
Classical and Quantum Gravity

PAPER • OPEN ACCESS

Spacetimes with all Penrose limits diagonalisable*

To cite this article: Paul Tod 2020 Class. Quantum Grav. 37 075021

 

View the article online for updates and enhancements.

This content was downloaded from IP address 131.169.5.251 on 11/03/2020 at 00:56

https://doi.org/10.1088/1361-6382/ab738a
http://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsvDBKUv8h15Ak028i_-k5yocLZuYSMtNkDrigCIUjbmBHUUQnRk5wlfU_BlWW3WjuusP5wsl5omcElejDbXzqwzKAv7MK2BObINAK5-D6dHreMglBYBKDi34qB3RkNYLdiMYVUaMVueLk5kNKAscQY3KcPZo2Vw1A-_urX07P38Gv5VAO7M6-z5RS3klYOu1TfMvDzt7g3HBNzFaSTN4W9Hjxx3kcdfW8MEZeCJODekCPgOv_AU&sig=Cg0ArKJSzPJb93X-ZRp7&adurl=http://iopscience.org/books


1

Classical and Quantum Gravity

Spacetimes with all Penrose limits 
diagonalisable*

Paul Tod

Mathematical Institute, Oxford University, Oxford, United Kingdom

E-mail: paul.tod@sjc.ox.ac.uk

Received 17 September 2019, revised 27 January 2020
Accepted for publication 5 February 2020
Published 5 March 2020

Abstract
We consider the problem of finding all space-time metrics for which all 
plane-wave Penrose limits are diagonalisable plane waves. This requirement 
leads to a conformally invariant differential condition on the Weyl spinor 
which we analyse for different algebraic types in the Petrov–Pirani–Penrose 
classification. The only vacuum examples, apart from actual plane waves 
which are their own Penrose limit, are some of the nonrotating type D metrics, 
but some nonvacuum solutions are also identified. The condition requires the 
Weyl spinor, whenever it is nonzero, to be proportional to a valence-4 Killing 
spinor with a real function of proportionality.

Keywords: Penrose limit, diagonalisable metrics, Newman–Penrose 
formalism

1.  Introduction

It is well-known that, given a smooth 3-dimensional (3D) metric, Riemannian or Lorentzian, 
coordinates can locally be found in which the metric is diagonal (see [3] for Riemannian, and 
[5] for Lorentzian). Call this process diagonalisation, then a metric in four or more dimen-
sions cannot always be diagonalised. The problem was considered in [23] where some non-
diagonalisable 4-dimensional (4D) Lorentzian metrics were given, and has recently been 
considered in [4] where some Riemannian metrics in dimension 4 or more are shown to be 
non-diagonalisable. In general it is still a difficult problem to decide whether a given 4-metric 
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is diagonalisable, but in [23] a simple criterion was given for identifying those (Lorentzian, 
4D) plane wave metrics which are diagonalisable. The citerion involves the phase of the 
remaining complex component of the Weyl tensor, suitably defined.

In a celebrated paper [18], Penrose showed that every space-time has a plane wave limit. 
This plane wave Penrose limit as originally defined, [18], entailed defining a coordinate sys-
tem based on a choice of null-geodesic segment (without conjugate points) in a 4D space-time 
and taking a limit defined explicitly in these coordinates, which then leads to a metric in the 
highly symmetric class of plane waves (see e.g. [22] for an account of these metrics). The limit 
depends on which null geodesic is chosen so that many limits are possible, some of which may 
be diagonalisable and some not.

Some time after Penrose introduced the limit, Güven [6] extended the construction to 
dimensions greater than 4 and to space-times with additional fields. After this, from about 
2002, there was a surge of interest in applications of the Penrose limit to models in string 
theory. This literature is too large to cite at length, but see for example [1, 14, 16] and refer-
ences given in them. In this note the interest is specifically in General Relativity and the case 
of 4-dimensions, and we exploit the 2-spinor calculus to streamline calculations.

The question naturally arises of finding conditions on a space-time for all of its Penrose 
limits to be diagonalisable. It is not the case, as one might naively have hoped, that every 
diagonalisable space-time has only diagonalisable Penrose limits—simple counter-examples 
are provided by the vacuum Kasner metrics (as shown in the appendix) and by static vacuum 
metrics which are not type D in the Petrov–Pirani–Penrose classification (see e.g. [19]), so 
in particular not the Schwarzschild solution which is in fact both diagonalisable and has all 
Penrose limits diagonalisable (this follows from the type D case of proposition 1). In this 
note, we consider the problem of characterising those space-times which do in fact have all 
Penrose limits diagonalisable. This turns out to be a strong condition on the Weyl curvature, 
particularly if the extra condition of vacuum or Einstein is imposed in the space-time, when 
the only examples are plane waves themselves, the Lobachevski plane waves of Siklos [21] 
and some non-rotating type D solutions. In all cases, vacuum or non-vacuum, the condition 
forces the Weyl spinor to be proportional to a Killing spinor (as defined below) with a real 
function of proportionality.

