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Abstract. Dynamical evolution can be reconstructed within stationary, closed quantum
systems by employing the Page-Wootters “timeless approach”. When conditioning upon the
state of a “clock” subsystem, the rest of the system regains its time dependence. This
mechanism, involving entanglement between the above subsystems has gained much attention
during the last few years. After a brief introduction to the topic we will elaborate on a few recent
results: The derivation of new time-energy uncertainty relations, emergence of non-Hermitian
dynamics when utilizing non-inertial quantum clocks and dynamical nonlocality in quantum
time.

1. Introduction

The notion of time has been perplexing since the dawn of humanity. It remains a source of
mystery even nowadays, with many disciplines vigorously studying various aspects of time flow,
evolution in time and time perception for different observers. Modern physics has majorly dealt
with time during the last century employing relativity theory and quantum mechanics. However,
time has a different role in these theories which leads to a different fundamental understanding
of what it actually is. In quantum mechanics time is typically seen as a background parameter,
external to the system of interest and unaffected by it, while in general relativity time is
dynamical, relative and affected by mass and energy.

Moreover, quantum mechanics poses the well-known problem of time: A completely isolated
quantum system, e.g. the entire universe (as we suspect), must satisfy the (timeless) Wheeler-
DeWitt equation [1]. Then, how can the usual notion of evolution be recovered? To answer this
question, Page and Wootters presented a framework in which time was taken to be the quantity
given by a physical system, a quantum clock [2]. Time, then, becomes a dynamical quantum
variable rather than a mere parameter. The Page-Wootters approach has attracted much
interest in recent years leading to major development, generalization and various applications
3,4, 5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20].

This timeless framework has been shown to lead to a unitary evolution from the clock’s
perspective in a large class of scenarios [6]. However, when investigating a class of time-energy
uncertainty relations in this setting [17], we recently found that this is not always the case. We
studied von Neumann measurements of the total energy of a system that contained an internal
clock. Unexpectedly, we observed that the evolution from the internal clock’s perspective is,
in general, non-unitary. We now believe that although our analysis was mostly nonrelativistic,
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we can borrow a relativistic idea to interpret the result. Because mass and energy are tightly
related, measurements of a system’s energy, in a sense, correspond to weighing the system, which
then interferes with its dynamical time flow. Given that, we started speculating whether the
non-unitarity could result from the internal clock being a non-inertial frame of reference. This
seems to be indeed the case according to our more recent analysis of non-inertial quantum clocks
[18], which shows that when considering an accelerated or gravitating quantum particle with an
internal clock degree of freedom, the evolution given by such an internal clock is non-unitary.
We did so in a non-relativistic framework with a relativistic correction due to the mass-energy
equivalence. With that, the internal degrees of freedom of the particle couple to its external
degrees of freedom. This, together with the system’s acceleration, leads to the non-unitary
evolution from the perspective of the internal clock.

Below we elaborate on these two works as well as on a different result obtained lately within
the Page-Wootters framework: dynamical nonlocality in time [16]. Following our earlier studies
of dynamical nonlocality in space [21, 22, 23, 24, 25|, an interesting notion which seems to
deserve more exploration [26], we shall study equations of motion which depend on two remote
points in time.

2. Quantum mechanics in the Page-Wootters framework

The Page-Wootters framework consists of a clock system, whose state is given by a vector in
a Hilbert space H 4, and the rest of the system, represented by a state in a Hilbert space Hpg,
whose evolution is studied. The joint system |¥)) € H @ Hp is assumed to be closed and hence

Hr|¥)) =0, (1)

where Hrp is the total Hamiltonian acting on systems A and R. This equation is known as the
Wheeler-DeWitt equation. Observe that the imposition of |¥)) being an eigenstate with a null
eigenvalue by Eq. (1) is not as restrictive as it may seem [3]. In fact, Hamiltonians that differ by
constant terms are physically equivalent, which is associated with quantum states being defined
up to a global phase. Then, Eq. (1) implies that the total system |¥)), historically being thought
of as the “Universe” [2], does not evolve with respect to an external time.

