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Abstract

We consider the problem of finding all space-time metrics for which all
plane-wave Penrose limits are diagonalisable plane waves. This requirement
leads to a conformally invariant differential condition on the Weyl spinor
which we analyse for different algebraic types in the Petrov—Pirani—Penrose
classification. The only vacuum examples, apart from actual plane waves
which are their own Penrose limit, are some of the nonrotating type D metrics,
but some nonvacuum solutions are also identified. The condition requires the
Weyl spinor, whenever it is nonzero, to be proportional to a valence-4 Killing
spinor with a real function of proportionality.

Keywords: Penrose limit, diagonalisable metrics, Newman—Penrose
formalism

1. Introduction

It is well-known that, given a smooth 3-dimensional (3D) metric, Riemannian or Lorentzian,
coordinates can locally be found in which the metric is diagonal (see [3] for Riemannian, and
[5] for Lorentzian). Call this process diagonalisation, then a metric in four or more dimen-
sions cannot always be diagonalised. The problem was considered in [23] where some non-
diagonalisable 4-dimensional (4D) Lorentzian metrics were given, and has recently been
considered in [4] where some Riemannian metrics in dimension 4 or more are shown to be
non-diagonalisable. In general it is still a difficult problem to decide whether a given 4-metric
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is diagonalisable, but in [23] a simple criterion was given for identifying those (Lorentzian,
4D) plane wave metrics which are diagonalisable. The citerion involves the phase of the
remaining complex component of the Weyl tensor, suitably defined.

In a celebrated paper [18], Penrose showed that every space-time has a plane wave limit.
This plane wave Penrose limit as originally defined, [18], entailed defining a coordinate sys-
tem based on a choice of null-geodesic segment (without conjugate points) in a 4D space-time
and taking a limit defined explicitly in these coordinates, which then leads to a metric in the
highly symmetric class of plane waves (see e.g. [22] for an account of these metrics). The limit
depends on which null geodesic is chosen so that many limits are possible, some of which may
be diagonalisable and some not.

Some time after Penrose introduced the limit, Giiven [6] extended the construction to
dimensions greater than 4 and to space-times with additional fields. After this, from about
2002, there was a surge of interest in applications of the Penrose limit to models in string
theory. This literature is too large to cite at length, but see for example [1, 14, 16] and refer-
ences given in them. In this note the interest is specifically in General Relativity and the case
of 4-dimensions, and we exploit the 2-spinor calculus to streamline calculations.

The question naturally arises of finding conditions on a space-time for all of its Penrose
limits to be diagonalisable. It is not the case, as one might naively have hoped, that every
diagonalisable space-time has only diagonalisable Penrose limits—simple counter-examples
are provided by the vacuum Kasner metrics (as shown in the appendix) and by static vacuum
metrics which are not type D in the Petrov—Pirani—Penrose classification (see e.g. [19]), so
in particular not the Schwarzschild solution which is in fact both diagonalisable and has all
Penrose limits diagonalisable (this follows from the type D case of proposition 1). In this
note, we consider the problem of characterising those space-times which do in fact have all
Penrose limits diagonalisable. This turns out to be a strong condition on the Weyl curvature,
particularly if the extra condition of vacuum or Einstein is imposed in the space-time, when
the only examples are plane waves themselves, the Lobachevski plane waves of Siklos [21]
and some non-rotating type D solutions. In all cases, vacuum or non-vacuum, the condition
forces the Weyl spinor to be proportional to a Killing spinor (as defined below) with a real
function of proportionality.

The plan of the paper is as follows. We begin in section 2 with a discussion of plane wave
metrics and give an account of the Penrose limit which is slightly different from the original
but well-adapted for calculation. In section 3 we connect to diagonalisation and obtain the
following condition: a space-time has all its Penrose limits diagonalisable iff the following
spinor field is zero:

Y aBcDEA'B'C'D'E! = 1 (7/1(ABCDVE)(A/EBIC/D/E/) - C~C~) ,

where ¥4pcp is the Weyl spinor. This condition has a tensor expression that we give below. The
condition is easily seen to be conformally-invariant and indeed any conformally-flat space-
time necessarily has all its Penrose limits diagonalisable by the result in [23]. The analysis
of this condition, and in particular its association with Killing spinors, then leads to our main
result, proposition 1. In an appendix we consider Penrose limits of the vacuum Kasner metric.