The plan of the paper is as follows. We begin in section 2 with a discussion of plane wave 
metrics and give an account of the Penrose limit which is slightly different from the original 
but well-adapted for calculation. In section 3 we connect to diagonalisation and obtain the 
following condition: a space-time has all its Penrose limits diagonalisable iff the following 
spinor field is zero:

ΣABCDEA′B′C′D′E′ = i
(
ψ(ABCD∇E)(A′ψB′C′D′E′) − C.C.

)
,

where ψABCD is the Weyl spinor. This condition has a tensor expression that we give below. The 
condition is easily seen to be conformally-invariant and indeed any conformally-flat space-
time necessarily has all its Penrose limits diagonalisable by the result in [23]. The analysis 
of this condition, and in particular its association with Killing spinors, then leads to our main 
result, proposition 1. In an appendix we consider Penrose limits of the vacuum Kasner metric.

2.  Plane waves and the Penrose limit

We review some of the theory of plane waves and present a slightly different take on the 
Penrose limit.
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2.1. The plane wave metric in the Brinkman form

The reference for this section is [22]. The plane wave metric in the Brinkman form is

g = 2du(dv + H(u, ζ, ζ)du)− 2dζdζ,� (1)

with coordinates u, v real, ζ complex, and

H =
1
2
(Ψ(u)ζ2 + 2Φ(u)ζζ +Ψ(u)ζ

2
),� (2)

with real Φ(u) and complex Ψ(u), which we shall see are components of the Ricci and Weyl 
spinors. We analyse the metric in the Newman–Penrose spin-coefficient formalism (which we 
assume known; a good reference is [15]): first choose a null tetrad of one-forms

L = du, N = dv + Hdu, M = −dζ,

with implied normalised spinor dyad (oA, ιA) and

La = oAoA′ etc

in the standard way. The corresponding basis of vector fields is

D = ∂v, ∆ = ∂u − H∂v, δ = ∂ζ .

The only nonzero spin-coefficient turns out to be

ν = Ψζ +Φζ

so that, in particular, the spinor oA is covariantly constant or parallel, and then the only non-
zero curvature components are

ψ4 = Ψ, φ22 = Φ.

Therefore the curvature spinors can be written out as

ψABCD = ΨoAoBoCoD, φABA′B′ = ΦoAoBoA′oB′ , Λ = 0.� (3)

One calculates at once that

∇A′AψBCDE = Ψ̇oA′oAoBoCoDoE.

Below we shall be interested in the Hermitian spinor field

Σabcde = ΣABCDEA′B′C′D′E′ := i(ψ(ABCD∇E)(A′ψB′C′D′E′) − C.C.).� (4)

In tensors, Σabcde is a constant multiple of the trace-free part (on all indices) of the tensor

C∗ p q
(a b ∇cCd|p|e)q − C p q

(a b ∇cC∗
d|p|e)q,

where, as usual, the vertical bars isolate indices which should be omitted from the 
symmetrisation.

For the plane waves currently considered, (4) reduces to

ΣABCDEA′B′C′D′E′ = i(ΨΨ̇−ΨΨ̇)oAoBoCoDoA′oB′oC′oDoE′ ,� (5)

so that there is essentially just one non-trivial component, and it was shown in [23] that the 
metric (1) can be diagonalised by choice of coordinates iff this component vanishes, therefore 
iff Σabcde as in (5) vanishes.

The plane wave metric generically has five linearly independent Killing vectors: one is 
K = ∂v and the other four are harder to see in this metric form but easier to see in the Rosen 
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form (again, see e.g. [22] for this). The metric also admits a scaling invariance: for constant, 
complex λ, consider the transformation

(u, v, ζ,Ψ,Φ) → (û, v̂, ζ̂, Ψ̂, Φ̂) = ((λλ)−1u,λλv, (λ/λ)ζ,λ4Ψ, (λλ)2Φ),
� (6)

then the metric is unchanged. We regard two plane waves as equivalent if

Ψ̂(û) = λ4Ψ(u), Φ̂(û) = (λλ)2Φ(u),

since then they are related by this scaling.
We will consider the null geodesics of this metric. The Killing vector K gives a conserved 

quantity E := KaVa = du/ds where Va is the null tangent to a geodesic and s is a choice of 
affine parameter. If E is zero, then the null geodesic has tangent K and we can choose the 
spinor oA as parallelly-propagated tangent to it—this 3D class of null geodesics (call it the first 
class) are parallel to the repeated principal Null direction of the Weyl spinor. If du/ds �= 0 (call 
this the second class) then we may set E to be one by choice of affine parameter, and take the 
spinor field αA = ιA + ωoA to be parallelly-propagated along the null geodesic, which entails

