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Outline

In this habilitation thesis, we report on the development of macroscopic quantum electro-
dynamics as a coherent framework to study the electromagnetic field in environments and
its application to quantum vacuum effects such as dispersion forces.

An overview of these efforts and the central findings is provided in Part 1. We briefly
introduce quantum electrodynamics, the quantum vacuum, and the resulting phenomena
with their context and relevance across sciences and technology (Chap. 1). This is followed
by a discussion of our main results in the areas of macroscopic quantum electrodynamics
(Chap. 2); dispersion forces, ranging from vacuum forces (Chap. 3) and interactions in media
(Chap. 4) to excited systems (Chap. 5), thermal (Chap. 6), non-additive and collective effects
(Chap. 7); quantum friction (Chap. 8); matter-wave scattering (Chap. 9); and resonance
energy transfer (Chap. 10); ending with some concluding remarks (Chap. 11).

Part II contains a selection of key original publications which are grouped and ordered
according to their discussion in Part 1. The results reported in these publications were ob-
tained while I was a postdoctoral researcher in the groups of E. A. Hinds and S. Scheel at
Imperial College London and later junior group leader and Emmy Noether fellow at the
University of Freiburg. Some of the articles contain calculations that I have performed en-
tirely myself, sometimes in parallel with colleagues and PhD students from the same group
[S1, S2, S3, S4, S10, S11, S12, S13, S21, S22, S23, S26, S28|. For some of the later arti-
cles, my role has shifted to conceiving projects and supervising the work of postdocs, PhD,
MSc and BSc students while carrying out or checking the respective relevant key steps my-
self [S5, S6, S7, S8, S9, S14, S15, S16, S17, S18, S19, S20, S24, S25, S27, 529, S30]. In col-
laborations, experimentalists have complemented my theoretical analysis with experimen-
tal details [S8|, measurements [S28|, and simulations of matter-wave scattering [S28, S29],
while theorists have contributed expertise on Rayleigh coefficients [S4, S28|, optical prop-
erties of topological insulators [S6, S7, S9| polymers [S8], Chern—Simons materials [S10],
media [S15], and (polar) molecules [S15, S21|, Van der Waals interactions in free space
[S11, S12, S14, S19|, and numerical computations of thermal Casimir—Polder forces [S23]. A
bibliography provides references for my findings that can only be mentioned in passing in
Part I. Of these, the publications [P1-P6, P8-P85| were written after my PhD.
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1. Introduction

In the following, we will set the stage for the development of macroscopic quantum electrody-
namics and the investigations of some of its consequences, to be laid out in this habilitation
thesis. To this end, we introduce quantum electrodynamics as the fundamental theory of
light and matter as well as its nonrelativistic offspring quantum optics, molecular, cavity,
and macroscopic quantum electrodynamics. We discuss the quantum vacuum as an impor-
tant concept; its observable consequences such as dispersion forces; and their relevance in
physics and beyond.

1.1. Quantum electrodynamics

Quantum electrodynamics (QED) is the fundamental quantum theory of light and its in-
teraction with matter. Originated by Dirac [1|, with key advances by Dyson, Feynman,
Schwinger, Tomonaga and others [2], it has become one of the most precisely tested theo-
ries in physics and a firmly established part of textbook canon [3, 4]. In its original fully
relativistically covariant form, it describes light and matter on an equal footing as bosonic
and fermionic particles—photons, electrons, protons and neutrons—that can be created,
destroyed and transformed in scattering events. Quantum optics [5, 6, 7] or molecular QED
[8, 9] is the nonrelativistic version of QED valid for small velocities and energies such that
the Coulomb gauge can be employed and matter can be regarded as conserved. Instead, the
focus is on the structure and dynamics of photons and their interaction with atoms.

QED in free space can be constructed from classical electrodynamics by means of canon-
ical quantisation (for a compact introduction, see [P3|). To this end, one solves Maxwell’s
equations by introducing vector and scalar potentials. These fundamental degrees of freedom
of the theory are governed by Helmholtz’s wave equation. Casting this equation of motion
into its equivalent Lagrangian and Hamiltonian forms, quantisation can proceed by means
of the correspondence principle upon replacing Poisson brackets of canonically conjugated
variables with commutators of their quantised counterparts. Explicit expressions for the
quantised electromagnetic field are constructed as superpositions of the classical plane-wave
solutions of Helmholtz’s equation, the normal modes, multiplied by bosonic creation and
annihilation operators. The field can thus be envisaged as an infinite collection of harmonic
oscillators, one for each normal mode, whose energies are quantised into discrete units: the
photons.

Normal-mode QED is valid in free space, but can easily accommodate for the presence of
nonabsorbing bodies whose surfaces enforce boundary conditions. In resonator geometries
formed by good conductors, this typically leads to discrete normal modes in the form of
standing waves which are the primary subject of cavity QED [10]. Its paradigmatic Jaynes—
Cummings model describes the resonant interaction of a single cavity mode with two-level
atoms [11]. The highly idealised conditions required for such a simplified description were
experimentally realised by coupling Rydberg atoms [12] to a Gaussian mode inside a micro-
wave Fabry—Pérot cavity [13] formed by two curved, highly-reflecting mirrors [14]. In this
way, reversible emission and absorption of individual photons by atoms in the form of
vacuum Rabi oscillations [15] were observed, accompanied by the formation of entangled
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atom—field states.

As shown by Glauber and Lewenstein, normal-mode QED can also be constructed for
an arbitrary arrangement of nondispersive non-absorbing dielectric bodies as characterised
by a real-valued, frequency-independent permittivity that varies with position [16]. The
normal modes in this case solve the wave equation both inside these bodies and in the
space between them and obey the boundary conditions of macroscopic electrodynamics [17]
governing reflection and transmission at their surface.

Complications arise when attempting to extend the normal-mode framework to absorbing
media. In this case, the electromagnetic field is no longer a closed system whose quantum
dynamics is governed by a unitary Hamiltonian evolution. Two main solutions to this prob-
lem have been developed. The first, phenomenological approach based on linear response
theory [18, 19] forgoes explicit field quantisation and instead relates commutators and cor-
relations of the quantised electromagnetic field in the presence of absorbing bodies to the
classical Green tensor [20] by virtue of the fluctuation-dissipation theorem [21, 22|. The
alternative is the Huttner-Barnett model [23] where a homogeneous absorbing medium is
explicitly taken into account in the form of a harmonic-oscillator polarisation field which is
coupled to an additional harmonic-oscillator bath responsible for dissipation. The fundamen-
tal, polariton-like field—matter excitations of the system emerge after a Fano diagonalisation
[24]. The Huttner-Barnett model has been generalised to inhomogeneous dielectric bodies
[25, 26, 27], including media with a nonlocal response [28|.

Macroscopic QED [29] as developed and used throughout this thesis combines the versatil-
ity of the linear response approach with the rigor of the Huttner-Barnett model: it is valid for
arbitrary arrangements of linear bodies and media but includes the fluctuation—dissipation
theorem for the electromagnetic field as a derivable consequence. The point of departure is
Maxwell’s equations of classical macroscopic electrodynamics (hence the name macroscopic
QED) together with the constitutive relations in linear media. The latter include a respon-
sive component as well as a random noise term associated with material absorption. Solving
the resulting wave equation, one finds an electromagnetic field that is created by a fluctu-
ating noise polarisation inside the bodies as propagated by the classical Green tensor. The
noise polarisation is closely related to the fundamental polariton-like field-matter excita-
tions of the Huttner—-Barnett model. The formalism has been extended to magnetodielectric
media where noise magnetisation features alongside noise polarisation [P98, P99]|. A variant
directly employs the noise polarisation rather than polariton excitations and has been de-
veloped for dielectrics [30, 31| and magneto-electrics [32]. A further alternative implements
a dissipative bath via auxiliary fields [33| leading to a model whose equivalence has been
established explicitly [34]. It has recently been demonstrated that macroscopic QED can be
obtained by means of canonical quantisation [35] and can even be formulated for moving
and accelerated media [36].

1.2. The quantum vacuum

One of the most striking consequences of QED is the prediction of a nontrivial ground state:
the quantum vacuum. As the electric and magnetic fields are noncommuting operators,
the Heisenberg uncertainty principle [37] dictates that they cannot simultaneously assume
definite values. Instead, the vacuum fields vanish on average, but exhibit nonzero quantum
fluctuations. The energy of the quantum vacuum can be understood in close analogy with
the ground state of the harmonic oscillator: the energy of each mode of the electromagnetic
field is quantised according to E, = (n+ 3)hw (n =0,1,...) with a nonvanishing ground-
state energy Fy = %hw The total vacuum energy of the electromagnetic field emerges as
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the (divergent) sum over all modes

Evac = Z%hwu (11)

v

As the fluctuating vacuum field and its formally infinite energy cannot induce real transi-
tions in a photo detector, a number of indirect consequences have been proposed to illumi-
nate their relevance. These all arise from the interaction of the vacuum field with matter.
Its coupling with an electron leads to the anomalous magnetic moment [38, 39|, while the
ground-state energy of one or two atoms interacting with the quantum vacuum can be used
to derive the famous Lamb shift [40, 41] or the interatomic Van der Waals (VAW) potential
[42, 43, 44], respectively. Spontaneous radiative decay of an excited atom [45] can be un-
derstood as decay which is stimulated by the fluctuating vacuum fields [46]. It has further
been speculated that the quantum vacuum might be relevant to cosmology with its energy
acting as a source for gravity [47].

Changes to the fluctuating vacuum fields brought about by macroscopic bodies and the
associated boundary conditions also lead to a host of observable effects. The Casimir force
is probably the prime example [48]: Casimir himself derived this effect by considering how
the above vacuum energy is affected by the introduction of two parallel perfectly conducting
plates. The modified vacuum energy depends on the separation between the plates, from
which he was able to derive the Casimir force by taking the gradient. Other signatures of
body-induced modifications of the quantum vacuum include the position-dependent Lamb
shift as well as the closely related single-atom Casimir—Polder (CP) potential [44]; the altered
spontaneous decay rate in an environment, commonly known as the Purcell effect [49, 50];
and the predicted environment-induced changes to the magnetic moment of the electron
[51].

More exotic, and to date largely unobserved, quantum vacuum effects have been predicted
for moving objects. Quantum friction is the postulated ultimate limit to friction: a contact-
less dissipative force between two perfectly smooth plates that move parallel to each other
[52]. A constantly accelerated object has been predicted by to perceive the quantum vac-
uum as a thermal electromagnetic field, a phenomenon known as the Unruh—Davies effect
[53, 54]. Periodic motion of the boundaries of a cavity leads to the creation of real photons
from the quantum vacuum according to the dynamical Casimir effect |55, 56]. The latter
two phenomena are intricately related to Hawking radiation [57] which involves photon-pair
creation from the vacuum in a curved or accelerated spacetime.

As a caveat, it should be noted that none of the mentioned indirect consequences are able
to confirm the existence of fluctuating vacuum fields and their modification in nontrivial
environments beyond any doubt. For instance, the Casimir force has alternatively been
derived by Lifshitz from interacting fluctuating polarisations inside the two plates rather
than fluctuating fields between them [58|, a perspective that is shared by macroscopic QED
[S5]. Similarly, it has been shown that both Lamb shift and spontaneous decay can be derived
from fluctuating atomic dipoles and their radiation reaction onto themselves via emitted and
reabsorbed electromagnetic fields [46]. A detailed analysis has revealed that the attribution
of the two effects to vacuum fluctuations versus radiation reaction can be chosen at will by
performing the calculations with different operator orderings [59]. Symmetric ordering has
been advocated as the most physical choice, which would lead to the conclusion that atomic
fluctuations are responsible for the single-atom ground-state Casimir-Polder potential at
short distance while field fluctuations dominate in the far-field regime [60]. In any case, all
of the described effects arise from interactions of light with matter and are due to quantum
ground-state fluctuations, be they uncertainties of the positions of particles as described by
quantum mechanics or of electromagnetic fields as predicted by QED.
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Very recently, experimentalists have succeeded in directly probing the vacuum fluctuations
of the electromagnetic field via their effect on the propagation of an ultrashort laser pulse
though a nonlinear crystal [61, 62]. Setups of this kind open the perspective of investigating
body-induced modifications to the quantum vacuum and their relevance to the above effects
by direct experimental observation.

1.3. Dispersion forces

The effective electromagnetic forces between neutral polarisable objects that were brought
forward as possible consequences of the quantum vacuum in the previous section are often
subsumed under the general notion of dispersion forces. As these are the focus of a large part
of this thesis, it is worth discussing them in more detail (see the monographs and reviews
[8, 9, 46, 63, 64, 65, 66, 67, 68, 69, P1, P2, P3, P6, P7| for further information). We will
distinguish Casimir forces between bodies [48, 58], CP forces between atoms and bodies [44],
and interatomic VAW forces [42, 43, 44].

Dispersion forces are the electromagnetic interactions that always remain, even when
removing all isolated charges and (external) electromagnetic fields. Being so persistent, they
play a role in many areas of science. In physics and chemistry, they are one of the main
binding mechanisms for atoms and molecules, forming the long-range attractive part of
the Lennard-Jones potential [70| and modifying the ideal gas law to the Van der Waals
equation of state [42|. They are the origin of surface tension [71]; drive the adsorption of
atoms to surfaces [72]; and influence the structure and properties of liquids [73| and solids
[74]. The stability of colloids is described by Derjaguin—Landau—Verwey—Overbeek theory
[75, 76] which relies on dispersion forces as a central ingredient. In astrophysics, dispersion
forces have been found to govern the condensation of dust particle in the early stages of
planetary formation |77] and to be responsible for the stability of asteroids [78|. The most
prominent example of their role in biology is the demonstration that dispersion forces are
responsible for the sticky feet of geckos [79]. However, they also play an important role on
a cellular level, governing the interaction of molecules within cells, their transport through
cell membranes, and cell adhesion [64].

In the context of modern applications and experiments, Casimir forces play an ever-
increasing dual beneficial versus detrimental role in nanomechanics: they are responsible
for the unwanted effect of stiction, the permanent adhesion of mobile components [80, 81];
but are also the driving principle of the atomic force microscope [82]. Similarly, CP forces
limit the miniaturisation and near-surface operation of atomic traps [83], but can also be
exploited to guide atoms in matter-wave scattering experiments [84].

Roughly fifty years after the first prediction of the Casimir force, a series of experiments
on the basis of torsion pendulums [85], cantilevers [86] and micromechanical oscillators [87]
finally succeeded in their high-precision measurement. Subsequent experiments addressed a
range of materials [88] and geometries [89, 90|, thermal [91, 92|, repulsive [93], and lateral
Casimir forces |94] and, most recently, the Casimir torque [95|. CP forces have been studied
much earlier by atomic-beam deflection [96] and spectroscopic measurements [97|, with
later findings being concerned with retardation [98], excited atoms [99] and thermal non-
equilibrium [100].

Following the original conception by Casimir and Polder, the theory of dispersion forces
has been extended to a range of materials and geometries. Theoretical developments of the
past two decades include studies of the proximity force approximation that is frequently
used in the analysis of the plane-sphere geometry common to most experimental setups
[101, 102, 103]; methods based on numerical solutions to Maxwell’s equations that can be
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used to study more complex geometries [104]; and considerations of new materials such as
metamaterials [105] or topological insulators [106]. In view of the complex interrelated de-
pendence of dispersion forces on geometric and material properties, some general principles
have been developed to guide, e.g. the search for repulsive dispersion forces to overcome the
stiction problem [80, 81|. Examples of such general rules include the opposites-attract theo-
rem according to which the Casimir force between two ground-state bodies in free space that
are mirror images of each other and whose response is purely electric is always attractive
[107]. This is supplemented by a generalised Earnshaw theorem stating that the dispersion
potential of an isotropic particle does not exhibit stable equilibrium points in the free space
between other electric bodies [108|. Loopholes to these no-go statements include repulsive
dispersion forces predicted for objects with a magnetic or chiral response (see also Chap. 3
of this thesis); for an anisotropic particle above a plate with a hole [109, P51]; or observed
inside liquid media (Chap. 4) and for excited objects (Chap. 5).

A number of fundamental questions have led to heated debates involving theorists and
experimentalists [P4]. The most prominent one is the discrepancy between measurements
and predictions of the Casimir force between metals at finite temperature [91, 92[; this is
often referred to as the Drude—plasma debate in honour of the prominent role that conduc-
tion electrons and their correct description seem to play [67, 110, 111]. A, at least to date,
purely theoretical issue is the Casimir energy of a single compact object [112, 113, 114]. A
range of theoretical questions regarding the correct description of Casimir forces in media;
the separation dependence of VAW forces between excited atoms; and the existence and
velocity-dependence of quantum friction will be addressed in detail in this thesis.






2. Macroscopic quantum
electrodynamics

Macroscopic quantum electrodynamics in dispersing and absorbing media forms the basis
for studying the impact of light ranging from the quantum vacuum to few and many photons
on microscopic and macroscopic matter. We have continuously developed and adapted this
theory to incorporate new developments in materials design and to answer new fundamental
questions. Major steps include the generalisation to media with a nonreciprocal response,
the establishment of duality as a powerful theoretical tool; and the determination of concrete
Green tensors and their symmetries.

2.1. Nonreciprocal media

Macroscopic QED in dispersing and absorbing media was originally conceived for isotropic
dielectric bodies [29] which can be described by a position- and frequency-dependent (rela-
tive) dielectric permittivity €(r,w). Motivated by successes in the design and fabrication of
metamaterials [115, 116] and electronic [117, 118] as well as photonic [119, 120] topological
insulators, we have extended the theory to arbitrary linear media with particular attention
to those exhibiting a nonreciprocal response [S1].

The coupling of the electromagnetic field to such media can be described via the nonlocal
conductivity tensor Q(r,r’,w) according to Ohm’s law in frequency space

7= Q+E+ 7, (2.1)

(*: spatial convolution), which gives the internal current density 3(')", w) as a linear response
to the electric field E(r,w) plus a noise current density j,(7,w). With the aid of Maxwell’s
equations, one finds that the electric field is in turn generated by the noise currents,

E =ipgwG=j,, (2.2)

where the Green tensor G (7, r’,w) plays the role of a propagator; it is the classical solution
to a Helmholtz equation. Following the approach developed in Ref. [121] for reciprocal
media, an explicit field quantisation can be achieved by invoking the fluctuation—dissipation
theorem |21, 22],

[jn(r, w),jg(r’,w')] - % ReQ(r,r',w)d(w — ') . (2.3)

Note that nonreciprocal media possess an asymmetric conductivity tensor which necessitates
the use of a generalised real part Re@ = ( Q+ QT) /2. By taking a formal square root of
the right hand side of the above equation, one can finally identify bosonic creation and
annihilation operators ff(r,w) and f(r,w) for the polariton-like fundamental excitations
of the field—matter system, whose Hamiltonian assumes the form of a collection of harmonic
oscillators:

f{F:/d%/Ooodwhwa.f. (2.4)
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In particular when studying magneto-electric, chiral media, or topological insulators, it is
advantageous to use an equivalent alternative formulation of macroscopic electrodynamics
where linear constitutive relations

. 1 1

D = e E+-§HA+P,+-€&M,, (2.5)
C C

o 1 ~ N ~

B = —CE+popH+ pop- M, (2.6)

for the electric and magnetic fields E(r, w) and B(r, w) and excitations D(r, w) and H (r,w)
are used in place of Ohm’s law. The linear response is governed by the tensor-valued dielectric
permittivity €(r,w), magnetic permeability pu(r,w) and two cross-susceptibilities &(r,w)
and ¢(7r,w), which often feature in their above local forms. The noise current density has
been decomposed into a noise polarisation P,(7,w) and magnetisation M, (r,w) according
to jn = —iwP, + VXxM,. As a consequence, one distinguishes fundamental electric from
magnetic field-matter excitations which are related to noise polarisation and magnetisation,
respectively. The emerging alternative formulation of macroscopic QED has the advantages
that electric and magnetic effects can be easily identified and that the present media are
described by response functions which are readily available from tabulated optical data.

Macroscopic QED in either of its above equivalent forms is valid for nonreciprocal media.
A reciprocal response is characterised by symmetric conductivity, permittivity and perme-
ability tensors and cross-susceptibilities which are related via &€ = —¢. On the contrary,
nonreciprocal media carry an intrinsic arrow of time which may be imprinted onto the sys-
tem, e.g. via an applied magnetic field, as is the case for most topological insulators; or by
motion, with both magnetic field and velocity being odd with respect to time reversal. This
has profound consequences in optics as Lorentz reciprocity [122] is violated and sources and
fields can no longer be interchanged, viz. G(r,7’,w) # G (', r,w). Despite this asymme-
try, we have been able to show that the Green tensor still satisfies the completeness relation
which is so vital for the construction of a workable field quantisation.

In quantum optics, nonreciprocal media can lead to an asymmetric coupling of emitters
which can be exploited to enforce unidirectional energy transfer in a chain of atoms [123|
or to induce a persistent heat current between three objects held at different temperatures
[124]. As we will see in Chap. 3, the directional properties of topological insulators affect
the attractive versus repulsive nature of dispersion forces and can even be used to induce
Casimir torques.

A number of applications of macroscopic QED to determine quantum vacuum effects
will be described in detail in the following chapters. In addition, we have shown that the
formalism provides a simple tool to calculate electrostatic Coulomb interactions in com-
plex geometries on the basis of the Green tensor [P28|; and have employed it to predict
environment-induced modifications to the electron magnetic moment [P18].

2.2. Duality

Macroscopic QED is primarily concerned with neutral bodies and media with no isolated
charges or currents being present. In this case, Maxwell’s equations assume their homoge-
neous form and are symmetric with respect to an exchange of electric and magnetic fields
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as can be made apparent by combining these into dual pairs,

~

(5)-0)

()% ) ()

(Zo = \/ o/ €0 : vacuum impedance). It then becomes obvious that a duality transformation

) s D). (* with D(0) = f‘;sfe 522 (2.9)
y y

applied to all dual pairs above leaves Maxwell’s equations invariant for arbitrary rotation
angles 6 [17, 125].

We have developed duality into a powerful analytical tool within the context of macro-
scopic QED by deriving the transformation behaviour of the medium properties and result-
ing field propagation [S2, P78|. The constitutive relations (2.5)—(2.6) being linear, one finds
that the medium reponse functions transform as

— D(0)@D(0)- (2.10)

My M
A e

% p

Due to the implied mixing of the purely electric or magnetic response functions with the
cross-susceptibilities, one finds a nontrivial interplay of duality and reciprocity. In particular,
duality transformations only conserve reciprocity for rotation angles § = nm/2 with integer
n, demonstrating that nonreciprocal media generically arise from duality transformations. A
prominent example is the perfect electromagnetic conductor [126] which is obtained from the
ordinary perfect conductor (¢ — 0o) by means of a duality rotation. One arrives at a gener-
alised ideal material with €, 4 — oo, { = ¢ = £,/ept — o0, and a finite ratio \/e/_,u =+ cot 6,
which continuously interpolates between the perfect electric conductor (# = 0) and an in-
finitely permeable medium (6 = 7/2).

The practical virtue of duality symmetry is the ability to generate new solutions to
Maxwell’s equations for bodies with a given magneto-electric response from known solu-
tions for bodies with the dual response according to the above relation (2.10). To this end,
we introduce electric and magnetic Green tensors according to

G.—YcY G.=-“exV, (2.11)
C C‘ C
Gue = VX G-, Gum = VXGx V. (2.12)

One can then obtain new solutions by subjecting these to a duality transformation; in the
special case where the arguments r # 7’ are situated in free-space regions, this is simply
achieved by applying the transformation (2.10) to (Gee, Gme, Gem, Gmm) T - A simple example
is the generation of solutions of magnetostatics such as the magnetic field of a magnetic
dipole from the corresponding ones of electrostatics. As we will see in Chap. 3, one can use
duality in the context of dispersion forces both as a consistency check and as an elegant
means to obtain new dispersion potentials.
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2.3. Green tensor

The versatiliy of macroscopic QED is rooted in the use of the Green tensor as a central ingre-
dient: it encodes all relevant information about both the electromagnetic properties of the
present bodies and media and their geometry, i.e. their shapes, sizes, and relative positions.
General properties of the Green tensor may hence be used to make general statements about
QED phenomena such as dispersion forces. One such property is the behaviour with respect
to a rescaling of all sizes, distances, and wavelengths by a global factor a: r — ar,w — w/a.
We have derived the respective scaling behaviour of the Green tensor [S3| from the defining
Helmholtz equation which for isotropic media reads

2
V x 1 VxG(r,r w)— © e(r,w)G(r,r',w)=68(r—1'). (2.13)
p(r,w) c?
Due to the dispersive nature of medium responses, we have to distinguish two regimes. In
the retarded far-field regime of distances and sizes which are much larger than the relevant
wavelengths of the electromagnetic field, dispersion can be neglected and the Helmholtz
equation implies a 1/a scaling of the Green tensor. In the opposite nonretarded regime, we
have to distinguish between the electrostatic limit for bodies with a purely electric response,
leading to a 1/a® scaling, and the magnetostatic limit for purely magnetic bodies, where a
1/a scaling is observed.

When applying the results of macroscopic QED to concrete geometries, the respective
explicit Green tensor is required. For bodies with planar [127, 128|, spherical [129] and
cylindrical symmetries [130] and simple magneto-electric media, analytical solutions are well
known and given in terms of vector wave functions [20]. We have generalised such solutions
for the paradigmatic case of a planar multilayer system to allow for more general media
and periodic surface structures. Such a system is a stack of homogeneous layers with plane
parallel interfaces and infinite lateral extension in the xy-plane. The intrinsic symmetry can
be exploited by performing a spatial Fourier transformation in this plane, leading to a Weyl
expansion [131]

G(r,r' \w) = /d2k|| K- GKl 2, 2 w) . (2.14)

Its components are given in terms of generalised Fresnel reflection and transmission coeffi-
cients [132] for plane waves which conserve the lateral wave vector kl due to the respective
translation symmetry. We have derived these coefficients for the perfect electromagnetic
conductor as introduced above [S5|; electronic topological insulators with isotropic cross-
susceptibilities ¢ and ¢ [P47]|; and photonic topological insulators with a nonsymmetric
permittivity € [S6]. In all these cases, we have found that reflection and transmission at
interfaces mixes the two linear polarisations of incident plane waves. In addition, photonic
topological insulators may exhibit a strong dependence of reflection and transmission on the
direction of the lateral wave vector. For surfaces with one-dimensional periodic corrugations
the continuous translational symmetry is broken, leading to Rayleigh reflection and trans-
mission coeflicients [133] which mix lateral wave vectors with k, — k!, = 27n/d for integer n
where d is the period of the corrugations [134, 135, S4].

The Fresnel and Rayleigh coefficients can assume very intricate forms in the above cases.
To alleviate the computational effort while at the same time verifying the consistency, we
have derived a set of symmetry relations [S4|. The most general symmetry relation follows
from the Schwarz reflection principle for the Green tensor G(r,r’, —w*) = G*(r,r’,w) and is
valid for arbitrary causal media. In particular, it ensures that the Green tensor is real-valued
at purely imaginary frequencies, G(7,7’,if). Another set of symmetries for the coefficients



2. Macroscopic quantum electrodynamics 15

follows from Lorentz reciprocity and hence only holds for reciprocal media. Further sym-
metries may follow from possible inversion symmetries of the media and interfaces in the
xy-plane and an isotropy in this plane, respectively.






3. Vacuum dispersion forces

Dispersion forces as originally conceived by Casimir and Polder [44, 48] are vacuum forces
in two respects: they arise when all interacting objects are in their ground state and the
electromagnetic field is in its vacuum state; and they refer to objects in free space. The
strength and direction of dispersion forces depend on both geometry, i.e. the shape, size,
orientation and distances between the objects, and spectral properties, i.e. their electromag-
netic response. We have studied both these dependences with a focus on new fundamental
effects that arise from nontrivial electromagnetic responses [69].

In the following, we shall describe how Casimir forces between two bodies, CP forces
between atoms and bodies, and VAW forces between atoms can be analysed within the
framework of macroscopic QED. After presenting specific results for variety of different
systems, we will formulate some general principles that govern the behaviour of dispersion
forces.

3.1. Casimir forces

As first proposed by Lifshitz [58], the Casimir force on an object is the vacuum expectation
value of all electromagnetic stresses acting on its surface 9V,

F=[ dA-(o). (3.1)

In free space, the electromagnetic stress tensor is given by
PO T | AP RPN
c=¢ERFE+ —B®B — -|¢E"+ —B~ |l (3.2)
o 2 Ho
(I: unit tensor). Its vacuum expectation value can be evaluated using either of the two
explicit field quantisations presented in Chap. 2 [S5, S6],

(o(r)) = —Z > /OOO dE[SG) (r, i) — LtrG YY) (r, m,i6)1] . (3.3)

A=e,m

Note that we have discarded self-interactions by retaining only the scattering part of the
Green tensor G which is associated with reflections of the electromagnetic field at the
surfaces of present bodies. We have thus generalised earlier findings for the Casimir force
[136] to arbitrary arrangements of bodies with a linear electromagnetic response. In par-
ticular, the symmetrisation SG = (G +Gh) / 2 is required in the presence of nonreciprocal
materials.

In the paradigmatic case of two infinite parallel surfaces at separation z, one may use the
multilayer Green tensor in Weyl decomposition to find a Casimir force per unit area [S5, S6|

I o _
f(z) = _F/ a2kl / d¢ ke " Tr |:,R,1'(1 — Ry Rie” ) I'Rg] e, (3.4)
™ Jo 0

(k =Imk,). This generalises Lifshitz’s theory [58] to the case of nonreciprocal materials.
The reflection matrices Ry (kl,i¢) and Ry (kl,i€) of the two surfaces mix polarisations for
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anisotropic or bi-isotropic media. For isotropic media, they reduce to ordinary Fresnel co-
efficients [132]|. Due to the high symmetry of the system, our result assumes the same form
as previously derived for the reciprocal case [137].

To demonstrate the scope of the theory, we have applied it to the highly idealised perfect
electromagnetic conductor; the recently emerged photonic topological insulator; and a poly-
mer film interacting with a solid substrate. Our investigation of the Casimir force for perfect
electromagnetic conductors [S5] was motivated by Boyer’s observation that the Casimir force
between a perfectly conducting plate and an infinitely permeable one is repulsive [138]. The
perfect electromagnetic conductor [126] as introduced in Chap. 2 continuously interpolates
between the two ideal materials. We consider two perfect electromagnetic conductor plates,
parametrised by duality angles 6, and 6, respectively. The reflection matrices can be de-
rived from that of a perfect electric conductor by means of a duality transformation. Being
independent of both lateral wave vector and frequency, they allow for an analytical solution
for the Casimir force [S5]:

he 4

T AP(r — A2 e, . (3.5)

F&) = —gma |30

As a signature of global duality invariance (cf. Sect. 3.4 below), the Casimir force only
depends on the difference Af = 6, — 05 between the duality angles. Our result interpolates
between Casimir’s attractive force for two perfectly conducting plates [48| and Boyer’s repul-
sive result [138] as extreme cases. Remarkably, the integral foﬂ/ ? d(Af) f vanishes, showing
that attractive and repulsive forces occupy equally large parameter spaces.

Photonic topological insulators exhibit a preferential direction which is imprinted by an
external magnetic field [119]. Their anisotropic permitivity € assumes a block-diagonal form
with the components perpendicular to the preferred axis forming an antisymmetric 2 x 2
matrix. We have studied the Casimir effect for two parallel plates made of such anisotropic
nonreciprocal dielectrics [S6]. Determining the reflection coefficients via the boundary con-
ditions for the electromagnetic field at interfaces of anisotropic media [137] and solving the
lateral wave vector and frequency integrals numerically, we have been able to show how
the strength of the Casimir force between photonic topological insulators can be tuned by
means of external magnetic fields. The field-induced enhancement is most pronounced in the
highly symmetric situation of magnetic fields pointing perpendicularly out of the surfaces
of the topological insulators. In the antisymmetric configuration of one field pointing out
of and one into the respective surface, we find a much weaker enhancement, which can be
interpreted as a reduction when compared to the average case.

When the external magnetic fields are oriented parallel to the surfaces, the guided plasmon
modes become strongly directional as evidenced by a dependence of the reflection coefficients
on the direction of the lateral wave vector kll. In this case, a Casimir torque can arise between
the two topological insulator plates which depends on the relative angle ¢ between the two
in-plane magnetic fields. We have derived this torque by first integrating the above Casimir
force (3.4) to obtain the Casimir energy E per unit area A according to f = —VE/A [S7].
The torque per unit area then follows by taking the derivative with respect to the angle,
T/A = —(0/0¢)E/Ae,. We find that the torque acts to align the two magnetic-field vectors
parallel to one another, hence displaying a 27 periodicity in its angle-dependence. This
feature distinguishes the Casimir torque between two photonic topological insulators from
all other Casimir torques, namely those between birefringent dielectrics [139, 140, electronic
topological insulators [141] or corrugated surfaces [142]. In the two latter cases, the surfaces
exhibit a distinguished axis (as opposed to a distinguished direction), so the torque has a
periodicity of 7. The Casimir torque between two birefringent dielectrics has been observed
experimentally only very recently [95], see also Ref. [P8].



3. Vacuum dispersion forces 19

As a last example, our investigation of the adhesion of polymer films on solid substrates
demonstrates that the Lifshitz’s macrosopic theory can be used in conjunction with inputs
from microscopic simulations. The study was motivated by the Van der Waals-based dry
adhesion of gecko feet to solid surfaces where a hierarchy of flexible hair establishes close
contact despite microscopic surface roughness [79]|. In a biomimetic approach akin to the
recently constructed gecko tape [143], we showed that the flexible chemically inert polymer
ethylene-chlorotrifluoroethylene can similarly overcome surface roughness to ensure a large
adhesion force [S8]. To this end, we combine the above Lifshitz’s result (3.4) with density
functional theory calculations of the dielectric permittivity of the polymer film. The same
microscopic simulations also help us determine the equilibrium distance of the polymer from
the solid substrate. We find adhesion forces ranging from 1.48kN/ mm? for silicon dioxide
to 2.22kN/ mm? for steel. These values for perfectly smooth substrates serve as an upper
limit to the forces achievable on rough surfaces. To account for the latter effect, we have
alternatively used the proximity force or Derjaguin’s approximation which is based on a
decomposition into small parallel surface segments [144] and Hamaker’s approach which
calculates the dispersion force between two objects as a pairwise sum over their volumes
[145]. For one-dimensional periodic sawtooth corrugations, we find that the reduction due to
surface roughness depends on the opening angle between neighbouring peaks: for narrower
angles, the contact between substrate and polymer film is reduced, leading to a smaller
adhesion force.

3.2. Casimir—Polder forces

According to Casimir and Polder’s original idea, the CP potential can be derived from
the position-dependent energy of the atom—field system [44]. Starting from the uncoupled
product of the atomic ground state |0o) and the quantum vacuum |Op), with the latter
being the ground state of the field-matter Hamiltonian (2.4), this energy can be obtained
using perturbation theory. We have generalised this approach to nonreciprocal media and
to a range of atom—field interactions.

The interaction of a purely electric atom with the quantum vacuum in the presence of non-
reciprocal media can be described by means of an electric-dipole interaction Hype = —dE'(r)
[146, P96|. The leading contribution to the CP potential is of second order in this coupling
and involves the emission and reabsorption of one virtual photon. Using the field quantisa-
tion of Chap. 2 to evaluate the interaction matrix elements, one finds a ground-state CP
potential [S9, S10]

Ur) = 712—’”7? /OOO d¢ Etr[a(i€)- GV (v, r,i¢)] (3.6)

for a ground-state atom with polarisability

1 dp®dor  dor®@dyo
w+wrp +10  w—wop +10

(3.7)

(do, = (04]d|n): electric dipole matrix elements, wyy = (Ej — Ey)/h: transition frequen-
cies) within an arbitrary environment of nonreciprocal bodies. As in the case of the Casimir
force, we have discarded self-interactions by retaining only the scattering part of the Green’s
tensor. In the special case of an isotropic atom at distance z from a perfectly conducting
plate, one recovers Casimir and Polder’s original result [44]. For a perfect nonreciprocal
plate (i.e. a perfect electromagnetic conductor with duality angle § = 7/4), the scattering
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Green’s tensor is completely antisymmetric and hence the potential of an isotropic atom
vanishes. We have shown that to obtain a nonvanishing interaction, one needs to consider
an atom with a nonsymmetric polarisability as induced, e.g. by circular dipole moments
[S9]. Similar results are obtained when generalising the perfect nonreciprocal plate to an
electronic topological insulator [S9| a Chern—Simons medium [S10].

More generally, the interaction of an atom with an electromagnetic and chiral response
with the electromagnetic field is described by a coupling [147, 148, P96]

A A A

Hi = —d-E(r) —m-B(r) — 1B(r)-Ba. B(r) (3.8)

that includes electric- and magnetic-dipole contributions as well as a diamagnetic interaction
(Bdia: diamagnetic magnetisability). After collecting all contributions to the energy shift
which involve the emission and reabsorption of one virtual photon, the total ground-state
CP potential can be given as [S9, S10, S11, S12, S13, P64]

Ur) = h > OOdftr[aMAQ(ié)-G(;Q)Al(r,r,if)} (3.9)

where we have introduced the electric/magnetic Green tensors (2.11)—(2.12). Here, o is
the electric polarisability defined above which gives rise to the ordinary CP potential. The
magnetic polarisability o, contains paramagnetic and diamagnetic contributions. The
former leads to a repulsive potential near a perfectly conducting plate [S11] in analogy with
Boyer’s repulsive Casimir force between an infinitely permeable and a perfectly conducting
plate [138]. The diamagnetic magnetisability being negative due to Lenz’s law [149], it is
associated with an opposing, attractive interaction [S12].

The electromagnetic cross-polarisabilities

. 1 dko®m0k dok ®mk0
em =1 T e - s 3.10
Ot (W) 5—1>%1+ he zk: (w +wpo +10  w—wio + 15) ( )
.1 My Qdoy, Mo Qdy
om = lim — I g 3.11
Ctem () 53& he Z <w +wro + 10 w — wio + 10 ( )

(mor = (0a]m|na): magnetic dipole matrix elements) only contribute in the case of re-
duced atomic or molecular symmetries. Chiral molecules with a broken parity symmetry
occur as two distinct right- and left-handed enantiomers which are mirror images of each
other. As these molecules are symmetric with respect to time-reversal, Lloyd’s theorem
states that their cross-polarisabilities are related according to a,. = —ak = [150]. We have
shown that the associated chiral CP potential is governed by the optical rotatory strength
Ry, = Im(dgx-myo) which takes opposite signs for right- versus left-handed molecules [151].
The chiral CP force is hence attractive or repulsive, depending on the handedness of the
molecule [S13, P64|. The effect can be enhanced by means of dynamical self-dressing [P43].
We have shown how discriminatory CP interactions of chiral molecules with chiral surfaces
may be exploited for enantiomer separation [P12].

Charge—parity violating effects in atoms, on the contrary, lead to charge-parity-odd cross-
polarisabilities such that a,,. = a [152]. We have shown that charge—parity violation thus
becomes manifest in the CP interaction of an atom with the surface of a medium whose
response is odd under time-reversal, such as a perfect electromagnetic conductor, a Chern—
Simons medium, or a topological insulator [S10].
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3.3. Van der Waals forces

Van der Waals forces between atoms can also be obtained from the ground-state energy
of coupled atom-field system following Casimir and Polder [44|. Based on this idea, we
have used macroscopic QED to develop a theory of VAW forces for a range of atom—field
interactions that agrees with the results of normal-mode QED in free space, but also accounts
for modifications induced by bodies and surfaces.

Point of departure is once more the factorised ground state of the system which now has
three components: the ground states [04) and |0p) of the two atoms and the quantum vac-
uum |0p). The interaction in electric-dipole approximation Hyy = —dy-E(ra) — dg-E(rg)
involves the coupling of each atom to the body-assisted field at the respective positions
[146, P96|. This interaction induces a shift to the ground-state energy that depends on the
positions of both atoms and can hence be identified as the VAW potential. The leading
contribution is of fourth order and involves the exchange of two virtual photons between
the atoms [8|. The calculation is hence considerably more complex than in the single-atom
case as it involves twelve distinct Feynman diagrams [153] instead of just one. Using the
quantisation scheme of Chap. 2, one finds [P90]

hy
2m
Unlike the single-atom case, the VAW potential contains the full Green tensor which acts as
a propagator for the virtual photons exchanged between the atoms. In free space, the above
expression reduces to the well-known result by Casimir and Polder [44].

The theory can be extended to atoms with a more general electromagnetic response by
using an interaction of the form (3.8) for each atom. The resulting VAW potential can be

expressed in terms of the electric/magnetic Green tensors (2.11)—(2.12) and the electromag-
netic polarisabilities of the two atoms [P87, S11, S12, S14|,

h
U(rA,rB):—27r63 > /dg
A1,

A2,A3,\4=e,m

U(ra,rs) = — OOd§§4tr[aA(i§)-G('PA,rB,if)-aB(if‘)-G('r'B,rA,if)} . (3.12)
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In free space, we again recover the normal-mode results for VAW potentials involving para-
[154, 155], diamagnetic [156], or chiral molecules [157] whose properties are encoded via the
respective polarisabilities. For anisotropic molecules, the VAW potential depends not only
on their distance, but also on their orientation as represented by polarisability tensors a. We
have developed a simplified description of this dependence in terms of effective molecular
eccentricities [P24]. Finite-size effects manifest themselves via higher-order multipoles in the
interaction Hamiltonian, as we have demonstrated [P21] by including electric quadrupole
and octupule transitions in the three-atom Axilrod-Teller potential [158].

The true benefit of the macroscopic-QED description lies in its ability to describe body-
induced modifications of the VAW potential. By using the respective Green tensors, we have
shown this effect for perfectly conducting, magneto-electric [P87, P90] or chiral plates [S14]
and spheres [S11, P85|. This can be understood in terms of image dipoles [17]: a given atom
A interacts with both a second atom B and its mirror image behind the surface, where
constructive or destructive interference can lead to enhancement or reduction of the VAW
potential with respect to the free-space value. This genuine many-body interaction depends
on the distances of both atoms from each other and the body as well as the orientation of
their line of sight with respect to the surface. For instance, the VAW potential of two electric
atoms is reduced by a factor of up to 2/3 in the vicinity of a perfectly conducting plate for
parallel alignment and enhanced by up to 8/3 for perpendicular alignment [P90)].
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3.4. General principles

Our extensive studies of dispersion forces for a range of geometries and material properties
allow us to formulate some emerging general principles regarding their scaling behaviour;
duality symmetry; attractive versus respulsive nature; and potential use as a probe for
material properties.

The macroscopic-QED expressions (3.3), (3.6) and (3.12) for the Casimir, CP and VAW
interactions immediately reveal that these do not depend on distance in the form of simple
power laws in general. They are all given as integrals of the Green tensor along the positive
imaginary frequency axis, so that all frequencies contribute and spectral and geometric
dependences become intrinsically intertwined. With the aid of the scaling transformation
for the Green tensor derived in Sect. 2.3, we have nevertheless been able to formulate simple
scaling laws in two asymptotic regimes [S3]: In the far-field or retarded regime all distances
and sizes of the interacting objects are much larger than all characteristic wavelengths of
their spectral response such as those associated with the relevant medium resonance, plasma
or atomic transition frequencies. In this zone, a combination of our above results with the
scaling behaviour of the Green tensor implies that a resizing of all distances and sizes by a
factor a leads to a scaling of the Casimir force per unit area as 1/a*, of the CP potential as
1/a* and of the VAW potential as 1/a”. In the opposite near-field or nonretarded regime,
one needs to distinguish whether only electric or only magnetic bodies are present: for
electric bodies, the Casimir force scales as 1/a?, the Casimir—Polder potential of an electric
atom scales as 1/a® and the respective VAW potential as 1/a®, while for purely magnetic
properties, these interactions are governed by 1/a3, 1/a and 1/a® power laws, respectively.
For configurations characterised by a single distance parameter such as the Casimir force
between two plates of infinite thickness, the CP force between an atom and a plate of infinite
thickness or the VAW force between two atoms in free space, these scaling laws immediately
imply simple power laws as given in Tab. 3.1. For more involved geometries, one can use
scaling laws to factorise the distance and size dependences into a power law with respect to
a chosen length times a scaling function that only depends on dimensionless parameters.

The above results for dispersion interactions can be combined with the transformation
laws of Sect. 2.2 for the Green tensor to prove that dispersion forces in free space are invariant
with respect to a global duality transformation [S2, P78|. One example of this is the Casimir
force between two perfect electromagnetic conductors [S5|: it depends only on the difference
of their duality rotation angles which remains unchanged under such a transformation. The
duality invariance can be used as a consistency check or to generate new results for dispersion
forces in a given arrangement of magneto-electric objects from known solutions by replacing
all electric response functions with their dual magnetic counterparts and vice versa. This is
illustrated in Tab. 3.1 where we list signs and power laws of a range of dispersion forces.
Note that duality transforms the permittivity to a paramagnetic permeability, which is why

Table 3.1.: Signs and power laws for dispersion forces

Interaction Retarded regime Nonretarded regime

objects elect.—elect. elect.—magnet. elect.—elect. elect.—magnet.
dual objects magnet.—-magnet. magnet.—elect. magnet.—magnet. magnet.—elect.
Casimir force — —1/2* +1/2* —1/23 +1/z

CP potential ~— —1/2% +1/2* —1/z3 +1/z

VAW potential —1/r" +1/r7 —1/rS +1/r
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Table 3.2.: Opposites repel—contrary properties associated with repulsive forces

Symmetry and examples Property Opposite property
duality

magneto-electrics electric magnetic
parity

chiral enantiomers right-handed left-handed

time reversal
charge-parity violating molecules electric and magnetic  electric and magnetic

dipoles parallel dipoles antiparallel
photonic topological insulators magnetic field magnetic field
out of surface into surface

electronic topological insulators  positive axion coupling negative axion coupling

all asymptotes given in the table refer to para- as opposed to diamagnetic objects.

The attractive and repulsive forces shown in the table together with a host of further
findings mentioned in this chapter can be subsumed under a general heuristic law regarding
the sign of dispersion forces between ground-state objects in free space: opposites repel.
In other words, whenever the possible material properties of the interacting objects occur
in pairs that are related via a discrete symmetry (e.g. electric versus magnetic, as related
via duality), then two objects that share the same nature will be subject to an attractive
dispersion interaction while objects of opposite nature will repel each other. Examples for
this rule are listed in Tab. 3.2.

As dispersion forces sensitively depend on the material properties of the interacting ob-
jects, one can conversely use these forces as a sensor for the latter. To this end, Curie’s
symmetry principle needs to be taken into account [159]|. Originally formulated for the
probing of crystal symmetries, it states that a symmetry of an object can only be probed
by means of a reference object serving as a detector which is also sensitive to the same sym-
metry. For instance, one finds that the chiral interaction of isotropic left- or right-handed
molecules with a nonchiral atom vanishes [157], so the VAW interaction with a nonchiral
atom can obviously not be used to discriminate enantiomers. One way to circumvent this
problem is the use of a second chiral molecule to act as a reference object where one finds
that the chiral-chiral VAW force is typically extremely small. We have proposed body-
induced interactions as an alternative [S14]: a surface with a chiral response can serve as
a reference object by inducing a discriminatory VAW force between a chiral molecule and
a nonchiral atom. Further examples for exploiting Curie’s symmetry principle are listed in
Tab. 3.3 where dispersion forces might serve as probes for material properties with respect
to time-reversal and charge-parity symmetries.

Table 3.3.: Use of dispersion interactions for probing for symmetries

Symmetry Sample Detector

parity chiral molecule chiral molecule, chiral plate

time reversal electronic topological insulator circularly polarised atom
photonic topological insulator  photonic topological insulator

charge—parity charge—parity violating atom electronic topological insulator







4. Dispersion forces in media

Dispersion forces in free space are typically only observed under highly idealised laboratory
conditions, whereas the forces relevant to physical chemistry or colloid science often act on
objects embedded in liquid media. In the following, we will discuss how the theory of the
previous chapter can be generalised to address the very specific problems that arise when
calculating CP and VAW forces on the one hand or Casimir forces on the other within such
settings.

4.1. Casimir—Polder and Van der Waals forces

Macroscopic QED crucially relies on the assumption that all present bodies and media
can be modelled via a continuum description that does not resolve their atomic structure.
This assumption is intrinsically incompatible with placing a microscopic atom within such a
medium. The problems that arise when combining point particles with a continuum theory
are most plastically illustrated by the behaviour of spontaneous decay within a medium.
The spontaneous decay rate of an excited atom from state |n) to a lower state |k) in an
abritrary environment can be calculated by means of macroscopic QED where it turns out
to be proportional to the imaginary part of the Green tensor [P6|,

2
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The result agrees with the well-known Einstein rate [45] in free space and becomes modified
within a non-absorbing medium. For an absorbing medium however, one finds an unphysical
divergent decay rate that stems from the near-field interaction of the atom with the medium
in its immediate neighbourhood. This interaction is unphysical as the medium atoms will
never occupy the exact same position as the guest atom due to Pauli repulsion. A solution
to this problem was given by Onsager’s real-cavity model [160]: he proposed to surround the
guest atom with a finite spherical free-space cavity that prevents immediate contact with
the medium.

Our expressions for CP and VAW forces can formally be applied to atoms embedded
in media without encountering any divergences where one finds that the interactions are
reduced due to screening. However, the result is not realistic as it neglects the local-field
effects associated with the real cavity model. Such a naive application of macroscopic QED
to atoms in media is also not very satisfying on a formal level as it leads to forces that are
not duality-invariant. To address these problems, we had shown earlier how the real-cavity
model can be implemented within the framework of macroscopic QED by determining the
respective Green tensor for the modified setting including spherical cavities around each
atom [P88]. Applying this local-field corrected Green tensor to CP and VAW forces, we find
that Eqgs. (3.6) and (3.12) apply in a medium of permittivity e provided that the free-space
electric polarisability « is replaced with the correct effective polarisability [S15]
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Determining CP and VAW interactions in water, we find enhancements due to local-field
effects within the theoretical upper limits of factors 9/4 or 81/16 for the two cases. We
have compared these results with alternative descriptions such as the virtual cavity model
or the hard-sphere and finite-size models presented in the next two sections. Our results for
dispersion forces in planar multilayer systems [P80] have been used to study the effect of salt
ions on the thickness of wetting films on melting ice [P44] and to investigate the potential
use of silica [P46] or cellulose [P52] for carbon dioxide capture.

We have generalised the real-cavity model to magnetic atoms where the magnetic polar-
isability ay,m must be replaced by its effective counterpart [S11]

a;mz( ’ )2amm (4.3)

2n+1

where p is the permeability of the surrounding medium. With these modifications, CP and
VAW forces in media obey duality symmetry.

4.2. Casimir forces

The Casimir force in a medium is fraught with ambiguities, because it has been debated
whether the Maxwell (3.3) or the Abraham stress tensor [161]
T P | P RN
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should be used for its derivation. Dzyaloshinkii, Lifshitz and Pitaesvkii’s use of the Abraham
stress tensor [162] had been criticised by Raabe and Welsch [136] who argued that only the
Maxwell stress tensor is compatible with a derivation on the basis of the Lorentz force. This
had led to a lively debate [163, 164, 165| where canonical quantisation [166] and arguments
from classical electrodynamics [167] had been invoked in favour of the Abraham stress tensor,
but Raabe and Welsch insisted on the Lorentz force as the more fundamental concept.

To avoid the potentially problematic definition of the stress tensor in a medium altogether,
we have developed a microscopic test of the two approaches, showing that only the Casimir
force derived by Dzyaloshinkii, Lifshitz and Pitaesvkii on the basis on the Abraham stress
tensor correctly accounts for three-particle VAW interactions between the interacting bodies
and the intervening medium [S16]. We have derived the Casimir forces for one or two small
spheres inside a medium and shown that they can be given by the CP and VAW expressions
(3.6) and (3.12) when replacing the atomic polarisability with the excess polarisability of a
dielectric sphere of radius R and permittivity ¢ [17],
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o = 4dmegeR? (4.5)
The excess polarisability becomes negative when the medium is more optically dense than
the sphere. This can lead to repulsive forces which are akin to the rising of an air bubble
in water in an apparent reversal of gravity. We have predicted that early stages of ice
condensation take place below the water surface due to such repulsive Casimir forces [P23];
and that gas hydrates in freezing water may be coated with a thin ice layer, depending on
their species [P9].

Introducing the magnetic polarisability of a sphere, we have shown that the Casimir
force in a medium as based on the Abraham stress tensor is duality-invariant. As a further
application of the Casimir force in a medium, we have pointed out that the interaction
between objects embedded in a plasma [P54] bears a striking resemblance to the Yukawa
potential [168].
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4.3. Synthesis: particles of arbitrary size

The CP and VAW forces determined by the effective polarisability (4.3) of point particles in-
side cavities seem to be conceptually very different from Casimir forces between macroscopic
spheres of polarisability (4.5). To bridge this apparent discrepancy, we have developed the
generalised model of a particle of radius R inside a cavity of radius R.. Its effective polar-
isablity reduces to those given in the previous two sections in the extremes R < R. (point
particle) and R = R, (macroscopic sphere). Using this model for one [S17] or two such finite-
size particles [S15], we find realistic CP and VAW potentials where the particle and cavity
radii are obtained from microscopic simulations.






5. Forces on excited systems

The notion of dispersion forces as vacuum forces can be relaxed further by considering
excited atoms and bodies, such that real photons contribute. To draw the line between
dispersion versus optical forces, we require that only fields emitted by the interacting objects
themselves are present. We will discuss the new phenomena that arise when allowing for
excitations, including spatially oscillating CP and VAW forces; lateral photon recoil forces
on circularly polarised atoms; and repulsive Casimir forces on amplifying bodies.

5.1. Excited and lateral Casimir—Polder forces

An atom in an excited state |n) can spontaneously undergo a downward transition to a state
|k) upon emission of a real photon. This is accompanied by a resonant CP potential which
selectively depends on the atomic downwards transition frequency wy [S9|,

Un(r) = —po Y _ wiy Re[dpr- GM (1,7, wi) - din] - (5.1)

k<n

In the special case of reciprocal media (such that the Green tensor is symmetric) and real
dipole moments (associated with linearly polarised transitions), the real part can be applied
to the Green tensor alone and one recovers previous results [169]. The resonant CP poten-
tial exhibits spatial oscillations [170] that are analogous to the Drexhage oscillations of the
spontaneous decay rate [50] and which have been observed experimentally [171, 172]. For
the simple case of an atom in front of a perfectly conducting plate, these can be understood
from the behaviour of the electomagnetic field of frequency w,,;, that is emitted by the atomic
dipole and reflected by the plate: depending on the atom—plate separation z, the reflected
plate is either in phase with the dipole, leading to attraction, or out of phase, leading to re-
pulsion. As the total optical path is 2z, the potential exhibits oscillations between attractive
and repulsive regions with a period of half the transition wavelength \,;. The phase of these
oscillations depends on the reflective properties of the plate; we have shown that it is shifted
when replacing the perfectly conducting plate with a magneto-electric metamaterial [P76|
or a perfectly reflecting nonreciprocal mirror [S9|. The narrow frequency dependence of the
resonant CP potential can be exploited in conjunction with a metamaterial superlens [115]
to achieve a strong attraction towards the focal plane [P83]. Excited-state CP potentials can
further be enhanced by dynamical self-dressing [P39|, nonperturbative effects P50, P53|,
and resonant coupling to surface polaritons [P56].

Spontaneous decay has recently been demonstrated to acquire a directionality under cer-
tain conditions [173, 174, 175|. For instance, an atom undergoing a circularly polarised
transition in the vicinity of an optical fibre was found to emit preferentially towards one of
the fibre ends [176]. Such directional emission is due to spin—orbit coupling of the electro-
magnetic field where its spin (as addressed via the circular dipole transition) controls the
orbital angular momentum (and hence its spatial structure and emission direction). The
effect generally requires a setup with three well-defined mutually perpendicular directions,
such as the dipole moment, the atom—fibre separation, and the fibre axis [177]. The question
naturally arises whether the recoil associated with directional photon emission could lead to
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lateral forces perpendicular to the atom—body separation and whether these are connected
to the above resonant CP force. Using earlier methods based on the Lorentz force [P96], we
have shown that a resonant lateral CP force [S18§]

Fo(r) =2p0 Y wipV Re[dni- GV (r, 7, wop) -y (5.2)

k<n

indeed arises in the presence of directional emission. This force is not a potential force, as
the gradient only acts on the first argument of the Green tensor; it instead has the nature
of a curl force [178]. The lateral force results from an imbalance of recoil due to photons
with momentum Akl emitted with a directional rate T, (r, kll) [S18],

F,(r) = —/d% hEIT, (r, k1) . (5.3)

We have applied the formalism to predict recoil forces for a circularly polarised atom in front
of a plate [S18] or a fibre |[P48|. The former is analogous to the recently proposed lateral
force on an excited rotating sphere [179].

5.2. Excited Van der Waals forces

While the spatial oscillations of the CP potential due to interference of emitted and re-
flected fields mentioned above have been firmly established both theoretically and experi-
mentally, the behaviour of the excited-state VAW potential in the far zone has been subject
to controversies until very recently. Some authors had predicted an oscillating potential
[180, 181] in close analogy with the CP interaction [182], while others had advocated a
strictly monotonous interaction [183, 184]. Alongside others [185, 186, 187|, we have ad-
dressed this very fundamental problem which had led Power, one of the founding fathers
of nonrelativistic QED, to predict his own previous work. Using our approach based on the
Lorentz force that is able to address the forces acting on the two atoms individually [P96],
we have found a surprising resolution to the puzzle [S19]: the force on an excited atom A
in the vicinity of a ground-state atom B oscillates as a function of interatomic separation,
while the corresponding force on atom B is monotonous. This answer is in agreement with
the observed oscillatory CP potential of an excited atom near a plate, as the corresponding
monotonous force on the plate is never detected due to its smallness.

At a first glance, these different separation dependences of the forces between two atoms
in free space seem to imply a violation of Newton’s third law. The apparent contradiction
is resolved when taking into account the recoil of the photon emitted by the excited atom.
The presence of atom B induces an asymmetry in the emission of atom A. In close analogy
to the mechanism described in the previous section, the oscillating force on the excited atom
is then a photon recoil force due to this asymmetric emission, so that the total momentum
of the atom-atom-photon system is conserved [188].

5.3. Casimir forces on amplifying media

Inversion-type amplifying media with linear gain that are continuously repumped to a quasi-
stationary state can be characterised by a permittivity with a positive imaginary part in
some frequency window, Im e(w) < 0, such that electromagnetic waves grow exponentially
upon propagation. The quantum statistics of the electromagnetic field in this state can be
accounted for within macrosocpic QED by exchanging the roles of creation and annihilation
operators in the respective frequency region {189, 190].



5. Forces on excited systems 31

We have exploited this to determine the Casimir force in the presence of amplifying me-
dia by evaluating the electromagnetic stress tensor (3.2) [S20]. One finds that an additional
resonant force component arises which is due to fields emitted by the amplifying bodies and
hence expressed as an integrals over their volume as well as their emission spectrum. The
volume integral is potentially problematic for the idealised infinitely thick plates paradig-
matically considered in Casimir physics [191|. We have hence considered an amplifying plate
of finite thickness interacting with a perfectly conducting plate [P68|, finding a force that
oscillates as a function of separation due to the interference of electromagnetic waves emit-
ted by the amplifying medium and reflected by the conducting plate. The amplitude of these
oscillations is reduced as the thickness of the amplifying plate increases due to imperfect
phase matching. Our results confirm the possibility of realising repulsive Casimir forces by
means of amplifying media that had been conjectured earlier [192].

To illuminate the physical origin of resonant Casimir forces on amplifying media, we have
established their connection to CP forces on excited atoms discussed in the previous Sect. 5.1
[S20]. To this end, we have considered an optically dilute amplifying medium consisting of
a gas of excited atoms with number density 7. In this case, the imaginary part of the
permittivity which governs resonant Casimir forces can be related to the polarisability (3.7)
of the atoms in an excited state |n) via a linearised Clausius-Mossotti law [17]

Im e(w) = 10 0n(@) _ - h2|dnk| 5w+ wng) — 8(w — )] - (5.4)
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One then finds that the Casimir force is simply the sum of the resonant CP forces (5.1)
acting on the excited atoms constituting the amplifying medium:

F=— /d?’r nVU,(r). (5.5)






6. Thermal fluctuations

Quantum vacuum forces in a strict sense would require the environment to be prepared
at zero kelvin. At finite temperatures, thermal fluctuations of the electromagnetic field
complement the zero-point fluctuations. We will discuss how these can lead to a heating of
molecules; show that they induce thermal dispersion forces; and discuss in which regimes
these play a role.

6.1. Surface-induced heating

An atom prepared in a single ground or excited state and placed in a finite-temperature
environment will emit and absorb thermal photons until its internal-state population reaches
equilibrium. This non-equilibrium dynamics and its modification due to bodies and surfaces
can be studied by means of macroscopic QED. Assuming the electromagnetic field to be in
a thermal state of uniform temperature T" and considering its interaction with an atom, we
have shown that the dynamics of its internal-state populations p,, is governed by the rate
equations [S21]

Pu(t) = = Tokpalt) + Y Thnpi(t) (6.1)

with transition rates

210 o
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for stimulated emission by and absorption of thermal photons as determined by the Bose—
Einstein distribution n(w) = 1/[e™/*=T) — 1] [193, 194]. In free space, one recovers the well-
known Einstein A- and B-coefficients [45]. These processes eventually lead to an equilibrium
where the atom assumes a thermal state which only depends on the relation between its
transition frequencies and the ambient temperature: for kgT < hw,, the final state of
the atom is essentially its ground state and thermal photons do not play any important
role. In the opposite case, the thermal equilibrium state exhibits appreciable excited-state
populations of the atom as maintained by the thermal environment.

The dynamics towards the equilibrium state depends crucially on the material environ-
ment as encoded via the Green tensor. We have investigated this Purcell modification of
thermal dynamics for polar molecules in the vicinity of metal or dielectric surfaces [S21].
Such molecules exhibit rovibrational excitations that can be excited even at room tem-
perature [195|, so that heating becomes a severe obstacle to their coherent manipulation.
We have shown that the surface can become the dominant source of heating for distances
comparable to the molecular transition wavelength.



34 6. Thermal fluctuations

6.2. Thermal dispersion forces

Dispersion forces at finite temperature have, for the equilibrium case, traditionally been
studied on the basis of Lifshitz theory [162], where one starts by evaluating the finite-
temperature expectation value of the stress tensor (3.2). We have pointed out that the
resulting Casimir force can only be used to derive the corresponding CP potential

U(r) = noksT Y Etr[ar(i&)- 6D (r,r,ig))] (6.3)
j=0

by taking the dilute-gas limit for one of the interacting bodies if the thermal-equilibribium
polarisability cer = ) pnov, is used rather than the ground-state polarisability [S22]. Note
that the impact of thermal photons has led to a replacement of the imaginary-frequency
integral by a Matsubara sum [196] whose frequencies &; = 2wkgT'j/h are the poles of the
Bose-Einstein distribution.

Even more importantly, Lifshitz theory is unable to describe the transient resonant CP
potentials [197, S22, P75]

Un(r) = —p110 Z[n(wnk) + 1]w?, Re [dnk-G(l)(r, 7, Wk) A |
k<n

+ Ho Z 1 (Win ) wiy, Re[dy- GY(r, 7, wi)- dy,] (6.4)

k>n

which are associated with stimulated emission and absorption, respectively. Weighted with
the time-dependent internal-state populations, they arise even for a ground-state atom
within a thermal environment. As the atom reaches equilibrium, the resonant contributions
mutually cancel and only the equilibrium interaction (6.3) persists. We have studied the full
dynamics of the CP force on ground-state polar molecules near a gold surface, showing how
an initial resonant potential with Drexhage-type spatial oscillations eventually gives way
to the strictly attractive equilibrium potential [P77]. Such oscillations can be considerably
enhanced when placing the molecules inside a planar [P74] or cylindrical cavity [P65].

The described non-equilibrium between a single molecule and its uniform thermal envi-
ronment is in contrast to another possible thermal non-equilibrium which arises if different
parts of the environment are held at different temperatures. The latter situation has been
predicted [198] and experimentally demonstrated [100] to give rise to strongly enhanced CP
forces. We have shown that the two different non-equilibrium scenarios can be subsumed
within a single framework where an atom in an arbitrary state interacts with an environment
of non-uniform temperature [P71].

6.3. Asymptotics of the Casimir—Polder potential

The dependences of the equilibrium CP potential (6.3) on distance, temperature, and tran-
sition frequencies are intrinsically intertwined. Focussing on the distance dependence for
a given temperature, one can nevertheless identify distinct asymptotic regimes [S23]. The
ambient temperature and the atomic spectrum define two characteristic wavelengths Ay and
Ank, Tespectively. For atoms, A, << Ar typically holds at room temperature and below. One
can then show that the CP potential near a plane surface scales as —C3/z3 in the electro-
static near-field regime 2z < A, falls off more strongly as —C/2* in the far-field regime
Ak € 2 < Ap, and resumes a —Cyp/z3 power law in the thermal regime z > Ay with a
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reduced coefficient C37 < C'5. We have shown that these three asymptotes can also be ob-
served for the CP interaction of fullerene molecules with surfaces, which is dominated by
electronic transitions [P60]. The situation is fundamentally different for systems dominated
by long-wavelength transitions such as polar molecules [S23] or Rydberg atoms [P40, P66|.
Here, the order of thermal and transition wavelengths can become reversed, \,x > Ar and
as a result, the near-field and thermal asymptotes cover a single —C3/z% = —C37/2% regime
that is valid at all separations, such that a far-field —Cy/z* behaviour never arises.

The large transition wavelengths of polar molecules and Rydberg atoms have a similarly
striking effect on the temperature-dependence of the CP interaction at a given position. For
such systems in the near-field regime z < \,x, one can show that the CP potential near
a metal plate becomes approximately independent of temperature due to strong mutual
cancellations of resonant and nonresonant contributions [S23|. We have generalised this
finding to arbitrary geometries [P63] and applied it to a metal sphere [P62].






7. Non-additive and collective
phenomena

Starting from vacuum dispersion forces in Chapter 3, we have increasingly widened this
notion to include the effects of media, excitations and thermal fluctuations. Most of these
led to new force components that could simply be added to the previous results. Qualitatively
new, non-additive effects arise when the interactions of atoms with the quantum vacuum
are combined with external laser fields or coherently enhanced via collective effects in an
ensemble.

7.1. Laser-induced Casimir—Polder force

Atoms in free space can be trapped in an offresonant external monochromatic laser field
Ep(r,t) = [Ey(r)e“! + Ef(r)e~“tt] /v/2 [199]. This can be easily shown by calculating
the mean energy of the atomic dipole moment interacting with this field according to
Hyy = —ci-EL(r, t) within second-order perturbation theory, leading to an optical potential
[S24]

U(r) = ~Sa() Bu(r) . (7.
For a negative detuning A = wy, — wyy, < 0, the atomic polarisability «(wry,) is positive and
hence the optical potential is attractive towards regions of high intensity. This has been
exploited in order to optically trap atoms in a strongly focussed Gaussian laser beam [200].

Optical forces also arise in evanescent fields that emerge on the surface of dielectrics as
a result of total internal reflection of a laser beam [201]. In this case, the exponentially
decaying repulsive optical force for positive detuning can combine with the attractive CP
force (3.6) of the surface to form a potential barrier whose position and height can be
controlled via the laser beam. Probing this barrier by means of quantum reflection, it was
possible to sensitively measure the CP potential [202, 203].

However, in all these setups, it is generally assumed that the optical and CP potentials,
which are due to the interaction of the atomic dipole moment with the laser and surface-
assisted vacuum fields, respectively, can be simply added. We have used perturbation theory
simultaneously for both these interactions to show that this is not always the case [S24]:
an additional laser-induced CP potential arises that is quadratic in both couplings. In the
near-field limit and for a two-level atom, this potential can be given as

Rery

ULCP("“) = UL(T)UCP(T) A

(7.2)

where 7, is the Fresnel reflection coefficient of the surface for p-polarised waves. The latter
can become very large due to surface-plasmon resonances, leading to a strong short-range
repulsive potential that dominates over the attractive CP potential near the surface. This
can lead to the formation of a stable trapping potential very close to the surface. We have
confirmed our results, which generalise [204] and correct earlier findings [205] in the far-
field case, by means of a nonperturbative calculation [P19] and an alternative derivation on
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the basis of normal-mode QED [P13]. The laser-induced CP potential is analogous to the
optical binding potential of nanoparticles [206, 207|. It could be observed in experiments
using optically levitated nanoparticles close to a surface. Our initial investigations on the
basis of a macroscopic-QED analysis of CP and Coulomb potentials [P28] have shown that
the latter dominate the setup at present due to residual charges [P16].

7.2. Collective atom—field interactions

As shown by Dicke, an ensemble of N identical two-level atoms ¢ with transition dipole
moment d and individual Pauli operators 6;7, 6; may collectively and coherently interact
with the electromagnetic field, provided that they are confined to a region that is much
smaller than its relevant wavelengths [208, 209|. In this case, the atom-field interaction may

be approximated via
Zd B(ry) = d-B(r,) (73

where the collective dipole d = YN (d6; + d*6;") = dJ~ + d*J* is governed by the al-
gebra of an angular momentum operator J with eigenvalue J = N /2. The corresponding
collective eigenstates of the ensemble, the Dicke states |J, M) (M = —J,...,J) have tran-
sition matrix elements

(J,M|d|J, M =1y =/(J+M)(J-—M+1)d. (7.4)

When the atoms initially coherently share N excitations, then the accelerated spontaneous
decay between these Dicke states as induced by the collective dipole operator leads to a
pronounced burst of the emitted radiation on short timescales, which is commonly known
as superradiance. The total energy is of course the same as that emitted by an incoherent
ensemble of atoms. It has been predicted that the Purcell effect can enhance superradiance
further by means of an environment [210].

In parallel with, but independent of the group of Meystre [211], we have shown that super-
radiance can also be used to collectively enhance atom-surface interactions [S25]. The effect
can be understood from our observation in Chap. 5 that the resonant CP potential (5.1) is
a recoil force due to spontaneous emission. By combining it with the above collective dipole
moment, we find a time-dependent total potential

Ur,t)= Y pu(t)(J + M)(J = M+ 1)Uy(r;) (7.5)

that closely follows the superradiance dynamics and whose peak height shows an N? scaling
with respect to the number of atoms. This increase with respect to the N scaling of the
total CP interaction of an incoherent ensemble could be exploited to sensitively detect weak
quantum vacuum forces, such as the quantum friction to be discussed in the next Chap. 8,
on short time scales, thus decreasing the required interaction length. We have determined
the conditions for observing a superradiant enhancement of CP forces, finding that the
ensemble must be confined to a region whose veticall extent is smaller than the atomic
transition wavelength in the far-field regime or smaller than the atom—surface separation in
the near-zone.

In further studies of collective effects, we have shown how the super- and subradiant decay
of two coherent emitters near a perfectly conducting plate depends on both the orientation of
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their dipole moments and their positions with respect to each other as well as to the surface
[P32]; and that strong coupling in a planar cavity can lead to enhanced VAW interactions
governed by collective vacuum Rabi frequencies [P11, P25].






8. Quantum friction

The quantum vacuum effects considered so far have all been obtained by averaging the
fluctuating field and charge distributions for a given centre-of-mass position of the interacting
objects in the spirit of a Born—Oppenheimer approximation. When allowing for uniform
motion, quantum friction is expected to arise as a dissipative dispersion force. We will
discuss the contributions to and behaviour of Casimir-Polder quantum friction on atoms
moving with respect to a body; and propose that this elusive phenomenon might be verified
indirectly in the form of velocity-dependent shifts and broadenings of atomic transitions.

8.1. Casimir—Polder forces on moving atoms

Quantum friction was originally proposed for a setting that is an immediate generalisation
of the Casimir geometry: two infinite parallel plates that move in the lateral direction with
constant velocity [52]. The effect being very small, it has not been observed to date, al-
lowing theoretical controversies regarding its existence and velocity dependence to flourish
[212, 213, 214].

The closely related CP friction is predicted to arise when an atom moves parallel to a
plane surface [215, 216, 217|. We have studied this effect by considering the Lorentz force
on a moving atom that arises from the coupled atom-field dynamics [S26]. In a nonrela-
tivistic calculation to leading order in the atomic centre-of-mass velocity v, we have found
that velocity-dependent forces arise via three distinct contributions. Firstly, the plate in-
duced shifts and broadenings of the atomic transitions which feature in the CP potential
acquire a velocity dependence, as will be discussed in the next section. Secondly, the atomic
polarisation couples to its centre-of-mass motion via the Réntgen current [8] which are a
part of the electric dipole interaction, with the electric field having been transformed to
the atom’s co-moving frame: Hmt = —dFE =—-d (E +vX B) The Rongten contribution
is only relevant in the far field and becomes negligible for the near-zone distances where
quantum friction is most likely to be detectable. Thirdly, the delay between the emission of
electromagnetic fields by the atomic dipole and their back-action onto the atom means that
these events takes place at slightly different positions in the case of motion. This delay is
responsible for the dominant contribution to CP friction and it has a simple interpretation
in terms of image dipoles: the atom interacts with its own image dipole behind the plate
which lags slightly behind due to the motion, leading to a dissipative backwards force.

Concentrating on the delay contribution, we have determined quantum friction for ground-
and excited-state atoms. For ground-state atoms, we predict a tiny force linear in v that
agrees with findings of time-dependent perturbation theory [218], but is at odds with the
cubic velocity dependence obtained on the basis of linear response theory [219]. It was later
shown that the perturbative result depends very sensitively on the precise trajectory of
the moving atom prior to the constant motion [P49| and that the Markov approximation
made in our calculation is not always appropriate in the quantum friction setting [220]. We
have performed a detailed comparison of the Markovian and perturbative approaches for
lateral and normal motion, finding agreement to second order in the atom—field coupling,
but discrepancies for higher orders [P34].



42 8. Quantum friction

For excited atoms interacting with the plasmon mode of a surface, we find resonant
quantum friction versus acceleration forces [S26] that are closely analogous to cavity cooling
[221]. For an atom whose transition energy is larger than the plasmon energy absorbed by
the surface, the excess energy is transformed into kinetic energy, accelerating the atom.
In the opposite case of the atomic transition energy being slightly too small, we predict a
decelerating quantum friction force.

8.2. Spectroscopic signatures

The motion-induced atomic line shifts and broadenings do not suffer from any ambigui-
ties caused by different model assumptions. We have used the Markov approximation to
determine these for arbitrary motion with respect to a plane surface [S27| and our results
are in agreement with those from time-dependent perturbation theory [P34|. These indirect
signatures of quantum friction have the advantage that they could potentially be measured
by means of very sensitive spectroscopic methods [222]. To pursue this prospect, we have
analysed the dependence of the level shifts and widths on velocity, atomic and material
parameters. Rather surprisingly, their magnitude is not governed by v/c as expected for a
relativistic effect, but by the much larger v/(z7y) where  is the width of the relevant medium
resonance. Furthermore, we find that the shifts and widths are quadratic in v/(z7) for the
original quantum friction setting involving parallel motion, but exhibit a linear scaling for
normal motion towards the surface that is much more favourable with regard to detection.
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In the previous chapter, we have studied the impact of motion on dispersion forces. Con-
versely, these forces influence the motion of atoms. Staying firmly in the quantum realm, we
will apply our results regarding Casimir-Polder and optical potentials by showing that they
can be combined to facilitate matter-wave interference at a one-dimensional periodic grat-
ing; and how Casimir—Polder interactions imprint a phase on atomic matter waves diffracted
at compact objects, influencing the Poisson-spot interference pattern that forms behind the
scatterer.

9.1. Reflective matter-wave grating

Matter-wave interference at transmissive material or optical gratings [223] is at the heart
of current endeavours to push the quantum-classical divide by demonstrating the wave
nature of matter for ever more massive and complex particles [224]. We have shown how
the ground-state CP potential of Chap. 3 and the optical potential encountered in Chap. 7
can be combined to form a reflective grating for matter-wave interference [S28|.

Our setup involves ultracold rubidium atoms incident on a sapphire surface with a periodic
array of gold nanowires of rectangular cross-section. The resulting CP potential (3.6) for
this geometry can be obtained by using the Green tensor for a plane surface with periodic
corrugations in Rayleigh decomposition as described in Sect. 2.3. The potential is attractive
and periodic in the lateral direction, being strongest above the gold wires. To achieve a
reflective grating, we use a laser beam with negative detuning that is totally internally
reflected inside the sapphire substrate and emerges as an evanescent field. The corresponding
optical potential (7.1) can be determined using Rayleigh transmission coefficients [134, S4].
One finds a repulsive potential that exponentially decays away from the surface and is
periodically modulated in the lateral direction, with weaker optical forces above the gold
wires due to shielding. As neither substrate nor wires exhibit any resonances near the laser
frequency, the laser-induced CP potential (7.2) can be neglected and one can simply add
CP and optical potentials. The result is a complex landscape of alternating attractive CP-
dominated potentials above the wires and repulsive regions above the space between them.

An incident matter wave will be classically reflected from regions where the repulsive
potential exceeds the initial kinetic energy. This gives rise to a reflective periodic grating
for matter-wave interference where atoms attracted to the wires do not contribute to the
signal. We have simulated the resulting interference pattern using Fraunhofer diffraction
theory [225]. The effective slit width of the matter-wave grating can be tuned by changing the
intensity of the repulsive evanescent, where an increase leads to broader reflective strips. The
simulations are in good agreement with the experimental observations, so the experiment
constitutes a measurement of a lateral CP force above a periodically structured surface.

For high laser intensities, the reflective strips become so large that they overlap and
cover the whole area. Our simple description would then imply that no grating-interference
pattern can form. The experiment shows that this is not the case. The persisting interference
pattern is due to phase imprinting, which has been intensely studied for CP potentials in the
context of transmissive gratings [223, 226, 227|. We consider the impact of phase imprinting
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on matter-wave diffraction in the next section for a different geometry.

9.2. Poisson spot

The Poisson spot is a bright spot due to constructive interference in the centre of the classical
shadow region behind a compact scatterer. Unobserved at the time, it was originally brought
forward by Poisson [228| as an argument against Fresnel’s wave theory of light [132]. In a turn
of events unforeseen by Poisson, the spot now bearing his name was later experimentally
demonstrated by Arago [229] and has since become paradigmatic evidence for the wave
nature of light and matter.

In the case of light, a compact object simply blocks part of the wave, thus generating
the interference pattern. For matter-wave scattering, an additional effect arises: even the
transmitted matter waves are affected via the CP potential (3.6) between the scattered
atoms and the body. For sufficiently fast atoms, one can use the Wentzel-Kramers—Brillouin
approximation [230, 231, 232| to determine the phase shift imprinted on the matter wave
along a trajectory at distance p from the optical axis [233],

Bo(p) =~ [ :U(p.2). (9.1)

We have calculated the CP potential of ground-state indium atoms in the presence of a
silicon dioxide sphere by means of the spherical Green tensor [P97] to analyse its impact
on the Poisson-spot signal [S29]. We find that the Poisson spot is mainly due to matter
waves propagating so close to the sphere surface that we can neglect both retardation and
curvature effects, with the latter result confirming the assumptions of previous simulations
[234]. One can then find a simple analytical expression for the above phase. Combining this
with Fresnel diffraction theory, we find that the CP-imprinted phase leads to a pronounced
increase of the Poisson-spot signal. This shows that the CP interaction needs to be taken
into account when using the Poisson spot as evidence for the wave nature of matter [235]
and that conversely, the Poisson spot can be used as a probe for the former.

We have performed similar investigations for matter-wave scattering of indium atoms
or deuterium molecules at silicon nitride and silicon dioxide disks [P33|, with the latter
observed in recent experiments [236]. Here, curvature effects are again negligible and edge
effects mutually cancel, so that the CP potential experienced by the traversing atoms can
be approximated with that of an infinite plane surface.

A different environment-induced phenomenon arises when a coherently split beam of elec-
trons passes close to a metal surface [237]. This induces image currents inside the metal, so
that the associated which-path information reduces the interference contrast. We have used
macroscopic QED to quantify this effect in terms of the conductivity of the metal, showing
that path decoherence requires material absorption [P61]. Our theory was later generalised
to account for environment-mediated interactions across the two interfering beams [238].



10. Resonance energy transfer

As seen in Chapter 5, the emission of a real photon can lead to spatially oscillating VAW
forces for excited atoms. In such scenarios, the photon can also mediate an irreversible energy
transfer, changing the internal states of both atoms. We discuss the impact of retardation
and environments on the efficiency of a particular resonance energy transfer phenomenon,
interatomic Coulombic decay; and describe the effect of a third, mediator atom on the
transfer rate.

10.1. Interatomic Coulombic decay

Interatomic Coulombic decay is a recently predicted [239] and experimentally verified [240]
fast dissipation channel whereby a highly excited donor ion relaxes and transmits its energy
to a neighbouring acceptor atom which becomes ionised. Being a source for slow electrons,
this process is believed to be a major contributor to radiation damage in biological tissue
[241]. As the name suggests, the process has traditionally been studied in free space on the
basis of nonretarded Coulomb interactions [242].

In the mentioned relevant biological scenarios as well as in current experiments with
nanodroplets [243], interatomic Coulombic decay takes place in a nontrivial dielectric en-
vironment consisting of liquid media and surfaces. Their impact on the efficiency of the
process can be described by means of macroscopic QED. To show this, one can determine
the rate for the process by means of Fermi’s golden rule where the initial state involves the
donor ion in an excited state |ma), an acceptor ion in state |ng) and the electromagnetic
fields in its vacuum state |Op); while the final state comprises the donor in a lower state |ka),
the ionised acceptor with one electron in a continuum state |pg) and the field again in the
vacuum. The matrix element for this process is of second order in the atom—field coupling
Hy, = —ciA-E(rA) - ciB-E(rB) and it involves the exchange of a photon between donor
and acceptor. Using the field quantisation of Chap. 2, we find that the rate for interatomic
Coulombic decay can be given as [S30]

Lo (ra,78) = =27 > T (i) tr [G (va, 7, k) - G (7B, T, W) - (10.1)

k<m

This shows that the process depends on the ability of the donour to emit a photon as
encoded via the single-atom rate I',,; (4.1); the progagation of the photon from donor to
acceptor as represented by the Green tensor; and the ability of the acceptor to absorb the
photon as contained via the absorption cross section o,,.

When applied in free space by using the respective Green tensor, our formalism demon-
strates that the rate exhibits the 1/r® distance scaling in the near zone as known from
electrostatic simulations [242]. For distances larger than the wavelength of the exchanged
photon, interatomic Coulombic decay becomes a true QED effect with a 1/r? scaling due
to the influence of the retarded electromagnetic far field. Interatomic Coulombic decay can
thus have a much larger range than previously thought. By using the real-cavity model
introduced in Sect. 4.1, we have further been able to show how the rate can be enhanced



46 10. Resonance energy transfer

or suppressed in a medium such as water or liquid helium due to a combination of screen-
ing and local-field effects. Finally, interatomic Coulombic decay near a surface exhibits a
modification that sensitively depends on the positioning of both donor and acceptor.

10.2. Three-body effects

Interatomic Coulombic decay is formally closely analogous to resonance energy transfer
[244, 245|, where the donor becomes ionised rather than excited. This process, which can
also be described within the framework of macroscopic QED [246], is known to be sensitive
to the presence of a third, mediator atom [247, 248, 249|. A similar three-body phenomenon
has very recently been predicted for interatomic Coulombic decay [250|. In this so-called
superexchange, a mediator placed in the vicinity of the donor—acceptor pair affects the rate.

We have used the above QED description to analyse the geometry dependence of three-
body interatomic Coulombic decay. To this end, one can use a Born expansion of the Green
tensor in the presence of a single mediator of polarisability ac [P92],

G(r, 7 wni) = GO(r, v, w) + powac(w)G(r, ro,w)- GO (re, 7, w) (10.2)

with G© denoting the free-space Green tensor. Combining this with the above general
formula (10.1), we find a three-body rate that agrees with the predictions of molecular
dynamics simulations in the near-field regime in the absence of wave-function overlap [250],
but extends them to the far-field regime while allowing to study the position dependence
analytically [P10].



11. Conclusions

With the research presented in this thesis, we have developed a modern and integrated anal-
ysis of the quantum vacuum and some of its consequences. The central tool is macroscopic
quantum electrodynamics, an effective nonrelativistic theory of the electromagnetic field in
its various states and its interactions with matter in the form of macroscopic objects (bodies,
surfaces, media, ...) and microscopic particles (electrons, ions, atoms, molecules; ...) that
is consistent with free-space quantum electrodynamics and combines inputs from classical
optics in the form of the Green tensor; from atomic and molecular physics in the guise of
polarisabilities; and from solid-state physics via material response functions. We have con-
tinuously developed this theory in line with current developments and requirements from
modern experiments and materials design, including an extension to nonreciprocal media as
constituted by topological insulators. We have introduced duality as an important symmetry
of the theory and uncovered a deep relation between this symmetry and nonreciprocity.

Starting from dispersion forces as pure quantum vaccum forces in free space, we have suc-
cessively extended this notion to include intervening media, excited objects, finite temper-
ature, collective phenomena, and centre-of-mass motion. Along the way, very fundamental
questions concerning the correct stress tensor to be used for calculating Casimir forces in
media or the oscillating nature of the Van der Waals force between excited atoms have been
answered and general principles such as an opposites-repel rule for Casimir repulsion and
the application of the Curie symmetry principle for using dispersion forces as a probe for
optical properties have been uncovered.

Surprising findings include the facts that spin—orbit coupling can lead to lateral disper-
sions force driven by spontaneous emission; that Casimir—Polder forces may become entirely
independent of temperature under certain conditions; and that optical and Casimir-Polder
forces can sometimes not be simply added. We have proposed that amplifying could be used
to realise repulsive Casimir forces as required to overcome stiction; pointed out that Casimir
and Van der Waals forces can be utilised for the separation of chiral enantiomers; and shown
how atom-—surface interations must be accounted for in order to unambiguously establish
the wave nature of matter. Our effective description of atom-light interactions in media has
applications in colloid physics and for spectroscopy in the liquid phase.

Our investigations show that a clever combination of ideas and techniques from various
fields can be used to predict new quantum effects such as a superradiant enhancement
of atom-surface interactions or to facilitate the detection of elusive and exotic phenomena
such as quantum friction. Major breakthroughs have been achieved by applying macroscopic
quantum electrodynamics beyond its comfort zone and within realms traditionally described
by other methods such as interatomic Coulombic decay. Potential for future developments
thus lies in the extension of the theory to more exotic quantum phenomena such as the
Unruh effect; in its application at the interfaces with other theories such as quantum optics,
physical chemistry, attosecond science, Bose-Einstein condensation or colloid physics; and
in the monitoring of new developments in atomic, molecular, and materials physics.

A particularly exciting prospect has recently opened with the advent of nonlinear crystal-
based scenarios to directly probe the quantum vacuum. This presents new challenges to
macroscopic quantum electrodynamics and inspires dreams of one day directly witnessing
the fluctuating zero-point electromagnetic field and its role in fuelling what we have been
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referring to as vacuum effects. This would turn a mainly mathematic-philosophical concept
into a tangible physical phenomenon and would enable us to address the question: how real
is a virtual photon?
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1. Introduction

The linear response of a macroscopic material to externally applied electromagnetic fields
can go beyond the scope of simple descriptions via electric permittivities and magnetic
permeabilities [1]. In particular, cross-susceptibilities naturally arise in chiral (meta-)
materials [2], topological insulators [3] or moving media [4]. In the latter case nonlocal
responses arise [5] with the additional complication that Onsager reciprocity [6] fails to hold.
Onsager reciprocity, the electrodynamic manifestation of time-reversal symmetry, would also
be violated in Tellegen media [7], including the recently proposed perfect electromagnetic
conductor that continuously interpolates between a perfect conductor and an infinitely
permeable material [8].

Chiral metamaterials with cross-susceptibilities have been constructed based on nanoscale
chiral objects, such as a helix [9]. This leads to a discriminatory response of the medium to
left- and right-circularly polarized light. This central feature of chiral media is important in
biological systems due to the prevalence of left-handed objects in the processes crucial to
life [10]. Furthermore, chiral meta-materials have been discussed as candidates for repulsive
Casimir forces [11]. It should be noted that repulsive forces for magnetoelectric media were
originally discussed for dielectric plates interacting with magnetic plates [12]. To implement
these effects with metamaterials, the anisotropic response of the medium needs to be taken into
account [13].

Topological insulators are a novel class of materials which behave as insulators in their bulk
phase but allow for conduction on the surface [14, 15]. Time reversal symmetry is an important
feature which ensures an extremely high stability of the surface currents. The latter make
topological insulators a promising candidate for quantum computing [16]. It has recently been
predicted that topological insulators [3] (or materials with a Chern—Simons interaction [17])
could be used to realize repulsive Casimir forces. A related phenomenon is the fractional
quantum hall effect where the Hall current takes fractional values due to electron—electron
interactions [18]. This medium can be nonlocal [19] and in contrast to topological insulators
it can violate time-reversal symmetry [20] and hence Onsager reciprocity.

The impact of electric versus magnetic material properties can be studied in a systematic
way by means of a duality transformation [21]. It has recently been shown that macroscopic
QED [22] in isotropic magnetoelectrics obeys a discrete duality symmetry [23]. This has
immediate consequences for dispersion forces in free space.

New Journal of Physics 14 (2012) 083034 (http://www.njp.org/)
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The successes in the realization of the above mentioned novel materials open the
perspective on a range of new quantum phenomena related to photon-induced matter
interactions, quantum dynamics and (possibly irreversible) quantum-light propagation. To make
such studies possible, we will construct a quantum theory of the electromagnetic field in the
most general linear absorbing media, including nonlocal, bianisotropic and Onsager reciprocity
violating materials. A recent theory based on canonical quantization is a valuable step in this
direction [24], which does not yet consider the most general nonlocal media (apart from the
above mentioned moving media).

In addition, our theory shall answer the question under which circumstances duality can be
realized as a continuous symmetry of the Maxwell equations in media; and it will shed light on
the generalizations necessary to discuss moving media and quantum friction.

2. Field quantization in nonlocal media

We begin by recalling a quantization procedure of the electromagnetic field in the presence of
an absorbing medium. For alternative methods for the quantization procedure, see [25-27] and
references therein. In a linearly responding medium, the effect of an external electromagnetic
field on the matter can be given by Ohm’s law in its most general form

i (T, t):f dr/d3r/Q(r, r',7)-E@,t—1)+jn(r, 1). (1

Here, Q(r, 1, 7) is the conductivity tensor and jn(r, #) is the random noise current required
to fulfil the fluctuation—dissipation theorem (17) as given below. Causality requires that
Q(r,r', ) =0 for ct < |r — 1’|, in particular for all T < 0 [28]. In frequency space, Ohm’s law
takes the simpler form

Jin(r, 0) = / dr' Q(r, v, ) - E(r, ») + jn(r, o) ()
with
Qr, r,w) :/ dre'“rQ(r, v, 7). 3)
0

As a result of the causality requirement the conductivity obeys the Schwarz reflection principle,

Q*(r,r,w)=Q(r,r, —0*) Vrr,o. 4

Quantization is achieved by specifying the commutator
" N / / ha) / /

lin(r, @), JN (', )] = — RelQ(r, ¥/, @) |§(@ — ), (5)
where we have introduced generalized real and imaginary parts of a tensor field according to

ReT(r,r) = 1[T@x, r)+T(r, n)], (6)

/ 1 / T
ImT(r,r') = E[T(r, r)—T'(r, r)]. @)
i
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They reduce to ordinary real and imaginary parts for orthogonal tensor fields that are reciprocal,
i.e. T'(r/,r) = T(r, r). The other nontrivial current commutators follow alternatively via the
rules [b, a]l = —[a, b] or [a", bT] = —[a, b]T;

of B AN ho * / /
[l o). ', o) = — 2 RelQ'(r, T, )16~ &)

_ f‘?‘" Re[Q(F. T, 0)]8 (0 — o). ®)

The fact that the right-hand side of this expression is a Hermitian tensor field guarantees the
consistency of the commutation relations.

Combining Ohm’s law with Maxwell’s equations [ i wpi,(r, w) =V -jin(r, w)]

. Z)in(r, a)) a . A
V- Er,w)=——, VxXE@ w) —i1i0B, w)=0, 9)
€o
~ ~ iw ~ A
V'B(r9 Cl)) :09 \% XB(r3 w)+_2E(r’ (,l)) :/'LO.]in(r’ C()), (10)
C

one finds that the electric field obeys a generalized inhomogeneous Helmholtz equation of the
form

2
[v XV X — w—z]E(r, ®) —iuoa)f Sra, ¥, o) - B, o) = i pooin(r, o). (11)
C

With the help of the Green function G(r, r’, ) of the Helmholtz equation, defined by

2
[v XV X — a)—z]G(r, r, o) —iuowfd3s Q, s, ) - Gs, ¥, w) = 8(r —1), (12)
C

where G(r,r’,w) — 0 for |r—r'| — oo, the formal solution to the integro-differential
equation (11) reads

E(r, 0) = i 1100l G(w) * jx(@)](1). (13)

Here, [G *jN] is an abbreviation denoting the spatial convolution
[G*jn](r) = / &’r' G(r, 1) - jn(r).

By virtue of its definition (12), the Green tensor inherits the Schwarz reflection principle
from the conductivity tensor (4),

G'(r,r',w) =G(r, ¥, —0*) Vr,r, o. (14)

However, as a major departure from previous treatments, we do not require the conductivity
to obey reciprocity, i.e. the relation Q'(r,r, w) = Q(r, ¥, w) does not necessarily hold. As a
consequence, the Green tensor will not obey the Onsager principle, i.e. the relation

G'(r,r,w) =G(r,r, ) (15)

will not hold in general. Recall that the Onsager principle, applied to electromagnetic field
propagation, states a reversibility of optical paths [6]. According to (13), the Green tensor
governs the relation between a source current j at r’ along a direction e, and the generated
electric field E at r along a direction e;. If (15) holds, then the Onsager principle states that the
roles of source and field can be reversed. A source current j at r along a direction e; would

New Journal of Physics 14 (2012) 083034 (http://www.njp.org/)
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then give rise to an electric field E at r’ along a direction e,. In a configuration involving
nonreciprocal media, this is not necessarily the case. Despite the extension to nonreciprocal
media, it is still possible to derive the useful integral relation (appendix)

1ow[G(w) * ReQ(w) * G (w)](r, ¥) = ImG(r, T, »). (16)
It generalizes the result from [29] to the case where Onsager reciprocity does not hold.

The theory thus far is analogous to classical electromagnetism in an absorbing medium
under the assumption of classical fluctuating current sources, jN > jn. Their strengths are
governed by the fluctuation—dissipation theorem in the classical (high-temperature) limit [30].

Introducing the ground state |{O}) of the medium-field system according to

jN(r, w)|{0}) =0, the currents satisfy the fluctuation—dissipation theorem as an immediate
consequence of (5),

A A h
({Ajn(r, w), AjL(r/, o)}) = ;Im[i oQ(r, r', w)]8(w — o). 17)

Combining (5) and (13), one finds that the fluctuations of the electric field are also consistent
with the fluctuation—dissipation theorem, as required:

({AE(r, 0), AE' (Y, 0)}) = zIm[Moa)zG(r, r, w)]8(w— o). (18)

In order to verify the canonical equal-time commutation relations, we introduce the
vector potential for the electromagnetic field in the Coulomb gauge, A(r, ) = E1(r, 0)/(iw)
(L: transverse part). Using (5) and (13), one finds

[E(r, w), AT(r, )] = ih’;"w Im[GL(r, ¥, 0)]8(w — o) (19)
and hence
[Er), Ax)] = % doo [GL(r, T, w)+6"(, 1, w)], (20)

where the Schwarz reflection principle (14) has been used. Use has been made of the left- and
right-sided transverse projections, which are defined, respectively, as

LT =8 %«T, T'=Txs". (1)

Closing the integration contour in the upper half of the complex w plane, where the Green’s
function is analytic, and using the asymptote (w?/c*)G(r, ¥, w) — —8(r —r’) for |w| — oo,
one finds the canonical commutation relation from free-space QED,

[E(r), Ax)] = ? star—r), (22)
0

as required. We now introduce the bosonic creation and annihilation operators of the matter-field
system, f' and f according to the prescription

N ha) A
In(w) =/ —~ R(w) xf(w), (23)

where R is a square root of the positive definite tensor field Re[Q],
R(w) * R () = Re[Q(w)]. (24)
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This solution is only unique up to a unitary matrix which does not affect the physical results [29].
Together with equation (5), this ensures bosonic commutation relations,

[f(r, 0), ' (¢, )] = §(r — r)8(w — ). (25)
The Hamiltonian of the medium-field system is then
Ay = / &r / dohof' (r, 0) - f(r, w). (26)
0

It leads to the free evolution of the dynamical variables as f’(r, w,t) = f(r, w)e 1" hence
Maxwell’s equations for the electromagnetic-field operators in the Heisenberg picture are valid
by construction.

3. Field quantization in terms of electric and magnetic response functions

The properties of media with spatially nonlocal or local responses can alternatively be described
by their permittivity, permeability and magnetoelectric susceptibilities. To begin, it is convenient
to cast the inhomogeneous Maxwell equations (10) into the forms (we drop the spatial and
frequency arguments from now on)

V-D=0, VxH+iwD=0 (27)
with

bbb H=- BN (28)
The polarization and magnetization ﬁf?lds respond linearly to the electric and magnetic fields,

P=cye —Exp ' % —D)xE+Z, '« pu ' «B+Py, (29)

M=Z;'n "' s¢*E+pu;'(1—pn~") «B+My. (30)

The medium is characterized by its permittivity, &(r, r’, w), its permeability, p(r,r’, )
and its magnetoelectric susceptibilities, &(r,r’, w) and ¢(r, 1, w). 13N(r, w) and MN(r, )
denote the noise polarization and noise magnetization, respectively, and Z, = /o/eo is
the vacuum impedance. In the case of nonlocal media the permittivity, permeability and
magnetoelectric susceptibilities are functions of two independent spatial variables, whereas in
a locally responding media they read e(r, r', w) = e(r, ®)8(r — v'), u(r, v, w) = u(r, ®)é(r —
r), E(r,v,w) =&(r,w)d(r—r') and ¢(r, 1, w) = ¢(r, w)§(r —r’). By combining (28)—(30),
the constitutive relations can be given in the more familiar form (see [31] for the nonconducting
case)

ﬁ:808*]:]+c_1§*I:I+13N+c_1§*1\7[N, 3D

ﬁ:c_lg*ﬁl+,u0u*ﬁ+,uou*l\7[N, 32)

where the notational distinction between locally and nonlocally responding media as given
above applies.

In order to distinguish reciprocal magnetoelectric susceptibilities from nonreciprocal ones,
as previously discussed in the nondispersive case [32], one commonly writes § = x" — ik and
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¢ = x +ik. The chirality tensor x = (¢ —&')/(2i) represents the reciprocal magnetoelectric
response; whereas the nonreciprocal magnetoelectric tensor x = (¢ +£&')/2 vanishes for a
reciprocal medium.

By combining Maxwell’s equations with the constitutive relations (31) and (32), we note
that the respective Green tensor is the solution to equation (12) with

Q= (ipw) 'Vx@'—1x $+ZO_1V X ;L_l*§+ZO_1’;‘*;L_1 x V

—igow(e —Exp ' xE —1) (33)
and

jn = —iwPn+V x My, (34)

where [T x ‘V]i i(r, ") = €0, Tix (r, ') denotes a derivative acting on the second argument of
a tensor function. The Green tensor for the electric field (13) solves

. . 2
[qu‘l*Vx—l—wa;L_l*§+l—w’;’*;L_l*V— w—z(e—‘;‘*ﬂ_]*g)]*G:& (35)
c c c

The commutation relations for Py and My can be deduced by substituting the real parts of (33)
and (34) into (5),

A AL , SOh —1 / /
[Putr. ). Bl o) | = = I fe(@) — (@) s 17 @) x ¢ @)} )8 =), (36)

[Brtr, 00, MY, 0) | = 5 fig@) ! @) = 18 @) 217 011} 008 = ), 37)

R “ h
[MN<r, ), PL(r, d)] = 3wz 7 @ x 2 @)1= 1 @ *E @1} 80— ), (38)
[MN(r, ), ML (r', wﬂ = Tl 08— o). (39)
T Lo

We now introduce the bosonic creation and annihilation operators with commutation relations

[ﬁ(r, o). (', a/)] = 5,80 —1)S(w—0), O X =e.m) (40)

(£)-)
My 4 f,

where the (6 x 6)-matrix R is a root of

according to

Eep =gt ap

goIm[e —Exp % L]

T 2iZ,
R*R' = plwe —p gl Inll[;g*l] . (42)
2iZ, o

The Hamiltonian of the body—field system is again quadratic and diagonal in the bosonic
variables,

=Y / & / do ho B (v, o) -1,(r, ). (43)
0

A=e,m
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Note that (28)—(30) imply a separation of the internal current density into electric and magnetic
parts, jm = —i@wP+V x M. This separation and the resulting explicit field quantization is not
unique in spatially dispersive (i.e. nonlocal) media, as the magnetization field can be absorbed
into the transverse part of the polarization field [28]. While a local magnetoelectric medium
can always be described in terms of a (nonlocal) conductivity without reference to magnetic
properties, the equivalent description in terms of a local permittivity, permeability and cross-
susceptibility is much more accessible. These parameters are often known experimentally and
they allow for a classification of electromagnetic responses.

4. Duality invariance

An electromagnetic system separated into distinct electric and magnetic causes and effects can
be subject to a duality transformation operation, that is, a global exchange of the electric and
magnetic properties. A system invariant under such an operation is said to possess duality
invariance as a symmetry [21]. This symmetry can be exploited in order to simplify the
computation of dispersion forces involving, say magnetizable media, from known dispersion
forces between polariable media [23].

By introducing dual-pair notation (ET, ZgH")", (Z,D", B")", we may write the Maxwell
equations (9) and (27) in the compact form

ZoD 0
vl . = , (44)
B 0
E (0 1\/[zD 0
V x ~ ] -1 A = . 45)
The constitutive relations (31) and (32) in condensed form read

()= )+
B c\& n ZoH “oMn

with
_(' &
A= (O ﬂ). “7)
Maxwell’s equations are invariant under duality transformations
® .
X X cosf sinf
(y) =D® (y) . D)= (— sinf cos 9)’ (48)

because D(6) is a symplectic matrix. From the constitutive relations, as shown in (46), we find
the transformed medium response functions

& ® &
' ¢
i = D(6) : (49)
n n
with
D@®) = D(®)Q D) (50)
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as well as
ZoPy \ © ZoP
( "N =A% Dp@Ax| O, (51)
oM oMy
where
I —§&.-p!
Al = ( : " ) (52)
0 n-

It is worth discussing a few special cases of bianisotropic media, their characteristic features
and behaviour under duality transformations:

Local media [e(r, 1, w) = e(r, w)d(r — '), similarly for the other response functions]:
Convolution operators reduce to ordinary matrix products, compatible with all other special
cases below.

Isotropic media (¢ = ¢l, p = ul, & = ¢ = 0): Onsager reciprocity (15) holds; Py and 1\7[;I
commute; generalized real and imaginary parts reduce to ordinary ones; discrete duality
symmetry.

Bi-isotropic media (¢ = ¢l, u = ul, § = &1, ¢ = ¢1): generalized real and imaginary parts
in (36) and (39) reduce to ordinary ones; continuous duality symmetry.

Anisotropic media (§ = ¢ = 0): Py and ML commute; discrete duality symmetry.

Reciprocal media (" = e, &' = —¢, 7 = p): (15) holds; generalized real and imaginary
parts reduce to ordinary ones; discrete duality symmetry.

Here, discrete duality symmetry means that the rotation angle is restricted to values 6 =
nm/2 with n € Z. Note that duality is only realized as a continuous symmetry when Onsager-
violation is allowed for. Notably, a reduction in reciprocity symmetry leads to an enhancement
of duality symmetry.

In order to derive transformation laws for the Green tensor, we combine (9), (11), (28), (30)
and (34) to write

E ZoPx
. =—cl3*g*< - ) (53)
(ZOH) oMy
. I 0 s
C\—wtxe owt) 54
g_ Gee Gem (55)
" \Gue Guntn)’

where we have introduced the shorthand notations G,, = (iw/c)G(iw/c), G,,, = (iw/c)G X
V, G,..=V xG(w/c)and G,,, =V x G X V. The transformed Green’s tensors follow by
applying duality transformations on both sides of this equation,

G®=B"1«DO)BxGx A ' xD71(0)A®, (56)

_ 1 0
B = (—ul*§ ﬂl). (57)
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In the special case of r and r’ being in free space, we have A, B=17, so that G® = D(O)G
D~'(#) and hence

G. \° G..

Gem _ Gem

Gem N D(G) Gem (58)
G,,,+0 G, +9

The Green tensors then transform like the medium response functions with (50).

5. Conclusion

Based on the general Ohm’s law, we have quantized the electromagnetic field in the presence of
nonlocal, nonreciprocal media which satisfies (i) the canonical commutation relations from free-
space QED; (ii) the linear fluctuation—dissipation theorem; and (iii) the macroscopic Maxwell
equations. A key feature of the scheme is the symmetrization of tensor fields via generalized
real and imaginary parts, which is necessary whenever Onsager reciprocity does not hold. Their
presence in the fluctuation—dissipation theorem is the key to avoiding restrictions on the allowed
medium response.

For nonlocal and local bianisotropic media we have shown that quantization can
alternatively be performed by the introduction of permittivity, permeability and magnetoelectric
susceptibilities. When the latter do not vanish, the noise polarization and magnetization
do not commute. We have explicitly determined the behaviour of the fields and response
functions under duality transformations. The full continuous transformation group applies
for bianisotropic and bi-isotropic media, but reduces to a discrete symmetry for isotropic,
anisotropic and/or reciprocal media.

The scheme lays the foundation for exact studies of quantum phenomena such as dispersion
forces, Forster energy transfer or environment-assisted molecular transition rates in the presence
of motion or novel media with chiral or nonreciprocal properties. Moving media are a
prime example for the occurrence of nonreciprocal material properties [28] which have to be
thoroughly accounted for in order to understand, e.g. quantum friction. CP violation in atoms or
molecules is manifest in their nonreciprocal cross-polarizability. The Curie principle, stating
that certain interactions between two partners (atoms, molecules, bodies, etc) require them
to possess similar properties, then allows for a detection of CP violation via atom-surface
interactions provided the surface exhibits a corresponding nonreciprocity.
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Appendix. Integral relation for the Green tensor

To derive the integral relation (16) for the Green tensor, we write the Helmholtz equation (12)
as

A

H-G=1, (A.1)
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where (r|G|r') = G(r, ¥, ) and (r|H|r') = [V X V x —0?/c2]8(r — ') — i uowQ(r, ¥, w). The
Green operator is the right-inverse and, within any group of invertible operators, also the left-
inverse of the Helmholtz operator,

G-H=1 (A2)
From this relation and its Hermitian conjugate we find that
G- (H-H).-G'=G"-G. (A.3)

In coordinate space this relation reads
[Low f d’s / d’s’ G(r, s, w) - ReQ(s, s, ») - G'(r,s', w) =Im G(r, 1, ) (A.4)

which in convolution notation takes the form of equation (16).

References

[1] Lindell L V, Sihvola A H, Tretyakov S A and Viitanen A J 1994 Electromagnetic Waves in Chiral and
Bi-Isotropic Media (Norwood, MA: Artech House)
Hehl F H and Obukhov Y N 2003 Foundations of Classical Electrodynamics (Boston, MA: Birkhduser)
Hehl F H and Obukhov Y N 2005 Phys. Lett. A 334 249
[2] Ishimaru A, Lee S W, Kuga Y and Jandhyala V 2003 IEEE Trans. Antennas Propag. 51 2550
Yannopapas V 2006 J. Phys.: Condens. Matter 18 6883
Thiel M, Rill M S, von Freymann G and Wegener M 2009 Adv. Mater. 21 4680
] Grushin A G and Cortijo A 2011 Phys. Rev. Lett. 106 020403
] McKenzie J F 1967 Proc. Phys. Soc. 91 532
] Horsley S A R 2012 Phys. Rev. A 86 023830
[6] Onsager L 1931 Phys. Rev. 37 405
] Tellegen B D H 1948 Philips Res. Rep. 3 81
] Lindell I V and Sihvola A H 2005 J. Electromagn. Waves Appl. 19 861
] Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, von Freymann G, Linden S and Wegener M 2009
Science 325 1513
[10] Hentschel M, Schiferling M, Weiss T, Liu N and Giessen H 2012 Nano Lett. 12 2542
1] Zhao R, Zhou J, Koschny T, Economou E N and Soukoulis C M 2009 Phys. Rev. Lett. 103 103602
[12] Henkel C and Joulain K 2005 Europhys. Lett. 72 929
Tomas M S 2005 Phys. Lett. A 342 381
[13] Rosa F S S, Dalvit D A R and Milonni P W 2008 Phys. Rev. Lett. 100 183602
[14] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[15] Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J and Hasan M Z 2008 Nature 452 970
[16] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[17] Marachevsky V N and Pis’mak Y M 2010 Phys. Rev. D 81 065005
[18]
[19]
[20]
[21]

—_ = = =
AN W W

18] Abanin D A, Skachko I, Du X, Andrei E Y and Levitov L S 2010 Phys. Rev. B 81 115410
Wang J K and Goldman V J 1992 Phys. Rev. B 45 13479

Tang E, Mei J and Wen X 2011 Phys. Rev. Lett. 106 236802

Silberstein L 1907 Ann. Phys. 327 579

Rainich G Y 1925 Trans. Am. Math. Soc. 27 106

Misner C W and Wheeler J A 1957 Ann. Phys. 2 525

[22] Scheel S and Buhmann S Y 2008 Acta Phys. Slovaca 58 675

[23] Buhmann S Y and Scheel S 2009 Phys. Rev. Lett. 102 140404

[24] Horsley S A R 2011 Phys. Rev. A 84 063822

[
\O

New Journal of Physics 14 (2012) 083034 (http://www.njp.org/)



66 2. Macroscopic quantum electrodynamics

12 IOP Institute of Physics (I)DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

[25] Philbin T G 2010 New J. Phys. 12 123008

[26] Suttorp L G and Wubs M 2004 Phys. Rev. A 70 013816

[27] Tip A, Knoll L, Scheel S and Welsch D-G 2001 Phys. Rev. A 63 043806

[28] Melrose D B 2008 Quantum Plasmadynamics (New York: Springer)

[29] Raabe C, Scheel S and Welsch D-G 2007 Phys. Rev. A 75 053813

[30] Stratonovich R L 1992 Nonlinear Nonequilibrium Thermodynamics I: Linear and Nonlinear
Fluctuation—Dissipation Theorems (Berlin: Springer)

[31] Kong J A 1972 Proc. IEEE 60 1036

[32] Shen J Q 2008 J. Opt. Soc. Am. B 25 1864

New Journal of Physics 14 (2012) 083034 (http://www.njp.org/)



[S2] Macroscopic quantum electrodynamics and duality 67

PRL 102, 140404 (2009)

PHYSICAL REVIEW LETTERS

week ending
10 APRIL 2009

Macroscopic Quantum Electrodynamics and Duality

Stefan Yoshi Buhmann and Stefan Scheel

Quantum Optics and Laser Science, Blackett Laboratory, Imperial College London,
Prince Consort Road, London SW7 2AZ, United Kingdom
(Received 13 June 2008; published 10 April 2009)

We discuss under what conditions the duality between electric and magnetic fields is a valid symmetry
of macroscopic quantum electrodynamics. It is shown that Maxwell’s equations in the absence of free
charges satisfy duality invariance on an operator level, whereas this is not true for Lorentz forces and
atom-field couplings in general. We prove that derived quantities such as Casimir forces, local-field
corrected decay rates, as well as van der Waals potentials are invariant with respect to a global exchange of
electric and magnetic quantities. This exact symmetry can be used to deduce the physics of new
configurations on the basis of already established ones.

DOI: 10.1103/PhysRevLett.102.140404

In the past, studies of phenomena of quantum electro-
dynamics (QED) have often been restricted to purely elec-
tric systems, because effects associated with magnetic
properties are considerably smaller for materials occurring
in nature. Two developments have recently triggered an
increased interest in such magnetic effects: The first was
the suggestion [1] and subsequent fabrication [2] of artifi-
cial metamaterials with controllable electric permittivity &
and magnetic permeability u, where left-handed materials
(LHMs) with negative real parts of € and w are of particu-
lar interest. As had been pointed out already in 1968 [3],
the basis vectors of an electromagnetic wave propagating
inside such a medium form a left-handed triad, implying
negative refraction. Motivated by the progress in metama-
terial fabrication, researchers have intensively studied their
potentials, leading to proposals of a perfect lens with
subwavelength resolution [4] as well as cloaking devices
[5] and predictions of an unusual behavior of the decay of
one or two atoms in the presence of LHMs [6,7].

Another, closely related motivation for considering
magnetic systems was due to the fact that dispersion forces
[8] have gained an increasing influence on micromechan-
ical devices where they often lead to undesired effects such
as stiction [9]. The question naturally arose whether LHMs
could be exploited to modify or even change the sign of
dispersion forces. Forces on excited systems might indeed
be influenced by LHMs [10]. Ground-state forces are not as
easily manipulated because they depend on the medium
response at all frequencies, whereas the Kramers-Kronig
relations imply that LHMs can only be realized in limited
frequency windows. However, the controllable magnetic
properties available in metamaterials can still have a large
impact on dispersion forces: The dispersion forces between
electric and magnetic atoms [11] or bodies [12] differ both
in sign and power laws from those between only electric
ones. Searching for repulsive dispersion forces, interac-
tions of electric or magnetic atoms [13], plates [14,15]
and atoms with plates [16,17] have been studied; more
complex problems such as atom-atom interactions in the

0031-9007/09/102(14)/140404(4)
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presence of a magnetoelectric bulk medium [18], plate [19]
or sphere [20] have also been addressed. Reductions or
even sign changes of the forces have been predicted for
such scenarios and have been attributed primarily to large
permeabilities rather than left-handed properties.

Metamaterials have thus considerably increased the pa-
rameter space at one’s disposal for manipulating phe-
nomena of QED. An efficient use of this new freedom
requires the formulation of general statements of what
might be achieved and what is impossible in principle.
Working in this direction, upper bounds for the strength
of attractive and repulsive Casimir forces have been for-
mulated [15] and it has been proven that the force between
two mirror-symmetric purely electric bodies is always
attractive [21]. In the present Letter, we establish another
such general principle on the basis of the duality of
Maxwell’s equations under an exchange of electric and
magnetic fields [22,23], also known as electric or magnetic
reciprocity within a generalized framework of classical
electrodynamics [24]. In particle physics, duality has
been discussed as a symmetry of the N = 4 supersym-
metric Yang-Mills theory [25]. We will prove its validity in
the context of macroscopic QED [6,8] and show that under
certain conditions, quantities such as decay rates and dis-
persion forces are invariant with respect to a global ex-
change of electric and magnetic properties. The parameter
space to be considered in the search for optimal geometries
and materials will thus be effectively halved.

We begin by verifying duality for macroscopic QED in
the absence of free charges and currents. We group the
fields into dual pairs (/8o E, \/ioH), (/ioD, \/5;B) and
(\/mp, Jeo ,uOM ), so that Maxwell’s equations read

(Ew)@ o
v () (o) - 6) @
with

© 2009 The American Physical Society
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Maxwell’s equations are invariant under the general SO(2)
duality transformation

() -20() po-(5 )

which may equivalently be expressed as a U(1) transfor-
mation when introducing complex Riemann-Silberstein
fields [22]. The invariance of Maxwell’s equations under
this rotation can be verified by multiplying Egs. (1)-(3) by
D(#) and using the fact that D(A) commutes with the
symplectic matrix in Eq. (2). Note that the grouping into
dual pairs is solely due to the mathematical structure of the
equations and is in contrast to the fact that E s B and ﬁ, H
are the pairs of physically corresponding quantities.

For it to be a valid symmetry of the electromagnetic
field, duality must also be consistent with the constitutive
relations. In the presence of linear, local, isotropic, dis-
persing and absorbing media, the constitutive relations in
frequency space can be given as

JioD =1(s 0) N +(1 0) JAPy
JeoB ) c\0 u/\ JuoH 0 w/\ JeomoMy
(5)
where & = &(r, ) and u = u(r, ) denote the relative
electric permittivity and magnetic permeability of the me-
dia and Py and M, are the noise polarization and magne-
tization which necessarily arise in the presence of
absorption. Invariance of the constitutive relations (5)
under the duality transformation requires that

(5 2)-ou(; Do

_ ( ecos’f + usin?0  (u — €)sind c050>

(n — €)sinfcosd  esin’f + ucos?6 )
(6)
This condition is trivially fulfilled if € = u (including
both free space and the perfect lens, e = u = —1 [4]),
where duality is a continuous symmetry. For media with a
nontrivial impedance, the condition (6) only holds for § =
nr/2 with n € Z. The presence of such media thus re-
duces the continuous symmetry to a discrete symmetry

with four distinct members, whose group structure is that
of Z4. For 6 = nw/2, Egs. (5) and (6) imply the trans-

formations
e \*  [cos?0 sin?0\[ &
={" 5 ) (7N
“ sin“d  cos“ 0 J\ u
\//-LOPN _ ( cosf “ sin0) J,LLOIA’N
JEoroMy —& 'sinf  cosh JeoroMy |
3)

Maxwell’s equations (1) and (2), together with the con-
stitutive relations (5) for the electromagnetic field in the

absence of free charges and currents, are thus invariant
under the discrete duality transformations 0 = nr/2, n €
Z given by Egs. (4), (7), and (8). This is not only true for
the equations of motion, but clearly must also hold on a
Hamiltonian level. To see this explicitly, recall that the
Hamiltonian of the medium-assisted field is given by Hp=
Scem J&Pr [Fdohofl(r, ) fi(r,®) [6] where the
fundamental bosonic fields f L are related to the noise
terms via

\/Moéiv _ L i/Ime 0 fg )
VEoroMy 7\ 0 Imp/lul )\ fn
Combining Egs. (7)—(9), one finds that the fundamental
fields transform as

fe *7 0 _.( /l |) 0 fe
(fAm) _(—i(lsclo/ss)sinﬁ lﬂcogﬁ Sm )(fm) (10)

for @ = n/2, so that FI’} = A 1tis sufficient to focus on
the single duality transformation 6 = 7/2 as summarized
in Table I, which is a generator of the whole group.

Let us next turn our attention to Lorentz forces and the
coupling of the medium-assisted field to charged particles:
We recall that the operator Lorentz force on a neutral body
occupying a volume V can be given as [8]

. A 1 A 4 7T

F= L ) dA -{SOE(r)E(r) + %B(r)B(r) - E[SOEZ(I')
1 ., . d . .

+ob (r):|I} &0 fvd3rE(r)><B(r) (11

(I: unit tensor), while that on a neutral atom with polar-
ization P, and magnetization M, reads [8,26]

F=v, f PP () - BGr) + ML) - B@) + Py(r)
X7, B)]+ % f &rP,(r) X B(r). (12)

The coupling of one or more atoms to the medium-assisted
electromagnetic field can in the multipolar coupling
scheme be implemented via [8,19]

TABLE 1. Effect of the duality transformation with 6 = 77/2.
Partners Transformation

E, H: E* = cuoH, H* = —E/(cuo)
D, B: D* = cgyB, B* = —D/(csy)
P, M: P =M/c, M* = —cP

P, M,: Pr=M,/c, M; = —cP,

d, m: d =/, m* = —cd

Py, My: Py = uMy/c, My = —cPy/e
Jor fui Jo=—ip/|uDfms In=—ilel/e)f.
e, M e = u, n*=c

a, B a* = B/c?, B* = c*a

140404-2
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N

Hoar =~ [ PP - E(r) + M) - BE)

+my'Py(r) X py - B(r)], (13)

when neglecting diamagnetic interactions. Using the trans-
formation behavior given in Table I, it is immediately clear
that neither the Lorentz forces on bodies or atoms nor the
atom-field interactions are duality invariant on an operator
level. Even for atoms and bodies at rest with time-
independent fields, duality invariance is prohibited by the
unavoidable noise polarization and magnetization in the
constitutive relations (5).

That said, we will now show that effective quantities
derived from the above operator Lorentz forces and atom-
field couplings do obey duality invariance when consider-

ing atoms and bodies at rest not embedded in a medium. In
|

U(rA’rB) =

+ BAc(zlf)

(a, B: atomic polarizability, magnetizability) and the
atomic decay rate [6,29]

2
n(rA) = I:dkn : ImGee(rA» Ty, wnk) : dnk

heg &,

+ 20 Gy (P, P @ m”"] (17)
c ¢

(In): initial atomic state, w,;: atomic transition frequen-
cies; d,,;, m,;: electric, magnetic dipole matrix elements).
Here, G\ is the scattering part of the classical Green
tensor, where a left index e, m indicates that G is multi-
plied by iw/c = —¢&/c or VX from the left and a right
index e, m denotes multiplication with iw Jc=—&/c or
XV from the right. The Casimir force and the single-atom
vdW force are the ground-state averages of the above
operator Lorentz forces, while the atomic potentials and
rates follow from the atom-field coupling.