2. Plane waves and the Penrose limit

We review some of the theory of plane waves and present a slightly different take on the
Penrose limit.
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2.1. The plane wave metric in the Brinkman form

The reference for this section is [22]. The plane wave metric in the Brinkman form is
g = 2du(do + H(u, ¢, ¢)du) — 2d¢dC, (1)
with coordinates u, v real, ( complex, and

H= %(w(uxz +20(u)T + T, .

with real ®(u) and complex ¥ (u), which we shall see are components of the Ricci and Weyl
spinors. We analyse the metric in the Newman—Penrose spin-coefficient formalism (which we
assume known; a good reference is [15]): first choose a null tetrad of one-forms

L=du, N=dv+ Hdu, M = —d(,

with implied normalised spinor dyad (04, t4) and
L, = 0404 etc

in the standard way. The corresponding basis of vector fields is
D=0, A=0,—-H9, 6=0z

The only nonzero spin-coefficient turns out to be
v=U(+d(

so that, in particular, the spinor o4 is covariantly constant or parallel, and then the only non-
Zero curvature components are

Y=V, ¢n=27.
Therefore the curvature spinors can be written out as
Yascp = Yoa0p0cop, Paparyr = Posopoaop, A =0. (3)

One calculates at once that

Vara¥pcpe = Y04/04030cOpOE.

Below we shall be interested in the Hermitian spinor field
Sabede = Lascoeas e = 1(Yuscp Ve ¥ ey — C.C.). 4)
In tensors, Xapeqe 1S @ constant multiple of the trace-free part (on all indices) of the tensor

C?apbqvccd\pk)q - C(f quCC;IP\E)q’

where, as usual, the vertical bars isolate indices which should be omitted from the

symmetrisation.
For the plane waves currently considered, (4) reduces to

Sapcpearscoper = 1YY — UW)0405000p04 0p 01 Op0OE (5)

so that there is essentially just one non-trivial component, and it was shown in [23] that the
metric (1) can be diagonalised by choice of coordinates iff this component vanishes, therefore
iff Xupede as in (5) vanishes.

The plane wave metric generically has five linearly independent Killing vectors: one is
K = 9, and the other four are harder to see in this metric form but easier to see in the Rosen
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form (again, see e.g. [22] for this). The metric also admits a scaling invariance: for constant,
complex A, consider the transformation

(1,0,C, 0, ®) — (i1,0,C, T, ) = (AX)""u, AXo, (N/AN)C AT, (AN)2D),
(6)

then the metric is unchanged. We regard two plane waves as equivalent if
U(ir) = X0 (u), (i) = (AN)2D(u),

since then they are related by this scaling.

We will consider the null geodesics of this metric. The Killing vector K gives a conserved
quantity E := K,V? = du/ds where V is the null tangent to a geodesic and s is a choice of
affine parameter. If E is zero, then the null geodesic has tangent K and we can choose the
spinor o as parallelly-propagated tangent to it—this 3D class of null geodesics (call it the first
class) are parallel to the repeated principal Null direction of the Weyl spinor. If du/ds # 0 (call
this the second class) then we may set E to be one by choice of affine parameter, and take the
spinor field o = A + wo® to be parallelly-propagated along the null geodesic, which entails

0 = o®a® Vg ot = (wwD + wé + w6 + A) (1" + wo™)

dw
(V + a)

and so dw/ds = —v. The tangent vector is
V = wwD + wd + o + A
= w0y +wiz + W0 + (O — HO,)
from which one reads off
du/ds =1, d¢/ds=w, dv/ds =ww — H.