0 = αBαB′
∇BB′αA = (ωωD + ωδ + ωδ +∆)(ιA + ωoA)

= (ν +
dω
ds

)oA,

and so dω/ds = −ν. The tangent vector is

V = ωωD + ωδ + ωδ +∆

= ωω∂v + ω∂ζ + ω∂ζ + (∂u − H∂v)

from which one reads off

du/ds = 1, dζ/ds = ω, dv/ds = ωω − H.

Along a geodesic in the first class we note that the contractions of the curvature spinors with 
the tangent spinor, namely ψABCDoAoBoCoD and φABA′B′oAoBoA′

oB′
, are both zero. For any 

geodesic in the second class, which is 5-dimensional (5D), we have instead

ψABCDα
AαBαCαD = Ψ, φABA′B′αAαBαA′

αB′
= Φ

i.e. the same functions for every geodesic in this class. The scaling transformation is relevant 
here: if we choose the spinor α̂A = λαA as the parallelly-propagated tangent to the null geode-
sic, for constant, complex λ then du/dŝ = λλ and Ψ,Φ are replaced by Ψ̂, Φ̂ as in (6).

Now the Penrose limit [18] can be obtained as follows: given any null geodesic Γ in any 
space-time M, choose a parallelly-propagated spinor αA tangent to Γ, determining the affine 
parameter u up to additive constant by αAαA′

∇AA′u = 1, and calculate

Ψ(u) = ψABCDα
AαBαCαD, Φ(u) = φABA′B′αAαBαA′

αB′
.

Then putting these in (1) determines a plane-wave metric from (M,Γ), and a different constant 
rescaling of αA gives an equivalent plane-wave metric. Thus given a null geodesic in M, one 
has constructed a plane wave space-time in which an open 5D subset of null geodesics have 
equivalent data (Ψ,Φ). It is not hard to show this is equivalent to Penrose’s construction [18], 
and it is often computationally simpler.
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3. The connection to diagonalisability

If the result of taking the Penrose limit of (M,Γ) is a diagonalisable plane wave then, by a 
result in [23], we must have

ΨΨ̇−ΨΨ̇ = 0
along Γ. Therefore, if every Penrose limit of a given space-time M is diagonalisable then we 
must have this condition holding at every point and in every null direction so that

ΣABCDEA′B′C′D′E′ := i
(
ψ(ABCD∇E)(A′ψB′C′D′E′) − C.C.

)
= 0.� (7)

This is the condition that we wish to analyse. We first recall the definitions of the two scalar 
invariants I, J of the Weyl spinor:

I := ψABCDψ
ABCD, J := ψABCDψ

AB
PQ ψCDPQ,

and then recall the definition of a (valence-n) Killing spinor from [20] as a symmetric spinor 
field ωA1···An satisfying

∇A′(AωA1···An) = 0.

Then we organise the results according to the algebraic type of the Weyl spinor (in the 
Petrov–Pirani–Penrose classification, see e.g. [19]) and summarise them in a proposition:

Proposition 1.  Given a space-time M in which (7) holds, the Weyl spinor is always propor-
tional to a valence-4 Killing spinor with a real function of proportionality. Conversely, if the 
Weyl spinor is proportional to a valence-4 Killing spinor with a real function of proportional-
ity then (7) holds. As regards examples, if the Weyl spinor is:

	 1.	�zero then all Penrose limits are diagonalisable.
	 2.	�type N then the Weyl spinor is proportional to the fourth power of a valence-1 Killing 

spinor with a real function of proportionality, all Penrose limits are diagonalisable but 
the only vacuum examples are already plane waves and the only Einstein examples are 
Lobachevski plane waves (see [21]). The nonvacuum examples are easy to find.

	 3.	�type (3, 1) or (2, 1, 1) then there are no vacuum or Einstein examples (there may be non-
vacuum examples).

	 4.	�type D then the vacuum examples must have ψ2, the only nonzero component of the Weyl 
spinor, real. These conditions lead to a short list of examples, which includes the Schwar-
zschild metric. For vacuum or non-vacuum examples the Weyl spinor is proportional to 
the square of a valence-2 Killing spinor with a real function of proportionality.

	 5.	�algebraically general then there are no vacuum or Einstein examples although the Weyl 
spinor is proportional to an indecomposable valence-4 Killing spinor with a real function 
of proportionality, and some nonvacuum examples, related to Kobak’s doubly Hermitian 
metrics, [11], are easy to find.

