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Abstract

We study the Argyres—Douglas theories realized at the superconformal point in the Coulomb mod-
uli space of N' = 2 supersymmetric SU(2) QCD with N £ = 1,2,3 hypermultiplets in the Nekrasov—
Shatashvili limit of the Omega-background. The Seiberg—Witten curve of the theory is quantized in this
limit and the periods receive the quantum corrections. By applying the WKB method for the quantum
Seiberg—Witten curve, we calculate the quantum corrections to the Seiberg—Witten periods around the su-
perconformal point up to the fourth order in the parameter of the Omega background.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

A large class of N = 2 supersymmetric gauge theories has a superconformal fixed point at
strong coupling in the Coulomb moduli space, where mutually non-local BPS states become
massless. This theory becomes an interacting A/ = 2 superconformal field theory, which is called
the Argyres—Douglas (AD) theory [1,2]. The BPS spectrum of the AD theory can be studied by
the Seiberg—Witten (SW) curve, which are obtained from degeneration of the curve of AV =2
gauge theories [1-3]. The dynamics of AD theories is an interesting subject of recent studies
from the viewpoint of M5-branes compactified on a punctured Riemann surface [4-6] and its
relation to two-dimensional conformal field theories [7—10].
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In the weak coupling region, one can compute the partition function of A/ = 2 gauge theories
based on the microscopic Lagrangian in the Q2-background, which deforms four-dimensional
spacetime by the torus action with two parameters (€, €) [11,12]. The partition function is
related to conformal blocks of two-dimensional conformal field theories [13,14], the partition
functions of topological strings [15,16], and the solutions of the Painléve equations [17], where
the €2-deformation parameters enter into the formulas of the central charges and the string cou-
pling. It would be interesting to study the effects of the Q2-deformations in the strong coupling
region. However in the strong coupling region such as the superconformal point, we have no
appropriate microscopic Lagrangian. In the case of the self dual ©2-background with €] = —e»,
the Argyres—Douglas theories have been studied by using the holomorphic anomaly equation
[15,18] and the E-strings [19].

The purpose of this paper is to study the Argyres—Douglas theories in the Q2-background
realized at the superconformal point of A" = 2 supersymmetric gauge theories. In particular,
we consider the Nekrasov—Shatashvili (NS) limit [20] of the 2 background where one of the
deformation parameters € is set to be zero. In this limit the SW curve becomes a differential
equation which is obtained by the canonical quantization procedure of the symplectic structure
induced by the SW differential. The Planck constant # corresponds to the remaining deformation
parameter €1. The WKB solution of the differential equation gives the C2-deformation of the SW
periods which is the main subject of this paper.

The quantum SW curve has been studied for N'= 2 theories in the weak coupling regions.
A simple example is SU(2) pure Yang—Mills theory where the quantum SW curve becomes
the Schrodinger equation with the sine-Gordon potential [21] and the WKB solution is shown to
agree with that obtained from the NS limit of the Nekrasov function. The expansion of the periods
around the massless monopole point in the Coulomb moduli space has been studied in [22]. For
N =2 SU(2) SQCD with Ny <4 hypermultiplets, the WKB solutions of the quantum SW
curves have been studied in [23] in the weak coupling region, while in the strong coupling region
the solutions around the massless monopole point have been studied in [24]. Generalization to
other N = 2 theories and their relations to the Nekrasov partition functions have been studied
extensively [25,23,26-28].

In this paper we will study the quantum SW periods around the superconformal point of
the moduli space of N'=2 SU(2) SQCD with Ny = 1,2, 3 hypermultiplets. The SW curve
degenerates into a simpler curve which represents the SW curve of the Argyres—Douglas theory.
We will calculate the WKB solution of the quantum SW curve of the AD theory and compute
the quantum corrections up to the fourth order in 7.

This paper is organized as follows: In Section 2, we review the SW curve and the SW differ-
ential near the superconformal point of the A" =2 SU(2) SQCD. In Section 3, we quantize the
SW curve of the AD theories and derive the differential equations satisfied by quantum periods.
In Section 4, we calculate the quantum corrections to the SW periods near the superconformal
point, which are expressed in terms of the hypergeometric function. Section 5 is devoted to con-
clusions and discussion. In the Appendix, we present detailed analysis of the fourth order terms
in the quantum SW periods for the Ny =3 AD theory.

2. Seiberg—Witten curve at the superconformal point

In this section we study the Argyres—Douglas theory which appears at the superconformal
point in the moduli space of N'=2 SU(2) SQCD with N = 1, 2, 3 hypermultiplets. We begin
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with the Seiberg—Witten curve for the ' =2 SU(2) gauge theory with N (=1, 2, 3) hypermul-
tiplets which is given by

Ay G
C(p)— —L <z+ (p))=0, Q.1
2 z
where A Ny is the QCD scale parameter. C(p) and G (p) are defined by
p2 —u, Ny=1,
2
C(p)= pr—u+ 2, Np=2, (2.2)
PP —ut G (p PEERER) . Np =3,
Ny
G(p) =] +m. (23)
i=1
where u is the Coulomb moduli parameter and m1,...,m N, are the mass parameters of the

hypermultiplets. The SW differential is defined by
Asw = p (dlogG(p) —2dlogz). 2.4)

The SW periods T := (¢©@, ag))) are

a®) = rsw, a0 = rsw 25)
o B
where o and § are the canonical one-cycles on the curve. Here the superscript (0) refers the

“undeformed” (or classical) period. The SW curve (2.1) can be written into the standard form
[29]