Along a geodesic in the first class we note that the contractions of the curvature spinors with
the tangent spinor, namely t4pcp0”0P0C0P and Gaparp 0050”3, are both zero. For any
geodesic in the second class, which is 5-dimensional (5D), we have instead

Yapcpaafafal =0, ¢ABA’B'04A0485AIEB/ =&

i.e. the same functions for every geodesic in this class. The scaling transformation is relevant
here: if we choose the spinor &* = Ao as the parallelly-propagated tangent to the null geode-
sic, for constant, complex A then du/ds = A\ and ¥, ® are replaced by W, & as in (6).

Now the Penrose limit [18] can be obtained as follows: given any null geodesic I' in any
space-time M, choose a parallelly-propagated spinor o tangent to I, determining the affine
parameter u up to additive constant by oAa Vau = 1, and calculate

\II( ) 1/}ABCD05AQBOZCOAD, (I)(u) = (,ZsABA/B/OéAO[BaAIaB/

Then putting these in (1) determines a plane-wave metric from (M, "), and a different constant
rescaling of o gives an equivalent plane-wave metric. Thus given a null geodesic in M, one
has constructed a plane wave space-time in which an open 5D subset of null geodesics have
equivalent data (¥, ®). It is not hard to show this is equivalent to Penrose’s construction [18],
and it is often computationally simpler.
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3. The connection to diagonalisability

If the result of taking the Penrose limit of (M,T") is a diagonalisable plane wave then, by a
result in [23], we must have

VU — T =0
along I'. Therefore, if every Penrose limit of a given space-time M is diagonalisable then we
must have this condition holding at every point and in every null direction so that

Y ABCDEA'B' C'DE! 1= 1 (w(ABCDvE)(A’EB/C/D/E/) - C.C.) =0. (7)

This is the condition that we wish to analyse. We first recall the definitions of the two scalar
invariants 7, J of the Weyl spinor:

1= Papcpt™™ P, T = Yapcpibpg APYPTC,

and then recall the definition of a (valence-n) Killing spinor from [20] as a symmetric spinor
field wy, ...a, satisfying

VA/(AwAlwA,,) =0.

Then we organise the results according to the algebraic type of the Weyl spinor (in the
Petrov—Pirani—Penrose classification, see e.g. [19]) and summarise them in a proposition:

Proposition 1. Given a space-time M in which (7) holds, the Weyl spinor is always propor-
tional to a valence-4 Killing spinor with a real function of proportionality. Conversely, if the
Weyl spinor is proportional to a valence-4 Killing spinor with a real function of proportional-
ity then (7) holds. As regards examples, if the Weyl spinor is:

1. zero then all Penrose limits are diagonalisable.

2. type N then the Weyl spinor is proportional to the fourth power of a valence-1 Killing
spinor with a real function of proportionality, all Penrose limits are diagonalisable but
the only vacuum examples are already plane waves and the only Einstein examples are
Lobachevski plane waves (see [21]). The nonvacuum examples are easy to find.

3. type (3,1)or (2,1, 1) then there are no vacuum or Einstein examples (there may be non-
vacuum examples).

4. type D then the vacuum examples must have 1, the only nonzero component of the Weyl
spinor, real. These conditions lead to a short list of examples, which includes the Schwar-
zschild metric. For vacuum or non-vacuum examples the Weyl spinor is proportional to
the square of a valence-2 Killing spinor with a real function of proportionality.

5. algebraically general then there are no vacuum or Einstein examples although the Weyl
spinor is proportional to an indecomposable valence-4 Killing spinor with a real function
of proportionality, and some nonvacuum examples, related to Kobak’s doubly Hermitian
metrics, [11], are easy to find.

Proof. The converse in the second sentence is easy to establish: if wagcp = Fiapcp is Kill-
ing spinor with real F then

0 = Varawpenr) = F(Va@¥sepr) + F~ (VaraF)Yscpr)),

when (7) clearly holds.
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That the Weyl spinor is proportional to a valence-4 Killing spinor is established type by
type. In the order of the proposition, suppose that the Weyl spinor is:

1.

