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Abstract

This article investigates the Q-Problem, a novel theoretical framework for post-quantum

cryptography. It aims to redefine cryptographic hardness by moving away from problems

with unique solutions toward problems that admit multiple indistinguishable preimages.

This shift is motivated by the structural vulnerabilities that quantum algorithms may ex-

ploit in traditional formulations. To support this paradigm, we define new cryptographic

primitives and security notions, including Q-Indistinguishability, Long-Term Secrecy, and a

spectrum of Q-Secrecy levels. The methodology formalizes the Q-Problem as a system of ex-

pressions, called Q-expressions, that must satisfy a set of indistinguishability and reduction

properties. We also propose a taxonomy of its models, including Connected/Disconnected,

Totally/Partly, Fully/Partially Probabilistic, Perfect, and Ideal Q-Problem variants. These

models illustrate the versatility across a range of cryptographic settings. By abstracting hard-

ness through indistinguishability rather than solvability, Q-Problem offers a new direction

for designing cryptographic protocols resilient to future quantum attacks. This founda-

tional framework provides the foundations for long-term, composable, and structure-aware

security in the quantum era.

Keywords: hard mathematical problem; Information security; perfect confidentiality;

post-quantum techniques; Q-Problem

MSC: 68M25; 11T71; 68P25; 94A60

1. Introduction

Post-quantum cryptography seeks to develop cryptographic systems that remain

secure against quantum adversaries. The advent of quantum algorithms, e.g., Shor’s

algorithm for factoring and discrete logarithms and Grover’s algorithm for unstructured

search [1,2], poses a significant threat to many classical cryptographic schemes [3]. In

response, researchers proposed new schemes based on assumptions believed to be quantum-

resistant, including lattice-based [4], code-based [5], multivariate polynomial [6], and

hash-based cryptography [7].

However, a common trait shared by most post-quantum problems is that they ul-

timately aim to protect a unique hidden solution. This structural assumption, while
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seemingly harmless, may eventually be exploited by future quantum techniques. For exam-

ple, in certain code-based settings, even if the decoding problem is computationally hard,

the existence of a unique solution could facilitate distinguishability or targeted inversion

under quantum models [5,8,9]. Thus, post-quantum security may be compromised not by

current algorithms, but by structural weaknesses in the underlying problem formulations.

To address this, we propose a new theoretical direction: the Q-Problem (QP) paradigm.

Rather than protecting a single solution, QP defines problems where multiple valid preim-

ages exist for a given instance, and the true one is computationally indistinguishable from

the others. The goal is to frustrate quantum search strategies not by sheer hardness, but by

deliberately removing uniqueness. QP thus introduces a new class of cryptographic hard-

ness assumptions that shift the adversary’s challenge from solving to selecting, disrupting

the very structure quantum algorithms are designed to exploit.

The Q-Problem framework leads to a family of new primitives and security notions

suited to long-term, post-quantum resilience. These include Q-Indistinguishability (Q-IND):

a hardness notion based on indistinguishable preimage sets. LTS: a model for protecting

information across decades. Q-Secrecy levels such as QxnI, quantifying degrees of entropy

and indistinguishability.

Furthermore, QP enables a taxonomy of the types of theoretical problems (Table 1):

connected/disconnected QP, fully/partially QP, fully/partially probabilistic QP, perfect QP,

and ideal QP, allowing tailored cryptographic designs in various application scenarios [10].

Table 1. Notations table.

Notation Description

QP
Q-Problem, the proposed cryptographic framework based on indistinguishable multi-solution
hardness

LTS Long-Term Secrecy, security model ensuring secrecy over extended time periods (Section 2)

Q-IND Q-Indistinguishability, a security property requiring indistinguishable preimage sets (Section 2)

QxnI Q-Secrecy level, a parameterized measure of indistinguishability and entropy (Section 2)

Qe Q-Expression, a structural representation of hidden data in the QP model (Section 3)

CQP/DQP Connected/Disconnected QP, classification of Qe(s) connectivity (Section 4)

TQP/PQP Totally/Partly QP, classification instance(s) connectivity (Section 4)

FPQP/PPQP Fully/Partially Probabilistic QP, classification instance connectivity (Section 4)

SQP Deterministic QP, a QP variant with no probabilistic components (Section 4)

FQP Perfect QP, a QP instance satisfying continuity of instance connectivity (Section 4)

IQP Ideal QP, a theoretical limit where security is supposed to be maximal (Section 4)

MFOTP Message-Fragmentation-based One-Time Pad, a proposed encryption scheme under QP (Section 4)

P The set of all valid preimages corresponding to a given Q-expression (Section 2)

D The set of all digital data structures (Appendix A.2)

⋆
A binary operation used in Qe, it represents a transformation or interaction between digital
structures, D ×D → D. (Appendix A.3)

nI(o) The number of indistinguishable preimages of output o (Section 2)

SBC Successive Breakdown of Components (Section 4)

In this work, we present the formal construction of the Q-Problem paradigm, exploring

its theoretical foundation, key properties, and cryptographic potential. By redefining

secrecy as a property of indistinguishability among many candidates, QP offers a new and
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complementary defense model for the quantum era, one that shifts focus from solving

to surviving search. Illustrative examples of Q-expressions over various data types and

operations are presented in Appendix A.4 to demonstrate the applicability of the QP

framework across classical and modern digital domains.

2. Definitions

In this section, three new definitions are introduced.

