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Abstract

This thesis is about a new methd to perform the S-expansion procedure and
studies in extended supergravites.

In the present work, the concept of zero-reduction has been extended repro-
ducing a generalized Inönü-Wigner contraction. This involves an infinite abelian

semigroup S
(∞)
E and the removal of an ideal subalgebra. We refer about the use

of theorem VII.2 of the reference [20] which serves to construct the topological
invariant of a respective S-expanded algebra from another of which the bilinear
form is known, therefore is an extension and generalization of the mentioned
theorem. This procedure allows to develop the dynamics and construct the
Lagrangians of several theories. This work reproduces the results already pre-
sented in the literature, concerning the generalized Inönü-Wigner contraction,
and also gives some new features. Moreover, it gives a connection between the
contraction processes and the expansion methods introduced in [17], which was
an open question already mentioned in [12].

Also is shows one of the interesting applications, which is to obtain a partic-
ular hidden Maxwell superalgebra underlying supergravity in four dimensions.
Thus we have written the hidden Maxwell superalgebra in the Maurer-Cartan
formalism, and then, we have considered the parametrization of the 3-form A(3)

in terms of 1-forms, in order to show the way in which the trivial boundary
contribution in four dimensions, dA(3), can be naturally extended by consider-
ing particular contributions to the structure of the extra fermionic generator,
appearing in the hidden Maxwell superalgebra. These extensions contain terms
which involve the cosmological constant. Interestingly, the presence of these
terms depends strictly on the form of the extra fermionic generators appearing
in this hidden extension of D = 4 supergravity.

Besides, we have reviewed some concepts of the S-expansion. We show es-
pecially, how S-expansion procedure affects the geometry of a Lie group: was
found how the magnitude of a vector change and the angle between two vec-
tors. About the kind of algebra, after apply an S-expansion, it is a non-simple
Lie algebra. Then, considering resonance and reduction, we built an analytic
method able to give us the multiplication table(s) of the set(s) involved in an S-
expansion process for reaching a target Lie (super)algebra from a starting one,
after having chosen properly the partitions over subspaces of the considered
(super)algebras.

Furthermore, we study in the context of ungauged supergravities, the symme-
try under the kinetic part in the action and the realization to a global symmetry
group G. Moreover, we show the use of the solution generating technique. As
a first step in the unfinished research we work with the AdS metric with the

ix



global group G2(2),which it is the global symmetry group of the 3D descrip-
tion of N = 2 supergravity coupled to a vector multiplet [13], where we found
the charges. Considering that a solution with cosmological constant is always
gauged in extended supergravities [36], it is planned to investigate the appli-
cability of the solution generating technique on gauged theories asymptotically
flat, i.e AdS metric.
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2.6.5 D=3 algebras: Poincaré, Bargmann and Newton . . . . . 51
2.6.6 Non-standard super-Maxwell in D = 3 from the AdS al-

gebra osp(2|1)⊗ sp(2) . . . . . . . . . . . . . . . . . . . . 53
2.6.7 PP-wave (super)algebra in D = 11 from the AdS4 × S7

(super)algebra . . . . . . . . . . . . . . . . . . . . . . . . 55
2.7 Comments about the requirements on S-expansion . . . . . . . . 58

3 Superalgebras and FDA on Supergravity 61
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2 Infinite S-expansion and ideal subtraction of superalgebras in

four dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3 Hidden Maxwell superalgebra in the Maurer-Cartan formalism . 66

3.3.1 Gauged extensions of dA(3) . . . . . . . . . . . . . . . . . 70

II Solutions on Extended Supergravities 75

4 Extended Supergravities Ungauged 77
4.1 Ungauged Supergravity . . . . . . . . . . . . . . . . . . . . . . . 78
4.2 Extended Supergravities . . . . . . . . . . . . . . . . . . . . . . . 79
4.3 Scalar Manifolds of extended supergravity . . . . . . . . . . . . . 80

4.3.1 Cartan decomposition . . . . . . . . . . . . . . . . . . . . 83
4.3.2 Solvable decomposition . . . . . . . . . . . . . . . . . . . 83

4.4 Vielbein and connection on symmetric cosets . . . . . . . . . . . 84
4.4.1 The metric and current . . . . . . . . . . . . . . . . . . . 85
4.4.2 On-shell Duality . . . . . . . . . . . . . . . . . . . . . . . 87

5 Solution-generating technique 95
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 D = 4 Stationary Solutions . . . . . . . . . . . . . . . . . . . . . 95
5.3 Sigma-Model for D = 3 . . . . . . . . . . . . . . . . . . . . . . . 99
5.4 Conserved currrent for D = 3 . . . . . . . . . . . . . . . . . . . . 100
5.5 Kern-Newmann black hole . . . . . . . . . . . . . . . . . . . . . . 103

5.5.1 Coset geometry for KN solution . . . . . . . . . . . . . . . 104
5.6 AdS metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.6.1 Coset geometry for AdS solution . . . . . . . . . . . . . . 105

6 Conclusion and Comments 109

Appendix 113

A Calculations to found the semigroup 115
A.1 Resonance and reduction for moving from the BTI to the BTII . 115
A.2 Only resonance for moving from the BTI to the BTII . . . . . . . 117
A.3 Detailed calculations for reaching the hidden superalgebra under-

lying D = 11 supergravity, starting from the supersymmetric Lie
algebra os p(32/1) . . . . . . . . . . . . . . . . . . . . . . . . . . 118

B Calculations on Ideal-Subtraction 123
B.1 Calculations for reaching the non-standard Maxwell algebra . . . 123
B.2 Calculations for reaching the super-PP-wave algebra . . . . . . . 125

xii



C Dirac-Schwinger-Zwanziger quantization 127

Bibliography 129

xiii



xiv



List of Figures

1.1 Dynkin diagram in the left correspond to so(3) and in the right
the so(4). The row means the S-expansion procedure. Source:
self made. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Map between different superalgebras linked through infinite S-
expansion and/or ideal subtraction. Source: self made. . . . . . . 66

4.1 The diagram represents the nature of the variety manifold Mscal

of scalar fields. The mapping Gp generates the tangent space in
p where the vielbein are defined through G(φ) = Grsdφ

r ⊗ dφr,
dφr(Vi) = V r

i (φ). Source: self made. . . . . . . . . . . . . . . . . 81
4.2 This diagram shows the relationship between two coordinate rep-

resentations on the same point. Image from the book of Castel-
lani Leonardo, D’Auria Riccardo. (1991). Supergravity and Su-
perstrings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 The scalar manifold of a symplectic geometric structure is asso-
ciate with each point φ on the manifold the symmetric symplec-
tic 2nv × 2nv matrix M(φ)MN , at the same time each isometry
transformation g ∈ G on the same manifold is associated with a
2nv × 2nv matrix S[g] MN . Source: self made. . . . . . . . . . . . 89

5.1 The integration in the boundary in infinity is equivalent to the
integration over the boundary close to the solution. Source: self
made. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xv



xvi



Introduction

Figuras grababan en las rocas,

Haćıan fuego, ¡también haćıan fuego!

Yo soy el Individuo.

Me preguntaron que de dónde veńıa.

Contesté que śı, que no teńıa planes determinados,

Contesté que no, que de alĺı en adelante.

a part from Soliloquio del individuoa, Poemas y Antipoemas de
Nicanor Parra (1965)

aI saw they made certain things, They asked me where I came from. I answered
yes, that I had no definite plans, I answered no, that from here on out.

Gauge theories and gravity

The Yang Mills theory (YM) is a gauge theory that has provided excellent re-
sults in the unification of three fundamental interactions. With this we refer to
the standard model of particle physics (SM), which is a relativistic field theory
where the three forces are mediated by spin-1 particles which respect invari-
ance under local transformations (i.e. space-time dependent) of some suitable
internal symmetry group. Gauge theories provide a re-normalizable description
of these fields and of their coupling to matter. The Brout-Englert-Higgs mech-
anism (BEH) of spontaneous symmetry breaking then allows the interaction
fields to have an effective mass without spoiling the renormalization property
of the theory.

On the other hand, the theory of general relativity, is the geometric theory
of gravitation published by Albert Einstein which elegantly describes the grav-
itational interaction of massive bodies. Is the fourth force which, unlike the
others, does not constitute a genuine gauge theory, such as the YM does.

In a Yang-Mills theory, where F µν
a is the field strength and the metric gµν

of the space-time its a non-dynamical background [1],

SYM = −1

4

∫
d4xgµρgνσF

aρσF µν
a , (0.0.1)

but in the Einstein equations the actions depends of gµν and its derivatives,

Sg =

∫ √
−gRd4x, (0.0.2)

1



where lies the dynamics. This is an important difference between the two theo-
ries. Einstein’s gravity can be viewed as the gauge theory of the Poincaré group
and the graviton as the gauge boson associated with the local translation gen-
erators Pa. That means that while a gauge group in an internal symmetry acts
on internal degrees of freedom, the gauge group in gravity describes external,
i.e. spacetime, symmetries. As long as there is no dynamics along the inter-
nal directions, there is dynamics along the external ones: The dependence of
the fields on the space-time coordinates is not the result of some (unphysical)
gauge transformation, but is dictated by the field equations where torsion vanish
(on-shell invariance).

In order to unify gravity with the other interactions in a unique theory,
it is necessary to put together, the internal symmetries with the space-time
symmetries. A good candidate for this purpose is supersymmetry. The basic
idea is simple. As the color group SU(3) of the standard model reshapes the
color states of a given quark flavor among them and the SU(2) group combines
the fields of the weak doublets, supersymmetry has the ability to interchange
bosons and fermions.

Is it possible to have fermions and bosons in a symmetric theory? The
answer turned out to be negative, for the Coleman-Mandula theorem [2], whose
conclusions were that any group of bosonic symmetries of the S-matrix must
be the direct product of the Poincaré group with an internal symmetry group,
so that, if Poincaré and internal symmetries were to combine, the S-matrices
for all processes would be zero. Or in other words; “there are no generators of
bosonic symmetries that generate symmetry transformations connecting fields
of different spins.” That is, “There are no bosonic generators that generate
supersymmetry”. However, the results of this theorem were related to its strong
assumptions, and one of them was that the considered algebra was a Lie algebra.
In fact, it turns out that generalizing the notion of Lie algebra to a graded Lie
algebra, the theorem could be evaded [3]. A graded Lie Algebra is an algebra
that contains, besides standard bosonic generators b, also fermionic generators
f , which correspond to supersymmetric generators obeying anticommutation
relations. Symbolically

[b,b] ∝ b, [b, f ] ∝ f , {f , f} ∝ f .

Its generators comprise Lorentz transformations Jab, space-time translations
Pa, generators Br of internal (compact) symmetry group, and also, fermionic
generators Qα. The Q’s generate the so-called superalgebra which involve the
supersymmetry. Supersymmetric theories differ in the amount of supersymme-
try, namely in the number N of the supersymmetry generators Q, and in the
field content which should correspond to multiplets of super group (SG). N su-
persymmetry generators define an N -extended supersymmetry, because it has
QA-generators, where A = 1, . . . ,N where N is the number of supersymmetries
in the theory.

The general transformation laws read:

δεb = ε f , δεf = ε ∂b,

where ε is the infinitesimal supersymmetry parameter, carrying spinorial indices,
and ∂ is for a space-time derivative. Since the commutator of two supersym-
metry transformations amounts to an operator which is proportional to the
space-time derivative

2



[δε1 , δε2 ] ∝ (ε1γ
µε2) ∂µb.

Using this result, we can immediately deduce the important fact that a
supersymmetric theory will necessarily be invariant under translations. This
link between supersymmetry and the Lorentz group is recorded in the algebra
in form of the anticommutator of two supersymmetry charges, modulo action
of internal symmetry operators Z, which is expressed schematically as∗

{Q,Q} ∝ P + Z,

which are central charges of the superalgebra.
The corresponding superalgebra of infinitesimal generators is therefore called

super-Poincaré algebra. The fermionic generators Q allow for a non-trivial
interplay between space-time and internal symmetries. Moreover, having a spin
quantum number, the action of Q on a states varies by 1/2 its spin, so that:

Q|f〉 = |b〉, Q|b〉 = |f〉.

The supersymmetry generators belong to the spin-1/2 representation of the
Lorentz group as well as to a representation of the internal compact group. A
supersymmetry transformation generated by the Q-generators, sends a bosonic
state into a fermionic one and vice-versa.

This implies that, modulo internal transformations Z and the combination of
two subsequent supersymmetry transformations amounts to a space-time trans-
lation. Moreover Q commutes with P , and therefore with the mass operator
m2 = P 2/c2. As a consequence of this, irreducible representations of SG (su-
permultiplets), comprise one-particle states with the same mass but different
spins. This is certainly a desirable feature if we ultimately aim at unifying all
fundamental forces of nature together with matter. In fact, the gravitational
force is mediated by the spin-2 graviton while the other interactions by spin-1
vector bosons and matter is made of spin-1/2 particles.

However the Poincaré superalgebra is not the only scenario to obtain a theory
of supergravity, as well as AdS or Poincaré is not the only Lie Algebra to generate
a theory of gravity. In the first part of the present thesis we will cover a spectrum
of Lie algebras and superalgebras where gravity and supergravity unfolds. In
the second part we focus on the (super) ungauged gravity and a technique on
it visualizing a possible link with a gauged theory.

Thesis plan

As previously mentioned, throughout this thesis two areas will be approached,
the two with respect to gauge theories involving (super)gravity. In the first part,
in section 1.3, will we study some properties of the S-expansion, and we apply
the knowledge into the technique to control what kind of (super)algebra we
want to obtain, specifically in section 1.4, when it is show a formal way to find
the connection between different (super)algebras through the determination of a

∗We have been omitted the bar on the second generator Q; Q.

3



(semi)group. The reproduced results in section 1.5 are known in the literature,
but there are also some new ones.

In chapter 2 we extend the usual S-expansion procedure. Explicitly, we real-
ize the generalization of an Inönü-Wigner contraction as an infinite S-expansion
whit an Ideal-subtraction. Several examples are shown in section 2.6.

In chapter 3 we work in four dimension in the framework of free differential
algebra finding new hidden super-algebras. Thus, we have written the hidden
Maxwell superalgebra in the Maurer-Cartan formalism, and we have then con-
sidered the parametrization of the 3-form A(3) in terms of 1-forms, in order to
show the way in which the boundary contribution in four dimensions, dA(3), can
be naturally extended by considering particular contributions to the structure
of the extra fermionic generator appearing in the hidden Maxwell superalgebra.
These extensions contain terms which involve the cosmological constant.

In the second part of the thesis, chapters 4 and 5, the study carried out on
extended supergravities, studying the scalar manifold where the coset space of
the symmetries lies and application of the solution generating technique, which
is a powerfull method to obtain a lot of information of a ungauged supergrav-
ity. Using dimensional reduction and dualization over the fields in a particular
solution, we can get the charges and when we apply over these a particular
transformation we find another new ones. Examples of application are consid-
ered and the line of research to follow in that area is shown.

4



Part I

Applications of S-Expanded
Lie (super)algebras in

(super)gravity
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Chapter 1

S-Expansion Process and
its Geometry

“ I am certain, absolutely certain, that, at some point in the future, these

theories will be recognized as fundamental. If I wish to create such an under-

standing sooner, it’s because, among other things, I could then do ten times

more.”

Sophus Lie, in a letter to Mayer in 1884.

1.1 Motivation

Understanding the importance of searching in various fields of mathematics have
important physical implications, that is why in the first part of this thesis we
focus on the study, analysis and techniques to find Lie algebras from existing
ones. In particular we analyse the S-expansions and contraction.

Its not hard to justified the study of Lie algebras, in the last years there
are more and more applications that everybody can find in the modern physics.
That is why we can analyze different regimes of physics when we work with
two different algebras. Even more, the relation of two given Lie (super)algebras
among themselves, and in particular, the derivation of new (super)algebras from
other ones, is a problem of great interest, in both Mathematics and Physics,
since it involves the problem of mixing (super)algebras, which is a non-trivial
way of enlarging spacetime symmetries. Then, it is justified, the study and the
motivation to devote time and energy in paying attention to the transformations
that allow to find diverse Lie algebras.

A very known method to link two different algebras is the contraction, an idea
presented by Segal in 1951 [4] and Inönü and Wigner in 1953 [6] (see also [7]).
Consist in obtain from a given Lie group a different (non-isomorphic) Lie group
through a group contraction with respect to a continuous subgroup of it. That
amounts to a limiting operation on a parameter of the Lie algebra, altering the
structure constants of this Lie algebra in a nontrivial singular manner, under
suitable circumstances (standard Inönü-Wigner contraction). Then, Weimar-
Woods generalized this procedure using parameters of arbitrary degree, the

7



so-called generalized Inönü-Wigner contraction [8, 9]
These contractions are important because explain formally why some theories

arise as a limit regime of more “complete” theories (see [10] and references
therein), and maybe the best known are the passage from the Poincaré algebra
to the Galilei algebra, in the limit where the speed of light approaches infinity
[6]. Similarly, the (Anti-)de Sitter algebra can be contracted to the Poincaré
algebra in the limit where the radius of the universe is large. Other examples
include the so(3) algebra of rotations on a sphere, which contracts rotations
into translations for small angular displacements, and the dynamical algebra
sp(2n,R) of the harmonic oscillators in n dimensions, which contracts to the
u(n)⊕hn(2n) algebra, where hn(2n) is the m’th Heisenberg-Weyl algebra, which
describe collective excitations at low energy. From these examples, it can be seen
that the existence of an “effective” theory is often the results of a contraction.

Another method to connect different (super)algebras is the expansion pro-
cedure, introduced for the first time in [16], and subsequently studied under
different scenarios in [17–19]. In 2006, a natural outgrowth of the power series
expansion method was proposed (see Ref.s [20]), which is based on combining
the structure constants of the initial (super)algebra with the inner multiplica-
tion law of a discrete set S with the structure of a semigroup, in order to define
the Lie bracket of a new S-expanded (super)algebra.

An additional advantage of in the work done in [20], and its relation with
the standard Inönü-Wigner contraction process is discussed in chapter one and
two of the present thesis. We will study the S-expansion method to be able to
determine when it is possible to apply it relating two different algebras and we
will analyze also their limitation. This last will serve to extend the process of
S-expansion in such a way that it reproduces the same results of a generalized
known Inönü-Wigner contraction.

On the other side, supergravity theories have, in various spacetime dimen-
sions 4 ≤ D ≤ 11, a field content that generically includes the metric, the
gravitino, a set of 1-form gauge potentials, and (p+ 1)-form gauge potentials of
various p ≤ 9, and they are discussed in the context of Free Differential Alge-
bras (FDAs). In particular, in the framework of FDAs, the structure of D = 11
supergravity, first constructed in [21]; then it was reconsidered in [22], adopt-
ing the superspace geometric approach. In the same paper, the supersymmetric
FDA was also investigated in order to see whether the FDA formulation could be
interpreted in terms of an ordinary Lie superalgebra in its dual Maurer-Cartan
formulation. This was proven to be true, and the existence of a hidden superal-
gebra underlying the theory was presented for the first time. In fact, in [22], the
authors proved that the FDA underlying D = 11 supergravity can be traded
with a Lie superalgebra which contains, besides the Poincaré superalgebra, also
new bosonic 1-forms and a nilpotent fermionic generator Q’s, necessary for the
closure of the superalgebra.

Focused in this context, we obtain a hidden Maxwell superalgebra in four
dimensions by performing an infinite S-expansion with subsequent ideal sub-
traction of the hidden AdS-Lorentz superalgebra underlying D = 4 supergravity.
We also display a map in order to show the way in which the hidden AdS-
Lorentz superalgebra and the Maxwell superalgebra can be obtained. This map
also offers the links, consisting in infinite S-expansion and ideal subtraction,
between other superalgebra in four dimensions.
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1.2 Quick review of S-expansion process

In the following, we give a review of the concepts of S-expansion, reduction and
resonance [20,23].

The S-expansion procedure consists in combining the structure constants of
a Lie algebra g with the inner multiplication law of a semigroup S, to define the
Lie bracket of a new S-expanded algebra gS = S × g.

Let S = {λα}, with α = 1, ..., N , be a finite, abelian semigroup with two-
selector K γ

αβ defined by

K γ
αβ =

{
1, when λαλβ = λγ ,

0, otherwise.
(1.2.1)

Let g be a Lie algebra with basis {TA} and structure constants C C
AB , defined

by the commutation relations

[TA, TB ] = C C
AB TC . (1.2.2)

Denote a basis element of the direct product S × g by T(A,α) = λαTA, and
consider the induced commutator[

T(A,α), T(B,β)

]
≡ λαλβ [TA, TB ] . (1.2.3)

It can be showed (see Ref. [20]) that the product

gS = S × g (1.2.4)

corresponds to the Lie algebra given by[
T(A,α), T(B,β)

]
= K γ

αβ C C
AB T(C,γ), (1.2.5)

whose structure constants can be written as

C
(C,γ)

(A,α)(B,β) = K γ
αβ C

C
AB . (1.2.6)

The product [ · , · ] defined in (1.2.5) is also a Lie product, because it is linear,
antisymmetric, and satisfies the Jacobi identity. This product defines a new
Lie algebra (characterized by (gS , [·, ·])), which is called S-expanded Lie algebra.
This implies that, for every abelian semigroup S and Lie algebra g, the algebra
gS obtained through the product (1.2.4) is also a Lie algebra, with a Lie bracket
given by (1.2.5).

Reduced algebras

The concept of reduction of Lie algebras, and in particular 0S-reduction, was
introduced in [20]. It involves the extraction of a smaller algebra from a S-
expanded Lie algebra gS , when certain conditions are met.

Let us consider a Lie algebra g of the form g = V0 ⊕ V1, where V0 and V1

are two subspaces respectively given by V0 = {Ta0} and V1 = {Ta1}. When
[V0, V1] ⊂ V1, that is when the commutation relations between generators
present the following form

[Ta0 , Tb0 ] = C c0
a0b0

Tc0 + C c1
a0b0

Tc1 , (1.2.7)

[Ta0 , Tb1 ] = C c1
a0b1

Tc1 , (1.2.8)

[Ta1 , Tb1 ] = C c0
a1b1

Tc0 + C c1
a1b1

Tc1 . (1.2.9)
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It can be seen hat the structure constants C c0
a0b0

satisfy the Jacobi identity
themselves, and therefore

[Ta0 , Tb0 ] = C c0
a0b0

Tc0 (1.2.10)

itself corresponds to a Lie algebra, which is called reduced algebra of g ∗. The
authors also thought to call it: Forced algebra. As we will see later, this name
may be more appropriate.

Let see how a reduced algebra emerge from a particular S-expansion. Let us
consider an abelian semigroup S and the S-expanded (super)algebra gS = S×g.
When the semigroup S has a zero element 0S ∈ S (also denoted with the symbol
λ0S ≡ 0S in the literature), this element plays a peculiar role in the S-expanded
(super)algebra, as shown in [20]. In fact, we can split the semigroup S into
non-zero elements λi, i = 0, ..., N , and a zero element λN+1 = 0S = λ0S . The
zero element λ0S is defined as one for which

λ0Sλα = λαλ0S = λ0S , (1.2.11)

for each λα ∈ S. Under this assumption, we can write S = {λi}∪{λN+1 = λ0S},
with i = 1, ..., N (the Latin index run only on the non-zero elements of the
semigroup). Then, the two-selector satisfies the relations

K j
i,N+1 = K j

N+1,i = 0,

K N+1
i,N+1 = K N+1

N+1,i = 1,

K j
N+1,N+1 = 0,

K N+1
N+1,N+1 = 1,

from the viewpoint of multiplication rules,

λN+1λi = λN+1, (1.2.12)

λN+1λN+1 = λN+1. (1.2.13)

Therefore, for gS = S × g we can write the commutation relations[
T(A,i), T(B,j)

]
= K k

ij C C
AB T(C,k) +K N+1

ij C C
AB T(C,N+1), (1.2.14)[

T(A,N+1), T(B,j)

]
= C C

AB T(C,N+1), (1.2.15)[
T(A,N+1), T(B,N+1)

]
= C C

AB T(C,N+1). (1.2.16)

If we now compare these commutation relations with (1.2.7), (1.2.8), and (1.2.9),
we see clearly that [

T(A,i), T(B,j)

]
= K k

ij C C
AB T(C,k) (1.2.17)

are the commutation relations of a reduced Lie algebra generated by {T(A,i)},
whose structure constants are K k

ij C C
AB .

The reduction procedure, in this particular case, is equivalent to the impo-
sition of the condition

TA,N+1 = λ0STA ≡ 0STA = 0. (1.2.18)

∗Let us observe that, in general, a reduced algebra does not correspond to a subalgebra
(see Ref. [20] for further details).
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We can notice that, in this case, the reduction abelianize large sectors of the
(super)algebra, and that for each j satisfying K N+1

ij = 1 (that is λ0Sλj =
λN+1), we have [

T(A,i), T(B,j)

]
= 0. (1.2.19)

The above considerations led the authors of [20] consider that, whenever we
have an abelian semigroup with a zero element 0S ∈ S, and let gS = S × g be
an S-expanded algebra, the algebra obtained by imposing the condition

λ0STA ≡ 0STA = 0 (1.2.20)

on gS (or on a subalgebra of it) generate a 0S-reduced algebra of gS (or of
the subalgebra). Futhermore, as we will see next, when a 0S-reduced algebra
presents a structure which is resonant with respect to the structure of the semi-
group involved in the S-expansion process, the procedure takes the name of
0S-resonant-reduction.

Resonant subalgebras for a semigroup

Another way to get smaller algebras from S× g, which strongly depends on the
structure of the semigroup involved in the process is through resonance, it will
be described below.

Let g =
⊕

p∈I Vp be a decomposition of g into subspaces Vp, where I is a set
of indices. For each p, q ∈ I it is always possible to define the subsets i(p,q) ⊂ I,
such that

[Vp, Vq] ⊂
⊕

r∈i(p,q)

Vr, (1.2.21)

where the subsets i(p,q) store the information on the subspace structure of g.
Now, let S =

⋃
p∈I Sp be a subset decomposition of the abelian semigroup

S, such that

Sp · Sq ⊂
⋃

r∈i(p,q)

Sr, (1.2.22)

where the product Sp · Sq is defined as

Sp · Sq = {λγ | λγ = λαpλαq , with λαp ∈ Sp, λαq ∈ Sq} ⊂ S. (1.2.23)

When such subset decomposition S =
⋃
p∈I Sp exists, then, we say that this de-

composition is in resonance with the subspace decomposition of g, g =
⊕

p∈I Vp.
The resonant subset decomposition is essential in order to extract, systemati-

cally, subalgebras from the S-expanded algebra gS = S×G, as it was enunciated
and proven with the following theorem in Ref. [20] (This theorem corresponds
to Theorem IV.2 of Ref. [20]. Its proof can be found in the same reference [20]):

Theorem 1. Let g =
⋃
p∈I Vp be a subspace decomposition of g, with a struc-

ture described by equation (1.2.21), and let S =
⋃
p∈I Sp be a resonant subset

decomposition of the abelian semigroup S, with the structure given in equation
(1.2.22). Define the subspaces of gS = S × g as

Wp = Sp ⊗ Vp, p ∈ I. (1.2.24)

Then,

gR =
⊕
p∈I

Wp (1.2.25)

is a subalgebra of gS = S × g, called resonant subalgebra of gS.
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Invariant tensor

Given a Lie Algebra and a discrete abelian semigroup, the method allows us
to construct, directly, new Lie Algebras with their corresponding non-trivial
invariant tensors [20,23,24].

Theorem VII.2 of Ref. [20]: Let S be an abelian semigroup with nonzero
elements λi, i = 0, . . . , N and λN+1 = 0S . Let g be a Lie (super)algebra of basis
{TA}, and let 〈TA0 · · ·TAn〉 be an invariant tensor for g. The expression

〈T(A1,i1), . . . T(An,in)〉 = αjK
j

i1···in〈TA1
, . . . TAn〉 (1.2.26)

where αj are arbitrary constants, corresponds to an invariant tensor for the
0S-reduced algebra obtained from gS = S × g. Proof: the proof may be found
in section 4.5 of Ref. [20].

1.3 Geometrical aspects of S-expansion Proce-
dure

In order to know certain limits and applicability of the simple S-expansion
process through semigroups (simple means without resonance or reduction) we
will look at their effects at geometric levels, such as the Killing Cartan (KC)
metric and the dimension of a respective algebra.

1.3.1 Visualizing the S-expansion through Killing-Cartan
inner product

The commutator of an arbitrary element Z = zaTa in some algebra is

[Z, Ta] = R(Z) ba Tb. (1.3.1)

where R(X) ba play the role of constant structure and correspond to the adjoint
or regular representation of Z.

Let X be a vector of the vector space g, with generators Ta ∈ g, a = 1, . . . , N .
The Killing-Cartan form of a Lie algebra is a symmetric bilinear form given
by [11]:

(X,X) =Tr (R(X)R(X))

=Tr
(
vaR(Ta)vbR(Tb)

)
=Trvavb

(
R(Ta)cdR(Tb)

d
c

)
=Trvavb (Ca)

c
d (Cb)

d
c . (1.3.2)

The inner product of Killing-Cartan provides information about the geometry
of the manifold of the group in a neighborhood of identity. The information is
obtained in terms of compactness, not compact or nilpotency of the group. This
information can be extrapolated to the rest of the manifold using the fact that
a Lie group is a “geodesically complete” manifold, i.e., we can reconstruct it
completely through the process of exponentiation of algebra. The vector space
of the Lie algebra can be divided into three subspaces under the Cartan-Killing

12



inner product. The inner product is positive-definite, negative-definite, and
identically zero. These three subspaces are denoted by

g = V+ + V− + V0. (1.3.3)

The subspace V0 is a subalgebra of g. It is the largest nilpotent invariant
subalgebra of g. Under exponentiation, this subspace maps onto the maximal
nilpotent invariant subgroup in the original Lie group.

The subspace V− is also a subalgebra of g. It consists of compact operators.
That is, the exponential of this subspace is a subset of the original Lie group
that is parameterized by a compact manifold. It also forms a subalgebra in g
(not invariant).

Finally, the subspace V+ is not a subalgebra of g. It consists of noncompact
operators. The exponential of this subspace is parameterized by a noncompact
submanifold in the original Lie group.

The decomposition of an algebra g in these subspaces implies that in the
quadratic form (X,X) of the group, there are summands with different signs
representing the spaces denoted as V−, V+, and V0.

The character of an algebra, denoted with the symbol χ, measures the degree
of compactness of the manifold of the group within a limited range of integer
values. The character of an algebra is defined as follows [11]:

χ =

 Number of
non-compact
generators

−
Number of

compact
generators

 , (1.3.4)

which is the trace of the normalized Cartan-Killing form. In the following we
will analyze the product of KC under the procedure of S-expansion and we will
obtain interesting information.

If XS is a vector of the vector space S×g with S-expanded generators T(α,a),
then we introduce the inner product as the Killing-Cartan product

(XS , XS) ≡ tr (R(XS)R(XS)) (1.3.5)

where of course R(XS) is the adjoint representation of XS , just like in (1.3.2).
Therefore, we have

(XS , XS) =tr (R(X)R(X))

=v(α,a)v(β,b)R(T(α,a))
(δ,d)
(γ,c)R(T(α,a))

(γ,c)
(δ,d)

=v(α,a)v(β,b)Kδ
αγK

γ
βδ(Ca)dc(Cb)

c
d

=v(α,a)v(β,b)Kδ
αγK

γ
βδ (Ta, Tb) ,

where Ta ∈ g. Therefore, we see that the product of Killing-Cartan of g under-
goes a change due to the presence of the K-selectors.

Because of the Killing-Cartan product, of the original algebra appears im-
mersed in the Killing-Cartan product of the expanded algebra, the calculations
are simplified. Since a metric is a symmetric bilinear form, we can use the spec-
tral theorem, to obtain the corresponding diagonal metric. This theorem states
that every real symmetric matrix is diagonalizable in R.
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This means that exist a transformation such that X −→ X̃ allows to write(
X̃, X̃

)
= 0, ∀a 6= b. So that(

X̃, X̃
)

= ṽ(α,a)ṽ(β,b)
(
X̃a, X̃b

)
, (1.3.6)

therefore the Killing-Cartan product of the expanded algebra, takes the form(
X̃, X̃

)
S

= ṽ(α,a)ṽ(β,b)Kδ
αγK

γ
βδ

(
X̃a, X̃b

)
6= 0, when a = b. (1.3.7)

However not all matrices are diagonalizable. The decomposition of a matrix in
Jordan canonical form is a decomposition that generalizes the notion of diago-
nalization. The interesting thing about this decomposition is that every matrix
can be brought into its canonical form, i.e., any matrix A can be written in the
form A = SJS−1, where J is known as Jordan matrix.

