2
1

) 5
6 (

2
8
3 �

(
1

6

)
�

(
1

3

)
F

(
− 5

12
,

1

12
; 2

3
; w̃′

1

)

+15w̃′
1

1
3 �

(
−1

6

)
�

(
5

3

)
F

(
− 1

12
,

5

12
; 4

3
; w̃′

1

))
, (2.55)

ã
(0)
D = 3

1
2 �

3
2
1

2
1
2 · 5π

1
2

(
ũ

�2
1

) 5
6 (

−2
8
3 (−1)

1
3 �

(
1

6

)
�

(
1

3

)
F

(
− 5

12
,

1

12
; 2

3
; w̃′

1

)

+15(−1)
2
3 w̃′

1
1
3 �

(
−1

6

)
�

(
5

3

)
F

(
− 1

12
,

5

12
; 4

3
; w̃′

1

))
.

(2.56)

We note that the SW periods �̃(0) satisfy the Picard–Fuchs equation [36]

(
1 − w̃′

1

)
w̃′

1
∂2

∂w̃′
1

2 �̃(0) + 2

3

(
1 − w̃′

1

) ∂

∂w̃′
1
�̃(0) + 5

144
�̃(0) = 0. (2.57)

From (2.55) and (2.56) we see that the SW periods scale as ũ
5
6 . Since the SW periods a(0) and 

a
(0)
D have the scaling dimension one, the scaling dimension of ũ and M̃ is given by 6

5 and 4
5 , 

respectively [2]. The expansion of the coupling constant τ (0) := ∂ũã
(0)
D

∂ũã(0) in w̃′
1 does not contain 

logarithmic terms, which implies that the theory is around the superconformal point. The SW 
periods (2.55) and (2.56) represent the expansions in the coupling M̃ with fixed ũ in the scaling 
limit. We note that the present expansions for Nf theories are different from the results in the 
previous literatures [35,15], where the coupling and the Casimir invariants are chosen to be zero, 
ũ is small without taking the scaling limit. In [37] the expansion of the SW periods without taking 
the scaling limit has been presented.

For the Nf = 2 theory, we have

w̃2 = 1 − ( 27
2 C̃2�2 − 16M̃3 + 36M̃ũ)2

432ũ3 , (2.58)

D̃2 = −3ũ. (2.59)

The superconformal point corresponds to w̃2 = 1 or w̃′
2 := 1 − w̃2 = 0. Eqs. (2.50) and (2.51)

provide the expansion around the superconformal point:
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∂ã

∂ũ
= 2ω1(w̃2, D̃2),

∂ãD

∂ũ
= 2ω1

D(w̃2, D̃2). (2.60)

Expanding them around w̃′
2 = 0, where M̃2

ũ
� 1 and C̃2�2

ũ
3
2

� 1, and integrating over ũ, one 

obtains the SW periods, which are given by

ã(0) =�
3
2
2

(
ũ

�2
2

) 3
4
⎛
⎝24�

(
5
12

)
�

( 13
12

)
3

1
4 π

1
2

− 23 · 3
1
4 �

( 7
12

)
�

( 11
12

)
π

1
2

(
M̃2

ũ

) 1
2

−3
1
2 �

( 7
12

)
�

( 11
12

)
π

1
2

(
C̃2

2�2
2

ũ3

) 1
2

+ · · ·
⎞
⎠ , (2.61)

ã
(0)
D =�

3
2
2

(
ũ

�2
2

) 3
4
⎛
⎝−

24i�
(

5
12

)
�

( 13
12

)
3

1
4 π

1
2

− 23 · 3
1
4 i�

( 7
12

)
�

( 11
12

)
π

1
2

(
M̃2

ũ

) 1
2

−3
1
2 i�

( 7
12

)
�

( 11
12

)
π

1
2

(
C̃2

2�2
2

ũ3

) 1
2

+ · · ·
⎞
⎠ . (2.62)

We see again that the scaling dimensions of ũ, M̃ and C̃2 are 4
3 , 2

3 and 2, respectively. The 
expansions of the periods (2.61) and (2.62) have no logarithmic behavior.

