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Abstract
Analytically the force acting on a current-carrying coil in a magnetic field can be calculated in
two ways. First, a line integral can be conducted along the coil’s wire, summing up the
differential force contributions. Each contribution results from a cross-product of the
corresponding differential line segment with the magnetic flux density at that location.
Alternatively, the coil’s energy in the field is given as a product of three factors, the number of
turns, the current, and the flux threading the coil. The energy can then be obtained by
executing a surface integral over the coil’s open surface using the scalar product of the
differential surface element with the magnetic flux density as its integrand. The force on the
coil is the negative derivative of the energy with respect to the appropriate coordinate. For
yoke-based Kibble balances, the latter method is much simpler since most of the flux is
contained in the inner yoke of the magnet and can be written as a simple equation. Here, we
use this method to provide simple equations and their results for finding the torques and forces
that act on a coil in a yoke-based magnet system. We further introduce a straightforward
method that allows the calculation of the position and orientation difference between the coil
and the magnet from three measurements.
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(Some figures may appear in colour only in the online journal)

1. Introduction

At the time of this writing (May 2022), the revision of the
international system of units (SI) occurred three years ago.
Since then, Kibble balances [1], together with the x-ray crystal
density (XRCD) method [2], have successfully contributed to
the mass scale for the world [3].

In the Kibble balance, a coil with N turns of wire is
immersed in a magnetic field. A vertical force Fz is generated
by energizing the coil with current I. It is
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Fz = −NI
∂Φ

∂z
, (1)

where Φ is the magnetic flux through the coil and z the coil
position along vertical. The force is compared to the weight
mg of mass m, and g is the local gravitational acceleration. As
is indicated by the sign in equation (1) and for I > 0, the force
is in the negative direction of the flux gradient with respect
to z; see appendix A for more information on the sign. The
forces (and two torques) in the other directions are given by
NI times the negative derivative of the flux with respect to the
corresponding direction. Ideally, the geometry of magnet and
coil is designed such that the flux through the area of the coil
Ac does only change with z and neither with translations along
x, y nor a small rotation of the coil about any axis. In this case,
the force on the coil is purely vertical.
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In velocity mode, the electrically open coil moves vertically
with the velocity dz/dt. The induced voltage V at the coil
terminals is measured with a precision voltmeter with high
input impedance. It is

V = −N
dΦ
dt

= −N
∂Φ

∂z
dz
dt
. (2)

The second identity is only true if the product of the other
partial derivatives ofΦwith the corresponding (angular) veloc-
ities adds up to zero. But as mentioned above, the magnet-coil
system is designed such that the flux derivatives with respect
to the coil coordinates, except z, are tiny, and, hence, these
conditions are met, at least within the uncertainties of the
experiment.

Equations (1) and (2) can be combined to what is called the
Kibble equation,

Fz
dz
dt

= VI. (3)

The Kibble equation connects mechanical power (force times
velocity) to electrical power (voltage times current). Electrical
power, specifically voltage and resistance, can be measured
with quantum electrical standards; see, for example, [1, 4].
With these, the link between mass and Planck’s constant is
complete.

Parts of the literature use the geometric factor B�, instead
of the flux gradient. In this picture, the vectorial version of
equation (1) can be written as

�F = −NI
∮

C

�B × d��, (4)

where the force is given by three orthogonal components in
the laboratory coordinate system, i.e., �F = (Fx, Fy, Fz)T. The
integral is executed over a single wire turn, denoted by C
and the line element is given by d��. The direction of the
line element is tangential to the turn. The single wire turn
is considered an average turn in the middle of the coil. For
an average coil radius rc, the length of the integration path
is � =

∮
C d� = 2πrc. Later, surface integrals are introduced.

If the surface integral is defined over the coil, it would be
calculated over the enclosed area of the single wire turn,
A = πr2

c . Throughout this text, the wire is assumed to be
infinitely thin, i.e., has a negligible cross-section. According to
[5], this approximation does not introduce significant biases.

The physics is the same, regardless of whether the deriva-
tive of the flux or the geometric factor is used to describe
the situation. Appendix A in [6] shows how the derivative of
a surface integral (flux) can be converted into a line integral
with Green’s theorem for a divergence-free field. Gauss’s law
ensures that the divergence of the flux density is zero, i.e.,
�∇ · �B = 0. Depending on the problem, the geometric factor or
the flux derivative may offer an advantage in analyzing it. For
yoke-based permanent magnets, the flux derivative offers an
advantage because the flux through the coil is given by the flux
through the inner yoke, and that flux has a simple dependence
on z, as shown below. In contrast, the reader is encouraged
to look at [7] which solves some of the integrals in the B�
picture. In this article, we will use the flux integral to find the

torque on the Kibble coil. As is shown below, the torque can be
found by relatively simple geometric considerations and does
not require one to solve difficult vector integrals.

2. A comparison of two magnet systems

The idea to use the velocity mode to ‘calibrate’ the derivative
of the flux for the force mode was first published in 1976
[8]. Since then, the Kibble balance, or watt balance as it
was previously named, has gone through substantial iterations.
Many different magnet systems have been used in the last 46
years, e.g. [9–14]. A historical overview is given in [6]. In the
past two decades, however, a clear favorite has emerged. Most
groups use a yoke-based permanent magnet system to supply
the flux.

In yoke-based systems, non-linear interactions between the
current in the coil and the iron of the yoke or the permanent
magnet material can occur. These interactions are not subject
to this article. Here we calculate the force and torques on a
current-carrying coil in a given magnetic field without taking
into account the back action of the current on the field or the
interaction between the coil and the yoke material. Here, the
yoke only shapes the geometry of the field, i.e., the direction
and density of the field lines. A summary of the back action
can be found in [15]. The iron coil interaction is discussed in
[14, 16].

A yoke-based permanent magnet system can be built in var-
ious geometric configurations. Here, we focus on two geome-
tries that we label the BIPM (Bureau International de Poids
et Mesures) geometry and the LNE (Laboratoire National de
Métrologie et d’Essais) geometry. The geometries are named
after the institutes at which it has been used for the first time
in a Kibble balance [11, 12]. The conclusions presented below
can easily be transferred by the reader to geometries employed
by other Kibble-balance groups [9, 13, 17].

A cross-sectional view of the BIPM geometry is shown
on the left side of figure 1. Two permanent magnet disks
with opposite magnetization force the magnetic flux radially
through the gap. The cross-sectional view of the LNE magnet
is shown on the right. Here only one permanent magnet disk
supplies the flux. For this article, the geometries are chosen so
that the fluxes in the gaps are approximately the same. Hence,
the magnet disk in the LNE geometry has approximately the
height of both magnet disks in the BIPM magnet. For sim-
plicity, fringe fields, which would occur at the end of the air
gap, are neglected. This approximation does neither change the
analysis below nor its result [15]. The air gap dimensions are
the same in both cases, with a height of hg and an inner radius
ri. The attentive reader will notice that the LNE magnet slightly
differs from the schematic drawing in figure 1. In the actual
LNE design, the magnetic material is in the outer yoke and
not in the inner yoke. This detail will not alter the conclusion
drawn below. Here, we wanted the magnets to be as identical
as possible.