4—N
Y =Cp)’ = Ay, G(p) (2.6)
by introducing
y=A~Ay, " 2= C(p). 2.7
The SW differential (2.4) is expressed as
Cp)—y
Asw = pdlog <7 . (2.8)
Cp)+y
The u-derivative of the SW differential becomes the holomorphic differential:
oA 20 2d
aiw = 2% p +d(x) = TP Fd() 2.9)

where 0, := % Differentiating the SW period 1) with respect to u, one obtains the periods
for the curve:

20, 2 20 2
w0 =§ 2dp=§ Zap. daPw=¢ap=¢ 2. @10

o o B B
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The period 9,I1? is evaluated as the elliptic integral. For the curve of the form y? =
]_[?: 1 (x — ¢;), it is convenient to introduce the variables

4
D =Zel-2ef — 61_[ei — Z (el-zejek + e,-e%ek +e,'eje,%), (2.11)
i<j i=1 i<j<k
w=— % (2.12)
4D3°
where A is of the discriminant
A=T]]te—ep? (2.13)
i<j

and w is inverse of the modular J-function of the curve [30]. Then it is shown that the integral
F= (—D)% f de obeys the hypergeometric differential equation

d*F dF
wll—w)——+( —(e+p+Dw)— —afF =0 (2.14)
dw dw
with o = %, B = % and y = 1. For the SW curve (2.6) this leads to the Picard—Fuchs equation
for T [31-33,24] as the third order differential equation with respect to u.

There are singularities on the u#-plane where some BPS particles become massless and the
discriminant A (2.13) becomes zero. We consider the superconformal or Argyres—Douglas (AD)
point on the u-plane where mutually nonlocal BPS particles become massless [1,2]. For the
SU(2) theory with Ny hypermultiplets, the squark and monopole/dyon are both massless at the
AD point, where the SW curve degenerates and has higher order zero. For the SU (2) theories
with Ny =1, 2, 3 hypermultiplets, the AD points are given as follows: For Ny = 1, the Coulomb
moduli and the mass are chosen as

3 3

2
uzzAI, mi ZZA] (215)
The SW curve (2.6) becomes
5 2 1y
y=p—=At)|{p+=zA1]) . (2.16)
3 2
For Ny =2, we have
3 Ao
ungz, m1=m2=7, 2.17)
so that the SW curve (2.6) becomes
3 Ao 3
2
= —=A — ) . 2.18
y <p 22><p+2> (2.18)
For Ny = 3, the superconformal point is given by
I, A3
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where the SW curve (2.6) becomes

5 7 Az}
Yy = (P - §A3) (P + ?) . (2.20)

Let us study the SW curve and the SW differential around the superconformal point. By taking
the scaling limit, we identify the operators and couplings which deform the superconformal point.
Their scaling dimensions are determined by the SW curve and the fact that the SW differential has

the scaling dimension one. We first consider in the Ny =1 theory. The branch point p = —%
1 1
2 2
of the curve (2.16) corresponds to z = :I:AT‘. We expand the curve (2.1) around z = —ATI by
introducing
13 ~ - 1
. A i22€2_ €M ep A}
p=€p— s = =T T T T o
2 Ay Alz Alz 2
3~ 257 3.2 27, 3
U=€u-+e€ MA1+4_1A , m|p=c¢€ M—i—ZA], (2.21)

and consider the scaling limit € — O with fixed & and M. At the leading order in € we obtain the
curve for the AD theory of (A1, As)-type:

~2 ~3 ~ - A
Z:ﬂ)—MMp—Eﬂ. (2.22)

Substituting (2.21) into the SW differential (2.4) and expanding around € = 0, the SW differ-
ential becomes

ie

hsw = — Thswt . (2.23)
22A7
. 8
Asw i=——2dp. (2.24)
A

We read off the scaling dimension of i and M as g and ‘S—L, respectively, from the curve (2.22).

Here i is the operator and M is the corresponding coupling parameter.
For Ny =2, defining the new variables as

M A, 273 . 2eM
P=€p— —F — 7, e
3 2 3 3

Ay

2 5 A2

u=ci ( + AoeM + =2,
2 ~ 3. Ao ~ 3.

m1=7+€M+€2a, m2=7+€M_€za’ (2.25)

and expanding the curve around € = 0, we find that the curve (2.1) become
2. 8 - CaA
2 _ =3 == ~ 3 242
=P —ip— M+ —M>— ==,
c=poupmgMut o 4
Here ii is the operator, M is the coupling and C, := 24> is the Casimir invariant of the U (2)
flavor symmetry. The corresponding AD theory is of (A1, A3)-type.

(2.26)
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Substituting (2.25) into (2.4), the SW differential around the superconformal point is

(T[98}

i€2 -
Asw =~ Asw (227)
22A;

up to the total derivatives where

- 2 -
Tow = —47dlog <13 + gM) | (2.28)

The scaling dimension of i, M and 6‘2 are %, % and 2, respectively.