For the Nf = 3 theory, we have

w̃3 = 1 − (−9C̃3�
3
3 + 18C̃2�

2
3M̃

2 − 16M̃6 + 72�3M̃
3ũ + 27�2

3ũ
2)2

108�6
3

(
C̃2
2 + 4 M̃ũ

�3

)3 , (2.63)

D̃3 = −3

(
C̃2

2
+ 4M̃ũ

�3

)
. (2.64)

The superconformal point corresponds to w̃3 = ∞ or w̃′
3 := 1

1−w̃3
= 0. Then (2.47) and (2.48)

provides the periods around the superconformal point:

∂ã

∂ũ
= 2ω∞(w̃3, D̃3),

∂ãD

∂ũ
= 2ω∞

D (w̃3, D̃3). (2.65)

Expanding these in w̃′
3, where M̃3

ũ�3
� 1, 

C̃3
2�2

3
ũ4 � 1 and C̃3�3

ũ2 � 1, and integrating (2.65) over ũ, 
we obtain the SW periods:

ã(0) =�
3
2
3 (−1)

5
6

(
ũ

�2
3

) 2
3
⎛
⎝5�

(
− 5

6

)
�

( 1
3

)
2 · 3

1
2 π

1
2

−
23�

(− 1
3

)
�

(
5
6

)
3

1
2 π

1
2

(
M̃3

ũ�3

) 1
3

+
�

(− 1
3

)
�

(
5
6

)
2 · π 1

2

(
C̃3

2�2
3

ũ4

) 1
3

+ �
( 1

6

)
�

( 1
3

)
22 · 3

3
2 π

1
2

(
C̃3�3

ũ2

)
+ · · ·

⎞
⎠ ,

(2.66)
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ã
(0)
D =�

3
2
3 (−1)

1
6

(
ũ

�2
3

) 2
3
⎛
⎝5�

(
− 5

6

)
�

( 1
3

)
2 · 3

1
2 π

1
2

−
23�

(− 1
3

)
�

(
5
6

)
3

1
2 π

1
2

(
M̃3

ũ�3

) 1
3

+
i�

(− 1
3

)
�

(
5
6

)
2 · π 1

2

(
C̃3

2�2
3

ũ4

) 1
3

+ �
( 1

6

)
�

( 1
3

)
22 · 3

3
2 π

1
2

(
C̃3�3

ũ2

)
+ · · ·

⎞
⎠ .

(2.67)

It turns out that the scaling dimensions of ũ, M̃ , C̃2 and C̃3 are 3
2 , 1

2 , 2 and 3, respectively. As in 
the case of Nf = 1 and 2 theories, the expansion of the SW periods has no logarithmic term.

Although the SW curves for Nf theories become a common cubic form, their SW differentials 
take different forms due to the flavor symmetry. This means that we need to introduce different 
quantization conditions for each Nf as we will discuss in the next section.

3. Quantum Seiberg–Witten curves and periods

In this section we study the deformation of the SW periods in the �-background at the su-
perconformal point for the SU(2) gauge theory with Nf (= 1, 2, 3) hypermultiplets. We take the
Nekrasov–Shatashvili (NS) limit such that one of the two deformation parameters (ε1, ε2) of the 
� background is going to be zero. The other parameter plays a role of the Planck constant h̄. 
From the analysis of the �-deformed low-energy effective action, the deformed periods in the 
NS limit are shown to satisfy the Bohr–Sommerfeld quantization condition [20]:∮

λSW = inh̄, (n ∈ Z). (3.1)

This condition also follows from the quantization of the SW curve, which is introduced by the 
canonical quantization of the holomorphic symplectic structure defined by dλSW . The quantum 
SW curve becomes the ordinary differential equation. Its WKB solution gives the quantum cor-
rection to the SW periods, which can be represented in the form Ôk�

(0) for some differential 
operator Ôk with respect to the moduli parameters. In the following we will construct Ô2 and 
Ô4 explicitly and compute the second and fourth order corrections to the SW periods in h̄ around 
the superconformal point.