To prove the duality invariance of the above quantities
(14)-(17), we note that the Casimir force depends solely on
the classical Green tensor

[v>< I vx
wu(r, o)

while vdW forces and decay rates also depend on «, S, d
and m. While the transformation behavior of the latter
quantities under duality follows immediately from that of
€, M, ﬁA and M 4 (see Table I), the transformed Green
tensor, which is the solution to Eq. (18) with & and u
exchanged, can be determined as follows: We first note that
Maxwell’s equations (1) and (2) together with the con-
stitutive relations (5) are uniquely solved by [6]

2
- %S(K w)]G(r, row)=6r—r),
(18)

o [T as(€1ap (606 1 i8)- ol i) + g0
7T80

(lf)Gme(rArrB) l§) Gem(rB) Tyl f) t— IBA(lg) IBB(lg)

particular, we will consider the Casimir force [27]
ho oo
F=—— f dé f dA -{Gé‘g(r, rié) + Gon(r,r, ié)
av
—Tr[G(l)(r rig) + G, lg)]l} (14)

the single- and two-atom van der Waals (vdW) potentials
[8,17,28]

Ulry) = WLSO ﬁ) ” dg[a(ig)TrGfﬁg(rA, r, i€)
,3(15)

TIGU(r s s zg)] (15)

and

BB( ¢

em(rA’rB’ l‘f) 'Gme(rB’rA) lf)

mm(rAJ I'p, lér) : Gmm(rBr Ty, lé:)} (16)

B w) = —&-! [ PG, 7, ©) Py, o)

— Clo [d3r/Géin(r’ r,w)- MN('J: w), (19)
B, w) = —cM0[d3r’Gmg(r, r,w) Py(r, )

~ o f ErG,(r, 7, ) My(F, ), (20)

bir,w) = -2 [ @Gt @) i, )
C

- [ Ers(r, )G, 1, ©) — 8(r — )]

: EN(rlr (U), (21)
ir.0) =~ [ 16 (1. 0) P, )
fd3 /I: Gy (1", w)+6(r—r’):|-MN(r’,w).
u(r, )

(22)

The invariance of Maxwell’s equations implies that this
solution remains valid after applying the duality transfor-
mation. Taking duality transforms of Egs. (19) and (20),
the unknown transformed Green tensor appears on the
right-hand side of these equations, whereas the transfor-
mations of all other quantities occurring in the equations
can be determined with the aid of Table I. After using
Egs. (19)—(22) to express the resulting fields on the left-
hand side in terms of EN and M  and equating coefficients,
one obtains the following transformation rules:
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GLrr, o) =p'(r, 0)G,,rr, o)u (r, o)

+ u(r, 0)8(r — 1), (23)
G 1, 0) = —u (1, 0)G,,(r 1, 0)elr, 0), (24)
G re(r 1, ©) = —&(r, 0)G,,(r,r, 0)u™'(r, ®), (25)

G, (rr, w)=¢(r, 0)G,(r,r, w)elr, o)
—e(r,w)é(r—r'). (26)

The duality invariance of dispersion forces and decay
rates follows immediately. Using Eqgs. (23) and (26) and
noting that the & function does not contribute to the scat-
tering part of the Green tensor, it is seen that the Casimir
force (14) on a body is unchanged when globally exchang-
ing & and u, provided that the body is located in free space.
The duality invariance of the vdW potentials (15) and (16)
also follows from the transformation rules (23)—(26). This
invariance with respect to a simultaneous exchange € < u
and o — B/c* again only holds if &(ry/p) = u(ra/p) = 1.
In contrast to the Casimir force, this does not mean that the
atom has to be located in vacuum, but merely implies that
for atoms embedded in media, local-field corrections must
be included via the real-cavity model in order to insure
invariance [30].

Duality invariance can be used to obtain the full func-
tional dependence of dispersion forces in given scenarios
on the atomic and medium parameters from knowledge of
the respective dual scenario. For instance, it has recently
been shown that in the retarded limit the vdW potential of
two polarizable atoms reads U(r,p5) = —1863hca age?/
[64m e}, /em(2e + 1)*r};] when including local-field
corrections [30]. Making the replacements a — 3/c?,
e u, one can immediately infer U(rsg) =
—1863hc g BaBpm®/[64m Jem(2m + 1)*r] ] for mag-
netizable atoms. The utility of this principle becomes even
more apparent for complex problems like the interaction of
two atoms in the presence of a magnetoelectric object
[19,20]. Finally, using the fact that two purely electric,
mirror-symmetric bodies always attract [21], we can im-
mediately conclude that so do two purely magnetic ones.

In addition, Eqgs. (23) and (26) imply the duality invari-
ance of the decay rate (17) since the 6 functions do not
contribute to the imaginary part of the Green tensor; again,
local-field corrections have to be included for atoms em-
bedded in media. This symmetry can be exploited, e.g., to
obtain magnetically driven spin-flip rates of atoms in spe-
cific environments from known electric-dipole driven de-
cay rates.

In conclusion, we have shown that dispersion forces on
atoms and bodies as well as decay rates of atoms are
duality invariant, provided that the bodies are located in
free space at rest and that local-field corrections are taken
into account when considering (stationary) atoms em-

bedded in a medium. The established symmetry operation
of globally exchanging electric and magnetic body and
atom properties is a powerful tool for obtaining new results
on the basis of already established ones. The invariance can
easily be extended to other effective quantities of macro-
scopic QED such as frequency shifts, heating rates or
energy transfer rates.

This work was supported by the Alexander von
Humboldt Foundation and the UK Engineering and
Physical Sciences Research Council. S.Y.B. is grateful
to F. W. Hehl and T. Késtner for discussions.
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We study the scaling behavior of dispersion potentials and forces under very general conditions. We
prove that a rescaling of an arbitrary geometric arrangement by a factor a changes the atom-atom and
atom-body potentials in the long-distance limit by factors 1/a’ and 1/a*, respectively, and the Casimir
force per unit area by 1/a*. In the short-distance regime, electric and magnetic bodies lead to different
scaling behavior. As applications, we present scaling functions for two atom—body potentials and display
the equipotential lines of a plate-assisted two-atom potential.
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Scaling laws play a prominent role in the formulation of
many physical problems and occur naturally when study-
ing critical phenomena in particle physics, condensed mat-
ter, and statistical mechanics. One example is percolation
theory [1], which has found applications in understanding
forest fires, oil-field extraction, and even measurement-
based quantum computing [2].

Dispersion forces are effective quantum electromagnetic
forces between neutral, but polarizable objects [3,4].
Casimir and Polder found that dispersion forces are gov-
erned by simple power laws in the long-distance limit [5]:
The potential of a ground state atom at a distance z, from a
perfectly conducting plate and that of two ground state
atoms separated by a distance 7,5 are proportional to 1/z%
and 1/r},, respectively, while the force per unit area
between two perfectly conducting plates at separation z
follows a 1/z* law. Dispersion forces have since been
studied for various bodies of simple shapes such as semi-
infinite half spaces [6], plates of finite thickness [7,8],
cylinders [9], and spheres [10,11]. In all of these cases,
simple scaling laws have been found for the long- and
short-distance limits.

For electrostatic or gravitational interactions, power
laws for the forces between extended objects follow im-
mediately by a volume integration of 1/r potentials.
Dispersion forces, on the contrary, are due to an infinite
hierarchy of microscopic N-point potentials [12], leading
to a nontrivial geometry dependence. Many-body effects
and the nontrivial dependence on geometry are at the heart
of current endeavors to gain a thorough theoretical [13] and
experimental understanding [14] of the Casimir effect and
to exploit it in nanotechnology applications [15]. The lack
of simple analytical solutions for dispersion forces in
complex scenarios necessitates general qualitative laws
for what is achievable. Along these lines, it has beenI

PACS numbers: 12.20.—m, 34.35.+a, 42.50.Ct, 42.50.Nn

proven that mirror-symmetric arrangements always lead
to attractive Casimir forces [16], and duality invariance has
been established as a tool to study magnetoelectric effects
[17]. Scaling laws of the kind observed for simple objects
would be a powerful addition to this toolbox of general
laws, provided that they can be formulated beyond the
special cases mentioned above.

‘With this in mind, we will demonstrate in this Letter that
for objects of arbitrary shapes, dispersion interactions in
the long- and short-distance limits obey scaling laws, and
we will identify the respective scaling powers. Our proof
relies on the known dependence of dispersion potentials on
the atomic polarizability a(w), body permittivity &(r, ),
and permeability u(r, @), where the latter determines the
electromagnetic Green tensor

wz
Vet w)]G(r, o) = 8(r — ).
1)

In terms of these quantities, the Casimir—Polder (CP) po-
tential of a single electric ground state atom and the
van der Waals (vdW) potential of two such atoms read

[v M(rl, )

h

U =22 [7 dggay o6 i) @)

(G =GOY + GW; bulk and scattering parts) and

hul o
Uiy = =22 " agetaig)anio
X TGy 1, i) Glrg,ra 0] ()

respectively, and the Casimir force on a body of volume V
is given by F = [,, dA - T(r) with

é;Z

00 2 — —
Tr) = _%.[0 df{[f—zG(l)(r, rié) + VGO (rr i) XV ] —%Tr[?G“)(r, ri&) +VXGWO(rri&) XV ]I} 4)
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(I: unit tensor) [4]. We will first define the general scaling
problem and then solve it separately in the long- and short-
distance cases.

The scaling problem.—Consider an arbitrary arrange-
ment of linearly responding bodies characterized by their
permittivity &(r, w) and permeability u(r, w), with one or
two atoms at positions r, and rp [Fig. 1(i)]. The scaled
arrangement (scaling factor a # 0) is described by the
permittivity and permeability

&r,ow)=celr/a,0), Al o)=plr/a ), O
with the atomic positions being scaled accordingly: 7, =
ary, rg = ary [Fig. 1(i)].

Interactions for long distances.—We speak of the long-
distance regime when all distances are much larger than the
wavelengths of the atomic and medium response functions.
In this case, we can approximate the latter by their static
values, a(w) = a, &(r, w) = &(r), u(r, o) = u(r), so the
Green tensor is determined by

[VX—VX—

2
= g s(r)]G(r, Fow) =8 —r). (6)

The Green tensor of the scaled arrangement obeys

1

[VX‘()

(l)2
— ()]G(rr )= 8(r —r). (7)

By renaming r — ar, w — w/a and using Eq. (5) and
8(ar) = 8(r)/a’, we find that

[v X TV X — ‘:22 s(r)]aé(ar, ar', w/a) = 8(r — '),
(®)

Comparison with Eq. (6) reveals the scaling
Gar, ar', w/a) = (1/a)G(r, r', w). 9)

Substitution into the CP potential (2) leads to

6] (ii)

FIG. 1. (i) Original and (ii) scaled configurations of bodies and
atoms (a = 1.4).

Uar,) =

hMOaA [00 dé‘:szrG(l)(arAy ary, lé‘:)
2
_ hpoay ["" d¢ &

2 0o a a*
= (1/a*)U(ry). (10
The CP force thus scales as F(ar,) = (1/a’)F(r,).
Analogously, Eq. (9) can be used to derive the following

scaling laws for the vdW potential (3) and the Casimir
force per unit area (4),

U(‘”‘A: arg) = (1/07)U(TA: rg), (11)

> TrG W (ary, ary, ié/a)

T(ar) = (1/a%)T(r), (12)

so the total Casimir force behaves as F = (1/a?)F.
Interactions for short distances.—In the short-distance
or nonretarded regime, all distances are much smaller than
the characteristic atomic and medium wavelengths. A sim-
ple example shows that here no universal scaling law exists
in the general case: The nonretarded CP potential of an
atom at distance 7, from a magnetoelectric half space reads
(8]
— g + g (13)
Z A ZA

U(ZA) =

which is incompatible with a relation of the form (10).

However, scaling laws can still be formulated by distin-
guishing between purely electric and purely magnetic en-
vironments. For purely electric bodies, the Green tensor (1)
can be given by the Dyson equation [4]

2

G(rr, o =G600"r )+ w_2
c

X [d3sx(s, ®)GO(r, s, 0) - G(s, r', w)

(14)
(x = & — 1) where
2 jiwp/c
@00y~ ST e (0]
dmrw?p? c c
_[3-3:2P_(@PY
[3 3i . ( . ) ]epep}
6(p) (15)

3 2
(p = r —r') is the free-space Green tensor. In the short-
distance limit wp/c < 1, the latter reduces to

c[ 3e ep]

GO r, w) =
4w’ p?

2
—530(p. (16)
3w
Starting from the analogous Dyson equation for the scaled
Green tensor, we make the substitutions r —> ar, r' — ar’,
and s+ as. After using Eq. (5) and the scaling
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GOar, ar', w) = (1/a®)GO(r, ¥, w) of Eq. (16), a com-
parison with (14) reveals the scaling

G(ar, ar', w) = (1/a®)G(r, ', ®) a7

for the full Green tensor. Substitution into Egs. (2)—(4)
immediately implies the scaling laws

Ulary) = (1/a*)U(ry), (18)
U(”"A: arg) = (1/a6)U("A: rg), (19)
T(ar) = (1/a®)T(r) (20)

where we have used the fact that G dominates over V X

—/
G X V in the short-distance limit.
For an arrangement of purely magnetic bodies, the non-
retarded Green tensor obeys the Dyson equation

GO, ) = [ Psi(s, [GO(r, s, 0) X V,]- [V,

X GO(s, 1, w) + V X GU(s, ', )]

(2D
({ = 1/ — 1) with nonretarded free-space Green tensors
=/ e, X1
VXG0, 0)= -G r, 0) XV = -2 —.
41p
(22)

—/
We read off (1/a2) scalings for VX G© and G© X V , so
following similar steps as above, the Dyson Eq. (21) to-
gether with Eq. (5) implies

G V(ar, ar', w) = (1/0)GO(r, 7', w). (23)
Using Eq. (2), the nonretarded CP potential scales as
Ulary) = (1/a)U(r,) (24)

for purely magnetic bodies. The vdW potential (3) contains
contributions from the bulk and scattering Green tensors
with different scalings. We separate it into a free-space part
U© that contains only G© and scales according to
Eq. (19) and a body-induced part U"). The latter is domi-
nated by the mixed terms GG for purely magnetic
bodies in the short-distance limit; it scales as

UW(ary, arg) = (1/a YUV (r4, rp). (25)

—/
The Casimir force (4) is dominated by V X G X V with
its (1/a?) scaling for purely magnetic bodies, so that

T(ar) = (1/a®)T). (26)

Applications.—In the simplest situations where disper-
sion forces depend on a single distance parameter, the
scaling laws directly determine the dependence on that
parameter. For instance, the long-distance scaling laws

1.0

0.8}

FIG. 2. Scale functions for the potential of an atom in front of a
Si plate (solid line) and near a perfectly conducting sphere
(dashed line).

(10)—(12) imply the power laws for dispersion interactions
involving atoms and perfectly conducting plates mentioned
above.

For a class of geometries involving a distance parameter
z and a single size parameter d, the scaling laws can be
employed to write potentials and forces in the form
(Cy/79f(d/z), all relevant information being contained
in the scaling function f(x). In Fig. 2, we display the
scaling functions for the potential of an atom at distance
z4 from a Si plate of thickness d (x = d/z,) in the long-
distance limit [8] and for the nonretarded potential of a
perfectly conducting sphere of radius R (x = R/z4) [11].

The plate potential reaches its half-space limit with
associated 1/z% asymptote already for x = d/z4 = 0.5,
showing that finite thickness effects can be neglected for
moderately thick plates even for dielectrics. For very thin
plates with x = d/z, < 0.1, the scale function of the plate
is linear for small x, implying a x/z4 o 1/z} potential. A
rather abrupt change between the two power laws occurs
between the two extremes.

The scale function of the sphere saturates much more
slowly to its large-x asymptote where a 1/ zf‘ half-space

(i) (i)

FIG. 3. Retarded vdW potential next to a perfectly conducting
plate. Atom B is held at different fixed positions (large dot). The
thick contour denotes U/ U© = 1, values are increasing towards
the exterior of this contour in steps of 0.02.
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TABLE I. Scaling laws for the CP potential, free-space, and
body-induced vdW potentials and the Casimir pressure.
Distance Long Short

Bodies Magnetoelectric Electric Magnetic
Ulry) 1/a* 1/a? 1/a
U(O)("A, rp) 1/a’ 1/a® 1/a®
U (ra, rp) 1/a’ 1/a® 1/a*
T(r) 1/a* 1/a? 1/a?

potential is observed. This indicates that proximity force
approximations [18] should be used with care. The scale
function of the sphere potential is cubic for small x, cor-
responding to a x3/z3 o 1/z asymptote.

As a more complex example, we consider the vdW
potential of two atoms A and B in front of a perfectly
conducting plate in the long-distance limit [19]. In
Fig. 3(i), we show the plate-induced enhancement of the
potential with respect to its free-space value for a given
distance of atom B from the plate. The results for a differ-
ent distance can then be obtained from a scaling trans-
formation cf. Fig. 3(ii). The plate is seen to enhance the
interatomic interaction in two lobe-shaped regions to the
left and right of atom B. This implies that for a thin slab of
an atomic gas at distance z from the plate, the atom—atom
correlation function will be enhanced at interatomic dis-
tances r = 2.5z corresponding to the centers of the lobes.
By virtue of scale invariance, this holds for all z that are
compatible with the long-distance limit.

Summary and perspective.—By considering the scaling
behavior for the respective Green tensors, we have derived
universal scaling laws for dispersion interactions in the
long- and short-distance limits as summarized in Table I.
Scaling laws indicate the absence of a characteristic length
scale of the system. For dispersion potentials, the typical
interatomic distances and the wavelengths of atomic and
body response functions give two such characteristic
length scales. The nonretarded scaling laws are hence
only valid for distances well between these two length
scales while the long-range one is restricted to distances
well above the latter.

The scaling laws may be used to deduce the functional
dependence of dispersion forces in the case where they
depend on only a single parameter. In more complex cases,
the knowledge of a potential for a body of given size can be
used to infer the potential for a similar body of different
size. In particular, equipotential lines are invariant under a

scale transformation. More complex applications include
bodies with surface roughness. The duality invariance of
dispersion forces [17] can be used to extend our results to
magnetic atoms.

This work was supported by the Alexander
von Humboldt Foundation, the UK Engineering and
Physical Sciences Research Council, the SCALA pro-
gramme of the European commission, and the CNRS.
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We study the interaction of an atom with a one-dimensional nano-grating within the
framework of macroscopic QED, with special emphasis on possible anisotropic contri-
butions. To this end, we first derive the scattering Green’s tensor of the grating by
means of a Rayleigh expansion and discuss its symmetry properties and asymptotes. We
then determine the Casimir—Polder potential of an atom with the grating. In particular,
we find that strong anisotropy can lead to a repulsive Casimir—Polder potential in the
normal direction.

Keywords: Casimir—Polder potential; material grating; Rayleigh scattering.
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1. Introduction

Dispersion forces such as the Casimir—Polder interaction between microscopic par-
ticles (atoms and molecules) with macroscopic bodies are prototypical forces that
result from quantum vacuum fluctuations of a physical quantity, in this case the
electromagnetic field.»? Their magnitude depends sensitively on the geometry of
the macroscopic body and the optical response of both particle and medium. In the
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simplest case of flat surfaces and isotropic optical response the Casimir—Polder force
is usually attractive and perpendicular to the surface. However, in more complex
geometries this force can be modified to a large extent. For example, surfaces with
gratings can induce force components that are parallel to the (spatially averaged)
interface. This has been shown for Casimir forces between corrugated surfaces©
as well as for Casimir-Polder forces.” !

Moreover, the sign of the dispersion force can be reversed. A repulsive force with
associated equilibrium, at least in the form of a saddle point, has been predicted

12715 and near wedges.'® Apart

for objects above a metal plate with a circular hole
from geometry, non-equilibrium situations such as resonant Casimir—Polder inter-
actions of excited atoms can provide transient repulsion.!”>'8 In this article, we will
show how a strong anisotropic optical response of an atom can lead to a repulsive
Casimir—Polder force normal to a one-dimensional grating structure.

From a theoretical point of view, to compute an electromagnetic dispersion
force means to determine the scattering properties of a surface, typically in terms

319 or, equivalently, a Green’s

of reflection matrices that enter a mode expansion
tensor construction.?Y Here we use the dyadic Green’s tensor expansion in terms of
Rayleigh reflection coefficients to investigate the interaction of an anisotropic atom

with a one-dimensional periodic surface.

2. Green’s Tensor of a Surface with One-Dimensional Periodic Profile

We require the scattering Green’s tensor G(l)(r, r’,w) for source point ' and field
point r being situated in the vacuum half space above a nano-grating (y,y’ > 0)
(see Fig. 1). The grating displays a periodic surface profile f(z) € [—h, 0] in the z-
direction with period d, f(x + d) = f(x) and height h while being translationally in-
variant in the z-direction. To construct the Green’s tensor, we employ a plane-wave

Ly

N’%
N

-h

Fig. 1. An atom (black ellipse) at position (0, y, z) above a one-dimensional rectangular grating.
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basis which is adapted to the symmetry of the system. Wave vectors for upward
(+) and downward (-) moving waves are parametrized as k+ = (kJ", £k k.).
Their xz-components are decomposed according to k' = k, + mgq into a continuous
part k, € [—q/2,q/2] that lies within the first Brillouin zone and a discrete part
comprised of integer multiples m € Z of the reciprocal lattice vector ¢ = 27/d. The
z-component takes arbitrary continuous values k., € R while the y-component then
follows from the dispersion relation:

2
m m ET w . m . m
kyt =k (ke ke w) = 51_1>1r(1)1+ = (14+10) — (ki*)? — k2 with Tmk;" > 0. (1)
For each such wave vector ki = k,,+(k,, k.,w), we choose two perpendicular po-

larisation vectors eZ _ and efl | such that only the respective electric and magnetic

fields exhibit non-vanishing y-components, respectively:

—kk,
B c
€,t(ky b w) = E™Ek , 2
mi( ) w\/m ;F g z , ( )
w?/c® — k2
1 TRy
H
etk kryw) = ————— | kI ) 3
0

These vectors are obviously normalized, eZ | -ef | = el .efl =1 and orthogonal

to each other, eZ _-efl . =0, as well as to the unit wave vector eg+ = k4 /|k+|,
eﬁi-eki = eTHni-eki = 0. The three orthonormal vectors form a right-handed
triad, eﬁlbi X eﬁi = €ep+.

With these preparations at hand, the required scattering Green’s tensor can be

given as
. q 2 oo o0
6wy = [ dk
(T,’T’ 7w) - 87T2 T z
—a/2 m,n=—o0 " o,0'=E,H
ei[k;nm—kzm’—i-ki;”y—i-kgy’—i-kiz(z—z')} .,
ag go ag
X P e), Ry7er . (4)
Yy

The Rayleigh reflection coefficients R?% = R?% (k. k.,w) conserve k, and k. of
the incident wave, but they mix polarizations o,c’ as well as diffraction orders
m,n.222 In general, they have to be calculated numerically by integrating the
Maxwell equations within the grating (—h < y < 0) and imposing conditions of
continuity at its upper and lower boundaries.? 3 For a rectangular grating (Fig. 1),
the formalism for computing the Rayleigh coefficients is presented in Appendix
A. Before we proceed, let us derive some symmetry properties of the reflection

coefficients as well as consider the asymptotes of small and large grating periods.
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2.1. Symmetry properties

Schwarz reflection principle. Like every causal response function, the scat-
tering Green’s tensor obeys the Schwarz reflection principle G(l)(r,r’ , —w™)
= G(l)*(r,r',w).l Applying this to Eq. (4) leads to

RO%  (—kg, k., —w*) = RO *(ky, ks, w). (5)

—m-—-n

Onsager reciprocity. Provided that the grating consists of a medium which obeys
time-reversal symmetry,?® the scattering Green’s tensor fulfils Onsager reciprocity
G(l)(r’, r,w)= G(l)T(r, r’,w). This implies

Rz%—m(_kw’_k%w) - iR%g(kxykz>w)
ke B k7

Yy

foroc=o0',0# o' (6)

Grating symmetries. Finally, we consider symmetries imposed by the geometry
of the grating. The invariance of the grating with respect to an inversion of the z
coordinate implies that the diagonal /off-diagonal Rayleigh coefficients are even/odd
functions of k., respectively:

R;Jﬂgll(kxv_kz,w> :iRzlo;;(kx,kz,W) fOI‘O’ZO’l,U;éo'/_ (7)
For a symmetric grating with f(—x) = f(z), we further have
Ri%_n(—kx, kZ7w) - iRgnav; (kmy kzaw) for o = 0/70' 7é o' (8)

by virtue of the z-inversion symmetry.

Further symmetries can be obtained by combining the above. For instance,
Eqs. (5) and (6) imply RSZ* (ks k,i€) /K" = £RZ% (ky, kz,i) /KD for o = o,
o # o' at purely imaginary frequencies w = i¢.

2.2. Asymptotes

The exponential factors e*v'¥ and el*v " become either exponentially damped or
rapidly oscillating whenever |k;*|y > 1 or |kj|y’ > 1, respectively. In the limit where
the grating period is small with respect to the distances of source and field points
from the grating, d < y,y’, this implies that the Rayleigh sums in Eq. (4) are

effectively limited to small values. To leading order m = n = 0, we have

. q/2 ) , 00 ikg(y—l—y’)—l—ikz(z—z’)
GY(r, 1 w) = : / dkxelk“’(x_x)/ dk, <

2 0
87 J_q/2 —o0 ky
/ /
g loxea g
X E eo Roo en-
o,0'=FE,H
:1.0
i q/2 oo e21kyy i o o
~ Sp2 dks dk. 1:0 ed 3o ej—  (9)
—q/2 - Y o,0/=E,H

in the coincidence limit » = r’. This asymptote of the scattering Green’s tensor
is thus translationally invariant along the z-direction and it is described by the
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effective properties of the grating averaged over one period. The leading correction
to this xz-independent Green’s tensor is a harmonic variation in gx which is due to
terms m = 0, n = +£1 and n = 0, m = £1. In particular for a symmetric grating,
this correction is proportional to cos(gx) in the coincidence limit.

In the opposite extreme of the grating period being very large with respect
to the distances of source and field points from the grating, d > vy, v/, very
large Rayleigh reflection orders m, n > 1 contribute. We thus have k" ~ mg,
k' (keykzyw) =~ k'(0,k;,w), so that the polarization unit vectors and reflec-
tion coefficients can be approximated by eZ (ks k.,w) ~ €2,.(0,k,,w) and
RO (ky, k=, w) ~ R2% (0, k., w). Carrying out the remaining k,-integral, the scat-
tering Green’s tensor assumes the asymptotic form

(1) / ~ iSiIl[ﬂ'(l’ - xl)/d] = ig(mx—na’)
G (T,T 7w) - 472(1._3;./) Z e

m,n=—00

dk. > Ri%el e . (10)

cim noIN s ’
0 el(ky y+kyy')tik. (z—2")

X =
-0 Y o,0'=FE,H

3. Casimir—Polder Potential Above a Surface with
One-Dimensional Periodic Profile

Within leading-order perturbation theory, the CP potential of a ground-state atom

within an arbitrary structure is given as?*
huo [°° . :
Ulr) == [ de&Tra(i€)- G (r, r,i6)], (11)
0

where

1
a(w) = lim _Z( dkOdOk. B dOk:dk:O' > (12)
K

Wt wr +1€  w—wi +1€

is the ground-state polarisability of the atom as given in terms of its transition
frequencies wy, = (Fr — Ey)/h and dipole matrix elements d,,,. Using the Green’s
tensor (4) from the previous section, we find the CP potential of an atom above a
one-dimensional grating as

1h6'u03 / dé e’ /q/2

oo —(Km+tEn
eiq(m—n)w/ dkzu

K
m,n=-—oo0 n

X Z Rmn m-4 a(lg)'egl— (13>

o,0'=FE,H

with R = R%% (k,, k.,i€) and

Rm = /{m(kxa kzaig) - \/i_j + (k:T)Q + kg . (14)
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In the limit d < y of small grating period, we use the asymptote (9) of the
Green’s tensor to find the z-independent potential

A q/2 —Zﬁoy ) ,
= / de €2 / dk, / dk, 3" RgSeq,-ali€)ef.
~ 167 oo

o,0'=FE,H
(15)
For large grating period d > y, Eq. (10) leads to
- hNO > 2 - ig(m—n)x > e—(:‘im—i—lﬂn)y
R M I P

x €5, -a(i)-e]_  (16)

with k, = 0 taken in all expressions inside the integrand.

4. Casimir—Polder Potential Above a One-Dimensional
Rectangular Grating

We study a ground-state Rb atom above a rectangular Au grating as shown in Fig. 1.
The grating consists of a periodic array of rectangular bars of height A = 20 nm
and width 2 ym with separation dy = 2 um, so that the grating period is d = 4 ym.
The atom—grating potential is derived by numerically integrating Eq. (13) with
the Rayleigh coefficients as given in Appendix A. To study the effect of possi-
ble anisotropies on the potential, we separate the latter into contributions from
Qe (W) = ayy(w) = azz(w) = a(w) where a(w) is the ground-state polarizability

-
e
e

| | | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
y [nm]

Fig. 2. Contributions to the Casimir—Polder potential of a ground-state Rb atom above an Au
grating as shown in Fig. 1.
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of the Rb atom: U(r) = Ugy(r) + Uyy(r) + U,.(7). The resulting potentials at
x = 0 are shown in Fig. 2. We find that the component U,, leads to a repulsive
Casimir—Polder potential in normal direction at separations y < 700 nm. This is the
first demonstration of a repulsive Casimir—Polder potential for a grating geometry.

In many cases of interest, a full numerical calculation of the potential is neither
desirable nor needed. For short atom-grating separations, the asymptotic expression
(16) gives reliable results. In Fig. 3, we show a comparison of the full numerical cal-
culation according to Eq. (13) (thick lines) with the short-distance asymptote (16)
(thin lines) at a fixed atom-grating distance of y = 700 nm. The obvious appear-
ance of a non-sinusoidal lateral force across the grating implies in particular that
the repulsive U, component at z = 0 leads to an unstable, saddle-point equilibrium
in accordance with the generalized Earnshaw theorem.?® One further notices that
the short-distance (or large grating) approximation already provides very accurate
results already at y = 700 nm. At smaller separations of y = 300 nm, the difference
between exact and approximate potentials are within the thickness of the lines.

For the components of a Rb atom potential at a distance y = 700 nm from a flat
Au 20 nm width slab one gets Uy, = U,, = —2.04-10731J, Uy, = —2.22- 10731 J,
which is also the proximity force approximation?%2” result for the components of
a potential of a Rb atom located above grating Au bars. At very small distances
the Casimir-Polder potential of the atom is oscillating between the values given by
a proximity force approximation, i.e. between zero (above the slits) and the value
for a thin gold plate (above the bars). This picture remains qualitatively valid up
to distances of the order of the grating period.

Ul

2rx/d
Fig. 3. Casimir—Polder potential of a ground-state Rb atom at fixed distance y = 700 nm above

an Au grating as a function of lateral position. Thick lines: exact numerical results from Eq. (13).
Thin lines: asymptotes from Eq. (16).
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5. Conclusions

We have shown that it is possible to generate repulsive Casimir—Polder forces above
material gratings using anisotropic atoms. Our calculation was based on the Green’s
tensor expansion of the electromagnetic field which, using a Rayleigh expansion,
yields both a numerically exact result as well as analytically tractable asymp-
totes for small and large gratings. Surprisingly, the short-distance (or large grating)
asymptote becomes already accurate at a distance of 700 nm above a grating with
a 4 pm period.
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Appendix A. Rayleigh Reflection Coefficients for a
Rectangular Grating

In the following, we determine the Rayleigh reflection coefficients for the rectangular
grating depicted in Fig. 1. To this end, we express the electromagnetic fields above
and below the grating for incident waves of polarisation ¢’ according to Egs. (2)
and (3) as (the factor e “i+i*== ig omitted for brevity)

o0
Ez(x,y) = eik;nx_ik;ny(SEa’ + Z Rf&/eik2$+ik2ya (Al)
(o0}
H () = e 700 op0 4 3 R ettty (A.2)
for y > 0 and
o0
EZ(‘,E7 y) = Z T’I’lE‘ﬂ(’JL- elk;lm_lkgy7 (A?))
n=-—oo
He(w,y) = 3 T eleemito (A4)
n=—oo

for y < —h, respectively. For simplicity, we take ¢ = 1 throughout this Appendix.
In the region —h < y < 0 one can write E.(z,y) = Y .. E(y)exp(iklz),
analogous decompositions hold for the other components of the electromagnetic
field. It is convenient to denote by [FE] the 2N +1-component vector with components
En, En—1,...,FEo,...,E_n11, E_N. We further introduce a diagonal (2N + 1) x

(2N + 1)-matrix
A = diag(EN KN kS kD o), (A.5)

x T y Va
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The Maxwell equations in the region —h < y < 0 can then be written as??

%]-ZZ] — ik, [Ey] = iw[H,], %ZZ] — ik,[Hy] = —iw[Dy,], (A.6)

ik, [Ey] — iA[E,] = iw[H,], ik,[Hy;| — iA[H,] = —iw[D,], (A.7)

iIA[E,] — 8[59”] = iw[H,], IA[H,] — [I;;] = —iw[D,]. (A.8)

Writing [D] = Q[E] and using the results of Ref. 28, one has for a rectangular

grating:

1217 0 0

Q= 0 el 0 ]. (A.9)
0 0 el

Here, ||| is a Toeplitz matrix defined as

€0 &1 £2 ... E&E9N
€_1 €0 €1 <. E2N-1
||€|| = E_92 £_1 €0 ... EaN—2 | » (AlO)
€E_2N €-2N+1 E—2N+2 ... &0

where ¢,, is a Fourier coefficient of the periodic function e(x + d) = e(z):
+o0o

@)= % exp(wznx)sn. (A.11)

n=—oo

In order to solve the above system of equations, we proceed as follows. Equa-
tion (A.7) implies [E,] = |le|| Y (A[H.] — k.[H.])/w, which can be substituted
into equations (A.6) and (A.8) to eliminate [E,]|. Similarly, Eq. (A.7) leads to
(Hy] = (k.[E;]—A[E.])/w, which can be substituted into equations (A.6) and (A.8)
to eliminate [H,]. As a result, the Maxwell equations in the region —h <y < 0 can
be rewritten as

[Ez] [Ez]
0 | [E:] [E.]
— =M , A2
oy | 1] H, ] (4-12)
[H.] [H.]
where the matrix M is defined as
0 0 —EAlle =t LA[g] A —wI
k2 — k -1
0 0 —=|le[|Tt 4wl e TTA
M = w w Al
1 EA el - 1A2 0 0 (A.13)
%I—wH%H‘l —EA 0 0

Knowing the transmitted fields (A.3) and (A.4) at y = —h, one can determine
the fields at y = 0 by integrating Eq. (A.12) from —h to 0. Imposing the continuity
conditions on all Fourier components of [E,], [E.], [H:],[H.] at y = 0, one then
determines the Rayleigh reflection and transmission coefficients.
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Abstract

We discuss the Casimir effect for boundary conditions involving perfect electromagnetic conductors,
which interpolate between perfect electric conductors and perfect magnetic conductors. Based on the
corresponding reciprocal Green’s tensor we construct the Green’s tensor for two perfectly reflecting
plates with magnetoelectric coupling (non-reciprocal media) within the framework of macroscopic
quantum electrodynamics. We calculate the Casimir force between two arbitrary perfect electro-
magnetic conductor plates, resulting in a universal analytic expression that connects the attractive
Casimir force with the repulsive Boyer force. We relate the results to a duality symmetry of
electromagnetism.

1. Introduction

Nonvanishing zero-point energies are a pervasive feature of quantum mechanics and quantum field theory. The
fact that energy fluctuations of the vacuum lead to physically observable macroscopic forces was first discovered
by Hendrik Casimir in [1], who calculated the attractive force between two uncharged metallic plates due to the
fluctuations of the electromagnetic field, which turned out to be given by the simple expression

Jem?
fattr == n
240d

for plates separated by a distance d. The origin of this force is the non-vanishing expectation value of the squared
electric and magnetic fields in the vacuum state, which is then modified by the presence of surfaces. These
vacuum fluctuations give rise to various forms of matter-vacuum interaction. The inverse fourth-power
distance-dependence leads to negligibly small forces on large distance scales. However, in the nanometre regime
the Casimir effect and other vacuum fluctuation induced forces can become significant or even dominant. In
particular, the Casimir force poses a challenge for constructing microelectromechanical systems [2]. It causes
effects such as stiction [3, 4], which is the permanent adhesion of two nano-structural elements. In order to
remove such impeding effects, possible ways of manipulating the Casimir force between bodies have been
pursued.

Of particular interest are repulsive Casimir forces [5]. The first result in this field was obtained by Boyer in
[6], who considered an assembly of two parallel plates, one of them perfectly conducting, the other one perfectly
permeable. He found the Casimir force to be repulsive in this case and showed that the ratio of his result to the
attractive force calculated by Casimir reads

@

7

frep = _gﬁmr' 2

It has also been theoretically shown that the magnitude of the Casimir force between two plates of any
magnetodielectric properties has to fall between the result of Casimir and the result of Boyer [7], which we shall
confirm here.

Due to the difficulty of realising materials whose permeability is perfect or nearly perfect, other ways of
implementing repulsive Casimir forces have been considered. Kenneth and Klich [8] have discussed the

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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opportunities of materials with non-trivial but finite magnetic susceptibilities for instance. As another approach
the Casimir forces on materials with polarisation-twisting effects have been studied. In particular the vacuum
interaction properties of topological insulators [9, 10] and of chiral metamaterials [11, 12], have been
investigated for generalised boundary conditions [13]. For the case of a scalar field confined by Robin boundary
conditions, the Casimir force has been obtained to be either repulsive or attractive [14], as is also the case for thin
films described as Chern—Simons boundaries [15, 16]. Here we will study perfect electromagnetic conductors
(PEMC:s) as introduced by Lindell and Sihvola [17], which are an idealised class of nonreciprocal polarisation-
mixing materials whose response is characterised by a single parameter M. We will calculate the Casimir force
between two PEMC plates in terms of this parameter, which will allow us to continuously vary the Casimir force
between the two extremal values.

From a more fundamental point of view, the Casimir force in PEMC media is of interest because of its close
relation to duality invariance. It has been shown [18, 19] that a linear magnetodielectric medium breaks the
duality invariance that holds for the free Maxwell equations, causing them to instead have a discrete
Z4-symmetry. Allowing material response that violates Lorentz-reciprocity restores duality invariance [20]—
PEMC media provide these properties. For this reason we will determine the relation between the PEMC
parameter M and the duality angle of a perfect conductor to obtain a coherent picture of the impact of duality
transformations on Casimir forces.

2. The Casimir force on nonreciprocal bodies

The Green’stensor G = G(r, r/, w) of Maxwell’s equations in a region with tensor-valued permittivity
€ = &(r, w), permeability 4 = p(r, w)and cross-polarisabilities { = ((r, w)and & = £(r, w) (discussed in
detail in section 3) is defined to satisfy [20]:

[VXLVX—EVXS +££Vx—w—;(s—§]](}—ﬂ6(r—r’) 3)
Jz c Boocp c Jz

subject to appropriate boundary conditions, and where I is the three-dimensional identity matrix. Then,
quantised electromagnetic fields can be constructed via [21]

E(r, w) = ipyw fd3r’G(r, r, w) - jN(r’, w) 4)

where jN is a noise-current source, and here we have taken w > 0, but the corresponding negative frequency
fields can be constructed by hermitian conjugation. The noise current jy is given explicitly in terms of noise
polarisation Py and noise magnetisation My by

Jn( w) = —iwPy + V x Ny 5)
with
Py _ \/E R colm(e &0 (Ziuzorlf | ©
My T \f, QipZ)y M¢— €% —Im(u )/ 1o

where Zy = ./p,/€o denotes the impedance of free space. Here and throughout we use the convention that
3 x 3 matrices in position space (tensors) are represented by ‘open-face’ symbols (A, B etc), while2 x 2
matrices acting in polarisation or duality space are represented by ‘calligraphic’ symbols (A, B etc). The
quantities fy are bosonic quasiparticle excitations satisfying:
5 At
[f/\(r) W), f/\’(rlr w’)] = (5/\/\/5(1' - r’)5(w - w/)I[’ ()\ =6 m) (7)

with all other commutators being zero. From a macroscopic point of view the Casimir force F between arbitrary
bodies can be interpreted as the ground-state expectation value of the Lorentz force, or equivalently by an
integral over the Maxwell stress tensor T

F:fanA-(’]l‘> ®)

with 0V being the boundary of a volume enclosing the body on which the force is to be calculated, and the stress
tensor is

1

Ho

T=ckE@E+ —BeB - %[soﬁz T LBZ)]I, )

Ho
where the fields are obtained from equation (4) together with B = (iw) 'V x E. We can now evaluate the
expectation value in the vacuum state | {0} ) of the noise current quanta f) by using f)| {0}) = 0and the

2



[S5] Casimir effect for perfect electromagnetic conductors 87

10P Publishing

NewJ. Phys. 20 (2018) 043024 SRode et al

commutator (7) above. We will also use an integral relation that can be derived from the definition (3) of the
Green’s tensor [20, 22]

Im[G(r, 1/, w)] = p, fd3sG(r, s, w)(iw, X%) - S-St (w, VXOIGHT () s, w) , (10)

where
JmlA] = %(A Sy an
1

is the generalised imaginary part of a tensor. Employing equation (10) as well as the electric field given by
equation (4), one obtains in agreement with [11] the vacuum expectation values of the dyadic products
appearing in equation (9) in Fourier space:

(E(r, w) @ B, w')) Tm[G(@r, v/, w)]6(w — ). (12)

 pgws

T
This relation is essentially a form of the fluctuation—dissipation theorem, as first shown under very general
conditions in [23]. Its role is to link the field correlations required for evaluation of the quantum stress tensor
and the classical Green’s function of the medium. Using similar relations for the remaining terms in equation (9),
transforming back to position space and rotating to imaginary frequencies u yields

A > 2
(T) = fzifduf dA - {%[G(l)(r, r, iu) + GO, 1, iu)]
T c
v

0

+ @ X [G(l)(r; l‘,, lu) + G(I)T(r/) r, lu)] X vllr’~>r

c

2 —
— tr[ 52 GO, 1, )] + V x [GD(, ¥, iu)]XV’|r/Hr]]I}, (13)

from which the force can be computed by means of equation (8). In this formula the Green’s tensor has been
replaced by its scattering part G defined via

G =GO + GV, (14)

where G© is the bulk part of the Green’s tensor, which does not contribute to the Casimir force regardless of the
system’s geometry. In addition we exploit the fact that [20]
lim GO, ) = lim G(, 1) = -16( — 1) (15)

|w]—00 |w]—o00
which functions as a cutoff for high frequencies, allowing one to obtain a finite result. Note in particular that we
did not assume the validity of the Lorentz reciprocity condition G(r, r’, w) = G'(+/, r, w), which is connected
with time reversal invariance [20]. We hence have derived an expression for the Casimir force of arbitrary
nonreciprocal bodies, which can also be obtained as a particular case of results for general magneto-dielectrics
(see, for example, [24, 25]).

3. Bi-isotropic media and PEMCs

In order to obtain a tuneable Casimir force we will consider a class of materials whose reflection behaviour is in
some sense intermediate between the extreme cases of the perfect electric conductor (PEC) and perfect magnetic
conductor (PMC), which are respectively characterised by infinite permittivity € or infinite permeability /.
These materials are known as bi-isotropic (see, for example, [18]), and in macroscopic quantum
electrodynamics the response of such a medium is conveniently described by four material constants; the
familiar € and 1, as well as two cross-polarizabilities £ and ¢. In principle all these quantities are permitted to be
tensor-valued, which leads to the more general case of bi-anisotropic media. We will confine ourselves to bi-
isotropic media, in which the material response shows no direction-dependence. This means that the four
material constants are scalar (or pseudo-scalar) valued and fulfil the constitutive relations

R PO A

D = ¢¢E + —£H, (16)
c

. 1

B = popH + —CE, 17)
c

where we have chosen our definitions in such a way that all four material constants are dimensionless. For a
fundamental theory of linear material response see [26].

3
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3.1. Duality transformation

By allowing for nonzero (or even infinite) cross-polarisabilities £ and { we achieve an interpolation between
PECs and PMCs. To do this we note that Maxwell’s equations for classical fields in media in the absence of free
charges of currents can be arranged in the following way

v-(Z?D]z : (18)
B

E . (0 1\(ZD) _
V x (ZOH)+M(_1 0)( . )_o. (19)

These equations are invariant under an SO(2) transformation, i.e. they remain valid when the vectors of fields are
multiplied with a matrix of the form

_ ( cos(0) sin(@)] (20)

—sin(f) cos(f)

The fields forming a vector in this formalism are called dual partners. The constitutive relations for the quantised

fields then read [19]
) 1(e 3 1 ZoP
ZD) _ 1 ) E | [P &)f#PN) @1
B c\¢ u\zoH) \0 p)\1oMx
where the noise polarisation Py and magnetisation polarisation My are related to the noise current jN. Note that
in case of reciprocal materials the reduced number of degrees of freedom stemming from having { = —(leads to

the constraint that 6 has to be a integer multiple of /2, in which case the continuous symmetry of duality
invariance hence reduces to a discrete Z4-symmetry [19]. The consideration of polarisation of polarisation-
mixing material constants £ and ¢, however, restores the continuity of duality invariance [20].

3.2. Perfect electromagnetic conductors (PEMC)

We will now focus on PEMCs as a special case of bi-isotropic materials. The concept of PEMCs has been
introduced by Lindell and Sihvola [17, 27, 28], finding applications in waveguide and antenna engineering [29].
Ataboundary with normal vector n the PEMC reflection properties are defined via

n- (ZyD — MB) =0, (22)
n x (ZyH 4+ ME) = 0. (23)

They show a transmission-free, polarisation-mixing reflection behaviour [17]. The pseudoscalar material
parameter M interpolates between PEC (M — oo)and PMC (M = 0 boundaries). We can now relate M to the
magnetoelectric material constants introduced in the previous section by comparing equations (22) and (23)
with the general constitutive relations (21). One arrives at

£=(=+ e, (24)

M:E::t\/z (5)
It It

inthelimit 4 — 00, € — 00, with M being finite. In other words, a PEMC is a very specific limiting case of a bi-
isotropic medium with a strong response. Though it is not obvious from equations (24) and (25), these equations
are consistent with reciprocal media for the PEC (¢ — o0, ¢, £ < €)and PMC (u — 00, ¢, & < p)limits, as
detailed in [17]. As pointed out by Dzyaloshinskii [30] and further investigated in [31], Cr,Oj is a naturally
occurring crystal with a weak nonreciprocal cross-polarisability. The close analogy of such an electromagnetic
response with that of the PEMC as well as the Tellegen medium and the axion field in particle physics is also
discussed in [32]

PEMC materials can be seen as the dual transform of a PEC by a finite duality transformation angle 6.
Transforming the PEC-boundary conditions

n-B*=n-[—sin(0)ZyD + cos(§)B] = 0, (26)
n X BE* = n x [sin(0)ZoH + cos(A)E] = 0 27)

directly gives equations (22) and (23) if the identification
M = cot(0) (28)

is made and the positive sign in equations (24) and (25) is taken. This means that the PEC case corresponds to

0 = 0and the PMC case to § = /2, with all other cases appearing for intermediate angles in the range (0, 7/2).
If the negative sign were included in equations (24) and (25), the angle # would instead be equal to —7/2 for the
PMC, runningto § = 0 for the PEC.
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Figure 1. Three-layer system with perfectly reflecting, cross-polarising boundary surfacesatz = 0andz = L.

4. The Green’s tensor of two PEMC plates

In order to apply our general result (13) to two PEMC plates, we first need to find the respective Green’s tensor
for the setup specified in figure 1.

4.1. General structure of the Green’s tensor

The reflection properties of a nonreciprocal plate are described by four reflection coefficients 7, 75, e 1p
corresponding to all possible combinations of the polarisation directions (s or p) of the incoming and outgoing
light. Here the index p denotes an electric field polarisation parallel to the plane of incidence (transverse-
magnetic (TM) polarisation), while s indicates perpendicular polarisation (transverse-electric (TE) polarisation).
The reflected wave v,eq corresponding to a general incident wave vy, ata boundary described by these four
coefficients can therefore be represented as a matrix multiplication:

Ts 7p V.,
Viefl = R - Vinc = (r::s r:’f’) : (V;) (29)

A setup consisting of two plates is considered as a three-layer system, where we require the Green’s tensor for all
positions in the middle layer. This consists of waves travelling from r to r’ and being reflected any number of
times, which can be elegantly taken into account by means of a Neumann series, as is well-known (see, for
example, [33]). For matrices R representing two plates being locatedatz = 0 (R™)andz = L (R")
respectively we define

0;0j 0i0;
n=0

P = [Z(Ri RO (eZikLL)n} = (T — R* - RFe 2k 1y-! (30)

with 0}, 0j denoting the polarisation directions sand p and Z is the two-dimensional identity matrix. Using the
general form of the Green’s tensor we obtain the result

1 a2l 1 ,
G(l)(l‘, rl, w) - _elk {(r—r’)
8?2 Kkt
X [eT - RT - (Df)fl . R . etTeiktQL+z—2) te -R - (D+)71 LR e Teik @L—z+2)
+e -R - (D*)*l . e+TeikL(z+z’) 4et .- RY- (D—)—l . efTeiki(ZL—z—z’)],
(31)

where e* = (ef, ef),with

ef =ef =eyxe, e =1/kkle, Fkley k==kley+kle.. (32)

Note that the matrix multiplication is performed in (s, p)-space. The Green’s tensor’s spatial components are
obtained by the outer product of the respective polarisation vectors. In this expression the first two terms
account for an even number of multiple reflections between r and r/, while odd numbers of reflections
contribute to the final two terms. Similarly to the case of reciprocal materials [21], it turns out that the terms
representing an odd number of reflections do not contribute to the Casimir force.

5
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4.2. PEMC reflection matrices

The boundary conditions (22) and (23) for the fields lead to polarisation-mixing effects ata PEMC boundary. In
terms of the magnetoelectric constants these reflection coefficients for radiation incident from medium 1 onto
medium 2 are given by [10]

(k= k). — Kk e
(ki + pkH Qe + kit ks e’

Tss (33)
_ —2puki ky €
(ki™ + pkH) Qe + ki ks &2

A
Top = - N (35)
[EEEn e

with Q, = pki™ + pkid), Q. = plk + (¢ — €/p)k;-1and k;* representing the component of the wave
vector perpendicular to the interface. In the PEMC-limit, with all response functions going to infinity and
M = \/e/u, one obtains in matrix form:

Tss Ty 1 1 - M2 —2M
R = _ 36
(’ps rpp) 1 +M2( —2M  M? — 1) (36)
which is independent of the incoming wave vector.
Introducing the corresponding duality transformation angle 6 via equation (28), one obtains for two plates:

RE —cos(20%) sin(20%)
| sin@0%)  cos(26%)

Tps = Tsp> (34)

(37)

with 6% being the respective duality transformation angle that defines the properties of each plate. We can now
also calculate the corresponding multiple-reflection contributions to obtain

b (b — cos(20) sin(26) )

-1
) —sin(26) b — cos(26)

"1 — 2bcos(26) + b2

withb = e 2% Land § = 6+ — 6-.

(38)

5. Casimir force between two PEMC plates

In order to solve the Green’s tensor integral we introduce polar coordinates (kll, ) for the two-dimensional
integral over k!. This simplifies the calculation considerably because the reflection matrices as well as D* and
DT do notdepend on ¢, the angular dependence appears only in the dyadic product of the polarisation vectors,
which may be straightforwardly integrated.

We can compute a force dF/dA per unit area from the stress tensor via equation (8). Making use of the fact
that dA||e,, we have

f=9E_ L g
dA A Jov
7 0
= —— du Z ((’E)jzej) 5 (39)
2w Jo iz L

where (T) is given by (13). The symmetry of the problem requires that f has no x- or y- components which can
indeed be seen from the fact that no combination of the polarisation vectors yields a x—z- or y—z-component
when integrated over . We will hence suppress the fact that fis a vector and just calculate its absolute value.
We now insert our obtained Green’s tensor (31) into (13) and observe that the contributions from the terms
containing curls equal the contributions from those without. After setting x = ik™, transforming to polar
co-ordinates kll = k cos(#), u/c = & sin(¢) and carrying out the trivial angular integration we get

f= % f “dk K e L TH[RY - (DY R+ R (D1 R (40)
T 0

This generalisation of Lifshitz’s formula for planar systems [34] agrees with results for reciprocal polarisation-
mixing plates such as gratings [35-37], which is itself a consequence of the general validity of the fluctuation—
dissipation theorem. Remarkably, the result is hence insensitive to the fact that the plates are non-reciprocal at
this level.
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Figure 2. Casimir force between two PEMC plates normalised to the original result of Casimir in terms of their duality phase shift
§=0"-0".

Substitutingx = xL and performing the matrix multiplications we find the following integral

00 2x _
feo fic f A € cos(26) — 1
0

A 1 — 2e**cos(26) + e*
1 2x(,2i6 —2i6
- _%Lw dx x° (1 _2:zxe(:15)(1+_e ele—m) N (1— ereZié')zl _ ekxe2id) (41)
which can be analytically integrated to finally obtain our main result
f0+,07) =— Sjr ’Z - Re (Lig[e®@=00]), (42)

where we have made use of the polylogarithm function Li,(z) = 332, z*/k". Our result (42) immediately
demonstrates an invariance of the Casimir force under duality transforms of material parameters; it only
depends on the difference of the PEMC angles, so a simultaneously applied duality transformation does not
change the Casimir force. Thus we may write f (6%, 67) = f (8" — 67) = f (). We can easily check that this is
indeed compatible with the results of Casimir and Boyer via

S~ coskg) _ mt mig? | mdd

Re Liy(e'?) = , 43
e Lisle) k; Pz %0 12 12 48 @)
where we used de Moivre’s identity followed by formula (27.8.6(3)) of [38] (see also [39], (25.12(ii))), giving
fc | mt
6) = — — — 8(m — §)?| 44
6 8772L4[30 (r )] (44)
Then we obtain the special cases of Casimir (6 = 0, corresponding to any choice of identical plates)
Jic
0)=——+— 45
fO 24072t “3)
and Boyer (6 = 7/2)
7 Jic
2)=—" . 46
fx/2) 8 240m2L* (“6)

We show the results for intermediate angles in figure 2. It is seen that there is some value 6., for which there is no
Casimir force, solving equation (44) for this gives

b= =1 1 — 2|2 |~ 096 T 47)
2 15 4

In the case of a scalar field under Robin boundary conditions, it has previously been shown numerically that such
a ‘zero-force’ parameter exists between the extreme cases of attraction and repulsion [14], here we extend this to
the electromagnetic field as well as finding an analytic value for d.. It is also interesting to notice that the
following holds
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f déf (6) = 0, (48)
0

so even though the force is not symmetric around the central angle § = 7/4, the enclosed areas to the left and the
right of the zero-force angle 6., are equal. Thus our result represents a sum rule for the Casimir force for
PEMCs; the sum of Casimir forces over the entire PEMC parameter space is zero.

6. Conclusion

In order to calculate the Casimir force between two PEMC plates we have constructed the Green’s tensor for two
nonreciprocal plates in terms of their reflection properties. The result is duality invariant as well as it is
compatible with the theorem derived by Kenneth and Klich that the Casimir force between identical bodies is
always attractive [8]. It also verifies for a certain class of local nonreciprocal media described in section 2 the
prediction that the Casimir force between two plates of any possible material will fall in between the results of
Casimir and Boyer [7], which had thus far only been shown for magnetodielectrics. The derived Green’s tensor is
hence also applicable for different lossless material classes. In particular the focus might go to perfectly reflecting
chiral materials ({ = —(in terms of material constants) to explore the full parameter space of the Casimir effect.

For more realistic scenarios of course the corrections due to imperfect reflection or non-zero temperature
are of high interest. For these cases the derived PEMC case can be viewed as a theoretical upper limit for the
Casimir force since we assumed the reflection coefficients as well as the PEMC parameter to be frequency
independent, and calculated the force at zero temperature. In less idealised cases one would expect the resulting
Casimir force to lie somewhere ‘under the curve’ for the respective value of 6.
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Based on the theory of macroscopic quantum electrodynamics, we generalize the expression of the
Casimir force for nonreciprocal media. The essential ingredient of this result is the Green’s tensor between
two nonreciprocal semi-infinite slabs, including a reflexion matrix with four coefficients that mixes optical
polarizations. This Green’s tensor does not obey Lorentz’s reciprocity and thus violates time-reversal symmetry.
The general result for the Casimir force is analyzed in the retarded and nonretarded limits, concentrating on the
influences arising from reflections with or without change of polarization. In a second step, we apply our general
result to a photonic topological insulator whose nonreciprocity stems from an anisotropic permittivity tensor,
namely InSb. We show that there is a regime for the distance between the slabs where the magnitude of the
Casimir force is tunable by an external magnetic field. Furthermore, the strength of this tuning depends on the
orientation of the magnetic field with respect to the slab surfaces.

DOI: 10.1103/PhysRevA.96.062505

I. INTRODUCTION

The Casimir force in its original meaning is an attractive
force between two parallel, uncharged, and conducting plates
in vacuum. In quantum field theory this effect can be traced
back to vacuum fluctuations of the electromagnetic field.
Thus, Casimir [1] originally computed the force between two
perfectly conducting plates based on vacuum field fluctuations.
This force scales as 1/z*, where z is the distance between the
plates. Here, we explore how the Casimir force is modified
for nonreciprocal medium and if, in the case of topological
insulators, it can be tuned by a magnetic field. This work is
stimulated by recent progress of the experiments aimed at the
study of the quantum Hall effect, topological insulators, and
nonreciprocal materials in general [2]. The unusual optical
properties of nonreciprocal materials have, to the best of our
knowledge, not been taken into account in previous treatments
of dispersion interactions. Yet, they may change the sign and/or
the scaling of the Casimir force. The theory derived here
provides a general framework for the analysis of the Casimir
force in a variety of experimentally relevant setups.

We compute the Casimir force as the ground-state expec-
tation value of the Lorentz force between two bodies charac-
terized by the charge density and the current density [3]. The
electric field and the charge density are mutually correlated
since a fluctuating charge density induces fluctuating electric
fields and vice versa. This process intertwining the fluctuating
charge density and the electric field is responsible for the
occurrence of a nonvanishing net force between two bodies,
namely the Casimir force. The same applies to the current
density and the magnetic field. The Lifshitz approach [4]
considers two dielectric half spaces, which show randomly
fluctuating polarizations. It is noteworthy that the ground-state
expectation values of the electric field, the magnetic field, the
charge density, and the current density vanish. In the absence of
correlations, the expectation value of the Lorentz force would
vanish and there would be no net force.

2469-9926/2017/96(6)/062505(13)
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We apply the theory of macroscopic quantum electrody-
namics (QED), which incorporates the influence of material
properties by a permittivity and a permeability [3,5,6] to
compute the Casimir force. The Green’s tensor represents
the propagator between the fluctuating noise currents and the
quantized electric and magnetic fields. Using this theory, the
Casimir force for magnetodielectric bodies has been computed
in Ref. [7]. The theoretical extension of macroscopic (QED)
for arbitrary nonlocal and nonreciprocal linear media was
carried out in Refs. [8,9]. In the case of nonreciprocal media,
the electric and magnetic fields are coupled in a way that
violates time-reversal symmetry [9]. In QED this means that
the electric field fluctuations and their source, namely noise
currents, are not interchangeable. Thus, the Green’s tensor
violates Lorentz’s reciprocity principle [10,11].

We consider two semi-infinitely extended plates with a
separation of length L and the respective Green’s tensor
contains four contributions from an even and an odd number
of reflections for outgoing waves to the right and the left
direction [12,13]. This result for the Green’s tensor is extended
to nonreciprocal materials. After deriving a general expression
for the Casimir force in nonreciprocal media, we apply the
result to a photonic topological insulator. Whereas the axion
topological insulator, cf. Refs. [2,14-16], couples electric
and magnetic fields by a quantized axion coupling, which
is usually much smaller than the electric and magnetic
properties of the material, the photonic topological insulator
[17] shows an anisotropic permittivity, which is responsible
for the nonreciprocity of the material. According to Ref. [9],
a dielectric material is reciprocal if the permittivity is a
symmetric tensor. This is not typically given in case of the
anisotropic permittivity of a photonic topological insulator
which hence violates Lorentz’s reciprocity principle. To cal-
culate the Casimir force, we compute the reflection coefficients
for the material with a general approach for biaxial, anisotropic
magnetodielectrics [18]. We also analyze the dependence of a

©2017 American Physical Society
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static magnetic field on the Casimir force. In this context, the
influence of the surface phonon and surface plasmon polaritons
on the heat transfer has been studied for aluminum in Ref. [19]
and for InSb in Ref. [20].

This paper is structured as follows: The basic principles
and expressions of macroscopic QED for nonreciprocal media
are outlined in Sec. II. Due to the violation of Lorentz’s
reciprocity principle, new definitions for the real and imaginary
parts of the Green’s tensor are introduced and a generalized
Helmholtz equation containing a conductivity tensor is pre-
sented. Section III generalizes the concept of Casimir force
based on the Lorentz force for nonreciprocal media, where
Lorentz’s reciprocity does not hold anymore. Section IV is
dedicated to the derivation of the Green’s tensor for two
semi-infinite and nonreciprocal half-spaces. The final result is
given in terms of reflection matrices comprising four types of
reflection coefficients with equal and alternating polarization.
Afterwards, the Green’s tensor is used to compute the Casimir
force for this geometry. Section V explains the anisotropic
structure of the permittivity of the photonic topological
insulator and outlines the material properties of the permittivity
for InSb. Moreover, it provides the reflection coefficients for
the photonic topological insulator. Finally, Sec. VI shows
analytical results for the Casimir force in the nonretarded limit
and analyzes the retarded limit for a medium with anisotropic
permittivity. In the second part the dependence of the Casimir
force on the magnetic field is studied. The impact of the
diagonal and off-diagonal elements of the reflection matrix on
the force as well as the change of sign of the field is discussed.
It is pointed out how the external magnetic field changes the
main contributions of the Casimir force from surface phonon
and surface plasmon polaritons to hyperbolic modes.

II. MACROSCOPIC QED FOR NONRECIPROCAL MEDIA

The theory of macroscopic QED, cf. Refs. [3,21], incor-
porates material properties in terms of the macroscopic
permittivity and permeability. This theory is consistent with the
classical theory of macroscopic electrodynamics and satisfies
Maxwell’s equations, the fluctuation-dissipation theorem and
free-space quantum electrodynamics. In contrast to the case of
a reciprocal material, time-reversal symmetry is not preserved
in nonreciprocal media. To account for this, the mathematical
framework has to be adjusted [9].

Lorentz’s reciprocity principle for tensors, e.g., the Green’s
tensor G, does not allow for the violation of time-reversal
symmetry, which can be expressed as

Gi(r,r,w) # G(r.r,0). )

Physically, this means that in a nonreciprocal material a source
atr’ does not create the same field at r that a source at r would
create at r'. A consequence of the breaking of this essential
principle is the new definition of real and imaginary parts of a
tensor,

R[G(r,r,w)] = %[G(r,r/,a)) + G r,0)],
)
S[G(r,r,w)] = %[G(r,r/,w) -G r,0)).
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In the following, the expressions for Ohm’s law, the Helmholtz
equations, and the electric and magnetic field terms have to
be redefined to account for the peculiarities of nonreciprocal
materials.

Ohm’s law describes the linear response of matter in an
external electromagnetic field and reads in frequency space

Jin(r,®) = / &rQr,r,w) - B, o) + jn@ro).  (3)

This term is a convolution of the conductivity tensor Q(r,r’,)
and the quantized electric field E(r’,w). jin represents the
internal current density and jx(r,w) is the noise current density.
Broken reciprocity now states that Q' r,w) # Q(r,r',w).
By making use of Ohm’s law (3), the continuity relation in the
frequency domain combining the noise charge density pi, and
the noise current density jin, [wpPip(r,w) = ? -jin(r,w), and
Maxwell’s equations in the frequency domain,

pAin(r’a))
€0 ’

—> A
V -Br,w) =0,

— .
V - Er,w) =

o . . )
V x E(r,w) —iowB(r,w) =0,

- . iw s

V x B(r,0) + ;E(r’w) = ojin(T,®),

we find the inhomogeneous Helmholtz equation for the electric
field,

- = ®* 4
V x V x - E(r,w)
c

—ipow / &r'Ar,r,w) - EI',0) = i poojn(r,0).(5)

The formal solution to this inhomogeneous differential equa-
tion,

E(r,w) = iow / d3r’G(r,r/,w) ~jN(l‘/,w), (6)

combines the Green’s tensor with the properties stated in
Egs. (1) and (2). The Green’s tensor fulfills the relation
G(r,r',w) — 0 for |r — r’| — oo and the Schwarz reflection
principle,

G'(r,r,w) = G(r,r, — o) Vr,ro. @)

The respective equation for the magnetic field reads according
to Eq. (4)

D =1 3.7 / g /
B(r,w) = uoV x /d’r G(r,r',0) - jn@,w). ®)

The conductivity tensor Q from Eq. (3) and the Green’s tensor
from Eq. (6) are related by

uow/d3s/d3s’G(r,s,w)-ﬂt[Q(s,s’,w)] -G (s, w)
= J[G(r.r,w)], )

where the definitions of the real and imaginary parts (2) are
applied. The noise current jy from Ohm’s law (3) and the
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expression of the electric field (6) is defined as

jN(r,a))z,/ﬁ;/d%/R(r,r/,w)-f(r/,a)), (10)

with the connection between the conductivity matrix Q and
the R-tensor given by

/d3r’R(r,r’,a))-R*T(r”,r’,w) =RQAr,r",w)]. (1)

The definition in Eq. (11) ensures that the fluctuation-
dissipation theorem is obeyed. The noise current jx (10)
contains the creation and annihilation operators flandf , which
satisfy the commutation relation,

[fr,w),t @ ,0)] = 8@ — r')s(w — o). (12)

The ground-state expectation value of the creation and annihi-
lation operators is given by

ot (@ ,0)) =8 — r)é(w — o). (13)

Equation (13) will be used to derive an expression for the
Casimir force for nonreciprocal material in Sec. I1I. Afterwards
we apply this general formula to the specific geometry of
two semi-infinite slabs and derive the corresponding Green’s
tensor as solution of the Helmholtz equation (5) with Eq. (6)
in Sec. IV.

III. CASIMIR FORCE FOR NONRECIPROCAL MEDIA

Based on the results from Sec. II the Casimir force can
be derived by using the Lorentz force acting on the internal
charge fi, and current densities ji, of a body,

F= f &r(pnk + Jin x B). (14)
\%4

By using Maxwell’s equations (4), these quantities can be
expressed in terms of the electric and magnetic fields E (6)
and B (8), where the frequency components of the electric field
E(r,w) and the total field E(r) are connected by the expression

Er) = / ” do[E(r,0) + El(r,0)]. (15)
0

A similar expression also holds for the magnetic field compo-
nents B(r,w). The Casimir force is the ground-state expecta-
tion value of the Lorentz force [3]. We apply the relation for
vectors such as the electric and magnetic fields, exemplified
for the electric field as V E2 = 2(E - V)E + 2E x (V x E)
and note that the time-derivative of the ground-state average of
the term E(r) x B(r) vanishes. Thus, we obtain an expression
for the Casimir force

F= / dA - (eeE(mET) + L1§(r)]§(r/)
A% Mo

- l[EOFJ(r) ) — B l?(r/)]ﬂmr, (16)
2 Mo

where 1 represents the unit matrix. The transition r' — r is

necessary because we must not include self-forces. Equation

(16) holds both for reciprocal and nonreciprocal material and

serves as a starting point for the following calculations.
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We compute the expectation values of the electric and
magnetic field components by making use of Egs. (6), (8),
(9), (10), (11) and use the results for the expectation values of
the creation and annihilation operators (13),

A © h 2

(EEr) = / doy 0P

0

I [G(r,r,0)],

BEOBX)) = — / dw%? X S[G(r,r,0)] x V.
0

a7

The frequency integrals over the Green’s tensor expressions
can be evaluated further in the complex plane. By using the
Schwarz reflection principle (7) and neglecting the values of
the Green’s tensor for large frequencies, limj,|— %ZG =0,
the expression for the Casimir force (16) at the frequency
w = i€ yields

h (o] 52 M
F=—— d dA - 1 =G i
27 Jo 5 av {02 (r r 15)
2

+ %G(I)T(r/,r,ié) +V x G(l)(r,r’,is) x V'

= )T s 52 (1)
+V xG(rig) x V' —Tr —2G (r,r',i&)

c

1V x GOr,ri€) x ‘6/}1} . (18)

This is the first main result of this paper because Eq. (18)
generalizes the expression for the Casimir force to nonrecip-
rocal media and holds for arbitrary geometrical properties. It
differs from the respective result for reciprocal material by the
presence of the transposed Green'’s tensor. In case of reciprocal
material, Lorentz’s reciprocity (1) holds and there is no need
for using the transposed version of the Green’s tensor.

In Sec. IV, the Green’s tensor for the specific geometry of
two semi-infinite plates, which are isotropic on the surface,
is derived. Afterwards, Eq. (18) is applied to this specific
geometry.

IV. GREEN’S TENSOR AND CASIMIR FORCE
FOR TWO PLANAR SURFACES

Having derived the general equations for the extension of
the Casimir force to nonreciprocal materials, the scattering part
of the Green'’s tensor for a setup consisting of two infinitely
extended slabs separated by a distance L is analyzed in this
Section. The scattering part of the Green’s tensor G of one
planar surface is the integral over k! and contains the sum over
the polarizations o of the incoming plane waves,

g
i, = eype®TED (19)

and the respective sum over the polarizations o’ of the outgoing
wave,
i
Crtor = Wea’ie
Here we split the total wave vector k into its parallel component
k!, consisting of its x (k) and y components (ky), and its z
component k. The unit vectors of perpendicular polarization

—i(k! -r/j:klz/)_ (20)
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dA- ¢ dAY

!

FIG. 1. Sketch of the two semi-infinite half spaces with their
boundaries at z = 0 and z = L. The left half space is denoted by a
minus sign and the right one by a plus sign. Moreover, the vectors
dA~ and dA™ are orthogonal to the interfaces. The source point is
located at r’ and the field point at r. There are three reflections in
total. The outgoing wave goes in the left direction and the incoming
one goes to the right.

e, and parallel polarization e,y are expressed in terms of
the part of the wave vector parallel to the interface (e;1) and
perpendicular to it (e;),

(5
€+ = € X €, = Il —k ],
1 Fhrk,
e = z(k”eZ TFhley) = X :F%ky . 21
kI

The indices £ in the unit vectors in Eq. (21) refer to the
directions of incoming and outgoing waves. In principle we
can distinguish between four different possibilities which
contribute to the final expression of the Green’s tensor: odd
or even number of reflections and an outgoing wave going
to the left or right. A reflection coefficient ri,/ is added
for each reflection at the left and the right boundary, where
the polarizability can be switched. The index +(—) refers
to a reflection at the right (left) boundary. All combinations
contribute to the final expression of the Green’s tensor.

The sketch in Fig. 1 shows three reflections, which appear in
the Green’s tensor beginning at the right. The Green’s tensor is
computed in the gap between the two semi-infinite plates with

j 1
GO ) = /
(r,r',w) o

Ly il
+eZtk Le ik~ (z+z )(es7, €

G e i _ e
+ D ey ) BT (T AT ( S+)

)- %4— . (@—)—l . <e5+)
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the boundaries at z = O and z = L and contains the unit vectors
e, €,_. The source of the wave is located at position r’ and
the field point is situated at r, respectively. When the outgoing
wave starts at the source at z’ and ends at 0, the direction
of the wave vector k* is negative leading to a contribution
of ¢*'¥'. A reflection with possible change of polarizability
takes place at the left boundary. The subsequent path from
0 to L in the positive direction gives ¢’* L and so does the
following negative path from L to O after another reflection at
the right boundary again. After the third reflection on the left
side the final part from O to z is positive again giving rise to the
factor e/F' <.

The following expression contains the terms for one and
three reflections,

eikL(z-%—z/)r;U’ + Z r;m ”:,,azr(;z,afezik%eikl(ﬁz/) 4.
01,02
(22)
By introducing the reflection matrices for the right boundary
Z+ and the left boundary %,

+ + - -
r r _ r r

T =% SP), # =3 'SP, (23)
r¥o rt r T
ps  pp ps  pp

Equation (22) for an infinite number of reflections can be
rewritten as

ei/&(zﬂ’) [@ . Z(%+ . %ezikLL)n:| . 24)
n=0 0,0’

Analogous to the geometric sum for scalars, we define the
infinite Neumann series under the assumption |r{,i_(,/| < las

(@+)71 — Z(%Jr .%762ikLL)n
n=0
=1 —_ 9. %—ezikiL]—l’
(@7)71 — Z(%— _%+ezik%)n
n=0
=0 —-% &+ ¥F1. (25)

After carrying out the same steps for the three other combina-
tions, the Green’s tensor eventually reads

20 2 iklae—r )| ikt — -1 [ &
d°k kT-e |:e (e, €pt) - Z~ - (27) - <ep,>

€pt+

€pt

AR Lk e e ey ) T (D) G- <e5_>]_ (26)

The scattering Green’s tensor for a multilayer system for recip-
rocal media was derived in Ref. [13]. Equation (26) is the most
general expression of the scattering part of the Green’s tensor

€p—

[

for the setup shown in Fig. 1. The first two terms in Eq. (26)
represent the contributions from an odd number of reflections
containing one reflection coefficient apart from the infinite

062505-4



[S6] Casimir-Lifshitz force for nonreciprocal media 99

CASIMIR-LIFSHITZ FORCE FOR NONRECIPROCAL ...

series. The last two terms are the contributions stemming
from an even number of reflections showing two reflection
coefficients apart from the series expression. Equation (26)
contains several sums over polarizations allowing for a change
of polarization at each boundary. The unit vectors show the
direction of the outgoing and incoming waves.

To express the Green’s tensor (26) in Cartesian coordinates,
the two-dimensional integral over the parallel component of
the wave vector is transformed to

o] 2
/dzk” :/ dk”k”/ de. @7
0 0

If the reflection coefficients show a specific symmetry, depend
only on the absolute value of the parallel component of the
wave vector 7y o0 = r‘,,ar(k”) and are independent of the angle
¢, then the angular contribution can be evaluated using the
relations

21 21
/ doesregy = / doesrez = mlece, +eye],
0 0
2 T
/ deeyre,s = ﬁ[(klf(exex +eye,) +2(k)ece.],
0

7 T 132 2
doepre,r = ﬁ[_(k ) (ece, +eyey) + 2(k")7e.e.],
0

2 ﬂkl
/ doere,r = - [Fe.e, £ eye,],
0

2 ﬂkl
/ doegrepr = T[iexe), Feye.l (28)
0

In Sec. V, the Casimir force is applied to a photonic topological
insulator with a magnetic field pointing in the z direction, for
which Eq. (28) and 7, o+ = rm,r(k”) hold. For a magnetic field

V x GV, r i) x V' =

8m2c?
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in the xy plane, this expression would not hold anymore and
one would need to use the more general expression in Eq. (26).

From these relations, it is apparent that the final expression
of the Green’s tensor shows diagonal contributions and a xy
component. There are no off-diagonal contributions involving
the z component, which is essential for the calculation of the
Casimir force for the setup in Fig. 1.

Equation (18) is evaluated for the case of two semi-infinite
planes by inserting the expression for the Green’s tensor (26).
In contrast to the respective result for reciprocal material [3]
this expression includes the transposed Green’s tensor. This
is a consequence of the specific definition of the real and
imaginary parts for nonreciprocal media (2). Since only the
diagonal elements of the Greens tensor are nonzero due to
the geometry consisting of two nonreciprocal planar infinite
surfaces separated by vacuum, the expression of the Casimir
force (18) does not differ in form from the respective reciprocal
one. The nonreciprocity of the Casimir force arises from the
specific expressions for the diagonal elements of the Green’s
tensor, containing the reflection matrices (23).

To compute the contribution of the Casimir force (18)
stemming from the magnetic field (8), one has to apply the

operators 6) and <€ to the unit vectors (21) from the left and
- <

the right, respectively, with V x — ik and x V — —iky.

The unit vectors are related as the following:

iki X €4 = gep:(:, iki X €+ = —§esi. (29)
c C

After the substitution k* = ik we finally obtain

2 1 . , Loa
§ /‘dzkuje,k\t(r—r )|:e—;< (z+z)(ep+, —es) - A%~ ,(94—)—1 . ( €p- )
K

—e_

fe XL @ e, e ). BT (D7) ( €p+ )

—€s4

—€s4

+e*2KLLe—Ki(Z*Z’)(ep+’ —egy) - B - (@Jr)—l N7 2 ( €p+ )

+e—2KLLeKL(z—z/)(ep_’ —e_ ) %t (2) @ ( €p— )] (30)

The Casimir force for the setup in Fig. 1 is the force on the
right plate situated at z = L. Due to our geometry the surface
vector of the right plane points ourwards dA = —d Ae,. Since
the surface has infinite extensions in the x and y directions,
the total Casimir force F diverges. Thus, we restrict ourselves
to the calculation of the surface force density f, which is
equivalent to the Casimir pressure. Due to this geometry, the
resulting term of the Casimir force only contains contributions
in the z direction. Since the z contributions of the Green’s
tensor (26) do not show any mixing terms with the x or y
components (28), the zz component of the Casimir force is the
only relevant one.

—ey_

[

Since the term of the Casimir force (18) shows the trace over
the Green’s tensor, one has to use the xx and yy components of
the Green’s tensor (26) beside its zz component. After making
use of the relation £2 = (k+)? — (k)?, the Casimir force per
unit area eventually reads

h o0 o0 n
— g0, L —2k+L
f= 4712/0 dg/o dkkte
XTI Z™ () %+ % - (27) % le.. (B1)

Since f always points in the z direction, it is convenient to
work with the scalar Casimir force f defined by f = fe . It
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contains only terms that have their origins in an even number
of reflections at the boundaries. Besides, the polarizations of
the outgoing and incoming wave are the same, which does not
necessarily mean that there is no polarization change between
the first and the last reflection at the boundaries.

Carrying out both sums over polarizations, one can find a
more explicit form of Eq. (31),

f—-" (T4 dk ket
22 5/

2L
oklL a—2e b

X e e, 32)

1— 672KLL a+ 674KLL b <

with
a:r”rn—{—rpppp—‘rrpsrsp—i—rsprpb, 33)
_ (pt ot
b= (rb oFps T rb o, lD)(rs oFos T Fsslp, p)

In the following, this general expression of the Casimir force
for nonreciprocal material (31) or (32) is evaluated for the
case of the photonic topological insulator InSb. Besides, it
can also be used to reproduce the well-known results for the
Casimir force for two perfectly conducting reciprocal mirrors
with reflection coefficients r, = —1, r =+1 and r
rSp =0 and two perfectly reﬂectmg nonrec1pr0ca1 m1rrors
with r& = rif = =1 and r3 = ry, = 0. In both cases, we
obtain the ﬁnal result,
¢ wlhe 34)
= - e..
240 L4
The Casimir force between one perfectly conducting and one
perfectly permeable plate with the reflection coefficients r
Top = —L 1y, =rg _landr ps—Oreads
Tn’he
= e
1920 L4

and is repulsive, cf. Ref. [22]. The sign of the Casimir force
thus depends on the material used. The Casimir force for a
perfect electromagnetic conductor (PEMC) is computed in
Ref. [23] and the two cases described above can be seen as
limitting cases for PEMC-angles of 0 and /2, respectively.

The central result (31) can be applied to all kinds of
nonreciprocal materials as long as their reflection coefficients
are independent of the angle ¢. Both axion topological
insulators, cf. Refs. [2,24], and photonic topological insulators
with perpendicular bias fulfill this property. The Casimir
force between axion topological insulators with frequency-
dependent permittivity and permeability and frequency-
independent axion coupling was studied in Ref. [14], leading
to the prediction of repulsive Casimir forces. A later treatment
with a more involved material model [16] incorporates a
frequency dependent axion coupling.

Similar to the topological insulators, the Casimir force
between two parallel planar Chern-Simons layers with a
vacuum gap in between is studied in Refs. [25,26]. The
boundary conditions for the electromagnetic fields are derived
in Ref. [26] leading to reflection and transmission coefficients
which mix the polarizability. The resulting Casimir force can
be switched from attractive to repulsive.

(35)
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In Sec. VI, Eq. (31) is applied to a photonic topological
insulator (PTI), whose material model is outlined in Sec. V.

V. THEORETICAL MODEL OF THE PHOTONIC
TOPOLOGICAL INSULATOR

A photonic topological insulator (PTI) shows a mixing of
polarizations, cf. Eq. (23), which stems from the PTI’s
anisotropic permittivity €, cf. Sec. V A. A specific material
model for the permittivity is based on InSb and is explained in
Sec. V B. Afterwards, the reflection coefficients (23) needed
for the calculation of the Casimir force are derived in Sec. V C.

A. Antisymmetric Permittivity

The mixing of polarizations stems from the PTDs
anisotropic permittivity &, which has the form of a nonsym-
metric tensor,

(36)

We assume a constant unit permeability u = 1. Furthermore,
all magnetoelectric cross susceptibilities are zero ({ = § = 0).
The permittivity tensor (36) of such materials is antisymmetric
and thus violates Lorentz’s reciprocity principle (1) and
consequently time-reversal symmetry.

This model is studied in the Voigt configuration, where the
surface is perpendicular to the bias magnetic field B [17]. The
normal vector of the interface is parallel to the z axis. In this
particular case we find that the system is symmetric in the xy
plane because its € tensor (36) is rotationally invariant around
the z axis for an arbitrary angle ¢,

cos (¢) sin(¢p) O
RT.-¢e-R=¢, with R=|—sin(¢) cos(¢p) O
0 0 1

37

A particular challenge is the fact that in a PTI neither
solely perpendicularly (s) nor solely parallelly (p) polarized
waves are solutions of Maxwell’s equations. Thus, a more
general approach is needed to find the electric field in the
PTI. Mathematically this procedure is similar to the one for
biaxial, anisotropic magnetodielectics [18] and is presented in
Sec. VC.

B. Material model for the Permittivity based on InSb

We compute the Casimir force of the PTI for a specific
material model, which is based on n-doped InSb with an
external static magnetic field pointing in z direction, B = Be,.
As was already mentioned in Sec. IV, the magnetic field
pointing in the z direction is an essential condition for using
Eq. (31). This material has been investigated in Ref. [27], and
more recently with a higher doping in Ref. [28]. It has been
used to study the near-field heat transfer by various authors,
cf. Refs. [20,29,30]. The entries of the permittivity tensor (36)
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for this specific model read

wg(a) +iy) wi — a)% 1
Exx = & s
Xxx inf w[a)g —(w+ l)/)z] —iTw +w% — w2
2 2 2
w, w; —
P L T
£, = Einfy — — + +1;, (38
‘ mf{ o@+iy) —ilo—o?+wk } (38)
: 2
LEinfW W,
Exy = P

olo? — (@+iy?]

The plasma and cyclotron frequencies are given by

ng? B
op = | —de_ gy = 2l (39)
EinfM™&q m

where ¢, is the electron charge and m* its reduced mass. I
represents the phonon damping constant and y is the free
carrier damping constant. Throughout this paper we will
use the following values for the material constants which
have been measured in Ref. [27]: wp = 3.62 x 10" rad/s,
wr =3.39 x 108 rad/s, I' = 5.65 x 10! rad/s, y = 3.39 x
102 rad/s, n = 1.07 x 107 cm ™3, m* = 0.022 m,, where m,
is the electron mass. Additionally, Ref. [27] used &j,y = 15.7,
but since we are integrating over all frequencies equally we
have to set gj, = 1 to ensure convergence. Physically this
means we are neglecting certain resonances of &(w) and only
take contributions from the ones at wt and w, into account.
Since we are interested in the influence of the off-diagonal
elements of e on the Casimir force this seems to be a
reasonable simplification, because the other resonances are
not contributing to &y,.

Note that the cyclotron frequency w, is proportional to the
external magnetic field, so by changing its direction from +e,
to —e, one can change the sign of w.. This results in a sign
change of the offdiagonal elements of & as one can see in
Eq. (38) and this is equivalent to applying the time reversal
operator.

The permittivity model for InSb (38) with Eq. (39) is
closely related to the one for a single-component magnetic
plasma biased with an external static magnetic field B = B.e_,
which is examined in Refs. [17,31]. By setting the damping
constants y and I' equal to zero and if w,, = wr, Eq. (38)
reduces to the model of the magnetic plasma. One could
consider different parameter ranges with this material, e.g.,
for w,. This model often applies to gas plasmas, because
phonon contributions are ignored, but it is considered to be
the simplistic model of a free-carrier material subject to a
bias field.

C. Reflection coefficients

We consider a single interface, where the half space z < 0
is vacuum and the half space z > 0 is a PTL In Ref. [18] the
field in the vacuum is described by general amplitudes e, where
the indices i and r refer to the incoming and reflected waves
and the indices s and p specify the polarization. We define a
s-polarized wave by E || e, and a p-polarized one by B || e,.
Using Maxwell’s equations in cgs-units,

—

— 10 10
VxE=—-—H, V xH=-—(¢-E), (40)
c ot c ot
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and setting ¢ = 1 in the vacuum the equations for a general
incoming wave with k = (k* ,O,kf)T read

C i(k* 7—
E; = [evie, +epi—(khe, — ke el rHhieen,
1)
c O X
Hi = [epie, — e —(kFe, — ke, |elrthiemen,
w
€l x ik x—ktz—or)
E, =|e e, — ep,,;(ki e, +ke;)le el
c eyl z
H, = [epe, + o0 (e, + K| ®Heen. @
®
Since our setup is xy symmetric we assumed without loss of
generality k! = k*e, and we have used k' = —k;-.
Due to the structure of the e-tensor the s- and p-polarized

contributions cannot be separated from each other any longer.
Thus in a more general approach plane waves are assumed

ex(@)\ he()\
E= e, |“ 7, H=|hy2) |4 42)
e:(2) h-(2)

k* is conserved across the interface. The z components of
Maxwell’s equations (40) read

c

C
h,=—k"e,, e, =—
y b4
w

Khy, 43)

Z

WEz;

and can be inserted into the x,y contributions. For these
components we introduce the vector u with u; = ey, us = ey,
u3 = hy,anduy = hy.By assuming the ansatzu ; = uj(O)e"kiz
for the single components with k* as the z contribution of the
wave vector in the PTI one obtains again from Eq. (40),

L-u=— Skt (44)
w
with
0 0 0 —1+ 5 (k9)?
0 0 1 0
L= ; . (45
—&xy  Ex— S 0 0 @
—&xx _exy 0 0

To find nontrivial solutions one has to solve the equation
det(L + %=1) =0 leading to the dispersion relations,

c

1
o — +2 /A + B+ /(A= By +4C, 46
Cﬁ/ ( (46)

with

C2
2

2z

A= sxx|:1 - (k*)"’],
[

C2
B = Exx — 72(]{)()27 (47)
w

T I
CZ_I_TSZZU{) 8xy,

for the four mathematical solutions m = 1,2,3,4, correspond-
ing to the four possible combinations of signs in Eq. (46).
Since solutions with Re(kt™) < 0 would result in waves
propagating in negative z direction we can neglect these
solutions for the transmitted wave propagating in the positive z
direction. Let £~V and k*+® be the two solutions with positive
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real parts and neglect the other two ones and we finally arrive 0 0 a® a?@
at the expression for the transmitted components of E and H 0 0 -0 _g@
parallel to the surface, M= o ot 1 1
w w
1 0 o
Et _ (k" x—owt) (m) iktm g
(H,> =e m:zlzu (0)e*"2, (48) 10 o g
: ki _gh  _g@
. N | = B —p ©
According to the continuity relations, the parallel components 4= 0 ki 1 1 (52
of the electric and magnetic fields E and H, i.e., the x,y com- 0 ¢i> y a y(z)

ponents, at the interface between vacuum and the topological
insulator are continuous. Since this set of four equations is
under-determined we start by expressing ey, h,, and h, in
terms of e, using Eq. (45),

Since det(M,) = det(M3), the off-diagonal reflection co-
efficients are equal, 7y, =rp. According to Ref. [32], a
medium obeys Lorentz’s reciprocity, which is called Onsager
reciprocity in Ref. [32], if and only if r, 5 (—k!,) = 75, (k)

o™ = e(y’")(O) _ LasLs and 7, 5(—k!,) = —r5 ,(k!) with 0 =s,p and & = p, s, re-
e,((m)(O) 2(kkem)? — Ll ’ spectively. This condition is not fulfilled since we instead have

w i Fsp = Ips-
) _ R (0) o | w Loa™ (49) Moreover, by changing the sign of ., which is equivalent
T M) ckiom T g Lomy TRE to applying the time-reversal operator, we obtain: ry; —
(0 —Fo vand Too = rg,g.'By .settmg gxy =0 we ﬁnq t}}at the
m — Y ___ @ Lu — @ Laja™. reflection coefficients simplify to the case of a uniaxial out
(0) ckLm) kAL0m of plane metamaterial [18], where rps =r,p, =0 and the

These equations are inserted into the boundary conditions and
one obtains

nonreciprocity vanishes. By assuming the model described
by Eq. (38) for InSb we can change the sign of r, s simply
by changing the sign of the magnetic field and moreover, by
switching the magnetic field on and off we can switch between

-1 0 a® a® €s.r ej” a reciprocal and a nonreciprocal case.
okt 0 —BO _g® ep.r Ci” e Furthermore, we consider the case where we exchange
8 kit 1 1 | e = i, (50) the positi_ons of the TI apd the vacuum Whi?h is eq}livalent
0 _wl 0 el o2 w P to cha_ngmg the z coordmate_ to —z. We still cor_151d_er tl_le
x ep.i incoming wave to propagate in the vacuum but this time in
-M the —z direction before it is reflected by the TI. So in this case

We now assume the incoming wave separately for s- (e, ; =0,
es; 7 0) or p-polarization (e;; = 0, ep; # 0) and solve for the
reflected amplitudes to finally obtain the reflection coefficients
by help of Kramers rule,

we have to exchange k+ — —k* and K+ — —k1 which
causes ry 5 — —Iv s andr, , —> Iy . This is exactly the same
result as the one we obtained by exchanging B — —B. This
can be understood by analyzing a rotation by angle 7 around
an arbitrary axis in the x-y plane of our whole system. This
rotation should leave the reflection coefficients invariant and

Fos = sr _ det(M1)7 is carried out by exchanging k* — —k*, Kkt — —fL0m)
' €s,i det(M) and B — —B. We conclude that the parameter governing the
epr  det(My) reflection coefficients is the projection of the magnetic field

Tps = e det(M) ’ onto the outward normal vector of the TI surface, cf. Fig. 1.

(51)
rep = L = det(Ms) VI RESULTS
ep.i det(M)
In Sec. VIA we first find general characteristics of the
Fos = Cr _ det(M.) , Casimir force between two infinite PTI half spaces separated
T oepi det(M) by vacuum with a general permittivity tensor (36) and a
. . permeability of i = 1. Second, in Sec. VIB we calculate and
with the matrices analyze the Casimir force for the InSb model (38).
1 0 a oa®

M ”Z‘L 0 —gh - ﬁ(2) A. Analytical results in the retarded and nonretarded limits
' 0 % 1 1 In this subsection the near field (nonretarded) and the
0 | y® y® far field (retarded) limits are analyzed. In the retarded limit
L o o we assume that wrcL/c 3> 1 and find that the term e %L/c
(-_ki e o o restricts the frequency dependence: 0 < & < ¢/(2L) K Wres.
M, = e —pH  —p@ wres Stands for the smallest relevant plasma or resonance
0 0 1 1 frequency associated with the medium. So we can approximate
0 0 y® y?® &(i§) = ¢(0). We insert different static values for ¢;;(i§ = 0)
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FIG. 2. Numerically calculated Casimir force density for differ-
ent static values of ¢;; as a function of &,, at a fixed gap distance of
L = 10 mm. The dashed lines correspond to ¢,, = 3 and ¢,, — o0,
the solid lines to &,, = &,, = 3 and the dotted ones to &,, = ¢,, = 1.
Lines with (without) circles correspond to the case with Bt = B~
(BT = —B7) in each case.

into Eq. (31) and calculate the Casimir force density at
a fixed distance L = 10 mm. We obtain for the reflection
coefficients 7, = rps — O and rgs = —rpp — —1if &, —
Fooore,, — Fooandfori& — 0.Thus, the material behaves
like a perfect conductor in the retarded limit and its Casimir
force is given by Eq. (34). Especially for materials with a
frequency dependence of &,y or &, similar to the Drude model
we find this divergence at i§ = 0.

Figure 2 shows the Casimir force for several static values
of the permittivity tensor with &y, &y, # £oo for i& =0.
We further distinguish between the two cases s;'y =ke,,
where e;ry, &,y are the xy entry of the permittivity tensor in
the left and right half space, respectively. We can see that we
only find repulsive Casimir forces if |e,,| < 5, s;ry = —¢,,and
&xx = &;; = 1 in the retarded limit. The reason is that &, does
not only contribute to r, 5 but also to 7, . Especially for higher
values of &, it contributes more to r,, than to r, 5, which
results in an attractive Casimir force density. Nevertheless,
there is a strong dependence of f; on the relative sign and
magnitude of sxiv(O). So the Casimir force of a PTI in the
retarded limit f., can be tuned by changing the external
magnetic field if ,, &x, # Fo0 fori§ = 0.

In the nonretarded limit one cannot neglect the frequency
dependence of the permittivity. Instead one can assume that
k' > w/c. In this case one obtains the simplified disper-
sion relations ki~ = ikl ktD = %k” and k1@ = jkl.
Taking only the highest-order terms in k! into account one
finds ro5 o< 1/(k1)2 = 0 and rp,rps o 1/k1 = 0. This is in
accordance with the reciprocal case in which one finds r s = 0

in the nonretarded limit as well. So the only remaining term is
rp.p and its expression to highest order in k! is given by

r — v sxx(ig)szz(i%_) - 1
PP Ve (B)e (i) + 1

(53)
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The Casimir force in the nonretarded limit f; reduces to a
much simpler expression,

%) § _ 5
=~ | dg:Li3|:< Sxx(l§)€zz(l§)—l)}
8n2L3 Jy

Vex(i§)e-(i8) + 1
(54)

Interestingly, this short-distance approximation is independent
of &,, and closely related to the case of an isotropic material
where now the geometric mean /€., ¢, appears in place of the
isotropic permittivity. Similar results have first been found for
the Casimir-Polder interaction between an atom and a uniaxial
material, which is isotropic on the interface plane and where
the optic axis coincides with the anisotropic direction [33-35].

Since applying the time-reversal operator only changes the
sign of &y, the solution in the nonretarded limit is unaffected
by changing the direction of the external magnetic field B*.
This does not mean, that fy. does not change as well by
tuning the external magnetic field, because ¢;; can still depend
on, e.g., B? as in the model of InSb. Furthermore, we find
that fie is proportional to 1/ L3 for short distances as in the
reciprocal case.

B. B-dependence of the Casimir force

After exploring the general characteristics of the Casimir
force between two semi-infinite half spaces of the PTI
separated by a layer of vacuum with thickness L, we analyze
the force for the material model of InSb (38). We especially
want to concentrate on how the force depends on the bias
magnetic fields applied to the right Bt and left B~ half spaces
where B¥ is always perpendicular to the interfaces between
PTI and the vacuum. Furthermore, let us note that we found in
Sec. V C that the sign of r, 5 depends on the projection of the
applied magnetic fields onto the outward normal vector of the
surfaces. So we define the projected external magnetic field
of the left (7) and the right (*) interface as B* = B* . dA*.
Here dA* is the normal vector of the right and left half space
with dAT = —e, and dA~ = e_, cf. Fig. 1. That means that
with this definition the signs of r}, and r, , are the same for
BT = B~ and they are opposite for B¥ = —B~. So we will
further differentiate between Bt = & B~ because we expected
different results for the Casimir force in the two cases after the
previous discussion.

The problem of realizing magnetic fields with opposite
directions in the two half-spaces in an experiment has been
described in Ref. [36]. One can cover the PTI with a thin
ferromagnetic layer on which the influence on the Casimir
force is negligible. Another way is to dope the PTI with
magnetic impurities [37], although the material response
tensor would need to be modified. Figure 3 shows the
numerical results for the Casimir force as a function of the gap
distance L for the twocases B=0Tand Bt = —B~ =20T.
It can be seen that the influence of the bias magnetic field
is small on this logarithmic scale. Nevertheless we find here
that the influence vanishes for large values of L because the
two graphs overlap in that region but they split at interme-
diate distances and stay separated even in the nonretarded
limit.
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FIG. 3. The Casimir force density f has been calculated using
Eq. (31) for the InSb model (38) as a function of the gap distance L in
the main plot without applied magnetic field (solid line) and for the
case B~ = —B* =20 T (dashed line). Additionally, f was plotted
only considering contributions from reflections with fog (solid line)
or without fg;,, (dashed line) change of polarization in the inset for
the case B~ = —B™ = 20 T. Since fo < 0, the negative value — fu
was plotted.

Furthermore, we analyze which one of the reflection
coefficients is responsible for the main contribution of the
Casimir force density. The contributions of the off-diagonal
(diagonal) terms forr (fuiag) are depicted in Fig. 3, which
has been calculated by setting rs s = rpp = 0 (r5p = 1ps = 0).
Therefore, only reflections where the polarization does change
(does not change) are considered. As expected for the case of
BT = —B~, fois purely repulsive, whereas Jaiag 18 attractive.
But since | fgiag| > | fori| the total Casimir force is attractive
and mainly dominated by contributions from 7y, rp,. At
intermediate distances the influence of r;, = r ¢ is probably
not negligible because the yellow and green graphs are getting
close to each other at around 107> m. So at this point we
expect to find differences for Bt = £B~ because for the
case BT = B~, f,i would have the same absolute value but a
different sign as for Bt = — B~ as explained at the beginning
of this section.

To analyze the B-dependence in greater detail, Fig. 4 shows
the relation f(B = 0)/f(B) as a function of the gap distance.
As expected we find a constant value of 1 in the retarded limit
and f(B = 0)/f(B) # 1 at intermediate distances and in the
nonretarded limit. Here the fraction f(B = 0)/f(B) increases
if B increases. Interestingly, there is a peak at around 107> m
where we find a reduction of the Casimir force by a factor
of up to 2.3 for B =20 T. The height of that peak depends
additionally on whether the two magnetic fields are pointing in
the same direction or not. So at intermediate distances we can
see clearly the effect of nonreciprocity. Now the question arises
if that peak is only caused by 7, and rps. From the dotted
and dashed lines in Fig. 4 one can see a sensitive region at
around L = 1073 m, even if Tsp = I'p,s = 0 and it is enhanced
or reduced depending on sgn(B™) = —sgn(B ™) (solid lines) or
sgn(B*) = sgn(B™) (dashed lines), respectively, if r p,, rp, s #
0 again.

In particular, the case sgn(B') = —sgn(B~) can be at-
tributed to a repulsive Casimir force component (the force

PHYSICAL REVIEW A 96, 062505 (2017)

f(B=0)/f(B)
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FIG. 4. Numerically calculated ratio between the Casimir force
density with and without external magnetic field f(B = 0)/f(B) as
a function of the gap distance L and for different magnetic fields
B = 1T (triangles), 5 T (diamonds), 10 T (squares), 20 T (bullets).
Furthermore, we distinguished between the cases with BT = B~
(dashed lines) and BT = —B~ (solid lines). For B = 20 T we also
plotted the numerical result in case of r, p,, 1, s = 0 (dashed and dotted
line) and so here the only nonvanishing contributions arise from r,

Tpp-

being reduced), while sgn(B*) = sgn(B~) corresponds to
an attractive force. There is an analogy to the attractive
Casimir force between two perfectly conducting or two
perfectly permeable plates and the repulsive Casimir force
between one perfectly conducting and one perfectly permeable
plate, cf. Sec. IV. Reference [22] connects this behavior
to the attractive Van-der-Waals force between two purely
electrically polarizable particles or two purely magnetically
polarizable particles and the repulsive force between one
purely electrically polarizable and one purely magnetically
polarizable particle. This can be extended to the attractive
Casimir-Polder force of an electrically polarizable particle to a
perfectly conducting wall and the repulsion of the magnetically
polarizable particle from the wall [22]. Moreover, there is
a similar feature in the Casimir-Polder potential between a
circularly polarized atom and an axion topological insulator,
where the axion contribution stemming from a coupling
between the electric and the magnetic field decreases the effect
of the ordinary Casimir-Polder potential [38].

In the nonretarded limit f is reduced by a constant factor
depending on the strength of the magnetic field only. That
can be understood analytically by noting that f. does not
depend on &y, and thus is invariant under a sign change
of one of the magnetic fields. Using Eq. (54) we can plot
fmet = furet(B = 0)/ furet(B) as a function of the magnetic
field, which is shown in Fig. 5 for a gap distance of L = 10~°
m. fmet increases with increasing bias magnetic field until it
saturates at around 40 T where the reduction factor has almost
reached 2.

To understand the shifting of f in the nonretarded limit
for an increasing magnetic field we can analyze the Casimir
force as a function of k! and w in the nonretarded limit. The
result is very similar to the one obtained for the near field heat
transfer discussed in Ref. [20]. The Casimir force density does
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FIG. 5. The Casimir force in the nonretarded limit approximation
furer has been evaluated numerically for a fixed gap distance of L =
1 nm as a function of the magnetic field B = B*. Afterwards the
ratio fnm = furet(B = 0)/ foret(B) has been computed and plotted. As
one can see here this reduction factor fmt increases with increasing
magnetic field until it saturates at around B = 40 T at Foret = 2.

not depend on &,, for k* > w/c, cf. Eq. (54), and the only
nonvanishing reflection coefficient is r,,. So one finds the
following relation between k* and w in the nonretarded limit
for surface phonon (SPhPs) and surface plasmon polaritons
(SPPs), cf. Ref. [20],

k=

_ %ll’l(v Exx(w)szz(a)) - 1>’ (55)

Ve (w)e(w) + 1

if Re(e,,), Re(g;;) < 0. This equation can also be found by

setting the denominator of the multiple reflections in the

nonretarded limit 1 — r;f o o pez"LL equal to zero.
Furthermore, the general dispersion relations simplify to

2
w
1
kl = V Exx_z - (kx)Z,
C
2
n ® Erx
k2 = exx_z - _(kx)27
C €z

(56)
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where the second equation can also be brought to the form

2 kJ_ 2 k* 2
o By EF 57)
Exx Ezz

This describes hyperbolic modes for Re(e,,)Re(e;;) < 0,
where one can further distinguish between hyperbolic modes
with Re(e,,) > 0 and Re(g;;) < 0 (HMI) and modes with
Re(eyr) < 0 and Re(e;;) > 0 (HMII). Interestingly, these
modes are therefore propagating within the material and
evanescent in the vacuum and therefore frustrated internal
reflections.

Figure 6 shows f(w,k! for different values of B. At B = 0
the main contribution of the Casimir force is due to SPPs and
SPhPs. By increasing the magnetic field this contribution gets
less intense and is shifted to lower k* values. Furthermore, the
region Re(e,,), Re(e;;) < 0, where these modes are allowed,
becomes smaller until it vanishes completely at around
B=16T.

On the other hand, there are increasing contributions from
hyperbolic modes with stronger magnetic fields, which can be
found at a broad range of w and k* values equally and which
are restricted to Re(ey,)Re(e;;) < 0. In summary, we found
that the Casimir force is dominated by SPPs and SPhPs for
small magnetic fields in the nonretarded limit, whereas the
main contributions stem from hyperbolic modes for bigger
values of B. So the decrease of f is due to the fact that the
contributions of hyperbolic modes at high fields are smaller
than the ones of SPPs and SPhPs at small magnetic fields.

To see all the effects described in this section one needs
large magnetic fields up to 20 T. In the following we investigate
if the necessary value of the magnetic field is smaller if we
used different values for the parameters [especially n and m*
and so w, in our material model, cf. Eq. (38)]. Therefore, we
plot the Casimir force at a fixed distance L = 10 nm in the
nonretarded limit for different magnetic fields as a function of
wp. The result is shown in Fig. 7. It can be seen that there are
mainly two limits for the Casimir force which are independent
of B. One is reached at high values of w,. In this case w, > o,
and there is no difference whether there is a magnetic field or
not. Whereas in the other limit for small values of w, and so
for w. > w, the Casimir force has reached a minimal value,
which is different from f(B = 0). It depends on the value of
wp, where the transition from one limit to the other happens.

ke [10°5 m1] ke [108 m1]

ky [10% mr1]

ke [10° m]

Ky [10% mr1]

FIG. 6. The Casimir force density in the nonretarded limit approximation is plotted as a function of w and k* for different magnetic fields
B = BT and with L = 10 nm, similar to Ref. [20]. Additionally, the dispersion relations for surface cavity modes are plotted with black
solid lines in the w-k! plane. Furthermore, one can find different regions I, II, III, in each figure separated by black dotted lines. In region
I we have Re(e,,),Re(e;;) < 0, and so this is the region with surface phonon and surface plasmon polaritons. In regions II and III there is
Re(e,)Re(e,;) < 0 and we can find the hyperbolic modes HMI (II) and HMII (III), respectively.
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FIG. 7. Casimir force density in the nonretarded limit f,, for a
fixed gap distance L = 1 nm as a function of the plasma frequency
w, for different fixed values of B* =0 T (solid line), 1 T (dashed
line), 5 T (dotted line), and 20 T (dashed and dotted line).

The dotted vertical line shows the value of wj, which we used
in all of our calculations so far. For smaller values of w, a
weaker magnetic field would influence the Casimir force in
the same way.

C. Casimir repulsion for a model inspired by Iron Garnet

The second model inspired by iron garnet, was introduced
in Ref. [39] and examined in Ref. [17]. The respective elements
of the permittivity tensor (36) read

WoWe
ey =1-— PCEEPVE
w —(,UO

E,, = 1, 58

2z

ww,

Exy = —Eyy = —( 5.

Y ’ ®? — &}

In this model, |wy| is the resonance frequency and w, is
the resonance strength. According to Ref. [39], the condition

10-8F 1 x10

8 x 1077

[ IN/m’]

10-13[ 6 %10 7 ':‘ .... . |

L x 1077

2 %1077 kS -
10-18¢ o d

(
1 x107% 2 x10°°
L

5 %1070 1 x107°
L

10°® 1077 106 107° 10-*
L; [m]

FIG. 8. The different contributions from reflection with (— fos)
(solid line) or without ( fyi,g) (dashed line) a change of polarization at
the interface are plotted separately for the parameters w, = +7.7 x
10" 27 /s and wy = £1.3 x 10'° 27/s and additionally wyw, < 0 in
both half spaces. Since for < O we plotted — fo. There is a region
where | forr] > | faiag| (see inset) and so that is where we expect to find
a total repulsive Casimir force, cf. Fig. 9.
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FIG. 9. The Casimir force density of a PTI for the model similar
to iron garnet as a function of the gap distance. We used in both
half spaces w, = 7.7 x 102 2 /sand wy = +1.3 x 10" 27 /s and
different values for m, = 10 (dashed), 11 (dotted), and 12 (solid).
Additionally, we distinguished between the two cases where first
wy, w, > 01inboth half spaces (without circles) and second wy, w, < 0
in only one of the half spaces and wy, w, > 0 in the other one (with
circles).

w.wp > 0 has to be fulfilled. One finds from Eq. (58) that by
changing the sign of w, and wy one can achieve &, — —&,,,
whereas the diagonal elements ¢;; do not change their signs.

So far there is no experimental evidence for a real material
with such a permittivity. The exact B-field dependence of &
is unknown. Nevertheless, we consider it as an alternative
hypothetical model which can be compared to the one of InSb
and which shows a different aspect concerning the Casimir
force.

Similar to Sec. VIB, we calculate the Casimir force
numerically by using the permittivity values similar to iron
garnet (58) and insert them into Eq. (31). First we have a look
at the different contributions only from reflections with ( fosr) or
without ( fgiag) change of polarizations, for the case where wy,
w, < 0in both of the half spaces. The result is shown in Fig. 8.
We find that in the retarded and nonretarded limit | foff| < faiag
for InSb, whereas the reflections with a change of polarization
dominate at intermediate distances. So we expect the force to
be repulsive in that region. This assumption is confirmed in
Fig. 9. So there is a region at around 2 x 107’ m < L < 107
m, where we can switch between a repulsive and an attractive
force simply by changing the sign of wy and w, in one of the
half spaces.

VII. CONCLUSION

We have derived a general expression for the Casimir
force density between two nonreciprocal semi-infinite half
spaces. This derivation is based on an extension of the theory
of macroscopic quantum electrodynamics for nonreciprocal
material.

This general expression is applied to a photonic topological
insulator with a permittivity tensor with off-diagonal elements.
First we have derived the reflection coefficients and inves-
tigated the Casimir force based on the general expression
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of the permittivity tensor. The reflection coefficients with a
polarization flip at the interface change signs by switching
from a positive to a negative magnetic field in only one of
the half spaces. Whereas the material behaves like a perfect
conductor in the retarded limit if &,, — £00 or &, — F00
for i& — 0, the reflection coefficient for parallel polarization
dominates in the nonretarded limit and we give an analytical
result for the Casimir force.

We then applied the Casimir force formalism to the material
model of InSb. We found a dependence of the Casimir force
on the magnitude of the magnetic field at small distances.
The polarization changing reflection coefficients were shown
to be responsible for a repulsive force only if the signs of
the magnetic fields in the two half spaces differ, whereas the
other components cause an attractive force regardless of the
sign. Nevertheless, this model never allows for a repulsive
net force. Only a reduction of the magnitude of the Casimir
force can be observed if an external magnetic field is applied.
This can be explained by studying the force in the nonretarded
limit. In this case the Casimir force is dominated by surface
phonon and surface plasmon polaritons at small magnetic
fields, whereas they are outperformed by hyperbolic modes
at larger magnetic fields. The ratio between the Casimir force

PHYSICAL REVIEW A 96, 062505 (2017)

without applied field and the force with magnetic field shows
a maximum at a critical distance of L = 107> m where the
Casimir force for the InSb model is reduced by a factor of
about 2 at 10 T. Additionally in this regime of intermediate
distances the magnitude of the Casimir force strongly depends
on the relative sign of the magnetic fields in the two half spaces.
Finally, the Casimir force was studied for a model inspired
by iron garnet. In this case the impact of the polarization
changing reflection coefficients is stronger than the terms
which do not change the polarization at intermediate distances.
This makes it possible to achieve repulsive Casimir forces.
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Photonic topological insulator plates violate Lorentz reciprocity, which leads to a directionality of surface-
guided modes. This in-plane directionality can be imprinted via an applied magnetic field. On the basis of
macroscopic quantum electrodynamics in nonreciprocal media, we show that two photonic topological insulator
surfaces are subject to a tunable, magnetic-field-dependent Casimir torque. Due to the directionality, this torque
exhibits a unique 27 periodicity, in contradistinction to the Casimir torques encountered for reciprocal uniaxial
birefringent media or corrugated surfaces which are = periodic. Remarkably, the torque direction and strength
can be externally driven in situ by simply applying a magnetic field on the system, and we show that this
can be exploited to induce a control of the rotation of small objects. Our predictions are relevant for nano-

optomechanical experiments and devices.

DOI: 10.1103/PhysRevB.98.144101

I. INTRODUCTION

The Casimir force was originally proposed as an attractive
force between two perfectly conducting plates due to a re-
duced virtual photon pressure in the space between the plates
[1,2]. Subsequently, the Casimir force for objects consisting
of anisotropic materials or possessing anisotropic surfaces
like birefringent plates [3], magnetodielectric metamaterials
[4], and corrugated metals [5] was studied. Since all those
materials have a distinguishable axis in the plane of the plates,
it is natural to ask whether the Casimir energy depends on
the relative angle between the two axes when bringing two
anisotropic surfaces together. It turns out that, indeed, one
obtains a Casimir torque [3,5-9]. There have been successful
measurements of the lateral Casimir force, which is closely re-
lated to the Casimir torque [10—14]. More recently, there also
have been several promising proposals for experiments with
the goal to measure the Casimir torque between birefringent
materials [15-17].

A material which is able to break rotational symmetry and
which is of great interest at the moment is the topological
insulator (TT) [18]. Topological insulators behave like regular
insulators in their bulk but possess conducting surface states.
Originally proposed for electronic states, it was shown more
recently that they also exist in so-called photonic topological
insulators (PTIs) [19-22] such as magnetized plasma [23—
25]. One of the most striking features of TIs is that there
exist unidirectional waves on the surfaces of these materials
which turn out to be immune to backscattering [26,27]. Due
to this directionality of the edge states PTIs not only have
a distinguishable axis like, e.g., birefringent materials, but
their axes also possess a distinguished direction. This feature
has been of great interest and was used to construct de-
vices like directional wave guides [27], optical isolators, and
circulators.

2469-9950/2018/98(14)/144101(11)
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Now the natural question arises regarding what quantum
optical effects emerge when exploiting the directionality or
nonreciprocity in PTIs. This question has been addressed by
previous authors before: they studied the influence of the
presence of a PTI on the entanglement of a two-level system
[28]. In Refs. [29-31] the normal and lateral Casimir-Polder
force acting on an atom close to a vacuum/PTI interface
was analyzed; a huge anisotropic thermal magnetoresistance
was obtained in the near-field radiative heat transfer between
two spherical particles consisting of a PTI in Ref. [32]. A
persistent unidirectional heat current was found between three
objects at thermal equilibrium [33,34]; also the Casimir force
has been studied for two infinite half-spaces consisting of PTIs
in Ref. [35]. All those works showed that there exist interest-
ing new features in quantum optics arising from the interplay
of the quantized electromagnetic field with PTIs. However, the
unidirectional features of PTIs have not yet been seen to man-
ifest in Casimir torques between two macroscopic objects.

II. CASIMIR TORQUE

In this paper, we want to show how the unidirectionality and
nonreciprocity of PTI plates manifest in the Casimir force and
torque. To this end, we will show in the following that, in
addition to a normal component of the Casimir force, there
exists a non-negligible Casimir torque whose magnitude and
direction are tunable by the external magnetic fields. Fur-
thermore, due to the directionality of the topological surface
states, we find that this torque is 2 periodic with respect to
the relative angle between the two bias magnetic fields, in
sharp contrast to the w periodicity occurring for reciprocal
bianisotropic media. We also discuss how the tunability of the
Casimir torque can be exploited in nanomechanical schemes
to induce rotation.

©2018 American Physical Society
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FIG. 1. In (a) we show the setup under the consideration consist-
ing of two semi-infinite half-spaces filled with a PTI. Additionally,
in each half-space there is an applied external magnetic field Bt and
B~ . The fields are in the xy plane and are parametrized by the angles
®* and @~ between Bt and B~ and the x axis, respectively. In (b)
we plot the dimensionless Hamaker constant H as a function of A®
for different values of B =1, 2,3,4,5 T (dots, squares, diamonds,
triangles, and upside-down triangles, respectively). In (c) we again
use the € tensor in Eq. (1) with the only exception being that we
set €y, = 0 to obtain a description of a normal anisotropic medium
(B =5T). The Casimir torque 7 (A®) is plotted in (d) for different
magnetic fields, where the same shapes correspond to the same
values of B as in (b). Additionally, we plot the Casimir torque for
the material model in (c) (dotted line) and for a setup where the two
PTI half-spaces are replaced by one barium titanate and one quartz
half-space (dashed line). In (b) and (c) we use L = 100 nm.

A. Setup

We study a setup consisting of two semi-infinite half-
spaces separated by a vacuum with separation L and filled
with PTIs where a bias magnetic field is applied to each half-
space [see Fig. 1(a)]. The PTI is implemented by a magnetized
plasma with an applied bias magnetic field B as an example
of a gyrotropic material which is described by a permittivity

tensor of the form [36]

€xx 0 0
€ = 0 €22 €yz |
0 _6yz €22
: 2
iw.w,
(@)= —— L ——
O et~ @ + i) N
L ei-d W@ +iy)
€x(w) =1+ — 5 5 2 VAR
—ilfo+w; —w w[wc—(w—i—ly)]
@ — w? w?
ex(@) =1+ L u 2

—iTw + @ — ? B w(w+iy)

if B points in the x direction. This is easily generalized for
arbitrary directions of the magnetic field by simply rotating
€. The plasma and cyclotron frequencies are given by w, =
/ng2/(m*ep) and w. = Bg./m*, respectively, where g, is
the electron charge, m* is its reduced mass, n is the free-
electron density, and y is the free-carrier damping constant.
Furthermore, I" represents the phonon damping constant, and
wy, and wr are the longitudinal and transverse optic-phonon
frequencies, respectively. Throughout this paper we will use
the following values for the material constants of InSb which
have been measured in Ref. [36]: wp = 3.62 x 10" rad/s,
wr =3.39 x 1013 rad/s, I' = 5.65 x 10" rad/s, y = 3.39 x
10'2 rad/s, n = 1.07 x 107 cm™3, m* = 0.022m., where m.
is the electron mass. Although we choose a specific PTI model
here, our findings are general and can be applied to other
specific PTI realizations.

B. Basic formulas

We first have to derive a general expression for the Casimir
torque T of our system which is usually obtained from the
Casimir energy E of the system. To build on previous results
we use the intermediate result in Eq. (18) of Ref. [35] as
obtained using macroscopic QED in nonreciprocal media
[37]:

[e%9) 2 2
F = _n de | dA iY[G(”(r, r,i&)] +2V x LGV, 1, if)] x v
27T 0 v C2
£ 1) ;o 1) o <
~Tr| GV (r, v, i&) + V x GV (r, 1, ig) x V'|Ip . 2)
c r—r

Here we have introduced the symmetrization . of
a tensor defined by .[G(r,r,w)] = (1/2)[G(r, ¥, ®)+
GT(r/, r, w)]. Furthermore, & = —iw, where w is the fre-
quency of the electromagnetic wave, I is the unit tensor, 0V
is any infinite planar surface in the vacuum gap between the
two planar bodies, dA is its surface element, and r and r’ are
arbitrary points on the surface of body 1. Most importantly,
GW(r,r, i) is the scattering Green’s tensor [38] of our
setup. It can be expressed using the reflection coefficients of
the vacuum/PTTI interfaces calculated in Appendix A and the
different components of the wave vectork = (kI'7, k, = ix)T

satisfying k> = —£2/c?, where c is the speed of light in vac-
uum. The full expression of G(r, r', i£) and its derivation
can be found in Appendix A.

Using these results, we find first of all, as expected, that
there is no lateral force in the ground state of the system,
and thus the x and y components of F are zero. Furthermore,
in Appendix B we find a general expression for the normal
component of F per unit area A which we define as f = F, /A,
where F; is the z component of F. This result is not shown
here since we are interested only in the near-field behavior
of our system. Thus we want to analyze f further under

144101-2
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the assumption &/c < kll, which is often referred to as the
nonretarded limit and becomes valid for small separations
L < ¢/wch, Where wgy is the highest characteristic frequency
of the permittivity tensor (compare Ref. [38]). To estimate
the value of wg, for our specific material model in Eq. (1)
we take a closer look at the monotonically decreasing func-
tion x;;(i&)/[x:;(i&) + 21, with x;;(i§) = €;(i§) — &;;. The
condition

Xi_.j (iwen) _ 1 3)

Xijwp) +2 2

gives a good estimate of the characteristic frequency wcp.
Neglecting absorption effects and phonon contributions. one
obtains from Eq. (3)

i = xx, 72 = @p )
1] =Xxx, 22 Weh = ——=,

V2
ij =Y = Wch = «J/wpwcy 5)

where we also assumed w. < w,, which is true for magnetic
fields B of the order of a few teslas. Therefore we conclude
that the nonretarded limit approximation is valid for distances
LK c«/i/wp = 3.4 um. Note, however, that this estimation
for the validity of the nonretarded limit approximation is true
only for our specific material model as given in Eq. (1), which
includes only two medium resonances.

Under this assumption the reflection coefficients simplify
significantly to r ~ rf ~r, =~ 0 and
—2+ D F 2iey, sin(d* — @)
2+ D F2i€y, sin(@* — ) ’

D= \/2611{622 + €xx + (€xx — €72) cOs [2(q>:l: — o)}
(6)

Here ¢ is defined by k!l = kll(sin(p), cos(p))T, with kl =
|k [compare Fig. 1(a)], and the + symbol indicates the
reflection at the lower and upper half-spaces, respectively.
Note that this reflection coefficient is not real even when
evaluated at imaginary frequencies @ = i& due to the terms
proportional to €y,. But since this term also flips sign under
k! - —k!, the Schwarz reflection principle G(l)(r, r,i&) =
GW*(r, v, i) is obeyed, which, according to [39], implies
rl;p(k”, i€) = rpp(—kl, i&). Thus it is ensured that the Green’s
tensor and therefore the Casimir force are real.

Finally, using the previous result of the reflection coeffi-
cients in the nonretarded limit, f simplifies to

+ ~
rpp(w) ~

h

f== 1673L3

e} 2

/0 dt /0 de Lis[r (i§)ry (i§)],  (7)
where Lij is the polylogarithm of order 3. As in the reciprocal
case [38] and for a magnetized plasma with a bias magnetic
field perpendicular to the interface [35], we find a simple
f o< 1/L? behavior in the nonretarded limit. Therefore we
can easily calculate the Casimir energy E per unit area in
the nonretarded limit from Eq. (B19) by integrating f with
respect to L and eventually find £ = L f/2. From this result
we can now calculate the Casimir torque 7 = —9E /(0A D),
where A® = &~ — @7,

III. RESULTS AND DISCUSSION

Next, we want to analyze our previous results for the
Casimir force, energy, and torque. To this end, in Fig. 1(b), we
display the dimensionless Hamaker constant defined by H =

Jo (dE Jwp) foz” dgLis[riry] at a fixed gap distance L =
100 nm. Note that one can easily retrieve f, E, and T from H
via f = —w,hH/167°L3, E = —w,hiH/327%L? and T =
(wph/3273L?)I H /(9 AD). Before discussing the qualitative
features of these results let us discuss the magnitude of the
torque. As depicted in Fig. 1(d), the Casimir torque at zero
temperature for two semi-infinite PTI half-spaces reaches the
same order of magnitude as the one for quartz or calcite
half-spaces kept parallel to a barium titanate half-space. Those
examples for birefringent plates were studied in Ref. [15], and
we have used the same model for the permittivity, including
the same values for the constants measured in Ref. [40] to
reproduce these results. More concretely, this means that the
torque for the PTI setup reaches a maximal torque of about
67 pN/m with B = 5 T, whereas the quartz (calcite)-barium
titanate setup reaches 22 pN/m (317 pN/m). Nevertheless,
the Casimir torque between two corrugated metals is three
orders of magnitude larger [S5]. Note that these torques are
all periodic under a rotation of 7 of one of the plates around
its normal component since their distinguished axes are not
directional. On the contrary, we see in Fig. 1(b) that H(A®)
is 2 periodic with a maximum (minimum) when the two
magnetic fields B* point in the same (opposite) direction.
This result is therefore qualitatively different from the ones
observed when dealing with birefringent half-spaces with one
in-plane optical anisotropy [15] [compare the dashed line in
Fig. 1(d)] or corrugated metals [5]. Heuristically, this new
periodicity can be explained by the fact that not only does our
material model have a distinguished axis, but this axis also has
a direction.