For Ny = 3, we define the scaling variables as

4((61‘2)24—63)2) N 16(€M)3 B E

p:ezﬁ—eM+

3A3 9A3 8’
s MM 2eM)(?p) €
I=€17 — 3 - 1 - _17
3A2 A2 A2
. 4(eM)? - 3A3eM A2
3 2 3
— -7 M A I
u=e = e T EM)y 2
A3 ~ 2~ A3 ~ 2~
m1=?+eM+e Cl, m2=?+eM+6 c2,
A3 ~ 2~ ~
m3 == +eM —e7(c1 +¢2), (2.29)

and then consider the limit € — 0 limit with keeping i, M, & and &, finite. Rescaling the curve
(2.1) we obtain the curve of the AD theory of (A1, D4) type:

w3 [C 4ma\ @ 8MPi  16M° 20.M* C
P=p-p|=+ e L (2.30)
2 A3 Az 3A5  27A3  3A3 3
where
Cyi=2 (5% &6+ 55) . C3i=-3 (5%52 + 5155) . 2.31)

Here i is the operator and M is the coupling. C» and C3 are the Casimir invariants associated with
the U (3) flavor symmetry. Then the SW differential (2.4) at the superconformal point becomes

i€’ .
hsw = —Thsw + - (2.32)
Az
up to the total derivatives where
. NS . 2Mp 4MP @ S L
Asw =1iA5 {2pdlog lZ——%——%——% - pdlog(p+m;) ¢ . (2.33)
A3 3A5 A3 i=1
m; (i =1,...,3) are defined by
_ o 4m* _ _ 4M* _ _ AM?
mp =——+ci, my = —— + ¢z, m3 = —— — (] +¢2). (2.34)

T34, 3A3 3A3
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These parameters are interpreted as the mass parameters at the superconformal point. We see that
the scaling dimensions of i, M, Cy, C3 are 2 2, 2 and 3, respectively.

We now study the SW periods for the AD theories associated with SU(2) theory with N
hypermultiplets. We write the SW curves in the form of

Z=p —pn P —on, (2.35)
for the Ny AD theory. Here py, and oy, are read off from (2.22), (2.26) and (2.30). We have
normalized the SW differential XSW (2.24), (2.28) and (2.33) such that

3 - 2dp
L Pt (2.36)
u Z

The SW periods are defined by
a0 =@a®,a) = /;\SW,/)N\SW , (2.37)

where @ and 8 are canonical 1-cycles on the curve (2.35). Differentiating the SW periods with
respect to i, we have the period integral f of the holomorphic differential <2

w=/d—”, wop= [ 42 (2.38)

Z z
a 5
As in the case of SU(2) SQCD, the period integral is expressed in terms of the hypergeometric
functions of the argument:

~ 2

B 27AN 270’N’

wa:=—4[)3f=1—43f. (2.39)
Ny PNy

Here A Ny and bN ; correspond to A in (2.13) and D in (2.11), respectively, which are defined
by . .

An, =4p} - 270,2,[, (2.40)
Dy, =—3pn;. (2.41)

For example, we will evaluate the integrals (2.38) around the point wy, = 0, where the
a-cycle is chosen as a vanishing cycle. Using the quadratic and cubic transformation [34,35],
the periods are given by

~ N1 1 5
(b, D) =27 (—D) 4F<12 il w> (2.42)
N -1 /3l0g12 (/1 5 1 15
0, ~ . 4 g ~ -
,D)=—2in (-D Fl—= = Lw)-—=F/|=. =L ,
(@, D) == 2ix (~D) ( 2 (12 12 w) 2 *(12 12 w))
(2.43)

where F(w, B; y; z) is the hypergeometric function. Fi(«, §; 1; z) is defined by
Fy(a, B;1;2) = F(a, B; 1;2)logz + Fi(a, B; 1;2) (2.44)
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and

00 n—1
(O‘)n(ﬂ)n 1 1 2 "
Fl(Ol,ﬂ§1;Z)=X(:) 2 2;<a+r+ﬁ+r - 1+r)z ) (2.45)

We have omitted the subscript N s of w and D for brevity. Since the dual period has logarithmic
divergence around w = 0, it does not represent the expansion around the superconformal point,
where i and M have fractional scaling dimensions.

We will perform the analytic continuation of the solutions around w = 0 to those of w = oo
by using the connection formula [34]

Pl By = TP =) —z>‘“F<“7V—ﬁ;a—ﬁ+1? ;>
LBy —w -z (2.46)
rMe=8) . 4 ( o . ) '
7F(a)F(y—ﬂ)(l ) PF\By - oz+ﬁ+l,1_Z ,
where | arg(l — z)| < . We then find that the periods (2.42) and (2.43) become
o 7 " r(3) o <172 1)
0w, D) =2a(-D) | ——————{—-w) 2F|—, —; =; ——
12 1 (2.47)
r(-1) s (5 114 1
et ()
< .5y <aimiyt [(CVTO) (L T2
12/ M (2.48)

(~DsT(=4) s /5 114 1
e 0 ()

respectively. Similarly we can perform the analytic continuation to the solutions around w = 1.
By using the connection formula
A=~ T @+ B —y)
F()'(B)
xF(ly—oa,y—8—a—-B+y+1;1-2) (2.49)
FYH(—a—-p+vy)
Py —a)I'(y — B)
we obtain expansion around w = 1:

F(a,Biy;2)=

F(a,B;0+B8—y+1;1—-2),

1, ~ = 1 o~ 1 5 13 1 5 1 _
o'W, Dy=r"2(=D) 3|6 | = |T|=|F—=,=;=;1—-D
12 1 1212 2 2.50)
1 7 11 7 11 3 . ’
_(]_w)zr Y F 1A F _s_;_sl_w ,
12 12 12712 2
1, ~ = S R | 5 13 1 51 _
wp(@,D)y=—ix"2(=D)"# (6T = )T = )F|—=, == 1—-®
12 12 1212 2
(2.51)
+(1—w)él_‘ l r E F lg'i‘l—ﬁ)
12 1 127127 2°
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Based on these formulas, we discuss the SW periods for the AD theories. For the Ny =1
theory, w; and D are given by