3.1. Nf = 1 theory

We start with the Nf = 1 theory. The SW differential (2.24) defines a symplectic form 
dλ̃SW = dz̃ ∧ dp̃ on the (z̃, p̃) space. We quantize the system by replacing the coordinate z̃
by the differential operator:

z̃ = −ih̄
∂

∂p̃
. (3.2)

Then the SW curve becomes the Schrödinger type equation:(
−h̄2 ∂2

∂p̃2 + Q(p̃)

)
�(p̃) = 0, (3.3)

where

Q(p̃) = −
(

p̃3 − M̃�1p̃ − �1

2
ũ

)
. (3.4)
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We study the WKB solution to the equation (3.3):

�(p̃) = exp

⎛
⎜⎝ i

h̄

p̃∫
�(y)dy

⎞
⎟⎠ , (3.5)

where

�(y) =
∞∑

n=0

h̄nφn(y). (3.6)

Substituting the expansion (3.6) into (3.3), one obtains the recursion relations for φn(p̃)’s. Note 
that φn(p̃) for odd n becomes a total derivative and only φn(p̃) for even n contributes to the 
period integrals. The first three φ2n’s are given by

φ0(p̃) = iQ
1
2 , (3.7)

φ2(p̃) = i

48

∂2
p̃
Q

Q
3
2

, (3.8)

φ4(p̃) = − 7i

1356

(∂2
p̃
Q)2

Q
7
2

+ i

768

∂4
p̃
Q

Q
5
2

, (3.9)

up to total derivatives where ∂p̃ := ∂
∂p̃

. We define the quantum SW periods

�̃ = (ã, ãD) =
⎛
⎜⎝∮

α̃

�(p̃)dp̃,

∫
β̃

�(p̃)dp̃

⎞
⎟⎠ (3.10)

along the canonical 1-cycles α̃ and β̃ . The periods are expanded in h̄ as

�̃ = �̃(0) + h̄2�̃(2) + h̄4�̃(4) + · · · (3.11)

where �̃(2n) := ∮
φ2n(p̃)dp̃. �̃(0) is the classical SW period. Similarly, we define ã(2n) and ã(2n)

D

by

ã = ã(0) + h̄2ã(2) + h̄4ã(4) + · · · , (3.12)

ãD = ã
(0)
D + h̄2ã

(2)
D + h̄4ã

(4)
D + · · · . (3.13)

Substituting (3.4) into (3.8) and (3.9), one finds that

φ2(p̃) = 1

�2
1

∂

∂M̃

∂

∂ũ
φ0(p̃),

φ4(p̃) = 7

10�4
1

∂2

∂M̃2

∂2

∂ũ2 φ0(p̃). (3.14)

The classical SW periods �̃(0) satisfy the Picard–Fuchs equation (2.57). It is also found to satisfy 
the differential equation with respect to M̃ and ũ:

∂2

∂M̃∂ũ
�̃(0) = − 3ũ

2M̃

∂2

∂ũ2 �̃(0) − 1

4M̃

∂

∂ũ
�̃(0). (3.15)
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From (3.14), the second and fourth order terms satisfy

�̃(2) = 1

�2
1

∂

∂M̃

∂

∂ũ
�̃(0), (3.16)

�̃(4) = 7

10�4
1

∂2

∂M̃2

∂2

∂ũ2 �̃(0). (3.17)

We note that the higher order corrections can be calculated by taking the scaling limit of those 
of the Nf = 1 SU(2) theory. The second and fourth order corrections to the SW periods for 
the Nf = 1 theory are given as [24]. We can show that the formulas in [24] reduces to (3.16)
and (3.17) in the scaling limit (2.21). The quantization conditions for the AD theories become 
different although they take the same form for the SQCDs. Therefore it is nontrivial to check that 
the scaling limit of the quantum SW periods of the SQCDs gives those of the AD theories. In 
Section 4, we will calculate the deformed SW periods around the superconformal point by using 
the relations (3.16) and (3.17) up to fourth order.