The angle dependence of the Casimir energy can be under-
stood in more detail by studying the contributions of different
surface-plasmon polaritons (SPPs) which dominate in the
nonretarded limit [41]. To this end, we take a closer look at
the spectral decomposition of the Casimir energy evaluated
at real frequencies H(w)= ;)2” do Im{Lig[r;;(w)r&,(a))]},
which allows us to see which surface modes contribute the
most to the Casimir energy. The total Casimir energy is
simply the integral over this spectral energy density, H =
Jo (dw/w,)H(w), and therefore E, f « [~ do H(w), as
can be seen from contour-integral techniques.

The central ingredient to the spectral Casimir energy den-
sity is the SPPs of the individual plates, which are resonances
of the respective reflection coefficients rlj';(a)) and rI;j(w).
The frequencies of the SPPs are easily found by setting the
denominators in the reflection coefficients (6) to zero, which
upon using Eq. (1) and neglecting the photon contribution
leads to the dispersion relations

QF (DT — ¢) = %{\/60)3 + 82 + 202 cos[2(DF — )]
+ 2w, sin[®F — ¢]} ®)

in the lossless limit, as also found in Ref. [29]. The single-
plate SPPs are illustrated by the dotted and dashed lines in
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FIG. 2. Contributions of surface-plasmon polaritons (SPPs) to
the Casimir energy. (a)—(c) Single-plate SPPs Re[rpip(a))] (dotted
lines) and Im[rri(w)] (dashed lines) and angle-resolved spectral
energy density H (w, ¢) (solid lines) with @+ — ¢ = 7/2 and A® =
0, /2, 7, respectively. Re[r;l;(w)] and Im[r;;(a))] correspond to the
curves with the resonance at higher frequencies, whereas Re[r&)(w)]
and Im[rp‘p(a))] correspond to the ones with a lower resonance fre-
quency (21 > Q7 in this case); the two single-plate SPP frequencies
Q*(d* — @) as given by Eq. (8) are indicated as vertical lines. (d)
Total spectral energy density H () with A® = 0, /4, /2, 7 (dots,
triangles, diamonds, and squares, respectively). For all plots we have
used B=3T.

Figs. 2(a)-2(c) for selected combinations of magnetic field
and wave vector directions. In particular, we see that the SPP
frequencies of the two plates coincide in the special case
A® = 7 [Fig. 2(c)].

When the two plates are brought in close proximity, as
is the case in the nonretarded limit considered, the single-
plate SPPs combine to form symmetric and antisymmetric
coupled SPPs [41]. Mathematically, this can be seen from
the Casimir spectral energy density. Using Liz[z] =~ ¢ (3) z for
z < 1, where ¢ is the Riemann zeta function, we find A (w) ~
((3){Im[r;;(w)]Re[rli,(a))] + Im[rli,(a))]Re[r;;(w)]}. We can
clearly see how H(w,¢) is built up from the products
Im[rﬁ(a))]Re[rlj‘;(a))] in Figs. 2(a)-2(c). As illustrated by the
solid lines in Figs. 2(a)-2(c), the symmetric coupled SPPs
give the dominant positive contribution to the Casimir energy
(left peak), while the antisymmetric coupled SPPs give a
smaller negative contribution (right dip). As further seen in
the figures, the difference between the positive and negative
contributions is quite pronounced for A® =0 [Fig. 2(a)],
leading to a large net Casimir energy. The splitting is reduced
for larger angles [Fig. 2(b)] until, eventually, the single-plate
SPPs coincide for A® = 7 and the two coupled SPPs become
very close in frequency and similar in magnitude. For this
case, we have a smaller Casimir energy.

Our observations remain valid for general combinations
of magnetic field and wave vector directions and thus also
when integrating over all wave vector directions ¢ € [0, 27]
to obtain the total spectral energy density H(w). As seen
from Fig. 2(d), this energy density has quite a complex profile
as it is the sum over contributions from many SPPs with
different resonant frequencies. Nevertheless, we again find

that positive and negative contributions are the most different
in magnitude for A® =0 (dots), leading to a large total
Casimir energy. As the angle difference increases towards
A® = 7 (squares), the positive and negative contributions be-
come more similar in magnitude, and the total Casimir energy
decreases.

IV. APPLICATION

The advantage of having an in situ tunability of the torque
can be exploited for nanomechanical schemes. For instance,
we consider a setup of two nanodisks as depicted in Fig. 3(a).
This system is an example of a new mechanism (compare
Ref. [47]) to generate a motor with small moving parts. As
shown, the relative angle between the two applied magnetic
fields is given by A®(t) = &~ (¢) — 0(¢). The dependence of
the torque 7' on the relative angle between the applied mag-
netic fields is well approximated by T(A®) = Tjsin(AP)
[compare Fig. 1(d)], where Tp = 67 pN/mif Bt = B~ =5T.
Thus the equation of motion for the rotation of the upper disk
neglecting finite-size effects, retardation, and friction is given
by

d*o 2Ty . .

TR~ sin[®(¢) — O(1)]. ©)
The result of the numerical solution of Eq. (9) can be found
in Fig. 3(b). As we can see, if we let the tunable magnetic
field B~ rotate with an angular velocity of up to 0.75 rad/s,
the upper plate will follow the direction of B~ and start to
rotate with the same angular velocity of almost one full 27
rotation per second. If B~ rotates faster than 0.75 rad/s, the

ts

FIG. 3. (a) Scheme for inducing rotation via Casimir torques.
As shown, there are two disks with the same size as considered in
Ref. [16], namely, with radius » = 20 um and thickness d = 20 um
consisting of InSb, which has a mass density of pps, = 5.59 g/cm®
[42]. They are held at a distance of L = 100 nm from each other so
that the nonretarded limit assumption and the assumption of having
two semi-infinite half-spaces apply for the idealized medium re-
sponse assumed. Furthermore, B* is a static magnetic field which is
attached to the disk, i.e., via magnetic coating [43-46]. Thus its angle
with the x axis ®T only changes if the whole disk rotates and the
rotation of the upper disk is described by the angle 6(r) = ®*(¢). In
the lower disk there is a magnetic field B~ whose direction described
by the angle ®~ () may change over time, although the plate is fixed.
In (b) we show the numerical solution to Eq. (9) with Bt = B~ =
5T for the cases ®~(t) = 0.757t, 0.4x¢t,0.1x¢t, 27t O (dot, square,
diamond, triangle, and upside-down triangle, respectively) with solid
lines. Additionally, we plot ®~(t) = 0.75xt,0.4x¢t,0.17¢t, 27t, 0
(also indicated by the dot, square, diamond, triangle, and upside-
down triangle, respectively) describing the rotation of B~ with dot-
dashed lines.
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upper disk cannot follow the direction of B~, and therefore
it barely rotates (triangle). Here r and / are the radius of the
upper disk and its thickness, respectively.

V. SUMMARY

To summarize, we have found a Casimir torque between
topological-insulator plates whose direction and magnitude
are tunable by an external bias magnetic field. We have further
shown that in the nonretarded limit this torque is dominated
by SPPs which are directional, and therefore it is symmetric
only under a rotation of 27 of one of the plates around its
normal component. This unique periodicity, in contrast to the
typical 7 periodicity for ordinary birefringent media, is a clear
signature of nonreciprocity. We have shown how the tunability
of the torque between two InSb disks can be exploited to set
one of the disks into rotation, which offers new possibilities
for measurements and nanomechanical applications of the
Casimir torque on small objects.

|

| 1 el ’
GO 1, w) = ! /dzk” iKl-(r—r")
(r,r’, ) =) 3 e

Z

4 kL pmik+) (g e_) %" - )" (es+>
+ezik3Leik;(zfz')(es+’ e ) 74 (@*)*' BT (es+>

+62ik‘-Le—ik;(z—J)(eSﬂ e ) 7 a0 (@—)—1 N (es—>:|'

Here we have split the wave vector k = (k!'7, k)T into its
components parallel (k') and perpendicular (k.) to the plates,
and the polarization vectors €1, €,+ and the multiple reflec-
tion matrices #* are defined by

[
e =€y X e, = il —ky |, (A2)

0

1 1 Fiths
e = z(k”ez T ken) = z Fiiky | (A3)
kl
(@1)71 _ Z (%i .%:FezikLL)” _ [1 _ gt .%:FEZikLL]—l.
n=0

(A4)

We are left with the task of calculating the reflection matrices

+ +

%:E _ rs,s rs.p
- rE rE

p:s p.p

to find GV(r, r’, w). Here rja, (r_,) is the reflection coeffi-
cient for a o’-polarized incoming wave which is reflected off

(AS5)

|:eik;(z-%—z’)(eSJr7 ep+) 7 (@+)—1 . (es—)
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APPENDIX A: GREEN’S TENSOR FOR TWO
SEMI-INFINITE HALF-SPACES OF PTI

In this appendix, we derive an expression for the Casimir
force between two half-spaces filled with photonic topological
materials separated by vacuum and with distinct in-plane bias
magnetic fields in each of the half-spaces [see Fig. 1(a)].
To this end, we first calculate the Green’s tensor for this
setup here as the essential ingredient for the Casimir force
calculated in Appendix B.

The following derivation of the Green’s tensor
GO, r',w)is very similar to the ones given in Refs. [4,35].
As a starting point we can use the intermediate result of
Ref. [35] in their Eq. (26):

€p—
€pt+
€pt+

e (AT)

body 1 (body 2; see Fig. 1 in the main text) as a o-polarized
wave.

We are going to calculate Z* first and retrieve Z~ from
symmetry considerations. To find 2" we first find appropriate
expressions for the electric and magnetic fields in vacuum and
in the PTI by making use of Maxwell’s equations. Afterwards,
we can obtain Z" from the continuity relations at the inter-
face.

We start with the permittivity tensor for body 1, which is
given by

€xx 0 0
€ = 0 € €y; (A6)
0 —€: €

if the external magnetic field Bt points in the x direction.
Note that we have €,, = €., and €,, = —¢,,. We generalize
this expression to arbitrary directions ®* of B* (see Fig. 1
in the main text) in the xy plane by rotating € by an angle of
®* around the z axes. Furthermore, we consider a general
wave vector k = (kllcos g, k' sing, k,)”, but by rotating
e by an angle of —p we get without loss of generality
k = (k",0, k,)T, which simplifies the following calculation
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significantly. So the permittivity tensor eventually reads

%{Exx + €+ (exx - EZZ)COS[Z(CI)+ - ¢)]} %(exx - Ezz) Sin[2(¢+ - (/7)] —€y; Sin[q)+ - (0]
€= %(exx - 6zz) Sin[2(¢+ - (ﬂ)] %{Exx + €+ (Ezz - GXX)COS[2(¢+ - QD)]} €yz COS [¢+ - (/)] (A7)
€y, sin[®1 — @] —€y, cos[PT — ¢] €

in the rotated frame. As expected, it depends on only the relative angle between the magnetic field and the wave vector. Note
that this form of the permittivity tensor is different from the one considered in Ref. [35]. Nevertheless, the general procedure to
find %* is analogous.

Now we make a plane wave ansatz for the field in the vacuum layer given by

C .
Ei = [es,iev + eP,ii(kz,iex - kl\ez)]et(k”erk,_,szt)’
° we

H; = I:é’p-ie)' - es»ig(kaiex — k”ez)]ei(k”x+kz..z—wt)’
c . (A8)
E = [€s,rey —epr—(k ey + kHez)]e'(k kamszl%
we
H; = I:epqrey + essfi(kz,iex + kxez)]ei(k”"_k:.d—wt),
w
which satisfies Maxwell’s equations
10 19
VXE:—ng, VXHzfg(elE)’ "
¢ c

with € = I since the wave propagates in vacuum. In Eq. (A8) e, ; and e, are unknown complex-valued amplitudes of the fields,
where the subscripts i and r indicate the incident and reflected waves, respectively. To eventually find the reflection coefficients
we also need to find a way to describe the field within the PTIL. Due to the structure of € in Eq. (A7) Maxwell’s equations in
Eq. (A9) mix s- and p-polarized waves within the PTI. Therefore an ansatz as in Eq. (A8) is not possible, and thus in a more
general approach plane waves are assumed in the form

ex@\ I @) I
E= ey(Z) ez(k )cfa)f)7 H= hy(Z) ez(k xfmt). (AIO)
e:(2) h;(z)
Note that k!l is conserved across the interface. The z components of Maxwell’s equations (A9) read
c
h.(z) = —kley(2). (A1)
w
1 c o - -~
e(z) = c —;k hy(2) + €xzex(2) + €y26,(2) (A12)

and can be inserted into the x, y contributions. For these components we introduce the vector u with u; = ey, up = ey, u3 = h,,

) pm) . . . .
and uy = hy. By assuming the ansatz u; = u;(0)e’* % for the single components with k™) as the z contribution of the wave
vector in the PTI one obtains again from Eq. (A9)

Lou=—"kmy, (A13)
w
with

—k&, /(') —klc&,,/(wE,,) 0 —1+ (ckl/w)?1/E,)
2x +Ezgxz/gz7, €, +Eaz/gzz - (C‘)/Ck“)2 0 —wé, Z/(Ck”gzz)

L= Y y yy y . M (A14)

—&yy Eox — S (k2 0 0

_gxx - gzz/’gzz _ny - zyz’gxz/’gzz 0 a)’gxz/(CkH’gzz)

To find nontrivial solutions one has to solve the relation det[ L + Iwké’" )/c] = 0, leading to the dispersion relations

Km = 12 !

c 2l /e,

Up = —3€; + e QPe. — 1)+ 21 (6. +€2), Us=e;— €,

\/Ul + Uscos [2(PF — )] £ /%{Us + Uy cos [2(DF — ¢)] + U3 cos[4(DT — ¢)]},

Us = 6€2, — 81 e, (2, +€2) +81* (2, + €2)’ + 82 (e.l® — 1) — 2, [3e.. + 412 (2, — 262) + 812 e, (2, + €2)].
Us=4{e] (1 = 2% €;2) — 2exs[ec. + 1P(€5, — 262) ] + exc[e. — 27 (e, + €2.) ]} (A15)
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for the four mathematical solutions m =1, 2, 3, 4, corre-
sponding to the possible combinations of signs in Eq. (A15)
with the dimensionless quantity I = w/(c k). Note that these
dispersion relations agree with the ones found in Ref. [29].
Since solutions with Im[k1(™] > 0 would result in waves
propagating in the negative z direction, we can neglect these
solutions for the transmitted wave propagating in the positive
z direction. Let k*™) and k+® be the two solutions with a
positive real part; then neglecting the other two, we finally
arrive at the expression for the transmitted components of E
and H parallel to the surface,

E, . .
_ z(k”xfa)t) 2 (m) 0 iktmz
=e u e .
(Hl> ©

m=1,2

(A16)

According to the continuity relations, the parallel components
of the electric and magnetic fields E and H, i.e., the x, y com-
ponents, at the interface between vacuum and the topological
insulator are continuous. To simplify this set of four equations
we start by expressing ey, h,, and &, in terms of e, using
Egs. (A13) and (A14),

o = ey (0) (e /w4 Ly — L3)Las/ L4

T e"™) L — Ly Lya/Lys — (k0Wc/w)?’

hMO)  —cktm

Moy e

(m)

™, (A17)

oy O ek o — Ly — Lipa™
e 0) Ly '

These equations are inserted into the boundary conditions, and
one obtains

10 o q®

€s.r Esi

k- k-

ey Ll [ P Uy

k- O 7 ekt

0 Cw' 1 1 exz Cu; €p.i
(2)

0 -1 y® @ )\ epi

EM

(A18)

We now assume the incoming wave to be s (ep; = 0, e5; # 0)
or p polarized (es; = 0, ep,; # 0) separately and solve for the
reflected amplitudes to finally obtain the reflection coefficients
with the help of Cramer’s rule:

+ & _ det(Ml) Al
= e T da(m) (A19)
o+ o Cor _ det(My) (A20)
ps €si det(M) ’
p o Cor _ det(Ms) (A21)
P g T (M)
M
p = or _ detMy) (A22)
€pi det(M)

with the matrices

1 0 aM a®
ck*
TI 0 —ﬂ(l) _’3(2)
M, = . : (A23)
(R 1 1
0 -1 y(l) y(Z)
-1 1 o a®
cklL cklL _a o)
M=o o TP TP
0 0 1 1
0 0 y(]) ),(2)
0 0 ab @
0 0 —ﬁ(l) —,3(2)
Mi=|_. . : (A25)
o 1 1
1 -1 y® y®
-1 0 ) a®
ck*
& 0 _/3(1) —ﬁ(2)
M, = @ L (A26)
0o = 1 1

0 1 y“) 7(2)

Having found the reflection coefficients for waves reflected
at body 1 (#Z"), we can easily derive the ones reflected by
body 2 (#%7). To this end one simply has to invert the direction
of the z coordinate (z — —z) and therefore replace €,, —
—€y;, k; > —k;, and k"™ — —k™. Thus we have

- _ o+
Toor = ro(f'ley:*)feyz, ko> —kz, k™ ——k™

(A27)

We also want to calculate the reflection coefficients in the
nonretarded limit by assuming k! >> w/c. In this limit we find
from Eqgs. (A19), (A20), (A21), (A22), and (A27)

rhord =y >0, (A28)
—2 4+ D F 2ie,, sin(dF — @)
rop(@) = ! , (A29)

2+ D F 2ie,, sin(®F — ¢)

D= \/2611{611 + €xx + (€xx — €,,) cOS [2(<I>:E - (;0)]}
(A30)

Finally, we can insert the results for the reflection coef-
ficients found in Egs. (A19), (A20), (A21), (A22), and (A27)
into Eq. (A1) to find a fully analytic expression for the Green’s
tensor of our setup. In the next section we want to use this
result to calculate the Casimir force.

APPENDIX B: CASIMIR FORCE BETWEEN TWO
INFINITE HALF-SPACES OF A PTI

The starting point for the calculation of the Casimir force
between two infinite half-spaces of a PTI separated by a layer

144101-7



116 3. Vacuum dispersion forces

LINDEL, HANSON, ANTEZZA, AND BUHMANN PHYSICAL REVIEW B 98, 144101 (2018)

of vacuum of thickness L can be found in Eq. (18) of [35]:

h * 252 (1) ;o (1) /o =y
F=—— dg dA - {5 ~IG (r.r,i&)]1+2V x LGV (r, 1, &) x V
2w 0 v C r'—r
=S%wie)
g2 a ;o 1 o <
—Tr| GV (r,r,i&) + V x G(r, v, i&) x V I). (B1)
C r—r

Here 9V is any infinite planar surface in the vacuum gap between the two planar bodies, and dA is its surface element, whose
sign depends on the body on which F acts. First, we want to calculate the 3 x 3 tensor S(l)(r, i&) from whose entries Sl(j1 ) (r,i&)
we obtain the surface force density f acting on body 1 using Eq. (B1) via

h R | . . . . .
= /0 dg 5 [SD(r.i8) = SWr i6) = SL(ri5)]ec + SL(r. i€)e, + SP(r. 6. (B2)

where we used dA = —dAe.. To find S(r,i£) we are going to calculate its different components step by step. That
means, in the following, we are going to calculate GVT (¢, r, w), GV (r, ¥, ) + GVT (', r, w), and V x [GV(r, ¥, w) +
<«
GYT(r', r, w)] x V' subsequently.
First, we rewrite the Green’s tensor given in Eq. (A1) by inserting the reflection matrices as found in Eq. (AS) and expanding
the scalar products to obtain

1 2| /K= , , r. , N o rt
G(])(I‘, I‘/, a)) — / d k| ea ei eeﬂ((zﬂrz) 00| _'_e(ierr ek(z+z )67 kL 00|
872 K 2| ; D} * 2 D,
1

o,0' o0’ o]
— ———
=,/ (k) =I1,, (kI)
-+ 4+ -
, L [ L b rror_
+e1eie”‘(‘ Z+20) E 705;7‘" +e el ¢TK(@mTH2L) E 7037"2” ] (B3)
01,02 g102 01,02 0102
N— ——— N— ———
=, (k') IV, (k)
. . , _ 1 ot
Here we have replaced k, = i, and the polarization indices are o, ¢’, o1, 0, = s, p. Furthermore, Dm o = (27 )40, refers to

components of the matrix 2* defined in Eq. (A4).
To obtain S(l)(r, i€), in the second step, we calculate G(”T(r/ ,r,i&). Because of the switching of r’ and r we have to

substitute k| — —k! to ensure that the term /X' *~™) stays the same. Using the fact that e — 7 and e — —e = —e for
k! — —Kk!, we therefore get
1 I oo ek _— / s
GV r,ig) = @/ d k”T D =177 [e7e” e D I (—K!) + 7 e L (—KI)
0,0
+e%e” e T (—K!) + e e e IV, (—k D] (B4)
Here we also relabel o <> ¢’ and introduce (—1)?7, given by
, 1 ifo =0,
(_1)0-0 = {_1 ifo # o', (BS)

As a side note, we want to mention here that by comparing Eqgs. (B3) and (B4), one finds that Onsager’s reciprocity, i.e.,
GV r, i) = GV(r, v, i&), holds if

(=1)°” Ry (kY = R, (k"), R =T 1L I IV. (B6)

Note that a similar expression has also been found in Ref. [39] for one-dimensional nanogratings. Nevertheless, in the setup
considered here Eq. (B6) is not satisfied, and hence Onsager reciprocity is violated. Continuing with finding an expression for
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S(l)(r, i£), we combine Eqgs. (B3) and (B4) and obtain

(r—r’)

ikl
GO r,i&) + GV, r i) = o f PRI Y (e e e (17 T (K + Lo (K1)
K

0,0’

+eZeq ¢ CH D [(— 1) Mg (k') + o (k)]
+e7e” e T (1) ML, (—k ) + I, (k1]
+eTe] e (1) IVorg (K1) + IV, (kD] (B7)
Next, we need to evaluate the curls. This can be done by realizing that the operators V and (€ reduce to V — iky and <€ —
—iky, where ky = k! + ice,. Using iks X ex = %epi, iki X epi = %esi, we find that V x Z[G(r, v/, i€)] x ¥ is

obtained from . [G")(r, ', i&)] by simply replacing all e — e5°'2(—1)° /c?, where & is defined by § = p and p = 5. We
can combine this result with Eq. (B7) to find

2 ek =) / ' "G G =3
sV(r,i&) = 85262 / &kl ——— D leTe” + el + (—1)°7 (eTe” +e” eD)lle oo (k) + P (k1))
o0’ _ Q“’
+e e +e7eT + (—1)77 (e7e” + e €)][Myo (k") + IV,rp (k]). (B8)
- Q(Z)

Here, in the last step, we substituted k! — —k! back in some of the terms to find the two tensor valued prefactors Q" and
Q@ corresponding to terms with odd and even numbers of reflections, respectively. To eventually be able to evaluate Eq. (B2)
we need to calculate the outer products in Q" and Q® in Cartesian coordinates. With the help of Eq. (A2) we find

, —1*k2 —iChoky, ik ik,
el = m —kkek, -2 ik, |, (BY)
FitkWuck,  Fitkhuck, — —(kh?
5 /czkﬁ /czkxky +i(k")2kk,
eflel = m 12k ky K2k +i(kVxck, |, (B10)
i (k"2kck,  Ei(k!Ykcky —(kh*
| k2 —kky O
ejel =elel = T —kky, k2 0], (B11)
0 0 0
eel =e'el = (ele}) = (ele’)” (B12)
Frckyk, :ka§ i(k1Yky
:ﬁ k2 dkk,  —i(Dk | (B13)
0 0 0

Comparing Eq. (B8) with Eq. (B2), we see that we need to evaluate the terms (Q%) — Q1) — 01))/2, 0%, and Q). Using
Egs. (B9)-(B13) and the dispersion relation (k)? — k2 = —£2/c?, we eventually find

(oM — oM — o) /2= o = 1) = (B14)
00 = 0? = (B15)
(02— 0® — 0@) /2= e <2 (B16)

2z xx yy SZ

Equation (B14) shows that all terms with an odd number of reflections do not contribute to the Casimir force, whereas Eq. (B15)
tells us that there is no lateral Casimir force, i.e., a nonzero x or y component of f. Finally, using Egs. (B2), (BS), and
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(B14)—(B16), we find the final result for the Casimir force density acting on body 1:

fz—é | dE / APk e I, (K1) + TV (k1) + T (K1) + TV, (KD, (B17)
i 9] 2 9]

Z‘ﬁf dg/ d"’f dkl ke TR (T R+ AT (D7) R e (B18)
T Jo 0 0

Note that this result differs from the one obtained in Ref. [35] only by the fact that in Eq. (B18) we cannot carry out the d¢
integral due to the ¢ dependence of the reflection coefficients, whereas in Ref. [35] the media were isotropic in the plane of the

surfaces and hence this integral simply gave a factor of 2.

In the nonretarded limit the reflection coefficients simplify significantly according to Eqs. (A28) and (A30), and thus Eq. (B18)

reduces to

2
f=
=l A AT

2
= 16713L3_/ df/ do L1;[r (6 (i8)]e;.

o TE 8"

I — rap & )rpp(i€)e 2L

(B19)
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ABSTRACT: We propose that chemically inert polymeric films
can enhance van der Waals (vdW) forces in the same way as
nanofabrication of biomimetic adhesive materials. For the vdW
adhesion of an ethylene-chlorotrifluoroethylene (ECTFE) film
on rough metal and dielectric substrates, we present a model

that combines microscopic quantum-chemistry simulations of

the polymer response functions and the equilibrium monomer—
substrate distance with a macroscopic quantum-electrodynamics
calculation of the Casimir force between the polymer film and
the substrate. We predict adhesive forces up to 2.22 kN/mm?,

where the effect is reduced by substrate roughness and for dielectric surfaces.

he discovery that van der Waals (vdW) forces are

responsible for the remarkable sticking properties of
gecko feet on dry surfaces' has inspired the nanofabrication of
biomimetic adhesive materials. Organorods” and nanopillars®
exhibit the flexibility of gecko-feet setae, hence providing close
contact with the substrate in order to enhance the vdW
attraction. Fundamentally, vdW forces are caused by quantum
charge-density fluctuations and arise whenever two neutral, but
polarizable, objects are brought in proximity. Unlike chemical
binding forces, they do not require immediate contact to ensure
notable attraction. However, their strong power-law decay with
increasing distance makes them most effective in micro- to
nanoranges. They have not only been measured with high
accuracy,” but have also been found responsible for stiction in
nanofabrication.” Measurements of Casimir—vdW forces
typically involve well-separated solid-state objects at distances
where a correct theoretical description requires accounting for
the retarded quantum electromagnetic field.® For plane metal
or dielectric surfaces, this is achieved by the Lifshitz theory.”
The effect of surface roughness on the interaction has been
studied experimentally and theoretically, both for obtaining a
more realistic understanding®” and in view of potential
applications of the lateral Casimir force arising between two
periodically corrugated surfaces.'’ A very recent study of the
force between corrugated surfaces has revealed discrepancies
between experiment and theory that remain unresolved to
date."! In all of the mentioned studies, the surfaces are well
separated, so that their corrugations are not intertwined and

ACS Publications  © 2017 American Chemical Society 5298
)~ 4

their interaction due to electromagnetic field fluctuations can
be studied by means of scattering theory.""

We propose to exploit the flexibility of a polymer film to
ensure close contact and hence high adhesive force on a solid
substrate. In particular, ECTFE is a partially fluorinated
polymer whose semicrystalline films have been experimentally
demonstrated to exhibit a resistance against permeation of
water'* and also high chemical resistance.”> Wettability
measurements of ECTFE in polar liquids have revealed a
considerable influence of vdW forces on the ECTFE—liquid
interaction.'® Our proposed setup of a such a polymer film
sticking to a solid surface operates in a very different regime
than the traditional Casimir setups. The polymer is expected to
come into close contact with the substrate so that effects of
retardation are negligible. The adhesion force per unit area
between two smooth surfaces separated by a distance z is hence
given by the nonretarded limit of the Lifshitz formula: f(z) =
—(C3/2%)e, with a coefficient”

c,= LZ f°° doli, g(iw) — 1 &,(iw) — 1
8z~ Jo g(iw) + 1 &(iw) + 1

(1)

Here, Li;(x) = Z,‘:‘:’lxk/ k® is the polylogarithm and &,(w) and
&,() are the dielectric permittivities at angular frequency @ of
polymer film and substrate, respectively. The Lifshitz formula is
originally expressed as an integral over real frequencies with the
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permittivities being strongly oscillating functions. For mathe-
matical convenience, we have used a Wick rotation to
equivalently express the C; coefficient as an integral over
purely imaginary frequencies I with @ > 0. The integrand is
then much easier to evaluate numerically, as it is a
monotonously decreasing function. To illustrate the use of
such imaginary-frequency integrals, we first quote the formula
for the closely related van der Waals potential between two
ground-state atoms

A2 4B2
dgl’lgl® G

A B 3
Eo + Eg aB

1
2,26 Z

U(ryg) = —
i 2477 1

2)

Here, rp is the distance between the atoms, and the sum
represents virtual transitions of atoms A and B from their
ground states to excited states I, k with transition energies Ej,
and Ejg, respectively. The respective dipole-matrix elements are
denoted as dfy. and df. The potential U(r,p) can be expressed
as an integral over frequency

3n ©
Ury) = ————— / dwa, (iw)og(iw)
AP 167%2rS, Jo AR 3)
where
, 2 Egldyl
aA(lw) = I 0A: 2 2
3 (Eg) + P )

describes the polarizability of atom A at imaginary frequencies
(similarly for atom B).

In eq 1 we have neglected the effect of thermal fluctuations
of the electromagnetic field and that of spatial dispersion. The
assumption of a spatially local response implies the use of
dielectric functions €,(w) and €,(w), which depend on the
wave vector k only via its absolute value |kl = @w/c. A spatially
nonlocal response and thermal effects combined have been
shown to modify the Casimir force by a factor of 2 at distances
larger than the thermal wavelength.'” At room temperature, the
thermal wavelength assumes a value of about 48 ym and is,
hence, much smaller than the distances considered here. The
effect of nonlocal responses has also been studied at smaller
distances where it was found that, depending on the model
used, the force may be increased or decreased on a percent
level."® Finally, we note that, for moderate roughness, one may
expect the polymers to adapt to the surface profile of the
substrate, so that the corrugated surfaces of the interacting
objects intertwine (see Figure 1).

Figure 1. Setup: One-dimensional periodic sawtooth corrugations.
The roughness is characterized by the mean distance between peaks,
2L, and their average height, h, related via the angle 6 = arctan(%).

5299

While the optical properties of common solid substrates are
well studied and tabulated," those of polymer species require
microscopic simulations. Periodic simulations of long polymer
chains packed in a box have been performed, see, for example,
ref 20. However, in order to reproduce vibrational frequencies,
polarizabilities, and polymerization mechanisms, careful inves-
tigations of monomeric or dimeric units are often applied
instead, where the molecular properties are evaluated by
quantum chemical methods®"** or via combined quantum and
molecular mechanical approaches.”® In the following, we will
estimate the total adhesive force of ECTFE films on different
substrates by combining macroscopic Lifshitz theory with
microscopic simulations of the polymer response function. We
begin by determining the polarizability of the polymer and the
equilibrium distance of its monomers from different substrate
media. Combining this information, we will determine the
maximum total adhesive force for perfectly smooth substrates
and finally study the effect of surface roughness on this force.

Let us start by determining the dielectric response of
ECTFE. Microscopically, it is encoded in the dynamical
polarizability a(iw) at imaginary frequencies. We are interested
in the average dielectric properties of a large ensemble of
ECTEE chains of various lengths and resort to a simple model:
we study the polarizability of simple ECTFE monomers and
represent the ensemble as a set of such monomeric units with
random orientations. We calculate the monomer polarisibilities
by means of combining quantum chemical methods®* >’ as
described in Supporting Information, A. To check the validity
of the assumption that the polarizability of the polymers can be
decomposed into those of single monomers, we compare
monomer and dimer polarizabilities. After averaging over
orientations, the isotropic polarizability of the dimer is almost
equal to twice that of the monomer (Figure 2), justifying our
model.

As a second microscopic ingredient, we require the
equilibrium distance between the ECTFE polymer and the
substrate, as determined from a competition between local
chemical binding and long-range dispersion forces. We evaluate
the covalent interactions between ECTFE monomers and
substrate surfaces by means of czluantum chemistry, as described
in the Supporting Information.”* ' Beginning with the case of
a (001) silicon surface with 2—1 reconstruction, three starting
positions of monomer relative to the surface are chosen, leading
to three different optimal structures for each case. The
corresponding equilibrium distances are displayed in Figure 2.
They range from 2.6—3.7 A for all cases, justifying the use of a
single parameter for further modeling: a rotationally averaged
value for the equilibrium surface—monomer separation, given as

1
a= g(4rorientationl + Torientation 2 + Torientation 3) (5)
Due to sterical reasons and possible surface defects, the
monomer units in the polymer chain will have a certain
distribution of distances to the silicon surface. To account for
this effect, the dependence of the binding energy on the
distance between monomer and cluster has been studied. We
find that the interaction in all cases is weak, with binding
energies being close to zero, because no stable chemical bonds
are formed. The binding energy rapidly decreases with the
increase of distance between the monomer unit and the surface.
We conclude that the total adhesion force is dominated by
dispersive binding. We assume the presence of similar
orientations for surface—monomer complexes with other
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Figure 2. ECTFE monomers: Upper panel: Dynamical polarizabilities
a(iw) of ECTFE monomer and dimer units at imaginary frequencies.
After averaging over orientations, the isotropic polarizability of the
dimer is almost equal to twice that of the monomer. This justifies the
assumption that the polarizability of the polymers can be decomposed
into those of single monomers. Lower right panel: Three-dimensional
structures corresponding to the two conformers of the ECTEE
monomer and the dimer. Lower left panel: Three starting positions of
monomer relative to a (001) silicon surface with 2—1 reconstruction
and corresponding equilibrium distances. The latter are in a of 2.6—3.7
A for all cases, justifying the use of a single parameter.

substrate materials. To transfer our results to different
substrates, a correction accounting for size-effects is introduced
(see Supporting Information, B). The obtained equilibrium
distances for all substrates are summarized in Table 1.

Table 1. Adhesion Forces: Equilibrium Distances, C;
Coefficients, and Casimir Forces per Unit Area (Obtained
from Exact Theory and Pairwise Approximation) for ECTFE
Films on Various Substrates”

G CEY o
substrate a(A) (mPum®) (mPum®) f(N/mm?) (kN/mm?)
silicon 2.48 22.5 26.5 1.48 1.74
dioxide
silicon 295 382 50.9 149 1.98
gold 3.16 512 68.4 1.62 2.17
steel 293 55.9 76.1 222 3.03

“Silicon dioxide, which has the weakest C; coefficient, has the smallest
equilibrium distance, thus, considerably enhancing the total force.
Also, the fairly large equilibrium separation of gold has had the effect
of reducing its total adhesion force, which is now more similar to that
of silicon rather than that of steel. Therefore, both the force coefficient
and equilibrium separation are equally relevant in determining the
total force.

We chose to study four different substrate materials that are
widely used: silicon, silicon dioxide, gold and steel. To obtain
the required permittivities at imaginary frequencies as featured
in eq 1, we start from optical data, as tabulated in ref 19, and
apply a Kramers—Kronig transformation. For the two metals,
the hence-obtained curves are well fitted with an asymmetric
two-resonance product model that combines a Drude term for
the response of the conduction electrons with a Drude-Lorentz

5300

term for that of the valence electrons. For the dielectrics, we
use additive single- or two-resonance Drude-Lorentz models
instead. The obtained fit parameters can be found in Table III
of section C of the Supporting Information. For the ECTFE
film, we use the Clausius-Mosotti formula®” that relates its
permittivity € to the simulated polarizability: an/e, = 3(e — 1)/
(& + 2), where 7 is the number density of particles. In Figure 3,
we display the dimensionless polarizability 3(¢ — 1)/ (e + 2) for
all materials under study.

The figure reveals that the polarizabilities of the dielectrics
ECTEFE and silicon dioxide show a similar response in terms of
the imaginary-axis polarizabilities. On the other hand, the
metals gold and steel and the metalloid silicon all display a high
static polarizability, with the polarizability of gold dropping
fastest with increasing frequency. As the dispersive adhesion
force depends on the integrated polarizabilities, one may hence
expect this force to be significantly smaller for gold than for
steel and silicon.

Using the optical data, we can now evaluate the dispersion
force coefficients (eq 1) for ECTFE films on each of the four
substrate materials. Using the equilibrium separations a
between ECTFE monomers and the various substrates, we
can hence determine the respective adhesive dispersion force f
= f(a). The results are shown in Table 1, where for comparison,
we have also given the approximate values obtained from a
pairwise-additive approach. The findings are illustrated in
Figure 3 which displays the dispersion force as a function of
separation with the respective equilibrium separations
indicated. One notes that silicon dioxide, which has the
weakest force coeflicient, has the smallest equilibrium distance,
thus, enhancing the total force. As a result, the series silicon
dioxide—silicon—gold—steel of increasing adhesive dispersion
forces retains its order, but the relative differences between the
substrates are less pronounced than they are for the force
coeflicients. The difference between forces for silicon dioxide
and steel is a factor of 1.5. In addition, we note that the large
equilibrium separation of gold has had the effect of reducing its
total adhesion force, which is now more similar to that of
silicon rather than that of steel. To summarize, the force
coefficient and equilibrium separation are both equally relevant
in determining the strength of the total adhesion force.

Realistic substrates exhibit roughness. We here address the
question how this influences the adhesive force. As a model
system, we study the one-dimensional periodic sawtooth
corrugations as depicted in Figure 1. The roughness is
characterized by the mean distance between peaks, 2L, and
their average height, h, related via the angle 6 = arctan(L/h).
We assume the polymer film to be sufficiently elastic such that
its shape adapts to the substrate surface. The effect of
roughness will be cast into a correction factor A which relates
the average force per unit area of a rough surface to that of a
perfectly smooth one via f(a,L,0) = A(a,L,0)f(a,L,x/2). The
roughness exhibited by real materials can be accounted for via
the proximity force approximation (PFA).**> Here, irregular
geometries are approximated by piecewise parallel ones, each
subject to the Lifshitz force per unit area for infinitely extended
plates. One way to treat the peaks of our model is to
approximate their profile by small plane-parallel steps. The
effective Casimir force is then obtained from eq 1 and it carries
a correction factor

A0) =sin*0<1 (6)
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Figure 3. Adhesive force: Left: Dimensionless polarizabilities of all materials studied. From top to bottom: steel (blue), gold (orange), silicon
(green), silicon dioxide (red), and ECTEE (black). The polarizabilities of the dielectrics ECTFE and silicon dioxide show a similar response. On the
other hand, the metals gold and steel and the metalloid silicon all display a high static polarizability. Right: Total adhesive forces f per unit area as a
function of the ECTFE—substrate separation. Solid and dashed lines correspond to exact theory and pairwise approximation, respectively. Diamonds
indicate the respective equilibrium separations for the various substrates. Colors: steel (blue), gold (orange), silicon (green), silicon dioxide (red).
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Figure 4. Surface roughness: Roughness correction 4 which relates the average dispersion force per unit area of a rough surface to that of a perfectly
smooth one via f(a,L,0) = A(a,L,0)f(a,L,z/2). Shown in the figure are three different approximations: first, the Hamaker approximation (solid lines),
with the parameter a/L = 0.01 (green, uppermost solid line), 0.1 (red, middle solid line), and 1 (blue, lowest solid line); second, we show the tilted-
surface proximity force approximation (dashed lines) with the same choices of a/L; and third, we include the stepwise proximity force approximation

(dot-dashed line).

ECTFE

Figure S. Complete, partial, and no contact. The left panel depicts the ideal of a perfectly elastic polymer film, which is completely pulled into the
substrate’s asperities by the adhesive force and hence is in perfect contact with the substrate. The middle panel instead depicts partial contact while
the right panel depicts the extreme of a perfectly inelastic film, which does not give in to the substrate’s asperities at all and therefore has only

pointlike contact with the latter.

In this simple treatment, 4 only depends on & and becomes
arbitrarily small for very rough surfaces. This may be
understood from a reduced contact due to enhanced distance
in the z-direction as the ECTFE film gets pushed away from the
substrate for steep corrugations. An alternative way of
employing the PFA is to decompose the model peaks into
their tilted parallel sections. The length of such sections equals
L/sin @ — a/tan 0. Combined with the tilting factor, sin @ this
leads to

a
AMO,L,a) =1 T cosf <1 @)
For strong roughness, the effective force does not necessarily
vanish but rather depends on the ratio of equilibrium distance a
to mean separation of peaks 2L. In this model, the roughness-
reduction of the force is due to a reduction of contact area. The
angle-dependence of A for both models is illustrated in Figure 4.

5301

As an alternative method, we study the effect of roughness via
the Hamaker approximation,** which reproduces the two-body
contribution to the geometry-dependence (see Supporting
Information, D). The corresponding result, also displayed in
Figure 4, agrees with the tilted-surface PFA for small values of
a/L. For large values of a/L, it lies in between the predictions
from the stepwise-profile PFA and the tilted-surface PFA. We
note that 4 < 1 in all cases, meaning that roughness always
reduces the adhesion force.

Finally, we want to address the assumption of complete
contact between the ECTFE film and the substrate, which was
made throughout this work. As depicted in Figure 5, complete
contact means that the ECTFE film is perfectly pulled into the
substrate’s asperities by the adhesion force and hence is
nowhere separated further than its respective equilibrium
distance a from the roughness peaks of the substrate, regardless

DOI: 10.1021/acs.;langmuir.7b01381
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of the roughness profile. This corresponds to the ideal case of a
perfectly elastic polymer film. The opposite extreme of a
perfectly inelastic film would instead not adjust at all to the
substrate’s roughness and hence have only point-like contact
with it. This effect evidently affects the strength of the van der
Waals adhesion between the ECTFE film and the substrate.*
Our predictions for such forces as presented in Table 1 only
hold for the case of complete contact. This is motivated by the
process of applying the ECTFE film to the substrate, during
which the film is actually heated, causing it to adopt the shape
of the roughness of the substrate as its zero-stress configuration.

Nevertheless, one may consider the situation in which no
heating is performed. Whether the ECTFE then adjusts to the
shape of the substrate depends on the elastic modulus ¢ of
ECTFE on the one hand and the adhesive force per area f
between ECTFE and the respective substrate on the other
hand. The elastic modulus is defined as the ratio between the
applied stress f and the resulting strain 6!/1 of the material to
which the stress is applied,

f

c=——
5171 ®)

Here, 0l refers to a change in length. Now, at any point at a
lateral distance x from a roughness peak of the interface, there
is the competition between elastic energy lost,

2
of «x
Z(tanﬁ)

el

&)
and adhesive energy gained,
1 1
Eg =3Csinf| 5 - —————
db } (az (x cos 0 + a)* (10)

when bending into the substrate’s asperities. Depending on
which of the two dominates, ECTFE at a lateral distance x from
a peak does or does not stick to the substrate. For the simplified
geometry considered here, this leads to a correction or filling
factor k = /L% with & being the distance x from a peak at
which loss and gain balance. Such filling factors are given in
Figure 6 for the elasticity modulus ¢ = 1655 MPa of ECTFE*®
and micron-scale roughness, L = 10~° m. Such filling factors
depend on the respective C; coeflicient, the equilibrium
distance a, roughness angle 6, and absolute roughness scale
L. This figure illustrates that from @ = 10° onward, perfect
contact may be presupposed for all substrates considered here.

10
¥ 038
8

S 06

0.4

Filling F

0.2
0.0

O (degrees)

Figure 6. Filling factor and critical angle: Filling factors for steel
(blue), gold (orange), and silicon/silicon dioxide (green/red). The
elasticity modul ¢ = 1655 MPa of ECTFE™ and micron roughness, L
= 107° m, were used. The filling factors depend on the respective C,
coefficient, the equilibrium distance g, roughness angle 6, and absolute
roughness scale L.
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To conclude, we have shown that chemically inert polymer
films such as ECTFE can be used to achieve high van der Waals
adhesion forces on dielectric or metallic substrates. We have
predicted these forces by combining quantum-chemistry
simulations of the polymers microscopic properties with a
macroscopic quantum electrodynamics calculation of the
Lifshitz force between polymer film and substrate. A simple
model of one-dimensional corrugations implies that substrate
roughness will diminish the adhesion force. This model
operates in a new regime of distances being comparable to or
even smaller than the length scales characterizing the
corrugations. The predicted forces are based on the assumption
that the polymer film is sufficiently flexible to follow the
substrate surface profile and achieve contact distances equal to
those found for monomers. They thus have to be regarded as
an upper bound to the forces found on practical implementa-
tions. To get a more precise estimate of the latter, further
simulations of the microscopic structure of the polymer film
will be necessary.
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We calculate the Casimir—Polder frequency shift and decay rate for an atom in front of a nonreciprocal medium
by using macroscopic quantum electrodynamics. The results are a generalization of the respective quantities
for matter with broken time-reversal symmetry which does not fulfill the Lorentz reciprocity principle. As
examples, we contrast the decay rates, the resonant and nonresonant frequency shifts of a perfectly conducting
(reciprocal) mirror with those of a perfectly reflecting nonreciprocal mirror. We find different power laws for the
distance dependence of all quantities in the retarded and nonretarded limits. As an example of a more realistic
nonreciprocal medium, we investigate a topological insulator subject to a time-symmetry-breaking perturbation.
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I. INTRODUCTION

The Casimir-Polder force [1], like the van der Waals
and the Casimir forces [2], is a dispersion force [3,4]. This
weak electromagnetic force was studied by using a variety
of different methods. The lifetime and the frequency shift of
an atom in its ground state or excited state near a flat surface,
which causes the Casimir—Polder force, are analyzed by using a
quantum-mechanical linear-response formalism in Refs. [5,6].
This is exemplified for a perfect conductor and a metal plate.

The Casimir—Polder force can also be viewed as result
of noise currents composed of noise polarization and noise
magnetization in matter, which act as a source for a quantized
electromagnetic field. These fields can be expanded in terms of
the classical electromagnetic Green’s tensor for the Helmholtz
equation [7-12]. By computing the interaction of an atom
with this field one can compute the effect of material bodies
on the internal properties of the atom. The Casimir—Polder
force is a result of the level shift of the atom induced by this
field. In this theoretical framework, materials are described
macroscopically by electromagnetic physical quantities and
therefore this approach is known as macroscopic quantum
electrodynamics (QED) [3,4,13]. Casimir—Polder potentials
have been investigated for graphene [14], metamaterials
[15,16], and Rydberg atoms near metallic surfaces [17].

In bi-isotropic media electric and magnetic fields are
coupled to each other and the general expressions of the
constitutive relations read D = ggex E + %E +H and B =
%{*E + woM x H (where x denotes a spatial convolution)
with the cross susceptibilities § and €. If a material shows
imaginary cross susceptibilities, the material is called chiral
[18,19]. The radiation of a dipole in proximity to a thin [20] and
a thick chiral layer [21] has already been studied. References
[22,23] study the interaction between a chiral molecule in
front of a chiral half space [23] and a chiral nanosphere [22].
The decay rate of spontaneous emission is computed in a
direct way by using the electric and magnetic dipole moments,
their induced counterparts, and the respective fields.

A bi-isotropic medium is called nonreciprocal if the mixing
parameters have a real-valued contribution, e.g., a topological
insulator which breaks time-reversal symmetry. In the theory
of macroscopic QED, Lorentz’s reciprocity principle stating

2469-9926/2017/95(2)/023805(11)
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the reversibility of optical paths, i.e., the symmetry with
respect to an exchange of positions and orientations of
sources and fields, holds for reciprocal material (Lorentz
reciprocity being a particular case of the Onsager reciprocity
from statistical physics [24]). Thus these materials preserve
time-reversal symmetry. To study Casimir—Polder potentials
for nonreciprocal media, which violate Lorentz’s reciprocity
relation [25], the theory of macroscopic QED was generalized
to include these cross susceptibilities [26]. In this paper, we
investigate the Casimir—Polder frequency shift and decay rate
for a nonreciprocal medium.

Topological insulators [27-29] are time-symmetric ma-
terials which are characterized by an insulating bulk and
protected conducting surface states and have been observed
in three-dimensional (3D) materials which exhibit sufficiently
strong spin-orbit coupling to induce band inversion [30]. These
materials can be used to realize axion media. To do this
one needs to introduce a time-reversal-symmetry-breaking
perturbation to the surface, either via ferromagnetic dopants
[31,32] or an external static magnetic field [33]. Such a
perturbation opens a gap on the surface, converting the surface
conductor into a full insulator and leads to a nontrivial
electromagnetic response—in particular the electric and the
magnetic fields E and B are able to mix [31].

This magneto-electric effect can be described by adding an
axion Lagrangian density term .Zyon = /(412)0(r,w)E - B
to the usual electromagnetic Lagrangian density [34]. Here,
« is the fine-structure constant and 6(r,®) is the space- and
time-dependent axion coupling. The axion coupling 6 vanishes
in a trivial insulator but takes odd integer values of 7 in
a time-reversal-symmetry-broken topological insulator, with
the value and sign of the integer related to the strength
and direction of the time-symmetry-breaking perturbation.
Physically, this describes a quantum Hall effect on the surface
of the topological insulator [31]. The lowest Hall plateau
leads to an axion coupling of +x. Changing the size of the
perturbation will not change the axion coupling until the next
Hall plateau is reached, whereupon the axion coupling will
increase to +3m. Further changes to the perturbation would
result in even higher axion couplings as the relevant Hall
plateaus are reached. It has been previously shown that the
mixing of the electric and magnetic fields by the axion coupling

©2017 American Physical Society
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has a significant effect on the Casimir force [35] and, as we
will show in Sec. IV, it also modifies the Casimir—Polder shift.

Optical properties, e.g., reflective and transmissive proper-
ties, Fresnel formulas, Brewster angle, and the Goos—Hanchen
effect of these materials have been studied theoretically in
Refs. [36,37]. Reference [38] derives electric fields and dipole
moments for stratified isorefractive Tellegen media (purely-
real-valued coupling parameter between electric and magnetic
field) with the Green’s tensor method. One consequence
of isorefractive media is the parallelism of the incident
and transmitted beam. As for layered topological insulators
with a time-reversal-symmetry-breaking perturbation, poten-
tial applications are broad; for example, a waveguide that
induces polarization rotations due to the magneto-electric
effect and mixes the electric and magnetic induction fields
at the material’s surface [39].

In our context, Casimir repulsion is of specific interest, e.g.,
the Casimir repulsion for magnetodielectric metamaterials
predicted in Refs. [40-42]. Specifically, repulsive dispersion
forces for a setup containing topological insulators are dis-
cussed in Ref. [35], such as Casimir forces between three-
dimensional topological insulators. Based on this approach, it
is shown in Ref. [43] that there is a critical band gap where
the Casimir force switches from attractive to repulsive. The
influence of unusual material properties, such as those of the
topological insulator, on dispersion forces is emphasized in
the recent review [44]. The Casimir—Polder interaction be-
tween an atom and a graphene surface with an applied magnetic
field is studied in Ref. [45]. The authors observe plateau-like
discontinuities of the Casimir—Polder interaction energy for
specific values of the magnetic field and at low temperatures.
This effect is traced back to the quantum Hall effect and is
thus closely connected to our approach. We are going to apply
the extended theory of macroscopic QED for nonreciprocal
media to calculate frequency shifts and atomic decay rates of
an atom in front of a topological insulator by directly using
the electromagnetic properties derived in Ref. [46].

This paper on the Casimir—Polder shift and decay rate in the
presence of nonreciprocal media is organized as follows: The
time-dependent electric field is calculated in the framework
of macroscopic QED for nonreciprocal media in Sec. II.
This result is reached alternatively by a direct quantization
of the noise current or by expressing noise polarization and
magnetization through electromagnetic response functions
and is needed for studying the internal atomic dynamics.
This is described in Sec. III where the modified equations
for the frequency shift and decay rate for nonreciprocal
media are presented. In Sec. IV, the results are applied to
a perfectly reflecting nonreciprocal mirror and a topological
insulator described by an axion coupling. In this context, we
distinguish between a pure nonreciprocal topological insulator
and material properties similar to Bi,Ses. Finally, we discuss
the possibility of switching between an attractive and a
repulsive force.

II. THE TIME-DEPENDENT ELECTRIC FIELD

A nonreciprocal medium violates time-reversal symmetry
and, hence, the Lorentz reciprocity principle for the Green’s

PHYSICAL REVIEW A 95, 023805 (2017)

tensor [25] does not hold
G'(r.r,») # G(r,r,»). )

This necessitates new definitions for the real and imaginary
parts of the Green’s tensor G

RIG(r,1)] = %[G(r,r/) + G, ), )

1
I[G(r,r)] = E[G(r,r’) -G 0. 3)

Thus the violation of Lorentz’s principle calls for a modi-
fied mathematical description of macroscopic quantum elec-
trodynamics (QED) for nonreciprocal media. Whereas the
framework of macroscopic QED is described in Refs. [3,13],
the modified approach for nonreciprocal media is outlined in
Ref. [26]. The internal dynamics of an atom with reciprocal
media is discussed in Refs. [4,8].
The general expression for the electric field reads

Er) = f ” do[E(r,») + Ef (r,w)], 4)
0

with frequency components in Fourier space

E(r,w) = inow[G * jN](r,®)
= iuow/ &r'G(r,r )  jnr ), &)

where » denotes a spatial convolution. The noise current
density jx is governed by the quantum fluctuations occurring
in the medium and its average vanishes (jN> =0. jN can either
be quantized directly, as is outlined in Sec. IL A, or it can be
represented by noise polarization Py and magnetization My
and the respective electric and magnetic fields are quantized
separately yielding creation and annihilation operators for each
field. We dedicate Sec. II B to the second method using electric
and magnetic response functions.

To obtain an expression for the time-dependent electric field
(4), we have to find a solution for the time-dependent creation
and annihilation operators first. This procedure is carried out
both for a noise-current-based schema and a polarization-
magnetization-founded method. The Hamiltonian H for the
atom-field system is composed of the atomic part Hy, the field
part ﬁp, and a contribution for the atom-field interaction H AF:
H = I:IA + I:Ip + I:IAF. The atomic part I-AIA,

ﬁA = Z EnAnm (6)

n

incorporates the eigenenergy E, for each atomic energy level
and the atomic flip operator A = Im){(nl. Resembling a
harmonic oscillator, Hr comprises the integral over all the
frequency-dependent number operators of the field-medium
system and can be cast in the two aforementioned ways; cf.
Secs. IT A and II B. The interaction Hamiltonian FIAF, which
couples the atomic dipole to the electromagnetic field, reads

I'}AF = _a : l,:\4‘(I.A) = - Z Amndznn : E(rA) (7)
drnnA;nn~

ra is the position of the atom. Since Ha commutes with the
field operators, only the commutation relations for the field

and contains the electric-dipole operator d = >

m,n

023805-2
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Hamiltonian Hr and the interaction Hamiltonian Hp have to
be studied to find the expression for the electric field (4). The
field operators’ equations of motion will be solved in the two
different ways and inserted into Eq. (5), thus giving a final
expression for the electric field in the presence of an atom.

A. Electric field in noise-current-based schema

In this first approach, the noise current is quantized directly
by expressions for the field operators. Ohm’s Law in frequency
space,

jin(r,®) = [Q* E](r,0) + jn(r,o), (8)

describes the effect of the electric field E(r,®) on a linearly
responding medium where Q is the conductivity matrix.
Hence, the Helmholtz equation reads

2
[V XV x —(:—Z]G(r,r/,w) — i now[Q * G](r,r' ®)

=6 —-r). 9)
This equation is formally solved by the Green’s tensor G with
G — Ofor|r—r'| = oo.

We quantize the noise-current density jy in Eq. (5) directly
by writing it in terms of creation and annihilation operators f'

and f
A /10) A
INrw) =,/ ;[R*f](r,w), (10

where R is related to the real part of the conductivity tensor Q
[R+R](r,r,w) = RIQE.r',0)]. (an

The Heisenberg equation of motion for the annihilation
operator f

A 1 . A
f(r,w) = E[f(r,w),H], 12)
i
upon using the field Hamiltonian Hp,
A o0 AL ~
Hp =fd3r/ dohot'(r,0) - f(r,0), (13)
0

and the interaction Hamiltonian Hap (7) by using Eq. (5),

X o hw .
Hpp = — Z dwi Mo@ ;Amnd)nn
0

x {[G * R*f](rs,w) — [G* * R* x t1|(rs, )}, (14)

gives the solution of the annihilation operator f

P _—iw(t—t)§ Ho® hi’ to
for,m,1) =@ f(r,w)—{——ﬁ Ny = mz ; dt

x e =[G x RI*T (4,1, @) - dppApn.  (15)

Substituting the results into Eq. (10) and using Eq. (11) and
the expression

ZIG(r,r,®)] = 1ow[G * R[Q] * G ](r,r @),  (16)
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leads to an expression for the electric field in nonreciprocal
media

) _ R LLo@? t
E(r,w,t) = e " 0F(r @) + i > / dr
m,n Y10

T

x e TG A, @) dpp A, (17)

which differs from the usual expression for reciprocal media
only by the definition of the imaginary part of the Green’s
tensor (3) [4].

B. Electric field in polarization-magnetization-based schema

The components of the electric field E(r,w) can also be cal-
culated in terms of electric and magnetic response functions,
i.e., polarization and magnetization [26]. The constitutive
relations for the electric displacement field D and the magnetic
induction field B are given by [26]

N N 1 PN 1 N
D=¢gexE+ -§xH+Py+ —-§+My, (18)
c c

. 1 N N .
B:EC*E'f'MOH*H"‘MO”*MN, (19)

where the tensor € is the permittivity, M is the permeability and
§ and G represent the magneto-electric cross susceptibilities.
The noise polarization Py and noise magnetization My form
the noise current jy

jN(r,w) = —iwlA’N(r,w) + ? X MN(r,w)

R b M%)
=(—iw, Vx) (MN(r,w)). (20)

The noise polarization and noise magnetization can be ex-

pressed in terms of the creation and annihilation operators for
the electric and the magnetic fields f'e, fl, fm, and ffn

Py /A f.
(MN) = /;%’ * <?m>' @1

The Green’s tensor G from Eq. (5) solves the respective
Helmholtz equation

iw
—po(—iw, %)*/f*(e )*G=6, 22)
V x
with the matrix

(23)

VY p!

<80(€— Exp'x0) 5;)

Zy Mo

The Helmholtz equation reduces to the standard form [3] if all
cross susceptibilities are set to 0. The tensor Z is related to
the matrix .# via

RBx T =TI[.H). (24)

The conductivity matrix Q can also be expressed in terms of

M

1 0 ]
o tin S5 4)](%)
(25)
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Calculations of the equations of motion of the creation and
annihilation operators require the field Hamiltonian Hp,

A= )" / d*r f wdamf}(r,w)-ﬁ(r,w), (26)
0

A=e,m

and the interaction Hamiltonian Hap (7). Inserting Eqgs. (4),
(5), (20), and (21) into Eq. (7) enables us to solve the linear
and inhomogeneous differential equation of the field operators

B0\ i (o) | How \/E / 0o
(f'm(r,w,t)> = i\'m(rs(‘)) + h T ;; 0 di
X [G* (—iw, V x) * 21T (r4,1,0)

X eiiw(tit,) : dmnAmm (27)

which can be inserted into Egs. (21), (20), and (5) again; After
using Eqgs. (25) and (16) again, the final expression for E(r,®)
yields

. . . Ho®? ! . ,
Er,w,1) = o) + i Z / dt' e~ iet=1)
T fo

X I[G(F,FA,Q))] : dm;zAmr1 (28)

and agrees perfectly with the result from Sec. II A [Eq. (17)].

III. INTERNAL ATOMIC DYNAMICS: FREQUENCY
SHIFT AND DECAY RATE

The internal atomic dynamics can be described by the
Heisenberg equations of motion for the atomic flip operator

A

1 . A 1 . o 1 . N
Apn = —[Apn-Hl = —[Apn, Hal + —[Ann, Harl, (29)
in in ih

which includes only the atomic Hamiltonian H, and the
interaction Hamiltonian Hap because the field Hamiltonian Hy
commutes with the atomic flip operator. This approach follows
the procedure for a reciprocal surface outlined in Ref. [4] and
is now extended to nonreciprocal media [26].

This leads to

A . A i &
Apn = 1@ Apn + P Xk:/(; dw

X [(Ainkdnk - Akndknz) : l::(I'A 7"))
+ By, 0) - (A — dinAr)]. (30)

A is dominated by oscillations with frequencies ®,,, =
@pn + 0@y, Where ®,,, is the atom’s eigenfrequency and
8@y, 1s the shift owing to interaction with nearby material
bodies (Casimir—Polder shift). The electric field is given in
Eqgs. (17) or (28). The time integral in the electric field can be
formally evaluated in the Markov approximation where we ne-
glect the slow nonoscillatory dynamics of the atomic flip oper-
ator Amn during the time interval zy < ¢’ < ¢ and set Am,, () ~
expli @, (t' — 1A (1), where we have anticipated the re-
sult @,,, = —®,;,. In the long-time limit + — oo the time
integral reduces to Apn(0) ft: dt’ exp[—i(@ — @)t — t)] ~

Apn O 8(@ — @) — i P [(@ — @pp)], Where P is the
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Cauchy principle value and the limits of the frequency integral
will lead to the appearance of the Heaviside step-function ©.
By defining the coefficient

Cmn = %Q(&)nm)d)imI[G(rAsrA’&)nm)] . dmn

o 1
-2 f do————@*T[G(ra,r7,0)] - dyy,
h 0 ® — @y

€2V

Eq. (30) can be cast into the form
A o [ o
Amn(t) :iwmnAnm(t)'i‘th:'/o dw

x (e T[4, (O — Agy(1)din] - E(ra, @)
+ TR (rp @) - [dug Ak (1) — dign Aga (]}
- Z[dnk - CrrA (1) — diy - CyAp (1))

k.1

+ Y M- CyAp(t) = di - CHALD)],  (32)
k.l

where we have used the identity Z[G*(ra,ra,)] =
I[GT(rA,rA,w)], which can be derived from Eq. (3).

Next, we take expectation values of Eq. (32) and assume
the electromagnetic field to be prepared in its ground state
at initial time #, which implies E(r,)|{0}) = 0. Therefore,
the free terms of the electric field E(r,w) and ET(r,w) do not
contribute to the dynamics of the average value of the atomic
flip operator and are discarded.

Since we assume the atom to be free of quasidegenerate
transitions, the set of differential equations for the atomic flip
operator’s expectation value can be decoupled. Moreover, the
atom is unpolarized in each of its energy eigenstates, d,, =
0, which is guaranteed by atomic selection rules [4]. As a
result of these assumptions, the fast-oscillating off-diagonal
flip operators decouple from the nonoscillating diagonal ones
as well as from each other [4].

By making use of Eq. (3) we find that the two terms d, -
I[G(I'A,I'A,(O)] . dkn = I[dnk : G(rA,rA,w) : dkn] and dkn :
Z[G (ra,ra,@)] - du = Z[d,s - G(ra,rs,®) - dg,] are equal
and real.

With the help of these relations we identify the decay rate

_ 210 "

Fnk = Twnkz[d"k : G(rA 7rA7&)nk) . dkn] (33)

and the frequency shift

Swnk_—ﬂy dw @’
wh 0 ® — Wyk
x Id,y - GV (ra,ra,0) - diy . (34)

Here, the Green’s tensor G has been split into a bulk part G

and a scattering part GV, The Lamb shift due to the free-
space Green’s tensor G is already included in the transition
frequency ®,,,, which refers solely to the atom and does not
take the material properties of surrounding matter into account.
The remaining frequency shift stems from the presence of
electromagnetic bodies around the atom.
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Finally, the expectation value for the atomic flip operator
for the nondiagonal terms yields

A A 1 A
(Amn(t)) = i(‘)mn<Amn([)) + Z <_§Fnk_iawnk> (Amn(t»
k

+ Z <_%ka =+ i8wmk) (Amn(t))' (35)
k

We define éw, =) 8w, and [, =), _, Ty—the ©
function in Eq. (31) determines the order of summation
indices—and the shifted transition frequency as

Opp = Opp + Swm - Swns (36)

which verifies our previous assumption &,,, = —®,,. Thus
Eq. (32) for the diagonal terms has the simple form

(Aun®) = ~To(Au@®) + Y TinlAu@). 37

k>n

Since the shifted frequency @, appears in Sw,; itself, the
frequency shift is given as a self-consistent result from the
implicit equation.

The frequency shift (34) can be simplified further by making
use of the definition of the imaginary part (3), the Schwarz
principle which is still valid for nonreciprocal media,

G*(rs,ra,w) = G(ra,ra, —o"), (38)

and a substitution ® — —w in the second integral having its
origin in Eq. (3). The integral contours along the positive and
negative real axes have one pole each and are evaluated in
the complex plane. The path along the quarter circle does not
give a contribution because limy, o G (r,r,@)®?/c? = 0.
The part along the imaginary axis leads to the nonresonant
frequency shift

nres __ Ho OO %-3 (1) .
® e dé ——Z[du - G (ra,T4,i8) - di]

nk _ﬂﬁ 0 52-{-(&)",(
_ @ 0 Ezd)nk
Tl’ﬁ 0 52 + (:);21k
x Rldy - GV (ra,ra,i8) - dil, (39)

with a Green’s function G with imaginary frequency @ —
i&. This expression resembles the frequency shift of the
Casimir—Polder force for an atom in its ground state [3].
It comes from the exchange of virtual photons between the
atom and the material body. This entirely quantum-mechanical
interpretation can be extended for an atom in an arbitrary state.
The matrix-vector product of the Green’s tensor and the dipole
moments is real for a reciprocal medium and therefore only
the second contribution remains in this case.

The evaluation of the poles gives the resonant contribution
associated with real-photon emission and a real-frequency
expression @,

o = —%aikn[dnk GO T @) di]. (40)

In case of the resonant frequency shift, the Green’s tensor G
in Eq. (40) contains discrete frequencies for the real atomic
transitions to a lower energy state, which can only occur for
excited atoms and is related to real exchange photons.
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FIG. 1. Sketch of an atom in front of a medium with electric and
magnetic properties and an axion coupling. The direction of incoming
parallely polarized light e, and perpendicularly polarized light e, are
shown.

The sum of the resonant and nonresonant frequency shifts
dw, over all indices k can be identified with the total position-
dependent Casimir—Polder potential. Its derivative with respect
to position is the Casimir—Polder force between the atom and
the nonreciprocal medium, which is caused by the atom’s level-
shift due to the body’s presence.

IV. APPLICATIONS AND RESULTS

Having derived expressions for the atomic rate of spon-
taneous decay (33) and nonresonant and resonant frequency
shifts [Egs. (39) and (40)], we contrast a perfectly reflecting
nonreciprocal mirror with a perfectly conducting mirror.
Afterward we compare this to a topological insulator from
Ref. [46]. Figure 1 shows a sketch of an atom in front of
a medium having electric, magnetic properties and an axion
coupling. The scattering part of the Green’s tensor G of a
single planar surface has the form [46]

YR 2 L
G (r,r,w)_gfdkka Zr(m/

O:S,pa":s,p
P - L (rant
% e0+ea,_ezk (r r)ezk (Hn.)’ 41)

with the two unit vectors e, and e, _ representing the
polarizations of incident (¢”) and reflected waves (o). The
reflective coefficient r, ,+ takes the mixing of the incoming and
outgoing polarizations o’ and o into account. The indices p and
s refer to parallel or perpendicular polarization, respectively.
k! represents the parallel component of the wave vector, k* is
its perpendicular component, and z is the vertical distance to
the surface.

According to Curie’s principle a system consisting of a
crystal and an external influence, each having a specific sym-
metry, only maintains the symmetries that are shared by both
the crystal and the external influence [47]. Hence our choice of
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dipole moments must be such that the atom is sensitive to the
violated time-reversal symmetry of a perfectly reflecting non-
reciprocal mirror. To study possible effects of nonreciprocity,
we assume circularly polarized dipole moments

1 1
d d
do=—1[i], du=—7|-1], (42)
V2 0 V2 0

which are not invariant if the direction of time is reversed
t — —t.

A. Perfectly conducting mirror

Let us first investigate the atomic decay rate (33) and
the nonresonant and resonant frequency shift (39), (40) for
a perfectly conducting mirror. The energy shift of a hydrogen
atom between two conducting plates has been studied in
Refs. [48,49] and one can obtain the interaction between an
atom and a single plate if one plate is shifted to infinity.
Reference [50] shows the radiative decay rate of an atom in
front of a perfect mirror, where the dipole is either parallel or
perpendicular to the mirror. These approaches are based on
perturbation theory.

The reflective coefficients for a perfectly conducting mir-
ror are rpp, =1, rgs = —1, and r,p, = rp s = 0. This set of
coefficients is obtained from the reflective coefficients for a
general material in the limit &€ — oo, which is explained in
greater detail in Sec. IV C. In this case the Green’s tensor (41)
contains only diagonal terms with G = Ggly)

G(l)(l' r ) . C + 62 2iwz
JTw)=|————i e .
e 8nz lorwz?  32nw?z3

(43)
The nondiagonal elements of the Green’s tensor vanish. The
atomic decay rate (33) for circularly polarized dipole moments

(42) hence reads

l_,(l) _ Mod’%odz 1 - 210z c . 210z
0 =———|——sin — 57— €08
4mh Z c 2®102 c

2 2&
+ %m( “’“’Z)]. (44)
4@7,2° c

Figure 2 shows the atomic decay rate (44) scaled by the free-
space decay rate

ro _ ,uocb?odz
0 =
3nhc

Moreover we study the asymptotic behavior of the
decay rate and distinguish between the retarded limit
(®@10z/c > 1) and the nonretarded limit (®10z/c < 1). The
decay rate decays asymptotically in the retarded limit with
—[po@7yd” sin(2@10z/c)]/[4hz].

At z =0, in the nonretarded limit, the decay rate has a
value of —I“(,?)) (Fig. 2). The total decay rate I'jy of a dipole
parallel to a perfectly conducting mirror is a sum of the free-

space part FE%) and the body-induced part F%) and is equal to

'y = F}%) + F%) = 0 on the surface of the mirror at z = 0.
This can be explained by an image dipole with equal strength
and opposite direction induced by the original one so that the
two dipoles cancel, leading to vanishing radiative decay.

(45)
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FIG. 2. Atomic decay rates '™ scaled by the free-space decay
rate ['© (45) for a circularly polarized two-level atomic dipole in
front of a perfectly conducting mirror (green line) and a perfectly
reflecting nonreciprocal mirror (blue line).

The frequency shift is composed of a resonant and a
nonresonant contribution

Swip = Swy + Swiy®
po@iod? 1 2102 c . (22
=—1 | _cos — sin
8nh |z c 21072 c
c? cos <2&)102>:|
41,23 c
d2 00 ~ 2 1 2 .
+ 2 / ge 008 (L ¢ | o )%
87 Jo @i +E2\z 2622 487
(46)
0.3
0.2
0.1

0.0 ['\ /,\ I\ PN Va Z

3e \J T
-0.1
-0.2
—03% 5 10 15 20

wlpz
c

FIG. 3. Frequency shifts dw scaled by the free-space decay rate
' (45) for a circularly polarized two-level atomic dipole in front of
a perfectly reflecting nonreciprocal mirror and a perfectly conducting
mirror. The resonant frequency shift §w™* of the perfectly conducting
mirror (green line) and the resonant frequency shift of the perfectly
reflecting nonreciprocal mirror (blue line) show oscillations. The
nonresonant frequency shift Sw™ of the perfectly conducting mirror
(dashed green line) and the perfectly reflecting nonreciprocal mirror
(dashed blue line) decay monotonically with distance.
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FIG. 4. Double-logarithmic plot for the nonresonant frequency
shift 0" of the perfectly conducting mirror (green line), its retarded
limit (green dashed line), and its nonretarded limit (green dotted line).
The perfectly reflecting nonreciprocal mirror (blue line), its retarded
limit (blue dashed line), and its nonretarded limit (blue dotted line)
are depicted in the same figure.

which are shown in Fig. 3. The retarded and nonretarded limits
of the nonresonant frequency shift (46) read

d*c @102
P S STy >1
nres __ 167 2egfi®10z 4 47
@y = 2 ~ 47
d w102
—_—, <1,
64 eyiz? c

and are depicted in a double-logarithmic plot in Fig. 4. The
asymptotic limits of the resonant frequency shift (46) read

~2 12 ~ ~
d 2
M(éw;io COS( wf02>, a)l.oZ > 1
sty =1 Y ¢ A (48)
_ d 102 <1
2megizd’ c

and are shown in Fig. 3 as well.

B. Perfectly reflecting nonreciprocal mirror

The reflection coefficients for incoming perpendicular or
parallel polarization and outgoing perpendicular or parallel
polarization rgs and r,p are set equal to 0, whereas the
mixing terms rgp and r,s can be chosen to be either 1
or —1 thus generating a perfectly reflecting nonreciprocal
mirror. In this section, we restrict ourselves to the case
Tsp = Ips = —1. These reflective coefficients are the specific
case of a perfect electromagnetic conductor (PEMC) with
parameter M = 1 [51-53], which is explained in Sec. IV C.
The Green’s tensor (41) is antisymmetric under these condi-
tions: GV (r,r, @) = —G(r',r,w). Thus the diagonal terms
of the Green’s tensor vanish and only the nondiagonal terms
remain. By interchanging the indices of the nondiagonal terms,
G;lz)(r,r/) = Gg{)(r,r/) and Gg,lz)(r,r/) = G(Zl,)(r,r’) keep their
signs, whereas Gily)(r,r/) = —G;'X)(r,r’) shows a sign change.
This behavior is exactly opposite if the arguments of the
nondiagonal terms are interchanged. Therefore Gi'z) and G(vlz)

have to vanish by setting r = r’ and only G(le) = —Gg,lx) has
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finite values. The final result after integrating yields

Gi‘j(r,r,w):( ¢ )ez’?‘ﬂ (49)

N S
87z 16w wz?

By using the circularly polarized dipole moments (42), we
obtain for the atomic decay rate

~2 2 ~

@7d [ 1 2@
I‘%) = Ho®hof | 2 cos 102

4mh z c

c . [ 2&10z2
o , 50
20002 Sm( p )} 0)

which is shown in Fig. 2. The decay rate of a per-
fectly reflecting nonreciprocal mirror is equal to zero for
small values of @jpz/c (nonretarded limit). The func-
tion decays asymptotically in the retarded limit with
[no@],d? cos(2@10z/c)]/[4nhiz].

The frequency shift is shown in Fig. 3 and consists of a
resonant and a nonresonant contribution

1es nres
dwig = dw); + dw,

po@,d>[1 . (2&102 c 2@102
= ———| —sin + = cos
8nh |z c 2@1022 c

Modz/‘oo g (l c ) _2%s

+ d& — |-+ )e . D
872 Jo g2+ @i \z 227

In the retarded and nonretarded limits the nonresonant part has
the asymptotic behavior,

d26‘2 (:)102 > 1
nres 167 2egi@?y75 c
0 = > - (52)
1672eyiz3’ c ’

which is shown in a double-logarithmic plot in Fig. 4. The
resonant part has the limits

~2 1 ~ ~
d 2
Ho®ig sin @102 ’ @102 > 1
S — 8mhz c c (53)
10 po@iod*c @102 <1
167hz? ¢ ’

By comparing both the decay rates and the resonant frequency
shifts in Figs. 2 and 3, a phase shift by 7/2 between the
respective curves of the perfectly conducting mirror and the
perfectly reflecting nonreciprocal mirror is apparent, as can
also be read off from the first terms in Egs. (44), (46), (50),
and (51). This is the additional phase shift implied by the
reflection of s- into p-polarized waves. The scaling behavior
of the decay rates and the resonant frequency shifts in the
retarded limit is the same. The decay of the resonant frequency
shift in the nonretarded limit is proportional to z~* for the
perfectly conducting mirror and z =2 for the perfectly reflecting
nonreciprocal mirror. As for the nonresonant frequency shift
(46) and (51), the perfectly reflecting nonreciprocal mirror
decays with 77> in contrast to z~* for the perfectly conducting
mirror in the retarded limit. The scaling behavior in the
nonretarded limit is z=3 for both media.

The term z~! of the total frequency shift, the sum of
the resonant and the nonresonant part, will dominate in the
retarded limit both for the perfectly conducting mirror and
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the perfectly reflecting nonreciprocal mirror. As for the total
frequency shift in the nonretarded limit, there is a dominant
773 scaling behavior for both ideal materials.

C. Topological insulator

Reference [46] studies the electromagnetic behavior of
a topological insulator. Permittivity, permeability, and the
magneto-electric cross susceptibilities for this material men-
tioned in Eq. (23) are assigned according to

1 1

€E—ExUu xC—>¢€, ExMu- —>g9(r,w),
T

p o 0w, wl a4
b4
so that Eq. (19) takes the form

. aO(r,w) .

D =gk + — B + Py, (55)
T UoC
\ o O(r,w) ~ 1 4 .
H=—-——E+ —B - M. (56)
T HoC okt

Reflective coefficients r,, mentioned in Eq. (41) for bi-
isotropic media are shown in Ref. [54] and are applied to
the specific case of a topological insulator with time-reversal-
breaking symmetry in Ref. [46] by making use of the relations
in Eq. (54)
_ (pki — ky)uleki +ky) — kitky A?
(ki + k3 )u(eki + k3) + ki-ka A2
P Zkf‘kj'p,A
PET (ki + ekt ki) + kitky A2
(,ukll + kzl)u(eklL - kzL) + kllkzlA2
Fpp = ,
P (ki + k3 ) (ki + k") + kiky A2
kit uA

Fop = . 57
P (ki 4 k) pekis + k) + kitks A2 ©n

Iss

In these equations, kf- and k2l refer to the perpendicular part
of the wave vector in medium 1 and 2 and A is given by

A=al@, -8, (58)
s

where o represents the fine-structure constant and 6; and
6, are the axion coupling constants in the two media. The
first medium is assumed to be vacuum (u; = &; = 1,6, = 0)
and only the second medium has specific electromagnetic
properties i, &, and 6.

The reflective coefficients (57) reduce to the respective ones
for the perfectly conducting mirror in Sec. IV A by setting
the axion coupling to A =0 and the other parameters to
u1 = pup =1 and g; = 1. In the limit &, — o0, the reflective
coefficients for a perfect electrical conductor (rp,p, = 1, rys =
—1,and ry, = rp s = 0) are obtained.

The reflective coefficients of the perfectly reflecting non-
reciprocal mirror from Sec. IV B can also be generated from
Eq. (5§7) with the help of Eq. (54). Medium 1 is treated as
vacuum and in medium 2 the cross susceptibilities § and § are
treated as scalars and are set equal to each other, ¢ = &. The
boundary conditions for the perfect electromagnetic conductor
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FIG. 5. Atomic decay rates 'V for a circularly polarized two-
level atomic dipole in front of a topological insulator with 8 = 7 (45)
(green line) and 0 = —m (blueline) and e = p = 1 scaled by the free-
space decay rate I'”). The difference between the decay rate for Bi,Ses
with axion contribution (¢ = 16, u = 1) and the respective decay rate
without axion contribution is depicted for an axion coupling of 6 =
(green dotted line) and & = — (blue dotted line).

(PEMC) read [51-53]

n. [ /@f)_Mﬁ} o,
&0
n x [ME + /@ﬁ] ~o, (59)
200]

where we have introduced the PEMC parameter M = &/u and
n represents a unit vector perpendicular to the interface. These
conditions imply reflection coefficients

1 — M? —2M M?—1
rgs = 71 + M2’ rp,s = rs,p = 71 + MZ, rp,p = 71 + M2’
(60)

showing that the perfectly reflecting nonreciprocal mir-
ror (rss =71pp =0 and ryp =rps = —1) is a PEMC with
parameter M = 1. The general PEMC reflection coefficients
are recovered from Eq. (57) with Eq. (54) in the limite, u, § —
oo while imposing the PEMC condition £2 — e = 0.

In Ref. [55], the rate of spontaneous decay for an atom
close to a topological insulator with axion coupling is also
considered. In that work, a linear dipole transition is chosen
which is perpendicular or parallel to the surface. In this case,
the general expression for the decay rate, unlike Eq. (33), is
identical to that for reciprocal material without making use
of the definition of the imaginary part of the Green’s tensor
(3). As aresult, the phenomenon is insensitive to the specific
time-reversal-symmetry-breaking properties of the topological
insulator, as explained above.

Due to the small value of the fine-structure constant o and
the small effect on the reflection coefficients (57), we first
study a purely axion medium by setting ¢ =1 and p = 1.
Figure 5 shows the atomic decay rate for0 = 7 and 6 = —m.
Figure 6 depicts the respective resonant part of the frequency
shift. The results for the decay rate and the resonant frequency
shift resemble the respective curves of the perfectly reflecting
nonreciprocal mirror in Figs. 2 and 3, but are scaled by A /2.
This ratio can be easily read off in the retarded and nonretarded
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FIG. 6. Resonant frequency shift w™ for a circularly polarized
two-level atomic dipole in front of a topological insulator (45) with
0 = 7 (green line) and & = —m (blue line) and ¢ = & = 1 scaled by
the free-space decay rate I'®. The difference between the resonant
frequency shift for Bi;Se; with axion contribution (¢ = 16, u =
1) and the respective frequency shift without axion contribution is
depicted for an axion coupling of 6 = 7w (green dotted line) and
6 = —m (blue dotted line).

limits. The reflective coefficients (57) in the retarded limit read

o (- -
S (1+n)?+ AY

pret — —2A
PS4+ n)? + AY
ret __ _(1_8)+A2 _ _ret
pp ( +n)2 + A2 = "o
—2A
t__ _ et
rsr,ep - (1 +n)2 + A2 - rl;?s’ (61)

with the refractive index n = 4/¢. The decay rate and resonant
frequency shift with the purely axion contribution in the

retarded limit are given by
<2(1)1()Z ) A
0s —,
c 2

2®102\ A
n( " )E (62)

Jo@tod’
4mhz
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The same procedure is carried out in the nonretarded limit and
the respective reflective coefficients (57) are

nonret _ —A?
s 2(s + 1)+ A%’
rnonret — _2A
p.s 2°
26+ 1)+ A
nonret _ 20e-D+ A?
PP 2(e + 1) + A?
—2A

l:lonrel — — nane[. 63
T der DAl e ©3)
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The respective decay rate and resonant frequency shift for the
purely axion contribution in the nonretarded limit read

@10d’c A
1_,(I)nonret — 170 — — _Lf,
10 (e ) 87hiz2 2
,bL()&)]()dZC A
S res,nonret - __ 1,0 = =" " 64
@@ ™) = iz 2 o9

Next, we look at general material properties similar to Bi,Ses,
where we take ¢ = 16 and . = 1 [46]. We compare the case
with axion coupling of & = 7 and without axion coupling
6 = 0. Because of the small value of «, the reflective
coefficients rp s and 7, do not have a big impact on the
decay rate and the frequency shift. The decay rate and resonant
frequency shift in the retarded limit are calculated by inserting
the reflective coefficients (61) into Egs. (33) and (40)

2 ~
et _ Mo@ypd” [ 1 i 2®102 et
10 4rh z c Joe

~ 2 2 ~
Swlieg‘re[ = Mﬂg’lzd |:l cos (20)101)}’“[
TT Z

1 (2
~ ~sin (m)rgeg]. (65)
Z c '

The difference in the decay rate and the resonant frequency
shift between the cases with and without axion coupling in the
retarded limit and for A < 1 yields

1 1 1
Ari())ra = l—-io)ret(e — JT) _ l—wio)rel(e — 0)
o@3od? (2&)10z> 2A
= Ccos

4nhz (1 +n)?’
SO = 1) — 800 = 0)

_ /,L()(:)%Odz . 2(:)1()1 ZA
T 8nhz (1 +n)?

In the limit of A « 1, the scaling factor for Eq. (66) fore = 16
with respect to the purely axion material in the retarded limit
(62) is 4/25.

The decay rate and resonant frequency shift in the nonre-
tarded limit are obtained by inserting Eq. (63) into Egs. (33)
and (40)

C

res,ret
Adwy,

(66)

~2 72 . 2
F(I)HDHTEl _ “OwIOd ¢ phonret ¢ -nonret
10 - Ath 26)1022 s,p 4&’%023 p.p
~2 72 2
awres,nonret — /’Lowlod _ c rnonret _ c rnonret
10 8rh 201022 P d@f? PP
(67)

The differential effects of the axion coupling on the decay rate
and the resonant frequency shift for the nonretarded limit are
given by
Al—-i}))nonret = l—-i}))nonret(e _ 7'[) _ Fg:))nonret(e — 0)
M.o(:) 10d20 A
8nhz?2 e+1’
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Aawli%s,nonret = 5w1;<=bs,nonrel(0 — 7_[) _ 8wrl?bs,nonret(6 — 0)

_ po@®iod*c A ' 68)
167hz2 e+ 1

The respective scaling factor of Eq. (68) with respect to
Eq. (64) in the nonretarded limit for ¢ = 16 is 2/17. The
difference in the atomic decay rate and the resonant frequency
shift between these two cases follows the same form of the
purely axion atomic decay rate and frequency shift and can
be compared with that. The scaling factors are gauged in the
retarded and nonretarded limit (cf. Figs. 5 and 6).

The nonresonant frequency shift (39) for the topological
insulator contains frequency-dependent permeability and per-
mittivity e(i§) and w(i§). Without knowing the exact behavior
of these quantities we can only approximate the nonresonant
frequency shift in the retarded and nonretarded limits. Since
the resonant frequency shift always dominates in the retarded
limit, we restrict ourselves to gauge the nonretarded limit. For
a purely nonreciprocal medium with ¢ = 1, we obtain

d2
16m2egfiz? 2

(69)

S, t
Sw?geﬂyﬂoﬂl'e (8 — 179 — 7_[) —

The result for a general medium reads

2 00 2
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626)]0 nonret
4%:213 rP’P
(70)

Because of the strong effect of ¢ compared with A the terms
with r;‘f;“e‘ (63) do not have to be considered for the difference
between the topological insulator with and without axion
coupling. Only r;‘_"’)“re‘ remains and is inserted into Eq. (39).
For & — oo, e(i&) — 1. After performing the £ integral, we
obtain the final result for the difference of the nonresonant
frequency shift of the topological insulator in the nonretarded

limit,
Aswl;(r)es,nonret = Swlllges,nonret(e — JT) _ awlraes,nonrel(e — 0)
d? A -

l6n2eizde+ 1 b

The total frequency shift of the resonant and nonresonant parts

of the topological insulator scales with z~! in the nonretarded

limit. An experimental distinction from another material is

difficult (cf. Sec. IV B).

In case of an extremely large axion coupling, the reflective
coefficients (57) reduce to the values rys = —1 and rp,, = 1.
Both the decay rates, the resonant frequency shift, and the
nonresonant frequency shift approximate the results of the
perfectly conducting mirror; cf. Figs. 2 and 3.

Note that for each of the interacting time-reversal-
symmetry-breaking subsystems, atom and medium, there
are two possible choices regarding their internal sense of
time. For the atom, they correspond to clockwise versus
counterclockwise circular dipole transitions and can be related
to one another via d — d*. For the medium, the two possible
internal senses of time are related via A — —A or rgp,

PHYSICAL REVIEW A 95, 023805 (2017)

ps —> —Tsp, — I'ps. We thus have four possible combinations
of t-odd atoms interacting with nonreciprocal media. The
other three possible combinations can be obtained from the
particular choice considered here by changing the internal
arrow of time in atom, medium or both, where each such
change reverses the signs of frequency shift and body-assisted
decay rate.

Due to the internal connection between the frequency shift
and the Casimir—Polder force, one can also switch from an
attractive to a repulsive force between atom and medium.

V. SUMMARY

We have applied macroscopic QED to derive expressions
for the Casimir—Polder frequency shift and spontaneous decay
rate for nonreciprocal media, which violate Lorentz’s reci-
procity principle and therefore break time-reversal symmetry.
Consequently, real and imaginary parts of the Green’s tensor
for nonreciprocal media have to be redefined by using the
adjoint tensor instead of the complex-conjugate one.

Based on the interaction Hamiltonian between the atom,
the field and the nonreciprocal medium, an expression for
the electric field has been obtained in two alternative ways.
First, noise currents can be quantized directly yielding one
set of field operators for the combined electric and magnetic
fields. According to the second approach the noise currents
can be divided into contributions for the polarization and the
magnetization giving rise to cross correlations between electric
and magnetic fields. The result for the electric field has enabled
us to study the internal atomic dynamics. By making use of
the redefined real and imaginary parts of a tensor, we obtain
general expressions for the atomic decay rate and the frequency
shift, which can be split into a resonant and a nonresonant
contribution, representing generalizations for nonreciprocal
media.

As an example, we have investigated the decay rate and
frequency shift for a two-level atom with circularly polarized
dipole moments in order to be able to detect the broken time-
reversal symmetry. First, a perfectly conducting mirror has
been compared with a perfectly reflecting nonreciprocal mirror
yielding different polynomial scaling behavior. Whereas the
nonresonant frequency shift of the perfectly conducting mirror
decays with z7* in the retarded limit, it scales with z7> in
case of the perfectly reflecting nonreciprocal mirror. In the
nonretarded limit both scale with z=3. As for the resonant
frequency shift, there is a z~' behavior for both materials in
the retarded limit and in the nonretarded limit they differ again:
the perfectly conducting mirror scales with z =3, the perfectly
reflecting nonreciprocal mirror with z72.

Second, we have investigated a time-reversal-symmetry-
broken topological insulator, whose electromagnetic proper-
ties are described by an axion coupling and whose reflective
coefficients depend on the wave vector. Due to the small impact
of the axion part, we have restricted ourselves to a medium of
pure axion behavior by setting ¢ = 1 and compared this to
the difference quantities between included axion coupling and
without axion coupling for a material similar to Bi,Se;. We
find a qualitatively similar behavior and determine scaling
factors between the two cases in the retarded and nonretarded

023805-10



[S9] Casimir-Polder shift and decay rate in the presence of nonreciprocal media

137

CASIMIR-POLDER SHIFT AND DECAY RATE IN THE ...

limits. Finally, we can switch the sign of the decay rate
and the frequency shift of the topological insulator both by
reversing the direction of the oscillating dipole moments and
by changing the sign of the axion coupling. This opens the door
for switching between attractive and repulsive Casimir—Polder
forces.

PHYSICAL REVIEW A 95, 023805 (2017)
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We demonstrate under which conditions a violation of the charge-parity (CP) symmetry in molecules will
manifest itself in the Casimir-Polder interaction of these with a magnetodielectric surface. Charge-parity violation
induces a specific electric-magnetic cross polarizability in a molecule that is not chiral, but time-reversal (7)
symmetry violating. As we show, a detection of such an effect via the Casimir-Polder potential requires a material
medium that is also sensitive to time reversal, i.e., it must exhibit a nonreciprocal electromagnetic response. As
simple examples of such media, we consider a perfectly reflecting nonreciprocal mirror that is a special case of a
perfect electromagnetic conductor, as well as a Chern-Simons medium. In addition, we show that Chern-Simons
and related media can induce unusual atom-surface interactions for anisotropic molecules with and without a

chiral response.

DOI: 10.1103/PhysRevA.98.022510

I. INTRODUCTION

The Casimir effect is an effective electromagnetic force
between polarizable objects that is induced by the recently
directly observed vacuum fluctuations of the quantum elec-
tromagnetic field [1]. Originally conceived by Casimir as an
attractive force between two perfectly conducting mirrors [2],
recent progress in material design and control has placed
Casimir forces between materials exhibiting both more real-
istic and more complex electromagnetic responses in a focus
of interest [3]. Inter alia, (para)magnetic media [4,5], chiral
materials [6], topological insulators [7,8] and graphene [9,10]
have been studied.

A major driving force behind such investigations continues
to be the search for repulsive Casimir forces to overcome stic-
tion in nanotechnology [11]. Inspired by Boyer’s observation
that the force between a perfectly conducting plate and an
infinitely permeable one is repulsive [12], it was theoretically
predicted that repulsion persists for combinations of purely
electric and magnetic media with a more realistic response.
Quite generally, repulsive Casimir forces arise whenever the
nature of the electromagnetic response of the two interacting
objects is diametrically opposite in a certain sense, for example,
if the objects show electric versus magnetic responses, have
opposite chirality, or represent topological insulators with
different internal arrows of time.

“stefan.buhmann @physik.uni-freiburg.de
fmaraval @mail.ru
tstefan.scheel @uni-rostock.de
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Casimir-Polder forces between an atom or a molecule and
a macroscopic body are a closely related type of dispersion
force [13] and hence subject to the same phenomenology
regarding their dependence on the electromagnetic nature of
the interacting objects. However, they are (i) a local effect
due to the small size of one of the two interacting objects,
and (ii) they can be measured with far higher accuracy due to
the superior techniques in manipulating and controlling single
atoms or molecules [14]. This suggests that Casimir-Polder
forces might (i) serve as a probe of the molecule’s or the body’s
properties rather than a force that is to be manipulated and
overcome, and that (ii) this probe could be applied to access
very exotic properties of matter. In particular, we intend to
apply this idea to the phenomenon of charge-parity violation in
molecules, asking the hypothetical question: Would a potential
charge-parity violation in a molecule become manifest in its
Casimir-Polder interaction with a macroscopic body and, if so,
under what conditions?

One of the fundamental symmetries of the standard model
of particle physics is the invariance under combined charge (C),
parity (P), and time (7) reversal. However, a physical system
need not be invariant under each of these three symmetries
individually. Examples of parity nonconservation include pro-
cesses involving the weak force such as the g decay [15,16].
The weak interaction is also responsible for the broken parity
invariance in rovibrational spectra of chiral molecules [17,18].
The antiferromagnet Cr, O3, on the other hand, is an example
of a P-odd and T-odd system that exhibits a pseudoscalar
response (see Ref. [19] and references therein) which provides
a template for perfect electromagnetic conductors [20]. In the
search for physics beyond the standard model, weak-scale

©2018 American Physical Society
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supersymmetry would induce a CP violation that is reflected
in an intrinsic electron dipole moment (EDM) of neutrons or
electrons (see Ref. [21] for areview). Recent experiments place
an upper limit of |d,| < 8.7 x 107?°¢ cm on the electron EDM
[22].

Within a field-theoretic setting, it is known that a Chern-
Simons interaction violates both P and 7 symmetries [23,24].
The Casimir interaction between two flat Chern-Simons layers
was studied in Refs. [25-28], with its main feature being
the prediction of both attractive and repulsive regimes of
the Casimir force between Chern-Simons layers separated
by a vacuum slit. A physical example showing an effective
Chern-Simons interaction is a quantum Hall system consisting
of a two-dimensional (2D) electron gas [29]. The coupling
constant of the Chern-Simons action is different for each
quantum Hall plateau, with its value being determined by
the external magnetic field perpendicular to the quantum Hall
layer. The implication is that the Casimir-Polder potential will
be quantized at the quantum Hall plateaus [30].

In this article, we investigate the Casimir-Polder potential
for an anisotropic molecule in the presence of a flat Chern-
Simons layer. It is known that the CP-even part of the Casimir-
Polder potential is quadratic in the coupling constant of the
Chern-Simons layer [31]. On the other hand, the CP-odd part of
the Casimir-Polder potential, which we derive here, is linear in
the coupling constant. The sign of the Chern-Simons coupling
can be altered by reversing the direction of an external magnetic
field. As a result, the CP-odd part of the Casimir-Polder
potential can be extracted from measurements at any plateau of
a quantum Hall system performed at external magnetic fields
with alternating spatial directions.

The article is organized as follows. We begin with a discus-
sion of atom-field coupling and the resulting Casimir-Polder
interaction potentials in the presence of nonreciprocal media.
As a particular example, we consider a planar Chern-Simons
layer that gives rise to nonreciprocal effects. In the following,
we then construct the Casimir-Polder potentials for molecules
with various anisotropic, asymmetric polarizabilities, includ-
ing the particular case of CP-odd molecules. We close the
article with some concluding remarks. Details regarding the
Chern-Simons action and its influence on Maxwell’s equations
have been delegated to the Appendix.

II. ATOM-FIELD COUPLING

The Curie dissymmetry principle [32] suggests that CP-
odd atomic properties can only couple to environments which
are also 7T odd, i.e., nonreciprocal, so that the Green’s tensor
does not necessarily fulfill the Onsager relation GT(r’,r,a)) =

G(r,r',w) regarding the reversibility of optical paths [33].
This suggests a novel possibility for the detection of CP-odd
atomic properties by studying the electromagnetic interaction
of a CP-odd molecule with a macroscopic Chern-Simons layer
by means of the Casimir-Polder potential.

The interaction of a molecule A with the electromagnetic
field can be described by the multipolar Hamiltonian in long-
wavelength approximation as [34]

Aap = —d-E(ry) — in-B(ry) (1

(3 , m: molecular electric and magnetic dipole moments; r 4:
position) when neglecting the diamagnetic interaction. The
position-dependent Casimir-Polder potential can be derived
within second-order perturbation theory by replacing the full
propagator of the electromagnetic field G with its scattering
part G [34,35]. A general technique for calculating the
Casimir-Polder potential in an arbitrary gauge of the vector
potential was developed in Ref. [31], with example calcula-
tions in different gauges being provided in Ref. [35]. In the
following, we will derive contributions to the Casimir-Polder
potential from electric-electric and electric-magnetic terms in
the presence of a planar Chern-Simons layer.

A. Casimir-Polder potential for a nonmagnetic molecule

The Casimir-Polder potential [13] for a nonmagnetic
ground-state molecule arises from the second-order energy
shift

fipg

Uee(rA) = 5

wdssztr[aas» G (rarait)l, (2)
27T 0

where

dodo

.1 dowdro
= 1 — —
(@) eir(l)l+h ;[w—l-wk-f-if

a)—wk+ie:| )

is the molecular polarizability, and G is the scattering part
of the electromagnetic Green’s tensor. In order to make the
influence of nonreciprocal media more explicit, we decompose
the polarizability and Green’s tensors into their respective
symmetric and antisymmetric parts,

h o0
Uee(ra) = # dt £ u[os(iE) - GO r4.if)
0
+aaig) - GY(rara,id)]. 4)

The first term is the ordinary Casimir-Polder potential in
environments respecting the Onsager theorem [36,37]. The
second term is due to the presence of nonreciprocal media;
it only arises for molecules with an anisotropic, asymmetric
polarizability. Examples for its relevance are the recently
considered interaction of an atom with a plate exhibiting a
Chern-Simons interaction [31] or with a topological-insulator
plate [38].

Itis instructive to study the effects of P and CP violation due
to the presence of a flat Chern-Simons layer at z = 0 described
by the action

S = %/dt dx dy €77 A, F,,, )

with a dimensionless parameter a. The scattering part of a
Green’s function G" above (z4 > 0) a Chern-Simons plate
in the gauge Ay = 0 mixes s- and p-polarized waves,
1 d’q
GO rit)y=— [ —
(ror.ig) = o 5 ¢

+,— +,— +,—
+eye,r,te,er ., +eler, ) (6)

(q Le, B=+/8%/c?+ q?), where the polarization unit vec-

tors for the s- and p-polarized waves read ef =e, x e,

iq»(r—r')—ﬂ(z+z/)(e+e—rs
s s
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e? = —(c/&)(ige. = Be,)] and the respective reflection co-
efficients of the half space are given in the Appendix.

The symmetric part of the polarizability leads in this case
to a potential equal to the Casimir-Polder potential in front of a
perfectly conducting plate multiplied by a factor a?/(1 + a?).
The asymmetric part of the polarizability yields an additional
interaction with the Chern-Simons plate [31], viz.,

Us(z4) ho_a fmds ()&

s = €1,

A 32m2gpc 1 +a? Jy I
(12528 ) o

In the retarded limit, wiz4/c > 1, the potential (7) leads to an
1/z5 asymptote,

2

c Im(do xdio,y)
, 8
87t8251+a22 w} ®

Uas(ZA)

whereas at short separations, wyz4/c < 1, it is well approxi-
mated by a 1/z3 potential,

1
1 +a2 Zlm(do“dko‘) ©

Vi) = e v @

The limiting cases of a perfectly reflecting, nonreciprocal mir-
ror (s, = 1,7,y = 1,7, = 0,r, = 0) can be immedi-
ately obtained from Eqs. (7)—(9) by substituting a /(1 + a?) —
+1. The latter is a specific example of a perfect electromagnetic
conductor and emerges from a perfect electric conductor by
means of a duality transformation [20].

B. Casimir-Polder potential for a molecule with C P-odd
cross polarizabilities

For an electromagnetic molecule, both electric and mag-
netic dipole couplings contribute to the atom-field interac-
tion (1). Beyond the purely electric interaction, we are now
interested in the part of the Casimir-Polder potential due to
the second-order energy shift arising from mixed electric-
magnetic transitions,

UCP(rA) = em(rA) + Ume(rA)
h
=57 “ag €[, i) - GV ai) V]

+ 0lXen(i§) - V x GO araieNl],

(10)
where we have introduced the cross polarizabilities
.1 domoy doimyig

= lim — - , (11

Xen(@) elg(l)hzk:[a)—i—a)k—i—ie w— i +ie an
1 modox moydio

= lim — - . (12

Xme(®) elg})h Xk:[a)—i—wk—i—ie w—w;+ie (12)

It is customary to decompose the Hamiltonian A, = Hy +
VEP of the atomic subsystem into CP-even and -odd parts
[39]. We can use perturbation theory to express the eigenstates
|n) and energies E, of A, in terms of the eigenstates |n°)
and energies E° of Ho. Assuming that (n|VEP|n) = Ver —

0 [39], we have E, = E? in linear order in V', while the
eigenstates acquire linear shifts due to the CP-odd interaction,

(lOIVCPInO>
)+ § %) TE B (13)
To linear order in VE?

CP 0 0 0 y/CP 0

deotiien — — Z Vo damoe Z do Vig"myy
OO = ho? h(wo - a)o)
)i 1 ! 1 k

, we can hence expand

0 )
_ Z do Vi "mij, 3 dgm, V6" (14)
W} —f) 47 hep

with the definitions wk (E0 =(n 0|d|m )s

EO)/h d
mgm = (n°|m|m°), and VnCmP (n 0|VCP|m ).

Substituting this result into Eq. (11), relabeling / <> k in the
third term, and using the identity

1 1

(@ oDl £otic) ' (of — ) £otic)
1

- (a),?:l:w—{—ie)(a)?:l:w—{—ie)

15)
results in the expression

0
X (a)):limlz Vi "dyml, Ve dym
e e—0 i T w}’(a)—l—w,?—{—ie) w?(w a)k—HE)

! djo Vi "mi,
1
+e1—r>r(1)hz[(w+w?+ie)(w+w2+i€)
B dy,v$tm, ]
(0 — o) —|—ze)(w—wk +i€)
|: dgom?kvlgp _ dgkmglv,gp :|
o) (0t o) +ie) o) (0—op+ie)]

(16)

|
+ehi%rz

For a CP-odd system, the electric and magnetic transition
dipole matrix elements have a vanishing relative phase, so that
Xme = Xr.. Due to this symmetry, it is clear that the cross
polarizabilities of a CP-odd system do not lead to an interaction
with a perfectly conducting plate. However, they do provide
an interaction with a Chern-Simons layer as well as with
a perfectly reflecting nonreciprocal mirror. To evaluate this
contribution of the cross polarizabilities of a CP-odd molecule
to the Casimir-Polder interaction with a nonreciprocal medium,
we use Eq. (10) with xj; = Xem,ji = Xme,ij to find

h a > —8za/C
Ucp(za) = mm/{) dge 2/
{[m(zé) + )(W(lé)]<1 + zgﬁ aF ZA>
+2ng(l$)<1 +2$ﬁ)} 17)

Note that the symmetry of the cross polarizabilities implies
. 2, .
that x;;(i§) = % Dk Tikszd’f(’-jm%ﬁ where dyo, jmox,; is a real
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number. In the retarded limit, wyz4/c > 1, the approximation
Xxj1(i&) >~ x;1(0) leads to the asymptote

h a
16m2g0z% 1 4 a?
X [Xex(0) + x3y(0) + x2(0)]- (18)

In the opposite nonretarded limit, we may approximate

Ucp(za) =

h a o0
U - 2 [ 4
cpza) 32m2ecz’ 1 + a? /(;

X [xex &) + Xy ((8) + 2x:(iE)]. (19

The limiting case of a perfectly reflecting, nonreciprocal mirror
(rs—p = xlL,rpy = £1,r; = 0,r, = 0) can be immediately
obtained from Egs. (17)—(19) by replacing a/(1 + a*) — *£1.

Upon substitution, x — «, the potential (17) coincides
with the well-known Casimir-Polder potential [13] of a purely
electric atom in front of a perfectly conducting plate, apart from
a factor of two. This correspondence can be easily understood
from the duality of electric and magnetic fields [33]. Under a
duality transformation by an angle 6 /4, a perfectly conducting
plate transforms into a perfect nonreciprocal reflector [20],
while a purely dielectric atom transforms into one with cross
polarizabilities. The factor of two stems from the fact that
two cross polarizabilities contribute to Ucp as opposed to
the single electric polarizability contributing to the ordinary
Casimir-Polder potential.

Let us compare the magnitude of the CP-odd ground-
state potential with that of the Casimir-Polder potential of
an ordinary, purely electric atom. We note that when going
from the ordinary to the CP-odd case, one electric dipole
moment d is replaced by m/c, while the other electric dipole
moment of the order of d ~ eay (e: electron charge; ay: Bohr
radius) is replaced by the CP-odd electron EDM d¢ p. The first
replacement leads to a reduction by a factor of roughly the
fine-structure constant m /(cd) ~ «, while the second yields a
factor dep/(eag) ~ 1.6 x 10720 according to the most recent
upper limit [22]. The CP-odd ground-state potential is thus
smaller than the ordinary Casimir-Polder potential by a factor
of roughly 1022,

In order to potentially use the Casimir-Polder potential as a
probe for CP-odd effects, one needs to enhance the effect by
means of cavity QED. To this end, consider an excited atom
in resonance with a cavity. Starting from the known resonant
Casimir-Polder frequency shift of an excited atom in state
n [40],

Af ==Y whdRe GU(rar o) - dis (20)

k<n

and applying the above replacements d +— m/c,d — dcp,
we estimate the CP-odd resonant frequency shift to be of the
order of

Afcep ~ %aﬂ% Re Gdcp. @1)
The Green’s tensor scales as ReG ~ Qw/c, where Q is
the quality factor of the cavity [41]. In addition, we take
into account the EDM enhancement which arises in heavy
paramagnetic atoms so thatdcp ~ Kd,, where K is the atomic
enhancement factor and d, & 1.6 x 107%eq is the electron

EDM, as above. In addition, we estimate w ~ Egr/h, where
ER is the Rydberg energy and, once more, m/c ~ eapee. Com-
bining these estimates and noting that the EDM enhancement
factor can reach values of up to 103 [24] and that Q factors of
up to 10'! have been reported, a frequency shift of the order of
50 Hz becomes conceivable, which is within reach of current
experimental resolution [18]. Note that such a cavity-QED
setup based on CP-odd Casimir-Polder shifts would easily
outperform a number of early experiments that have placed
upper limits on the electron EDM using paramagnetic atoms in
a conventional setup. Here, the reported constraints range from
d, ~ 4 x 107 %eqq in the 1950s [42] to d, ~ 8 x 10~"eay in
the early 1990s [43] (see Ref. [24] for an overview).

C. Chern-Simons interaction with chiral molecules

For chiral, time-reversal invariant molecules, Lloyd’s the-
orem states that electric and magnetic transitions carry a
relative phase factor, i = e/™/> [44], so that the relation
Xme = — X1, holds between the cross polarizabilities. The
case of an isotropic chiral polarizability and the respective
chiral Casimir-Polder potential was studied in Ref. [45]. Here
we demonstrate that the interaction of a molecule with an
anisotropic, asymmetric chiral polarizability and nonchiral
media leads to an additional component of the Casimir-Polder
potential. As an example, we evaluate this component of
the Casimir-Polder potential for a molecule with anisotropic,
asymmetric chiral polarizability in front of a Chern-Simons
layer.

Using Eq. (10), one obtains the Chern-Simons interaction
with P-odd chiral molecules now satisfying x i = Xem,ji =

_Xme,lj,
h a?
64rm2e9z4 1 + a?

—28za/c 2,2 3.3
x & (3+6$ﬁ+8ﬂ+8ﬁ),
& c c

c

+00
Up(za) = / d§eji xjii§)
0

(22)

where a summation over j,/ is implied. Note that due to
tlhe syn;metry Xem,jl = —Xme,1j>» One can write x;(i§) =
7 Zk szizIm(dko,ijkJ), where dyo jmo, is purely imagi-
nary. As a result, in the retarded limit, w;z4/c > 1, we obtain

Up(za) =

¢ a? €ji:Im(dyo, jmor.1)
< : —. (23
1+ a? Xk: i &

——
4regzy %

In the opposite nonretarded limit, we may approximate
3n a’ /Jroodgqlzsz(if)
0

a 64m2e0z4 1 + a? £

_ 3 a? Z €r:Im(dro, jmox.1) 24)
64megzt 1 +a? p o ’

Up(za) =

In the limit @ — £o00, we obtain the potential of a chiral
molecule in front of a perfectly conducting plate. Note, how-
ever, that the quantity x.,(i§) — x,.(i&) should be different
from zero to obtain a nonvanishing potential.
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III. CONCLUSIONS

With regard to answering our central question, we have
shown that charge-parity-violating effects in molecules can
indeed be manifest in their Casimir-Polder interaction with a
surface. As anticipated from the Curie dissymmetry principle,
this requires the surface to also possess CP-odd or T-odd
properties. We have shown this explicitly for a nonreciprocal
perfect reflector as an example of a perfect electromagnetic
conductor medium, as well as for a Chern-Simons medium.
The result in the former case is strikingly similar in form to
the well-known formula by Casimir and Polder, which can
readily be understood from the duality invariance of QED in
the absence of free charges or currents.

In addition, we have shown that Chern-Simons media lead
to a different Casimir-Polder potential for anisotropic chiral
molecules. In this case, the respective power laws of the
potential in the short- and long-distance limits differ from those
previously predicted for isotropic molecules. Our findings can
be generalized to topological insulator media, where we expect
similar new potential components for CP-odd or anisotropic
molecules.

Although the CP-odd polarizability that induces the re-
spective ground-state potential is very small [46], the resonant
Casimir-Polder potential for an excited atom may be consid-
erably larger. We have estimated that using an optimal combi-
nation of a high-Q cavity and a strong EDM enhancement
factor as found in heavy paramagnetic atoms, the CP-odd
resonant Casimir-Polder frequency shift is within reach of
current experimental resolution, even when taking into account
the most recent upper limits on the electron EDM.
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APPENDIX: DIFFRACTION FROM A PLANAR
CHERN-SIMONS LAYER

The action for a planar Chern-Simons layer at z = 0 has the
form [see Eq. (5)]

S = % /dz dx dy €7 A, (A1)

where the current due to the Chern-Simons interaction is
JV = ae™?? F,,. Maxwell’s equations for the electromagnetic
field in the presence of the action (Al) are subsequently

modified to
0 F" +ae™ F,y8(z) = 0. (A2)

From Eq. (A2), the continuity conditions follow as (see, e.g.,
Ref. [47])

Ez|z:0+ - Ezlz:O* = _zaHzlz:07 (A3)
Hy|;=o+ — Hy|;=0- = 2aE;|;=0, (A4)
H'\,|Z:0+ — Hylz:()’ = 2aEy|z:0- (AS)

Consider an s-polarized plane electromagnetic wave im-
pinging onto a planar Chern-Simons layer at z = 0,

E, = exp(—ik.z) + ryexp(ik,z), z > 0, (A6)
E, = tyexp(—ik.,z), z < 0, (A7)
H, = ry,,exp(ik.z), z > 0, (AB)
H, = ty_,,exp(—ik;z), z <0, (A9)

where the factor exp[i(w/c)t + ik, y] is omitted for simplicity.
From the continuity condition (A4), it follows that

(A10)

Tsop — s p = 2at;.
From the continuity condition E,|,—¢+ = E|,—o-, one obtains

l4r =1, (A1)

The continuity condition E,|,—¢o+ = E|.—o- and the Maxwell
equation E, = —iaz H, yield
(A12)

Fs—p = _txap-

From the continuity condition (AS5) and the Maxwell equation
H, = iBZEx, one gets

(A13)

By solving (A10)-(A13), one obtains the reflection and trans-
mission coefficients of an s-polarized wave as

I—ry—t,=—2at,,,.

a? ; 1
re = — N = ,
y 1+a2 ° 7 1+4+a2 (Al4)
a a
Bor = Tre br T T a

By aduality transformation, i.e., by exchanging the fields E, H
as well as the indices s, p in Egs. (A6)—(A9), we obtain the
reflection and transmission coefficients for the diffraction of a
p-polarized wave as

a? 1
rp:1+a2’ tp:l—i—az’
i ) (A15)
Fpos = Ta fpos = e
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We study single- and two-atom van der Waals interactions of ground-state atoms which are both polarizable
and paramagnetizable in the presence of magnetoelectric bodies within the framework of macroscopic quantum
electrodynamics. Starting from an interaction Hamiltonian that includes particle spins, we use leading-order
perturbation theory to express the van der Waals potentials in terms of the polarizability and magnetizability of
the atom(s). To allow for atoms embedded in media, we also include local-field corrections via the real-cavity
model. The general theory is applied to the potential of a single atom near a half space and that of two atoms
embedded in a bulk medium or placed near a sphere, respectively.
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I. INTRODUCTION

The dispersion interaction between neutral and (unpolar-
ized) atoms or molecules—commonly known as the van der
Waals (vdW) interaction—is, together with Casimir-Polder
and Casimir forces, one of the consequences of zero-point
fluctuations in quantum electrodynamics (QED) (for a recent
review, see Ref. [1]). The interaction potential of two polar-
izable atoms in free space was first studied for small dis-
tances (nonretarded limit) by London using second-order
perturbation theory [2]. In this limit the result is an attractive
potential proportional to 7~ with 7 being the interatomic dis-
tance. The London formula was extended to arbitrary dis-
tances by Casimir and Polder using fourth-order perturbation
theory within the framework of QED [3]. They found an
attractive potential proportional to =7 for large separations
(retarded limit) where the potential is due to the ground-state
fluctuations of both the atomic dipole moments and the elec-
tromagnetic far field. Casimir and Polder also considered the
potential of a polarizable atom in the presence of a perfectly
conducting wall [3]. The result is an attractive potential
which shows a 773 dependence in the nonretarded limit and is
proportional to z™* in the retarded limit (z being the atom-
wall separation).

In the three-atom case, a nonadditive term prevents the
potential from just being the sum of three pairwise contribu-
tions; it was first calculated in the nonretarded limit [4,5] and
extended to arbitrary interatomic distances [6]. Later, a gen-
eral formula for the nonadditive N-atom vdW potential was
obtained by summing the responses of each atom to the elec-
tromagnetic field produced by the other atoms [7], or alter-
natively, by calculating the zero-point energy difference of
the electromagnetic field with and without the atoms [8].

The theory was extended to magnetic atoms by Feinberg
and Sucher [9] who studied the retarded interaction of two
electromagnetic atoms based on a calculation of photon scat-
tering amplitudes; their results were later reproduced by
Boyer [10] using a zero-point energy technique. In this limit,
the interaction potential of a polarizable atom and a magne-
tizable one was found to be repulsive and proportional to 7.

1050-2947/2008/78(6)/062901(17)
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Later on, Feinberg and Sucher extended their formula to ar-
bitrary distances [11]. In particular, in the nonretarded limit
the potential of the mentioned atoms is found to be repulsive
and proportional to r~*. The retarded Feinberg-Sucher poten-
tial was extended to atoms with crossed electric-magnetic
polarizabilities on the basis of a duality argument [12]. For
the single-atom case, the atom-wall potential, calculated in
Ref. [3] in the retarded limit, has been generalized to atoms
with both electric and magnetic polarizabilities [10], show-
ing that a magnetically polarizable atom in a distance / from
a conducting wall is repelled by that wall due to a potential
proportional to /™. A full QED treatment has been invoked to
study the potential of an excited magnetic atom placed inside
a planar cavity for all distance regimes [13].

In order to extend the theory of atom-atom interactions to
the case of magnetoelectrics being present, the effect of the
bodies on the fluctuating electromagnetic field must be taken
into account. A general formula expressing the vdW potential
between two polarizable ground-state atoms in the presence
of electric bodies in terms of the Green tensor of the body-
assisted electromagnetic field was obtained using linear re-
sponse theory [14] and later reproduced by treating the effect
of the bodies semiclassically [15]. Recently, an analogous
formula for two polarizable atoms interacting in the presence
of magnetoelectric bodies was derived by using fourth-order
perturbation theory within the framework of macroscopic
QED [16], it was later generalized to N atoms [17]. For
atoms that are embedded in a host body or medium, the local
electromagnetic field experienced by them differs from the
macroscopic one. Hence, the theory of vdW interactions
must be modified by taking local-field corrections into ac-
count. One approach to this problem is the real-cavity model,
where one assumes that each guest atom is surrounded by a
small, empty, spherical cavity [18]. It has been used to study
local-field corrections to the spontaneous decay rate of an
atom embedded in an arrangement of magnetoelectric bodies
and/or media [19] and was recently applied to obtain local-
field corrected formulas for one-atom and two-atom vdW
potentials of polarizable atoms within such geometries [20].

©2008 The American Physical Society
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In this article, we generalize the theory of ground-state
single- and two-atom vdW potentials in the presence of ar-
bitrarily shaped magnetoelectric bodies to atoms exhibiting
both polarizabilities and (para)magnetizabilities. Such a
theory includes and generalizes the recently studied potential
of two polarizable and magnetizable bodies embedded in a
bulk magnetoelectric medium [21]. This article is organized
as follows. In Sec. II, the multipolar atom-field interaction
Hamiltonian is derived for atoms that are both electric and
(para)magnetic. In Sec. III, general expressions for single-
and two-atom potentials are derived using perturbation
theory. Local-field corrections are considered in Sec. IV,
while in Sec. V, we apply our theory by studying the ex-
amples of (i) an atom in the presence of a half space, (ii) two
atoms in bulk media, and (iii) two atoms in the presence of a
sphere. A summary is given in Sec. VL.

II. ATOM-FIELD INTERACTIONS IN THE PRESENCE
OF SPINS

The interaction of individual atoms with medium-assisted
electromagnetic fields has extensively been discussed for
spinless atoms [16,22-24]. In order to correctly describe the
paramagnetic properties of an atom, it is crucial to include
the spins of its constituents in the considerations. A neutral
atom (or molecule) A thus has to be regarded as being a
collection of (nonrelativistic) particles @ € A which in addi-
tion to their charges ¢, (Z,c4q,=0), masses m,, positions
t,, canonically conjugate momenta p, have spins §,. The
particle spins give rise to magnetic dipole moments 7,8,
where v, is the gyromagnetic ratio of particle a [y,
=-eg,/(2m,) for electrons with —e, electron charge; g, =2,
electron g factor; m,, electron mass]. While leaving the
atomic charge density

pa(r) = 2 q,0r—t,) (1)

aeA

and polarization

1
Py(r)= 2 g1, f dad(x -, - aT,) (2)
acA 0

unaffected, the spin magnetic moments do contribute to the
atomic current density and magnetization, so that the expres-
sions given in Refs. [23,24] for spinless particles generalize
to

B0 = 3 Lo -i) + - i)
aeA

- E 7a§cy X V&(l‘— f‘a) (3)

acA

and
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1 .
M) =S L doolse -1, - ot )F, X T,
aeA 0

_T;:cy X T’:aﬁ(r - f‘A - O'f'a)] + 2 '}/aéabrr - fa) .

acA
4)

In Egs. (2) and (4), T,=F,—, denotes the position of the ath
particle relative to the center-of-mass position

Bi= > o, (5)

aecA Ma

(my=32,cam,), with the associated momenta being

Poa=Do— — DPa (6)

and Py=2,. 4P, respectively. Since the current density as-
sociated with the spins is transverse, the continuity equation
ﬁA+V-jA=O remains valid. In addition, the atomic charge
and current densities can still be related to the atomic polar-
ization and magnetization via

FA’A=—V'IA)A7 (7)
Ja=Py+ VX My + ], (8)

as in the case of spinless particles, since the particle spins
lead to equal contributions on the left- and right-hand sides
of Eq. (8), as an inspection of Egs. (3) and (4) shows. In Eq.
(8),

V X [Py X £4—F4 X P,] 9)

0| =

jRo =

is the Rontgen current density associated with the center-of-
mass motion of the atom [25,26]. Further atomic quantities
of interest are the atomic electric and magnetic dipole mo-
ments

aAz 2 qaf‘az E qaf.a (10)
acA aeA
and
A Qai A A
iy = [—ra X T+ nsa], (1)
acA 2

which emerge from the atomic polarization (2) and magneti-
zation (4) in the long-wavelength approximation, as we will
see later on. The first and second terms in Eq. (11) obviously
represent the orbital angular momentum and spin contribu-
tions to the magnetic dipole moment.