Proof.  The converse in the second sentence is easy to establish: if ωABCD = FψABCD is Kill-
ing spinor with real F then

0 = ∇A′(AωBCDE) = F(∇A′(AψBCDE) + F−1(∇A′(AF)ψBCDE)),

when (7) clearly holds.

P Tod﻿Class. Quantum Grav. 37 (2020) 075021
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That the Weyl spinor is proportional to a valence-4 Killing spinor is established type by 
type. In the order of the proposition, suppose that the Weyl spinor is:

	 1.	�zero so the metric is conformally flat, and (7) is vacuously satisfied, Ψ(s) vanishes for 
every null geodesic and all Penrose limits of M are diagonalisable (by the result in [23]).

	 2.	�type N, so that for some spinor field oA the Weyl spinor takes the form ψABCD = oAoBoCoD, 
then (7) can be written

o(AoBoCχ
(A′B′

DE) oC′
oD′

oE′) = C.C.� (8)

		 where

χ A′B′

AB = o(A∇
(A′

B) oB′).

		 Now (8) forces reality of χABA′B′, when we deduce that

∇AA′oB = εABρA′ + VAA′oB,� (9)

		 for some spinor ρA′ and real vector VAA′ = Va. Contract this with ∇ A′

C :

∇ A′

C ∇AA′oB = εAB∇ A′

C ρA′ +∇ A′

C (VAA′oB)

= εAB∇ A′

C ρA′ + oB∇ A′

C VAA′ + εCBVAA′ρA′
+

1
2
εAC(VeVe)oB,

		 using (9) again. Now symmetrise over CAB: on the left we obtain

= −ψABCDoD = 0,

		 by the form of ψABCD, and on the right all terms vanish except that with the derivative of 
Va, to leave

o(B∇ A′

A VC)A′ = 0,

		 whence

∇ A′

(A VC)A′ = 0,

		 and since Va is real, we have

∇[aVb] = 0,

		 so the 1-form Va is closed, therefore (locally) exact and Va = ∇aV  for some real function 
V . Set ωA = e−VoA to find

∇AA′ωB = iεABπA′ ,� (10)

		 for a spinor field πA′ proportional to ρA′. This is the twistor equation, [17], the pair 
(ωA,πA′) defines a twistor and ωA itself is a valence-1 Killing spinor. Also

ψABCD = e4VωAωBωCωD,� (11)

		 so that the Weyl spinor is proportional to a valence-4 Killing spinor (since a symmetrised 
outer product of Killing spinors is evidently a Killing spinor), with a real function of 
proportionality, e4V .

		 Space-times admitting a solution of (10) have been classified in [12] (though equation (11) 
imposes an extra condition on them). We may summarise the classification as

P Tod﻿Class. Quantum Grav. 37 (2020) 075021
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	 (a)	�those for which the vector field ωAωA′
, which is a conformal Killing vector, is twisting 

(equivalently, the twistor (ωA,πA′) is non-null); these were shown in [13] to be Fefferman 
metrics of 3D CR-structures. They cannot be Einstein or vacuum (except trivially i.e. 
when flat).

	(b)	�those for which it is non-twisting but with πA′ �= 0; these were given explicitly in [12] 
and include the next two classes.

		 i.	� the only Einstein examples have πA′ nonzero and proportional to ωA′; these are the 
Lobatchevski plane waves of Siklos [21].

		 ii.	� those for which πA′ = 0; these are pp-waves, which we will discuss shortly. They can 
be vacuum but not Einstein.

				�  The pp-wave metric can be taken to be (1) but with a general (real, smooth) function 
H(u, ζ, ζ). Imposing (7) on a pp-wave requires Hζζ/Hζ ζ  to be constant. By constant 
phase change of ζ we can take this constant to be one and then, if we set ζ = x + iy, 
the condition reduces to Hxy  =  0 and is solved by

H = f (u, x) + g(u, y).

		 These give the family of pp-waves all of whose Penrose limits are diagonalisable. The only 
vacuum metrics among them have H harmonic in x, y when they are in fact plane waves.

	 3.	�types (3, 1) and (2, 1, 1) First for (3, 1) we may take

ψABCD = ψo(AoBoCιD)

		 in terms of spinor fields oA, ιA which we may assume normalised by oAι
A = 1, and a 

complex function ψ. If we restrict to vacuum then oA is geodesic and shear-free (which 
we henceforth abbreviate as gsf) but if instead we suppose just that Σ vanishes then

0 = oAoBoCΣ A′B′C′D′

ABCD = −ioAoBoCψ
(A′B′C′D′

∇E′)
(AψBCDE).