3.2. Nf = 2 theory

Next we discuss the quantum SW curve for the Nf = 2 theory. We introduce a new variable 
ξ by

p̃ = eξ − 2

3
M̃, (3.18)

so that the SW differential (2.27) becomes a canonical form

λ̃SW = z̃dξ. (3.19)

The SW curve (2.26) takes the form:

z̃2 −
(

e3ξ − 2M̃e2ξ + eξ

(
4M̃2

3
− ũ

)
− �2C̃2

4

)
= 0. (3.20)

Replacing z̃ by the differential operator

z̃ = −ih̄
∂

∂ξ
, (3.21)

we obtain the quantum SW curve:(
−h̄2 ∂2

∂ξ2 + Q(ξ)

)
�(ξ) = 0 (3.22)

where

Q(ξ) = −
(

e3ξ − 2M̃e2ξ + eξ

(
4M̃2

3
− ũ

)
− �2C̃2

4

)
. (3.23)

We consider the WKB solution to the wave function �(ξ) which is defined by (3.5). The leading 
term φ0(ξ) in the expansion (3.6) in h̄ is given by φ0(ξ) = z̃(ξ ), which gives the classical SW 
periods �̃(0) = ∫

φ0(ξ)dξ . One can show that (−D̃2)
1
4 ∂ũ�̃

(0) satisfies the Picard–Fuchs equation 
(2.14). �̃(0) also satisfies the differential equation
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∂2

∂M̃∂ũ
�̃(0) = L2

(
4ũ

∂2

∂ũ2 �̃(0) + ∂

∂ũ
�̃(0)

)
(3.24)

where

L2 :=
4
(

4M̃2 − 3ũ
)

27�2C̃2 + 24M̃ũ − 32M̃3
. (3.25)

From (3.8) and (3.9), we find that the second and fourth order corrections are related to the 
classical SW period as

�̃(2) =
(

1

4

∂

∂M̃

∂

∂ũ
+ M̃

3

∂2

∂ũ2

)
�̃(0), (3.26)

�̃(4) =
(

7M̃2

90

∂4

∂ũ4 + 1

20

∂3

∂ũ3 + 7

160

∂2

∂ũ2

∂2

∂M̃2
+ 7M̃

60

∂3

∂ũ3

∂

∂M̃

)
�̃(0). (3.27)

Note that (3.26) and (3.27) are defined up to the Picard–Fuchs equations. We also note that one 
can derive these relations from those of Nf = 2 SU(2) theory, which are given by [24]. We find 
that the second and fourth order formulas of the Nf = 2 theory [24] lead to (3.26) and (3.27)
after taking the scaling limit (2.25).

3.3. Nf = 3 theory

Finally we study the quantum SW curve for the Nf = 3 theory. We introduce a new coordinate 
ξ by

z̃ = −i

⎛
⎝eξ + 2M̃p̃

�
1
2
3

+ 4M̃3

3�
3
2
3

+ ũ

�
1
2
3

⎞
⎠ , (3.28)

so that the SW differential (2.32) becomes the canonical form

λ̃SW = i�3

(
p̃dξ̃ +

3∑
i=1

p̃d log(p̃ + m̃i)

)
. (3.29)

Then the SW curve (2.30) can be written as

e2ξ + (f0p̃ + f1)e
ξ + g(p̃) = 0, (3.30)

where

f0 =4M̃

�
1
2
3

, f1 = 8M̃3

3�
3
2
3

+ 2ũ

�
1
2
3

,

g(p̃) = p̃3 − ρ3p̃ − σ3 +
⎛
⎝2M̃p̃

�
1
2
3

+ 4M̃3

3�
3
2
3

+ ũ

�
1
2
3

⎞
⎠

2

.