In order to account for the interaction of the spins with the
magnetic field, a Pauli term has to be included in the
minimal-coupling Hamiltonian given in Ref. [16] for spin-
less atoms interacting with the quantized electromagnetic
field in the presence of linearly responding magnetoelectric
bodies, viz.,
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A=Y

A=e.m

d3rJ dwﬁwﬁ(r,w) . f}\(r, )
0

+ E [f’a_qu(f'a)P_'_

acUA zma

9498
a,BeUA 87780|fa - i;B|
aFf

+ E qa[b(fa)_ 2 ‘Yaga'ﬁ(fa)'

acUA acUA

(12)

The first term in Eq. (12) is the energy of the electromagnetic
field and the bodies, expressed in terms of bosonic (collec-
tive) variables f,(r,w) and f;(r,w) N, N e{e,m}, with e, m
denoting electric and magnetic excitations), the second term
is the kinetic energy of the charged particles constituting the
atoms, the third and fourth terms denote their mutual and
body-assisted Coulomb potentials, respectively, and the last
term is the newly introduced Pauli interaction of the particle
spins with the body-assisted magnetic field. Note that the

scalar potential ¢, the vector potential A, and the induction
field B are thought of as being expressed in terms of the
fundamental bosonic fields f, and f'j\ [24,27].

To verify the consistency of the Hamiltonian (12), we
need to show that it leads to the correct Maxwell equations
for the electromagnetic field and the Newton equations for
the particles. As in the case of spinless particles, the total
electromagnetic field can be given by

E=E-X V¢, B=B, (13)
A

D=D-5> V§,. #H=H, (14)
A

where l:l, ﬁ, f), and H are the body-assisted electromagnetic-

field strengths [24,27], and

Gulr) = > — I

" (15)

aeA 47T80|r - ra|
is the Coulomb potential due to atom A. Since the atomic
charge density (1) is not affected by the particle spins either,
the Maxwell equations

V.B=0, (16)

N

v.D-= (17)

> M
})

which are not governed by the system Hamiltonian, are not
changed by the presence of spins. It is obvious that the Max-
well equation

VX E+B=0 (18)

also remains unchanged, because the Pauli interaction term

commutes with the B field and hence its inclusion does not
lead to an additional contribution in Heisenberg’s equation of
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motion éz(i /#)[H,B). As implied by the commutation re-
lation [27]

[Di(x).A,(x")] = ik (r - 1') (19)

[53 (r), transverse & function], the Pauli interaction does lead
to an additional contribution

7= 2 v BlE). D) [ =- X 78, X V-,
aeUA aeUA

(20)

in the Heisenberg equation of motion ’f):(i IH)[H, D],
which coincides with the spin-induced component of jA [sec-
ond term in Eq. (3)]. Hence, the Maxwell equation

VX?tt—ﬁ:EjA
A

1)

holds in the presence of spin when using the amended atomic
current density (3).
Next, consider the equations of motion for the charged
particles. Using the Hamiltonian (12), we have
A 1 A NS
ry,= _[pa - qu(ra)]v
m

3

(22)

as in the absence of spins. Equation (22) implies that the
Pauli interaction gives rise to a contribution
i A DA A A DA
2|~ 2 7/35/3 : B(rﬁ),mara = yava[sa . B(ra)] (23)
f BeUA

to m,t,=(i/h)[H,m,t,]. Combining this with the contribu-
tions from the spin-independent part of the Hamiltonian [27],
we arrive at

Moo= qoE (k) + SlEa X BlE) - BlE) X £.]

+7oVol8a- B(E,)]. (24)

The first two terms on the right-hand side of this equation
represent the Lorentz force on the charged particles while the
third term is the Zeeman force resulting from the action of
the magnetic field on the particle spins. We have thus suc-
cessfully established a Hamiltonian [Eq. (12)] describing the
interaction of one or more atoms with the electromagnetic
field in the presence of magnetoelectric bodies which gener-
ates the correct Maxwell equations for the fields and the
correct Newton equations for the particles.

Due to the rather large number of atom-field and even
atom-atom interaction terms, the Hamiltonian (12) may be
not very practical as a starting point for calculations. As an
alternative, we use the multipolar-coupling Hamiltonian
which for neutral atoms follows from a Power-Zienau-
Woolley transformation [28,29],

0'=00U" (25)

with
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l}=exp{£ f &dry, 13,,-1&] (26)
A

upon expressing the Hamiltonian (12) in terms of the trans-
formed variables. The only difference with respect to the
case of spinless particles is the Pauli interaction term, which
is invariant under the transformation since B’=B and §.
=§,. The multipolar-coupling Hamiltonian can thus be given
in the form of

IQI:I:I}+EI:IA+EI:IAF, 27)
A A
where

Hy= 2

d3rf dohof (r,w) - £ (r,0), (28)
0

\=e.m
A2 A2 272
=3 Py + 1 P P _Pa + S Py
aeA 2m 280 m aeA zma

(29)

AQ
+—fd3 Pf— +EE’”

with [n}) and E/} denoting, respectively, the eigenstates and
eigenvalues of H',, and

ﬁAF=—fd3r<13;-1?:'+M,g-ﬁf>+fd*r"f* P X B
my

2
+ > U r,_,aXB:| (30)
wed 2my

with

1
M, ()= > 2"“ dool8(r — &} - ¥ )F, X .
acA aJ 0
— P X T8 —#) - oT)]+ 2 v, 8,80 —F))

acA
(31)

being the canonical magnetization and
m 1
21(0="20,0) + 0, | dooate 8- oF)
A 0

2 qﬁrﬁf doad(r -t - o'f‘l'g). (32)
mA BeA
In the long-wavelength approximation, the atom-field cou-

pling Hamiltonian reduces to

H,=—d,-E'(f}) -} '(”)+— d, x B'(£})

2

~ ~ 3 . ~

+ D A S BEDP+ ——[d, X B #)T,
aeA mey 8WlA

(33)

where
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dj= 2 qF,= 2 qaf, (34)
acA acA
and
A1 qa Zr 27 Al
YEDIN P VRS JE A (35)
€A zma

are the atomic electric and (canonical) magnetic dipole mo-
ments, respectively. In Eq. (33), the first and the second
terms are the electric and magnetic dipole interaction, re-
spectively, the third term is the Rontgen interaction associ-
ated with center-of-mass motion, and the last two terms are
generalized diamagnetic interactions. The Rontgen interac-
tion becomes important when studying dissipative forces
such as quantum friction [30]. In this work, we are mainly
interested in the interaction of atoms at given center-of-mass
positions r, featuring electric as well as paramagnetic prop-
erties which, upon discarding the last three terms in Eq. (33),
can be described by the interaction Hamiltonian

Hip=—d,-E'(ry) -} -B'(ry). (36)

We conclude this section by recalling some relations that
will be needed for the calculation of vdW potentials. The

electromagnetic fields E’ and B’ are expressed in terms of
the fundamental bosonic fields

[f;\(raw)’%’j(r’9w’)]= 5)\)\!5(0)—(0,)5(1'—1',), (37)

[£(r,0).£,(r ') =0 (38)

(N N e{e,m}) according to

E'(r)= >

A=e.m

d3r'f dwG,(r,r", ) - i')'\(r',a)) +H.c.,
0

(39)

B'(r)=

A=e,m

+Hec., (40)

.y )
d%’f fv X Gy(r,r",0) - B (', o)
0

where the quantities G, (r,r’,w) are related to the classical
Green tensor G(r,r’,w) as

W’ h
G.(r.r'w)=i—\/—Imelr', 0)G(rr, ), (“4l1)
N e,
hol
G, (r.r,w) =iZ | —— M[v' X G(r',r,0)]".
¢ Ve ur', )

(42)

For an arbitrary arrangement of linearly responding magne-
toelectric bodies described by a permittivity e(r,w) and a
permeability u(r,w), the Green tensor obeys the differential
equation
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V X ) - Z)—zzs(r,a)) G(r,r',w)=6é(r-r'),
(43)
has the useful properties
G*(r,r’,w) =G(r,r',— 0¥, (44)
G(r,r',w)=G"(r'r,w), (45)

and satisfies the integral relation [27]

> | @sGy(rs.0)- G T’ s ,w)——w Im G(r,r', ).

\=e,m

(46)

The ground state [{0'}) of I—AII'r is defined by the relation

f')’\(r,w)|{0’}>=0 for all \,r,w. Since we will exclusively
work with the multipolar-coupling Hamiltonian, we will
henceforth drop the primes indicating the Power-Zienau-
Woolley transformation.

III. VAN DER WAALS POTENTIALS

According to the well-known concept of Casimir and
Polder [31], vdW forces on ground-state atoms can be de-
rived from the associated vdW potentials, which in turn can
be deduced from a perturbative calculation of the position-
dependent parts of energy shift induced by the atom-field
coupling.

A. Single-atom potential

Let us consider a neutral ground-state atom A at a position
r, in the presence of arbitrarily shaped magnetoelectric bod-
ies. With the atom-field interaction Hamiltonian given by Eq.
(36) (recall that we have dropped all primes), the vdW po-
tential of the atom follows from the second-order energy
shift

B> (OlEAADXTHArl0)

, (47)
1#0 E,—E,

where |0)=]0,)[{0}) denotes the quantum state where both
atoms and the body-assisted electromagnetic field are in their
ground states. Note that the summation in Eq. (47) includes
position and frequency integrals. Recalling the interaction
Hamiltonian (36), we see that only intermediate states |I) in
which the atom is in an excited state and a single quantum of
the fundamental fields is excited contribute to the sum and
hence Eq. (47) may be specified as

AE=1 3 S

f3fx dw
d’r X
hk)\em 0 Wytw

X (0|10} H y 1, (r, 0)) )2 (48)

[of = (E% - ES (r,w)):ﬁ(r, o)[{0})]. Using the expan-
sions (39) and (40) as well as the commutation relations (37)
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and (38), the matrix elements of the interaction Hamiltonian
(36) are found to be

(04[O} H o1, (r, ) ky) = = A5 - Gy (1.1, )
mgk -V, X Gy(ry,r,m)

iw
(49)

[d2k=<0A|dA|kA>v m2k=<0A|mA|kA>]-

With AE being quadratic in the matrix elements, there are
three classes of contributions to the energy shift. The contri-
bution involving two electric-dipole transitions is known to
lead to the electric single-atom vdW potential [32]

Mo

U,(ry) = d§§2 trf ay(ié) - GV (ry,14,08)]

_ o

f dggzaA(if)trG(l)(rAyrA’ig)v (50)
27 Jy

where GV is the scattering part of the Green tensor, and

2 ohdSdy
a,(w) =lim —
4(@) €0 ﬁ% (wf\)z— o —iwe
2 K%
= lim — ‘2”/*|—| a0l (51)
0 307 (wA) - W —iwe

(with | denoting the unit tensor) is the atomic ground-state
polarizability. The second lines in Egs. (50) and (51) are
valid for isotropic atoms.

The contribution AE, to AE which involves two
magnetic-dipole transitions can be calculated by substituting
the second term in Eq. (49) into Eq. (48) and using the inte-
gral relation (46), resulting in

Moz -

0 (I)A+(1)

X[mgk -V X ImG(r,r',w) XV’ ~m§0]r=r,=rA

(52)

[(Tx V)T=-V X TT]. The relevant, position-dependent part
of AE,, is obtained by replacing the Greens tensor with its
scattering part. After writing Im G=(G-G*)/(2i), making
use of Eq. (44), and transforming the integral along the real
axis into ones along the purely imaginary axis (cf. Ref. [23]),
the resulting magnetic single-atom potential reads

U,(ry) = “" dEulBy9 Ly id)]
_ e f déB(i&)r LD (ry,ry,i8), (53)
2 Jy
where
L(r,r',®) =V X G(r,r',w) X V' (54)

[note that L refers to GV], and

062901-5



150

3. Vacuum dispersion forces

SAFARI et al.

PHYSICAL REVIEW A 78, 062901 (2008)

TABLE I. The intermediate states contributing to the two-atom vdW interaction according to Eq. (57)
together with the energy denominators, where we have used the short-hand notations |1,))= |1)\ iy (ry,o,),

|1 ,u)l(v)> |1)\ ul (r/.l.’w/.l.)l)\ i (rww )>

Case Iy [11) [TIT) Denominator

(1) [k, 011 104,01 1@ [04.1p)]1 ) D= (e +0") (0 +0)(wh+o'),
Dll,:(w§+w’)(w’+w)(w8+a))

(2) lka, 051 1)) lka. LY {O}) 04-1p)[1(2)) Dy=(wl+0") (o + wh) 0+ o)

(3) lka,05)[1 1)) lka. Y {O}) lka,05)|1(2) D3= (e +0") (0l + 0l (0l +0)

(4) |kAaOB>‘1(l)> ‘kAle>‘1(2)l(3)> ‘OAalB>|1(4)> D4:(wf;+w')(w,k4+wﬁ;+w'+w)(w£;+w')

(5) [ka,08)[1 (1)) lka. i)l 2)1(3)) lka,08)[1(4)) D5:(w§+w’)(wZ+wg+w’+w)(w§+w)

(6) |0AJB>|1(1)> ‘OA’OB>|1(2)1(3)> ‘kA’OB>‘1(4)> D6a=(w;3+w’)(w'+w)(wf\+w’),
D6h:(w3+w’)(w’+w)(w§+w)

() 0411 [kas IO} ki, 0)[1)  Dr=(wj+o")(wh+wp) () +w)

®) 04,21 1)) k4 Lp)[{0}) 104,28 1(2)) Dyg=(wh+ o)+ o)) (wh+w)

©) [04. 1)1 1)) ks )1 2)1 3 ka0 1) Do=(wh+0") (0 +wh+o +0)(w+ ')

(10) |0AJB>|1(1)> ‘kAle>‘1(2)l(3)> ‘OAalB>|1(4)> D10=(wi;+w')(w§+wjg+w/+w)(wi;+w)

wﬁmg"mﬁo given by Eq. (36), the summands in Eq. (57) vanish unless

2
Ba(w) = lim = >

e0 B (wﬁ)z—wz—zwe

|— Ba(w)l (55)

= hm —
e—0 3h k (O)A)2

is the atomic ground-state magnetizability. The second lines
in Egs. (53) and (55) are again valid for isotropic atoms.

We restrict our considerations to nonchiral atoms and
molecules whose energy eigenstates can be chosen to be
eigenstates of the parity operator. Contributions to the energy
shift that contain one electric-dipole transition and one
magnetic-dipole transition can then be excluded, since &A is
odd and my is even under spatial reflection. Hence, the total
vdW potential of a single ground-state atom that is both po-
larizable and (para)magnetizable and is placed within an ar-
bitrary environment of magnetoelectric bodies reads

U(ry) = U,(ry) + U,(ry), (56)

with U, and U,, being given by Egs. (50) and (53), respec-
tively. To our knowledge, the magnetic part of this potential
has been derived for the first time in this general form.

B. Two-atom potential

We now consider two neutral ground-state atoms A and B
at given positions r, and rp in the presence of arbitrarily
shaped magnetodielectric bodies. The two-atom vdW poten-
tial follows from the fourth-order energy shift

(O|H o+ Hpp| Iy o+ H |11
(Em— Ep)

AE=— >

LILIT#0
<H|I:IAF + I:IBF|I><I|I:IAF + I:IBF|O>
(Ey— Ep)(E; - Ep)

where |0)=]0,)|05)|{0}) is the ground state of the combined
atom-field system. With the interaction Hamiltonian being

; (57)

the intermediate states |I) and |III) are such that one of the
atoms and a single quantum of the fundamental fields are
excited. The intermediate states |II) correspond to one of the
following three types of states: (i) both atoms are in the
ground state and two field quanta are excited, (ii) both atoms
are excited and no field quantum is excited, and (iii) both
atoms are excited and two field quanta are excited. All the
possible intermediate states together with the respective en-
ergy denominators are listed in Table I. In addition to the
matrix element (49), an evaluation of Eq. (57) hence requires
matrix elements of the interaction Hamiltonian (36) which
involve transitions of the body-assisted field between single-
and two-quantum excited states. Recalling the definitions
(39) and (40) as well as the commutation relations (37) and
(38), one finds

<kA|<1)\ i (rlvwl)|[:IAF| 1>\2i2(1‘2, w2)1)\3i3(r3’w3)>|0A>

(13)
[d G)\z(rA’rZ,wZ)]iz

(12)
r [d Gx3(TA,r3, w3)]i3

15(13)
+——=[m}’ -V, x G)\z(rAers 0)2)]
wo\2
15(12)
+ [m VX Gx (I'Avrx,wz)] (58)
a)3\2

with [1,(r,0)1,,(r",0"))=5f{(r, 0)f],(r', ") [{0}) and

6(,4“/) - 5}\ )\ (r V)a(wp. - wy)- (59)

The two-atom potentlal follows from those contributions
to the energy shift (57) in which each atom undergoes ex-
actly two transitions. As in the single-atom case, we distin-
guish different classes of contributions according to the elec-
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tric or magnetic nature of those transitions. Those involving
only electric transitions of both atoms are known to lead to
the electric-electric vdW potential [16]

fL,u(z) *
Uee(rA’rB) == 2_ d§§4
™ Jo

X @, (ié) - G(ry,rp,i€) - ap(ié) - G(rp,ry,ié)]

hul [~
__ Ty J 8 (i€ ag(id)

2w J

X tr[G(rA’rBJé:) : G(rB’rA7i§):|

[recall Eq. (51)], where the second equality is valid for iso-
tropic atoms.

Next, we calculate the electric-magnetic vdW potential
U,,,» which is due to the contributions of atom A undergoing
electric transitions and atom B undergoing magnetic transi-
tions. Each of the possible intermediate-state combinations
listed in Table I contributes to U,,,, where we begin with the
intermediate states of case (1). Substituting the respective
matrix elements from Egs. (49) and (58) into Eq. (57) and
using the integral relation (46), we find

2 0 0
1 1
AE%:—ﬂE dwwf dw’w’(—+—)
hac Jo 0 Dy, Dy,

(60)

x{[d% - Im G(ry,rp.0) X V;-mY

X[mY - Vg X Im G(rg,ry,0') - d5), (61)

with the energy denominators D, and D, being given in
Table 1. Without loss of generality, we have assumed that the
matrix elements of the electric- and magnetic-dipole opera-
tors are real-valued quantities. One can then easily find that
the contributions AES;)L (ke{2,3,...,10}) from the other
possible intermediate-state combinations differ from Eq. (61)
only with respect to their energy denominators and signs.
Case (6) leads to two terms with different energy denomina-
tors 1/Dg,+1/Dg, just the same as case (1), while all other
cases only give rise to a single term each. Furthermore, the
contributions from cases (3)—(5) and (8)—(10) differ in sign
from Eq. (61). The electric-magnetic vdW potential can be
found as the sum of all contributions U,,,(ry,rg)=3AEX
In analogy to Ref. [16] it can be seen that the denominator
sum

1 1 1 1 1 1
— - —— -
Dy, D, D3 Dy Ds

1 1 1 1 1 1

+— - —— - (62)
Dg, Dg, D; Dg Dy Dy
can be replaced by
4ok + 0+ o 1 1
X (1 o )/ ( ;+ ,), (63)
(wy + 0p) (W) + W)W+ W)\ 0+ w-o0

under the double frequency integral in Eq. (61), where we
have used the definitions of the denominators in Table I and
exploited the fact that the remaining integrand is symmetric
with respect to an exchange of w and w'. This results in

PHYSICAL REVIEW A 78, 062901 (2008)

— do| do'

ﬁ’ﬂ'zkEJ wf\ + wﬁ; 0 0

o' (o} + oh + o) 1 1
w/

(wff4 + w)(wfg + w)

Uem(rAvrB) ==

w+o -
X {[dgk -Im G(ry,rg, ) X 63 . mgl
X [mgl -V X Im G(rg,r,,o') - dgk]}. (64)

The integral over o' can be performed by using the identity
Im G=(G-G*)/(2i) and Eq. (44) to yield [16]

* 1 1
f dw’w’( -+ ,>Im G(rgry,o')
0 v+t w-o

= gw[G(rB,rA7w) + G*(rB’rA’w)].

(65)

After substituting Eq. (65) into Eq. (64) and transforming the
o integrals by means of contour-integral techniques to run
along the positive imaginary axis, one obtains

fimg [

Uem(rA’rB) = ; d§§2tr[aA(i§) : KT(I‘B,I‘A,if)

0

: BB(lf) ‘ K(rB’rA’if)]
hul (7
=& f ey (i) Byi6)

2m Jo
XK (rp.ry,i6) - Klrp.raid)].  (66)
where
K(r,r',w)=V X G(r,r’,w), (67)

and the second equality holds for isotropic atoms. Obviously,
the magnetic-electric potential U,,(r4,rz), which is due to
all contributions of atom A undergoing magnetic transitions
and atom B undergoing electric transitions, can be obtained
from Eq. (66) by interchanging A and B on the right-hand
side of this equation. The magnetic-magnetic potential U,,,,,
associated with magnetic transitions of both atoms, can be
found in a procedure analogous to the one outlined above for
deriving Eq. (66), resulting in

hug [
Umm(rA’rB) == ﬂ df
2 J

XUl Byi€) - L(ryxpif) - Byli6) - L(rpry.if)]
hul (7
=k f dEB,(i6) Byif)

2 Jy

X tr[L(ry,rp,ié) - L(rg.ry.ié)], (68)

where the second equality again holds for isotropic atoms.
We have thus calculated all those contributions to the en-
ergy shift where both atoms undergo exactly two transitions
of the same type (electric and/or magnetic). The remaining
contributions of one or both atoms undergoing an electric
and a magnetic transition can again be excluded from a par-
ity argument for the nonchiral atoms under consideration in
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this work (for the interaction of two chiral molecules in free
space, see Ref. [33]). The total two-atom vdW potential of
two polarizable and (para)magnetizable atoms placed within
an arbitrary environment of magnetoelectric bodies is hence
given by

U(rAvrB) = Uee(rA’rB) + Uem(rA’rB) + Ume(rAvrB)

+ Umm(rA’rB)s (69)

together with Egs. (60), (66), and (68) (the diamagnetic con-
tribution to the dispersion potential of two atoms in free
space is discussed in Refs. [33-35]).

IV. LOCAL-FIELD CORRECTIONS

The single- and two-atom potentials given in Sec. III refer
to atoms that are not embedded in media, i.e., &(rygp,)
=u(r(p), w)=1. When considering guest atoms inside a host
medium, one needs to include local-field corrections to ac-
count for the difference between the macroscopic electro-
magnetic field and the local field experienced by the guest
atoms. A possible way to treat local-field effects is offered by
the real-cavity model [18], where small spherical free-space
cavities of radius R, surrounding the atoms are introduced.
As shown in Ref. [19], the local-field corrected forms of the
Green tensor read, in leading order of wR /c,

3
Giolryrp) = 7 Glryrp0) . (70)

%A
2e,4+1 ep+1

3

w g -1 ¢
GW(ry,ry,w) = —1 —2 —_—
toe(T4,T,©) 27rc 28A+1w3R3

3e3(5u—1)=3e4—1 ¢
5 (2e,+1)2 wR,

3gans 1
N
(2e,+ 1) 3

38A 2 0
+ et 1 G(ryry o), (71)
A

where g5 =€(ry ), w) and wap)=u(ryp),w), respectively,
are the permittivity and permeability of the unperturbed host
medium_at the position of the guest atom A(B) (nyg
=ve g Ma) and G is the uncorrected Green tensor. Insert-
ing the corrected Green tensor into Egs. (50) and (60), one
obtains the local-field corrected electric contributions to the
single- and two-atom vdW potentials [20]

o (7o 3ealid) ]2
Udr =5 ) a8 [28A(i§)+1
Xt ey (i€) - G(l)(rAvrA’ig)] (72)

[we have discarded the position-independent first term on the
right-hand side of Eq. (71)] and
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hul [
Uee(rA’rB) =- 2_7: d§§4
0

y [ 3ea(i8) H 36,(i8) ]
28A(l§) +1 283(1&) +1
X tif @y (i8) - G(rp,1p,i8) - @p(if) - G(rp,ry,i)].
(73)

For magnetic atoms the vdW potentials depend on spatial
derivatives of the Green tensor. Hence, the respective local-
field corrected tensors cannot be derived directly from Egs.
(70) and (71) because the correction procedure does not
commute with these derivatives. As shown in Appendix A,
the required local-field corrected forms of the tensors L [Eq.
(54)] and K [Eq. (67)] within leading order of wR./c are
given by

) u-1 3
27c3 | 2uq + 1 w3Rz

3up(5es-1)=3u—1 ¢

Ll((ig(rA’rA’ w) ==

5 (Quy+1)? oR.
3uany 1
. ,.[M_AHAZ . _] |
Qua+1)° 3
3 2
+ (Z,U«A 1 ) LU)(I'A,I'A,G)), (74)
3
Lioo(ry,rp0) = mL(rA’rB’w)m7 (75)
and
3 3e
Kioe(ep 15, 0) = 5= 2 K(rprp0) =0 (76)

Replacing in Eq. (53) L® with L)) from Eq. (74), we obtain

loc
the local-field corrected magnetic single-atom potential

R R
Unle =52, dg[ 200(i6) + 1]

Xtr[ﬁA(lg) : L(l)(rA’rA’ig)]’ (77)

where a position-independent term has been discarded, as in
the electric case. To obtain the local-field corrected contribu-
tions U,,, and U,,, to the two-atom vdW potential, we re-
place K and L with K. and L. in Egs. (66) and (68),
respectively, leading to
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2 3 2
] [2,%(1'5) 1 } tfa,(i8) - KT (rp.rai8) - Bylid) - K(rg,ry,id)] (78)

g [~ 34(id)
U, rp)=—0> H | déé
em(rA rB) 2 0 §§ 2£A(l§) +1
and
fipd [ 3
Umm(rAvrB) == 0 |: .
27 ) 2pua(if) +1

Recall that U, (r,,rz) can be obtained from Eq. (78) by
interchanging A and B on the right-hand side of this equa-
tion. Needless to say that Egs. (72), (73), and (77)—(79) re-
duce to Egs. (50), (60), (53), (66), and (68), respectively,
when the atoms are situated in free space so that ey

=pam=1.

V. EXAMPLES

We now apply the theory to some illustrative examples
and compare the results with the familiar results for nonmag-
netic atoms, with special emphasis on whether the total po-
tentials for electromagnetic atoms are invariant under a glo-
bal duality transformation &« u, c?a ¢ B8 [36]. It will turn
out that atoms situated in free space do respect this symme-
try for the examples studied, while atoms embedded in me-
dia only do when the local-field corrections are taken into
account.

A. Single-atom potential: Half space

First, we consider an isotropic atom A at a distance z,
away from a magnetoelectric half space of permittivity (w)
and permeability u(w) and choose the coordinate system
such that the z axis is perpendicular to the half space that
occupies the region z=<0. Assuming that r and r’ refer to
two points in the free-space region z>0, we have [37]

) , elwerwar’)
GV(rr.w=|d
(r,r', o) f q =
[,U«(w)b—bo e(w)b—by , ]
ee, + ee
,u(w)b+b0 S(G))b"‘bo [

(80)

[w.=q=*ibe.,qLe.], where

(1)2 wz
b=\@ -5 b=\ @s (1)

[g=|q|, n(w)=Ve(w)u(w), Re b, Re by>>0], and the polariza-
tion vectors e, and e, are defined by (e,=q/q)

+
eszequz, e =

) (ge, + ibe,). (82)

<
w

As shown in Ref. [37], substitution of G from Eq. (80)
into Eq. (50) yields for the electric part U, of the single-atom
vdW potential

2 3 2
} [zﬂs(if) N 1] tr[ B4(ié) - L(ry,rp,ié) - Bp(ié) - L(rp,r,,ié)]. (79)

fg [ N
Ulra) = ﬂﬁ dé€ ay(ié) f dq;e‘”’%
0 0

pligb—by _e(idb —b0< zc_z)]
X[u(iabwo idb+b,\ e ]
(83)

In the nonretarded limit of the atom-surface separation being
small with respect to the characteristic atomic and medium
wavelengths, Eq. (83) simplifies to

B ” aeié) -1
Uelza) == 167728023,[) dgaA(lg)s(ig) +1
woht (7, e -1 uid-1
Y lom, ), ¢ aA(lf){e(if) 1 o+t
2e(ig)[n(i¢) - 1]
P TeGa 1T } (84

In contrast, in the retarded limit of large atom-surface sepa-
ration one finds that

3hca,(0) [ ( 2 1 )
Uz =- ——2— | ao||5-—
z) 6477280zf, 1 v v? ot
e(0)v — Vn?(0) = 1 + v
e(0)v + Vn?(0) — 1 +v?

1 p(0) - (0= 1+ UZ:|
vt w0y +Vn2(0) = 1 +0% |

(85)

To calculate the magnetic part U, of the single-atom vdW
potential, we first combine Egs. (80) and (54) to

2 i(wyr-w_r’)
LO(r.r, =_‘”_fd2 e -
(rrio)=-7 [ da— 5
[s(w)b—bo wlw)b—by _]
e.e, ele |
e(w)b + b, w(w)b+by P
(86)

Comparing Egs. (53) [together with Eq. (86)] and (50) [to-
gether with Eq. (80)], we see that the magnetic part U,, can
be found from the electric part U, in Eq. (83) by replacing
a, and &, with 8,/c? and p, respectively, in agreement with
the duality principle [36]. Needless to say that this symmetry
also holds for the retarded and nonretarded limits.
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B. Two-atom potential: Bulk medium

As a second example, we consider two isotropic atoms A
and B embedded in an infinitely extended bulk medium of
permittivity e(w) and permeability u(w). To illustrate the
relevance of the local-field corrections, let us first consider
the uncorrected two-atom potential. By using the bulk-
material tensors as given in Egs. (A3) and (A7), and calcu-
lating

ikl
KtT)ulk(l’BJA,w) == Kpu(rp.ry, @) = M(w)i
4l

(1—ikl)e; X 1
(87)
(I=rg—ry4, I=|1|, ,=1/1), which follows from Eq. (67) to-

gether with Eq. (A3), the potentials (60), (66), and (68) take
the form

[T 898
Uee(rA’rB) == 167738316 fo déaA(lé)aB(lg) 82(15) B
(88)
T
Uem(rAvrB) = m,’; dfg aA(lg)ﬂB(lg)
X p(ié&h[n(idélic], (89)
and
fimg [~
Umm(rAsrB) == 1677316‘[ ngA(lg)ﬁB(lg)
0
X p(i&)glnié)élic], (90)
where
g(x) =™ (B + 6x+5x% +2x° +x%), 91)
h(x) = e (1 + 2x +x2). (92)

We see that due to the factors e 2(i€) and u?(ié), the uncor-
rected quantities U,, and U,,, do not transform into one
another under the duality transformation & u, cZa<s .
The same is true for the pair U,,, and U,,.. As a consequence,
the uncorrected total two-atom potential (69) violates duality
symmetry.

By contrast, the local-field corrected two-atom potential
does obey the duality symmetry. From Egs. (73), (78), and
(79) [together with Egs. (A3), (87), and (A7)] we find that

h o0
U, (ry,rg) =— Wsélﬁf déay(i&)ag(if)

0

81&2(i
g, )
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hug
Uem(rAvrB) = 16':?14f dggzaA(lg)BB(lg)
0
812%(i€) u’(i¢)
[26(i&) + 111209 + 177

hln(i§)élic],
(94)

and

g [~
Umm(rA’rB) == 16—:':316[ dgﬁA(lg)BB(lg)
0

2.
e Smdnog.  ©3)

Inspection of Egs. (93)—(95) then reveals that the duality
transformation & <> u, Cae B results in

Uee(rAﬁrB) AN Umm(rA’rB)$ (96)

Uem(rA’rB) s Ume(rA’rB)’ (97)

so the total vdW potential (69) is invariant under the duality
transformation. The result clearly shows that (i) the inclusion
of local-field effects is essential for obtaining duality-
consistent results and that (ii) the real-cavity model is an
appropriate tool for achieving this goal.

It is instructive to inspect the nonretarded and retarded
limits of Egs. (93)—(95). In the nonretarded limit where the
atom-atom separation is small in comparison to the charac-
teristic atomic and medium wavelengths, the approximations
gln(ié)él/c]=g(0) and h[n(i&)é&l/c]=h(0) result in

- * , . 81&%(i9)
U,o(ry,rp) = WL d§aA(l§)aB(l§)m,
(98)
T
Uem(rA’rB) = mf dgg aA(lg)ﬁB(lg)
0
81&”(iH u’(id)
e + 1 P2a+ 17 )
Umm(rA’rB)_ 16773[6 0 dgﬁA(lg)lBB(lg)[z,lL(lf)+ 1]4
(100)

In the retarded limit, the quantities «, B, €, and w can be
replaced by their static values, leading to

23ﬁCCYA(O) aB(O)
64mell’

81£2(0)
n(0)[2&(0) + 1]*’
(101)

Uee(rA’ rB) ==
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U,.(rs rB)=7hCH00‘A(O)3B(O) 81n(0)
ema 64megl’  [2e(0) + 117[2u(0) + 1%
(102)
U (enry) = 2hetaBrOB0)  8120)
A 641 n(0)[2u(0) + 17*
(103)

Compared with two atoms in free space, one notices that
the medium modifies the magnitudes of the interatomic po-
tentials but does not change their signs. Inspection of Egs.
(93) and (95) reveals that the medium always leads to a
reduction of U,, and U,,,. In the nonretarded limit, U,, is
only influenced by the electric properties of the medium and
U, only by the magnetic ones [cf. Egs. (98) and (100)]. In
contrast, U,,, and U,,, are diminished by the medium in the
retarded limit, Eq. (102), but are enhanced by a factor of up
to 81/16 in the nonretarded limit [cf. Eq. (99)].

In the retarded limit, the influence of the medium on all
four types of potentials is very similar. The coupling of each
atom to the field is screened by a factor 9&(0)/[2&(0)+1]?
for polarizable atoms, and a factor 9u(0)/[2u(0)+1]> for
magnetizable atoms. In addition, the reduced speed of light
in the medium leads to a further reduction of the potential by
a factor n(0).

It should be pointed out that the uncorrected potentials
U,,, and U,,, as given by Egs. (89) and (90) differ from the
corresponding results given in Ref. [21] by factors of u™
and w2, respectively. The discrepancy is due to the different
atom-field couplings employed: While our calculation is

based on a magnetic coupling of the form m-B, an m-H
coupling is used in Ref. [21]. The potentials derived therein
thus do not follow from a Hamiltonian that is demonstrably
consistent with the Maxwell equations and generates the cor-
rect equations of motion for the charged particles inside the
atoms, whereas both of these requirements have been veri-
fied for the Hamiltonian (27) together with (28), (29), and
(36) employed in this work. Furthermore, in spite of the use

of anm-H coupling, the contribution due to the noise mag-

netization contained in H (cf. Refs. [23,24]) was not dis-
cussed. The discrepancy would not have been noticeable if
local-field corrections had been taken into account in Ref.
[21]: When applying local-field corrections to the potentials
stated therein, one recovers our local-field corrected Egs.
(94) and (95) since the appropriate magnetic local-field cor-
rection factors are 3u(i¢)/[2u(ié)+1] in that case, as op-
posed to the factors 3/[2u(i¢)+ 1] arising in our calculation.

C. Two-atom potential: Sphere

Finally, let us consider two isotropic atoms A and B in the
presence of a homogeneous sphere of radius R, permittivity
e(w), and permeability w(w). According to the decomposi-
tion of the Green tensor into a free-space part and a scatter-
ing part, each contribution to the two-atom vdW potential
U(ry,rg), Eq. (69), can be decomposed into three parts la-
beled by the superscripts (0), (1), and (2), respectively, de-
noting the contribution from the free-space part of the Green

PHYSICAL REVIEW A 78, 062901 (2008)
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FIG. 1. Two atoms A and B in the presence of a sphere (6,
+65=0).

tensor, the cross term of the free-space part and the scattering
part of the Green tensor, and the scattering part of the Green
tensor,

U(ry,rp) = U(O)(r/‘er) + U(I)(rAsrB) + U(z)(rAJ'B)-
(104)

The potential contributions arising from the free-space part
of the Green tensor can be found from Egs. (93)-(95) by
setting e=u=1. In the body-induced part of the interaction
potential

Ub(rp,rp) = UN(ryrp) + UP(r,1p), (105)

which arises from the scattering part of the Green tensor, the
contributions Uile) and U(ezg) to U’ can be taken from Ref.
[38], and the contributions U'!) and U?) to U” can then be
obtained from U(el,) and Uﬁ) by the transformation a— B/c?,
e+4> u, as sketched in Appendix B. We may therefore focus

on the calculation of the body-induced mixed contributions

ﬁ 2 o
Uiieary) == | dgay(i9)Byid)
0
X tr[K(O)T(errAaig) : K(l)(rB’rAaig)]v
(106)
(2) _ h_lu“(z) - ) . .
Ugn(ts,rp) = > dEE ay(ié) Bylié)
T Jo
X [ KD (g, r4,i8) - KD (rp,14,i8)].
(107)

For this purpose, we choose the coordinate system such
that its origin coincides with the center of the sphere (Fig. 1).
The scattering part of the tensor K(rg,r,,®) can be given in
the form (Appendix B)
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1
K(l)(rB,l‘A,w)= E 2n+ 1){rABMQnP (y)sin G)e,Bed,A _(n _)[VABM BFn(')’) rBBf:/Qn n(,y)]egBequ
TATB =1
1
+ 5B,/ Q,P,(7)sin Oey e, + pr 1)[rBBfYQQFn(y) - 4By QﬁP,;<y)]e¢BeeA} (108)

[ko=w/c; rap= ; y=cos ©; O=60,+ 6, angular separation between the two atoms with respect to the origin of the
coordinate system], where

wo)yoin(y0)]'7,(0) = [0 ()] 7 (o)

Bi() == w(@)lyoh ()] i) = [via )] B (o) (109
e o
0, =D (kor) ) (kor), (111)

0y = korp)[zhy ()]s, (112)

05 = hiP (kor ) zhi ()]s (113)

F,(x) =n(n+1)P,(x) —xP,(x) (114)

[P,(x), Legendre polynomial; yy=koR; y=n(w)y]. Further, e,, ey, and e, are the mutually orthogonal unit vectors pointing in
the directions of radial distance r, polar angle 6, and azimuthal angle ¢, respectively (Fig. 1). In order to facilitate further
evaluations, it is convenient to represent the free-space part K%, which can be obtained from Eq. (87) for u=1 and k=k, in
the same spherical coordinate system as the scattering part,

1 .
KO(rp,ry,iu) = me’kol(l — ikol)(r4 sin Oe, ey +1peqe, +rpsinOeye, +le4e)), (115)

where 14(p) is the component of 1 in the direction of r4(-rp),
lA=rBCOS®—rA, ZB=rACOS®—rB. (116)

Using Egs. (108) and (115) in Egs. (106) and (107), we derive

Wt o 2n+1
Ui (rars) == 12 7730’;2” Z(Z 11; d§§3aA(z§>ﬁB<l§)e-ff"(1+ ){n(n+1>sm O[2BY(ig) + BN (i£)]0,PL(y)
A"Bn=1
+ 4B (i&) QBL15F () = L PL(9)] + rgBY (&) QALL4F () = 1sP ()]} (117)
2 o ’ )
U ) = —0 @+ D@L (7 s (10 Baliin' (0 + i+ 1)0,00, sin? ©

32mc errB _ n'(n"+ Dn(n+1) J,
X P;,(wP,;(y)[rAB:f(iaB%ug) + 5B (19BN i&)] + [raBY (i6)BN(i6) 00, 04 + B (i9)BY(i¢) 0, 0F

X[F(WF,(Y) + PL(NPL(Y)] = 2rarsBh (19 BY (i) 05, 00 P (VF,(¥) + PV F, (9]} (118)

As before, U(')(rA,rB) and Ume(rA,rB) can be obtained from  +Umm(rA,rB) also obeys the duality symmetry, the total
Egs. (117) and (118) by interchanging A and B. Inspection  potential U(r,,rp) is duality invariant.

of Egs. (117) and (118) reveals that this is equivalent to
the interchanging @<+ B/c? and &> u, which shows that
the combination U,,,(r,,rg)+U,,.(r,,rp) is invariant under
the duality transformation. Recalling that Uee(rA,rB) small spheres. In the case of a large sphere,

Further analytical evaluation of the body-induced part of

the potential is possible in the limiting cases of large and
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Sy =ry-R<R (A'=A,B), (119)

I<R=>0<1 (120)

[where the second condition in Eq. (120) follows from the

first one by virtue of 2R sin(®/2) </, cf. Fig. 1], we derive

(Appendix C)

fiug

32mPL(L, + 6,)?

X[(X? = 8.8, 10+ (X* + 6.8,)1]

+BRE+X) Uy + Jop) +4P(X2 = 1,8,)J11},
(121)

UL, (ra.rp) = (21,3, + 8,

where X=R0, 8.=8;* &, [,=\VX*+&, and
8(id) - 1 }k[ua&) - 1]’
e +1] [ uid+1]"
(122)

Ju= f dffzaA(if)BB(if)[
0

In the case of a small sphere, R<r,, (A'=A,B), the main
contribution to the frequency integrals in Egs. (117) and
(118) comes from the region where ¢<<c/R, so that U”  can

be approximated by the term n=1 in Eq. (117) (cf. Ref.
[38]), leading to

huac?

b o
Uem(rAsrB) = 413 3 3
647 Pryry

f dEBay (i) Bylig)e rarsDoe

0
X(1+ l§/c){[2r3(1 +r,&/c)sin’> ©

+(lg =1y cos O)a(ry&/c)J(1 + rpéic)rpag,(if)
+[2r,(1 + rgélc)sin® O + (I, — Iy cos ©)

Xa(rgélc)](1+ rAf/c)rA&z(;_g)}

(123)
where
(w) -1
ag(w) = 47780R32(ZT, (124)
_4m s(w) -1
Byplw) = M()R ) i2 (125)
and
alx)=1+x+x° (126)

It is worth mentioning that the nonadditive interaction po-
tential of three atoms [polarizable atom A, magnetizable
atom B, and a third atom C of polarizability a-(w) and mag-
netizability B(w)] in free space may be obtained from Eq.
(123) by replacing a,(w) = ac(w) and B, (w) — Bc(w). By
adding U”(r,,rp) from Ref. [38] and U’ (r,,rp) (cf. Ap-
pendix B), one can obtain the nonadditive potential of three
atoms, each being simultaneously polarizable and magnetiz-
able.
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Uem /U

1.5 2 2.5 3

O [rad]

FIG. 2. The vdW potential of a polarizable and a magnetizable
two-level atom (transition frequency w;q) in the presence of an
electric sphere of radius R=c/w)y (wp/w)p=3, wr/w=1,
v,/ 019=0.001) is shown as a function of the angular atom-atom
separation ®. The values of ry=rg are 1.03¢/w; (solid line),
1.3¢/ w) (dashed line), and 2¢/ w (dotted line).

Let us finally present some numerical results illustrating
the effect of a medium-sized magnetoelectric sphere on the
vdW potential of two two-level atoms with equal transition
frequencies. We again focus on the case where atom A is
polarizable and atom B is magnetizable. The corresponding
results for two polarizable atoms are given in Ref. [16], from
which, by duality, the analogous results for two magnetizable
atoms can be inferred (see Appendix B). Figures 2 and 3
show the ratio U,,,/ U(e% obtained by numerical computation
of Eq. (104) together with Egs. (94) (for e=u=1), (92),
(117), and (118), with the permittivity and permeability of
the sphere being approximated by single-resonance Drude-
Lorentz models,

8(w)=1+#, (127)

plo)=1+—5——"——. (128)

wp — @ = 1Y,

In Fig. 2, two atoms at equal distances r,=rp from an
electric sphere are considered and the ratio U,,/ UE,?,? is
shown as a function of the angular separation ® of the at-
oms, for three different values of the atom-sphere separation.
It is seen that the presence of the sphere can lead to enhance-
ment or reduction of the potential, depending upon ®. To be
more specific, U,,,/ Ui(,)i first increases with O, attains a
maximum, and then decreases with increasing ® to eventu-
ally become minimal at ® =7 when the atoms are positioned
at opposite sides of the sphere. Whereas the position of the
maximum shifts with the atom-sphere separation, the mini-
mum is always observed at ®=1r. Note that a magnetic in-
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FIG. 3. The vdW interaction potential of two atoms with param-
eters as in Fig. 2 in the presence of (a) the same electric sphere as
in Fig. 2, and (b) an analogous magnetic sphere as a function of the
atom-atom distance / for ®=0 and rg=r,+/[. The values of r, are
1.03¢/ wyq (solid line), 1.1¢/wy (dashed line), 1.3¢/w;, (dotted
line).

stead of an electric sphere would lead to the same behavior
because of duality.

Figure 3 shows the dependence of the ratio U,/ UE% on
the separation distance / between the two atoms for a con-
figuration where the atoms are on a straight line through the
center of a sphere (i.e., @=0), with the polarizable atom A
being closer to the sphere than the magnetizable atom B.
Note that in contrast to the previous configuration, in this
case an electric and a magnetic sphere do not lead to equiva-
lent results by means of duality, because the positions of the
electric and magnetic atoms are not equivalent. From Fig.
3(a) it is seen that in the case of an electric sphere the inter-
action potential is reduced compared to its value in free
space; the ratio Uem/UgB decreases with increasing [/ and
approaches an asymptotic limit that depends to the distance
between atom A and the sphere. In contrast, from Fig. 3(b) it
is seen that in the case of a magnetic sphere the interaction
potential is enhanced compared to its value in free space, and
a pronounced maximum of the ratio Uem/Ui(,)i is observed.
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For large atom-atom distances, U,,,/ Uf_,?,z approaches an
asymptotic limit that is independent of the distance between
atom A and the sphere.

VI. SUMMARY AND CONCLUDING REMARKS

We have extended the framework of macroscopic QED to
paramagnetic atoms by introducing a Pauli term in the atom-
field interaction. We have verified the consistency of our
generalized Hamiltonian by showing that it generates Max-
well’s equations and the correct equations of motion for
charged particles with spin. On the basis of this Hamiltonian,
we have employed leading-order perturbation theory to gen-
eralize the theory of body-assisted one- and two-atom van
der Waals potentials of polarizable atoms to those that are
both polarizable and magnetizable. It is seen that, with re-
spect to each atom, the generalized potential can be consid-
ered as a superposition of contributions associated with the
atomic polarizabilities and magnetizabilities. We have ex-
tended the scope of our theory to atoms that are embedded in
media by implementing local-field corrections via the real-
cavity model. We have found that local-field effects give rise
to correction factors that depend on the permeability of the
host medium for magnetizable atoms rather than the permit-
tivity, as is the case for polarizable atoms.

We have applied the theory to the single-atom potential of
an atom in the presence of a magnetoelectric half space and
to the two-atom potential of atoms embedded in a bulk mag-
netoelectric medium or placed near a magnetoelectric sphere.
The potential of a magnetizable atom in the presence of a
half space has been found to be very similar to the known
respective potential of a polarizable one. We have shown that
a bulk medium does not change the sign of the two-atom
interaction, but can lead to enhancements and reductions,
whereby in the nonretarded limit the potentials of two polar-
izable or two magnetizable atoms is only influenced by the
electric and magnetic medium properties, respectively. For
the two-atom potential in the presence of a sphere, the case
of two magnetizable atoms was demonstrated to be analo-
gous to the known case of two polarizable, so we have fo-
cussed on the sphere-assisted interaction of a polarizable
atom with a magnetizable one. We have obtained analytic
results for a very large sphere (in which case the potential
coincides with that of a half space) and a very small sphere
(where the potential is analogous to the nonadditive three-
atom interaction potential in free space, with the sphere tak-
ing the role of a third atom). Numerical results have been
obtained for medium-sized spheres, where the sphere gives
rise to enhancements and reductions of the potential, depend-
ing on the geometric arrangement of atoms and sphere: In
particular, when the atoms are placed at equal distances from
the sphere, the potential is enhanced (reduced) for small
(large) separation angles between the atoms, while a linear
arrangement of the atoms and the sphere (with the polariz-
able atom being closer to the sphere) leads to reduction (en-
hancement) for a electric (magnetic) sphere.

For the examples involving atoms in free space, we have
explicitly verified invariance with respect to a global inter-
change of &« u and c?a > B, in agreement with the duality
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properties investigated in Ref. [36]. The case of two atoms in
a bulk medium has further revealed that this duality invari-
ance only holds when accounting for local-field corrections.
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APPENDIX A: LOCAL-FIELD CORRECTED TENSORS L
AND K

The local-field corrected version of the tensor L defined
by Eq. (54) can be derived in complete analogy to the deri-
vation of Egs. (70) and (71), which was given in Refs.
[19,20]. For this purpose we recall that the ﬁrst term in Eq.
(71), i.e., the position-independent part 0f Gloc(rA,rA,w)
stems from the scattering Green tensor Gc lv(rA,rA,w) with
position r, at the center of a small spherical cavity of radius
R, which is embedded in an infinitely extended bulk material
of I;ermittivity &, and permeability w,. The respective tensor

(ry,r,, o) reads [39]

CdV

LiMrars0) == =< Cla)l, (A1)
where
Cle) = - Pl QLo o)) = 1oz )]
pahi (@01 (0] = i (zo) 2k ()]
(A2)

[zo=wR./c, z=n4zy; the primes indicate derivatives with re-
spect to zy and zJ, with j;(x) and A{"(x) being the first-kind
spherical Bessel and first-kind spherical Hankel functions.

The local-field correction factors multiplying G in Egs.
(70) and (71) are determined by comparing the Green tensor
G o (r,ry, ®) (with ry at the center of the cavity and r at an
arbitrary position outside the cavity) with the bulk Green
tensor Gy (r,ry, ) of an infinite homogeneous medium
without the cavity,

CZeikp . ]
Gpui(r,ry,0) =~ W{a(— ikp)I - b(~ ikp)e e}
(A3)
with
ax)=1+x+x% bx)=3+3x+x° (A4)
required tensor L, (r,r,, ) reads [39]
ikp
Lcav(rvrAv Lt)) = —23D(w){a(_ lkP)I - b(_ ikP)epep
AP
(AS)

where
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palh{D (2o z0j1(20)] = 1 (zo)zoh(20)]'}

D(w) = — —,
paht (D)2 (20)]" = i (zo)[zh ()]
(A6)
and from Eq. (A3), Ly (r,r4, ) can be found to be
ikp
Ma€ . .

Ly (r,ry, 0) = 4i7p3 {a(=ikp)I - b(- ikp)ee,}.

(A7)

Comparing Egs. (A5) and (A7), we can conclude that, on
using similar arguments as in Refs. [19,20], the magnetic
local-field correction factor is given by D/( ,uAni). Combin-
ing this with Eq. (A1) and following the line of reasoning of
Refs. [19,20], we expand all the terms within leading order
in wR./c to obtain the local-field corrected tensors L, and
Lféc in the form of Egs. (74) and (75). Equation (76) follows
in complete analogy.

APPENDIX B: GREEN TENSORS L AND K
FOR A SPHERE

The free-space part L) of the magnetic-magnetic tensor
is the special case e=u=1 of the respective bulk Green ten-
sor (A7); it obviously coincides with —(w/¢)2G® [which is a
special case of the bulk Green tensor (A3)]. According to its
definition (54), the scattering part of L can be found from
[39]

ik 2n+1 (n—m)!
G(r,r'w)= -2 — G
(r.r',0) = E1n(n+1) o 0m)(n+m)!

X 2 [BM((U nm,p(r’kO)Mnm,p(r”kO)

p==1
+ Bizv(w)Nnm,p(r’kO)Nnm,p(r’ak())]» (Bl)

where BY and BY are defined by Egs. (109) and (110), M,
and N, , are even (p=+1) and odd (p=-1) spherical wave
vector functions and in spherical coordinates can be ex-
pressed in terms of spherical Hankel functions of the first
kind hLl)(x) and Legendre functions P)'(x) as

M, +1(r,k) = F Eh(”(kr)P "(cos 0){ }(mqﬁ)ee

— 1 (kr >W{m}<m)ed,, (B2)

nn+1)
Nnm‘*‘l(r ) kr

h(l)(kr)P"’(cos 0){ }(md))e

Ld[rh (kr)][de(cos 0) ) cos
* kr dr dé

}(md))eg

sin

¥ ,—Pm(cos 0){ }(mqﬁ)ed,] (B3)
sin 6
They are related to each other via

V X Mnm,tl(r’k) = anm,tl(r’k)’ (B4)
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V X Nnm,il(r’k) = anm,il(r’k)- (BS)

Substituting Eq. (B1) into Eq. (54) and making use of the
relations (B4) and (B5) one sees that L") and —(w/c)*G")
[and consequently L and —(w/c)*G] can be converted into
one another by interchanging Bﬁ‘f and Bflv, or equivalently
interchanging & and . With this knowledge, a comparison
between Egs. (60) and (68) reveals that U,,,, may be obtained
from U,, by replacing « with 8/c? and interchanging & <> u.

The scattering part of tensor K may be found by substi-
tuting Eq. (B1) in Eq. (67) and making use of relations (B4)
and (BYS),

KO(er o) = lkOE 2n+1 (n m)!
4, n(n+1)

E (2 6Om

m=0 ( + )'
X 2 [BnMNnm,p(r»kO)Mnm,p(r,’kO)
p=*1
+ BnNMnm,p(r’k())Nnm,p(r’ ’k())] . (B6)
Assuming, without loss of generality, that the coordinate sys-
tem is chosen such that its origin coincides with the center of

the sphere and the two atoms are located in the xz plane as
shown in Fig. 1,

1y =(rs,04,0),

the summations over m and p in Eq. (B6) can be performed
in a way similar to Ref. [38], leading to

S S - gt
n+m

m=0 p=*1 ( )'

rp=(rp, 0,7, (B7)

Nnm,p(rBs k(J)Mnm,p(rA’ k())

1 .
= —{n(n +1)Q, sin OP,(y)e, €4 + Qan(y)egBe¢A

n 11(7)e¢BeHA} (BS)

E E (2_50111 (n m)

( )' nm,p(r&kO)Nnm,p(rAka)
m=0 p==*1

= —{ QAP (y)ey €6, +n(n+1)Q, sin ®
kor

><P (y)e¢e +QnF (y)e¢BeBA} (B9)

Combining Egs. (B6), (B8), and (B9) we arrive at Eq. (108)
for the Green tensor.

APPENDIX C: LIMITING CASE OF A LARGE SPHERE

In the limiting case of a large sphere where the conditions
(119) and (120) are met, the leading contributions to Egs.
(117) and (118) come from terms with n>1 (see Ref. [32]),
for which the spherical Bessel and Hankel functions can be
approximated by
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2 ZZ
W=, +1)”<1_4n+6> €
and
_ 2
AV (z) = - (2"2,,+11)’<1+4nz_2>. (€2)

Hence, Egs. (109) and (110) are approximated by
2in(Rowlc)*™! w(w) -1

M —
B (@) =10, s DI p(@) 41 (€3)
and
N 2in(Rw/c)*™ e(w) — 1
B @) =10, T DI s@ 1 (c4)
and Egs. (111)—(113) approximately reduce to
2n+2 _ 2
S (3 S T
w (rarp)
0,=0,=-nQ,. (C6)

In order to illustrate the application of the approximation
scheme to the tensor K" given by Eq. (108) let us consider,
for example, the component K(,:if Making use of Egs. (C3)
and (C5) we find that

X wlw-1 2
KD (rpr,0) = C7
ot @) = s e 1 —2g sty )
[t=R?/(r,rp)] where the identity
%z”P( )——l— 1 (C38)
i 7 V1 =2tg+ 7
has been used. Recalling condition (119), we have
S+ k(k+1) S +38; 6,8
F=1-k AR s M > ) ARZ B+k2—;23 (C9)
implying that
S+ 8)° I
1—2t7+t2=®2+(ARTB)=IT+2. (C10)
Using Eq. (C10) in (C7) we end up with
X plw)-1
Kﬁa:ﬁ)(rB’rA? ) (Cll)

47713 wlw)+1°

The other components of K!) can be evaluated in a similar
way. Substituting the resulting expressions for K into Egs.
(106) and (107), and summing them in accordance with Eq.
(105) leads to Eq. (121).
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We derive Casimir-Polder and van der Waals potentials of one or two atoms with diamagnetic properties
in an arbitrary environment of magnetoelectric bodies. The calculations are based on macroscopic quantum
electrodynamics and leading-order perturbation theory. For the examples of an atom and a perfect mirror and
two atoms in free space, we show that diamagnetic dispersion potentials have the same sign as their electric
counterparts but can exhibit quite different distance dependences.
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I. INTRODUCTION

The issue of electrodynamics in magnetodielectrics is a
long-standing one [1]. It ranges from the form and propagation
of Maxwell fields in such media to their absorption and
emission characteristics, as well as to the numerous other
optical properties that they exhibit. One curious aspect,
recently confirmed by fabrication of periodic arrays of thin
metallic wires [2—4], is the existence of left-handed materials,
so called because the electric, magnetic, and direction of
propagation vectors form a left-handed triad, resulting in
a metamaterial with a negative refractive index. Another
interesting aspect is the nature of interparticle interactions
in media with electrical permittivity, magnetic permeability,
or both. This has its origins in the work of Casimir [5],
subsequently spawning a wide variety of related phenomena
categorized under Casimir-like effects [6-9] and including the
Casimir-Polder (CP) dispersion potential [10].

The understanding and computation of van der Waals
forces (vdW) for chemical, physical, and biological systems
is of fundamental importance and widespread interest as they
manifest in vacuum, gaseous, or condensed phases. These vary
from semiclassical treatments yielding the London dispersion
formula to quantum field theoretic approaches where radiative
effects are properly accounted for and result in Casimir energy
shifts. Perhaps the best-known example of a fundamental
theory that automatically includes retardation is quantum
electrodynamics (QED). Two often-used versions include
macroscopic [11-14] and microscopic [15,16] QED, their
prefixes aptly describing their general range of applicability.
In the former variant, the body-assisted electromagnetic field
is evaluated by quantizing the radiation field and the disper-
sive and absorptive medium. This enables the body-induced
atomic energy shift to be computed, which is interpreted as
the potential of the force. From this, pair and many-body
interaction energies can also be calculated. This has been

1050-2947/2013/87(1)/012507(10)
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successfully carried out for both electrically polarizable [17]
and paramagnetically susceptible [18] systems. Effects of an
intermediate medium can also be accounted for [18-20].

Microscopic Coulomb gauge QED constructed via quanti-
zation of the free electromagnetic field has also been used suc-
cessfully to evaluate atom-field and atom-atom interactions in a
vacuum. In the latter situation this has included recalculation of
the CP potential and its extension to higher multipole moment
contributions, such as magnetic dipole, electric quadrupole,
and diamagnetic couplings [21-27]. Unexpected results ensue
such as the discriminatory nature of the interaction between
two chiral (optically active) molecules, the repulsive form of
the ground-state dispersion energy shift between an electrically
polarizable atom and a paramagnetically susceptible one, and
that in the near-zone, the electric-diamagnetic contribution to
this potential is larger than the corresponding limit arising
from the electric-paramagnetic term [23].

In this paper a systematic study is performed on the CP
potentials of a diamagnetic atom and its vdW potentials
with another and with an atom that is either electrically
or paramagnetically polarizable in a medium comprised of
magnetodielectric bodies using macroscopic QED theory.
Interest in contributions arising from diamagnetic coupling has
been due to their importance when computing highly accurate
potentials for alkali metal atom dimers [28], where it has
been found that the electric-diamagnetic and paramagnetic-
diamagnetic terms can be larger than the electric-paramagnetic
and paramagnetic-paramagnetic energy shifts. The article is
organized as follows. Section II briefly describes the quantized
body-assisted Maxwell field operators in the medium, their
expression in terms of the Green’s-function solution of the
Helmholtz equation, and the writing of the total-system
Hamiltonian. Electric and total magnetic contributions to the
single-atom CP shift and for an atom placed in front of a
perfectly reflecting mirror are obtained in Sec. IIl. Presented
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in Sec. IV are diagrammatic perturbation theory results for
the dispersion pair potential when at least one of the atoms
is diamagnetic. Corresponding free-field interaction energies
are also given, and these are briefly compared with results
obtained via microscopic QED. In all of the cases examined,
the asymptotic limits of the energy shift in the near and far
zones, corresponding to nonretarded and retarded regimes,
are found and compared with previously obtained limiting
forms for electric, paramagnetic, and electric-paramagnetic
interactions. A short summary is given in Sec. V.

II. QUANTIZATION SCHEME
Consider one or two atoms (or molecules) with internal
Hamiltonians (§ = A, B)
He =" Ellng) (ne| (1)
n

which are placed at positions r; within an arbitrary ar-
rangement of linearly, locally, and isotropically responding
magnetoelectric bodies, described by a Kramers-Kronig con-
sistent permittivity e(r,w) and permeability u(r,w). Upon

introducing bosonic variables ]’A(r,w) and ]‘A(r,w), which
are creation and annihilation operators for the elementary
electric (A = ¢) and magnetic (AL = m) excitations of the
system of bodies and electromagnetic field and obey the
bosonic commutation relations

L), J ()] = 8 — )b — o) ()
and
[F2r0). 7 o) = [Fr0). FL 0 0 =0, ()
the body-field Hamiltonian takes the form [12]
o0 .
Ap= )" /d%/ dohof,(r.0)- f,(r.o). &)
L=e,m 0
The ground state of Hy can obviously be defined by
Firolo)) =0 Viro. )

Within the multipolar coupling scheme, the interaction of each
atom with the body-assisted electromagnetic field is given
by [29]

Aep = A + B + Y. (6)

Here the three terms are the electric, paramagnetic and
diamagnetic interactions,

Hp = —Rg - E(ry), )
Al = —ing - B(ry), (®)

fyd da 2
A, = “ [F, x B , 9
& ngm [Fo x B(re)] ©)

with ft; and m; being the respective atomic electric and
magnetic dipole operators and g, m,, and 7, denoting the
charges, masses, and positions relative to the center of mass
of the particles contained in the atoms. Note that electric
quadrupole and even octupole contributions can easily be
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included in the formalism; they have recently been shown to
affect the CP potential of Rydberg atoms close to surfaces [30].
Introducing the atomic diamagnetizability operator as

Be=—>" Je (721 7. (10)

and using the identity [a x b]> = b - (a*l — aa) - b, the dia-
magnetic interaction Hamiltonian may be cast in the form

A = —1B(re)- B: - B(ro). )

The ground-state diamagnetizability of an atom is given by the
expectation value

2
ﬂg E<ﬂ‘;> = _24‘5;:‘“ (0§|;\'i|—lﬁ‘a'€a|0~§>

aeé

2
==Y e (=g, (12)

aeé

where the last line holds for isotropic atoms.

The total Hamiltonian of the atom(s) interacting with the
electromagnetic field in the presence of the bodies takes the
form

A=Y H+Hr+ ) Her. (13)
§=A.B £=A.B
The electric and magnetic field operators can be expanded in
terms of the bosonic operators fi(r,a)) and f 3 (r,o) as

Ew) = Z /d%’f do Gy (r,r',) - f,(' o) +Hec.,
0

A=e,m
(14)
. 5, [Cdo , o,
Br= )" /d~rf — V x Gy(r,r,0) - f(r' o)
L=e,m 0 tw
+H.c. (15)

The expansion coefficients G, are related to the classical Green
tensor G by

’ . w2 h ’
G.(r,r',w) =i = Ime(r’,w) G(r,r',w), (16)
C TEY
Gutr o) =i 2 |2 IOl g0 G T
c\ meo |ur o)

a7

and the Green tensor is the unique solution to the Helmholtz
equation

1 »? , ,
V x V x — —e(r,o) |G@r,r',0) =8 —r')
wu(r.w) c?
(18)
together with the boundary condition
G@r,r',\w)— 0 for |r—r|— oo. 19)

Just like the permittivity and permeability, the Green tensor is
an analytic function in the upper half of the complex frequency
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plane and fulfils the Schwarz reflection principle:
G(r.r', — o) =G*>r,r,vw). (20)
In addition, it obeys the Onsager-Lorentz reciprocity,
G(r',r.0) =G (r,r',v), Q1)

and the useful integral relation

h
E /d3s G,(r,s,0) - G;T(r’,s,a)) = 1Ho &’ ImG(r,r,w)
T
A=e,m

(22)
holds.

III. CASIMIR-POLDER POTENTIAL OF A SINGLE ATOM

In this section, we calculate the CP force on a single atom
in the presence of magnetoelectric bodies, discarding the label
A wherever possible. According to Casimir and Polder, the
force can be derived from the associated CP potential U (r 4)

F =—-VU(ry), (23)

which in turn can be identified as the position-dependent part
of the energy shift AE due to the atom-field coupling

U(ra) = AE(r). (24)

A. Perturbation theory

We assume the atom-field system to be prepared in the
uncoupled ground state |04)|{0}) and calculate the energy
shift due to the atom-field coupling within leading-order
perturbation theory. Let us first study a purely diamagnetic
atom, whose CP potential is due to the first-order energy
shift associated with the diamagnetic part of the atom-field
interaction (11),

AE = ({0}(0a] — L B(ra)- B* - BrIONIO]).  (25)

Normally, CP energy shifts only arise in second-order per-
turbation theory. However, due to the diamagnetic interaction
Hamiltonian being quadratic in the magnetic induction field
already, the first perturbation order contributes. It can be easily
evaluated by using the magnetic-field expression, (15), the
bosonic commutation relations, (2) and (3), and the integral
relation, (22), resulting in

h o0
AE =22 ot - 1mG(rara,0)]  (26)
27T 0
with
G, (r,r )=V x G(r,r,0) x V. Q@7

For an atom in a free-space region, the CP potential can be
extracted from this energy shift by separating the Green tensor
into its bulk and scattering parts,

G(r,r',w) = GOr.r',w) + GV (r,r w), (28)

and discarding the constant energy shift associated with the
translationally invariant bulk part by making the replacement
G — G The result can be simplified by converting the
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integral over real frequencies to another along the imaginary
axis in the complex frequency plane. To this end, we first write

/ doImG(r,r',0) = Im/ do G(r,r',0). (29)
0 0

The integral on the right-hand side can be replaced by an
integral along the positive imaginary axis (w +— i) plus a
vanishing integral along infinite quarter-circles via Cauchy’s
theorem. Using the fact that G(i§) is real-valued for a real &,
as can be inferred from Schwarz reflection principle, (20), one
finds

R
Ug(ra) = 27"

_ o [ a) i
=——=[ d&BituG) (ra,raié). (30)
21 0

T e u[B? G, it)]
0

The last line in Eq. (30) holds for isotropic atoms. For an
atom with an additional nontrivial electric and paramagnetic
response, the respective electric and paramagnetic interactions
in the coupling Hamiltonian, (6), also need to be taken into
account. As shown previously, they give rise to second-order
energy shifts such that the electric and paramagnetic CP
potentials are given by [18]

h o0
Uelra) = 7 / d& ufa(i£) - G (ra.r.i8)]
0

/ d& a(iE)GL) (ra,ra,i€),  (31)
0

- 2meg
huo [ . .
Upra)= 2> | d&ulB"(i&)- Gl (ra.r a.if)]
T Jo
h o0
= 0 ag prsGl) (rarasit)  (32)
2 0
with
?
Gec(r,r,0) = ——G(r,r,») (33)
c
and
k 0k kO
a(w) = lim = %
>0 . (wﬁ) — w? — iwe
2
2 AL
= lim — I =a)l, (34)
=0 3h Xk: (a)’;)2 — w? —iwe
) ok m% k0
ﬂp(a))ZIm%ﬁZ—k 2A A A.
>0h T ()" — 0? — iwe
2
2 o |m%
= lim = =Bl (35)
e~03h Xk: (a)'j‘)2 —w? — iwe

[} = (E} — ER)/h. pif = (Ol alk), m = (Olzinalk)] de-
noting the polarizability and paramagnetizability of the atom,
respectively. Introducing the total magnetizability

B(@) = B (@) + B* = [B"(@) + /Il = B()l,  (36)

012507-3



166

3. Vacuum dispersion forces

BUHMANN, SAFARI, SCHEEL, AND SALAM

the magnetic part of the CP potential reads
Up(ra) = Up(ra) + Uu(ra)

_ Do [ g w[BGE) - GL) (ra,rasif)]
0

2
__huo

o (37)

d§ BUE[G),, (ra.ra.i8)]
0

and the total CP potential is given by

U(ra) =Ue(ra) + Un(r ). (38)

We have thus generalized previous results for the CP
potential of an atom with electric and paramagnetic properties
to one that also exhibits nontrivial diamagnetic properties.
It is found that despite the different interaction terms and
perturbative orders (first order instead of second order), the
extension to a diamagnetic atom can be obtained formally by
including the diamagnetic contribution in the magnetizability,
B?(w) — B(w) = BP(w) + B%. In particular, the local-field
corrected potentials for atoms embedded in a medium as
derived in Ref. [18] remain valid with this replacement.

By introducing af(w) = a(w), a”(w) = B(w)/c?, the
electric and magnetic parts of the CP potential can be given in
the compact notation

h o0
Uira) = 5 /0 dete[at (i) - Gi)(ra.r a.i8)]

[e®]
= / dé GG (ra,ra,i&) (39

2mey Jo
(A =e,m).

There are two important differences between the dia-
magnetic and the paramagnetic magnetizabilities which will
have an impact on the associated potentials. First, the dia-
magnetizability has an opposite sign with respect to the
paramagnetizability, which is a consequence of the Lenz rule.
Second, in contrast to the paramagnetizability, which obeys
the usual Kramers-Kronig relations, the diamagnetizability is
independent of frequency.

B. Application: Atom in front of a perfectly reflecting mirror

Let us consider an isotropic atom at distance z4 from
a perfectly reflecting planar mirror. The magnetoelectric
properties of the mirror are characterized by ¢ = oo (u = 00)
for a perfectly conducting (infinitely permeable) plate. The
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Green tensor reads [31]

d’q . ,
Taq 4T (e e — egey)

1
B
(r,r',i§) =
(40)
(qe =q *ibe,, qle,, qg=\ql|, b=+/q*+E%/c?), with the

upper (lower) sign corresponding to a perfectly conducting
(infinitely permeable) plate and the polarization vectors e; and
e, being defined by (e, = q/q)

<
§

Evaluating the double curl of the Green tensor, we find that
G (r.ri€) is equal to —£2c72GV(r,r,i€). Substituting

mm

this into Eq. (30) and carrying out the ¢ integral, one
finds

e, =e, X e, elf = —(—ige; F be,). 41)

h d o .
/'Lozﬂ ; / de e_zA.AE/C
16ﬂ ZA 0

242
x (1+2ﬁ+2z/‘§ )

c c
After performing the £ integral, we find an attractive (repul-

sive) CP potential,

3o’ 3huoc e )
32774 3274 o
ae

Ui(za) = £

(42)

Ui(zp) = % (43)

~ 6my,

of a diamagnetic atom in front of a perfectly conducting
(permeable) plate. It is given by a universal 1/ zj power law.

In Table I, we compare this result with the known
findings for electric and paramagnetic atoms. We recall that
electric and paramagnetic atoms interact with conducting and
permeable plates according to an “equals attract, opposites
repel” rule: An electric plate attracts electric atoms while
repelling (para)magnetic atoms, with corresponding results
for a (para)magnetic plate. In contrast to this, diamagnetic
potentials carry a sign that is opposite to that of their
paramagnetic counterparts. This is due to the Lenz rule as
encoded in the minus sign in the diamagnetic magnetizability,
(12). The diamagnetic CP potential thus has the same sign as
the corresponding electric potential.

Another difference is the fact that the wavelengths of
electric and paramagnetic dipole transitions divide the CP
potential into two asymptotic regimes: the nonretarded regime
of distances smaller than these wavelengths and the opposite,
retarded regime. The CP potential follows two distinct 1/z3

TABLE I. Signs and asymptotic power laws of the ground-state CP potential of an electric, paramagnetic, or diamagnetic atom with a

perfectly reflecting plate.

Plate

Perfectly conducting

Infinitely permeable

Atom Retarded limit Nonretarded limit Retarded limit Nonretarded limit
Electric -+ . +4 +4

23 Y A A
Paramagnetic +4 4 -4 -1

A 2 4 3

Diamagnetic -

s
PN
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and 1 /zi power laws in these regimes, respectively. On the
other hand, the frequency-independent diamagnetic magneti-
zability lacks an intrinsic length scale. As a result, the CP
interaction with a perfectly reflecting plate follows a retarded
1/z% power law at all distances.

IV. TWO-ATOM VAN DER WAALS INTERACTION

Similarly to the single-atom case, the body-assisted vdW
force between two atoms can be derived from the two-atom
vdW potential U(r 4,7 ), which is that part of the energy shift
depending on the positions of both atoms,

U(ra,rg) = AE(ry,rg). (44)

A. Perturbation theory

Again, we assume the atom-field system to be in its
uncoupled ground state |04)|05)[{0}), but now we have to
calculate the leading-order two-atom energy shift. We begin
with two purely diamagnetic atoms, in which case the vdW
potential follows from the second-order energy shift

ME=Y OIAL + A |6) (9| HS, + Hgrl0)

45
o B, @5)

$#0

Note that the first-order energy shift just leads to the sum of
two diamagnetic CP potentials as discussed in Sec. III A. Due
to the diamagnetic interaction Hamiltonian’s being quadratic
in the fields, the vdW shift already appears in second-order
perturbation theory rather than in fourth order as for electric
and paramagnetic dipole transitions.

The numerator of the term in Eq. (45), when read from
right to left, represents processes in which the system starts
from its ground state, goes to a state |¢) due to a first atom-
field interaction, and, finally, returns to its ground state in the
course of a second interaction. As the interaction Hamiltonian
is quadratic in the magnetic field, the intermediate state |¢)
must involve the field in its ground state or exhibit two field
excitations (photons). Only the latter case leads to a genuine
two-atom interaction,

l¢) = 104)108) 1 (r @), L (r' "), (46)
with the two-photon state being defined by

1
V2

The photons must have been emitted by one of the atoms and
then absorbed by the other. This is schematically illustrated in
Fig. 1, where the solid lines and the dashed lines represent the
atoms and the photons, respectively (where time progresses in
the upwards direction). Note that the formal sum in Eq. (45)
involves sums over A, 1/, i, and i’ as well as integrals over r,
r’, w, and «'. We begin with the contribution A, E; to the
energy shift corresponding to Fig. 1(i), where atom A emits
two photons and atom B absorbs them, i.e., where the second
matrix element in the perturbative energy shift, (45), is due to
the diamagnetic interaction of atom A and the first one is due
to that of atom B. The required two-photon emission matrix

@ o flirolfoy. @

15 (r.w), 1 (r @) =

PHYSICAL REVIEW A 87, 012507 (2013)

@) (ii)

[04)]05)[1,1")

[0)

A B A B

FIG. 1. Contributions to the vdW interaction of two diamagnetic
atoms.

element for atom A takes the form
—Bij

2V2
x Bi(r ){0}), (48)
where Eqgs. (11), (46), and (47) havq been used. The two-
photon absorption matrix element (O|Hg r|®) can be obtained
by taking the complex conjugate of the above and replacing the
labels A with B. After substituting Eq. (15) for the magnetic
field and making use of the commutation relations, (2) and (3),
the respective term in Eq. (45) reads

(O1Ag|9) (@ H{p0)
Eo— E4
1
2020 h(w + o)
X tr{ﬂi . [VA x G} (ra,r,0)- GI(rB,r,w) X VB]
B% - [Ve x Gu(rp.r' o) - G (ra.r o) x vall
(49)

At this stage, performing the integrals over r and r’ included
in Eq. (45) by means of the integral relation (22) results in

h 2 00 o0 1
A2E(1‘) = —ﬂ/ du)/ dw’
272 J 0 o+ o

x tr[ B4 - Im G (7 4.7 5, )

“BY - Im Gy (rp.12.00)] (50)

(@IHI10) = {0} fouw (' @) foi (r ) B (r o)

[recall Eq. (27)]. It can easily be seen that contribution (ii) as
depicted in Fig. 1(ii) is exactly the same. We hence find

U ( ) 7(2) / d(l)/ do' !
| W = —
dd\"" A>T B P b ) o

X tr[ﬂi : Imem(rA,rB,a))
: ﬂ% . Imem(rB,rA,a),)]. (€28

As for the single-atom potential, the result can be simplified
via contour-integral techniques. We first write

o0 d / o0 d /
f Y 1mGy(@) = Im / Y G@)  (52)
0 w+o 0 o+
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and use the fact that the Green tensor is analytic in the upper
half of the complex frequency plane including the real axis.
Hence, we may replace the integral with an integral along
the positive imaginary frequency axis and use the Schwarz
reflection principle, (20), to obtain

w

(o] dw/ " o0 )
[) o+ Y Imem(w) - /0 dé m Gmm(lg). (53)

Substituting this result into Eq. (51), we next evaluate the
integral over w,

o0 I nm o0
/ dep PG (@) :Im/ do
0 0

w? + &2

The integrand on the right-hand side has a simple pole at
w= i& in the upper half of the complex frequency plane.
Again using Cauchy’s theorem, we transform this integral
into a principal value integral along the positive imaginary
axis, an integral along an infinitesimal half-circle around the
pole, and a (vanishing) integral along an infinite quarter-circle.
The first integral is real, while the second integral results in
(i /2)Gum(i§), so that

@Gy (@)

=l

/0" wImG,,,, ()
do ————
0 w? + &2

2

(P: principal value). After substituting this result together
with Eq. (53) into Eq. (51), we find the CP potential of two
diamagnetic atoms,

hMZ 0 )
Uda(ra,rp) = _T; det[BY - G (r 4,7 5.i)
0

. ﬂllii . Gmm(errAJ'S)]
— % = d pd
- 27 j(; d%' ISA.BB
X tr[Gmm(rA’rByi‘i:) : Gmm(rBsrAJS)]’ (56)

where the second equality holds for isotropic atoms.

Let us consider next the interaction of a diamagnetic atom
A with an electric atom B. It can be seen easily that the leading
two-atom energy shift is of third order in this case,

ASE = Z (O1 Hin[¥) (¥ | Hind| @) (@ | Hint]0)

(57)
(Ey — Eo)(Eg — Eo)

¢y #0
with
N N N N PO N . A
Hi= Ay + Ay = —5B(ra) - By - Bra) — iy - Erp).
(58)
The relevant intermediate states |¢) and |i/) can easily be
determined with the help of the diagrams in Fig. 2. Let us

begin with Fig. 2(i), which corresponds to the the case where
atom A emits two photons and atom B absorbs them one after

PHYSICAL REVIEW A 87, 012507 (2013)

A B A B A B

FIG. 2. Contributions to the vdW interaction of a diamagnetic
atom A with an electric atom B.

another, so the relevant intermediate states are
[) = 104)108) | 15 (r, @), L (r' @), (59
[¥) = 10a)np) [ Luin (X", ")) (60)

In the two-pho}on emission matrix element, I-Alim has to be
replaced with Hg’ - This leads, as outlined following Eq. (48),
to

A 1
(@|HY£10) = —mGiT("A,r,w) x Vi BL-Va

x Gy (ra,r' o), 61)

while in the other two matrix elements, Hiy has to be replaced
with Hy, . This yields

(Yl — - Erp)lg)

-1
= —={[rE - Gurp.r.®)]; 8081080 — )8 — )

V2
+ [y - Gu(rp.r' )], 808 8(r — r")3(w — ")},
(62)
O — g - Erp)lyy) = —[n% - G (rp.r” 0], (63)

where expression (14) for the electric field and commutation
relations (2) and (3) have been used. Substituting these matrix
elements into Eq. (57) and performing the integrals over r, r’,
and r” using the integral relation, (22), we find the contribution
of Fig. 2(i) to the energy shift to be
A3 Eg
2 e e ’

o / do / dof—— 2

w4 Jo 0 (w—{—u)/)(w’;g +a))
X [d%” ImK' (7 4,7 p,0) - ﬁf‘ ImK@ 4, rp,0) - d'éo],
(64)

where

K@, r',w) =V x G(r,r', o). (65)
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The contribution to the energy shift from Figs. 2(ii) and 2(iii)
result in terms similar to Eq. (64) except that the energy
denominator (w + @')(w}, +w) has to be replaced with (—w’
—o')(w} + ) for Fig. 2(ii) and with (o + o')(0} +w') for
Fig. 2(iii). Summing all contributions, we find

ASE = L“f/mdw/m dof wpoo
7= Jo o (0 + )@+ o) (0} + o)

x[dy - ImK'(rp.rp.0) B - ImK@rarp.0) dy].

(66)

By transforming the «’ integral by means of contour integral
to run along the positive imaginary axis,
/ *©  oImK()
do) ——
0 (a)—}—a)’)(a}’l’;—kw’)
3 /wds £2 (ol + w)K(i§)
- n 2 ’
0 @+ (wf) +¢]
and then performing the w integral in the way explained before
Eq. (55), one obtains

(67)

27
cap(i&) - K (ra,rp,i6)]
hpl [ )

=# | ds & pante)

x tr{K(r a7 5,i€) - K (r 4,7 5,iE)], (68)

Uae(ra,rp) = dg E2[BY - K(ra.rp.i&)
0

where definition (34) has been used and the second equality
holds for isotropic atoms. Our result, (68), for the vdW
potential of a diamagnetic atom A with an electric atom B
may be written in the form (8% = %)

h o0
Ude(rAarB) = _m/(; détr[ai ) Gme(rAyrB,ié)
0
0 (i&) - Gen(rp.ra,ié)]
h o0
= /0 d& o ay(i§)

- 2
2w

Xtr[Gme(rA7rB7iS) : Gem(rBarAsiE)]a (69)

where

G,o(r.r' o) = l—wK(r,r’,w) =Py« G(r,r',w), (70)
c c

Gon(r,r o) = %KT(r/,r,w) = %G(r,r’,w) <V
(71)

Obviously, the interaction between an electric atom A and a
diamagnetic atom B is given by the right-hand side of Eq. (68)
with the labels A and B interchanged.

The vdW potential of a diamagnetic atom A with a para-
magnetic one B can be calculated in a completely analogous
way. The lowest-order energy shift is again given by third-order
perturbation theory, with the possible intermediate states given
again as depicted in the diagrams in Fig. 2. The result is
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(B = Pak)

Ugp(ra,rg) = —

27‘[8(2) /0 dStr[a‘j . Gmm(rAsrB,l.%')
“g(lé) : Gmm(rBﬁrA,l‘S)]
= /0 " dg o afit)

- 2
2w

X tr[Gmm(rAaerié;—) : Gmm(errAJ.E)]' (72)

We have thus generalized the body-assisted vdW potential
to allow for atoms with a diamagnetic response. Recalling the
previously derived interaction of two paramagnetic atoms [18],
we again observe that the generalization can be achieved
by replacing the paramagnetizability of each atom with
the total magnetizability, B7(w) — B(w) = BP(w) + B¢. The
complete vdW potential of two atoms with nontrivial electric,
paramagnetic, and diamagnetic properties can thus be given as

Utrars)= Y Un(rars), (73)
A A'=em
with
Un(ra,rpg) = ) zf dét[ay (i&) - Guu (ra.rp.i§)
TEG Jo
0y (i8) - Gui(rp.ra.ié)]
— _ o Ags N
= m%/o dg o4 (i€) o (iE)

x tr[ G (ra,r5.i§) - Gua(rp.ra.ié)]. (74)

Again, this implies that previous results for local-field cor-
rected vdW potentials [ 18] remain valid for diamagnetic atoms.

B. Application: Two atoms in free space

As the simplest example of the two-atom interaction, let us
consider two isotropic atoms A and B interacting with each
other in free space. The Green tensor reads (see, e.g., Ref. [12])

2

GOtrars i) = 47:@“[ (UE/N — g(UE [c)erer]e ™/
(75)
(ra#rg),wherel =r, —rg,l=1l|,¢,=1/1,and
f)=14+x4+x% gx)=34+3x+x% (76)

Evaluating the curls as contained in definitions (27), (70), and
(71), one easily finds

2
G (ra,r5,i&) = G, (ra,rp,if) = %G“”(rA,rB,isx
C

mm

an
GO(ra,rp.i&) = —GoN(r 4.1 p.i§)
= ﬁ(l +Ig/c)e /e x 1. (78)
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Substituting these into Eqs. (74) and (73) we obtain a total
free-space vdW potential,

hu? 1 [®
Urarg) = U() = —20 {—— / dE [c*aniE)ap(iE)
0

1673 16
+ Bai&)Bp(E&)h1(I&/c)
1 o0
+74 A dg E2[aa(i&)pp(iE)
+/3A(i$)‘13(i$)]h2(l§/c)}s (79
where
() = B+ 6x 4+ 5x2 +2x° + xHe ™, (80)
ha(x) = (1 4 2x + xP)e™ 81)

As expected from the results in Sec. IV A, this result has
the same form as the previously derived potential between
electric and paramagnetic atoms [ 18], except that here the total
magnetizability appears in place of the paramagnetic one.

It is of particular interest to inspect the behavior of the
interaction potential in the nonretarded (retarded) limits,
where the atom-atom separation is small (large) compared
to the respective atomic wavelengths. We focus here on the
contribution of the atomic diamagnetizabilities to the potential,
given by Eq. (79) with B(i&) — g<.

The interaction potential between a diamagnetic atom A
and an electric atom B, using the explicit expression for the
polarizability, (34), in Eq. (79), is found to be an attractive

potential in the form
B|’L | / dé
)
(82)

To achieve the limiting cases mentioned above, we note that
in the £ integral, w% <« & (0% &) holds in the nonretarded
(retarded) limit. This leads to an /~>-dependent and an /~7-
dependent potential for the nonretarded and retarded limits,
respectively, as follows:

5
u;;a):—“"cm/‘yz S,

/L%|:BA

UaeV= = Ziris 2.

5 h2(5 /©).

967313 ®3)

3 2.3

. Tuge’|p u Thuge
Ul = =5~ 3}1;*' Z } =~ |Bilas©).
(84)
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The diamagnetic-paramagnetic part of the two-atom inter-
action in free space is seen to be repulsive. It reads

uglB
udpa):z;JT;;JZ A e

hi€ /o).
o)’

(85)

where Eq. (35) is used for the paramagnetizability of atom B.
For the nonretarded limit Eq. (85) exhibits an /=% dependence,

Mo|/3A|< )
167216

ug |8l

167 2162‘ my [ =

while in the retarded limit it tends to an /~’-dependent
potential,

U () = (86)

_ 23n Mo
T 643l

25l ] 5 I

Uaph) = =537

— |B4850).

(87)

Finally, the diamagnetic-diamagnetic two-atom interaction
in free space shows a unique attractive /=’ dependence for any
arbitrary range of atom-atom separation, due to the frequency
independence of diamagnetizabilities. As can be obtained from
Eq. (79), it is given by

23nu3c

—_— 88
647317 (88)

Ugal) = = BB -

In Table II, we compare the signs and asymptotic power law
of the vdW potentials involving diamagnetic atoms with the
known results for purely electric or paramagnetic atoms [18].
We observe that the replacement of a paramagnetic atom with a
diamagnetic one leads to a sign change of the vdW interaction
as predicted by the Lenz rule. In addition, the frequency
independence of the diamagnetic magnetizability leads to
new asymptotic power laws, e.g., 1/1° for the nonretarded
electric-diamagnetic interaction. This result is in between the
1/1% and the 1/1* asymptotes found for the electric-electric
and electric-paramagnetic cases.

C. Comparison with microscopic QED

It is instructive to compare the results obtained in this
section for the vdW dispersion interaction between atoms in
free space when either one or both species is diamagnetic using
body-assisted fields with the result derived using microscopic
QED. In this second approach it is common to use the
well-established molecular QED theory [15,16]. For two

TABLE II. Signs and asymptotic power laws of ground-state van der Waals potentials of electric, paramagnetic, or diamagnetic atoms in

free space.
Atom A
Electric Paramagnetic Diamagnetic
Atom B Retarded limit Nonretarded limit Retarded limit Nonretarded limit Retarded limit Nonretarded limit
Electric -4 —% +5 +4 -1 -4
Paramagnetic + ll7 + 1l4 — 1l7 _ tlﬁ + 1l7 + IL()
Diamagnetic -+ - +% +5 -
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mutually interacting particles A and B in vacuum coupled to
the radiation field, the total Hamiltonian is written in the form
of Eq. (13) with I-AIE given by Eq. (1). In the multipolar coupling
scheme, the Hamiltonian operator for the free electromagnetic
field is expressed as

A = 1/d3r [i P éz(r)]
2 £0 Ho
= Z [a<*>'f(k)a<“(k) + ﬂhw (89)
kA

where d(r) and b(r) are second quantized microscopic electric
displacement and magnetic field operators, respectively. They
are commonly written as a mode sum in terms of vacuum boson
annihilation and creation operators 4™ (k) and a™!(k) for a
photon of wave vector k, polarization index A, and circular
frequency @ = ck, as in the second equality of Eq. (89).
Analogous to Eq. (6) with Egs. (7)—(9), the atom-field coupling
Hamiltonian for the dispersion interactions of interest is

Flgp = —Salﬂé -zAl(rg) —I‘;lg . 5("5)

2
+3 83;; [Fo x b(re)l’. (90)
aeé
It is worth noting the explicit appearance in the last two
expressions of the electric displacement field operator. This
is a direct consequence of adopting the multipolar framework,
where the field momentum canonically conjugate to the vector
potential is proportional to d(r) instead of to the electric
field itself. This is a common feature of the microscopic
and macrocopic approaches. In the latter, the quantized field
E(r) also refers to the Power-Zienau transformed electric field
operator that has to be regarded as a displacement field with
respect to the atomic polarization [12].

Dispersion potentials between a diamagnetic atom and an
electrically polarizable and a magnetically susceptible atom,
and between two diamagnetic atoms, may be computed in a
manner similar to that already detailed. As before, the latter
interaction is obtained via second-order perturbation theory
and is depicted in Fig. 1, while the former two occur to third
order and are described in Fig. 2. Matrix elements are evaluated
using unperturbed product atom-field states |ng)|m(k,1)) =
|ng;m(k,A)), where a number state representation is used to
signify the number of photons present, in this case m.

PHYSICAL REVIEW A 87, 012507 (2013)

As expected, results identical to Egs. (82), (85), and
(88) are found for the vdW dispersion potentials between a
diamagnetic and an electric atom, between a diamagnetic and a
paramagnetic one, and between two diamagnetic atoms, valid
for the entire range of separation distance vector I beyond
wave-function overlap of the two centers and extending out
to infinity. Explicit details of this calculation may be found
in Ref. [25], and the respective energy shifts are given by
Egs. (3.7), (3.20), and (3.43) in that paper. Furthermore, iden-
tical near- and far-zone asymptotic limits clearly follow in each
case. The connection with the macroscopic approach can be
established by computing all necessary field expectation values
and evaluating them using the free-space Green tensor, (75).

V. DISCUSSION AND SUMMARY

We have calculated CP and vdW potentials of atoms with
nontrivial diamagnetic properties in the presence of arbitrary
magnetoelectric bodies on the basis of macroscopic QED and
leading-order perturbation theory. The nonlinear interaction
generating the diamagnetic interaction is quite different from
the paramagnetic coupling and it leads to different pertur-
bative orders. Nevertheless, we have found that diamagnetic
atomic properties lead to dispersion potentials which formally
resemble those of paramagnetic atoms where the diamagnetic
magnetizability appears in place of the paramagnetic one.
We have explicitly shown this correspondence for one- and
two-atom potentials, but it is expected to hold for multiatom
vdW potentials as well.

However, the fact that the diamagnetic magnetizability
is negative and frequency independent leads to diamagnetic
potentials that differ in signs and power laws from their para-
magnetic counterparts. Diamagnetic dispersion interactions
carry the same sign as the well-known electric potentials,
which implies that diamagnetism alone cannot be used to
realize repulsive potentials. The unique power laws resulting
from the frequency independence imply that diamagnetic
potentials have their strongest influence at short range.
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1. Introduction

A three-dimensional object that cannot be superimposed on its mirror image is said to be
chiral, these distinct mirror images are called enantiomers. Spectroscopically, enantiomers have
identical properties and distinguishing between the two is not trivial. The characteristic feature
of chiral objects is the manner of their interactions with other chiral objects. For example, the
refractive indices of left- and right-handed circularly polarized light are different in a chiral
medium, therefore the two polarizations will propagate at different speeds. The difference in
velocity is related to the phenomenon of circular dichroism, where the wave with the ‘slower’
polarization is absorbed more strongly as it travels through the medium [1].

Many of the processes crucial to life involve chiral molecules whose chiral identity plays
a central role in their chemical reactions, the incorrect enantiomer reacting differently and not
producing the required result. In nature these molecules only occur as one enantiomer and are
not found as the other, thus the reactions only occur when the correct enantiomer is present.
In contrast, artificial production creates both enantiomers in equal proportions. Therefore it is
important to be able to distinguish between enantiomers and ultimately to be able to separate a
racemic (containing both enantiomers) mixture into an enantiomerically pure sample.

A frequently used method to separate enantiomers in an industrial setting is chiral
chromotography. The initial racemic solution is passed through a column packed with a
resolving agent, which is usually an enzyme and by necessity has to be chiral. This either retards,
or stops, the progress of one of the enantiomers passing through the column but crucially not
for the other and thus allows the solution to be separated. From an optical viewpoint it has been
proposed that a racemic sample can be purified by use of coordinated laser pulses, which use a
two-step process to initially drive different transitions in the enantiomers before converting one
into the other [2]. It has recently been calculated that in the presence of a chiral carbon nanotube
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the enantiomers of alanine possess different absorption energies and it was theorized that this
could lead to a method of discrimination [3]. Furthermore, it has been shown that the van der
Waals dispersion force between molecules can be enantiomer selective [4, 5]. Here we propose
the use of another dispersion force, the Casimir—Polder force [6], as a method of distinguishing
and ultimately separating enantiomers.

Casimir—Polder forces occur due to fluctuations in the quantum vacuum between objects, in
this case it is between a particle and a macroscopic body. This force can be decomposed into an
electric component that is solely dependent upon the electric dipole moments of the particle, the
magnetic component of the force is likewise defined. We show that there is a third component
that depends upon an interaction of the molecule’s electric and magnetic dipole moments and
this describes the particle’s chiral response in the chiral component of the Casimir—Polder force.
For the purpose of discrimination, the force on enantiomers must be different, this means that a
chiral medium is required to produce the chiral-selective behaviour.

Chiral molecules occur frequently in nature and there has been much research done to
calculate the relevant transition values either ab initio [7, 8], or through a twisted arc model for
simple chiral molecules [9]. Recent technological developments have allowed for the creation
of chiral fullerenes such as Cy¢ [10], chiral carbon nanotubes [3] and chiral metamaterials [11].
Chiral metamaterials can be made from structures such as a gold helix [12], which shows a
broadband electromagnetic response; a woodpile structure [13], a gold bar construction [14],
which exhibit a negative refractive index in certain frequency ranges; and gold dots [15], which
can be tuned during construction to give a desired response. Recently it has been shown that
superchiral electromagnetic fields [16] can arise in planar chiral metamaterials. These fields can
generate a much larger dissymmetry between the effective refractive indices for adsorbed chiral
molecules on left- and right-handed materials than circularly polarized light and a solution of
chiral molecules [17]. Chiral metamaterials have also been proposed as a method of producing
repulsive Casimir forces [18].

In this article we derive the chiral component of the Casimir—Polder potential within
the framework of macroscopic quantum electrodynamics [19]. We show that inherent to this
potential is the requirement that the particle and the medium both exhibit a chiral response. The
theory is applied to the case of a chiral molecule in a cavity between two chiral metamaterials
in the non-retarded limit, where we show a possible route towards enantiomer separation.

The article is organized as follows. The quantized description of the electromagnetic field
in a chiral medium is given in section 2.1, followed by the derivation of the chiral component
of the Casimir—Polder force in section 2.2. This is applied to the case of a chiral molecule near
a boundary; a perfect chiral mirror is considered in section 3.1 and a chiral metamaterial in
section 3.2. We illustrate the theory by examining a chiral molecule in a cavity made of chiral
metamaterials, considering a molecule initially in the ground state in section 4.1 and initially in
an excited state in section 4.2. We provide some concluding remarks in section 5.

2. Formalism

In order to derive the chiral component of the Casimir—Polder potential in a general form,
field quantization in an absorbing chiral medium is required. This quantization is the basis
for describing the electric and magnetic fields and the subsequent formulation of an important
integral relation, which is needed for the calculation of the Casimir-Polder potential.

New Journal of Physics 14 (2012) 113013 (http://www.njp.org/)
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2.1. Chiral media

The constitutive relations for the electromagnetic fields in the presence of a classical, non-
dissipative chiral medium are given by

D=se+E— k" +H (1)
C
and
B=li+E+uou~H, )
C

where € and p are the relative permittivity and permeability tensors and k is the chirality
tensor, a magnetoelectric susceptibility. The chiral susceptibility of the medium has the effect
of ‘rotating’ a magnetic effect to contribute towards an electric response and vice versa. The  is
a notational shorthand for a spatial convolution, i.e. [X xY](r, 1) = f d*sX(r,s)- Y (s, r). For
non-locally responding media the permittivity, permeability and chiral susceptibilities take the
form e(r, r', w), etc, where the two spatial variables are independent. This reduces to the form
e(r, ®)o(r —r’) in a locally responding medium. The medium is assumed to be reciprocal, i.e.
e(r,r)=¢eT(r,r)and u(r,r)=pu(r', r).

The Casimir—Polder force requires field quantization in a medium due to its explicit
quantum nature. In an absorbing medium, the quantum version of the constitutive relations
are given as [20]

A

O BN i1 -
D=¢cyexE— -k *H+Py— -k xMy 3)
c c
and
~ i N N N
B=-kxE+uou~H+ puopn xMy. 4)
c
The terms Py and My are the noise polarization and magnetization respectively, they describe
the dissipation in the medium and form a Langevin noise current
jn(r, ©) = —i0Px(r, ©) +V x Mx(r, ). (5)

The wave equation for the electric field in the chiral medium is then
2

"% Vx)— w—2(€ —kTxp! *IC)} *E:iwuojN (6)
c

—1 w ~1 T, -
VXU *VX+—(VX U *xk+K
c

and the Green’s tensor, G(r, r’, ), is the fundamental solution to the above inhomogeneous
Helmbholtz equation

-1 w -1 T, , -1
VXU " *VX+—(V XU *xk+Kk *p~ *VX)
c

2

w T —1 / /
L e—k"xp *K)]*G}(r,r):&r—r). )
c
The Green’s tensor obeys the Schwarz reflection principle
G'(r,r',0) =G(r, 1, -, (8)

which ensures reality of G(r, ', t), and inherits compliance with the Onsager condition for
reciprocal media from the medium response functions, i.e.

Gr,r,0)=G"(r,r, ). 9)
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The wave equation and its Green’s-tensor solution uniquely define the electric field (in
coordinate space) as

E(r, w) = iwpu f EPrG(r, v, w) jnr, o) (10)
and the magnetic induction field as
B(r, ) = o / 'V x Gr. v, o) Jy(r, o). (11)

To describe a general dissipative chiral medium, it is necessary to introduce the
fundamental degrees of freedom of the field-medium system. Starting with the commutation
relations for the noise polarization and magnetization [20]

[Px(r, 0), PL(r, )] = %{Im[e(w) — kT (@) * w1 (@) x k(@) ]} (r, ¥)8(w — o), (12)
[Px(r, ), ME(F, )] = ——{Im[k" (@) * £~ (@) ]} (r, ¥)8 (0 — &), (13)
lZ()JT
[My(r, ), PL(r, )] = ———{Im[n " (®) % £ (@) ]} (x, ¥)§ (0 — &), (14)
172y
[My (r, »), ML (r, )] = —le[;(l(r, r,w)]8(w—ao), (15)
Mot

the noise polarization and magnetization can be decomposed into

(lfN ):ﬁn*(fe ) (16)
MN T frn

where R is the ‘square root’ of the 6 x 6 response tensor,

Im[e™» p ']

golmle — kT =" % k] .
1 ZO
R*R' = : (17)
Im[p ™" * k] Im[p~"]
17 Mo
which describes the dissipative properties of the medium, where Z, = ’;—é’ For a passive,

isotropic medium the response functions are restricted by (Im[k])? < Im[e]Im[u] [21].
The vector fields f.(r,w) and f,(r,®w) are the bosonic annihilation operators for the
matter—electromagnetic field system and with the creation operators they obey the commutation
relation

[, (r, ). £,(r', )] = 8,1,8(r — )8 (0 — ) (18)
with A, A" = e, m. By rewriting the electric and magnetic fields as
Erw)= )" / CrG, (v, w) -5, o), (19)
A=e,m
Br.o)= ) / &Pr'v x G, (r,r, ») - £,(r, o) (20)
A=e,m
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and making use of (16) and (17) it can be shown that

/ h .
(CG;;((II'", l1"”, C;))))) =i “Ow\/;[G(w) * (; %) ‘R(w)](r, 1), 1)

where the operation x ¥V refers to taking the derivatives of the second spatial variable and
mathematically is described as [T x ‘V]i (1) = €0, Tix(x, ¥').
We can now derive the following integral relation:

Z /d3sG1(r s,w)-G(r,s, w) =

A=e,m

(22)
see appendix A.

2.2. Chiral Casimir—Polder potential

To derive the Casimir—Polder potential we start with the interaction Hamiltonian in multipolar
coupling and long wavelength approximation, describing the interaction of a molecule with the
electric and magnetic fields [19]

Hyp = —d-E(ry) —i-B(ry), (23)

where diamagnetic interactions have been neglected. Initially the particle can be either in its
ground state or an excited state and the energy shift due to the atom—field interaction, (23), is
given by

(N|Hxg|I){I|Hxp|N
AE Z |AF| |AF| )

24
En_E (24)

I£N
When multiplying out the matrix elements it is important to note that the cross terms involving
both electric and magnetic dlpole interactions do not vanish and are in fact respon51ble for
tAheAchlral interaction, i.e. (N|— d- E(rA)ll)( | — B(rA)lN) and (N|— B(rA)ll)( | —
d-E(ry)|N) #0.

The initial state is denoted by |N)=|n)|{0}) and the intermediate states |I)=
|k)f’1 (r, w)|{0}) where |{0}) denotes the ground state of the matter—field system (upon which
the bosonic creation operators f’; (r, w) act) and |n) and |k) represent the initial and intermediate
energy levels of the particle. The summation in (24) contains sums over molecular transitions,
the polarization modes of the electromagnetic fields and integrals over all space and positive

frequencies
DI f Erp f dw

I1#N k A=em

(P: principal value). Using the definitions of the electric (19) and magnetic induction (20) fields
it can be shown that

(N|—d-E@p)|I) = —dy - G, (r4, T, 0), (25)
A A m,; -V xG,(rsr,ow
(Nt Blra) 1) = — ™ ic:“ ). 26)
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where the electric dipole transition matrix elements are (nlalk) =d,; and (n|m|k) =m,; the
corresponding magnetic dipole moment matrix elements.

The electric and magnetic components of the Casimir—Polder potential are well known and
the result can be found in [19]. Here we focus on the terms containing a single curl operation
and a dependency on the electric and magnetic transition matrix elements as it is these terms
that give rise to the chiral component of the Casimir—Polder potential:

o0 'd ’
AE =10 :73/ SO [ Il G (s, ra )] x § -y,
Y4 0
k

W+

s VX IM[G(Ea, Ta, )] d |, @7)

the transition frequencies are defined as g, = ®; — ®,. The Casimir—Polder potential is
the position dependent part of the total energy shift, AE = AEy+U(r,), and so its only
contribution arises from the scattering part of the Green’s function, G" (r,r, w).

The imaginary part of the Green’s tensor is written as Im[G(ra,rs, )] =
%[G(rA, rs, w) — G*(ry, ry, ®)]. When the molecule is not initially in the ground state care
needs to be taken of the poles that occur for transitions to states of lower energy than the initial
state. By using contour integration techniques the off-resonant part of the Casimir—Polder po-
tential can be obtained in terms of an integral over imaginary frequencies, whereas the resonant
part is due to the residue at the poles. The result is

AE. = —’;—j:’ Ooods EU{Ten(8) - GV (s, 14,18) x V 1+t Te(i8) -V x GV (ra, 14, i6)])
i Y O@u) oy -Re[GV(xa, 14, 0,)] x V' -y,
k
+m,; -V x Re[G(ry, ra, w,)] - dry), (28)
where
o =3 3 (T - T 2)
=3 2 (- )

are chiral susceptibility tensors and ® (w,;) is a step function which is zero if w,; <0, i.e. for a
transition to a higher energy state. For an isotropic particle (d @ m = d'T“‘I), (29) and (30) both
reduce to

L(i§) = —= = P (31)
i§)=—— —_—.
37 () + 82
The term R, is the optical rotatory strength and is defined as
R = Im(dnk : mkn)- (32)

It describes the interaction between electric and magnetic dipole moments in a molecule and,
crucially, left and right-handed enantiomers differ in the sign of R, for a particular transition.
To further simplify (28), it can be shown that

t[G(ra, Ts, @) X V | = —tr[V X G(rs, T4, 0)], (33)
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where the Onsager reciprocity relation (9) has been used. For the real part of the Green’s
function an equivalent expression holds. We can now write the chiral component of the
Casimir—Polder potential as

hpo [~

Uelra) = —— dg ETAEU[V x GV (ry, 14,18)]

0

2
+% Z O (W) Ok Ry tr[V x Re[G V) (x4, T 4, wi)]]. (34)
k

The requirement that a chiral object is needed to be able to distinguish between the chiral
states of another object is fulfilled. As (34) shows we must have a chiral medium and a
chiral molecule. If either the medium (tr[V x GV (r, r4,18)] = 0), or the particle (R, = 0)
is achiral there will not be a chiral component to the Casimir—Polder potential. This can be
thought of as a generalization to the Curie dissymmetry principle (originally formulated for
crystal symmetries) and one may say: the Casimir—Polder potential cannot distinguish between
molecules of different handedness if the medium does not possess chiral properties itself.

For reference, the off-resonant electric and magnetic Casimir—Polder potentials [19] and
their resonant parts are

h o
Ualr) = 5 / dg €2l €) - GV (ra 14,1 6)]
0
—1t0 ) O@u) @i - Re[GV (Xa, T4, 0] - iy (35)
k
and
Un(ry) = %/ de t[BGE)-V x GV(ry,rs,i8) x V]
0
10 Y O@)My -V X Re[GV (0, 10, 001 x T - my, (36)
k
where
. _ l dkn ® dnk dnk ® dkn
“(lg)_h2k:<a)k,,+i§ +a)k,,—i.§> G
and
. _ l my;, ® m,,; m,,; ® my,;,
ﬂos}_h?( O FIE | o — i ) %)

are the usual electric and magnetic susceptibilities.

3. Chiral particle near a chiral halfspace

First we consider a chiral particle in free space near halfspace containing an isotropic chiral
medium (figure 1). To compute the Casimir—Polder potential as given in (34) the scattering part
of the Green’s function for a source in free space near an isotropic chiral medium is required.
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ei=u =1
h']ZU .
z

BYEPEFEEERFER R R F R R
B S

Figure 1. Chiral molecule in free space near a chiral medium. The chiral
molecule will have a different group or base (denoted by o) at the end of each
bond, breaking the mirror symmetry. The boundary between the halfspaces is
the (x, y) plane at z = 0. The isotropic chiral medium fills the space with z <0
(labelled region 2) and z > 0 is the free-space (region 1).

The wave vectors travelling in the achiral region 1 are the standard free-space wave vectors

k2——<9)2 K2 = k2 — k2 (39)
1=\7) Tk TR
where k§ =k*+ ki. Within the chiral medium the wavevectors are
Rv2_ (@ 2 2
(k2 )" = - (k2 + 'V E2l2)°, (40)
Lo (9 2
(ky)” = c (K2 + /€2102)7, (41)
(k3)* = (k3)* — (kag)?, (42)

where P =R, L and refers to the right and left circular polarization of the wave, respectively.
The scattering part of the dyadic Green’s function for a reflection from the achiral/chiral
interface can be found in [22] as

i C k] : o /
G(l‘, l'/, w) — = - / dk1 -~ el(qu'(l‘q ry)+kiz(z+2') I:esesR(S,S)
- w

qklz
+esep(_k1z)R(S7p) + ep(klz)esR(p’S) + ep(klz)ep(_klz)R(p’p)] ’ (43)
where
1
e = —(kyx — kyy) (44)
k‘]
and
1
(k) = - (FhK, +,2) (45)

are the polarization unit vectors for s and p polarized waves. The reflection coefficients
RG® RGP R®S and R®P) are typically dependent on the wave vectors given above and the
medium response functions.
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In this geometry the chiral component for the Casimir—Polder potential is
72 2

2k
Uec(za) = h:(’c / de £°T'(i§) / dky. e e (S ggc — 1ROV (§)+ ROV (6]
0

el2klzZA

12712 Z@(a)nk)a)nkRnkRe / dk,,

1z

2k2 2
<[(Z5 = 1) R P @)+ R @], (46)

wnk

the details of this calculation can be found in appendix B.

3.1. Perfect chiral mirror

As a purely theoretical construct we consider the potential between an isotropic molecule
and an idealized medium that we have dubbed a ‘perfect chiral mirror’, whose reflection
coefficients are R®P, R®% = 41 and therefore R®Y, R®P = (. This represents reflections
where perpendicularly polarized waves are completely reflected into parallel polarized waves
and vice versa. For a chiral medium that rotates the polarization clockwise (with regard
to the incoming wave—Ilabelled ‘right-handed’) the reflection coefficients are RP =1 and
R®% = —1 and for an anticlockwise polarization rotation (labelled ‘left-handed’) they are
RGP = —1 and R®® = 1. When the molecule is initially in its ground state, applying these
reflection coefficients to (46) results in

hz
Uza) = £ / dE T(ig) e o (= 2 +1), @7)
SJTZZA 0
where the ‘+’ (upper sign) refers to the right-handed medium and ‘—’ (lower sign) refers to

the left-handed medium. To examine how the spatial separation between the chiral particle and
the chiral halfspace affects the chiral potential, we take the far-distance (retarded) and close-
distance (non-retarded) limits of (47).

In the retarded limit where zs@wpmin/c > 1 (@min 1S the minimum relevant particle transition
frequency), the cross polarizability, I" (i £), approaches the static limit and can be approximated
by 'G &) ~ T"(0)E. The potential becomes

_ Rok
Ulen) =F1 s Z o) (48)

In the non-retarded limit where z®max/c <K 1 (Wmax 1s the maximum relevant particle transition
frequency) the potential becomes

12r 3 ZRO" (kaZA) “49)

where use has been made of the relatlonshlp

U(za) =

b X
/ dx——~ —1Ina, fora<«k]l.
4 a’+x?

The results show a spatial scaling behaviour in the retarded and non-retarded limit that is
different to the cases seen for dielectric or magnetic media in this geometry. An interesting
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consequence of such a medium is that in this simple geometry the electric and magnetic
components of the Casimir—Polder potential would vanish. It should be noted that the potential
can be attractive or repulsive depending on the medium and particle in question, in contrast to the
purely attractive potentials that usually arise in this geometry. The chiral identity of both objects
determines the character of the potential. The lack of electric and magnetic components of the
Casimir—Polder potential and the existence of repulsive forces means that perfect chiral mirrors
used in a cavity or Fabry—Pérot geometry could be used to separate enantiomers. We believe that
the results represent a theoretical upper bound for the chiral Casimir—Polder potential, however,
they are physically unrealizable. This is because it would require a medium that completely
rotates the polarization of the incident waves and perfectly reflects the waves. Typically, the
chirality of a medium will be restricted to k2 < g, which would exclude a perfect chiral mirror.

3.2. Isotropic chiral medium

For all realistic media, the reflection coefficients are not unity as there will always be
transmission and losses from the fields as they are reflected. The reflection coefficients for an
isotropic medium are given in [22], after taking the non-retarded limit they are

21k
ROP = —R®Y = L , (50)
Eally — K5+ e+ o+ 1
2
e — Ky — &+, —1
RO — 242 22 2T U2 (51)
Eally — K5+ &+ o +1
and
2
Eally — k5 +&— Uy — 1
ROP) — 212 yTé& — U2 (52)

Ealy — K3 +Ex+Ua+1

By setting k» =0 the cross reflection coefficients disappear and R®Y R®P revert to the
standard Fresnel reflection coefficients in the non-retarded limit.

We can now obtain the chiral-corrected electric component and the chiral component of
the Casimir—Polder potential in the non-retarded limit. The off-resonant terms read

h > _ Eafly — K2 +&y — ty — 1
er(zA)=—Tf dé alit) | 52—, (53)
1672e9z5 Jo Eafly — K5+ e+ Ur+ 1
hZ &0 . ik
Uco(za) = — / dsr(@[ — ] (54)
4r2zy Jo Ealby — K5+ &+ Ua+ 1

where all response functions are dependent on complex frequency, i.e. &, = &,(1§), ur = u2([1§)
and k, = k(1 €). The resonant terms are

1 e —pn—1
Ur(zr) = — ——— Y Olou)ldylRe | 2227027 7 1 (55)
24mwenzy . o — K5+ &+ a+1
Ur(ea) = —2- 3 ©/wy) Rl 1 (56)
= Wy nidm s
cRiZa 6773 - KTk Eally — K3+ €2+ o+ 1
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where the response functions in (55) and (56) are taken at the transition frequency, w,
1.e. & = &(Wu), o = wa(wyr) and k; = kr(w,i). As a consistency check, setting 1, =1 and
letting xk, — 0 in the off-resonant contribution the results for the electric component of the
Casimir—Polder potential between a particle and a dielectric in [19] are recovered.

4. Chiral cavity

To examine whether the Casimir—Polder force can be used to distinguish between enantiomers,
we consider a chiral molecule in free space between two chiral media which differ only in their
handedness. To illustrate this we have selected a chiral metamaterial whose parameters have
been published in [13] as the chiral medium due to the strong chirality that can be obtained
from metamaterials. To characterize the medium a single-resonance Drude—Lorentz model is
used for £(w) and w(w) and the Condon model [1, 23] is used for « (w). These are

w?
f@)=1-——t (57)
w? —wp +iypw
w2
pw)=1———-"— (58)
w? — wy +1ypw
and
aw
K(w) = > R . (59)
®? —wg +iycw

The constants w,, w, and a represent the oscillator strengths for the dipole transitions
responsible for ¢, i and the rotatory strength associated with «, respectively. The remaining
constants are the resonant frequencies and damping factors for the permittivity (wg, Yg),
permeability (wp, yp) and the chirality (¢, y¢) of the medium.

For the chiral molecule, dimethyl disulphide (CH3),S, has been chosen. The dipole
and rotatory strengths for each transition have been numerically calculated for various
orientations [7]. As an example, we have chosen the first transition when the orientation
between the two CH3;—S—S planes is 90°. The transition frequency is w,; =9.17 x 101571,
dipole strength |d,|* = 8.264 x 107%° (C m)? and the rotatory strength is R,; = 3.328 x 10~%
C’m’s™1.

4.1. Ground-state force

In the non-retarded limit, multiple reflections between the halfspaces are not considered and the
forces on the molecule for each halfspace are simply added. From the Casimir—Polder potentials
for the electric (53) and chiral (54) components we can obtain the forces (F = —VU) acting
on the molecule. The two halfspaces are identical except for their chirality, characterized by
a, which is negative for one of the halfspaces and positive for the other. We assume that the
molecule has only two energy levels, i.e. only one transition is considered.

By considering a separation between the halfspaces of 100 nm we obtain the results shown
in figures 2 and 3. The electric component of the Casimir—Polder force (figure 2) is always
attractive towards both halfspaces. In this geometry these forces are equal and opposite, so
when computing the electric component of the total force (in the non-retarded limit) on the
molecule, the halfspace closest to the molecule will provide the dominant contribution to this
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Figure 2. The electric component of the Casimir—Polder force. The molecule is
attracted to both halfspaces with the stronger attraction coming from the closest
halfspace. The vertical lines denote the boundaries of the metamaterial, the gap
between is freespace where the molecule is located. The parameters obtained
from [13] are w, = 5.47 x 10"*s7!, @,, =3.06 x 10" s7',a = —3.61 x 1071,
0 =0 =0 =496 x 10Ms™! vy =75 =2.51 x 108 s ' and yo = —2.58 x
1013 s71,

total force. By implication, when the molecule is in the centre (i.e. equal distance from both
halfspaces), the electric components of the Casimir—Polder force cancel and the net contribution
to the total Casimir—Polder force is zero. It should be noted that the difference in the chirality of
the halfspaces does not effect the electric force from either halfspace and hence the combined
electric component of the total force.

By looking at the chiral component of the Casimir—Polder force (figure 3) one obtains an
attractive force between the chiral molecule and one of the halfspaces (to the left hand side) and
a repulsive force between the chiral molecule and the other halfspace (to the right hand side).
Furthermore, the total chiral component of the force does not disappear at the midpoint between
the halfspaces.

Figures 2 and 3 show that the electric component of the Casimir—Polder force is many
orders of magnitude larger than the chiral component and will dominate interactions. The
exception to this is the central region between the halfspaces, where the overall electric
component is reduced sufficiently to allow the chiral component to become the dominant force.
However, the width of this central region is smaller than the molecule. This means that for a
particle initially in the ground state the Casimir—Polder force, in the current geometry, would
not be able to distinguish between enantiomers and subsequently separate them.
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Figure 3. The chiral component of the Casimir—Polder force. The molecule is
attracted to the left hand side halfspace and there is a repulsive force between the
molecule and the right hand side halfspace.

The difference in orders of magnitude of the force components can be traced to separate
origins. With regard to the chiral molecule the optical rotatory strength is orders of magnitude
smaller than the electric dipole transition matrix element, R,;/c < 107'!|d,.|>. This can be
understood by the fact that the magnetic dipole moment appears at a higher-order of the
multipole expansion than the electric dipole moment. Looking at the chiral medium, the chirality
is slightly smaller than the permittivity, but this difference is enhanced by the structure of the
reflection coefficients.

4.2. Excited-state force

In order to overcome the dominance of the electric dipole force, it is helpful to consider
other molecular initial states. If the molecule is initially in an excited state the resonant
contribution to the force needs to be considered. In this scenario, the off-resonant part of the
electric component of the Casimir—Polder force is repulsive whereas the direction of the chiral
off-resonant component is dependent on the chiral identity of the molecule and material in
question. A metamaterial can be constructed such that for a given transition frequency the
resonant contribution to the electric component of the Casimir—Polder force will counteract the
off-resonant contribution. By creating a cavity with two such metamaterials, identical except
for their chirality, a chiral molecule initially in an excited state can be separated from its
enantiomer. This is because the suppression of the electric component of the Casimir—Polder
force allows the chiral component of the force to attract an enantiomer to the corresponding
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Figure 4. The total electric component of the Casimir—Polder force (black line)
and the total chiral component (dashed line). The components of the force are
of equal magnitude, with the chiral contribution larger in the centre and the
electric contribution larger towards the halfspaces. The parameters are chosen

wp a)p (Up a)p .
ASWg =W =Wc =7, YE=YB= "Yc=1p5-4= —73 anda)m = ?.Thelnset
in the bottom right shows a magnification of the centre region between —15 and
15 nm.

halfspace while it is being repelled from the opposite halfspace without the electric component
dominating.

As a proof of principle the metamaterials parameters are chosen as suitable multiples of
the plasma frequency and the values for the optical rotatory strength and dipole strength are as
given above and the metamaterials are separated by 100 nm of free space.

The results are shown in figure 4. As can be seen, for a particular transition frequency
a suppression of the electric component of the Casimir—Polder force sufficient to allow
enantiomer separation can be obtained. The chiral component is the dominant contribution in
the central region (=10 nm) of the cavity (see the inset to figure 4), meaning that the direction
of the force acting on a chiral molecule in this region will be dependent on its chirality.
Therefore enantiomers that pass at low speeds through the centre of the cavity will be attracted
or repelled in opposite directions and will be separated based on their chirality. As the total
electric component of the Casimir—Polder force is attractive, the separated enantiomers will
continue to be drawn towards opposite halfspaces even when not in the central region.

It is important to note that, although the chirality of the metamaterials has not changed, the
chiral component of the Casimir—Polder force is now acting in the opposite direction. This is
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due to the resonant part of the chiral force, which is larger than the off-resonant part and acts
against it.

5. Conclusion

The chiral component of the Casimir—Polder potential has been derived within the framework
of macroscopic QED. The results show that the medium and particle in question must both
be chiral, otherwise this potential does not exist. Furthermore, this potential is sensitive to the
chirality of the objects in question and can be attractive or repulsive.

By initially considering a perfect chiral mirror, it was found that in the retarded limit the
chiral component of the Casimir—Polder potential scales as 1/(z4)> with the molecule—surface
distance whereas for the non-retarded limit the spatial scaling is 1/(z4)°In(z4). As already
alluded to, it is unlikely that this could be realized in a real material, due to the requirement
for perfect reflection and complete rotation of the incident wave polarization. When the chiral
medium does not exhibit perfect reflectance the chiral potential is slightly diminished and in the
non-retarded limit the spatial scaling was found to be 1/(z4)°.

In the geometry where a chiral molecule, initially in the ground state, is located
between two halfspaces of opposite chirality it was found that the chiral component of the
Casimir—Polder force is attractive towards one halfspace and repulsive from the other. However,
the electric component of the Casimir—Polder force between the molecule and the halfspaces
dominates over the chiral component. Therefore, in this geometry, it would not be possible to
distinguish between enantiomers because the indiscriminate attractive electric force dominates
over any chiral effects.

If the molecule is initially in an excited state it was found that the material properties can
be tuned such that the resonant contribution to the electric component of the Casimir—Polder
force almost completely suppresses the off-resonant contribution. Enantiomers in the centre
between the halfspaces would then experience an overall force whose direction is dependent on
the chiral identity of the molecule. This chiral force will draw the molecule towards a particular
halfspace with its enantiomer attracted to the other side of the cavity. This distinction between
enantiomers will allow them to be separated by the Casimir—Polder force.
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Appendix A. Integral relation

We begin by evaluating the left hand side of the integral equation (22). By taking the product
of (21) with its hermitian conjugate we arrive at the term

. A . i . T
Gex GL+Gnx Gl = (uow)’ ~G » (;%) RaR'- (;‘%—) «G'. (A.1)
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Substituting in (17) leads to

h 2 2
Z G, +G| = “j:w [G*[%Im[e—lcT*pfl*x]+§(x$-lm[u_l*lc]

A=e,m

—Im[kT*pn™ 1]V x)+ xv-lm[u_l]-v x]*GT]. (A.2)

By comparing (A.2) with the noise polarization and magnetization commutators (12)—(15) it
can be seen that this reduces to

S h 2 ~ A, KN
Y- 6@ * Gl = | 6@ * i@, @]+ 6 @) (A3)
A=e,m
It is known that [20]
B O / ho / /
[iv @), 5. o) | = ZRel QT w)l6(@— o), (A4)

where @ is a complex conductivity tensor. This leads to the general form of the integral
relation [20]

h 2 h 2
< Ho® ),uow[G(a))*Re 0() * G (@), ) = P Im G (x, ¥, w). (A.5)
Therefore,
) 2
306 @)+ GL @], ¥) = 2 im G(r, ¥, ), (A6)
A
which in coordinate space is
3 T h,uoa)z /
> | $sGitr.s, ) G5, 0) = ImG(r, v, w), (A7)
A

as required.