2.1. Long-Term Secrecy (LTS)

We define LTS as the property whereby multiple indistinguishable solutions exist for

the same system instance, such that only one corresponds to the intended (original) input.

Crucially, no observer without prior knowledge can determine which preimage is correct.

Let O denote the output space, I the input space, and f : I → O be a function. For

any output o ∈ O, let f−1(o) ⊆ I denote the set of preimages of o. Among these, we define

nI(o) as the number of indistinguishable preimages of o, i.e., those that are computationally

or semantically indistinct from one another in the absence of additional information.

A system satisfies LTS if the indistinguishability of these preimages persists over time

and the number of such indistinguishable preimages meets the criterion shown by (1).

∀o ∈ O, nI(o) ≥ 2, or | f−(o) |≥ 2I (1)

If nI(o) = 1 for every o ∈ O, then f is injective, i.e., one-to-one. This means that

distinct inputs always map to distinct outputs, and hence each output corresponds to a

unique input. This injectivity implies the absence of ambiguity, which contradicts the

notion of indistinguishability that LTS aims to guarantee. In such a case, either immediately

or in the future, an adversary could potentially compute the inverse f−1(o) and retrieve

the original input, thereby breaking the LTS of the system. Therefore, this condition serves

as a security requirement; it specifies when a system can be said to satisfy LTS, rather than

asserting that all systems inherently meet it.

2.2. Q-Indistinguishability Assumption (Q-IND)

Let D be the set of all digital data structures, and let ⋆ be a generic operation over D

(Equation (2)).

f (x, y) = x ⋆ y (2)

Suppose an oracle samples x, y ∈ D uniformly at random and outputs a = f (x, y) = x ⋆ y.

Then the Q-IND assumption states:

Given an instance a ∈ D and the operation ⋆, it is computationally infeasible to identify

the correct input pair (x, y) from the set of all uniformly distributed valid pairs (xi, yi)i=1,...n

satisfying f (xi, yi) = a, when the number of such solutions satisfies | f−1(a)| ≥ 2I.

This assumption does not assert that computing a valid preimage is hard, but rather

that distinguishing the correct preimage among ≥ 2I uniformly distributed and computa-

tionally indistinguishable candidates is infeasible without auxiliary information.

To define the Q-IND experiment formally, let the set of all valid preimages that defined

as shown in (3).

Pa = {(xi, yi)i=1,..n ∈ D ×D | f (xi, yi) = a} (3)

Assume that |Pa| ≥ 2I for some indistinguishability parameter I. For a quantitative

interpretation of I, it could be related to a concrete security level (security parameter λ),

e.g., I = 2λ. The set of solutions (xi, yi) satisfying xi ⋆ yi = a can be viewed as a structured

level set in D ×D, potentially exhibiting algebraic or geometric properties depending on ⋆.

Q-IND Game Q-INDA(I) can be shown as follows:
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1. The challenger samples x, y
$
←− D and computes a = f (x, y).

2. The challenger computes the preimage set Pa.

3. The index j∗ ∈ {1, . . . , |Pa|} is set such that Pa[j∗] = (x, y).

4. The challenger sends (a,Pa) to the adversary A2.

5. The adversary outputs an index j′ ∈ {1, . . . , |Pa|}.

6. The adversary wins if j′ = j∗.

Q-IND advantage is illustrated by (4).

AdvQ-IND
A (I) :=

∣

∣

∣

∣

Pr[j′ = j∗|A2(a,Pa)]−
1

2I

∣

∣

∣

∣

(4)

The notation Pr[j′ = j∗ | A2(a,Pa)] represents the probability that the adversary

outputs the correct index j′ = j∗, conditioned on having access to the values a and Pa. This

probability is taken over all internal randomness of both the adversary and the challenger,

and the conditioning reflects the fact that the adversary’s output depends on its input view.

The index j∗ corresponds to the location of the true preimage (x, y) within the preim-

age set Pa. Since Pa = {(x1, y1), . . . , (xn, yn)} contains all valid input pairs such that

f (xi, yi) = a. Hence, the number of possible values that j∗ can take is exactly |Pa|. An

adversary making a uniform random guess has a success probability of 1/|Pa|. This forms

the basis of the Q-IND advantage definition, which captures how much better the adversary

A2 performs compared to random guessing.

Q-IND assumption is defined by (5). We say that f satisfies Q-IND assumption if, for

all probabilistic polynomial adversaries A = (A1,A2), there exists a negligible function

ε(I) such that:

AdvQ-IND
A (I) ≤ ε(I) (5)

Thus, no quantum PPT adversary can do better than a negligible advantage over

random guessing.

The Q-IND assumption provides a foundation for cryptographic schemes that rely on

semantic ambiguity in inversion. It supports primitives where: (a) Multiple valid preimages

exist for the same output. (b) Only one preimage is correct in context (e.g., authentication or

identity binding). (c) An adversary cannot identify the correct preimage without additional

distinguishing information. This aligns with the QP challenge and supports LTS under

controlled ambiguity.