We use cylindrical coordinates to describe both magnet
systems. In both cases, z = 0 is in the middle of the gap, and
r = 0 coincides with the symmetry axis of the magnet. The
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Figure 1. Cross-sectional view of the BIPM geometry on the left
and the LNE geometry on the right. Both cross-sections are drawn in
cylindrical coordinates r, z, where z = 0 is chosen to be in the
middle of the air gap with a total height hg. We assume the air gap
dimensions to be the same for both geometries, with ri denoting the
radius of the inner yoke. The shaded gray areas are the yokes and
are made from soft iron. The areas in red represent the permanent
magnet material, and the red arrows mark the direction of
magnetization. The shaded blue areas (radius ri, height zh) are
cylindrical integration areas for the flux; they are referred to as
pillboxes.

magnets exhibit perfect azimuthal symmetry, i.e., the magnetic
flux density has no dependence on the azimuth, φ.

For both geometries, we presume all the flux from the
magnets goes through the air gap (no fringe field as stated
above). We further assume the magnetic flux density in the
air gap, near the boundary to the inner yoke �B(ri, z) field is
horizontal and constant as a function of z. Note that this can
be achieved by engineering the gap width as a function of z as
has been done by the researchers at LNE [12].

The objective is to obtain the magnetic flux Φyoke through
the cross-sectional area of the inner yoke at position zc. The
blue shaded pillboxes drawn in figure 1 can be used to calculate
the flux. Each pillbox has three surfaces: a circular top At, a
circular bottom Ab, with Ab = At, and a cylindrical surface As.
The vertical separation of top and bottom surface is zh. The
top and bottom surfaces have an area of r2

i π and As = 2πrizh.
Since the magnetic flux density is divergence-free, �∇ · �B = 0,
it is ∫∫

At

�B · d�A

︸ ︷︷ ︸
Φt

+

∫∫
Ab

�B · d�A

︸ ︷︷ ︸
Φb

+

∫∫
As

�B · d�A

︸ ︷︷ ︸
Φs

= 0 (5)

for all geometries. The convention is that all d�A point outward,
i.e., away from the enclosed volume.

For the BIPM geometry, the top surface area is at zh = zc.
Hence,

Φyoke(zh) = Φt =

∫∫
At

�B · d�A, (6)

where Φyoke(zh) is the magnetic flux through the inner yoke at
the plane z = zh.

The bottom surface is at the symmetry plane. Since the
magnet is mirror symmetric about z, it is Bz(z) = −Bz(−z).

Hence, Bz(0) = 0 and

Φb =

∫∫
Ab

�B · d�A = 0. (7)

The flux through As is radial because of the high perme-
ability of the yoke material the flux has to be very nearly
perpendicular to it. Thus,

Φs(zh) =
∫∫

As

�B · d�A = Br(ri)2πrizh, (8)

where Br(ri) is the radial magnetic flux at the air/yoke bound-
ary at r = ri and As = 2πrizh. Hence, for the BIPM case,

Φyoke,BIPM(zc) = −Br(ri)2πrizc, (9)

where we used the fact that the pillbox was chosen with
zh = zc.

For the LNE geometry, since per the assumption above,
no fringe field exists, the flux through At is Φt = 0. The flux
through the curved surface is the same as for the BIPM magnet,
given in equation (8). The bottom surface is traversed by the
flux

Φb(zh) =
∫∫

Ab

�B · d�A = −Br(ri)2πrizh. (10)

The bottom surface is at zc = hg/2 − zh. Thus,

Φyoke,LNE(zc) = −Φb(hg/2 − zc)

= Br(ri)2πri

(
hg

2
− zc

)
. (11)

The additional negative sign is because the surface normal of
Ab of the pillbox points down, but here we calculate the flux in
the yoke along the positive z direction.

Inspecting equations (9) and (11), shows that the negative
vertical flux gradients are the same and they agree with the
conventional B�. It is

− ∂Φyoke,BIPM

∂zc
= −∂Φyoke,LNE

∂zc
= Br(ri)2πri. (12)

We assumed the magnet to produce the same flux density in
the gap, and as expected, they would produce the same force
on a current-carrying coil. Note, conventionally the B� factor
is calculated at the coil radius Br(rc)2πrc, but since Br ∝ 1/r,
it is

Br(r)2πr = Br(ri)2πri for ri � r � ri + dg, (13)

where dg is the width of the gap. Equation (13) is valid for
a flat field ∂Br/∂z = 0, which is true per our assumption and
certainly true at the symmetry plane of the BIPM geometry in
an actual magnet.

One notable difference between the two magnet geometries
is the flux at zc = 0. For the BIPM magnet,

Φyoke,BIPM(0) = 0, (14)

and for the LNE magnet,

Φyoke,LNE(0) = Br(ri)πrihg. (15)
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Figure 2. The magnetic energy, E as a function of the vertical
position of the coil zc. The red and blue lines present E(zc) for the
BIPM and LNE geometry, respectively. The solid and dashed lines
are for different current directions. The two lines with the same
current are parallel, i.e., they have the same flux gradient. The topic
of discussion is the energy at zc = 0. The BIPM system has the
same energy, E(0) = 0, independent of the current direction. For the
LNE system, the −I configuration has significantly less energy than
the +I direction.

The energy of the coil is given by

E(I) = NIBr(ri)πrihg. (16)

See appendix A for more details on the sign of E. Most
notably, the energy is an odd function of I. Hence, reversing the
current changes the sign of the energy unless the energy was
zero before the reversal. Reversing the current is electrically
equivalent to flipping the coil upside down, i.e., rotating the
coil by 180◦ along any horizontal axis. We define this process
as flipping the coil. When the coil is physically rotated, the
electrical terminals of the coil remain connected to the power
supply. Hence, if the current was circling clockwise before,
it will flow counter-clockwise after the flip and vice versa. In
reality, the coil cannot be flipped because the inner yoke is in
the way. However, this obstacle and other practical limitations
will not stop us from conducting a thought experiment.

For the LNE magnet, one orientation has significantly lower
energy than the other. In one orientation, the energy is

E(I) = NIBr(ri)πrihg. (17)

In the flipped state, it is

E(−I) = −NIBr(ri)πrihg. (18)

This leads to an interesting but fallacious conclusion that by
flipping the coil, the energy of the current carrying coil in the
LNE magnet changes and, hence, there must be a torque on the
slightly tilted coil.

The magnetic energy E as a function of zc is shown in
figure 2. A coil flip does not change the magnetic flux Φyoke

but changes the energy. The dashed lines in figure 2 are mirror
images of the solid lines about E = 0. So, at the weighing
position zc = 0, the magnetic energy of the current-carrying
coil in the LNE magnet changes when the current is reversed,
but such a change does not occur for the BIPM magnet because
it is already E = 0.

Hence, one would conjecture that if the symmetry is broken
(the coil is angled), there would be a much larger torque on

the coil in an LNE magnet than in the BIPM magnet. That
torque would drive the coil to the energetically lower state.
This is not the case. The two (idealized) magnets are identical
in all aspects. For the LNE magnet, the energy difference
corresponds to the mechanical work that would be required to
adiabatically move the coil out of the gap and far away, where
there is no magnetic flux, and turn it around and bring it back
to the middle of the magnet. The torque on an angled coil is
the same for the BIPM and the LNE geometry. As the reader
may have suspected, only the derivative and not the absolute
value of the energy matters, and the derivatives are the same
for both magnet systems.