This means that for each value of the index “a”, the values that can take
the pair of indices {α, β} will play the role of labeling new coordinates unlike
the index set {γ, δ} whose role is of geometrical nature. For this reason we use
the indices {i, j} to denote {α, β}. Thus, we have

(
X̃, X̃

)
S

=

dim(g)=N∑
a

P∑
i,j,γ,δ

ṽ(i,a)ṽ(j,a)Kδ
iγK

γ
jδ

(
X̃a, X̃b

)
(1.3.8)

From now on, we use the Einstein convention of repeated indices to avoid ex-
cessive notation.

Note that although the original metric is diagonal, the expanded metric
doesnt need to be diagonal. This is because the coordinates of the new S × G
vector space, denoted as ṽ(i,a), has indices of the semigroup S. To see this, we
define

MK = Kδ
iγK

γ
jδ. (1.3.9)

This is a matrix of P × P dimensions which contains, through its entries (i, j),
the multiplication rules of the semigroup (where greek indices run from 0 to P ,
representing the semigroup elements). Thus, we have for the KC-form of the
S-expanded algebra:

(XS , XS) =
(
v̂(i,a)

)
1×(P ·N)

(gS)ab

(
v̂(i,a)

)
(P ·N)×1

(1.3.10)

where

(gS)ab =

%1 (MK) 0
. . .

0 %N (MK)


(P ·N)×(P ·N)

(1.3.11)

is the new metric tensor.
To simplify the notation we can summarize by writing the two Killing-Cartan

form; the first one (we write the diagonal form without lose generality), has the
form

(X,X) = v̂agaav̂
a, (1.3.12)
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where gab is the metric tensor and the KC-form for the S-expanded algebra has
the form

(XS , XS) = v̂(i,a)(gS)abv̂
(j,a). (1.3.13)

where (gS)ab is a kind of direct product of the MK matrix and gab, because
basically every entry of the original metric tensor is multiplied by the matrix
MK ;

gab −→ (gS)ab = MK ⊗ gab. (1.3.14)

From here we can take some interesting properties of the subspaces involved in
S-expansion [25]. For example, we can study the change in the signature of the
metric tensor with respect to the signature of the original metric. If we denote
as l the number of the entries which has positive signature and m which has
negative signature, (+1,+2, . . . ,+l,−1,−2, . . . ,−m) and l + m = N , where is
good remember that N is the dimension of the semigroup (quantity of elements),
we see how the signature can change of the metric tensor with the S-expansion.
There will be a change of sign for each of the N matrices MK . This means that
the dimension of the original algebra, as well as the dimension of its subspaces
plays a crucial role in the study of the final signature of the metric. If the
dimension of the metric is N = 2n for some n ∈ N and p ∈ N, then, there will
be, necessarily, an even number of sign changes in the diagonal: Even numbers
form a semigroup under multiplication and similarly for N = 2n+ 1.

Before analyzing how subspaces change, we will remember and define certain
quantities that we will need next

Dimension of g =N,

Number of elements of the semigroup S =P,

Number of negative eigenvalues of MK =Q

Numer of null eigenvalues on MK =H.

In the number of diagonal elements of the S-expanded metric tensor (gS)ab the
zeros that come from the original algebra should be considered, which may have
nilpotent subalgebras or subspaces.

Following the analysis performed in the reference [25], the dimensions of the
new subspaces of S × g are related to (1.3.3) as

Ran(V−)S =Ran(V−) (P −H −Q) + Ran(V+)Q, (1.3.15)

Ran(V+)S =Ran(V+) (P −H −Q) + Ran(V−)Q, (1.3.16)

Ran(V0)S =Ran(V0) + [Ran(V+) + Ran(V−)]H. (1.3.17)

where (V−)S , (V+)S and (V0)S are the subspaces of gS and V+, V− and V0 the
subspaces of g. These are three very simple equations that tell us about some
features that has to have the semigroup to produce the S-expansion between
two algebras of which we know its size and those of its subspaces. These have
implications in the character of the algebra χ (see eq. (1.3.4)):

χS = χ (P −H − 2Q) . (1.3.18)

Then, the matrix MK has to have these requirement, and that allows us to
think that maybe it is possible search a good (semi)group to stablish the link
between two algebras, but this can work only in low dimensions matrices MK

and as we see later, the standard S-expansion is very limited in comparison if
include also resonance and reduction.

15



Effects on a vector

An interesting consequence of the above property is that Kδ
αγK

γ
αδ affects the

measurement of the length of the original basis vectors Xa ∈ g. Indeed, let
be XΦ a basis vector of gS = S × g, where Φ = (α, a) are the indices of the
S-expanded algebra

‖ XΦ ‖=
√

(XΦ, XΦ) =
√

Tr(R(XΦ)R(XΦ))

=
√
R(XΦ) Θ

Ω R(XΦ) Ω
Θ =

√
(CΦ) Θ

Ω (CΦ) Ω
Θ

=
√

(C(α,a))
(β,b)

(γ,c) (C(α,a))
(γ,c)

(β,b)

=
√
Kδ
αγK

γ
βδ

√
C b
ac C

c
ab =

√
Kδ
αγK

γ
βδ

√
gaa

=
√
Kδ
αγK

γ
βδ ‖ Xa ‖

The general case:

‖ XΦ ‖= v(α,a)
√
Kδ
αγK

γ
βδ ‖ Xa ‖ . (1.3.19)

This means that the metric tensor components experience a rescaling.
The S-expansion procedure affects the angle between two vectors in the

V+ + V− = (S × g)/V0 ⊆ S × g space. Therefore,

cos θS =
(XΦ, XΦ)

‖ (XΦ, XΦ) ‖2

=
Kδ
αγK

γ
βδ√

Kδ
αγK

γ
βδ

√
Kδ
αγK

γ
βδ

cos θ.

In general, we find that

(v(α,a)X(α,a), v
(β,b)X(β,b)) = v(α,a)v(β,b)

Kδ
αγK

γ
βδ√

Kδ
αγK

γ
αδ

√
Kδ
βγK

γ
βδ

cos θ. (1.3.20)

from we can see that the following conditions:√
Kδ
αγK

γ
αδ ·

√
Kδ
βγK

γ
βδ 6= 0 (1.3.21)

must be fulfilled. These results lead to define a number which depends on
the composition law of the semigroup.

1.3.2 No-simplicity of S-expanded algebra

There are another restrictions that must be satisfied in the process of pure
S-expansion. A simple Lie algebra is one that has no nontrivial ideals and
cannot be expressed as a direct sum of other Lie algebras. This fact leads to
the important result that a Lie algebra obtained by S-expansion of another Lie
algebra cannot be simple.

To see this, we consider a square matrix Kγ
αβ of order and range P , where

P will have nonzero eigenvalues and can be expressed in the diagonal form
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(eigenvalues in the diagonal). This matrix is a faithful 3-dimensional matrix
representation of any abelian, discrete, and finite semigroup. In the other hand,
Adj(g) is the adjoint representation of some algebra. Then, we have that, for
the adjoint representation for gS = S × g we must write

Kγ
αβ ⊗Adj(g) =


%0

(
Kγ
αβ

)
0

. . .

%P−1

(
Kγ
αβ

)
 (1.3.22)

=%0

(
Kγ
αβ

)
⊕ · · · ⊕ %P−1

(
Kγ
αβ

)
≡ Adj (gS) . (1.3.23)

This means that if Adj(g) is the adjoint representation of an arbitrary Lie alge-
bra g and if Kγ

αβ is a faithful matrix representation of an abelian, discrete, and
finite semigroup S, then Adj(gS) is the adjoint representation of a non-simple
Lie algebra, given by the direct sum of P Lie algebras g (which can be simple or
not). This will occur when the rank of the matrix Kγ

αβ is equal to the number
of elements of the semigroup S.

This result leads to state the following.

Theorem 2. If S is a finite, discrete, and abelian semigroup and if g is an
arbitrary Lie algebra, then the product space S × g is a non-simple Lie algebra
consisting of the direct sum of P original Lie algebras g, where P is the number
of elements of the semigroup S.

Proof. The case in which this is not valid is only if the matrix has a lower rank
than P , then will have two equal or proportional rows or alternatively a third
row that is a linear combination of other linearly independent rows.

But, we see in the next that it is impossible for rows or columns to repeat
themselves. we can write Kγ

αβ in the form

(Kα)βγ =



(Kr)
0
0 · · · (Ku)

x
0 · · · (Kx)

P−1
0

...
. . .

...

(Ks)
0
i · · · (Kv)

x
i (Ky)

P−1
i

...
. . .

...

(Ks)
0
P−1 · · · (Kv)

x
P−1 (Ky)

P−1
P−1


(1.3.24)

We will use the indices i, j, k, r with j 6= r (e.g., j < r). The operation between
the ith and jth element of the semigroup, results in the kth element of the
semigroup. The corresponding matrix element is (Ki)

j
k , which is located in

the jth row and kth column of the matrix. If there is an ith row equal or
proportional to it, then there is also an element of the form C(Kj)

r
i , which is

not in the kth column because if the rows were equal, then the element in the
row belonging to the kth column will have the form (Ki)

i
k , for which k 6= r.

This has the consequence that λiλj = λk and λjλi = λr with λk, λr implying
that λiλj 6= λjλi.

This contradicts the condition of abelian semigroup S. Therefore, the matrix
has no equal (or proportional) rows. Similarly, it is proved that the matrix does
not have equal (or proportional) columns.
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i - i i
Figure 1.1: Dynkin diagram in the left correspond to so(3) and in the right the
so(4). The row means the S-expansion procedure. Source: self made.

Example: so(3) to so(4)

In the theorem 2, from the point of view of Dynkin diagram [11], the S-expansion
procedure just copy the Dynkin diagram P times. A good interesting example
is so(3) and so(4). so(4) is precisely the repetition of so(3), see Figure 1.1.

In fact, the repetition of Dynkin diagrams always happens in a S-expansion
procedure. Then, we can reproduce the same result with a general group of P
elements with the simple rule λiλi = λi, which correspond to have g ⊕ · · · ⊕ g
P -times, and the big difference if we use another semigroup in a S-expansion
procedure will be only the change of basis.

Then, we rediscover the (semi)groups which work for the S-expansion be-
tween so(3) and so(4). We consider first that

χso(3) =− 3 χso(4) =− 6

Ran(V−)so(3) =− 3 Ran(V−)so(4) =− 6

Ran(V+)so(3) =0 Ran(V+)so(4) =0

Ran(V0)so(3) =0 Ran(V0)so(4) =0

Then, using equations (1.3.15), (1.3.16), (1.3.17) and (1.3.18) we have

P = 2, H = 0, Q = 0.

Then, we must consider

MK =

(
Kα

1βK
β
1α Kα

1βK
β
2α

Kα
2βK

β
1α Kα

2βK
β
2α

)
=

(
a b
c d

)
where a, b, c, d = 0, 1, 2. From the condition (1.3.21)

(a+ c)(a+ c) 6=0

then a, c 6= 0. Also the eigenvalues are positives (Q,H = 0), then

0 < %1,2 =
1

2
a+

1

2
c±

√
a2 − 2ac+ 4b2 + c2,

such that
ac > b2.

Even with these conditionsthere are many matrices. But basically we have two
kinds:

(MK)1 =

(
2 0
0 2

)
, (MK)2 =

(
2 1
1 1

)
(1.3.25)
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These matrices are the only matrices that generates two different tables of semi-
group; that is, respect associativity.

We can apply an analitiyc procedure as shown in [25] or, a good alternative,
is to use a computer program to find the matrices that have the specific require-
ment and the respective table of the semigroup. Following [25] we found two
different semigroups which connect so(3) with so(4). These groups are

Z2 and S0
E . (1.3.26)

The respective semigroups tables are:

· λ1 λ2

λ1 λ1 λ2

λ2 λ2 λ1

,
· λ1 λ2

λ1 λ2 λ1

λ2 λ2 λ1

. (1.3.27)

The above outcomes allow to state: The semigroup which leads from a Lie
algebra to another by S-expansion method is not necessarily unique.

The Z2 generate the S-expanded algebra with different commutators rules,
but the change of basis between these two sistem is

J ′a = Ja − 2Pa, P ′a = Pa. (1.3.28)

The S
(0)
E semigroup is the disjoint semigroup, because follows the same rules of

disjunction.

1.4 Finding the suitable (semi)group for a reso-
nance reduced procedure

In the last section we see how the geometry changes of a S-expanded algebra,
involving a strong restriction about the final algebra is a non-simple algebra (see
Theorem 2). Neverless, the process to find a new algebra using S-expansion is
more rich if we consider resonance and reduction (see chapter 1).

In this section we describe an analytic method able to give the multiplication
table(s) of the set(s) involved in an S-expansion process (with either resonance or
0S-resonant-reduction) for reaching a target Lie (super)algebra from a starting
one, after having properly chosen the partitions over subspaces of the considered
(super)algebras. This analytic method gives us a simple set of expressions to
find the subset decomposition of the set(s) involved in the process. Then, we use
the information obtained from both, the initial (super)algebra and the target
one for reaching the multiplication table(s) of the mentioned set(s). Finally, we
check associativity with an auxiliary computational algorithm, in order to un-
derstand whether the obtained set(s) can describe semigroup(s) or just abelian
set(s) connecting two (super)algebras. We also give some interesting examples
of application, which check and corroborate our analytic procedure and also
generalize some result already presented in the literature.

The first step to make this construction is consider a finite Lie (super)algebra
g, which can be decomposed into N subspaces VA, with A = 0, 1, . . . , N−1, and
can be written as their direct sum, namely g =

⊕
A ṼA. Then, let us consider

the algebra to which we want to go, the target Lie (super)algebra gRR (not
confuse with target manifold) (where the label SRR stands for “S-expanded, (S-
)resonant-reduced”), which can analogously be decomposed into N subspaces
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VA, with A = 0, 1, . . . , N − 1, and can be written as their direct sum, namely
gRR = ⊕AVA.

We will denote each of this subsets with S∆A
, where the composed index ∆A

expresses both, the cardinality (number of elements) of each subsets (capital
Greek index, ∆), and the subspace associated (capital Latin index, A,B,C, ...).
The association between the subsets and the (super)algebra subspaces is unique
(under the resonance condition), and we will see that, for each value of A, we
will have a unique value for the corresponding index ∆. This is the reason why
we are using this composite index.

Thus, let us consider the decomposition of the set S̃ in terms of its subsets:

S̃ = t∆A
S∆A

, (1.4.1)

where with the symbol t we mean the disjoint union of sets.
We can now use this general decomposition and perform a 0S-resonant-

reduced process ∗, linking the original Lie (super)algebra G and the target one
GSRR . In this way, we get

GSRR = Ṽ0 ⊕ Ṽ1 ⊕ · · · ⊕ ṼN−1 =

= (S∆0 ⊗ V0)⊕ ({λ0S} ⊗ V0)⊕

⊕ (S∆1 ⊗ V1)⊕ ({λ0S} ⊗ V1)⊕

⊕ · · · ⊕
(
S∆N−1

⊗ VN−1

)
⊕ ({λ0S} ⊗ VN−1) ,

(1.4.2)

Since we can factorize the zero element, the above relation can be simply rewrit-
ten as

GSRR = Ṽ0 ⊕ Ṽ1 ⊕ · · · ⊕ ṼN−1 =

=
[
(S∆0 ⊗ V0)⊕ (S∆1 ⊗ V1)⊕ · · · ⊕

(
S∆N−1

⊗ VN−1

)]
⊕ ({λ0S} ⊗ G) .

(1.4.3)
As we have said above, equation (1.4.3) comes from the study of a 0S-resonant-
reduced process, which we can be written in a more formal way as

GSRR = Ṽ0 ⊕ Ṽ1 ⊕ · · · ⊕ ṼN−1 = (1.4.4)

=
[
S̃ 	

(
t∆A6=0

S∆A
⊕ λ0S

)]
⊗ V0 ⊕

⊕
[
S̃ 	

(
t∆A6=1

S∆A
⊕ λ0S

)]
⊗ V1 ⊕

⊕ · · · ⊕
[
S̃ 	

(
t∆A 6=N−1

S∆A
⊕ λ0S

)]
⊗ VN−1 =

=

N−1⊕
T=0

[
S̃ 	

(
t∆A6=T S∆A

⊕ λ0S

)]
⊗ VT ,

∗A process which involves only resonance would be a simpler one, and it will be briefly
treated in the following.
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where we have denoted with ⊕ and 	 the direct sum and subtraction over
subsets, respectively.

From expression (1.4.4), taking into account the dimensions of the subspaces
involved in the partitions of the considered (super)algebras, the following system
of N + 1 equations result:

dim
(
Ṽi

)
= dim (Vi)

P̃ − 1−
N−1∑
A6=i

∆A

 , (1.4.5)

P̃ =

N−1∑
A

∆A + 1, (1.4.6)

where i = 0, . . . , N − 1 and in the last expression we have P̃ ≥ P (let us
remember that P is the total number of elements of the set S̃), and the +1
contribution is given by the presence of the zero element λ0S .

We can rewrite the system above in the following simpler form (which comes
directly from relation (1.4.3)):

dim
(
Ṽi

)
= dim (Vi) (∆i) ,

P̃ =

N−1∑
A

∆A + 1.
(1.4.7)

If this system admits a solution (which, if exists, is unique), then we will im-
mediately know, for construction, that it is possible to reach a S-expanded, 0S-
resonant-reduced (super)algebra GSRR starting from the initial Lie (super)algebra
G with the considered partition over subspaces, and we will also know the way in
which the elements of S̃ are distributed into different subsets, i.e. the cardinality
of the subsets associated with the subspaces of the initial Lie (super)algebra.

In fact, knowing the dimensions of the partitions of both the initial and
the target (super)algebra, the system (1.4.7) can be solved with respect to the
variables

P̃ , ∆A, A = 0, ..., N − 1, (1.4.8)

and the solution (1.4.8) admits only values in N.
We can observe that the system (1.4.7) admits solution if and only if the

dimensions of the subspaces of the target (super)algebra are proportional (mul-
tiples) to the dimensions of the respective subspaces of the initial one, and this
is the reason why, if the system (1.4.7) admits a solution, this solution is triv-
ially unique. Furthermore, this system admits solutions only if the number of
subspaces in the partition of the target (super)algebra is equal to the number
of subspaces in the partition of the starting one. These considerations offer a
criterion to properly choose a partition over subspaces for both the initial and
the target Lie (super)algebras, namely:

1. The number of subspaces in the partition of the target (super)algebra
must be equal to that of the starting (super)algebra;

2. The dimensions of the subspaces of the target (super)algebra must be
multiples of the dimensions of the respective subspaces of the initial one.
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Once these two conditions over the partitions are met, one is able to develop our
analytic method and find all the semigroup(s), with respect to the chosen
partitions, linking the considered (super)algebras.

We observe that the system (1.4.7) can also be solved when considering
an S-expansion including just a resonant processes, since it also contains the
subsystem in which we can clearly see that we are now considering the variable
P̃ =

∑N−1
A ∆A without the +1 contribution, whose presence was due to the

inclusion of the zero element λ0S . In this case, the solution to the system is
unique again, and the considerations done for the 0S-resonant-reduced case still
hold.

At this point, we know the cardinality of each of the subsets of the set S̃
involved in the process. Now we can understand something more about the
multiplication rules of the set S̃, by studying the adjoint representation of the
initial Lie (super)algebra with respect to the partition over subspaces.

The subspaces of the initial (super)algebra, we can now write, according to
the usual S-expansion procedure (as it was done in [20]), the relations

[(S∆A
⊗ VA)⊕ ({λ0S} ⊗ VA) , (S∆B

⊗ VB)⊕ ({λ0S} ⊗ VB)] =

=
(
K

(∆C)
(∆A)(∆B)(C)CAB

)
[(S∆C

⊗ VC)⊕ ({λ0S} ⊗ VC)] ,
(1.4.9)

where we have also taken into account the presence of the zero element in the
set S̃, since we have considered a 0S-resonant-reduction process. A process in-
volving only resonance would be a simpler one, and it would require a similar
(but simpler) analysis, since, in that case, one would relax the reduction con-
dition. Here, the composite index ∆A, ∆B , and ∆C label, as said before, the
cardinality of the different subsets (labeled with the capital Greek index ∆),
uniquely associated with the different subspace partitions (labeled with capital
Latin index).

If the subspaces involving the linear combination of generators were coupled
with different elements of S̃, we would have

[({λα,∆A
} ⊗ VA)⊕ ({λ0S} ⊗ VA) , ({λβ,∆B

} ⊗ VB)⊕ ({λ0S} ⊗ VB)] =

=
(
K

(γ1,∆C)
(α,∆A)(β,∆B)(C)CAB

)
[({λγ1,∆C

} ⊗ VC)⊕ ({λ0S} ⊗ VC)] +

+
(
K

(γ2,∆C)
(α,∆A)(β,∆B)(C)CAB

)
[({λγ2,∆C

} ⊗ VC)⊕ ({λ0S} ⊗ VC)] +

...

+
(
K

(γn,∆C)
(α,∆A)(β,∆B)(C)CAB

)
[({λγn,∆C

} ⊗ VC)⊕ ({λ0S} ⊗ VC)] ,

(1.4.10)
where with λα,∆A

we denote an arbitrary element λα contained in the subset
SA, associated with the subspace VA, with cardinality ∆, and where

K
(γ1,∆C)
(α,∆A)(β,∆B) 6= K

(γ2,∆C)
(α,∆A)(β,∆B) 6= · · · 6= K

(γn,∆C)
(α,∆A)(β,∆B). (1.4.11)

Equations (1.4.10) and (1.4.11) would mean that different two-selectors were
associated with the same resulting element, which would break the uniqueness
of the internal composition law of the set S̃. Thus, since the composition law
associates each couple of elements in S̃ with a unique element of the set S̃, we
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can finally say that

[({λα,∆A
} ⊗ VA)⊕ ({λ0S} ⊗ VA) , ({λβ,∆B

} ⊗ VB)⊕ ({λ0S} ⊗ VB)] =

=
(
K

(γ,∆C)
(α,∆A)(β,∆B)(C)CAB

)
[({λγ,∆C

} ⊗ VC)⊕ ({λ0S} ⊗ VC)] .

(1.4.12)
It can also be said that, when the commutator of two generators of the original
Lie (super)algebra falls into a linear combination involving more than one gen-
erator, the intersection between the subsets of the set S̃ could be a non-empty
set, which means that the same element(s) will appear in more than one subset
of the set S̃.

We may observe that equation (1.4.9) can be rewritten in a simple form (due
to the fact that the left hand side produces commutation relations that trivially
conduce to the zero element of the set S̃), which reads

[S∆A
⊗ VA, S∆B

⊗ VB ] =
(
K

(∆C)
(∆A)(∆B)(C)CAB

)
[(S∆C

⊗ VC)⊕ ({λ0S} ⊗ VC)] ,

(1.4.13)
so as to highlight the information we need to know about the multiplication
rules between the elements in the set S̃.

Now, we can proceed with the development of our analytic method. The
relation (1.4.9) gives us a first view on the multiplication rules between the
elements of the set S̃, since it tells us the way in which the different subsets of
S̃ combine among each other, this mean that

(S∆A
∪ {λ0S}) · (S∆B

∪ {λ0S}) ⊂ S∆C
∪ {λ0S}, (1.4.14)

where the product “·” is the internal product of the set S̃, and thus between
its subsets. According to the relation in (1.4.13), equation (1.4.14) can also be
rewritten as

S∆A
· S∆B

⊂ S∆C
∪ {λ0S}. (1.4.15)

Thus, we have considered all the information coming from the starting (su-
per)algebra g, and we have obtained a first view on the multiplication rules of
the elements of the subsets of S̃. Now we can exploit the information coming
from the target (super)algebra, in order to fix some detail on the multiplication
rules and to construct the whole multiplication table describing the set S̃. This
step is based on the following identification criterion.

1.4.1 Identification criterion

It is now necessary to understand the structure of the whole multiplication table
of the set S̃. For this purpose, the other pieces of information we need to know,
come from the target Lie (super)algebra. In fact, at this point, we already know
the composition laws between the subsets of S, that is why we can write now
the following identification between the S-expanded generators of the initial Lie
(super)algebra and the generators of the target one:

T̃A = TA,α ≡ λαTA, (1.4.16)

where TA are the generators included in the subspace VA of the starting (su-
per)algebra and T̃A are the generators in the subspace ṼA of the target (su-
per)algebra, and where λα ∈ S̃ is a general element of the set S̃. But to get the
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rules of multiplication table we use (1.4.16) with a different notation; For each
element of the set S̃, associating each element of each subset with the generators
in the subspace related to the considered subset, that is, in our notation,

T̃A = λ(α,∆A)TA, (1.4.17)

where λ(α,∆A) ≡ λα ∈ S∆A
. With the identification (1.4.16), we can link the

commutation relations between the generators of the target (super)algebra with
the commutation relations of the S-expanded ones, and, factorizing the elements
of the set S̃, we have the chance of fixing the multiplication relations between
these elements. To this aim, we first observe that for the target (super)algebra
we can write the commutation relations[

T̃A, T̃B

]
= C̃ C

AB T̃C , (1.4.18)

where T̃A, T̃B , and T̃C are the generators in the subspaces ṼA, ṼB , and ṼC
of the partition over the target Lie (super)algebra, respectively (A,B,C ∈
{0, ..., N−1}). Here, with C̃ C

AB we denote the structure constants of the target

Lie (super)algebra, that is C̃ C
AB ≡ C

(C,γ)
(A,α)(B,β) , in the usual notation. Then,

by following the usual S-expansion procedure (see Ref. [20]), since for the initial
(super)algebra we can write

[TA, TB ] = C C
AB TC , (1.4.19)

where we have adopted the same notation used in the case of the target (su-
per)algebra, and where C C

AB are the structure constants of the initial Lie (su-
per)algebra, we are able to write the relations (1.2.5). We also report them here
for completeness: [

T(A,α), T(B,β)

]
= K γ

αβ C C
AB T(C,γ), (1.4.20)

namely
[λαTA, λβTB ] = K γ

αβ C C
AB λγTC , (1.4.21)

where the two-selector is defined by (1.2.1).
We now write the structure constants of the target (super)algebra in terms

of the two-selector and of the structure constants of the starting one, namely,
reporting equation (1.2.6) here for completeness,

C̃ C
AB ≡ C

(C,γ)
(A,α)(B,β) = K γ

αβ C
C

AB , (1.4.22)

and we exploit the identification (1.4.16) in order to write the commutation
relations of the target (super)algebra (1.4.18) in terms of the commutation re-
lations between the S-expanded generators of the starting one, factorizing the
elements of the set S̃ out of the commutators. In this way, we get the following
relations:

[λαTA, λβTB ] = K γ
αβ C C

AB λγTC , −→ λαλβ [TA, TB ] = K γ
αβ C C

AB λγTC .
(1.4.23)

If we now compare the commutation relations (1.4.23) with the ones of the
starting (super)algebra in (1.4.19), we are able to deduce something more about
the multiplication rules between the elements of S̃, that is:

λαλβ = λγ . (1.4.24)
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We have to repeat this procedure for all the commutation rules of the target
(super)algebra, in order to sculpt the multiplication rules between the elements
of the set S̃.

We observe that, during this process, the possible existence of the zero el-
ement in the set S̃, namely λ0S , can play a crucial role, since, in the case in
which the commutation relations of the target (super)algebra read[

T̃A, T̃B

]
= 0, (1.4.25)

and at the same time from the initial (super)algebra we have

[TA, TB ] 6= 0, (1.4.26)

putting all together the relations

[λαTA, λβTB ] = λαλβ [TA, TB ] = C C
AB λγTC = 0 (1.4.27)

and (1.4.26), we can conclude that

λαλβ = λ0S . (1.4.28)

Thus, at the end of the whole procedure, we are left with the complete
multiplication table(s) describing the set(s) S̃ involved in the S-expansion (with
either resonance or 0S-resonant-reduction) process for moving from an initial Lie
(super)algebra to a target one.

The final step consist in checking that S̃ is indeed an abelian semigroup.
This is done by checking the associativity of the multiplication table(s) (one of
the properties required by a set to be defined as a semigroup is, in fact, the
associative property). But as we will see in section 1.5.1 this is questionable.

1.5 Examples of application considering geomet-
rical aspects

In this section, we give some example of application of the analytic method
previously developed. We start with a simple example involving the Bianchi
Type I and the Bianchi Type II algebras, and then we move to more complicated
cases. In particular, the last example presented in this section involves the
supersymmetric Lie algebra osp(32/1) and the hidden superalgebra underlying
D = 11 supergravity, largely discussed in [22,26].

1.5.1 From the BTI algebra to the BTII

We apply the method previously explained in order to find the possible semi-
group(s) leading from the non-trivial Bianchi Type I algebra (BTI) to the
Bianchi Type II (BTII) one. To this aim, we first of all analyze the structures
of the initial algebra and of the target one. The only commutator different from
zero for the BTI algebra is

[X1, X2] = X1, (1.5.1)
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where X1 and X2 are the generators of the BTI algebra. For the BTII algebra,
instead, we have

[Y1, Y2] =0, (1.5.2)

[Y1, Y3] =0, (1.5.3)

[Y2, Y3] =Y1, (1.5.4)

where Y1, Y2, and Y3 are the generators of the BTII algebra.
Let us consider the following subspaces partition for the BTI algebra:

[V0, V0] ⊂V0, (1.5.5)

[V0, V1] ⊂V0 ⊕ V1, (1.5.6)

[V1, V1] ⊂V0, (1.5.7)

where we have set
V0 = {0} ∪ {X2}, V1 = {X1}. (1.5.8)

Similarly, we can write the subspaces partition for the target BTII algebra:[
Ṽ0, Ṽ0

]
⊂Ṽ0, (1.5.9)[

Ṽ0, Ṽ1

]
⊂Ṽ0 ⊕ Ṽ1, (1.5.10)[

Ṽ1, Ṽ1

]
⊂Ṽ0, (1.5.11)

where we have denoted with ṼA, A = 0, 1, the subspaces related to the target
algebra and where we have defined

Ṽ0 = {0} ∪ {Y3}, Ṽ1 = {Y1, Y2}. (1.5.12)

Let us observe that, in this way, we have the same partition structure both for
the initial algebra and for the target one.

We now follow the steps described in the analytic procedure of Section 1.4, in
order to obtain the possible abelian set(s) (with respect to the chosen partitions)
leading from the BTI algebra to the BTII one (see appendix A.1). Then, follow-
ing the identification criterion described in subsection 1.4.1, we have obtained
the “strong” multiplication rules

λcλa =λb, (1.5.13)

λbλa =λ0S . (1.5.14)

Let us notice that these multiplication rules are consistent with those previously
obtained along the procedure, when we have exploited the information coming
from the initial BTI algebra.

We are now able to write the following multiplication tables for the sets S̃’s
involved in the procedure:

λa λb λc λ0S

λa λa,0S λ0S λb λ0S

λb λ0S λa,0S λa,0S λ0S

λc λb λa,0S λa,0S λ0S

λ0S λ0S λ0S λ0S λ0S

(1.5.15)
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We can now perform the following identification:

λa = λ2, λb = λ3, λc = λ1, λ0S = λ4. (1.5.16)

Thus, we can rewrite tables (1.5.15) as follows (where the elements are written
in the usual order):

λ1 λ2 λ3 λ4

λ1 λ2,4 λ3 λ2,4 λ4

λ2 λ3 λ2,4 λ2,4 λ4

λ3 λ2,4 λ2,4 λ2,4 λ4

λ4 λ4 λ4 λ4 λ4

(1.5.17)

These are the multiplication tables of the possible sets S̃’s involved in the S-
expansion,0S-resonant-reduced procedure from the BTI algebra to the BTII one.
Here we see clearly that the tables described in (1.5.17) also include abelian sets
that cannot be defined as semigroup, since they do not possess the associative
property. Fortunately, for both the BTI and BTII algebras, each term of the
Jacobi identity is equal to zero (thus, the Jacobi identity is trivially satisfied),
and thus each possible combination of elements in (1.5.17) is valid for describing
an expansion procedure involving both resonance and reduction, without the
necessity of requiring associativity. Thus, the multiplication tables (1.5.17)
generalize the result previously obtained in [27].