(3.31)

Replacing the coordinate ξ by the differential operator

ξ = −ih̄
∂

∂p̃
, (3.32)
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one obtains the quantum SW curve. But we need to consider the ordering of the operators. In 
general we can define the ordering of the operators by

t p̃e−ih̄∂p̃�(p̃) + e−ih̄∂p̃ ((1 − t)p̃�(p̃)) = (p̃ − i(1 − t)h̄)e−ih̄∂p̃�(p̃), (3.33)

parametrized by t (0 ≤ t ≤ 1). We will use the t = 1
2 prescription as in [23]. Then the quantum 

SW curve (3.30) takes the form(
exp(−2ih̄∂p̃) +

(
1

2
f0p̃ + f1

)
exp(−ih̄∂p̃) + exp(−ih̄∂p̃)

1

2
f0p̃ + g(p̃)

)
�(p̃) = 0.

(3.34)

We consider the WKB solution (3.5) to the quantum curve. The leading term is given by φ0(p̃) :=
ξ(p̃). To discuss the higher order terms in h̄, we rewrite the quantum curve by introducing

J (α) := exp

⎛
⎜⎝− i

h̄

p̃∫
�(y)dy

⎞
⎟⎠ exp

(−ih̄α∂p̃

)
exp

⎛
⎜⎝ i

h̄

p̃∫
�(y)dy

⎞
⎟⎠ .

The quantum SW curve (3.34) is written as

J (2) +
(

f0

(
p̃ − i

2
h̄

)
+ f1

)
J (1) + g(x) = 0. (3.35)

Substituting (3.6) into (3.35), we can determine φn(p̃) in a recursive way. φ0(p̃) is expressed as

φ0(p̃) = log

(
1

2
(−f0p̃ − f1 + 2ỹ)

)
(3.36)

which is equal to ξ̃ (p̃). Here ỹ is defined by

ỹ2 = 1

4
(f0p̃ + f1)

2 − g(p̃). (3.37)

φ1(p̃) is shown to be the total derivative:

φ1(p̃) = ∂

∂p̃

(
i

2
φ0(p̃) + i

4
log 4ỹ

)
. (3.38)

We can show that φ3(p̃) is also a total derivative. φ2 and φ4 are found to be

φ2(p̃) = (−f0p̃ − f1) g′′(p̃)

96ỹ3 + f 2
0 (f0p̃ + f1)

192ỹ3 , (3.39)

φ4(p̃) =g(4)(p̃)

(
(f0p̃ + f1) g(p̃)

1536ỹ5
+ −f0p̃ − f1

5760ỹ3

)
+ g(3)(p̃)

(
f0g(p̃)

480ỹ5
+ f0

720ỹ3

)

+ g′′(p̃)

(
−7f 2

0 (f0p̃ + f1) g(p̃)

3072ỹ7 − 7f 2
0 (f0p̃ + f1)

7680ỹ5

)

+ g′′(p̃)2
(

7 (f0p̃ + f1) g(p̃)

3072ỹ7 + 7 (f0p̃ + f1)

7680ỹ5

)
+ 7f 4

0 (f0p̃ + f1) g(p̃)

12288ỹ7

+ 7f 4
0 (f0p̃ + f1)

30720ỹ5
, (3.40)

up to the total derivative.
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For the classical SW periods �̃(0), (−D̃3)
1
4 ∂ũ�̃

(0) satisfies the Picard–Fuchs equation (2.14). 
�̃(0) also satisfies the differential equation with respect to M̃ and ũ:

∂2

∂M̃∂ũ
�̃(0) = b3

∂2

∂ũ2 �̃(0) + c3
∂

∂ũ
�̃(0) (3.41)

where

b3 =
4M̃

(
3�3M̃ũ + 4M̃4 − 3�2

3ρ3

)
ρ3 + 27�2

3ũσ3

3�3

(
9�3M̃σ3 − 4M̃3ρ3 − 3�3ũρ3

) , (3.42)

c3 =
(

4M̃3 + 3�3ũ
)