The concept of Q-Indistinguishability (Q-IND) is closely related to classical secu-

rity notions such as Indistinguishability Under Chosen-Plaintext Attack (IND-CPA ) and

Chosen-Ciphertext Attack (IND-CCA). While IND-CPA and IND-CCA define adversarial

games where the goal is to distinguish between encryptions of two chosen plaintexts,

Q-IND focuses on the adversary’s inability to identify the correct preimage among many

indistinguishable valid candidates that map to the same output. In a classical setting,

Q-IND introduces a stronger ambiguity by eliminating the notion of a unique solution,

whereas IND-CPA and CCA still assume a single encryption of a specific message. In the

quantum setting, Q-IND becomes even more significant, as it assumes hardness holds even

when the adversary can query the function (or oracle) in superposition. This contrasts with

quantum versions of IND-CPA/CCA, where encryption or decryption oracles are adapted

to handle quantum queries. Therefore, Q-IND generalizes the notion of semantic security

by enforcing indistinguishability over solution spaces rather than encrypted message pairs,

offering a deeper level of resistance in both classical and quantum adversarial models.
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2.3. Q-Secrecy Level QxnI

Let x ∈ {1, 2} be the hardness level to find the preimages. The first level is Q1nI, it

can be expressed as Easy to Find, Impossible to Distinguish (EFID). For example, x + y

mod p = a is easy to resolve, i.e., to find the possible preimages, but without any additional

information about x, y, it is impossible to guess the correct pair.

The second level is Q2nI; it can be expressed as Hard to Find, Impossible to Distinguish

(HFID). For example, xy + yx mod p = a is not easy to resolve with large x, y, p (O(p2)

with brute-force strategy). It is considered computationally hard, like a variant of the

Diophantine problem modulo p.

The other factor of Q-Secrecy that can be integrated with Qx is the number of solutions

nI (# preimages), which can be referred to as the degree n ≥ 2 (Equation (6)).

n = min(min|P [ fi]|, |P [S]|) (6)

where |P [ fi]| denotes the number of solutions of a single equation i, and |P [S]| is the

number of solutions of the entire system. Thus, the first example x + y belongs to Q1 pI and

the second xy + yx belongs to Q2 pI.

Supposing that j > i, of hardness level is as follows: Q1iI, (Q1 jI, Q2iI), then Q2 jI. The

level between Q1 jI and Q2iI depends on the scenario.

The hash function could be another example of HFID if the input length is large and

unknown to the adversary, which will give him a large set of preimages, of course, in a

context where he cannot determine which is the correct one. This example remains valid

unless an efficient algorithm exists to calculate the hash preimages other than brute force,

which is infeasible for large input sizes. Otherwise, it is EFID.

3. QP: Formal Presentation

QP is defined as follows:

QP⇔































































































LetQE : {Qe1, Qe2, . . . , Qen} be the system

1 ▷ Qei : {xi ⋆ yi; and/orzi} is a Q-expression where:

xi, yi, zi ∈ D, and D is the set of all digital data structures (digital objects);

⋆ is a generic operation over D;

xi and yi may be atomic or composed, zi: atomic object

2 ▷ Qe1θ1Qe2 . . . θn−1Qen = ⊥

: combining Q-expressions gives no information about xi and yi

3 ▷ Given public parameter(s) p,∀Qei, (xi, yi)θp = ⊥

4 ▷ Given p, and instanceai = xi ⋆ yi, ∀Qei, |Pai
[Qei]| ≥ 2I

5 ▷ Given QE, |Pa1,a2,..an [QE]| ≥ 2I

6 ▷ LetFθ : QEn
reducedto
−−−−−→ QE′n′ , QE′n′ |= QP1−6

7 ▷ Only hidden objects are considered, i.e., coefficients/constants are ignored

QE denotes the overall system or protocol instance, e.g., Alice
Qe1−−→ Bob, and Bob

Qe2−−→

Alice, so QE : {Qe1, Qe2} must satisfy QP conditions, namely Points (1) through (6) as

defined in the QP framework.

A QE is an abstract expression over digital structures with arbitrary operations, whose

goal is to encode its operands using one or more forms of data hiding under formal

indistinguishability constraints, which includes a wide spectrum of computational and

information-theoretic methods; Qe could be an atomic digital object or composed with

any meaningful operations between digital structures. Operands x and y may be an
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atomic digital object or a composed expression built from subcomponents via one or more

operations, e.g., x = x1 ⋆ x2, x1 = x11 ⋆ x12, and so on.

In Point 2, ⊥ states that the values of xi and yi remain hidden even with combining

Q-expressions.

In Point 3, ⊥ states that neither x nor y has any relation with the public parameter

p that would reveal hidden values, and that the adversary cannot infer any confidential

information about the secret x, y from f (x, y, p).

|Pa[Qe]| ≥ 2I means that #Sols(a = x ⋆ y) ≥ 2I, it can be presented as: |P [Qea]| ≥ 2I.

|Pa1,a2,...an [QE]| ≥ 2I means that #SolsQE(a1 = Qe1, a2 = Qe2, . . . an = Qen) ≥ 2I

where ai: are instances. This states that combining Q-expressions gives more than two

indistinguishable solutions.

Point 6 in QP definition meant that the new system QE′ derived (reduced) from

combining Qei of the initial QE using operations θ must be, in turn, a QP, and so on

(Equation (7)).

{Qe1θ1Qe2θ2 . . . Qen} → {Qe′1, Qe′2, . . . , Qe′n′} (7)

For instance, we put QE : {Qea
1 : a = x + 2y + 1, Qeb

2 : b = x− z2}, QE′ : {Qe′c1 : c =

2y− z2 + 1} is QP; but QE : {Qea
1 : a = yx, Qeb

2 : b = zx, Qec
3 : c = yz}, QE′ : {Qe′1 : c, Qe′2 :

cx} it is not QP because the secret variable x can be retrieved using a quantum computer.