Appendix B. Dyadic Green’s function calculation
To obtain the chiral component of the Casimir—Polder force we require the terms for tr[V x
G(ry,ry,18)] and tr[V x Re[G(r4, T4, ®,)]]. It is known from dyadic algebra that [24]

u x ab= (u x a)b, (B.1)

where ab is a dyadic product and subsequently (u x a)b is also a dyadic product. Applying (B.1)
to (43) results in

V x e, = —ike,(k,), (B.2)
V x e, (k;) =ike, (B.3)

where V — (ik,, 1k,,1k;). Taking the trace of the dyadic Green’s function is equivalent to
taking the dot product between the dyads,

e -e,(—k)=eyk;) -e=0, (B.4)
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2k2
e -e =1, ep(kz) : ep(_kz) =1- ? (B.5)

To calculate the off-resonant contribution the integration variable is changed to

21 o0 o0
/ dk, — f do / dk,k, — —27 / dk.k.,
0 0 e

the wavevectors in complex frequency (w — i1&) become

ki = s = iky, ky, =ik, (B.6)
C
with
~ 2 2
klz = ) + (qu) (B7)
in the achiral halfspace and
k? =1 (%) (Kz + 4/82,&2) = 1125,
k;‘ =i <§> (—Kz + 4/82/,4,2) = 1];]2"
¢ (B.8)

P __ 7P
k2Z _1k2Z,

KL= (RE) + ()’

in the chiral halfspace.
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We predict a discriminatory interaction between a chiral molecule and an achiral molecule which is
mediated by a chiral body. To achieve this, we generalize the van der Waals interaction potential between
two ground-state molecules with electric, magnetic, and chiral response to nontrivial environments. The

force is evaluated using second-order perturbation theory with an effective Hamiltonian. Chiral media
enhance or reduce the free interaction via many-body interactions, making it possible to measure the chiral
contributions to the van der Waals force with current technology. The van der Waals interaction is
discriminatory with respect to enantiomers of different handedness and could be used to separate
enantiomers. We also suggest a specific geometric configuration where the electric contribution to the van
der Waals interaction is zero, making the chiral component the dominant effect.

DOI: 10.1103/PhysRevLett.118.193401

Introduction.—Casimir and van der Waals (vdW) forces
are electromagnetic interactions between neutral macro-
scopic bodies and/or molecules due to the quantum
fluctuations of the electromagnetic field [1-3]. In particu-
lar, the attractive vdW potential between two electrically
polarizable particles was first derived by Casimir and
Polder using the minimal-coupling Hamiltonian [2].
Molecules can also exhibit magnetic [4-7] and chiral
polarizabilities [4,8,9] and their contribution to the vdW
force can be repulsive.

The aim of this work is the study of the interaction
between chiral molecules in the presence of a chiral
magnetodielectric body. Chiral molecules lack any center
of inversion or plane of symmetry. Hence they exist as
two distinct enantiomers, left handed and right handed,
which are related to space inversion. Because of their low
symmetry they have distinctive interactions with light. In a
chiral solution the refractive indices for circularly polarized
light of different handedness are different. Hence a chiral
solution can rotate the plane of polarization of light with an
angle related to the concentration of the solution (optical
rotation) [10-12], or absorb left- and right-circularly
polarized light at different rates (circular dichroism) [13].
All of these phenomena are related to the optical rotatory
strength, defined in terms of electric (d,;) and magnetic
(m,,;) dipole moment matrix elements [14]:

Ry = Im(dnk . mkn)~ (1)

The rotatory strength changes sign under spatial inversion.
Hence the contributions of the vdW force containing the
rotatory strength are discriminatory with respect to the
handedness of enantiomers [8,15,16]. According to
the Curie dissymmetry principle [17], the handedness

0031-9007/17/118(19)/193401(5)

193401-1

of an enantiomer can only be detected by means of a
second reference object which is also chiral (“it takes a
thief to catch a thief”). This second object can be either
a second chiral molecule, or in our case, a chiral medium.

Such discriminatory features could play an important
role in the separation of enantiomers [15], which nowadays
is achieved with other methods like Coulomb explosion
imaging [18], rotational spectroscopy [19], and liquid
chromatography [20].

Previously, the vdW interaction between two chiral
molecules was considered in free space [8]. In this scenario
the chiral part of the vdW force is several orders of magnitude
smaller than the purely electric contribution. We will show
that this is no longer true when the chiral molecules are near a
magnetodielectric body which exhibits chiral properties.
Chiral media can be realized experimentally using tunable
metamaterials [21], made from structures such as a gold helix
[22] or a twisted woodpile [23], where large optical activity
requires the lack of a mirror plane parallel to the substrate.
These media will enhance or reduce the vdW potential via
many-body interactions [24,25]. Note that evidence for
three-body dispersion forces has recently been found for
the critical Casimir effect [26].

This Letter is organized as follows. We first develop an
effective Hamiltonian in order to derive the vdW potential
between two chiral molecules near magnetodielectric
bodies. We then study the interaction between two chiral
molecules in free space and subsequently introduce a chiral
plate in order to enhance the chiral contribution.

van der Waals potential.—In order to consider the vdW
interaction of chiral molecules with a generic body, field
quantization in an absorbing chiral medium is required [15].
We introduce the vector field f,(r,®) as the bosonic
annihilation operator for the electric (¢ = 0) and magnetic

© 2017 American Physical Society
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(6 = 1) excitations, respectively. They obey the commuta-
tion relation [f, (r, »). f'z,(r’, @')] = 6,;6(r —v')5(w — @').
Denoting by |{0}) the vacuum state of the electromagnetic
field, f,(r, )|{0}) = 0 Vo, r, w, the excited photonic states
are obtained by repeated action of the creation operator on
the vacuum state. For instance, a two-photon excited state
is given as (1/v2)Ei(r, a))f';(r’, o' ){0}) = |1,(r, ®),
1,(r, o )) Introducing the frequency component of the
fields by E(r = [ dwk (r, w) 4+ H.c., which for the free
field in the Helsenberg picture are simply Fourier compo-
nents, we may write the electric field in terms of the bosonic
annihilation operators as

E(r,0) = / ) G, (rr.0)-f,(r0) (2)
o=0,1

and B(r,w) = V x E(r,w) /i with the tensors G, being
defined in terms of the Green’s tensor G according to
Ref. [15]. The Green’s tensor contains all geometrical as
well as magnetodielectric properties of the environment via
the frequency-dependent relative permittivity, relative per-
meability, and chiral susceptibility. It satisfies a useful
integral relation with the mode tensors G,:

/d3sG r.s,o) G (r.s o)

c=0,1
n
= P mG(r, v, w), (3)
T

where y is the vacuum permeability.

The interaction between atoms (or molecules) and the
field may be described by an effective interaction
Hamiltonian [27], which represents processes where two
photons are created or annihilated at the same time:

1
__aElE] —

HAF = 2 ij

1

E)(ij(EiBj_BjEi)’ 4)
where a is the electric polarizability and y = ™ represents
the chiral polarizability. It can be expressed in terms of the
electric and magnetic dipole moments:

d;omyy dOkka
R 5
T Z <a}A +o wi‘ -—w ®)

where w{ = (E{ —E{)/h is the transition frequency
between the excited state k£ and the ground state. In writing
the effective Hamiltonian we have considered chiral mol-
ecules which respect time-reversal symmetry. In this case,
Lloyd’s theorem states that electric dipole moments are
real, while magnetic dipole moments are purely imaginary
[28]. We thus have y™¢ = —y"T. The chiral polarizability
describes a mixed electric-magnetic response where an
applied magnetic field contributes to an electric dipole
moment in the atom:

d=a(w) E) +1(0) - B).
27 (@) E(w). (6)

Thus the direction of the electric dipole moment is slightly
rotated with respect to the direction of the electric field.
The chiral polarizability is discriminatory since it changes
sign between different enantiomers. It vanishes for achiral
molecules because of parity.

With the interaction Hamiltonian being quadratic in the
fundamental operators f; and f7, it is seen that the energy
shift describing the interaction between the two molecules
A and B can be obtained from second order perturbation
theory

m

(0| Hind| 1) (1| Hint0)
AE ) = —§ AN = Ury,rg), (7
2) s E, - E, (ra.rg), (7)

where |0) = [0),[0)5/{0}) and Hiy = Hap + Hpp. The
intermediate state |I) corresponds to a state in which both
molecules are in their ground state with two virtual photons
being present. The relevant two-photon processes are
represented by the Feynman diagrams in Fig. 1. The
collective sum in Eq. (7) runs over both discrete and
continuous parameters. Using the interaction Hamiltonian
(4), making use of the integral relation (3), and simplifying
the resulting expression using the contour integral tech-
nique in the complex frequency plane, the purely electric
and electric-chiral energy shifts take the final forms

U (rq,rp) =

hu? [
—2%0 [ e Tr{an (i)
- Gi(ry,rp,if) - ap(ig) - G(rp, 1y, i)}

(8a)

At [
U (eprg) =0 [ e T )

Vi x G(ry,rp,i8) - ap(if) - G(rp, ra, i)}

(8b)

FIG. 1. van der Waals force between two molecules: two-photon
exchange.
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Resonant terms in the molecular frequencies have been
avoided by means of infinitesimal imaginary shifts. The
purely electric (achiral) contribution is well known in
literature [7,29]. Other terms contributing to the total
van der Waals interaction are given in the Supplemental
Material [30].

Chiral molecules in free space.—To apply our general
results to free space, one uses the bulk Green’s tensor

Mo o

where ¢ is the speed of light, r=rz—ry, r=r|,
e.=r1/r,a(x)=1+x+x% and b(x) =3 + 3x + x%

The order of magnitude of a specific contribution of the
vdW energy is roughly given by the respective polar-
izability, and thus depends on the numbers of electric and
magnetic dipole moments. An electric dipole has an order
of magnitude of eag, where ayp is the Bohr radius, while the
magnetic moment has an order of magnitude of the Bohr
magneton ef1/2m. Hence [(m/c)/d] is of the order of the
fine-structure constant. The leading order contribution is
that from the purely electric term, which contains four
electric dipole moments.

The next-to-leading term is the chiral-electric contribution
UCE(r), which contains three electric and one magnetic
dipole moments. However, if the chiral polarizability of the
molecule is isotropic, US?(r) = 0. This vanishing interac-
tion is a consequence of the Curie dissymmetry principle
[17]: the vdW potential cannot distinguish the handedness of
the chiral molecule if the other molecule is not chiral.

The next-order terms contain two electric and two
magnetic dipole moments: UEM(r) and UCC(r). For iso-
tropic polarizabilities, it has been shown that [8,9]:

h o xali&) yp(i&) (Er
87138(2)61 ds c c l(?)’ (10)

where [(x) = e 2(3 + 6x + 4x?) and ¢, is the vacuum
permittivity. The interaction scales as #~© in the nonretarded
limit, but decreases more rapidly in the far zone (+~°) due to
the finite velocity of light. This result can be obtained in our
formalism by using the vacuum Green’s tensor.

Because the purely electric energy contains four electric
dipole moments and UCC contains two electric and two
magnetic dipole moments, the latter is roughly 4 orders of
magnitude smaller than the former. This shows the necessity
to use magnetodielectric bodies to make the chiral contribu-
tion appreciable. While UE(r) is strictly zero in free space
for isotropic molecules, this is no longer true with general
material environments, which exhibit chiral properties.

Chiral molecules near a perfect chiral plate.—With the
introduction of a body, the fluctuations of the electromag-
netic field are influenced by the presence of the boundary.
The interaction between chiral molecules is a two-photon

G(O)(TA»rBs if) =

UCC( )

A A
"

Ty

FIG. 2. Medium-assisted vdW interaction between two
molecules: direct or indirect exchange of two photons.

exchange, where photons can be reflected by the body’s
surface (Fig. 2). The total Green’s tensor is the sum of the
bulk (free-space) Green’s tensor G© and the scattering
Green’s tensor of the plate G, that accounts for the
reflection of the electromagnetic field from surfaces:
G =G +G.

If one species is chiral and the other one is achiral we
need a chiral surface to observe a discriminatory effect.
The simplest surface is a perfect chiral plate which reflects
a p-polarized wave to an s-polarized wave and vice versa
with reflection coefficients r_, , and r,,_,,. This is a limit of
a chiral plate, which may be approached for metamaterials
with large optical activity. In other words, it rotates the
polarization of an incoming wave by an angle of +7/2
when looking along the direction of the wave vector.
Its scattering Green’s tensor reads

1 2 =) Kl
G(l)(rA7rB,i§):gA”d(p/0‘ dk“K_le—xlz-

x e—ik”(xcosq)ersinq))
X (e[)+es—rs—>p + es+ep—r]/)—>s)7 (11)

where x =xp — X4, Yy =Yg — Ya, 2. = 24 + 25, and we
have introduced the polarization unit vectors e, =
(sin @, — cos ¢, 0),

e,. = (c/&)(F ktcosg, F k- sing, —ikl). The parallel
and perpendicular components of the wave vector, kl

and x*, are related via x* E2/c? + k2. For a plate
of positive chirality r,_,, = 1, r,—s = 1, and for a plate of
negative chirality r,_,, =1, r,_, = —1.

The perfect chiral plate has no influence on the purely
electric contribution, which reduces to the well-known
electric van der Waals interaction in free space. Instead, it
influences the leading-order chiral contribution, which in
the nonretarded limit (all distances much lower than the
relevant atomic transition wavelength) reads

XA lf .
T

r2rl =3(x° y)]
S

CE _
Unr -

(¥ +y?)
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where r, = /x> +y? + z2.. If the two species are chiral,
there is another discriminatory term USC which is, how-
ever, much smaller than UCE.

Consider, for example, the interaction between a rubid-
ium atom and the chiral molecule 3-methylcyclopentanone
(3-MCP) [32,33]. The molecule 3-MCP has a particularly
small electric dipole moment and a magnetic dipole
moment comparable to the Bohr magneton; this kind of
system is suitable to observe enhanced chiral effects.

We suppose the position of the molecule A is fixed and we
write the resulting energy in terms of the interparticle
separationr = rpz — ry; U(ry, ry + r). The total force acting
onBisF = -V, U(ry, r4 + r) and its direction differs from
r because of the presence of the additional surface. We
choose, without loss of generality, a coordinate system such
that the plate corresponds to the z = 0 plane, both species lie
in the x = 0 plane with the coordinates of molecule A being
ry = (0,0, z4). The degree of attractiveness is quantified by
using the parameter e, - F, where e, = r/r.

A three-dimensional plot shows the relative importance
between electric and chiral contributions for a plate of
negative chirality (see Fig. 3). The chiral contribution is
maximally enhanced when both species are aligned parallel
to the surface (z = 0), having a large distance along the y
direction (y/z4 > 1). In this case the chiral contribution is
attractive and one order of magnitude smaller than the
purely electric contribution (e, - F°€/e, - FEE = 6.75%).
When both species are aligned perpendicular to the surface
(y =0) and have a large distance along the z direction
(z/z4 > 1), the chiral contribution is repulsive and 2 orders
of magnitude smaller than the electric contribution
(e, - FCE /e, - FFE = _3.37%).

Our chiral contribution could be observed in Rydberg
molecules, which have large dipole moments and therefore
strong van der Waals interactions [34]. We expect a
strongly enhanced interaction between a Rydberg molecule
and a chiral molecule, which does not have to be in a
Rydberg state. On the other hand it has been recognized
that it is possible to create chiral Rydberg molecules,
exciting moving Rydberg atoms of rubidium by two right-
or two left-circularly polarized photons [35]. Such systems

FIG.3. e, F¢ /e,  FEE for a rubidium atom (atom B) and the
chiral molecule 3-MCP (molecule A).

could be used in a proof-of-principle experiment. If two
identical chiral Rydberg molecules are exposed to a
resonant laser, the laser can cause the system to oscillate
between the ground state and the excited states. From the
oscillations of the molecular populations it is possible to
deduce the van der Waals interaction. The experiment has
been performed with rubidium atoms where Cg (van der
Waals coefficient of the energy U = —C4/r°) has been
determined with an accuracy of 2.7% for the excited
Rydberg state n = 62 [36]. Note that if one molecule is
absorbed onto the surface the strength of the interaction is
even higher because of the influence of the substrate on the
molecular polarizability, as shown in Ref. [37].

Most importantly, the chiral contribution is discrimina-
tory: it changes sign if we substitute a chiral molecule
with its enantiomer or a positive chiral plate with a negative
one. Hence by determining whether the free interaction is
enhanced or reduced by the presence of the plate, it could
be possible to identify the handedness of the chiral
molecule. This discriminatory effect also suggests configu-
rations, where the nonchiral contributions of the van der
Waals force completely vanish, but not the chiral contri-
butions. Fig. 4 shows such possible geometry. Three
species are in the symmetry axis of a cavity composed
of two identical chiral plates. We are interested in the force
acting on the middle achiral atom B. This experiment
allows us to establish if the two chiral molecules A and C
have the same handedness. If A and C have the same
handedness then the force acting on B is strictly zero; this is
no longer true if they are opposite enantiomers because
of chiral discriminatory contributions of the vdW force.
This interaction is enantiomer selective because atom B
will be attracted or repelled from molecule A depending on
the handedness of the latter. Hence if we know the
handedness of one chiral molecule we are able to determine
the handedness of the other one with this experiment. Note
that the recently predicted exponential suppression of the
electric vdW potential in a parallel mirror cavity [38] orin a
planar waveguide [39] might further assist the observability
of the chiral component. Three-body discriminatory chiral
contributions are also present in the cavity configuration;
however, they are smaller with respect to the analyzed
two-body contributions.

Alternatively, in scattering experiments one commonly
has molecular beams of chiral molecules containing both
enantiomers in equal proportions. This molecular beam can

A B C

G A

FIG. 4. Three species parallel in the symmetry axis of a cavity.

193401-4



[S14] Enhanced chiral discriminatory Van der Waals interactions 197

PRL 118, 193401 (2017)

PHYSICAL REVIEW LETTERS

week ending
12 MAY 2017

travel near a gas of chiral molecules of one handedness,
prepared, for example, with liquid chromatography. The
interactions with the gas molecules will lead to a separation
of the trajectories of the molecules in the beam, depending
on their handedness. This trajectory imaging technique has
been already used for rubidium Rydberg atoms [40].

Conclusions.—Our model, which combines time-inde-
pendent perturbation theory with an effective-Hamiltonian
approach, has allowed us to study the influence of material
environments on the vdW interaction involving chiral
molecules.

We see that surfaces with chiral properties can significantly
enhance chiral contributions. The chiral contribution can be
repulsive unlike the purely electric force which is always
attractive. For some positions the plate enhances the free
interaction (attractive chiral contribution) and for other
positions it reduces the interaction (repulsive chiral
contribution).

Second, the chiral force is discriminatory with respect to
enantiomers of different handedness, this opening an
interesting perspective on the separation of enantiomers.
We suggest symmetric configurations where we selectively
cancel the purely electric contribution, but not the chiral
components: this selective cancellation is a direct conse-
quence of the nondiscriminatory nature of electric and
magnetic interactions, and the discriminatory nature of the
chiral components.
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ABSTRACT: Theories for the effective polarizability of a small
particle in a medium are presented using different levels of
approximation: we consider the virtual cavity, real cavity, and the SN
hard-sphere models as well as a continuous interpolation of the latter @ @ (\@,’ ® -
two. We present the respective hard-sphere and cavity radii as i T @)
obtained from density-functional simulations as well as the resulting

effective polarizabilities at discrete Matsubara frequencies. This
enables us to account for macroscopic media in van der Waals

AR ¥

interactions between molecules in water and their Casimir—Polder interaction with an interface.

Bl INTRODUCTION

The optical behavior of a small object dissolved in a medium is
of interest for a large number of investigations, such as
optofluids," medium-assisted density-functional theory (DFT),>
nanomedicine,’ hydrogen storage,4 bio—organics,5 and photo-
dynamic therapy.® The impact of a cavity around the particles is
large compared to the typically studied situations where the
particles are considered without an environment.

In this fundamental study we derive different models for the
effective polarizability of small particles in a medium. The level
of accuracy for six different approximations will be discussed
and our results exploited to calculate Casimir—Polder forces in
a medium. The new theoretical results are then applied to
greenhouse gas molecules,” and other gas molecules, dissolved
in water. After water vapor and carbon dioxide, methane and
nitrous oxide are the most important long-lived greenhouse
gases in the atmosphere. Release of greenhouse gases from
surfaces in water is influenced by the Casimir—Polder
interaction. To estimate the Casimir—Polder binding gas
particles to surfaces, one needs to have accurate effective
polarizabilities of the greenhouse gas molecules in water. As
input parameters in our models, we require the frequency-
dependent polarizability of the molecules in a vacuum, hard-
sphere radii, cavity radii in water, and the dielectric function of
water. We use ab initio quantum chemical calculations to
accurately calculate the frequency-dependent polarizabilities of
different gas molecules in a vacuum. The result is given as a set

A -4 ACS Publications  © 2017 American Chemical Society

9742

of parametrized functions, which enables easy access in future
investigations that require these molecular polarizabilities. We
also provide the theory for determining the molecular radii and
cavity radii of different greenhouse gas molecules in water.
These parametrized functions and tabulated data for radii,
together with the new theories and tabulated dielectric function
of water for discrete Matsubara frequencies, enable us to
calculate the effective polarizability of gas molecules in water.
This is a key quantity needed in future studies of binding or
release of gas molecules near solid—water interfaces. As an
illustrative example we consider the nonretarded van der Waals
potential of two molecules in water and their Casimir—Polder
potential near a perfect metal surface to illustrate the impact of
the different cavity models. Therefore, we treat the environ-
ment as a continuous medium as a kind of ensemble average of
its constitutions. Due to this reason we focus on single-particle
interactions, as they are valid for dilute gases. Further
investigations on few- and many-particle interaction embedded
in a cavity can be performed additionally.* " This enables us
to compare how sensitive the results are to different
approximations done when the effective polarizability is
evaluated. It turns out that the theoretical sensitivity can be
quite large; even the sign of the force on molecules close to a
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Table 1. Weights (ai [107** A% s* kg™'] in SI-Units Which Transform to CGS Units via [ag] = 47€,107° A%) and Characteristic
Frequencies (w]- [10'° rad s™'] in SI-Units, Which Transform to CGS Units via [@g;] = 27e/h eV) for Five-Mode London Fits of
the Dynamic Polarizabilities of Four Greenhouse Gas Molecules CH,, CO,, N,O, and O; and Other Atmospheric Gas
Molecules

mode 1 mode 2 mode 3 mode 4 mode S
a o, [¢5) @, a w3 ay @y as @s
CH, 89.3 175 137.5 2.56 41.2 4.42 2.78 10 0.18 48.3
CO, 131.7 1.95 116 3.14 41.5 6.2 6.43 13.3 0.43 SL.S
N,O 121.5 1.64 146.2 54.9 549 5.59 8.05 12.3 0.41 539
O3 72 0.89 130 2.28 98.7 4.32 21 9.82 0.89 36.5
O, 38 1.37 854 2.78 41.1 542 8.16 109 0.76 29.5
N, 90 2.14 10 327 299 592 3.55 132 023 60.5
CO 49.1 143 120 2.46 41.7 4.95 6.89 11 0.39 45.7
NO, 16.5 0.63 124 1.65 134.1 3.57 28.8 8.39 1.19 31.6
H,S 55.1 1.12 99 3.25 251.6 1.86 2.33 9.58 0.98 342
(a) - (b)
S /
G2 (rAarA) G( )(I‘,I')
r/
£(w)
R
Ty \ R¢
' e(w)

Figure 1. (a) Sketch of Onsager’s real cavity model. A particle (red dot) at position r, is embedded in a medium with dielectricity e(w) (grey area)
surrounded by a spherical vacuum cavity (white area). The scattering process from an external point r (green dot) is separated into the propagation
to and back from the particle. (b) Sketch of Onsager’s real cavity model for finite size particles. A spherical particle with radius R and the dielectric
function &, is embedded in a medium with (@) (grey area) surrounded by a spherical vacuum cavity (white area) with radius Re. The scattering
process from an external point 1’ (red dot) to another point r (green dot).

metal surface can change if we go from one effective basis set, aug-cc-pVQ_Z.m The geometry of each molecule was
polarizability model to another. There is thus a need for optimized by energy minimization before evaluating its
experimental information to identify the best model polarizability. The full anisotropic polarizability tensor was
B FREE-SPACE POLARIZABILITY OF GAS evaluated, and anisotropic effects are known to have an impact
MOLECULES on Casimir—Polder interactions.'”'® However, for simplicity
The Casimir—Polder energy is determined from the effective we use the isotropic average, @ = (o + @, + @,,)/3, in this
polarizability of a molecule in a medium at imaginary manuscript.
frequencies i£. Each of the models of effective polarizability Quantum chemical calculations of dynamic polarizabilities
considered in this manuscript describes a different representa- were performed at the Matsubara frequencies i, = 2k Tn/h
tion of the transformation induced by the medium on the for T = 298.15 K with n = 0, 1, .., 2100. It is convenient to

underlying dynamic polarizability a(i£,) of the given molecule
in a vacuum (the free-space polarizability). We have computed
the free-space polarizability of each molecule by quantum
chemical methods. The closed-shell gas molecules, CH,, CO,, a
N,O, O3 N,, CO, and H,S were calculated at the coupled a(i€) = Z 7]2

cluster singles and doubles (CCSD) level of theory'” using T+ (¢/w) (1)
Molpro.13 The open-shell (paramagnetic) molecules O, and

NO, were calculated using Turbomole'* at a density functional A five-mode fit has previously been found to describe the
theory (DFT) level with a hybrid PBEO functional.'> Ground 19
states involved higher spin states, O, having spin multiplicity 3
(two unpaired electrons), NO, with multiplicity 2 (one
unpaired electron). For both CCSD and DFT/PBEO with the free-space polarizability obtained from ab initio
calculations we employed an augmented correlation-consistent calculations are given in Table 1.

represent the polarizability at an arbitrary imaginary frequency
i€ by fitting the polarizability modes to an oscillator model

dynamic polarizability accurately to a 0.02% relative error.
The adjusted parameters for a five-mode model fitted to agree

9743 DOI: 10.1021/acs.jpca.7b10159
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Bl CASIMIR—POLDER AND VAN DER WAALS
POTENTIAL

The Casimir—Polder force arises when a small particle comes
close to a dielectric surface.”” It is caused by the fluctuations of
the ground-state electromagnetic field.*' Performing the field
quantisation and applying second-order perturbation theory to
the dipole-electric field Hamiltonian H = —d-E for the ground
state of the field and particle, one finds the Casimir—Polder

potential acting on a particle located at r,”"**

Ucp(ry) = poksT Y ‘&, 2a(i,) e[ GP(ryryié,)]

n=0

2)

with the Boltzmann constant kg, the vacuum permeability p,,
the particle polarizability a(i£) at imaginary frequencies i&, the
primed sum means that the zeroth term has to be weighted b;r
'/, and the scattering part of the dyadic Green’s function G®),
which satisfies the vector Helmholtz equation

VXV XG(rrw) — =6(r—1r)

©)

with the relative permittivity £(r,w). The dyadic Green function
can be separated into the free propa%atlon through the bulk
medium G© and the scattering part G GO + G®. The
Casimir—Polder potential, eq 2, shall be understood due to a
virtual photon with frequency i£ being created by the particle at
r, and backscattered at the dielectric surface as expressed by the
scattering Green function. The strength of its fraction to the
Casimir—Polder potential is weighted by the polarizability of
the particle. Because the fluctuations of the fields ensue at all
frequencies, a superposition of all scattering processes results in
the Casimir—Polder potential.

Assuming that the particle is located in the nonretarded
regime in front of planar surface, the Casimir—Polder potential
reduces to the established Cj-potential. This situation is
described by the scattering Green function for a planar two-
layer system™’

2
w ’
—28(1',(0) G(rr',w)
C

¢ ey(@) — e(w)
3210’e(w)2 ey(@) + e(w)

G(rrw) = diag(1,1,2)

)
with the dielectric function &y describing the electric response
of the half-space. A perfectly conducting plate requires the limit
ey(@w) = 0. Due to the separation of spatial and frequency
dependencies of the scattering Green function, the Casimir—
Polder potential, eq 2, simplifies to the well-known result

o ig)
2 e(ig,) (s)

8mey 2o
In analogy, the van der Waals potential describing the
interaction between two neutral, but polarizable particles can be
derived via the fourth-order perturbation of the two-particle
dipole-electric field Hamiltonian H = —dA-E — dB-E, which
will be performed for ground-state fields and particles. It results

. 21,22
in

C ks T
Ucp(z) = _Z_i C= .

U,aw(rats)

= _kBT:M()ZZ ' §n4aA(i§n) aB(ign)
n=0

X tr[G(ry1pi,) - G(rgryil,) ] (6)
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which has to be read from right to left, and is due to a virtual
photon which is created at particle A, propagates to particle B,
where it interacts with its polarizability, and is backscattered to
particle A. Again, the sum (integral) over all two-photon
exchanges results in the van der Waals potential. According to
the nonretarded Casimir—Polder potential, the nonretarded
Green function®

1

G(ryrpw) = —————
(Enty) 47k (w)Q®

I—-3e ®
(=3 ®e) )

with @ = 13 — 1, 0 = l@l, ¢, = 0/¢, and K(®) = e(w)w?*/, for
the propagation through a bulk medium can be applied. This
results in

Cs

Ugw(r) = = Co=
w #© ¢ 87[26‘02 =0

\ , aA(ifn) aB(ifn)
£X(i€,)
(®)

where r denotes the distance between particle A and B.

The advantage of these formulas is the separation into
particle properties a(if) and the scattering processes
GO(ryrpi&). To describe the Casimir—Polder interaction in
media, the scattering Green function changes its properties with
respect to the dielectric function of the medium and to the
geometrical shape of the cavity around the particle, which gives
rise to additional resonances due to the cavity modes. Two
different pictures for the consideration of the scattering
processes will be used in describing the influence of a cavity
effectively. In the first case, the particle is centered in the cavity
and the scattering through the cavity’s boundary is considered;
see Figure la. Assuming that the scattering processes between
the surface and the particle—cavity system are dominated by a
single scattering effect (we neglect multiple scattering effects),
the Green function factorizes into a bulk propagation G (here:
in water) and an effective transmission coefficient R(®), which
has to be found, through the cav1ty s surface, which includes the
properties of the cavity and yields**

Gcav(r’r/lw) = R(w) G(r,r’,w) (9)

Due to the linearity of the Casimir—Polder potential, eq 2, in
the polarizability and the scattering Green function, an excess
polarizability can be defined as

a*(i¢) = R(i¢) a(ié)

In the second picture, we reverse the optical paths and
describe the scattering effect as an effective reflection at a
sphere, which means that the corresponding initial and final
points are located outside the sphere; see Figure 1b. The
propagation is again represented by the free propagation in a
bulk medium. Thus, we can write

(10)

cav(r;r CO) G(I‘,R,CO)'(X*(CI))'G(R,I‘/,CU) (11)
where R is a point at the spherical cavity’s surface and the
excess polarizability a*(w). In the following we analyze
different models for such excess polarizabilities. To apply eqs
S and 8, the free- space polarizability has to be exchanged by the
excess polarizability™®

a(ié) - a*(i¢) (12)

DOI: 10.1021/acs jpca.7b10159
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Bl POLARIZABILITY OF PARTICLES EMBEDDED IN A
MEDIUM

In the following we introduce the established models estimating
the effective electric polarizability of a particle embedded in a

Table 2. Summary of the Polarizability Models

model a¥ =
free space a
localfield corrected, eq 19 (%)Z(l
2
Onsager, eq 24 (1?28) a
hard sphere, eq 33 4”50R53 ::_: 255
3

1
finite size, eq 36 ac + (1( c ) -
» &4 ¢ 1+2¢) 1+ada/ (8% RcC)

medium. First, we start with the virtual cavity model, which
results in the Clausius—Mossotti relation. We continue with the
real cavity model, where we consider two different config-
urations. One describes the effective polarizability by treating
the particle as a point-like object which leads to the Onsager’s
real cavity model. In analogy, the hard-sphere model
corresponds to Onsager’s real cavity model and uses a spatially
spread out dielectric function over the complete cavity volume.
This yields the vanishing of the vacuum layer. An interpolation
between both real cavity models modeling finite-size particles is
also considered.

Clausius—Mossotti Relation and Virtual Cavity Model.
The Clausius—Mossotti relation describes the relation between
the microscopic quantity polarizability and the macroscopic
quantity dielectric function. It is also known as the virtual cavity
model, as or local-field corrections, because it describes the
increase of the electric field in the presence of a dielectric
sphere with radius R. By considering the fields inside and
outside the sphere E’ and E, respectively, one finds that the
local field around the sphere increases by’

1
E=E+ —FP
3¢, (13)
with the polarization of the sphere P. Using the relation that
the polarization is the electric response of an externally applied
electric field

P = cyle(w) — 1JE (14)

and that the polarization is the response to the application of
the local electric field to the sphere

P = anE’ (15)

with the number density # of atoms inside the sphere and the
polarizability, one finds the polarizability of a sphere as

_ se(w) — 1
o = drek e(w) +2 (16)

This equation is the Clausius—Mossotti relation and means that
the electric response, expressed by the polarizability a, of a
sphere with radius R is given by the product of its volume and
the Mie reflection.

Furthermore, the local-field correction due to the presence of
a spherical object, eq 13, together with the polarization, eq 14,
leads us to write the local electric field at the sphere as

. (e(w) + Z)E

3 (17)

This results in that the self-correlation between the local
electric field”’

(E'(r0) ® B (r',0))
= (8(“’)%2) (o) ® B (r,0))

- (E(w)%z) iw_; Im G(r,r',w)8(w — ')

nEy ¢ (18)
Hence, the local-field-corrected excess polarizability can be
written as

af(w) = (M] a(w) = a,,

3 (19)

which we denote by a.

Onsager’s Real Cavity Model. Onsager’s real cavity model
considers a spherical vacuum bubble around a particle at
position r, embedded in a medium with permittivity e(w).”’
Figure la illustrates the arrangement. The scattering Green
function for a spherical two-layered system with final and
source points in the outer layer can be found in refs 28 and 29.
The boundary conditions entering the reflection coefficients
read as z = kR¢ and z, = kR with the cavity radius R¢ and the
absolute values of the wave vector inside and outside of the
sphere k, and k, respectively. Considering a single scattering
event starting outside the cavity toward its center and back
scattering, these processes can be described with the Born
series expansion. > The scattering Green function can be
expressed as™*

G (ryrym) = R(w) G, (r1,,0) (20)

where G{), denotes the scattering Green function for a bulk
medium with the permittivity of the outer layer and the
transmission coefficient”**°

JR@) = !

2l @)[hV()] =~ e(@)[z), ()] h()]
(21)
with the spherical Bessel and first kind Hankel functions j, and
hsl), respectively, which yields the exact excess polarizability

(@) = —a(w)—

s

1
\2hV(2)] = e(@)[z),(2)]h{(2)
ji (2)[zh; (= e(w)lzj, (z)])'h (2
(22)
Applying the Taylor series expansion assuming that the cavity

radius Rc is small compared to the relevant wavelengths, Rc <
k™%, k7%, to this transmission coefficient results in

. 3e(w)
VR(@) ~ == o)
3 g(@)[106*(0) = 9e(w) — 1] (a)_RC)Z
10 1+ 2¢(@)T c

(23)
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and leads to the famous excess polarizability for small radius R

3¢(w) )2

=aq
1+ 2¢(w) ons

(24)
which is denoted by ag,,. For small but finite radii, a Taylor
expansion

3e(w)
1+ 2¢(w)

@) = a(w)l + 2¢(w)

3e(w) [

_ 2[1 ()[106() — 9e(w) ~ 11)(& )]
10 [1+ 2¢e(w)] c
(25)

shows that this approximation works for typical cavity radii. It
has an agreement of more than 99% compared with the exact
solution. The corresponding frequency of the cavity mode can
be estimated as @, = ¢/Rc, with the speed of light c. Typical
values for the cavity radius are on the order of several
Angstroms which result in a cavity mode of the order of 10'®
rad s, where typical materials are transparent.

Onsager’s Real Cavity Model for Finite-Size Particles.
The Onsager real cavity model for spatially extended particles
can be described by a spherical three-layer system.”" The inner
layer represents the particle, the outer layer the surrounding
medium, and the second layer between both denotes the
vacuum cavity. The description of this arrangement is similar to
Onsager’s real cavity model. Again, a scattering process at the
outer boundary has to be described that follows the same
scattering Green function for a spherically layered system®
whereas the reflection coefficients need to be exchanged by the
one for a three-layered system which read***

tashits

I3 =13,

1 = 3 (26)

which denotes the multiple reflection coefficients at the second
boundary with the transmission and reflection coefficient t; and
1, respectively, between the i-th and j-th layer”**%%

ri,x+1 =
i+ Hsl)(kwl“) Hﬁnr(kﬂ) - \/8[/’[,'+1H§1),(ki+la) HSI)(IQ“)
w/8;'/4;+1],.(kx"’) HrE]),(kH—la) = JEi+H HSX)(kiH“) ]n/(ki“)

(27)
i€1+l\/?

biiv1 =
T JE ) ka) HY (kpe) = e HO K,y a) ], (k)
(28)
NS ],,(kiﬂ") ],,/(ki“) - ‘/Eu‘l,ﬂfn(k[“) ],,/(ki+la)
Tiy1,i = y ;
T fEp (k) HO (k) = et B (k) ], ()
(29)
isl L
L = =

MJ,,(IC{“) Hil)/(km-l“) - mHn(l)(kH-la) ],,/(k,“)

(30)
with J,(x) = xj,(x) and H{"(x) = xh{"(x) and a denotes the
position of the boundary between the i-th and (i + 1)-th layer.
Again, the comparison of the exact Green function for the
spherically layered system with that for the bulk propagation, eq
11, results in the excess polarizability that reads in general
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3

a¥(w) = —i%C—SF32
@ (31)

Note that the dielectric function of the inner sphere is
connected to the corresponding polarizability via the Clausius—
Mossotti relation, eq 16. Assuming a small radius of the cavity
and of the particle, the vector wave functions reduce to the first
order (n = 1), because all other terms vanish for a centered
particle. The reflection coeflicient for a purely electric field, eq
26, can be expand into a series expansion for small radii R and

Re

2i o)’ 1—e¢
7, ~ BY = —( £ —) R
32 1 3 \/_H c [ C 1+ 2¢
4 9eR¥ (e, — 1)/ (26 + 1)
(e, +2)(2e + 1) + 2(e, — 1)(1 — &)R*/RS

(32)
where R and R¢ denote the radii of the particle and the cavity,
respectively. In analogy to the virtual cavity model, it can be
considered as the electromagnetic scattering at a sphere with
radius R, and permittivity & embedded in a medium e.
Considering the electric fields through a dielectric sphere with
€, and radius R; embedded in a medium ¢, one finds an excess

polarizability (R, = R¢)

g — €

£S+2€_

* _ 3
a” = 4reyeR, Ogs

(33)
which is the Mie coefficient and is denoted a5, meaning that
the hard-sphere polarizability arises when the vacuum layer
vanishes. Using this result, one can define excess polarizabilities
in the three-layer model. One is the free-space polarizability for
the sphere surrounded by vacuum

36 T 1
a, = 4ze R
g+ 2 (34)
and the excess one for the cavity
1—¢

¢ 3
ac = 4neyeR

¢ O 42 (39)

Substituting eqs 34 and 35 in eq 33 the excess polarizability
for the three-layered system simplifies to

3e
2e + 1

*
Osyc

’ 1
*
=a¢ + a,
¢ ( ) 1+ ada,/(87° R )

aék + a:< = 0 (36)

which we denote by ag and the dressed polarizability . The
performed approximation agrees with the exact values with a
confidence of more than 99% for small molecules. Due to the
multiple reflections occurring here the quality of the series
expansion strongly depends on the radii R and Rc. It can be
imagined that, for larger objects, such as a fullerene, this
approximation might fail because of the increase of the multiple
reflection term. Table 2 summarizes the different effective
polarizability models.

We note the appearance of the prefactor € in the effective
polarizabilities of the sphere in eq 33 (and for the cavity in eq
35), suggesting that the effective polarizability of a molecule is
generally larger in a more polar medium. This contrasts with
the effective polarizability presented by Netz,** which does not
contain the prefactor e. This apparent contradiction arises

DOI: 10.1021/acs jpca.7b10159
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because of alternative possible definitions of what the effective
polarizability means. The effective polarizability may be thought
of as the linear relationship between an external electric field
and the dipole (embedded in a medium) induced in a molecule
by that field.”® The polarization field P, thought of as the field
generated by that induced dipole, has the same value regardless
of the definition of the induced dipole. In the picture we have
presented here, we have defined the effective polarizability such
that the polarization field corresponds to an induced dipole
located inside the medium with &. Netz, by contrast, adopted a
definition of the effective polarizability that generates the same
polarization field as if the corresponding induced dipole was
located in a vacuum, rather than in the medium. In other words,
the definition depends on whether we take the effective
polarizability to refer to an effective induced dipole in medium
or in a vacuum. The difference matters in the evaluation of the
van der Waals energy, whether the latter treats the medium
explicitly (cf. the appearance of & in the van der Waals
parameters eq S or eq 8) in section below or whether, as in
Netz’s approach, the van der Waals energy is evaluated as if the
field is in a vacuum. In our case (effective induced dipole in a
medium), ¢ in the effective polarizability cancels with that in
denominator of the van der Waals parameters. In Netz’s case
(effective induced dipole in a vacuum), the factors of & are
never present. The net van der Waals energy is the same either
way (the two definitions were incorrectly mixed in ref 19,
resulting in an underestimate of van der Waals parameters). We
suggest that the approach of effective-dipole-in-medium
provides a more natural or more general definition of the
effective polarizability, because in the three-layered system e
cannot be simply lifted out from eq 36.

Bl CAVITY RADIUS FOR GAS MOLECULES IN WATER

To apply the model of eq 36, we need to estimate R and R for
the molecules under investigation. The definition of the cavity

Table 3. Cavity Volume V. (in General Not Spherical),
Cavity Radii Rc (Spherical Approximation), and Hard-
Sphere Radii R of Four Greenhouse Gases CH,, CO,, N,O,
and O; and Other Atmospheric Gas Molecules

gas Ve (&%) Rc (A) R (A)
CH, 47.00 2239 1.655
co, 62.28 2459 1723
N,0 58.83 2.413 1.991
0, 58.79 2412 1.984
0, 43.84 2.187 1.300
N, 44.98 2,206 1.409
co 51.31 2305 1.966
NO, 58.33 2,406 1.986
H,S 5273 2326 2,030

radius R is under discussion in the_literature34 and is often
based on fits to solvation energies.h'36 More generally, it is
possible to compute the probability distribution p(Rc,T) of
cavities with radius R in a solvent at temperature T,””~** with
the cavity energy for a given radius equal to —kT In p(R,T).
The cavity radius for a given ion may be extracted from the ion-
solvent radial distribution function §(r), or more specifically the
ion-oxygen rdf in the case of water.””** The position of the first
peak in g(r) has been used to determine ion solvation
energies”’ and partial molar volumes.** It follows from the
temperature dependence of g(r) that, in general, the cavity
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radius can be expected to depend on temperature, as observed
in solvation radii determined from measurement of ion
conductivity.* Table 3 lists the cavity volumes V. and
corresponding radii Re = (3V/4m)'® that were obtained
from the cavity definition in the recently developed continuum
solvent model implemented in the GPAW package.”*® The
generally nonspherical cavity with a smooth boundary is
obtained from an effective repulsive potential that describes the
interaction between the continuum of the water solvent and the
solute molecule. This potential leads to an effective solvent
distribution function 0 < g < 1 that can be related to
measurable partial molar volumes at the limit of infinite dilution
through the compressibility equation.*” Using this connection
to fit the effective potential, only a single parameter is needed
to predict the volumes of various test molecules in water in
good agreement to experiment.” The cavity volume Vg is
obtained by an integration over the solvent excluded volume 1
-g
The hard-sphere radii R describe the effective spherical radius
for the volume occupied by the electron cloud of the
molecules,” defined as the volume within which the electron
density exceeds 0.001 electrons/bohr® (evaluated using
Gaussian™). The cavity radii R¢, by contrast, correspond to
the position at which the electron density of the solvent
molecules becomes significant (i.e., the position in space where
the dielectric medium starts to respond to an external
field). >+

The success of polarizable continuum models in the
description of solvent effects, ranging from ground-state to
excited-state properties, shows that considering the solvent as a
continuum is appropriate down to the atomic scale. Dynamic
effects arising from averaging over the solvent molecules’
movements can be conveniently included into the effective
continuum.

B APPLICATIONS: EFFECTIVE POLARIZABILITIES
FOR GAS MOLECULES IN WATER

The effective polarizabilities determine the strength and sign for
van der Waals potentials and Casimir—Polder potentials of gas
molecules dissolved in water near surfaces or in bulk water. The
free-space polarizabilities and the resulting effective polar-
izabilities for two different dissolved gas molecules (using the
models described in previous sections) are shown in Figure 2. It
is the expectation that the effective polarizability of a molecule
in a medium is less than its corresponding free-space
polarizability because it reflects the difference between the
dielectric function in a sphere and the surrounding media
(water). This is not observed in the simpler models a,;,, eq 19
and ap,y eq 24. The most sophisticated model ag, eq 36,
accounts for a small polarizable sphere (with a size modeled by
the hard-sphere radius R) inside a vacuum bubble (with radius
modeled by the cavity radius Rc). Here the presence of a
vacuum layer means that the effective polarizability may
become negative in some frequency regions. This is obviously
so, because a simple vacuum bubble is less polarizable than the
surrounding water. We observe that the closer the values for the
hard-sphere radius and cavity radius are, the less negative the
effective polarizability will be. To illustrate the impact of the
different results, we determine the expected van der Waals and
Casimir—Polder parameters for the different molecules.

Note that the Casimir—Polder (C;) parameters in Table 3
correspond to more attraction in free space than any of the C
parameters using the effective polarizability models in water.’

DOI: 10.1021/acs jpca.7b10159
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Figure 2. Polarizabilities (green) and effective polarizabilities for (a) N,O and (b) H,S. We compare the local-field-corrected model, following eq 19,
Q¢ (blue), the Onsager real cavity model, following eq 24, aq,,, (orange), the hard-sphere model oy, eq 33 (black), and Onsager’s real cavity model
for finite-size particles, eq 36, a, (red). In addition, the corresponding cavity modes ¢ = ¢/R¢ and the hard-sphere modes with respect to the

molecule radius wy = ¢/R are drawn as straight lines.

Table 4. C; Coefficients in 10™* J m® for the Dliferent Gases
in a Vacuum,” in a Medium without a Cavity,” with the
Local-Field Correctlon (Virtual Cavity), with Onsager’s
Real Cavity,” for the Real Cavity with Finite Size of the
Particles, and with the Hard-Sphere Cavity Model”

gas vacuum medium loc corr  Onsager finite size  hard sphere

CH, 2.69 2.01 2.56 2.36 —0.78 3.07
CO, 3.61 2.8 3.46 323 —0.96 571
N,O 3.81 2.94 3.65 34 —0.54 2.29
0O, 3.75 292 3.6 3.36 —0.58 225
0, 2.28 1.79 2.19 2.05 —-0.91 7.59
N, 2.38 1.85 2.28 213 -0.9 5.72
CcO 2.44 1.87 2.34 2.17 -1.29 0.1

NO, 3.56 2.76 3.41 3.18 -0.73 1.89
H,S 3.35 245 321 291 —-0.57 1.05

“Eq S with &(w) = 1 and the free-space polarizability Eq 5 with e(w)
= €, (@) and the free-space polarizability. Usmg eq S with e(w) =

€ ater(®), the polarizability follows from eq 19. Usmg eq S with e(w)
= €,uer(@) and the polarizability follows from eq 24. “Using eq S with
£() = &,ye(®) and the polarizability follows from eq 36.Eq 33.

Table 5. C4 Coefficients in 1077° J m® for the leferent Gases
in a Vacuum,” in a Medium without a Cav1ty, with the
Local-Field Correctlon (Virtual Cavity),” with Onsager’s
Real Cav1ty, for the Real Cavity with Finite Size of the
Particles,” and with the Hard-Sphere Cavity Model”

gas vacuum medium loc corr  Onsager finite size hard sphere
CH, 116.71 48.95 155.66 79.04 6.35 230.33
CO, 161.5 71.88 205.2 112.31 12.42 452.31
N,O 188.44 82.58 245.01 130.07 7 94.63
0O, 168.7 75.01 224.46 117.06 7.85 754

0, 58.02 26.61 72.78 40.88 11.16 678.26
N, 70.29 31.52 88.03 49.07 9.33 448.07
CoO 79.39 3447 104.2 54.56 16.33 7.84
NO, 155.27 68.87 203.93 107.68 8.95 59.28
H,S 215.27 85.37 311.73 141.94 15.25 92.75

“Eq 8 with (@) = 1 and the free-space polarizability. Eq 8 with &(w)
= €,e(®) and the free-space polarizability. “Using eq 8 with e(w) =
€,ater(®) and the polarizability follows from eq 19. USlng eq 8 with
&(®) = €ye:(®) and the polarizability follows from eq 24. Ug% eq 8
with £(@) = €, (@) and the polarizability follows from eq 36.7Eq 33.

‘water

The reason is partly the large repulsive contribution from the
zero-frequency Matsubara term due to the high value for the
dielectric constant of water. However, it is not only the zeroth
frequency that gives repulsion. Figure 2 shows the effective
polarizabilities for methane and nitrous oxide. On the basis of
the three-layer model, two subclasses of molecules can be
found: one with a purely negative effective polarizability, where
CH,, CO,, O0,, O3 N,, CO, and CO, belong, and one with also
positive contributions N,O and H,S. This is caused by the
optical density of water. In eq 36, af is always negative and the
dressed polarizability o can dominate it to generate a positive
result. This is a direct consequence of the ratio of the optical
densities for the considered materials. One needs to account for
many frequencies where the polarizability is either positive
(attractive) or negative (repulsive). A repulsive dispersion force
based on the same argumentation was found in previous works
by Elbaum and Schick.>" It turns out that the Onsager’s real
cavity model for finite-size particles even predicts repulsion
between a molecule in water and a perfect metal surface. This is
in contrast to the other models in water. We suggest to test the
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validity of the different effective polarizability models
experimentally. For instance, the different predicted Casimir—
Polder forces can be experimentally verified by balancing them
against gravity. On the basis of the C; coeflicients given in
Table 4, a solution of H,S can be brought horizontally toward a
metal surface. Due to the repulsive force, expected for the
finite-size and the hard-sphere model, the molecules will
stabilize at a certain distance due to the equilibrium of the
Casimir—Polder and the gravitational forces. The results for the
van der Waals (C4) parameters are no less interesting and differ
by an order of magnitude between the different models.
Interactions between equal molecules and between unequal
molecular pairs are given in Tables S and 6, respectively.

B IMPACT OF PARTICLE SIZE

The polarizabilities in this model vary strongly between
different molecules: although the polarizability for H,S is only
negative for high frequencies, the polarizability of CH, is also
negative for the first two Matsubara frequencies. One main
difference between H,S and CH, can be found in Table 3. H,S

DOI: 10.1021/acs jpca.7b10159
J. Phys. Chem. A 2017, 121, 9742-9751
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Table 6. C¢ Coefficients in 10”7 J m® for the Different Combinations of Interacting Particles Using the Three-Layer Model, Eq

36
CH, CO, N,O O, 0, N, CcO NO, H,S
CH, 6.35 7.65 6.4 6.4 5.85 5.99 7.84 6.77 7.33
CO, 12.4 8.28 9.51 11.3 10.6 13.7 104 4.39
N,O 7 7.13 6.36 6.42 8.09 741 6.91
0O, 7.85 8.09 7.76 9.94 8.32 527
0, 112 10.1 13.3 9.15 0.76
N, 9.33 122 8.69 2.0S
CcO 16.3 112 2.83
NO, 8.95 4.89
H,S 152
—40 —40
T,— 3 %10 T‘—UAQ %10
j?f e, R—1655A §§
S R R=1802A|| &*
= 6 R=1948A]| =/,
A R N - R=2093A|| ¥
< R=2239A
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Figure 3. Excess polarizability in the real cavity model for finite-size particles (36) for a toy-methane molecule with the polarizability given by eq 37.
The radius of the toy-methane sphere is varied between the original radius and the cavity radius, given in Table 3. One sees a transition from partially

negative to purely positive polarizabilities.

has a larger sphere radius compared to the cavity radius. Thus,
when the sphere radius of CH, is enlarged, the polarizability
should also become positive for the first two Matsubara
frequencies. To verify this, we calculate the leading order excess
polarizability eq 36 for different sphere radii. The permittivity
of the CH, sphere is fixed using eq 34 with the original sphere
radius R = 1.655 A, and the sphere radius R is then varied
between the original one and the cavity radius R = 2.239 A
(for R = R, one obtains the hard-sphere polarizability eq 33
with R — R¢). This means we use a radius-dependent
polarizability for the methane sphere, given by

aR) = 47780123&

&(R) +2 (37)
By varying the radius, one indeed sees a transition to positive
excess polarizabilities for small frequencies in Figure 3.
Furthermore, the excess polarizability becomes positive for all
frequencies for R > 2.033 A.

Bl CONCLUSIONS

We have demonstrated that accurate estimates of the effective
polarizability in a medium, and the related Casimir—Polder and
van der Waals potentials, may require a new theory. Such a
theory has been worked out in the present paper. However,
even more urgent is to test predictions of the real cavity model
for finite-size particles in a medium. We predict that molecules
may be either attracted or pushed away from a metal surface
depending on the effective polarizability model. Testing these
predictions should pave the way for improved modeling of van
der Waals interactions in a medium.
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When the effective polarizability of small particles is
calculated—a subject closely related to Casimir Polder and
van der Waals potentials—the presence of a dielectric
environment implies complications that are at present not
very well understood. In the present paper we have approached
this problem from a phenomenological viewpoint, making use
of various parameter-based models. In essence they consist of
(1) the virtual cavity model, implying the Clausius—Mossotti
relation; (2) the real cavity model, which in itself can be divided
into two subclasses, the first treating the particle as a point-like
object surrounded by a spherical cavity volume that denotes the
original Onsager cavity model, and the being a finite-size model
of the particle that is now assumed to be surrounded by an
annular cavity volume and is an extension of the Onsager
model. Its limit when the particle radius reaches the cavity
radius is the hard-sphere model. We calculated the interaction
in terms of scattering Green functions for a spherical three-layer
system.

The Green function technique was applied to several
greenhouse gas molecules as examples. Effective polarizabilities
for gas molecules in water were calculated. To illustrate the
sensitivity of the formalism with respect to the input
parameters, we analyzed also a real cavity model for finite-
size particles for a toy-methane model.

As a striking demonstration of the sensitivity of the
formalism, we found that molecules can be attracted to, or be
pushed away from, a metal surface depending on which
effective polarizability model is used. There is thus an obvious
need for testing these parameter-dependent theories against
experiments to improve the modeling of van der Waals
interactions in media.

DOI: 10.1021/acs jpca.7b10159
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A decisive model cannot be made on this theoretical level.
We note that only the finite-size and hard-sphere models are
able to produce repulsive forces, and such forces have indeed
been observed in some cases for the related Casimir force.”
Further, the finite-size model is the most detailed description as
it takes into account both the finite particle size and the
exclusion volume. To improve this model, the hard cavity
boundary has to be adapted to realistic cavity profiles and the
constraint to centered particles has to be discarded. On the
basis of the results, an experimental improvement is given by
measuring the expected van der Waals and Casimir—Polder
forces. However, deeper theoretical investigations are required
to transform the results to measurable spectra, such as refractive
indices or molecular extinctions. To describe realistic scenarios,
further investigations are required with respect to the
anisotropy of particles, which results in nonspherical cavities,
and to the cavity’s boundary as described by a continuous
profile.”
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Abstract — We address the question of the correct electromagnetic stress tensor in media and
its consequences for the Casimir force. The latter being due to the zero-point momentum of
the electromagnetic field, competing approaches based on the Abraham or Maxwell stress tensor
lead to different predictions. We consider the test scenario of two colloidal spherical particles
submerged in a dielectric medium and use three criteria to distinguish the two approaches: we
show that the Abraham stress tensor, and not the Maxwell stress tensor, leads to a Casimir force
that is form-equivalent to Casimir-Polder and van der Waals forces, obeys duality as a fundamental
symmetry and is consistent with microscopic many-body calculations. On this basis, we derive
general formulas for the dispersion forces on one and between two colloidal particles in arbitrary
liquid-media environments in terms of their dipole polarisabilities, allowing for more elaborate

theoretical descriptions and bridging the gap between microscopic and macroscopic accounts.
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The momentum of the electromagnetic field in media
has been subject to an old debate which has recently at-
tracted renewed interest [1-5]. This is due to the very
fundamental significance of these quantities in the context
of optical forces on particles in media, which prominently
feature in experimental schemes for measuring Casimir
forces [6] or the critical Casimir effect [7], where laser fields
in media are part of the experimental setup. In the for-
mer case, they are further also relevant to the predicted
Casimir force itself [8,9] as well as a hypothesised vacuum
Casimir momentum transfer [10,11]. Early works amongst
others go back to Abraham [12] and Minkowski [13]. For
the case of isotropic media (we also restrict our analysis to
isotropic media in this article), Abraham proposed a stress
tensor [14]

Ta(r,t) = D(r,t) @ E(r,t) + H(r, t) ® B(r, 1)
1

-5 [D(r,t) “E(r,t) + H(r, 1) - B(r,t)]L (1)

describing the flux of field momentum, which coincided
with the result by Minkowski.

Experiments on the electromagnetic stress tensor in me-
dia have mostly been performed by measuring the defor-
mation of dielectric fluids in the electromagnetic field, for
example when exposed to a laser beam [15,16], or inside
a capacitor [14,17,18]. In such stationary setups, the elec-
tromagnetic force density on charges is determined by the
stress tensor according to

f(r,t) =V - T(r,t). (2)
The question of the correct momentum of the electromag-
netic field in media is also important for the subject of dis-
persion forces where one calculates mean forces between
bodies in media in the presence of the zero-point electro-
magnetic field. The dispersion force on a body of volume
V based on eq. (2) reads

= ST‘AI' = . Ar .
F‘/Vd (i) /anA (T () 3)

Dzyaloshinskii, Lifshitz and Pitaevskii first came up with
a theory capable of describing dispersion forces between

24004-p1



210

4. Dispersion forces in media

Friedrich Anton Burger et al.

plates immersed in homogeneous media at mechanical
equilibrium [8], generalising the result by Lifshitz for
plates in vacuum [19]. Mechanical equilibrium implies that
forces on the medium itself are balanced by pressure gra-
dients within the medium. Dzyaloshinskii and co-workers
claimed that the Abraham-Minkowski stress tensor (1) is
the correct choice for determining the Casimir force (3) un-
der these assumptions (for simplicity, we will only refer to
it as Abraham stress tensor in the following).

In 2005, Raabe and Welsch proposed an alternative way
to derive dispersion forces between bodies in media [9].
Calculating the mean Lorentz force acting on the internal
charges and currents of a body of interest, they found the
dispersion force between bodies in media to be given by
eq. (3) together with the Maxwell stress tensor

Tu(r, t) = 2oE(r, ¢) @ E(r, t) + iB(r,t) 2 B(r, 1)
(4)

1 2 Lo
~3 [soE (r,t) + %B (r, t)] I

being of the same form as the Maxwell stress tensor for
the free-space electromagnetic field [20], but refering to
the macroscopic electromagnetic fields in this case. Their
result is in clear contradiction to that of Dzyaloshinskii,
Lifshitz and Pitaevskii. Note that works by Philbin based
on canonical quantisation [21] and by Brevik and Ellingsen
based on classical electrodynamics [22] favour the Abra-
ham stress tensor and that the correctness of calculat-
ing forces in macroscopic electrodynamics based on the
Lorentz force has been doubted by Robinson [23]. Raabe
and Welsch regard their theory to be in consensus with
microscopic dispersion forces such as van der Waals and
Casimir-Polder forces [24-26].

Pitaevskii has argued that the approach by Raabe and
Welsch is not complete due to its disregarding of the
medium pressure and is thus not able to describe equi-
librated media [27]. In contrast, Raabe and Welsch view
the latter point as an advantage of their theory, as their
not pressure-corrected dispersion forces may constitute a
framework for analysing Casimir-induced pressures within
the intervening medium. In a dilute-gas limit, such forces
would emerge as the well-known Casimir-Polder forces be-
tween the medium atoms and the bodies.

Casimir forces between bodies in media have been mea-
sured using a surface force apparatus [28-30] or atomic
force microscope [31-33], often with a special focus on re-
pulsive forces [34-36]. However, due to uncertainties in
the force measurements and the optical data required to
theoretically predict the forces, it is unclear whether cur-
rent experiments are able to unambiguously discriminate
between the two models.

In this article, we instead present a theoretical analysis
where we investigate the question of the correct approach
in a pragmatic way. We analyse the dispersion interaction
between two small magneto-dielectric spheres in a homo-
geneous magneto-dielectric medium for the two theories

and check which of the two approaches is on the same
footing as the microscopic dispersion forces. Small spheres
are well studied [37-39] and are particularly well suited for
comparing macroscopic to microscopic dispersion forces:
small spheres are only dipole-polarisable and are thus di-
rectly comparable to microscopic dipole-polarisable ob-
jects. Furthermore, the assumption of smallness facilitates
the calculations and leads to more transparent results.
The unique result for the dispersion force on small spher-
ical particles in an arbitrary environment that emerges
from our calculation may serve as a basis for studies in
colloid physics [40].
We employ three criteria:

i) the correspondence to the Casimir-Polder and van der
Waals force,

ii) the behaviour under duality transformation and

iii) the consistency with the microscopic theory based on
summing van der Waals and Axilrod-Teller interac-
tions.

Finally, we also analyse whether the approach by
Raabe and Welsch leads to forces on a medium in pres-
ence of a single sphere. This could indicate that their
force, which unlike the force by Dzyaloshinskii, Lifshitz
and Pitaevskii does not include balancing forces, is not
buoyancy-corrected (the notion of buoyancy can be under-
stood here in analogy to the case of a body inside water
in the gravitational field).

Employing the quantisation scheme introduced in [41],
one finds for the zero-point expectation values of the
electric-field stress tensor components

A 0o 2

dww—ImG(r, r,w)

(E(r) @ B(r)) = -

0T Jo

)
r'=r

(D(r) ® E(r)) =

)

c? r'=r

(5)

oo 2
E/ dww—lm{a(r,w)G(nr’,w)}
T Jo

and analogous results for the magnetic fields. G(r,r’,w)
denotes the electromagnetic Green’s tensor which de-
scribes the propagation of the electromagnetic field from
a source point r’ to a field point r. It is the solution to
the differential equation

UJ2
V x ﬁv X 7(}75(1"0\)) G(I‘,I‘/7UJ) — 5(1‘ - r/).
(6)

We subtract the bulk part GO of the Green’s tensor,
which is connected to the position-independent Lamb
shift [42] and does not contribute to forces between bod-
ies, and only use the scattering part GW in the following:
G > G-G9 =W Also performing a Wick rota-
tion on the complex frequency plane [43], eq. (3) with the

24004-p2



[S16] Zero-point electromagnetic stress tensor for studying Casimir forces

211

Zero-point electromagnetic stress tensor for studying Casimir forces on colloidal particles in media

Abraham and the Maxwell stress tensors becomes

h [~ 2
Fiagm = —— /O dg / da - {ig[e(r,ié)lG“)(r,r,ié)
1
+ mv X G(l)(l'7 I‘l,if) X %

- 1]Itr <§2[E(I‘ i6)]GW (r, r,if)
2 C2 ) 9 )

r’'=r

o

respectively. The results for the two stress tensors only
differ via the factors of € and 1/p in square brackets which
only occur when using the Abraham stress tensor.

To calculate the dispersion force between two small
spheres in a homogeneous medium, one has to find the
scattering Green’s tensor G(l)(R, R, i) for this geometry,
where R denotes positions on the surface of the sphere we
are integrating over. To this end, we use the method of
Born expansion to obtain the Green’s tensor of a small
sphere with the position arguments on its surface in pres-
ence of other background bodies and the medium. Within
this method, one has to sum over all possible propagations
of (virtual) photons from a source point to a field point
to obtain the Green’s tensor [44]. The Born expansion
for an electric body (volume V', permittivity eg) in a ho-
mogeneous dielectric (¢) reads (for brevity, the frequency
arguments are omitted in the following)

, > £2k
GV (r,r') = Z(_l)ch’“ (As)k/v d*sy.. /V d?sy,

k=1
x GO(r,51) - GO(s1,52) ... GO (s, ),

! Chp—
+mVXG1(r,r,lf)X$

(8)

with Ae = eg — €. An analogous formula can be given
for magnetic bodies. As the sphere is small compared to
the distance to other bodies, the contribution from paths
involving multiple scattering between the bodies and the
small sphere are negligible. Three different classes of pho-
ton paths remain. A representative of each class and also
an example of a negligible path are depicted in fig. 1 for
one background body. Summing all paths from the three
classes, one obtains the Green’s tensor

GY(R,R) = GP(R,R)
a3

c2eg

+GOR, )-GOy, R

[G“’)(R, )-GO, R)

— 108 [GOR,xy) x V- 7,

x GW(r,R)

+GO®R, 1) x Vp -V x G<0)(r1,R)],
9)

-

~

not considered

Fig. 1: For a small sphere, all relevant paths contributing to
the Green’s tensor either only involve scattering events in the
background bodies (I), or involve scattering events in the back-
ground bodies and subsequently in the small sphere (II), or the
other way round (III).

The first term, the Green’s tensor for the background bod-
ies, arises from class (I), the term in the second line arises
from class (II) and the term in the third line arises from
class (III). The remaining terms come from the analogue
magnetic contribution. r; denotes the centre of the sphere.
aj and p] are the electric and magnetic excess dipole
polarisabilities of the sphere [45], given by

AR} —p

Mot pn + 24

g1 — ¢
of = 4megeR3
1+ 2¢

and [ =

(10)

Here, £1 and p; denote the sphere’s permittivity and per-
meability, while € and p are the respective properties of the
medium. Equation (9) generalises the result of Sambale
et al. [37) and can be used to study light-scattering phe-
nomena involving small spheres, such as optical forces [6],
Forster energy transfer [46] or solar cells [47].

A second small sphere with centre at ry is now in-
troduced by specifying the background Green’s tensor in
eq. (9) to be the one of a second small sphere using the
result of Sambale et al. [37]

36’ G G /

v (r,rs) - (ra,1")

_MQ/BSG(O)(I',I'Q) X %2 . VQ X G(O)(I‘27I‘l).
(11)

Ggi (r,v') =

Inserting eq. (9) into eq. (7), evaluating the surface in-
tegrals using leading-order Taylor expansions in R — ry,
specifying the background Green’s tensor to be given by
(11), and by explicitly inserting the bulk Green’s tensor
in the non-retarded limit [41], one obtains the dispersion
forces between two small spheres in the non-retarded limit,
where the spheres are close compared to the wavelengths
of the relevant transition frequencies. The corresponding
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dispersion potentials read

Co.a .
Uapy(r12) = 6'6[M] with
12
3h > a;{as 2 2[4+1] g* p*
(12)
and 712 = ||r; —r2||. The results for the two stress tensors

only differ in the exponents of the medium response func-
tions € and pu, the additional powers in the square brackets
only occur when using the Maxwell stress tensor.

Having found the force between two small spheres in a
homogeneous medium on the basis of both stress tensors,
we can now analyse the results by employing three criteria.

i) Correspondence criterion: The only properties of the
two spheres entering eq. (12) are the excess dipole polaris-
abilities. By replacing these excess dipole polarisabilities
by molecular ones, one should obtain the van der Waals
potential of two molecules in a homogeneous medium. Ex-
plicitly inserting the bulk Green’s tensor of a homogeneous
medium in the non-retarded limit in ref. [48], one sees that
this is the case for the Abraham potential, but not for the
Maxwell potential.

One may wonder whether it is possible to redefine the
excess polarisabilities (10) in such a way that the Maxwell
potential obeys the correspondence criterion. However,
this will lead to inconsistencies when requiring a formal
correspondence to also hold for the Casimir-Polder po-
tential. This can be seen by analysing the force on a
small sphere in a medium in front of a perfectly reflecting
surface, obtained by specifying the background Green’s
tensor in (9) to represent this system. The resulting Cs
coefficients read

h ° o B
Cunin = ~1gpz | (EOTM - ﬂou”*”ﬁl> : (13)

the Abraham result again fits the corresponding Casimir-
Polder result. It is not possible to rescale the excess polar-
isabilities (10) in such a way that the Maxwell approach
holds for egs. (12) and (13) simultaneously, the former
would demand the scaling factor 1/4/z for the electric ex-
cess polarisability whereas the latter would demand the
factor 1/e.

ii) Duality criterion: The macroscopic Maxwell equa-
tions are symmetric with respect to a duality transfor-
mation which exchanges electric and magnetic fields [41].
This symmetry is also obeyed by the van der Waals force
and the Casimir-Polder force: the electric and magnetic
contributions transform into each other and the total
forces are invariant. A macroscopic dispersion potential
which also incorporates this symmetry is thus favourable.
Exchanging the response functions € and p for the medium
and the two spheres in eq. (12) together with eq. (10), one
sees that the Abraham potential obeys duality invariance,
while the Maxwell potential does not.

ili) Microscopic criterion: Finally, we investigate which
of the two potentials is consistent with the microscopic
theory obtained by summing all microscopic potentials
which are involved in the interaction between the two
spheres. This analysis is restricted to the electric parts
of the potentials. We take into account the two-particle
van der Waals potentials and the three-particle Axilrod-
Teller potentials.

The electric van der Waals potential between two
molecules with polarisabilities o and o’ is given by

3h o 1
(e x) =~ g5 [ dgan = (40

The contribution of the van der Waals potentials to the
potential between two spheres in a medium can be ob-
tained by identifying the part of the energy arising from
all van der Waals interactions which depends on the fi-
nite distance of the spheres. This method was found by
Hamaker [38]. It yields Upam (112) = Cé tam /7Sy with

ER3RS [
- ! 2/ df[ﬁlaﬂhoéz
0

C6,Ham = 3

— noana — nampas + 77202] . (1p)

where a1, as and « are the polarisabilities of the molecules
in the two spheres and the medium and 7y, 72 and 7 the
corresponding molecular number densities.

The Axilrod-Teller potential between three molecules
with polarisabilities «, o/ and o is given by [49]

3h o "
= 6amic3 /0 déaa’ o
1+ 3cosfcost cos”
e =PI — P — 2]

Uat(r,r’,r")

(16)

where the angles are the ones of the triangle formed by
the three molecules. The calculation of the three-particle
contribution to the potential between two spheres in a
medium for the case when two molecules are in sepa-
rate spheres and the third one is in the medium yields
ng(rlg) = Ceygp/r% with

2hR3R3

17
el (17

o0

Co,3p = /0 d§ marmazna.
The dispersion potential between two spheres, given by
eq. (12) for the two approaches, should coincide with the
sum of all microscopic potentials between the involved
molecules. This identification is obtained by means of the
Clausius-Mossotti law [50], which links the macroscopic
susceptibility x to the molecular polarisability «. For di-
lute bodies, it reads na/ep = x. Hence, an expansion
of the Cg coefficient in eq. (12) in orders of x1, x2 and
x should yield the microscopic contributions in this case.
Up to the third order in x1, x2 and x and by only taking
into account the term proportional to x1 x2 x in the third
order as depicted in fig. 2, one obtains

Cé,apnv) = C6,Ham + [5/2]C6 3p- (18)
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\

Fig. 2: For comparing Cg a[n) With Cs nam and Cp 3p, all terms
of quadratic order in x1, x2 and Y, representing all possi-
ble van der Waals interactions between molecules in the two
spheres and the medium, are taken into account. In the third
order, only the term proportional to x1 x2 x is connected to
Usp, given by eq. (17). Other contributions, such as the de-
picted term which is proportional to x2, are neglected for
this comparison.

Both, the Abraham and the Maxwell potential, yield the
correct two-particle Hamaker contribution, while only the
Abraham potential also comes with the correct three-
particle contribution whereas the Maxwell potential over-
estimates it by a factor of 5/2.

It could still be possible that the Maxwell potential be-
tween two small spheres in a medium is not representing
the full potential but excluding buoyancy corrections com-
ing from the surrounding medium. However, this is not
the case: the Maxwell potential, like the Abraham po-
tential, vanishes when replacing one of the spheres by a
spherical volume of the medium since the corresponding
excess polarisabilities in (12) vanish in both cases.

The preceding analysis leads us to the conclusion that
the approach by Dzyaloshinskii, Lifshitz and Pitaevskii
on the basis of the Abraham stress tensor is confirmed
for the geometry of two small spheres in a homogeneous
medium. The force is of the same structure as the mi-
croscopic van der Waals and Casimir-Polder forces and is
symmetric under exchange of electric and magnetic contri-
butions. Furthermore, we have shown that it can at least
up to three-particle interactions be viewed as the sum of
all microscopic dispersion forces between the contributing
molecules.

Our result confirms the use of the theory by Dzyaloshin-
skii, Lifshitz and Pitaevskii in studies of the melting of
bodies [51] and the wetting of surfaces [52]. Here, one is in-
terested in the dispersion interaction of a body, coated by
a layer of melted material or liquid, with the surrounding
air. Another recently considered application is the forma-
tion of ice crystals under water [53].

The approach by Raabe and Welsch on the basis of the
Maxwell stress tensor on the other hand is not fulfilling
these criteria. Furthermore, contrary to their findings for
a planar geometry, their approach does not lead to forces
on an initially homogeneous medium in the presence of
a small sphere. By definition, this is also the case for
the theory based on the Abraham stress tensor and it is
thus not possible to calculate such forces on the medium

using the present theory. The calculation of many-body
dispersion forces in a medium as induced by a nearby solid
body remains an important open question which could be
relevant, inter alia, to the atmosphere capture by small
asteroids.

We conclude this article by presenting a more general
form of the preceeding analysis of dispersion forces on col-
loidal particles. Having established eq. (1) as the correct
stress tensor, a combination of egs. (7) and (9) leads to
the dispersion potential for a colloid in a homogeneous
medium in the presence of other bodies represented by G
reading

mn):fi/w@Fiﬁqu@hn)
0

2 c2gp

B eV x GOy, ) x ¥

(19)

ri=ry |’

Further specifying G to comprise another small sphere
using [37], the dispersion potential of two colloids in a
homogeneous medium, possibly in the presence of other
bodies, is given by

h o'} 401*04*
U(ry,re) = _%/o d{{fcég 2 tr G(ry,ra) - G(ro,17)

+u(2)ﬁikﬁg tr Vl XG(I‘l, I‘Q) X%Q . VQ XG(I‘Q, I‘1)>< %1 .
(20)

These formulas have been derived neglecting retardation.
Note that there are definitions of the excess dipole polar-
isabilities of small spherical particles alternative to ours.
Netz and Sambale introduce the electric excess polaris-
ability without the prefactor e [37,54], relating the polar-
isation field of the particle to a dipole in vacuum. The
definition in eq. (10) on the other hand relates the polar-
isation field of the particle to a dipole in a medium. Our
analysis shows that only this way a formal correspondence
to microscopic dispersion forces can be established.

Colloids described by eqs. (19) and (20) do not nec-
essarily have to be represented by homogeneous spheres
using eq. (10). One can also apply other colloid models
and use the according excess polarisabilities following the
convention of the present paper as discussed above. In
this framework, one can describe the interaction of col-
loids without having to make the additive approximations
one encounters in microscopic calculations.
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On the basis of macroscopic quantum electrodynamics and point-scattering techniques, we derive a closed
expression for the Casimir-Polder force between a ground-state atom and a small magnetodielectric sphere in
an arbitrary environment. To allow for the presence of both bodies and media, local-field corrections are taken
into account. Our results are compared with the known van der Waals force between two ground-state atoms.
To continuously interpolate between the two extreme cases of a single atom and a macroscopic sphere, we also
derive the force between an atom and a sphere of variable radius that is embedded in an Onsager local-field

cavity. Numerical examples illustrate the theory.

DOI: 10.1103/PhysRevA.81.012509

I. INTRODUCTION

Van der Waals (vdW) dispersion forces are effective
electromagnetic forces that arise between polarizable objects
as a consequence of correlated quantum fluctuations [1-10].
Postulated as early as 1873 to account for deviations from
the ideal gas law [11], they were theoretically understood
only much later in 1930, when London derived them from
the electrostatic Coulomb interaction of charge fluctua-
tions [12]. London found that two atoms of polarizabilities
as(w) and ap(w) at a distance rap are subject to a vdW
potential

3h o0 ) )
U(rap) = / dsora(i8)ap(is). )]

1673e2r85 Jo
Important progress was made in 1948 by Casimir and Polder,
who included fluctuations of the transverse electromagnetic
field and obtained a full quantum electrodynamic description
of dispersion forces [13]. Their result reduces to the London
formula in the electrostatic limit but is given by

23nhcos(0)oep(0)

U(rap) = —
(raz) 64m3elrl,

@)
for distances much larger than the relevant atomic transition
wavelengths.

Casimir arrived at his famous results while studying the
properties of colloidal solutions [14]. These results illustrate
the importance of dispersion forces to colloid science, which
deals with the (inter alia vdW) interactions between small
clusters of particles in free space [15] and, more often, with
the different forces in colloidal suspensions. For example,
(attractive) dispersion forces between spherical micro- and
macro-objects embedded in a liquid [16] usually diminish the
stability of such suspensions and may even cause clustering
or flocculation [17]. The introduction of small amounts of
highly charged nanoparticles gives rise to competing repulsive
forces, thus balancing the stability of the suspension [18].
Stable mechanical suspensions might also be created with

1050-2947/2010/81(1)/012509(9)

012509-1

PACS number(s): 31.30.jh, 12.20.—m, 34.20.—b, 42.50.Wk

fluid-separated macro-objects such as eccentric cylinders
by means of repulsive dispersion forces [19]. Note that in
addition to dispersion and electrostatic forces, critical Casimir
forces due to concentration fluctuations [20], chemical effects
such as hydration and solvation, hydrophobic forces, and
steric repulsion [21,22] and depletion [23] also influence the
interaction of the colloidal particles.

Dispersion forces play a similar role in biology, where
they contribute to the organization of molecules [24-26], cell
adhesion [24,25,27,28], and the interaction of molecules with
cell membranes [25,27]. They are also of interest in atomic
force microscopy [29].

A large variety of models has been used in the past to
study vdW forces between small polarizable objects [16].
Interacting atoms have been studied on a microscopic level
as neutral arrangements of point charges [12,13], as sketched
in Fig. 1(i). Larger systems can be treated by considering
collections of such polarizable point objects [Fig. 1(ii)],
in which a pairwise-sum method is often employed [30].
Investigations of the polarizability of N-atom nanoclusters
of various sizes and shapes have shown that an additive
relation, oyse = Ny, does not hold in general but is valid
for spherical clusters [31]. Microscopic approaches have
to be contrasted with macroscopic descriptions in which
continuous objects of polarizable matter are characterized by
their permittivity [Fig. 1(iii)], and an intervening medium
can be accounted for in the same spirit. One commonly
distinguishes the additive Hamaker method [32] from the
more elaborate Lifshitz theory, which includes many-body
interactions [33,34].

A hybrid approach consists of a microscopic
treatment of interacting atoms, combined with a
macroscopic description of an intervening medium. To
reconcile the microscopic and macroscopic pictures,
local-field effects are included by assuming the atoms to be
surrounded by small free-space cavities, an approach known
as the Onsager real-cavity model [35]; see Fig. 1(iv). As found
by studying the behavior of the classical Green tensor G for

©2010 The American Physical Society
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FIG. 1. Models of polarizable systems: (i) neutral arrangement
of point charges (atom), (ii) cluster of atoms, (iii) dielectric sphere
inside medium, (iv) atom in empty cavity surrounded by medium
(Onsager real-cavity model), and (v) dielectric sphere in empty cavity
surrounded by medium.

the electromagnetic field in conjunction with the real-cavity
model [36], the vdW potential of two atoms at positions r4
and rp in an arbitrary environment can be given as [37]

hu(z)

U(ra,rp) = — o

/0 dt E*aa(i&)ap(ié)

X{ 3e4(i§) } [ 3e5(iE) r
2e4(i&)+ 1] [2epGE)+1

X Tt[G(ra, rp, i&) - G(rp, r4,i6)],  (3)

where local-field correction factors explicitly appear.

To compare the microscopic, local-field corrected approach
of Fig. 1(iv) with the macroscopic one shown in Fig. 1(iii), in
this work we study the Casimir-Polder (CP) interaction of a
ground-state atom with a magnetodielectric sphere of variable
size in the presence of arbitrary magnetoelectric background
media on basis of macroscopic quantum electrodynamics
(QED). Our considerations are related to free-space results
obtained earlier for the interaction of an atom with curved
surfaces [38] and dielectric [39] and perfectly conducting
spheres [40]; compare with the nonretarded vdW potential of
a ground-state atom inside and outside a dielectric or metallic
spherical shell as calculated in Ref. [41]. In addition, we
consider the interaction of an atom with a magnetodielectric
sphere inside an Onsager cavity [Fig. 1(v)]. By changing the
radius of the sphere, this construction allows us to study
the transition between a microscopic pointlike object and a
macroscopic one.

The article is organized as follows. In Sec. II, we recall
the basic equations concerning ground-state CP potentials. In
Sec. IT A, we show how the Green tensors of a magnetodielec-
tric full sphere or a sphere within an Onsager cavity can be
written as functions of the Green tensors of the environment
without the sphere. The results are then used to study the
atom-sphere potentials, which are compared with the vdW
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interaction between two ground-state atoms (Sec. IIB). As
an example, we evaluate the interaction between an atom and
molecules of different sizes in a bulk medium. A summary is
given in Sec. III.

II. ATOM-SPHERE INTERACTION

In order to derive an expression for the CP interaction
between a (ground-state) atom and a magnetodielectric sphere
in the presence of an arbitrary medium environment, we
start from the familiar formulas for the electric (U,) and
magnetic (U,,) CP potentials of a ground-state atom of
polarizability

L2 wkoldok]?
=lim— ) ———2% 4
p(@) = lim — ij o i &

(where wy are transition frequencies and dgy are electric dipole
matrix elements) and magnetizability

2 2
Ba() = lim = 3" olma )

_ 2
e—03h W —w iwe

(where mg; are magnetic dipole matrix elements) that are
placed at an arbitrary position r, within an environment
of locally and linearly responding magnetoelectric bodies
or media [characterized by their permittivity e(rs, w) and
permeability u(ra, )] [7,37,42]:

h o0 3eali 2
Uutep) = 0 /0 dE Eaa(i€) [%}
x TrtG(ra, 14, i€) (6)
and
_hpo [ . 3 :
Uy(ry) = Z/o d&Ba(i&) {m}
X TH[V x GO (x4, 14, i8) x V'], %)

with e4(w) = e(ra, w), pa(w) = u(rs, w). These expressions
explicitly allow for the atom to be embedded in a medium
environment where the relevant local-field corrections have
been accounted for via the Onsager real-cavity model [35,36].
The scattering Green tensor G(l)(r, r’, ) fully accounts for the
position, size, and shape of all bodies and media as well as their
magnetoelectric properties and is defined by the differential
equation

V x

?
V x ——e&(r, 0)| Gr,r', 0) = §(r — 1),
c

(®)

with the condition G(r, r’, ) — 0 for |r — r’| — oc. In this
work, the body interacting with the atom is a magnetodielectric
sphere whose Green tensor we analyze in the following.

u(r, o)

A. Decomposition of the Green tensor

Two methods may be envisaged to study the CP potential
of an atom in the presence of a magnetodielectric sphere and
an arbitrary environment of additional bodies and media. First,
one could work with the Green tensor of the combined sphere-
environment system [Fig. 2(i)] directly, which may be very
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r e(r,w), u(r,w)
°
GV (r,r,w) @

&(r,w), u(r,w)

Gm(r,r,w) (ii)

FIG. 2. (i) Green tensor of the combined system of magnetodi-
electric sphere and arbitrary background environment and (ii) Green
tensor of the same system without the sphere.

complicated; even if an analytical expression of the Green
tensor is known, the resulting expressions for the potentials
are hard to evaluate and do not allow for an explicit discussion
of the influence of the sphere. In this work, we therefore follow
a second, alternative approach: We show how the Green tensor
of the full arrangement including the sphere, G(SI)(r, r, ), can
be related to the Green tensor without the sphere [Fig. 2(ii)];
G(l)(r, r, ) describes only the background environment. To
establish such a relation, we use methods similar to those
developed for studying local-field corrections [36,37,42]. The
crucial assumption for using these point-scattering techniques
is that the effective radius of the sphere is small compared with
the relevant wavelengths of the electromagnetic field.

1. Full sphere

Assuming that the functions &(r, w) and u(r, w) describe
the magnetoelectric properties of the environment, the in-
troduction of a homogeneous magnetodielectric sphere with
radius R centered at rg, permittivity e5(w), and permeability
s(w) leads to the new functions

Ss(rs CU), ,U,S(l', C())

{eS(w), )

for [r — rg| < R,

®

e(r, w), u(r, w) elsewhere.

The Green tensor G(Sl)(r, r, ) of sphere plus environment is
hence the solution to the differential equation (8) with e5(r, ®)
and ug(r, ) in place of e(r, w) and u(r, w).
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As discussed in Refs. [36,37], for a small sphere it is
sufficient to consider first the special case of a homogeneous,
bulk environment, which is then generalized to arbitrary
environments at the end of the section. The required scattering
Green tensor of the sphere with center rg = 0 inside a bulk
medium of permittivity £(w) and permeability p(w) can be
written in the form [43]

GV(r, ', ) = % >3 Zn}z — 810)

p==% I=1 m=0
« 2041 (I — m)!
I+ 1)+ m)!
X [BIMMImp(k7 I')M]mp(k, I'/)

+ B Njyp(k, DNy (k, Y], (10)

where k = /eptw/c, Miyp, Nipp denote even (+) and odd (—)
spherical vector wave functions with total angular momentum
[ and z projection m, and B,M‘N are the associated coefficients
for reflection at the surface of the sphere. Explicit forms for
M;,.p, Nip, and BlM’N can be found in Refs. [43,44].

In the limit of a small sphere with |ksR|, |kR| < 1 (ks =

JEssw/c), we have

R 2041
B =0 (‘”—) : (1)
C

and so the dominant contribution to the Green tensor is due
to the / = 1 terms. The respective vector wave functions are
given by

m ) m sin m¢
M1k, ¥) = F——h, (kr)P/"(cos 8) e
sin 6 cos me

oy, dP"(cos®) [cosme
hy (kr) 7 sinm € (12)

and
h(ll)(kr) cosme
Nlmi(r) =2 le(COSG) { . }er
kr sinm¢

1 d[krh{Pkr)] AP (cos 6) {cosmdb}
ke dkr) do ¢

sinme

1 d[krh{"k i
;F_Lplm(cosg)iw sinme €
sin @ kr d(kr) cosme

13)

where the P|"(x) are associated Legendre polynomials and
h(ll)(x) is a spherical Hankel function of the first kind.
The [ =1 reflection coefficients in the small-sphere limit
lksR|, |kR| <« 1 are given by

pv = 2 R Tas—n (14)
PER\VY ) wsow
2i wR 385—8

BY == Jep— ) 15

! 3( MC>83+28 {13)
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We can further evaluate the p and m sums for / = 1 using
Plo(cos 6) = cosf and Pl1 (cos0) = — sin 6 to obtain

> Z(z mo) ) T, (M () = B[l — ee/]

p=£1m=0 )
(16)
and
m)!
> Z(z—amw i N (O (1)
p=%1m=0 ( )
_ h/2 |+ 4/12 _ h/2 (17)
T kr? ke O

with the notation & = A" (kr) = —i(1 — ikr)e’*" /(kr)* and
h = d[krh(ll)(kr)]/d(kr). By substituting these expressions
into Eq. (10), the (equal-position) scattering Green tensor of a
small sphere becomes
[,L€2ikr

A7z k276
+ [3—6ikr —(kr)? =2i(kr)} —(kr)*le.e,}

2ikr
g —& 3 ue . 2
R 1—2ikr—(k

X£S—|—2£ +4r4[ ikr=(kr)’]
s TR p3

+2u

GY(r,r, w) = ———{[1—2ikr —3(kr)*+2i(kr)*+(kr)*l

(18)

x (- erer)

Next, we relate our result to the Green tensor of the bulk
medium without the sphere (cf., e.g., Ref. [44]),

, et . 5
G(r.r',w) = iy (L= ke = o))l
—[3 = 3ikp — (kp)*le e, ). (19)

which is valid for r #r/, where p =r—1r/, p = |p|, and
e, = p/p. The Green tensor G(SI)(r, r, w) of the small sphere
describes the propagation of the electric field from a source at
r to the sphere, its scattering from the sphere (a polarizable and
magnetizable point scatterer) at rg = 0, and its return to r. It is
therefore natural to try and compose G(S]) from products of G,
which describes the propagation of the electric field through

pail
the bulk medium to an electric scatterer, and G x V, which
describes its propagation to a magnetic scatterer. Indeed, from
Eq. (19), we find that

G, 0,0)-GO,r, »)

= ﬂ{u 2ikr —3(kr )2 +2i (kr)} + ()l
= 1672576 —2ikr — r 1(kr r
+[3=6ikr —(kr)*>=2i(kr)* = (kr)*1 e,e.} (20)

and

G(r,rg, w) x Vg - Vg x G(rg, I, ®)|rs=0

M2621ki
= el =2ikr =kl —ee,). QD)
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A comparison with Eq. (18) shows that

G(Sl)(r, r,w) = 47eR’ ;S+28 w—z r,0,w) -G, r, w)
47 R3 — <
- MG(L rs,w)x Vg
woops+2u
-V x G(rg, r, ®)|re—o- 22)

Let us next consider a general background environment,
which can involve different media or bodies, as sketched
in Fig. 2. With the permittivity e(r, w) and permeability
u(r, w) of the environment now being functions of position,
it is useful to introduce a notation for their values at the
position of the sphere, ep(w) = e(rs, w), po(w) = u(rs, w).
In addition to the small-sphere limit |ksR| < 1, we assume
the effective sphere radius ,/ggitsR to be much smaller than
the distance from the sphere to any of the environment bodies.
As demonstrated in Refs. [36,37], multiple scattering between
sphere and environment can then be safely neglected to within
a leading order of kgR, and a result of the type (22) can be
generalized from the bulk case to an arbitrary environment by
adding the scattering Green tensor and replacing & — &g and
u = Ue. This can be formally proven by treating both the
sphere and the environment bodies using a Born expansion
of the Green tensor [45] and discarding those terms in the
Born series that involve multiple scattering between atom and
environment. We obtain

2
GY(r,r,0) = GV(r,r, 0) + S—QQE%G(F, rs, ®)
&0 C
-G(rs, T, @) — “LBIG(r, 15, ) x Vg
Mo
- Vs x G(rg, r, o), (23)

where we have introduced the polarizability

—fo (24)

ah = dnegR3 S5 50
5 0 es + 20

and the magnetizability

47 R® s — po
Ho us+ 2o

*

N

(25)

of the sphere [46]. Note that o is an excess or effective
polarizability [47,48] and describes the electric response of
the sphere with respect to that of the surrounding medium.
It can take positive or negative values, depending on whether
the sphere’s permittivity is larger or smaller than that of the
medium.

The relation (23) for G(SI) can be used to calculate the electric
CP potential (6). In order to find the magnetic CP potential,
Eq. (7), we also require the analogous relation for the magnetic
Greentensor V x G(SI) X ‘W which can be obtained by duality
arguments. An electric/magnetic duality transformation [-]®
corresponds to a global exchange of electric and magnetic
properties, ® = w and u® = &. As shown in Refs. [49,50],
this results in the following changes to the Green tensor
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forr # r'":
2 / (_/
w—ZG@)(r,r/,w):—V x G(r,r,w) x V ’ 26)
c u(r, 0)u(r', )
2
V x Ger,r, w) x V' = —e(r, a))w—zG(r, r, we(, w),
C
27
Gr, v, w)x V'
X
V x GOr, v, 0) = —&(r, ) VXY (g
u(r', )
GO r.wyx ¥ = Y XOETO L 29
u(r, o)

In addition, Eqs. (24) and (25) imply that a;® = B3 /c* and

*®
Bs = c?a}. By applying the duality transformation to both
sides of Eq. (23), one obtains the required relation
VxG e, ¥, w0)x Vpey
-
= VxGO(r, 1, 0)x Vo= 22 BV X G(r, T5, ) X Vs
Mo
2
< € 1]
VsxGrs, ', 0)x Voo + —a—
o C

XV x G(r, rs, ®) - G(rs, ', @)X V' |y (30)

2. Sphere inside an Onsager cavity

Next, we consider a homogeneous magnetodielectric
sphere with radius R centered around rg, with permittivity
es(w) and permeability ws(w), which is not in immediate
contact with the surrounding medium but is placed inside a
small spherical cavity of radius R, also centered around rg
[Fig. 1(v)]. This enables us to compare and interpolate between
the homogeneous sphere placed inside a medium (as consid-
ered in the previous section) and a local-field-corrected atom
(i.e., a pointlike polarizable system surrounded by a cavity).
The scattering Green tensor G(sllc of the sphere-plus-cavity
system in a homogeneous bulk medium is again given by an
equation of the form (10), in which the reflection coefficients
take a more complex form. In particular, in the limit of a
small effective cavity and sphere sizes |ksR|, |kR¢c| < 1, one
has [44]

2i } 1—-
B =5 (vl R
N IR (us—1)/Qu+1) ]
(s +2Qu+1) + 2(us— (1= )R /RE |

(€2))
2i o\’ 1—¢
B = ?(‘/ﬁ?) {R21+28
9eR3(eg—1)/(2e+1)
(es+2)(2e+1) +2(es—1)(1—&)R3/RE

} . (32

We can then follow exactly the same steps as in Sec. I Al.
We again arrive at Egs. (23) and (30) with S 4+ C in place
of S. A comparison of Egs. (14) and (15) with Egs. (31)
and (32) shows that the relevant excess polarizability and
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magnetizability of the sphere-plus-cavity system are given by

. 1—8'@
o{S+C = 47'[8() {Rém
N 9o R3(es—1)/(en+1) ]
(es+2)2ep+1) +2(es— 1)(1—e)R3/RE.
(33)
and
47T 1—/J,®
* - R3
Psre =2, { “Touq
N IR (s —1)/Quro+1) }
(Us+2)Quo+1) + 2(us— D1 —ne)R3/RE |
(34)

One can easily verify that for R = R¢, Eqgs. (33) and (34)
reduce to the results (24) and (25) for the full sphere, as
expected.

By introducing the free-space polarizability and magnetiz-
ability of the sphere,

s — 1
= 47y R> 35
ag =4me p—— (35)
and
47 R g — 1
Bs = S, (36)
Mo s+ 2

as well as the excess polarizability and magnetizability of the
cavity,

—¢
% =4mwegR] © 37
ac meoRe 14 260 (37)
and
. 4R 1—p
Be=—EC—1C%, (38)
wo 1+2u0

we can write Egs. (33) and (34) more transparently as

g 3e 2
* " ©
Qg c =0ac+ ( )

g0 \ 2e0+1

1
, 39
“ T+ apas/ (87262R0) 9

3 2
Bsic = B + Bsio (m>

1

(40)

X .

U+ BeBsis/ (82 RE)
As we see, the response of the sphere-plus-cavity system
to an electromagnetic field is due to reflection at the cavity
surface from the outside (ag,B¢) plus reflections at the
sphere (a%,B5), in which the local-field correction factors
in large round brackets account for the transmission of
the field into and out of the cavity and the denominators
account for multiple reflections between the cavity and sphere
surfaces.

Note that in our leading-order approximation in terms of
the cavity and sphere radii, the reflective properties of the
cavity and the sphere as encoded via their dipole polariz-
abilities and magnetizabilities are proportional to the third
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power of these radii. In contrast, the transmission properties
of the cavity as described by the local-field correction
factors become independent of R¢ within leading order
of kRC

B. Casimir-Polder potential

Consider a polarizable and magnetizable ground-state
atom that interacts with a small magnetodielectric sphere
in an arbitrary environment. We assume the atom-sphere
separation r 4 5 to be much greater than the effective sphere and
cavity radii, \/esisR, \/€oloRc K ras. For the frequency
integral in Eq. (6), typically limited to values & < c¢/ras,
the assumptions |kgR|, |kRc| < 1 made in Sec. II A hold.
Hence, we can use our results for the electric and magnetic
Green tensors G(Sl) and V x G(SI) x V' in the presence of a
small magnetodielectric sphere to calculate the atom-sphere
potential.

1. Full sphere

By substituting Eq. (23) into Eq. (6), the interaction of an
electric atom with a magnetodielectric sphere is described by
the potential

Ue(ra, rs) = Uee(ra, rs) + Uen(ra, rs), (41)
with
g [ 3ealiE) ]
Uee(ra, rs) = T o dé & aA(IE)[m}
x as(i&)eq(&)Tr[G(ra, rs, i§) - G(rs, r4, i§)]
(42)
and
_ g o[ 3eati®) ]
Uem(rAarS) - T /0 dfc‘? aA(lS)I:ZSA(ZE)—F 1]
« BSUE) G v, i6) % V5V s
no(i&)
x G(rs, ry,i€)] 43)

being associated with the electric and magnetic properties
of the sphere, respectively. Similarly, combining Egs. (30)
and (7) gives the CP interaction of a magnetic atom and a
magnetodielectric sphere,

Un(ra, rs) = Upe(ra, rs) + Upp(ra, rs), (44)
with

hisg [ z.{ r
o )y d& §7B5) PAGE) 11

X as(i&§)ea(i&)Tr{[Va x G(ra, rs, i§)]

[G(rs, 14, i€) x V1) 45)

Upe(ra, rs) = —

and
RT3 R ’

Unm(ra, rs) = o dSﬁA(lé)[m}
Bs(i&)

M@(ié)
Vs x G(rs, 14, i€) x V4]).

x Te([Vs x G(r4, rs, i) x V]

(46)
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Note that the electric and magnetic properties of the sphere
completely decouple and give rise to the separate potentials
Uees Upe and Uy, U,,y, respectively. However, this is only
true in the small-sphere limit considered here.

As proven in Refs. [49,50], the local-field-corrected total
CP potential of a magnetodielectric ground-state atom in
the presence of an arbitrary arrangement of bodies as given
by Egs. (6) and (7) is always duality invariant. By using
the transformation rules (26)—(29) for the Green tensor,
together with o*® = g*/c2, 8*® = c2a*, one sees that duality
invariance also holds for the special case of a sphere, where
Uee(ra, r5)® = Upm(ra, rs)and Uy, (ra, r5)® = Upe(ra, rs).
This property is ensured by the presence of the factors e and
1/1e in Egs. (42), (43), (45), and (46).

It is instructive to compare our findings with the vdW
interaction between two magnetodielectric ground-state atoms
A and B in the presence of an arbitrary magnetodielectric
environment [37,42]. In order to reproduce those results, one
has to perform the substitutions

2
383
osEe — aB(ZS T l)
B

2

B n)

Ko 2pup +1
The differences between the cases of a sphere [left-hand sides
of Egs. (47) and (48)] and an atom [right-hand sides] are
due to the microscopic and macroscopic nature of the two
objects. The sphere consists of a large number of atoms whose
magnetoelectric response can be described by an average
permittivity and permeability. In this macroscopic picture, the
sphere is in immediate contact with the surrounding medium
(also characterized by permittivity and permeability), which
leads to the factors ¢ and 1/ug. In contrast, an atom is a
microscopic object. In the microscopic picture, the interspace
between the atom and the neighboring medium atoms needs to
be taken into account; it gives rise to the local-field correction
factors on the right-hand sides of Eqs. (47) and (48).

The second difference between the two cases is in the
different explicit forms of polarizability and magnetizability.
For a sphere, they are given in terms of the permeability
and permittivity of the sphere in comparison to those of
the surrounding medium [cf. Eqs. (24) and (25)]; they can
be either positive or negative. For an atom, polarizability
and magnetizability depend on the transition frequencies and
dipole matrix elements [recall Egs. (4) and (5)]; they are strictly
positive on the positive imaginary frequency axis.

47)
and

(48)

2. Sphere inside an Onsager cavity

In order to interpolate between the two extreme cases of a
single atom and a sphere consisting of a very large number of
atoms, we now consider the CP interaction of an atom with
a sphere of radius R that is separated from the surrounding
medium by a spherical free-space cavity of radius R¢, as
introduced in Sec. II A2. Since expressions of the type (23)
and (30) remain valid, their substitution into Egs. (6) and (7)
again leads to Egs. (41)—(46), where now o, and 85 . as
given by Eqgs. (33) and (34) appear in place of o and f5.

012509-6



[S17] Casimir-Polder interaction between an atom and a small sphere

221

CASIMIR-POLDER INTERACTION BETWEEN AN ATOM ...

In our model, the sphere may consist of an arbitrary
number of atoms, whereas the cavity implements the interspace
between the sphere’s atoms and the surrounding medium
atoms. As seen from Egs. (39) and (40) for the polarizability
and magnetizability of the sphere-plus-cavity system, the
sphere is represented by its free-space polarizability and
magnetizability, whereas the interspace gives rise to the cavity
excess polarizability and magnetizability. In the purely electric
case, the sphere gives rise to attractive forces and the cavity
leads to a reduction of these forces.

For a sphere that consists of a very large number of atoms,
the interspace between the sphere and medium atoms becomes
irrelevant. In this case, which is implemented by the limit R —
Rc, the system’s polarizability and magnetizability become
equal to the excess polarizability and magnetizability of a full
sphere (recall Sec. I A2), for which we recover Egs. (41)—(46)
in their original form.

In the opposite extreme case of a sphere that consists of very
few atoms, the interspace becomes very large in comparison
to the sphere, R < R¢. In this limit, the effect of multiple
scattering between the surfaces of sphere and cavity becomes
negligible, and the polarizability (39) and magnetizability (40)
reduce to

2
. . as 38@
— -2 49
“ste %+8o (28®+1) @
and
3 2
e = B —_— . 50
ﬁs+c B¢ + Bsio <2H® T 1> (50)

‘When the sphere consists of only a single atom B, the Clausius-
Mossotti laws [51]

es—1 g s —1  poPs
es+2 350V’ us+2 3V
where V = (47/3)R?, together with Egs. (35) and (36), show

that «s = ap and By = Bp. When neglecting the backscatter-
ing from the outside surface of the cavity, we obtain

) (51

383 2 (52)
o En = S E—
S+Ceo B 283 i 1
and 5
3
Psic _ g, : (53)
Mo 2pup +1

where e, = €5, Lo = I p,and substitution into Eqs. (41)—(46)
leads to the local-field-corrected two-atom potentials [37,42].
Itisin this limit R < Re, /€010 Rc K ras that the potential
depends on the cavity radius only via its transmission prop-
erties and therefore becomes independent of Rc. Recall the
discussion following Eq. (40).

For intermediate radii R, our sphere-plus-cavity model
gives a good description of the interaction of a single atom with
molecules or intermediate-size spherical clusters of atoms.
Note that in this case the potential explicitly depends on both
the sphere and cavity radii. The theory could be applied (e.g.,
in cell biology) to study the vdW-force-induced transfer of an
atom or a very small molecule from one cell into another, where
it is attracted to another bigger (spherical) cell component
or molecule. Note that local-field effects are automatically
included.
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FIG. 3. CP potential U(r,s) of a nonmagnetic atom in front of
a dielectric sphere in an empty cavity embedded in bulk material
vs. ¢ = R/Rc for different atom-sphere separations, raswio/c.
Other parameters are wr /w9 = 1.03, wrs/wio = 1.0, wps/wio =
6.0, wp/wlo =0. l, and )/(5)/&)]0 = 0.001.

As an example, let us consider the CP interaction of a
nonmagnetic atom with a purely electric sphere (U,,) in a bulk
medium (eg = €4 = ¢). By substituting the required Green
tensor (19) into Eq. (42), one easily finds

_h /wdg{ 3¢(i§) r
1673e2rS Jo 2e(i€) + 1

X as(i§)e(i§)as, c(i§)g[\/ e(i§)éras/cl
(54)

U(rs,rs) =

(ras = |ra —rg|) with
g(x) = e (3 + 6x + 5x% + 2x% 4 xH). (55)

Figure 3 shows this potential for a two-level atom as a function
of the relative sphere radius ¢ = R/R¢ for various atom-
sphere separations. We have used single-resonance models
for the permittivities of the sphere and the medium:

2
Dps
8(3)(w)=1+ B 2() " .
a)T(S) — W* — IWY(s)

(56)

In Fig. 4, we show the potential U,, as a function of the atom-
sphere separation for different relative sphere radiig = R/Rc.
Both figures show that for the constant &g considered here,
larger spheres with their corresponding larger polarizabilities
lead to stronger vdW attraction between the atom and the
sphere.

III. SUMMARY AND CONCLUSIONS

We have studied the CP interaction of an atom with a
small magnetodielectric sphere in an arbitrary magnetoelectric
environment. By employing a point-scattering technique, we
were able to express the Green tensor in the presence of
the sphere as a simple function of the Green tensor of the
environment. Using this result, we have found closed general
expressions for the CP potential of a magnetoelectric atom
interacting with a small magnetodielectric sphere, which
depend on the sphere’s polarizability and magnetizability.
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FIG. 4. U(ras) vs. raswip/c for different ratios ¢g. Other
parameters are the same as in Fig. 3.

A comparison with the vdW potential between two ground-
state atoms in the presence of the background medium has
revealed how the different macroscopic and microscopic
natures of atom versus sphere manifest themselves in the
dispersion potentials: the immediate contact of a macroscopic
sphere with the surrounding medium leads to the appearance
of the permittivity and inverse permeability of the medium,
whereas the coupling of the local electromagnetic field to
the microscopic atom gives rise to local-field correction
factors.

PHYSICAL REVIEW A 81, 012509 (2010)

In order to interpolate between these two limiting cases, we
have studied the potential of an atom with a sphere of variable
radius located inside an Onsager cavity. The cavity represents
the interspace between the particles contained in the sphere
and those constituting the surrounding medium, so that our
model can be used to study molecular systems of arbitrary size.
Using similar techniques, we have derived the potential of an
atom interacting with the sphere-plus-cavity system. We have
shown that our result reduces to the atom-sphere or atom-atom
potentials in the two limiting cases, in which the sphere radius
is either much smaller than or equal to the cavity radius. As
an example, we have considered the CP interaction between
an electric atom and such a sphere-plus-cavity system, finding
that the attractive potential diminishes as the sphere becomes
smaller at a fixed cavity radius.

Our point-scattering method can also be used to calculate
the Casimir force on a small sphere in an arbitrary environment
and, in particular, the Casimir force between two small spheres.
This problem will be subject of future work. A similar
approach could be applied to dispersion interactions involving
thin cylinders.
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We examine the lateral Casimir-Polder force acting on a circular rotating emitter near a dielectric plane surface.
As the circular motion breaks time-reversal symmetry, the spontaneous emission in a direction parallel to the
surface is in general anisotropic. We show that a lateral force arises which can be interpreted as a recoil force
because of this asymmetric emission. The force is an oscillating function of the distance between the emitter and
the surface, and the lossy character of the dielectric strongly influences the results in the near-field regime. The
force exhibits also a population-induced dynamics, decaying exponentially with respect to time on time scales of
the inverse of the spontaneous decay rate. We propose that this effect could be detected measuring the velocity
acquired by the emitter, following different cycles of excitation and spontaneous decay. Our results are expressed
in terms of the Green'’s tensor and can therefore easily be applied to more complex geometries.

DOI: 10.1103/PhysRevA.97.032507

I. INTRODUCTION

Casimir-Polder (CP) forces are forces between atoms and
magnetodielectric bodies originating from the quantum fluc-
tuations of the electromagnetic field and the atomic charges
[1,2]. Despite their generally low magnitude they have to be
taken into account when working on nanoscales which today
is common in experiments as well as applications [3].

Lateral Casimir forces are a relatively young topic, having
been measured in 2002 [4]. They are characterized by their
direction which is parallel to the surface instead of the usual
normal direction, and have been suggested to facilitate con-
tactless force transmissions [5]. Lateral forces are typically
achieved by breaking the translational symmetry of the surface,
using for example periodically structured surfaces [4,6-9] or
corrugated surfaces [10-13]. A lateral force has also been
realized by breaking the mirror symmetry, using chiral particles
near a surface [14,15]. It is discriminatory since it pushes chiral
particles with opposite handedness in opposite directions.

In this article we show that a lateral force can arise by
breaking time-reversal symmetry via a rotating dipole which
emits asymmetrically. A dipole moment is created with left-
handed or right-handed circularly polarized light with spin
parallel to the surface. More specifically we excite a cesium
atom from the hyperfine ground state |6° S} 2, F = 4, My = 4)
to the excited state |6> P2, F' = 5,M}. = 5) using a resonant
right-handed circularly polarized laser beam that propagates

“pablo.barcellona@physik.uni-freiburg.de
fstefan.buhmann @ physik.uni-freiburg.de

2469-9926/2018/97(3)/032507(6)
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along the y direction, creating a dipole moment rotating in
the x-z plane, where Z is the direction normal to the surface.
The excitation of guided and radiation modes that propagate in
the +x and —x directions may be expected to be asymmetric
in this case [16,17]. The asymmetric emission of guided
modes has been extensively investigated in the literature and
relies on spin-orbit coupling of light mediated by a particle
near a surface [18-25]. The conservation of total momentum
in the system in conjunction with the asymmetric emission
suggests the existence of a lateral force opposite to the direction
of stronger emission. This lateral force could be measured
observing the asymmetric emission distribution. A similar
effect has been studied for the same atomic system close to
an optical nanofiber [16]. It is the circular polarization of the
illuminating light that creates a rotating dipole moment which
breaks time-reversal symmetry. Using linearly polarized light,
the time-reversal symmetry is conserved and the force is purely
normal to the surface.

Note that this system has been analyzed previously by
classical methods, studying the interaction of the rotating
dipole with the reflected field [26]. However, the excited atom
will unavoidably decay to the ground state, for which the
lateral force is forbidden by energy conservation. Hence the
lateral force has a population-induced dynamics which can
be captured only by quantum approaches to the atom-field
coupling. It is the aim of this article to investigate this effect.

The problem can be solved by expanding the electric field
into guided and radiation modes. However here we use a
different approach which relies on the Green’s tensor and
permits us to study geometries different from the planar
configuration as well the impact of dissipation [27,28]. Light

©2018 American Physical Society
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LS ==y,
l Excited Atom

FIG. 1. Sketch of the system, expected lateral force and correlated
asymmetric decay due to rotational dielectric moment.

modes confined inside the material are called guided modes.
An incident wave hits the interface in such way there is total
internal reflection and we have an evanescent wave behind
the interface: it decays exponentially in the normal direction
and hence propagates along the interface (evanescent waves
have purely imaginary transverse wave vectors). By contrast
radiation modes propagate also outside the material.

The article is organized as follows. In Sec. II we study the
asymmetric emission of a multilevel circular emitter near a
surface and investigate how the lateral force arises from this
asymmetric emission. We also develop a dynamical approach
to the atom-field coupling which gives the same expression for
the lateral force. In Sec. III we consider a two-level cesium
atom near a surface to quantify the order of magnitude of the
force and compare it with previous findings.

II. LATERAL FORCE FROM THE ASYMMETRIC
EMISSION

We consider a multilevel atom, with atomic frequencies
wnx = (E, — Ey)/h, and dipole moments d,;, near a homo-
geneous and isotropic dielectric plate (see Fig. 1). The atom is
prepared in an incoherent superposition of energy eigenstates
|n) with occupation p,(t) and is placed at position ry = za2
from the dielectric plate. We assume the atomic eigenstate |n)
to exhibit a well-defined y component of angular momentum.
It is then a circular emitter whose transitions matrix elements
are not real, in general, but obey dy, = d, [27].

We first derive the lateral force using a dynamical approach
to the atom-field coupling. According to the dynamical ap-
proach the Casimir-Polder force between the atom and the
surface reads [28,29]

Mo .. *© 2 1
F(ra,t) = — 1 t d _—
<A>ﬂ3$;mo;l e

X Vd i - ImG(r,ra, ) - dy|r=r,+ c.C. (1)

This integral can be rotated to the imaginary axis leading to
the following nonresonant and resonant contributions:

F¥(ra.0)
_ M *aeer L !
e p"(”;fo a5 (w,.k—is +wnk+is)
X Re(Vdy - QA8 - i) e, @)

Fi(ra,0) =20 ) pa(t) Y opy

k<n

X Re{Vdnk . G(r,rA,C!)nk) : dkn}lr:rA- (3)

We first note that the lateral component of the nonresonant
contribution vanishes, since 8XG(1)(r,rA,i$)|r=rA is an anti-
symmetric tensor and G(l)(r,rA,i &) is real. In fact the non-
resonant term survives also for ground-state atoms, where the
existence of a lateral force is forbidden by energy conservation:
if it existed, one could accelerate the atom along the surface,
leaving the atom and the field in the stationary ground states.
A lateral force can arise only from the resonant contribution,
which describes the atom recoil because of the asymmetric
emission of the photon as we will show later.

Most importantly the force shows a population induced
dynamics. For example if the atom is a two-level system
initially excited in the state |1) the populations of the ground
state and excited state satisfy the rate equations

po=Tpi, p1=-Tp, 4)

where I is the spontaneous decay rate for the transition |1) —
|0)(]0) represents the ground state). The solutions, subject to
the initial conditions py(0) = 0 and p;(0) = 1, are

, m=e 5)
The lateral force for this two-level system hence reads

Fo(ra,t) = e "2ug0lReld g - 3GV (r,ra,010) - doi Hrzry
(6)

and decays exponentially with respect to time. Because of
this force the particle will acquire some velocity in the lateral
direction. Supposing that the initial velocity is zero, the mean
velocity acquired reads

©  F(rat)  Fiu(ra,0
vzf dt (ra )= (ra ).
0

po)=1—e""

m mI M
We next investigate the asymmetric emission of the circular
emitter and how the lateral force arises from this asymmetry.
The total emission rate I" is the sum of the free-space emission
rate I'© and the surface-assisted emission rate ') where the
photon is reflected by the dielectric surface. If the atom is
prepared in the eigenstate |n) it will decay to lower lying energy
levels, and the decay rate can be expressed in terms of the
scattering Green’s tensor G\ [28-30]:

2
M) = 22 Y ohdm{dy - GV rara,ou) i, (8)

k<n

where we have used the property d,; - ImG(r,r,w) - dy, =
Im{d,; - G(r,r,w) - dy,}.

The scattering Green’s tensor for a dielectric reads (z >
0,7/ > 0) [27,28]

2 (o]
GV, r,w) = / d(pf dk"K'GV (r,r, w k),
0 0

O vy — L i) ikt et
G (r,l‘ ,(,(),k ) = the (I’ l')e <
< 3 re, @, ©)

o=s,p
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where k! = kll(cos ¢, sin ¢,0) is wave vector parallel to the
surfaceand k* = \/w?/c? — k12, k- = /e(w)w? /c? — kI2 are
the perpendicular components of the wave vector in vacuum
and in the dielectric plate. The polarization vectors and Fresnel
reflection coefficients for s-polarized and p-polarized waves
read

e, =(sin @, — cos ¢,0), (10
eps = £(:}:kl cos @, Fk* sin @, k'), (11)
13
kt —kt
ok 12
rs =T pa (12)
_ skt —ky

=8O T 13
Iy s(w)ki—{—k,# ( )

Using Eq. (9) the assisted rate reads

2 o0
IP(za) = / de / dkKy, za kD, (14)
0 0
where y,(z4,k!) is the emission rate density:

2u
Vn(ZAvk“) = 70 Za)zklm{d,,k . G(l)(rA,rA,a)ﬂk,k”) ~dy, ).

k<n

(15)

A lateral force may result from an unbalanced spontaneous
emission into the +x and —x directions. According to the
conservation of the total momentum the force is opposite to
the momentum of the emitted photon. If the atom is prepared
in an incoherent superposition of energy eigenstates |n) with
population p, the force reads

2 [e'S)
Fan=- [ do [ dkHk Y pnGak)
0 0 -

=210 ) palt) Y}

k<n
x Re{d,y - 3GV (r,ra,0u) - din)lr=r,, (16)

where we have used the relation Im(ix) = Rex. The lateral
force is associated with the recoil of the atom because
of asymmetric emission. It vanishes if the atom is in the
ground state or if the atomic dipole moments are real since
8){G(l)(r,rA,a)n,/c)|r:rA is an antisymmetric tensor. Note that
the bulk part of the Green’s tensor gives no contribution to
the lateral force since in the absence of the dielectric plate the
emission is obviously symmetric.

III. APPLICATION: CESIUM ATOM

The aim of this section is to investigate the lateral force for
a cesium atom near a dielectric plate and compare the orders
of magnitude of the force to previous works in literature using
cesium atoms near an optical nanofiber [16].

The cesium atom in its ground state can be excited to the
excited state |6? P35, F' = 5,M}. = 5) by using a right-handed
circularly polarized laser beam. Since the beam is propagating
along the y direction the resulting electric dipole moment is

rotating in the x-z plane:
dio=d(,0,D), a7

where |1) denotes the excited state and |0) the ground state.
The magnitude of the dipole momentis d = 1.9 x 1072 Cm
and the wavelength of the emitted photon is Ajp = 852 nm
[16]. Furthermore dy; = d7,. The emitted photon carries the
momentum and is responsible for the lateral force. There is
only one decay channel to the ground state with the emission
of a o photon; the atom hence can be treated as an effective
two-level system.

Substituting the Green’s tensor (9) into (6) and performing
the trivial angular integrals we find

—It g2

d * L
Fo(ra,t) = — 7o Im{[ dkVEI3e* ZAr,,}. (18)
0

Note that this system has been analyzed previously by classical
methods [26]. However the classical result disregards the
decay-induced dynamics of the force and it renders only half
of our quantum result. The discrepancy can be understood
from the fact that the other half of the lateral force is due
to fluctuations of the electromagnetic field, which are absent
in a classical description. Note also that our result contains a
population-induced dynamics absent in classical models [31].

In the limit of short times the force does not vanish in the
classical limit 7 — 0, showing that it could be described by
classical methods [26]. Only the p-polarized components of
the field affect the force, since the s-polarized components
lead to an emission equal in the +x and —x half spaces.

The first interesting special case is a perfect conducting
body, described by a unity reflection coefficient of p-polarized
waves r, = 1. In this case the integration over the parallel
component of the wave vector can be performed analytically
for any given distance:

2
FC(ra,t) = e_r’{ i% cos (4nZ—A>
deorio Ao
d? 1 3 1
+ —(lz—z — ——4> sin <4nZ—A) },
&0 )‘]O Ia 167 A }»10

where k = wjo/c is the transition wave vector. This is depicted
in Fig. 2 for short times.

Force [10°%' N]

0 200 400 600 800 1000 1200 1400

z [nm]

FIG. 2. Lateral CP force for a perfectly conducting half space.
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We see that the force shows characteristic Drexhage-type
oscillations [32,33]. Remarkably we note that the force can
change sign depending on the distance between the emitter and
the surface. This shows the importance of radiation modes to
describe this effect. In fact, guided modes are excited strongly
only in one direction giving a lateral force of constant sign.

Another interesting feature of this force is that it is not
conservative. In fact if we take the curl of the total force we
obtain a nonvanishing result:

oF, . d*[( 4n? 3 4wz
VxF= y=— 5 — T ] cos
BZA 2] }VlozA )VIOZA Ao

+( 3 57 ) ) <47TZA>}A
— sin .
47rz/i A%Ozi A0 Y

(20)

Hence the Casimir-Polder force is not conservative and cannot
be generally derived from a potential by just taking its gradient.
Such class of forces, called curl forces, have been explored in
the past [34].

We next consider the case of a dissipative dielectric medium
described by a complex relative permittivity. An analytical
expression can be derived in the nonretarded regimes when the
distance between the emitter and the surface is much smaller
than the atomic wavelength z4 < Ajo:

F{™(ra,1)

_Is 3d*2 1 Ime
= —e _—
8weo zh le + 12

64rtd®  |e|* — 1) 2
Z 5
152023, e + 12

where ¢ = g(wjp). In the nonretarded limit the main contri-
bution comes from large values of k!, hence we set k5 = k*
in the reflection coefficients [27]. The Fresnel coefficient (13)
then simplifies to r, = (¢ — 1)/(¢ + 1). It shows a divergence
when the emitter approaches the surface because of the lossy
nature of the medium. Note that an analogous divergence is
observed in the spontaneous emission of a real dipole moment
near a lossy surface, where the emitter is excited with a
linear-polarized resonant laser beam [35,36].

In the retarded regime, namely when the distance between
the emitter and the surface is much greater than the atomic
wavelength, z4 > X9, we have

d*m 1 -1
F;et(rA,t) — efl"t 72[ T{Re[\/g ]
E0AT0 Za ﬁ +1

) ZA Je—1 A
X sin <471)\—10> +Im|:\/§+l] cos (471)\—10)}
(22)

In the retarded limit the main contribution comes from kj = 0,
hence we put kt ~ wip/c and kj,; ~ /ewyp/c in the reflection
coefficients [27]. Hence, the Fresnel coefficient (13) simplifies
tor, = (Ve — D/(VE + 1),

The force is an oscillating function with period A;o/2.
This agrees with intuition. The atom emits at some time
an electromagnetic field while having a specific dielectric
moment orientation. The field is partially reflected by the
surface and interacts with the dipole after some delay, when
the dipole moment has a different orientation. If the distance

° o\
~
—— Silica
z -1 ---- Silica (no absorption)
.-Z Gold
P ---- Gold (no absorption)
o -2
=
: ..
=
o Mobmemtmmm
w -
[N
_ 5.
! 10 100 1000

1 10

zinm] 190 1000
FIG. 3. Lateral CP force at initial time and long-time lateral
velocity for an atom above silica and gold surfaces.

between the emitter and the surface is incremented by Ao /4 the
delay is incremented by At = Ajp/2c, leading to an opposite
orientation of the dipole d — de'®?2' = —d. This translates
to a change of sign of the force.