2 − 12�2
3M̃

2ρ3

3�3

(
9�3M̃σ3 − 4M̃3ρ3 − 3�3ũρ3

) . (3.43)

ρ3 and σ3 are read off from (2.30). Substituting (3.31) into (3.39) and (3.40) we find that formulas 
for the second and fourth order corrections in h̄:

�̃(2) =
(

−M̃2

12

∂2

∂ũ2 − �3

16

∂

∂ũ

∂

∂M̃

)
�̃(0), (3.44)

�̃(4) =
(

7M̃4

1440

∂4

∂ũ4 + �3M̃

192

∂3

∂ũ3 + 7�2
3

2560

∂2

∂ũ2

∂2

∂M̃2
+ 7�3M̃

2

960

∂3

∂ũ3

∂

∂M̃

)
�̃(0). (3.45)

These formulas can be also obtained by taking scaling limit (2.29) of those in Nf = 3 SU(2)

SQCD [24].
In the next section we will calculate the quantum corrections to the SW periods as expansions

in coupling constant and the mass parameters.

4. Quantum SW periods around the superconformal point

In the previous section we have constructed the quantum SW curves and the quantum SW 
periods of the AD theory, which are obtained by acting the differential operators on the classical 
SW periods. In this section we will calculate an explicit form of the quantum SW periods around 
the superconformal point up to the fourth order in h̄. We will consider the expansion in the 
coupling constant and the mass parameters of the AD theory.

4.1. Nf = 1 theory

We first discuss the Nf = 1 theory around the superconformal point. Substituting (2.55) and 
(2.56) into (3.16) and changing the variables (ũ, M̃) to (ũ, w̃′

1), the second order corrections to 
the SW periods are expressed in terms of hypergeometric function as

ã(2) = 1

2
5
2 · 3

3
2 π

1
2 �

7
2
1

(
ũ

�2
1

)− 5
6 (

F
(2)
1 (w̃′

1) − F
(2)
2 (w̃′

1, ũ)
)

, (4.1)

ã
(2)
D = 1

2
5
2 · 3

3
2 π

1
2 �

7
2
1

(
ũ

�2
1

)− 5
6 (

(−1)
2
3 F

(2)
1 (w̃′

1) + (−1)
1
3 F
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where
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Similarly, substituting (2.55) and (2.56) into (3.17) and changing the variables (ũ, M̃) to (ũ, w̃′
1), 

we find that the fourth order corrections to the SW periods (3.13) become
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where
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Expanding in w̃′
1 around w̃′

1 = 0, the quantum SW periods become
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We define the effective coupling constant1 τ̃ of the deformed theory by

τ̃ := ∂ũãD

∂ũã
, (4.11)

which is expanded in h̄ as

τ̃ = τ̃ (0) + h̄2τ̃ (2) + h̄4τ̃ (4) + · · · . (4.12)

Substituting (4.9) and (4.10) into (4.11) and expanding in h̄, we find
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We can express τ̃ as a function of ã by solving (4.9). Then integrating it over ã twice, we 
obtain the free energy. We find that the free energy at M̃ = 0 agrees with the one obtained from 
the E-string theory [38]. We note that the present expansions for Nf theories in the coupling 
parameter are different from those in the self-dual �-background [15], where the expansions in 
the operator have been done with the zero coupling and without taking the scaling limit.

4.2. Nf = 2 theory

We next compute the quantum corrections to the SW periods for the Nf = 2 theory. From 
(3.26) and (2.60) we find that the second order corrections are given by

ã(2) = − 1
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1 Note that the present definition of the effective coupling constant is inverse of the one in [1].
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where we have defined w̃′
2 = 1 − w̃2. Here F (2)
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(4.17)

where
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ũ

) 1
2

. (4.18)

Expanding the second order terms in w̃′
2 around w̃′

2 = 0, where M̃
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The fourth order corrections can be obtained in a similar manner. We find that

ã(4) = 1
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Here the coefficients X1 and X2 are defined by