270
By =1— — (2.52)
16A M3

D= —3A M. (2.53)
The superconformal point corresponds to W) := 1—111;1 = 0. Therefore eqs. (2.47) and (2.48) give
the expansion around the superconformal point:

aa ~ aa ~

22 —20®(ib1, D)), =2 =20 (b1, D). (2.54)

au au

By integrating them over i, we obtain the SW periods
13 3
~o . 3AF [a (s (] 1 51 2
a’ =\ T\ - Tz ) F | ——=. = 53 0]
27 .572 \ A 6 3 12°12° 3
wisadr (D r(2)F(-L 24w (2.55)
Y1\ 76) 3 1212°3")) '
3 3
o 32AY [a\° 8 1 (1 1 51 2
ap' =1\ — =23(=D3' (- )T\ s |F|——=, —=; 53 0]
27 .572 \A] 6 3 12°12° 3
2 _,1 1 5 1 5 4
15(-D3wi3sr [ —= Tz ) Fl-——=, =; =
+()w1<6)<3)<12123

(2.56)
We note that the SW periods 1 satisfy the Picard—Fuchs equation [36]
. 2 0 =~ 5 -
1 — ) ] 9 4+ 2 (1 — ] no 4+ —n®=o. 2.57
( wl)wlaw? +3(-w) ow, 14 @57

From (2.55) and (2.56) we see that the SW periods scale as ﬁ% Since the SW periods a® and
ag)) have the scaling dimension one, the scaling dimension of i and M is given by g and %,

70
. . . 3 - .
respectively [2]. The expansion of the coupling constant 7 := aﬁ;ﬁ» in W does not contain

logarithmic terms, which implies that the theory is around the superconformal point. The SW
periods (2.55) and (2.56) represent the expansions in the coupling M with fixed i in the scaling
limit. We note that the present expansions for N theories are different from the results in the
previous literatures [35,15], where the coupling and the Casimir invariants are chosen to be zero,
u is small without taking the scaling limit. In [37] the expansion of the SW periods without taking
the scaling limit has been presented.

For the Ny =2 theory, we have

(B CoAy — 16M3 +36Mii)?
43203
D), = —3ii. (2.59)

wy =1

, (2.58)

The superconformal point corresponds to Wy = 1 or @} := 1 — w7 = 0. Egs. (2.50) and (2.51)
provide the expansion around the superconformal point:
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da ~ da -
X 20 (W, D), 2L =20} (s, D). (2.60)
ou ou

Expanding them around @} = 0, where MTZ « 1 and % « 1, and integrating over u, one

obtains the SW periods, which are given by

A—% 3172 3 i
1 N 1
310 (5) T () [C2A2)\>2
(@) M) ), 2.61)
72 u
3 4. 5 13 ~ 3
o fa\ [ FTE)TE 2shin@)r) ()
p =403 N2 o 11 o 1 z
A3 3372 w2 u
. .

(2.62)

We see again that the scaling dimensions of iz, M and C, are %, % and 2, respectively. The
expansions of the periods (2.61) and (2.62) have no logarithmic behavior.
For the Ny = 3 theory, we have

(—9C3A3 + 18CoASM? — 16M° + T2A3M3ii + 27A3i2)?

w3 =1 - — , (2.63)
6(C Mii
1084 (G +4472)
- Cy  4Mi
Dy=-3|— . 2.64
3 ( >t A ) (2.64)

The superconformal point corresponds to w3 = co or 111_/3 = ﬁ = 0. Then (2.47) and (2.48)
provides the periods around the superconformal point: *

ada ~ da ~

= 20® W3, D). 2 =20 (@3, D3). (2.65)

ou ou

~ ~3 A2
Expanding these in W}, where % <1, Czﬁf3 <« 1and

C3As
02
we obtain the SW periods:

« 1, and integrating (2.65) over i,

| (2.66)
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a0 _ad 1)6<i2)§ sr(—g)r(g)_?r(_%)r(%) (£>;

2.67)

It turns out that the scaling dimensions of i, M R éz and 6’3 are %, %, 2 and 3, respectively. As in
the case of Ny =1 and 2 theories, the expansion of the SW periods has no logarithmic term.

Although the SW curves for N s theories become a common cubic form, their SW differentials
take different forms due to the flavor symmetry. This means that we need to introduce different
quantization conditions for each Ny as we will discuss in the next section.

3. Quantum Seiberg-Witten curves and periods

In this section we study the deformation of the SW periods in the 2-background at the su-
perconformal point for the SU (2) gauge theory with N ¢(= 1, 2, 3) hypermultiplets. We take the
Nekrasov—Shatashvili (NS) limit such that one of the two deformation parameters (€1, €3) of the
€ background is going to be zero. The other parameter plays a role of the Planck constant 7.
From the analysis of the Q2-deformed low-energy effective action, the deformed periods in the
NS limit are shown to satisfy the Bohr—Sommerfeld quantization condition [20]:

fxswzinh, (neZ). @3.1)

This condition also follows from the quantization of the SW curve, which is introduced by the
canonical quantization of the holomorphic symplectic structure defined by dXsw. The quantum
SW curve becomes the ordinary differential equation. Its WKB solution gives the quantum cor-
rection to the SW periods, which can be represented in the form OO for some differential
operator O with respect to the moduli parameters. In the following we will construct O, and
(’)4 explicitly and compute the second and fourth order corrections to the SW periods in % around
the superconformal point.