Before we discuss the calculation of the magnetic torque,
the direction of the flux inside the inner yoke must be clarified.
Since the yoke has a high relative permeability μr (typically
ranging from 103 to 105 [12, 14, 18]), the flux inside the
yoke is parallel with its cylinder axis. We assume the cylinder
axis of the inner yoke to be aligned with the vertical of the
laboratory fixed coordinate system. Because of the high μr, the
flux density is homogeneous throughout the yoke and is given
by

Byoke,z =
Φyoke

r2
i π

. (19)

For the BIPM magnet, it can be rewritten as

Byoke,z = −2Br(ri)
zc

ri
. (20)

3. The torques on a tilted coil

The magnetic energy of a current (I) carrying coil with N turns
is given by

E = −NIΦcoil = −NI
∫∫

Ac

�B · d�A. (21)

By taking the negative derivative with respect to the angle, the
torque on the coil is obtained,

τ = − ∂E
∂θc

= NI
∂

∂θc

∫∫
Ac

�B · d�A, (22)

where θc is the included angle between the d�A and the direction
of the yoke,�ez.

To investigate the change of flux as a function of θc, a
pillbox is used, see figure 3. The pillbox does not extend to
the radius of the coil but only to the radius of the inner yoke.
The smaller pillbox simplifies the calculation, and the result is
valid for the situation considered here, a flat and purely radial
field with the coil and inner yoke being concentric. Later in the
text, the pillbox will be expanded to the coil radius.

Now, the top surface is parallel with the coil area, i.e., tilted
by θc with respect to the horizontal plane, see figure 3. The
upper edge of As, which coincides with the outer edge of At

can be written as a function of azimuthal angle φ and tilt angle
θc. It is

zt(φ, θc) = zc − ri tan θc cos φ = zc −Δz cos φ. (23)
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Figure 3. The BIPM magnet with a different pillbox. The top
surface (At) of the pillbox is tilted about the y-axis by θc. The
average z position is at zc. The lower graph shows the top of As as a
function of azimuthal angle φ.

This equation is plotted in the lower graph of figure 3. To
shorten the equations, the abbreviation Δz = ri tan θc is intro-
duced above. The flux integral through As is hence

Φs(θ) =
∫ 2π

0

∫ zt(φ,θc)

zb

Br(ri, z)ri dz dφ, (24)

where zb is the z coordinate of Ab. The z integral can be split in
two. One integral from zb to zc and the other from zc to zt(φ, θc).
The former integral evaluates the flux through the pillbox with
the top at z = zc and θ = 0, abbreviated as Φs(0). Hence we
obtain

Φs(θ) = Φs(0) +
∫ 2π

0

∫ zt(φ,θc)

zc

Br(ri, z)ri dz dφ. (25)

3.1. Torque on a coil in a magnet with constant field

First, let us assume Br(ri, z) is independent of z, hence we
replace Br(ri, z) with Br(ri, 0). Then, we can execute the inte-
gral over z and we obtain,

Φs(θ) = Φs(0) −
∫ 2π

0
Br(ri, 0)riΔz cos φ dφ. (26)

The integral over a full period of cosφ evaluates to zero.
Consequently, the flux through the side surface of the pillbox is
independent of a tilt of the top surface. Since the flux through
Ab did not change, the flux through At must be independent
of θc.

If Br(ri, z) is independent of z, then the flux through the
coil surface is independent of θc, and there is no torque on
the current-carrying coil. The statement is also true if the coil
is already slightly tilted. We used the BIPM geometry in the
figure to show the pillbox, but the result is equally valid for
the LNE geometry.

3.2. Torque on a coil in a magnet with a realistic field profile

In the section above, we have assumed that the profile is com-
pletely flat, i.e. Br(ri, z) = Br(ri, 0) for all z. In practice, such a
flat field is not achievable. A more realistic assumption is that
the profile has a linear and quadratic dependence on z about
the symmetry plane which coincides with the nominal coil
position in the weighing mode, zc. Hence, a Taylor expansion
to second-order around zc yields,

Br(ri, z) ≈ Br(ri, zc) + (z − zc)
∂Br

∂z

∣∣∣∣
zc

+
1
2

(z − zc)2∂
2Br

∂z2

∣∣∣∣
zc

. (27)

Because of �∇× �B = 0, a z dependency of Br means that the
field can no longer be horizontal (Bz = 0) in the whole gap.
Below, we neglect a small but physical necessary Bz term. The
next step is to calculate ΔΦs = Φs(θ) − Φs(0). Executing the
z integral yields

∫ zt(φ,θc)

zc

Br(ri, z)dz = −Br(ri, 0)Δz cos φ

+
1
2
∂Br

∂z

∣∣∣∣
zc

Δz2 cos2 φ

− 1
6
∂2Br

∂z2

∣∣∣∣
zc

Δz3 cos3 φ. (28)

Only the middle term remains after integrating over φ from 0
to 2π. It is,

ΔΦs =
1
2

riπΔz2∂Br

∂z

∣∣∣∣
zc

. (29)

The change in flux through At is ΔΦt = −ΔΦs. Hence the
torque on the coil can be calculated as

τ = −NI
∂ΔΦt

∂θc
= −πNIr3

i
sin θc

cos3 θc

∂Br

∂z

∣∣∣∣
zc

. (30)

The vertical force on the coil is given by −NI2πriBr, so we can
use the relative gradient,

gB :=
∂Br/∂z|zc

Br
. (31)

With this definition and in the small angle approximation
(sin θc ≈ θc and cos θc ≈ 1), the torque on the coil is given by

τ =
1
2

Fzr
2
i gBθc. (32)

Note, for a leveled coil, θc = 0, there is no torque.
The terms in equation (32) can be regrouped to help with the

dimensional analysis. One ri from the square can be lumped
with the force, Fzri, to give a torque. The other ri can be paired
with the relative gradient to give a relative change of the profile
over the distance ri, which is, of course, much larger than the
typical sweep range.

The important observation is that if the weighing position
is at a maximum or a minimum of Br with respect to z, then

5
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there is no torque on the coil no matter how big θc is. Above,
we only used a Taylor expansion up to the second order. The
calculation can easily be performed with higher-order terms.
Let

bk :=
∂kBr

∂zk

∣∣∣∣
zc

, (33)

then the torque on the coil can be written as

τ = −NI
∑
k,odd

rk+2
i

2π
2k+1

(k + 1)((
k+1

2

)
!
)2

tank θc

cos2 θc
bk. (34)

Only odd derivatives (odd values of k) contribute to the
sum. The even derivatives will not produce a flux change and,
therefore, will not cause a torque on the coil.