To evaluate a Qe, only hidden objects are considered, i.e., coefficients/constants are

ignored. For example, 2x, x + 1, x2, 5hash(x), 4||x are elementary (atomic).

In practice, there are some conditions that must be applied to ensure the safety of

Q-IND. Operation ⋆ must be free of trapdoor patterns, e.g., for multiplication x · y = a,

the adversary could try all divisors of a; if any structure leaks, the assumption might fail.

Side channel attacks must be taken into account; if an adversary can learn partial bits

of the inputs, e.g., via timing, Q-IND can be broken. There should not be a correlation

with the external state, i.e., inputs must appear random even if the adversary knows

message/ciphertext mappings.

4. QP: Models, Quantitative View, and Use Cases

We define five models of QP.

4.1. Connected and Disconnected QP (CQP, DQP)

CQP, DQP are illustrated in (8)







CQP : ∀i, jQei ∩Qej ̸= ∅

DQP : ∀i, jQei ∩Qej = ∅

(8)

In CQP, there exists at least one common elementary secret object shared between two

or more Qe in QE. Consider these examples:







CQP : Qe1 : x + y mod p = a, Qe2 : x + z mod p = b, so Qe1 ∩Qe2 = {x}

DQP : Qe1 : x + y mod p = a, Qe2 : z + v mod p = b, so Qe1 ∩Qe2 = ∅

Note that the parameter p is not considered a common object. Therefore, if Qei ∩Qej =

{α} where α is public and does not contain a secret object, that does not affect the system

being DQP.
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4.2. Totally and Partly QP (TQP, PQP)

If CQP/DQP is about two different Qe (vertical change Qe1 and Qe2), TQP/PQP is

about the same Qe (horizontal change Qe1
1 and Qe2

1), but two different inputs. Suppose that

their corresponding outputs are a1 = x1 ⋆ y1, a2 = x2 ⋆ y2 (Equation (9)).







TQP : ∀i for Qe1,2
i , x1 ̸= x2 and y1 ̸= y2

PQP : otherwise
(9)

Consider this example: k is the secret key for encryption, m is the plaintext. Suppose

that the input is (k, m).







Qe1
1 : c1 = km1, Qe1

2 : h1 = hash(m1)

Qe2
1 : c2 = km2, Qe2

2 : h2 = hash(m2)

In Qe1, note that m (represents y) has changed but k (represents x) does not, i.e.,

x1 = x2. Therefore, this QE is PQP and not TQP.

4.3. Fully and Partially Probabilistic QP (FPQP, PPQP)

If TQP/PQP is a horizontal change for two different inputs, FPQP/PPQP is a

horizontal change for the same input. Suppose that the corresponding outputs are

a = x ⋆ y, a′ = x′ ⋆ y′ (Equation (10)).







FPQP : ∀i for Qea,a′

i , x ̸= x′ and y ̸= y′

PPQP : otherwise
(10)

Consider this example: k is the secret key for encryption, m is the plaintext, and r is a

fresh random number. Suppose that the input is (k, m).















PPQP : Qec
1 : c = km + r1, Qe′c

′

1 : c′ = km + r2

FPQP : Qec
1 : c = m + r1k1 + r2k2,

Qe′c
′

1 : c′ = m + r3k1 + r4k2

Note that in PPQP, where x = km and y = r, y has changed but x has not in the two

instances Qe1 and Qe′1 for the same input m. In contrast, in FPQP where x = (m + r1k1),

y = r2k2, both x and y have changed (x′ = (m + r3k1), y′ = r4k2). This scheme is similar to

Gentry’s scheme, c = m + r2 + qp, where r, q are random.

In deterministic QP (SQP), a = a′, the same output for the same input. For operations

that are not repetitive, such as generating a public key, it is sufficient for x and y to

be unknown.

We emphasize that if a system satisfies FPQP or PPQP, then it necessarily satisfies

TQP or PQP, respectively.

4.4. Perfect QP (FQP)

An FQP is a fully probabilistic QP (FPQP) such that, under Successive Breakdown of

Components (SBC), each resulting part remains an FPQP, down to the final, indivisible Qe

(elementary, atomic, or non-decomposable Qe).

FQP : SBC(FPQP)→ FPQP (11)
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Let Qe be a QP expression defined as Qe := x1 ⋆ x2 ⋆ · · · ⋆ xn where each xi ∈ D. As

shown in (11), SBC is a recursive process that transforms Qe into a sequence of finer-grained

expressions by recursively applying structural expansions to one or more components xi

based on their internal structure, subject to the following:

1. Initial Step: Let Q
(0)
e = Qe.

2. Recursive Step: For each k ≥ 0, the k-th breakdown produces a new expression

Q
(k+1)
e by replacing at least one component x

(k)
i ∈ Q

(k)
e with a more granular expression:

x
(k)
i → x

(k+1)
i1 ⋆ x

(k+1)
i2 ⋆ · · · ⋆ x

(k+1)
im where each x

(k+1)
ij ∈ D.

3. Termination Condition: The process continues until all components are elementary

(atomic), meaning they are no longer decomposable within the domain D.

We denote the final expression by Q
(ℓ)
e , where ℓ is the number of breakdown steps

required to reach a fully resolved form Q
(ℓ)
e : x

(ℓ)
1 ⋆ x

(ℓ)
2 ⋆ · · · ⋆ x

(ℓ)
m (elementary form).