In Fig. 3 we display the lateral force at the initial time
when the emitter is near a gold dielectric (g5, ~ 1.40 + 1.351)
[37] or silica (eg; & 1.45 +2.05 x 1077). The force shows a
strong increment in the near-field regime, having a magnitude
of around 1072! N. The same orders of magnitude have been
obtained for a circular emitter near a nanofiber [16]. To judge
the strength of the effect we consider the lateral velocity ac-
quired by the atom due to the recoil, which is in the mm /s range.

The atom in the ground state can be excited also to the hyper-
fine level |62P3/2,F/ = 5,M}, = —5) by using a left-handed
circularly polarized laser beam. The atom will emit a o~
photon and since the directionality depends on the polarization
of the emitted light, the lateral force will change sign. This
effect provides the opportunity to control the direction of the
force changing the polarization of the illuminating light or in
other words the quantum state of the emitter.

Note that for all materials considered so far, the force is
directed in the —X direction in the near-field regime. This
is a consequence of the right-hand rule in the lateral forces,
already considered in the literature [38,39]. According to this
rule the direction of the lateral force, the decay direction of the
evanescent wave (Z direction), and the atomic spin ( direction)
follows a right-hand rule. This means that the lateral force is
directed along the —% direction; see Fig. 1.

IV. EMISSION SPECTRUM

In this section we develop more closely the idea that the
lateral force is a photon-recoil force. For this reason we
consider the emission spectrum

[(za,0) = / AV Rk y (24 K, (23)
0
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L(za,9)
['(24,0) lz4=264 nm
1.0

0.8

-1.0 -0.5 0.0 0.5 1.0

2 0.2
FIG. 4. Asymmetric emission spectrum at z, = 264 nm for a
gold dielectric (e, ~ 1.40 + 1.35i).

which describes the scattering of a momentum /ik! along a
particular direction parallel to the surface. Taking into account
formula (15) we find the emission spectrum is in general
asymmetric:

C(za,9) = A(za) + B(za) cos ¢ 4 C(za) cos’ ¢

+ D(za) sin® (24)
where
d2 [ee) k||4 .
A(za) =—4n280Re|: /0 dk”k—lez'““rp}, (25)
d2 0 - b
B(zA)=—2”2€OIm|: / dikPe* 2ar, | (26)
0 i
2 o] -
C(zp) = — = Re[/ dkl\k\IZkJ_eZ:k ZArpi|’ 7
=€ 0
d? o K2 w? 0]
D(zp) =——R dkl —— = ¥ Ky |, 28
(@) 4m2g e|:/(; k-t c2e g ] (28)

The emission is in general asymmetric along the x direction
because of the factor B(za):

/2 B 3r/2 B
/ dol'(za,9) — / dol'(za.@) = 4B(za)
—/2 /2

2d2 =) .
= —Im|: / dk”k”Sez’kLZArp]. (29)
0

w2eg

The comparison with Eq. (18) shows that if the emission is
asymmetric along the x direction then the lateral force is finite.
In Figs. 4 and 5 we show the emission spectrum for two
atom-plate distances: zo = 264 nm,302 nm. Figure 4 shows
an asymmetric emission with stronger emission in the positive
x direction; this suggests a negative lateral force as shown in

T2, )

['(24,0) l24=302 nm
1.00

0.80

FIG. 5. Symmetric emission spectrum at distance z4 = 302 nm,
also in the case of a gold dielectric.

Fig. 3. For z4 = 302 nm the emission spectrum is symmetric
along the x direction suggesting that the lateral force is zero,
as shown in Fig. 3.

V. CONCLUSION

We have predicted a lateral Casimir-Polder force for a
circular excited emitter near a planar surface. The underlying
reason for a nonvanishing force is the breaking of time-reversal
symmetry. The sign of the force depends on the polarization
of the emitted light and can be controlled by changing the
quantum excited state of the emitter. We have also shown that
the lateral force is an atom recoil force stemming from the
asymmetric emission of the photon.

Our dynamical approach of the field-atom coupling shows
that the lateral force has a population-induced dynamics,
decaying exponentially with time, on time scales of the
inverse of the spontaneous decay rate. Moreover it exhibits
characteristic Drexhage-type oscillations when changing the
distance between the emitter and the surface. The near-field
regime is strongly influenced by the dissipative character of
the medium: for short distances it converges to zero for a
lossless medium, while it diverges if the medium has a complex
dielectric permittivity. This effect could be detected measuring
the velocity acquired by the atom after the recoil.

Our formalism which uses the scattering Green’s tensor
can be adopted for more complex geometries, like spheres,
cylinders, or resonating planar cavities which can enhance the
spatial oscillations of the force.
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We consider the van der Waals force involving excited atoms in general environments, constituted by
magnetodielectric bodies. We develop a dynamical approach studying the dynamics of the atoms and the field,
mutually coupled. When only one atom is excited, our dynamical theory suggests that for large distances the
van der Waals force acting on the ground-state atom is monotonic, while the force acting in the excited atom is
spatially oscillating. We show how this latter force can be related to the known oscillating Casimir-Polder force
on an excited atom near a (ground-state) body. Our force also reveals a population-induced dynamics: for times
much larger that the atomic lifetime the atoms will decay to their ground states leading to the van der Waals

interaction between ground-state atoms.

DOI: 10.1103/PhysRevA.94.012705

I. INTRODUCTION

Casimir and van der Waals (vdW) forces are interactions
between neutral macroscopic bodies or atoms arising from
the quantum fluctuations of both the electromagnetic field
and the atomic charges [1,2]. They are responsible for many
characteristic phenomena in physics, chemistry, and biology:
the deviation from ideal-gas behavior in nonpolar gases [3],
latent heat of liquids, capillary attraction, physical absorption,
and cell adhesion [4]. Dispersion interactions have even played
an important role during the early stages of planet formation
[5], and they are also supposed to have a fundamental role in
selective long-distance biomolecular recognition [6]. Due to
their strong distance dependence, they become more and more
important on the ever-decreasing scales of nanotechnology,
where they lead to the unwanted stiction of small mobile
components [7]. In a series of ground-breaking experiments,
the vdW force between an excited barium ion and a mirror
has been measured to high precision [8,9]. Such experiments
show an oscillating dependence of the vdW force on the ion.

We will focus on the vdW force between two atoms, in
excited states |n#) and |/). The interaction in this case is different
from the interaction between two ground-state atoms due to
the possible exchange of a real photon between the atoms. In
the well-understood nonretarded regime, that is, for distances
r much smaller than the wavelength of atomic electronic
transitions, one finds [10,11]

where e, = r/r, d2, are the matrix elements of the dipole op-

erator, and Ej the energy relative to the state |k). For downward
transitions, Ef' — E;' + EF — Ef can be negative, yielding
a repulsive interaction. Hence nonequilibrium situations can
provide repulsive vdW interactions.

The interaction at larger separations has been the object of
controversies. In a first group of works, it was predicted that the
magnitude of the retarded potential oscillates as a function of
interatomic distance [12—14]. In a later group of publications
it was claimed that the retarded potential is nonoscillatory and
proportional to 1/r2[11,15-17]. The conflicting results are due
to subtle differences in treating divergent energy denominators
in the photon propagators: the poles in the real axis can
be avoided using the principal value prescription or adding
infinitesimal factors in the energy denominators and this
leads to different results. Both procedures are mathematically
correct, but they yield different physical results: a spatially
oscillatory behavior of the interaction in the first case and a
monotonically decreasing behavior in the second.

A group of recent works have used dynamical approaches
to address the problem. By an appropriate time-averaging
procedure [18] or in the limit of vanishing atomic linewidths
[19], a third result, for the vdW interaction on the excited atom,
was found that oscillates in magnitude and sign. Note that an
earlier approach based on time-dependent perturbation theory
yields a nonoscillatory result for the force on the ground-state

’d n |2|d B2 atom that is however valid only for times shorter than the
Fou(r) = — € Z nk pl Y lifetime of the excited state [20]. Similar considerations
dn2elr? o E A—EA+E B—E B about time scales hold for the diagrammatic nonequilibrium

' description used in Ref. [21].
A very recent work claims that both results, the monotonic
“pablo.barcellona @ physik.uni-freiburg.de and the oscillating, are valid, but they describe different
froberto.passante @unipa.it physical processes [22]: the oscillating result is related to a
Hlucia.rizzuto@unipa.it coherent exchange of excitation between the atoms, while
¥stefan.buhmann @physik.uni-freiburg.de the monotonic result is associated to a fast loss of excitation
2469-9926/2016/94(1)/012705(10) 012705-1 ©2016 American Physical Society
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acquired from the initially excited atom. Another recent work
finds that both forces can simultaneously arise in a single
setup: the vdW interaction on the excited atom oscillates, in
agreement with Refs. [18,19,22], but the vdW force acting on
the ground-state atom is monotonic [23]. This result would
imply an apparent violation of the action-reaction principle
in excited systems in free space. However, it was shown that
the momentum balance is restored when taking the photon
emitted by the excited atom into account [24]. This emission
being asymmetric due to the presence of the ground-state
atom, the emitted photon carries some average momentum,
so that the difference between forces on the excited versus
ground-state atoms can be interpreted as a photon recoil force.
The situation is somewhat similar to the lateral Casimir-Polder
force on an atom near a nanofiber, which is also associated with
asymmetric emission [25].

In this paper, we study the van der Waals interaction
involving excited atoms by means of a dynamical approach
on the basis of the Markov approximation. We show that
the damped internal atomic dynamics uniquely determines the
oscillatory or monotonic behavior of the retarded interaction
for excited atoms. In our dynamical model, the poles in the
real axis are automatically shifted to the upper or lower part
of the complex plane, and no ad hoc choice for the imaginary
shifts in the denominators is required. We will show that,
when one atom is excited, the vdW force acting on the
ground-state atom is monotonic and the vdW interaction of
the excited atom is oscillating, in agreement with the most
recent results in literature [22-24,26]. Our dynamical approach
is an alternative to the time-dependent perturbation theory
[23], where the behavior of the force is determined via a time
average over rapid oscillations on time scales of the order of
atomic transition frequencies. Instead, our model allows us
to study the decay-induced dynamics on larger time scales
of the order of the excited-state lifetimes. It reveals that the
force is governed by population-induced dynamics on these
scales, where for times much larger than the lifetime of the
initial atomic state the vdW force converges to that between
ground-state atoms. In addition, we are able to account for a
general environment for the two atoms, via the classical Green
tensor.

The article is organized as follows. In Sec. II, we present the
basic formalism describing the coupled atom-field dynamics.
It is used in Sec. III for calculating the force between two
atoms in arbitrary excited initial states. In Sec. IV, we make
the connection of our result with the Casimir-Polder force
between an excited atom and a body of arbitrary shape. Some
conclusions are given in Sec. V, while in the Appendix, we
present some of the more cumbersome details of our general
approach and our calculation.

II. ATOM-FIELD DYNAMICS

We consider the mutually coupled evolution of two atoms
and the medium-assisted field. The field is prepared at zero
temperature, and the atoms in generic internal states. The
dynamics of the atoms can be described with time-dependent
flip operators, defined by Apn = Im?) (n?|, where |n?) is an
energy eigenstate, and similarly B e = |PE)g®].

PHYSICAL REVIEW A 94, 012705 (2016)
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FIG. 1. Case (a) is the zero-order approximation: free field and
free atom. Case (b) is the next-order approximation: the Lamb shift
of an atom due to the emission and reabsorption of a photon. Case (c¢)
is the dispersion interaction between two atoms due to the exchange
of two photons.

In order to evaluate the force between the two atoms we
must first solve the atom-field dynamics to obtain the flip
operators and the field operators in the Heisenberg picture. The
total Hamiltonian is the sum of three terms, the atomic and the
field Hamiltonian and the interaction term in the multipolar
coupling scheme within dipole approximation:

H =H, + Hr + Hap,

I:IA 22 E;?AArm + ZEnBénn»

oo
Ap=Y" /d3r/ do hof) (r,0) - f,(r,0),
0

A=e.m
Hyp =—d* - E(ry) — d? - E(rp), )

where f'k(r,a)) is the annihilation operator for the elementary
electric and magnetic excitations of the system [27].

Since the evolution of the whole system is unitary the
commutator between two electric fields coincides with the
commutator between free fields [28,29]

[B(r,0), E(F,0)] = ?ImG(r,r’,w)a)zé(w —o), ()

where G is the Green’s tensor of the electromagnetic field and
E(r,w) is the Fourier component of the electric field E(r) =
f0°° doB(r,0) + He., Heisenberg equations for the coupled
atom-field dynamics read

R o in. om
atAmn = lw,/:mAmn + %Kzn . E(I'A),

Btﬁ(r,w) = —iwﬁ(r,w) + ﬂwZ
b4

x [ImG(r,r4,0) - d* + ImG(r,rp,0) - d°],
(C))]
where KA = [Amn,flA].

The electric field at the position of atom A consists of two
terms: the radiation reaction and the field due to the other atom
B. As shown in the literature [28,30], the radiation reaction
field gives rise to frequency shifts and spontaneous decay for
atom A; see Figs. 1(a) and 1(b). We thus renormalize the field

by splitting off the radiation reaction
(@ Apn) = [i@p, — (T} +Ti)/2)(Amn)
04 A
+ (K0, - Ex(ra) )

where m # n and the expectation value (---) is taken over
atomic state and the field thermal state. E 4(r4,?) is the sum of
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the free electric field and the source field of the atom B, &3,
the (second-order) Lamb-shifted atomic frequencies, and F,/l‘
the decay rates.

III. VAN DER WAALS INTERACTION BETWEEN
TWO EXCITED ATOMS

We consider two atoms A and B that are initially prepared
in excited energy eigenstates lia),lig) of the free atomic
Hamiltonian [ p;; A0) = Bnins D B0) = 81, |. These initial states
are not eigenstates of the total Hamiltonian and thus the atomic
states evolve in time yielding a time-dependent vdW force
(population-induced dynamics). As time progresses, the lower
lying levels n < i, [ < ip will become populated.

To find the vdW force on, say, atom A, we calculate the
Lorentz force in electric-dipole approximation acting on A
which is due to the field E4(r4,) emitted by the other atom
B:

Fu(ra,rp,0) = V(@ Ey(ry,0), (©6)

where expectation value is taken over atomic and field states.

For weak atom-field coupling, corresponding in an expan-
sion of the Hamiltonian in powers of the coupling strengths
d, we can apply the Markov approximation to find (see the
Appendix):

Apf) Z / de

o0
x/ do®* 0"V 4{d}) - ImG(ra,rp,0) - d,’f,
0

Fa(ra,rp,t) =
n<LA1<IB

16
1
x df - ImG(rp.rs.0) - dj} Y - +He,
i=1 !

O]

where pA(1) = (A,,(1)) and pf (1) = (Bu(t)) represent the
atomic populations of states |n) and |/).

The energy denominators D; are listed in Table 1. Due to
our dynamical treatment of the atom-field coupling, the result
explicitly depends on atomic damping constants or linewidths,
and also an infinitesimal damping for the photon of frequency
w. These factors uniquely ensure the convergence of time
integrals.

For excited atoms the energy denominators can exhibit
poles, for photon frequencies being resonant to the atomic
ones. According to time-independent perturbation theory these
poles would be situated on the real-frequency axis with the
mentioned resulting ambiguities. In our dynamical approach,
with the inclusion of the atomic linewidths, the poles are
automatically shifted to the lower or upper part of the complex
plane leading to unique resonant contributions.

The total vdW force acting on A consists in two terms,
a nonresonant contribution arising from virtual photons ex-
change and a resonant contribution which corresponds to a
possible emission of real photons by the excited atoms:

Fa(ra,rg,t) =F)(ra,rp,t) +F,(ra,rp,0). (8)

In the limit of vanishing linewidths, the nonresonant contri-
bution in an arbitrary magnetoelectric environment reads (see

PHYSICAL REVIEW A 94, 012705 (2016)

TABLE L. Energy denominators. In this table, ) represents
the transition frequency between the virtual state |k) and the

excited state |n), while wfl represents the transition frequency

between the virtual state | p) and |/). Furthermore, a),’zl(i) = +
iCf+T0/2, 0p = 0f £i(C8+TF)/2, and 0® = o *ic

with € infinitesimal factor. F is the atomic linewidth.

Energy denominators

D, (o™ >+wA< ))(a) +w8< >)( A= )+ B( >)
b, R e
b, (6 ol ol + off Nlof ot )
b, (6~ 0ol + ol )of )+ 0f)
Ds (0= )+ o~ >)(w + o= ))( A~ )+ws( ))
o, (0 )0+ ) 0l o)
D, —( )—t—w,ﬁf Yo + o) (@] — 5{(+>)
Dy (w<—) AH))( A(+))( Z\(+) B(+))
Dy (@ + ) (@0 + o) (@ + oy )
Do (@7 — o) ("~ )+wA( N +a)B(+))
Dy, (@ + o) (0 = 0p®) (o +w§l< )
Dy, (@) = )07 — wp ) (@ + 0y
Dy; @7+ ) (07 + op ) (0O + o)
Dy (" — w)(w< )+wA( ))(w( )+wB( )
Dis —(@7 + ) (07 — wpP) (0 >+wB( )
Dig (@7 = &) (07 — 0p ) (0 + a)B( )
the Appendix)
h 2 [}
F(rp,rp,0) = %/ dE £4V 4 Tr{aa(i£)
T Jo

-G(rp,rp,i&) - api&) - G(rp,ry,if))},
&)

where we have defined the following polarizabilities of the
initially excited atoms:

A gA dA a2
aalw) = an()Z( kn “nk Xk kn >’
n<ia kn Wy — @
d/ dleBl
op(w) = JH0) < . L ) (10
lg; Z pl + a) fz —w

The resonant contribution reads
F)(rya,rp.t)

=u5 Y pi)Y VaRe{(o

n<iy k<n

x df - G(ra,rp,wp) ~a3(w;‘k) -G(rp.ra,op) - dg,}

+1d Y pF 0 Y Vaf(wf)*

I<ip p<l
X d,’; . G(rB,rA,a)f;) ~otA(a),l;) ~G*(rA,rB,a),1;) -dff,}.
(11)

For large distances the resonant contribution dominates over
the nonresonant one. Two terms, one oscillating and one

012705-3
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FIG. 2. vdW interaction between one cesium atom in the ground
state (5281 ,2) and an excited rubidium atom (52 Py ). The thick line
represents the force on rubidium and the dashed one that on cesium.

monotonic, are involved in the resonant contribution. Their
behavior can be seen explicitly for isotropic atoms in free
space:

F'\(r.t) = 12;12 T ;\pn (r); ja |’
X aB( )[(9 - 16xnk + 3xnk) COS(ank)

+ (18xnk — Sx;lk + xnk) sin(ank)]

Zpl (I)Z |dllji|

2 2 7
1277: I<ip p<l

xaA(wf;)(9+2y12p +yfp), (12)

where X, = rw? /c and y;, = ra),‘i/c, e, = r/r. When both
atoms are excited, the monotonic and oscillating results both
contribute and can be attributed to different physical processes
[22]: the oscillating result is related to a reversible exchange
of excitation (“pendulation”) and the monotonic form with an
effectively irreversible (Forster) excitation transfer.

When only one atom is excited, the force acting on the
excited atom is oscillating; on the other hand, the force acting
on the ground-state atom is monotonic, consistent with the
perturbative result in [20]. This implies a violation of the
action-reaction principle in excited systems in free space.
The interaction is accompanied by the transfer of linear
momentum to the electromagnetic vacuum; this momentum is
ultimately released through directional spontaneous emission
of the excited atom [24].

In Fig. 2, we show the vdW force acting on a rubidium
atom and on a cesium atom in free space, the rubidium atom
being in the excited state 5%P; ,2 and the cesium atom in the
ground-state 528, /2 (see [31]); the force is represented for
times much shorter than the atomic lifetime and much larger
than the inverse of the atomic frequency, so that the populations
of the states may be considered constant and the atomic
dynamical self-dressing is not present. At large distances the
resonant term dominates and the force on the excited atom
shows Drexhage-type oscillations with an amplitude » 2. The
force acting on the ground-state atom is monotonic. At small
distances, we find a nonoscillating repulsive force for both
atoms.
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FIG. 3. Body-assisted vdW interaction: the exchanged photons
can be reflected by the body’s surface.

However our theory is more general because it includes
the presence of general environments for the two atoms, like
magnetodielectric bodies. Many differences arise in this more
general case. First the interaction can be described as a two-
photon process, where the photons can be reflected by the
body’s surface (see Fig. 3); this reflection is mathematically
described in our formalism by the scattering Green tensor,
which is known for many geometries and magnetodielectric
properties. Secondly due to the presence of the additional body
the action-reaction principle is also violated for ground-state
atoms, with the interaction being accompanied by the transfer
of linear momentum to the body. Lastly the total force acting
on one molecule is not parallel to the interparticle separation
vector.

We see that the resonant contribution vanishes for times
much larger than the atomic lifetimes (F; o p;; Afy=¢ - N,
when the atoms have decayed to the ground state. Figure 4
represents this population-induced dynamics for the force
acting on the excited rubidium at a given distance. We see
that for time much larger than the atomic lifetime the force
converges to the ground-state force, which is attractive. For
times much smaller than the atomic lifetime the force is

F(t)/F(0)
1.0
0.8
0.6
0.4

0.2

0.0

I I I I I I t[us]
0.02 0.04 0.06 - 0.10 0.12 0.14

0.2t

FIG. 4. Population-induced dynamics for the vdW force acting
on the excited rubidium atom (thick line). The rubidium atom is in
the 52P, /2 state, while the cesium is in the ground state. The distance
between the atoms is » = 10 nm.
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repulsive and roughly one order of magnitude larger than the
ground-state force.

As stated above, the resonant force on the excited atom may
be associated with photon recoil due to spontaneous emission.
The fact that this force is stronger at small times can be
understood from its ensemble-average nature: the probability
of photon emission (and hence recoil) is highest for small times
where a large fraction of the ensemble atoms are still in their
excited state.

IV. COMPARISON TO CASIMIR-POLDER FORCE

Let us compare our result with the experimentally observed
single-atom Casimir-Polder force. If an initially excited atom
A is placed near a magnetodielectric body, the resonant
contribution, associated with a possible emission of a real
photon, reads [28]

Fira0) = o Y pi) Y (o)’

n<iy k<n

x VRef{d2 - G'(ra.ra,0%) -df ), (13)

where G' is the body’s scattering Green’s tensor. If the body is
made up of ground-state atoms with polarizability «z(w) and
positions rp and number density n(r), it can be expressed in
terms of a leading-order Born expansion [32]:

G'(ra,ra,m) = oo’ / d3rp n(rp)G(ra,rp,) - ap(w)

-G(rp,rp0) + -, (14)

where G is the free-space Green’s tensor. The substitution of
this expansion into the single-atom Casimir-Polder force leads
to a resonant force

F,(r0.t) = / Pryn(Es)F(Tars)

- / Sraneand 3 ph Y VaRe | (wf) dl

n<ia k<n
-G (rarp.op) - op(wn) G(rsrawpy)- d, |

15)

on the excited atom which is simply the sum over the
(oscillating) resonant forces (11) on the excited atom due
to the ground-state atoms constituting the body. Note that a
monotonous force contribution is absent from the single-atom
Casimir-Polder force (15), as the atoms in the body are
not excited. In the present combination of an excited atom
interacting with a ground-state atom, we would expect the
force on the body to contain a monotonous Casimir-Polder
force component. However, the force on the body is usually
not considered in the context of Casimir-Polder physics due to
the strongly asymmetric mass ratio.

V. CONCLUSIONS AND OUTLOOK

Our dynamical theory has allowed us to study the vdW force
involving excited atoms in generic environments. It is able to
give a unique answer to the old puzzle whether the respective
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interaction is oscillating or monotonic, without recourse to ad
hoc assumptions or prescriptions.

When one atom is excited we have shown that the
van der Waals force acting on the excited atom indeed
shows Drexhage-type oscillations, while the force acting
on the ground-state atom is monotonic. We have explicitly
demonstrated that the oscillating force is consistent with the
respective Casimir-Polder force between an excited atom and
a ground-state body. On the contrary, the monotonic forces
components cannot be deduced from the atom-body force
in this way, because they act on the atoms inside the body,
whereas Casimir-Polder calculations are usually restricted to
calculating the force on the single atom in front of the body.

The oscillating force on the excited atom could have pro-
found implications on the spatial correlations of excited atomic
ensembles, in particular for Rydberg systems. In addition, both
the oscillating and monotonous force components are expected
to arise in waveguides as recently studied in Refs. [33-36]. It
could be also interesting to generalize our model to include
finite temperature, by changing the fluctuation relations of the
electromagnetic field, and to consider many-body vdW forces.
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APPENDIX

1. Perturbative expansion of the force operator

We consider the dynamics of an operator /(¢), which is
a superposition of operators O, (¢) with complex coefficients

Ju(2):

A=Y [0, (1) (A1)

and we introduce a time limit which acts only on the operators:

POl = Y LDOu(1), (A2)

The operators 0.(1) evolve dynamically according to the
Heisenberg equations:

A | A A
3, Oy(1) = E[On(t),H(t)], (A3)

where H is the total Hamiltonian. This equation can be
integrated from the initial time #; to a given time #:

~ ~ 1 ! ~ ~
0u() = Ot + / dnl0,) MY (Ad)

fo

This equation shows that the dynamical evolution of the
operators p is

1 [ N
PO = PO, + f dn[pm)|,_,, H@)]. (A5

fo
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The vdW force operator acting on the atom A, due to the
presence of other atoms, is

Fat) = V[da - E4(r,0))e=r,, (A6)

where the field E 4(ra,1) represents the total electric field,
excluding the radiation reaction of atom A. Using Eq. (A5) we
find the dynamical equation for the force:

N N 1 d N N
Fa) =Fa)],, + / dn[Ba@),_, A@). (A7)

This equation can be reiterated considering now the dynamics
of the commutator [F A(0)] oty A (t1)], which is a superposition
of operators at the time #;. Therefore, for weak coupling,
we can construct a perturbative expansion F4(¢) in terms of
operators at the initial time #;:

N N 1 ! A N
Fa() = FA(l)‘H,O + E/ dr [FA(I‘)‘H,“H(fl)],ﬁtU
to

1 2 ot 1
— dt dr.
" (zh) / I/ru :

x [[FA(I‘)L_)[] ,1:1(1‘1)]11%[2,1:1([2)][2_"0

(A8)

In our model the electric field and the flip operators of the
two atoms are the dynamical variables of the system. Two
different time scales are observed for the dynamical variables;
there is a fast free dynamics and a much slower dynamics due to
the interaction between the atoms and the field. For example,
the free evolution of the flip operators is on time scales of
wy' ~ 107 s, while the dynamics due to the interaction is
on time scales of I~! &~ 107 s. We define new dynamical
variables according the formulas:

E'(r,0,0) = “Er,o,0),

Al = [l (=D A0, (A9)
where
FA (1) = eliom=TIHTD/2 (A10)

The new dynamical variables change on the time scale of the
interaction and have the following commutator with the total
Hamiltonian [see Egs. (4) and (5)]:

[E(r,0,0,H ()] = D o
T

XY fm (O ImG(r,rg,0) - 45, B, (1),

m,n |

o0
Fan=Y" / dof e V{4, (0d), - Byron) . +He
0

m,n
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(AL (). B0 = — / do fA (D[ KA (1)
0

K pra,0.0 + eiwa/L(l‘A,a),f)
K, 0],

mn

(A11)
where

K}, (1) =Y [A @) fandy, — AL, fa(ndf,] (A12)
k

and a normal ordering prescription is used.

From Egs. (A11) we see that the commutator between the
Hamiltonian and a dynamical variable increases the number of
electric dipole moments by one. Hence Eq. (A8) represents a
perturbative expansion of the force with the dipole element as
perturbative parameter. In particular, the electric vdW N-body
force F4(ra,ry, ..., ry_1) acting on A due to the other atoms,
with positions ry, . ..,ry_j, contains 2N electric dipole matrix
elements; this force results from the application of 2N — 1
commutators:

S IN_1,1)

1 2N-1 t 1 -2
= (7) [ dm/ dt2~-~/ dtryy—;
ih fo fo fo

<AL [[Fal A @], )]

R ,ﬁ(lz]v_z)] g(IZN—l)]

Fa(ra,ry, ..

Hh—13’

1),
(A13)

ty-a—>hn-1’ hy-1—>1o

where the expectation value is taken over the atomic+- field free
state |/). This approximate solution to the coupled dynamics
is equivalent to an iterative use of the atom-field equations,
and it is valid for weak coupling between atoms and field.

The expectation value on free atomic and field states can be
easily performed, since after the limit ;5 — #; the resulting
operators are evaluated at the same initial time #;, which
represents the time at which the electric field and the atoms
are uncoupled.

2. van der Waals interaction between two atoms

We consider now the vdW interaction between two atoms.
We suppose that the atomic states are incoherent superposi-
tions of energy eigenstates [n4) and |I®) and the state of the
field is the ground state.

In normal ordering, the force operator [see Eq. (A6)] can
be expressed in terms of the new dynamical variables:

(A14)

The two-body vdW interaction, which contains four electric dipole moments, involves three commutators:

1\> ! 1 [ . N . .
FA(I‘A,I‘BJ)=<£) /dH/ dl‘z/ dl3<[[[FA(l)|,_,t1,H(ll)],l_,,z»H(tz)],z_m,H(f3)],3_,,0>~

(A15)
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With the help of Egs. (A11), the commutators can be evaluated. For example, the application of one and two commutators
gives

1 . N j o o . N .
Z[Fa0,_, H®)] = ;%Z / do / do'e™ £ (¢ — 1)V {[e7 KA, (1) - By(ra.011)
mon 0 0

r=ry

io't T / > i/ l”“ o
+e “EL(rA,a),t1)~Kf}m(t])]d;‘m-EA(r,w,tl)} +7° Z/O do o’

x e T £ (1) fE ) VA, (1) B (t)d,, - ImG(r,rp,0) -df ) +He,

mn r=ry

1 2 . . . w ) ) ,
(E) ([Fa)],_, . H@)], ., H®)] =‘7T% Z‘ /0 do /0 do f;4,(t — 1) fE (1)

m,n,r,s

x V{a)/ze—iwr [e—im’(tl—tz)KA (tl)’

mn

‘ImG(ry,rp,0) - d2 B/ (1)

t—n rsors

— TR (1)df,  Im G(rp.ra.0) - Kp, ()], ]d5,  E(ro.n)

=

2 —iw(t—n)[ ,—io'h A n
e T[T KD (1)], |, - By(ra.0n)

Hh—t

+el B (g0 ) - R, ()], 140, ImG(rrs.0) - dB Bl (),

rs rs
Ho 00 00 —iw(t— —iw'
-— > / dw / da/e 2V ({ £ (1 — 1) fE @) [e K2, (12)
m,n,r,s 0 0

B (a0 0) + R (00,0 1) - R, )] Bl (1) + A0 FE 0 — A, (1)
x [e @ KE (1) - Bly(rp. 0 1) + ¢ B f(rp. 0 1) - KE(12)]}
xdj,  ImG(r,rz,0)-d’) _ +Hec. (A16)

mn r=rju
The commutators between K,,,, and the Hamiltonian have not been considered since they lead to higher-order corrections in the
electric dipole d* and d?.
We then evaluate the last commutator and take the expectation value on the atomic and field states. The thermal expectation
value over the free-field variables can be performed with the help of the following fluctuation relations for zero temperature
[10,28]:

. . h
BOr,0, OBV, 0 1)) = LUmG(r,r,0)0?(w — o). (A17)
s

After some algebra we obtain

< 2 00 00

in :

F(ra,rp,t) = _27r20h E papl) E /0 da)/o do' * @V 4d%, - TImG(ry,rp,0) - dg,
n,l k,p

t t n
de,-lmG(rB,rA,w’)-d,?n/ dn/ dtzf dt
) fo fo

x AT Lk = 1) — [0 = )] [e7 T f7 0 — 1) — €T 0 — 13)]

e T[T fR (1 — 13) — BT L — m)][ iy (1 — 1) = S — 12)]

e R A —n) = finG — ][ (6 — 1) — €T £ - 13)]
e e mn) _ g4 — 1) — fi(t — )] £ (0 — 1)} + c.c., (A18)

where V 4 is now applied to both Green’s tensors (after exploiting their symmetry and introducing a factor 1/2). The function f was
defined in Eq. (A10) and p;‘(t) = (A,,,, (1)) and p,B (1) = (B,l(t)) represent the atomic populations of the states |n) and |/). We have
considered time-reversal symmetric systems, where d,,, is real (d,,, = d,,,,), and reciprocal media [GT(r 4,rp,0w) = G(rg,ra,w)].

With the exception of resonant cavity-QED scenarios, we can assume the quantity v’ ImG(rg,r4,) to be sufficiently flat
and to not exhibit any narrow peaks in the vicinity of any atomic frequency (weak coupling). For weak coupling, we may
evaluate the time integral by means of the Markov approximation, extending the lower limit of the time integral to 7y = —oo.
The resulting integrals are not converging. In order to force the convergence we add an infinitesimal factor to the frequency w,
w — o — i€, where € > 0. Note that the opposite sign convention for this infinitesimal factor would lead to divergent integrals.
Time integration leads to the energy denominators in Table I in the main text.
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The frequency denominators can be combined:

1/Dy +1/D7 +1/Dyo = /(07 — o)(o + ) (e + @y ),

1/D5 + 1/Ds + 1/D1y = /(@7 + )0 + o) (o + o),

1 1 1
1/Dy+1/Dy = ( — + 7),
(0= )+w/)( A(— )+w3( )) o)+ =) w/+wgl( )
X | | (A19)
1/Ds+1/Dyp = ( - >,
(@ — ) (wp ™ +w3<+>) o) — A T +wgl<+)
1/D 1 ( 1 1 )
5 = )
B O R
1/D 1 ( 1 N 1 )
g = )
@) + &) 0D +wB(+)) o +oi® ) h
which implies
DY (R SRS B DO (R B S (A20)
— +cc. = c.c.,
“~ D, M\ v T o — o 2 o+ o — e
where we have defined the following functions:
fi(&) : + : :
1§) = =
( ?n(+)_|_ B(+))(§+ A(+)) ( A(— )+w3( ))(%-+w3( )) (§+wA(+))(§- +“’§1( ))
HE) 1 n 1 ( 1 1 > 1
J2 = —
( A(+)+ B(+))($ _a);\rfﬂ) (w:n( )+a)3( ))(é_—_’_a)]?n( )) E‘f‘a)A( ) £ — A(+) E4+w B( )
(A21)

and wp ) = wf, £i(Tf +T1/2, wp = 0¥ £i(TF +TF)/2, and 0® = w £ ie.
For the first term in Eq. (A20) we integrate over w and for the second term we integrate over «’. We use the identity

ImG = (G — G*)/2i and the Schwarz reflection principle for the Green tensor:

[ aver (ot o G = 5 [ o (s S Vel (422)
mG(r,,rp,0) = — ra,rp,o).
0 ' o+ w— ™) AT 2i J o CONTF 0O T @ —aO ATE

The Green’s tensor is analytic in the upper half of the complex plane, including the real axis, and it is also finite at the origin.
We close the path with an infinitely large half-circle in the upper complex half-plane and take the residuum inside the path. The
integral along the infinite semicircle vanishes for r4 # rp because

Jim o *G(ra,rp,0), ,, =0. (A23)
We thus find
1 1
/ o + ImG(ra,rp,0) = 70*G(rs,rp, —o). (A24)
0 o+ @ — o)

The total force can be expressed as the sum of two terms:

Fa(rarp.t) =F)y(ra.rg.0) + Fy(rars.0),

2 0

17 2
F)y(ra.rp.1) = Zn‘%;p;‘(t)pf(z)gfo dww*V \Im{[d, - G(ra.rp.0) - d5 ] g1(@)},
(A25)
2 H’(ZJ A B > 4

Fyrarp.0) = 56 ;pn O] (z)kijfo do o'V 4{|dd - G(ra.rp.0) - 45’ (0)),
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where
s = s o= e )
+ A(+) 1 B(+)< 1 A(+) + 1 ) + A(-) : B(—)( : A(-) + 1 A(—)) (A26)
Wy —|—a)pl W+ wy, w+w Wy, +a)p, + wy, W — Wy,
and
22(@) = [ fi() + fa(@)] = 2 Re [ S }lm L (A27)
o o, —o w+ oy,
We consider then the limiting case of vanishing linewidths:
ea= (T} +T¢)/2—> 0" ep= (T +T7)/2— 0" (A28)
In this limit the function g; can be simplified:
lim gi(w) = 4o — i)l + 0i) o+ of, + o) : (A29)
€r5—0" [(w+ a),fn)z + &3] (w — wph, + ic4) (0 + “’gz +ieg)(wp, + wgl)
Using the property - ill.e = 73% Fimd(x), where P is the principal value, we can also simplify g:
g2(w) =27 Re [ A<+1 A(J ]8(a) — o). (A30)
w, to o, —o

With these results, after performing a Wick rotation on the imaginary axis we find the following nonresonant and resonant

contributions to the FL:

2

2 0 . .
Firarnn = 25 3 plopfo Y [ ase ST EEDy gy s - al])
n,l k,p 0

2
1%
+5h Zn, PADOPE® D Va(Res {g1(@)w?[dL - Glra.rz.o) - dB]’}

k,p

—Resa{ g (—w)w*[d}, - G(ra,rp,0) - d5]*)),

(A31)

where Res; indicates the sum of the residues in the first quadrant and Res, the sum of the residues in the second quadrant.

Similarly, F2 reduces to

Fi(rA,rB,t) = /,Lé Z plB(l‘) Z (a)g,)4VA{dg, . G(I‘B,FA,CUII;) . otA(a),l;) . G*(rA,rB,a),l;) . df;,},

1 p<l

(A32)

where a4 is the polarizability of the excited atom A. The sum of F, and F2 gives the nonresonant and resonant contributions of

the total vdW force; see Eqs. (9) and (11).
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On the basis of macroscopic quantum electrodynamics, a theory of Casimir forces in the presence of linearly
amplifying bodies is presented which provides a consistent framework for studying the effect of, e.g., ampli-
fying left-handed metamaterials on dispersion forces. It is shown that the force can be given in terms of the
classical Green tensor and that it can be decomposed into a resonant component associated with emission
processes and an off-resonant Lifshitz-type component. We explicitly demonstrate that our theory extends

additive approaches beyond the dilute-gas limit.

DOI: 10.1103/PhysRevA.80.051801

I. INTRODUCTION

Among the vast body of literature related to Casimir
forces [1-4] there is an almost complete lack of studies con-
cerned with the influence of amplifying media. This is in
stark contrast to the fact that Casimir forces between ampli-
fying bodies may lead to far-reaching applications. To name
just two examples, amplifying bodies may hold the key to
enhancing the impact of novel (meta)material properties on
dispersion forces and to realizing repulsive Casimir forces.

The problem of dispersion forces in the presence of
metamaterials has recently attracted a lot of attention [5-11].
However, passive metamaterials suffer from high absorption
which restricts desired metamaterial properties such as
lefthandedness [12,13] to a narrow spectral bandwidth [14];
this may reduce or completely inhibit an influence of such
properties on dispersion forces. It has been suggested that the
influence of absorption can be mitigated via introducing ac-
tive media [14]. In practice, gain may be introduced in a
medium by optical parametric pumping [15] or quantum cas-
cade lasing techniques [16,17]. The potential of amplifying
bodies as a means of realizing repulsive Casimir forces has
been pointed out recently [18,19]. It is already manifest in
the Casimir-Polder (CP) forces acting on individual excited
atoms [10,20-22]. Repulsive dispersion forces can help to
suppress the unwanted phenomenon of stiction and allows
for new classes of nanodevices [23]. Note that the repulsive
Casimir forces recently measured in Refs. [24,25] require the
interacting bodies to be embedded in medium. This is not
necessary when realizing repulsive forces on the basis of
amplification.

A recent calculation of Casimir forces on amplifying bod-
ies [19] was based on the assumption that the well-known
Lifshitz-type formula for the Casimir force as an integral
over imaginary frequencies applies without change to ampli-
fying media—an approach which neglects excited-state
emission processes typical of amplification. As an alterna-
tive, the Casimir force between two dilute samples of excited
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atoms has been studied microscopically by summing over
two-atom interactions [18]. Such an approach is limited to
sufficiently dilute media, whereas a theory nonlinear in the
magnetoelectric properties is indispensable in many applica-
tions such as superlens scenarios [26] or antistiction tools
[27].

In this Rapid Communication, we present a macroscopic
nonperturbative theory of Casimir forces on amplifying bod-
ies that presents a consistent generalization of additive de-
scriptions based on dispersion forces on atoms. We establish
the consistency of our macroscopic body-body force with the
theoretically [20,21] and experimentally [22] well-
understood force between an excited atom and a body and
show that relevant processes such as emission by the bodies
are fully taken into account. We begin with an outline of the
underlying quantisation scheme [28], which is an extension
of macroscopic quantum electrodynamics (QED) to amplify-
ing media, and then derive the Casimir force on an amplify-
ing, polarisable body of arbitrary shape. Finally, contact to
CP forces is established by applying the general formula to
the case of a weakly polarisable medium.

II. QUANTIZATION SCHEME

Consider an arrangement of polarisable bodies whose
linear, local and isotropic response is described by a spatially
varying complex permittivity e(r,w) that fulfils the
Kramers-Kronig relations. We allow for bodies that are
(linearly)  amplifying in  some frequency range
[Im &(r,w)=g/(r,w) <0], assuming the amplifying medium
to be pumped to a quasistationary excited state (for details,
see [28]). Note that this inversion-type excitation is funda-
mentally different from thermal excitations. In particular, the
amplifying bodies are explicitly not at (thermal) equilibrium
with their environment.

The quantised electric field can be given as the solution to
the inhomogeneous Helmholtz equation

[V X V X — o¥cte(r,0) |E(r,w) = iuoij(r, w), (1)
[6(r)=f8°dw@(r,w)+H.c.] according to

©2009 The American Physical Society
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E(r, ) = iog J Fr'Gr.r’, ) jur' ), (2)

where the classical Green tensor obeys the equation
[V XV X —wc?]G(r,r',w)
=6(r-r') + o/ e(r,w) - 1]G(r,r', ) (3)
together with the boundary condition at infinity. By exchang-
ing the roles of creation and annihilation operators in the

amplifying space and frequency regime [29], the noise cur-
rent density can be given as

INT.0) = o\heym [e/(r,0)|

X{O[e,(r, ) ]f(r,®) + O[- &/(r, o) (r,w)}  (4)

[®: unit step function, ®(0)=1]. The dynamical variables

f'(r,w) as introduced in Eq. (4) obey bosonic commutation
relations such that the equal-time commutation relation
characteristic  of the electromagnetic field holds,

[E(r),ﬁ(r’)]:ihealv X &(r-r'), where the electric and in-
duction fields are given by Eq. (2) and

B(r,») = “Of Fr'V X Grr' o) - jyre) (5

respectively. The vacuum state [{0}) of the electromagnetic
field and the partially amplifying electric body is defined by

f(r, 0)[{0})=0Vr,». The quantization procedure implies
that the Hamiltonian I:I=I:I++I:1,=fd3rf§dwha){®[sl(r,w)]
—O[-¢g/(r, o) i (r, ) -f(r, ®) generates the correct Max-
well equations via the Heisenberg equations of motion.

III. CALCULATION OF THE CASIMIR FORCE

The Casimir force acting on a partially amplifying body
of volume V in the presence of other bodies outside V can be
identified as the average Lorentz force [30]

F= f rpOEE) +5) X BE )y (6)
4
on the body’s internal charge and current densities

A iw 3.1 ’ @ ’
pr.w)=—| &r'V -G(r.r',w) - jyr', 0), (7)
P c J

A (1)2 A

jr,w) = (V XV X-— fd3r’G(r,r’,w) ().

d c d

(®)

Note that the coincidence limit r’ —r has to be performed
such that (divergent) self-forces are discarded.
On using Eq. (4), the bosonic commutation relations for f,

f'T, and the definition of the vacuum state, we find the follow-
ing nonvanishing expectation values:

(T, w)ji(r.0)) =fioeym v - ')e/r,o)

Xd(r-r1")0[e/(r,0)], )
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(i o)y’ 0)) = - ho’sym 8w - o' )e/r,0)

XO(r—r")0[-g/r,w)]. (10)

We evaluate the force by combining Egs. (2) and (5)—(10)
and writing aXb=-Tr(IXa®b)([Tr T];=T,;) for the
j*B  term. Eliminating O[g/(s,w)] according to
Ole/(s,w)]=1-0O[—¢/(s,w)], those spatial integrals not de-
pending on ®[—¢g/(s,w)] can be performed via

2

%f d*se)(s,w)G(r,s,0) - G*(s,r',0) =Im G(r,r',w), (11)

so the Casimir force can be given by F=F'+F" with
i ?

sz—f da)f d3r{w—2V -Im G(r,r’, w)
7Jo v c

+Tr[| X (V XV X - L:—Zz)[lm G(r,r',w)] X V”]}

(12)
and
2h s [ 2| 5
F'=—— | &r| doo’ | dsefs,0)0[-g/s,0)]
wc* )y 0
XRe{w?c*V - G(r,s,w) - G*(s,r’, w)
+Ti{l X (VX V X — 0%/c)G(r,s, w)
G (s, 0) X V' T (13)

Equations (12) and (13) represent general expressions for
the Casimir force acting on a linearly polarizable body of
arbitrary shape and material in an arbitrary environment of
additional bodies or media, where any of the bodies may be
amplifying. The term F™ is a purely nonresonant Lifshitz-
type contribution to the force. It can be rewritten as an inte-
gral over purely imaginary frequencies w=i¢ and has exactly
the same form as for purely absorbing bodies. In Ref. [19],
the nonresonant term F™ is identified with the total Casimir
force and it is shown that F"" may become repulsive in the
presence of amplifying media as a consequence of the prop-
erty (i€ =1. The resonant term F' has never been given
before. It only arises in the presence of amplifying bodies, in
which case it can dominate the total Casimir force. As evi-
dent from the factor ®[—g(s, w)], the force component F' is
associated with emission processes [the emission spectrum
being related to —g,(s, w)].

IV. CONTACT TO CASIMIR-POLDER FORCES

We will next establish a relation between the Casimir
force F=F'+F" [with F" and F™ being given by Egs. (12)
and (13), respectively] and the well-understood CP force on
excited atoms. In this way, we will be able to substantiate the
role of emission mentioned above. To that end, we consider
the Casimir force on an optically dilute amplifying body of
volume V placed in a free-space region in an environment of
purely absorbing bodies. We follow the procedure outlined in
Ref. [30] for an absorbing dielectric body.
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IMPACT OF AMPLIFYING MEDIA ON THE CASIMIR FORCE

We begin with the nonresonant force component F™, Eq.
(12), and explicitly introduce the electric susceptibility
x(r,w)=¢g(r,w)—1(r e V) of the body by invoking the rela-
tions,

»’ o
(V XV X - ?)Im G(r,r',w)= ?Im[)((r,w)G(r,r’,w)],

(14)
V. -Im G(r,r',0) =—Im[V - x(r,0)G(r,r’,w)], (15)

which follow from Eq. (3). Expanding the resulting expres-
sion for F™ via Ti[I X G X V']=V’' Tr G-V’ -G and exploit-
ing the fact that terms involving a total divergence can be
converted to a surface integral that vanishes for a body in
free space, one obtains

% =P
Fnrzz—f d%f do5Im[x(r,®) V Tr GV (r.r,0)], (16)
T v 0 C

where the symmetry G(r',r,»)=G"(r,r’,w) of the Green
tensor has been used. In addition, we have assumed the body
to be homogeneous and performed the coincidence limit by
simply replacing the Green tensor with its scattering part
G (see the discussion in Ref. [30].). Next, we exploit the
fact that the amplifying body is optically dilute and expand
F™ as given by Eq. (16) to leading (linear) order in the sus-
ceptibility y(r,w) of the amplifying body. We thus have to
replace G with its zero-order approximation G, i.e., the
Green tensor of the system in the absence of the amplifying
body which is the solution to the Helmholtz equation (3)
with

E(r,w)z{s(r’w) for r ¢ V, (17)

1 for reV.

in place of &(r,w). Finally, we assume that the amplifying
body consists of a gas of isotropic atoms in an excited state
|n) with polarizability
1 d, d,
an(w) — hm—z |: | nk| _ ‘ nk| (18)

030 L | 0+ W, +i€  ©— Wy, + i€

(wy,: transition frequencies, d,,;: electric-dipole matrix ele-
ments), which can be related to the electric susceptibility of
the body via the linearized Clausius-Mossotti law
x(®)=¢;' na,(®) (7: atomic number density). Transforming
the frequency integral to the positive imaginary axis, we ob-
tain F*=—[d*r»V U (r), where

U (r) = ’% f dE8a(i9Tr GO(r,rid)  (19)

0

is the nonresonant CP potential of the excited body atoms
[21]. 1t should be pointed out that there is an important dif-
ference to the case of the force on an absorbing object made
of ground-state atoms: In the latter case, all of the frequen-
cies wy, in Eq. (18) are positive so that the respective (vir-
tual) transitions contribute to the nonresonant CP potential
with the same sign. For excited atoms, upward as well as
downward transitions are possible, so that positive and nega-
tive wy, occur and the overall sign of the nonresonant force
can be reversed to make it repulsive.
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Let us next consider the resonant force component F',
Eq. (13), following similar steps as above. The linear
approximation of F' can be obtained by using the zero-order
approximation to Eq. (3) together with the identity
®?/c2V -G(r,r',w)=-V(r-r’) and  replacing G*
with G*. Expanding the result according to Tr[IX GX V']
=V’ Tr G-V’-G and discarding, for a body in free space,
terms involving total divergences we derive

h - 2
F=- —f d3rf dww—2®[— g/(r,w)]e/(r, )
Ty 0 ¢

X V Tr Re G(r,r,w), (20)

where we have again assumed the body to be homogeneous
and performed the coincidence limit by replacing the Green
tensor with its scattering part. Relating g, to the polarizability
of the atoms by means of the linearized Clausius-Mossotti
relation, we finally obtain F'=—[dr7V U'(r), where

) h -
U, (r)= Lo dow’O[-Im a,()]Im a,(w)
m™ Jo

XTr Re GV(r,r, w) (21)

is nothing but the resonant part of the CP potential of the
excited atoms contained in the body. By using the relation

(@) = 23 |80+ 0,) - o= 0,01, (22)
k

which follow from definition (18) together with the identity
lim_,o 1/(x+i€e)=P/x—imd(x) (P: principal value), we can
write it in the more familiar form [21],

Ui(r) = - %2 O(w)w2ldy? TrRe GV(r,r,w,).  (23)
k

Combining the results for F™ and F", we see that the
Casimir force on an optically dilute, homogeneous, amplify-
ing electric body is the sum of the CP forces on the excited
atoms contained therein,

F=F"+F=- f d’ryV U,(r) (24)

[U,(r)=U, (r)+U,(r)]. This result generalizes similar find-
ings for purely absorbing bodies (consisting of ground-state
atoms) [30-33] to amplifying ones. In particular, the non-
resonant and resonant components of the Casimir force, Egs.
(12) and (13), are directly related to the respective CP-
potential terms which in turn are associated with virtual and
real transitions of the atoms. Recall that for an atom in front
of a plate at zero temperature, the nonresonant CP potential
is proportional to 1/z* and 1/z* in the nonretarded and re-
tarded limits (z: atom-plate separation), while the resonant
potential as governed by a 1/z* power law in the nonretarded
regime makes way for a spatially oscillating cos(2w,;z/¢)/z
asymptote for retarded distances [20]. As we have seen, the
most important difference between forces on amplifying as
opposed to absorbing bodies is the presence of a strong, reso-
nant force contribution which is associated with real transi-
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tions of the excited body atoms and hence with emission
processes of the body.

V. SUMMARY AND PERSPECTIVE

On the basis of the consistent framework provided by
macroscopic QED, we have developed an exact theory of
Casimir forces in arrangements of linearly responding, elec-
trically polarisable bodies of arbitrary shape, with special
emphasis on amplifying bodies. Formulas (12) and (13)
show that the Casimir force can be decomposed into two
parts: a nonresonant Lifshitz-type component that looks for-
mally the same as in the case of a purely absorbing body and
a resonant component that is a direct consequence of the
amplification in the system and contains an integration over
bodies and frequencies where the imaginary part of the elec-
tric permittivity is negative. We have demonstrated that in
the dilute-gas limit, the Casimir force on an amplifying body
in the presence of absorbing bodies is given by a sum of CP
forces over the excited body atoms; our theory is hence the
natural generalization of additive approaches beyond their
scope.

Two points to be addressed in more detail in the future are
(i) the finite-temperature case and (ii) the relation of the
excited atom-body force to atom-atom forces. (i) Finite
temperature of the absorbing environment may be
accounted for by introducing a thermal density matrix
pr=exp[—H,/ (kyT)]/ Tr{exp[-H,/ (kgT)]}. This leads to a
factor [2n(w) +1] with thermal photon number n;(w) in Eq.
(12), so the &-integral in Eq. (19) will be replaced with a

RAPID COMMUNICATIONS
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Matsubara sum (cf. Ref. [34]). The T— 0 limit of the non-
resonant force being a nonuniform asymptotic expansion
[35,36], the T=0 results are only valid for distances
z<thc/(2mkgT). (ii) The theoretically and experimentally es-
tablished resonant and spatially oscillating forces between
excited atoms and bodies are in contrast with the nonoscil-
lating atom-atom forces found in the majority of theoretical
works [37,38]. The discrepancy indicates that either the in-
clusion of atomic linewidth at the heart of excited atom-atom
calculations has to be carefully reconsidered [39] or that mi-
croscopic atom-atom interactions are fundamentally different
from the collective atom-body interaction.

Our results, which can be extended to magnetoelectric,
anisotropic or nonlocally responding media in a straightfor-
ward way, present a reliable framework for enhancing the
impact of metamaterial properties such as negative refraction
on dispersion forces or realizing repulsive forces. In particu-
lar, perfect lens scenarios can be investigated by using the
appropriate Green tensors. Note that the strategy employed
in this Rapid Communication can also be employed to study
CP forces on atoms in the presence of amplifying bodies,
where a rich dynamics associated with the exchange of ex-
citations is to be expected.
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We study the rotational and vibrational heating of diatomic molecules placed near a surface at finite tem-
perature on the basis of macroscopic quantum electrodynamics. The internal molecular evolution is governed
by transition rates that depend on both temperature and position. Analytical and numerical methods are used to
investigate the heating of several relevant molecules near various surfaces. We determine the critical distances
at which the surface itself becomes the dominant source of heating and we investigate the transition between
the long-range and short-range behavior of the heating rates. A simple formula is presented that can be used to
estimate the surface-induced heating rates of other molecules of interest. We also consider how the heating
depends on the thickness and composition of the surface.

DOI: 10.1103/PhysRevA.78.052901

L. INTRODUCTION

A number of techniques have recently been developed to
cool polar molecules to low temperatures and to trap them
for a second or longer. Using the switched electric field gra-
dients of a Stark decelerator [1], polar molecules formed in a
supersonic expansion have been decelerated to rest and then
stored in electrostatic, magnetic, or electrodynamic traps
[2-5]. An electrostatic trap has been continuously loaded by
filtering out the slowest fraction of the molecules present in
an effusive beam [6]. Polar molecules have also been cooled
in a buffer gas of cold helium and then confined in a mag-
netic trap [7]. Extremely cold polar molecules such as RbCs
can be produced by the photoassociation of two species of
ultracold atoms, followed by laser-stimulated state transfer
[8]. In all cases, the resulting molecules are typically far
colder than their environments, and they may be heated by
the absorption of blackbody radiation from that environment.
Unlike atoms, the polar molecules can be rotationally or vi-
brationally excited by their interaction with this blackbody
radiation, and in many cases this can severely limit the trap-
ping lifetime of the molecules. Indeed, the blackbody heating
rate for trapped OH and OD has already been measured ex-
perimentally and found to limit the trapping lifetime to just a
few seconds when the environment is at room temperature
[9]. Calculations of the free-space heating rates for several
polar molecules have already been presented [10].

In most experiments so far, the cold polar molecules have
been confined in macroscopic traps, with trap surfaces typi-
cally several mm from the molecules themselves. There is
now a great deal of interest in confining and manipulating
these molecules much closer to surfaces, so as to build a
“molecule chip” technology analogous to that for atoms [11].
Fast-moving molecules have already been trapped in travel-
ing potential wells formed approximately 25 um above a
microstructured surface [12]. This same structure can be
used to decelerate the molecules to rest so that they can be
trapped above the surface of the chip. Chip-based microtraps
have been designed, along with schemes to interface the
molecules with solid-state devices which could be used to
cool, detect, and control them coherently [13]. Strong cou-
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pling to a superconducting stripline cavity is possible when
the molecules are just a few microns from the surface, and
then the molecules can be the long-lived quantum memory of
a hybrid quantum information processor [14]. Recent devel-
opments also herald the prospect of integrated molecule de-
tectors, based on optical microcavities [15] or ultrathin opti-
cal fibers [16].

These advances raise the question of the heating rates in
the close vicinity of a surface. The influence of such a non-
trivial environment on the internal atomic dynamics is com-
monly known as the Purcell effect [17]. Early theoretical
studies were devoted to the zero temperature case where the
evolution is governed by spontaneous decay. As shown by
linear response theory, the decay rate for an arbitrary envi-
ronment can be given in terms of the classical Green tensor
for the respective geometry [18]. Alternative approaches
have been developed on the basis of classical electrodynam-
ics [19,20] and microscopic models [21] and have been ap-
plied to the case of an atom near a single surface or between
two surfaces. Results for an arbitrary environment of electric
[22] and magnetoelectric bodies [23], including local-field
effects [24,25], have also been obtained on the basis of mac-
roscopic quantum electrodynamics (QED) and have been
used to study atoms in bulk material [22], outside [26] or
inside a microsphere [24], inside a spherical cavity [27], and
even in the presence of left-handed metamaterials [23,28,29].
The linear-response approach has been generalized to finite
temperatures [30] where the internal dynamics is no longer
governed by spontaneous decay alone, but stimulated emis-
sion and absorption of thermal photons also contribute. The
respective environment-dependent transition rates can again
be expressed in terms of the classical Green tensor; in addi-
tion, the thermal photon number comes into play. Ground-
state heating rates of spinless atoms have been predicted to
be very small near surfaces [31], in contrast to the case of
atoms with spin which have been investigated for planar sur-
faces [31,32], wires [33], and carbon nanotubes [34].

In this paper, we calculate heating rates for a number of
polar molecules currently favored by experimenters. On the
basis of macroscopic QED (presented in Sec. II), we solve
the internal molecular dynamics to obtain transition rates of a
molecule in an arbitrary uniform-temperature environment
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(Sec. III). In Sec. 1V, the results are first used to calculate the
rates in free space, and then as a function of distance from
the surface of some common metals and dielectrics, as well
as some unusual metamaterials.

II. MACROSCOPIC QUANTUM ELECTRODYNAMICS
AT FINITE TEMPERATURE

Consider a molecule (or an atom) that is placed within an
arbitrary environment of magnetoelectric bodies. The
coupled dynamics of the molecule and the body-assisted
electromagnetic field can be described by the Hamiltonian
[23,35]

IjlzﬁA+[A{F+FIAF, (1)
where
Hy=2 E,[n)n] )

(E,, molecular eigenenergies; |n), molecular eigenstates) is
the Hamiltonian of the molecule,

[:IF= E

A=e.m

d3rf dwhwﬁt(r,w) . f')\(r, ) (3)
0

is the Hamiltonian of the electromagnetic field (including the
internal charges present in the bodies) expressed in terms of
the bosonic variables

[ai(r, ). fr (@)= 0 =[f(r,0).7, (", 0)],  (4)

[ @), /31 0] = 840 8,0 = £ dlw =) (5)

(note that f'e is associated with the polarization of the bodies
and f,, is related to their magnetization), and

[:IAFZ - E dmn : I,::(rA)AAmn (6)

m,n

(d,,,,=(m|d|n), electric-dipole transition matrix elements of

the molecule; r,, molecular center-of-mass position; Amn
=|m){n|, molecular flip operators) is the molecule-field inter-
action Hamiltonian in electric-dipole approximation. The
electric field can be expressed in terms of the bosonic vari-
ables according to

E(r) = f ’ doE(r,) + Hc., (7)
0

Erw= 2 | &rG(rr. o) Hiw, (8

A=e,m

with the coefficients G, being related to the classical Green
tensor G by

»? f
G (rr',w)=i—\/— Ime’,w)G(rr' 0), ()
c e
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A I !
Goler0) =2 2 g Gt e )T
¢ Ve ur', )

(10)

For a given environment of macroscopic bodies, described
by their linear, local, and isotropic relative permittivity
e(r,w) and permeability u(r,w), the Green tensor is
uniquely defined by the differential equation

2
[VX ! v ><—%s(r,w)]G(r,r’,w):ﬁ(r—r’)

u(r, )
(11)
together with the boundary condition
G(r,r',w) =0 for |r—r'| — . (12)

The above definitions imply the useful integral relation
[23,35]

h
> &sG\(r,s,0) - Gi(r',5,w) = 220 2 1m G(r,r',w).
T

A\=e,m
(13)

In thermal equilibrium at uniform temperature 7, the elec-
tromagnetic field may be described by the density matrix

o~ Hp/ksT) "

Op=—F"— 14

Pr tr[e_HF/(kBT)]

(kg, Boltzmann constant). Thermal averages (...)=tr[...p7]
of the bosonic variables are thus given by

(£ (r,)) = 0 = (t{(r, 0)), (15)

&\ (r, )ty (¢, 0")) = 0= E (o)t (', 0)), (16)
(o) (1, 0)) = n(0) 8, 8r — 1) Sw-o'), (17)

E(r, )t (r',0")) = [n(w) + 118, 8r - 1) - o),
(18)
where

Ekke—kﬁ ol (kgT) 1
n(w) = S o thallgT) = GhalligD) _ |

(19)
is the average thermal photon number. Recalling definitions

(7) and (8), the statistical properties of the electric field are
found to be given by

(E(r,0))=0=(E(r,)), (20)

(E(r,0)E(r',0")=0=Ero)E 1 o)), (1)

(Ef(r,)E(r',0") = Bl ) I Glr.r ) o - o),

(22)
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(E(r,0)E (', 0)
= %[n(w) +1]0* Im G(r,r',0) o - o'), (23)

where we have made use of the integral relation (13). Note
that these relations are in accordance with the fluctuation-
dissipation theorem [36],

<%[13:(r,w>13:"'<r',w’) + E"'(r',w'>13:(r,w)]>

ﬁ'uo[n(w)+—]w Im G(r,r',0)dw— '), (24)

where the thermal photon energy is given by

1 —ﬁw for kT < hw,
hw n(w)+£ —12 (25)

kgT for kyT> ho,

in the zero- and high-temperature limits, respectively.

III. INTERNAL MOLECULAR DYNAMICS

Consider a molecule which is prepared at initial time ¢
=0 in an arbitrary internal state, represented by its internal
density matrix ¢(0). The environment of the molecule is ini-
tially taken to be at uniform temperature 7, so that the elec-
tromagnetic field is in a thermal state p(0)=

The internal molecular dynamics can be determined by
solving the coupled equations

A= 311 Ay]
= i@y + E f dof (A, - diyds) - Bry, )
+ @%(TAJU) : (dnkAmk - dkmAkn)]’ (26)
and
b(r.) = SR (0]

~ i ~
=—iof\(r,0) + — 2 d,,, G, (r,r,0)A,,,

mn

(27)

as implied by the Hamiltonian (1) together with Egs. (2), (3),
and (6). The electromagnetic field can be eliminated by for-
mally solving Eq. (27) and substituting the result into Eq.
(26). For weak molecule-field coupling, the Markov approxi-
mation may then be employed to show that the dynamics of
the internal density matrix of the molecule & is given by the
equations (Appendix A)

d-rm(t) == Fno-nn(t) + E Fkno-kk(t) > (28)
k

PHYSICAL REVIEW A 78, 052901 (2008)

d-mn(t) = [ Wyp z(r +T )] (t)

form#n (29)

( ,,m—(m|6'|n)=<f§,,m)). Here, the total loss rate I, of a level
n is given by

=T () =2 Ty (30)
k

and the individual intramolecular transition rates I',; from
level n to level k read

rnk = 1—‘nk(rA)
=T+ Tt
_ 2k -
fLO ”kdnk Im G(rAvrA’ nk|) : dkn
x{®(wnk)[n nk) + 1] + ®(wkn)n(wkn)} (31)

[O(z), unit step function] where

M= 205,0(6,0, In Glry @) -d, - (32)
and
I-:k_zgo By I Gy, 14, |@y]) - i,
X[O(@,)n () + O(@,)n ()] (33)

denote the zero-point and thermal contributions to these rates
[recall Eq. (19)].

The intramolecular transition rates depend on the shifted
molecular transition frequencies

amn = (an(rA) =Wyt 56()," - 5(,0,,, (34)
where the frequency shift

6(‘)}1 = 6wn(rA) = 2 Swnk (35)
k

of a given level n has contributions
5wnk = 5wnk(rA)
_ s 0 T
= 0w, + Owy,

= ﬂPf dwwz{dnk - Im G(])(rA,rA,w) -dy,
wh Jo

x[n(w)+l+ n(w) ]

(T)nk—w (T)nk+w

old | (e n(w
+|nkl[~<>+~<>” 56
6mc | Wy—w @Oyt o
(P, principal value) due to all other levels k, which can again
be separated into their zero-point and thermal parts,
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0

- Tm GV(rry, ) - dy,
5w2k=5w2k(rA)=%pJ deww> % m (ry,ry, ) - dyg

0 Wy — @
(37)
and
S0’ = Sw! (r,)
= &P ’ dwwzdnk -Im G(rA,l'A,(.U) . dkn

o Jo

y [ﬂ ﬂ] G8)

(an - (an + w

respectively. Here, G'" denotes the scattering part of the
Green tensor according to the decomposition

G(r,r',w)=Gr,r',0)+ GV (r,r,w) (39)

where the imaginary part of the bulk (free-space) part is
given by [37]

Im GO(r,r,0) = —1 (40)
67c

(Z, unit tensor). The free-space zero-point frequency shifts
associated with G, i.e., the free-space Lamb shifts, are in-
cluded in the bare transition frequencies w,,, since they are
determined experimentally in free space. The Green tensor
being analytic in the upper half of the complex frequency
plane, one can employ contour-integral techniques to rewrite
the frequency-shift contributions as

5wnk =— %aikdnk -Re G(I)(rAsr/‘nank) : dkn

X{O(@,)[n(@,) + 1] = O (@, )n(@y,)}

2 ptokpT < B
+ 223 > (1= 8y Exr
N=0
X dy- GV(rprpéy) - dyy
@i+ €y
2 ©
 Foldul? f dwaﬁ[ W) | ) }
6m*ch  J, Op—® D+ w

(41)

[note that Re G(r,r’',—w)=Re G(r,r’,w) for real w] with
Matsubara frequencies

27TkBT

&= N, N=0,1,... . (42)

When neglecting the frequency shifts, the transition rates
(30)—(33) obviously reduce to the well-known results given,
e.g., in Ref. [30].

It is worth noting that the internal molecular dynamics
described by Egs. (28) and (29) obeys probability conserva-
tion,

PHYSICAL REVIEW A 78, 052901 (2008)

d
Ztr 6'(1) = E d-nn(t) == 2 1—‘nko-nn(l‘) + 2 1—‘kna-kk(l‘) =0,

nk nk
(43)
where we have used Eq. (30). From the property
Fnk = ehank/(kBT)Fkn (44)

of the transition rates [see Eq. (31)], it follows that in the
long-time limit the molecule reaches a thermal state as its
steady state

oSl g T)
Ht—o)=¢pz= — 45
( = tr[e‘EnEnlan\/(an] (45)

with

E,=E,(r,) =E,+hdw, (46)

denoting the shifted molecular eigenenergies. This can be
verified by noting that for this state the internal molecular
evolution as given by Egs. (28) and (29) becomes static,

d-nn(t — oo) == 1—‘no-nn,T + E Fkno-kk,T
k

—h@® k @
=- E Fnko-nn,T + E € ﬁw”k/(kBT)Fnehwnk/(kBT)a-rm,T
k k
=0, (47)

Ot — ) = 1@t a2} g, r=0 form#n.
(48)

According to Egs. (30) and (31), the heating rate of a
molecule prepared in its ground state |0) is given (initially)
by

1_‘0 = E 1—‘Ok
k
= E ng
k
2p0N 2~ _
= ﬁoz wfon(wko)d()k -Im G(rA,rA,ka) . dkO? (49)
k

due entirely to the absorption of thermal photons.

IV. APPLICATIONS

The energy associated with electronic excitation of mol-
ecules is typically large in comparison with thermal energy at
room temperature, i.e., exp[—fw,q/ (kgT)]<1, so according
to Eq. (44), the fully thermalized state effectively coincides
with the electronic ground state. This argument does not ap-
ply to the rotational and vibrational excitations of polar mol-
ecules, which occur at much lower frequencies. In this sec-
tion, we study the ground-state heating rates I';, which
provide a measure of the time scale on which this thermal
excitation of the rotational and vibrational states takes place.
We will assume that the frequency shifts induced by the en-
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TABLE I. Properties of various diatomic radicals: electronic ground state, rotation and vibration con-
stants, dipole moment and its derivative at equilibrium bond length, and reduced mass. For comparison with

the constants used in [10], see [38].

Species Ground state B, (GHz)  w, (THz)  p, (10730 Cm) ! (1021 C)  m (1077 kg)*
LiH x's* 222 [40]  42.1[10] 19.6 [41] 60.5 [10] 1.46
NH X33 500 [42]  98.4[42] 5.15 [43] b 1.56
OH* X211 555 [45] 112 [47] 5.56 [48] 17.9 [49] 1.57
oD°® X 300 [50]  81.6 [50] 5.51 [48] b 2.97
CaF X23* 105517 18.4[42] 10.2 [52] 172 [42] 214
BaF X3t 6.30 [10]  14.1[10] 11.7 [10] 285 [10] 27.7
YbF X3t 720([53] 152 [54] 13.1 [53] 195 [55] 28.4
LiRb x!s* 6.60 [56]  5.55[10] 13.5 [57] 21.4[10,38] 10.8
NaRb xS 2.03[56]  3.21[10] 11.7 [57] 12.6 [10] 30.0
KRb x's* 1.15[58]  2.26[10] 0.667 [57] 1.89 [10] 443
LiCs x's* 5.80[59]  4.92[10] 21.0 [57] 28.4[10] 11.1
NaCs X!zt 17.7[59]  2.94[10] 19.5 [57] 21.4[10] 325
KCs xS 928 [59]  1.98[10] 8.61 [57] 6.93 [10] 50.0
RbCs x's* 0.498 [60]  1.48[10] 7.97 [57] 4.41[10] 86.0

“Reduced masses are given on the basis of the atomic masses (most abundant isotopes) of the molecular

constituents as stated in Ref. [39].

°For NH and OD, the electric-dipole matrix elements for the transition between ground and first excited
vibrational states can be given as |dg=1.80X 103! Cm [42] and |dy|=7.54 X 10732 Cm [44], respectively.
“The spin-orbit coupling constants required for OH and OD are A=-4.189 THz [45] and A=—4.174 THz

[46], respectively.

vironment are small enough to justify putting @,,,=w,,,. In
this case the thermal excitation rate from the ground state to
state k becomes
Top= 2202
=y wi(wpo)doy - Im G(r .1y, wp0) - dyg. (50)
This has the great virtue that the temperature appears only in
the thermal photon number n(wy) [recall Eq. (19)], while the
position enters only through the Green tensor G. Therefore
the dependence on temperature can be derived entirely from
considering the free-space case, while the position-
dependence can be understood completely from the behavior
at zero temperature.

A. Molecules in free space

In free space, the Green tensor is given by Eq. (40), so the
molecular transition rates become

T =T
=T +T7

|wnk| |dnk|

3mhegc 23 {®(wnk)[n(

wnk) + 1] + ®(wkn)n(wkn)}
(51)

with

nk‘ nk| @( nk)

r —
nk — 3’7Th

(52)

and

|wnk| |dnk|

rr =
nk 3’7Tﬁ0

3 [O(w)n(wy) + O(wy,)n(wy,)]. (53)
The total heating rate of a molecule initially prepared in its
ground state thus reads

w0k|d0k|
F = F = ——
0 % 0k % 3mhiec g”(wko)

(54)
in agreement with Ref. [10].

The ground-state heating rate of polar molecules will be
dominated by transitions to the adjacent excited rotational
and vibrational states, so we restrict our attention to these in
the following. We calculate the heating rates for the set of
ground-state polar molecules listed in Table I, which also
gives the required molecular constants.

We begin by considering rotational heating. To evaluate
Eq. (54) we will calculate the matrix elements of the electric
dipole operator using Hund’s case (a) basis states [61]. In

this coupling scheme, the orbital angular momentum L is
strongly coupled to the internuclear axis, and so is the elec-

tron spin S, due to a strong sp1n orbit couphng The total

angular momentum is J=L+S+R, where R is the angular
momentum of the rotating nuclei and is necessarily perpen-

dicular to the internuclear axis. The projections of L, S, and
J onto the internuclear axis are labeled by the quantum num-

bers A, 2, and Q=A+2. The projection of J onto the space-
fixed z axis is M. The basis states are labeled by the quantum
numbers S, A, 2, Q, J, and M.
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For transitions between the rotational states, the matrix
elements of the electric dipole operator are

d,,, = (QJM|d|Q' T M)
= u(QIM|G|Q T M)
= o] (=032 4 4 )2 e |,
\2 \2
(55)

where u, is the molecular dipole moment at the equilibrium
internuclear separation, 4=#/|f|, and

ul =(= DM N2I+1)(2) +1)

mn

X(J 1J'><J 11’) s
-M g M')\-Q 0 Q') (56)
With this result, we obtain the selection rules for transitions
between the basis states: AQ=0, AJ=0,=*1, and AM
=0, = 1. In this paper, we will not consider mixing of the
electronic ground state with other electronic states, which
leads to A doubling, because the energy splitting that is in-
duced is very small compared with the rotational energies
and so does not alter any of our results. In this approxima-
tion, the states | = QJM) are degenerate, and since AQ=0 we
can confine our attention to the positive values of () only.
While our equations make it clear how to handle initial states
of given M', we will consider the initial molecular state to be
unpolarized, averaging over the possible values of M.

The majority of the molecules listed in Table I have A
=0 ground states. These molecules are best described using
Hund’s coupling case (b) [61]. The spin is not coupled to the
internuclear axis and neither 3 nor () is defined. The rota-
tional eigenenergies are

Ey=hB.N(N+1), N=0,1,..., (57)

where B, is the rotational constant and N is the rotational

quantum number, N=J-S. The expansion of the 3 eigen-
states in the case (a) basis is [61]

N

—(J
SNJMy= > (—1) V2N +1

( N>|QJM>
Q=-5 Q-0 0 T

(58)

Using Egs. (55), (56), and (58), summing over the possible
final states and averaging over initial states of different M’,
we find 3do/>=p2 for 'S, 23, and *S molecules. For S
molecules, the ground state [N=0,J/=1/2) can be excited
either to [N=1,J=1/2) or to |[N=1,/=3/2), with branching
ratios 1/3 and 2/3, respectively. The spin-rotation interac-
tion lifts the degeneracy between these states, but this split-
ting is very small and we do not need to include it. For )
molecules, the ground state [N=0,J=1) can be excited to the
three states with N=1 and J=0,1,2, with branching ratios
1/9, 1/3, and 5/9, respectively. Again, we can neglect the
small spin-rotation interaction that lifts the degeneracy be-
tween the three states.

PHYSICAL REVIEW A 78, 052901 (2008)

The electronic ground states of OH and OD are *IT states
and, for low values of J, are best described using Hund’s
coupling case (a). The Hamiltonian describing the fine struc-

ture contains a rotational part and a spin-orbit coupling, ﬁ,~s

=hAf,-§+hBe(j —I:—é)z. The rotational term couples states
of the same J but different ||. Writing the matrix elements

of the Hamiltonian as mq, o, =(QJM|H Q' JM)we have [61]

mI2I2 =+ WAL+ hBLIU+ 1) =3/4F 1], (59)

m3/2’1/2 = - hBe\\‘J(]‘F 3/2)(.,— 1/2) (60)

Diagonalizing this Hamiltonian gives a pair of energy eigen-
values for each value of J>1/2,

E;=hBJ[(J+1/2)*-1=* Q/2], (61)

where

Q=\4(J+1/2)> + AIB,(AIB, - 4). (62)

We will use the labels F; and F, to denote the states of
lower and higher energy, respectively. For the low-J levels of
OH and OD, the mixing of () states is small because |A| is
considerably larger than B.J. Recalling that A is negative for
these molecules, we can then identify F'; as having predomi-
nantly 21'13,2 character, and F, as predominantly 21'[1 1. For
J=1/2 there is only one level, which is of pure Q=1/2
character. The eigenstates are

|F M) = c (D)]172,0,M) + c_(])|3/2,J,M),
J=3/2,5/2, ..., (63)
|[Fod MY =c (N)|3/2,0,M) = c_())|1/2,J,M),

J=1/232..., (64)

where

c+(J)=v1/2 = (A/B,-2)/(2Q). (65)

Using the selection rules between the basis states, we see that
the possible transitions out of the molecular ground state
|Fy,J=3/2) are those to the states (a) |F,,J=5/2), (b)
|Fy,J=1/2), (c) |F5,J=3/2), and (d) |F,,J=5/2). Applying
Egs. (55) and (56) to each of these four transitions, summing
over the M sublevels in the final state, and averaging over
the M’ sublevels in the initial state, we obtain

3 2
2 ldl*= [gci(yz)ci(S/z) + gc3(3/2)c%(5/2)
k(a)

6 [2
s \/;c+(3/2)c+(5/2)c_(3/2)c_(5/2) w2,

(66)

1
E ‘d0k|2 = 503(3/2)//«5’ (67)
k(b)
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TABLE II. Free-space lifetimes for rotational heating out of the
ground state at 293 K and 77 K. For OH and OD, the effects of the
transitions (a)-(d) (see main text) are also shown separately. Also
given are the frequency and the square of the dipole matrix element
for each transition. For comparison with the results of [10], see
[38].

70 (s)
= doel?
Species =% (GHy) k'—f"l 293 K 77K
2w e
LiH 444 1 2.1 9.1
NH 999 1 6.4 31
OH 2.1 17
() 2.51x10° 0.405 2.4 18
(b) 3.80 % 10 0.00999 49 550
(c) 5.64 % 10 0.00775 34 720
(d) 8.67%x10° 0.00124 120 8400
oD 6.3 37
(a) 1.41x10° 0.402 7.2 39
(b) 3.93 % 10 0.00381 120 1400
(c) 4.89% 103 0.00302 110 1800
(d) 6.48X10°  0.000636 340 10 000
CaF 21.0 1 3400 13 000
BaF 12.6 1 7200 28 000
YbF 14.4 1 4400 17 000
LiRb 13.2 1 4900 19 000
NaRb 4.05 1 70 000 260 000
KRb 2.30 1 6.7x107  25x108
LiCs 11.6 1 2600 10 000
NaCs 35.5 1 330 13 000
KCs 186 1 62 250
RbCs 0.995 1 25%X10°  9.5%X10°
4
2 ldo = i (32)c2(312) 2, (68)
k) 15

3 2
% g = [5c3(3/2)ci(5/2) + gc3(3/2)c3(5/2)
k(d

- g \/§C+(3/2)c_(3/2)c+(5/2)c_(5/2) W2,

(69)

With these preparations, we can now evaluate the rates for
free-space rotational heating out of the ground state, for the
molecules listed in Table I. The lifetimes, 79=('©)"!, are
given in Table II for environmental temperatures of 293 K
and 77 K. Since there is little variation of the dipole mo-
ment, the lifetime is mainly determined by the power of the
thermal spectrum at the transition frequency. Apart from the
weakest transitions in OH and OD all these lines lie on the
low side of the peak frequency in the thermal spectrum,
which is 17 THz at 293 K or 5 THz at 77 K. Note that the
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FIG. 1. Free-space lifetimes of the ground state against rota-
tional heating as a function of environment temperature for LiH
(thick solid line), NH (thick dashed line), OH(a) (thick dotted line),
OD(a) (thin solid line), and KCs (thin dashed line).

rotational constant is roughly given by B,~#/(4mmR?),
where R, is the equilibrium internuclear separation and m
=mm,/(m;+m,) is the reduced mass, so as a rule of thumb,
rotational heating is most severe for the light molecules.
Strong heating is seen for LiH, NH, OH, OD, whose life-
times are in the range of 2—6 seconds. For KCs and NaCs
the heating is much less severe, and for the rest it is negli-
gible for most practical purposes. Table II also shows that
rotational heating of OH and OD is dominated by transition
(a), with the other transitions providing small corrections to
the heating rate, even though they are at higher frequencies.
This behavior is due to the exceedingly small transition di-
pole moments of the latter transitions. The rotational excita-
tion lifetimes of all these molecules can be extended by go-
ing to lower environmental temperatures. Figure 1 illustrates
this temperature dependence in the light molecules LiH, NH,
OH, OD, and KCs.

Let us next turn our attention to vibrational heating. To a
good approximation, the vibrational eigenenergies of the
deeply-bound states of a diatomic molecule are

1
Evzhwc<v+5), v=0,1,..., (70)

where w, is the vibrational constant and v is the vibrational
quantum number. The corresponding eigenstates are

a\"* 1 — 2
(glv) = (—) —H,(Vag)e 0", (71)
T V2!

where g=R-R,, R being the internuclear separation, H, are
the Hermite polynomials and a=27mw,/h. Expanding the
electric-dipole operator in a Taylor series about the equilib-
rium separation, a*(,u#,uéé)ﬁ, and recognizing that the
first term cannot couple different vibrational states, we write
the matrix elements for rovibrational transitions in the form
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TABLE III. Lifetime against free-space vibrational heating out
of the ground state for various polar molecules at 293 K and 77 K.
For comparison with the results of [10], see [38].

79 (s)

Species % (THz) T=293 K T=77K
LiH 42.1 25 6.5%x10°
NH 98.4 310 000 1.3x10%
OH 112 9.8 10° 2.2%10%
oD 81.6 200 000 3.7x 102!
CaF 18.4 4.7 23 000
BaF 14.1 1.8 1300
YbF 15.2 4.1 4700
LiRb 5.55 128 2700
NaRb 321 1400 13 000
KRb 2.26 120 000 850 000
LiCs 4.92 80 1300
NaCs 2.94 580 4900
KCs 1.98 12 000 74 000
RbCs 1.48 63 000 350 000

WQIM|d|p' Q' IM'Y = ! (QIM[G|Q' T M"Y vlglv").
(72)

We see from this equation that the rovibrational transitions
must satisfy the same rotational selection rules as already
given above, and that to leading order in ¢, the vibrational
selection rule is Av=* 1. For transitions between v’ =0 and
v=1 we have

1 [ &
=1|glv' =0)=—== . 73
(w=1lgl ) \2a 4dmmo, (73)

We neglect the contribution of rotational energy to the tran-
sition frequency since it is typically smaller than the vibra-
tional energy by two orders of magnitude. This means that
we can simply add up the contributions of transitions (a)—(d)
in calculating the transition dipole moments for OH and OD.
Thus we obtain

fipy’
Jrots (74)

dmmwo

2 |d0k|2=
k

where f,,;=1 for the 3 molecules, while for molecules with a
’I1,,, ground state,

14 2 4
Fror= Eci(:;/z) + gc%(3/z) + Eci(sxz)&(yz). (75)

The calculated lifetimes for free-space vibrational heating
out of the ground state are given in Table III for 7=293 K
and T=77 K. These lifetimes are mainly determined by the
vibrational transition frequencies. Since w, > 1/m, the light-
est molecules have the highest vibration frequencies, which
lie above the 17 THz peak of the room temperature spec-
trum, while the heaviest molecules vibrate well below this
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FIG. 2. Ground-state vibrational heating lifetimes in free space
vs temperature for LiH (thick solid line), CaF (thick dashed line),
YDbF (thin solid line), and BaF (thick dotted line).

frequency. The vibrational transition frequencies of CaF,
BaF, and YDbF fall close to this maximum, and of the mol-
ecules considered these three also have the largest values of
ue. For both reasons, the ground-state lifetimes of these mol-
ecules are limited by vibrational heating to less than 5 s. For
LiH and LiCs the vibrational heating is an order of magni-
tude slower, while it is exceedingly slow for all the other
molecules. This slowness is mainly due to inefficient cou-
pling with the thermal radiation which occurs both for the
heavy molecules LiRb, NaRb, KRb, NaCs, KCs, and RbCs
whose vibration frequencies are too low and, even more
strikingly, for the light molecules NH, OH, and OD whose
frequencies are too high. Due to the large transition frequen-
cies, the impact of lowering the environment temperature is
even more striking for vibrational heating than in the rota-
tional case. This is illustrated in Fig. 2 where the temperature
dependence of the lifetimes is displayed for the molecules
LiH, CaF, BaF, and YbF, which are most strongly affected by
vibrational heating.

The relative importance of rotational vs vibrational heat-
ing varies from molecule to molecule. Rotational heating
dominates for the hydrides and for NaCs and KCs, while
vibrational heating is dominant for the fluorides in the list,
and for the other alkali dimers.

We have confined our attention to the rates for rotational
and vibrational excitation out of the ground state. The calcu-
lation is very easily adapted to the excited states, remember-
ing that then there will be both excitation processes to higher
lying states, and deexcitation processes to lower lying ones.
For the latter processes, n(wy) should be replaced with
n(wyp)+1 to account for spontaneous emission. The calcula-
tions also need to be modified if applied electric or magnetic
fields are present, so as to account for the Stark or Zeeman
shifted transition frequencies, and any associated change in
the transition dipole moments.

B. Molecules near a surface

We turn now to the question of how proximity to a surface
can affect the heating rate. Let us consider a molecule at
distance z, from the surface of a homogeneous magnetoelec-
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tric body of (relative) permittivity e(w) and (relative) perme-
ability u(w). The body can be modeled by a semi-infinite
half space provided it is close enough to the molecule and
sufficiently smooth. The scattering part of the Green tensor is
then given by

G(r.r, zlfdiziﬁz
(r,r,w) 57, qﬁe

) 2.2
(76)
where
w(w)B- B e(@)B- B
— b = 77
P BB T W) B "

are the reflection coefficients for s- and p-polarized waves,

[? w’
ﬁ: 5 - 2, B] = _28(0))1“(0)) - q2 (78)
c C

(Im B, Im B, =0) denote the z component of the wave vector
in free space (B) and inside the half space (8;) and g¢ is its
component parallel to the surface. For computational pur-
poses, it is often convenient to express the Green tensor as an
integral over 3,

2 2

. wlc
G(l)(r’n w) = Lf dﬁeZiﬁz[<rs - B_Cz‘rp> (exex + evev)
87, 1] o

2.2
+ 2(1 - Bw—i)rpezez]

(" b’c?
t o . dbe‘z”z[ <rs + w_ir”> (e, +ee)
b*c?
+2(1 + 7>rpezez (79)

(B=ib). Here, the first term represents the oscillating contri-
butions due to traveling waves, while the second term con-
tains the exponentially decaying contributions from evanes-
cent waves.

Transition rates for a molecule near a half space can be
obtained by substituting the scattering part of the Green ten-
sor GV [as given by Eq. (76) or Eq. (79)] together with its
free-space part [Eq. (40)] into Eq. (31). The ground-state
heating rates then take the particularly simple form

I(ry) = ro . F(l)(rA)

=F<°>[1 +@Im tr GV (r,,ry,w) | (80)
Wio
In general, the integral appearing in Eq. (76) or Eq. (79) has
to be evaluated numerically, but analytic results can be ob-
tained for sufficiently small or large molecule-surface sepa-
rations. The nonretarded limit applies to short distances,
where z|\eu|w/c <1, while the retarded limit holds for long
distances such that zw/c> 1. For the materials we consider
in this paper, \a| takes on values between 65 and 27 000
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for rotational transitions and between 4.5 and 700 for vibra-
tional transitions, depending on the molecule and the mate-
rial. Consequently, there is quite a large range of intermedi-
ate distances where neither limit applies.

In the nonretarded limit, the Green tensor (79) is domi-
nated by the integral over evanescent waves, which effec-
tively extends up to a wave vector b=1/(2z). Over most of
this region, B==;=iq, allowing us to use the approxima-
tions

_mo)-1
wlw)+ 17

~8(w)—1
_s(w)+1'

s » (81)
Performing the remaining integral and retaining only the
leading order in zw/c, one finds that in this nonretarded

limit, the Green tensor is well approximated by [31]
A elw)-1

G(r,r,0)=—
(r.r,o) Nrwde(w)+ 1

(e,e,+ese, +2ee,).

(82)

Note that by retaining only the leading order in zw/c, the
dependence on r, and thus also that on u has vanished. In
any case, u is close to 1 even for the ferromagnetic metals at
the typical frequencies of interest here (i.e., w/27
> 10 GHz). On substituting Eq. (82) into Eq. (31), we obtain
the approximate, near-field transition rate

|dnk|2 + ‘dnk,z
8mreohiz)
X{O(w,)[n(wy) + 1] = Owy,)n(wy,)}. (83)

In particular, the ground-state heating rates (80) are ap-
proximated by

: Im S(wnk)
|s(wnk) + 1|2

T(z) =T +

3
I(zy) = F“”( h+ ZT) (84)
z

where

C 3 Im S(Q)ko)
In=— \|———— 85
" wg V 20e(wg) + 1 ®
is a scaling length that applies to calculations in the nonre-

tarded limit. For a metal with permittivity
wp

s(w)=1- (86)

o(w+1iy)

and for sufficiently small transition frequency, w;y<< y< wp,
Z, may be estimated by the simple relation

3 Y
2 2 -
2wpwig

Zu=C (87)
The plasma frequency, wp, and damping constant, 7y, are
given for various conductors in Table IV.

We stress that Eq. (84) applies only in the nonretarded
limit, and that the distance z,, typically lies well outside this
limit. We define a second relevant length scale, z., the char-
acteristic distance at which the surface-induced rate becomes
equal to the free-space rate. This does not coincide with z,,,
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TABLE IV. Drude parameters for various conductors. Values are
taken from Ref. [62], with the exception of those for ITO (indium
tin oxide) [63]. The list is in order of decreasing w3/, which cor-
responds to increasing surface heating rate.

Material wp (rad/s) v (rad/s) wlz,/ v (rad/s)
Au 1.37x 106 4.12x 1013 4.53%10'8
Al 2.25% 100 1.22x 10 4.15% 108
Pd 8.36 X 1013 2.16x 1013 3.24%10'8
Ag 5.77x 10" 1.15x 108 2.89x10'8
Cu 1.12x 106 4.41x108 2.87 %1018
Mo 1.14 % 106 7.86X 1013 1.65%10'8
Fe 6.23x 10" 2.79x 1013 1.39x10'8
Co 1.18 x 106 1.07 X 10 1.29x 10'8
W 9.72 X 10'5 8.53x 103 1.11x10'8
Ni 7.44 % 10'5 6.53x 1013 8.49 x 107
Pt 7.75 X 10%5 1.04 X 10 5.75 % 10'7
ITO 3.33%x 101 1.68x 104 6.63 X 100

because the nonretarded limit is not valid at this distance. We
have calculated z. by numerical integration of Egs. (79) and
(80) and we present the results for molecules near a gold
surface in Table V, and for a range of other conductors in
Appendix B. Table V also gives the corresponding values of
Znr» Which are typically 2-5 times smaller.

Since Eq. (84) does not apply at length scales in the vi-
cinity of the critical distance, we searched for an alternative
formula by fitting to the numerical results obtained from the
integration of Egs. (79) and (80) at distances z<z.. We find
that for the molecules and surface materials studied, the heat-
ing rates throughout this range are well approximated by the
empirical formula

2 3
r(zA)=r<0)(1 +Z—2+Z—;> (88)
W

Furthermore, a fit to the set of critical distances for rotational
heating given in Appendix B, suggests the approximate for-

mula
3¢ 4y
=N 89
‘e 4 2wiw) (89)

P@ko

This empirical formula was found to be accurate to within
1% for all the surfaces and molecules considered, except in
cases where the critical distances are particularly small (the
hydrides and KCs), where deviations between 1% and 10%
are more typical. The same formula does not accurately pre-
dict the critical distances for vibrational heating, but these
are of less importance due to their very small values. We
stress again that Eq. (88) is only empirical as the z;” term has
no physical interpretation.

The critical distances given in Table V show that the sur-
face does not generate any significant heating when the mol-
ecules are more than a few hundred um away. However, if
the molecules are held a few wum from a surface, as they
might be on a molecule chip, there is a substantial increase in
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TABLE V. Nonretarded length scales and critical distances for
surface enhancement of rotational and vibrational heating rates near
a gold surface.

Rotational Vibrational

Species Zyr (um) ¢ (um) Zyr (um) ¢ (um)
LiH 0.73 1.9 0.035 0.071
NH 0.42 1.0 0.020 0.042
OH 0.018 0.0039
(a) 0.23 0.50

(b) 0.17 0.36

(c) 0.13 0.27

(d) 0.10 0.20

OD 0.022 0.0048
(a) 0.34 0.78

(b) 0.17 0.35

(c) 0.15 0.30

(d) 0.12 0.24

CaF 55 19 0.061 0.12
BaF 7.8 27 0.072 0.14
YbF 7.1 25 0.069 0.14
LiRb 7.6 26 0.13 0.27
NaRb 17 64 0.19 0.41
KRb 24 98 0.24 0.54
LiCs 8.2 29 0.15 0.30
NaCs 39 13 0.21 0.44
KCs 1.3 3.6 0.27 0.60
RbCs 42 180 0.33 0.75

the rotational heating for all the molecules considered, apart
from the hydrides. Even in cases where the free-space rate is
small, the enhanced rate can be very large because of the
rapid inverse-power scaling. For example, in free space, the
rotational heating time of CaF, 3400 s, is enormous com-
pared with the vibrational lifetime of 4.7 s. However, at a
distance of 1 um from a room temperature gold surface the
lifetime for rotational excitation drops to about 8 s and at
smaller distances the rotational heating rate dominates over
the vibrational rate. For the hydrides, the high rotational fre-
quency that gives them rapid free-space heating also makes
them relatively insensitive to the proximity of the surface
except at submicron distances.

Figure 3(a) shows the critical distances for rotational heat-
ing of various molecules near a range of surfaces. It is seen
that their frequency scaling follows quite nicely the w™*
dependence given by Eq. (89), which is indicated by the
solid line. This trend continues in Fig. 3(b), which shows the
critical distances for vibrational heating. These are, of
course, smaller because the vibrational frequencies are
higher.

Equation (87) shows that the short-range heating depends
on the surface material through the factor wp/y. A low value
of this ratio leads to a large critical distance and hence to
more surface-induced heating. The values are displayed in
the last column of Table IV for various metals in order of
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FIG. 3. Exact critical distances for surface-induced heating vs
frequency of the molecular transition. (a) Rotational heating. (b)
Vibrational heating. Surface materials are gold (circles), iron
(squares), platinum (diamonds), and ITO (triangles). Frequencies of
the plotted data points correspond (left to right) to RbCs, KRb,
NaRb, LiCs, BaF, LiRb, YbF, CaF, NaCs, KCs, LiH, NH, OD(a),
and OH(a). Solid lines indicate the slope corresponding to the w4
frequency dependence given by the empirical formula (89).

decreasing wlz,/ v. In this list, gold is the metal of choice
when trying to minimize surface-induced heating of the mol-
ecules, as also indicated by the circles in Fig. 3. At the op-
posite extreme lies indium tin oxide (ITO), which we include
here because of its attractive combination of conductivity
and optical transparency. It has a low plasma frequency and
a high damping rate y and so generates stronger heating, as
shown by the triangles in Fig. 3. The values for other metals
generally obey the wlz,/ vy scaling, though there are some ex-
ceptions where values of w;‘;/ 7y are very similar.

As indicated by Eq. (85), the surface-induced heating will
be particularly large in cases where |¢| is not large, but & has
a significant imaginary part. This never happens for a con-
ductor, but can occur for dielectric media that happen to be
strong absorbers at the relevant frequency. As an example,
consider borosilicate glass which has £=6.2+0.21i for fre-
quencies in the tens of GHz range [64]. The critical distance
for rotational heating of CaF near such a surface is about
620 pum, very much larger than for a metallic surface. The
time scale for rotational heating, which is 3400 s in free
space, is thus reduced to just 0.14 s when this molecule is
10 um from such a glass surface.

Next, we turn to the retarded limit, where zw/c> 1, so the
integrand in Eq. (79) is rapidly oscillating or decaying over
most parts of the integration regime. The main contribution
to the integral (79) comes from the region around the
stationary-phase point g=0, so that we may approximate

PHYSICAL REVIEW A 78, 052901 (2008)

— —
Vu(w) = Ve(w)

Fy= = e——.
V(o) + Ve(w)

The integral can then be performed, and upon retaining the

leading order in ¢/(zw), one finds that the Green tensor in the
retarded limit reads

(90)

eZizw/c \M(w) _ \8((1))

87z () + Ve(w)

GV(r,r,0) = (ee,+ee). (91)

Consequently, the transition rates (31) are given by

2
r (Z ) _ F(O) wnk(|dnk,x‘2 + |dnk,y‘2)
neA k dmreghciz,

le( Vilon) = Ve(wn) 2>
\Iu‘(wnk) + \““s(wnk)

X{O(w,)[n(w) + 11- Oog)n(wy,)}: (92)
e[>|u

for a good conductor, , they further simplify to

2 2 2

w (|d g |7+ |dy 27,0

Fnk(ZA) — FS,()() _ nk(l nk,x' 2| nk,y' ) sin( A nk)
4aephczy

C
X {®(wnk)[n(wnk) + 1] - ®(wkn)n(wkn)}- (93)

In particular, the ground-state heating rates (80) are given by

C

F(ZA) = F(0)|:1 +

2z

" Im(%ﬂﬂemw) ]

N f
V(o) + Ve(wyo)

~ F(O)[l - sin(M”. (94)

2ZAwk() C

Thus, the surface-induced modification of the heating rates in
the retarded limit is an oscillating function of distance, where
the amplitude of the oscillation follows a zgl power law. In
particular, the heating rates approach their free-space values
in the limit z, — o°.

In order to see the entire distance dependence of the heat-
ing rate it is necessary to calculate the rates as given by Eqs.
(79) and (80) numerically. The results are displayed in Fig. 4
where we show the total heating rates as a function of dis-
tance for OH, LiH, CaF, and NaCs molecules at distances in
the range 1-500 um from a gold surface. In all cases, the
vibrational heating rate is dotted, the rotational rate is
dashed, and the total rate is a solid line. For OH the heating
is entirely dominated by the rotational transitions over the
whole of this distance range, and the vibrational contribution
does not even appear in the plot. The heating rate is modu-
lated with a period of 60 wm just as expected in the retarded
limit [Eq. (94)]. The heating rate is not greatly altered from
its free space value, even at the shortest distance considered.
For LiH, the heating is again dominated by the rotational
transitions. The far-field oscillations modulate the rate and
we see roughly one cycle with a period of 338 um. The
heating rate rises sharply inside the critical distance for rota-
tional excitation, which is 1.9 um, whereas the vibrational
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FIG. 4. Heating rates for (a) OH, (b) LiH, (c) CaF, and (d) NaCs vs distance from a gold surface. Solid lines: total heating rate. Dotted
lines: vibrational excitation rate. Dashed lines: rotational excitation rate.

contribution, having a much shorter critical distance, remains
essentially constant down to 1 wm. For CaF, the heating is
dominated by vibrational excitation at 18.4 THz, correspond-
ing to an oscillation period in the far field of 8 um, which
can clearly be seen. Inside the 19 um critical distance for
rotational heating, we see a dramatic increase in the rota-
tional contribution to the rate, such that the two contributions
are roughly equal at a distance of 1 um from the surface. For
NaCs, the two contributions are roughly equal in the far field
and both are rather small. The 3 THz vibrational heating
exhibits the expected far-field oscillations, while the rota-
tional heating is at too low a frequency to show oscillations
over this range. Inside the 13 um critical distance, the rota-
tional heating increases rapidly, becoming a thousand times
faster at a distance of 1 um.

In Fig. 5, we show once again the heating rate for NaCs as
a function of distance from a gold surface (solid line). This
figure also shows for comparison the heating rates near iron
and ITO surfaces. At distances large enough for the retarded
limit to apply, the heating rate given by Eq. (94) is indepen-
dent of the particular metallic surface since these are all good
conductors at the relevant excitation frequencies. At short
range, however, where the near-field limit of Eq. (84) ap-
plies, the heating rate becomes proportional to y/ w%. As
shown in Table IV, this ratio differs widely between these
materials and is a hundred times larger for ITO than for gold.
For this reason, the ITO surface produces a larger heating
rate at short distance and exhibits a longer critical distance
than gold, as seen in Fig. 5.

So far, we have discussed surface-enhanced heating in the
presence of metallic and dielectric surfaces. It is also inter-

esting to consider the heating rate for molecules in the vicin-
ity of metamaterials, since these offer tunable magnetoelec-
tric properties [65,66], and can even be left handed [67]. A
left-handed medium is realized when the real parts of both &
and u are simultaneously negative, leading to a negative in-
dex of refraction and a number of counterintuitive effects
associated with the propagation of the electromagnetic field
inside such a medium [67]. Since the surface-enhanced heat-
ing rate of a single interface depends solely on the reflected
electromagnetic field, one would expect it to be insensitive to
left handedness. For weakly absorbing media, the oscilla-
tions seen in the retarded limit are small when the signs of
Re € and Re w are both positive or both negative. In the case
where Re e=Re u, and the imaginary parts are small, there

I'(s™1)

LOOOR NaCs
0.500
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oy 7Alum)
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FIG. 5. Heating rate for ground-state NaCs as a function of the
distance from gold (solid line), iron (dashed line), and ITO (dotted
line) surfaces.
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FIG. 6. Heating rate for ground state LiH as a function of dis-
tance from fictitious metamaterials with &(wyg)=m(wyg) == 10+i
(solid line), &(wy)=10+i, m(wi)=-10+i (dashed line), and
S(wk()) =—10+1i, ;L(wk()) =10+ (dotted line).

are no oscillations at all since r, and r,, are then very close to
zero. The amplitude of the oscillations is greatest when these
reflection coefficients have their maximum values of 1. As
we have already seen, this occurs for metals because |g] is
much larger than |u/. In the context of metamaterials, reflec-
tion coefficients close to unity are obtained for any weakly
absorbing medium where Re ¢ and Re u have opposite signs.
Note that this result is insensitive to the magnitudes of Re &,
Re ., which neither need to be equal nor particularly large;
they need only be of opposite sign and considerably larger
than the imaginary parts. A metamaterial engineered with
these properties would produce large oscillations in the heat-
ing rate with a phase determined by the chosen values of
Re g, Re u. Figure 6 shows the heating rate of a LiH mol-
ecule near fictitious weakly absorbing metamaterials with
Re e= £Re u. We see that the left-handed material (Re g,
Re u<0) gives rise to exactly the same heating rate as a
comparable ordinary material with Re &, Re #>0 (the two
curves cannot be distinguished on the plot), and that the os-
cillations are suppressed. On the other hand, media with
Re e=—Re u result in large oscillations of the heating rate in
the long-distance regime, with a phase that depends on the
material properties.

C. Surfaces of finite thickness

The results of the previous section have shown that me-
tallic surfaces can considerably enhance surface-induced
heating. In the context of chips, metal surfaces are often
unavoidable since they are used in current-or charge-carrying
structures. One possible strategy to reduce the associated
molecular heating is to reduce the thickness of the metal
substrates. For a slab of finite thickness d, coated onto an
infinitely thick substrate of permittivity e,=¢&,(w) and perme-
ability u =u,(w), the surface-induced heating rate is still
given by Eq. (80) together with Eq. (79), but the reflection
coefficients are now given by

L _ 2B pfy + il B Bleot(Bid)
U WBB+ B+ BB+ Blcot(Bid)

. _EBB.=ep + iepileS = BleotBid)
" 2B+ e B +iefileB+ Blcot(Bid)’

(95)

(96)

where
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FIG. 7. Heating rate of NaCs as a function of distance from an

ITO surface with thickness 10 wm (thick solid line), 1 um (dashed

line), 0.1 um (dotted line), and 0.01 um (dashed-dotted line). The

thin solid line shows how the result changes for a 0.01 wm thick
surface when the ITO is coated onto borosilicate glass.

(1)2
Bs = V ?85((,0)/1/5((0) - qz (97)
(Im B,=0).

Let us first consider the influence of the metal surface
alone by letting e,=u,=1. In the nonretarded limit, the re-
flection coefficients may then be approximated by

2
-1
re=——"t : (98)
u+ 1+ 2u coth(gd)
2
-1
° (99)

r, =
P g2 41+ 2¢ coth(gd)

[recall the discussion above Eq. (81)]. Since g=<1/(2z,), the
short-range heating rate will be identical to that of an infi-
nitely thick plate provided d>z,, since in this limit the
above reflection coefficients reduce to those given in Egs.
(77). On the other hand, the reflection coefficients, and hence
also the heating rate, must become very small when
d|e|<z4. We note immediately that, for molecule-surface
separations of interest, a conducting surface needs to be un-
feasibly thin for this limit to be reached because of the enor-
mously large values of |g| for a conductor. The behavior
between the two limits has to be determined from a numeri-
cal analysis.
In the retarded limit, one may approximate

E—p
e+ u+ 2i\s“; cot(\s’awd/c) ’

ry=-—r,=

(100)

so for a good conductor, ||>|u/|, the reflection coefficients
and the heating rate become independent of the plate thick-
ness at long range.

In Fig. 7, we display the surface-induced heating rate of a
NaCs molecule near ITO plates of various thicknesses as a
function of molecule-plate separation. At large separations,
the heating rates are independent of the thickness, as pre-
dicted from Eq. (100). Over the entire range of distances
calculated, the ITO plate of thickness 10 um gives the same
result as a plate of infinite thickness. Reducing the thickness
below this value increases the heating rates at short dis-
tances, contrary to the expectation of reduced rates at short
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range anticipated from Egs. (98) and (99). A reduction of the
short-range heating rates below the values observed for thick
plates is eventually found but only once the coating is unfea-
sibly thin. Thus our calculations show that the heating at
short-range cannot be reduced by reducing the material
thickness. To understand the increase of the heating rate with
decreasing thickness, note that in the nonretarded limit the
heating is mainly due to the coupling of the molecule with
the surface plasmons at the front face of the plate. As the
thickness decreases, these couple to the plasmons at the back
face of the plate, leading to mutual enhancement and thus to
an increase of the heating rate [68]. To include the borosili-
cate glass substrate we took &,(wyy)=6.2+0.21i for the rota-
tional transitions [64] and &,(wy)=6.4+0.74i for the vibra-
tional ones [69]. We find identical results whether or not this
substrate is included, except for the thinnest coating, d
=0.01 um, where we find that the presence of the substrate
slightly reduces the heating rate, as shown by the thin solid
line in the figure.

V. SUMMARY AND CONCLUSIONS

Using macroscopic QED, we have calculated the internal
dynamics of a molecule placed within an arbitrary environ-
ment of magnetoelectric bodies of uniform temperature. The
internal time evolution is governed by the molecular transi-
tion frequencies and transition rates which depend on posi-
tion and temperature. The dependence on temperature is due
to the thermal photon number and can be completely under-
stood from considering the free-space case, while the
position-dependence, which enters via the classical Green
tensor for the electromagnetic field in the environment, can
be derived from the behavior at zero temperature.

We have used the general formulas to study the ground-
state heating rates of several polar molecules of current ex-
perimental interest, as a function of the distance from various
surfaces. We have given a simple approximate formula that
can be used to estimate the heating rates for any other mol-
ecules at any distance from any surface of interest. For light
molecules, particularly the hydrides, rotational heating domi-
nates and limits the free-space lifetime of the ground state to
a few seconds when the environment is at room temperature.
For the metal fluorides we studied, vibrational heating domi-
nates and again the room temperature free-space lifetime of
the ground state is of the order of a few seconds. When the
molecules approach a metallic surface, the heating rate can
be greatly enhanced. This is particularly true for the rota-
tional transitions where the critical distance at which the sur-
face dominates the free-space rate is typically in the
1-100 wm range. For the hydrides, the free-space heating
rate is large because the rotational frequencies are large, but
this same fact also means that the critical distance for
surface-induced heating is rather small. Therefore, these
molecules could be trapped up to a few microns from a sur-
face with little change in the heating rate. The effect of the
surface on rotational heating is very much stronger for the
heavier molecules, but since the rate in free space is typically
very small for these molecules, they too have lifetimes of a
second or more at distances up to 1 um from the surface.

PHYSICAL REVIEW A 78, 052901 (2008)

We have shown that, at long range, the heating rates be-
come insensitive to the particular surface properties, while at
short range the heating is faster for smaller values of the
parameter wlz,/ v. Of the metals considered, gold induces the
lowest heating rate. We have also shown that decreasing the
thickness of the surface tends to increase the heating rate,
particularly at short distances. Dielectric materials that are
good absorbers at the relevant frequency result in large criti-
cal distances and hence very large heating rates at short
range.

In the context of molecule chips, where confinement of
molecules a few microns from the chip surface is envisaged,
our work shows that surface-induced heating should be con-
sidered carefully when selecting appropriate molecules and
surfaces, but that confinement for several seconds in single
quantum states is quite feasible even when the surface is at
room temperature. In all cases, lowering the environment
temperature will allow for even longer lifetimes. For ap-
proach distances smaller than 1 wm, surface-induced heating
becomes rapidly problematic, and cooling to cryogenic tem-
peratures may be required.
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APPENDIX A: MARKOV APPROXIMATION

Substituting the formal solution

f\(r,w,1) = e %, (r, )

. t
+éE f dre” =74, - G (r,.r,0)A,,,(7)
0

| (A1)

to Eq. (27) into Eq. (26) and using the integral relation (13),
one obtains

AAmn(t) = iwmnAmn(Z) + LE f do
fi k YO

e d (1) = g (0] B, )
+ eimtl?f(r/hw) : [dnkAAmk(t) - dkmAkn(l)]} + Zmn(l)
(A2)
with

o t
Z() = — ﬂz j da)wzf dr
0 0

hﬂ-k,l,j

X{[e DA, (DA (1) = DA (DA, (0]

ank -Im G(rA,l‘A,w) . dl]
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—[e7 DAL, (DA (1) = e UPA (DA, (1)]
X dkm -Im G(rA,rA,(l)) . d]/} (A3)

denoting the zero-point contribution to the internal molecular
dynamics. This differential equation can be solved iteratively
by substituting the self-consistent solution

. - :
Amn(t) = ei(;)m"rAmn(O) + LE f dwf dTe""ﬁ)nm(f—T)
h k J0 0

X {7 Td A (D) = A (D] - E(rp, 0)
+ BT (1, 0) - [dyA, (1) = dA (D]} (A4)

to the truncated Eq. (A2) without Zm,,(t) back into Eq. (A2),
where at this level of approximation, the operator ordering in
Eq. (A4) may be chosen arbitrarily. Taking expectation val-
ues according to Egs. (15)—(18), one arrives at

<Amn(l‘)> = iwmn<Amn(t)> + (f’mn(t» + <2mn(t)> (AS5)
where
(T == 223 ’ dow’n() f t d e 4 giol-7]
fim'er Jo 0

X {e! @ =D[(A, (1))d,; - Im G(ry, 1y, ) - dyy

- <AAIk(T)>dnk -Im G(rA’rA’ w) : dlm] - eiu_)k"(t_f)

PHYSICAL REVIEW A 78, 052901 (2008)

X{A(D))dpy - Im G(ry,rp,0) - d,

- <Aln(7')>dkm -Im G(rA7rA’ w) : dlk]} (A6)

denotes the thermal contribution to the internal molecular
dynamics. For weak molecule-field coupling, the contribu-
tions (7,,,,()) and (Z,,,(1)) may be evaluated by means of the
Markov by (Am,,(7)>
= ¢"@m(=7(A (1)) and evaluating the remaining time inte-
grals according to

J

Assuming the system to be nondegenerate, so that off-
diagonal molecular density matrix decouple from each other
as well as from the diagonal ones, we arrive at Egs. (28) and
(29), together with Egs. (30)—(38).

approximation, i.e., letting

o 1
dre” @ Om) =D = 7§ - &,,) + iP——. (A7)
)

mn

APPENDIX B: CRITICAL DISTANCES

We have calculated the critical distances for surface-
induced enhancement of ground-state heating rates for vari-
ous combinations of molecules and materials on the basis of
the data given in Tables I and IV. The results are summarized
in Table VI.

TABLE VI. The exact critical distances z, (um) for the enhancements of ground-state heating rates of various polar molecules due to the

presence of surfaces of various materials.

Rotational Vibrational
Spe. Al Pd Ag Cu Mo Fe Co W Ni Pt ITO Al Pd Ag Cu Mo Fe Co W Ni Pt ITO
LiH 19 20 20 21 24 25 26 27 28 3.1 54 0.044 0.038 0.039 0.042 0.053 0.051 0.060 0.060 0.064 0.075 0.16
NH 1.0 1.0 1.0 1.1 13 13 14 14 1.5 1.7 2.9 0.021 0.022 0.023 0.023 0.028 0.029 0.031 0.032 0.035 0.040 0.097
OH 0.019 0.020 0.021 0.021 0.025 0.027 0.028 0.029 0.032 0.037 0.94
(a) 0.51 0.47 0.43 0.52 0.62 0.60 0.67 0.69 0.73 0.82 1.4
(b) 0.36 0.32 0.29 0.37 0.45 0.41 0.48 0.49 0.52 0.59 1.0
(c) 0.26 0.22 0.20 0.26 0.32 0.29 0.35 0.36 0.37 0.43 0.77
(d) 0.18 0.15 0.13 0.17 0.22 0.29 0.24 0.25 0.25 0.30 0.55
OD 0.025 0.024 0.026 0.026 0.032 0.033 0.035 0.036 0.039 0.046 0.11
(a) 0.79 0.77 0.73 0.84 0.98 097 1.1 1.1 12 13 22
(b) 0.35 0.31 0.28 0.36 0.43 0.40 0.47 0.48 0.50 0.57 1.0
(c) 0.30 0.25 0.23 0.29 0.36 0.33 0.39 0.40 0.42 0.48 0.86
(@) 0.24 0.19 0.17 0.23 0.28 0.25 0.31 0.32 0.33 0.38 0.69
CaF 19 20 21 21 24 25 26 26 28 31 53 0.094 0.074 0.071 0.086 0.11 0.098 0.13 0.13 0.13 0.15 0.30
BaF 28 30 31 31 35 37 37 39 42 46 78 0.12 0.093 0.088 0.11 0.14 0.12 0.16 0.16 0.16 0.20 0.37
YbF 25 27 28 28 32 33 34 35 38 41 71 0.11 0.087 0.083 0.10 0.13 0.12 0.15 0.15 0.15 0.18 0.35
LiRb 27 29 30 30 34 35 36 38 40 44 76 0.27 022 020 026 032 039 036 036 038 043 0.78
NaRb 66 70 72 72 82 86 88 91 97 110 180 0.42 0.37 0.34 043 051 048 0.55 057 060 0.68 1.2
KRb 100 110 110 110 130 130 130 140 150 160 280 0.55 0.51 047 057 068 0.65 0.73 0.75 0.79 0.89 1.6
LiCs 30 32 33 33 37 39 40 41 44 49 83 030 025 022 029 036 032 039 040 042 048 0.85
NaCs 13 14 14 14 16 17 17 18 19 21 36 045 040 037 046 055 052 059 061 064 073 1.3
KCs 3.7 39 40 40 46 48 49 51 55 60 10 061 058 054 064 075 0.73 081 083 088 099 1.7
RbCs 190 200 210 210 240 250 250 260 280 310 530 0.76 0.74 0.70 0.81 095 094 10 1.1 1.1 12 22
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We critically discuss whether and under what conditions Lifshitz theory may be used to describe
thermal Casimir-Polder forces on atoms or molecules. An exact treatment of the atom-field coupling
reveals that for a ground-state atom (molecule), terms associated with virtual-photon absorption lead to a
deviation from the traditional Lifshitz result; they are identified as a signature of nonequilibrium
dynamics. Even the equilibrium force on a thermalized atom (molecule) may be overestimated when
using the ground-state polarizability instead of its thermal counterpart.
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Dispersion forces such as Casimir and Casimir-Polder
(CP) forces are of increasing relevance in nanophysics [1];
recent successes include the chemical identification of
surface atoms via atomic force microscopy [2] as well as
the construction of novel biomimetic dry adhesives [3].
They become important in efforts to miniaturize atom
chips [4] and play a key role in experiments placing upper
bounds on nonstandard gravitational forces [5].

In all of these areas, a thorough understanding of dis-
persion forces under realistic conditions must account for
their temperature dependence induced by thermal photons
[6]. A series of high-precision experiments [7] has trig-
gered a renewed interest in this thermal Casimir force [8]
by opening the perspective of its experimental investiga-
tion [9]. It was noticed that, depending on the model
chosen to describe the metal response, Lifshitz theory
can yield different answers for the temperature dependence
of the Casimir energy between two metal plates [10]. The
resulting debate concerning the correct description of the
thermal Casimir force [11] will ultimately have to be
settled by experiments. Nonequilibrium situations of two
plates of different temperatures have recently been sug-
gested as sensitive probes to the quantum electrodynamics
(QED) of the Casimir effect [12].

The CP force on single atoms can be measured indirectly
via spectroscopic means; clear evidence for thermal fre-
quency shifts has been found for atoms inside a cavity [13]
and their signature has been detected in the interaction of
atoms with a sapphire surface [14]. The novel nonequilib-
rium CP forces predicted for the case of different surface
and environment temperatures [15] have recently been ob-
served via their effect on the center-of-mass oscillations of
a trapped Bose-Einstein condensate [16]. While some the-
oretical studies of the thermal CP force are based on a QED
treatment of the atom-field coupling [17,18], the vast ma-
jority of investigations invokes a macroscopic calculation
using Lifshitz theory [6,19,20] or a linear-response de-
scription of the atom [15,21] (leading to equivalent results).

The macroscopic approach to the CP force is based on a
very close relation between Casimir and CP forces. It is the
validity of this one-to-one correspondence and its results

0031-9007/08/100(25)/253201(4)

253201-1
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for the CP force that we intend to investigate in this Letter,
so let us briefly recount the argument in its traditional
form: Generalizing the famous Lifshitz result for two
plates [6], the thermal Casimir force on a homogeneous
body of arbitrary shape occupying a volume V in free space
due to the presence of another body can be given as a
Matsubara sum [22,23]

d 1
F= 2kBT/Vd3rNZO<1 —55N0>
X [THI X[V X VX +(&y/)2IGD(r 1, iéy) XV ),

—(&n/c)*V-GW(r,r,iéy)] (1

with Matsubara frequencies &y = 27k TN /h. Here, G
is the scattering part of the classical Green tensor

[VXVX—(w/c)elr, o) ]G 1, w)=8F—r) (2)
associated with the bodies that are characterized by their
dielectric permittivity &(r, ). The result (1) can be ob-

tained from the zero-temperature force by applying the
simple replacement rule

B S\
= @ikt S (1 Jow)iE) @

which is equivalent to replacing the zero-point energy %hw
by a thermal spectrum [n(w) + %]hw with photon number
n(w) = 1/[e"/®T) —1]. To derive the CP force, one
assumes that one body consists of a dilute gas (number
density 1) of atoms with polarizability a(w), so that its
permittivity may be approximated by e(w)=1+
na(w)/e. After a linear expansion in a, it follows that
the thermal CP force is given by [22,23]

d 1
Firy) = —pokaT 3" (1= 305 EatiéN)
N=0

X VATrGW(r g, rg, i€y). S

As an immediate consequence of its macroscopic deriva-
tion, this force expression is very similar in structure to the
respective Casimir force. In particular, the replacement

© 2008 The American Physical Society
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rule (3) is again valid which often serves as a starting point
for studies of the thermal CP force [24].

In view of the high precision of modern experiments, the
current widespread use of the macroscopic result (4) and
the replacement rule (3) for calculating thermal CP forces
calls for a critical discussion of their validity. In this Letter
we clarify the extent to which Eq. (4) can be used on the
basis of a direct calculation of the time-dependent thermal
CP force from the atom-field coupling Hamiltonian. We
will demonstrate that force components associated with
thermal-photon absorption will generically lead to devia-
tions from Eq. (4). As we will show, the macroscopic result
provides a reasonable approximation to the force on a fully
thermalized atom, provided that the atomic polarizability is
correctly interpreted.

In electric dipole approximation, the force on an atom or
a molecule (called atomic system in the following) pre-
pared in an incoherent superposition of internal eigenstates
[n) is given by [23,25]

F(ry, 1) = (Vd - E(r)],—,,) (5)

where it is assumed that the internal and translational
motion of the atomic system decouple in the spirit of
Born-Oppenheimer approximation. In order to evaluate
this expression, one needs to solve the coupled dynamics
of the electromagnetic field and the atomic system, which
is governed by the Hamiltonian [26]

A= fd3rfw doho f1(r, 0) - fr, w)
0
+ ZEnAnn - ZAmndmn : E(’A) (6)

(d,,, = (ml|d|n), A,, = |m)n|). The bosonic dynamical
variables f tand f , which describe the elementary excita-
tions of the body-assisted electromagnetic field, can be
used to construct an expansion of the electric-field operator
E(r) = Ik dwE(r, w) + H.c. according to

B(r, @) = ir[t)(meg)(w/c)? f &S

X JIme(r, 0)G(r, ', w) - f(r', w).  (7)

The expansion coefficients are given in terms of the clas-
sical Green tensor (2) which obeys the integral relation

2
@ f BsIme(s, )G s, 0) -G (5,1, 0) = ImG(r, 7', ).
C

®)
The Hamiltonian (6) implies that the atom-field dynam-
ics is governed by the system of equations

i . A
A = lwmnAmn + ﬁg(dnkAmk - dkmAkn) : E(rA): (9)

fr, ©) = —iwf(r, @) + JIme(r, @)/ (hime0)(w/c)?