The clock system should have an observable Ty associated with its time. It is still desirable
that H 4 generates translations in time, i.e., [to+t4) = e *Hata/P|t) where |to) and |tg+14) are
taken to be clock states, but this does not necessarily require 14 to be a self-adjoint canonical
conjugate to Hy. In fact, it is possible to construct T4 as a positive operator-valued measure
(POVM), which means that the clock states are not necessarily eigenstates of T4 [27, 28, 29].
Such operators obtained from these constructions are symmetric but need not be self-adjoint.
Here, however, for simplicity we assume an ideal clock, i.e., [Ta, Ha| = ihla, Talta) = talta),
and Hy = —ih0/0t4. Although the Hamiltonians of these clocks are unbounded from below
and, hence, unrealistic, they help us avoid technicalities associated with real clocks [30, 31],
while providing approximations of them [32, 33]. Thus, corrections to the results presented here
are expected when dealing with non-ideal clocks.

Moreover, let Hr denote the Hamiltonian of the system of interest and let Hy,(7T'4) represent
the time-dependent term of the evolution of system R set by clock A, which is an interaction
between A and R. We have

Hpr=Hs+ Hp + Hin(T4). (2)

Observe that, H;,; is being assumed to be independent of Hy4. Inserting Eq. (2) into Eq.
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refeq:constraint, applying a scalar product by an eigenstate |t4) of T4 on the left, and defining
[(ta)) = (t4|¥)), it holds that

i (1.4)) = (Ha+ Hine(1a)][9004)) ®)
A

which is the time-dependent Schrédinger equation that denotes the evolution of system R with
respect to the time measured by clock A. Then, the usual unitary evolution of a quantum system
is recovered from the static picture introduced by Page and Wootters.

As a result, |¥)) can be written as

W»=/®W&®WMW (4)

Because |¥)) contains information about |1)(t4)) at every t4, it is sometimes referred to as the
history state.

The results in Refs. [34, 35, 11] are central to our analysis. In their approach, system R is
assumed to contain a clock B, and the rest of it is simply referred to as system S. Then, while
system B gives the internal time of the system R = B + S, system A provides time as observed
by an external system. In this case, the total Hamiltonian is

Hpr=Hp+ Hp+ Hg + Hiyt(Tp). (5)

Although the time-dependent term Hj;,; can be taken to be a function of both T4 and Tg in
a more general scenario, we assume it does not depend on T4 for simplicity. However, nothing
significant changes in our analysis if H;,; is also a function of T'4.

With the previous Hr, the analog of the Schrédinger equation becomes

, 0
ih g\ (ta)) = (Hp + Hs + Hiu(T5)) [4(t4)). (6)
This implies that the effective Hamiltonian acting on system R is
Hepp = Hp + Hg + Hint(Tp). o

While the designation of which clock is internal or external to the system of interest seems to
be arbitrary up until now, they will acquire a more concrete meaning below when measurements
of energy are studied.

3. Time-energy uncertainty relations and the emergence of non-unitarity

While discussing time-energy uncertainty relations we shall demonstrate the emergence of
non-Hermitian dynamics in two scenarios used for performing energy measurements: (1)
Measurement carried out by an external system, and (2) Measurement carried out by an internal
system. See also [17] for more details.

3.1. Measurement carried out by an external system

Here we study the von Neumann measurement of the total energy of system R in the Page
and Wootters timeless framework. Specifically, we consider the case where the measurement is
carried out by an external system. Then, in addition to the systems already introduced above,
we also consider an external pointer system E, and the history state |¥)) belongs to the space
HARHRr ® HE.
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For simplicity, the free evolution of system FE will be neglected. Thus, the measurement
interaction can be represented by Hyy = g(T4)HrPg, where Hr = Hg + Hgs + Hiyn(TB), Pr
is the conjugate momentum of the pointer F, and ¢ is a non-negative function that differs from
zero exclusively during the duration of the measurement. For notation purposes, we assume the
measurement starts at t4 = 0 and ends at t4 = 7 (both according to clock A). Moreover, we let

/ T g)dt = /0 ")t = K, (8)

—00

where K is a positive real constant associated with the strength (hence, the precision) of the
measurement.

Moreover, we assume that Pg only takes non-negative values. As we shall see, the duration
of the measurement in clock B will linearly depend on Pg. Thus, this condition will assure that
the clocks considered here are “good” clocks in the sense that they do not move backward in
time and, in particular, that the duration of the measurement is non-negative.