In the context of Perfect QP (FQP), each intermediate expression Q
(k)
e must remain a

valid FPQP throughout the SBC process.

Consider the precedent example of FPQP : Qec : c = m + r1k1 + r2k2. If we put

x = (m + r1k1), y = r2k2, the first SBC on x gives x1 = m, x2 = rk, which is only PPQP.

Therefore, this QE is not FQP.

Again, consider the precedent example of PPQP : Qec : c = km + r, so x = km

and y = r. Suppose now that the same plaintext m and the encryption secret key k

have intervals. When calculating c, variables m and k are selected at random from their

intervals. The original plaintext can be retrieved as: m = c÷ k∗ where÷ denotes the integer

division, k∗ is a constant secret key, and r is a random number less than k∗. An illustrative

numerical example could be: m1 ∈ [1, 4], m2 ∈ [5, 8], etc., k ∈ [1010, 1020], k∗ = 1000.

Then, c1 = 3× 1012 + 22 = 3056, c′1 = 4× 1015 + 107 = 4167, and m = 3056÷ 1000 = 3,

m′ = 4167÷ 1000 = 4. Subexpression y is atomic, the SBC on x is x1 = m, x2 = k. Note

that x1 ̸= x′1 and x2 ̸= x′2 for the same plaintext. On the other hand, each elementary

Q-expression is changed for two instances of the same input. Accordingly, this scheme

is FQP.

4.5. Ideal QP (IQP)

IQP is DFQP, which means a Disconnect and a Perfect QP. An example of IQP is

introduced: a Message-Fragmentation-based OTP encryption scheme (MFOTP). In this

scheme, cm = (c1, c2) = (m1 ⊕ k1, m2 ⊕ k2) where m1 and m2 are two random fragments of

m, k1 ̸= k2 even if the same plaintext m is encrypted again.

Why is the suggested MFOTP an IQP?

Let QE be a system, QE : {Qe1, Qe2}, Qe
c1
1 : c1 = m1 ⊕ k1, Qec2

2 : c2 = m2 ⊕ k2, this is

presented as x⊕ y. Both x and y are hidden, | Pc |≥ 2I is satisfied due to the existence of

many indistinguishable (m, k) where m⊕ k = c. Thus, QE is QP.

Elements x and y are atomic, and (m1 ⊕ k1) ∩ (m2 ⊕ k2) = ∅, so QE is DQP. For two

inputs m1, m2: m1 : Qe
c11
11 : c11 = m11 ⊕ k11, Qe

c12
12 : c12 = m12 ⊕ k12; and m2 : Qe

c21
21 : c21 =

m21 ⊕ k21, Qec22
22 : c22 = m22 ⊕ k22.

Noting that ∀i f or Qei, xm1
̸= xm2 and ym1

̸= ym2 , so QE is TQP. In addition, for a

new m, a new fragmentation will be used, i.e., mij ̸= m′ij, and new keys are used (kij ̸= k′ij).

Every object in QE is changed even with the same input; therefore, this scheme is FPQP.

Now, MFOTP is DQP and FPQP, which means that MFOTP is an IQP.

4.6. OTP and Q-Problem

It is known that in OTP, a one-time encryption key is used. For example, if Enc(m) :

c = m⊕ k1 and c′ = m⊕ k2 for the same input m, we find that x = x′ = m. Therefore, the

basic version of OTP is not fully probabilistic but a partially probabilistic QP.
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To convert it from PPQP to FPQP, random fragmentation of the message m into

two parts can be used. Thus, the first encryption of m is c = (m1 ⊕ k1, m2 ⊕ k2), the

second encryption of m is c = (m′1 ⊕ k′1, m′2 ⊕ k′2). That gives x = m1 ̸= x′ = m′1 and

y = k′1 ̸= y′ = k′1, the same thing for the second part of m i.e., x = m2 ̸= x′ = m′2 and

y = k2 ̸= y′ = k′2. Therefore, using two keys for each message instead of one is needed.

Since it is easy to obtain valid solutions (m, k) in c = m⊕ k for a given c, basic OTP and

MFOTP are Q1nI. Figure 1 summarizes the presented Q-Problem models.

i1 i2 … ij ik ik … ik

Qe1

Qe2

…
Qen

FQP = FPQP     SBC            /           IQP = DQP + FQP

TQP/PQP FPQP/PPQP
C

Q
P

/D
Q

P

*

Figure 1. Illustration of Q-Problem taxonomy, “*” indicates repeating the SBC operation.

4.7. Quantitative View of QP Models

Although the QP taxonomy is defined structurally, each class can be approximated

quantitatively in terms of the number of indistinguishable preimages (|Pa[Qe]|) and the

associated adversarial advantage. For example, in an Ideal QP (IQP), each output is

derived from a disconnected and perfectly decomposable expression, producing a large

set of indistinguishable preimages and minimizing the adversary’s ability to recover the

true origin. In contrast, classes such as PPQP or PQP may provide only partial variation

or structural overlap. Table 2 summarizes the distinctions across QP levels, allowing

practitioners to select appropriate configurations based on entropy goals and attack models.