4. Horizontal displacement and tilt of the coil

As many Kibble balance operators can attest, the most straight-
forward strategy to minimize a magnetic torque on a Kibble
balance coil is to translate the coil horizontally in the magnet
until the torque vanishes. Changing the magnetic torque on
a current-carrying coil by a horizontal displacement relative
to the magnet can be intuitively understood in the B� picture.
The magnetic flux density in the air gap falls like B(r) ∝ 1/r.
Hence by displacing the coil, some arc sections of the coil
experience a weaker while other sections a stronger force, and
a torque is generated. Visibly, this effect is indicated in the
lower drawing of figure 4. The density of the green arrows
crossing the blue circles is higher on the left than on the right
side of the coil center. So more force per unit wire length is
generated on the left, and a torque arises that would rotate the
coil about the y axis.

How can this fact be explained with the flux gradient pic-
ture? Naively, one would think that the flux does not change
if the coil is translated. It seems that the flux through the
coil is given by the flux through the inner yoke. And since
the coil opening always includes the inner yoke, the flux
would not change. This line of thinking is wrong, as shown
below.

The origin of the torque can be understood with another
pillbox, shown in figure 4. This time the pillbox has a larger
radius. The radius is that of the coil. The top surface At is
comprised of the coil. The bottom surface Ab is a projection
down of the top surface to z = 0 or another reference plane.
The curved side surface connects Ab with At and completes
the pillbox. Since the total flux is 0, i.e.,

Φt +Φs + Φb︸︷︷︸
const.

= 0 henceΦt = −Φs − Φb. (35)

As indicated, the flux through the bottom is constant, and its
value is not important. The aim of the following few para-
graphs is to calculateΦs. We choose a coordinate system that is
different from the ones used in the previous section. The origin
of the coordinate system is in the middle of Ab, which makes it
simple to parameterize the pillbox. In this coordinate system,

Figure 4. In the upper drawing, the coil (shown in red) is rotated
about the y axis by θc and displaced by xc from the symmetry axis of
the inner yoke. We establish a pillbox that uses the surface area
given by the coil as the top (At) and a horizontal bottom surface
(Ab). The curved side wall (As) connects Ab with At to establish a
closed pillbox. Unlike before, the coordinate system is centered on
the Ab. Hence, the symmetry axis of the yoke goes through −xc. The
lower drawing shows the top view. The coil and the sidewall of the
pillbox are on top of each other and are hence drawn in purple. The
shape of the top view is an ellipse (dashed line), with the semi-minor
axis being rc cos θc. The calculation is carried out along the circular
path (solid line). This approximation is good for small angles θc to
the first order of θc. The field lines are centered on the yoke. The
yellow shaded areas are explained in the text.

the symmetry axis of the inner yoke intersects the xy-plane at
(−xc, 0).

The height of the cylindrical sidewall is zt(φ), as given
by equation (23) where ri is replaced by rc. In the chosen
coordinate system, the sidewall of the pillbox is given by

�r = rc�er = rc

⎛
⎝cos φ

sin φ
0

⎞
⎠. (36)

The pillbox is parameterized with a circular cross-section,
which is an approximation. In reality, the projection of the
tilted coil onto the xy-plane results in an ellipse with a major
semi-axis along y of length rc and a minor semi-axis along
x of length rc cos θc. For small angles, θc the minor axis
approximates rc(1 − θ2

c/2) and is to first-order independent
of θc. Hence, using a circular cross-section will be correct up
to the first order.

6
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The flux penetrating the cylindrical wall is

�B(r)dφ =
Br(ri)ri

(xc + rc cos φ)2 + r2
c sin2 φ

⎛
⎝xc + rc cos φ

rc sin φ
0

⎞
⎠.

(37)
Here, the flux density Br(ri) is assumed to be independent of z.
Then, the total flux through the sidewall is

Φs =

∫ 2π

0

�B ·�r zt(φ) dφ, (38)

where the term in the integral is given by

�B ·�r zt(φ) = Br(ri)rirc
(rc + xc cos φ)(zc − rc cos φ tan θc)

r2
c + x2

c + 2rcxc cos φ
.

(39)
Due to the symmetry of the problem, it is sufficient to execute
the integral for φ from 0 to π and double the result. For xc < rc

it is,
Φs = Brπri(2zc + xc tan θc). (40)

Then, according to equation (35) the flux through the top of
the pillbox is

Φt = −Br2πri

(
zc +

xc tan θc

2

)
− Φb. (41)

Since, Fz = −NIBr2πri we can replace −Br2πri with Fz/NI.
Since the energy is E = −NIΦt we have

E = −Fz

(
zc +

xc tan θc

2

)
+ NIΦb, (42)

where NIΦb is a constant that is irrelevant. Using the small
angle approximation, tan θc ≈ θc, the horizontal force and
torque about the y direction can be calculated as

Fx = − ∂E
∂xc

=
Fz

2
θc (43)

and

τθ = − ∂E
∂θc

=
Fz

2
xc. (44)

Interestingly, if one were to calculate the flux that goes
through the intersection of the coil and the yoke, one would
obtain

Φtop, yoke = −Br2πri(zc + xc tan θc), (45)

which is equation (9) evaluated at zc + xc tan θc. The zc value in
equation (9) must be modified because the coil plane meets the
symmetry axis of the yoke by xc tan θc above zc as is indicated
by the black dot in figure 4. If one were to use equation (45)
instead of equation (40) to calculate Fx and τθ, each result
would be double.

The difference in flux is

Φleakage = Φt − Φtop, yoke = Br2πri
xc tan θc

2
. (46)

for Φb = 0, which is the case if the bottom of the pillbox is
chosen at the symmetry plane of the BIPM magnet.

This missing flux must escape through the area enclosed
by the coil that is not filled with the inner yoke indicated

by the yellow (both shades) area in figure 4. Interestingly,
Φleakage does not depend on rc, but only ri. Hence, one can
hypothetically shrink the coil and have the same flux leakage.
Therefore the flux must escape in the area that is shaded in dark
yellow in figure 4. It is the smallest circle that is concentric
with the coil but fully contains the yoke.

The flux leakage only occurs because the coil is not centered
on the yoke. For a centered coil, no flux escapes through the air
part of the coil surface because the loss of flux on one side of
the tilt axis is compensated by the gain of flux on the other side.
For this reason, the pillbox was correctly constructed about the
inner yoke in previous sections.

Based on equations (43) and (44), the translation and tilt
are coupled equations. A translated current-carrying coil will
produce a torque that produces a tilt. Likewise, a coil that is
tilted and carries current will produce a force that will further
translate the coil causing tilt. This result in this section is only
valid in the xz-plane. The complete two-dimensional case is
solved in appendix B.

The difference between the torques discussed in section 3
and here is that the torques discussed in section 3 arise from
a finite first derivative in the profile, whereas the torques dis-
cussed in this section result from the coil not being centered in
the magnet. In practice, both torques need to be added together
to understand the situation in the laboratory.

5. Motion of the coil in the magnet

One result obtained above is that the torque and horizontal
forces on a coil are coupled. What is the final position of the
current carrying coil? We assume that without current the coil
coordinates are given by �po = (xo, θo)T. The goal is to find
the coordinates �pc = (xc, θc)T of the current carrying coil. The
current in the coil is such that it produces the vertical force
Fz. We assume that the stiffness of the suspension is kx for
translation and κθ for rotation. The mechanical and magnetic
energy in the limit of small θc of the system is given by

E = −1
2

Fzxcθc +
1
2

kx(xc − xo)2 +
1
2
κθ(θc − θo)2. (47)

The origin of the coordinate system (x = 0, θ = 0) is chosen
based on the symmetry of the magnet system, as it has been in
the previous sections.