3.1. Ny =1 theory

We start with the Ny = 1 theory. The SW differential (2.24) defines a symplectic form
disw = dZ A dp on the (Z, p) space. We quantize the system by replacing the coordinate 7
by the differential operator:

:—h— 3.2
LFY (3.2)

Then the SW curve becomes the Schrodinger type equation:

32
<—h2 YRl Q(ﬁ)) w(p) =0, (33)

where

~ A
0(p) =~ <153 — MAp - 71»1) . (3:4)
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We study the WKB solution to the equation (3.3):

; p
W(p) =exp 7 / Q(y)dy |, (3.5)
where
D(y) =) H"$a(). (3.6)

n=0
Substituting the expansion (3.6) into (3.3), one obtains the recursion relations for ¢, (p)’s. Note
that ¢, (p) for odd n becomes a total derivative and only ¢, (p) for even n contributes to the
period integrals. The first three ¢,,’s are given by

~ AL

¢o(p)=iQz, (3.7)

i 90
$2(p) = &—;, (3.8)

0?2
Gy 0302 i ;,!Q 49

up to total derivatives where d; := % We define the quantum SW periods
fi=@.an) = | § oGrap. [ @pas (3.10)
a p

along the canonical 1-cycles @ and B. The periods are expanded in # as

=0 4220 4 440® 4 ... (3.11)

where [T ;= f b2 (p)dp. [1© is the classical SW period. Similarly, we define @®* and a(zn)

by

G=a® 112G fpha® 4 (3.12)
ap=ay +n%as +n*aly +... (3.13)

Substituting (3.4) into (3.8) and (3.9), one finds that

»2(p)=— A2 8Ma~¢o(p)
~ 2 82
¢4(p) = 1088 0072 au2¢o(p) (3.14)

The classical SW periods [1® satisfy the Picard-Fuchs equation (2.57). It is also found to satisfy
the differential equation with respect to M and i:

2
”? qo__ 309 g0 _ 1 9 50

0 3.15
oM dil 201 02 47 0 (.15)
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From (3.14), the second and fourth order terms satisfy

~ 1 0 8.

o= %o (3.16)
AT oM ou

qo__ 1 0 @ 7O

— — 3.17
10AT aM2 dit? G147

We note that the higher order corrections can be calculated by taking the scaling limit of those
of the Ny =1 SU(2) theory. The second and fourth order corrections to the SW periods for
the Ny =1 theory are given as [24]. We can show that the formulas in [24] reduces to (3.16)
and (3.17) in the scaling limit (2.21). The quantization conditions for the AD theories become
different although they take the same form for the SQCDs. Therefore it is nontrivial to check that
the scaling limit of the quantum SW periods of the SQCDs gives those of the AD theories. In
Section 4, we will calculate the deformed SW periods around the superconformal point by using
the relations (3.16) and (3.17) up to fourth order.

3.2. Ny =2 theory

Next we discuss the quantum SW curve for the Ny = 2 theory. We introduce a new variable
& by

5ok 2
p=e 3M, (3.18)

so that the SW differential (2.27) becomes a canonical form

Asw = ZdE. (3.19)

The SW curve (2.26) takes the form:
8 4M? ArC

72 - <e3¥ —2Me* + 6 (T - u) - 24 2) =0. (3.20)

Replacing 7 by the differential operator
a

F=—ih—, 3.21

e=—ihgg (3.21)
we obtain the quantum SW curve:

2 9

(—h T Q(S)) v(E) =0 (3.22)

where
- 4M? ArC
Q) =— <e3f —2Me* + éf (? - u) - 24 2) : (3.23)

We consider the WKB solution to the wave function W(£§) which is defined by (3.5). The leading
term ¢o(&) in the expansion (3.6) in 7 is given by ¢o(§) = z(£), which gives the classical SW
periods I1® = [ #0(§)d& . One can show that (—Dz)% 9; 11O satisfies the Picard—Fuchs equation
(2.14). T1O also satisfies the differential equation
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. no=r, 4ﬁa—2f[(°) + Lo (3.24)
aMaii dii? ol :
where
4 (41\22 _ 3ﬁ)
Ly:= (3.25)

T 27A,C +24Mii — 32M3°
From (3.8) and (3.9), we find that the second and fourth order corrections are related to the
classical SW period as

. 19 8 Ma%\-
a® = (_—~—~ + ?—) o, (3.26)

a4 _ TM? 3% L1 3 L7 % 97 +7A7I ? 9 70 3.27)
T\ 90 aa*  200a3 160002 gpm2 0 60 93 9Mm ' ’

Note that (3.26) and (3.27) are defined up to the Picard—Fuchs equations. We also note that one
can derive these relations from those of Ny =2 SU(2) theory, which are given by [24]. We find
that the second and fourth order formulas of the Ny =2 theory [24] lead to (3.26) and (3.27)
after taking the scaling limit (2.25).