2.

zero so the metric is conformally flat, and (7) is vacuously satisfied, ¥(s) vanishes for
every null geodesic and all Penrose limits of M are diagonalisable (by the result in [23]).
type N, so that for some spinor field o4 the Weyl spinor takes the form ¢4pcp = 04050c0p,
then (7) can be written

ouosocx g 0" ) = C.C. ®)
where

X A'B _ O(AVB)(A/EB/)'
Now (8) forces reality of xapa’p, when we deduce that

Va0 = €appar + Vaaros, 9)
for some spinor pys and real vector V44, = V,. Contract this with VCA/:

VCA,VAA’UB = fABvCA/pA/ + VCA, (Vaarop)

y / |

= EABVCA % + OBVCA VAA’ + ECBVAA/pA —+ EGAC(VeVe)OBs
using (9) again. Now symmetrise over CAB: on the left we obtain

= —thagcpo” =0,
by the form of 14pcp, and on the right all terms vanish except that with the derivative of
V,, to leave

0V Ve =0,
whence

V(;«? VC)A’ = O,
and since V, is real, we have

ViV =0,

so the 1-form V, is closed, therefore (locally) exact and V, = V,V for some real function
V. Setwy = e Vo, to find

Vaarwp = i€apmar, (10)

for a spinor field w4/ proportional to p4.. This is the twistor equation, [17], the pair
(w*, Tar) defines a twistor and w? itself is a valence-1 Killing spinor. Also

4v
YaBcp = €' WAWBWCWD, (11)

so that the Weyl spinor is proportional to a valence-4 Killing spinor (since a symmetrised
outer product of Killing spinors is evidently a Killing spinor), with a real function of
proportionality, e*.

Space-times admitting a solution of (10) have been classified in [12] (though equation (11)
imposes an extra condition on them). We may summarise the classification as
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(a) those for which the vector field wAwA/, which is a conformal Killing vector, is twisting
(equivalently, the twistor (wA, 74 ) is non-null); these were shown in [13] to be Fefferman
metrics of 3D CR-structures. They cannot be Einstein or vacuum (except trivially i.e.
when flat).

(b) those for which it is non-twisting but with 74, # 0; these were given explicitly in [12]
and include the next two classes.

i. the only Einstein examples have 74 nonzero and proportional to wy-; these are the
Lobatchevski plane waves of Siklos [21].

ii. those for which 74, = 0; these are pp-waves, which we will discuss shortly. They can
be vacuum but not Einstein.
The pp-wave metric can be taken to be (1) but with a general (real, smooth) function
H(u, ¢, ¢). ITmposing (7) on a pp-wave requires Hee /HZZ to be constant. By constant
phase change of ¢ we can take this constant to be one and then, if we set { = x + iy,
the condition reduces to H,, = 0 and is solved by

H = f(u,x) + g(u,y).
These give the family of pp-waves all of whose Penrose limits are diagonalisable. The only

vacuum metrics among them have A harmonic in x, y when they are in fact plane waves.
3. types (3, 1) and (2, 1, 1) First for (3, 1) we may take

Yapcp = 10 40BOCLD)

in terms of spinor fields 04,24 which we may assume normalised by 04t4 = 1, and a
complex function . If we restrict to vacuum then o” is geodesic and shear-free (which
we henceforth abbreviate as gsf) but if instead we suppose just that ¥ vanishes then

A B C A'B'C'D - A B cABCD _E)
0=0""0"24pcp = —i0"0"0" Y v (Al/)BCDE).

The factor in ¥, crp is irrelevant and can be omitted, along with the factor —i, leaving
0= voBoCVE(A(woBocoDLE)) = 1popooPoVEoc,

so that o” is gsf automatically, from the vanishing of . Next calculate

!