With current in the coil, the equilibrium position is where
the partial derivatives of the energy with respect to xc and θc

are zero. It is

∂E
∂xc

= −1
2

Fzθc + kx xc − kxxo = 0 and (48)

∂E
∂θc

= −1
2

Fzxc + κθθc − κθθo = 0. (49)

Succinctly in a matrix equation, it is

⎛
⎜⎝ kx −1

2
Fz

−1
2

Fz κθ

⎞
⎟⎠
(

xc

θc

)
=

(
kx xo

κθθo

)
. (50)

7
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Figure 5. The equilibrium position for the current carrying coil as a
function of Fz/

√
4κθkx . Both xo and θo have small positive values.

Each value is indicated by the tick mark in the respective vertical
axis.

Multiplying both sides with the inverted matrix yields

(
xc

θc

)
=

2
4kxκθ − F2

z

(
2kxκθxo + κθθoFz

2kxκθθo + kx xoFz

)
. (51)

Introducing the displacement matrix,

D =
2

4kxκθ − F2
z

(
2kxκθ κθFz

kxFz 2kxκθ

)
(52)

simplifies equation (51) to

�pc = D�po. (53)

Different scenarios of its solution will be discussed in the next
section.

5.1. Different suspensions

The final equilibrium position of the current-carrying coil
depends on the denominator in equation (52). Three cases can
be distinguished: the unstable case, i.e., F2

z = 4kxκθ, the soft
suspension 4kxκθ � F2

z , and the stiff suspension 4kxκθ 	 F2
z .

Each case is discussed below. Note, that for all suspensions,
the coil is connected to the Kibble balance in a compliant
fashion. This is different from the idea put forward by Kib-
ble and Robinson [19], where the coil motion is completely
constrained to a one-dimensional motion.

5.2. The unstable case

The theoretical solutions for this case would be xc = ∞ and
θc = ∞. However, in reality, the non-linear behavior of the
suspension will alter the product kxκ as xc and θc increase
such that a stable equilibrium will occur. Besides stability, the
fine-tuning required to obtain F2

z = 4kxκθ would be delicate
and, hence, never occur in practice.

But also a small value, |4kxκθ/F2
z − 1| is bad, as it will lead

to large values of |xc| and |θc|. The sign of these variables
depends on the sign of 4kxκθ − F2

z .

5.3. The stiff suspension

In contrast to the case discussed above, the solution to this case
is intuitive and stable. Since 4kxκθ 	 F2

z we can neglect Fz in
the denominator of equation (52) and obtain

D =

(
1 Fz/(2kx)

Fz/(2κθ) 1

)
. (54)

The final position of the current-carrying coil deviates from
the position of the coil without current by terms that are propor-
tional to Fz and the misalignment in the other channel (xo for θc

and θo for xc). The change in each coordinate is simply given
by Fz/2 divided by the respective spring constant times the
position without current in the other coordinate, i.e., xc − xo =
θoFz/(2kx) and θc − θo = xoFz/(2κ). Changing the direction
of Fz would simply change the direction of the deviation, e.g.,
xc − xo. Note, Fz = 0 is included in this case.

5.4. The soft suspension

The soft suspension (4kxκθ � F2
z ) will also give a stable solu-

tion. This solution, however, is less intuitive. Here, the term
4kxκθ in the denominator can be ignored, and (52) is,

D =
−2
F2

z

(
2kxκθ κθFz

kxFz 2kxκθ

)
. (55)

In the limit of very large |Fz| both components of �pc

converge to 0. The large magnetic force in the ±z direction
straightens out the flexure joints.

For smaller |Fz|, it is best to discuss each parameter by
setting the other initial parameter to zero. For xo = 0 it is

�pc = −2κθθo

(
1/Fz

2kx/F2
z

)
, (56)

and for θo = 0 it is

�pc = −2kxxo

(
2κθ/F2

z

1/Fz

)
. (57)

Adding equations (56) and (57) returns the general solu-
tion, i.e., D from equation (55) multiplied by the equilib-
rium position �po = (xo, θo)T. We see that the aligned coil
coordinate moves with a term that is proportional to −1/Fz,
whereas the other one is proportional to 1/F2

z . Interestingly
that means, if one compares the position of the coil for mass on,
Fz = mg/2 with the position for mass off Fz = −mg/2, one
would not see a difference for the coordinate that is propor-
tional to 1/F2

z . So, there could be a horizontal force or torque
on the current-carrying coil and it is not detected because it has
the same sign and magnitude for opposite current directions.

5.5. Discussion of the three scenarios

Figure 5 shows the equilibrium position of the coil as a
function of Fz/

√
4κθkx for positive and negative Fz. A few

characteristics are clearly visible in the graphs in the figure.
The equilibrium position of the current carrying coil for small
|Fz| is �po and for large |Fz| it is (0, 0)T. There is a pole at
Fz =

√
4κθkx. At the pole, the order of the variables changes

8
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for the two current directions. For the chosen initial conditions
and the xc coordinate, the trace with Fz > 0 is above the one
for Fz < 0 on the left side of the pole and below on the right
side of the pole.

6. Obtaining coil misalignment by experiment

With the equations discussed in the previous section, the
coordinates of the energized coil can be calculated from the
coordinates (�po) of the de-energized coil. These equations,
however, require the absolute knowledge of �po with respect
to the coordinate system that is centered on the magnet. Most
Kibble balances employ optical levers and xy detectors to
monitor the angle and position of the coil. The outputs of these
sensors are relative to an arbitrary null of the photodetector
and do not provide absolute position and orientation of the
electrical center of the coil with respect to the magnetic center
of the magnet.

Here, we show that it is possible to gain that information
with three measurements that are already being made in a
Kibble balance experiment. In the velocity mode, the coil has
no current, so the measurement of the coil position, �mo with
Fz = 0 is made. The other two measurements are obtained
in force mode which is usually comprised of mass-on and
mass-off measurements. In the mass-on measurement, the coil
provides Fz = mg/2 and we denote the measured coil position
by �m+. Similarly, Fz = −mg/2 for the mass-off measurement.
In this case, the measured coil position is abbreviated as �m−.

Equation (51) can be rewritten by introducing the unitless
parameter f :=Fz/

√
4κθkx . The result depends on the square

root of the product and quotient of kx and κθ. So, two more
variables can be introduced, ξ =

√
κθ/kx and η =

√
kxκθ. The

dimensions of ξ and η are length and force, respectively. With
the new variables, equation (51) becomes

(
xc

θc

)
=

1
1 − f 2

(
xo + θo f ξ
θo + xo f /ξ

)
. (58)

The measured values must include the unknown offsets in both
rows. So, the measurements are

�mstate =
1

1 − f 2

(
xo + θo f ξ
θo + xo f /ξ

)
+

(
xoff

θoff

)
. (59)

The three types of measurement are distinguished by the sub-
script state. The state is either+, o, or− depending on whether
Fz is +mg/2, 0, or −mg/2. For these three cases, the unitless
parameter is + f , 0, or − f , respectively. From these three
measurements, two differences can be calculated.