		 The factor in ψA′B′C′D′ is irrelevant and can be omitted, along with the factor −i, leaving

0 = oAoBoC∇E′

(A(ψoBoCoDιE)) = ψoDoEoBoC∇E′

BoC,

		 so that oA is gsf automatically, from the vanishing of Σ. Next calculate

0 = ιAιBιCιDιEΣ A′B′C′D′

ABCD = −iιAιBιCιDιEψ
(A′B′C′D′

∇E′)
(AψBCDE).

		 Again drop irrelevant factors to find

0 = ιAιBιCιDιE∇E′

A (ψoBoCoDιE)

		 whence ιA is also gsf. This is sufficient to show that there are no vacuum or Einstein 
solutions like this as a consequence of the Goldberg–Sachs theorem [22]—recall this 
states that, for vacuum or Einstein metrics in dimension 4, a spinor field is gsf iff it is a 
repeated principal Null direction (or PND) of the Weyl spinor, and ιA is not a repeated 
PND, though it is a PND. The Goldberg–Sachs theorem also rules out certain classes of 
nonvacuum solutions (for example, Einstein–Maxwell solutions with aligned Maxwell 
fields), but there may be others. We shall see next that (7) forces the Weyl spinor to be 
proportional to a Killing spinor with a real function of proportionality. This is a little 
messy as both scalar invariants, I and J, vanish in this case.

		 From (7) then with ψABCD = ψo(AoBoCιD), first contract with ιAιBιCιD to find

1
5
ψιEι

D∇D(A′ψB′C′D′E′) = ψ(A′B′C′D′WE′)E,� (12)

P Tod﻿Class. Quantum Grav. 37 (2020) 075021
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		 with

WEE′ = ιAιBιCιD∇E′(AψBCDE).

		 Since, as we saw above, ιA is gsf, necessarily ιEWEE′ = 0 and WEE′ = ιEηE′ for some ηE′. 
Now we may cancel ιE from (12) to leave

ιD∇D(A′ψB′C′D′E′) = ψ(A′B′C′D′ηE′),� (13)

		 where we have redefined η to absorb the factor ψ/5. Next contract (7) with oAoB and use

oAoB∇E′(AψBCDE) = oCoDoEξE′

		 for some ξE′ which follows since oA is gsf. We obtain

−ψoCoDoEoA∇A(A′ψB′C′D′E′) = oAoBψ(A′B′C′D′∇E′)(AψBCDE)

= oCoDoEψ(A′B′C′D′ξE′).

		 Cancel oCoDoE  and absorb the factor −ψ into ξE′ to obtain

oA∇A(A′ψB′C′D′E′) = ψ(A′B′C′D′ξE′).� (14)

		 Now put (13) and (14) together to deduce that

∇A(A′ψB′C′D′E′) = WA(A′ψB′C′D′E′),

		 for some vector WAA′ (to be explicit, WAA′ = oAηA′ − ιAξA′). Impose (7) to deduce that 
WAA′ is real, so that, taking the complex conjugate,

∇A′(AψBCDE) = WA′(AψBCDE),

		 and apply ∇ A′

F , symmetrising over ABCDEF to deduce that Wa is a gradient, say 
Wa = ∇aW . We have found that

ωABCD := e−WψABCD

		 is a valence-4 Killing spinor, proportional to the Weyl spinor with a real function of 
proportionality (namely e−W).

		 Next for type (2, 1, 1) we can dispose of the vacuum case by the same argument as for type 
(3, 1) here: by (7) any PND of the Weyl spinor is gsf but in vacuum only repeated ones 
should be, so there are no vacuum solutions of this type, but there could be nonvacuum 
solutions. It will follow from the argument in the algebraically general case that, since the 
scalar invariant I is nonzero in this case the Weyl spinor is proportional to a Killing spinor 
with a real function of proportionality.

	 4.	�type D We recall that vacuum type D solutions always admit a valence-2 Killing spinor 
ωAB [20] and the Weyl spinor is related to the Killing spinor and a normalised spinor dyad 
(oA, ιA) by

ψABCD = 6ψ2o(AoBιCιD) = ψ
5/3
2 ω(ABωCD),

		 absorbing a constant numerical factor into the definition of ωAB. The valence-2 Killing 
spinor satisfies

∇A′(AωBC) = 0

P Tod﻿Class. Quantum Grav. 37 (2020) 075021
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		 so that

ΣABCDEA′B′C′D′E′ = ω(ABωCDWE)(A′ωB′C′ωD′E′),

		 with

We = i|ψ2|2/3(ψ2∇eψ2 − ψ2∇eψ2).