X ZAmndmn : G*(rAr r, w) (10)

We eliminate the field by formally integrating Eq. (10) and
substituting the result back into Eq. (9), which we arrange
in normal ordering. After using the integral relation (8), we
obtain

An0= 1600, Ro0+ 2,0 43S [ dee® B, 0
h4aJo
: [dnkAmk(t) - dkmAkn (l)]
+ e_iw[[Amk(t)dnk - Akn(t)dkm] ' E(rA’ w)} (11)

where

5 o
Zyn(t) = —
(1) hﬂ,zkz

X [t dr- {e_i“’(’_f)[dijjn(l) - dnjAAmj(f)]Akz(T)
0

+ e Ay (Dld,A (0 — d A0 (12)

denotes the zero-point contribution to the internal atomic
dynamics. The thermal contribution can be determined
iteratively by substituting the self-consistent solution

A A i 00
Amn(t) = elwm"[Amn + %;]; dw

foo dow’dy - ImG(r,, ry, ©)
0

X ft dTeM)m”(tif)[Amk(T)dnk - AAkn(T)dkm]
0
[E(r,, w)e™ 7 + H.c.] (13)

into the truncated Eq. (11) [without the zero-point contri-
bution Z,,,(#)] back into itself and taking expectation val-
ues. With the field initially being prepared in a thermal
state pr = expl—Hp/(kpT)]/Trlexp[—Hp/ (ks )T},
Hy= [&r [T dohofi(r, w) - f(r, ®), the nonvanishing
averages of the field operators are

(EY(r, o) E(r', ©')) = (hpwo/ Mn(@) 0 mG(r, ', )
X 8w — w') (14)

[recall Egs. (7) and (8)]. One thus obtains a closed system
of equations for the internal atomic dynamics

A = 10mnlA) + Py + Ty, (15)

with the thermal contribution being given by
<Tmn(t)> = ﬂz [oo dwwzn(a)) [I dT[eii‘”(’*T)
har 43 Jo 0

+ eiw(t*‘r)]{eia”)mk(tfr)dnk . ImG(rA, ra ®)

: [dlnz<A1k(T)> - dkl<Am1(T)>] + eid)k"(tf")dkm

“ImGi(ry, ry, ) - [d,(Ag(7)) — dylAin ()]}
(16)

For weak atom-field coupling, this system can be solved in
Markov approximation using the relations (A,,,(7)) =
e~ i®m=D(A (1)) and f6 dre™=7 =~ 78(x) + iP/x.
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For a nondegenerate system, the off-diagonal elements
of the atomic density matrix & decouple from one another
as well as from the diagonal elements, and one finds that
the internal atomic dynamics follows the rate equations

d-izil(t) = 7Fn0-nn(t) + Zrkna-kk(t)» (17)
k

o mn(t) = |: Wpp — (rrn + riz):| mn(t)r m#n (18)

(o, = (m|&|n) = {A,,,). Here, the total loss rates read

2
o= 3T = Ho ' 2 O@u(n) + 1]
+ ®(wkn)n(wkn)}dnk : ImG(rA’ s, |a)nk|) : dkn (19)

and the shifts of the atomic transition frequencies @,,, =
w,, t 6w, — dw, are given by

- L) * dww?
Sw, géwnk Whg'?'/;) dow
y |:n(w) +1 N

Dy — W Oyt o

:|dnk 'ImG(rA,rA, (()) 'dkn;

(20)

they reduce to the perturbative result derived in Ref. [18]
upon setting @, = w,, in the denominators.

With these preparations, we evaluate the CP force (5)
with the help of Egs. (7), (13), and (14) and the solution to
Eq. (10) as

Flry, 1) =#0 f dww™Vd,, - ImGO(r, 1, ©)

t ~
iy, ]0 dr (A, ()in()
X elil@tem)=CAT0/20=1) 4 [n(w) + 1]

X el—il@=wu )=, +I})/2](t~ 7)} + c.c. (21)

Here we have used the correlation function
(A (DAL(T)) = 8,4 (A,y(7))eli@m =Tt L2070 (22)

which follows from Eq. (18) by means of the quantum
regression theorem [27]. Evaluating the 7 integral in
Markov approximation and the  integral by means of
contour-integral techniques (cf. Ref. [25]), one finds that
the thermal CP force on an atomic system prepared in an
incoherent superposition of energy eigenstates is given by
F(ry, 1) =Y ,0,,(t)F,(r,) with force components

F,(ry)= — pokgT Z <1 _%6N0)§]2\1VTr{[an(i§N)
N=0

+ an(fié:N)] : G(l)(rA’ r, ifN)}|r=rA
+ MOZ{®(£)nk)lek[n(an) + l]Vdnk
k

: G(l)(rr LY an) : dknlr:rA ®(wkn)Q n(‘Q' )
XVd,. -GV (r,ry, QF)  diyli—y, +cc} (23)

[Q,, = @, + i, +T'y)/2] and atomic or molecular po-
larizability

ORI

This result generalizes the zero-temperature force calcu-
lated in Ref. [25].

In order to compare this force with the macroscopic re-
sult (4), we consider an isotropic atomic system in the per-
turbative limit Q,,; = w,;, whereby Eq. (23) simplifies to

nkdkn (24)

dkndnk
=l

nk_w

i 1
Fe) = =mokaT Y (1500 )b i6)
N=0
X VATTG(I)(rA,rA, lfN)
7’
+ ?O;w%k{(a(wnk)[n(wnk) + 1]

= O(op)n(w)Hd PV TrReG Y (ry, g, @)
(25)

and coincides with the negative gradient of the frequency
shift (20) given in Ref. [18]. In addition to the Matsubara
sum, the thermal CP force has resonant contributions pro-
portional to n(w,;) and n(w,;) + 1, respectively, which
are due to the absorption and emission of photons by the
atomic system. Even the force Fy(r,) on a ground-state
atom or molecule exhibits resonant force components
- %,U,Ow%on(wkoﬂd()kPVATr RCG(I)(TA, Iy, a)ko) associ-
ated with thermal-photon absorption which lead to a dis-
crepancy with the macroscopic result (4). These resonant
forces can be observed on time scales which are short with
respect to the inverse ground-state heating rates Fo‘kl, and
their magnitude scales with the number of thermal photons
at the respective transition frequency n(wyy). Polar mole-
cules thus present an ideal candidate for studying them,
since their heating time can be of the order of several
seconds, and the thermal-photon number at the relevant
vibrational and rotational transition frequencies in the
microwave regime can reach values of up to a few hundred
at room temperature [28]. As discussed in Ref. [14], the
enhanced frequency shifts observed very recently via se-
lective reflection spectroscopy of cesium in the far infrared
might be due to a resonant thermal effect of this kind.
Our approach allows us to discuss the full dynamics of
the CP force. It reveals that resonant force components
associated with absorption and stimulated or spontaneous
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emission of photons are a genuine nonequilibrium ef-
fect: According to Eq. (17), the atomic system reaches
thermal equilibrium with its environment in the long-
time limit and is described by the thermal state &, =
o> wEnhun/ (kyT) /Ti[e™ ,,E‘n/im,/(km] (E, = E, + hbw,).
In thermal equilibrium, all resonant force components
cancel and the force can be written in the form of Eq. (4)
only if the atomic polarizability has been identified as the
thermal polarizability, ar(w) =Y ,07,a,(w). In the
limit of a single dominant transition, this equilibrium force
is smaller than that resulting from Eq. (4) with a(w) by a
factor ry = tanh[hd,o/(2ksT)] = [2n(&,0) + 1]7'. The
force on ground-state atoms, which is dominated by elec-
tronic transitions, is insensitive to this effect at room
temperature due to the very small thermal-photon number:
For Rb (w;y = 2.37 X 10'> Hzrad [29]), one obtains r; =
1—13X1072 at T=300K. As in the case of the
nonequilibrium force discussed above, a noticeable devia-
tion from the Lifshitz result is to be expected for polar
molecules: For CaF, force components associated with
vibrational transitions (w;o = 1.15 X 10'* Hzrad [30])
are reduced by a factor ry = 0.90, those associated with
rotational transitions (w;y = 1.32 X 10! Hzrad [31])
even by a factor rr = 0.0017—they are thus strongly
reduced with respect to the prediction from Lifshitz theory.

In conclusion, a full quantum-mechanical treatment of
the atom-field interaction has revealed that the thermal CP
force on a ground-state atom or molecule cannot be ob-
tained from a macroscopic calculation while the force on a
fully thermalized atom can—provided that one uses its
correct finite-temperature polarizability. As shown, the
force on thermalized molecules is considerably smaller
than suggested by Lifshitz theory. The resonant contribu-
tions to the force that occur for a ground-state atom are due
to the absorption of thermal photons and manifest a non-
equilibrium effect. In particular, they may dominate the
thermal CP force on polar molecules, where they present
both a considerable limiting factor for the miniaturisation
of molecular surface traps and a novel probe to the surface-
assisted thermal dynamics of these molecules. The discus-
sion presented here immediately generalizes to scenarios
such as those suggested in Ref. [15] where different parts
of the environment are held at different temperatures.

This work was supported by the Alexander
von Humboldt Foundation and the UK Engineering and
Physical Sciences Research Council.
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We demonstrate that Casimir-Polder potentials can be entirely independent of temperature even when
allowing for the relevant thermal photon numbers to become large. This statement holds for potentials that
are due to low-energy transitions of a molecule placed near a plane metal surface whose plasma frequency
is much larger than any atomic resonance frequencies. For a molecule in an energy eigenstate, the
temperature independence is a consequence of strong cancellations between nonresonant potential
components and those due to evanescent waves. For a molecule with a single dominant transition in a
thermal state, upward and downward transitions combine to form a temperature-independent potential.
The results are contrasted with the case of an atom whose potential exhibits a regime of linear temperature
dependence. Contact with the Casimir force between a weakly dielectric and a metallic plate is made.

DOI: 10.1103/PhysRevLett.104.223003

Dispersion forces between polarizable objects were
originally predicted by Casimir and Polder as a conse-
quence of quantum zero-point fluctuations [1]. Recent
measurements of both Casimir-Polder (CP) forces between
atoms and surfaces [2] and Casimir forces between macro-
scopic bodies [3,4] typically operate at room temperature,
where thermal fluctuations also come into play [5—8]. The
temperature dependence of dispersion forces is of rele-
vance for both fundamental and practical reasons.

On the theoretical side, the correct description of the
Casimir force between metals at finite temperature is sub-
ject to an ongoing debate [4,9]. To wit, predictions differ
for the high-temperature behavior of the Casimir force
between metals, for which employing a standard dissipa-
tive description of the surfaces fails to reproduce the
experimental observations [10]. This suggests that progress
can be made by directly observing the variation of the
Casimir force with temperature.

On the practical side, CP forces become increasingly
relevant when trying to trap and coherently manipulate
cold atoms near surfaces [11]. Current endeavours aim at
extending these techniques to more complex systems such
as polar molecules [12]. Such systems typically exhibit
long-wavelength transitions so that CP forces become in-
creasingly long-ranged. This raises the question of whether
they can be controlled by lowering the ambient tempera-
ture and hence suppressing thermal force components.

Thermal contributions to the CP potential are governed
by the photon number n(w) = [¢"*/*sT) — 1771, A notice-
able deviation of the potential from its zero-temperature
value is to be expected when n(w) = 1 in the relevant
frequency range. This is the case, for instance, for mole-
cules with small transition frequencies, |wy,| < kgT/h =
3.93 X 10" rad/s at room temperature (300 K). The asso-
ciated wavelengths are much larger than typical experi-
mental molecule-surface separations in the nanometer to

0031-9007/ 10,/104(22)/223003(4)
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micrometer range [2], z4 << ¢/|wy,|. Furthermore, experi-
mental realizations typically involve metal surfaces with
|e(wy,)] > 1 which act like perfect reflectors.

As we will show in this Letter, the above three condi-
tions combined result in potentials which are independent
of temperature over the entire range from zero to room
temperature and beyond. We will first discuss the case of a
molecule prepared in an energy eigenstate and then con-
sider molecules at thermal equilibrium with their environ-
ment, comparing our results with those for atoms whose
transitions involve higher energies.

Molecule vs atom in an eigenstate.—As shown in
Ref. [13], the CP potential of a molecule prepared in an
isotropic energy eigenstate |n) at distance z, from the
plane surface of a metal,

U,(za) = U (za) + U (za) + UN'(za), )

may be separated into three contributions: a nonresonant
term U} due to virtual photons that is formally similar to
that produced by the Lifshitz theory [5], and a resonant
contribution due to real photons which may be further split
into contributions from evanescent (U;") and propagating
(UY") waves. The nonresonant potential is given by [13]

kT 3
— zumzz ae
eithA{zbzczrp(lfj) - f?[rb(lfj) + rp(lfj)]} (2)

[wi, = (Ex — E,)/h, transition frequencies; d,;, dipole
matrix elements; &; = jé with £ = 2wk T /h, Matsubara
frequencies; and the primed summation indicates half-
weight for the term j = 0] and the evanescent one reads

U (en) =22 3 ()l [0 dbe~2
k

Uii(za) =

X {2b2C2 Rel:rp(wkn)] + a)nk Re[r (wkn) +r (wkn)]} (3)

note that n(wy,) = —[n(w,;) + 1] for downward transi-
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tions. These two contributions dominate in the region
Zalo|/c < 1 that we are interested in, while the spa-
tially oscillating U} becomes relevant only in the far-field
range za|wg,|/c > 1. The reflection coefficients of the
surface for s- and p-polarized waves are given by r,(w) =
(b —b))/(b + b)) and r,(0) = [e(w)b — b,]/[e(w)b +

by] with by = /b — [e(w) — 1]w?/c2, Re(b;) > 0.

For our analytical investigations, we will model the
metal surface by a perfect reflector with frequency-
independent reflection coefficients rg = —1 and r, = I.
This is well justified, as the plasma frequency is typically
much larger than the molecular transition frequency wy,,,
and hence |e(w)| > 1 in the relevant frequency range. The
b integrals can then be performed to give

—2jzpé/c

W, €
ynr I d 2 I Wkn
n (ZA) 127T8 h 3 ZI nkl JZO (U%n T _].252

2
><[1+2jﬁ+2j2—zf‘2g ] )
C C

Up'(zp) = Yameod Zn(wkn)ldnkl (5)

4t

The asymptotic temperature dependence of the potential
for a given distance z, is governed by two characteristic
temperatures: The molecular transition frequency defines a
spectroscopic temperature T, = h|wy,|/kg, which is
roughly the temperature required to noticeably populate
the upper level. Similarly, the distance introduces a geo-
metric temperature 7, = fic/(z5kp), i.e., the temperature
of radiation whose wavelength is of the order z,.

We will now show that the total potential becomes
independent of temperature in both the geometric low-
temperature limit 7 << 7, and the spectroscopic high-
temperature limit 7 >> T . For a typical molecule with its
long-wavelength transitions, the potential is nonretarded
for typical molecule-surface distances, 74 |wg,|/c < 1. As
depicted in Fig. 1 (i), this implies 7,, < T; hence, the two
regions of constant potential overlap and the potential is
constant for all temperatures. For an atom, on the contrary,
the transition wavelengths are much shorter, so that we
may have zjlwg,|/c > 1. In this case, an intermediate
regime 7, < T < T, exists where the potential increases
linearly with temperature, cf. Fig. 1 (ii).

We begin with a typical molecule with zx|wy,|/c < 1.
In the geometric low-temperature limit 7 < T, we have
za€/c < 1; hence, the sum in Eq. (4) is densely spaced.
The factor 1/(w?, + j2£?) restricts it to values where
Jjzné/c = zpalwy,l/c < 1. With this approximation, the
summation can be performed as

>

= a +J

-7 coth(7ra) (6)
2a

and we find

Up'(za) = Z[n(wkn) + :||dnk| (7

247re 23

(i) [Typical (ii)|Typical
molecule atom

kT » hoyg
—_—

— T kgT » he —~ To
© 4 s = @ ksT « hc/z

- -

g s/ =1 i —

9 kgT « hc/z T, g T,

8 Temperature n? Temperature

FIG. 1 (color online). ~Sketch of the temperature dependence of
the CP potential for a typical molecule vs a typical atom.

noting that coth[hwy,/(2kgT)] = 2n(wy,) + 1. Adding
the evanescent contribution (5), we find the temperature-
independent total potential

2
U )T<<T %ld"kl <d2>,, @)
2z = - )
A 48778011 4878022

in agreement with the well-known nonretarded zero-
temperature result [1].

In the spectroscopic high-temperature limit 7 > T, we
have &/|wy,| > 1. Because of the denominator w? +
22, the j=0 term strongly dominates the sum in
Eq. (4) and we find

Y SE— d,|? 9
2477'80ZA a ho kn| nkl ( )

Under the condition T > T, i.e., kzgT > h|lw,|, the eva-
nescent contribution (5) reduces to

U (z0) T, L Z(

2477'80Z

1 2
. 2)|d,,k| )
Adding the two results, the total potential is again tem-
perature independent and given by Eq. (8). This limit is just
the high-temperature saturation found in Refs. [7,13].

The thermal CP potential of a typical molecule with its
long-wavelength transitions has thus been found to be
temperature independent in the geometric low-temperature
and spectroscopic high-temperature regimes. Because of
the condition z|wy,|/c < 1, at least one of the conditions
T < T,orT > T, always holds, implying that the poten-
tial is constant for all temperatures and it agrees with its
zero-temperature value. The independence of the total
potential in both regimes is a result of cancellations be-
tween nonresonant and evanescent potential components,
which both strongly depend on temperature. This is illus-
trated in Fig. 2, where we display the total temperature-
independent potential as well as its nonresonant and eva-
nescent parts for a ground-state LiH molecule in front of a
Au surface for various temperatures. It is seen that very
strong cancellations occur, especially at high temperatures.
Note that, while our theoretical arguments are based on the
perfect-conductor limit, all numerical examples use the
reflectivities of real metals.

We now turn to the case of atoms, whose electronic
wavelengths are short compared to typical experimental
separations: z,|wy,|/c > 1. The exponential restricts the
sum in Eq. (4) to terms with j&é < ¢/z5 < |wy,|, so the
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[S23| Temperature-invariant Casimir-Polder forces

269

PRL 104, 223003 (2010)

PHYSICAL REVIEW LETTERS

week ending
4 JUNE 2010

term j2£% in the denominator may be neglected. The sum
can then be performed according to

Z "e=2a(1 + 2ja + 2j7a%) —

{3/(2(1) a<k1
=0

1/2 a>1. an

In the geometric low-temperature regime 7 << T, we fur-
ther have z,&/c < 1,i.e., a < 1 in Eq. (11); hence

T<T, |dnk|
Up(za) =" =1 67T — Z o (12)

in agreement with the famous zero-temperature result of
Casimir and Polder [1]. Moreover, the condition
Zalwg,l/c > 1 implies that T < T, < T,,: The geomet-
ric low-temperature regime is also a spectroscopic one, and
hence the evanescent potential reduces to

0 d,|* 13
24#802%% (wnk)l nkl ( )

T<T,
U eV(ZA)

[O(x) is the unit step function.] Adding the two contribu-
tions, we find the temperature-independent total potential

T<T, 1 3¢
U (ZA) = - [

+ ®(wnk):||dnk|2

(14)

2477'8023A TL2zA W

in the geometric low-temperature regime.

For intermediate temperatures 7, < T < T, we have
za€/c > 1, so using @ > 1 in the sum (11), the nonreso-
nant potential (4) is found to read as in Eq. (9). The
evanescent contribution is still given by Eq. (13), so the
total potential varies linearly with temperature,

YMore 3 Z[h O + ®(wnk)]|dnk|

s)

In the spectroscopic high-temperature limit 7 > T, the
evanescent contribution is given by Eq. (10) as already
shown. It cancels with the nonresonant contribution, still
agreeing with Eq. (9), to give a saturated potential of the
form (8). However, with, e.g., T, = 18.000 K for Rb, this

T, <T<T,

Un(za) 2477801

80+

40+

(107°°7)

—40

Energy

-80+

0 10 20 30 40 50
Distance from wall (micron)

FIG. 2 (color online). CP potential of a ground-state LiH
molecule in front of a Au surface. We show the total potential
(solid line) as well as its evanescent (dashed line) and non-
resonant (dotted line) contributions for temperatures 10 K, 50 K,
100 K, 200 K, 300 K (left to right).

saturation is unobservable. Moreover, as the electronic
transition frequencies can be comparable to the plasma
frequency of the metal, the assumptions ry = —land r, =
1 do not hold. As a consequence, the cancellations required
to achieve saturation do not occur for atoms near realistic
metal surfaces.

We have thus seen that for an atom with z,|wy,|/c > 1,
separate geometric low-temperature and spectroscopic
high-temperature regimes exist, with the potential exhibit-
ing a linear temperature dependence between these two
regions. The difference between the thermal CP potentials
of typical atoms vs molecules is illustrated in Fig. 3, where
we show the temperature dependence of the potential at
fixed distance from a Au surface for different species. The
potentials associated with the long-wavelength, rotational
transitions of LiH and OH are virtually temperature inde-
pendent, while the short-wavelength electronic transition
of Rb shows a linear increase over a large range of tem-
peratures. YbF, with its dominant vibrational transition,
lies in between the two extremes of typical long-
wavelength molecular and short-wavelength atomic tran-
sitions; its potential increases by about 30% in the dis-
played temperature range. In contrast to the other
examples, the potential of YbF noticeably deviates from
the corresponding ideal conductor result due to imperfect
reflection. Note that contributions to the molecular CP
potentials due to electronic transitions are smaller than
the rotational and vibrational ones (8) by factors
c/(zpawg,) < 1 (14) or kgT/(hwy,) < 1 (15) within the
displayed temperature range and are hence negligible.

Molecule at thermal equilibrium.—The proven tempera-
ture independence immediately generalizes to molecules in
incoherent superpositions of energy eigenstates with
temperature-independent probabilities p,, # p,(T) and to-
tal potential U(zp) = 3., p»U,(za). The situation is differ-
ent for a molecule at thermal equilibrium with its
environment because the respective probabilities p,(T) =
expl—E,/(kgT)]/>; expl—E,/(kzT)] do depend on T. At
thermal equilibrium, all resonant potential components

3
rrrrrrrrrr LiH (rot)
2.5 |-~ 0oH (rot)
~ YbF (vib) e
S 2[|-.—Rb 5S;,,-5P5,, P 1
2 -7
~1.5¢ 7
s} T
SR B R e et eethenieheet o
0.5}
0
0 100 200 300 400 500

Temperature (K)

FIG. 3 (color online). Temperature dependence of the CP
potential of various ground-state atoms and molecules at dis-
tance z, = 5 um from a Au surface. The transition frequencies
of these species are such that zywy,/c = 0.046 (LiH), 0.26
(OH), 1.59 (YbF), 40.2 (Rb). For comparison, the perfect-
conductor result for YbF is also shown (dotted line).
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cancel pairwise [8]. Introducing potential components U,
due to a particular transition n < k (such that U, =
> U,x) and the associated statistical weights p,, = p, +
P and exploiting the fact that Uy, = — U, we can write
the total potential in the form

Uza)= D (pn = pUN(za)

n<k
=3 tanh(“”"")U“r (za) (16)
n<k & ZkBT AT

The behavior of this potential in the two limits relevant
for a molecule with z,|wy,|/c < 1 follows immediately
from the asymptotes given in the previous section. For
T < T, Uy from Eq. (7) leads to

T<T,

1
Uza) = = > puldul’ 17
(ZA) 487780;1 n<kpnk| nkl ( )

where n(wy,) + 1/2 = coth[hwy,/(2kzT)]/2 has been
used once more. For T > T, we recall U} from Eq. (9)
and note that tanh[hwy,, /(2kgT)] = hwy,/(2kgT) to again
find the potential (17).

Combining the two results, we may use the main argu-
ment of the previous section to conclude that the potential
components U, associated with a particular transition
n < k are independent of temperature for all temperatures.
The independence is a result of cancellations between the
purely nonresonant contributions from lower state n and
upper state k. Note, however, that the statistical weights
Pk introduce a weak temperature dependence, in general:
The total potential is only strictly temperature independent
when dominated by a single transition. For instance, when
accounting for the presence of the first vibrational transi-
tion in LiH (labeled as 2), the weight p(; for the dominant
rotational transition varies from its zero-temperature value
unity to  po;(T) = (1 + e mw/ksT) /(1 + ¢7hor/ksT 4
e on/ksT) = (0.9994 at room temperature.

Relevance to Casimir forces.—To illustrate the rele-
vance of the demonstrated temperature independence to
the Casimir force, let us consider an infinite dielectric half-
space filled with molecules of number density 7 at a
distance z from a metal plane. For a weakly dielectric
medium, the Casimir energy per unit area is given by
E(z) = [? dzymU(z4) [14]. Using Eq. (17), we find that

n

E(z) = —— d, % 18
() 967780Z2ylz<kpnk| nkl (18)

which is temperature independent under the conditions
mentioned above. Note that Lifshitz’s expression only
agrees with this statement if the correct thermal permittiv-
ity is used [8]. If the ground-state permittivity is used, one
describes a system out of equilibrium, and the Lifshitz
formula does not apply.

For dielectrics with a stronger response (such that € —
1 < 1 does not hold), many-body effects will lead to

temperature-dependent corrections of higher order in the
molecular polarizability. They are suppressed in the spec-
troscopic high-temperature limit 7 >> T, since they are of
higher order in tanh[iwy,, /(2kgT)] << 1. Our results hence
remain valid in this latter limit even for moderately strong
dielectrics. On the contrary, they do not immediately gen-
eralize to the force between two metals.

Summary.—The temperature independence encountered
for molecules with long-wavelength transitions shows that
CP forces on such systems cannot be altered via the
ambient temperature. Instead, the original zero-
temperature results of Casimir and Polder apply univer-
sally across the whole temperature range. It is worth em-
phasizing that a “classical” regime of linear temperature
dependence is never reached. Our results further indicate
that when accounting for the thermal excitation of the
media, the temperature dependence of Casimir forces in-
volving dielectrics may be weaker than previously thought.
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An atom irradiated by an off-resonant laser field near a surface is expected to experience the sum of two
fundamental potentials, the optical potential of the laser field and the Casimir-Polder potential of the surface.
Here, we report a new nonadditive potential, namely, the laser-induced Casimir-Polder potential, which arises
from a correlated coupling of the atom with both the laser and the quantum vacuum. We apply this result to an
experimentally realizable scenario of an atomic mirror with an evanescent laser beam leaking out of a surface.
We show that the nonadditive term is significant for realistic experimental parameters, transforming potential
barriers into potential wells, which can be used to trap atoms near surfaces.

DOI: 10.1103/PhysRevLett.121.083603

In experiments involving an applied electromagnetic
field and particles trapped in or near material objects,
two forces of very different origin arise. One is the Casimir-
Polder (CP) force [1] arising from the interaction between
an atom and the electromagnetic vacuum field, which is
restricted and modified by the presence of nearby surfaces
[2]. The other is the optical force stemming from the direct
interaction between the applied electromagnetic field and
the atom. The latter was first applied in experiments where
micron-size dielectric spheres were trapped by two laser
beams [3], eventually leading to the first observation of
optical trapping of atoms by a single strongly focused
Gaussian laser beam [4]. Atoms can also be reflected by an
evanescent laser field at a surface, as shown, for example, in
Ref. [5] where state-selective reflection of Na atoms was
demonstrated using an evanescent field.

The CP force has been studied extensively. It is well
described by many established theoretical approaches,
ranging from a quantum-mechanical linear-response for-
malism [6,7] to macroscopic extensions of quantum
electrodynamics that incorporate material properties, see,
e.g., Ref. [8]. There are also several experimental tech-
niques to investigate this force. Almost fifty years after its
theoretical prediction, the CP force was first measured by
observing the deflection of atoms passing through a
V-shaped cavity [9]. Later, it was demonstrated that the
scattering of slowly moving atoms from a surface can also
be used to deduce the CP potential [10]. Recently,
approaches involving a single Rb atom optically trapped
close to a surface have been employed [11]. There, the sum
of the trapping potential and the CP potential determines
the equilibrium position of the atom, so that for a known
trapping potential the CP potential can be determined.

This technique has recently been used to make a first
direct measurement of CP forces between solid surfaces

0031-9007/18/121(8)/083603(6)
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and atomic gases in the transition regime between short
distances (nonretarded) and long distances (retarded) [11,12].
In this experiment, ultracold ground-state Rb atoms are
reflected from an evanescent wave barrier at a glass prism.

The question arises whether the two fundamentally
different ingredients, the CP potential (Ucp) and the
light-induced optical potential (Uy), can be simply added
to obtain the total potential. Being inherently related to
universal scaling laws of dispersion potentials [13], this
question is of fundamental importance. In this Letter
we report a new nonadditive laser-induced CP potential.
We show that it plays an important role under specific
experimental conditions.

The CP potential can be viewed as the modification of a
fluctuating dipole moment due to the electric field those
fluctuations induce. It is clear that this is a recursive
process; the dipole induces a field, which in turn interacts
with the dipole, changing the field it produces, which then
interacts again with the dipole and so on. Normally, only
the first step in this process is considered, where the
fluctuations of the dipole moment are taken to come from
the field that would be present if the dipole were not there.
This electric field could come from the vacuum field or a
laser field depending on the specific context. This leads to
the usual approach taken when considering atoms subject
to vacuum and laser fields; the two potentials are simply
added (cf. Ref. [14]). Here we consider and take into
account the effect of the laser field on the CP potential.

Quantum vacuum forces between an atom in its ground
state and a surface are attractive and in general not suitable
to create a stable position for the atom [15]. Nevertheless,
Ref. [16] describes the possibility of trapping ground-state
atoms by dressing them with an excited state whose
potential is repulsive in a laser field. This method is similar
in spirit to our work, especially because the laser-induced

© 2018 American Physical Society
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FIG. 1. Difference AU = Ucp — Uy cp for a perfectly con-

ducting mirror with reflective coefficients r;, = —1 and r, = 1.
The laser intensity is 7 =5 W/cm? used for Rb atoms with a
transition frequency of @, = 2.37 x 105 rad/s. The detuning
is A =27 x 10% rad/s. The angle between the z axis and the
orientation of the field E(r,) is 6 = z/2.

CP potential for the atomic ground state resembles the
excited-state CP potential (cf. Fig. 1), but has a major
difference in its assumption of a position-independent Rabi
frequency.

We describe the system using a Hamiltonian that governs
the coupling of the atom to the electric field and con-
sequently consists of a field part, an atomic part, and a
multipolar dipole-field coupling. The field Hamiltonian H
can be expressed as

Hy=Y" /d3r/0°° dohof!(r,0) - f,(r,0), (1)

A=e,m

where f , and ﬂ are creation and annihilation operators for
composite field-matter excitations. Here we model a driv-
ing laser as being a result of a source occupying a volume
Vs in space. This leads us to represent field states as a
product

lw)r = {f:(r.)}) ® [{0}) 2)

reVy réVg

of coherent excitations |{f,;(r,w)}) in the source region
and the vacuum state [{0}) for all other regions. If the
annihilation operator f ,(r, @) acts on the state (2), there are,
consequently, two contributions

R {fﬂ(r,w)|1//>F if reVg 3)

f(r, = .
A, 0)lw)p 0 if ré Vs

The atom-field Hamiltonian H,p = —d - E(r,) in the
multipolar coupling scheme is determined by the electric

field at the atom’s position r, and the dipole operator d.

The electric field is given by the respective classical
Green’s tensor G(r,r,,w) and the field operator
f ,(r, ). Solving the Heisenberg equation of motion for the
field operator using the field Hamiltonian Ay (1) and
the coupling Hamiltonian A »r and inserting this back into
the electric field, the final expression for the time-dependent
electric field operator yields

E(I‘, o, t) = I::free(rr , t) + Eind (l', a))

= E(n a))g_iw(f_to)
o o [, —iw(t—t") (4
+—w df'e ImG(r,ry, ») - d(?),
n 1
Q)

where  is the permeability of free space. The induced
contribution represents the inhomogeneous part of the
solution and couples the Green’s tensor to the atomic
dipole moment as shown in Ref. [17]. The state (3) can
be inserted into Eq. (4) where the free component is modeled
as a classical laser driving field of frequency w; at the atom’s
position, E(r,, r) = E(r,) cos (w. ). In a similar way, one
can compute the Heisenberg equation of motion for the
atomic flip operator A,,, (¢) [18] defined in such a way that
the atomic part of the Hamiltonian is i, = ZnEnA,,n.

We first assume that the atom-field coupling is weak
and that the field is far-detuned from the atomic reso-
nance. This assumption is later relaxed to obtain a more
general result, as described in Ref. [19]. The electric field
(4) is evaluated using the Markov approximation for weak
atom-field coupling and we discard slow nonoscillatory
dynamics of the flip operator by setting A,,,(f') ~
ei@m('=0A (1) for the time interval 1, < ¢ < 1. To apply
the Markov approximation we have assumed that the
atomic transition frequency @, is not close to any narrow-
band resonance mode of the medium. If there were such a
mode, the atom would mostly interact with it, similar to
a cavity. In this case the mode could be modeled by a
Lorentzian profile [18,20,21].

The parameters entering the dynamics are the shifted
frequency @,,, = w,,, + é®,,,, where w,,, is the atom’s
pure eigenfrequency and the CP frequency shift dw,,,
due to the presence of the surface, and the rate of
spontaneous emission I",,,. The fast-oscillating nondiago-
nal parts A,,(f) can be decoupled from the slowly
oscillating diagonal operator terms A,,,(f) by assuming
that the atom does not have quasidegenerate transitions.
Moreover the atom is unpolarized in each of its energy
eigenstates so thatd,,,, = 0, which is guaranteed by atomic
selection rules [18]. Finally, we assume the atom stays in its
initial state with (A (7))~ (A (1)) 2 64,6,,. Consequently,
to compute the dipole moment we only need the non-
diagonal elements of the atomic flip operator
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() = B A1) =3[0 + T )
S Ak ()t = (A ()] Erp, )
k
(5)

Similar to the electric field (4), the equation for the time
evolution of the dipole operator &(t) can be split into free
and induced (electric field dependent) parts dge.(7) and

aind(t), given, respectively, by the first and second lines
of Eq. (5).

In the Markov approximation, we use the expression of
the complex atomic polarizability for an atom in a spheri-
cally symmetric state with negligible damping

2 (Z)kn|dnk|2
E —1, 6
3n (u —a)2 ()

where 1 is the unit matrix. The dipole moment in the time
domain reads

() =

A 1

(dina(1)), = 3 [, (@, )E(ry)e ' + Hel,  (7)

which oscillates with the laser frequency @;. An equivalent
expression for the induced electric field Eiq(r,7) is
obtained in a similar way.

The quantity we are interested in is the total potential
U= —%(&(t) -E(ry, 1)), which consists of various con-
tributions as shown in Table I. The order of the terms is
determined by the number of dipole moments. At leading
order, the induced part of the field (dipole moment)
depends on the free part of the dipole moment (field),
given by the first iteration of Eq. (4). This leads to two well-
known potentials, namely, the laser-light potential and the
standard, undriven CP potential. Going one iteration further
yields an additional contribution containing four dipole

TABLE 1. Summary of contributions to the total potential U.
The contributions to lowest order (yellow) form the ordinary CP
potential Ucp and the laser-light potential Uy . Higher-order terms
(green) build up the nonadditive laser-induced CP potential Uy cp,
with certain terms vanishing as explained in the main text.

diee dip ding ding
Bl 0 Uy, 0 3ULCP
Bing Ucp 0 Ucp
By 0 sULcp
0 | @

moments in total, the CP potential under the influence of
the driving laser field. This contribution is nonadditive; i.e.,
the total potential experienced by the atom can no longer be
obtained simply by summing the Casimir-Polder potential
and the laser-induced potential. We will show that this
nonadditive contribution can be significant under certain
circumstances.

The term of lowest order (dgee(7) - Egee(ra. 7)) contains
the free dipole moment and the free electric field. For
r' € Vg, this expression leads to the vanishing expectation
value of the free dipole moment (&free(t)> =0. In the
case of ' & Vg, this term vanishes as well according to
Egs. (2) and (3). The occurrence of a free dipole moment is
the reason for the terms of odd order to vanish. The
standard, undriven CP potential is obtained from the term

<afree(t) : Eind(rA5 t)> [22]

Ucplr) =20 / dEEa, (IE)TEGO (k.14 i)

OZ nclduPTHReGE) 1y, 1a. )] (8)

k<n

GO)(rp,ry,@,;) is the scattering part of the classical
Green’s tensor G(ry,ry,®,;). The CP potential can be
split into resonant and off-resonant contributions, where
the ground state only shows the latter. The third term
of the total potential U results in the laser-light potential
(dina (1) - Efree(ra. 1)) = (dina(1)) - E(rs, 7) from the coher-
ent time-averaged electric field (r' € Vy),

Un(r2) = = (@, B(r,). ©)

and the fourth term of the total potentlal (ding (1) - Bina(r4. 1))
vanishes again both for r’ € Vg and v’ & V.

We are interested in a higher-order iteration, where the
induced part of the dipole moment itself depends on the
induced part of the electric field, while the induced electric
field itself contains the induced dipole moment. Combining
the two high-order perturbative expressions for d and E
leads to the final result for the driven CP potential

A . 1,4 A
(Aing (1) - B0y (4. 1) =5 (0001 - B (r4.1))

2
— L 2 (w0, )E(rs) - ReGO) (1,14, 0, ) - E(ry).

(10)

This expression contains induced dipole moments and
induced electric fields, both of second order. The CP force
corresponding to the potential (10) is computed by taking
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the gradient of the potential Fycp(ry) = =V, Uicp(ry)
and can be expressed using the two contributions
V<al(§()i : I,;:free(r»r:rf\ + v<aind : Egjd)l(r»r:r,\v where one
can use the relation VE(r,)-E(r) =1V, E%(ry)
and the symmetry of the tensor
VG(S)(I'7 rA)|r:rA = %VAG(S)(I'A7 rA)~

Figure 1 shows the difference between the laser-induced
CP potential and the standard CP potential Ucp for a

‘r:rA
Green’s

perfectly conducting mirror, whose Green’s tensor is well
known. The laser-induced potential for a constant laser
potential is similar to the CP potential of an excited atom.
The strongest addition effect of Ujcp is seen in the
nonretarded regime, which we investigate further for a
more realistic evanescent laser field.

For simplicity we first consider a two-level, isotropically
polarized atom a distance z away from a dielectric
half-space described by s (transverse electric: TE) and p

1.5 v
1.
-.|Uy =1.15MHz
0.5 B
8
= 0.-
= . Non-additive,
exact (UE,)
-0.5 b ) - ------Non-additive,
[Uo =0.78 - perturbative (U%,)
-1t i L Additive (Uy)
-15 H
1.25
« Barrier
e o
" Barrier
w
=
=
S 075 Barrier * Barrier
— AUE, =0
05  -eee- QUL =0
.Uy =0
0 50 100 150 200
z(nm)

FIG. 2. Upper figure: Total potential with (solid lines) and without (dotted lines) the nonadditive term calculated here, for three
different values of the potential scale U,. The dashed lines are the total potential using the perturbative result, as opposed to the
nonperturbative one. The parameters taken from Refs. [11,12] are as follows: decay length z, = 430 nm, detuning A = 27z x 10% Hz,
dipole moment d = 2.53 x 107 Cm, transition frequency @y = 2.37 x 10" rad/s and quality factor Q = 37.5 = —Re(r,). As
reported in Ref. [11] the potential scale is given by Uy ~ P(W) x 10723 J/W, meaning the range of values chosen for this quantity are
commensurate with milliwatt laser power. The lower figure shows the positions of the minima and maxima of the additive potential U,
(dotted), the perturbative potential Uﬁ A (dashed) and exact nonadditive potential U fj A (solid) as a function of the potential scale U, and
the distance. This demonstrates that the nonadditive potential undergoes a transition from a traplike to barrierlike as a function of the
atom-surface distance, while the additive potential remains barrierlike for all parameters shown here.
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(transverse magnetic: TM) polarized reflection coefficients
ry and r,. We display our formulas in the nonretarded
(small z) limit, but all plots are produced including the
effects of retardation. We find,

|dnk |2 Q?
1927€dz* A?

Rer,

Uicp = — R =UcpUyp ——, 11
LCP erp cPUL A ( )

where we have defined Q=E(r,)-d,/h and A=w; — @,
and on the right-hand side we have written the result in a
suggestive form. This tells us that the laser-assisted Casimir-
Polder potential is given by the product of the laser potential
and the Casimir-Polder potential, modulated by the detuning
A and the reflection coefficient r,,.

So far we have used a perturbative approach that is valid
for a large detuning A. As we shall see later, this is not
reliably satisfied for the particular application to the
evanescent laser field, since the detuning and Rabi fre-
quency Q turn out to be of the same order of magnitude.
Repeating the calculation by solving the optical Bloch
equations, we find a more general nonperturbative result
(see Ref. [19] for details);

oy S L L (12)

L 192re A2+ Q2
which is seen to reduce to the perturbative result (11) in the
large-detuning limit. The potential arising from an evan-
escent laser field can be written as Uy = Uye™>%/%, where
U, is a constant that sets the scale of the interaction, and z,
is its range. The electric field that is associated with this
potential satisfies £2 = 6AAU; /d*, which gives the Rabi
frequency as Q7 = 6AU, /h.

The final ingredient we require is the electromagnetic
response of the surface, described by a permittivity &, which
enters into Eq. (12) through the nonretarded limit of the p-
polarized reflection coefficient: r, = (¢ —1)/(e +1). By
taking the Drude-Lorentz model as a basis, the reflection
coefficient becomes r, ~ wg/2y with the plasmon reso-

nance frequency wg = +/w}+ ®3/2, which in turn
depends on the absorption line frequency @,, the plasma
frequency wp and the damping constant y, cf. Ref. [16]. Itis
important to note that the real part of the reflection
coefficient has both positive and negative wings around
its resonance frequency, so that when viewed as a quality
factor Re(r,) = £Q. As shown in Refs. [23-26], surface
plasmon resonances, connected in the context of CP
potentials, can be used to produce a maximum Purcell
enhancement factor (or quality factor Q) of up to 60.

In order to produce concrete predictions, we consider the
setup of Refs. [11,12], where an evanescent wave is created
close to a surface creating a repulsive dipole potential into
which a rubidium atom is placed. In order to assess the
contribution of our nonadditive term Uy cp we compare the

“additive” potential U, = Ucp + Uy to that with the exact
nonadditive term included: UE, = Ucp + Uy, + UNgp. Our
results are shown in Fig. 2, and demonstrate that the
nonadditive term calculated here has a drastic effect on
even the qualitative character of the potential. The pertur-
bative version UL, = Ucp + UL + Urcp of the laser-
assisted Casimir-Polder potential is shown for reference,
it is seen that the qualitative character of the effect is
captured in the perturbative regime, but precise predictions
require the nonperturbative result.

In this Letter we have derived and theoretically evaluated
a nonadditive laser-induced CP potential. The electric field
and the dipole moment were each split into a free
contribution and an induced contribution, each of which
depends on the other. In this way the laser light potential
and the standard CP potential are reproduced as lowest-
order terms. The higher-order correction term leads to the
nonadditive potential which we have derived in both a
perturbative and nonperturbative approach. We have shown
that this term makes a significant contribution under certain
experimental conditions. If the laser power is high enough
and in combination with an additional enhancement by a
surface plasmon resonance, the occurrence and position of
barriers and minima in the total potential can significantly
change, leading to local minima, which can be used to trap
atoms near surfaces.
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Abstract — The emission by an initially completely inverted ensemble of two-level atoms in the
long-wavelength regime is simultaneously enhanced by both collective effects (Dicke effect) and
dielectric environments (Purcell effect), thus giving rise to a combined Purcell-Dicke effect. We
study this effect by treating the ensemble of N atoms as a single effective N + 1-level “Dicke
atom” which couples to the environment-assisted quantum electrodynamic field. We find that an
environment can indeed alter the superradiant emission dynamics, as exemplified using a perfectly
conducting plate. As the emission acquires an additional anisotropy in the presence of the plate,
we find an associated resonant Casimir-Polder potential for the atom that is collectively enhanced
and that exhibits a superradiant burst in its dynamics. An additional tuneability of the effect is

introduced by applying an external driving laser field.

Copyright @ EPLA, 2018

Introduction. — Recent studies of atom-light interac-
tions in non-trivial environments have increasingly focused
on collective effects [1,2]. In such efforts, two very distinct
phenomena can potentially lead to a complex interplay:
the Casimir-Polder potential of a single atom near a sur-
face mediated by the vacuum fluctuations [3] and the as-
sociated change of the atom’s spontaneous emission rate
due to the surface’s presence (Purcell effect [4]) on the one
hand, and the collective enhancement of radiation in an
atomic ensemble (Dicke effect [5]) on the other.

The Casimir-Polder potential and its associated force
are part of the field of dispersion forces, which are pure
quantum forces in a sense that they stem from zero-point
fluctuations of the quantized electromagnetic field. There
are a variety of theoretical frameworks to describe the
Casimir-Polder potential [6,7]. We use macroscopic quan-
tum electrodynamics (QED), cf. e.g. ref. [8], an exten-
sion of vacuum QED incorporating material properties
by macroscopic response functions such as permittivity or
permeability. Experimentally, Casimir-Polder forces can
be made visible directly via the change of the atomic mo-
tion under the influence of the potential, e.g., by measur-
ing the deflection angle of atoms passing a macroscopic
object such as a V-shaped cavity [9], or in an indirect

approach using spectroscopy to detect the shift of the
atomic transition frequency [10].

Originally defined as the enhancement of the rate of
spontaneous decay of an atom coupled to a single-mode
resonant cavity [4,11], the term Purcell effect can also be
extended to a situation where the atom is in the vicinity
of a single surface providing a large density of states and
thus an enhancement of the radiative decay [12,13]. This
has been exploited, e.g. by increasing light emission of
quantum wells in InGaN light-emitting diodes by means
of surface plasmons [14].

Superradiance is another effect which enhances light
emission, in this case by a collective mechanism in an en-
semble of atoms [15]. The characteristics of the emerg-
ing superradiant burst for a total number of N atoms
are the proportionality of its height to N? and its width
to 1/N. The first experimental verification of superradi-
ance was realized in an optically pumped hydrogen fluo-
ride gas [16]. After this first detection, superradiance was
studied for several systems, e.g. in quantum dots [17],
single diamond nanocrystals [18], Rydberg atoms [19], or
artificial atoms in a cavity [1]. As a further development,
collective effects have recently been demonstrated to im-
pact atom-light interactions near surfaces [2]. There, by
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studying the cooperative coupling of ultracold atoms to
surface plasmons propagating on a plane gold surface a
Purcell enhancement of the atomic fluorescence caused by
the surface plasmons was found. In this context, ref. [20]
studies superradiance as the collective decay rate addition-
ally enhanced by surface plasmons. References [21-23] re-
port the Purcell-Dicke enhancement of the decay rate of
a multitude of atoms enclosed in a spherical metal shell.
Collective effects in a ground-state ensemble were studied
in ref. [24], where a quantum field theory for the Casimir-
Polder interaction of a Bose-Einstein condensate with a
surface was developed.

This article reports on the superradiant intensity of
atomic emitters in arbitrarily structured environments, il-
lustrated for the example of a perfectly conducting planar
surface (see fig. 1). In addition, we demonstrate how the
Dicke effect is manifested in an enhanced Casimir-Polder
interaction between the atomic ensemble and the surface.

Note that ref. [25], which was developed in parallel to
our work, studies the collective Casimir-Polder force in a
different approach; the two works can be considered as
complementary.

Collective atom-field coupling. — We are going to
study the influence of a nearby surface on the superra-
diant emission burst of an atomic cloud and derive the
associated collective Casimir-Polder potential due to pho-
ton recoil. The Hamiltonian of this system H = Hp +
HA + ﬁAF consists of the surface-assisted field contribu-
tion H F, the collective atomic Hamiltonian H A and the in-
teraction term coupling the atoms to the electromagnetic
field Hap. In the framework of macroscopic QED [26,27],
spontaneously fluctuating noise currents are described by
polariton-like annihilation and creation operators f(r,w)
and fT(r,w), which form the Hamiltonian of the medium-
assisted electromagnetic field fIF, where we restrict our
attention to non-magnetic media. The frequency compo-
nents of the electric field E(r,w) are given by [28]

BE(r,w) = iu0w2/d3r'\ / @Ime(r,w)G(r, rw) - f w),
7

(1)
where the classical Green’s tensor G(r,r’,w) is the formal
solution of the Helmholtz equation for the electromagnetic
field [28].

The electric field E(r;) at the position r; of each atom i
couples to the respective dipole moments d; according to
the multipolar coupling, yielding the interaction Hamilto-
nian H AF

A N A~ A N ~ A
e ==Y a0 B = - ) B, @)

i=1

where N is the total number of atoms in the cloud. Ac-
cording to the Dicke model [5], the atoms are assumed
to be motionless and confined to a volume much smaller

than the wavelength A\ of the applied or emitted fields. In
essence all atoms then feel the same average electromag-
netic field E(ry).

As outlined in ref. [15], one can then establish the Dicke
states as symmetric eigenstates of the atomic ensemble.
All atoms are considered as identical two-level systems
with an excited state |e) and a ground state |g) separated
by an energy hwa and coupled by the single-atom dipole
moment d = (e|d;|g). Initially, the atoms are prepared in
the maximally excited state

[(0)) = le,e,...,e). (3)

Here, we assume that the atoms interact only with the
electromagnetic field, and atomic collisions or other re-
laxation processes are discarded. All atomic states being
involved in the subsequent evolution have to be invari-
ant with respect to an exchange of any two atoms. This
property is represented by a symmetric superposition of N
spin-1/2 states, which is an eigenstate of the angular mo-
mentum operator J at its maximal eigenvalue J = N /2.
These N + 1 collective Dicke states can be obtained by
successive application of the symmetric collective deexci-
tation operator to the initial state (3)

(J+ M) (L \UM
M(;Uz) le,e,....e) (4)

with —J < M < J. A general Dicke state |J, M) for N
atoms can be represented as

|7, M) =

[, M) =S8lee,....e.9.9..-.,9), ()
S—— N——

J+M J—-M

where there are (J + M)! possibilities to arrange the ex-
cited atoms and (J — M)! possibilities for the ground-state
atoms. Making use of the normalized symmetrization op-
erator S the totally symmetrical state |.J, M) (4) has

N N\ N!
<J+M> T (J = M)(J+ M)

(6)

distinct contributions. The square root of this expression
serves as normalizing factor for the completely symmetric
state |J, M).

Collective operators can be introduced by

N
JE=N "6k =D 67
=1

i=1

(7)

and are analogous to the operators of angular momentum
with J = N/2. The Pauli spin operators are given by
6% =le)gl, 6~ =1g)(e| and 6% = |e)(e| —|g)(g| and fulfill
the commutation relations [67,67] = 6% and [6%,6%] =
+26%, cf. ref. [29]. Using eq. (7), the atomic Hamiltonian
Ha can be written as Ha = %h Do WAl = %thjz.
Making use of the collective operators (7) the atomic cloud
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Fig. 1: Purcell-Dicke effect: N identical two-level atoms form
a “Dicke atom” with equidistant Dicke states |J, M) (4) sepa-
rated from each other by hwa, and decay rates to the neighbor-
ing states I'ar,ar—1. The presence of the surface with permit-
tivity e(w) alters the radiation properties of the “Dicke atom”
causing an attractive Casimir-Polder force.

of identical two-level atoms may be regarded as one sin-
gle “Dicke atom” having dipole transitions only between
neighboring states, which are all separated by hwa. Fig-
ure 1 depicts the Dicke states |J, M) (4) as eigenstates
of angular momentum. The interaction Hamiltonian H AF
can be expressed as Hap = —(J* +.J7)d-E(ra) with the
single-atom dipole moment d.

Collective emission. — One can then define the rate
of photon emission in state |J, M) decaying to state
|J,M — 1) in the Dicke picture based on the decay rate
of a single atom [27,30] as

iiﬂwidA[,M—l -ImG(ra,ra,wa) -dy—1,m-

(8)
Next, we express the collective dipole moments das,ar—1
and das—1,am in eq. (8) by single-atom dipole moments d,
which contribute to the single-atom decay rate I'.  The
atom-field coupling (2) for N dipole operators contains N
single-atom dipole operators, which need to act between
a ground state |g) and an excited state |e) at the same
position to have a dipole moment with non-zero contribu-
tion, whereas the N —1 atoms at the other positions have
to be in the same state. This results in a number of per-
mutations given by the product of N and the number of
permutations for J + M — 1 excited atoms in N — 1 atoms
in total, cf. eq. (6), yielding a general expression for the
Dicke state dipole moment

Parar—1 =

N
dy -1 = <J,M|Zai|J,M— 1)

i=1

= /(J+M)(J - M +1)d.

9)

The decay rate of the Dicke state |J, M) (8) contains
the two dipole moments dasar—1 (9) and das—1 a7, re-
sulting in an expression for the decay rate of I'ys apr—1 =
(J+ M)(J — M + 1)I', which is formally identical to the
free-space result from ref. [15]. These scaling properties
represent an intrinsic connection between Dicke states (4)
and decay rates (8) and is the fundamental difference be-
tween one single atom with N quantum states and a col-
lection of N atoms in the Dicke approximation. As we
will see, this further leads to a superradiance-like scaling
behavior of the collective Casimir-Polder potential for the
atomic cloud. In contrast to the macroscopic treatment
of ref. [21], the collective decay rate (8) depends explicitly
on the number of atoms V.

As mentioned above, the surface’s presence modifies the
collective decay rate (8) by a Purcell factor Fp

Tarar1 = (J+M)(J—M+1)FIO. (10

This can be seen by decomposing the Green’s tensor into
G(ra,ra,wa) = G(O)(rA,rA,wA) + G(l)(rA,rA,wA) with
the bulk part G(O)(rA,rA,wA) responsible for the free-
space decay rate
wildf®

70 — A
3meghc?

(11)

and the scattering part G(1>(rA, ra,wya) yielding the Pur-
cell factor

6me

w|d|2d . IIIlG(1>(I‘A7 rA7wA) . d*

Fp:1+

(12)

This is a general expression and applies to all kinds of
geometries and materials, such as dielectric surfaces or
resonator structures. We illustrate our results for the spe-
cific case of a perfectly conducting mirror in the following.
At this point, it is worth checking the long-wavelength
assumption of the Dicke model. To this end, we con-
sider two atoms to be located at slightly different posi-
tions. Beside the symmetric superradiant state (4), an
anti-symmetric subradiant state, which would be the sin-
glet state if there were only two atoms, will emit radiation
in this case. As shown in ref. [31] the decay process is
governed by a joint decay rate of the two atoms i = 1 and
i=2: T2 = %d -ImG(ry,ro,wa) - d*.

To see if the conditions of superradiance hold, we need
to check if the decay rate I'nj—1 37— = I' + I''? of the
superradiant two-atom state is indeed equal to 2I" as sug-
gested by eq. (8). This is the case if F/ =T''?/T" ~ 1. We
display the general results of the superradiance fidelity for
the specific case of two atoms near a perfectly conduct-
ing surface [32] where we fix the position of one atom and
vary the position of the other. In fig. 2(b), the atom is
located close to the surface. One observes that the fi-
delity F'is indeed close to unity in a corridor around atom
1, which is particularly narrow in the normal direction,
|zB — za| < zp. This anisotropy of the superradiance re-
gion is induced by the presence of the surface, as seen by
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Fig. 2: (Colour online) Superradiant fidelity. (a) Single-atom
decay rate F/F(O) near a perfectly conducting plate along
the z-axis (x = 0). The atomic dipole moment is polar-
ized along the z-direction. I' is composed of the bulk rate
and the scattered rate from an image dipole and thus van-
ishes at the boundary z = 0. (b) We indicate regions where
F =T"/T = (100 £ 5)% (red corridor) for the atomic po-
sition za = 0, za = 107" m and (c) the atomic position
za = 0, za = 107m. For comparison, we also display the
fidelity in free space F® = 2@ /0® = (100 + 5)% (red
dashed circle). The shape and width of the corridors depend
on the orientation of the dipole.

comparison with the free-space case. Figure 2(c) sheds
light on this scenario with a greater distance between the
atom and the surface. The surface does not influence
the radiative behavior of the atom so strongly and the fi-
delity is close to unity in a broad region around the atom,
[rg —ra| < c/wa.

In the following, we assume that all atoms are suffi-
ciently close to one another, so that superradiance occurs.
The time-dependent total photon emission rate I(¢) is then
given by the sum of photon emission rates for state |J, M),
Cara—1 (8), weighted by respective time-dependent prob-
abilities pas(¢)

J

Z o ()T ar,nr—1-

M=—J+1

I(t) = (13)

A set of rate equations for the probabilities is set up by
computing the decay rate for each collective atomic state
|J, M) (8)

pu(t) = —Parnr—1pnm () + Do mprra () (14)
for —J < M < J. This set of rate equations is solved nu-
merically using a Runge-Kutta algorithm. Figure 3 shows
the emitted intensity for an atomic ensemble of N = 50
and N = 100 atoms at a distance of zpo = 10~"m from
the surface scaled by the single-atom vacuum decay rate

4000 -
21012
-:SE“ 10!
10
_ Ei
S5 10! 10? 10°
N

=2000 »
-~
N—
~

Peak Width [s]
3

0.2
t T

0.4

Fig. 3: (Colour online) Total photon emission rate I(t) (13)
scaled by the free-space decay rate T'®) (11) for N = 50 (black
curves) and N = 100 atoms (red curves) under the influence
of a perfectly conducting surface. All atoms are located at
zA =0, za = 10" m and are polarized along the z-direction.
The dashed lines show the respective total photon emission rate
for N =50 and N = 100 atoms in the absence of the surface.
The insets show the burst height and the full width at half-
maximum (FWHM) as a function of the number of atoms N.
We obtain the relations: burst height o« N?°° and FWHM
o N-1:00

I'©. The superradiant emission burst is very pronounced
especially for a large number of atoms. The presence of
the surface enhances this effect even further thus giving
a Purcell-Dicke enhancement. The perfectly conducting
mirror can cause an enhancement factor of at most 2. Ma-
terials showing plasmonic resonances can exceed this value
by far. In the context of the Casimir-Polder potential, a
Purcell enhancement factor of 60 is reported in ref. [33].
The insets show logarithmic plots of the burst height and
the burst width as a function of the number of atoms V.
We observe the well-known properties for the burst height
of o« N2 and the burst width of o 1/N.

Collective Casimir-Polder potential. — The col-
lective emission by the atomic ensemble is intrinsically
related to the Casimir-Polder potential of the atomic
ensemble, where we further allow for the presence of a
monochromatic coherent driving laser field E(ra,t) =
E(ra)cos(wrt) of frequency wy,. Based on the analy-
sis of the Casimir-Polder potential for one laser-driven
atom [34], this formalism is readily extended to an arbi-
trary number of atoms in the form of an atomic cloud by
using the respective Dicke states |J, M) and their transi-
tion dipole matrix elements (9) in place of the single-atom
states and matrix elements. It has non-resonant parts,
which are not considered in our analysis. The remaining
resonant potential represents a sum of potentials for each
energy level weighted by the respective probabilities

J

Y pu(t)Un(ra)

M=—J+1

Ulra,t) = ZU(r,») = (15)
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with

Uni(ra,t) = (J + M)(J — M + DU (x:),
U(r;) = —powid - ReGW (r;, 1y, wy) - d*.

(16)
(17)

All damping terms are assumed to be much smaller than
the laser frequency and the transition frequency: I' <
wr,wa. As described in ref. [34], the potential terms de-
pend on the driving frequency of the laser wy. A de-
tailed analysis would reveal the occurrence of Mollow
triplets [35], which is discarded for our choice of laser in-
tensity and detuning, cf. ref. [36].

In the absence of a driving field, the probabilities pas(t)
are given by eq. (14). The presence of the laser field causes
the coupling of the expectation value of the diagonal ele-
ments of the atomic flip operator (14) to the non-diagonal
elements, whose differential equation reads

(Ani (1)) = i[M — Nlwa (Anr,n (1))

FLY s B ()
K=N+1

i N
—= > drw - E(ra t)(Ag (1)
K=M+1
+ s NNt +Dn v (Asrer v ()
—CnNaan-1n+ T rarara—1 (A n (). (18)

The respective differential equation of the diagonal ele-
ments of the atomic flip operator (A a(t)) is given by

i

{(Avn(0) =+ > dyx-E(ra, t)(An k(1)
) K=N=+1
— % Z dK,N . E(I‘A,t)<AK,N(t)>
K=N+1

+Tns1n (Ansin1 () — Tvv-1(An n(8)  (19)

and is identical with the rate equation for the probability
par(t) (14) with the additional term from the driving laser
field. The decay rates having four indices are defined by
F]W,K,N,L = %widM?K . III’IG(I‘A,I‘A,LUA) . dN,L~ The

dipole moment operator in the Dicke picture is given by

= Z dar i An k(1)
K=M=+1

d(t) = Z d,(t) (20)

in terms of collective atomic flip operators AM,M,l =
|J,M)(J,M —1|. To calculate the laser-driven Casimir-
Polder potential, the dipole correlation (d(t)d(r)) is re-
quired. Like the set of rate equations (14), this sys-
tem is solved numerically by a Runge-Kutta algorithm.
The probabilities can also be computed using a master
equation [25] with a system Hamiltonian consisting of
the atomic Hamiltonian H, and the driving Hamiltonian,
which is explained in ref. [37]. The Lindblad Liouvillian
describes spontaneous emission with the collective opera-
tors (7).

-g' élo’23
2z, »:f;—flo'”
3 107
‘ ~
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—~ ;
+ 20 1
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Fig. 4: (Colour online) Casimir-Polder potential of an atomic
ensemble of N = 50 atoms (black line) and N = 100 atoms (red
line) for Rb atoms with atomic transition frequency of wa =
2.37 x 10" rad/s and dipole moment |d| = 2.53 x 1072° Cm.
All atoms are located at zp = 0, za = 10~ " m and are polar-
ized along the z-direction. The blue dot-dashed line shows the
Casimir-Polder burst for a laser-driven ensemble of N = 50
atoms with an intensity of I = 30000 W/m? and a detuning
between the laser frequency wr, and the atomic frequency wa
of A = wr, —wa = 21 x 10% rad/s, which gives physical results
only in the regime I't < 1. The insets show the burst height
and the full width at half-maximum (FWHM) as a function of
the number of atoms N. We obtain the relations: burst height
oc N'9%8 and FWHM oc N %999,

Figure 4 shows the collective Casimir-Polder poten-
tial (15) of an atomic ensemble of N = 50 and N = 100
atoms. As shown in the insets, the burst height and the
burst width exhibit the typical superradiant scalings with
N?% and 1/N, respectively and the burst position is thus
given by ¢t = 1/(NT'). We want to emphasize that the
total momentum transferred to the atomic cloud as ob-
tained by an integration in time agrees with the result
found in an additive approach found for incoherent, indi-
vidual atoms. However, the effect is achieved on a con-
siderably shortened timescale. This is very relevant for
all experiments and theoretical proposals, where an effect
accumulates over a finite interaction region. Examples
are the measurement of the Casimir-Polder force, where
sodium atoms pass through a parallel-plate cavity [9], the
interferometry of large molecules such as Crq at gold grat-
ings [38] or a Poisson-spot experiment with neutral deu-
terium molecules [39].

By applying an electric driving field, the timescale is ad-
ditionally governed by the Rabi frequency Q = d-E(r)/h.
If NT' > Q, a pronounced burst remains, the Rabi os-
cillations are not visible and the curve resembles that
without applied electric field. In case of NT' < Q, Rabi
oscillations are superposed on the burst. Figure 4 shows
the Casimir-Polder potential with applied electric field in
the regime NI' ~ ), where the burst structure is signifi-
cantly altered. The application of an electric field causes
a longer-term persistence of the Casimir-Polder potential
and significantly alters the dynamics, as can be seen in
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fig. 4. This might be helpful for the experimental detec-
tion of these effects.

Conclusion. — In this article, we have studied the en-
hancement of the total photon emission rate and the
Casimir-Polder potential due to collective effects and the
presence of a surface in a combined Purcell-Dicke effect.
We show the connection of the decay rate in the Dicke
picture with the single-atom rate via the atomic dipole
moments using the symmetric Dicke states. The long-
wavelength approximation according to the Dicke model
is checked by comparing the joint decay rate of two atoms
placed slightly away from each other with the respective
Dicke decay rate. The enhancement due to the presence
of the surface is described in the form of a Purcell fidelity
given by the surface-induced decay rate I'") relative to the
free-space decay rate I'(©), This enhancement effect is de-
picted for the total photon emission rate and the collective
Casimir-Polder potential for the specific case of a moder-
ate number of atoms in the vicinity of a perfectly con-
ducting mirror, showing burst heights and widths which
fulfill the criteria of superradiance. As shown, an external
driving laser can be used to manipulate the dynamics of
the potential.

The Dicke enhancement of the Casimir-Polder force can
be exploited to significantly increase sensitivity without
having to extend interaction times or interaction regions
(e.g. for atoms passing a plate). In this way, such forces
can be used as sensitive probes of atomic or surface prop-
erties such as chirality [40] or CP violation [41] or even
facilitate the (spectroscopic) detection of quantum fric-
tion [42,43].
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Polarizable atoms and molecules experience the Casimir-Polder force near magnetoelectric bodies, a force
that is induced by quantum fluctuations of the electromagnetic field and the matter. Atoms and molecules in
relative motion to a magnetoelectric surface experience an additional velocity-dependent force. We present a
full quantum-mechanical treatment of this force and identify a generalized Doppler effect, the time delay
between photon emission and reabsorption, and the Rontgen interaction as its three sources. For ground-state
atoms, the force is very small and always decelerating, hence commonly known as quantum friction. For atoms
and molecules in electronically excited states, on the contrary, both decelerating and accelerating forces can
occur depending on the magnitude of the atomic transition frequency relative to the surface-plasmon frequency.

DOI: 10.1103/PhysRevA.80.042902

L. INTRODUCTION

The ground-state fluctuations of the electromagnetic field
lead to several inherently quantum effects such as the spon-
taneous decay of excited atoms and molecules as well as
dispersion forces [1]. Forces between isolated atoms that are
mediated by the quantum vacuum are known as van der
Waals forces [2], while forces between macroscopic bodies
are referred to as Casimir forces [3]. The third type of dis-
persion (in a sense an interpolation between these two ex-
treme cases) is the Casimir-Polder (CP) force exerted on
single atoms near macroscopic bodies [4].

For a two-level atom with transition frequency w, and
electric-dipole moment d located at a distance z, away from
a perfectly conducting plate, the short-distance (nonretarded)
[4] and long-distance (retarded) [5] limits of the CP potential
take the well-known forms

Une(24) e "
wellz) =————3, Ut =————73.
ereA 3 ereA 167T280wAZi

1
48me(7y W

These potentials, acting on atoms at rest, lead to conservative
forces perpendicular to the plate’s surface. CP forces (as well
as all other dispersion forces) play important roles as limiting
factors in efforts to miniaturize atom-optical devices [6] and
have been measured at distances as small as 6 um [7].

Casimir-Polder forces are well understood far beyond the
aforementioned special case of a perfectly conducting plate,
with magnetoelectric materials of arbitrary shape [8] and fi-
nite temperature being investigated theoretically [9,10] as
well as experimentally [11]. While most theoretical investi-
gations are based on Lifshitz’s macroscopic treatment [12] or
a linear-response description [13], full quantum theories
based on electromagnetic-field quantization in magnetoelec-
trics have also been developed [8]. In the latter approach, the
operator-valued Lorentz force

*s.scheel @imperial.ac.uk
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F= f Prpa0)E(r) +ja(r) X B(r)] )

on the atomic charge and current densities due to the body-
assisted electromagnetic fields is computed. In the long-
wavelength approximation, it leads to the well-known ex-
pression

F=V,[d-Bry)]+ 1d < Blry) 3)

with d denoting the atomic electric-dipole moment operator.

Intuitively, dispersion forces can be understood as dipole-
dipole forces generated by spontaneous polarization due to
the electric-field fluctuations. Therefore, CP forces on atoms
at rest act either toward (attractively) or away (repulsively)
from the macroscopic body. For atoms in motion, retardation
delays the dipole response, and a force component emerges
along the direction of motion. In most cases, this force com-
ponent acts against the motion and is thus the origin of quan-
tum friction.

Quantum friction forces have traditionally been studied
within a linear-response formalism [14—17]. Evaluating the
correlated quantum fluctuations of moving atom and dielec-
trics, the friction force on ground-state atoms can be ob-
tained in this way. However, the predicted forces are typi-
cally very small. For the stationary case it is well known that
CP forces can be resonantly enhanced for excited atoms
[8,18]. For such nonequilibrium situations, linear-response
methods cannot be applied and a more detailed investigation
of the atom-field dynamics becomes necessary.

In this paper, we develop a full quantum theory of the
velocity-dependent CP force. In particular, we will show that
for atoms and molecules in electronically excited states, both
decelerating and accelerating forces can occur depending on
the relative magnitude of the frequencies of the atomic tran-
sition and the surface plasmon. The paper is organized as
follows. After briefly reviewing the formalism of macro-
scopic quantum electrodynamics in Sec. II, we study the
atom-field dynamics in Sec. III A before investigating the
resulting force in Sec. III B and applying our results to the

©2009 The American Physical Society
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quantum friction scenario in Sec. III C. We illustrate the
theory with representative examples in Sec. IV, followed by
a summary in Sec. V.

II. BASIC FORMULAS

Let us assume an arbitrary arrangement of dispersing and
absorbing magnetoelectric bodies, characterized by their
complex-valued Kramers-Kronig consistent permittivity
e(r,w) and permeability u(r,w). The Hamiltonian of the
quantum electromagnetic field and the bodies can be given as
(for a recent review, see Ref. [19])

[:IF= 2

\=e,m

d3rJ dw ﬁwf'}t(r, ) - ﬁ\(l‘,w), 4)
0

where the fundamental variables ﬂ;(r,w) and f)\(r,w) are
creation and annihilation operators for the elementary elec-
tric (\=¢) and magnetic (\=m) excitations of the system;
they obey the bosonic commutation relations

[f\(r,0).f,(t",0")]= 8, 8 -1)8w-0). (5

The electric and magnetic fields can be expanded in terms of
the fundamental variables according to

E(r)= f ’ dwE(r,0) + H.c.
0

=2

A=e,m

& f dwG,(r,r',0) - f,(r',w) + Hec.,
0

(6)

B(r) = f dwB(r,0) + H.c.
0

-3

\=e,m

% d R
d3r’f ﬁv X Gy (r,r',w) - f,(r',w) + H.c.,
0

™)

with coefficients

w? f
G,(rr',w)=i—\/—Ime(r,w)Gr 0, (8)
c e
fi 1 "
e ) =i 20 o G )T
¢ N mey |u(r',w)

9)

Here, G is the classical Green tensor as uniquely defined by
the inhomogeneous Helmholtz equation,

2
[V X M(rl ) V X- %s(r,w)]c(r’rr’w) —Slr—r),

(10)

together with the boundary condition
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G(r,r',w) =0 for [r—r'| — . (11)

The Green tensor is an analytic function in the upper half of
the complex frequency plane and it has the following useful
properties:

Gr.r',-w)=G"(r,r',w), (12)
G(r'.r,0)=G'(r.r',0), (13)
> &sGy(r,s,w) - G;T(I",S, o) (14)
\=e,m
f
=20 2 Im G (e, o). (15)
ar

The Hamiltonian describing the internal dynamics of an
atom with eigenenergies E, and eigenstates |n) can be given
as

Hy=2 EAy (16)
k

(A=|k)(k| are the atomic flip operators). Throughout this
paper, we will assume that the center-of-mass motion is suf-
ficiently slow so that it separates from the internal dynamics
in the spirit of a Born-Oppenheimer approximation. The in-
teraction of the atom with the body-assisted electromagnetic
field is then adequately described by the atom-field coupling
Hamiltonian for given center-of-mass position r, and veloc-
ity v4, which in the multipolar coupling scheme and electric-
dipole approximation reads

Hyp=—d-E(ry)-d-v, X B(r,)
== dy-E(r)Ay- X dy- vy X BryAy
ki Kl

(17)
(d,d:(k|(i|l)). The first term is the familiar electric-dipole
interaction, while the second term is the Rontgen interaction
associated with the center-of-mass motion. Combining Egs.
(4), (16), and (17), the total Hamiltonian of the atom-body-

field system reads
H=H,+Hp+H,p. (18)
Finally, the total Lorentz force on the atomic charge and

current distribution can in electric-dipole approximation be
given as

F=V,[d-Ery)+d-v, xB(ry,]+ %[& X B(ry)]

=V, 2 [dy - E(ry)Ay +dy - vy X B(ryAy]
i

d . A
+ d—E [dy X B(ry)A]. (19)
I
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III. CASIMIR-POLDER FORCE ON A MOVING ATOM

The Casimir-Polder force on an atom is the quantum av-
erage of the Lorentz force (19) with the body-assisted field
being in its ground state. To evaluate this expression, we first
need to solve the coupled atom-field dynamics.

A. Atom-field dynamics

Using Hamiltonian (18), the Heisenberg equations of mo-
tion of the atomic and field operators are found to be

A

P . P
Amn = lwmnAmn + ZE (dnkAmk - dkmAkn) : E(rA)
k

i ~ A .
52 (A= diAy) - va X Blry),  (20)
k
where w,,,=(E,,—E,)/h, and

f'}\(r, (,O) =- iwf'}\(r, w) + éz G;T(r,rA,w) . dklAkl
k.l

1 , -, )
> [G)\T(r,rA,w) X VX v,-dyAy
Kl

ho
(1)

(by convention, V and V' only act on the first or second
argument of the Green tensor, respectively). The latter equa-
tion is formally solved by

fy(r, 0,0 = £y (1, 0,0) + ) |(r, 0,1), (22)
where
fyi(r, 0,1) = e, (r, 0), (23)

. t

R i . . R

fys(r,0.1) = %2 dre =061, r(7), 0] - dyAy(7)
kYo

!
t

s f dre-io=9
0

hw ol

X G, rA(7), @] X V') X vy - dyAy(7) (24)

determine the free and source parts of the electromagnetic
field.

We assume that the atom moves with uniform nonrelativ-
istic speed (v4<<c) and we are seeking a solution to the
system of Egs. (20) and (21) within linear order of v,. We
may hence write

rA(7) =14(0) = (= TVy, (25)
and after substituting Eqs. (22)—(24) into Eq. (6), using the
integral relation (14), and applying a linear Taylor expansion
in v, the time-dependent frequency components of the elec-
tric field are given by

E(r,0,1) = E(r,0,0) + E(r,0,1) (26)

with
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E(r,0.0) = e E(r, o), (27)
A i,u, ! . -
E((r,0,0) = "’ f dre” =73 Im G(r,1,0) - dyA (1)
- ™ 0 kil
. t
_ ﬂwzf dT(l _ T)e—iw(t—r)
™ 0
X 2 Im G(r,ry, w) ~dk,(V§' -VA)AH(T)
k1l
t
- @w f dre i@t
™ 0
XD I[G(r,ry,0) X V'] X v, - dyd (1) (28)
k,l

[ry=r4(r)]. The magnetic field (7) only enters the equations
of motion in conjunction with a factor v,, so we only require
its zero-order expansion in the velocity,

B(r,0,1) = Bi(r,0,1) + B,(r,w,7) (29)

with

By(r,w,1) = e B(r,0), (30)

t
B(r,w.1) = @a)f dre™ =
2 =),

XD VX ImG(r,ry,o) dydy(n). (31)
ki,

We can next substitute our solutions (27)—(31) for the
time-independent electromagnetic fields into the equation of
motion (20) for the atomic flip operators. Noting that the

total field operators ]El(r,w,t) and ]_§(r,w,t) commute with
the atomic flip operators at equal times, we arrange all prod-

ucts such that creation operators ﬁf(r,w) are always at the

left and annihilation operators f')\(r, w) are always at the
right. Assuming the field to be initially prepared in its
vacuum state and taking expectation values, all contributions
from the source fields vanish. For weak atom-field coupling,
the time integrals can be evaluated with the aid of the Mar-
kov approximation,

t t
f dre” A DA(D) = (A (DA(D) f dre (=P
0 —

- <A,-z<z>>5,-k[w5(w ) - iP—— ] (32)
W = Wy

(here P represents the principal value); similarly we have
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f dr(t = DDA (D7)

0

+l'7T5((1)—(le) . (33)

w — Wy

~ <A,-,<r>>a,-k;iw[7>

where the shifted atomic transition frequencies
amn =Wy, t+ 5wm - 5&),1 (34)

have yet to be determined.

For a nondegenerate atom, the resulting equations of mo-
tion for the off-diagonal atomic flip operators decouple from
each other as well as from the diagonal ones. In addition, we
consider an atom whose internal Hamiltonian (16) is time-
reversal invariant, so that we may assume real dipole-matrix
elements. After a lengthy but straightforward calculation, we
finally obtain the following equations of motion for the in-

ternal atomic density matrix elements @,,,=(A,,,):

Pn=—rnl7n+2 szks (35)
k
O =[=i@y,— (T, +T,)12]0,, for m#n, (36)

where we have introduced the probabilities p,=o0,,. The
equations of motion for a moving atom have exactly the
same form as for an atom at rest: the population of the diag-
onal density matrix elements is governed by spontaneous
decay, while the off-diagonal ones undergo damped oscilla-
tions. However, the respective transition rates

r,=>T; 37)
k
and frequency shifts

dw, =, ok (38)
k

are affected by the atomic motion,

6&)}1,2 = 5w§(rA) + 6(0£(rA,VA), (39)

wzdnk -Im G(l)(rA,rA,(U) . dkn

)

Sk (ry) = %P J dw

0 Wy — ®
(40)
k Mo~ ~
5wn(rA’VA) = _®(wnk)(VA : VA)
2%
X [w?d,y - Tm G(r,1y,0) - di, ] o .
(41)
Th=Thr,) + Th(ra,v,), (42)
2
P = =1 20(8,0 @y I Gl T ) -
(43)
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Mo ”
Fﬁ(rA,VA) =——(v4- VA)PJ dw
h 0

2 (1) ’
wd, - Im G (r,,ry,o) - d
% [ nk — ( A TA ) kn] ( 4 4)
Wy — W
(the primes indicate derivatives with respect to w). Here, we
have decomposed the Green tensor into its bulk (free-space)

and scattering parts according to
G(r.r',w) =G, 0) +GV(r,r' ») (45)

and have discarded the Lamb-shift contribution due to G
from the frequency shift dwf(r,) (as the free-space Lamb
shift is assumed to be already included in the bare transition
frequencies w,,,). We have further exploited the symmetry
(13) of the Green tensor which implies V’»—>%VA, showing
that the translationally invariant bulk Green tensor does not
contribute to the velocity-dependent shifts and rates.

It is worth noting that for real dipole-matrix elements, the
contributions from the Rontgen interaction exactly cancel.
As a result, the velocity dependence of these quantities is
entirely due to the fact that the moving atom emits and re-
ceives the electromagnetic field at different positions. The
velocity-dependent contributions are proportional to the total
derivative of the scattering Green tensor along the direction
of motion. As a consequence, the decay rates and frequency
shifts are unaffected by uniform motion in a direction along
which the environment is translationally invariant (e.g., mo-
tion parallel to a plate or a cylinder). It is worth pointing out
that such a vanishing of velocity-dependent frequency shifts
does not necessarily imply that the velocity-dependent part
of the CP force must also be zero. One should bear in mind
that all of the above have only been shown within linear
order in the velocity.

B. Casimir-Polder force

Having solved the coupled atom-field dynamics, we can
now evaluate the quantum average of the Lorentz force (19).
We restrict our attention to the pure dispersion force by again
assuming the field to be initially prepared in its ground state.
The atom may initially be in an arbitrary incoherent super-
position of internal energy eigenstates. For an atom at rest, it
has been found that the third term in Eq. (19), which in-
volves a total time derivative, does not contribute to the force
on atoms in incoherent internal states. We have explicitly
checked that the same is true here, so that we only need to
consider the force

F=Vd-E(ry)+d v, X B(r,)
=V, 2 [dy - (E(r)Ag) +dyy - vy X (Br)A)].
kl

(46)

We begin by substituting the time-dependent electromag-
netic fields (26)—(31) where again we retain only terms up to
linear order in v, and we arrange all products such that the
contributions from the free fields vanish. The source fields
give rise to intra-atomic correlation functions. By virtue of
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the quantum regression theorem, Eq. (36) implies that the
relevant correlation functions are of the form
(A (DA, (7)) = 8, e, (7) (47)

with
Q= +i(L,+1)/2. (48)

We evaluate time integrals in the spirit of the Markov ap-
proximation

t t
f dr e AL (DAL (D) = 0,,(D) 8y f dr (@ li=7)
0 —x

PHYSICAL REVIEW A 80, 042902 (2009)

fth(t— T)e_iw(t_T)<AAnk(t)Aln(T)> - (1) Sy

0 (w - ‘Q'nk)2 ’ (50)

Again assuming real dipole-matrix elements, the resulting
expression for the CP force can be written in the form

F()=2 p,()F, (51)
n
Unn(t)i5k1
= 49
w— an ( )
and similarly with
|
- Vd, - Im GV(r 14, 0) - dy, i ” V(v,-V)dy - Im GV(ryry,0) - d
Fn=@2 dow’~Znk (ry,ry,0) kn+ﬂ2 dww’ (Va )d,.i (2A 2 @) - d
T Jo 0=y Tk Jo (0= Q)
i * V' -V)d,; v, X [VXImGV(r,r, 0] d
+ ﬂz dw(u( )y - va X[ (ry,rp,@)] - dygy rec. (52)
Tk 0 = an
Note that the two contributions from the Rontgen interaction F,=F,(r,) +F,(r,,vs), (53)
have been collected in a single term as given on the second
line of the above equation by making use of the symmetry with
(13) of the Green tensor. In addition, the (vanishing) contri-
butions from the free-space Green tensor have been dis- P S
carded. F,(ry) = —OE J dow’
Next, let us separate the forces F,, into their position- and 27 Jo
velocity-dependent parts. The shifted and broadened atomic ) ) )
transition frequencies (), are velocity dependent, so that the % Vi Im G (ry 14, 0) - dyy +cc (54)
first term in Eq. (52) also contributes to the velocity- =y
dependent part of the force. Again retaining only terms up to
linear order in the velocity, we find and
|
* Q. (v)Vd, ImGY(r,r,o) - d
Fn(rAva) _ @E dww? ak(Va) nk g AT A, 0) - dy,
T Jo (0= Q)
j * Vv, -V)d,, Im GV(r,.ry,w) - d
+ﬂ2 doo? (V4 )d,.i (ZAA ) - dy,
Tk Jo (0= Q)
i ” V' - V)d, - vy X [V X Im GV(ry,ry,0)] - d;
+ ﬂz da)(u( )y va X [ (ry,rs,0)] - dygy +cc., (55)
T Jo =y

where Q,;=Q,(ry) and Q,(vy)=Q,,(rs,v4). The
velocity-independent force (54) is just the well-known CP

force on an atom at rest. We will in the following restrict our
attention to the velocity-dependent force (55), which consists

042902-5



290

8. Quantum friction

STEFAN SCHEEL AND STEFAN YOSHI BUHMANN

of three terms: The first generalized Doppler term is due to f * @ ImGV(r,r',w)

the velocity dependence of the atomic transition frequencies.
The second delay term is associated with the time interval
between emission and reabsorption of the electromagnetic
field. The third Rontgen term is due to the coupling of the =- J-
current density associated with the moving atom to the mag-
netic field.

In close analogy to the case of an atom at rest, the force

w

0 (0~ an)2

can be separated into its resonant and nonresonant parts us-

ing

contour-integral  techniques. Writing Im G=(G
—G™)/(2i), using the property (12) of the Green tensor, and
employing Cauchy’s theorem to transform integrals along the

real axis to integrals along the positive imaginary axis plus
contributions from the poles, one can show that

Jm i o Im GV(r,r', ») B fmd*§2G(l)(r’r,’i§) F,(ra,v4) =F'(r,v4) + F,(rs,v,)
o w-Qu  Jo T 2+
+ WanG(])(r’r,aan)G)((Bnk) 5
ith
s6) "
|
o LY : 1. G0 ,
Fev) = 20 [ a8V ullan(v0i) + @y, 18]GV
0

and

Here,

) I% f dEEV (vy - V) Tr{l @ (i8) + @ (= 9] GV (xpor i)}
0

-
F o f dEE(Y' ~V)Tr{{a,(i6) — @, (= i8] - vy X [V X GV(rpors i8]}
0

F:z(rAva) = /LOE @((T)nk)ﬂnk(vA)[wz v dnk : G(l)(rA’rA’w) : dkn](iFan
k
w=unk

+ i/’«oz ®(5nk)[wz V(vy-V)dy- G(l)(rA’rAvw) “dy,],
k

+ il’«oz O(&,) (V' =V, - vy X[V X G(l)(I‘A,l‘A’an)] dy, +c.c
k

_ l dkndnk dnkdkn
) = ﬁE,:' [w—QZk o+ Qy

is the polarizability for an atom at rest and

1 Q:k(VA)dkndnk an(vA)dnkdkn
“”(VA"")‘@{ -0 (wr0,)

is the correction to this polarizability for a moving atom within linear order of the atomic velocity.
It is instructive to consider the perturbative limit Q,,— w,;, (i.e., dw,, ',y — 0). The resonant force can be represented by
its zero-order approximation in dw, and I',,; which reads

042902-6

- dkﬁz(ﬂik— &GV (r,r',id)
0 (@+02)
+ ﬂ'[w2G(1)(r,r’,w)];)=Q k@(c?)nk).

Substituting these results into Eq. (55), one finds
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(57)

(58)

(59)

(60)

(61)

(62)
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F,(ry,vy) = 2#02 O(w,)[ 6w, (v4) — o VA)][w Vd, - Re G(l)(l'A,rA,w) dkn]w—w ok
- :“02 O(w, )[T,(va) + Fk(vA)][wz Vd,-Im G(l)(rA’rA’w) : dkn]r,u:wnk
k
- 2#«02 ®(wnk)[w2 V(vy-V')d,-Im G(l)(l'A,l’A,w) : dkn]:u:w ‘
k n

2102 00,00 (V' = V)d,y - V4 X [V X Im GV (rp,14,0,0] - dyy,- (63)
X

The nonresonant velocity-dependent force vanishes to zeroth order in the frequency shifts and decay rates in contrast to the
force observed for an atom at rest. The leading nonvanishing contribution is linear in these quantities and it reads

2 - Sw, — 5 2n_ 5
F''(ry,vy) = - %% fo dggz[ w,(V4) (wiw,;(‘;;;g(wk &) Vi, GV(r,r,ié) dy,
2o 7, 2@t T (o], —38)
" ™ 2 f dee (win+§2)3

V (vy- V), GV(rgry,ié) - dy,

oy f §§2“”‘"(F +2F §)( V' =V)d, - vu X [V X GV(ryry,i8)] - dy,. (64)
™ % ( Wy, + +&)

For an isotropic atom, these results reduce to

F(rg,vy) = MOE O(w,)|d i *[80,(v4) = 8wy (v) [0’ V Tr Re GV(ry,r4,0)],

wW=w nk
M '
- ?OE ®(wnk)|dnk|2[rn(VA) + rk(VA)][w2 V TrIm G(l)(I’A,l’A, w)]w:w"k
k
2
- %2 ®(wnk)|dnk|2[w2 V (VA : V,)TI‘ Im G(l)(rAvrAvw)]L’LFw k
k n
2
- %2 O(w,) 001l d (V' = V) Te{v, X [V X Im GD(r,.10, 0,0 ]} (65)
k
and
nr, lu' [5(1),,(V ) - 5wk(v )](wZn - 62) .
F(ry,va) = 02 |dnk|2f deg - 2 2 2 ‘ vV Tr G(l)(rA’rAvlg)
3 (g, + &)
2 * o, + T (wl, - 38
+ ﬂE |dnk|zf deg i B ot Zk'; £) V(vy-V)Tr G(l)(rAyrA,if)
3w 0 (@jo, + &)
2 - oy, +T
- B0 d P f a2 2T (v 9yt X [V x 60 i8] (66)
3w 0 (@, + &)
C. Motion parallel to a planar interface
Up until this point, all results are valid for arbitrary ge-
JA% ometries. In order to gain physical insight, we restrict our-
selves to the generic quantum friction scenario of an atom
moving parallel [v,=v;=(v,,v,,0)T] to a homogeneous di-
electric or metal of permittivity e(w) whose plane surface
defines the (x,y) plane (see Fig. 1). The Weyl expansion of
FIG. 1. Atom moving with a velocity v near a planar surface. the Green tensor,
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G(r,r',0) = J(

with r=(p,z) can then be used to calculate explicit expres-
sions for the terms that contribute to the velocity-dependent
force. The relevant Weyl components G(k;,z,z’, ) of the

ekirlp-p )G(kuv 2.7, w), (67)

Green tensor for z,z’>0 are given by [Gy;
EG,-j(k”,z,z/,w)]
AN B SR o o
G . =— 1kz(z+z) Y_)_'_ zx i 68
ok’ e T (68)
i , kik,  kkk,
G — ik (z+2)| _ XY , 69
R T e T e (69)
. N kok,
zez_ie:k:(ﬁz )7};77 (70)
N
G,.= ie’ka(ﬂz )rpk—g, (71)
Z
with
. k. — ki, . e(w)k, -k, 72)
s k +k1, r S(Q))kZ‘Fklz

being the Fresnel reflection coefficients of the surface for s-
and p- polarized waves [K2=w?/c?, k=g(w)w?/c?, k(1)7

k( I~ ki]. The other components of the Green’s tensor
can be obtained by using the reciprocity condition
G(r,r',0)=G(r',r,w), which translates into
G(k,z,7',0)=GT(-k;,z’ ,z,w), and the replacement rules
G, =Gk ky), G,,=G (k4 k,).

For the assumed motion parallel to the surface, the
velocity-dependent  shifts and rates vanish Jwf(r,,v,)
=Ffl(rA,vA)=0 (cf. the remark at the end of Sec. IIT A) and
so do the generalized Doppler contributions to the resonant
force (65) (first two terms) and the nonresonant force (66)
(first term). To calculate the delay and Rontgen contribu-
tions, we require second derivatives of the Green’s tensor as
given above. It is useful to note that derivatives vanish unless
they contain an even number for each of the Cartesian indi-
ces (x,y,z). For example, terms such as d,0,G,, or d,0,G,,
will not contribute, whereas terms such as d, (9 G,y or (9 & G
will. For simplicity, we restrict our attention to the nonre-
tarded or near-field limit, where the dominant contribution to
the Green’s tensor is due to evanescent waves with k; =k,
=ik,. With this replacement, we have

g(w)—1
=0 = 73
=0T e(w)+1 (73)
and Egs. (67)—(71) lead to
3cty s(w)
V(v V)Tr GO(rgrh,0) = —— 74
(- V) Tr (ra,rq )= 167w?z, Se(w)+ 1’ (74)
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(V' =V)Tr{v, X [V X G(r,ry, o] =0. (75)

In the near-field limit, the Rontgen contribution hence also
vanishes and quantum friction is entirely due to the delay
effect.

Substituting Egs. (76) and (75) into Egs. (65) and (66), we
find the friction forces,

. \ Im &(w)
Fn(rA’VH) == —52 ®(wnk)|dnk|2|: 2:|
47TSOZA k | ( ) 1| w=0,;
(76)
and
Fzr(l’A,Vu) == 3 2 ‘dnk|2wkn(rn +1)
8me0zy &
* wkn 38 s(id) -1

X dé 77
f Caproreaost )

If we further assume a single-resonance Drude-Lorentz
model for the permittivity,

(0)=1+ wp (78)
g(w)= s
w-zr—a)z—Ziyw

with plasma frequency wp, transverse resonance frequency
wt, and linewidth vy, we find that for a weakly absorbing
medium (y<wp ) the resonant and nonresonant forces are
given by

B 'wa(wS + 3w )

v
F;(I‘A’VH) =—1 3 2 ®(wnk)|dnk
8megzy &

nk S)3
(79)
and
sgn(wy,) (T, +T w3
Fl(r,,v) = - ——— > [d L o
321 SQZA k ws(‘wkn| + wS)
(80)

———
(wg=v wT+ wp/2 is the surface-plasmon frequency).

Let us discuss our results. We first note that in a quantum
friction scenario of an atom moving parallel to a plane sur-
face, a generalized Doppler effect does not contribute to the
velocity-dependent force; this will be different for an atom
moving perpendicularly toward the surface. In the near-field
limit, the magnetic Rontgen coupling becomes negligible as
well; it will become relevant for larger distances. Near-field
quantum friction forces are hence dominantly caused by a
delay effect.

For a ground-state atom, only a nonresonant force com-
ponent (80) is present. With both wy, and I'; being positive
quantities, F)'(r,,v)) is strictly antiparallel to the velocity
and hence presents a genuine friction force. Note that this
force is proportional to the rates of spontaneous decay I';, the
absorption parameters of the atom. In the near-field limit,
these decay rates are given by [20-22]
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|dnk|2 Im s(wnk)
67Th8()zf‘, |8(wnk) + 1|2

l—‘n = 2 Fnk = E ®(wnk)
k k

| dnk| : ywnkw]%

1277}1801}1 ((‘)ﬁk - wg)z‘

=2 O(wy) (81)
k

Inserting this into Eq. (80) yields a friction force that is ex-
tremely short ranged and falls off as zf. This is in contrast to
previous theories [14] that predict a zgs scaling, resulting
from a disregard of the distance dependence of the sponta-
neous decay rate.

For an excited atom, resonant forces arise as a conse-
quence of possible transitions to lower lying atomic energy
levels. They will dominate the velocity-dependent force in
particular if one of them is near resonant with the surface-
plasmon frequency wg. Depending on whether the respective
atomic transition frequency w,; is smaller or greater than the
surface-plasmon frequency, the velocity-dependent resonant
force will either be a decelerating friction force antiparallel
to the velocity or it may be a quantum acceleration force
parallel to the velocity. This can be qualitatively understood
from an energy consideration. The energy fiw,; emitted dur-
ing a downward transition of the atom is resonantly absorbed
by the surface and leads to the excitation of a surface plas-
mon with energy fiwg. The energy difference between these
two reservoirs leads to a change in the atom’s kinetic energy.
If the emitted energy is smaller than the absorbed one, the
atom has to decelerate; if the emitted energy is greater than
the absorbed one, the atom will accelerate. Note also that the
off-resonant contribution (80) consists of strictly accelerating
downward contributions as well as strictly decelerating up-
ward contributions which, as before, have a zgg scaling and
can be safely neglected with regard to the zgs scaling of the
resonant forces. It is known from previous studies [23] that
the rate of spontaneous decay increases for atoms in motion.
This mechanism leads to a more rapid dissipation of the
internal energy initially stored in the atom, restricting the
lifetime of resonant forces; it needs to be taken into account
in a more quantitative analysis of energy conservation.

IV. EXAMPLES

In order to illustrate the effect of velocity-dependent
forces on atoms, we present a selection of numerical ex-
amples. We will concentrate on forces that are dominated by
a single atomic transition between a ground state |0) and an
excited state |1) with frequency w, and (isotropic) dipole-
matrix element d. In this case, the nonresonant ground-state
force (80) reduces to the simpler expression

2 2
vid lwp
Fy(ry,v) =— s 82
o(ra v 32778025, ws(w, + wg)? (82)
where the decay rate . (81) now reads
d Wy w3
YW Wp (83)

I'= .
12mhegz; (0] - )

The excited-state force is dominated by the resonant force
component, F(r,,v)=F|'(ry,v) +F|(ry,v) =F(ry.v)),

PHYSICAL REVIEW A 80, 042902 (2009)

vid®> yop(w§+3w3)

Fi(ry,v) = (84)

87eoz, (@) — i)’

As a first example, we consider a ground-state $’Rb atom
moving parallel to a gold surface. We consider the lowest
electronic transition D,(52S;,,—5%P5,,) with wavelength
=780 nm (w,=2.41X 10" rad s™") [24] and dipole mo-
ment d=4.23ea,=3.58 X 1072° C m [25]. The permittivity of
gold may be characterized by a plasma frequency wp=1.37
X 10'% rads™' and an absorption parameter y=4.12
X 10" rad s~ [22]. Note that the transverse resonance fre-
quency vanishes for metals, wr=0, so that the surface-
plasmon resonance is located at wg=wp/ V2. With these pa-
rameters, we find a deceleration of the rubidium atom as
(ms7,=1.44 X 107> kg)

8
a=- VH(9.6 S_1)|: ! nm:| . (85)
<A
The force is extremely short ranged and is negligible for any
reasonable values of the velocity and atom-surface distance.
In contrast, for an excited rubidium atom with the same
data as above, the deceleration becomes

5
a=-v(5.0X 10* s_l)[lﬂ] . (86)
A
In comparison to the ground-state force, excited-state quan-
tum friction is strongly enhanced and has a much longer
range. For an atomic velocity of v=200 ms~', the decelera-
tion at an atom-surface distance z,=10 nm can be as large
as a=—100 ms~2. Even at z,=100 nm the deceleration is
still a=—-1077 ms™
Results for other atoms and metallic surfaces can be eas-
ily obtained by noting that in most cases, the relevant atomic
transition frequency is much smaller than the surface-
plasmon frequency of the metal, hence w, < wg. Under this
approximation, the excited-state force (84) and the decay rate
(83) read as

2
vid~ y
Fi(ry,v) =- — 87
1( A H) 27T80Z154 w% ( )
and
d*w, y
Fz—:’rﬂ'ﬁ A3—2. (88)
€02y Wp

Typical values for the material parameter w%,/ vy are tabulated
in Ref. [22]. Note that unless the excitation is maintained by
continuous repumping, the excited-state force only acts dur-
ing a time interval Ar=T""!. The relative velocity change
during this time is approximately

AU _ Fl 3h 1

~— —. 89
mAZ/Zx 2wy (89)

v I'mv

In this limit (w4 < wg), the relative change in velocity is in-
dependent of the strength of the atomic dipole transition and
all material parameters.

Upon inspection of the excited-state force (84) one no-
tices that this force can be resonantly enhanced if an atomic
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transition matches the frequency of a surface-plasmon reso-
nance. An example of such a close match has been pointed
out in Refs. [26,27] and involves a sapphire substrate with its
principal surface plasmon at Ag=12.21 um (wg=1.54
X 10" rads™!) and the 6D;,—7P,, transition in '**Cs
with  a wavelength of N4=12.15 um (w,=1.55
X 10" rad s7!). Near this plasmon resonance, the permittiv-
ity of sapphire is well approximated by [27]

2
nw
8sapphire(w) =n+ 2 . (90)

W — w* - 2iyw
with 7=2.71, wp=0.84ws=1.29X 10" rad s™!, w;=0.70wg
=1.08x 10" rad s7!, and y=7.5X 10" ws=1.16
X 10" rad s7'; note that wg=\w+wpn/(7+1). With this
model and introducing the atom-plasmon detuning 6=wy,
— wg, we find that the force (76) and the decay rate (81) in the
vicinity of the surface-plasmon resonance may be given as
(|8, y<ws)

vid® 7 w5 Y5
47780zf‘ (7+ 1) wg (8 +9)?

F(ry,v) = (91)

and

& n oy

I'= — .
127hezy (n+ 1) wg &+

(92)

With the dipole moment of the above-mentioned transi-
tion being d=5.85X10"° Cm [28], one finds (m133c,
=2.21x10"% kg)

5
lﬂ] . 93)

a;=+v,(7.1 x 10" s_l)[
<A

Compared with the result (86) for the excited-state force near
a metal, we find a significantly enhanced force. Note also
that, because w,> wg (i.e., §>0), the force is accelerating
rather than decelerating. As a numerical example, for a par-
ticle velocity of v=100 ms™! and an atom-surface distance
of z4=100 nm, one would observe an acceleration of a=7
X 10* ms™2. As before, without continuous repumping this
force acts only for a very short time, leading to a net relative
change in velocity

Av RI—

—_— = . 94
v mzi52+'y2 ©4)
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V. SUMMARY

We have shown that atoms or molecules in relative mo-
tion with respect to an electric surface experience velocity-
dependent CP forces. Solving the coupled atom-field dynam-
ics for a slowly moving atom, we have found an expression
for the linearized velocity-dependent force on an atom in an
arbitrary incoherent internal quantum state moving near an
arbitrary arrangement of magnetoelectric bodies. In general,
three effects contribute to the velocity-dependent Casimir-
Polder force: a generalized Doppler effect due to the velocity
dependence of the atomic transition frequencies; the delay
between the emission and reabsorption of photons by the
atom; and the Rontgen interaction, i.e., the coupling of the
current density associated with the atomic motion to the
magnetic field.

In order to illustrate the general theory, we have studied
the near-field force on an atom that moves parallel to a pla-
nar dielectric or metallic surface. Due to the translational
invariance of the system, the Doppler term does not contrib-
ute in this case. Furthermore, the delay term dominates over
the Rontgen term. For a ground-state atom the force is a
genuine friction force, i.e., a force antiparallel to its velocity.
It is proportional to the atomic linewidth and hence very
small. In contrast, excited-state atoms can be either deceler-
ated or accelerated depending on the relative magnitude of
their transition frequency with respect to the characteristic
frequency of the substrate material. For metals, the force is
always decelerating while for dielectric substrates with suf-
ficiently small surface-plasmon frequency, acceleration of
excited-state atoms can be realized.

In addition, the force on such atoms is strongly enhanced
when atom and substrate are near resonant. Much stronger
enhancement can be achieved when the atom moves through
resonator structures, in close analogy to the stationary case
[29].
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We present a formula for the spectroscopically accessible level shifts and decay rates of an atom moving at an
arbitrary angle relative to a surface. Our Markov formulation leads to an intuitive analytic description whereby
the shifts and rates are obtained from the coefficients of the Heisenberg equation of motion for the atomic flip
operators but with complex Doppler-shifted (velocity-dependent) transition frequencies. Our results conclusively
demonstrate that for the limiting case of parallel motion the shifts and rates are quadratic or higher in the atomic
velocity. We show that a stronger, linear velocity dependence is exhibited by the rates and shifts for perpendicular
motion, thus opening the prospect of experimentally probing the Markovian approach to the phenomenon of

quantum friction.

DOI: 10.1103/PhysRevA.94.063803

I. INTRODUCTION

How does an atom with a fluctuating dipole moment behave
when moving relative to a surface? Given the recent resurgence
of interest in short-range fluctuation-induced forces brought
about by advances in micro- and nanoscale technology, one
would expect this question to have a clear-cut, unambiguous
answer. Indeed the intuition for the effect is clear—the
properties of a fluctuating atomic dipole depend on the
distance to an image dipole [1], meaning that a relative
motion between the two should cause velocity-dependent
dynamical corrections. However, even for relatively simple and
idealized models of atoms and surfaces there are significant
disagreements between different approaches to calculating, for
instance, the frictional force that an atom may experience while
moving parallel to a surface. For example, Refs. [2,3] disagree
with Refs. [4-6] about the power law governing the velocity
dependence of the effect at zero temperature; it is even argued
in Ref. [7] that the effect does not exist at all, or in Ref. [8] that
some methods (e.g., Ref. [9]) are very sensitive to the initial
velocity preparation. These discrepancies arise largely because
several different and incompatible formalisms have been used
in calculating the velocity-dependent force. These include
linear-response theory [10], Born-Markov approximations [6],
time-dependent perturbation theory [8], and appeals to a
generalized fluctuation-dissipation theorem [2]. As in all
physics, the only real validation of a successful approach is
via experiments, which are sorely lacking in atomic friction.
This is because the forces involved are extremely small, and
there are serious experimental challenges concerning precision
measurements of forces on atoms near surfaces [11,12],
meaning that it is difficult to confirm or exclude particular
theoretical approaches.

Here, we take a different route and consider the much
more experimentally accessible internal dynamics of the
atom, which in principle can be measured spectroscopically,
thus providing a testable prediction of a velocity-dependent
quantum-vacuum effect. We present results for the paradig-
matic setup of a zero-temperature neutral atom with dipole
moment d and nonrelativistic velocity v moving next to a
perfectly smooth macroscopic surface, as shown in Fig. 1. For
an atom at rest, the interaction of the atom’s fluctuating dipole

2469-9926/2016/94(6)/063803(6)
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moment with its image causes the Casimir-Polder corrections
to the atom’s levels and decay rates [1]. If the atom is allowed
to move relative to the surface, fields induced by images at
previous times reach the atom; in other words, the motion of the
atom causes it to “see” its image as being at a different position
than where it is currently, resulting in dynamical effects.

II. MODEL

The dynamics shown in Fig. 1 consists of three mutually
coupled parts: (i) the atom’s center-of-mass motion, (ii) the
internal dynamics of the atom, and (iii) the dynamics of
the medium-assisted electromagnetic field which surrounds
the atom. The center-of-mass motion may be separated
from the other degrees of freedom in the spirit of the
Born-Oppenheimer approximation. Accordingly, the coupled
atom-field dynamics are solved for a fixed atomic velocity. For
the description of the dynamics of the composite field-matter
system consisting of the electromagnetic field coupled to the
charges making up the medium, we use the framework of
macroscopic quantum electrodynamics [13,14]. The latter
is a prescription for the quantization of the electromagnetic
field interacting with macroscopic, dispersive, and absorbing
bodies. As a consequence, the field-matter system is
represented by a bosonic field with elementary excitations f;,
for each electric or magnetic-type excitation A = {e,m}, with
position r and frequency w. The Hamiltonian Hp describing
this part of the dynamics is then simply the canonical form
integrated over all space:

Hy = h/d%/oo doofl(r,0) - r,o). (1)
0

The free atom of mass m and center-of-mass momentum p is
described by a Hamiltonian

p2
m=%+;aww, )

where n indexes an atomic level of energy E,. The third
and final part of the Hamiltonian comprises the interaction
between the macroscopic QED electric field E(r) and the
atom. This interaction is described in the dipole approximation

©2016 American Physical Society
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z d(t —1) d(t)
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FIG. 1. Atom moving next to a surface with velocity v. Its electric
dipole d(#) fluctuates about zero. The atom may have emitted a photon
at time ¢ — t which is reabsorbed at time ¢.

by a Hamiltonian

Hap == |m) (n]dy, - E(rp), 3)
mn

furnishing us with the total Hamiltonian H = Hg + Ha +
Hup. Note that magnetic contributions to the interaction are
omitted since they play a minor role in close proximity to the
surface. The macroscopic QED electric field in a region with
permittivity (r,w) and permeability u(r,) is given explicitly
in terms of the bosonic operators f; (r,w) introduced above by

E(r) = Z/d3r//oooda)GA(r,r’,a)) 0’ ,w)+He. @)
)

2
h
Ge(r.¥'.0) = i 2 [ me(r )G ,0), ()
C T
B Imu(r
Gutrr) =i 2 [ G v ), 6)
c\ muo n(,w)|

where G(r,r’,w) is the Green’s function for the Helmholtz
equation

with

2
[V LN —w—s(r,a))]G(r,r/,w) —sa—1). (7)
u(r,) c?

This Green'’s function describes the propagation of field-matter
excitations of frequency w from r’ to r thereby encoding all
the information about the environment, i.e., its geometry as
well as its dispersive and absorptive properties.

Using Eq. (4) in our Hamiltonian H, we have for the
Heisenberg equations of motion,

. 1
Amn([) = iwmn + %[Amn([)a HAF(Z)L (8)

for the atomic flip operators A,, = |m) (n| a differential
equation which can be formally solved in a Dyson-like
expansion in the square of the electric dipole moment d of the
atom. The dipole operator d,,,,, A, induces an atomic transition
from one electronic level to another, which will necessarily be
accompanied by the emission or absorption of a body-assisted
field excitation given the form of the atom-field coupling in
Eq. (3). Hence, restricting to quadratic order in d corresponds
to considering (at most) two emission or absorption events,
which—if a surface is present—means neglecting multiple

PHYSICAL REVIEW A 94, 063803 (2016)

reflections. Doing this, we find for the dynamics of the d?

approximation A® (¢) to the atomic flip operator

. . 1
2 0 0 0) 1
AD=AD 0 - — § [AQ®). AP,y - EV(ra.n)]:

ij
)

where E(V is the free field plus that induced by an atom
described via the d° approximation A (¢) to the atomic flip
operator. Taking the normal-ordered vacuum expectation value
of (9) and utilizing the Heisenberg equation of motion for the

f, (r,w) one arrives at
(A2(0) = {iwm — [Ca(t) + CLOBAR®),  (10)

where we have replaced A (1) — A2 (¢) on the right-hand
side. The resulting error will be of order d*, as can be
easily seen from the coefficients C, = ), C,« given explicitly

by [15]
o [* °°
an = —z / dt/f dwwzdnk : [ImG(rA,r}‘,w)] . dkn
wh fo 0

x e_i(w_wuk)([_r/)’ (11)

wherery = ra(f) and r), = ra(¢’) are the current and previous
positions of the atom, respectively. Here we have used a well-
known integral relation for electromagnetic dyadic Green’s
functions [15]:

h

E /d3s Gi(r,s,0) - Gi(s,r',0) = Ma)ZImG(r,r’,w).
T

y

(12)
Inspection of Eq. (10) shows that the real and imaginary parts
of C, deliver respectively the rate of spontaneous decay, [,
and the level shift Adw, with respect to the bare level E, of
the state n via

r, = ZZReC,,k, Sw, = ZIank. (13)
k

k<n

Having set up the model, we now present our main results,
which are the first predictions of level shifts and decay rates
for an atom moving in an arbitrary direction near a surface.
In order to produce concrete numbers for the level shifts and
decay rates, we employ a Markov approximation in which the
coefficients in Eq. (10) are presupposed to be time independent.
In other words, we assume clear separation of the three time
scales involved. First, the both the field dynamics and the
internal dynamics of the atom are assumed to happen at a much
faster pace than the atomic center-of-mass motion. Hence, the
atom’s position and velocity may be treated as instantaneous
and fixed—eliminating implicit time dependencies in the Cyy.
Second, typical time scales of the field’s dynamics—given by
its memory, i.e., autocorrelation time—are presupposed to be
very small compared to the time scales on which electronic
transitions in the atom take place. Therefore, any residual time
dependence—saturated on the scale of the field’s memory—
will not be resolved in the internal atomic dynamics. This is the
well-known coarse-graining effect the Markov approximation
relies on. Consistency with such an approximation requires
that we assume approximately uniform motion ry —r), ~
v(t —t') = vr.
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We take advantage of translational invariance parallel to
the surface to take the Fourier transform ImG of the imaginary
part of the Green’s function appearing in Eq. (11). Similarly,
we split up the atomic velocity v and the wave vector k into
components parallel to the surface {v,k;} and perpendicular
toit {v ,k, }, giving for Eq. (11)

no [ *©
Cu=— [ dr / dow® / d’k;
h Jo 0

X dyy - [(IMG (K, z4,0)] - e @707 (14)

where a Doppler-shifted frequency w), = wux +k-v has
naturally arisen and we have made use of a shorthand
G(k;,z,0) = G(Kk|,z,z,w). Finally, we have taken the limit
to — —oo, which is justified as long as f is significantly larger
than the width of the field’s memory kernel, consistent with
the Markov approximation.

Since we ultimately want to determine the shifts dw, and
rates I',, given in Eq. (13) and accordingly aim to identify the
real and imaginary parts of Eq. (14), it is useful to further
simplify ImG (the Fourier transform of the imaginary part of
G) as this quantity has no obvious separation into real-valued
and imaginary components. To this end, we note that for real
d,,; only the symmetric portion SG of the Fourier-transformed
Green'’s tensor G contributes, which, for a half-space geometry
described by G = G"S that we use later on, is precisely the
part for which Fourier transforming and taking the imaginary
part commute: S[ImGHS] = S[ImG"S]. Now we have the
imaginary part of the Fourier transform (rather than vice
versa) which is manifestly real. Thus we now have a clear
separation of real and imaginary parts in Eq. (14), enabling us
to easily identify level shifts and rates of spontaneous decay
via Eq. (13).

Furthermore, we specialize to the nonretarded (i.e., near-
field) regime where the atom-surface distance za is short
enough that the finite round-trip time of a reflected pho-
ton is negligible compared to atomic time scales. This
regime is defined by w,xza/c < 1. Under these conditions,
ki~ (—=kp)!/* and the Doppler-shifted atomic transition
frequencies become w/, — wu + k| - v| — ikjv,, where we
have made the physical choice of branch of the square root such
that evanescent waves are decaying away from the surface as
z — o0.

Finally, let us spell out in more detail the connection
between contributions stemming from a finite atomic center-
of-mass velocity v to the internal atomic dynamics on the
one hand and quantum friction, i.e., finite-v contributions
to the Casimir-Polder force, on the other hand. An agreed-
upon feature of the various approaches to quantum friction
mentioned in the introduction is the following expression for
the Casimir-Polder force:

. t o0
Fop(t) = L2 [ ar | &k | dow?e @
47'[3 0 I 0

xtr{Cy(t,1';v) - [ImG (K|, 2o, @)]}e™I A7),
(15)

where C; is the two-time correlator of the atomic dipole
moment,

Ca(t,t';v) = (d(H)d(1)). 16)

PHYSICAL REVIEW A 94, 063803 (2016)

The Casimir-Polder force (15) experienced by an atom which
moves parallel to a macroscopic surface comprises the afore-
mentioned dynamical contributions in twofold manner: first,
explicitly via the distance rp — r/, traveled by the atom during
emission at time ¢ and reabsorption at time ¢’ of a photon,
and second, implicitly, via the time evolution of the dipole
operator which evolves according to the entire Hamiltonian
which naturally includes the atomic center-of-mass motion
and hence v. This implicit dependence is indicated by the third
argument of the correlator C; and corresponds exactly to the
finite-velocity contributions to the internal dynamics provided
by Egs. (13) and (14).

There is consensus that the leading-order-in-v contributions
to the friction force acting on an atom moving parallel to the
surface stem from the explicit velocity dependence rather than
the implicit one in the correlator. Noncompatible assumptions
on the precise long-time behavior of the latter are nevertheless
believed to bring about the contradicting results for that very
leading order in relative velocity of the friction force. While
Intravaia et al., for instance, assume a power-law decay of
correlations for very large times [2], the Markovian approach
presupposes exponential decay of correlations on all time
scales [6]. This large-time behavior strongly influences the
low-frequency contributions to quantum friction, which are
the ones most sensitive to the explicit, Doppler-shift-like,
corrections in Eq. (15).

While not lending our voice to either of the contra-
dicting assumptions, we solely focus on the fact that the
Markov approach—in contrast to the generalized fluctuation-
dissipation approach—does not only render a prediction for
dynamical corrections to the static Casimir-Polder force,
but moreover predicts dynamical corrections on the level
of the internal dynamics of the atom, associated with the
implicit velocity dependence of that force. The latter can be
probed spectroscopically—which, though challenging, is less
demanding than a force measurement. Hence, the question
whether the Markov approximation is legitimate for a Casimir-
Polder setup subject to relative motion may in principle be
answered by means of spectroscopy. The remainder of this
work focuses on exactly that venture.

III. RESULTS

In order to arrive at physical predictions, we now make use
of the explicit nonretarded half-space Green’s function (see,
for example, Ref. [16])

2 2 00
GB(rr w) = rp(@)e / d¢/ dxi?
0 0

872w?
~ eiku'(ru—r;‘)e—K(z-%—z')a ®a, 17
where a = (cos¢@, sin¢,i) and r,(w) = EEZ;;: is the non-

retarded limit of the Fresnel reflection coefficient for p-
polarized (transverse magnetic) radiation of frequency w
incident upon a nonmagnetic [u(r,w) = 1] half-space of
permittivity e(w). We have written the frequency integral in
Eq. (17) in polar coordinates k = («k cos ¢,« sin ¢). Defining
a weighted squared dipole moment df,(f) =d,;-[a®a]-dg,
and inserting Eq. (17) into Eq. (14) with G = G"S and making
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use of the the Heaviside step function ®(x) we find

i

) 2
Cot = _m/() d/cKZ/O d¢[rp(w,’,k)®[Re(w,’1k)]
1 [ ) .
-1 [ as D ey, s
7 Jo £+ Wy

which is our main result. Its detailed derivation (see the
Appendix) proves that Eq. (18) is valid for either sign of v,
as long as the component of velocity away from the interface
is not too large, as then the atom would “remember” having
emerged from inside the medium, where our model does not
apply. We also note that, in practice, the argument Re[w),,]
of the step function in Eq. (18) is dominated by w,, because
wnik > kyvy. To see this we note that the k| integral in Eq. (18)
is effectively cut off at ~ 1/z. Then one can easily check that
the resulting condition w,x >> v)/z is comfortably satisfied for
all nonrelativistic velocities and distances greater than a few
nanometers. Equation (18) contains a remarkable amount of
information—the decay rates and frequency shifts for an atom
with any velocity vector v can be obtained from it simply by
taking real and imaginary parts via Egs. (13).

Physical insight can be gained from expanding our for-
mula (18) in a Taylor series for low atomic velocities:

Ires —i 02 3o
Cy =~ W[dnk 7p(wni) + Tzzrp(wnk)}a (19)
—id")? 3iv,
CJ_res ~ nk k) — / " , 20
Py Ioreohis? |:rp(w ) . ry(@ k)] (20)

where d;"gzzdgk,x +d2 , +2d%, . and d,§732=3d3k,x+d3k1y +

4d3k,z and the primes denote derivatives with respect to
frequency. Here we have presented only the resonant part of the
interaction since the nonresonant part is orders of magnitude
smaller, as shown more explicitly later on.

If applied to parallel motion and a plasma-model medium,
Eq. (19) exactly coincides with known results [17]. We
immediately see from Eq. (19) [via Eq. (13)] that the lowest-
order velocity-dependent corrections to the resonant level
shifts § a),‘l and decay rates F,',‘ for parallel motion are quadratic
in the atomic velocity; in fact all odd-order terms vanish.
This is expected given that the sign of the velocity should
not matter for motion parallel to the surface, since the system
is translationally invariant along those directions. Turning our
attention to perpendicular motion, we observe from Eq. (20)
that the leading velocity-dependent corrections are linear in
the velocity. This is physically reasonable as the system is not
translationally invariant along the direction perpendicular to
the surface, so that changing the sign of the velocity in that
direction should matter. Note that the vanishing of all even
orders in velocity in the case of parallel motion is by no means
a contradiction to the fact that the friction force [Eq. (15)]
must be odd in relative velocity. As mentioned when this force
was introduced, its leading-order-in-v contribution does not
stem from the internal dynamics of the atom, i.e., the shifts
and rates we studied in this section. Instead, leading-order
dynamical contributions to the friction force rather stem from
an explicit, Doppler-shift-like v dependence attributed to the
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FIG. 2. Dependence of shifts dw and decay rates I' (relative
to the respective free-space values) on possible atomic transition
frequencies of a '**Cs atom moving parallel (red) or perpendicular
(blue) to a sapphire surface. The actual 6Dz, — 7Py, transition is
indicated by the vertical axis. The parameters describing the surface
and the atom are z4 = 10nm; v = £500,£1000m/s, n = 2.71, wr =
1.56 x 10" s7!, wp = 1.20r1, y = 0.020r, and d = 5.85 x 107%°
Cm and isotropic. We also include the static shifts and rates as dashed
lines. The vertical line marks the actual transition frequency. The inset
shows the emission-line profile for static (dashed) and moving (blue)
atoms at v; = 500 m/s after averaging over 5nm < z4 < 1 pum.
For parallel motion the corrections are much smaller than for the
perpendicular one and have no visible effect on the line profile.

distance ra —r, traveled by the atom during emission and
reabsorption of a photon.

IV. EXPERIMENTAL RELEVANCE

As a concrete example, consider '*3Cs whose far infrared
6D3/, — 7P, transition is near resonant with the 12.21-pm
phononic resonance of ordinary sapphire [18] which strongly
enhances resonant Casimir-Polder effects. We describe the
sapphire with a dominant-resonance Drude-Lorentz model,
e() = [l — w3 /(w® — ®3 + iyw)], where wp is the plasma
frequency, wr is an absorption line frequency, y is the damping
parameter, and 7 accounts for the small background stemming
from other atomic transitions. By means of Eq. (18) we
can now determine the velocity-dependent shifts and rates
corresponding to this '*3Cs transition in front of a sapphire
surface. In Fig. 2 we plot the dependence of these shifts and
rates on the atomic transition frequency for a selection of
center-of-mass velocities. For parallel motion the dynamical
corrections are much smaller than those for perpendicular
motion. Hence, the inset in Fig. 2 depicts a spatially averaged
(5 nm < zo < 1 um) profile of the mentioned emission line—
as, e.g., obtained by evanescent-wave spectroscopy—of atoms
moving perpendicularly towards the surface at 500 m/s.
Compared to the static profile it is slightly shifted and clearly
more peaked. An observation of the latter effect is demanding
but much more in reach than measurement of quantum friction
forces. Similar experiments have already been carried out in
order to measure the static Casimir-Polder shift [19]. In Fig. 3
we show the velocity dependence of the decay rate for a '**Cs
atom moving arbitrarily with respect to the sapphire surface.
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vp(km/s)

FIG. 3. Velocity dependence of the decay rate for parallel (thick
red line, & = 7 /2) and perpendicular (thick blue line, 6 = 0, )
motion of a 13 Cs atom in front of sapphire in units of the static decay
rate Fio), alongside the leading-order-in-v expressions (dashed lines,
with the parallel motion asymptote being barely distinguishable from
the exact result at this scale). The thin lines between these extremal
cases are for intermediate 0 < 6 < /2 evenly spaced in steps of
7 /16. All parameters chosen here are the same as in Fig. 2, and the
transition frequency is taken as e, as indicated in Fig. 2. Inset: Detail
of low-velocity region.