3.3. Ny =3 theory

Finally we study the quantum SW curve for the Ny = 3 theory. We introduce a new coordinate
§ by

e 2Mp aM? G
=—ile+——+ T+ (3.28)
A7 3AI A3

so that the SW differential (2.32) becomes the canonical form

3
Asw =iAs3 (ﬁd§ + Z pdlog(p + n%)) . (3.29)
i=1
Then the SW curve (2.30) can be written as
e+ (fob + f)e* +8(p) =0, (3.30)
where
4M SM3  2ii
Jo=—, fi=—+—.
A 3A; A5
2 (3.31)

3 3 DMp  AMP i
g(p)=p°—p3p—03+ =+t
Al 3A A2

Replacing the coordinate & by the differential operator

(3.32)
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one obtains the quantum SW curve. But we need to consider the ordering of the operators. In
general we can define the ordering of the operators by

tpe” MW (p) + M (1 =0 p(p) = (b —i(1 = e P W(p), (3.33)
parametrized by # (0 <t < 1). We will use the ¢t = % prescription as in [23]. Then the quantum
SW curve (3.30) takes the form

. | . . [ - .
<exp(—2zh8ﬁ) + <§fop + f1> exp(—ihdp) + exp(—zhaﬁ)gfop + g(p)) W(p)=0.
(3.34)

We consider the WKB solution (3.5) to the quantum curve. The leading term is given by ¢o(p) :=
&(p). To discuss the higher order terms in 7, we rewrite the quantum curve by introducing

p p

J(@) :=exp —%f¢@myemeW%wm %/@@My

The quantum SW curve (3.34) is written as
.1

J(2)+ (fo (P— §h> +f1>J(1)+g(X)=0- (3.35)

Substituting (3.6) into (3.35), we can determine ¢, (p) in a recursive way. ¢o(p) is expressed as
- 1 - ~

$o(p) =log (5 (—for— fi+ 2y)> (3.36)
which is equal to £(p). Here 7 is defined by

~2 1 ~ 2 ~

yo= Z(fop+f1) —8(p). (3.37)

¢1(p) is shown to be the total derivative:
. a (i o ~
$1(p) == | 5%0(p) + ~log4y ). (3.38)
op \2 4
We can show that ¢3(p) is also a total derivative. ¢, and ¢4 are found to be

_ Chp=f0g"®B) I3 b+ 1)

$2(p) 9657 0257 (3.39)
NN ) P (for + f1) &(P) —foﬁ—ﬁ) Bz (ng(l;) fo )
PPy =g (p )< 53655 T 516052 ) T8 P so T 7205
w155 Gop+ 08B TS5 (fop+ f1)
+&@) (_ 307257 T 76805
+ o) (7(f0ﬁ+f1)g(l5) 7(f015+f1))+7f6‘(f015+f1)g(15)
§ P 307257 768055 1228857
4 ~
Tfy (fop :|- fl)’ (3.40)
3072055

up to the total derivative.
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For the classical SW periods no, (- D3) i 05 1O satisfies the Picard—Fuchs equation (2.14).
1O also satisfies the differential equation with respect to M and ii:

92 9
M (O b3 n“” +c3—1O (3.41)
M dii dii2 it

where

4N (3A3 M + 401+ = 30303 ) p3 + 27 Ao
by = } _ : (3.42)
373 (9A3Mc73 435 — 3A3ﬂp3>

(41\713 + 3A312) 2 _ 1202812 p3

o= (3.43)

3A3 (9A3MU3 — 41\23,03 — 3A3ﬁp3>

p3 and o3 are read off from (2.30). Substituting (3.31) into (3.39) and (3.40) we find that formulas
for the second and fourth order corrections in /:

- M? 3?2 A3 9 8-
a®=(- = o, (3.44)
12 92 16 3 gM

ﬁ(4)=<71f44 0 AsM 9 TAY 9 9P TAsMP B 9

Y71 273 T T =3 no. (3.45)
1440 ou 192 au 2560 ou“ gpM2 960 du aM

These formulas can be also obtained by taking scaling limit (2.29) of those in Ny =3 SU(2)
SQCD [24].

In the next section we will calculate the quantum corrections to the SW periods as expansions
in coupling constant and the mass parameters.

4. Quantum SW periods around the superconformal point

In the previous section we have constructed the quantum SW curves and the quantum SW
periods of the AD theory, which are obtained by acting the differential operators on the classical
SW periods. In this section we will calculate an explicit form of the quantum SW periods around
the superconformal point up to the fourth order in 7. We will consider the expansion in the
coupling constant and the mass parameters of the AD theory.

4.1. Ny =1 theory

We first discuss the Ny =1 theory around the superconformal point. Substituting (2.55) and
(2.56) into (3.16) and changing the variables (i, M) to (i, 12/1), the second order corrections to
the SW periods are expressed in terms of hypergeometric function as

3 1 i\ N oL,
i = <F> (P - 77.0) @D
25.35717A12 1

N

_3
B 1 u o 2 - 1 -
iy =7 <A_> (DFFP@D + DiEP D), “2
A7 1

3 3 1
22 .32772
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where

@ e o7 2\ (5 511 4 _, no7 4
F —dar(2)r(2)(F(2, = 2.9 ) —5F . @3
i) =23 <3) <6)( (12 23" 213 (4.3)
o - (e () R (13 19,5,
F —_7air(=)r(=)F . 44
2 () w1 (6) <3> (12 123" @4

Similarly, substituting (2.55) and (2.56) into (3.17) and changing the variables (i, M) to (i1, w),
we find that the fourth order corrections to the SW periods (3.13) become