I pl 1y . f(A,B,C,D/ E'
0=ABCLES, g YECP = MBI \Y% (LT/JBCDE)-
Again drop irrelevant factors to find
!
0= LALBLCLDLEVEA (vpogocoptg)

whence ¢ is also gsf. This is sufficient to show that there are no vacuum or Einstein
solutions like this as a consequence of the Goldberg—Sachs theorem [22]—recall this
states that, for vacuum or Einstein metrics in dimension 4, a spinor field is gsf iff it is a
repeated principal Null direction (or PND) of the Weyl spinor, and ¢4 is not a repeated
PND, though it is a PND. The Goldberg—Sachs theorem also rules out certain classes of
nonvacuum solutions (for example, Einstein—Maxwell solutions with aligned Maxwell
fields), but there may be others. We shall see next that (7) forces the Weyl spinor to be
proportional to a Killing spinor with a real function of proportionality. This is a little
messy as both scalar invariants, / and J, vanish in this case.

From (7) then with apcp = 0(a0B0cLp), first contract with ABLCP to find

1 — _
g’lzZ)LELDvD(A/wB’C’D/E’) = 'Z)Z)(A/B/C/D/WE/)E, (12)

7
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with

A B CD
Weer = 010 Vg apepe) -

Since, as we saw above, ¢ is gsf, necessarily L Wer = 0 and Wggr = 1gne for some N’
Now we may cancel ¢g from (12) to leave
LDVD(A’EB’C’D’E’) = @(A’B’C’D’nE’)’ (13)

where we have redefined 7 to absorb the factor /5. Next contract (7) with 0*0? and use

A B
0o vE/(Ai/)BCDE) = 0copoEéE

for some &g which follows since o is gsf. We obtain

A o A B
_'(/)OCODOEO VA(A’wB’C/D’E’) =0 0 w(A'B'C/D/VE’)(AwBCDE)

= OCODOEw(A’B’C’D’éE’)'

Cancel ocopog and absorb the factor —) into g to obtain

OAVA(A’EB/C’D’E’) = E(A/B/C’D’EE/)' (14)
Now put (13) and (14) together to deduce that

VA(A’EB’C’D/E’) - WA(A’EB/C’D’E/)’

for some vector Wyayu+ (to be explicit, Waar = 0amar — taar). Impose (7) to deduce that
Waar is real, so that, taking the complex conjugate,

Vara¥sepe) = War(a¥sepk)

and apply VFA/, symmetrising over ABCDEF to deduce that W, is a gradient, say
W, = V,W. We have found that

wagcep = € " Yagcp

is a valence-4 Killing spinor, proportional to the Weyl spinor with a real function of
proportionality (namely e~").
Next for type (2, 1, 1) we can dispose of the vacuum case by the same argument as for type
(3, 1) here: by (7) any PND of the Weyl spinor is gsf but in vacuum only repeated ones
should be, so there are no vacuum solutions of this type, but there could be nonvacuum
solutions. It will follow from the argument in the algebraically general case that, since the
scalar invariant / is nonzero in this case the Weyl spinor is proportional to a Killing spinor
with a real function of proportionality.

4. type D We recall that vacuum type D solutions always admit a valence-2 Killing spinor
wap [20] and the Weyl spinor is related to the Killing spinor and a normalised spinor dyad
(04, ta) by

Yapep = 6Yr0(408LcLp) = wg/SW(ABWCD),

absorbing a constant numerical factor into the definition of wyp. The valence-2 Killing
spinor satisfies

VA’(AUJBC) =0
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so that
YapcpEa'B B = Wapwep W) (4 Wp ' Wprery s

with

We = i1 (0, Vethy — 12 Vehy).