The nonresonant shifts and rates are a factor of (w3 +
@2)12/y ~ 100 smaller than the resonant shifts for any
realistic choice of parameters, meaning that we can safely
ignore them here. The known static, resonant, Casimir-Polder
shifts and rates emerge from the terms zero order in velocity
in Egs. (19) and (20). For an atom whose dipole moment is
aligned along the positive z direction they read

2 2
s % _m @ 1 @1
m2 T 6meoh (n+ D ovy 23
d? n 0?1
jfi =z L4 (22)

dregh (n+ 1) oLy g’

when evaluated at their respective maxima 2 and wp (see
Table I) and taken at leading order in y < wr.

In Table I we summarize the lowest-order velocity-
dependent contributions to the level shifts and decay rates,
expressed as ratios to the static quantities (21) and (22). One

TABLE L. Leading-order contributions 8! and ' to resonant
level shifts and rates for an atom moving with velocity v < yza
next to a surface, with its dipole moment aligned along the positive
z direction. We have reported only the leading terms in y since the
next terms will be smaller by a similar factor as the nonresonant parts,
which we have ignored here. Each quantity is evaluated at the maximal
points of the static quantities; that is, decay rates are evaluated at

o = /nwa/(n + 1) + w3 and level shifts at @, = o, + ¥ /2.

Perpendicular motion

Parallel motion

2
c /o (0) 3u, 3
8w /80" + -
2
0) 3u; 6vj
[loc F( _
w/Tar Iz v223
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can estimate the radius of convergence of the Taylor expansion
by finding the ratios of successive orders. So from Table I one
can see that the series converge for v < yza ~ 1 THz x
1 nm = 10% m/s. Typical velocities of atomic beams generated
through thermal effusion are in the range 1 x 10>~1 x 10°> m/s
(see, for example, Ref. [20]), meaning that even the simple
asymptotic formulas in Table I are immediately relevant to
experiment.

Finally, let us discuss our assumptions and associated er-
rors. Nonrelativistic (v/c 2~ 1 x 10~), nonretarded (wrz/c =~
1 x 107%), and single-reflection (d?w?/heoc® ~ 1 x 107%)
approximations lead to a relative error of about 1 x 1073,
which is not detectable for the class of experiments we compare
to here. The Born-Oppenheimer and Markov approximations
assume separation of field autocorrelation time, g = y !,
internal atomic time scales, 4 = I'"!, and center-of-mass time
scales, tc, respectively. The significant difference between
the masses of the electron and the nucleus causes 7c to
clearly separate from internal atomic as well as field time
scales (tc > ta,tr). However, the separation of the latter
(ta > tr) strongly depends on z4. The proposed experiment
may hence serve to confirm or refute the applicability of
the Markov approximation in this crossover regime. Finally,
finite temperature enhances both static and dynamic effects
by a factor n(wa) + 1, where n(w,) is the thermal occupation
number of the mode wa corresponding to the atomic transition
of interest. For the aforementioned transition of '33Cs at room
temperature, n(wa) < 0.02.

V. SUMMARY

Here we have presented spectroscopically accessible ana-
Iytical predictions of the dynamical corrections to the internal
structure of an atom as it moves in an arbitrary direction
near a surface. We have obtained the general formula (18)
that gives the full set of level shifts and decay rates for an
obliquely moving, possibly excited, atom near a half-space
with results shown in Fig. 3. Our asymptotic results show
that the relevant expansion parameter for small velocities is
v/(yza), which is large compared to, for example, v/c or
v/(wrza). This, alongside the fact that the results we have
presented for perpendicular motion are linear in this parameter
(in contrast to the quadratic dependence for parallel motion),
means that these quantities are larger than previously thought,
and therefore more easily measurable. In addition to being a
velocity-dependent vacuum effect in its own right, our results
constitute a testable prediction related to the less-accessible
phenomenon of quantum friction. Our results represent a
test-bed for the applicability of the Markov approximation
in this setting. Refuting Markovianity by experiments would
rule out one of the contradicting standpoints in the quantum
friction debate.
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APPENDIX: DERIVATION OF EQ. (18)

Starting with the Heisenberg coefficients (6), substituting the nonretarded scattering Green’s function for a half-space (7), and
performing the « integration, one arrives at

1 T 00 2 )
Cu = P f dt f da)/ d¢ d;‘iﬂ Imrp(w)e”(”””’”k)r(ZzA — vTcosf — vt sinf cos ). (A1)
T NEQY 0 0

Here, without loss of generality, the coordinate system is chosen such that the y component of the atom’s velocity is zero.
Expanding the denominator of Eq. (13) in the unitless parameter s = vt/2z, around zero and abbreviating fj ¢ = cosé +
i sinf cos ¢ yields

nk =

T [} 2 00 .
A )
/0 dt /0 do fo d¢dff;{)zlmrp(w)e_’(w_"’“k)rZ(J]—'_.i‘)s/ fle- (A2)

3 3
64m3heozy s

Due to the oscillating nature of the integrand, the latter does not contribute to the integral for t > w,;. Hence, the domain where
the above series is convergent, i.e., for vw,; < 2z, matches the domain where the integrand contributes. The powers of T can
be rewritten as derivatives with respect to w which, via partial integration, may be shifted onto the reflection coefficient rp(w).

Afterwards, the 7 integral can be solved, giving

1 2)! : ‘ / 1
Cout = (J + )t / / d¢ d?”lmﬂ/)(w)(—%) [nS(w — W) — iPi}. (A3)
6473 heozs, /,:0 P 27a W — Wnk
Carrying out the complex-frequency integration separates resonant (pole) and nonresonant contributions:
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The above derivation demonstrates that Eq. (18) is valid for either sign of v, , as long as the component of velocity away from
the interface is not too large—more precisely as long as v, <K 2z4.
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In this article, we analyze the Casimir-Polder interaction of atoms with a solid grating and the repulsive
interaction between the atoms and the grating in the presence of an external laser source. The Casimir-
Polder potential is evaluated exactly in terms of Rayleigh reflection coefficients and via an approximate
Hamaker approach. The laser-tuned repulsive interaction is given in terms of Rayleigh transmission
coefficients. The combined potential landscape above the solid grating is probed locally by diffraction of
Bose-Einstein condensates. Measured diffraction efficiencies reveal information about the shape of the

potential landscape in agreement with the theory based on Rayleigh decompositions.
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The Casimir-Polder (CP) interaction is one of a class of
examples where fluctuating electromagnetic fields give rise
to (normally attractive) forces between matter [1,2]. For
infinitely extended plane surfaces, CP forces can be readily
calculated from the polarizability of the atom and the
dielectric properties of the substrate [3] and have been
measured in a number of experiments [4—11]. However, of
particular importance is the influence of the surface
geometry [12—14]. Nontrivial geometries can have a large
impact on the exact force profile and can potentially be
used for manipulating the closely related Casimir forces
[15]. The possibility of tailoring the Casimir force is also of
importance for applications in the microelectromechanical
systems (MEMS) and nanoelectromechanical systems
(NEMS) industry, where it is one of the limiting factors
in the miniaturization of micromachines and microsen-
sors [16].
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One class of nontrivial geometries that have been
investigated theoretically, both in the framework of
atom-surface and surface-surface interactions, are periodic
structures such as gratings [17-19]. Please note that the
reflection of fast atoms from crystalline planar surfaces can
also be understood as diffraction caused by the periodic
shape of the attractive Casimir-Polder interaction.
Corresponding experiments with hot atomic beams were
reported some time ago [20]. In recent experiments, CP
forces above gratings were measured by different methods
[21-25]. In those experiments, the power-law coefficients
describing the CP potential in the electrostatic and in the
retarded regimes were determined. Recently, theoretical
proposals have been put forward to measure the CP
potential at corrugated surfaces with Bose-Einstein con-
densates [26].

In this article, we present both theoretical simulations
and experimental measurements of the potential landscape
for a single atom that is positioned at a submicron distance
from a grating of metal nanowires. The potential landscape
is composed of an attractive contribution due to the CP
force and a repulsive contribution due to an evanescent
light wave (EW) at the surface. The quantitative agreement
between theory and experiment in the absence of free
parameters demonstrates that complex surface-assisted

Published by the American Physical Society
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potentials resulting from a combination of geometric
structure and tunable evanescent laser potentials are now
well understood both theoretically and experimentally.
Whereas in previous experiments the measured values of
the CP potential represent only an average over the
complicated potential landscape above the structures, in
this work we fully account for the dependence of the
potential on the lateral position above such a surface.

The evanescent light wave is generated by the internal
total reflection of a laser beam in the dielectric substrate
carrying the grating. A repulsion from the surface is
achieved by a laser (4 = 765 nm) that is blue detuned
with respect to the transition frequency of the atoms
(Rb: 4y = 780 nm). Recently, we used this setup and
enhanced the evanescent waves by exciting surface plas-
mon polaritons at the surface [27]. In a similar way, nano-
objects have been optically trapped in a patterned light field
above a structured metallic film [28]. Here, we exploit the
fact that the exact shape of the total potential landscape can
be tuned by the strength of the optical dipole potential via
the laser intensity. This allows us to acquire spatially
resolved information of the surface potentials: Fig. 1 shows
a simulation of the potential landscape for a typical laser
power of P =211 mW, including the optical dipole
potential of the evanescent wave and the Casimir-Polder
potential.

The CP potential with its strong attraction towards the
gold stripes and the repulsive EW potential with its
maximal repulsion above the sapphire surface combine
to a periodic potential landscape that resembles a chain of

FIG. 1 Simulation of the combined potential landscape, in-
cluding the evanescent-wave potential and Casimir-Polder land-
scape as calculated from Egs. (1) and (2) for a laser power of
P =211 mW. The repulsive evanescent-wave potential is gen-
erated by a laser beam that is reflected by the total internal
reflection in the substrate. The gold stripes weaken the intensity
of the evanescent wave and thus modulate the strength of the
repulsion. The attractive Casimir-Polder potential reaches its
maximum value above the gold stripes and further increases this
modulation. At a distance of z = 200 nm, the potential is laterally
modulated with an amplitude of AE/kg = 14 uK.

hills in front of the grating surface with valleys that lead to
the centers of the gold stripes. The heights and widths of the
hills depend on the laser power (Fig. 2), with larger powers
resulting in higher and broader hills.

The EW potential

d.RE(F)
Upnlr) = 3 LEOE M

=12

is the potential due to the external monochromatic electric
field E with its frequency w close to a specific set of atomic
transitions of Rb with dipole matrix elements d; and
detunings A; = w — w;. It is dominated by these atomic
transitions and the transmission properties of the grating at
a single laser frequency w. The EW potential is expressed in
terms of Rayleigh transmission coefficients in the
Appendix.

In the simulations, the ground-state CP potential of the
Rb atoms is calculated to lowest order in their isotropic
ground-state polarizability as [29]
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FIG. 2 Geometry of the metal grating.
Approximately 200 gold stripes with & = 50 nm height and
500 nm width are deposited on a sapphire substrate and form a
grating with a d = 1 pm period. A laser beam impinges under an
angle of & = 35.50° from the sapphire substrate onto the interface
to vacuum (respectively, gold) with its k vector in the (y, z) plane.
The laser beam is internally reflected and generates an evanescent
wave. The combination of the repulsive potential due to the
evanescent wave with the Casimir-Polder interaction forms a
potential landscape above the grating. The colored lines (black to
brown, corresponding to laser powers P = 120, 126, 133, 138,
144, 151, 156, 162, 169, 174, 187, 198, 211, 247 mW) are
simulations of equipotential lines using exact theory based on
Rayleigh decompositions for a Rb atom moving towards the
surface with velocity » = 3.4 cm/s. From those, we deduce the
width b(P) where atoms are reflected. The two horizontal lines at
the top represent the incoming matter wave and are drawn at a
distance given by the de Broglie wavelength A = % =
135 nm, with atomic mass m.
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Here, the polarizability a(if) is approximated by an eight-
line model (see the Appendix), and G(!) is the scattering
Green tensor which, for the grating structure in Fig. 2, can
be given as a Rayleigh decomposition in terms of Rayleigh
reflection coefficients. Because of the integral over all
imaginary frequencies as a result of the vacuum fluctua-
tions of the electromagnetic field, the CP potential depends
on all atomic transition frequencies and all eigenfrequen-
cies of the macroscopic system (grating).

From the theoretical point of view, it is quite interesting
to perform a comparison of an exact approach to the
calculation of CP potentials near gratings with an approxi-
mate Hamaker approach [30,31], which is based on a
pairwise summation of van der Waals forces between
volume elements of one body with those of the other.
However, such an approach neglects many-body inter-
actions that can lead to wrong results, in particular, for
complex geometric structures [32,33]. The nonadditivity of
Casimir forces induced by many-body interactions [34]
implies that the position, shape, and material dependencies
of such forces are intertwined in a complicated way.
Nevertheless, the Hamaker approach is widely used in
applications such as colloid science and biology [35]. The
most prominent example is the adhesive force of gecko
feet [36].

Surprisingly, so far not a single experiment has
addressed the accuracy of the Hamaker approach in
atom-surface interactions, despite there being a large
amount of work that has addressed deviations of the
proximity force approximation (PFA) from the exact
calculations, taking diffraction into account in the context
of surface-surface interactions [33,37—41]. In our case, the
CP potential contribution to the combined potential
(CP + EW) is relevant at given separations, and one can
discern the difference between the result of exact simu-
lation of the Casimir-Polder potential expressed in terms of
Rayleigh coefficients and the result of an approximate
Hamaker approach.

The CP potential in the Hamaker approach is calcu-
lated in the local-field-corrected first-order Born approxi-
mation as

@ y(w)
e BT Y

X/d3sR(0>(r,s,w)R(())(s,r,w), 3)

where RO)(r, s, ) is the regular part of the Green tensor,
() is the susceptibility of the gold stripes, and the
integration extends over the total volume V of the grating.
Details of all the calculations are contained in the
Appendix.

Experimentally, we probe the width b of the reflection
zones in Fig. 2 by reflecting Bose-Einstein condensates
(BEC) from the surface. The experiment is carried out as

follows. A BEC is prepared in a magnetic trap at a distance
of several hundred ym from the grating and accelerated
such that it moves towards the surface with a constant
velocity v = 3.4 cm/s. Thereby, the cloud is ballistically
expanding and transforms its interaction energy in velocity
spread. For that reason, interaction effects do not play a role
during reflection from the surface. The experimental details
of this preparation are contained in the Appendix. The
atoms reflect from the surface only at those lateral positions
where the potential height exceeds the kinetic energy of the
atoms. This happens in a zone with width b in each lattice
site (see Fig. 2). Note that considerable quantum reflection
of Rb atoms at the CP potential of a solid surface would
require atomic velocities below a few mm/s [9]. For the
velocity of v = 3.4 cm/s, it is completely negligible. By
tuning the laser power, the reflection zone width b is
changed and different distances from the surface are
probed. Each atom of the BEC approaching the surface
constitutes a matter wave with a lateral extension that is
given by the size of the BEC on the order of several tens of
microns. This size is much larger than the grating period,;
thus, the matter wave is diffracted from the periodic
structure of reflection zones in a direction x of period d.

In a simplified model that neglects the curvature of the
equipotential lines, we consider reflection of the matter
wave from the same reflection zones of width b as for a
single atom. The resulting atomic momentum distribution
in the far field is analogous to Fraunhofer diffraction. For
an arrangement of rectangular stripes as shown in Fig. 2,
the occupation p,, of diffraction order n (normalized to p)

is given by
sinc b
s n-—
"

It depends only on the ratio b/d. This is illustrated in the
theoretical curves in Fig. 3, where we plot the relative
occupations (normalized to Y p,,) of the diffraction orders
as determined from Eq. (4). In the limit of b/d — 0, the
situation resembles the emission of waves from a chain of
pointlike sources, in which all diffraction orders are equally
occupied. In contrast, the limit b/d — 1 corresponds to a
reflection from a surface with a constant density profile.
Here, the atomic cloud remains fully in the diffraction
order n = 0.

In the experiment, we analyze the relative occupation of
individual diffraction orders by measuring the momentum
distribution p, = hk, of the atoms. This is done by taking
an absorption image of the cloud after ballistic expansion
for a time of flight of #,; = 21.5 ms after reflection from
the surface. A typical image is shown in the inset of Fig. 3.
From the image, the atom numbers N, corresponding to
diffraction orders n with momentum p,, = nh%” are
counted within the yellow boxes and are scaled to the
total number of reflected atoms. This provides us data

2

Pn= “
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FIG. 3 Matter-wave diffraction. Relative occupation of diffrac-
tion orders as a function of the relative width of the reflection
zone b/d. The curves are obtained from Eq. (4). Data points
represent the measured occupation of diffraction orders as shown
in the inset. The horizontal position of each triple of data points
(its value b/d) is obtained from a fit to the theoretical curves.

triples of relative populations of diffraction orders n = 0,
+1, 42 for each value of laser power. The populations for
n # 0 are averaged over the populations of the orders with
+n. Each triple is individually fitted by the theoretical
curves in Fig. 3 and is thus attributed a certain value of b/d.

Although all data points coincide with the corresponding
theory curves very well, it is notable that the model used is
valid only for the lower laser powers used, corresponding to
the small values of b/d. The model is based on amplitude
modulation only and thus neglects phase modulation of the
reflected matter wave. As shown in the Appendix, this
approximation is valid for laser powers P < 140 mW,
whereas phase imprinting becomes an important effect
for the large laser powers used. Because a complete
calculation of the diffraction problem is more difficult
than electromagnetic diffraction and would not affect the
overall meaning of the results presented here, we restrict the
conclusions of this work to the data points with small
laser power.

The fitted values of b/d are now compared with the
theoretical prediction that is accessible from the width of
the equipotential lines shown in Fig. 2. As can be seen in
Fig. 4, the measured diffraction cannot be explained by the
spatial modulation of the optical potential alone. Thus, the
experiment is sensitive to the Casimir-Polder potential.
Moreover, it can partly discriminate between different
theoretical models: The data points agree with exact theory
based on Rayleigh decompositions within their statistic and
systematic errors. The Hamaker approach underestimates
the strength of the Casimir-Polder potential. The corre-
sponding values of b/d for low values of P in Fig. 4 are

1 T T

091 ) ) 1
optical potential alone

st

051 i i I i
04+ i exact calculation |
031h i measurement |

b/d

0.2r Hamaker approach ]
01f 1
0 . .
100 150 200 250
P (mW)

FIG. 4 Comparison between theory and experiment. Width of
the reflection zone b/d versus laser power P. Red circles are
experimental data points obtained from the fit in Fig. 3. Error bars
of the data points are due to the combined statistic and systematic
uncertainties in the atom-number measurement. Blue dots show
the theoretical values taken from the equipotential lines in Fig. 2
and represent the result of the exact calculation based on Rayleigh
decompositions. Black points are the corresponding results based
on a Hamaker approach. Green points stem from a simulation of
the optical potential alone, neglecting any influence of the
Casimir-Polder potential. Error bars of the theoretical points
represent the systematic error due to the uncertainty in the laser
intensity at the surface Al = £5% and the velocity of the atoms
Av = £0.3 cm/s. Please note that the data points are horizon-
tally shifted one line width (<1 mW) for clarity.

thus larger than the observed data points and deviate from
them by more than 1 standard deviation. In the range of
large P in Fig. 4, the optical potential dominates over the
CP potential and reduces the difference between exact
theory and the Hamaker model.

It is obvious from Fig. 4 that the functional profile of the
data points differs from that of the simulations for laser
powers P = 140 mW. In particular, the value of b/d of the
measured data points saturates for large laser powers. This
observation is caused by the growing influence of phase
imprinting for increasing laser power, as shown in the
Appendix. This leads to a principally different behavior of
the scattered field, which manifests e.g., in the absence of
missing orders [42]. Qualitatively, for high reflectivity, the
assumption of instantaneous reflection is not justified.
Instead, the interaction time of the atoms with the surface
potential and the strength of the latter depend on the lateral
position x; i.e., depending on the lateral position, the matter
wave acquires a different phase. A periodic potential
imprints a phase that leads to a substantial diffraction even
when all atoms are reflected and thus simulates a saturation
of b/d for large laser powers [43—45].

It is worth considering the possible influence of surface
potential generated by Rb atoms adsorbed to our grating.
As reported in Ref. [46], surface potentials are primarily

011029-4



[S28] Probing atom-surface interactions by diffraction

307

PROBING ATOM-SURFACE INTERACTIONS BY ...

PHYS. REV. X 4, 011029 (2014)

generated on metal surfaces such as the grating bars. The
authors report an electric field of 1 xV/cm per adsorbed
atom at a distance z = 10 ym, with a 1/z>3 distance
dependence, corresponding to roughly 0.1 V/m at a dis-
tance of 430 nm. At this distance, adsorbed atoms from a
surface area of about 1 ym x 1 gm = 1 gm? contribute to
the field. The 2 x 103 atoms involved in a single run of the
experiment are spread out over a cloud of dimensions
100 m x 50 um =50004m? so that 2 x 10° x (1/5000)x
(1/2) = 20 atoms potentially impinge on this area, where
the factor 1/2 represents the filling factor of the grating.
With the small sticking probability of 0.8% as observed in
Ref. [47], 1600 atoms could accumulate in the relevant
surface area in the course of 10000 runs of the experiment.
This would lead to a total electric field of the order of
2 x 102 V/m, much smaller than the value of the evan-
escent laser field of about 3 x 10* V/m at the same
distance calculated for a laser power of 247 mW.
Alternative measurements [48] predict even smaller values
of the electric fields due to adsorbed atoms.

In conclusion, we have experimentally probed
surface potential landscapes that are composed of
Casimir-Polder forces and optical dipole forces above
metallic nanostructures. We have used matter-wave dif-
fraction of Bose-Einstein condensates as a measuring tool,
which, in principle, can be applied to arbitrary surfaces.
Complementary to previous experiments in which spatial
averages of the Casimir-Polder coefficients were deter-
mined, we obtain additional spatial information by analyz-
ing the occupation of individual diffraction orders. Our data
agree quantitatively with numerical calculations of the
surface potentials (1) and (2) based on exact theory where
potentials are expressed in terms of Rayleigh coefficients,
whereas a Hamaker approach leads to incompatible results
for low laser powers. The difference is so large that an
experiment can distinguish between both approaches. From
the theoretical point of view, the main result is the first
comparison of exact theoretical results for atom-surface
potentials above a structured surface (based on Rayleigh
decompositions) and experimental data used to measure the
structure of the potential landscape. The results open a wide
range of possibilities for exact theoretical simulations and
design of atomic-surface potentials in the vicinity of
nanostructured and microstructured surfaces.

The fact that we understand these potentials very well is
crucial for the design and realization of nanoscale surface
traps for surface quantum optics experiments with cold
atoms. Our analysis demonstrates the possibility to couple
atoms to light near structured surfaces in a controlled way.
Moreover, the metallic parts of the surface can give rise to
spectrally broad surface plasmon resonances in the optical-
frequency range. Related phonon polariton resonances in
the infrared frequency range have e.g., led to the observa-
tion of repulsive Casimir-Polder forces of highly excited Cs
atoms [49]. A plasmon-based repulsive Casimir-Polder

force would give a perspective on fascinating scenarios
for controlling CP forces [50] and for generating surface
traps for cold atoms that do not require external magnetic or
optical fields.
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APPENDIX

1. Simulation of the Casimir-Polder potential

The ground-state CP potential of an atom or molecule
can be given as [29]

h )
Ucp(r):ziﬂO /0 degTrla(ié) - GV (r,r,i8)].  (Al)

To allow for potentially anisotropic molecules, we have
included the ground-state polarizability tensor a(i&); G() is
the scattering Green tensor. We are neglecting thermal
contributions to the CP force, which is a good approxi-
mation for the distances considered in this work. For the
structure in Fig. 2, the scattering Green tensor can be given
in a Rayleigh decomposition as

T,

GO (r.r, o) :;/
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k7

el

X
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Here, k = (k{', k,, k') is the wave vector; its x and z
components read k' = k, + mq (g = 2x/d: lattice vector
of the grating) and k" = \/ w?/c* — (ki)? — k2, with Im
k7' > 0. The polarization unit vectors for upward or down-
ward moving waves are defined by
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The latter are chosen such that the y components of the
electric or magnetic fields vanish for ¢ = H, E. The
Rayleigh reflection coefficients R}, (k.. k. ) are calcu-
lated by numerically integrating the Maxwell equations
within the grating (0 < z < h) and imposing conditions of
continuity at its upper (free-space) and lower (sapphire)
boundaries [17]. They are even functions of k, and obey the
following symmetries: R3S, (k.. k,.i€) = £R%", (—k,,
ky.i&) and R3S, (k. k,,i&)pr = £R7G (k. ky,iE)B2, with
pr = \//;2/62 + (k?)? + k2, the sign + for o6’ = EE, HH,
and the sign — otherwise. Our theory is able to allow for
anisotropic atoms or molecules. For a sufficiently aniso-
tropic molecule, we find a repulsive CP potential in
particular spatial locations, similar to the repulsive Casimir
force predicted in Ref. [15] (see also Refs. [51-53]). Note
that for the isotropic atoms used in the current experiment,
a = al (I: unit tensor), Eq. (A1) simplifies to Eq. (1) and
our formalism reduces to that of Ref. [18].

2. Simulation of the evanescent-wave potential

The evanescent-wave potential is generated by an
incoming wave of (free-space) wavelength 4 = 765 nm,
which impinges on the sapphire-grating interface at an
incidence angle 6 = 35.50° = 0.6196 rad, with the plane
of incidence being parallel to the grating bars. The
components of the wave vector in the sapphire layer are
hence kY =0, k,=ksing=2839x10°m™", k=
kcos@=1.18x10"m™" (k = Reng,,,w/c, with Reng,, =
1.76 and @ = 27c/A = 2.46 x 10" rad/s). The incoming
field is polarized such that its component perpendicular to
the grating vanishes; it can hence be written as
Ein(r) = Egppel, (0, ky, w)elky k2 The field amplitude
inside sapphire can be related to the respective laser power
Pypp and beam waist Wy, Via 3 €gngpyCEspp = Tapp =
Ppp/ (2nw§app). The laser power is in turn related to its
free'space value by P sapp — Tfree—space—>sappP free-space» where
T free-space—sapp = 0.88 has been determined experimentally
from a setup with symmetric light paths. The measured
beam waist of 170 um in free space results in an effective
beam waist Wy, = 182.9 pum in sapphire after transitions
through the free-space—glass and glass-sapphire interfaces.
After transmission through the grating, the external laser
leads to a field

E(r)= Egapp Z Z el oae

n=—oo 6=E,H

x e, (nq, ky, 0)T55(0, ky, )

with k2" = \/k} —@?/c* + n*¢>, where the Rayleigh

transmission coefficients 797, (k.. k,,®) are found from
numerical integration in the same way as the respective
reflection coefficients. When interacting with a Rb atom,
this evanescent field generates an optical potential

(AS5)

d;*|E(r)]?
Ugw(r) = Z| |3L1A(,)|

(o]
x § § ei(m=—n)qx—(kI" +x1"")z

m.n=—oo ¢ ¢'=E,H
x €5, (mq. ky, ) - €7, (nq. ky, »)

x T75(0, k,. 0)ToE (0, ky, ).

Ky, (A6)

3. Details of calculations

The potential Ugw (r) (1) was evaluated using transition
frequencies @; =2.37x 10 rad/s, @, =2.41x10%rad/s
and dipole-matrix elements d; = 2.53 x 107% Cm, d, =
3.57x 107%° Cm for the D; (5%S;, = 5%Py);) and D,
(52S1/2 - 52P3/2) lines of the isotropic Rb atom [54,55];
one can neglect the contribution of other transition lines
in Eq. (1).

In the calculation of the CP potential (2), the polar-
izability

(A7)

for the isotropic Rb atom was evaluated within a model,
taking into account eight transition frequencies [54]:
o, =237 x10Y rad/s, d; =253x107® Cm, o, =
241 x 10 rad/s, d, =3.57 x 107% Cm, w;=4.468x
10" rad/s, d3=0.200x1072°Cm, w,=4.482x10"rad/s,
dy =0324x 107 Cm, o5=>5245x10%rad/s, ds=
0.069x107Cm, g = 5.251 x 10" rad/s, dg=0.121x
1072°Cm, @;=5.622x10"rad/s, d7=0.035x1072°Cm,
wg = 5.625 x 101 rad/s, dg = 0.067 x 107>° Cm.

Distances in the range A3 ~300 nm < z < 4; ~ 800 nm
are in between the Casimir-Polder regime (z > 4;) and the
nonretarded van der Waals regime (z < 4;) of the CP
potential. In the range of separations 100 nm < z < 4; used
in the calculations, the frequencies < w; yield the leading
contribution to the integral (2).
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The numerical error in the evaluation of the combined
potential (which is the sum of the Casimir-Polder and
evanescent-wave potentials) is 0.1%. The number of
Rayleigh coefficients used was selected to obtain the
needed accuracy; N =30 (2N +1 terms in every
Rayleigh expansion) is sufficient to obtain the potential
with the required accuracy even at closest separations from
the grating, as shown in Fig. 2.

4. Casimir-Polder potential using the Hamaker
approach

The scattering Green tensor G(!) (r,r,®) in Eq. (A1) can
be expanded in a Born series with respect to a known
reference Green tensor G(¥) (r,r,w) as [3,56]

2
G (r,r0) =2 / B5GO) (r,5,0)5¢(0) GO (s.r,0)
C

02\ 2
+ (—2> /d3sd3s’G<0)(r,s,a))5e(w)
c

x GO (5,5, @) x 5e(w)GO (s ,r,0) + -,
(A8)

where the integration range covers the volume of the
material under investigation. The perturbation de(w) =
e (w) — e (w) denotes the deviation from the reference
permittivity. In the case of the free-space Green tensor as
our reference, the difference permittivity simply equals the
susceptibility [here, de(w) = yau(®@)] of the material. The
free-space Green tensor can be written as (@ =r—s,
¢=le)h 3]

with f(x) = x +ix? — x* and g(x) = x + 3ix? — 3x°.

The Hamaker approach only uses the first term of the
Born series expansion. Because the Born series is a
perturbative expansion in the susceptibility y(w), it con-
verges badly for materials with a large susceptibility such
as gold. To improve this convergence, and to implement a
local-field correction, the reference Green tensor is sepa-
rated into a regular R and a singular part D = —3%26(@).
Inserting this into Eq. (A8) and performing the integrals
over the ¢ distributions yields the local-field-corrected first-
order scattering Green tensor

G (r,r,0) = f—j)((w) zoo: (_ %}((w))n

n=0

x/d3sR<0>(r,s,w)R<0>(s,r,w), (A10)

which leads to

x [ &sRO(r,s,0)RO(s,r,@) (All)

with (9 =r—s, 0 = |0|)

w c c ® .
R0 =g ()1 o) oo

(A12)

Equation (A11) has to be evaluated numerically. Because of
the smooth shape of the potential, numerical integration
methods converge quickly, with errors proportional to, at
most, the curvature of the potential, which is small in the
range of investigation.

In the Hamaker approach (pairwise summation), the
potential is clearly additive. The total potential can be
separated into three parts: one related to the evanescent
field, one related to the dispersion interaction between Rb
and Au, and one part for the Casimir-Polder interaction
between the Rb atoms and the sapphire substrate. The latter
can be neglected because the interaction with the gold
stripes by far dominates every other CP interaction, as we
have explicitly checked.

5. BEC preparation

The BEC is prepared in an ultrahigh vacuum chamber.
After precooling and trapping 8’Rb atoms in a magneto-
optic trap, the atoms are adiabatically transferred into a
highly compressed magnetic trap, where they are further
cooled by forced radio-frequency evaporation by which
Bose-Einstein condensates with, typically, 2 x 10° atoms
are generated. This is done at a distance of several hundred
um from the surface of a glass prism. A thin sapphire
substrate containing the gold grating investigated in this
paper is glued to the top of this prism. After preparation of
the BEC, we suddenly displace the magnetic trapping
minimum by a distance Az, thereby raising the potential
energy of the atoms by AE = %ma}zAzz, with atomic mass
m and magnetic trapping frequency . The BEC is
accelerated towards the new trapping minimum. After a
quarter of the oscillation period 6t = 5=, we switch off the
magnetic trap and apply a constant magnetic-field gradient
of B' =15 Gem™!, which compensates the gravitational
force. Thus, the atoms are not further accelerated or
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decelerated because of gravitation while moving towards
the grating. We measure the actual velocity of the atoms by
taking absorption images of the cloud at several time
intervals of 1 ms after the acceleration.

6. Comparison between amplitude
and phase modulation

Experimental data are evaluated in this paper, for
simplicity, only with an amplitude modulation model.
This is, as will be shown below, a good approximation
for the small laser powers used, whereas for large laser
powers, the phase of the matter wave is also significantly
modulated, leading to an increased diffraction as com-
pared to amplitude modulation alone. For a normal
incidence of the matter wave on the grating (like in
the experiment—see also Fig. 2), the diffracted intensity
is given within the Fraunhofer limit as [57]

/Do e~ r(x)dx

(oo}

2

I(x) = Iyk? : (A13)

where k = 2x/2,5 with de Broglie wavelength ;5 = me
of the matter wave and x = k - sin(6,) with angle 6, of
the reflected wave. Diffraction order n is reflected at the
angle 0" ~ nﬂ# For the estimation of the relevance of
phase imprinting, only relative occupations are important.
Thus, neglecting prefactors in Eq. (A13), we calculate the
Fourier transform #(x) of the complex reflection function
r(x) and evaluate 7(x) at the values corresponding to
the diffraction orders. The reflection function r(x) =
ra(x) - e?™) contains both amplitude and phase modu-
lation. The phase at a certain lateral position x is
calculated from the simulated combined EW and CP
potential landscape via [58]

2 (=)

_= Al4
) (A14)

P(x) = (Ugw(x) + Ucp(x))dz,

where the integral is evaluated from distances far from
the surface (z — +o0) to the distance zz(x), where the
potential energy Ugw + Ucp equals the kinetic energy of
the atoms FEy, :%va. The factor of 2 before the
integral stems from the fact that the incoming and the
reflected matter wave acquire the same phase. The
amplitude of the reflection function is ry(x) =1 for
those lateral positions where atoms are reflected and
r4(x) = 0 for those positions where they are transmitted.
Please note that Eq. (A14) is the phase along the classical
path in the eikonal approximation and that it neglects the
influence of the curvature of the potential on the path.
The expressions above are thus not a full solution to the
scattering problem, but they are a reasonable approxi-
mation in the limit of small scattering angles (9(,1 ~ 8°).
Solving Eq. (A13), we deduce the influence of phase

3 009 P=247 mW
1.0
| 2
()
c 08 [1——
ke
© L o
s % 02 04 0.6 08 1.0
§ 06 | x(um) R °©
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© 047 °
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FIG. 5 Occupation of diffraction orders including phase im-
printing (open circles) as compared to amplitude imprinting alone
(dots). The deviation due to phase imprinting is increasing with
the laser power. The inset shows the spatial dependence of the
amplitude r4(x) and the phase ¢(x) of the reflection function for
a laser power of P = 247 mW, exemplarily.

imprinting on the diffraction by comparing the results of
the full reflection function r(x) with those where the
phase is artificially set to be constant, ¢(x) =0. The
corresponding occupations are shown in Fig. 5. For laser
powers P < 140 mW, the deviation is <20% such that
the diffraction can be described in some approximation
by amplitude modulation alone. In contrast, this approxi-
mation is not valid for the high laser powers used where
the deviation exceeds 50%.

[1] J.E. Lennard Jones, Processes of Adsorption and
Diffusion on Solid Surfaces, Trans. Faraday Soc. 28, 333
(1932).

[2] H.B. G. Casimir and D. Polder, The Influence of Retarda-
tion on the London-van der Waals Forces, Phys. Rev. 73,
360 (1948).

[3] S. Scheel and S.Y. Buhmann, Macroscopic Quantum
Phenomena—Concepts and Applications, Acta Phys.
Slovaca 58, 675 (2008).

[4] C.1. Sukenik, M. G. Boshier, D. Cho, V. Sandoghdar, and
E. A. Hinds, Measurement of the Casimir-Polder Force,
Phys. Rev. Lett. 70, 560 (1993).

[5] A. Landragin, J.-Y. Courtois, G. Labeyrie, N. Vansteenkiste,
C. L. Westbrook, and A. Aspect, Measurement of the van der
Waals Force in an Atomic Mirror, Phys. Rev. Lett. 77, 1464
(1996).

[6] A. Landragin, L. Cognet, G.Zs. K. Horvath, C.1. West-
brook, N. Westbrook, and A. Aspect, A Reflection Grating
for Atoms at Normal Incidence, Europhys. Lett. 39, 485
(1997).

011029-8



[S28] Probing atom-surface interactions by diffraction

311

PROBING ATOM-SURFACE INTERACTIONS BY ...

PHYS. REV. X 4, 011029 (2014)

[7] E. Shimizu, Specular Reflection of Very Slow Metastable
Neon Atoms from a Solid Surface, Phys. Rev. Lett. 86, 987
(2001).

[8] V. Druzhinina and M. DeKieviet, Experimental Observation
of Quantum Reflection Far from Threshold, Phys. Rev. Lett.
91, 193202 (2003).

[9] T. A. Pasquini, Y. Shin, C. Sanner, M. Saba, A. Schirotzek,
D. E. Pritchard, and W. Ketterle, Quantum Reflection from a
Solid Surface at Normal Incidence, Phys. Rev. Lett. 93,
223201 (2004).

[10] J. M. Obrecht, R.J. Wild, M. Antezza, L. P. Pitaevskii, S.
Stringari, and E. A. Cornell, Measurement of the Temper-
ature Dependence of the Casimir-Polder Force, Phys. Rev.
Lett. 98, 063201 (2007).

[11] H. Bender, P. W. Courteille, C. Marzok, C. Zimmermann,
and S. Slama, Direct Measurement of Intermediate-Range
Casimir-Polder Potentials, Phys. Rev. Lett. 104, 083201
(2010).

[12] R. Messina, D. A. R. Dalvit, P. A. Maia Neto, A. Lambrecht,
and S. Reynaud, Dispersive Interactions between Atoms and
Nonplanar Surfaces, Phys. Rev. A 80, 022119 (2009).

[13] A.W. Rodriguez, F. Capasso, and S.G. Johnson, The
Casimir Effect in Microstructured Geometries, Nat.
Photonics 5, 211 (2011).

[14] V.N. Marachevsky, The Casimir Effect: Medium and
Geometry, J. Phys. A 45, 374021 (2012).

[15] M. Levin, A. P. McCauley, A. W. Rodriguez, M. T. Homer
Reid, and S.G. Johnson, Casimir Repulsion between
Metallic Objects in Vacuum, Phys. Rev. Lett. 105,
090403 (2010).

[16] F. W. DelRio, M. P. de Boer, J. A. Knapp, E. D. Reedy Jr., P.
J. Clews, and M. L. Dunn, The Role of van der Waals
Forces in Adhesion of Micromachined Surfaces, Nat. Mater.
4, 629 (2005).

[17] A. Lambrecht and V. N. Marachevsky, Casimir Interaction
of Dielectric Gratings, Phys. Rev. Lett. 101, 160403
(2008); Theory of the Casimir Effect in One-Dimensional
Periodic Dielectric Systems, Int. J. Mod. Phys. A 24, 1789
(2009).

[18] A.M. Contreras-Reyes, R. Guérout, P. A. Maia Neto, D. A.
R. Dalvit, A. Lambrecht, and S. Reynaud, Casimir-Polder
Interaction between an Atom and a Dielectric Grating,
Phys. Rev. A 82, 052517 (2010).

[19] P.S. Davids, F. Intravaia, F. S. S. Rosa, and D. A. R. Dalvit,
Modal Approach to Casimir Forces in Periodic Structures,
Phys. Rev. A 82, 062111 (2010).

[20] D. Farias and K.-H. Rieder, Afomic Beam Diffraction from
Solid Surfaces, Rep. Prog. Phys. 61, 1575 (1998).

[21] T. A. Pasquini, M. Saba, G.-B. Jo, Y. Shin, W. Ketterle, D.
E. Pritchard, T. A. Savas, and N. Mulders, Low Velocity
Quantum Reflection of Bose-Einstein Condensates, Phys.
Rev. Lett. 97, 093201 (2006).

[22] B.S. Zhao, S. A. Schulz, S. A. Meek, G. Meijer, and W.
Schollkopf, Quantum Reflection of Helium Atom Beams
from a Microstructured Grating, Phys. Rev. A 78, 010902
(R) (2008).

[23] R. E. Grisenti, W. Schollkopf, J. P. Toennies, G. C. Heger-
feldt, and T. Kohler, Determination of Atom-Surface van der
Waals Potentials from Transmission-Grating Diffraction
Intensities, Phys. Rev. Lett. 83, 1755 (1999).

[24] H. Oberst, D. Kouznetsov, K. Shimizu, J.I. Fujita, and F.
Shimizu, Fresnel Diffraction Mirror for an Atomic Wave,
Phys. Rev. Lett. 94, 013203 (2005).

[25] J. D. Perreault and A. D. Cronin, Observation of Atom Wave
Phase Shifts Induced by van der Waals Atom-Surface
Interactions, Phys. Rev. Lett. 95, 133201 (2005).

[26] G. A. Moreno, D. A.R. Dalvit, and E. Calzetta, Bragg
Spectroscopy for Measuring Casimir-Polder Interactions
with Bose-Einstein Condensates above Corrugated Surfa-
ces, New J. Phys. 12, 033009 (2010).

[27] C. Stehle, H. Bender, C. Zimmermann, D. Kern, M.
Fleischer, and S. Slama, Plasmonically Tailored Micro-
potentials for Ultracold Atoms, Nat. Photonics 5, 494
(2011).

[28] M. Righini, A.S. Zelenina, C. Girard, and R. Quidant,
Parallel and Selective Trapping in a Patterned Plasmonic
Landscape, Nat. Phys. 3, 477 (2007).

[29] S.Y. Buhmann, L. Knoll, D. G. Welsch, and H. T. Dung,
Casimir-Polder Forces: A Nonperturbative Approach,
Phys. Rev. A 70, 052117 (2004).

[30] J. H. de Boer, The Influence of van der Waals’ Forces and
Primary Bonds on Binding Energy, Strength and Orienta-
tion, with Special Reference to Some Artificial Resins,
Trans. Faraday Soc. 32, 10 (1936).

[31] H.C. Hamaker, The London van der Waals Attraction
between Spherical Particles, Physica (Amsterdam) 4,
1058 (1937).

[32] S.N. Thennadil and L.H. Garcia-Rubio, Approximations
for Calculating van der Waals Interaction Energy between
Spherical Particles - A Comparison, J. Colloid Interface Sci.
243, 136 (2001).

[33] H.-C. Chiu, G. L. Klimchitskaya, V. N. Marachevsky, V. M.
Mostepanenko, and U. Mohideen, Demonstration of the
Asymmetric Lateral Casimir Force between Corrugated
Surfaces in the Nonadditive Regime, Phys. Rev. B 80,
121402(R) (2009); Lateral Casimir Force between
Sinusoidally Corrugated Surfaces: Asymmetric Profiles,
Deviations from the Proximity Force Approximation,
and Comparison with Exact Theory, 81, 115417
(2010).

[34] S.Y. Buhmann and D.-G. Welsch, Born Expansion of the
Casimir-Polder Interaction of a Ground-State Atom with
Dielectric Bodies, Appl. Phys. B 82, 189 (2000).

[35] V. A. Parsegian, Van der Waals Forces: A Handbook for
Biologists, Chemists, Engineers, and Physicists (Cambridge
University Press, New York, 2005).

[36] K. Autumn, Y. A. Liang, S. T. Hsieh, W. Zesch, W. P. Chan,
T. W. Kenny, R. Fearing, and R. J. Full, Adhesive Force of a
Single Gecko Foot-Hair, Nature (London) 405, 681
(2000).

[37] R.B. Rodrigues, P. A. Maia Neto, A. Lambrecht, and S.
Reynaud, Lateral Casimir Force beyond the Proximity-
Force Approximation, Phys. Rev. Lett. 96, 100402
(2006).

[38] A. Rodriguez, M. Ibanescu, D. lannuzzi, F. Capasso, J. D.
Joannopoulos, and S.G. Johnson, Computation and
Visualization of Casimir Forces in Arbitrary Geometries:
Nonmonotonic Lateral-Wall Forces and the Failure of
Proximity-Force Approximations, Phys. Rev. Lett. 99,
080401 (2007).

011029-9



312

9. Matter-wave diffraction

HELMAR BENDER et al.

PHYS. REV. X 4, 011029 (2014)

[39] Y. Bao, R. Guérout, J. Lussange, A. Lambrecht, R. A.
Cirelli, F. Klemens, W. M. Mansfield, C. S. Pai, and H. B.
Chan, Casimir Force on a Surface with Shallow Nanoscale
Corrugations: Geometry and Finite Conductivity Effects,
Phys. Rev. Lett. 105, 250402 (2010).

[40] L. P. Teo, M. Bordag, and V. Nikolaev, Corrections beyond
the Proximity Force Approximation, Phys. Rev. D 84,
125037 (2011).

[41] G. Bimonte, T. Emig, R. L. Jaffe, and M. Kardar, Casimir
Forces beyond the Proximity Approximation, Europhys.
Lett. 97, 50001 (2012).

[42] A.D. Cronin and J. D. Perreault, Phasor Analysis of Atom
Diffraction from a Rotated Material Grating, Phys. Rev. A
70, 043607 (2004).

[43] C. Henkel, J.-Y. Courtois, and A. Aspect, Afomic Diffrac-
tion by a Thin Phase Grating, J. Phys. 1l France 4, 1955
(1994).

[44] A. Giinther, S. Kraft, C. Zimmermann, and J. Fortagh,
Atom  Interferometer Based on  Phase Coherent
Splitting  of  Bose-Einstein ~ Condensates — with — an
Integrated Magnetic Grating, Phys. Rev. Lett. 98,
140403 (2007).

[45] A.D. Cronin, J. Schmiedmayer, and D. E. Pritchard, Optics
and Interferometry with Atoms and Molecules, Rev. Mod.
Phys. 81, 1051 (2009).

[46] J.M. McGuirk, D. M. Harber, J. M. Obrecht, and E. A.
Cornell, Alkali-Metal Adsorbate Polarization on Con-
ducting and Insulating Surfaces Probed with Bose-Einstein
Condensates, Phys. Rev. A 69, 062905 (2004).

[47] C. Stehle, H. Bender, F. Jessen, C. Zimmermann, and S.
Slama, Ad- and Desorption of Rb Atoms on a Gold Nanofilm
Measured by Surface Plasmon Polaritons, New J. Phys. 12,
083066 (2010).

[48] A. Tauschinsky, R. M. T. Thijssen, S. Whitlock, H. B. van
Linden van den Heuvell, and R.J.C. Spreeuw, Spatially
Resolved Excitation of Rydberg Atoms and Surface
Effects on an Atom Chip, Phys. Rev. A 81, 063411
(2010).

[49] H. Failache, S. Saltiel, M. Fichet, D. Bloch, and M. Ducloy,
Resonant van der Waals Repulsion between Excited Cs
Atoms and Sapphire Surface, Phys. Rev. Lett. 83, 5467
(1999).

[50] F. Intravaia, C. Henkel, and A. Lambrecht, Role of Surface
Plasmons in the Casimir Effect, Phys. Rev. A 76, 033820
(2007).

[51]7 K. A. Milton, E. K. Abalo, P. Parashar, N. Pourtolami, I.
Brevik, and S. A. Ellingsen, Casimir-Polder Repulsion near
Edges: Wedge Apex and a Screen with an Aperture, Phys.
Rev. A 83, 062507 (2011).

[52] K. A. Milton, P. Parashar, N. Pourtolami, and I. Brevik,
Casimir-Polder Repulsion: Polarizable Atoms, Cylinders,
Spheres, and Ellipsoids, Phys. Rev. D 85, 025008 (2012).

[53] C. Eberlein and R. Zietal, Casimir-Polder Interaction
between a Polarizable Particle and a Plate with a Hole,
Phys. Rev. A 83, 052514 (2011).

[54] M. S. Safronova, C.J. Williams, and C. W. Clark, Relativ-
istic Many-Body Calculations of Electric-Dipole Matrix
Elements, Lifetimes, and Polarizabilities in Rubidium, Phys.
Rev. A 69, 022509 (2004).

[55] D. A. Steck, Rubidium 87D Line Data, http:/steck.us/
alkalidata (2009).

[56] A. A.Maradudin and D. L. Mills, Scattering and Absorption
of Electromagnetic Radiation by a Semi-infinite Medium in
the Presence of Surface Roughness, Phys. Rev. B 11, 1392
(1975); D.L. Mills and A. A. Maradudin, Surface Rough-
ness and the Optical Properties of a Semi-infinite Material:
The Effect of a Dielectric Overlayer, Phys. Rev. B 12, 2943
(1975).

[57] R. E. Grisenti, W. Schollkopf, J. P. Toennies, J. R. Manson,
T. A. Savas, and H.I. Smith, He-atom Diffraction from
Nanostructure Transmission Gratings: The Role of Imper-
fections, Phys. Rev. A 61, 033608 (2000).

[58] V.P. A. Lonij, W.F. Holmgren, and A.D. Cronin, Magic
Ratio of Window Width to Grating Period for van der Waals
Potential Measurements Using Material Gratings, Phys.
Rev. A 80, 062904 (2009).

011029-10



[S29] Impact of Casimir—Polder interaction on Poisson-spot diffraction

313

PHYSICAL REVIEW A 94, 023621 (2016)

Impact of Casimir-Polder interaction on Poisson-spot diffraction at a dielectric sphere

Joshua L. Hemmerich,! Robert Bennett,! Thomas Reisinger,? Stefan Nimmrichter,? Johannes Fiedler,' Horst Hahn,?
Herbert Gleiter,? and Stefan Yoshi Buhmann!*

! Physikalisches Institut, Albert-Ludwigs-Universitiit Freiburg, Hermann-Herder-Strasse 4, D-79104 Freiburg im Breisgau, Germany
2Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Karlsruhe, Germany
3Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
4Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universitiit Freiburg, Albertstrasse 19, D-79104 Freiburg im Breisgau, Germany
(Received 30 June 2016; published 17 August 2016)

Diffraction of matter waves is an important demonstration of the fact that objects in nature possess a mixture
of particlelike and wavelike properties. Unlike in the case of light diffraction, matter waves are subject to a
vacuum-mediated interaction with diffraction obstacles. Here we present a detailed account of this effect through
the calculation of the attractive Casimir-Polder potential between a dielectric sphere and an atomic beam.
Furthermore, we use our calculated potential to make predictions about the diffraction patterns to be observed in
an ongoing experiment where a beam of indium atoms is diffracted around a silicon-dioxide sphere. The result is
an amplification of the on-axis bright feature, which is the matter-wave analog of the well-known “Poisson spot”
from optics. Our treatment confirms that the diffraction patterns resulting from our complete account of the sphere
Casimir-Polder potential are indistinguishable from those found via a large-sphere nonretarded approximation in
the discussed experiments, establishing the latter as an adequate model.

DOI: 10.1103/PhysRevA.94.023621

I. INTRODUCTION

Matter-wave diffraction around material objects is one
of the most compelling demonstrations of the particle-wave
duality. Beginning from the classic electron diffraction exper-
iments of the 1920s [1,2], particles of progressively higher
mass have had their wavelike nature revealed. This process
began in the 1930s and 1940s with the diffraction of atoms
and molecules [3], as well as neutrons [4], from various
crystal surfaces. More recently the diffraction of atoms [5] and
simple molecules [6] from lithographically fabricated grating
structures has been demonstrated. These experiments paved
the way for grating diffraction experiments with complex
organic molecules such as fullerenes [7] and porphyrin
derivates [8]. Scaling of diffraction experiments to even larger
objects such as macromolecules or even living organisms like
viruses or bacteria presents some considerable difficulties but
has the potential to shed light on the question if quantum me-
chanics applies unmodified to such increasingly macroscopic
systems [9]. The latter used a Talbot-Lau arrangement of three
gratings, with the middle grating realized by a standing light
wave to eliminate the problem of molecule-grating interaction.

As the diffracting molecules become larger, a number
of difficulties arise. The immediate reduction in de Broglie
wavelength can be counteracted, for example, by a reduction
in the molecular speeds or the use of gratings with smaller
grating constants, which both present significant technological
challenges. In addition, interaction with the environment, for
example, via thermal emission of radiation [10], can lead to
decoherence [11]. More practically, the buildup of unwanted
contaminants (from the beam or elsewhere) upon the grating
itself over time can result in a reduction in the interference vis-
ibility or even cause the slits to become blocked. Additionally,
Talbot-Lau interferometers impose relatively loose restrictions
on the width of the beam’s wavelength distribution, which may,
however, become limiting for sources of objects of increasing
mass such as, for example, cluster sources. Furthermore, the
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gratings must have very uniform grating constants and must
be aligned with high precision.

Finally, the problem addressed in the present study stems
from the fact that extended particles undergoing diffraction
have a nonzero electromagnetic polarizability in general,
meaning they experience Casimir-Polder or van der Waals (CP
or vdW) dispersion forces originating from the grating itself.
The result is an effective reduction in the slit width in addition
to a coherent phase shift [12], which increasingly obscures
the distinction between particle and wave nature [11,13]. The
current mass record is held by a setup that reduces this problem
through the use of a standing light-wave phase grating as
the middle diffraction grating in a Talbot-Lau interferometer
arrangement [ 14]. Another approach has the potential to elimi-
nate the problem entirely by using three pulsed laser-ionization
gratings [15]. Aside from these developments, an accurate
knowledge of the CP or vdW incurred phase shifts is highly de-
sirable, but remains challenging. The dispersion forces can ex-
hibit intricate spatial dependence in complex geometries (see,
for example, [16-21]), but in many far-field diffraction exper-
iments the effect is reduced to an effective slit narrowing fitted
to the data after the experiment [22]. Dispersion forces near
gratings are extremely difficult to model accurately [12,16—
21,23-30], especially when sharp edges are involved [31].
This, coupled to the fact that gratings necessarily have a large
number of sharp edges spaced closely together, means that
progress in detailed accounts of this effect has stalled.

Here we investigate a different type of diffraction scheme:
the “Poisson spot” interferometer. There waves in general
are diffracted around a circular or spherical object, resulting
in an on-axis bright spot, called Poisson’s spot or spot of
Arago [32,33]. This effect was first predicted by Poisson
when looking for evidence against Fresnel’s wave theory of
light in the early 1800s. Poisson described it as an absurd
prediction of Fresnel’s theory, but experiments by Frangois
Arago proved that the effect is real, accelerating the shift away
from Newton’s “corpuscular” theory [34]. The matter-wave

©2016 American Physical Society
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FIG. 1. Schematic representation of the system we consider,
where an atom of polarizability o(w) passes near a sphere of
permittivity €(w). The resulting Casimir-Polder or van der Waals
interaction will cause the atomic wave function to pick up a phase
shift, which is observable in matter-wave diffraction experiments.

version of this experiment [35] avoids some of the problems
that appear in the grating experiments discussed above (e.g.,
blocking of the grating, or alignment). However, the inevitable
contribution from CP or vdW forces remains. These have
been accounted for using a relatively simple model for the
disk-based experiments of [35] in [13]. The question of
whether this approach is valid is part of the motivation for
the study presented here.

The current article covers an approach related to [35],
where a dielectric sphere (see Fig. 1) replaces the disks used
as diffraction obstacles in the aforementioned studies. The
lack of sharp edges in spherical diffraction obstacles makes
this approach ideally suited to accurate modeling of the CP
or vdW interaction; see, for example [36]. The focus is, in
particular, directed at a specific experiment that is currently
being conducted at the Karlsruhe Institute of Technology,
the parameters of which will be used throughout this article.
The experiment aims at recording diffraction patterns in the
shadow of submicron-sized silica particles cast by thermally
evaporated indium atoms. The choice of these two materials is
motivated in the following ways.

The Stober process [37] enables the controlled growth
of monodispersed spheres composed of amorphous silicon
dioxide via condensation of silicic acid in alcoholic solutions.
The advantage in preparing these silica spheres, which are to
be used as diffraction obstacles, using a bottom-up approach
as opposed to a top-down lithographic process is the close-
to-optimal spherical shape that can be achieved in this way.
Specifically the low surface corrugation of the particles is
crucial [35] for achieving the Poisson-spot visibilities reported
here. Furthermore, the resulting huge quantities of diffraction
obstacles of uniform size are compatible with a simple
parallelization of the experiment in order to average over large
numbers of recorded diffraction images.

The choice of indium is largely due to its high vapor
pressure, which enables the realization of a thermal-oven-
based point source of sufficient brightness. It also sets the
experiment apart from matter-wave diffraction aimed at mea-
suring CP or vdW forces with beams composed of alkali-metal
atoms [12,38] and seeks to demonstrate in this way a compati-
bility with a large number of condensable atom and molecular
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species. Thus, a wide variety of CP or vdW potentials could
be studied using the same experimental approach.

In the following section we review the derivation of CP
or vdW potentials and apply it to the particular materials
and geometry used in the experiment. Then, in Sec. III we
derive the resulting phase shifts affecting the matter-wave
diffraction experiment. Finally, a numerical solution of the
Fresnel-diffraction integral is used in Sec. IV to predict the
Poisson-spot diffraction intensities in the presence of the CP
or vdW potential followed by a discussion and the conclusion.

II. CASIMIR-POLDER POTENTIAL

In this section we outline a general derivation for the CP
interaction for a dielectric sphere and a single ground-state
atom and show that it reduces to well-known results in
asymptotic cases.

Perturbation theory

We consider an atomic dipole d interacting with the electric
field E of macroscopic QED [39,40], which includes all the
information about geometry and dielectric functions in the
electromagnetic environment surrounding the atom. We work
in the long-wavelength approximation, where one can restrict
to the first term in the multipole expansion of the atom-field
interaction, meaning that the interaction Hamiltonian is

H = —d-E(y), ey

with
Er) = / &’r / doG(r,r,0) - f(r',0) + He., (2)
0

where f(r, ) is a bosonic field operator that describes the
fundamental excitations of the composite matter-field system
and G(r,r’,w) is the electromagnetic Green’s tensor solving

2
V x V x G(r,r',w) — e(r,w)w—zG(r,r/,w) =8 —-r), 3)
c
where e(r,w) is the position and frequency-dependent permit-
tivity of the system. Application of second-order perturbation
theory to the ground state of the atom-field system yields an
expression for the CP potential in terms of a complex frequency
w=i§ [41,42],
fipro

Uer) = =2

ocdg e2aie) Tr GV r i), )
27'[ 0

where GV(r,r',i£) is the scattering part of the Green’s tensor
for the geometry at hand, which is obtained from the full
Green’s tensor at each point by subtracting the Green’s tensor
of a homogenous material with the same permittivity as the
point in question. In this work we are only interested in the case
when the atom is in the vacuum region outside a sphere, so for
our purposes the scattering Green’s tensor is obtained simply
by subtracting the vacuum Green’s tensor from that of a sphere.
The quantity a(w) in Eq. (4) is the atomic polarizability for a
transition from the ground state to state k with dipole moment
dox and frequency woy;

2
WOk d()k

2
31(2Jo + 1) Xk: gy — ?’

(&)

a(w) =
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where Jj is the total angular momentum quantum number of
the ground state, which here appears as a weighting factor
accounting for its degenerate levels.

The Green’s tensor outside a sphere can be written
as [42-44]

oo I
(e)) / — i —
GUorrw =3 3 > 2=bw)
I=1 m=00=TE,TM
2041 ( —m)!
X
A+ 1D){d+m)!
X [alm+r7(r) ® alm+a(r/)
+a—o (r) a0 (r/)]a (6)
where ® denotes the dyadic product (A ® B);; = A; B, aj+s
are spherical wave-vector functions as listed in Appendix A,
and r;, are the Mie reflection coefficients for a sphere of
radius R, given by

Tl

Ji@Dz2jiz)] = [z1 iz )] Ji(z2)
hPEDlz2i@)) = [k @)] jiz2)

e(&) jiz)z1jiz)] — jitz)z2i(z2))
(&) [zih]" @)] ji(z2) — b @)lz2jiz)]

where z; = kiR, k) = w/c, ko = w+/e(w)/c, and the primes
denote derivatives with respect to z;, z, respectively; e.g.,
[xf ()] = L[xf(x)]. The quantities ji(z;) and hj’(z;) are
the spherical Bessel and Hankel functions of the ﬁrst kind,
respectively.

Using addition theorems for spherical harmonics [45], the
potential for a sphere can be rewritten in the form [46] (see
Appendix B)

"re = —

@)

rirm = —

_ huo e 3 . >
U = -5, /0 dgé oe(lé);(ﬂ +1)
WP r)]?
X (VITE[hEI)(kr)]Z + rITM{l(l + 1)%
[krh"kr)]?
] ®

in agreement with [47,48]. We now investigate Eq. (8) in
several asymptotic regimes, both as a consistency check and
as a useful point of comparison later on. First, we consider
atom-sphere distances ¥ — R much smaller than the atomic
transition wavelengths Ay = 2mwc/wa, which means that the
atom-sphere interaction can be considered to be instantaneous
and so is termed the nonretarded regime. This renders the
nonretarded CP potential Uxg(r) = U(r < Ap) [42,47,48]:

h o0
Une(r) = — g5 @i+ 1+ 1)
=1

R2+1 00 . 8(1'%')—1
< J, O

It is worth noting that this expression does not depend on
the spherical Bessel and Hankel functions j; and h", which
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means the convergence of the sum over / is much more robust
than for the full potential (8). Considering, furthermore, the
sphere radius R to be much greater than the distance r from
the surface of the sphere to the atom |R — r| = z < R, the
terms with large / dominate and yield a 1/z* dependence,

h 1 C
S [Cdraien =S

167260 23 e +1 2
(10)

Upnr = —

where the coefficient C3 has been defined for later use.
Equation (10) is the well-known Lennard-Jones formula [49]
for the potential near a half space, which is indeed the expected
limiting case for an atom a small distance from a large sphere.
Separately, we can consider a small sphere radius compared
to the distance to the atom r 3> R. Beginning again from the
general formula (8), one finds that the leading-order term in
this expansion for small R/r comes from the first spherical
harmonic / = 1, which leads to the small-sphere potential,

S e@§) —
Us) = =3 | " g i) 0= 0 +2 exp(—2§r/c)
X [3+6(5r/c) + 5(Er/c)’
+2(6r/0)* + (§r/c)'], (11
which can again be further simplified in the nonretarded regime
Usnr(r) = Us(r € 2),
e@i§) —
Usni(r) = m—/ deain) D )

which is the well-known van der Waals potential between two
microscopic polarisable objects [50].

Finally, considering the limit of strong retardation of the
electromagnetic field Ao < r and a pointlike sphere as before,
the retarded CP potential is obtained [47,48,51,52]:

23hc R73 (0)8(0)—1
1672¢gq 17 e(0)+2

Usr(r) = — (13)

So far our considerations have been for a sphere of
unspecified permittivity and a general (ground state) atom.
In order to calculate this potential explicitly, one needs to
use particular values of the atomic polarizability and the
permittivity for the sphere as functions of imaginary frequency

£.

III. NUMERICAL INVESTIGATION OF A REAL SYSTEM

A. Material response functions

As mentioned in the Introduction, we specifically consider
amorphous silicon dioxide (SiO,) for the sphere and indium
for the atom. To determine the permittivity (&) of (SiO,) as
a function of imaginary frequencies i€, we used tabulated data
for the real-frequency refractive index [53], which was then
converted to that for imaginary frequencies via the Kramers-
Kronig relations (see, for example, [45]). Amorphous SiO; has
two main groups of resonances at frequencies wr ; and wr ),
to which we fitted a two-line Drude model on the imaginary
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TABLE 1. Fit parameters for a two-line Drude-Lorentz model
[Eq. (14)] for the permittivity of SiO,.

Parameter Value (Hz) Error (%) Parameter Value (Hz) Error (%)

wp 1 175 x 104 0.37 wpy 296 x 10 0.45
or. 132 x 104 0.34 wr, 27210 043
" 428 x 108 2,07 ¥ 8.09x 105 3.40

frequency axis,

2 2
B =14 5l g PP (14)
0f +NE+E Wi,k + £
where wp; are the plasma frequencies of the two effective
resonances and y; their decay width. The explicit values of the
parameters of our fit are shown in Table I. The properties of the
atom enter into the CP potential (8) via the polarizability (5),
which in turn depends on the dipole matrix elements dy; and
frequencies wy, describing transitions from the ground state
to level k. These parameters (obtained from [54], where they
are found by combining experimental data and computational
chemistry) are listed in Table II for each possible transition.
The polarizability «(i§) for indium in its ground state (5P 2,
i.e., Jo = 1/2) was then calculated from the data from Table II
via (5).

B. Numerical calculations

Given the material response functions (14) and the tabulated
optical data in Tables I and II, we now have everything needed
to calculate the CP potential Eq. (8) of an indium atom near
a silicon-dioxide sphere. However, the sum over spherical
harmonics cannot, in general, be done analytically, so the
series has to be truncated at value of / large enough to keep
errors within acceptable bounds. Calculating the potential for
extremely large / is very time consuming computationally, so,
based on the desired accuracy of our simulations, we decide
upon a point at which the potential can be replaced by its
half-space asymptote Eq. (10). We choose this accuracy to be
at the 3% level, because beyond this the errors in the material
response functions would dominate. Carrying out this replace-
ment procedure, one finds the CP potential shown in Fig. 2.

C. CP-induced phase shift in matter-wave diffraction

In this section we discuss the impact of the CP interaction
on matter-wave diffraction, in particular on the Poisson spot.

TABLE II. Transition frequencies wg in 10" rad/s and dipole
matrix elements Dy in 1073° C m for indium [54]. Each k represents
one degenerate manifold of internal states.

k Transition Wok Do

1 5Py — 681 4.594 16.092
2 5Py, — 5Ds) 6.200 22.048
3 5P1/2 — 751/2 6.843 4.587
4 SPy, — 6D3) 7.360 7.910
5 5P, — 8S)), 7.659 2518
6 SPijy— 783 7.886 3.582
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FIG. 2. CP potential for a 500 nm SiO, (amorphous) sphere and
a ground-state indium atom. The dotted lines from top (orange)
to bottom (red) are the retarded- and full-small sphere potentials
respectively. The dashed (gray) lines are the solutions from the full
potential (8) for different truncation values of the angular momentum
Imax = 10,20,50,100,500,800. This shows that truncation in [ is
an especially delicate problem if the atom is in close proximity to
the sphere, where the error induced by truncation of the /-series is
largest. The solid (green) line is the full solution (with /;,,x = 800) up
to where the convergence to the half space is Ugng(7;)/ U (r;) =~ 3%,
there it is replaced with the half-space potential. The vertical dotted
lines represent the main resonances from SiO, (Ag‘ioz and )L;ZOZ) and

the dominant transition wavelength of indium (Ayy).

The Poisson spot is a bright spot which appears in the shadow
region of a circular or spherical object due to diffraction. An
approximate analogy with the double-slit experiment can be
made by realizing that a circular (or spherical) diffracting
object may be thought of as pairs of double slits arranged
around a circle. The central maximum of the diffraction pattern
for each pair of slits is on the axis, resulting in a bright spot.
In other words, its appearance can be understood by the fact
that the atomic paths from the point source via the rim of the
spherical object to any specific point on the optical axis all
have the same length. The quantum-mechanical phases of the
atoms thus positively interfere at the optical axis which results
in Poisson’s spot.

In order to quantify the effects of the CP potential on the
Poisson spot, we use the Wentzel-Kramers-Brillouin (WKB)
approximation, where the potential is assumed to change
slowly relative to the de Broglie wavelength associated with
the matter wave. Explicitly, the WKB approximation holds if
the spatial derivative of the position-dependent wave vector
k(x) satisfies

K (x) < k*(x), (15)

which can be recast as

L amlE UG « 2EZUOL )

dx h

where £ = %mv2 is the kinetic energy a particle of mass m and

velocity v and U is the potential it is subject to. To check that
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the approximation is valid here, we consider an indium atom
(m = 114.8 u) and SiO,, as discussed in the previous section.
For these materials we have the large-sphere nonretarded
potential U = Ugnr(r) = C3/z> given by Eq. (10) with

_ b e =1 o
Gy = 1671250/0 dg ot(lS)E(is)_H ~9.77 x 107 Im’>.
17

Using this potential and an approximate velocity of the indium
atoms of 500 m/s (see Sec. IV) in Eq. (16), one finds that for
nanometer distances the left-hand side is approximately nine
orders of magnitude smaller than the right-hand side, meaning
that for (at least) the case of the large-sphere nonretarded
potential we are comfortably within the conditions of validity
of the WKB approximation.

We describe the trajectory in our specific system through
the coordinates x and p = a + R, as indicated in Fig. 1. This
means that the CP-induced phase shift Agcp (also known as
the eikonal phase) is given by [38]

1 o0
Agpcp(p) = —%/ dx U(x,p). (18)

Given this phase shift, one can then calculate a diffraction
pattern using the Fresnel approximation (where the wavelength
of the beam undergoing diffraction is much smaller than the
dimensions of the diffracting object). The amplitude A(P) of
the signal at a point P in the image plane (see Fig. 5) is given
by [13,55]

i

A= "5
0

2 00
d¢ / dp G(¢,p)pe'¥sPr+bece®]
0

19)
where ¢, (p) = g(é + })p? is the phase shift induced by the
geometry of the object in Fresnel approximation and ¢cp(p)
is the CP-induced phase shift given by Eq. (18), with U(x,p)
the lateral CP potential (see Fig. 3). The function G(¢,p)
is the aperture function representing the circular cross section
of the sphere. It is O for points that are located within the
blocked cross section and 1 otherwise. To calculate the
amplitude for an arbitrary point P in the detection plane, the
origin used in the integral (19) is shifted to the intersection
point of the line connecting the source and image points with
the integration plane, resulting in the new radial coordinate

/xdx Uz, p)

FIG. 3. Sketch of the lateral CP potential. The curve corresponds
to the CP interaction of an atom flying in a straight line parallel to the
optical axis nearby the sphere surface.
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FIG. 4. CP potential-induced phase shift for spheres with differ-
ent radii (50, 100, 200, and 500 nm). The solid (black) line is the
phase shift where the full solution for the CP potential from Eq. (18)
has been used. The dashed (red) line is the phase shift for the leading
order of the half-space approximation. Note that the approximation
improves for larger spheres, in line with the intuition that a sphere
with a larger radius is more similar to a half space.

p. The numerical evaluation of |A|?, which is equal to the
intensities in the imaging plane, is discussed in Sec. I'V.

The Fresnel approximation is accurate in the discussed
experiment since the object and image distances g and b are
large compared to the size of the diffraction object R and
the wavelength A is much smaller than R. In addition, note
that although Fresnel theory only applies to two-dimensional
objects, the “volume” of the sphere is implicitly taken into
account by the accumulated phase shift Eq. (18).

For distances of less than approximately 10 nm the phase
shift is well approximated by the large-sphere potential of
Eq. (10), as shown in Fig. 4. The potential takes a particular
simple form in this limit [56], namely,

C3 Cs

Upnr(r) = 5 —[ AT

as shown in Fig. 3. This means that if this potential is used
in the phase-shift integral, the result can, in fact, be found
analytically,

(20)

A @ Cs 1
a)= ——————

¥cp.BNR 2hv 2R + a)?

3R(R + a)?

x [6R> 4+ 8Ra + 4a®> + ——
< Va(2R ¥ a)

R
x {2arctan | — |+
(2o | o]+ 1)
C; 3nv/R
~N———u— f R, 21
2 2 /2052 or a & (1)
with C3 ~9.77 x 1070 Im3, as explained above. Finally,

— G 3nJ/R
2= 2m 22

we define for later convenience the quantity Cs

023621-5



318

9. Matter-wave diffraction

JOSHUA L. HEMMERICH et al.

so that

Csy

Agcpanr(@ K R) =

IV. CALCULATION OF DIFFRACTION IMAGES

In this section the derived Casimir-Polder phase shift is used
in a numerical solution of the Fresnel-diffraction integral in
order to predict the effect of the Casimir-Polder interaction on
the relative intensity of Poisson’s spot. With relative intensity
I, we refer to the ratio between the intensity at the center of
Poisson’s spot in the detection plane and the intensity of the
undisturbed beam, also in the detection plane. These predicted
relative intensities can then be compared to intensity data from
the aforementioned matter-wave experiments.

The parameters assumed in the calculations, and detailed
in the following lines, are chosen according to the setup
used in the experiment. The oven source consists of a closed
molybdenum crucible with a nominally 20-um-diameter
orifice and is kept at a temperature of 7, = 1200°C. The
temperature is chosen this high to generate a substantial
partial pressure of indium (about 87 Pa) within the crucible,
resulting in the high source brightness needed to observe
Poisson’s spot. The orifice diameter is also small enough
to avoid any increase in the virtual source size [57,58]. In
spite of the relatively high pressure, the speed of the exiting
indium atoms is expected to be characterized by the thermal
speed distribution inside the source, with an approximate
mean velocity given by ¥ = /8k, T, /(mm) ~ 521 m/s, where
kp, is Boltzmann’s constant and m is the atomic mass of
indium (m = 114.8 u). This corresponds to a mean de Broglie
wavelength of 6.67 pm, which is the wavelength used in
the calculations described below. The speed of the atoms
affects the relative intensity in two ways. (1) Higher atomic
speed results in smaller wavelengths and thus in a thinner
point-source Poisson spot which is equivalent to lower relative
intensity for extended sources. (2) Higher atomic speed also
results in shorter Casimir-Polder interaction times and thus a
reduced phase shift, which also results in a reduction of the
relative Poisson-spot intensity [13,36], as can be seen below.
The spread in wavelengths is neglected as its effect on the
relative intensity of Poisson’s spot is expected to average out. A
clear sign of the wave nature is the presence of the side maxima
(as, for example, visible in Fig. 9), unlike the Poisson spot
itself, which has a classical analog due to particle deflection in
the CP potential [13,36]. The visibility of these side maxima
is, however, affected by the spread in wavelengths, which are
therefore hard to detect in practice. Three different sphere
diameters of the silicon-dioxide particles will be assumed
(R =50, 100, 200 nm) and a fixed distance between the
source and the sphere of g = 600 mm. The image distance
b between the sphere and the detection plane is varied in the
range b = 0.05-1.05 mm.

The disturbance A(P) at a point P in the detection plane
can be expressed by Eq. (19), which makes use of the
Fresnel approximation and already incorporates the phase shift
expected from the Casimir-Polder interaction [27].

The phase shift ¢cp(r) is only non-negligible in an annular
region in the integration plane between radii R; cp and R, cp
(see Fig. 5). Very close to the sphere the phase shift starts to
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FIG. 5. Schematic indicating numerical solution of Fresnel in-
tegral. In order to calculate the amplitude A(P) at point P due
to a point source at S, the surface integral from Eq. (19) in the
indicated integration plane needs to be solved. Note that to calculate
the amplitude for an arbitrary point P in the detection plane the origin
used in the integral is shifted to the intersection point of the line SP
and the integration plane, resulting in the new radial coordinate p.
The circular cross section of the sphere is shown in gray with a solid
circumference. The adjacent annular zone in orange with an outer
radius R; cp indicates the region where the CP or vdW phase shift
is larger than 4. This zone was therefore neglected entirely in any
of the radial line integrals, which are indicated by the blue arrows.
Further away from the optical axis the annular zone shown in green
corresponds to the region where the CP or vdW phase shift is in the
range [H;TW, 4] with an outer radius of R, cp. In this region each
radial line integral was solved numerically, taking into account the
surface distance a at each numerical integration step. Outside of it,
the CP or vdW phase shift is neglected and the contribution to the
line integrals simplifies to two terms corresponding to the intersection
point(s) with the circle of radius R, cp with the radial integration line
and a point at infinity (see Ref. [55]).

oscillate increasingly fast as a function of z. It is safe to neglect
contributions originating from an annular region of radius
R; cp and inward, i.e., immediately adjacent to the sphere.
This is because, from a classical point of view, trajectories
passing within R; cp result in large particle deflections or
even particle capture by the sphere and thus do not contribute
to the diffraction image close to the optical axis. In the
calculations presented here, R, cp and R; cp are set such that
the phase shift equals 77 /1000 and 47, respectively (this turns
out to be more efficient and accurate than the absolutely fixed
boundaries used in Ref. [13]). For the sphere radii R = 50,
100, and 200 nm, for which results are reported below, the
phase-shift constants defined by Eq. (22) are Cs, = 6.622 x
10722, 9.365 x 10722, and 13.244 x 1072 m’/?, respec-
tively, and the boundary radii are [R; cp, R,.cp] = [51.2,83.8],
[101.4,138.9], and [201.6,244.7] nm, respectively, for the
given beam parameters.

The surface integral is solved numerically following
the general approach discussed in Ref. [55] and explained
schematically in Fig. 5. The integral is replaced by two sums.
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The first solves the integral in the 6 variable, corresponding
to Ny radially equally spaced rays. We choose Ny = 19997
(a prime number) to avoid artificial fringes from symmetry in
the numerical evaluation. The second sum, which corresponds
to line integrals in the radial direction, reduces to a few
summands that are evaluated at the intersection points of
each particular ray with the edges of transmitting regions.
In the annular region where the CP potential is non-negligible,
this simplification does not hold. Therefore, whenever a ray
traverses this region the corresponding part of the radial line
integral is computed using a simple trapezoidal rule, taking into
account the local phase shift. The resolution of this numerical
line integration was fixed at 0.1 nm. For each image distance
b and sphere radius R the intensities corresponding to a row

ot

Lo O 1 2 3 4

40

p (nm)

p (nm)
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FIG. 6. Relative diffraction intensity for sphere radius R =
50 nm. The plots in this figure show the calculated relative intensity of
an atomic indium beam in the shadow region behind a silicon-dioxide
sphere with a diameter of 100 nm. The formation of Poisson’s spot
about the optical axis (horizontal) can be clearly seen. The beam
originates from a 20-pum-diameter source at a distance of 600 mm
from the sphere. I, is given in intensity units of the undisturbed
wave front (without the sphere, the plot would show I, = 1). Here
p denotes the distance from the optical axis and b is the distance
between sphere and detection plane. For comparison, we display
results for the case of no interaction between the sphere and the beam
(a) and including the Casimir-Polder-induced phase shifts using the
large-sphere nonretarded potential (b). In (c) the relative intensity
on the optical axis is shown. The upper dashed and upper solid lines
(blue) correspond to the data in (a) and (b), respectively, which means
that the solid lines include the CP potential, while the dashed lines do
not. The lower dashed and lower solid lines (orange) show the trend
for the same parameters, but assume a 40-m-diameter beam source.
The shaded region about the solid lines give an approximate error
margin due to a thin layer of indium forming on the sphere (see text).
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of 2000 pixels reaching from the optical axis to the radius R in
the image plane is computed with this method. The complete
4000 x 4000-pixel two-dimensional point-source diffraction
image is inferred from symmetry and interpolation. Finally,
the image is convoluted with the demagnified image of the
source of width 20b/g pm.

V. DISCUSSION AND OUTLOOK

As can be seen in Fig. 4, the change in the phase shift due
to retardation or the size of the sphere is negligible for the
experiment discussed here. For this reason we have limited
the Fresnel-diffraction simulations to the simpler half-space,
nonretarded approximation.

The resulting relative intensities as a function of p and
b are plotted in Figs. 6, 7, and 8 for three different sphere
diameters. For better comparison the lateral relative intensity
distributions are shown at the image distance » = 0.1 mm in
Fig. 9. The relative intensity of Poisson’s spot is increasingly
amplified at smaller distances b due to the CP interaction. In
addition, a small shift of the side maxima toward the optical
axis can be noted [see especially Fig. 9(a)], which we attribute
to an increasing effective sphere diameter for stronger CP
interaction. The plot of the on-axis intensity for two different
source sizes shows that increased spatial coherence leads to a
more pronounced sensitivity of the Poisson-spot intensity to
the CP potential. By comparing Figs. 6, 7, and 8 one can see
that an increase in sphere diameter both increases I due to
the longer time the particle spends in the vicinity of the sphere,
but also decreases it, as expected from Fresnel diffraction. In
other words, there are two competing effects, which is why
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FIG. 7. Relative diffraction intensity for sphere radius R =
100 nm. The graphs are analogous to Fig. 6.
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FIG. 8. Relative diffraction intensity for sphere radius R =
200 nm. The graphs are analogous to Fig. 6.

I is at a maximum for the medium sphere diameter (only in
case of the 20-um source).

To ensure the reliability of our results, we compared
them to those found using a completely different numerical
approach. As discussed in the caption of Fig. 5, the results
plotted in Figs. 6, 7, 8, and 9 were computed in a similar
way to [55], i.e., by direct numerical implementation of the
Fresnel integral. That method is equivalent to the phase-space
treatment outlined in [36] using Wigner functions (see [59]
for details). The phase-space framework is ideally suited to
account for environmental decoherence effects [11,60], e.g.,
by background gas collisions, and to juxtapose the predictions
of the matter-wave model and a classical ballistic treatment of
the atom trajectories. We have checked our numerical results
against this framework and find agreement at the percent level,
with the dominant contribution to the difference being our use
of the approximate expression in the final line of (21). Another
consistency check between our work and that of [36] is that the
latter can predict which (semi-)classical trajectories physically
collide with the sphere due to deflection by the potential. This
can be determined simply by imposing conservation of energy
and momentum, then minimizing the resulting function to find
the smallest impact parameter ap;, that escapes the potential.
For the cases R = 50, 100, 200 nm considered here, we find
amin = 1.0, 1.2, and 1.4 nm, respectively, which is consistent
with the values R; cp [61] derived from our phase criteria in
Sec. IV.

There are three more effects that we have not addressed so
far, but which we discuss in the following sections.

PHYSICAL REVIEW A 94, 023621 (2016)
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FIG. 9. Lateral relative intensity at b = 0.1 mm assuming a
source diameter of 20 um (a)—(c) and 40 pum (d)—(f). The assumed
sphere diameter is R = 50 nm (a), (d), R = 100 nm (b), (e), and R =
200 nm (c), (f). The model including the large-sphere nonretarded CP-
phase shift is depicted using solid lines and the Fresnel-diffraction-
only model using dotted lines. The shaded regions around the solid
lines give an approximate error margin stemming from the formation
of a thin indium layer on the sphere (see Sec. V B).

A. Surface corrugation

The calculation neglects any surface corrugation of the
sphere, for which a reduction in Poisson-spot intensity is
expected at small distances b behind the sphere from the
zero-interaction Fresnel-Kirchhoff integral. This effect can be
estimated using an analytic dampening factor [62] that can
be applied to the on-axis intensities. The relative intensity of
Poisson’s spot will be close to zero if the amplitude of the
surface corrugation is approximately equal to the width of the

. _ 5 agh .
adjacent Fresnel zone wy, = ,/R* + %D R. Assuming a

corrugation amplitude of about 1 nm, we have w;, ~ 1 nm at
distances b = 0.015, 0.03, and 0.06 nm for sphere radii R =
50, 100, and 200 nm, respectively. A corrugation amplitude of
10 nm entails approximately a tenfold increase in the values
of b at which the Poisson spot is no longer visible. This
illustrates the importance of avoiding surface corrugation in
the experiment as much as possible.

Furthermore, surface corrugation can influence the CP
potential in the vicinity of the sphere in nontrivial ways [16—
19,30,63]. In practice, we expect that the presence of CP
interaction effectively mitigates the requirements on surface
corrugation to some degree, especially if the corrugation
amplitude is less than R;cp — R. Accurate accounting of
this influence could help in the future to distinguish between
quantum and classical behavior of mesoscopic particles [13].
The details of this, however, we anticipate to be an interesting
route for further study.

B. Formation of a metallic thin film on the sphere

One more reason for a deviation of experimental data
from the results presented above is the possible buildup of
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FIG. 10. Variation of the nonretarded, half-space CP constant C5
as a function of deposited indium film thickness, with z being the
distance from the sphere surface to the atom.

an indium film on the silicon-dioxide sphere. In our large-
sphere approximation this would manifest itself as a thin
layer deposited on top of a half space, for which estimates
of its influence on the effective Casimir-Polder potential
can be obtained relatively easily. We present a preliminary
investigation of this in Fig. 10, where an effective C; at various
distances from the coated sphere is shown as a function of
indium film thickness. For thin layers a screening effect can be
noted far from the surface. As the film grows in thickness the
half-space CP potential of a pure indium surface is reached.
The graph suggests that the effect can be accounted for by a
modification of the effective C3 of the system by approximately
a factor in the range 0.8—1.8 (depending on layer thickness).
This would result in an exposure-time-dependent diffraction
pattern as the indium continuously accumulates upon the
sphere. We show the deviation in the relative intensity of
Poisson’s spot approximately possible due to the thin film in
the form of an error corridor (see shaded region in the plots of
Figs. 6-9). The boundaries of the corridors were calculated by
assuming constant effective CP constants of 0.8 C3 and 1.8 Cs.
The variation of the effective C5 as a function of distance from
the sphere z, as predicted in Fig. 10, can lead to even stronger
attenuation or amplification depending on the resulting CP
phase shift relative to the geometrical phase shift. However,
we expect the error to be of the same order of magnitude as
depicted by the shaded error corridors. The results suggest that
the change in intensity of Poisson’s spot due to a metallic thin
film can be observed, but may be, in practice, hard to quantify.
The main reasons for this are additional modifications of /¢
to be expected from changing surface corrugation as the thin
film is deposited.

C. Temperature
1. Temperature of indium atoms

The effect of the CP interaction on the relative intensity of
Poisson’s spot depends on the temperature 7 of the indium
atoms, at which they emerge from the oven source, in two

PHYSICAL REVIEW A 94, 023621 (2016)

distinct ways. First, Ty determines the speed distribution of the
atoms and thus the accumulated CP phase shift [see Eq. (21)].
The speed distribution also affects the geometrical Fresnel
phase shift via the de Broglie wavelength of the atoms. Both of
these manifestations of finite 7; have been accounted for in the
presented calculations. Second, at 7 any number of internal
degrees of freedom of the atom maybe excited, which would
alter the atom’s polarizability and thus the CP potential. The
occupation probability of the lowest excited state of the indium

atoms at temperature 7y = 1200 °C can be estimated using the
hap)

Boltzmann factore *7 with the transition frequency wg; from
Table IT and the reduced Planck constant / and Boltzmann’s
constant k. This evaluates to approximately 5 x 10~!!, which
makes the assumption that all indium atoms reside in the
ground state an extremely good one. Even at higher tempera-
tures accessible with a standard oven heater, this ratio remains
negligible. However, an artificial excitement using a laser at
one of the specific indium wavelengths could be an appealing
route to probing the CP interaction with excited atoms.

2. Ambient temperature

The ambient temperature of the experimental apparatus
floods the interaction region between atom and dielectric
sphere with thermal photons. These additional excitations
of the electromagnetic field affect the CP potential only at
distances of the order of the wavelengths of the thermal
photons [64-66] (approximately 48 pm at room temperature).
Since we determined that the CP phase shift in the discussed
experiment is completely negligible at distances exceeding
about 50 nm, itis safe to ignore any contributions from ambient
thermal photons.

3. Temperature of the silicon-dioxide sphere

While it is not practicable to change the temperature of
the apparatus significantly, the temperature of the diffraction
obstacle could be raised to about 1000°C and higher for
alternative obstacle materials. A reason for heating the obstacle
could be to prevent the deposition of a thin film of the beam
species, as discussed above. This would result in immediate
re-evaporation of beam particles captured by the sphere,
reflecting them diffusely in the general direction of the source.
The influence of such states of thermal nonequilibrium on the
CP potential is a topic of current research [67-69], and its
possible influence on the present experiment should be the
subject of further study.

VI. CONCLUSION

We have presented a detailed treatment of the CP potential
between indium atoms and a silicon-dioxide sphere and its
influence in the case of Poisson-spot matter-wave diffraction
experiments. The main feature of our results is that the
makeshift models of Casimir-Polder potentials, which neglect
retardation and surface curvature and were used so far in
matter-wave diffraction experiments, are, in fact, completely
adequate. We have shown this by making a detailed account
of the situation for a realistic and ongoing Poisson-spot
experiment. This has allowed us to make verifiable predictions
of diffraction patterns and relative intensities of the Poisson
spot, backed up by a proper account of geometry- and
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material-dependent dispersion forces. We found that the di-
ameter of the silicon-dioxide sphere mainly affects the relative
intensity of Poisson’s spot due to the related change in length
of the interaction region. Furthermore, we have estimated
the effect from surface corrugation of the silicon-dioxide
sphere and the possible deposition of indium on the diffraction
obstacle. Finally, there remain a few more minor idealizations
that are not included in our model thus far, for example that
the sphere is at thermal equilibrium with the indium beam.
On the whole, we expect that the predictions for the relative
intensity of Poisson’s spot made here provide solid ground for
tests of the CP potential as predicted by macroscopic quantum
electrodynamics in the ongoing experiments.

ACKNOWLEDGMENTS

We thank Stefan Scheel for fruitful discussions.
S.Y.B. and R.B. acknowledge support from the Deutsche
Forschungsgemeinschaft (Grant No. BU 1803/3-1), and S.Y.B.
additionally acknowledges support from the Freiburg Institute
for Advanced Studies (FRIAS). J.F. and S.Y.B. acknowledge
support by the Research Innovation Fund of Freiburg Univer-
sity. T.R. acknowledges support by the Ministry of Science,
Research and Art of Baden-Wiirttemberg via a Research Seed
Capital (RISC) grant. T.R., H.G., and H.H. acknowledge
support by the Helmholtz Association. S.N. is supported by
the National Research Foundation, Prime Minister’s Office,
Singapore and the Ministry of Education, Singapore under
the Research Centres of Excellence programme.

APPENDIX A: VECTOR WAVE FUNCTIONS

The vector wave functions entering into (6) are given by

P/"(cos0) sin(mg)

_ My
= Fhy krm =20 cosmgp)

a1, +7E(T)
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where the primes are to be understood in the same sense
as detailed below Eq. (7). The notation ® here means that

y

its upper or lower entries should be taken consistent with
corresponding entries of the relevant +.

APPENDIX B: GREEN’s TENSOR SIMPLIFICATIONS

The trace of the scattering Green’s tensor (6) reads
21 +1 {—m)!

) =
TrGV(r,r,ie)= ZZ( l(l+1)(l+m)'
P/"(cos0) :
X {VITE[hEI)(kr)]Z[mZ[ISiT]
dP["(cos0) :
[T
WO kr)
+rirm| [ 1+ 1P (cos6) kr
[krhgl)(kr)], < 2|:le(¢()59)]2
(kr)? " sin

dP/"(cos6)7?
=) ®

To carry out the sum over m, we use the addition theorem for
spherical harmonics [45]:

—m)!
Z(z mo)(l gy

m=0

x P/"(cos0)P/"(cos0')cos[m(p — ¢")]. (B2)

Pi(cosy) =

The trace can therefore be rewritten as

TG erit) =~ Y+ U{flTE[h?”(k’)]z
¢ =1

[ e
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) 2
+[krhl (kr)] i|} (B3)
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which together with Eq. (4) renders the CP potential (8) for a
sphere and a ground-state atom.
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The influence of retardation and dielectric
environments on interatomic Coulombic decay
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Interatomic Coulombic decay (ICD) is a very efficient process by which high-energy radiation
is redistributed between molecular systems, often producing a slow electron, which can be
damaging to biological tissue. During ICD, an initially-ionised and highly-excited donor
species undergoes a transition where an outer-valence electron moves to a lower-lying
vacancy, transmitting a photon with sufficient energy to ionise an acceptor species placed
close by. Traditionally the ICD process has been described via ab initio quantum chemistry
based on electrostatics in free space, which cannot include the effects of retardation stem-
ming from the finite speed of light, nor the influence of a dispersive, absorbing, discontinuous
environment. Here we develop a theoretical description of ICD based on macroscopic
quantum electrodynamics in dielectrics, which fully incorporates all these effects, enabling
the established power and broad applicability of macroscopic quantum electrodynamics to be
unleashed across the fast-developing field of ICD.
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xactly one century ago, Einstein showed! that the existence

of a thermal equilibrium between matter and radiation

implies a process by which atoms can indiscriminately
release energy—now known as spontaneous emission. Its origin is
the coupling of the atom to the quantum electrodynamical
vacuum field that permeates all of space, so while being originally
thought of as a fundamental atomic property, spontaneous
emission can in fact be tuned by placing the emitter in an
environment that modifies the vacuum state—between mirrors,
for example. This was first pointed out by Purcell?, who predicted
that the rate of spontaneous decay could be dramatically
enhanced by confining an emitter to a small volume. At a similar
time, Casimir and Polder® found that the finite speed of light can
impact the London-van der Waals force, originally thought of as
an instantaneous and fundamental interaction between particles.
In both cases, the explanation of a previously known effect in
terms of a more fundamental theory, quantum electrodynamics
(QED), led to the prediction of new physics, later verified in
experiments. This is the blueprint we wish to follow in the present
study of interatomic Coulombic decay (ICD)

ICD was first predicted in 1997 by L.S. Cederbaum and cow-
orkers* and experimentally observed shortly afterwards®®. The
details of the ICD process are shown in Fig. 1, where in our
terminology the interaction-mediating photon is in fact a gen-
eralised polariton-like field-matter excitation, containing both
radiative (long-range) and non-radiative (short-range) contribu-
tions. It is worth noting that the electron left in the continuum is
usually of a relatively low energy’, as most of the energy the
photon transfers to the acceptor is spent freeing the electron. It
has been shown that such low-energy electrons can have detri-
mental effects on biological matter'®, meaning that ICD is
of more than fundamental interest.

Comparison of ICD observations with theory is usually made
by elaborate ab initio quantum chemistry approaches!!—a trend
that continues in the recentl¥ proposed superexchange!?, surface-
based!? and doubly-ionised'* ICD variants. These methods are
well-suited to dealing with the complex consequences of orbital
overlap between donor and acceptor. However, they cannot easily
deal with the effects of retardation stemming from the finite speed

Coulomb approach QED approach

® )
o-e 0@ O oo
oo L oo | oo P

bR

Time (Coq - .‘.3:
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oo oo | @O o

Donor Acceptor ! Donor Acceptor

Fig. 1 Interatomic Coulombic decay process. lllustration of the interatomic
Coulombic decay process in terms of a the traditional language of Coulomb
interactions and b our quantum electrodynamics approach. An ionised,
excited atom or molecule (donor) with an inner-valence vacancy
(sometimes known as hollow) makes a transition where that vacancy is
filled and a photon is emitted. If that photon has an energy higher than the
photoionisation threshold of a neighbouring atom or molecule (acceptor),
its absorption may be accompanied by an electron being freed into the
continuum. The resulting pair of ions then undergoes a ‘Coulomb
explosion’, which is one of the experimental signatures of ICD

of light. Furthermore, while a simple dielectric background
or extended host molecule can be taken into account with
molecular dynamics techniques'>!® or via numerical quantum
chemistry”’lg, the full effects of dispersion, absorption, relati-
vistic retardation and sharp boundaries remain computationally
beyond reach. This means that such approaches are not able to
account for the effects of a complex environment, such as that of
a helium nanodroplet’*?3 or those found in biological
settings!02425,

In the following we present a theoretical description of ICD
that systematically includes all of the latter effects, for which we
use a framework known as macroscopic QED?%?°, In this
formalism the quantised electromagnetic field in dispersive and
absorbing media is described by a dyadic Green’s tensor
G(r,r',w) governing propagation of field-matter excitations
(medium-assisted photons) of frequency w between a source at
position r’ and an observation point r. Various QED quantities
such as spontaneous decay rates and Casimir forces can then be
expressed entirely in terms of this Green’s tensor, which is known
in closed form for simple geometries®® and can be approximated
for more complex ones®!. This allows the computation of such
QED quantities in any desired environment, with vacuum
emerging as a special case. In this work we use this formalism to
show that the range of ICD may be much larger than expected
from purely electrostatic considerations, and that an environment
such as liquid water can significantly alter the efficiency of ICD.
For donor and acceptor situated near a macroscopic body, we
predict that the ICD rate can be enhanced or suppressed due to
resonant interactions with surface plasmons.

Results

Macroscopic QED approach to ICD. Using the formalism of
macroscopic QED, we have calculated a general expression for the
ICD rate in arbitrary dispersive and absorbing environments,
valid at any donor-acceptor distance where orbital overlap can
be neglected®2. We begin with the interaction Hamiltonian of the
dipole moments dpof the donor and d, of the acceptor,

Him = _&D 'E(rD) - &A : IA‘:(I'A) (1)

where the quantised electric field operator E(r) excites polariton-
like field-matter excitations through an appropriate set of bosonic
operators. We then evaluate the ICD rate I using the interaction
Hamiltonian (1) in time-dependent perturbation theory with
causal adiabatic coupling. It is important to note that viewing the
ICD process as the exchange of virtual photons means that twice
as many orders of perturbation theory are needed compared to an
instantaneous Coulomb-like picture, as illustrated in Fig. 1.This is
because the Coulomb approach considers the donor and acceptor
as essentially a single object, which then undergoes ICD as a one-
step process (the two interactions in Fig. 1 occur simultaneously).
By contrast, the virtual photon approach considers the donor and
acceptor completely separately, so that the finite time delay
associated with propagation from one to the other is fully taken
into account. This doubling of the number of interactions means
that in contrast to Coulomb approaches where second order
perturbation theory suffices (see, for example ref.!!), we need to
use fourth-order time-dependent perturbation theory. Using the
Hamiltonian (1) and expanding the transition matrix element
that links our initial and final states in a Dyson series keeping
terms up to fourth order in the interaction (see Methods section),
we extract the ICD decay rate as;

I =27 Z YpOa(hwp)Tr[G(xy, 1p, wp) - G (rp, s, wp)],
channels
)
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where r, and rp are, respectively, the positions of the acceptor
and donor, wp is the transition frequency of the donor and
hwa = hwp — Ueou, Where Uy is the Coulomb energy of the
system. The allowed channels in the above expression are those
satisfying Aiwp = Ucoul + Uion, Where Uiy, is the ionisation
potential of the acceptor. We make use of the following short-
hands; yp is the free-space single-atom decay rate of the donor,
given explicitly by

2
_ wp|dp|
D 3nhcde,

(3)

and o4 (E) is the photoionization cross section of the acceptor
nE d 5

E) = —|d,|°, 4

oAE) = 5 gl (4)

which is expressed as a function of the energy E of the incident
photon. We see from equations (3) and (4) that formula (2)
contains four dipole moments, each of which corresponds to an
interaction vertex in our fourth-order perturbation theory.

Formula (2) can be physically understood as the product of
three factors. The first is the free-space decay rate yp, of the donor,
which is simply a measure of how strongly its coupling to the
vacuum causes it to emit, even in the absence of the acceptor or
an environment. The second factor is the trace over Green’s
tensors, describing the impact of the environment between and
around donor and acceptor on the transmission of energy
between them. The final factor is the photoionisation cross
section o, of the acceptor, evaluated at the photon frequency
hwp. This factor corresponds to how likely it is that a photon
arriving at the acceptor will cause a photoionisation event, freeing
an electron from the acceptor. This means the three factors each
loosely correspond to a probability of a step in the process
(emission, propagation and then absorption), meaning that their
product represents an overall rate for ICD.

Relativistic retardation in ICD. The first consequence of Eq. (2)
that we will highlight is the effect of retardation originating from
the finite speed of light (note that the related process of two-
centre resonant photoionisation has also been shown to be
affected by retardation in free space®?). The consequences of this
are expected to be the most dramatic at large donor-acceptor
distances—systems with this character have been the focus of
recent experimental work>*3>, Using the vacuum Green’s tensor

[see, for example, ref.? or the Methods section] in our formula
(2) we find;
1 YpOa(hwy) (27rp>2 (2@)“
poo Loy woalhen) | (2mpt 2mp\ T
™ 4 channels (ZH/AD)4P6 /\D /\D

where p = |rp — 14| is the donor-acceptor separation and Ap =
27c/wp is the wavelength of the photon emitted from the donor.
In the limit of short distances only the first term in the square

brackets of (5) remains, this is is the non-retarded vacuum rate
FNR'

3 ypoa(fw,)
R _Z Ypoaltws)
- 4ch§n:els (2m/Ap)*pe (6)

This is the only part of Eq. (5) accessible without using our
theory, and as such is reproduced by the more traditional
instantaneous Coulomb approach®?3, and its inverse sixth power
of distance can be understood as coming from the p~3
dependence of the near-field limit of the electric field of a dipole,
which is then squared during calculation of dipole-dipole

coupling. The second and third terms of Eq. (5) are new and
come from the inclusion of the far-field of the dipole which
decays as p~!. The new terms are proportional to p~* and p~2,
which obviously means they decay much more slowly at large
distances than the p~® found without including retardation. This
can cause dramatic enhancement relative to the rate expected
from the non-retarded theory if the condition 27p>Ap is
satisfied, as shown in Fig. 2.

Systems undergoing ICD are typically separated by around
3-10 A, meaning that the condition p>Ap/27 is comfortably
satisfied by, for example, taking Neot (nine-fold ionised neon) as
a donor species. There the transition energy from the 2P;,, > 2S; ),
levels is around 1.02keV, corresponding to Ap/2m of approxi-
mately 1.9 A.

The importance of retardation is not limited to small, extreme
systems such as hydrogen-like ions—even large, multi-electron
ions can be near enough to each other to undergo ICD (510 A),
while also being far enough for the assumption of negligible
orbital overlap to be applicable. The degree of orbital overlap
depends strongly on specific choice of donor and acceptor
species, so here we refer to the specific example studied in ref.3?,
where it was shown that the effects of orbital overlap become
negligible in Ne-Mg ICD if the separation is above ~6-7 A. In
that system the transition wavelength is far too long for
retardation to play a role. However, if one replaces the neon
donor with a neon-like ion, the transition wavelength will be
much shorter, but the degree of orbital overlap should to remain
similar, meaning its influence will still become negligible at at
about 6-7 A. We have included in the inset of Fig. 2 the ICD rate
for three selected neon-like donors, with arbitrary acceptor
species. While one would have to carefully consider the degree of
orbital overlap for a neon-like donor and a specific acceptor
species in order to decide in which specific distance range our
model applies, the preceding discussion and the inset of Fig. 2
together show that ICD between large, multi-electron systems can
in principle also be subject to significant retardation corrections.

ICD in a host medium. The second application of our formula
(2) is to ICD processes in a medium. A naive approach to cal-
culating the ICD rate in this situation would be simply changing
the optical path length of the photon, but this is not an adequate
description of interatomic processes in media, as discussed in
ref37. Such an approach misses the fact that an atom embedded
in a medium has a small region of empty space around it,
meaning the field it experiences is different from that found in the
bulk medium—this is known as the local-field effect (LFE). Our
approach to ICD can include this by using the appropriate
Green’s tensor in Eq. (2), in particular that described in ref.?8
where the local-field corrected Green’s tensor is calculated for
arbitrary media described by a frequency-dependent permittivity
&(w). For illustrative purposes we concentrate on the small-
distance limit of our formula (2), but we emphasise that our
general theory can take into account retardation and medium
effects simultaneously. Using the local-field corrected Green’s
tensor (see Methods) in the non-retarded limit of our formula (2)
we find the rate for a single ICD channel in a bulk medium as;

3¢(wp) ‘4 (7)

NR NR
Touk = Tvac * 11 fiee Mupe = 2e(wp) + 1

where 5= |e(wp)| ™2 is the correction factor that arises in the
simple bulk model, #; g is the correction due to the LFE, and we
have expressed the rate in terms of [N} as given by Eq. (6).
In order to assess the impact of the LFE, we have also shown in
Eq. (7) the result that is found if the LFE is ignored (yipp = 1).
For quantitative analysis of (7) we have used the measured
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Fig. 2 Effect of retardation on interatomic Coulombic decay rate: Main plot: position-dependence of the interatomic Coulombic decay rate for arbitrary
acceptor species and a variety of donors, as a function of their mutual separation p. Shown with thick solid lines are the rates for a selection of donor

transition wavelengths Ap. In the near-field (non-retarded) limit the rate is proportional to p~® (dashed straight lines), while in the far-field (retarded) limit
it becomes proportional to p’z, drastically enhancing the rate relative to that which is found if retardation is ignored. For reference we have shown as thin
lines the ICD rates if the donor is taken to be a hydrogen-like ion undergoing a 2Py, — 2S;,> transition?®. The rates for the first twenty such ions are shown
(labels for Mg'™ to K'8+ are replaced by *..." for formatting reasons) demonstrating that, for example, an ICD process whose donor is a Na'%* (45 =10.05 A)

jon will experience significant retardation at typical ICD distances (3-10 A). Inset: Same axes as the main plot, instead displaying data relevant to the
1P° — 1S transition in selected neon-like ions
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Fig. 3 Effect of solvent media on interatomic Coulombic decay rate. Non-retarded interatomic Coulombic decay rate 'R in a liquid water and b liquid
helium, using tabulated optical data*® 41, The results are normalised to the non-retarded rate IR encountered in vacuum, given by Eq. (6). As explained in

the main text, the bulk medium can enhance or suppress the ICD rate, and the local-field effect can cause an additional suppression or enhancement
relative to the results without the local-field effect

permittivities for water*® and liquid helium*!, relevant to biolo-  the case near the absorption resonance of helium, which is the
gical processes and experiments on nanodroplets®?, respectively.  origin of the enhancement there. For water in the displayed fre-
Our results are shown in Fig. 3 where we make a comparison with  quency range, the ICD rate is always suppressed by the solvent
the rate that would be predicted if LFEs were not taken into medium where the neglect of the LFE leads to an overestimation
account. There we see that inclusion of the LFE can cause of this suppression. For helium, the LFE significantly narrows the
enhancement or suppression of the ICD rate, on top of the frequency window where the ICD rate is enhanced. The experi-
suppression or enhancement that the simple bulk (that is, without ~ment reported in ref.?? reveals an ICD signal at 21.6 eV inside a
the LFE) causes. The LFE-corrected bulk causes suppression He nanodroplet. Our calculations as shown in Fig. 3 predict an
when 75 < 1, which is satisfied when, for example, e<1 as is enhancement of the respective ICD rate by a factor 1.7 due to the
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presence of the bulk nanodroplet medium. To confirm this
quantitatively, one has to first use our Eq. (2) in conjunction with
the known Green’s tensor of the spherical nanodroplet (see, for
example ref.#?) to calculate the ICD rate for arbitrary donor and
acceptor positions with respect to the droplet, a similar study of
the effect of a dielectric sphere on the van der Waals interaction
between two atoms has been carried out in ref.*>. Subsequently,
the geometric distributions of donors and acceptors, as well as
additional decay channels and processes, have to be accounted for
to generate a predicted experimental signal. Finally, we note that
in this discussion we have concentrated on the effects that the
medium has on field propagation between donor and acceptor. In
addition, the medium has an impact on the donor and acceptor’s
properties such as transition frequencies and dipole moments.
This could be studied alternatively using molecular dynamics or
macroscopic QED*4,

ICD near a dielectric surface. Another demonstration of the
power of our general formula (2) is calculation of the effect an
inhomogenous environment has on ICD, taking inspiration from
the Purcell enhancement of the spontaneous decay rate. Similarly
to our presentation of the rates in a bulk medium, we will con-
centrate on the short-distance limit of our formula (2), but again
emphasise that our general theory can simultaneously take into
account all the effects discussed so far. Using the dyadic Green’s
tensor for a dielectric surface?>* with frequency-dependent
permittivity e(w) occupying the region z < 0 (see Methods) in our
formula (2), we find the following rate in the non-retarded
regime;

I\gR _é YpOa(iwy)
. = IDZAVTAT
P 4channels wé/c‘l (8)
X L + 2Re[R(wp)] _ PFtp + R(wp)[?
p° PI3p3p  2p5p5 P i3 )

_ 2 2
where p = p(zp — —zp), Pﬁ = (xp —x4)+(rp —ya)” and
R(w) = (¢(w) — 1)/(e(w) + 1) is the Fresnel reflection coefficient
of the surface. In order to make quantitative predictions we
assume a permittivity of the Drude-Lorentz form,
2
w
fw)y=1-——FL 9
@ =1 e )
where w, is the plasma frequency, wr is a transition frequency
and y is a damping constant. This choice of dielectric function
causes the reflection coefficient R(w) defined above to exhibit a

resonance at a frequency wg = /w3 + w3 /2, commonly known

as the surface plasmon frequency. In Fig. 4 we display the plate-
dependent ICD rate (normalised to that for free space) for a
donor at a fixed position near the interface while allowing the
position of the acceptor to vary. We choose a range of transition
frequencies for the donor, both above and below the resonance
frequency of the material. It is seen that the medium-dependent
ICD rate has an intricate dependence on both the relative posi-
tions of the donor and acceptor, and the relationship between the
ICD photon frequency and that of the material resonance. For
example, at frequencies below the material resonance and with
ry — rp aligned parallel to the surface, the ICD rate is suppressed
by a factor of up to 2. This placement of donor and acceptor
could be envisaged in a biological context as two molecules sitting
on a cell membrane, our theory predicts that the ICD rate
between the two will be slower due to the presence of
the membrane. Similarly, if the frequency remains below reso-
nance but now r, — rp is aligned perpendicular to the surface,

the ICD rate can be enhanced by a similar factor. This could arise
in a biological setting as an aid to efficient energy transport; our
theory predicts that the presence of an interface at the end of a
linear arrangement of emitters and absorbers would cause a
noticeable enhancement of energy transfer between neighbours.

Finally, we emphasise that although we have separately
presented three ICD-modifying effects (retardation, immersion
in a bulk medium and placement near a surface) in order
to maintain a clear conceptual divide between each, all of
these and more can be taken into account simultaneously in
our framework simply by using the appropriate well-known
Green’s tensors (c.f. ref.?’). As an example, we report here
the ICD rate found from Eq. (2) for donor and acceptor
embedded in an absorbing medium of complex refractive index
n(w) &(w) = n(w) + ix(w), simultaneously including local-
field corrections and relativistic retardation. To do this we use the
retarded bulk Green’s tensor and the local-field prescription
(both of which are found in the Methods section) in Eq. (2),
finding;

_ NR —2kpwp/c
Lo = E Tpee =P
channels
(2

3

3 4 (10)
(4 + ) +%W+C—

x |14 2x( + 3|ﬁ|4,

where { = pwp/c. The material parameters n(w) and x(w) are both
evaluated at the donor frequency wp, and we have used the rate
defined by (7) as a shorthand. From Eq. (10) it is evident that
there is a complex interplay between the various factors discussed
so far, including an exponential screening factor that depends on
the extinction coefficient «, as well as polynomial dependence on
various combinations of distance and material parameters. In
Fig. 5 we plot the separation-dependence of the rate (10) in
vacuum and in helium, both with and without local-field
corrections. The rates (5) and (7) emerge from Eq. (10) in its
vacuum (n->1, x¥>0), and non-retarded (pwp/c < 1) limits,
respectively.

In conclusion, we have presented a description of the ICD rate
in arbitrary environments that are described via the electro-
magnetic Green’s tensor. We have demonstrated some of the
explicit consequences of our main result (2), the first being the
fundamental importance of retardation which can cause ICD
rates to be orders of magnitude higher than expected from any
previous theory. We have also studied local-field corrections in a
bulk medium, as well as the intricate dependence of the ICD rate
upon a nearby macroscopic body. All of these effects should be
taken into account when calculating the impact of ICD in the
non-idealised, messy situations found in the life sciences, as well
as to more fundamental research into medium-dependent ICD.
We emphasise that every calculation here proceeded analytically
from the same very general formula (2), which was derived using
the established power and broad applicability of macroscopic
QED, which can now be unleashed across the fast-developing
field of ICD.

Methods
Derivation of ICD rate. In this section we derive our central result (2), which is the
ICD rate I in arbitrary environments. We will calculate I' from Fermi’s golden rule;

r= 35 bl o(z - 5). (i

where Mj is a transition matrix element and E;Ey are the energy eigenvalues of the
unperturbed Hamiltonian for the initial and final states |i) and |f), respectively. The
transition matrix element arising from a time-dependent perturbation V' can be
calculated using time-dependent perturbation theory. In the causal adiabatic
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Fig. 4 Interatomic Coulombic decay rate near a dielectric surface. Non-retarded interatomic Coulombic decay rate I‘plate in vacuum near a dielectric surface
with Drude-Lorentz permittivity as given by Eq. (9), normalised to the free-space non-retarded rate l"m The donor is at a fixed position on the z-axis a
distance zp from the dielectric, which occupies the region z < 0. The acceptor is at position (xa,0,za), which is varied and the rate shown at each position in
the x — z plane. All distances are normalised to zp, and the Drude-Lorentz parameters are w, = ws and y = ws/10. The white contours represent the
position at which the free-space and surface-modified rates are equal. In the insets we plot the behaviour of the reflection coefficient R as a function of
frequency near its resonance ws, and show with a vertical line the ICD frequency wp chosen in the corresponding plot. The off-resonance plots (a, b and
d) share the same scale, while the on-resonance plot (€) has a much larger range due to the strong enhancement of the rate if the ICD and material

resonance frequencies are equal

coupling approach (see, for example ref.4%) one has;

M = lim

=0+

V1K) (k| Vi
Z(f\ Ife) (k| Vi)

— E; + ihe (12)

where Ej is the energy eigenvalue of the intermediate state k. In writing Eq. (12) we
have assumed that all diagonal elements of V vanish, which is true for the per-
turbation we shall consider here. The leading-order processes supported by our
interaction Hamiltonian (1) are shown in Fig. 6.

We will use 6, y and a, f8 to represent the states of the donor D and acceptor A,
respectively. The donor and acceptor may each be atoms, ions or molecules, though
for brevity we describe their states simply as atomic in the rest of this section. In
general the states of the acceptor can either be bound or belong to the continuum.
During the ICD process the donor decays (8-> y), while the acceptor becomes
excited (a - f8). In terms of product states [a)®|b) = |a, b) we can therefore write the
ICD process as |8, a) > |y, B). Then the contributions to the sum over intermediate
states k in Eq. (12) are simply the two possible time-orderings of a process where a
single polariton-like field-matter excitation (coinciding with the usual notion of a
photon if the process takes place in vacuum) [1(r, )} at position r with frequency w
is exchanged, as shown in Fig. 6. We can hence write the following initial,
intermediate and final product states for the composite system of the donor and

acceptor coupled to the medium-assisted field whose ground state is |{0})

Initial : i) =18, a)|{0}),

Intermediate :  [k(V)) = |y, &)|1(r,w)) or k@ =18,B)[1(r,w)), (13)

Final : If) = ly. B{0})-

Combining the contributions from both diagrams yields the following
expression for the coupling matrix element
-y Joe[ ao (71d - Bl IK) (Kl - Bl )13
0 h(w — wgy — is)

(14)

(f\dn

E(rp) (k) (k?|d, - B(r,)]i)
h (w + wgy — is)
where w,, = (E, — Ep)/h are all positive. We can use the dipole operators dto

directly evaluate the atomic part of each term, for example the numerator of the
first term becomes;

(FIda - B [K) (KO |d - BCrp) )
= (dus - O} B, @))) (¢, - (1(r ) [E(rp) {O]))

with dg, = (y|dp|8) and d,; = (8|d,|a). To evaluate the field-dependent part
oy B

(15)
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Fig. 5 Interplay of medium and retardation effects on interatomic Coulombic decay rate. Shown here is the interatomic Coulombic decay rate for arbitrary
donor and acceptor, including medium and retardation effects as given by Eq. (10), as a function of the dimensionless parameter wpp/c. The vertical axis is
normalised in the same way as that of Fig. 2, and the dashed lines correspond to the non-retarded limits of the three rates shown. The material parameters
chosen for the absorbing medium are n(wp) = 1.49 and x(wp) = 0.35, corresponding to the first absorption line of helium®'
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Fig. 6 Feynman diagrams for the ICD process. Diagrammatic illustration of
the two processes (a) and (b) supported by our interaction Hamiltonian, for
donor D and acceptor A

of each term, we use the definition of the macroscopic QED electric field>*>

o 2 )
E(r) = i/ alw/d3 ’w—z iIms(l",w)(ﬁ;(r, r,w) f(r,w)+He  (16)
0 e\ ne,

P of . e .
where f and f  are a set of bosonic operators that create and annihilate combined
matter-field excitations?®?’. For the field evaluated at a general position r, we have;

({0} E(r,)[1(r, w)) = [dr [Fdwis | /nifolms(r/, w)G(r,,r', w)8(r — 1)8(w — )

= i‘;’—f A /%Ims(r, 0)G(r,,r, w).

(17)
Using this result in (14) we find;
My = — yz;”;"sll%l{fgcdw wi“‘j’:yiis [d 1% Ime(r, )
x [daﬁ -G(ry, 1, w)} [d(w -G*(rp, 1, w)] (18)

+[o d“’wwﬂ — [ Ime(r, ) [dﬂ; - G(rp,r, w)} [daﬂ -G (ry, 1, w)] }

We can now use the following integral relation for the Green’s tensor?®2°

w? .
?/rﬁslm[s(s, )|G(r,s,w) - G*(s,r',w) = Im[G(r, ¥, w)], (19)
to carry out the position integral in (18), obtaining
My =~ i 52 [ do [ ds, - TG (1,0, 05, ) - dog .
’ 20

>
+w++wd5y . ImG(rD,rA,wBa) ‘da/s]

where we have assumed that the dipole moments are real. Deforming the
integration contour into the upper half of the complex frequency plane we pick up
a resonant term from a pole at ws, and an off-resonant contribution along the
positive imaginary axis. Taking the limit e>0™ we find;

’:_Mﬂzdﬁy {wgy[ (rD,rA,wl;y)+]F<rD,rA,w5y)]

1)
— wﬂa]F(rD,rA‘ w,;,,,)} “dyg

where

(e, 0) = / EwEGrrlf)

w? + & @

is the off-resonant contribution. This expression is now suitable for substitution
into Fermi’s golden rule (11), giving the rate I's, for one particular choice of initial
state [8,a);

Tse = Z h‘uo ‘dﬁy‘ Tr[ (rmrD,wéy)G*(rD,rA,wﬂaﬂ

x 5(hw5y ~ ag,),

(23)

where we have taken isotropically averaged dipole moments,

d®d:§|d|zﬂ (24)

where I is the identity matrix.

In evaluating the sum over final states in (23), one must be mindful of the fact
that the transition |er) > |8) is a photoionisation process, meaning that its final state
is part of the continuum. This means that the relevant observable is the
photoionisation cross section ¢, at a certain incident energy E, rather than the
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dipole moment d. The two quantities can however be related; 047

d
ﬁgdw

3gych
E).
-0 %«(E) (25)

dplo)| =

Similarly, the continuum nature of the final states means that the formal sum
over f3 is in a fact sum over discrete states 8 € D corresponding to distinct ICD
channels, as well as an integral over continuum states 8 € C for each individual
channel. We use the following rule for converting a sum over discrete states with
energies fiw'; to an integral over a continuous variable w’;

a lag@[
@Tﬂw )8(w — ')

() £ @) 0 — ) / j do’

>

pec
=2 (ho)f (@)

(26)

where f(w) is an arbitrary smooth function. This finally gives;

Ty, = 27 Z Yoy%a (ha)ﬁy)Tr [G (rA, Ip, w‘;y) -G* (rD, Iy, ‘Usy)] s (27)
v

with ys, being the free-space decay rate of the donor;
3 2
wﬁy‘dﬁy‘

_ (28)
Yoy 3nhce,

In the main text we make use of the fact that the sum in Eq. (27) represents a
sum over allowed ICD channels for a given initial state |5,o¢), so that we write
> channels instead of Zy. Upon using the shorthands dp = d5), wp = ws, and s, =
T, and renaming o, = 0, the derivation of Eq. (2) in the main text is now complete.

Green's tensors. In this section we specify the Green’s tensors G(r,r’, w) used to
derive the ICD rates (5), (7), (8) and (10) in the main text. Subject to appropriate
boundary conditions, these are defined to solve;

2
Vx VxG(r, ', w) — w—zs(r, ©)G(r, v, 0) = 18% (r — 1), (29)
c

where &(r, @) is relative permittivity, which in general depends on both position
r and frequency w. Here we denote the 3 x 3 identity matrix as I.

Bulk medium. A translationally-invariant medium has &(r, w) = &(w), for which the
Green’s tensor is (see, for example ref.?):

GO(ex'0) =~ 5507 p)
ko (30)

—W{[l — ikp = (kp)|T — [3 = 3ikp — (kp)’]e, ©¢, },

where k = (w/c)\/e(w), p=r—r', p=|p|, and e, = p/p. The vacuum Green’s
tensor G{2 (r,r’, w) is found from this by setting e(w) = 1.

Local-field corrections. Local-field corrections can be introduced on the level of
the Green’s tensor. Ultimately, the LFE leads to a correction factor for the bulk
Green’s tensor, which amounts to a replacement;

GO(r,r,w) <28(%>w+)1> GOr, 1, 0), (31)

as discussed in detail in ref.®.

Dielectric half-space. Here we consider a dielectric medium of permittivity e(w)
filling the region z <0, with z> 0 being vacuum. We are interested in the non-
retarded (near-field) limit defined by wp/c < 1, for which the half-space Green’s
tensor Gy (r, ', w) in the region z>0 can be obtained by an image construction
based on the non-retarded vacuum Green’s tensor above. One finds, in agreement
with ref.48;

-1 0
0 -
O @) | 0 —1 0

0

BN , s(w)i_l
Gy (r, v, 0) = Gvac,NR(r' T, o)+ e(w) + IG

(32)

where r = (x,y, —z), and

(el )= 22 ¢ (1-3 (33)
vaenr (1 T, @) = 30 (p) - W —3¢,Q¢,

is the non-retarded limit of the vacuum Green’s tensor. Given relations (30),
(31) and (32) it is then a matter of algebra to arrive at the ICD rates (5), (7),
(8) and (10).

Data availability. All data contained within the figures are generated solely from
the formulae in the manuscript using the given parameters, with the exception of
Fig. 3 where optical data from refs.®%*! were used. The transition frequencies of
hydrogen- and neon-like ions are publicly available in the NIST Atomic Spectra
Database®’.
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