But, as the S-expansion procedure has the requariment the use of a asso-
ciative set of discrete element, we need to find the table(s) in (1.5.15) which
describe semigroup(s) exploiting the required property of associativity and also
fix the degeneracy on it. The calculation is rather tedious to be performed by
hand, and we have done it with a computational algorithm. For completeness,
here we report only the significant relations for checking associativity by hand
and understanding which are the semigroups in (1.5.15):

(λcλc)λb = λc(λcλb) ⇒ λcλb = λ0S , (1.5.18)

(λcλa)λa = λc(λaλa) ⇒ λaλa = λ0S , (1.5.19)

(λcλb)λb = λc(λbλb) ⇒ λbλb = λ0S . (1.5.20)

After having checked associativity, we are thus left with the only degeneracy

λcλc = λa,0S . (1.5.21)

We can now substitute the index a, b, c, 0S with numbers. We perform again
the identification (1.5.16), and we write the multiplication tables thus obtained
in terms of λi, with i = 1, 2, 3, 4, in the usual order:

λ1 λ2 λ3 λ4

λ1 λ2,4 λ3 λ4 λ4

λ2 λ3 λ4 λ4 λ4

λ3 λ4 λ4 λ4 λ4

λ4 λ4 λ4 λ4 λ4

(1.5.22)

We observe that the abelian, commutative and associative tables (1.5.22) include
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the multiplication table of the semigroup SN2 described in [27], namely

λ1 λ2 λ3 λ4

λ1 λ2 λ3 λ4 λ4

λ2 λ3 λ4 λ4 λ4

λ3 λ4 λ4 λ4 λ4

λ4 λ4 λ4 λ4 λ4

(1.5.23)

which represents a possible semigroup for moving form a BTI algebra to a BTII
algebra, through a 0S-resonant-reduction procedure. The degeneracy appearing
in (1.5.22) (namely λ1λ1 = λ2,4) shows us that there are two possible semigroups
able to give the same result (one of them is the same described it [27], SN2, while
the other one is a new result that we have obtained with our analytic procedure).

We have thus given an example in which the method described in Section
1.4 allows us to find the semigroups for moving from the BTI algebra to a S-
expanded, 0S-resonant-reduced one (BTII), once the partitions over subspaces
have been properly chosen.

We can now try to achieve the same result, by considering an S-expansion
with only a resonant structure (relaxing the reduction condition). To this aim,
we study the system (1.4.7), following appendix A.2 we can thus conclude that,
in this case, our analytic method shows us the necessity of including a 0S-
reduction to the resonant process too. Thus, we can reach the following multi-
plication rules:

λaλa =λa,

λcλa =λb,

λb,cλb,c =λa,

λbλa =λ0S , (1.5.24)

and the multiplication table, after having performed the identification

λa = λ2, λb = λ3, λc = λ1, with the extra zero element λ0S = λ4,
(1.5.25)

reads

λ1 λ2 λ3

λ1 λ2 λ3 λ2

λ2 λ3 λ2 λ4

λ3 λ2 λ4 λ2

−→

λ1 λ2 λ3 λ4

λ1 λ2 λ3 λ2 λ4

λ2 λ3 λ2 λ4 λ4

λ3 λ2 λ4 λ2 λ4

λ4 λ4 λ4 λ4 λ4

(1.5.26)

Let us finally observe that table (1.5.26), which is abelian (but not associa-
tive), is included in the multiplication tables (1.5.17), previously obtained in
the context of 0S-resonant-reduction.

And if we choose another distribution of the subspaces?

The first step to find the corresponding semigroup is defining the subspaces in
the two algebras. Therefore, we will see now what happen if we modify the
equation (1.5.12) in the form

Ṽ0 = {0} ∪ {Y3}, Ṽ1 = {Y1, Y3}. (1.5.27)
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We consider now

λaX2 =Y2 λbX1 =Y1 (1.5.28)

λcX1 =Y3.

The procedure is exactly the same as before with the only modification in
the multiplication table when we use the identification criterion. Once again our
attention lies in the commutators and in this case the most important situation
is present in

[Y2, Y3] = [λaX2, λcX1] = λaλc [X2, X1] , (1.5.29)

since the commutator is equal to −X1, and for the same condition A.1.8 we
have the only difference with the table 1.5.15

λaλc = −λb.

This is clearly outside of the standard definition of (semi) group, but as we shall
see below, we follow the idea suggested in [20] and we use a ring in a expansion
instead of a semigroup, since the ring contemplates two mathematical operations
(+, · ). Thus, we could now be in the presence that the method proposed in [28]
shows the spectrum of possibilities that is needed to expand an algebra through
the direct product of the same with some other mathematical structure.

Let us briefly comment on what happens if we extend S-expansion by con-
sidering a ring instead of a semigroup. Let the next multiplication table with
two binary operations ( · ,+) where we introduce Grassmann variables:

· λa λb λc
λa 0S λc λb
λb −λc 0S λa
λc −λb −λa 0S

(1.5.30)

Then, if we have the Heisenberg Algebra h3 whose commutators are

[T1, T2] = T3, (1.5.31)

and we use resonance in the S-expansion, where T1 → λaT1, T2 → λbT2 and
T3 → λcT3, we obtain

{T1, T2} = T3. (1.5.32)

That is, one could get a superalgebra from a Lie algebra. I would only analyze
the non-triviality of Bianchi’s identities.

1.5.2 Hidden superalgebra and osp(32/1) D = 11 super-
gravity

With this example, we move to superalgebras, and in particular we concentrate
on the supersymmetric Lie algebra osp(32/1) and on the hidden superalgebra
underlying supergravity in eleven dimensions.

Simple supergravity in D = 11 was first constructed in [21]. The bosonic
field content of D = 11 supergravity is given by the metric gµν and by a 3-
index antisymmetric tensor Aµνρ (µ, ν, ρ, ... = 0, 1, ..., D − 1); The theory also
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presents a single Majorana gravitino Ψµ in the fermionic sector. By dimensional
reduction (as it was shown in [32]), the theory yields N = 8 supergravity in
four dimensions, which is considered a possibly viable unification theory of all
interactions.

An important task to accomplish was the identification of the supergroup un-
derlying the theory, and allowing the unification of all elementary particles in a
single supermultiplet, since a supergravity theory whose supergroup is unknown
is an incomplete one.

The need for a supergroup was already felt by the inventors of the theory, and
in [21] the authors proposed osp(32/1) as the most likely candidate. However,
the field Aµνρ of the Cremmer-Julia-Scherk theory is a 3-form rather than a
1-form, and therefore it cannot be interpreted as the potential of a generator in
a supergroup.

The structure of this same theory was then reconsidered in [22, 26], in the
Free Differential Algebra (FDA) framework, using the superspace geometric
approach. In [22], the supersymmetric FDA was also analyzed in order to see
whether the FDA formulation could be interpreted in terms of an ordinary Lie
superalgebra (in its dual Maurer-Cartan formulation), introducing the notion
of Cartan integrable systems. This was proven to be true, and the existence
of a hidden superalgebra underlying the theory was presented for the first time
(the authors got a dichotomic solution, consisting in two different supergroups,
whose 1-form potentials can be alternatively used to parametrize the 3-form).

This hidden superalgebra includes, as a subalgebra, the super-Poincaré alge-
bra of the eleven-dimensional theory, but it also involves two extra bosonic gen-
erators Zab, Za1···a5 (a, b, · · · = 0, 1, · · · 10), commuting with the 4-momentum
Pa and having appropriate commutators with the D = 11 Lorentz generators
Jab. The generators that commute with all the superalgebra but the Lorentz
generators can be named “almost central”.

Furthermore, to close the algebra, an extra nilpotent fermionic generator Q′

must be included. In the following, we will replace the notation in [22, 26] as
follows

Zab →Z̃ab, (1.5.33)

Za1...a5 →Z̃a1,...,a5 , (1.5.34)

Q′ →Q̃′, (1.5.35)

in order to be able to recognize the generators of the target superalgebra from
the generators of starting one, as we have previously done along the paper.

The bosonic generators Zab and Za1···a5 were understood as p-brane charges,
sources of dual potentials [35, 38]. The role played by the extra fermionic gen-
erator Q′ was much less investigated, and the most relevant contributions were
given first in [39], and then in particular in [40], where the results in [22] were
further analyzed and generalized.

In [26], the authors have shown that, as the generators of the hidden su-
per Lie algebra span the tangent space of a supergroup manifold, then, in the
geometrical approach, the fields are naturally defined in an enlarged manifold,
corresponding to the supergroup manifold, where all the invariances of the FDA
are diffeomorphisms, generated by Lie derivatives.

The extra spinor 1-form involved in the construction of the hidden superal-
gebra allows, in a dynamical way, the diffeomorphisms in the directions spanned
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by the almost central charges to be particular gauge transformations, so that
one obtains the ordinary superspace as the quotient of the supergroup over the
fiber subgroup of gauge transformations.

Now we will show that, with the analytic method developed in Section 1.4, we
are able to find the semigroup which is involved in the S-expansion (0S-resonant-
reduction) procedure for moving from the original osp(32/1) Lie algebra to the
hidden superalgebra underlying supergravity in eleven dimensions.

This achievement tell us that the method described in [22,26], which is based
on the development of the FDA in terms of 1-forms (the Maurer-Cartan formu-
lation of the FDA has a dual description in terms of commutation relations of
the considered Lie algebra, as it is shown in [41]), lead to the same result (that is,
to the same hidden superalgebra) that can be found performing a S-expansion
(0S-resonant-reduction) procedure from osp(32/1), with an appropriate semi-
group. We will display the multiplication table of the mentioned semigroup in

the following, and we will see that it is the semigroup S
(3)
E , which satisfies the

multiplication rules

λαλβ =

{
λα+β , when α+ β 6 4,

λ4, when α+ β > 4.
(1.5.36)

The same result was previously achieved in [20], where the authors showed how
to perform a S-expansion from osp(32/1) to a D’Auria-Fré-like superalgebra
(with the same structure of the D’Auria-Fré superalgebra, but with different

details), using S
(3)
E as semigroup. This analogy confirms and corroborates the

analytic method developed in the present work.
In this example, we also analyze the link between osp(32/1) and another

superalgebra included in the dichotomic solution found in [22, 26], in which
the translations and the fermionic generators, respectively denoted by P̃a and
Q̃, commute. We will see that the supersymmetric Lie algebra osp(32/1) and
this particular hidden superalgebra are linked by a S-expansion (0S-resonant-
reduction) procedure, in which the semigroup involved in the process is the

semigroup S
(2)
E , which satisfies the multiplication rules

λαλβ =

{
λα+β , when α+ β 6 3,

λ3, when α+ β > 3.
(1.5.37)

We now want to find the correct semigroup leading from osp(32/1) to the hid-
den superalgebra underlying D = 11 supergravity through our analytic method.
Let us start from collecting the useful information coming from the starting al-
gebra osp(32/1). The generators of osp(32/1) are, with respect to the Lorentz
subgroup SO(1, 10) ⊂ osp(32/1), the following set of tensors (or spinors)

{Pa, Jab, Za1...a5 , Qα}, (1.5.38)

where Jab, Pa, Qα can be respectively interpreted as the Lorentz, translations
and supersymmetry generators, and where Za1...a5 is a 5-index skew-symmetric
generator associated with the physical Aµνρ field appearing in D = 11 super-
gravity.

Now we have to take into account the information coming from the target
superalgebra, that is the hidden superalgebra underlying the eleven-dimensional
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supergravity [22, 26]. The generators of the mentioned superalgebra are given
by the set {

P̃a, J̃ab, Z̃ab, Z̃a1...a5 , Q̃α, Q̃
′
α

}
, (1.5.39)

where Z̃ab, Z̃a1···a5 are two extra bosonic generators, and where Q̃′ is an extra
fermionic generator that controls the gauge symmetry of the theory and allows
the closure of the algebra.

In the following, we display the detailed calculations for moving from the
supersymmetric Lie algebra osp(32/1) to the hidden superalgebra underlying
D = 11 supergravity, through a 0S-resonant-reduction procedure, and we show
how to find the set(s) involved in the process, once the partitions over subspaces
for both the considered superalgebras have been properly chosen.

The generators of osp(32/1) are

{Pa, Jab, Za1...a5 , Qα}. (1.5.40)

The commutations relation between these generators can be written as

[Pa, Pb] = Jab,[
Jab, Pc

]
= δabecP

e,[
Jab, Jcd

]
= δabfecd J

e
f ,

[Pa, Zb1···b5 ] = − 1

5!
εab1···b5c1···c5Z

c1···c5 ,[
Jab, Zc1···c5

]
=

1

4!
δabe1···e4dc1···c5 Zde1···e4 ,

[Za1···a5 , Zb1···b5 ] = η[a1···a5][c1···c5]εc1···c5b1···b5eP
e + δa1···a5edb1···b5 J

d
e +

− 1

3!3!5!
εc1···c11δ

a1···a5c4c5c6
d1d2d3b1···b5η

[c1c2c3][d1d2d3]Zc7···c11 ,

[Pa, Q] = −1

2
ΓaQ,

[Jab, Q] = −1

2
ΓabQ,

[Zabcde, Q] = −1

2
ΓabcdeQ,

{Qρ, Qσ} = − 1

23

[(
ΓaC−1

)ρσ
Pa −

1

2

(
ΓabC−1

)ρσ
Jab

]
+

− 1

23

[
1

5!

(
ΓabcdeC−1

)ρσ
Zabcde

]
, (1.5.41)

where Cρσ is the charge conjugation matrix and Γa, Γab, Γabcde are the Dirac
matrices in eleven dimensions.

Let us perform the following subspaces partition for the osp(32/1) algebra:

[V0, V0] ⊂ V0, (1.5.42)

[V0, V1] ⊂ V1, (1.5.43)

[V0, V2] ⊂ V2, (1.5.44)

[V1, V1] ⊂ V0 ⊕ V2, (1.5.45)

[V1, V2] ⊂ V1, (1.5.46)

[V2, V2] ⊂ V0 ⊕ V2, (1.5.47)
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where we have set V0 = {Jab}, V1 = {Qα}, and V2 = {Pa, Za1...a5}. Thus, the
dimensions of the internal decomposition of osp(32/1) read

dim (V0) = 55︸︷︷︸
Jab

, (1.5.48)

dim (V1) = 32︸︷︷︸
Qα

, (1.5.49)

dim (V2) = 11︸︷︷︸
Pa

+ 462︸︷︷︸
Za1···a5

= 473. (1.5.50)

The generators of the superalgebra underlying D = 11 supergravity are given
by the set

{P̃a, J̃ab, Z̃ab, Z̃a1...a5 , Q̃α, Q̃′α}. (1.5.51)

These generators satisfy the following commutation relations:

{Q̃, ˜̄Q} = −
(

iΓaP̃a +
1

2
ΓabZ̃ab +

i

5!
Γa1...a5Z̃a1...a5

)
, (1.5.52)

{Q̃′, ˜̄Q′} = 0 ,

{Q̃, ˜̄Q′} = 0 ,[
Q̃, P̃a

]
= −2i

(
5
0

)
ΓaQ̃

′ ,[
Q̃, Z̃ab

]
= −4ΓabQ̃′ ,[

Q̃, Z̃a1...a5
]

= −2 (5!)i

(
1
48
1
72

)
Γa1...a5Q̃′ ,[

J̃ab, Z̃
cd
]

= −8δ
[c
[aZ̃

d]
b] ,[

J̃ab, Z̃
c1...c5

]
= −20δ

[c1
[a Z̃

c2...c5]
b] ,[

J̃ab, Q̃
]

= −ΓabQ̃ ,[
J̃ab, Q̃

′
]

= −ΓabQ̃
′ ,[

P̃a, Q̃
′
]

=
[
Z̃ab, Q̃

′
]

=
[
Z̃a1...a5 , Q̃

′
]

=
[
P̃a, P̃b

]
= 0,[

J̃ab, P̃c

]
= δabec P̃

e,[
J̃ab, J̃cd

]
= δabfecd J̃

e
f ,[

Z̃ab, Z̃bc

]
=

[
Z̃ab, Z̃a1...a5

]
=
[
Z̃ab, P̃c

]
=
[
P̃a, Z̃a1...a5

]
=
[
Z̃a1...a5 , Z̃b1...b5

]
= 0,

where the free parameter E2 appearing in Ref. [26] has been consistently fixed
to the value 1 (this is due to the possibility of fixing the normalization of the
differential form associated with the extra fermionic generator Q̃′).

We observe that the above algebra actually describes two superalgebras, due
to the degeneracy appearing in the commutation relation (1.5.53), from which
we see clearly that the generators Q̃ and P̃a can also commute. In the following,
we will discuss the S-expansion, 0S-resonant-reduced procedure for both these
superalgebras.
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Let us also observe that, in the description of the hidden superalgebra, the
coefficients are written following the notation and conventions presented in Ref.s
[22, 26], while, when considering the supersymmetric osp(32/1) Lie algebra, we
have adopted the notation presented in Ref. [20]. However, the coefficients
appearing in the mentioned algebras are not relevant to our discussion, since
we just need to know the structure of the algebras for applying our analytic
method (see appendix A.3).

Then, we have
λ0 λ1 λ2 λ3 λ4

λ0 λ0 λ1 λ2 λ3 λ4

λ1 λ1 λ2 λ3 λ4 λ4

λ2 λ2 λ3 λ4 λ4 λ4

λ3 λ3 λ4 λ4 λ4 λ4

λ4 λ4 λ4 λ4 λ4 λ4

(1.5.53)

which is the multiplication table describing the semigroup S
(3)
E , that, as it was

also shown in [20], is exactly the semigroup leading, through a S-expansion pro-
cedure (0S-resonant-reduction), from the osp(32/1) algebra to the hidden su-
peralgebra described in [22,26]. Thus, we have shown that our analytic method
immediately allows us to discover that these two superalgebras can be linked
through a S-expansion procedure (0S-resonant-reduction), involving the semi-

group S
(3)
E .

We now make some consideration on the case in which[
Q̃, P̃a

]
= 0, (1.5.54)

that is one of the commutation relations the other superalgebra presented in [22].
In this case, from the relation[

P̃a, Q̃
]

= [λePa, λcQ] = λeλc [Pa, Q] = 0 → λeλc = λ0S , (1.5.55)

we observe that we have to fix
λb = λe, (1.5.56)

and also
λd = λ0S , (1.5.57)

in order to have consistent multiplication rules. Thus, following the usual pro-
cedure, we can build the multiplication table of the set S̃, which in this case
reads

λ0 λ1 λ2 λ3

λ0 λ0 λ1 λ2 λ3

λ1 λ1 λ2 λ3 λ3

λ2 λ2 λ3 λ3 λ3

λ3 λ3 λ3 λ3 λ3

(1.5.58)

This is exactly the multiplication table describing the semigroup S
(2)
E , which

satisfies the multiplication rules

λαλβ =

{
λα+β , when α+ β 6 3,

λ3, when α+ β > 3.
(1.5.59)
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In Ref. [20], the authors showed that S
(2)
E is the semigroup allowing the S-

expansion from osp(32/1) to the M -algebra (the algebra of the M -theory). We
have now shown that the same result is reproduced when we are dealing with a
S-expansion (0S-resonant-reduction) from osp(32/1) to a particular subalgebra
of the hidden superalgebra obtained in [22, 26] (that is, in the case in which Q̃
and P̃a commute). However, this particular subalgebra can be obtained with
S-expansion from osp(32/1) only if it coincides with the M -algebra. In fact, in
this case the extra-fermionic generator of the target hidden superalgebra goes
to zero.

Thus, a strong relation between the D’Auria-Fré superalgebra and the M -
algebra is evident. Both of them, as it was shown in [20], can be reached with a

S-expansion from osp(32/1), respectively with the semigroup S
(2)
E and S

(3)
E (and

this fact furnished us another corroboration of the analytic method developed
in Section 1.4).
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Chapter 2

Generalized Inönü-Wigner
Contraction as S-Expansion
and Ideal Subtraction

“Walking in a straight line one can not get very far.”

The Little Prince - Antoine de Saint-Exupéry.

In the present chapter it shows a new prescription for S-expansion, involving

an infinite abelian semigroup S
(∞)
E , with subsequent subtraction of a suitable

infinite ideal, in “replacement” of the zero element present in the usual S-
expansion. According to the literature, the S-expansion procedure involving a
finite semigroup can reproduce a standard Inönü-Wigner contraction. This, is
a generalization of the finite S-expansion procedure, and it allows to reproduce
a generalized Inönü-Wigner contraction via infinite S-expansion between two
different algebras, extending the results presented in the literature. With these
tools we can then write the invariant tensors of the target algebras in terms of
those of the starting ones.

2.1 Inönü-Wigner Contraction

Historically, the first extensively studied kind of contractions of Lie algebras,
after Segal introduced the general notion of contractions [4], was the class of
Saletan (linear) contractions [5]. But contractions of Lie algebras became known
as a tool of theoretical physics after Inönü and Wigner [6, 7] on an important
specific subclass of linear contractions, motivated by the fact that classical me-
chanics is a limit of relativistic mechanics, Inönü and Wigner searched the con-
nection between the respective groups. They consider the whole class of linear
contractions but they erroneously claimed in [6] that any linear contraction is
diagonalizable. Even though Inönü and Wigner corrected their considerations
in the next paper [7], they proceeded to exclusively study diagonalizable lin-
ear contractions, which due to their contribution are now called Inönü-Wigner
contractions.
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The aim of the paper [6] was the theorem I, p. 513. But better is the
equivalent definition written in [9]:

Any Inönü-Wigner contraction of a Lie algebra g to a Lie algebra g′ is asso-
ciated with a subalgebra of g, say s, and starting with an arbitrary subalgebra of
the algebra g one can construct an Inönü-Wigner contraction of this algebra. In
the contracted algebra g′ there exists an Abelian ideal I such that the quotient
algebra constructed with g and I is isomorphic to s.

The IW-contraction has a lot of applications in Physics, among which the rel-
evant cases of the Galilei algebra as an Inönü-Wigner contraction of the Poincaré
algebra, and the Poincaré algebra as a contraction of the de Sitter algebra [10].
Both of them, in particular, involve two universal constants: the velocity of light
c and the cosmological constant Λ, respectively.

Standard Inönü-Wigner contraction

We now consider the so-called standard Inönü-Wigner contraction.

Definition 1. (see Ref. [10]) Let Xi, i = 1, 2, . . . , n, be a set of basis vectors
for a Lie algebra g. Let a new set of basis vectors Yi, i = 1, 2, . . . , n, be related
to the Xi’s by

Yj = U(ε) i
j Xi, U(ε = 1) i

j = δ i
j , det [U(ε = 0)

i
j ] = 0. (2.1.1)

The structure constants of the Lie algebra g with respect to the new basis are
given by

[Yi, Yj ] = C k
ij (ε)Yk. (2.1.2)

When the limit
lim
ε−→0

C k
ij (0) = C ′

k
ij (2.1.3)

exists and is well defined, the new structure constants C ′
k

ij characterize a Lie
algebra that is not isomorphic to the original one. This procedure is called
standard Inönü-Wigner contraction.

In other words, if we consider the symmetric cosets of simple Lie algebras,
namely g = h ⊕ p, where h closes a subalgebra and p is a complementary sub-
space, with commutation relations of the form

[h, h] ⊂ h, (2.1.4)

[h, p] ⊂ p, (2.1.5)

[p, p] ⊂ h⊕ p, (2.1.6)

the Inönü-Wigner contraction of g −→ g′ involves the matrix U(ε):

U(ε) =

(
Idim(h) 0

0 εIdim(p)

)
, (2.1.7)

where I is the identity matrix, and dim(h) and dim(p) stand for the dimension
of h and p, respectively. We can thus write(

h′

p′

)
=

(
Idim(h) 0

0 εIdim(p)

)(
h
p

)
. (2.1.8)
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Therefore, after having performed the limit ε −→ 0, the contracted algebra
g′ becomes a semidirect product g′ = h′ n p′ = h n p′, and we can write the
following commutation relations:

[h′, h′] ⊂ h′, (2.1.9)

[h′, p′] ⊂ p′, (2.1.10)

[p′, p′] = 0, (2.1.11)

from which we can see that p′ is now an abelian sector.
The dimension of g and g′ is the same, and that happens in all kind of

contractions. For other side, all contraction processes come down, ultimatly,
to a study of the properties of the Lie bracket under singular transformations.
Also, the original algebra may be simple, semisimple, or nonsemisimple [10].
The contracted algera is necessarily nonsemisimple.

Generalized Inönü-Wigner contraction

The procedure involved in the standard Inönü-Wigner contraction can be ex-
tended to the concept of generalized Inönü-Wigner contraction, in the sense
intended in Ref.s [8, 9, 42].

Definition 2. (see Ref.s [8,9,42]) Let g be a non-simple algebra which can
be written as a sum of n+ 1 subspaces (sets of generators) Vi, i = 0, 1, . . . , n,

g =

n+1⊕
i=0

Vi = V0 ⊕ V1 ⊕ · · · ⊕ Vn, (2.1.12)

such that the following Weimar-Woods conditions [8, 9] are satisfied:

[Vp, Vq] ⊂
⊕
s≤p+q

Vs, p, q = 0, 1, . . . , n. (2.1.13)

The conditions in (2.1.13) imply that V0 is a subalgebra of g. The contraction of
g can be obtained after having performed a proper rescaling on the generators of
each subspace [8,9,42], and once a singular limit for the contraction parameter
have been considered, namely by considering

V ′i = εaiVi, i = 0, 1, . . . , n, (2.1.14)

with the choice of the powers a’s providing a finite limit of the contracted algebra
if ε −→ 0. This procedure is called generalized Inönü-Wigner contraction.

We observe that the contracted algebra has the same dimension of the start-
ing one, and that the case n = 1 reproduces the case of the standard Inönü-
Wigner contraction. In Ref. [42], the author analyzed the n ≥ 2 cases.

The authors, in the first paper [8] they put the restriction of nj ≥ 0. But
in [9] they allow the case where U(0) does not exist, then the exponents nj can
become negative. These contractions made a brief appearance in the literature
under the name of p-contractions. They were introduced in [14, 15] specifically
for the (unsuccessful) search for Lie algebras, other than the de Sitter algebras,
which contract into the Poincar é algebra. However the negative exponents did
not play any role, and indeed were incorrectly ignored [9].
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2.2 (Gen.) IW-contraction as S-Expansion case

In the following, we show that a standard Inönü-Wigner contraction can be
reproduced with a S-expansion procedure (with resonance and 0 S -reduction),
and we then explain how to reproduce a generalized Inönü-Wigner contraction

with a S-expansion involving an infinite abelian semigroup S
(∞)
E (infinite S-

expansion) and the subsequent subtraction of an ideal.

2.2.1 Standard Inönü-Wigner contraction as a S-expansion
with reduction

Just as we see in section 1.2, the reduction generates the standard IW-contraction.
Let us consider a symmetric coset g with a subalgebra h and a complementary

subspace p, namely g = h⊕ p, with commutation relations of the form [10]

[h, h] ⊂h,
[h, p] ⊂p, (2.2.1)

[p, p] ⊂h⊕ p.

The standard Inönü-Wigner contraction of g −→ g′ involves the following trans-
formation: (

h′

p′

)
=

(
Idim(h) 0

0 λIdim(p)

)(
h
p

)
(2.2.2)

where I is the identity matrix, and dim(h) and dim(p) stand for the dimension of
h and p, respectively. Here, λ is the contraction parameter (previously denoted
as ε). Then, the commutation relations of g′ = h′ n p′ = hn p′ are well defined
for all values of λ, including the singular limit λ −→ 0:

[h, h] ⊂h, [h′, h′] ⊂ h′,

[h, p] ⊂p, h′=h, p′=λp, λ−→0−−−−−−−−−−−−−→ [h′, p′] ⊂ p′, (2.2.3)

[p, p] ⊂h⊕ p, [p′, p′] = 0.

This particular case of Inönü-Wigner contraction, namely the standard one, can
be reproduced with a S-expansion procedure involving 0S-resonant-reduction,
developed in [20]. We now show that the standard Inönü-Wigner contraction

can be reproduced with a finite S-expansion involving the semigroup S
(1)
E =

{λ0, λ1, λ2} (where the zero element of the semigroup is λ0S = λ2), described
by the multiplication table

λ0 λ1 λ2

λ0 λ0 λ1 λ2

λ1 λ1 λ2 λ2

λ2 λ2 λ2 λ2

(2.2.4)

In [20], this is done by considering a proper partition over the subspaces of the
starting Lie algebra and by multiplying its generators by the elements of the

semigroup S
(1)
E . Then, the resonant-reduced, S-expanded Lie algebra gSRR =

h′ ⊕ p′, where h′ = λ0h and p′ = λ1p, satisfies the following commutation
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relations:

[λ0h, λ0h] ⊂λ0h, (2.2.5)

[λ0h, λ1p] ⊂λ1p, (2.2.6)

[λ1p, λ1p] =0. (2.2.7)

Here, we see clearly that the role of the zero element λ2 = λ0S is to turn to
zero each multiplicand (see section 1.2). We can easily see that by rewriting
λ0h and λ1p in terms of h′ and p′, we arrive to equation (2.2.3). Thus, we
can conclude that the standard Inönü-Wigner contraction can be seen as a
S-expansion (involving 0S-resonant-reduction) performed with the semigroup

S
(1)
E .

2.2.2 Extension to the generalized Inönü-Wigner contrac-
tion case

In Ref. [9], the author claimed that any diagonal contraction is equivalent to
a generalized Inönü-Wigner contraction, with integer parameter powers. These
contractions are produced by diagonal matrices of the form U(ε)jj = εnj , nj ∈
Z. Following Ref. [9], a contraction g

U(ε)ij−−−−→ g′ is called generalized Inönü-
Wigner contraction if the matrix U(ε) has the form

U(ε)ij = δijε
nj , nj ∈ R, ε > 0, i, j = 1, 2, . . . , N, (2.2.8)

with respect to a basis of generators {Ta1 , Ta2 , . . . , TaN }.
By following Ref. [42], the generalized Inönü-Wigner contraction can be per-

formed when we consider a non-simple algebra g decomposed into n + 1 sets

V (i) of generators T
(i)
a (i = 0, 1, . . . n), namely

g = V (0) ⊕ V (1) ⊕ · · · ⊕ V (n), (2.2.9)

where the following conditions are satisfied[
V (i), V (j)

]
⊂
⊕
k≤i+j

V (k). (2.2.10)

The generalized Inönü-Wigner contraction of (2.2.9) is obtained by properly

rescaling each generator T
(i)
a by a power of the contraction parameter ε (see

Ref. [42]), namely
T (i)
a ∈ V (i) −→ εaiT (i)

a ∈ V ′(i), (2.2.11)

where the choice of ai provides finite limits of the contracted algebra when
ε −→ 0. The choice of the exponent ai is crucial, and in this context a reso-
nant S-expansion would offer suitable choices, by multiplying each generator by
appropriate powers of the parameter ε, in order to reach a suitable structure
for the resulting algebra. Moreover, an S-expansion procedure involving 0S-
resonant-reduction has the property of properly cutting the algebra through the
aforementioned zero element of the semigroup involved in the procedure, repro-
ducing a contraction. However, despite its great potential, a finite S-expansion
procedure cannot reproduce a generalized Inönü-Wigner contraction.
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With this in mind, in our method, we consider an infinite S-expansion pro-
cedure (with resonance and reduction), namely a S-expansion which involves

an infinite semigroup S
(∞)
E (i.e. with a semigroup with an infinite number of

elements) ∗.
Then, instead of multiplying the zero element of a finite semigroup by a single

generator of the starting algebra, we confer the role of “generating zeros” to a
particular set of generators in the initial algebra, associating them with different

elements of the infinite semigroup S
(∞)
E . Thus, this set of generators becomes

an ideal (ideal subalgebra, see Ref. [44]) of the S-expanded algebra reached

by performing the S-expansion with the infinite semigroup S
(∞)
E , and we can

then subtract this ideal from the S-expanded algebra, in order to reproduce
the same result which would be obtained by having performed a generalized
Inönü-Wigner contraction.

We observe that the algebra we end up after the ideal subtraction, in general,
is not a subalgebra of the starting algebra.

In this context, we are taking into account the following operation on a given
algebra A:

A	 I = A0, (2.2.12)

where A0 generates a coset space, and where I is an ideal (ideal subalgebra) of
A, namely a subalgebra of A that satisfies the property [A, I] ⊂ I (see Ref. [44]
for further details); It is an algebra related to a normal subgroup H ⊂ G, as we
will shortly explain below.

2.3 Ideal subalgebra

In the following, we extend the concept of normal subgroup of a group to the
concept of ideal subalgebra of an algebra (see Ref. [44] for the notation adopted
and for further details on the definitions and properties of normal subgroups,
homomorphisms, and ideals).

Definition 3. Let us now consider a Lie group G and a normal subgroup H
of G. Let the Lie algebra A be the algebra associated with the Lie group G (via
exponentiation), and let the subalgebra I of A be the subalgebra associated with
the normal subgroup H. Then, I is an ideal (ideal subalgebra) of A, and we can
write (see Ref. [44])

[A, I] ⊂ I. (2.3.1)

Let us now consider the homomorphism ϕ : G −→ G/H, where G is a Lie
group and H a normal subgroup of G. Let A be the Lie algebra associated with
the Lie group G.
By definition (see Ref. [44]), H = kerϕ, and G/H is a Lie group. Let Â
be the Lie algebra associated with the Lie group G/H. Then, ϕ induces a
homomorphism ϕ̂ : A −→ Â between algebras, such that, if a ∈ A, then
ϕ(ea) = eϕ̂(a). Since, from Definition 3, ∀a ∈ I we have ea ∈ H, this now
implies ϕ(ea) = e′ ∈ G/H ⇐⇒ ϕ̂(a) = 0. Consequently, ϕ̂(I) = {0}.
∗The semigroup S

(∞)
E is an extension and generalization of the semigroups of the type

S
(N)
E = {λα}N+1

α=0 , endowed with the following multiplication rules: λαλβ = λα+β if α+ β ≤
N + 1, and λαλβ = λN+1 if α+ β > N + 1.
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The algebra Â is isomorphic to the coset space A 	 I, whose elements are
the equivalence classes [a] = {a′ ∈ A : a′ − a ∈ I}.