		 Thus (7) holds in the vacuum case iff ψ2/ψ2 is constant and then the Weyl spinor is pro-
portional to the valence-4 Killing spinor ω(ABωCD) with a real function of proportionality. 
Since type D vacuum solutions have been classified completely [10] we can read off the 
ones with constant ψ2/ψ2. These are the Schwarzschild-like solutions, the static C-metric 
and Kinnersley’s Case IV A restricted by a  =  0 (this example is exceptional: ψ2 is not real 
but a constant multiple of it is, which is sufficient for (7)) and his Case IV B.

		 Similarly [7] showed that the charged Kerr metric admits a Killing spinor defined in 
the same way but now ψ2 is complex unless a  =  0, so only in this case (i.e. Reissner–
Nordström) does (7) hold. There may be other nonvacuum solutions, for all of which 
the Weyl spinor will be proportional to a valence-4 Killing spinor with a real function 
of proportionality by the argument in the next section, since the scalar invariants I, J 
are nonzero. Also, since the valence-4 Killing spinor, say ωABCD is proportional to the 
Weyl spinor, there must in fact be a valence-2 Killing spinor ωAB with ωABCD = ω(ABωCD). 
However one type D nonvacuum solution which fails is the Gödel metric. This is known 
to admit a valence-2 Killing spinor with the Weyl spinor proportional to its square ([9, 2]) 
but ψ2 is not real so that (7) does not hold.

	 5.	�algebraically general Now we can suppose that at least one of the scalar invariants I, J 
is nonzero (as we also could in type (2, 1, 1) and type D). We explore some general 
consequences of (7); write it

ψ(ABCD∇E)(A′ψB′C′D′E′) = ψ(A′B′C′D′∇E′)(AψBCDE)� (15)

		 and contract with ψA′B′C′D′ to obtain

ψ(ABCDWE)E′ =
3
5

I∇E′(AψBCDE)

		 for some vector WEE′, possibly complex, and with I = ψABCDψ
ABCD. Assume I �= 0 and 

set Ua = 5
3I

Wa, then substitute back into (15) to obtain

ψ(ABCD(UE)(A′ − UE)(A′)ψB′C′D′E′) = 0,

		 which forces Ua − Ua to vanish. Therefore

∇E′(AψBCDE) = UE′(AψBCDE),� (16)

		 with a real vector Ue. Contract this with ψABCD to obtain on the right

ψABCDUE′(AψBCDE) =
3
5

IUEE′

		 and on the left

ψABCD∇E′(AψBCDE) =
1
5
ψABCD∇EE′ψABCD +

4
5
ψABCD∇E′AψBCDE

P Tod﻿Class. Quantum Grav. 37 (2020) 075021



10

=
1

10
∇EE′ I +

4
5
(
∇E′A(ψ

ABCDψBCDE)− ψBCDE∇E′Aψ
ABCD) .

		 If we restrict to vacuum then the vacuum Bianchi identity gives the vanishing of the term 
∇E′Aψ

ABCD and this simplifies to

=
1

10
∇EE′ I +

4
10

∇EE′ I =
1
2
∇EE′ I,

		 so that, since we’re assuming I �= 0 we find

Ua =
5
6
∇aI/I.

		 In particular this must be real so that necessarily I/I  must be constant.
		 Define

ωABCD = IkψABCD

		 for k to be chosen, then (7) entails

∇A′AωBCDE = Ik(UA′(AψBCDE) + kI−1IA′AψBCDE)

		 so if we choose k  =  −5/6 then

∇A′(AωBCDE) = 0,

		 and ωABCD is a valence-4 Killing spinor. It is known [24, 8] that, wnenever one is present, 
a valence-4 Killing spinor is always proportional to the Weyl spinor unless this is zero.

		 If I  =  0 we can use J: contracting (16) with ψ AB
PQ ψCDPQ and still restricting to vacuum, 

by a similar calculation we obtain instead

Ua =
5
9
∇aJ/J,

		 where J = ψABCDψ
AB

PQ ψCDPQ, assuming this is not zero. Thus necessarily J is real and, 
if IJ �= 0, then from the two expressions for Ua we conclude that I3/J2  must be constant. 
If I  =  0 we define the valence-4 Killing spinor as

ωABCD = J−5/9ψABCD.

		 There cannot be vacuum solutions in this class: it was observed in [8] (and also in [24], 
and was very probably known to Penrose) that any principal spinor of a Killing spinor is 
gsf. So if a space-time has an algebraically general Weyl spinor and admits a valence-4 
Killing spinor then there are four linearly independent gsf spinors, which contradicts the 
Goldberg–Sachs theorem for vacuum or Einstein.