�Δ+− = �m+ − �m− =
2 f

1 − f 2

(
θoξ
xo/ξ

)
(60)

and
�Δ+0 = �m+ − �mo =

f
1 − f 2

(
xo f + θoξ
θo f + xo/ξ

)
. (61)

Next, a linear combination of the two differences is used,

Figure 6. For the data shown here, the alignment of the Kibble
balance was not ideal. Position measurements for a typical
alignment can be found in figure 9 of [20].

�Δaux := �Δ+0 −
�Δ+−

2
=

f 2

1 − f 2

(
xo

θo

)
. (62)

With these results, f and ξ can be obtained. They are

f = 2

√√√√
∣∣∣∣∣
�Δaux[1]
�Δ+−[1]

�Δaux[2]
�Δ+−[2]

∣∣∣∣∣ (63)

and

ξ =

√√√√
∣∣∣∣∣
�Δaux[1]
�Δaux[2]

�Δ+−[1]
�Δ+−[2]

∣∣∣∣∣. (64)

The notation Δx[1] and Δx[2] is used to indicate the first and
second row of Δx , with x being either +− or aux. Once ξ and f
are obtained, equation (60) can be solved for xo and θo. It is

(
xo

θo

)
=

1 − f 2

2 f

(
�Δ+−[2]ξ
�Δ+−[1]/ξ

)
. (65)

Since Fz is known, a value for η can be obtained via
η = Fz/(2 f ). Finally, from η and ξ both stiffnesses can be
calculated. They are

kx = η /ξ and κθ = ηξ. (66)

Figure 6 shows a typical measurement of these positions
as they were carried out with the Kibble balance at NIST,
named NIST-4 [20]. For the data shown here, the Kibble
balance was not particularly well aligned. The top graph shows
the measured coil position for the three measurement types,
velocity mode (in green), mass-on (in red), and mass-off
(in blue). The dotted horizontal lines show the average values
for the first 5 h of the run. There is noise on the detectors, but
the different coil positions for the three measurements can be
distinguished. From these averaged values, xo and θo can be
calculated. The result and the results of the intermediate steps
are shown in table 1.

From the results, it can be concluded that the coil center
is off by 4.3 μm ± 0.3 μm from the center of the magnet.
Furthermore, the coil is titled by 65 μrad ± 49 μrad from the

9
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Table 1. Calculation of xo and θo from the measured values shown
in figure 6. The top table shows the measured position vectors for
mass-on, mass-off, and velocity mode and the differences that were
obtained from these measurements. The last line shows the result.
The lower table shows the values that were obtained for the ancillary
variables. The digits in parentheses give the one standard deviation
uncertainty in the last or last two digits of the corresponding value.

x/μm θ/μrad Source

�m+ 1.12(16) −0.36(2) Measured
�mo −1.34(10) 0.21(4) Measured
�m− −3.90(10) 2.32(3) Measured
�Δ+− 5.02(19) −2.67(4) Equation (60)
�Δ+0 2.46(19) −0.57(4) Equation (61)
�Δaux −0.05(14) 0.77(4) Equation (62)
xo, θo −4.31(33) 65(49) Equation (65)

Quantity Value Source

f 0.11(7) Equation (63)
ξ 0.35(22) m Equation (64)
kx 64(18) N m−1 Equation (66)
κθ 8.0(6) N m rad−1 Equation (66)√

4kxκθ 45(19) N Last 2 lines
Fz = mg/2 4.904 N Measured

Figure 7. The measured coil position of the coil in the NIST-4
Kibble balance as a function of Fz/

√
4kxκθ. This calculation is

performed with the parameters given in table 1. For the
measurements shown here the Kibble balance measured a 1 kg mass
and hence f = 0.108. The measured coil positions are indicated by
markers. At f = 0, the reported positions are not 0, caused by
offsets in the position measurement system.

horizontal reference plane given by the magnet. Having these
numbers makes it straightforward to align the Kibble balance.

Figure 7 shows similar content as figure 5. But this time the
calculation is performed with the values reported in table 1.
It can be seen that NIST-4 operates in the regime of the stiff
suspension |Fz| ≈ 0.1

√
4kxκθ if it is used to weigh a 1 kg mass.

The measurements of the position detectors are also indicated
in the figure.

6.1. On the stiffness of the suspension

Besides xo and θo the procedure above yields two stiffnesses
of the coil suspension, kx = 64 N m−1 ± 18 N m−1 and

Figure 8. A coil (gray box) with mass M is suspended from an ideal
linkage. The empty circles are flexible pivots. The suspension rods
have a length s1. The vertical distance between the center of mass of
the coil and the lower flexures is s2. We assume very compliant
flexures (no stiffness) and neglect the mass of the suspension.

κθ = 8.0 N m rad−1 ± 0.6 N m rad−1. How reasonable are
these values?

To each of the stiffness, two factors contribute, the gravi-
tational stiffness and the elastic stiffness of the flexure joints.
The former is the dominating term and, hence, for a back-of-
the-envelope calculation, the elastic stiffness can be neglected.
Figure 8 shows a toy model of a coil suspension. A coil of
mass M is suspended by rods of length s1. The open circles
in the figure denote ideal (zero stiffness) flexures. The vertical
distance between the center of mass of the coil and the lower
flexure plane is s2. The suspension is assumed to be massless.

If the coil moves horizontally by xc, the center of mass of
the coil rises (to the second order) by

Δz ≈ x2
c

2s1
. (67)

Hence the gravitational energy of the coil increases by Egrav =
MgΔz. Thus, the horizontal force and consequently the hori-
zontal stiffness are given by

Fx = −∂Egrav

∂xc
= −Mg

s1
xc, (68)

and

kx = −Fx

xc
=

Mg
s1

. (69)

A rotation of the coil by the angle θc causes a vertical
change in the center of mass that is approximately,

Δz ≈ θ2
c

2
s2. (70)
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Table 2. The dimensions of the NIST-4 coil. The geometric
stiffnesses are calculated from the first three rows. The measured
values come from table 1.

Quantity
Geometric Measured

Value Unit Value Unit

M 8.6 kg
s1 87.3 cm
s2 4.8 cm
kx 96.6 N m−1 64(18) N m−1

κθ 4.0 N m rad−1 8.0(6) N m rad−1

ξ 0.21 m 0.35(22) m
η 19.8 N 23(9) N

This equation leads to the torque and the rotational stiffness. It
is,

τ = −∂Egrav

∂θc
= −Mgs2θc (71)

and
κθ = − τ

θc
= Mgs2. (72)

In the above approximation, the ancillary variables ξ and η
evaluate to

ξ =
√

s2s1 and η = Mg

√
s2

s1
. (73)

With equations (69) and (72), estimates for kx and κθ can be
calculated. Typically, the mass of the coil is about 10 times that
of the test mass. For a back-of-the-envelope calculation, s1 can
be estimated from the length of the suspension rods and s2 from
the coil height. Typical values are s1 ∼ 1 m, and s2 ∼ 1 cm.
The measured values for the NIST-4 Kibble balance can be
found in table 2.