Let us now consider a representation ρ: G −→ Aut(V ) ∗ of G, where V is
a vector space. This defines a representation of G/H provided on the vector
space V . It has a trivial action on each vector Ψ ∈ V :

ρ(H)Ψ = Ψ. (2.3.2)

Then, by defining, ∀ [g] ∈ G/H,

ρ([g]) = ρ(g), (2.3.3)

since

ρ(g · h)Ψ =ρ(g)ρ(h)Ψ (2.3.4)

=ρ(g)Ψ, ∀Ψ ∈ V, (2.3.5)

we can say that ρ(G/H) = ρ(G) is the property we need in order to require

ρ(I) = 0. (2.3.6)

In this way, ρ provides a representation of A	 I such that:

ρ(A) = ρ(A	 I). (2.3.7)

Thus, if we now write
A	 I = A0, (2.3.8)

where A0 is a coset space, we can say that ρ(A0) is homomorphic to ρ(A), and
we can finally write

ρ(A)Ψ = ρ(A0)Ψ, ∀Ψ ∈ V. (2.3.9)

2.4 Infinite S-expansion with ideal subtraction

In the following, we explain our method involving an infinite S-expansion with
subsequent ideal subtraction, which offers a new prescription for S-expansion,
allowing it to reproduce a generalized Inönü-Wigner contraction.

We first of all generate an algebra with the structure written in (2.2.9) as
a loop-like Lie algebra (see Ref. [45] for further details). We consider the set
(N,+) ∗, that presents the same multiplication rules of the general semigroup

S
(N)
E = {λα}N+1

α=0 , namely λαλβ = λα+β if α+ β ≤ N + 1, and λαλβ = λN+1 if
α+ β > N + 1 †.

Now, let
{
λi
}∞
i=0
≡
{
λi
}∞

0
= {λ0, λ1, λ2, λ3, . . .} be the infinite discrete set

of elements of the semigroup S
(∞)
E . With this assumption, the infinite S

(∞)
E -

expanded algebra can be rewritten as

g∞S = {λn}∞n=0 × g

= {λn}∞0 V0 ⊕ {λn}∞0 V1 ⊕ · · · ⊕ {λn}∞0 Vn, (2.4.1)

∗Here, Aut(V ) is the group of the automorphisms on the vector space V .
∗The loop algebra introduced in Ref. [45] was constructed by considering (Z,+). In our

work we restrict to (N,+), and we leave the extension to (Z,+) to the future.
†Different semigroups of the type S

(N)
E have been used and discussed in several works on

S-expanded algebras, among which [20,47–53].
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where we have taken into account the decomposition (2.2.9)of the algebra g.
At this point, it is possible to separate each subspace appearing in (2.4.1)

into two parts, so that a first part belongs to the algebra we want to reach by
reproducing a generalized Inönü-Wigner contraction, while the part which is
left belongs to an infinite ideal subalgebra of the algebra g∞S , and can be thus
taken apart.

For reaching this result, we part the infinite semigroup S
(∞)
E into the fol-

lowing sets of elements: The sets {λa0 , λa1 , . . . , λam}i are finite ones, they are
associated with the subspace Vi through the index i, and contain certain selected
elements in increasing order a0 < a1 < . . . < am; The other sets are infinite ones
and can be written as

(
{λbl}

∞
l=0

)
i

(this sets, a priori, can also include the ele-
ments appearing in the sets {λa0 , λa1 , . . . , λam}i; Their contents must be chosen

case by case). Then, the resonant multiplication between S
(∞)
E and an arbitrary

subspace Vi of g, where i = 0, 1, 2, . . . , n (see equation (2.4.1)), can be written
as [

{λa0 , λa1 , . . . , λam}i ∪
(
{λbl}

∞
l=0

)
i

]
× Vi. (2.4.2)

We now define the spaces W (i) and W I(i) as follows (∀ i, each W (i) and W I(i)

must be in resonance with the subspace Vi associated, under resonance condi-
tion):

W (i) = {λa0 , λa1 , . . . , λam}i × Vi, (2.4.3)

W I(i) =
(
{λbl}

∞
l=0

)
i
× Vi,

such that[
{λa0 , λa1 , . . . , λam}i ∪

(
{λbl}

∞
l=0

)
i

]
× Vi = W (i) ⊕W I(i). (2.4.4)

Then, we have

g∞S =
⊕
i

W (i) ⊕
⊕
i

W I(i), (2.4.5)

and thus
g∞S = gS ⊕ I, (2.4.6)

where
gS =

⊕
i

W (i), and I =
⊕
i

W I(i). (2.4.7)

In this way, we have reproduced the structure displayed in (2.2.12). Thus,
adopting the notation previously presented in Subsection 2.3, we can write

gS = g∞S 	 I, (2.4.8)

where gS is the Lie algebra obtained through an infinite S-expansion with sub-
sequent ideal subtraction, which reproduces the structures required by a gen-
eralized Inönü-Wigner contraction process (considering natural powers of the
contraction parameter).

We observe that each particular choice of the elements included into the ideal
can lead to different contracted algebras.

The case of the standard Inönü-Wigner contraction from an algebra g = h⊕p
to an algebra gS = h′np′ = hnp′ (see the structure developed in (2.1.7)) can be
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easily reproduced by performing our infinite S-expansion procedure with ideal
subtraction, with the following choice:

gS = {λ0h, λ1p} ,
I = {λ2p, λ2h, λ3p, λ3h, . . .} . (2.4.9)

Hereafter, the dots “. . .” appearing into the ideal denote that the same struc-
ture is repeated to infinite, considering all the other elements of the infinite
semigroup.

2.5 Invariant tensor of the contracted algebra

Till now, we have reproduced the process involved in a generalized Inönü-Wigner
contraction through a new prescription for S-expansion, which consists in per-
forming an infinite S-expansion procedure with subsequent ideal subtraction.

We can now consider Theorem VII.1 developed in Ref. [20], which tell us that
the components of the invariant tensor of a target algebra obtained through a
(finite) S-expansion can be written in terms of those of the initial algebra, and
extend it to the case of an infinite S-expansion with ideal subtraction.

In Ref. [45,46], the authors showed how to construct the invariant tensor of
the form 〈TA1

. . . TAN 〉 of a loop algebra, and in Ref. [20] the authors developed
a theorem on invariant tensors in the S-expansion context (Theorem VII.1 of
Ref. [20]), which can be extended to the present work as follows:

Theorem 1. Let 〈TA1
. . . TAN 〉 be an invariant tensor of an algebra g, being TAi

the N generators (i = 1, 2, . . . , N) of g, and let the algebra g
∞)
S = S

(∞)
E ×g be the

one constructed by infinite S-expansion involving the abelian semigroup S
(∞)
E .

Denote the generators of g∞S as λaiTAi ≡ T aiAi , a = 0, 1, 2, . . .∞, and define a
particular ideal I of g∞S . The invariant tensor of the algebra gS = g∞S 	 I can
be then written in the form

〈T a1A1
. . . T aNAN 〉 =

nmax∑
m=0

αmδa1+a2+...+aN
m 〈TA1

. . . TAN 〉, (2.5.1)

where the αm’s are arbitrary constants and where nmax denotes the greatest
index between those of the semigroup elements (namely, λnmax) whose product
with the generators of g is contained into the algebra gS (and is thus excluded
from the ideal).

The proof of Theorem 1 can be easily developed by considering Theorem
VII.2 of Ref. [20] and by applying it to the invariant tensor of a loop algebra
(see Ref. [45, 46]). The map between the case of a loop algebra and the case
of an infinite S-expansion with subsequent ideal subtraction is simply given by
the replacement

+∞∑
m=−∞

−→
nmax∑
m=0

, (2.5.2)

since we have to take into account the ideal subtraction.
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2.6 Examples of application

In the following, we develop some examples of application, in which we replicate
the (generalized) Inönü-Wigner contraction of some (super)algebras presented in
the literature through our infinite S-expansion approach with ideal subtraction.
We also find the invariant tensors of some of the mentioned (super)algebras.

2.6.1 so(3) −→ iso(2, 1)

We consider g = so(3) algebra wich the commutators

[L1, L2] = −L3,

[L2, L3] = −L1,

[L3, L1] = −L2.

And the semigroup S = {λ0λ1λ2} with the table

· λ0 λ1 λ2

λ0 λ1 λ0 λ2

λ1 λ0 λ2 λ2

λ2 λ2 λ2 λ2

, (2.6.1)

and Following [20] the resonant S-expanded algebra

g = ⊕2
i=1Si ⊗ {Vi}

where

S1 = {λ0, λ2} , V1 = {L1, L2}
S2 = {λ1, λ2} , V2 = {L3} .

We see that
[λ2LA.λiLB ] = λ2LC

where λi is any element of S, so the zero element causes the Ideal I = {λ2L1, λ2L2, λ2L3}.
With the subtraction of this and renamed the generators as λ0L1 = P2, λ1L2 =
P1 and L3 = L3 we get

[L3, P1] = −P2,

[L3, P2] = P1,

[L1, L2] = 0.

In this case its not necesary a infinite semigroup but its not immposible neather,
e.i.

· λ0 λ1 λ2 λ3 . . .
λ0 λ1 λ0 λ2 λ3

λ1 λ0 λ2 λ3 λ4 . . .
λ2 λ2 λ3 λ4 λ5

λ3 λ3 λ4 λ5 λ6 . . .
...

...
...

(2.6.2)
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so the usual contraction is a possible case of a subtraction of a complete infinite
structure

I = {λ2L1, λ2L2, λ2L3, λ4L1, λ4L2, λ4L3, λ5L1, . . .} (2.6.3)

generated by a the infinite semigroup.

2.6.2 (Non)-symmetric cosets and group manifolds

In the literature, the standard Inönü-Wigner contraction has been usually ap-
plied to symmetric cosets of simple Lie algebras ∗, i.e. to cosets of Lie algebras
which can be written as g = h ⊕ p, where the following commutation relations
hold:

[h, h] ⊂h,
[h, p] ⊂p, (2.6.4)

[p, p] ⊂h.

After having performed a standard Inönü-Wigner contraction (h′ = h′, p′ = εp,
and ε −→ 0) on g, we get the contracted commutation relations

[h′, h′] ⊂h′,
[h′, p′] ⊂p′, (2.6.5)

[p′, p′] =0.

The standard Inönü-Wigner contraction abelianizes the last commutator ([p′, p′] =
0), and thus produces an algebra that is non-isomorphic to the starting one. In
the case in which

[p, p] = h⊕ p, (2.6.6)

that is, when we are taking into account a non-symmetric coset, the standard
Inönü-Wigner contraction still abelianizes this commutator.

With the method presented in this paper, we can also obtain a particular
group manifold starting from a symmetric coset, after having performed the
infinite S-expansion procedure with ideal subtraction. In fact, if we S-expand

g by using S
(∞)
E , and we then choose the ideal as follows:

I = {λ2p, λ3p, λ3h, . . .} , (2.6.7)

while
gS = {λ0h, λ1p, λ2h} , (2.6.8)

after having properly renamed the generators, we see clearly that we end up
with an algebra gS = g∞S 	I which is associated with a group manifold, namely

[h, h] ⊂h,
[h, p] ⊂p, (2.6.9)

[p, p] ⊂p.
∗A symmetric coset in Physics is defined, in general, as a space whose curvature is co-

variantly constant. In particular, the most notable symmetric spaces considered in General
Relativity are the Minkowski space, the de Sitter space, and the anti-de Sitter space. An
introduction to symmetric spaces can be found in Ref.s [54,55].
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2.6.3 Particular example involving the AdS algebra

We now consider the anti-de Sitter (AdS) algebra in three dimensions, whose
commutation relations read: [

J̃a, J̃b

]
=εabcJ̃c,[

J̃a, P̃b

]
=εabcP̃c, (2.6.10)[

P̃a, P̃b

]
=εabcJ̃c.

Then, we apply the infinite S-expansion procedure with ideal subtraction de-
scribed in the present work, considering

I =
{
λ2P̃a, λ3P̃a, λ3J̃ab, . . .

}
,

gS =
{
λ0J̃ab, λ1P̃a, λ2J̃ab

}
.

Subsequently, we rename the generators as follows:

λ0J̃a =Ja, (2.6.11)

λ1P̃a =Pa, (2.6.12)

λ2J̃a =Za. (2.6.13)

We then consider g = h⊕p = {Ja}⊕{Pa, Za}, where h = {Ja} and p = {Pa, Za},
and we end up with a the following commutation relations:

[h, h] ⊂h,
[h, p] ⊂p, (2.6.14)

[p, p] ⊂p.

This algebra respect Bianchi’s identity. Therefore, we have reached a particular
group manifold (in which p is nilpotent and involves a redefinition of the con-
nection) starting from a symmetric coset, by applying our method of infinite
S-expansion with ideal subtraction.

2.6.4 From AdS algebra to all Maxwell algebras type

In the following, we perform an infinite S-expansion with ideal subtraction, in
order to reach different algebras (depending on the choice of the ideal) start-
ing from an AdS algebra, showing that the new prescription developed in the
present work is an extension of the finite S-expansion procedure, and that it
can reproduce the Inönü-Wigner contraction.

The AdS algebra so(D−1, 2) has the following set of generators:
{
J̃ab, P̃a

}
.

Let us now consider S∞E = {λα}∞α=0 and perform the multiplication:

g∞S = {λα}∞α=0 ×
{
J̃ab, P̃a

}
. (2.6.15)

By following Ref.s [45, 46, 48] (we also adopt the same notation and subspaces
partition of Ref. [48]), we perform an infinite resonant S-expansion process
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with the infinite semigroup S∞E = {λα}∞α=0. The new generators are defined
and identified as follows:

J(ab,2k) =λ2kJ̃ab,

P(a,2k+1) =λ2k+1P̃a, (2.6.16)

where, in our case, k = 0, 1, . . . ,∞, and satisfy the commutation relations[
J(ab,2k), J(cd,2k)

]
=ηbcJ(ad,4k) − ηacJ(bd,4k) − ηbdJ(ac,4k) + ηadJ(bc,4k),[

J(ab,2k), P(c,2k+1)

]
=ηbcP(a,4k+1) − ηacP(b,4k+1),[

P(a,2k+1), P(b,2k+1)

]
=J(ab,2k+2). (2.6.17)

We can then subtract an ideal I in order to reach an algebra gS

gS = g∞S 	 I (2.6.18)

In the following, we analyze how the choice of different particular ideals leads
to different algebras, starting from the same infinite S-expanded algebra.

Poincaré algebra iso(D − 1, 1)

The Poincaré algebra iso(D − 1, 1) can be obtained as a contraction of the
AdS algebra so(D − 1, 2). If we now consider the infinite AdS S-expanded
algebra (2.6.17) and perform a particular choice of the ideal, we can reach the
Poincaré algebra, thus reproducing a contraction via an infinite S-expansion
with subsequent ideal subtraction.

Let us thus perform the following choice (we exclude the case k = 0 from
the ideal, see (2.6.16)):

g∞S = gS ⊕ I =
{
J(ab,0), P(a,1)

}
⊕
{
J(ab,2), P(a,3), J(ab,4), P(a,5), . . .

}
, (2.6.19)

where the ideal reads I =
{
J(ab,2), P(a,3), J(ab,4), P(a,5), . . .

}
. Then, after having

subtracted the ideal I and after having renamed the generators in the following
way: J(ab,0) = Jab, P(a,1) = Pa, we obtain the Poincaré algebra iso(D − 1, 1),
which can be written in terms of the following commutation relations:

[Jab, Jcd] =ηbcJad − ηacJbd − ηbdJac + ηadJbc,

[Jab, Pc] =ηbcPa − ηacPb, (2.6.20)

[Pa, Pb] =0.

We have thus reached a Poincaré algebra from an AdS algebra by performing
an infinite S-expansion with ideal subtraction, reproducing a contraction.

Maxwell-like algebra M5

In Ref.s [47–49], the authors shown that standard odd-dimensional General Rel-
ativity theories can be obtained from Chern-Simons gravity theories invariant
under Maxwell algebras, while standard even-dimensional General Relativity
theories emerge as limits of Born-Infeld theories invariant under certain subal-
gebras of the Maxwell algebras.
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The Maxwell algebras [52], denoted by Mm, can be obtained as a finite
S-expansion (with resonance and reduction) from the anti-de Sitter algebra

so(D− 1, 2), using semigroups of the type S
(N)
E = {λα}N+1

α=0 , which are endowed
with the multiplication rules λαλβ = λα+β if α+ β ≤ N + 1, and λαλβ = λN+1

if α+ β > N + 1.
The reduction procedure involved in the construction of the Maxwell alge-

bras takes into account the presence of a zero element in the semigroup. This
zero element is defined as λ0S = λN+1, and depends of the number N in the
semigroup.

We can now reach the Maxwell-like algebra M5 by performing an ideal
subtraction on the infinite S-expanded AdS algebra (2.6.17). In fact, if we
now perform the following choice with respect to (2.6.16) (adopting the same
notation and subspaces partition of Ref. [52]):

g∞S = gS ⊕ I =
{
J(ab,0), P(a,1), J(ab,2), P(a,3)

}
⊕
{
J(ab,4), P(a,5), J(ab,6), P(a,7), . . .

}
,

(2.6.21)

where the second set correspond to the ideal I, then, after having subtracted the
ideal I and after having renamed the generators in the following way: J(ab,0) =
Jab, P(a,1) = Pa, J(ab,2) = Zab, and P(a,3) = Za, we finally end up with the
Maxwell-like algebra M5, endowed with the commutation relations

[Jab, Jcd] =ηbcJab − ηacJbd − ηbdJac + ηadJbc, (2.6.22)

[Zab, Jcd] =ηbcZad − ηacZbd − ηbdZac + ηadZbc, (2.6.23)

[Zab, Pc] =ηbcZa − ηacZb, (2.6.24)

[Jab, Zb] =ηbcZa − ηacZb, (2.6.25)

[Jab, Pc] =ηbcPa − ηacPb, (2.6.26)

[Pa, Pb] =Zab, (2.6.27)

[Zab, Zcd] = [Za, Zb] = 0. (2.6.28)

We have thus reached the Maxwell-like algebraM5 by performing an infinite
S-expansion with ideal subtraction on an AdS algebra.

Invariant tensor of the Maxwell-like algebra in D = 3

In the three-dimensional case, considering equation (2.5.1), the components
of the invariant tensor of the Maxwell-like algebra different from zero are the
following ones:

〈JabJcd〉 = α0 (ηadηbc − ηacηbd) , 〈JabPc〉 = α1εabc, (2.6.29)

〈ZabJcd〉 = α2 (ηadηbc − ηacηbd) , 〈JabZc〉 = α3εabc, (2.6.30)

〈ZabPc〉 = α3εabc, 〈PaPb〉 = α2ηab, (2.6.31)

where the α’s are arbitrary constants.
One could now construct a Lagrangian for a gravitational theory, as it was

done in Ref.s [49,56].

50



2.6.5 D=3 algebras: Poincaré, Bargmann and Newton

In the following, we apply our method involving an infinite S-expansion with
subsequent ideal subtraction, in order to relate different algebras in three dimen-
sions, which have been objects of great interest in the literature [57–65], namely
the Poincaré and Galilean algebras, the Bargmann algebra, and Newton-Hooke
algebra in D = 3.

The Bargmann algebra in three dimensions, b(2, 1), is the Galilean algebra
[58, 64] in D = 3 augmented with a central generator M , and can be obtained
by performing a contraction on iso(2, 1) ⊕ gM , where iso(2, 1) is the Poincaré
algebra in three dimensions, and where gM is a commutative subalgebra spanned
by a central generator M (see Ref. [59]).

Some algebras involving the presence of the cosmological constant were
deeply studied in the past years. The most relevant symmetry groups with
the presence of a cosmological constant Λ are the de Sitter and the anti-de
Sitter groups, that are related to relativistic symmetries which also involved
the velocity of the light in the vacuum, c. In the non-relativistic limit, that is,
when c −→ ∞ and Λ −→ 0, with c2Λ finite (see Ref. [65]), the de Sitter (dS)
and the anti-de Sitter (AdS) groups become the so-called Newton-Hooke groups
(the analogous of the Galilean groups in the presence of a universal cosmological
repulsion or attraction).

The Newton-Hooke algebra in three dimensions, nh(2, 1), can be obtained as
a contraction of the de Sitter (dS) or anti-de Sitter (AdS) algebra (see Ref [65]
for further details).

Bargmann algebra

Let us now consider a central extension (with central generator M) of the
Poincaré algebra in D = 3 (this extension of the Poincaré algebra is a com-
mutative algebra gM spanned by the central generator M), in order to apply
our procedure and obtain the Bargmann in three dimensions, b(2, 1), by per-
forming an infinite S-expansion with ideal subtraction.

We thus start by defining J12 = −J , Ji0 = Gi, and P0 = H −→ H +M . We
then write the following partition over subspaces:

V0 ={J,H}, (2.6.32)

V1 ={Pi, Gi}, (2.6.33)

V2 =M. (2.6.34)

After that, we perform an infinite S-expansion with S
(∞)
E , and, following the

procedure described in Subsection 2.4, we write

W (0) =λ0 {J,H} , W I(0) = {λ2n}∞n=1 × {J,H} , (2.6.35)

W (1) =λ1 {Pi, Gi} , W I(1) = {λ2n+1}∞n=1 × {Pi, Gi} , (2.6.36)

W (2) =λ2M, W I(2) = {λ2n}∞n=2 × {M} . (2.6.37)

Then, the target algebra gS , which is, in this case, the Bargmann algebra in
three dimensions, b(2, 1), is given by gS = g∞S 	 I, being

I =

2⊕
i=0

W I(i) (2.6.38)
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the ideal that must be subtracted.
Thus, after having properly renamed the generator as follows: λ0J = Ĵ ,

λ0H = Ĥ, λ1Pi = P̂i, λ1Gi = Ĝi, and λ2M = M̂ , we finally get[
Ĵ , Ĵ

]
∝Ĵ ,[

Ĝi, P̂j

]
=− δijM̂,[

Ĝi, Ĵ
]

=εijĜj , (2.6.39)[
Ĝi, Ĥ

]
=− P̂i,[

P̂i, Ĵ
]

=εijP̂j ,

that are the commutation relations of the Bargmann algebra b(2, 1).

Newton-Hooke algebra

We now perform an infinite S-expansion with ideal subtraction on the AdS
algebra in D = 3, in order to reach the Newton-Hooke algebra [65] nh(2, 1).

In D = 3, being

Ja =
1

2
εabcJ

bc, P a = Ja3, (2.6.40)

we can write the three-dimensional AdS algebra as follows:

[Ja, Jb] =εabcJ
c, [Ja, Pb] =εabcP

c, [Pa, Pb] =εabcJ
c. (2.6.41)

We now consider a new basis:

J̃ =− J0, Ki =− εijJj , H̃ =− P0. (2.6.42)

In this new basis, we can write:

[Ki,Kj ] =εij J̃ ,
[
Ki, H̃

]
=Pi,

[
H̃, Pi

]
=Ki,

[Ki, Pj ] =δijH̃,
[
Pi, J̃

]
=εijPj . [Pi, Pj ] =− εij J̃ , (2.6.43)[

Ki, J̃
]

=εijKj ,

Following Ref. [65], we now consider two central extensions, namely S and M .
We then write the change of basis

H = H̃ −M, J = J̃ − S, (2.6.44)

and we perform the following subspaces partition:

V0 ={J,H}, V1 ={Pi,Ki}, V2 ={M,S}. (2.6.45)

We can now apply the procedure developed in Subsection 2.4, which leads us
to:

W (0) =λ0 {J,H} , W I(0) = {λ2n}∞n=1 × {J,H} , (2.6.46)

W (1) =λ1 {Pi,Ki} , W I(1) = {λ2n+1}∞n=1 × {Pi,Ki} , (2.6.47)

W (2) =λ2 {M,S} , W I(2) = {λ2n}∞n=2 × {M,S} . (2.6.48)

52



Then, the commutators of gS = g∞S 	 I, being

I =

2⊕
i=0

W I(i) (2.6.49)

the ideal, can be finally written as follows:[
K̂i, K̂j

]
=εijŜ,

[
K̂i, P̂j

]
=δijM̂,

[
K̂i, Ĵ

]
=εijK̂j[

P̂i, P̂j

]
=− εijŜ,

[
Ĥ, P̂i

]
=K̂i,

[
P̂i, Ĵ

]
=εijP̂j , (2.6.50)[

K̂i, Ĥ
]

=P̂i,

where we have defined λ0J = Ĵ , λ0H = Ĥ, λ1Pi = P̂i, λ1Ki = K̂i, λ2M = M̂ ,
and λ2S = Ŝ. These last commutation relations are those of the Newton-Hooke
algebra nh(2, 1).

We have thus reached the Newton-Hooke algebra in three dimensions by
performing an infinite S-expansion with subsequent ideal subtraction starting
from the AdS algebra.

2.6.6 Non-standard super-Maxwell in D = 3 from the AdS
algebra osp(2|1)⊗ sp(2)

The Maxwell superalgebra can be obtained as an Inönü-Wigner contraction of
the AdS-Lorentz superalgebra, which is an S-expansion of the AdS Lie alge-
bra [56]. The non-standard Maxwell algebra introduced in Ref.s [66,67] can be
recovered by performing a suitable Inönü-Wigner contraction of the supersym-
metric extension of the AdS-Lorentz algebra (see Ref. [42]).

In the following, we reproduce the non-standard Maxwell superalgebra in

three dimensions, by performing an infinite S-expansion with S
(∞)
E on the AdS

superalgebra, and subsequently removing an ideal. We also write the compo-
nents of the invariant tensor of the target algebra in terms of those of the AdS
superalgebra.

Let us thus consider the AdS superalgebra in three dimensions, osp(2|1) ⊗
sp(2), with N = 1, generated by J̃ab, P̃a, and Q̃α, which satisfy the following
commutation relations:[

J̃ab, J̃cd

]
=ηbcJ̃ad − ηacJ̃bd − ηbdJ̃ac + ηadJ̃bc, (2.6.51)[

J̃abP̃c

]
=ηbcP̃a − ηacP̃b, (2.6.52)[

P̃a, P̃b

]
=J̃ab, (2.6.53)[

P̃a, Q̃α

]
=

1

2

(
ΓaQ̃

)
α
, (2.6.54)[

J̃ab, Q̃α

]
=

1

2

(
ΓaQ̃

)
α
, (2.6.55){

Q̃α, Q̃β

}
=− 1

2

[(
ΓabC

)
αβ
J̃ab − 2 (ΓaC)αβ P̃a

]
. (2.6.56)

After having performed an infinite S-expansion with subsequent ideal subtrac-
tion (see Appendix B.1 for further details on this calculation), we reach a new
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superalgebra, [osp(2|1) ⊗ sp(2)] 	 I, which corresponds to the non-standard
Maxwell superalgebra described in [42], namely

[Jab, Jcd] =ηbcJad − ηacJbd − ηbdJac + ηadJbc, (2.6.57)

[Jab, Zcd] =ηbcZad − ηacZbd − ηbdZac + ηadZbc, (2.6.58)

[Jab, Pc] =ηbcPa − ηacPb, (2.6.59)

[Pa, Pb] =Zab, (2.6.60)

[Jab, Qα] =
1

2
(ΓabQ)α , (2.6.61)

[Pa, Qα] =0, (2.6.62)

[Zab, Zcd] =0, (2.6.63)

[Zab, Pc] =0, (2.6.64)

[Zab, Qα] =0, (2.6.65)

{Qα, Qβ} =− 1

2

(
ΓabC

)
αβ
Zab. (2.6.66)

We have thus reached the non-standard Maxwell superalgebra described in Ref.
[42], by performing an infinite S-expansion with ideal subtraction on the AdS
superalgebra.

Invariant tensor of the non-standard Maxwell superalgebra in D = 3
We write the components of the invariant tensor of the AdS superalgebra as

follows (according with what was done in Ref. [51]):

〈J̃abJ̃cd〉 =µ̃0 (ηadηbc − ηacηbd) , (2.6.67)

〈J̃abP̃c〉 =µ̃1εabc, (2.6.68)

〈P̃aP̃b〉 =µ̃0ηab, (2.6.69)

〈Q̃αQ̃β〉 = (µ̃0 − µ̃1)Cαβ , (2.6.70)

where µ̃0 and µ̃1 are arbitrary constants.
If we now use (2.5.1), we see that the non-zero components of the invariant

tensor for the non-standard Maxwell superalgebra can be written as

〈JabJcd〉 =α0〈J̃abJ̃cd〉 = α0µ̃0 (ηadηbc − ηacηbd) ≡ α̃0 (ηadηbc − ηacηbd) ,
(2.6.71)

〈JabZcd〉 =α2〈J̃abJ̃cd〉 = α2µ̃0 (ηadηbc − ηacηbd) ≡ α̃2 (ηadηbc − ηacηbd) ,
(2.6.72)

〈JabPc〉 =α1〈J̃abP̃c〉 = α1µ̃1εabc ≡ α̃1εabc, (2.6.73)

〈PaPb〉 =α2〈P̃aP̃b〉 = α2µ̃0ηab ≡ α̃2ηab, (2.6.74)

〈QαQβ〉 =α2µ̃0Cαβ ≡ α̃2Cαβ , (2.6.75)

where we have defined

α̃0 ≡α0µ̃0, (2.6.76)

α̃1 ≡α1µ̃1, (2.6.77)

α̃2 ≡α2µ̃0, (2.6.78)

and where we have taken into account the ideal subtraction. The α’s are arbi-
trary constants.
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2.6.7 PP-wave (super)algebra in D = 11 from the AdS4×S7

(super)algebra

In Ref. [16], the authors showed that the (super-)PP-wave algebra in eleven
dimensions can be obtained through a generalized Inönü-Wigner contraction of
the AdS4 × S7 (super)algebra in D = 11 (Penrose limit, see Ref. [68]).

In the following, we will reach the same result by performing an infinite
S-expansion with ideal subtraction. Indeed, our prescription for an infinite
S-expansion with ideal subtraction is able to reproduce a generalized Inönü-
Wigner contraction.

PP-wave algebra from the AdS4 × S7 algebra

The AdS4 × S7 algebra in D = 11 can be written in the following traditional
form (see Ref. [16]):

[Pa, Pb] =4Jab, [Pa′ , Pb′ ] =4Ja′b′ , (2.6.79)

[Jab, Pc] =2ηbcPa, [Ja′b′ , Pc′ ] =2ηb′c′Pa′ , (2.6.80)

[Jab, Jcd] =4ηadJbc, [Jab, Jcd] =4ηadJbc, (2.6.81)

where the vector index ofAdS4 is i = 0, 1, 2, 3, and that of S7 is a′ = 4, 5, 6, 7, 8, 9, ],
according with the notation adopted in [16].

Following Ref. [16], we define the light cone components of the momenta P ’s
and boost generators P ∗’s as

P± ≡
1√
2

(P\ ± P0) , (2.6.82)

Pm = (Pi, Pi′) , (2.6.83)

P ∗m = (P ∗i = Ji0, P
∗
i′ = Ji′\) . (2.6.84)

Thus, we can write the commutation relations of AdS4 × S7 as follows:

[Pi, P+] =2
√

2P ∗i , [Pi′ , P+] =− 1√
2
P ∗i ,

[P ∗i , P+] =− 1√
2
Pi, [P ∗i′ , P+] =

1√
2
Pi′ ,

[Pi, P−] =− 2
√

2P ∗i , [Pi′ , P−] =− 1√
2
P ∗i′ ,

[P ∗i , P−] =
1√
2
Pi, [P ∗i′ , P−] =

1√
2
Pi′ ,

[P ∗i , Pj ] =− 1√
2
ηij (P− − P+) , [P ∗i′ , Pj′ ] =− 1√

2
ηi′j′ (P− + P+) ,

(2.6.85)

[Pi, Pj ] =4Jij , [Pi′ , Pj′ ] =− Ji′j′ ,[
P ∗i , P

∗
j

]
=Jij ,

[
P ∗i′ , P

∗
j′
]

=− Ji′j′ ,
[Jij , Pk] =2ηjkPi, [Ji′j′ , Pk′ ] =2ηj′k′Pi′ ,

[Jij , P
∗
k ] =2ηjkP

∗
i , [Ji′j′ , P

∗
k′ ] =2ηj′k′P

∗
i′ ,

[Jij , Jkl] =4ηilJjk, [Ji′j′ , Jk′l′ ] =4ηi′l′Jj′k′ .
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Before applying the infinite S-expansion method with subsequent ideal subtrac-
tion, we consider the following subspaces partition of the AdS4 × S7 algebra:

V0 = {P−, Jij , Ji′j′} ,
V1 = {Pi, Pi′ , P ∗i , P ∗i′} , (2.6.86)

V2 =P+.