Table 2 shows a qualitative and quantitative comparison of QP model classes, where

x1 > x2 > x3 > x4 > x5 > x6 and y1 > y2 are entropy estimates for indistinguishable sets,

and Adv. success ≤1/2xi (respectively, ≤1/2yi ). We can not compare CQP/DQP with other

classes because CQP/DQP is inter-Qe and the others are intra-Qe, except IQP, which relies

on two dimensions.

Table 2. Qualitative and quantitative comparison of QP model classes.

QP Class Distinction Type |Pa[Qe]| SBC

IQP Disconnected + Perfect 2x1 Fully

FQP Fully Decomposable FPQP 2x2 Fully

FPQP Probabilistic over same input 2x3 Partially
PPQP Partial randomness (same input) 2x4 Varies

TQP Different inputs, all parts vary 2x5 N/A
PQP Different inputs, partial overlap 2x6 N/A

DQP Qei are disjoint 2y1 N/A
CQP Qei share at least one term 2y2 N/A

4.8. QP Use Cases

This point explains how the belonging of schemes to QP is analyzed.
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Let us take RSA, c = me mod n where e is the public key. Since values c and e are

given, and the only hidden variable is m, RSA’s expression is in the form of xy where y is

known, so xy = a has only one solution. Therefore, point 4 in the formal definition is not

satisfied, and RSA is not QP. Furthermore, e depends on n where e× d ≡ 1 mod φ(n).

Let us take ElGamal, c = (m× hr, gr) where h = gk is the public key and k is the secret

key. The first part m× hr belongs to QP, x = m (unknown) and y = hr (unknown because r

is hidden). Since g is public, the expression of the second part gr is in the form of xy where

x is known, so ElGamal does not belong to QP.

Let us take Gentry’s FHE scheme (DGHV) that is written as c = m + 2r + qp where

r and q are random for each encryption and p is a secret key. It can be considered that

this scheme is QP, if we put x = m + 2r and y = qp, then c = x + y, this form verifies all

conditions of QP. Since it has only one Qe, it is DQP; for two different inputs, x, y will be

changed, which makes it TQP; for two different instances of the same input, x, y will be

changed, so it is FPQP; we note that not each elementary variable, e.g., m, will be changed

for two instances of the same input, so it is not FQP; consequently, the scheme is not IQP.

Given c, the possible solutions in c = m + 2r + qp are easy to find, so Gentry’s scheme

is Q1nI.

As for Kyber-NIST, Key Encapsulation Mechanism, the public key is (A, t) where t = As+

e, (s, e) is the secret key. The encapsulation function computes (u, v) = (Ar + e1, tr + e2) where

r, e1, r2 are random. The system QE : Qe1 : As + e, Qe2 : Ar + e1, Qe3 : tr + e2 satisfies QP

definition, for example, s, e are hidden in Qe1, r, e1 are hidden in Qe2, r, e2 are hidden in Qe3.

We note that Qe1 ∩ Qe3 = {e}, and Qe2 ∩ Qe3 = {r}, so it is not DQP but CQP. To check

TQP/PQP (respectively, FPQP/PPQP, FQP), Qe1 is not considered because it concerns the

generation of the public key, and it is computed once. If we put x = Ar, y = e1 (respectively,

tr, e2), terms x, y will be changed for two different inputs, so it is TQP, also for two different

instances of the same inputs (new encryption of the same plaintext), so it is FPQP. Kyber is

not FQP because not every elementary variable will be changed. After SBC, x1 = x′1 = A

(or t), for two instances, does not change. Consequently, Kyber is not IQP. Given t in

t = As + e and (u, v) in (u = Ar + e1, v = tr + e2), the possible solutions are easy to find,

so Kyber is Q1nI.

The same thing for FrodoKEM-NIST, Key Encapsulation Mechanism, it uses the public

key (A, B) where B = As + e, the encapsulation is: (B′, C) = (As′ + e′, BTs′ + e′′).

In Dilithium-NIST, Digital Signature Algorithm, the public key is (A, t) where

t = As1 + s2, (s1, s2) is the secret key. The signature function computes (z, r) =

(y + Hash(Ay, m)s1, Hash(Ay, m)s2) where y is random.

The system, QE : Qe1 : As1 + s2, Qe2 : y + H(Ay, m)s1, Qe3 : H(Ay, m)s2, satisfies QP

definition. We note that Qe1 ∩Qe2 = {s1}, and Qe1 ∩Qe3 = {s2}, so it is not DQP but CQP.

The common variable A is not considered because it is public. In Qe3, we put y = s2; y

will not be changed for two different inputs, so the scheme is PQP, also for two different

instances of the same inputs, so it is PPQP. Consequently, Dilithium is not FQP nor IQP.

With given (z, r) in (z = y + Hash(Ay, m)s1, r = Hash(Ay, m)s2), the possible solutions for

(m, y, s1, s2) are not easy to find, so Dilithium is Q2nI.

As for McEliece-NIST public-key encryption, the public key is G′ where G′ = SGP,

(S, G, P) is the secret key. The encryption function computes c = mG′+ e where e is random.

The system is QE : Qe1 : SGP, Qe2 : mG′ + e. We note that Qe1 ∩Qe2 = {G′}, so the system

is not DQP but CQP. In Qe2, we put x = mG′, y = e; x, y will be changed for two different

inputs, so it is TQP, not for two different instances of the same inputs, so it is PPQP. In SBC,

we put x1 = m, x2 = G′; G′ will not be changed for two instances of the same input, so it is

not FQP; consequently, McEliece is not IQP. With a given (G′, c) in (G′ = SGP, c = mG′+ e),

the possible solutions for (S, G, P, m, e) are easy to find, so Dilithium is Q1nI.
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Table 3 summarizes this analysis and classification.