With that, the total Hamiltonian of the composed system is Hy = Hq + Hp + g(Ta)Hr Pg.
Then, using Eq. (1) and defining |¢(t4)) = (t4|¥)), we obtain the Schrédinger equation

. 0
m@’lﬁ(m» = [Hp + g(ta)HrPp] ¥ (ta)), (9)
i.e., from the perspective of clock A, the evolution is generated by the effective Hamiltonian
Hy = Hp + g(ta)HRrPE, (10)

which is the usual Hamiltonian of a time-independent system during a measurement. This is
expected since, in standard quantum mechanics, time is an external parameter, as it is in this
case.
Using the Heisenberg equation of motion to study the evolution of T with respect to clock
A, we conclude that 4
i
T
This shows that, when g vanishes, the flow of time in both clocks is the same. In fact, in this
case, from the perspective of clock A, any uncertainty in clock B is associated with its initial
uncertainty. In particular, if both clocks start localized and synchronized, they remain localized
and synchronized.
Yet, clock B ticks faster than clock A whenever g is non-zero, i.e., during the measurement
of energy. If ¢g is a function whose integral over time grows smoothly, then the transition to a
faster ticking rate also happens smoothly. However, this is not always the case. A dramatic
example can be observed by assuming a highly idealized case where g is the delta function. In
this case, from the perspective of clock A, there is a sudden “jump” of the pointer of clock B.
On the other hand, using again Eq. (1) and defining |¢(tg)) = (t5|¥)), we obtain

[Tp, Hi] =1+ g(ta)Peg. (11)

LT+ 9(Ta) Pl 30— 6(0m)) = Halo(t5)
+ [ + g(Ta)Pg] [Hs + Hint(tB)]|6(tB))-

(12)

Moreover, recalling that Pg is assumed to only take non-negative values, which implies that
I + g(T4) Pg is invertible, the effective Hamiltonian is

Hy = [I 4 g(Ta)Pg] " Ha+ Hg + Hine(t5). (13)
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Observe that the function g that controls the measurement continues to be a function of the
operator T4, while it was a function of the parameter t4 when considering A’s perspective.
In a scenario like this, a well-localized event in clock A has uncertainty in clock B which was
previously discussed, for instance, in Ref. [11]. This means, in particular, that the start and
end of the measurement, which are well-localized in A, have uncertainty in B.

Moreover, in a sense, Hamiltonian Hy corresponds to a measurement of H,. However, the
measurement function ¢ is controlled by the time in clock A, which is an observable from the
perspective of B. Because of it, the measurement Hamiltonian would have been symmetrized in
more standard treatments of the process, which is not the case here. In fact, Hy is non-Hermitian
and, as a consequence, the evolution of clock A from the perspective of clock B is non-unitary, a
characteristic that will be further discussed later. For now, observe that the Heisenberg equation
of motion for T4 with respect to tp gives

Aot

T P Ta, Ho] = [T+ g(Ta)Pe] " (14)

This result is expected in view of Eq. (11) since it gives the inverse of the passage of time
on clock B with respect to clock A. However, once again, it should be noticed that here the
argument of ¢ is an operator, and no longer a parameter. Then, with respect to clock B, if clock
A starts with some uncertainty, there will be some uncertainty about when the measurement
starts and ends. Nevertheless, on average, the “flow of time” during the measurement of energy
is expected to be smaller in clock A, from the perspective of both clock A and clock B. It could
be if interest to further study the possible connections between this purely quantum effect and
the well-known time-dilation in special relativity.

Although Eq. (14) shows consistency across different clock perspectives, it raises questions
about the use of the Heisenberg equation here. While Schrédinger’s and Heisenberg’s
representations are unitarily equivalent, since the evolution from clock B’s perspective is, in
general, non-unitary, it is not trivial to obtain the Heisenberg equation from the effective
Hamiltonian in the Schrodinger equation. Nevertheless, this can be done with the introduction
of an “indefinite metric” in the Hilbert space, a method proposed long ago by Dirac [36] (see also
[37] for Pauli’s perspective). The method consists of introducing a new metric to the space of
states. A well-known class of systems that fit this approach is the class of PT-symmetric systems
[38]. It seems, then, that these metrics are associated with particular spatial and temporal
symmetries, among others. This raises many other research questions. For instance, How to
transform these metrics when switching reference frames? Can modifications in informational
and thermodynamic bounds be extracted from these metrics alone? To justify the latter, it
is noteworthy that PT-symmetric systems can evolve faster than Hermitian systems [39, 40].
Then, the idea is to look for similar results for the type of non-Hermitian operators of interest
to this research avenue.