Following the procedure developed in Subsection 2.4, we now perform an infinite

S-expansion with the semigroup S
(∞)
E on the algebra g = AdS4×S7, considering

a resonant structure between the subsets partition and the following subsets

decomposition of the semigroup S
(∞)
E :

S0 = {λ0} ∪ {λ2n}∞n=1 ,

S1 = {λ1} ∪ {λ2n+1}∞n=1 , (2.6.87)

S2 = {λ2} ∪ {λ2n}∞n=2 .

The resonant structure is given by

S0 × V0 = λ0V0 ⊕ {λ2n}∞n=1 × V0, (2.6.88)

S1 × V1 = λ1V1 ⊕ {λ2n+1}∞n=1 × V1, (2.6.89)

S2 × V2 = λ2V2 ⊕ {λ2n}∞n=2 × V2. (2.6.90)

Then, the infinite S-expanded (resonant) algebra can be written as

g∞S = (S0 × V0)⊕ (S1 × V1)⊕ (S2 × V2) . (2.6.91)

We then choose the following infinite ideal:

I = ({λ2n}∞n=1 × V0)⊕ ({λ2n+1}∞n=1 × V1)⊕ ({λ2n}∞n=2 × V2) , (2.6.92)

and we perform the ideal subtraction on the infinite S-expanded algebra.
The most relevant step consists in writing the commutation relations

[λ1P
∗
i , λ1Pj ] =− 1√

2
ηij (λ2P− − λ2P+) , (2.6.93)

[λ1P
∗
i′ , λ1Pj′ ] =− 1√

2
ηi′j′ (λ2P− − λ2P+) , (2.6.94)

where λ2P− belongs to the ideal, while λ2P+ does not. This is the reason why
a finite S-expansion in this case would not work.

Thus, after the ideal subtraction, we end up with the algebra gPP (the PP-
wave algebra):

gPP = g∞S 	 I. (2.6.95)

In fact, if we now rename the generators as follows: λ0Jij = Ĵij , λ0Ji′j′ = Ĵi′j′ ,

λ0P− = P̂−, λ1Pi = P̂i, λ1Pi′ = P̂i′ , λ1P
∗
i = P̂ ∗i , λ1P

∗
i′ = P̂ ∗i′ , λ2P+ = P̂+, we

can finally write the PP-wave algebra (see Ref. [69]) in terms of the commutation
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relations

[
P̂i, P̂−

]
=− 2

√
2P̂ ∗i ,

[
P̂i′ , P̂−

]
=− 1√

2
P̂ ∗i ,[

P̂ ∗m, P̂−

]
=− 1√

2
P̂m,

[
P̂ ∗m, P̂n

]
=− 1√

2
ηmnP̂+,[

Ĵmn, Ĵpq

]
= 4ηmqĴnp,

[
Ĵmn, P̂

∗
p

]
= 2ηnpP̂

∗
m,[

Ĵmn, Ĵpq

]
= 4ηmqĴnp, (2.6.96)

where we have adopted the notation of Ref. [69].
We have thus reached the PP-wave algebra in D = 11 with an infinite S-

expansion with ideal subtraction, starting from the AdS4 × S7 algebra, repro-
ducing, in this way, a generalized Inönü-Wigner contraction.

Super-PP-wave algebra from Super-AdS4 × S7

We now extend the previous analysis to the supersymmetric case. We thus
consider the addition of fermionic generators to the AdS4 × S7 algebra, and
then perform an infinite S-expansion with consequent ideal subtraction.

Following Ref. [69], the commutators involving the supercharges Q’s can be
decomposed in the following way:

Q = Q+ +Q−, Q± = Q±P±, (2.6.97)

using the light cone projection operators

P± =
1

2
Γ±Γ∓, (2.6.98)

Γ± ≡
1√
2

(Γ\ ± Γ0) , (2.6.99)

where the Γ’s are the gamma matrices in eleven dimensions.
Now we add Q± into the subspaces partition, before applying the ideal sub-

traction, and we thus write

V0 = {P−, Jmn, Q−} ,
V1 = {Pm, P ∗m, Q+} , (2.6.100)

V2 =P+.

In this way, after the ideal subtraction (in analogy to what has been done in
the bosonic case, see Appendix B.2 for further details on this calculation), we

57



finally get[
P̂−, Q̂+

]
=− 3

2
√

2
Q̂+I,[

P̂−, Q̂−

]
=− 1

2
√

2
Q̂−I[

P̂i, Q̂−

]
=

1√
2
Q̂+Γ−IΓi,[

P̂i′ , Q̂−

]
=

1

2
√

2
Q̂+Γ−IΓi′ ,[

P̂ ∗m, Q̂−

]
=

1

2
√

2
Q̂+ΓmΓ−, (2.6.101)[

Ĵmn, Q̂±

]
=

1

2
Q̂±Γmn,{

Q̂+, Q̂+

}
=− 2CΓ+P̂+,{

Q̂−, Q̂−

}
=− 2CΓ−P̂− −

√
2CΓ−IΓij Ĵij +

1√
2
CΓ−IΓi

′j′ Ĵi′j′ ,{
Q̂+, Q̂−

}
=
(
−2CΓmP̂m − 4CIΓiP̂ ∗i − 2CIΓi

′
P̂ ∗i′
)
P̂−,

where we have again adopted the notation defined in [69]. These commutation
relations correspond to those of the super-PP-wave algebra (see Ref. [69] for
further details).

We have thus reached the super-PP-wave algebra in D = 11 with an in-
finite S-expansion with ideal subtraction, starting from the super-AdS4 × S7,
reproducing, in this way, a generalized Inönü-Wigner contraction on a super-
symmetric algebra.

2.7 Comments about the requirements on S-expansion

The associativity present in the (semi)group of an S-expansion is a requirement
to maintain the Jacobi identity in the algebra generated. With the associativity
it is possible to factorize the elements from the new structure constants to main-
tain the value of zero through Bianchi identity of the initial algebra. However
there are occasions where Jacobi identity is zero on its own, therefore it is not
necessary to impose this condition of associativity.

As explained in ref. [28] to find the sets of elements that perform a certain
S-expansion we must discard the non-associative sets, work that it is possible
do with a computer program. But doing this we may be excluding some correct
sets, when the Jacobi identity is still zero whitout associativity in the set.

A good example is 1.5.1 explained above. In this example we develop with
the application of our analytic method that, in order to reach the target Bianchi
Type II algebra from the Bianchi Type I algebra, the structure of semigroup is
not necessary. This is due to the fact that, in that case, the Jacobi identities
of both the mentioned algebras are trivially satisfied (each term of the Jacobi
identities is equal to zero).

Curiously, all the examples in what we work with the technique of analytical
analysis has resulted in sets of elements that always generates an algebra that
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respect the identity of Jacobi. This motivates to think that perhaps the exposed
method always leads to obtain a set of elements that meet the requirements to
build an algebra.

Since the found set has a resonance structure with the subspaces of the
initial algebra, it follows the same closure rules between the subspaces of final
algebra. On the other hand the signs of multiplication are exposed when the
expanded generators are written in function of the old ones. This could justify
the phenomenon, but it requires a much more thorough analysis that will not
be analyzed in this thesis. As a conclusion this establishes a generality to the
S-expansion process from the requirement that it be an abelian magma, and
from there, using the exposed method to find the necessary magma, semigroup
or group, all always abelian.

On the other hand, the author in [20] already mentioned that the require-
ment of abelianidad, when relaxing it, it was possible to obtain an super algebra
from an algebra, due to the possibility to transform the commutators into anti-
commutadores using variables of Grassman [23].

Following the work done in [70], the generalized IW-contraction is reproduced
as a infinite resonant S-expansion using at the same time an ideal-reduction,
which generalizes the 0S-reduction and answers some of the open questions
described in [71] . At the same time, in ref. [72] The authors reproduce a gen-
eralized IW-contraction using Grassman parameters, which leads one to think
of relaxing the abelianity at the level of algebras, not only of super-algebras, is
obviously possible, as we see in the end of example 1.5.1.

Furthermore, even if we consider different kind of structure that multiples an
arbitrary algebra, remains the natural question: What is the meaning of this?.
The most close answer is given by the most known contractions, because in
many example the parameter has a physical meaning. What means that maybe
the knowing parameters has besides a matematical structure. Of course, this
text is only motivational for future research
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Chapter 3

Superalgebras and FDA on
Supergravity

Wisdom is not obvious. You must see the subtle and notice the hidden to be

victorious.

Sun Tzu, The Art of War

3.1 Introduction

Supergravity theories in various spacetime dimensions 4 ≤ D ≤ 11 have a field
content that generically includes the metric, the gravitino, a set of 1-form gauge
potentials, and (p + 1)-form gauge potentials of various p ≤ 9, and they are
discussed in the context of Free Differential Algebras (FDAs).

In particular, in the framework of FDAs [29], the structure of D = 11 su-
pergravity, first constructed in [21], was then reconsidered in [22], adopting the
superspace geometric approach. In the same paper, the supersymmetric FDA
was also investigated in order to see whether the FDA formulation could be
interpreted in terms of an ordinary Lie superalgebra in its dual Maurer-Cartan
formulation ∗. This was proven to be true, and the existence of a hidden super-
algebra underlying the theory was presented for the first time. In fact, in [22],
the authors proved that the FDA underlying D = 11 supergravity can be traded
with a Lie superalgebra which contains, besides the Poincaré superalgebra, also
new bosonic 1-forms and a nilpotent fermionic generator Q′, necessary for the
closure of the superalgebra.

Later, in [73], the authors wonder whether eleven dimensional supergravity
can be decontracted into a non-abelian (gauged) model. This problem was re-
duced to that of finding an algebra whose contraction yields the D = 11 algebra
of [22]. In the same paper, they also considered the D = 4 case, in order to
explain their approach through a toy-model. However, the four dimensional
gauged case results interesting, since its algebraic form (presented in [73]) cor-
responds to an AdS-Lorentz-like superalgebra, presented and largely discussed

∗The supergroup structure allows a deeper understanding of the symmetry and topological
properties of the theory.
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in [74], where the authors explored the supersymmetry invariance of an exten-
sion of minimal D = 4 supergravity in the presence of a non-trivial boundary,
presenting the explicit construction of the N = 1, D = 4 AdS-Lorentz super-
gravity bulk Lagragian in the rheonomic framework. In particular, they de-
veloped a peculiar way to introduce a generalized supersymmetric cosmological
term to supergravity. Then, by studying the supersymmetry invariance of the
Lagrangian in the presence of a non-trivial boundary, they interestingly found
that the supersymmetric extension of a Gauss-Bonnet like term is required in
order to restore the supersymmetry invariance of the full Lagrangian.

In [26], the authors clarified the role of the nilpotent fermionic generator Q′

introduced in [22] by looking at the gauge properties of the theory. They found
that its presence is necessary, in order that the extra 1-forms of the hidden
superalgebra give rise to the correct gauge transformations of the p-forms of
the FDA. In particular, in its absence, the extra bosonic 1-forms do not enjoy
gauge freedom, but generate, together with the supervielbein, new directions
of an enlarged superspace, so that the FDA on ordinary superspace is no more
reproduced.

On the group theoretical side, in [20], the authors developed the so-called
S-expansion procedure, which is based on combining the inner multiplication
law of a discrete set S with the structure of a semigroup, with the structure
constants of a Lie algebra g. The new, larger Lie algebra thus obtained is called
S-expanded algebra, and it is written as gS = S × g.

There are two facets applicable in the S-expansion method, which offer great
manipulation on (super)algebras, i.e. resonance and reduction. The role of
resonance is that of transferring the structure of the semigroup to the target
(super)algebra; Meanwhile, reduction plays a peculiar role in cutting the (su-
per)algebra properly, thanks to the existence of a zero element in the set involved
in the procedure.

From the physical point of view, several (super)gravity theories have been
largely studied using the S-expansion approach, enabling the achievement of
several results over recent years (see Ref.s [27,47–50,52,53,75–93]). Furthermore,
in [28], an analytic method for S-expansion was developed. This method is
able to give the multiplication table(s) of the (abelian) set(s) involved in an
S-expansion process for reaching a target Lie (super)algebra from a starting
one, after having properly chosen the partitions over subspaces of the considered
(super)algebras. A complete review of S-expansion can be found in [20] and [28].

In [70], the authors proposed a new prescription for S-expansion, involving

an infinite abelian semigroup S
(∞)
E , with subsequent subtraction of a suitable

infinite ideal. Their approach is a generalization of the finite S-expansion pro-
cedure, and it allows to reproduce a generalized Inönü-Wigner contraction via
infinite S-expansion between two different algebras.

In this work, we obtain a particular hidden Maxwell superalgebra in four di-
mensions by performing an infinite S-expansion with subsequent ideal subtrac-
tion of the hidden AdS-Lorentz superalgebra underlying D = 4 supergravity.
We also display a map in order to show the way in which the hidden AdS-
Lorentz superalgebra and the Maxwell superalgebra can be obtained. This map
also offers the links, consisting in infinite S-expansion and ideal subtraction, be-
tween other superalgebra in four dimensions. We then adopt the Maurer-Cartan
(and FDA) formalism and we consider the paremetrization of the 3-form A(3),
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whose field strength is a 4-form F (4) = dA(3) + . . ., modulo fermionic bilin-
ears, in terms of 1-forms, and we show how the (trivial) boundary contribution
in four dimensions, dA(3), can be naturally extended by considering particular
contributions to the structure of the extra fermionic generator appearing in the
hidden Maxwell superalgebra underlying supergravity in four dimensions. This
extension involves the cosmological constant. Interestingly, the presence of these
terms strictly depends on the form of the extra fermionic generator appearing
in the hidden superMaxwell-like extension of D = 4 supergravity.

This chapter is organized as follows: In Section 3.2, we perform the S-
expansion of different superalgebras describing and underlying D = 4 super-
gravity, and we also display a map which links different superalgebras in four
dimensions. In Section 3.3, we write some of the superalgebras presented in
Section 3.2 in the Maurer-Cartan formalism and, in particular, we consider a
gauged version of D = 4 supergravity, which hidden structure corresponds to
the Maxwell superalgebra. We then write the parametrization of the 3-form
A(3) in this context and we show that the (trivial) boundary contribution dA(3)

can be naturally extended with the addition of terms involving the cosmological
constant.

3.2 Infinite S-expansion and ideal subtraction of
superalgebras in four dimensions

It is well known that we can construct several theories in four dimensions by
choosing different amount of physical (and unphysical) fields, invariant under
different superalgebras. One of the simplest case is the Poincaré superalgebra
osp(1|4), which is abelian in the momenta. On the other side, the (Anti-)de Sit-
ter ((A)dS) algebra is characterized by the fact that the translations commute
with Lorentz transformations. In Ref. [94], the authors presented a geomet-
ric formulation involving the AdS structure group (the AdS one), known as
MacDowell-Mansouri action. The generalization of their work consists in con-
sidering the supergroup Osp(N|4).

In Ref. [22], was presented a particular superalgebra, now known as hidden
superalgebra, which includes, as a subalgebra, the super-Poincaré algebra, and
also involves two extra bosonic generators Zab, commuting with the generators
Pa. Furthermore, an extra nilpotent fermionic generator Q′α must be included
(in order to satisfy the closure of the superalgebra). It is then possible to
consider a Hidden AdS-Lorentz superalgebra, when the commutators between
the momenta is equal to a Lorentz-like generator, which will be referred as to
Zab. Finally, we should mentioned that the introduction of a second fermionic
generator has been considered in the literature; This feature lead the authors of
[53] to consider Maxwell superalgebras for constructing actions for supergravity
theories.

We will now consider the same types of superalgebras in four dimensions.
Each of these superalgebras gives rise to the construction of an action for a
supergravity theory. The existence of connections between different physical
theories motivates to look for connections between the superalgebras underlying
these theories. In the following, we present a scheme that displays the various
relations between the mentioned superalgebras, involving infinite S-expansion
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and ideal subtraction. We first consider a “toy model” superalgebra in four
dimensions described in [73], namely the AdS-Lorentz-like superalgebra with
an extra fermionic generator, which is the hidden superalgebra underlying the
AdS supergravity theory in D = 4. This algebra will be named hidden AdS-
Lorentz superalgebra, and can be written as

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc,

[Jab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc,

[Zab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc, (3.2.1)

[Qα, Zab] =− (γabQ)α − (γabQ
′)α, [Jab, Pc] = ηbcPa − ηacPb,

[Qα, Pa] =− i(γaQ)α − i(γaQ′)α [Pa, Pb] =− Zab,
[Jab, Qα] =− (γabQ)α, [Jab, Q

′
α] = −(γabQ

′)α, [Zab, Pc] = ηbcPa − ηacPb,

{Qα, Qβ} =− i(γaC)αβPa −
1

2
(γabC)αβZab,

{
Q′α, Q

′
β

}
= 0,

where C stands for the charge conjugation matrix and γa and γab are Dirac ma-
trices in four dimensions. Let us notice that the Lorentz type algebra generated
by {Jab, Zab} is a subalgebra of the above superalgebra. In [74], the authors
explored the supersymmetry invariance of an extension of minimal D = 4 su-
pergravity in the presence of a non-trivial boundary, and they presented the
explicit construction of the N = 1, D = 4 AdS-Lorentz supergravity bulk La-
gragian in the rheonomic framework. In particular, they developed a peculiar
way to introduce a generalized supersymmetric cosmological term in supergrav-
ity. The starting algebra they considered was exactly the AdS-Lorentz superal-
gebra (3.2.1), with a consistent truncation of the fermionic generator Q′α

∗. In
other words, the hidden AdS-Lorentz superalgebra can be consistently viewed
as an extension of the AdS-Lorentz algebra described in [74], with the inclusion
of an extra fermionic generator Q′α.

The extra fermionic generator Q′α contained into the hidden AdS-Lorentz su-
peralgebra presents the structure of an abelian ideal: [ · , Q′α] = 0 −→ I = {Q′α}
(see Ref. [70] for further details). A technique proposed by the authors of
[70], which consists in a new prescription for S-expansion, involving an infi-

nite abelian semigroup S
(∞)
E , with subsequent subtraction of a suitable infi-

nite ideal †, allows to obtain the AdS-Lorentz superalgebra, generated only by
{Jab, Pa, Zab, Qα}, studied in [74] from the hidden AdS-Lorentz superalgebra,
generated by {Jab, Pa, Zab, Qα, Q′α}, described in [73], by taking into account the
existence of the ideal structure mentioned above. This is done by subtracting
the ideal, namely

gAdS-Lorentz = gHidden AdS-Lorentz 	 I. (3.2.2)

On the other hand, we can reach a (hidden) Maxwell superalgebra [42,43] in
four dimensions by starting from the hidden AdS-Lorentz superalgebra (3.2.1).

∗Let us observe that the authors of [74] adopted the Maurer-Cartan formalism in their
work, where the superalgebra generators are properly associated to 1-forms.
†Their approach is a generalization of the finite S-expansion procedure, and it allows to re-

produce a generalized Inönü-Wigner contraction with an infinite S-expansion with subsequent
ideal subtraction.
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Thus, following [70], we can perform a S-expansion with the infinite abelian

semigroup S
(∞)
E , involving a resonant structure:

S
(∞)
E × gHidden AdS-Lorentz. (3.2.3)

The resonance condition can be written as

{λ2n}∞n=0×V0 = {λ2n}∞n=0 {Jab} ,
{λ2n+1}∞n=0×V1 = {λ2n+1}∞n=0 × {Qα, Q

′
α} , (3.2.4)

{λ2n}∞n=1×V2 = {λ2n}∞n=1 × {Zab, Pa} .

Then, we perform the subtraction of the following particular ideal:

I =
⊕
β

W Iβ , β = 0, 1, 2, (3.2.5)

W I0 = {λ2n}∞n=2 × {Jab} ,
W I1 = {λ2n+1}∞n=2 × {Qα, Q

′
α} ,

W I2 = {λ2n}∞n=3 × {Zab, Pa} .

After having properly renamed (following the convention of Ref. [70]) the new
generators, we end up with the (hidden) Maxwell superalgebra, which is thus
given by

gMaxwell Superalgebra =
(
S

(∞)
E × gHidden AdS-Lorentz

)
	 I. (3.2.6)

We also observe that, analogously to the cases of the hidden AdS-Lorentz
and of the AdS-Lorentz superalgebras in four dimensions, the same procedure
adopted for that cases allows to reproduce the Poincaré superalgebra from the
hidden Poincaré superalgebra introduced and studied in [22, 73] ‡. In fact, by
starting from the hidden Poincaré superalgebra, generated by {Jab, Pa, Zab, Qα, Q′α},
which can be written as

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc,

[Jab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc,

[Jab, Pc] = ηbcPa − ηacPb, [Pa, Pb] =0,

[Qα, Pa] =− i(γaQ′)α [Jab, Qα] =− (γabQ)α,

[Qα, Zab] =− (γabQ
′)α, [Jab, Q

′
α] =− (γabQ

′)α,

{Qα, Qβ} =− i(γaC)αβPa −
1

2
(γabC)αβZab,

{
Q′α, Q

′
β

}
=0, (3.2.7)

‡It is well known that the Poincaré and the AdS superalgebras are related by Inönü-
Wigner contraction, i.e. by rescaling and consequently considering a particular limit for the
generators, namely Pa −→ σ2Pa, and Qα −→ σQα, where σ is the rescaling parameter. It is
also possible to end up with the non-standard Maxwell superalgebra by starting from the AdS
superalgebra or Maxwell superalgebra (see Ref. [70] for further details). In the same way, by
performing the rescaling Zab −→ σZab, Pa −→ σPa, Qα −→ σQα, and Qα −→ σ2Qα, and
a consequent consistent limit (Inönü-Wigner contraction) of the hidden AdS-Lorentz algebra
(3.2.1), we obtain the hidden Poincaré superalgebra.

65
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Figure 3.1: Map between different superalgebras linked through infinite S-
expansion and/or ideal subtraction. Source: self made.

and considering the ideal I = {Zab, Q′α}, we can reach the standard Poincaré
superalgebra in four dimensions generated only by {Jab, Pa, Zab, Qα}, namely

gPoincaré superalgebra = ghidden Poincaré superalgebra 	 I. (3.2.8)

In Figure 3.1, we have collected and summarized the relationships between the
mentioned superalgebras. The link between this superalgebras involve infinite
S-expansion and ideal subtraction §.

3.3 Hidden Maxwell superalgebra in the Maurer-
Cartan formalism

There are two dual ways of describing a (super)algebra: The first one is pro-
vided by the (anti)commutation relations between the generators; The second
one is instead provided by the so-called Maurer-Cartan equations. These two
descriptions are equivalent and dual each other.

The generators TA’s, which form a basis of the tangent space T (M) of a
manifold M, satisfy the (anti)commutation relations of the (super)algebra and
the (super) Jacobi identity. The same information is enclosed in the Maurer-
Cartan equations, which read

dσA = −1

2
CABCσ

BσC , (3.3.1)

where σA stands for the forms involved into the Maurer-Cartan equations, and
where CABC are the coupling constants.

As we can see, the Maurer-Cartan equations are written in terms of the dual
forms σA’s of the generators TA’s, which are related through the expression

σA(TB) = δAB , (3.3.2)

§Let us remind that both the standard and the generalized Inönü-Wigner contractions are
reproducible through S-expansion: The standard Inönü-Wigner contraction can be reproduced
with a finite S-expansion, while the generalized one can be reproduced through an infinite
S-expansions with subsequent ideal subtraction.
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up to normalization factors ∗.
We now consider the Maurer-Cartan equations associated with the superalge-

bras in D = 4 presented in [73]. In the case of osp(4|1) (Poincaré superalgebra),
we have

Rab =0,

DV a =
i

2
Ψ̄γaΨ, (3.3.3)

DΨ =0,

where γa, as said before, are the four-dimensional gamma matrices, and where
D = d+ ω is the Lorentz covariant exterior derivative. Here we have fixed the
normalization of DV a to i

2 , according to the usual convention. The closure
(d2 = 0) of this superalgebra is trivially satisfied.

In the AdS case, instead, we have that the anticommutator of the generators
Q’s falls into the Poincaré traslations and the Lorentz rotations, generating non-
vanishing value of the curvature, namely

Rab =αe2V aV b + βeΨ̄γabΨ,

DV a =
i

2
Ψ̄γaΨ, (3.3.4)

DΨ =
i

2
eγaΨV a,

where e = 1/2l corresponds to the inverse of the AdS radius †, and where we
have fixed the normalization of DΨ to i

2 . Here, α and β are constants. In order
to fix them, we require the d2-closure of the superalgebra (d2 = 0); In this way
we get β = 1

2α and, after having fixed the normalization α = −1, we can thus
write β = − 1

2 .
We observe that in the limit e → 0 we correctly get the Maurer-Cartan

equations in the flat (i.e. Minkowski) space.
As shown in [22], with the introduction of a nilpotent fermionic generator Q′,

which also appears in the supergroup called hidden supergroup, we can write the
hidden Poincaré (3.2.7) and the hidden AdS-Lorentz (3.2.1) (see Ref. [73]) su-
peralgebras in terms of the corresponding respective Maurer-Cartan equations.
For the hidden Poincaré case (3.2.7), we have

Rab =0, (3.3.5)

DV a =
i

2
Ψ̄γaΨ, (3.3.6)

DΨ =0, (3.3.7)

DBab =
1

2
Ψ̄γabΨ, (3.3.8)

Dη =
i

2
δγaΨV a +

1

2
εγabΨB

ab. (3.3.9)

∗See the maps between the two formalism presented [26] for further details.
†The scaling constant e is the charge associated with the cosmological constant switched

on in the AdS curved space.
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Here, δ and ε are two arbitrary parameters. In fact, requiring the closure of the
superalgebra, and in particular of Dη, we simply get the identity 0 = 0, which
leads the solution to be given in terms of two free parameters, namely δ and ε.
In particular, for reaching this result we have made use of the following Fierz
identities in four dimensions:

ΨγaΨ̄γaΨ = 0, (3.3.10)

,
ΨγabΨ̄γ

abΨ = 0. (3.3.11)

In this superalgebra the Lorentz curvature is zero: Rab = 0. However, we have
a non-trivial Lorentz-like contribution given by DBab = 1

2 Ψ̄γabΨ.
We observe, as it was done in [73], that in D = 4 we also have a particular

subalgebra of the above hidden Poincaré one, which can be obtained through an
Inöü-Wigner contraction on the hidden AdS-Lorentz superalgebra (3.2.1). In
fact, let us remind that, as observed in [73], we do not even need the 1-form Bab

to find an underlying group for the Cartan Integrable System (CIS) in the four
dimensional Minkowski space. Indeed, the general solution contains as special
case the subalgebra whose associated Maurer-Cartan equations can be written
as

Rab =0, (3.3.12)

DV a =
i

2
Ψ̄γaΨ, (3.3.13)

DΨ =0, (3.3.14)

Dη =
i

2
γaΨV a, (3.3.15)

which endowed the CIS with a 3-form A(3) = −iΨ̄γaηV a.
As previously shown in Section 3.2, we can write a (hidden) Maxwell su-

peralgebra in four dimensions, by starting from the hidden AdS-Lorentz one
(3.2.1). For completeness, in the following we report the Maurer-Cartan equa-
tions associated with the hidden AdS-Lorentz superalgebra (3.2.1) (which were
displayed in [73]):

Rab =0, (3.3.16)

DV a =
i

2
Ψ̄γaΨ− eBabVb, (3.3.17)

DΨ =
i

2
eγaΨV a +

e

4
γabΨB

ab, (3.3.18)

DBab =
1

2
Ψ̄γabΨ− eBacB b

c + eV aV b, (3.3.19)

Dη =
i

2
γaΨV a +

1

4
γabΨB

ab, (3.3.20)

where the parameters have been fixed by requiring the closure of the superal-
gbera and properly fixing the normalization of the 1-form η (see Ref. [73] for
further details) ‡.

‡We observe, reminding [73], that in the hidden AdS-Lorentz superalgebra we can write
Dη = 1

e
Λ and DΨ = Λ, where Λ is the 2-form that reads Λ = i

2
eγΨV

a + 1
4
eγabΨB

ab.
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We now write the Maurer-Cartan equations associated with this Maxwell
superalgebra in D = 4, namely

Rab =0, (3.3.21)

DV a =
i

2
Ψ̄γaΨ, (3.3.22)

DΨ =0, (3.3.23)

DBab =
1

2
Ψ̄γabΨ, (3.3.24)

DB̃ab =αeΨ̄γabη + βeBacB b
c + γeV aV b, (3.3.25)

Dη =
i

2
δγaΨV a +

1

2
εγabΨB

ab. (3.3.26)

Once again, we must require the closure d2 = 0 of the superalgebra. In this way,
from the first Maurer-Cartan equation we get δα = γ, and β = −2αε. We now
choose the normalization α = 1 and δ = 1. We can thus write γ = 1 and β =
−2ε, being ε a free parameter. We observe that the Lorentz curvature is again
zero: Rab = 0. In this case, we have two non-trivial Lorentz-like contributions,
namely DBab = 1

2 Ψ̄γabΨ and DB̃ab = αeΨ̄γabη + βeBacB b
c + γeV aV b. Then,

we can finally write

Rab =0,

DV a =
i

2
Ψ̄γaΨ,

DΨ =0,

DBab =
1

2
Ψ̄γabΨ,

DB̃ab =eΨ̄γabη + βeBacB b
c + eV aV b,

Dη =
i

2
γaΨV a +

1

2
εγabΨB

ab, (3.3.27)

where β = −2ε. This superalgebra is the (hidden) Maxwell superalgebra under-
lying supergravity in four dimensions.

We observe that, with the choice β = ε = 0, we get the following subalgebra:

Rab =0,

DV a =
i

2
Ψ̄γaΨ,

DΨ =0,

DBab =
1

2
Ψ̄γabΨ,

DB̃ab =eΨ̄γabη + eV aV b,

Dη =
i

2
γaΨV a. (3.3.28)

Now, one may wonder how to write the parametrization of the 3-form A(3)

in D = 4 supergravity, once the above relations are given. In the following, we
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will write the parametrization of the 3-form A(3) in terms of 1-forms (also the
“hidden” ones, namely the 1-forms which do not represent physical fields), both
for the hidden Maxwell superalgebra (3.3.27) and for its subalgebra (3.3.28). We
will then study the particular structures of the (trivial) boundary contribution
dA(3) in the four-dimensional “gauged” case.

3.3.1 Gauged extensions of dA(3)

We start our analysis by considering the hidden Maxwell superalgebra in four
dimensions § and its structure (3.3.27). Then, we write the parametrization of
the 3-form A(3) in terms of 1-forms, both for the hidden Maxwell superalgebra
and for its particular subalgebra displayed above, and we study the different
structures of the (trivial) boundary contribution dA(3).

The four-dimensional hidden Maxwell superalgebra is generated by the fol-
lowing set of generators:

{
Jab, Pa, Zab, Z̃ab, Qα, Q

′
α

}
. (3.3.29)

Let us now consider the (hidden) Maxwell superalgebra valued curvatures, which
are defined by

Rab = dωab − ωacωcb , (3.3.30)

Ra = DV a − i

2
Ψ̄γaΨ , (3.3.31)

F ab = DBab − 1

2
Ψ̄γabΨ , (3.3.32)

F̃ ab = DB̃ab − eΨ̄γabη − βeBacB b
c − eV aV b , (3.3.33)

ρ = DΨ , (3.3.34)

σ = Dη − i

2
γaΨV a − 1

2
εγabΨB

ab, (3.3.35)

where D = d + ω is the Lorentz covariant exterior derivative. In the four-
dimensional Minkowski space, one can also write

F (4) = dA(3) − 1

2
Ψ̄γabΨV

aV b , (3.3.36)

where the 4-form F (4) is trivially given in terms of a boundary contribution.
Now, our aim is that of writing the deformation to the 4-form F (4) induced

by the presence the cosmological constant in the hidden Maxwell superalgebra
underlying D = 4 supergravity.