The QP framework establishes a novel structural foundation based on indistinguisha-

bility of preimages, aiming primarily to resist quantum adversaries. However, QP com-

pliance, defined by satisfying the indistinguishability conditions such as Q-IND, does

not automatically imply security against classical attacks. For instance, the expression

c = m · k mod p may satisfy the QP requirement of having multiple indistinguishable

(m, k) pairs that map to the same ciphertext c. However, this basic scheme is vulnerable to

classical attacks, such as known-plaintext or chosen-plaintext attacks, especially if the key

k is reused or low-entropy inputs are involved. In such cases, an adversary can trivially

recover m or k by computing modular inverses or exploiting statistical patterns. This

illustrates that not every QP-compliant scheme is secure against classical threats. As in

traditional cryptography, QP-based designs must be fortified with adequate primitives and

resistance to adaptive attacks to achieve robust classical and quantum security. Therefore,

while QP offers a strong post-quantum abstraction, practical schemes must still undergo

rigorous classical cryptanalysis.

Table 3. Classification of cryptographic schemes under QP. FQP is FPQP*, and IQP is DQP and FQP.

Scheme QP CQP, DQP TQP, PQP FPQP, PPQP FQP IQP Degree

RSA N - - - - - -
ElGamal N - - - - - -
Gentry’s FHE Y DQP TQP FPQP N N Q1nI
Kyber Y CQP TQP FPQP N N Q1nI
FrodoKEM Y CQP TQP FPQP N N Q1nI
Dilithium Y CQP PQP PPQP N N Q2nI
McEliece Y CQP TQP PPQP N N Q1nI
OTP Y DQP TQP PPQP N N Q1nI
MFOTP Y DQP TQP FPQP Y Y Q1nI

5. Conclusions

This article introduced the QP as a new theoretical framework in cryptography and

privacy-preserving, centered on the definition of novel primitives and security notions such

as Q-IND and LTS. The formalism captures how digital expressions can hide information

structurally, across a wide class of operations and data types, by enforcing indistinguisha-

bility as a foundational property. As an initial demonstration, we focused on specific

“expression forms, data structure, and operations”, illustrating the core components of the

framework. While this version did not explore the full diversity of digital data structures,

QP lays the groundwork for future exploration.

Although the present work focuses on classical digital structures, extending the QP

framework to operate directly on quantum states, such as qubits, remains an open direc-

tion. Such an extension would require redefining Q-expressions in the context of quan-

tum information theory and exploring indistinguishability under quantum superposition

and entanglement.
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Appendix A. Digital Structures, Operations, and Examples in the
QP Framework

Appendix A.1. General Forms of Quantum Expressions (QEs)

Each Q-expression Qe ∈ QE is defined as a data-hiding transformation of the form

Qe = {x ⋆ y, z}, where x, y, z ∈ D, and ⋆ is an operation over digital structures. The design

of Qe can leverage a wide range of hiding mechanisms, generalized as follows:

• Encrypted QEs: data are transformed using a cryptographic key to ensure confidentiality.

• Obfuscated QEs: program or function logic is restructured to preserve behavior but

hide structure.

• Transformed QEs: inputs are encoded, compressed, reshaped, or structurally reformatted.

• Masked/Blinded QEs: sensitive data are hidden via randomness or masking terms.

• Anonymized QEs: identifiable attributes are removed or abstracted to preserve privacy.

• Homomorphic QEs: enables operations on encoded data without revealing underly-

ing inputs.

• Steganographic QEs: hidden data are embedded within unrelated digital carriers.

• Zero-Knowledge QEs: encodes a proof of validity without revealing the underlying secret.

Appendix A.2. The Domain of Digital Structures D

Let D denote the set of all digital data structures that may serve as operands in a Qe.

Elements of D can include the following categories:

• Sequential: strings, arrays, binary files

• Hierarchical: JSON, XML, trees, nested objects

• Graph-based: knowledge graphs, dependency graphs, neural networks

• Tabular: relational databases, CSV files, matrix tables

• Geometric: vectors, meshes, CAD models, coordinate structures

• Encoded Media: JPEG, PNG, MP3, MP4, and other compressed formats

• Encrypted Formats: ciphertexts, MACs, key blobs, wrapped keys

• Executable Structures: bytecode, compiled binaries, interpretable code blocks

This abstraction enables QP to capture a wide variety of data types relevant to crypto-

graphic modeling and information hiding.

Appendix A.3. Examples of Operations ⋆ over Digital Structures

The binary operation ⋆, used in Qe as x ⋆ y, represents a transformation or interaction

between digital structures ⋆ : D ×D → D. It serves as a structural and/or cryptographic

combiner that binds two elements into a secure, indistinguishable form. It supports

key properties like obfuscation, composability, and preimage ambiguity in the system.