Thus (7) holds in the vacuum case iff 1, /1, is constant and then the Weyl spinor is pro-
portional to the valence-4 Killing spinor wspwcpy with a real function of proportionality.
Since type D vacuum solutions have been classified completely [10] we can read off the
ones with constant 1, /1,. These are the Schwarzschild-like solutions, the static C-metric
and Kinnersley’s Case I'V A restricted by a = 0 (this example is exceptional: v, is not real
but a constant multiple of it is, which is sufficient for (7)) and his Case IV B.
Similarly [7] showed that the charged Kerr metric admits a Killing spinor defined in
the same way but now v, is complex unless a = 0, so only in this case (i.e. Reissner—
Nordstrom) does (7) hold. There may be other nonvacuum solutions, for all of which
the Weyl spinor will be proportional to a valence-4 Killing spinor with a real function
of proportionality by the argument in the next section, since the scalar invariants I, J
are nonzero. Also, since the valence-4 Killing spinor, say wapcp is proportional to the
Weyl spinor, there must in fact be a valence-2 Killing spinor wap with wapcp = w(apWep)-
However one type D nonvacuum solution which fails is the Godel metric. This is known
to admit a valence-2 Killing spinor with the Weyl spinor proportional to its square ([9, 2])
but 1), is not real so that (7) does not hold.

5. algebraically general Now we can suppose that at least one of the scalar invariants I,J
is nonzero (as we also could in type (2,1,1) and type D). We explore some general
consequences of (7); write it

z/J(ABCDVE) (A/@BIC'D/EI) = @(A’B’C'D’ VE’)(A'L/JBCDE) (15)

and contract with 14, g/ t0 obtain

3_
YusecoWeye = 51 Ve (a¥BcpE)

for some vector W/, possibly complex, and with I = 1,cpy*BP. Assume I # 0 and
set U, = %Wa, then substitute back into (15) to obtain

Yasen(Upyar = Unya Vg ey = 0,
which forces U, — U, to vanish. Therefore
Ve (a¥sepey = Up (a¥sepE)» (16)

with a real vector U,. Contract this with 1A8P to obtain on the right

3
VEPU (wbpepr) = 51 Uggr

and on the left

1 4
wABCDVE’ (A¢BCDE) = gwABCDvEE’wABCD + g'L/)ABCDvE’AwBCDE
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1 4
= TOVEE’I ts3 (Vea(W**Popepe) — voepeVeay™P) .

If we restrict to vacuum then the vacuum Bianchi identity gives the vanishing of the term
V graBCP and this simplifies to

1 4 1
= — /I —_— /I = — /I
1OVEE + 1OVEE 2VEE ,
so that, since we’re assuming I # 0 we find
5
U,=-V,/I.
6 /

In particular this must be real so that necessarily 7/I must be constant.
Define

k
wascep = I"apcp

for k to be chosen, then (7) entails

Vaawscpe = I'(Un(a¥scp) + kI~ Lyatbsep)
so if we choose kK = —5/6 then
Var(awscepe) = 0,

and wyapcp is a valence-4 Killing spinor. It is known [24, 8] that, wnenever one is present,
a valence-4 Killing spinor is always proportional to the Weyl spinor unless this is zero.
If 1 = 0 we can use J: contracting (16) with ¢, “#¢“PPC and still restricting to vacuum,
by a similar calculation we obtain instead

U, = gVaJ/J,

where J = Yapcpipg ABq))CDPQ assuming this is not zero. Thus necessarily J is real and,
if 1J # 0, then from the two expressions for U, we conclude that I? /J? must be constant.
If I = 0 we define the valence-4 Killing spinor as

—5/9
wagep = I " Pagen.

There cannot be vacuum solutions in this class: it was observed in [8] (and also in [24],
and was very probably known to Penrose) that any principal spinor of a Killing spinor is
gsf. So if a space-time has an algebraically general Weyl spinor and admits a valence-4
Killing spinor then there are four linearly independent gsf spinors, which contradicts the
Goldberg—Sachs theorem for vacuum or Einstein.