We can write the Maurer-Cartan equations in four dimensions for the Maxwell
superalgebra, by setting the curvatures to zero, namely

§That is to say, the superalgebra we have previously obtained through infinite S-expansion
with subsequent ideal subtraction by starting from the hidden AdS-Lorentz superalgebra
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Rab = dωab − ωacωcb = 0 , (3.3.37)

Ra = DV a − i

2
Ψ̄γaΨ = 0 , (3.3.38)

F ab = DBab − 1

2
Ψ̄γabΨ = 0 , (3.3.39)

F̃ ab = DB̃ab − eΨ̄γabη − βeBacB b
c − eV aV b = 0 , (3.3.40)

ρ = DΨ = 0 , (3.3.41)

σ = Dη − i

2
γaΨV a − 1

2
εγabΨB

ab = 0 , (3.3.42)

which simply lead to the expression (3.3.27).
Now, as done in the D = 11 and D = 7 supergravity cases in [22] and [26],

respectively, we can write the parametrization of the 3-form A(3) in terms of
1-forms. We first of all observe that, since dA(3) is a boundary contribution in
four dimensions, we expect a topological form for the parametrization of A(3).
We thus start by writing

A(3) =
1

e
BabDBab +

1

e
B̃abDB̃ab − 2η̄Dη. (3.3.43)

This particular parametrization will give rise to a “topological” structure for
the boundary contribution dA(3). In fact, if we now compute dA(3), we simply
get the following expression:

dA(3) =
1

e
d(BabDBab) +

1

e
d(B̃abDB̃ab)− 2d(η̄Dη) =

=
1

e
DBabDBab +

1

e
DB̃abDB̃ab − 2Dη̄Dη, (3.3.44)

which automatically satisfies the closure requirement d2 = 0. If we now substi-
tute the Maurer-Cartan equations (3.3.27) in the expression (3.3.44), we get

dA(3) =
1

2
Ψ̄γabΨV

aV b + eΨ̄γabηΨ̄γabη + 2βeΨ̄γabηB
acB b

c + 2eΨ̄γabηV
aV b+

+ 2βeBacB b
c VaVb − 2iεΨ̄γaΨBabVb + ε2Ψ̄γacΨB

abBcb. (3.3.45)

In the limit e→ 0, the expression (3.3.45) reduces to

dA(3) =
1

2
Ψ̄γabΨV

aV b − 2iεΨ̄γaΨBabVb + ε2Ψ̄γacΨB
abBcb. (3.3.46)

We observe that, interestingly, this solution does not reduce to the four-
dimensional Minkowski flat space limit when e→ 0. However, if we now consider
the particular solution β = ε = 0, which conduces to the subalgebra (3.3.28)
of the hidden Maxwell superalgebra in four dimensions (as mentioned in the
previous section), we see clearly that, interestingly, this particular solution leads
to
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dA(3) =
1

2
Ψ̄γabΨV

aV b + eΨ̄γabηΨ̄γabη + 2eΨ̄γabηV
aV b, (3.3.47)

which exactly reproduces the Minkowski FDA with

dA(3) =
1

2
Ψ̄γabΨV

aV b (3.3.48)

in the limit e → 0. Thus, the particular subalgebra (3.3.28) of the Maxwell
superalgebra (3.3.27) underlying supergravity in four dimensions can be written
as

Rab = 0 ,

DV a =
i

2
Ψ̄γaΨ ,

DBab =
1

2
Ψ̄γabΨ ,

DB̃ab = eΨ̄γabη + eV aV b ,

DΨ = 0 ,

Dη =
i

2
γaΨV a ,

dA(3) =
1

2
Ψ̄γabΨV

aV b + eΨ̄γabηΨ̄γabη + 2eΨ̄γabηV
aV b, (3.3.49)

where, by setting β = ε = 0, we have withdrawn the Bab-contributions in DB̃ab

and Dη ¶.
For the sake of completeness, in the following we also report the complete

parametrization of the 3-form A(3) written in terms of 1-forms:

A(3) =
1

2e
Ψ̄γabΨB

ab+Ψ̄γabΨB̃
ab+βB̃abB

acB b
c +B̃abV

aV b−iΨ̄γaηV a−εΨ̄γabηBab,
(3.3.50)

where the topological structure, however, is not evident. We have made it
manifest in (3.3.43) and, subsequently, in (3.3.44). By setting β = ε = 0 in
(3.3.50), we obtain

A(3) =
1

2e
Ψ̄γabΨB

ab + Ψ̄γabΨB̃
ab + B̃abV

aV b − iΨ̄γaηV a. (3.3.51)

We finally observe that the parametrization (3.3.50) can be rewritten in the
following simple form:

A(3) = B̃abV
aV b+βB̃abB

acB b
c − iΨ̄γaηV a+Ψ̄γab

(
1

2e
ΨBab + ηB̃ab − εηBab

)
,

(3.3.52)

¶The existence of a subalgebra with Dη = i
2
γaΨV a was already discussed in the Poincaré

case in Ref. [73] and also mentioned in the present work.
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where we remind that β = −2ε, or in the even simpler one:

A(3) = B̃abV
aV b + βB̃abB

acB b
c − iΨ̄γaηV a + Ψ̄γab

[(
1

2e
Ψ− εη

)
Bab + ηB̃ab

]
,

(3.3.53)
which shows us that the parametrization we have considered in the present
work is given in terms of 1-forms structures that are pretty similar to the ones
appearing in the (“standard”) parametrization of A(3) adopted in the Minkowski
D = 11 case in [22], and later in [73].

73



74



Part II

Solutions on Extended
Supergravities
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Chapter 4

Extended Supergravities
Ungauged

The steady progress of physics requires for its theoretical formulation a math-

ematics that gets continually more advanced. This is only natural and to be

expected.

P.A.M. Dirac in the famous paper of Quantised Singularities in the
Electromagnetic Field, 1931 [95]

An ungauged theory has a lot of drawbacks but they are really interesting.
First of all they are plagued, at the classical level, by the presence of massless
scalar fields, some of which are related to the moduli of the internal manifold
(M = MD×Mint ), which describe fluctuations in its shape and size. Massless
scalars coupled to gravity would produce effects which are not observed in our
universe. Moreover such fields enter interaction terms in the Lagrangian, thus
spoiling the predictiveness of the theory, being their v.e.v. not fixed by any
dynamics [34]. On the other side, the classical theory features no scalar potential
which could fix the values of these scalars on the vacuum. Aside from this serious
shortcoming, ungauged supergravities are interesting. First of all they provide
the general framework from which to construct more realistic models through
the gauging procedure, and secondly these theories feature, at the classical level,
a rich structure of global symmetries which were conjectured [35] to encode the
known string/M-theory dualities.

Here we present the most general bosonic Lagrangian wich describe station-
ary solutions in an extended, ungauged D = 4 supergravity and then we ap-
ply the so-called solution-generating-technique, over stationary solutions, which
only work in ungauged theories. Neverless, an ungauged gravity theory has the
property of only admit a supersimmetric Minkowski vaccum, i.e. asymptotically
flat. Then, a simple case as the AdS metric looks good but it is not possible
since has a vector potencial [36]. However, we perform the mentioned procedure
over the AdS metric to start the research in this context.
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4.1 Ungauged Supergravity

Ungauged supergravity correspond to a supergravity model in which the vector
fields are not monimally coupled to any other field in the theory. Vector fields
transform under an abelian group and there are no charged fields. Moreover, the
only admitted vacuum of the theory is a supersymmetric Minkowski vacuum.
Than means, we can consider any solutions which are (locally) asymptotically
flat.

We will study the bosonic sector of the theory, the total structure being to
a large extent determined by supersymmetry. The bosonic sector consists of
the graviton field, nv vector fields and ns scalar fields. The possible couplings
are constrained by the request of supersymmetry and diffeomorphism invari-
ance. The scalar fields are described by a non-linear σ-model, that is they are
coordinates of a non-compact target space Mscal, a Riemannian differentiable
manifold. The σ-model action turns out to be invariant under the action of
global isometries of the scalar manifold, i.e. the isometry group of the manifold
is a global symmetry.

In the N = 1 case, which is the minimal supergravity, the scalar manifold
Mscal scal describes the scalar fields in the chiral multiplets. Strictly speaking
this is a complex manifold of Hodge-Kähler type, which is a particular kind of
Kähler manifold [37] in which the Kähler transformations act on the fermion
fields as U(1)-transformations, which are the N = 1 U(1) R-symmetry trans-
formations. Consistency of such transformations on the fermion and gravitino
fields (similar to that yielding the Dirac quantization of the electric charge) im-
poses a constraint on the geometry of the Kähler manifold. The structure of
the bosonic Lagrangian is completely fixed by the following independent data:
the Kähler potential K(z, z̄) associated with the manifold, a holomorphic super-
potential W (z), andof the matrices IΛΣ, RΛΣ, defining the vector kinetic part
and which are constrained by supersymmetry to be holomorphic functions of
the complex scalar fields: IΛΣ(z), RΛΣ(z). The σ-model action reads [34]:

Lscal = eGαβ̄(z, z̄)∂µz
α∂νzβ̄ . (4.1.1)

If the theory is gauged, that is a subgroup of the isometry group G of the
scalar manifold is promoted to local internal symmetry, additional terms, as
mentioned above, appear in the supersymmetry transformation laws and in the
Lagrangian, which also affect the scalar potential (through additional D-terms).
For the sake of completeness we write the most general N = 1 potential [34]:

V (z, z̄) = eG

(
Gαβ̄

∂

∂zα
G

∂

∂z̄β̄
G − 3

)
+

1

4
I−1ΛΣPΛPΣ, (4.1.2)

where G = K(z, z̄) + log(|W (z, z̄)|2) and PΛ(z, z̄) are real quantities depending
on the choice of the gauged isometries. They are the moment maps associated
with these isometries, in terms of which the holomorphic Killing vectors kaΛ(z)

are expressed as follows: kaΛ(z) = iGαβ̄ ∂
∂z̄PΛ.

In extended supergravities, i.e. N > 1, multiplets start becoming large
enough as to accommodate both scalar and vector fields. This feature has
important implications on the mathematical structure of the models, since in
addition to put in the same level to different entities on the theory (as super-
symmetry does with bosons and fermions) poses strong constraints on the (non-
minimal) scalar-vector couplings in the Lagrangian. Given the scalar manifold
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Mscal, supersymmetry fixes the couplings, up to a choice of the frame related
to the geometric structure of the scalar manifold. Moreover, with each point on
the manifold a symmetric symplectic matrixM(φ) is associated, and with each
isometry transformation on the same manifold is associated a corresponding
constant symplectic matrix SMN (g). Finally, global isometry transformations on
the scalar fields induce, by supersymmetry, global transformations on the vector
fields that act as electricmagnetic transformations on the vector field strengths
and their magnetic duals, defining the on-shell global symmetries of the theory.
This corresponds to the so-called dual symmetry.

4.2 Extended Supergravities

Extended supergravity theories N > 1 describing the supergravity multiplet,
consisting of the graviton and of N gravitino fields Ψi where i = 1 . . . ,N ,
coupled to a number of vector and matter multiplets. The consistent definition
of a number N of massless gravitino fields on a curved space-time requires, for
each of them, the decoupling of the spin-1/2 longitudinal modes, which in turn
follows from the invariance of the theory under a transformation of the form

Ψi
µ −→ Ψi

µ + ∂µε
i (4.2.1)

that is under N -independent supersymmetries. Thus a consistent theory con-
taining N massless gravitinos is an N -extended supergravity.

Supersymmetry constrains the form of the Lagrangian, i.e. the structure of
its kinetic terms, mass terms, couplings and scalar potential. The larger the
amount N of supersymmetry, the more stringent these constraints. The theory
is characterized by a bosonic sector and a fermionic one. Once the former is
given, the latter is completely fixed by supersymmetry. Here are some general
common features of the bosonic sector of a supergravity Lagrangian.

We consider the most general Lagrangian for bosonics with

� ns scalar fields φs(x),

� nv vector fields AΛ
µ (Λ = 1, . . . , nv)

� and the graviton field V a
µ .

Let us consider the simpler case of an ungauged supergravity in four dimensions,
namely of a supergravity model in which the vector fields are not minimally cou-
pled to any other field. The general form of the supergravity action describing
the only bosonic sector is:

1

e
L =

R

2
− 1

2
Grs(φ)∂µφ

r∂µφs +
1

4
IΛΣ(φ)FΛ

µνF
µνσ +

1

8
RΛΣ(φ)εµνρσFΛ

µνF
Σ
ρσ

(4.2.2)
where

e = e4 =
√
gµν

and

Fµν = ∂µAν − ∂νAµ.
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The scalar field φs(xµ) is described by a σ-model, with coordinates in the target
space Mscal with the positive definite metric Grs(φ). This maniforld is non-
compact∗, Riemannian, differentiable ns dimensional. The σ-model action is
clearly invariant under the action of global space-time independent isometries
of the scalar manifold. Indeed, if G is the isometry group of Mscal, a generic
element of it will map the scalar fields φ = (φs) in new ones φ′s = g ? φs =
φ′s(φ‘t), wich in general are non-linear functions

∀g ∈ G : −→ g ? φ = φ′(φ) : Gs′t′(φ
′(φ))

∂φ′s
′z

∂φs
∂φ′t

′

∂φt
= Gst(φ). (4.2.3)

The group G can be promoted to a on-sheel global symmetry group, that means a
symmetry of the field equations and Bianchi identities, provided its (non-linear)
action on the scalar fields (5.2.3) is combined with an electric-magnetic duality
transformation on the vector field strengths and their magnetic duals, obtaining
a complete action σ-model type on-shell invariant.

4.3 Scalar Manifolds of extended supergravity

For N = 1 the Mscal describes the scalar fields in the chiral multiplet. Is
a complex manoifolds of Hodge-kähler type. In the case of N = 2 models
allow for a class of homogeneous scalar manifolds, while in all N > 2 models
supersymmetry constrains the scalar manifold to be homogeneous symmetric
manifold.

A manifold M is said homogeneous if acts transitively, that means if a point
in space can be achieved by another by the action of a group G∗. Then, any
point p can be reached from the origin O through a (not necessarily unique)
element of the isometry group G. We define the transitive action to be a left
action† denoted by a star:

∀p ∈M , ∃gp ∈ G | p = gp ? O (4.3.1)

However these parameters are “redundant”, or equivalent, the action of G
on M may not be free, in the sense that the element gp is not unique, because
for any p ∈M there may be a subgroup Hp of G wich leaves p invariant:

Hp ? p = p. (4.3.2)

This group is called isotropy group of p, is a subgroup H ⊂ G wich when
applied to a point on the variety, it is remains unchanged, for that is called also

∗ Semisimple if it is a direct sum of simple Lie algebras, i.e., non-abelian Lie algebras
g whose only ideals are {0} and g itself. Equivalent definitions are also: the Killing form,
κ(x, y) = tr(ad(x)ad(y)) is non-degenerate, g has no non-zero abelian ideals, g has no non-
zero solvable ideals. The radical (maximal solvable ideal) of g is zero.

Roughly speaking, a compact space is in some sense finite and a noncompact space is not
finite. The sphere is compact because you can covered only with to subcover, but the plane
R2 it doesnt because it is not possible covered with a finite gap.
∗ A good example of this is the sphere, where any point (x, y, z) belonging to the sphere

can be taken to another point (x′, y′, z′) by the transitive action of an element belonging to
the group SO(3).
†By left action we mean that for any g1g2 ∈ G and p ∈M , we have g1 ?(g2 ?p) = (g1g2)?p
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Gp : TpM × TpM

φs(xµ) = p p

xµ
•

•

Mscal ∼ G/H
Spacetime

Figure 4.1: The diagram represents the nature of the variety manifold Mscal

of scalar fields. The mapping Gp generates the tangent space in p where the
vielbein are defined through G(φ) = Grsdφ

r ⊗ dφr, dφr(Vi) = V r
i (φ). Source:

self made.

stabilizer. Given a point p in M and an element gp of G mapping O to p, any
other element differing from gp by the right multiplication by an element of H
will still map O to p:

∀g′ ∈ G ; g′ = gph (h ∈ H) : g′ ? O = (gph) ? O = gp ? (h ? O) = gp ? O = p.

If we denote by gH = {gh ∈ G|h ∈ H} the left coset of H in G, there is a one-
to-one correspondence between the points of the homogeneous manifold M and
left cosets gH:

p ∈M ↔ gpH ⊂ G. (4.3.3)

Denoting by G/H the set of all left cosets of H in G, there is therefore a bijection
between M and G/H. This coset is basically the elements that are not present
in H inside of G, that means the two can be identified:

M ∼ G/H. (4.3.4)

G/H is called coset manifold. Then, homogeneous spaces can be treated as
coset manifolds, that means, we can compute all geometric quantities of M like
connection, curvature, geodesics etc... on G/H. Note also that the coset space
G/H is not a group since in general H is not a normal subgroup‡.

A generic element g of G is defined by a number of continuous parameters
given by dim(G). Through right multiplication by an element of H, we may
fix a number dim(G) of these parameters, so that each left-coset depends on
a minimum number of parameters given by the diferential of two spaces. This
number turns out to be the dimension of M :

dim(M ) = dim(G)− dim(H).

‡A normal subgroup is a subgroup which is invariant under conjugation by members of the
group of which it is a part. In other words, a subgroup H of a group G is normal in G if and
only if gH = Hg for all g in G; i.e., the sets of left and right cosets coincide. We analyze the
definition of an ideal in section 2.3
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Figure 4.2: This diagram shows the relationship between two coordinate rep-
resentations on the same point. Image from the book of Castellani Leonardo,
D’Auria Riccardo. (1991). Supergravity and Superstrings.

Lets denote like φs the parameters of M , wich is a D-plet φ = (φ1, . . . , φD),
obtained upon fixing the right-action of H. We can choose a representative
group element denoted by L(φs) ∈ G. Under left multiplication by g ∈ G. We
therefore describe each point of M in terms of a coset representative L(φs):

p ∈M ↔ L(φs) ∈ gpH ⊂ G. (4.3.5)

They provide a parametrization of M and depend on how this fixing is per-
formed, namely which representative L(φs) of each coset gpH is taken to repre-
sent the corresponding point p of M .

Let g ∈ G be an isometry of the manifold, p a point of coordinates φ = φs and
p′ = g ? p the transformed of p through g, of coordinates φs = g ? φ = φ′s(φt).
Now, since both gL(φ) and L(g ? φ) represent the same point p′, they must
belong to the same left-coset (see figure 4.2) so that we can write:

gL(φ) = L(g ? φ)h(φ, g). (4.3.6)

The element h(g, φ) is called compensator and in general depends on g and on
the point p of coordinates φ.

In general G need not be a semisimple Lie group. Homogeneous manifolds
occurring in supergravity theories are non-compact, simply-connected, negative-
curvature spaces. Let g and h denote the Lie algebras of the groups G and H,
respectively. We can split the former as follows:

g = H⊕ K. (4.3.7)

Where H is a Subalgebra,

[H,H] jH, (4.3.8)

[H,K] jK, (4.3.9)

[K,K] jH⊕ K, If it is only = H, its called Symmetric. (4.3.10)

The above adjoint action of H on K defines a representation of the group H.
Indeed, if {Hr} denotes a basis of H and {Ks} a basis of K, the Jacobi identities
give: [

Hu,Ks

]
= C t

us Kt = − (Hu)
t
s Kt (4.3.11)

where the structure constant C t
us = C t

us = (Hu)
t
s define an adjoint represen-

tation of H, denoted by RK of the generators (Hu). Considering h ∈ H we
have

h−1Ksh = h t
s Kt, (4.3.12)
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where h
t

s represent the element h in the (adjoint) representation RK . K Can
be viewed as tha tangent space to G/H a the origin.

When the space is symmetric (4.3.10) is defined in general as a space invariant
under parallel translations with curvature covariantly constant. Symmetric,
simply-connected spaces are also homogeneous.

4.3.1 Cartan decomposition

For non-compact, simply-connected symmetric spaces with negative curvature
there exists a transitive semisimple, non-compact isometry group G and H is its
maximal compact subgroup. In any given matrix representation of G, one can
choose a basis in which H is represented by anti-hermitian matrices and K by
hermitian ones. This basis is called the Cartan basis.

H ∈ H −→ H† =−H, (4.3.13)

K ∈ K −→ K† =K. (4.3.14)

Properties (4.3.9) and (4.3.10) clearly follow from commutation rules, since the
commutator of an anti-hermitian with a hermitian generator is hermitian, while
that of two hermitian generators is anti-hermitian. In the corresponding basis
TA = {Hr,Ks} of generators of g, condition (4.3.10) reads[

Ks,Kt

]
= C u

st Hu. (4.3.15)

In this basis a coset representative L(φ) is well defined: if {Ks} denote a basis
of K of hermitian matrices we can write:

L(φ) = eφ
sKs . (4.3.16)

This parametrization is called Cartan parametrization [55]. It is defined in
terms of the coordinates φs, that transform under H (isotropy group of the
origin φs0 = 0) in a linear way, namely in the representation defined by the
adjoint action of H on the space K. To see this we consider (4.3.6) and use h
instead of g together with equations (4.3.12) and (4.3.16),

L(h ? φ) =hL(φ)h−1 = heφ
sKsh−1 = eφ

shKsh
−1

,

=eφ
s

(htsKt) = eφ
′tKt ,

=⇒ φ′s = (h ? φ)s = φt(h−1) st . (4.3.17)

4.3.2 Solvable decomposition

As discussed before, in N = 2 admits non-homogeneous, homogeneous and
homogeneous-symmetric scalar manifolds, while the scalar manifolds of N > 2
supergravities are only of normal type. For this, they admit a transitive solvable
Lie group of isometries who action on M is free.

Locally is described by a solvable algebra S

GSolv = exp (S ). (4.3.18)

The definition for a solvable algebra is an algebra S who DkS = 0 for some
k > 0. Where

Dg ≡ [g, g] , (4.3.19)

Dng ≡
[
Dn−1g, Dn−1g

]
. (4.3.20)
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In a suitable basis of a given representation, all the elements of a solvable Lie
group or a solvable Lie algebra are described by upper (or lower) triangular
matrices. This is very important as we see in section 5.3.

Since there is a transitive solvable group GSolvof isometries with a free action
on the homogeneous scalar manifolds M , it is possible to choose a representative
Ls(φp) in each left coset gpH, by suitably fixing the right-action of H, so that

{Ls(φp)}p∈M = GS . (4.3.21)

In other words the manifold M is isometric to a solvable Lie group.

M ∼ GS . (4.3.22)

once we fix on the tangent space to GSolv at the origin the metric of M
on the tangent space at the corresponding point. This description defines a
parametrization called the solvable parametrization of M .

Both the solvable and the Cartan parametrizations for symmetric cosets are
global parametrizations of the scalar manifold. For symmetric manifolds, the
solvable Lie group GSolv is defined by the Iwasawa decomposition [55] of the
non-compact semisimple group Gss with respect to H, according to which there
is a unique decomposition of a generic element g of Gss as the product of an
element s of GSolv and an element h of H:

∀g ∈ Gss =⇒ g = sh |s ∈ Gss, h ∈ H. (4.3.23)

and this defines a unique coset representative Ls for each point of the manifold
M !.

The solvable parametrization is useful when the four dimensional super-
gravity is described as resulting from the Kaluza-Klein reduction of a higher
dimensional supergravity on some internal compact manifold. The solvable
coordinates directly describe dimensionally reduced fields and moreover this
parametrization makes the shift symmetries of the metric manifest. The draw-
back of such description is that S does not define the carrier of a representation
of K as H does, namely Eq. (4.3.9) does not hold for S :

[H,S ] * S . (4.3.24)

In what follows we shall restrict ourselves to symmetric cosets of which we can
give a description either in terms of Cartan coordinates or of solvable coordi-
nates.

4.4 Vielbein and connection on symmetric cosets

Let us see how vielbein and connection can be defined on a symmetric coset.
Let L(φ) be a coset representative corresponding to a generic parametrization.
We can construct the left-invariant one form Ω = L−1dL which is a 1-form on
G/H with value in g. Expanding in the Cartan basis we have

{TA} =
{
Ps, Hu

}
.

We consider the invariant 1-form;

Ω(φ) = σA(φ)TA = L−1(φ)dL(φ) = V s(φ)Ps+ω
u(φ)Hu = V (φ)+ω(φ), (4.4.1)
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where

Ω(φ) = Ωs(φ)dφs, V t = V ts dφ
s,

V (φ) = V s(φ)Ps, ω(φ) = ωu(φ)Hu

and we use the underline indices s, t, . . . as rigid indices to label the basis Ps of
the tangent space G/H to the group manifold defining a representation P of
H, just like (4.3.11), and should not be confused with the curved indices s, t, . . .
labeling the coordinates φt, i.e. the labeling fields.

To continue we need to define the τ automorphism. Let G be a non-compact
real form of some compact Lie group. There is an involutive∗ automorphism
such that

H = {h ∈ G : τ(h) = h} (4.4.2)

is the maximal compact subgroup of G and the coset space G/H is non-compact
Riemannian symmetric space.

Only in the Cartan parametrization g = H⊕ K using (4.4.2) wich has

τ(V ) =− V, (4.4.3)

τ(ω) =ω, (4.4.4)

the scalar fields carry rigid indices. We can know who these quantities transform
under G if we look L = gL(φ)h−1 (see (4.3.6))

Ω(g ? φ) =σA(φ)L−1(φ)g−1d
(
gL(φ)h−1

)
=hLg−1gd

(
L(φ)h−1

)
=hL−1(φ) (dL(φ))h−1 + hdh−1 (4.4.5)

Then,

V s(g ? φ)Ps + ω(g ? φ) = hV (φ)h−1 + hω(φ)h−1 + hdh−1 (4.4.6)

Since hdh−1 is the invariant one-form of h, it has value in this algebra. Then

V (g ? φ) =hV (φ)h−1, (4.4.7)

ω(g ? φ) =hω(φ)h−1 + hdh−1. (4.4.8)

ω can be interpreted as connection for H whereas V transforms H-covariantly
and both are G-invariant. So it is possible to see the clear analogy to the fielbein
and spin conection.

4.4.1 The metric and current

Given any invariant scalar product 〈 · · 〉 on g such that G : TpM ×TpM −→ R
we can define an invariant metric on G/H by

〈V V 〉 = G(φ) = ds2 = Gstdφ
sdφt. (4.4.9)

Where Grs is the metric of M . With reference to matrix representation of G
we define κab as the restriction of the Cartan-Killing metric of g to K:

κst ≡ kTr
(
KsKt

)
, (4.4.10)

∗That is, τ 6= 1 and τ2 = 1.
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being k is a representation-dependent normalization constant. Then,

dss =Gstdφ
sdφt,

=V kr V
s
s kstdφ

sdφt,

=kTr (VrVs) dφ
sdφt,

=kTr
(
V 2
)
. (4.4.11)

The G-invariance of this metric immediately follows from (4.4.7) since ∀g ∈ G :
dss(g ? φ) = k = kTr

(
(V (g ? φ))2

)
= kTr

(
hV (φ)2h−1

)
= kTr

(
V 2
)

= dss.
The σ-model Lagrangian density can be written in the following form

Lscal = e
k

2
Tr (Vr(φ)Vs(φ)) ∂µφ

r∂µφt. (4.4.12)

For other side the automorphism τ (see (4.4.2)) provides us with a canonical
embedding of G/H in G,

L −→M = τ(L−1)L, τ(M) =M−1, (4.4.13)

where M is a H-invariant and transform coraviantly under G

M−→ τ(g)Mg−1, g ∈ G. (4.4.14)

The current is constructed with this invariant:

J =
1

2
M−1dM. (4.4.15)

Then

V = L−1DL =
1

2
LM−1dML−1 ≡ LJL−1 (4.4.16)

where DL = dL− ωL is the covariant derivative of L.
The line element (4.4.9) can be writed in terms of M

dφidφjGij(φ) =
1

4
〈M−1dM,M−1dM〉, (4.4.17)

and the σ-model field equations can be rewritten in the equivalent forms

DαVα = 0, or ∇αJα = 0, or ∇(M−1∂αM) = 0,

where DαVβ = ∇V − [ω, V ] As the reference [96] says M and P are very close
analogues of the metric and moving frame, the tetrad, in general relativity. Be-
cause M it is enough to formulate the σ-model and this remains true if we
include vector fields. Neverthless the “moving frame” P with a “triangular”
gauge choice yields a very convenient and simple parametrization of G/H. The
situation changes if we add fermions fieldsto some models like in N = 1 super-
gravity, because these fermion fields transform with some representation of H
and not of G. The moving frame P is, therefore, necessary in order to describe
these fermions.
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4.4.2 On-shell Duality

As we shall see below, the G group can be promoted to a global symmetry
group of field equations and Bianchi identities (i.e. global symmetry group on-
shell) provided it has (non-linear ) The action in the scalar fields of the previous
equation is combined with a transformation of duality and magnetic electricity
in the field intensities and their dual magnetic.

Consider an extended ungauged supergravity theory with homogeneous sym-
metric scalar manifold described in terms of the bosonic Lagrangian. Let us
define the dual field strengths

Gµν = −εµνρσ ∗
(
∂L4

∂FΛ
ρσ

)
. (4.4.18)

εµνρσ
∂

∂FΛ
ρσ

L =− εµνρσ
(

1

2
δρσµνIΛΣ(φ)FΣµν +

1

2
RΛΣ(φ) ∗FΛµν

)
=− εµνρσ

(
1

2

(
δρµδ

σ
ν − δσµδρν

)
IΛΣ(φ)FΣµν +

1

2
RΛΣ(φ) ∗FΛµν

)
=− εµνρσ

(
2IΛΣ(φ)Fµν +

1

2
RΛΣ(φ) ∗FΛµν

)
=− IΛΣ(φ) ∗Fµν +RΛΣ(φ)FΛµν (4.4.19)

For Maxwell theory we consider

IΛΣ = −1, RΛΣ = 0, Gµν = ∗Fµν .

The equations of motion for the scalar and vector fields are

Dµ (∂µφs) =
1

4
Gst

[
Fλµν∂tIΛΣF

Σµν + FΛ
µν∂tRΛΣ

∗FΣµν
]

(4.4.20)

∇µ
( ∗FΛµν

)
=0; ∇µ

( ∗GΛµν
)

= 0 (4.4.21)

where

∂s ≡
∂

∂φs

. We note that
∇µ( )ν = ∂µ( )ν + Γνµρ( )ρ

is the covariant derivative containing the Levi-Civita conection on space-time,
while Dµ also contains to the Levi-Civita conection Γ̃st1t2 on Mscal defined by:

Dµ(∂νφ
s) ≡ ∇µ(∂νφ

s) + Γ̃st1t2∂µφ
t1∂νφ

t2 .

From (4.4.18) we have

∗FΛ =
(
I−1

)ΛΣ (RΣΠF
Π −GΣ

)
,

∗GΛ =(RI−1R+ I)ΛΣF
Σ − (RI−1) Σ

Λ GΣ.

Is convenient define a 2ns-dimensional vector F = FM of two forms:

F =

(
F
G

)
.
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where the dual form is easy to write

∗F =

(∗F
∗G

)
= −CM(φs)F, (4.4.22)

C ≡CMN = CMN =≡
(

0nv 1nv
−1nv 0nv

)
(4.4.23)

and where M(φ) reads:

M(φ) =

(
(RI−1R+ I)ΛΣ −(RI−1) Γ

Λ

−(I−1R)Ξ
Σ (I−1)ΞΓ

)
(4.4.24)

resulting in a symmetric, negative-definite matrix, function of the scalar fields.
In matrix notation, the Maxwell equations can then be recast in the following
equivalent forms:

∇µ (∗Fµν) = 0 ⇔ ∇µ (CM(φ)F) = 0 ↔ dF = 0. (4.4.25)

where we have used the matrix notation and suppressed the indices M,N, . . ..
The field equations depending on the vector field strengths can be rewritten

in terms of this matrix M and of its derivatives. The scalar field equations
(4.4.20) can be rewritten

Dµ(∂µφs) =
1

8
GstFTµν∂sM(φ)Fµν .

The Einstein equations are:

Rµν −
1

2
gµνR = T (S)

µν + T (V )
µν . (4.4.26)

where the energy-momentum tensors for the scalar and vector fields can be cast
in the following general form

T (S)
µν =Gst(φ)∂µφ

r∂νφ
s − 1

2
gµνGrs(φ)∂ρφ

r∂ρφs (4.4.27)

T (V )
µν =FTµρIF

ρ
ν −

1

4
gµν

(
FTρσIF

ρσ
)
. (4.4.28)

The vector fields energy-momentum tensors can be expressed en terms ofM(φ)
andF as

T (V )
µν =

1

2
(Fµρ)TM(φ)F ρ

ν . (4.4.29)

Since in (4.4.26) we have
R = Gst∂ρφ

s∂ρφt (4.4.30)

the Einstein equation can be finally recast in the form:

Rµν = Gst(φ)∂µφ
s∂ρφt. (4.4.31)

Returning to action (4.2.2), the isometry group G is a global symmetry only of
the scalar kinetic term, since, in general, it alters the action for the vector fields
as a consequence of the scalar field-dependence of the coupling constants I(φ)
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φ

φ′g

6

M(g ? φ)

6

M(φ)

6

S[g]

Mscal

Figure 4.3: The scalar manifold of a symplectic geometric structure is associate
with each point φ on the manifold the symmetric symplectic 2nv × 2nv matrix
M(φ)MN , at the same time each isometry transformation g ∈ G on the same
manifold is associated with a 2nv × 2nv matrix S[g] MN . Source: self made.

and R(φ). For other side, the while the Maxwell equations 5µ(∗FΛµν) = 0 are
invariant under linear transformation in F, G do not, and the equations (4.4.22).