		 However, there are non-vacuum Hermitian (so Riemannian) examples with four linearly 
independent gsf congruences (see [11]) and some of these will have real Lorentzian 
(Wick-rotated) sections. We will show in the next subsection that they do have valence-4 
Killing spinors, but end the proof of the proposition here.� □ 
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3.1.  Kobak’s metrics

In [11] the metric form

g = dzdz + f dwdw

is considered with smooth real f . This is evidently Hermitian for the complex structure I1 with 
(0, 1)-forms dz, dw. One defines a second complex structure I2 with (0, 1)-forms

dz + f dw, dw − dz,

which can be checked to be integrable, given an equation on f , and also Hermitian.
(To see this take the orthonormal (0, 1) forms for I1 to be

Θ1 = dz, Θ2 = f 1/2dw,

while for I2 choose

Φ1 =
1

(1 + f )1/2 (Θ
1 + f 1/2Θ2), Φ2 =

1
(1 + f )1/2 ( f−1/2Θ2 −Θ1),

and note that the transformation between bases is Hermitian.)
Integrability requires

fz − fw = 0 so that f = f (z + w),

and Kobak considers the choice

f = 2 + cos(z + z + w + w)

as this gives an explicit, doubly-Hermitian metric on a torus C2/2πZ4. If we introduce real 
coordinates x, y, u, v by

z = x + iy, w = u + iv

then we will consider the more general class:

g = dx2 + dy2 + f (x + u)(du2 + dv2).

We Wick-rotate by setting y = it and change the sign to obtain the static Lorentzian metric

gL = dt2 − dx2 − f (x + u)(du2 + dv2).� (17)

We analyse this metric in the NP formalism by choosing the null tetrad

D =
1√
2
(∂t + ∂x), ∆ =

1√
2
(∂t − ∂x), δ =

1√
2

F(∂u + i∂v), δ =
1√
2

F(∂u − i∂v),

with F to be fixed, and

� =
1√
2
(dt − dx), n =

1√
2
(dt + dx), m = − 1√

2
fF(du + idv), m = − 1√

2
fF(du − idv),

so that f 2F2 = f  and F  =  f −1/2. We’re restricting to metrics with F(x + u). Now calculate the 
spin-coefficients to be

0 = κ = σ = ν = λ = ε = γ = τ = π,

and

ρ = µ =
F′

√
2F

, α = −β =
F′

2
√

2
,
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with F′ = Fx = Fu. The curvature components are found to be

0 = Ψ0 = Ψ4 = Φ02, Ψ1 = −Ψ3 = −Φ01 = Φ21 = −F
4

(
F′

F

)′

,

Ψ2 =
1
6

(
(1 − F2)F′′

F
+

(F2 − 1)(F′)2

F2

)
=

2(1 − F2)

3F
Ψ3,

Φ11 =
1
4

(
FF′′ − (F2 + 1)(F′)2

F2

)
,

Λ = Φ11 +Ψ2.

This will have invariants I, J real but will not have I3/J2  constant (which is not a surprise as 
the metric is not vacuum).

There are two more gsf spinors which can be taken to be

αA = ιA +
1
F

oA, βA = ιA − FoA,

so the Weyl spinor and the Killing spinor if there is one are both proportional to

χABCD := o(AιBαCβD) = o(AιBιCιD) +
(1 − F2)

F
o(AoBιCιD) − o(AoBoCιD).

From the curvature components given above one sees that in fact

ψABCD = 4Ψ3χABCD,

with Ψ3 real, and it can now be checked that

ωABCD = F−1χABCD

is a valence-4 Killing spinor. This follows by direct calculation, given the spin-coefficients 
above, but the result can also be obtained by solving the geodesic equation as we see next. 
Then ψABCD is proportional to the Killing spinor ωABCD with the real function of proportional-
ity 4FΨ3.

3.1.1.  Solving the geodesic equation.  Note we have three linearly independent Killing vec-
tors which we can take to be

K1 = ∂t =
1√
2
(D +∆), K2 = ∂v = − i

F
√

2
(δ − δ),

K3 = ∂x − ∂u =
1√
2
(D −∆)− 1

F
√

2
(δ + δ).

Consider the spinor field poA + qιA, then this is parallelly propagated along itself if

( poA + qιA)(poA′
+ qιA′

)∇AA′( poB + qιB) = 0,

equivalently, p, q satisfy the system

ṗ = p(α( pq − qp)− ρqq),
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q̇ = q(−α( pq − qp) + ρpp).