However, there are non-vacuum Hermitian (so Riemannian) examples with four linearly
independent gsf congruences (see [11]) and some of these will have real Lorentzian
(Wick-rotated) sections. We will show in the next subsection that they do have valence-4
Killing spinors, but end the proof of the proposition here. [l

10
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3.1. Kobak’s metrics

In [11] the metric form
g = dzdz + fdwdw

is considered with smooth real f. This is evidently Hermitian for the complex structure /; with
(0, 1)-forms dz, dw. One defines a second complex structure I, with (0, 1)-forms

dz + fdw, dw —dz,
which can be checked to be integrable, given an equation on f, and also Hermitian.
(To see this take the orthonormal (0, 1) forms for /; to be
o' =dz, ©=r"dw,
while for I, choose

ol | 1

(1+£)1/2 (1+£)1/2

and note that the transformation between bases is Hermitian.)
Integrability requires

f: —fw =0sothatf = f(z+ W),

and Kobak considers the choice

(@T+f1/2®2)’ (I)ZZ (f*l/Z@i_@l)’

f=2+cos(z+z7+w+w)

as this gives an explicit, doubly-Hermitian metric on a torus C?/27Z*. If we introduce real
coordinates x, y, u,v by

z=x41y, w=u+iv
then we will consider the more general class:
g =dx? +dy? +f(x + u)(du? + do?).
We Wick-rotate by setting y = ir and change the sign to obtain the static Lorentzian metric
gr = d* — dx? — f(x + u)(du® 4 do?). (17)
We analyse this metric in the NP formalism by choosing the null tetrad
_ b
V2
with F to be fixed, and

L R0, +i0,). 5= F(0, - id,).

b V2 V2

(O +0), A=—=(0,—0), 6=

L
V2
1 1 1 . _ 1 .
{=—(dt—dx), n= (dt 4+ dx), m = ———=fF(du + idv), m = ——=fF(du — idv),

V2 V2 V2 V2

so that f2F? = f and F = f~ /2. We’re restricting to metrics with F(x 4 u). Now calculate the
spin-coefficients to be

O=k=0c=v=A=e=~vy=7=m,
and
F’ F'
= = —), o= — =
p=p T B Wi

1
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with F’ = F, = F,. The curvature components are found to be

F (F\'
0=Vy=Ty = Pp, \III\I/S(I)()l‘I)214<F> s

1 ((1—-F)F" (F?—1)(F')? 2(1 — F?)
U, = — = ]
76 ( F F? 3F
1 (F>+1)(F')?
Oy = (FF' — ~— ),
"y ( P2
A = @11 + \112.

This will have invariants I,/ real but will not have I° /J? constant (which is not a surprise as
the metric is not vacuum).
There are two more gsf spinors which can be taken to be

1
o =4 + =04, BA = — R,
F
so the Weyl spinor and the Killing spinor if there is one are both proportional to

(1-F)

XABcD = 0(atpcBpy = 0(atpictp) + 7

O(AOBLCLD) — O(AOBOCLD).

From the curvature components given above one sees that in fact

T/JABCD = 4U3X4BcD:

with W3 real, and it can now be checked that

—1
wagep = F~ Xascp

is a valence-4 Killing spinor. This follows by direct calculation, given the spin-coefficients
above, but the result can also be obtained by solving the geodesic equation as we see next.
Then 1apcp is proportional to the Killing spinor wapgcp with the real function of proportional-
ity 4F 5.

3.1.1. Solving the geodesic equation. Note we have three linearly independent Killing vec-
tors which we can take to be

1 i —

Ki=0 = SD+A), K== 5(0-0)
1 1 -
K= 00— 0= (D= 8) = —-(0+3).

Consider the spinor field po® + g, then this is parallelly propagated along itself if

(po’ + qi*) (P + G )V an (pos + qus) = 0.,
equivalently, p, g satisfy the system

p = p(a(pq — qp) — pqq),

12
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q = q(—a(pgq — qp) + ppp).
We deduce at once that
Ip)* + |g|* = constant,
which is the constant of motion associated with K;. By constant rescaling of p, g we can set

this to one without loss of generality. Next notice that

(f,g)' — plIpP ~ laP),

which is real, so that ( pq)/(pq) is constant and by multiplying p, ¢ by a constant phase can be
taken to be one without loss of generality. Now we can parametrise p, g as
p = cos fe'?, g = sin fe ',

for some 6, ¢.
For wspcp to be a Killing spinor we need the following to be a constant of the motion for
null geodesics:

(1-F?)