5
; _3
7 W} 3 i\ -’
~(4 1 @ @~
@ = 43 5 1 1—7(”_1) (F) (_Fl (w1)+F2 (wll)>7 (4.5)
2?.37.57-[71\12 1 1
7 ~/% ~ _%
~(4) Wy u 1r@ - 1n@ -
9p =7 43 5 1 E(”_l) <F> ((_1)3F1 (w/l)+(_1)3F2 (wi))’
2% 32572 A7 1
(4.6)
where
1 7 19 25 5
@) = 3 ~ ~
F =27.7-13I'( = | I"'| = 11 13)F
L (wy) (3> (6)<( w; +13) (12 '3 1)
13 19 5
—5F(—=. = wh ) ), 4.7
(12 12'3 wl)) @7
2 5 23 29 7
“) , ~ ~/
F, _2? 5-11-17w 3F — | 7w 17F
@ it (3)r () (ot oo (5 5 509)
17 23 7
— F —, — = e . 48
(12 12'3 w‘)) “8)
Expanding in @} around w} = 0, the quantum SW periods become
o\ 3 2r(=3\r (L 7 2
i )G wEHrE) .
a=A12 N2 - T 1 - T 1 wys +--
Aq 327732 6272
2 -3 7 2
h (u ) (7F(—6)F(i)+ )
7\ A2 111
A12 1 26 3277,’2
_3
4G\ (7r(=3)rG) .,
+? — m TR w13+... + e, 4.9)
A2 A7 2% .3272
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5 1
4 2\ TP-13=DIr(=-2)r()
h_(i) — ] (6) (3)1]/134_... +n, (4.10)

We define the effective coupling constant' 7 of the deformed theory by
95
7 .= 289D 4.11)
d;a
which is expanded in /4 as

220 | p270) L phs@ (4.12)

Substituting (4.9) and (4.10) into (4.11) and expanding in /i, we find

1
32.7in2l (-
R O i (f)w;%+
1or (=) r(4)
4 1.1 5 _3
K2 23 32’”2F(6) i 3
+— |- — | +
AL r@r(=E) \A
2
pe [ 2-3%mir(3) r(g) 2\
m — p 5 ) , (F) +e - 4.13)
Clor(=)r@rd M

We can express T as a function of a by solving (4.9). Then integrating it over a twice, we
obtain the free energy. We find that the free energy at M = 0 agrees with the one obtained from
the E-string theory [38]. We note that the present expansions for Ny theories in the coupling
parameter are different from those in the self-dual 2-background [15], where the expansions in
the operator have been done with the zero coupling and without taking the scaling limit.

4.2. Ny =2 theory

We next compute the quantum corrections to the SW periods for the Ny =2 theory. From
(3.26) and (2.60) we find that the second order corrections are given by

_3
. 1 i\’ _ _
1 E— (A2> (Fl(z)(wé) - Fz(z)(wé)) : (4.14)
24.3% nzA
i i ii i i
] L (Ff2)(w’2) + Fz(z)(u/z)), (4.15)
24397242 \ /N2

Note that the present definition of the effective coupling constant is inverse of the one in [1].
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where we have defined w5 = 1 — ;. Here F/ 1(2)(w2) and F. (2)(w2) are defined by

374
1 5 M? 5 13 1
2),~ 2p 2 ~
F, =3°T r(2)223:(=) F
(@) (12) (12) <u> (12 22 2)
13 17 3
St F ) ), 4.16
w2 (12 12°2 2)) (4-16)
7 11 7 11 3 1119 3
2 21 i x@ i
F, =6T ' —= TX\YF ,
(i02) (12) (12)( (12 22 )+ (12 122 ))
(4.17)
where
~o\ 3
M
XP=_342. 37 %<T) (4.18)
u
Expanding the second order terms in @), around w), =0, where 2 << 1 and C2A2 < 1, we obtain
u2
_3 1 1 (5) ~ 1
- Y 11 L =
o 1 [ ) _34F(ﬁ)r(1—)+r(12)r 12 M_2 2+ (4.19)
3\ A2 1 4 23 1 i s .
A3 2 272 2%.34m2
_\ i Y 11 iT L)r 3 ~o\ 2
~(2) 1 u 34ZF(E F(l_ ! 12 12 M
ap =—% e - - — 2t 3in] - + (4.20)
A3 2 7T KES
The fourth order corrections can be obtained in a similar manner. We find that
-
. 1 1 7 - ~
@ _ - - (F1(4>(wé)_F2(4)( /2)) (4.21)
2934 5712 Wy (05 — D2\ A3
=
- i 1 u - N
aw - _ L <_2) (Fl(4)(w2)+F2(4)(w’2)) (4.22)
29.3% . sgaA2 Wy (W — D2\ A
where
1 5 15 1 5 13 1
(4) “ / “ !
=r r MUX\"F| =, == X,'F ,
(i02) <12> <12)< (12 22 2>+ (12 27 ))
(4.23)
@) = (7 1 @p (1 1.3 .
F =14w,2T r 2X,
2 (W) =14 (12) (12)( (12 12°2° "
11 19 3
Wr (=, = 2wh ) ). (4.24)
1271272

(

+ X,
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Here the coefficients X1 and X, are defined by

1

M?\’
X§4)=_22.3%u~)£%(10u~)§+11)+3(7> (377w5 4 127)

(4.25)

M? M?\*
—23.32 <—> w;5(13w3+113)+28< _ ) (135 + 11),
u u
L
@ 321 - M>\" (0o -
X = =332 (134505 +671) +6  — (szow’2 +4639w§+889)
(4.26)

MZ MZ 2
—22.33 <7> ) (59315 + 1423) + 56 <7> (2115 +77).