The values for kx and κ are not exact matches, but the order
of magnitudes agrees. The geometric determination of kx is
about 51% higher or 1.8σ. The value for κθ determined by the
measured coil displacement is about twice as much as the value
obtained from the geometry. So, it appears that neglecting the
elastics restoring component is not justified for the rotation of
the coil.

Although the agreement is not perfect, the values obtained
from the measured coil position can provide useful informa-
tion to the experimenter. Also, note that the stiffnesses are a
byproduct of the analysis carried out here. The main results
are xo and θo.

6.2. Final remarks

By analyzing the coil position with the procedure outlined
above, the absolute position and orientation of the coil
with respect to the magnet can be obtained. Here, we have
only discussed the one-dimensional case, i.e., two unknowns
xo and θo. In a real system, four parameters need to be deter-
mined. An offset along the xy-directions and rotations about
the x and y axes. Appendix B gives the solution for this case.
The good news is that the two directions are independent
of each other. So, each direction can be analyzed with the

algorithm described above. For one direction xc and θy are
used. For the other one, the analysis is done with yc and θx .

Once the position of the coil relative to the magnet is
obtained and it is not satisfactory, the experimenter has to move
either the Kibble balance or the magnet to minimize xo and θo.
For the article, we assumed that the magnet is vertical and the
coil is tilted. Hence, θo indicates a coil tilt with respect to the
vertical direction. If the magnet is not perfectly vertical, θo will
be the angular difference between the coil and the magnet.

This will lead to another interesting possibility. Researchers
have spent significant effort to align the magnet to vertical
in the laboratory, e.g. [21]. However, with the method shown
here, the relative angle can be obtained, and it is relatively sim-
ple to measure the absolute angle of the coil in the laboratory.
Hence, the absolute angle of the magnet can be obtained. With
this information, the magnet can be leveled.

7. Summary and conclusions

In this article, we have used the flux picture to derive inter-
esting properties of electromagnetic torques acting on Kibble
balance coils. The magnetic flux through the inner yoke is of
prime importance for yoke-based permanent magnet systems.
This flux can easily be calculated using the pillbox method.
It relies on the fact that the magnetic flux through all sur-
faces enclosing a volume sums to zero—a consequence of
Maxwell’s equation �∇ · �B = 0.

With a properly chosen pillbox, we showed that the torque
on a coil depends on the derivative of the geometric factor,
∂Br/∂z. Most importantly, the torque vanishes if the current-
carrying coil is at a local extremum, i.e., ∂Br/∂z = 0. This
fact provides another reason to strive for a flat profile when
designing a Kibble balance.

We then analyzed the torque that can arise when the coil
is not centered in the magnet. The tilt and horizontal dis-
placement lead to coupled equations because the flux through
the coil contains the product of displacement and tilt angle.
The coupled equations were solved, and a simple expression
of the position of the coil with current as a function of the
coil misalignment was found. From that solution, we found
a recipe that yields the coil misalignment from the measured
coil position with no, positive, and negative current. This result
can be used to align the coil and even the magnet vertically in
the laboratory.
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Appendix A. About signs

The purpose of this section is to clarify the sign of the flux
and the sign in front of the flux derivative for the force and
torque calculations. Figure A1 shows a toy model of a current-
carrying coil in a magnet system. We calculate the direction
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Figure A1. A toy model of a current-carrying coil in a BIPM
magnet. The red circles are cross-sectional views of the coil. The
current flows into the paper plane on the right side. The solid blue
arrows denote the flux density in the air gap. The dashed blue arrows
the flux density in the yoke. The green horizontal line is the area of
the coil, with the differential area vector d�A pointing vertically. The
graph on the right-hand side shows the flux through the yoke. The
flux gradient is negative.

of the force in two ways, first with the Lorentz force and then
with the flux integral.

The Lorentz force for a piece of wire in a magnetic field
with flux density (in the air gap) �Ba is given by

�F = q�v × �Ba, (A.1)

where q�v points in the direction of the current. We consider
the piece of wire of length d� that is shown on the right side
of the gap. Here q�v points in the y direction and �Ba in the x
direction. Hence the magnetic force points in �ey ×�ex which
equals to −�ez. It can easily be seen that this direction is true
for the complete coil by integrating around the loop. So, the
force on the coil in the toy model is downward.

To calculate the force using the flux integral, we need to
calculate the energy of the system,

E = −NI
∫

A

�By d�A. (A.2)

The integral needs to be carried out over the open area of the
coil. But, as has been discussed in section 2, in a symmetric
case, it is sufficient only to take the yoke into consideration
because the field in the air gap is perpendicular to the area
vector and does not contribute. So, A is the cross-sectional
area of the inner yoke, and By is the magnetic flux density
in the inner yoke. We need to find the direction of d�A. The
convention is that the d�A can be found by the right-hand rule.
The fingers, except for the thumb, point in the direction of the
current, and the thumb points in the direction of d�A. For the
toy model, d�A points up, parallel with �ez. In this situation, the
flux integral (

∫
A
�By d�A) is negative with the coil at the top of the

gap and positive at the bottom. The electromagnetic energy of
the system is

E = NIB(ri)2πrizc, (A.3)

where ri is the radius of the inner yoke. See the text above
equation (9) for a derivation of the exact expression of the flux

integral. Here only the sign is important. The force is given by
the negative derivative of the observed coordinate, here

Fcoil = − ∂E
∂zc

= −NIB(ri)2πri. (A.4)

The negative derivative of the energy (area integral) and the
line integral produce a consistent direction of the force. In both
cases, the force points in the negative z direction.

With the flux integral, the force on the magnet can also be
calculated if the magnet is displaced by zm as is the case in the
UME (Ulusal Metroloji Enstitüsü, Turkey) watt balance [22],
the energy is given by

E = NIB(ri)2πri(zc − zm), (A.5)

and, hence,

Fmagnet = − ∂E
∂zm

= NIB(ri)2πri = −Fcoil. (A.6)

As one would expect from Newton’s third law, the force on the
magnet, Fmagnet is equal and opposite to the force on the coil,
Fc. And, of course, that is true whether the magnet is moved
or not.

The last remaining sign that needs to be discussed is why
there is a minus sign in equation (A.2).

This negative sign can be obtained by considering the coil
as a dipole. The dipole moment of a current-carrying wire loop
with N turns is

�m = NI�A, (A.7)

where the direction of the area vector is obtained by the right-
hand rule. A dipole in a magnetic flux density has the lowest
energy when �m and �By are parallel. Thus, the energy of the
dipole in flux density �By is

E = −�m · �By = −NI�A · �By = −NI
∫

�By d�A. (A.8)

Equation (A.2) is obtained with the correct sign.

Appendix B. Coil tilt and displacement in two
dimensions

In the main text, the energy of a coil that is displaced and tilted
is calculated. For simplicity, only the case where the coil was
rotated about the y-axis and displaced along the x-axis was
discussed. Here, we calculate the general case. The coil is tilted
by a small angle about any axis in the xy plane and is also
displaced along any direction in that plane.