One remarkable feature of extended supergravity theories is the fact that the
global invariance of the scalar kinetic term (described by G) can be extended
to a global symmetry of the full set of equations of motion and Bianchi iden-
tities, though not in general of the whole action [97]. This is possible because,
in extended supergravities, supersymmetry connects scalar with vector fields.
One of the consequences, is that transformations on the scalars imply trans-
formations on the vector field strengths FΛ and their duals GΛ: this follows
from the definition on the scalar manifold of a symplectic geometric structure
which associates with each point φ on the manifold the symmetric symplectic
2nv × 2nv matrix M(φ)MN . At the same time, each isometry transformation
g ∈ G on the same manifold is associated with a constant symplectic 2nv × 2nv
matrix S[g] ≡ S[g] MN such that:

M(g ? φ) = S[g]−TM(φ)S[g]−1. (4.4.32)

Recall that a symplectic matrixA is determined byA ∈ Sp(2nV ,R), ATCA =
ACAT = C, where

C =

(
0 1
−1 0,

)
where the symplectic invariant matrix is defined in (4.4.23). The symmetric
matrix M(φ) plays the role of A and satisfies the properties

M(φ)MNCPLM(φ)LN = C =⇒ C(φ)−1 = −CM(φ)C, (4.4.33)

The correspondence between g ∈ G and S[g] defines a symplectic representation
of the group G, that is an embedding S of the group G inside Sp(2nv,R):

G ↪→ Sp(2nv,R) =⇒ g ∈ G −→ S[g] ∈ Sp(2nv,R) (4.4.34)

with the general properties defining a representation and a symplectic matrix.

M(φ) −→M′(φ) = ETM(φ)E. (4.4.35)

This suggests that the definition of the matrixM(φ)Mn is built-in in the math-
ematical structure of the scalar manifold. The matrices I(φ) and R(φ) entering
the action are then defined in terms of M(φ). The only freedom left consists
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in the choice of the basis of the symplectic representation (symplectic frame),
which amounts to a change in the definition of M(φ) by a constant symplectic
transformation E:

M(φ) −→M′(φ) = ETM(φ)E. (4.4.36)

The form of the action is affected by the above transformation, in particular we
have a change in the coupling of the scalar fields to the vectors. At the ungauged
level, this only amounts to a (non-perturbative) redefinition of the vector field
strengths and their duals, having no physical implication. In the presence of
a gauged theory, where vectors are minimally coupled to the other fields, the
symplectic frame becomes physically relevant and may lead to different vacuum-
structures defined by the scalar potential.

We emphasize here that the existence of this symplectic structure on the
scalar manifold is a general feature of all extended supergravites.

For homogeneous manifolds, the isometry group G has a symplectic, 2nv-
dimensional representation S and we can express M(φ) in terms of the coset
representative:

M(φ)MN = CMPLPLLRLLRN ⇐⇒M(φ) = CS[L(φ)]S[L(φ)]TC, (4.4.37)

LPL are the entries of the symplectic matrix S[L(φ)] associated with L(φ) as an
element of G. Being a representation, S is a homomorphism, and eq. (4.3.6)
can be written in terms of symplectic matrices as:

S[g]S[L(φ)] = S[g ? φ]S[h(g, φ)]

Using these properties is possible to see that

M(g ? φ) = S[g]−TM(φ)S[g]−1.

This tells us that M is H-invariant, that means, do not depends of the rep-
resentative coset, but only in the point φ of the manifold, as it should be. In
fact:

M(φ)
L−→L·h−−−−−→ (M(φ))

′
=CS[L(φ) · h]S[h · L(φ)]TC,
=CS[L(φ)]S[h]S[h]TS[L(φ)]T

=CS[L(φ)]S[h]S[h]−1S[L(φ)]T

=M(φ). (4.4.38)

namely the matrix M(φ) is H-invariant and depends only on the choice of φ,
i.e. it is consistently defined on G/H.

We can now study the simultaneous action of G on the scalar fields and on
the field strength vector Fµν :

g ∈ G :

{
φr −→ g ? φr

Fµν −→ S[g]MNFNµν
(4.4.39)

is a symmetry of the field equations. But it must also leave invariant the trans-
formed fields, to see this we consider

S[g]−1 ∗F′ =− CS[g]TM(g ? φ)S[g]S[g]−1F′ = −S[g]−1CM(g ? φ)F′,
=⇒ ∗F =− CM(g ? φ)F′. (4.4.40)
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Then, is invariant.
On the other side, the invariance of the scalar and Einstein equations can be

visualized if we can see the invariance in the term that they have in common:(
F′µν

)TM′(φ)F′ρρ =F−Tµν S[g]TS[g]−TM(g ? φ)S[g]−1S[g]Fρσ, (4.4.41)

= (Fµν)
TM(φ)Fρρ. (4.4.42)

and directly implies the invariance of T
(V )
µν and the covariance of the scalar field

equation. Moreover, the duality invariance of the space-time metric and of the
scalar action under (4.4.39) imply the same property for the Einstein tensor and

for the scalar energy-momentum tensor T
(
µνS).

In summary, the bosonic equations derived in the above discussion can be
written in the manifestly G-invariant form:

Scalar equations : Dµ (∂µφs) =
1

8
GstFTµν∂sM(φ)Fµν (4.4.43)

Einstein equations : Rµν = Gst(φ)∂µφ
s∂νφ

t +
1

2
FTµρM(φ)F ρ

ν (4.4.44)

Maxwell equations : dF = 0 ⇐⇒ ∗F = −CM(φs)F (4.4.45)

where we have obviously omitted the fermionic fields.
The action of G on the field strengths and their magnetic duals is defined

by the symplectic embedding S[g], and can be seen as a generalized electric-
magnetic duality transformation (see [98]) which promotes the isometry group
of the scalar manifold to a global symmetry group of the field equations and
Bianchi identities. It is a generalization of the U(1)-duality invariance of the
standard Maxwell theory.(

Fµρ
∗Fµρ

)
U(1)−−−→=

(
F ′µρ
∗F ′µρ

)
=

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
Fµρ
∗Fµρ

)
(4.4.46)

For this reason G is called the duality group of the classical theory. In our case(
Fλ

Gλ

)
S[g]−−→=

(
Fλ

Gλ

)
=

(
AλΣ AΛΣ

CΛΣ D Σ
λ

)(
Fλ

Gλ

)
(4.4.47)

We emphasize that these are not a symmetry of the action but on-shell symme-
try, because correspond to a symmetry on field equations and Bianchi identities.

On a charged dyonic solution, we define the electric and magnetic charges
as the integrals:

eΛ ≡
1

4π

∫
S2

GΛ =
1

8π

∫
S2

GΛµνdx
µ ∧ dxν ,

mΛ ≡ 1

4π

∫
S2

Fλ =
1

8π

∫
S2

FΛ
µνdx

µ ∧ dxν .

we define the symplectic vector

Γ = ΓM =

(
mΛ

eΛ

)
=

1

4π

∫
S2

F. (4.4.48)

These are the quantized charges, namely they satisfy the Dirac-Schwinger-
Zwanziger quantization condition for dyonic particles (see Apendix (C)) [95,
99,100]:

ΓT2 CΓ1 = m2e1Λ −m1e2Λ = 2π~cn, n ∈ Z. (4.4.49)
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Fermions

Let us discuss the general features of the fermionic sector, its symmetries and
the couplings of the fermions fields to the bosons. We have seen that the vector
fields and the scalar fields transform under the action of the group G, isometry
group of the scalar manifold. More precisely this group has a global symplectic
(duality) action on the vector of electric field strengths and their magnetic duals,
while it acts on the scalar fields as an isometry group. Just as the fermion
fields (including the graviton), transform covariantly with respect to the isotropy
group of space-time (local Lorentz transformations), they have a well defined
transformation property only with respect to the isotropy group H of the scalar
manifold. In all extended supergravities this group has the following form [101]:

H = GR ×Hmatter, (4.4.50)

where GR is the automorphism of the supersymmetry algebra (the R-symmetry
group), while H matter is a compact Lie group acting on the matter multiplets.

The coupling of the bosons to the fermionic fields is also fixed by the geometry
of Mscal. In particular, in the models with an homogeneous scalar manifold,
this coupling is fixed by the coset representative L(φ).

Let us recall that (4.3.6) states that the matrix L(φ) is acted to the left by
G and to the right by the compensator element in H

G L(φ)  H. (4.4.51)

The matrix L(φ) therefore “mediates” between objects, like the bosonic fields,
transforming directly under G and other objects, like the fermionic fields, trans-
forming only under H.

This means that we can construct G-invariant terms by contracting L to
the left by bosons (scalars, vectors and their derivatives), and to the right by
fermion bilinears

This means that we can constructG-invariant quantities coupling (in suitable
ways) the bosonic fields (including their derivatives) to the fermions through
L(φ), that is, symbolically, considering the contraction

(∂b) · L(φ) · f = d(φ, ∂b) · f . (4.4.52)

This scalar-dependent matrix determines the coupling of bosons and fermions
in the Lagrangian and in the equations of motion. The fermions, in other words,
couple to composite objects - that we denoted d(φ, ∂b) - obtained by “dressing”
the derivatives of bosonic fields by scalar fields through the matrix L(φ) [34].
Then, these objects transform only through the corresponding compensating
transformations h(φ, g) ∈ H, as the scalars and vectors transform under G (see
(4.3.6)). This tell us that the trasformations of all fermion fields is obtained by
means of h(φ, g), namely we can define the action of G over all the fields of the
theory as:

g ∈ G :


φr −→ g ? φr

Fµν −→ S[g]MNFNµν
f −→ f = h(φ, g) ? f

(4.4.53)

Now one can construct a manifestlyH-invariant Lagrangian using the fermion
fields and the composite fields d(φ, ∂b). Moreover, H-covariance of the super-
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symmetry transformations mentioned in the introduction implies that the su-
persymmetry variations for the fermion fields can be written as:

δεf = (φ, ∂b)ε. (4.4.54)

The fields transforming in representations ofGR are therefore either the fermions
or the composite fields d(φ, ∂b), but not the scalar fields φs and the vector
fields AΛ

µ directly, since the latter are always real fields. The composite objects
d(φ, ∂b) can be imagined as the actual bosonic fields that can be measured, at
spatial infinity, on a solution.
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Chapter 5

Solution-generating
technique

In every atom of the universe domains there are infinite solar systems.

The adornment of the Great Flower, ancient Buddhist writing

5.1 Introduction

In this section we present the so-called solution-generating techniques [102,103].
Basically what is done is that solutions in D = 4 supergravity are also solutions
to an Euclidean theory in three dimensions, formally obtained by a Kaluza-Klein
type compaction of the D = 4 parent model along the time-direction [96] and
dualizing all the vector fields into scalars fields. The resulting D = 3 theory
is a sigma-model coupled to gravity and has the desirable feature of having a
global G(3) symmetry group (duality group) larger than the original G(4) group
of the four-dimensional model, i.e. G(4) ⊂ G(3). The extra symmetries can
be used to generate new (hidden) four-dimensional solutions from known ones.
These symmetries, for instance, include the Harrison transformations which can
generate electric and magnetic charges when acting on a neutral solution like
the Schwarzschild or the Kerr black hole. The relevant physical properties of
stationary black holes in four dimensions are thus conveniently described by the
orbits of such solutions with respect to the action of the D = 3 global symmetry
group G(3).

5.2 D = 4 Stationary Solutions

We shall restrict ourselves to axisymmetric, stationary, asymptotically flat so-
lutions. We consider one example over a black hole solution and we compute
the charge with the mentioned technique.

A stationary solutions in an extended, ungauged D = 4 supergravity, whose
bosonic sector consists in ns scalar fields φs(x), nv vector fields AΛ

µ (Λ =
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1, . . . , nv) and the graviton gµν . The most general Lagrangian has the form

1

e
L4 =

R

2
− 1

2
Grs(φ)∂µφ

r∂µφs

+
1

4
IΛΣ(φ)FΛ

µνF
µνσ +

1

8
RΛΣ(φ)εµνρσFΛ

µνF
Σ
ρσ (5.2.1)

where e = e4 =
√
gµν and Fµν = ∂µAν − ∂νAµ.

The four-dimensional scalar fields φs s parametrize a homogeneous, symmet-
ric scalar manifold of the form:

Mscal =
G(4)

H(4)
. (5.2.2)

This makes that the fields are described by a non-linear σ-model action, that is
is clearly invariant under the action of global space-time independent isometries
of the scalar manifold. Indeed, if G(4) is the semisimple isometry group and
H(4) its maximal compact subgroup of Mscal, a generic element of it will map
the scalar fields φ = (φs) in new ones, wich in general are non-linear functions
φ′s = φ′s(φt).

∀g ∈ G(4) : −→ g ? φ = φ′(φ) : Gs′t′(φ
′(φ))

∂φ′s
′z

∂φs
∂φ′t

′

∂φt
= Gst(φ). (5.2.3)

The group G(4) can be promoted to a global symmetry group of the field equa-
tions and Bianchi identities, that means an on-shell symmetry, provided its (non-
linear) action on the scalar fields (5.2.3) is combined with an electric-magnetic
duality transformation on the vector field strengths and their magnetic duals,
obtaining a complete action σ-model type on-shell invariant.

In the case of D = 4, which is what we are interested, we start from a
stationary metric which has the general form:

ds2 = −e2U (dt+ ωϕdϕ)
2

+ e−2Uds2
3, (5.2.4)

where ds2
3 = g

(3)
ij dx

idxj , the index i, j = 1, 2, 3 label the spatial coordinates
xi = (r, θ, φ) and U , ωφ, gij are all functions of the coordinates (r, θ). The two
Killing vectors of the above metric are ξ = ∂t and ψ = ∂ϕ.

One can perform a formal reduction to three dimensions along the time
direction and dualize the vector fields of the theory to scalar fields, using the
prescription of the seminal work [96]. Following this procedure, one ends up
with an effective description in an Euclidean D = 3 model describing gravity
coupled to n = 2 + ns + 2nv scalar fields ΨI(r, θ).

We start noting that the 4-dimensional metric can be rewrite as

gµν =

(
e2U e2Uωi

e2Uωj e−2Ug
(3)
ij + e2Uωiωj

)
, (5.2.5)

If we want to diagonalize this matrix for do not have cross terms we can put

V0 =eUV 0 = eU (dt+ ω) = eU
(
dt+ ωidx

i
)
,

Vi =e−UV ikdx
k = Vikdxk,
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where V 0 and V i are the vielbeins, then the metric is diagonal,

ds2 =
(
V0
)2 − (Vi) (Vk) . (5.2.6)

Under these coordinates its easy to see that the theory is invariant under a
coordinate transformation in time, t+ ξ(xi), obviously V′i = Vi and

V0 = eUV 0 =⇒ V′0 =eU (V 0)′ = eU (dt+ ωidx
i)′

V′0 =eU (d(t+ ξ(xi)) + ω′idx
i)

V′0 =eU (dt+ ∂iξdx
i + ωidx

i − ∂iξdxi),
V′0 =eU (dt+ ωidx

i).

To proceed in the dimensional reduction we must write the potential in a dif-
ferent way. Writing

A = Aµdx
µ = A0dt+Aϕdϕ.

And we consider the next quantyties

V 0 =(dt+ ω), (5.2.7)

A3 =Aϕdϕ−A0ω, (5.2.8)

A =A0V
0 +A3. (5.2.9)

With the respective strengths tensors in the forms

F =dA = dA0V
0 + F̃3, (5.2.10)

F̃3 =F̊ +A0F
0 =

1

2
F̃ijdx

idxj , (5.2.11)

F̊ =dÃ3. (5.2.12)

Then, we have the first kinect term in (5.2.1) as

1

4
IΛΣF̂

Σ
µν F̂

Λµν =
1

4
IΛΣg

µρgνσF̂Λ
µν F̂

Σ
ρσ

=
1

4
IΛΣg

ilgjkFΛ
ijF

Σ
lk +

1

2
IΛΣF

Λ
0iF

Σ
0jg

00gij

=
1

4
IΛΣe

2Ue2Ug(3)ilg(3)jlFΛ
ijF

Σ
lk +

1

2
IΛΣe

−2Ue2Ug(3)ijFΛ
0iF

Σ
0j

=
1

4
e4UIΛΣF

Λ
ijF

Σlk +
1

2
(∂iA

Λ
0)IΛΣ(∂iAΣ

0 )

And the second kinect term as

1

4
RΛΣ FΛ

µν

∗
FΣµν =

1

8
RΛΣ(φ)εµνρσFΛ

µνF
Σ
ρσ,

=
e3e

2U

4
RΛΣ FΛ

ij

(
1

2

e2U

e3
εijkFk0

)
+

1

4
RΛΣF0iε

ijk

(
1

2

−e2U

e3
εijkFjk

)
=

1

8
e4URΛΣε

ijkFijFk0 +
1

4
RΛΣε

ijkF0iFjk.
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Also, we can write the curvature in function of 3-dimensional quantities

e4R4 = e3

(
R3 − 2 (∂U)

2
+
e4U

4
(F 0)

)
(5.2.13)

being e4 = e3e
−2U , e4 =

√
|gµν |, e3 =

√
|g3
ij |.

The action (now in three dimension) looks as

S(3) =

∫
e3

[
R3

2
− ∂iU∂iU +

e4U

8
F 0F0 −

Grs
2
∂iφ

r∂iφs +
e2U

4
FTijIΛΣF

ij

− e−2U

2
∂iA

T
0 IΛΣ∂

iA0 +
1

2e3
εijkFTijRΛΣ∂kA0

]
(5.2.14)

We apply the Lagrange multipliers to keep the invariance under duality

L′3 =L3 +
1

2
εijk

[
−
(
∂iA

Λ
j − ∂jAΛ

i

)
∂kAΛ +

1

2
F 0
ij∂kã

]
(5.2.15)

Instead of using the definitions of FΛ
ij and F̊ij =

(
∂iA

Λ
j − ∂jAΛ

i

)
, we can treat

them as independent fields

δL3

δF̊ij
= 0 =⇒ F̃ ij =

e−2U

e3
εijkI−1

ΛΣ (∂kA−RΛΣ∂kA0) , (5.2.16)

δL3

δF 0
ij

= 0 =⇒ F 0ij =− e−4U

e3

(
∂ka+ ZTCMN∂kZ

)
. (5.2.17)

defining

χk =∂ka+ ZMCMN∂kZN (5.2.18)

ã =a−AΛA
Λ
0 (5.2.19)

where

Z =

(
AΛ

0

AΛ

)
(5.2.20)

C =

(
0 −1
−1 0

)
(5.2.21)

and replacing in the Lagrangian we obtain

1

e3

R3

2
− ∂iU∂iU −

1

2
Grs∂iφr∂iφs −

1

2
e−2U∂kZTM∂kZ − 1

4
e−4Uχkχk (5.2.22)

Then, the Lagrangian is writen in a σ-model theory type:

1

e3
L3 =

1

2
R3 −

1

2
ĜIJdΦIΦJ (5.2.23)

where

1

2
ĜIJdΦIΦJ = (dU)2 +

1

2
Gdφrdφs +

1

4
e−4Uχ2 +

1

2
e−2UdZTMdZ. (5.2.24)

Then, one ends up with an effective description in an Euclidean D = 3 model
(which is related to the D = 4 one by a rescaling) describing gravity coupled to
n = 2+ns+2nv scalar fields ΦI(r, θ). After the dualization, all the propagating
degrees of freedom are reduced to scalars by 3D Hodge-dualization, and, in
particular, we have:
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� ns four-dimensional scalars ψs,

� the warp function U ,

� 2nv scalars ZM =
{
AΛ, AΛ

}
from the dimensional reduction of the four-

dimensional vectors fields,

� the scalar a from the dualization of the Kaluza-Klein vector ωφ.

5.3 Sigma-Model for D = 3

For a space-like Killing vector the metric on Mscal is positive definite, while for
a time-like Killing vector which correspond to stationary solutions the metric is
indefinite with 2nv negative terms due to the fields Z originating from the nv
vector fields in the four-dimensional theory.

Then, if we focus in the stationary the target space M
(3)
scal is a pseudo-

Riemannian scalar manifold which contain M
(4)
scal of the form

M
(4)
scal ⊂M

(3)
scal =

G(3)

H∗(3)

. (5.3.1)

The isometry group G(3) of the target space is the global symmetry group
of the (5.2.23) Lagrangian L3, which is semisimple, non-compact Lie group
while H∗(4) is a non-compact real form of H(3), the semisimple maximal compact
subgroup of G(3).

We shall use for the scalar manifold the solvable Lie algebra parametriza-
tion, identifying the scalar fields ΦI with parameters of a suitable solvable Lie
algebra [104]. Indeed, the three-dimensional scalars ΦI define a local solvable
parametrization of the coset, i.e. the corresponding physical patch U is isomet-
ric to a solvable Lie group generated by a solvable Lie algebra S (see section
(4.3.2):

M
(3)
scal ⊃ U ≡ eS . (5.3.2)

The coset representative is chosen defining the following exponential map:

L(Φ) = e−aT•e
√

2ZMTM eφ
rTre2UH0 . (5.3.3)

where the generators {H0, T•, Ts, TM} are the solvable generators and satisfy the
following commutation relations: respects the following commutation relations

[T◦, TM ] =
1

2
TM , [T◦, T•] =T•, (5.3.4)

[TM , TN ] =CMNT• [T◦, Tr] = [T•, Tr] = 0, (5.3.5)

[Tr, TM ] = (Tr)
N
M TN , [Ts, Tr] =− (Tsr)

s′
Ts′ . (5.3.6)

The solvable Lie algebra S is defined by the Iwasawa decomposition [55] of
the Lie algebra g3 of G(3), with respect to its maximal compact subalgebra H3.
The generators TM transform under the adjoint action of G(4) ⊂ G(3) in the
symplectic duality representation of the electric-magnetic charges.
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The Lie algebra of H∗(3) is denoted by H∗3 and is a subalgebra of g3, the Lie
algebra of G(3) All the above formulas are referred to a matrix representation in
which H∗3 and H∗3 are defined by a pseudo-Cartan involution (see (4.3.1)). This
involutive automorphism ς, acting on the algebra g3 of G(3), leaves the algebra
H∗3 invariant. The action of ς on a general matrix A is

ς(A) = −ηA†η (5.3.7)

where η is a suitable H∗(3)-invariant metric, where η = η† and η2 = 1.

Analogous to section (4.3.1) The pseudo-Cartan ς-involution induces a (pseudo)-
Cartan decomposition of g3 of the form

g = H∗3 ⊕ K∗3, (5.3.8)

where in this case we have

ς : ς(H∗3) = H∗3, ς(K∗3) = −H∗3. (5.3.9)

The spaces follow the structure

[H∗3,H
∗
3] jH∗3, (5.3.10)

[H∗3,K
∗
3] jK∗3, (5.3.11)

[K∗3,K
∗
3] jH∗3. (5.3.12)

We see that H∗(3) has a linear adjoint action in the space K∗(3), which is thus the
carrier of an H∗(3)-representation.

5.4 Conserved currrent for D = 3

The σ-model action (4.4.17) reads

S = −α
8

∫
dx
√
|g(3)|Tr

(
M−1∂iMM−1∂iM

)
(5.4.1)

where α = 1

2Tr(T0T0)
. From the Lagrangian

Lσ = ATr
(
M−1∂iMM−1∂iM

)
, (5.4.2)

From the Euler-Lagrange equations

δ
(
L
√
g(3)

)
δM

=− 2A
√
g(3)MpmMnq∂iMqq′Mq′q′′∂iMq′′p (5.4.3)

=− 2A
(
M−1∂iMM−1∂iMM−1

)nm√
g(3), (5.4.4)

δ
(
L
√
g(3)

)
δ∂iM

=2A
(
M−1∂iMM−1

)nm√
g(3). (5.4.5)

0 =− 2A
√
g(3)M−1∂iMM−1∂iMM−1 − 2A∂i

(√
g(3)M∂iMM−1

)
− 2A∂i

(√
g(3)M−1∂iM

)
M−1
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Figure 5.1: The integration in the boundary in infinity is equivalent to the
integration over the boundary close to the solution. Source: self made.

We find

=⇒ ∂i

(
J i
√
g(3)

)
= 0 (5.4.6)

where

J i =
1

2

(
M−1∂iM

)
. (5.4.7)

For duality we can write this one form like a two form

J i =
1√
g(3)

εijkJ
(2)
jk =⇒ ∂iJ

(2)
jk ε

ijk = 0 (5.4.8)

where

J (2) =
1

2
J

(2)
jk dx

jdxk =⇒ dJ (2) = 0. (5.4.9)

We see that this conserved currrent has the property of

0 =

∫
M3

dJ (2) =

∫
∂M3

J (2) (5.4.10)

But the boundary is ∂M = S2
r − S2

0 then∫
S2
r

J (2) =

∫
S2
0

J (2), (5.4.11)

that means that is independent of the radius and stationary axisymmetric so-
lutions can be described by n functions ΦI(r, θ), solutions to the sigma model
equations, and characterized by a unique “initial point” Φ0 ≡ ΦI0 at radial
infinity

Ψ0 = lim
r−→∞

ΨI(r, θ). (5.4.12)

and an “initial velocity” Q, at radial infinity, in the tangent space TΦ0
(Mscal).

Considering this, the g3-valued Noether-charge matrix Q, in terms of the cur-
rents, reads:

Q =
1

4π

∫
S2

JAθϕdθdϕ,

Considering J
(2)
θϕ =

√
g3εθϕrJ

r

Q =
1

4π

∫
S2

JAθϕdθdϕ,

Q =
1

4π

∫
S2

√
g3Jr(2)dθdϕ (5.4.13)
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From it we may derive the set of Nöther currents JAm and we can find the
constants of motion as mass m using TA = T0, the NUT-charge nnut associate
to the TA = T•, the scalar charges Σr where TA = Tr, and electric-magnetic

charges Γ =

(
e
m

)
when TA = TM , are they obtained from the components of

the charges Q of the Nöether currents JAm [103]:

JAm ≡kTr
(
T †AJm

)
, (5.4.14)

QA =kTr(QT †A) =
1

4π

∫
S2

√
ggrrJ (2)

r dθdϕ (5.4.15)

where TA = {T◦, T•, TM , Tr}, and then we have

J
(1)
•m =

k

2
Tr
(
T †•M−1∂mM

)
= −1

2
e−2U

(
∂ma+ ZTC∂mZ

)
, (5.4.16)

J
(1)
◦m =

k

2
Tr
(
T †◦M−1∂mM

)
= ∂mU +

1

2
e−2UZTM∂mZ − aJ•m, (5.4.17)

J
(1)
Mm =

k

2
Tr
(
T †MM

−1∂mM
)

=
1√
2
e−2UM(4)MN∂mZN +

√
2CZJ•m,

(5.4.18)

J (1)
sm =

1√
2
L s

4s V
s′

4s ∂mφ
s′′ + e−2UZTTsM(4)∂mZ − TsMNZMZNJ•m.

(5.4.19)

where Ls
′

4s is the coset representative of the symmetric scalar manifold in four-
dimensions in the solvable parametrization, as a matrix in the adjoint represen-

tation of the solvable group, V
s′

4s is the vielbein of the same manifold and the
hat denotes rigid indices.

The other conserved quantity characterizing the axisymmetric solution is the
angular momentum Mϕ along the rotation axis. Usually it is derived from the
standard Komar-integral, but it is useful to describe the global rotation of the
solution by means of a new g3-valued matrix Qϕ, firstly defined in[ [103]:

Qϕ = − 3

4π

∫ ∞
S2

ϕ[i ∂ j]dx
i ∧ dxj = − 3

4π

∫ ∞
S2

g(3)
ϕϕJθdθdϕ. (5.4.20)

The conserved quantities are then obtained as the flux of the currents across
the 2-sphere at infinity, according to eq. (5.4.14) as mentioned before (see figure
5.1):

nnut =− kTr
(
T †•Q

)
, MADM =kTr

(
T †0Q

)
, Σs =kTr

(
T †sQ

)
,

ΓM =
√

2kCMNTr
(
T †NQ

)
, Jϕ =kTr

(
T †•Qϕ

)
. (5.4.21)

Being G(3) the global symmetry group of the effective three-dimensional
model, a generic element g of it maps a solution ΦI(r, θ) into an other solution
Ψ′I(r, θ) according to

∀g ∈ G(3) : M3(ΨI)
g−−→M3(Ψ′I) = gM3(ΨI)g†. (5.4.22)
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That means

∀g ∈ G(3) : Q
g−−→ Q′ = (g−1)†Qg†, Qϕ

g−−→ Q′ϕ = (g−1)†Qϕg
†. (5.4.23)

Equations (5.4.21) allow to compute the angular momentum of the transformed
solution without having to explicitly derive the latter from (5.4.22), so that we
can avoid to compute the corresponding Komar integral on it. This is one of the
main advantages of working with QΨ. The presence of a non-vanishing QΨ is a
characteristic of the G(3)-orbits of rotating solutions and therefore one cannot
generate rotation on a static D = 4 solution using G(3).

We can map point at radial infinity (ΨI
0) into the origin of the manifold by

means of a transformation in G(3)/H(3). This choice clearly breaks G(3) to the
isotropy group H(3) and, as a consequence of this, the two matrices Q and Qϕ
always lie in the coset space K∗3.

5.5 Kern-Newmann black hole

gtt =− e2U = − ∆̃

ρ2
, grr =

ρ2

∆
, (5.5.1)

gθθ =ρ2, gϕϕ =
∆ρ2

∆̃
(5.5.2)

with the 3-dimensional metric like

g
(3)
ij =

 ∆̃
∆ 0

0 ∆̃ 0
0 0 ∆ sin2 θ

 (5.5.3)

and

ω = ωϕdϕ =
a(∆̃− ρ2)

∆̃
sin2 θdϕ. (5.5.4)

Then, we must consider

A0 =− 1

ρ2
(Qr − aP cos θ) , (5.5.5)

Aϕ =
1

ρ2

(
aQr sin2 θ − (r2 + a2)P cos θ

)
(5.5.6)

Following (5.2.8), (5.2.10), (5.2.12) we have

Ã3 =
(Qra sin2 θ −∆P cos θ)

∆̃
dϕ, (5.5.7)

F̃rϕ =
a(2aPr cos θ −Q(r2 − a2 cos2 θ))

ρ2∆̃
sin2 θ, (5.5.8)

F̃θϕ =
∆
(
2aQr cos θ + P

(
r − a2 cos2 θ

))
sin θ

ρ2∆̃
. (5.5.9)
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Using (5.2.16), (5.2.17) and considering I = −1 with R = 0

∂rA =− e2Ue3g
θθgϕϕF̃θϕ, (5.5.10)

∂θA =e2Ue3g
rrgϕϕF̃rϕ (5.5.11)

=⇒ A =
(Pr + aQ cos θ)

ρ2
+ C. (5.5.12)

therefore

ZM =

( − 1
ρ2 (Qr − aP cos θ)

1
ρ2 (Pr + aQ cos θ) + C.

)
(5.5.13)

where C is a integral constant. To obteind a we use (5.2.17)

a =
2aM

ρ2
cos θ +K (5.5.14)

where K is an integral constant.