X
(4)
1 = − 22 · 3

3
2 w̃′

2
1
2
(
10w̃′

2 + 11
) + 3

(
M̃2

ũ
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Expanding the fourth order corrections to the SW periods in w̃′
2 around w̃′
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The effective coupling constant τ̃ is expanded in h̄ as
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It would be interesting to compare the free energy with that of the E-string theory, which is left 
for future work.
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4.3. Nf = 3 theory

We now discuss the Nf = 3 case. Using (3.44) and (2.65) we find that the second order 
corrections to the SW periods are given by
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Here X(2) is given by
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Expanding the second order corrections to the SW periods in w̃′
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ũ

�2
3

)− 2
3

×
⎛
⎝−

(−1)
5
6 �

( 2
3

)
�

(
5
6

)
2 · 3

1
2 π

1
2

+
(−1)

2
3

(
1 + 19(−1)

1
3

)
�

( 1
6

)
�

( 1
3

)
34π

1
2

(
M̃3
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The effective coupling constant is found to be
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ũ4

) 1
3

+ · · ·
⎞
⎠

+ h̄2

�2
3

(−1)
5
6

(
ũ
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(4.37)

We can calculate the h̄4-order correction to the effective coupling constant in a similar way. The 
result is
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In summary, we have explicitly calculated the quantum corrections to the SW periods in terms 
of the hypergeometric functions up to the fourth orders in h̄ for the AD theories of the (A1, A2), 
(A1, A3) and (A1, D4)-types.

5. Conclusions and discussions

In this paper we studied the quantum SW periods around the superconformal point of N = 2
SU(2) SQCD with Nf = 1, 2, 3 hypermultiplets, which is deformed in the Nekrasov–Shatashvili 
limit of the �-background. The scaling limit around the superconformal point gives the SW 
curves of the corresponding Argyres–Douglas theories. The SW curves take the form of cubic 
elliptic curve for all Nf . But the SW differentials take the different form, which introduce the 
different quantization condition. We have computed the quantum corrections to the SW periods 
up to the fourth order in h̄, which are obtained from the classical periods by acting the differential 
operators with respect to the moduli parameters. They are shown to agree with the scaling limit 
of the SW periods of the original SQCD. We wrote down the explicit form of the quantum 
corrections in terms of hypergeometric functions. It is interesting to explore the higher order 
corrections in h̄. In particular the resurgence method helps us to understand non-perturbative 
structure of the h̄-corrections [39–42]. The SW curve for Nf theory at the superconformal point 
are given by the scaling limit of the SW curve for the original SQCD. The SU(2) theory with 
the Nf hypermultiplets are obtained by the decoupling limit for the SU(2) theory with Nf = 4
hypermultiplets. It is interesting to see the SW curve at the various superconformal points by 
combining both the scaling limit and the decoupling limit of the SW curve of the SU(2) theory 
with Nf = 4 hypermultiplets.
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So far we have studied the AD theories around the superconformal fixed point, where the 
SW periods and the effective coupling constant are expanded in the Coulomb moduli parameter 
with fractional power. It would be interesting to study the h̄-corrections to the beta functions 
around the conformal point [43]. Note that the moduli space of these AD theories contains the 
point, where one of the periods shows the logarithmic behavior around the point. It would be 
interesting to describe the theory around the point by the Nekrasov partition function.

It is known that the four-dimensional theories in the NS limit are described by certain quantum 
integrable systems. The quantum corrections to the periods provide some data of the integrable 
systems. For Nf = 1 case, the curve describes the same AD theory as SU(3) N = 2 super 
Yang–Mills theory [1], whose quantum curve is the Schrödinger equation with cubic polynomial 
potential. In [44], using the ODE/IM correspondence (for a review see [45]), it is shown that the
exponential of the quantum period can be regarded as the Y-function of the quantum integrable 
model associated with the Yang–Lee edge singularity. It is interesting to study this relation further 
by computing further higher order corrections by using the ODE/IM correspondence. It is also 
interesting to generalize the quantum SW curve for the AD theories associated with higher rank 
gauge theories [37].
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