Examples of such operations include:

• Bitwise Operations: AND, OR, XOR, NOT, shift left/right, rotate

• Arithmetic Operations: addition, subtraction, multiplication, division, modulo, expo-

nentiation

• Logical/Boolean Operations: conjunction, disjunction, implication, equivalence

• Structural Operations: concatenation, slicing, padding, alignment, encoding
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• Cryptographic Primitives: hashing, encryption/decryption (symmetric/asymmetric),

digital signatures, MACs

• Information-Theoretic Operations: entropy measures, compression, error correction

• Machine Learning-Related Operations: tensor reshaping, embedding transformations,

model-layer mappings

• Data Structure Operations: graph traversal, tree pruning, set union/intersection

• Mathematical Transforms: logarithm, discrete Fourier transform, matrix multiplica-

tion, normalization

• Specialized/Domain-Specific: image convolution, audio mixing, geometric transfor-

mations, natural language tokenization

These categories illustrate the generality and expressive power of the ⋆ operator

within QEs, allowing the QP framework to apply across domains ranging from classical

computation to modern AI systems.

Appendix A.4. Illustrative Qe Use Cases Across Digital Structures

This appendix presents some representative use cases where the QP framework models

scenarios beyond the capabilities of traditional cryptographic paradigms, using diverse

digital structures and operations defined in the paper.

1. Obfuscated Bytecode Fragment: Data type: executable bytecode. Operation: code

obfuscation. Transmitting a protected license-checking routine. The logic is embedded in

obfuscated bytecode, defined as:

Qe : Obfuscate( f (x)) = a

where x is the secret license, f is the checking logic, and a is the resulting bytecode. Q-

IND: the QP framework ensures that even if the adversary decompiles a, multiple valid

preimages of f exist (e.g., semantically equivalent but syntactically distinct logic trees),

making the original logic indistinguishable. QP models indistinguishability over code

semantics, not just ciphertexts. Traditional encryption or obfuscation fails to formalize such

structural ambiguity.

2. Steganographic Image Transmission: Data type: encoded media (image). Operation:

LSB steganographic embedding. Hiding a secret message x inside an image y using least

significant bit (LSB) encoding:

Qe : EmbedLSB(x, y) = a

The output a is visually identical to y, but carries hidden content. Q-IND: the set of all

valid messages that could be embedded into a is large. The Q-IND notion captures the

indistinguishability of the true x among all plausible message preimages. Unlike tradi-

tional steganography, Q-IND formally ensures that the adversary cannot computationally

distinguish the actual message from others.

3. Chained Hashing and Format-Preserving Encryption: Data type: structured strings

(e.g., credit card numbers, UUIDs). Operations: hashing ◦ format-preserving encryption.

Storing credit card tokens by applying a multi-stage transformation. The expression is

modeled as:

Qe : FPE(Hash(x∥r)) = a

where x is the secret plaintext (e.g., a credit card number), r is a session-specific salt or

nonce, Hash(x∥r) is cryptographic hash to destroy structure, FPE(·) is format-preserving

encryption to retain expected format, a is the final token (e.g., 16-digit numeric string).

Q-IND: a has multiple indistinguishable preimages.
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4. Logic-Based Condition Masking: Data type: policy rules. Operations: ∧,⇒, and ≡.

Encoding multiple access policies using Q-expressions:

Qe1 : ((x1 ∧ x2)⇒ y1)

Qe2 : ((x3 ⇒ x4) ≡ y2)

Q-IND: many logically equivalent forms lead to the same behavior ai, and their union

provides no leakage beyond behaviorally equivalent systems.

5. Layered Tensor Transformation: Data type: input tokens and image features. Opera-

tions: reshape, embed, and map. Consider two Q-expressions from different input sources:

Qe1 : LayerMap1(Embed(Reshape(x1)))→ a1

Qe2 : LayerMap2(Embed(Reshape(x2)))→ a2

Q-IND: the adversary cannot determine the exact path (reshape + embed + layer map) or

even whether x1 = x2, due to the multi-layer indistinguishability and compositional entropy.

6. Graph Query Obfuscation: Data Type: graph nodes and relations. Operations:

traverse, filter, and intersection. Suppose two separate queries are issued over a graph:

Qe1 : Filter1(Traverse(x1)) ∩ y1 → a1

Qe2 : Filter2(Traverse(x2)) ∩ y2 → a2

Q-IND: the adversary sees both output sets, but cannot infer the origin nodes xi or

filters applied. Graph redundancy and non-injective traversal allow multiple plausible

preimage paths for each ai.

7. Multi-Modal Privacy Workflow: Data types: structured logs, images, and graphs.

Operations: logical masking, pixel transformation, and graph pruning. A privacy-

preserving analytics system processes diverse input types using separate, specialized

Q-expressions:

Qe1 : (flag∧ ¬status)⇒ anomaly, boolean condition over log data

Qe2 : Downscale(Scramble(Crop(x))), composed image filter

Qe3 : Prune(Traverse(G), degree < 3), graph-based operation

Each Q-expression is applied to a distinct modality: a structured log entry, a surveil-

lance image, and a social or sensor graph. Qe1 expresses a logic-obfuscated policy; Qe2

hides image structure through a composed filter; Qe3 obscures graph topology via traversal

+ pruning. Q-IND: the preimage sets Pai
[Qei] are large and indistinguishable.

These examples demonstrate how the QP framework unifies a wide range of hiding

mechanisms under a single indistinguishability-based model. Whether applied to logic

obfuscation, covert channels, or data anonymization. While some of these use cases can also

be addressed using traditional cryptographic primitives, e.g., masking and steganography,

the QP framework provides a unified formalism based on preimage indistinguishability.

This allows one to reason uniformly across various data-hiding methods, especially under

post-quantum threat models that exploit structural uniqueness or algebraic predictability.
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