F

Q = wagep(po + i) (po® + i) (po© + q.€) (po® + qi°) = F~' (pg’ + P’a* —pq),

: : 1—F?
= F~!(sin® 0 cos fe 2% — sin f cos® fe?'¢ + % sin 6 cos? ).

There are constants of the motion ¢; from the Killing vectors K; respectively, and these are
given by

1 2 2 1 _
CcC1 = + = —, = —_
A 5 Pa P

S

and
1 1 o
3 = %(|P|2 —lq*) - m(!’q +qp),
or in terms of 6, ¢

o= ﬁsmﬁc;):s fsin(2¢) , 3= %((cos2 6 — sin®#) — 2F ' sin # cos 6 cos(2¢))

and now one calculates
1 .
Q= 5((6‘2 — 101)2 + c%),

which is indeed a constant of the motion, as required.

Thus we do have a valence-4 Killing spinor, and the quantity ¥(s) arising in the discussion
of the Penrose limit is 4¥3FQ so that ¥/¥ = Q/Q which is constant along null geodesics:
now all Penrose limits are diagonalisable. I believe this to be the first explicit example of an
algebraically-general metric with a valence-4 Killing spinor, indecomposable in the sense of
not being an outer product of lower valence Killing spinors—as we’ve seen, there can be no
vacuum examples.

13
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Appendix. The Penrose limits of the Kasner solution

This is an example of a diagonalisable 4-metric with at least some Penrose limits which are
not diaonalisable. It is straightforward to compute as the geodesic equation is integrable; the
vacuum Kasner metric is

g= dt2 _ t2pdx2 _ t2qdy2 _ t2rdz2’
with real p, g, r satisfying

prq+r=1=p +q+r.
It has Killing vectors

Ki =0, Kx=0,, K3=0..
We choose the null tetrad
1

V2

when the nonzero spin coefficients are

(q+7) (q—r)
= — = — R = —)\ = — R
P . 24/2¢ 7 2/2¢ 7

and the nonzero Weyl spinor components are

1
(0, —1t78,), 6 =—=(t790,+it7"0,),

1
D = —
\/E 2

(O, +1770y), A

¢0:¢4:p(q7—r) w2:_ﬂ'

22 7 212
The Weyl spinor can be written as
Yapcp = ¢0(0AOBOCOD + LALBLCLD) + 6¢20(A0BLCLD)v

and is algebraically general provided p, g, r are distinct, which we will assume.
For the geodesics, suppose the spinor field o = Ao* + Bi” is parallelly propagated in the
sense

aAaAIVAA/aB =0,
then this is equivalent to the pair of equations

A = —€eA(JA]* — |B]*) + B(pAB + 0AB),

B = eB(|A)* — |B|*) + A(pAB + 0AB),

14
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and there are three constants of the motion obtained from the Killing vectors:

L (a2 — 1ap) ! 0(AB + 2B) " (_AB+ AB)
= - s, CQ = ——F—= , 3 = ———=(— s
V2 ) T2
with the dot being d/ds and oA@" Vs = 1. Given these three constants of integration, we
obtain from the metric that

] =

=t F S,
which establishes integrability of the geodesic equations, but note that we are asking for more:
in the language of [19] the flag-plane of the spinor o’ is parallelly-propagated, as well as the
flag-pole.

Having solved for A, B and chosen a null geodesic, we take a Penrose limit for which we
need

U(s) := Yapep’* aPaa® = 1)y (A* + BY) 4 69,AB>.
The Penrose limit is diagonalisable iff 3 vanishes where

2 = i(TF — ).
It is a straightforward, if untidy, calculation to see that X is a fifth-order polynomial in A, B, A
and B with coefficients expressible in terms of the ¢; and functions of ¢, and that it is not zero
if the product c¢jcyc3 is nonzero. Thus there are some diagonalisable Penrose limits when one
or more ¢; vanishes but in general they are nondiagonalisable even though the Kasner metric

itself is diagonal. Given the results of this paper this is now not a surprise as no algebraically-
general vacuum solution has all its Penrose limits diagonalisable.
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