The coordinates of the coil in a coordinate system centered
on the symmetry line of the yoke are given by

xc = −δc cos ψ and yc = −δc sin ψ, (B.1)

where δc is the absolute distance between the two. Here, we use
a coordinate system that is centered on the coil, see figure B1.
Hence, the center of the yoke is at (−xc,−yc).
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Figure B1. Similar drawing to the lower part of figure 4. But here,
the coil is translated in x and y with respect to the symmetry axis of
the yoke by xc and yc. Since the coordinate system is chosen to be
centered on the coil, the center of the yoke is at (−xc,−yc). In
figure 4 the lowest point of the coil was along the x-axis, i.e., the
coil was rotated about the y-axis. Here the lowest point can occur at
an arbitrary angle α, which is marked by a triangle. The lower graph
shows the outer edge of the top surface of the pillbox. The triangle
marks the lowest point, again.

Then, equation (37) must be modified to read

�B(r)dφ =
Br(ri)ri

(xc + rc cos φ)2 + (yc + rc sin φ)2

⎛
⎝

xc + rc cos φ
yc + rc sin φ

0

⎞
⎠.

(B.2)
To account for the rotation about a different axis, the height

of the pillbox, equation (23) must be changed to

zt(φ, θc) = zc − rc tan θc cos(φ− α). (B.3)

With these two new parametrizations, the integral in equation
(38) yields

Φs = Brπri(2zc + δc cos(α− ψ)tan θc). (B.4)

Using Φt = −Φs +Φb, E = NIΦt, and Fz = −∂E/∂zc yields

E = −Fz

(
zc +

δc

2
cos(α− ψ) tan θc

)
+ NIΦb, (B.5)

where NIΦb denotes an inconsequential constant.
To calculate the torques on the coil about the x and y axes,

we need to digress into rotation matrices in R3. The rotation
about the x axis with an angle θx is given by

Rx =

⎛
⎝1 0 0

0 cos θx − sin θx

0 sin θx cos θx

⎞
⎠. (B.6)

Similarly, the rotation about the y-axis by θy can be written as

Ry =

⎛
⎝ cos θy 0 sin θy

0 1 0
− sin θy 0 cos θy

⎞
⎠. (B.7)

In general, the multiplication of the rotation matrices does not
commute, i.e.,

RxRy �= RyRx. (B.8)

For very small angles, θx � 1 and θy � 1 and to first order
in the angles, the multiplication of the rotation matrices com-
mutes, and the product is

Rxy =

⎛
⎝ 1 0 θy

0 1 −θx

−θy θx 1

⎞
⎠. (B.9)

If �A = (0, 0, A)T is the area vector of the horizontal coil, after
rotation, it is,

Rxy
�A = A

⎛
⎝ θy

−θx

1

⎞
⎠. (B.10)

Projecting Rxy
�A down to the xy−plane gives the coordinates

(Aθy,−Aθx). This projection can be written in polar coordi-
nates as (Aθc cosα, Aθc sinα), with

tan α =
−θx

θy
. (B.11)

and
θ2

c = θ2
x + θ2

y . (B.12)

Hence, for small angles θc (tan θc ≈ θc),

θy = θc cos α and θx = −θc sin α. (B.13)

With that, equation (B.5) can be written as a function of the
five coil coordinates. It is

E = −Fzzc +
Fzycθx

2
− Fzxcθy

2
+ NIΦb, (B.14)

Following equation (47), the total energy of the coil, includ-
ing the mechanical and magnetic energy of the coil, can be
calculated. It is

E = −Fzzc + NIΦb +
Fzycθx

2
− Fzxcθy

2

+
1
2

kxy(xc − xo)2 +
1
2

kxy(yc − yo)2

+
1
2
κθ(θx − θxo)2 +

1
2
κθ(θy − θyo)2. (B.15)

It is assumed the stiffness for translation of the coil along x is
the same as along y, kxy. Furthermore, the rotational stiffnesses
for rotating about the x and y axis are identical. They are
κθ. Similar to the main text, in equation (49) the derivatives
of the energy with respect to the coil parameters can be set
to zero and a matrix equation is obtained, see equation (50).

13
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Figure C1. A coil with radius rc is translated by xc from the origin
centered on the inner yoke shown in gray.

Here the energy derivatives with respect to xc, yc, θx, and θy

are calculated. The matrix equation is⎛
⎜⎜⎝

kxy 0 0 −Fz/2
0 kxy Fz/2 0
0 Fz/2 κθ 0

−Fz/2 0 0 κθ

⎞
⎟⎟⎠
⎛
⎜⎜⎝

xc

yc

θx

θy

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

kxyxo

kxyyo

κθθxo

κθθyo

⎞
⎟⎟⎠.

(B.16)
The solutions are

�pc =

⎛
⎜⎜⎝

xc

yc

θx

θy

⎞
⎟⎟⎠ =

2
4kxκθ − F2

z

⎛
⎜⎜⎝

2kxyκxo + κθθyoFz

2kxyκyo − κθθxoFz

−kxyyoFz + 2kxyκθθxo

kxyxoFz + 2kxyκθθyo

⎞
⎟⎟⎠
(B.17)

Similar to equation (52) in the main text, a displacement
matrix can be introduced. It is,

D =
2

4kxκθ − F2
z

×

⎛
⎜⎜⎝

2kxyκθ 0 0 κθFz

0 2kxyκθ −κθFz 0
0 −kxyFz 2kxyκθ 0

kxyFz 0 0 2kxyκθ

⎞
⎟⎟⎠.

(B.18)

With the displacement matrix, it is

�pc = D�po with �po =

⎛
⎜⎜⎝

xo

yo

θxo

θyo

⎞
⎟⎟⎠. (B.19)

Equations (51) and (52) are a subsection of the above.

Appendix C. Torque on a displaced coil using the
line integral

The point of this article is to encourage the use of the area
integral instead of the line integral to calculate forces and

torques on the coil. Here, we would like to verify the torque on
the simply displaced coil, equation (44) using the line integral.

Figure C1 shows the scenario that is calculated below. A
coil with radius rc is displace by the xc from the origin. The
field is azimuthally symmetric and is only vertical. Hence the
radial field component at the location�r = r�er is given by

�B = �erB(ri)
ri

r
, (C.1)

The position of the wire in Cartesian coordinates is given by

�� = ��c +

⎛
⎝rc cos φ

rc sin φ
0

⎞
⎠, (C.2)

where ��c = (xc, 0, 0)T Hence, the line element is

d�� = dφ

⎛
⎝−rc sin φ

rc cos φ
0

⎞
⎠ (C.3)

Here we calculate the torque on the coil with respect to ��c. It
is

�N = I
∮

C

(
��− ��c

)
× (�B(|��|) × d��) (C.4)

The term (�B(|��|) × d��) only has a vertical component. It is

(�B(|��|) × d��)z =
B(ri)rirc dφ√

x2
c + r2

c + 2xcrc cos φ
. (C.5)

Integrating equation (C.4) yields Ny = 0 and

Nx ≈ IB(ri)riπxc =
Fz

2
xc. (C.6)

The above equation agrees with equation (44).
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