Expanding the fourth order corrections to the SW periods in ) around w5 = 0, where % «1

and 62—‘3\2 < 1, we get

u?z
o\ 1 1 i) 1 NI
&(4)=L i 1 _111“(12)F(12 _34 5 7F(ﬁ)r(1_) K2 2+“
Az% A3 29-3ir3 2873 i
4.27)
) 1 5 o
w1 fa)" 11’F(ﬁ)r<ﬁ> 34570 (L) () [ 312\°
= 3\a2 31 - 1 —— ) +-
Aj A2 29-3im2 2872 i
(4.28)

The effective coupling constant T is expanded in /i as

., ( ) (4.29)
* ( 3T ()T (1)
r

4+,

—_
Sl=
N—
(98}
+
—_
\O
g
)
—
—~
Sl
N——"
=1
—_
SIS
N—
N—"
S
X
)
SNS—
ol—

It would be interesting to compare the free energy with that of the E-string theory, which is left
for future work.
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4.3. Ny =3 theory

We now discuss the Ny = 3 case. Using (3.44) and (2.65) we find that the second order
corrections to the SW periods are given by

N 1 i 5 4 M3 8 8
a® = T — (—03) 6 [ 14+ == (F1(2)(w3) + Fz(z)(wé)) , (4.30)
25 3wy A \ A3 3uhs
~(2) i u ( )72 - 4 M3
ay =——————|— ) (—o3 -
b 2%3%7,%@&[\3 A} 303
x (D3 FP @) + (=15 P ). (4.31)
where w} := 171—11)3 Fl(z)(lizé) and Fz(z)(lbg) are defined by

1 1 1 7 2 7 13 2
FR@H=18T (- )T )(F(—=, = 505 ) —XxPF (=, = 54 ) ), 432
6 3 12°12° 3 12°12°3

3, 1 1 5 11 4
FO) =— BT (== )T (== ) (F (= =12 )
¥ 6 3 12°12° 3

11 17 4
—5XPF(—, = =;@4 ) ). (4.33)
12’12° 3

Here X is given by

g ~
XO =4 2 3MAs —op) b3 (4.34)
Bz +4M3)
~ A3A2
Expanding the second order corrections to the SW periods in w5, where % <1, Céf3 < 1land
C;;“ « 1, we obtain
-3
2o _ 1 [
a =TT\ A2
Az \A3
tn(2 5 1 1 1 D 2
0ir3r(3) (1+19=0H) rGrE) [\
X — T 1 + 1 ~ + )
2-31x2 3472 uh3
(4.35)

(_1)%F(%)F(%) (—D)3 (1 + 19(—1)%>F(é)r(%) <M3 )§ e

x | — + 7
. 3472
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The effective coupling constant is found to be

N 24in? (ﬁ): 2im? (C§A§>3+
P @\ @\
_4
LY i) "
A3 A3 (4.37)
drEr(3) 2 sirEhr(E) e

s sor(-3)'r () (“—‘\3) o
4.

We can calculate the /*-order correction to the effective coupling constant in a similar way. The
result is

ber (2)? +23.3%nfr(—é)r(%)3(zrﬁ)i,_, o

UN3

In summary, we have explicitly calculated the quantum corrections to the SW periods in terms
of the hypergeometric functions up to the fourth orders in 7 for the AD theories of the (A, A2),
(A1, A3) and (Aq, Dg)-types.

5. Conclusions and discussions

In this paper we studied the quantum SW periods around the superconformal point of ' = 2
SU(2) SQCD with Ny =1, 2, 3 hypermultiplets, which is deformed in the Nekrasov—Shatashvili
limit of the 2-background. The scaling limit around the superconformal point gives the SW
curves of the corresponding Argyres—Douglas theories. The SW curves take the form of cubic
elliptic curve for all Ny. But the SW differentials take the different form, which introduce the
different quantization condition. We have computed the quantum corrections to the SW periods
up to the fourth order in 7, which are obtained from the classical periods by acting the differential
operators with respect to the moduli parameters. They are shown to agree with the scaling limit
of the SW periods of the original SQCD. We wrote down the explicit form of the quantum
corrections in terms of hypergeometric functions. It is interesting to explore the higher order
corrections in /. In particular the resurgence method helps us to understand non-perturbative
structure of the /-corrections [39-42]. The SW curve for N theory at the superconformal point
are given by the scaling limit of the SW curve for the original SQCD. The SU (2) theory with
the Ny hypermultiplets are obtained by the decoupling limit for the SU (2) theory with Ny =4
hypermultiplets. It is interesting to see the SW curve at the various superconformal points by
combining both the scaling limit and the decoupling limit of the SW curve of the SU(2) theory
with Ny = 4 hypermultiplets.
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So far we have studied the AD theories around the superconformal fixed point, where the
SW periods and the effective coupling constant are expanded in the Coulomb moduli parameter
with fractional power. It would be interesting to study the 7-corrections to the beta functions
around the conformal point [43]. Note that the moduli space of these AD theories contains the
point, where one of the periods shows the logarithmic behavior around the point. It would be
interesting to describe the theory around the point by the Nekrasov partition function.

It is known that the four-dimensional theories in the NS limit are described by certain quantum
integrable systems. The quantum corrections to the periods provide some data of the integrable
systems. For Ny = 1 case, the curve describes the same AD theory as SU(3) N =2 super
Yang-Mills theory [1], whose quantum curve is the Schrodinger equation with cubic polynomial
potential. In [44], using the ODE/IM correspondence (for a review see [45]), it is shown that the
exponential of the quantum period can be regarded as the Y-function of the quantum integrable
model associated with the Yang—Lee edge singularity. It is interesting to study this relation further
by computing further higher order corrections by using the ODE/IM correspondence. It is also
interesting to generalize the quantum SW curve for the AD theories associated with higher rank
gauge theories [37].
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