5.5.1 Coset geometry for KN solution

We consider the scalar manifold M = SU(2, 1)/U(1, 1) with η = (−1, 1, 19. Let
g ∈ U(2, 1) a 3 × 3 matrix such that g = aigi where g are the generators of
SU(2, 1), then

g†η + ηg = 0. (5.5.15)

The scalars Φa = {U, a, φ, r,Z} correspond to a local solvable parametrization,
i.e. the corresponding patch, to be dubbed physical patch U (see (5.3.2)),
is isometric to a solvable Lie group generated by a solvable Lie algebra (see
(4.3.2)) defined by the Iwasawa decomposition of the Lie algebra of G(3) with
respect to its maximal compact subalgebra H. The generators of the solvable
decomposition are

H0 =
1

2

0 0 1
0 0 0
1 0 0

 T• =

− i
2 0 i

2
0 0 0
− i

2 0 i
2


T1 =

0 1
2 0

1
2 0 − 1

2
0 − 1

2 0

 T2 =

0 1
2 0

1
2 0 1

2
0 − 1

2 0

 (5.5.16)

then we can built the parametrization of SU(2, 1)/U(1, 1) correspond to the
following exponential map:

L =


1
4
e−U

(
2 + 2ia + 2e2U + Z2

1 + Z2
1

)
− 1√

2
(Z1 + iZ2) 1

4
e−U

(
−2 − 2ia + 2e2U − Z2

1 − Z
2
1

)
− 1√

2
e−U (Z1 − iZ2) 1 1√

2
e−U (Z1 − iZ2)

1
4
e−U

(
−2 + 2ia + 2e2U + Z2

1 + Z2
1

)
− 1√

2
(Z1 + iZ2) 1

4
e−U

(
2 − 2ia + 2e2U − Z2

1 − Z
2
1

)


(5.5.17)

With this, following section (5.4) we can obtain the currents Ji and the charges.
In the case when we consider Jr we have

Q =

 0 0 2M

0 0 −i
√

2(P − iQ)

2M
√

2(−iP +Q) 0

 (5.5.18)
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5.6 AdS metric

Analogously to the case above we consider the AdS metric

ds2 = −
(

1 +
r2

b2

)
dt2 +

1√
(1 + rb−2)

dr + r2dθ2 + r2 sin θ2dφ2. (5.6.1)

where b =
√

3
Λ . The field strengths are off and only scalars after the reduction

and dualization is

U =
1

2
Log

1 +
r2√
− 3

Λ

 . (5.6.2)

Then, the non-vanish current is

J◦ =

 2r

r2 +
√
− 3

Λ

, 0

 . (5.6.3)

5.6.1 Coset geometry for AdS solution

We choose the group G2(2) which has as subspace non-compact Hn.c. = SO(4) '
SU(2)× SU(2). From equation (4.3.11) we have basically that h = aihi where
hi ∈ Hn.c. and g = bigi where gi ∈ g, such that

[h, g] = (h) nm gn, (5.6.4)

is a secular equation to obtain an adjoint representation. We find the generators
Hn.c., noting that they are symmetric∗ and that they commute between them.
The Iwasawa parametrization is the most suitable for the computation of the
metric on G2(2)/SO(4). We know that the Cartan subalgebra of is generated
by h1 := C11 and h2 := C5 in [105]. The roots of G2 can thus been computed
by diagonalizing the adjoint action of Hi. We obtain

Solv = Hn.c. ⊕ {Eα} , (5.6.5)

∗In the that they are real, if not they are hermetic
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which correspond to the Borel algebra. The respective matrices are

T◦ =



√
3

2 0 0 0 0 0 0

0
√

3
2 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 −
√

3
2 0

0 0 0 0 0 0 −
√

3
2


, (5.6.6)

H0 =



√
3

2 0 0 0 0 0 0

0
√

3
2 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 −
√

3
2 0

0 0 0 0 0 0 −
√

3
2


, (5.6.7)

T• =



0 0 0 0 0 −
√

3
2 0

0 0 0 0 0 0 −
√

3
2

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, (5.6.8)

Ti =





1
2 0 0 0 0 0 0
0 − 1

2 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 1

2 0
0 0 0 0 0 0 − 1

2


,



0 1 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0
√

2 0 0 0

0 0 0 0
√

2 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0




,

(5.6.9)

TM =





0 1√
2

0 0 0 0 0

0 0 0 −1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 1√

2

0 0 0 0 0 0 0
0 0 0 0 0 0 0


,



0 0 0 0 0 0 0

0 0
√

2
3 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 −
√

2
3 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0


(5.6.10)

,



0 0 0 −1 0 0 0
0 0 0 0 1√

2
0 0

0 0 0 0 0 − 1√
2

0

0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,



0 0 0 0 −
√

3
2 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 −
√

2
3

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




(5.6.11)
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Then, as we see in section 5.4, the only charge different from zero is

MADM =− 2r

r2 +
√

3
√
− 1

Λ

×

√√√√√(−9 + 3r2Λ)−1

9 +
9
√

3r2√
− 1

Λ

− 9r4Λ +
√

3r6

√
− 1

Λ
Λ2

φ cos(θ)

(5.6.12)
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Chapter 6

Conclusion and Comments

To learn is not to know; there are the learners and the learned. Memory makes

the one, philosophy the others.

Alexandre Dumas, The Count of Monte Cristo

First part

In the first part of this thesis, we have presented, using a geometrical formal-
ism, a method to find the semigroups with which it is possible to perform an
S-expansion between two known algebras. In addition, the concept of zero-
reduction towards an ideal-reduction has been extended, reproducing, in this
way, a generalized IW-contraction. Numerous examples are shown to corrob-
orate the method, and, at the same time, an interesting application in super-
gravity to obtain a Hidden Maxwell Superalgebra from an AdS Lorentz algebra
in 4 dimensions.

In chapter 1 we have reviewed some concepts of the theory of Lie algebras
and the main aspects of the S-expansion procedure. Precisely, in section 1.3 we
shown how S-expansion procedure affects the geometry of a Lie group it was
found how the magnitude of a vector and the angle change between two vectors.
Also, it was found that the kind of algebra, after applying N S-Expansion is a
non-simple Lie algebra. Then, in section 1.4, when is considered resonance and
reduction, we developed an analytic method, able to give us the multiplication
table(s) of the set(s) involved in an S-expansion process for reaching a target Lie
(super)algebra from a starting one, after having properly chosen the partitions
over subspaces of the considered (super)algebras.

Furthermore, in our example 1.5.2, we have shown in an interesting way that
the particular subalgebra (where P̃a and Q̃ commute) of the hidden superalge-
bra underlying D = 11 supergravity is linked to osp(32/1) by the semigroup

S
(2)
E , only if this coincides with the M -algebra described in [20]. We conclude

our observations saying that, previously in [40] and later in [26], the authors
also found a singular solution, which, in our notation, corresponds to consider
the singular limit Q̃′ → 0 in the target superalgebra. In this case, the autho-
morphism group of the FDA is enlarged to Sp(32), and the whole procedure
resembles an Inönü-Wigner contraction. Thus, we can clearly see the existence
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of a strong link between the mentioned superalgebras, given by the S-expansion
(0S-resonant-reduction) and the Inönü-Wigner contraction procedures. How-
ever, we will not treat the case involving the Inönü-Wigner contraction in our
work, and we leave these considerations for the future.

In chapter 2, we have shown how to reproduce a generalized Inönü-Wigner
contraction by considering a new prescription for the S-expansion procedure,

which involves an infinite abelian semigroup S
(∞)
E and the removal of an ideal

subalgebra. This infinite S-expansion procedure with subsequent ideal subtrac-
tion, represents an extension and generalization of the finite one, allowing a
deeper view on the maps linking different algebras.

With all this “tools” we can use of the main advantage of S-expansion. We
refer to the use of theorem VII.2 of the refence [20] which serves to construct
the topological invariant of a respective S-expanded algebra from another of
which the bilinear form is known, then is an extension and generalization of
the mentioned theorem. This procedure allows to develop the dynamics and
construct the Lagrangians of several theories. In this context, in particular,
the construction of Chern-Simons forms becomes more accessible, and it would
be particularly interesting to develop them in (super)gravity theories in higher
dimensions, by following our approach.

Also, the work reproduces the results already presented in the literature,
concerning to the generalized Inönü-Wigner contraction, and also gives some
new features. Moreover, it gives a connection between the contraction processes
and the expansion methods introduced in [17], which was an open question
already mentioned in [12].

In chapter 3, it is shown one of the interesting applications mentioned above.
We refer to obtain a particular hidden Maxwell superalgebra underlying super-
gravity in four dimensions. Thus, we have written the hidden Maxwell su-
peralgebra in the Maurer-Cartan formalism, and then, we have considered the
parametrization of the 3-form A(3) in terms of 1-forms, in order to show the
way in which the trivial boundary contribution in four dimensions, dA(3), can
be naturally extended by considering particular contributions to the structure
of the extra fermionic generator, appearing in the hidden Maxwell superalgebra.
These extensions contain terms which involve the cosmological constant. Inter-
estingly, the presence of these terms strictly depends on the form of the extra
fermionic generators, appearing in this hidden extension of D = 4 supergravity.

Future work

A future work of that is discussed in the section 1.4, includes the study of
the particular cases in which the number of subspaces partitions of the target
(super)algebra is different from the number of subspaces partition of the starting
one, and the extension to the case of infinite algebras and semigroups, to made
the connection with the ideal-reduction proposed in chapter 2.

In the generalization of IW-contraction as an infinite S-expansion procedure,

we have restricted to the cases involving an infinite semigroup S
(∞)
E related to

the set (N, +). We leave a possible extension to the set (Z, +) to future works.
This further analysis would be interesting, since it would produce a S-expansion
involving a complete group, rather than a semigroup. Moreover, if we consider
ti use Grassmann parameters, as we saw in section 1.5.1, we can consider the
relation of this technique with the bosonization [106], which has an exponential
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function in the procedure that gives the possibility of relating the presented
technique due to the use of the group Z.

About the Hidden Maxwell Superalgebra underlying D = 4 supergravity, it
would be interesting to write the Lagrangian in four dimensions and to consider
non-trivial boundary terms, by looking at the new structure of dA(3). Another
interesting development of the present work would be the study of Chern-Simons
theories and Lagrangians in even dimensions, such as the Born-Infeld case for
four dimensional case. In particular we would like to see the relation of dA3 and
the generation of a topological invariant, proposed in [107].

Second part

In the second part, we have synthesized the general features of ungauged su-
pergravities, including their global symmetry group G. We have shown two
examples, in extended supergravites, where we use a Lagrangian with an as-
intotic solution, where one of them has a cosmological constant. The solution
generating technique is useful in scenarios where the theory is not-gauged, since
we need solve the Einstein, scalars and vector equations in the same time. With
a gauged theory we need to study how uncoupling the equations to be resolved.
At first we work, in the unfinished research,with the AdS metric with the global
group G2(2), where we found the only charge. Bearing in mind that a solution
with cosmological constant is always gauged for extended supegravities [36], it
is planned to investigate the applicability of the solutions generating technique
on gauged theories at this level.

The gauging procedure consists in promoting a suitable global symmetry
group G of the Lagrangian to a local symmetry group gauged by the vector
fields of the theory. Besides the introduction of minimal couplings, changes
in the Lagrangian and the supersymmetry transformation rules are required
in order to the resulting model has the same supersymmetries as the original
ungauged one.

Future work

The work to be done is to solve the field equations of a Lagrangian with con-
stant potential, to solve the gauged equations, using the solution-generating-
technique. After this, evolve into more complicated potentials.

Another task is to approach the dimensional reduction and dualization to
link higher dimensional theories with complicated topologies and solve them at
the 3-dimensional level.
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Appendix

-Vuoi un caffè?

-Si per favore.

-Andiamo.

A lot of people in the world
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Appendix A

Calculations to found the
semigroup

A.1 Resonance and reduction for moving from
the BTI to the BTII

First of all, we solve the system (1.4.7), that in this case reads
1 = 1 · (∆0) ,

2 = 1 · (∆1) ,

P̃ = ∆0 + ∆1 + 1,

(A.1.1)

since

dim(Ṽ0) = 1, dim(V0) = 1, (A.1.2)

dim(Ṽ1) = 2, dim(V1) = 1, (A.1.3)

neglecting the zero element of the subspaces V0 and Ṽ0. Here we have denoted,
as usual, with ∆A, A = 0, 1, the cardinality of the subsets S∆A

associated with
the subspace A, i.e. the number of elements in S∆A

. Solving the system above,
we get the unique solution

P̃ = 4, ∆0 = 1, ∆1 = 2. (A.1.4)

Now, since S̃ = {S10
} t {S21

} ∪ {λ0S}, where λ0S is the zero element of the
set S̃, we can write the following subset decomposition structure of the set S̃:

S10
={λa},

S21
={λb, λc}. (A.1.5)

Here the index a, b, c identify general elements of the set S̃, and they are not
running index. We do not yet identify them with numbers, because there still
exists the possibility of having the same element in different subsets.

The next step consists in finding the multiplication rules between the ele-
ments of each subset in (A.1.5). We write the relations (1.4.9), which, in this
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case, read

[(S10 ⊗ V0)⊕ ({λ0S} ⊗ V0) , (S10 ⊗ V0)⊕ ({λ0S} ⊗ V0)] =

=
(
K

(10)
(10)(10) (C)

0
00

)
(S10 ⊗ V0)⊕ ({λ0S} ⊗ V0) ,

=
(
K

(21)
(21)(10) (C)

1
10

)
(S21 ⊗ V1)⊕ ({λ0S} ⊗ V1) ,

[(S21
⊗ V1)⊕ ({λ0S} ⊗ V1) , (S21

⊗ V1)⊕ ({λ0S} ⊗ V1)] =

=
(
K

(10)
(21)(21) (C)

0
11

)
(S10 ⊗ V0)⊕ ({λ0S} ⊗ V0) .

(A.1.6)

These relations (which can also be rewritten in a simpler form, such as the one
in (1.4.13)) give us a first view on the possibilities allowed by the multiplication
table of the set S̃. In fact, we can now write

S10 · S10 ⊂S10 ∪ {λ0S}, (A.1.7)

S21 · S10 ⊂S21 ∪ {λ0S}, (A.1.8)

S21 · S21 ⊂S10 ∪ {λ0S}, (A.1.9)

where we have taken into account the presence of the zero element λ0S of the
set S̃. Thus, we are now able to write the possible multiplication rules between
the elements of the set S̃, namely

λaλa =λa,0S , (A.1.10)

λb,cλa =λb,c,0S , (A.1.11)

λb,cλb,c =λa,0S , (A.1.12)

where we have already taken into account the triviality of the multiplications
rules of λ0S .

We have exhausted the information coming from the initial algebra, thus we
now use the information coming from the target one, in order to build up the
complete multiplication table of the set S̃.

We proceed by writing the relations between the S-expanded generators of
the initial BTI algebra and the generators of the target BTII one, according to
the usual S-expansion procedure described [20]. According to the identification
criterion presented in Subsection 1.4.1, we can perform the identification

λaX2 =Y3 (A.1.13)

λbX1 =Y1 (A.1.14)

λcX1 =Y2. (A.1.15)

We now write the commutators of the target BTII algebra in terms of the
commutators between the S-expanded, resonant-reduced generators of the BTI
one:

[Y2, Y3] =Y1,

[λcX1, λaX2] =λbX1,

λcλa [X1, X2] =λbX1. (A.1.16)

Since for the BTI algebra we have [X1, X2] = X1, from equation (A.1.16) we
obtain

λcλa = λb. (A.1.17)
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This simple analysis can be performed in order to find the correct multiplication
rules between the elements of the set S̃, thus we proceed in this way, computing
the other commutators and factorizing the product between the elements of S̃,
in order to end up with the complete multiplication table.

Let us observe that the commutator

[Y1, Y2] = 0 (A.1.18)

does not give us any further information about the multiplication rule between
λb and λc, due to the fact that, when we write it in terms of the commuta-
tor between S-expanded generators and we factorize the product between the
elements of S̃, we are left with λbλc [X1, X1] = 0, which reproduces a trivial
identity, since [X1, X1] = 0 in the BTI algebra. On the other hand, from the
study of the last commutator we have to consider, we get

[Y1, Y3] =0,

[λbX1, λaX2] =0,

λbλa [X1, X2] =0. (A.1.19)

Since, from the initial BTI algebra, we know that [X1, X2] = X1 6= 0, from
equation (A.1.19) we see clearly that the the zero element λ0S is naturally
involved in the procedure, and we can finally write

λbλa = λ0S . (A.1.20)

A.2 Only resonance for moving from the BTI to
the BTII

If we search for a table in a case of using only resonance, we must to resolve
again the equation (1.4.7) which, in this case, is solved by

P̃ = 3, ∆0 = 1, ∆1 = 2. (A.2.1)

Then, performing the usual procedure (see Section 1.4) as before

S10 · S10 ⊂S10∪, (A.2.2)

S21 · S10 ⊂S21∪, (A.2.3)

S21 · S21 ⊂S10∪, (A.2.4)

where we have not taken into account the presence of the zero element λ0S of the
set S̃. Thus, we are now able to write the possible multiplication rules between
the elements of the set S̃, namely

λaλa =λa, (A.2.5)

λb,cλa =λb,c, (A.2.6)

λb,cλb,c =λa, (A.2.7)

One again, we have exhausted the information coming from the initial algebra,
thus we now use the information coming from the target one, in order to build
up the complete multiplication table of the set S̃.
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We proceed by writing the relations between the S-expanded generators of
the initial BTI algebra and the generators of the target BTII one, according to
the usual S-expansion procedure described [20]. According to the identification
criterion presented in Subsection 1.4.1, we can perform the identification

λaX2 =Y3 (A.2.8)

λbX1 =Y1 (A.2.9)

λcX1 =Y2. (A.2.10)

we can reach the multiplication rules between the elements of the set S̃, after
having faced the particular situation in which

[Y1, Y3] = 0, (A.2.11)

[λbX1, λaX3] = 0, (A.2.12)

λbλa [X1, X2] = 0, (A.2.13)

where [X1, X2] = X1 6= 0. As we can see in equation (A.2.11), the generators Y1

and Y3 of the target algebra must commute, while the generators X1 and X2 of
the starting algebra do not commute; so, the only way for reaching a consistent
multiplication rule between the elements λa and λb consists in adding a zero
element in the set S̃ involved in the process, such that

λbλa = λ0S . (A.2.14)

The inclusion of the zero element is consistent, since this modification just affects
the variable P̃ in the system (1.4.7), which increases of +1 (namely, P̃ = 4).

A.3 Detailed calculations for reaching the hid-
den superalgebra underlying D = 11 super-
gravity, starting from the supersymmetric
Lie algebra os p(32/1)

We can thus proceed, giving the internal decomposition of the target superalge-

bra (we first consider the case in which
[
Q̃, P̃a

]
6= 0). For the target superalgebra

underlying D = 11 supergravity, we can write

dim
(
Ṽ0

)
= 110︸︷︷︸

J̃ab, Z̃ab

, (A.3.1)

dim
(
Ṽ1

)
= 64︸︷︷︸

Q̃α, Q̃′α

, (A.3.2)

dim
(
Ṽ2

)
= 11︸︷︷︸

P̃a

+ 462︸︷︷︸
Z̃a1···a5

= 473. (A.3.3)

where we have clearly set Ṽ0 = {0} ∪ {J̃ab, Z̃ab}, Ṽ1 = {Q̃, Q̃′}, and Ṽ2 =
{P̃a, Z̃a1...a5}. The subspaces partition for the target superalgebra satisfies the
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following relations

[
Ṽ0, Ṽ0

]
⊂ Ṽ0, (A.3.4)[

Ṽ0, Ṽ1

]
⊂ Ṽ0 ⊕ Ṽ1, (A.3.5)[

Ṽ0, Ṽ2

]
⊂ Ṽ0 ⊕ Ṽ2, (A.3.6)[

Ṽ1, Ṽ1

]
⊂ Ṽ0 ⊕ Ṽ2, (A.3.7)[

Ṽ1, Ṽ2

]
⊂ Ṽ0 ⊕ Ṽ1, (A.3.8)[

Ṽ2, Ṽ2

]
⊂ Ṽ0 ⊕ Ṽ2, (A.3.9)

analogously to what we have done for osp(32/1). We can now move to the study
of the usual system (1.4.7), which, in this case, reads


110 = 55(P̃ − 1−∆1 −∆2),

64 = 32(P̃ − 1−∆0 −∆2),

473 = 473(P̃ − 1−∆0 −∆1),

P̃ = ∆0 + ∆1 + ∆2 + 1,

(A.3.10)

where ∆0, ∆1, ∆2 respectively denote the cardinality of the subsets related to
the subspaces V0, V1, and V2. This system admits the unique solution

P̃ = 6, ∆0 = 2, ∆1 = 2, ∆2 = 1. (A.3.11)

Thus, we are now able to write the following subset decomposition of the set S̃
involved in the process:

S20
= {λa, λb}, (A.3.12)

S21
= {λc, λd}, (A.3.13)

S12
= {λe}. (A.3.14)

Thus, one can now write the usual relations (1.4.9) (or their simpler form, given
by (1.4.13)) for the case under analysis, and find the following product structure
for the subset decomposition of the set S̃

S20 · S20 ⊂ S20 ∪ {λ0S}, (A.3.15)

S20 · S21 ⊂ S21 ∪ {λ0S}, (A.3.16)

S20 · S12 ⊂ S12 ∪ {λ0S}, (A.3.17)

S21 · S21 ⊂ (S20 ∩ S12) ∪ {λ0S}, (A.3.18)

S21 · S12 ⊂ S12 ∪ {λ0S}, (A.3.19)

S12 · S12 ⊂ (S20 ∩ S12) ∪ {λ0S}, (A.3.20)
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where we have explicitly taken into account the presence of the zero element
λ0S . This allows to reach the multiplication rules

λa,bλa,b = λa,b,0S , (A.3.21)

λa,bλc,d = λc,d,0S , (A.3.22)

λa,bλe = λe,0S , (A.3.23)

λc,dλc,d = λa,b,e,0S , (A.3.24)

λc,dλe = λe,0S , (A.3.25)

λeλe = λa,b,e,0S , (A.3.26)

where we have already taken into account the triviality of the multiplications
rules of λ0S .

We can now fix the degeneracy appearing in the above multiplication rules,
by analyzing the information coming from the target superalgebra. According
to the usual S-expansion procedure (see Ref. [20]), we have to write the commu-
tation relations between the generators of the target superalgebra in terms of
the commutation relations between the generators of the S-expanded osp(32/1).
After having performed the identification (according to the identification crite-
rion presented in Subsection 1.4.1)

λaJab =J̃ab, λbJab =Z̃ab, λcQ =Q̃, (A.3.27)

λdQ =Q̃′, λePa =P̃a, λeZa1...a5 =Z̃a1...a5 , (A.3.28)

we are able to write the commutation relations of the superalgebra underlying
D = 11 supergravity in terms of the commutation relations of the S-expanded
generators of osp(32/1). In the following, we will just consider the structure of
the commutation relations, since the explicit values of the coefficients are not
relevant to our analysis. For performing this calculation, we consider the case

in which
[
Q̃, P̃a

]
6= 0.

Thus, taking into account the commutation relations for the initial algebra
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osp(32/1), we have:

{Q̃′, Q̃′} ={λdQ,λdQ} = λdλd{Q,Q} = 0, (A.3.29)

→ λdλd = λ0S ,

{Q̃, Q̃′} ={λcQ,λdQ} = λcλd{Q,Q} = 0, (A.3.30)

→ λcλd = λ0S ,[
P̃a, P̃b

]
= [λePa, λePb] = λeλe [Pa, Pb] = 0, (A.3.31)

→ λeλe = λ0S ,[
P̃a, J̃bc

]
= [λePa, λaJbc] = λeλa [Pa, Jbc] ∝ λeδabecP e, (A.3.32)

→ λeλa = λe,[
J̃ab, J̃cd

]
= [λaJab, λaJcd] = λaλa [Jab, Jcd] ∝ λaδabfecd J

e
f , (A.3.33)

→ λaλa = λa,[
P̃a, Q̃

′
]

= [λePa, λdQ] = λeλd [Pa, Q] = 0, (A.3.34)

→ λeλd = λ0S ,[
Z̃ab, Q̃

′
]

= [λbJab, λdQ] = λbλd [Jab, Q] = 0, (A.3.35)

→ λbλd = λ0S ,[
P̃a, Q̃

]
= [λePa, λcQ] = λeλc [Pa, Q] ∝ λdQ, (A.3.36)

→ λeλc = λd,[
Z̃ab, Q̃

]
= [λbJab, λcQ] = λbλc [Jab, Q] ∝ λdQ, (A.3.37)

→ λbλc = λd,[
J̃ab, Z̃cd

]
= [λaJab, λbJcd] = λaλb [Jab, Zcd] ∝ λbδabfecd Z

e
f , (A.3.38)

→ λaλb = λb,[
J̃ab, Q̃

]
= [λaJab, λcQ] = λaλc [Jab, Q] ∝ λcQ, (A.3.39)

→ λaλc = λc,[
J̃ab, Q̃

′
]

= [λaJab, λdQ] = λaλd [Jab, Q] ∝ λdQ, (A.3.40)

→ λaλd = λd,[
Z̃ab, Z̃cd

]
= [λbJab, λbJcd] = λbλb [Jab, Zcd] = 0, (A.3.41)

→ λbλb = λ0S ,[
Z̃ab, P̃c

]
= [λbJab, λePc] = λbλe [Jab, Pc] = 0, (A.3.42)

→ λbλe = λ0S ,

{Q̃, Q̃} ={λcQ,λcQ} = λcλc{Q,Q} ∝ λePa + λbJab + λeZabcde, (A.3.43)

→ λcλc = λb, where we have set λb = λe,

and the other commutation relations give us results that agree with the above
ones.
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We observe that, in equation (A.3.43), we must set

λb = λe, (A.3.44)

in order to get consistent relations.
This procedure fixes the degeneracy of the multiplication rules between the

elements of the subsets of S̃, and we are now able to write the following multi-
plication table

λa λb λc λd λ0S

λa λa λb λc λd λ0S

λb λb λ0S λd λ0S λ0S

λc λc λd λb λ0S λ0S

λd λd λ0S λ0S λ0S λ0S

λ0S λ0S λ0S λ0S λ0S λ0S

(A.3.45)

Then, after having performed the identification

a↔ 0, b↔ 2, c↔ 1, d↔ 3, 0S ↔ 4, (A.3.46)

we can finally rewrite the table above as follows (in the usual order):

λ0 λ1 λ2 λ3 λ4

λ0 λ0 λ1 λ2 λ3 λ4

λ1 λ1 λ2 λ3 λ4 λ4

λ2 λ2 λ3 λ4 λ4 λ4

λ3 λ3 λ4 λ4 λ4 λ4

λ4 λ4 λ4 λ4 λ4 λ4

(A.3.47)
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Appendix B

Calculations on
Ideal-Subtraction

B.1 Calculations for reaching the non-standard
Maxwell algebra

We consider the abelian semigroup S
(∞)
E and, following the notation adopted

in Ref.s [20,45] and the procedure developed in the present work, we show that
it is possible to obtain an infinite-dimensional superalgebra as a S-expansion of

osp(2|1)⊗ sp(2), using S
(∞)
E .

We decompose the infinite semigroup S
(∞)
E as follows:

S0 ={λ0, λ2, λ3, λ4, λ5, . . .}, (B.1.1)

S1 ={λ1, λ2, λ3, λ4, λ5, . . .}, (B.1.2)

allowing resonance between the decomposition of the infinite semigroup S
(∞)
E

and the partition over the subsets of the AdS superalgebra, which reads V0 =
{J̃ab}, and V1 = {Q̃α, P̃a}.

If we now perform an identification and rename the generators as follows:

J0
ab = λ0J̃ab, λnJ̃ab ≡ J̃nab =Jnab, n 6= 0, 2, (B.1.3)

Z2
ab = λ2J̃ab, (B.1.4)

P 1
a = λ1P̃a, λsP̃a ≡ P̃ sa =P sa , s 6= 1, (B.1.5)

Q1
α = λ1Q̃α, λsQ̃α = Q̃sα =Qsα, s 6= 1, (B.1.6)

we can then choose the set of generators on the right to belong to an ideal I.
In order to make this clearer, we write the commutation relations between

the expanded generators and we remark with bold characters those which we
choose to belong to the ideal (those terms must be removed when we perform
the ideal subtraction).
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For the bosonic sector we have:[
J0
ab, J

0
cd

]
=ηbcJ

0
ad − ηacJ0

bd − ηbdJ0
ac + ηadJ

0
bc, (B.1.7)[

J0
ab, Z

2
cd

]
=ηbcZ

2
ad − ηacZ2

bd − ηbdZ2
ac + ηadZ

2
bc, (B.1.8)[

J0
ab, J̃

n
cd

]
=ηbcJ̃

n
ad − ηacJ̃n

bd − ηbdJ̃n
ac + ηadJ̃n

bc, (B.1.9)[
J̃n
ab, J̃

n
cd

]
=ηbcJ̃

n+n
ad − ηacJ̃n+n

bd − ηbdJ̃n+n
ac + ηadJ̃n+n

bc , (B.1.10)[
J0
ab, P

1
c

]
=ηbcP

1
a − ηacP 1

b , (B.1.11)[
J0
ab, P̃

s
c

]
=ηbcP̃

s
a − ηacP̃s

b, (B.1.12)[
J̃n
ab, P

1
c

]
=ηbcP̃

n+1
a − ηacP̃n+1

b , (B.1.13)[
J̃n
abP̃s

c

]
=ηbcP̃

n+s
a − ηacP̃n+s

b , (B.1.14)[
P 1
a , P

1
b

]
=Z2

ab, (B.1.15)[
P̃s

a, P̃
s
b

]
=J̃s+s

ab , (B.1.16)[
P̃s

a, P
1
b

]
=J̃s+1

ab , (B.1.17)

while for the fermionic sector we have:

[
P̃s

a, Q̃
s
α

]
=

1

2

(
ΓaQ̃s+s

)
α
, (B.1.18)[

P̃s
a, Q

1
α

]
=

1

2

(
ΓaQ̃s+1

)
α
, (B.1.19)[

P 1
a , Q̃

s
α

]
=

1

2

(
ΓaQ̃s+1

)
α
, (B.1.20)[

P 1
a , Q

1
α

]
=

1

2

(
ΓaQ̃2

α

)
α
, (B.1.21)[

J̃n
ab, Q̃

s
α

]
=

1

2

(
ΓabQ̃s+n

)
α
, (B.1.22)[

J0
ab, Q

1
α

]
=

1

2

(
ΓabQ

1
)
α
, (B.1.23){

Q̃s
α, Q̃

s
β

}
=−1

2

[(
ΓabC

)
αβ

J̃s+s
ab − 2 (ΓaC)αβ P̃s+s

a

]
, (B.1.24){

Q1
α, Q̃

s
β

}
=−1

2

[(
ΓabC

)
αβ

J̃s+1
ab − 2 (ΓaC)αβ P̃s+1

a

]
, (B.1.25){

Q1
α, Q

1
β

}
=− 1

2

[(
ΓabC

)
αβ
Z2
ab − 2(ΓaC)αβ P̃2

a

]
, (B.1.26)[

Z2
ab, Z

2
cd

]
=ηbcJ̃

4
ad − ηacJ̃4

bd − ηbdJ̃4
ac + ηadJ̃4

bc, (B.1.27)[
Z2
ab, Q

1
α

]
=− 1

2

(
ΓabQ̃3

)
α
, (B.1.28)

where n and s can also assume the same value, but the conditions n 6= 0, 2 and
s 6= 1 must hold. The subtraction of the ideal correspond to erase the parts in
bold character. After having performed the ideal subtraction, we end up with
the non-standard Maxwell superalgebra described in Subsection 2.6.6.
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B.2 Calculations for reaching the super-PP-wave
algebra

We choose the following ideal:

I = ({λ2n}∞n=1 × V0)⊕ ({λ2n+1}∞n=1 × V1)⊕ ({λ2n}∞n=2 × V2) . (B.2.1)

We then subtract this ideal and what finally remains is given by

[λ0P−, λ1Q+] =− 3

2
√

2
λ1Q+I, (B.2.2)

[λ0P−, λ0Q−] =− 1

2
√

2
λ0Q−I (B.2.3)

[λ1Pi, λ0Q−] =
1√
2
λ1Q+Γ−IΓi, (B.2.4)

[λ1Pi′ , λ0Q−] =
1

2
√

2
λ1Q+Γ−IΓi′ , (B.2.5)

[λ1P
∗
m, λ0Q−] =

1

2
√

2
λ1Q+ΓmΓ−, (B.2.6)

[λ0Jmn, λ0Q±] =
1

2
λ0Q±Γmn, (B.2.7)

{λ1Q+, λ1Q+} =− 2CΓ+λ1P+, (B.2.8)

{λ0Q−, λ0Q−} =− 2CΓ−λ0P− −
√

2CΓ−IΓijλ0Jij +
1√
2
CΓ−IΓi

′j′λ0Ji′j′ ,

(B.2.9)

{λ1Q+, λ0Q−} =
(
−2CΓmλ1Pm − 4CIΓiλ1P

∗
i − 2CIΓi

′
λ1P

∗
i′

)
λ0P−. (B.2.10)

Then, we only have to properly rename the generators in order to find (2.6.101).
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Appendix C

Dirac-Schwinger-Zwanziger
quantization

Electromagnetism without monopoles is ∂µ
∗Fµν = 0, that means Fµν =

∂µAν−∂νaµ, we Aµ is defined in all the space-time. Also we have the invarianze

A′µ = Aµ + ∂µα (C.0.1)

that satisfies Fµν.
Also, a particle of mass m satisfies the Schrodinger equations which is in-

variant under (C.0.1) if ψ transform as ψ′ = e−
iqα
~ ψ. But if we consider the

existence of magnetic monopoles,

~Bm =
g

4πr3
~r =⇒ ~∇ · ~Bm = gδ3(~r) (C.0.2)

Since the divergence of B is different from zero we cannot have ~A regular in
all the space and satisfies the same equations as F . Neverless we can use the
ambiguity of A transformation and we use different potentials in different regions
of the space,

AN =
g

4πi

(1− cos θ

sin θ
êθ, (C.0.3)

AS =− g

4πi

(1 + cos θ)

sin θ
êθ. (C.0.4)

Then, we have
∇×AS = Bm.

Bm can be describe with AN or AS . In every place we must choose a function
ψN or ψS , which differ by a phase. We know that the function have to be
simple-evaluate from quantum mechanichs, but from the transformation of ψ′

we know that both are simulstanously simple-evaluate if

e−
iqα(φ)

~ = e−
iqα(φ+2π)

~ ,

taking α(φ) = − g
2πφ we see that qg = 2πn~, n ∈ Z, and if we consider more

than one monopole; qigj = 2πnij~, nij ∈ Z. Then, if we consider also dyons
we have

qigj − qjgi = 2πnij~. (C.0.5)

Which is the condition of Dirac-Schiwinger-Zwanzinger.
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