We deduce at once that

|p|2 + |q|2 = constant,

which is the constant of motion associated with K1. By constant rescaling of p, q we can set 
this to one without loss of generality. Next notice that

( pq).

pq
= ρ(|p|2 − |q|2),

which is real, so that ( pq)/(pq) is constant and by multiplying p, q by a constant phase can be 
taken to be one without loss of generality. Now we can parametrise p, q as

p = cos θeiφ, q = sin θe−iφ,

for some θ,φ.
For ωABCD to be a Killing spinor we need the following to be a constant of the motion for 

null geodesics:

Ω := ωABCD( poA + qιA)( poB + qιB)( poC + qιC)( poD + qιD) = F−1( pq3 +
(1 − F2)

F
p2q2 − p3q),

= F−1(sin3 θ cos θe−2iφ − sin θ cos3 θe2iφ +
(1 − F2)

F
sin2 θ cos2 θ).

There are constants of the motion ci from the Killing vectors Ki respectively, and these are 
given by

c1 =
1√
2
(|p|2 + |q|2) = 1√

2
, c2 = − i

F
√

2
( pq − qp)

and

c3 =
1√
2
(|p|2 − |q|2)− 1

F
√

2
( pq + qp),

or in terms of θ,φ

c2 =

√
2 sin θ cos θ sin(2φ)

F
, c3 =

1√
2
((cos2 θ − sin2 θ)− 2F−1 sin θ cos θ cos(2φ))

and now one calculates

Ω =
1
2
((c2 − ic1)

2 + c2
3),

which is indeed a constant of the motion, as required.
Thus we do have a valence-4 Killing spinor, and the quantity Ψ(s) arising in the discussion 

of the Penrose limit is 4Ψ3FΩ so that Ψ/Ψ = Ω/Ω  which is constant along null geodesics: 
now all Penrose limits are diagonalisable. I believe this to be the first explicit example of an 
algebraically-general metric with a valence-4 Killing spinor, indecomposable in the sense of 
not being an outer product of lower valence Killing spinors—as we’ve seen, there can be no 
vacuum examples.
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Appendix. The Penrose limits of the Kasner solution

This is an example of a diagonalisable 4-metric with at least some Penrose limits which are 
not diaonalisable. It is straightforward to compute as the geodesic equation is integrable; the 
vacuum Kasner metric is

g = dt2 − t2pdx2 − t2qdy2 − t2rdz2,

with real p, q, r  satisfying

p + q + r = 1 = p2 + q2 + r2.

It has Killing vectors

K1 = ∂x, K2 = ∂y, K3 = ∂z.

We choose the null tetrad

D =
1√
2
(∂t + t−p∂x), ∆ =

1√
2
(∂t − t−p∂x), δ =

1√
2
(t−q∂y + it−r∂z),

when the nonzero spin coefficients are

ρ = −µ = − (q + r)

2
√

2t
, σ = −λ = − (q − r)

2
√

2t
, γ = −ε = − p

2
√

2t
,

and the nonzero Weyl spinor components are

ψ0 = ψ4 =
p(q − r)

2t2 , ψ2 = − qr
2t2 .

The Weyl spinor can be written as

ψABCD = ψ0(oAoBoCoD + ιAιBιCιD) + 6ψ2o(AoBιCιD),

and is algebraically general provided p, q, r  are distinct, which we will assume.
For the geodesics, suppose the spinor field αA = AoA + BιA is parallelly propagated in the 

sense

αAαA′
∇AA′αB = 0,

then this is equivalent to the pair of equations

Ȧ = −εA(|A|2 − |B|2) + B(ρAB + σAB),

Ḃ = εB(|A|2 − |B|2) + A(ρAB + σAB),
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and there are three constants of the motion obtained from the Killing vectors:

c1 =
1√
2

t p(|B|2 − |A|2), c2 = − 1√
2

tq(AB + AB), c3 = − itr
√

2
(−AB + AB),

with the dot being d/ds and αAαA′
∇AA′s = 1. Given these three constants of integration, we 

obtain from the metric that

ṫ2 = c2
1t−2p + c2

2t−2q + c2
3t−2r,

which establishes integrability of the geodesic equations, but note that we are asking for more: 
in the language of [19] the flag-plane of the spinor αA is parallelly-propagated, as well as the 
flag-pole.

Having solved for A, B and chosen a null geodesic, we take a Penrose limit for which we 
need

Ψ(s) := ψABCDα
AαBαCαD = ψ0(A4 + B4) + 6ψ2A2B2.

The Penrose limit is diagonalisable iff Σ vanishes where

Σ = i(ΨΨ̇−ΨΨ̇).

It is a straightforward, if untidy, calculation to see that Σ is a fifth-order polynomial in A, B, A 
and B  with coefficients expressible in terms of the ci and functions of t, and that it is not zero 
if the product c1c2c3 is nonzero. Thus there are some diagonalisable Penrose limits when one 
or more ci vanishes but in general they are nondiagonalisable even though the Kasner metric 
itself is diagonal. Given the results of this paper this is now not a surprise as no algebraically-
general vacuum solution has all its Penrose limits diagonalisable.
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