3.2. Measurement carried out by an internal system
Here we consider once more the total energy measurement of system R, although now the
measurement in question is carried out by an internal system. We assume that system R has
access to an apparatus I, and the history state |¥)) belongs to H4 ® Hr ® H;. Note that the
apparatus may be assumed to be an internal degree of freedom of the system whose energy is
left out of the measurement.

Similarly to what was done in the previous subsection, the free evolution of the pointer I will
be neglected. As a result, the measurement can be represented by the following von Neumann
interaction

Hyyn = %[Q(TB)HR + Hrg(TB)]Pr, (15)
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where Hp = Hp + Hg + H;(Tg), Py is the conjugate momentum of apparatus I, presupposed
to only take non-negative values, and ¢ is the same function introduced in the previous section.
Observe the necessary symmetrization of the product g(Tp)Hpg due to the lack of commutativity
between Tp and Hp, as previously considered, for instance, in Ref. [41]. Also, we assume that
in clock B the measurement starts at tg = 0 and ends at tg = 7.

Since the total Hamiltonian of the composed system is Hy = Hq + Hr + Hy N, using Eq. (1)
and defining |¢(t4)) = (t4|¥)), we obtain the Schrédinger equation

(i) = Hali(t), (16)
where 1
Hs = Hp+ §[Q(TB)HR+HR9(TB)]PI- (17)

is the effective Hamiltonian from the perspective of clock A. With that, the Heisenberg equation
of motion for T with respect to t4 is
d i

—Tg =

Ts, Hal =1 Tgs)Pr. 18
i h[ B, H3] = I+ g(TB)Pr (18)

On the other hand, using Eq. (1) and defining |¢(tg)) = (t5|¥)), we obtain

i+ t5) il - 0(t0)) = | Ha 5/ to)P1 ] 6(e0)

+ [+ g(tp)Pr][Hs + Hint(tB)l|9(tB)),

(19)

where the invertibility of I + g(¢p)P; was used. This means that, from the perspective of clock
B, the evolution is generated by the effective Hamiltonian

Hy = [I —l—g(tB)P[]*l |:HA — ZLQI@B)P]] + Hg + Hmt(tB), (20)

which, similarly to Hs, is a non-Hermitian operator.
Then, using the Heisenberg equation of motion to study the evolution of T4 with respect to
tg, it can be concluded that
d i

— Ty =—

din h[TA,H4] =[I+g(t)Pr] ™", (21)

which, as expected, up to the difference that the argument of g is now a parameter, is the inverse
of the relation between the passage of time in the two clocks given by Eq. (18). Here, again,
the use of the Heisenberg equation is justified with the introduction of an indefinite metric in
the Hilbert space.

Could, then, the non-unitarity observed here be related to gravitational effects? After all,
non-unitarity is expected to play a role in quantum gravity, see e.g. [42, 43, 44, 45]. However,
gravitationally interacting clocks have been considered in the literature [46, 6, 11], and it was
shown that they lead to unitary dynamics.

Then, why is the result different here? The answer to this question lies in the fact that the
von Neumann interaction includes products of the time operator of a clock by the individual
Hamiltonian of the same or other clocks. In fact, if such a condition is matched, the dynamics
of the clocks associated with the time operator in the interaction is non-unitary with respect to
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the clock whose individual Hamiltonian appears multiplying it. To see that, consider a system
composed of n clocks C1,Cy,...,C, and let the total Hamiltonian be

Hr = ZHCk +f(TCr17TCr2?"'7TCrm)HCS + Hint, (22)
k
where m < n, the indices 71,79, ..., 7n, and s are different elements of {1,2,...,n}, and Hjy; is

not a function of Hg. Then, from the perspective of Cs we can write

. 0
L+ J(Te,, Tey,, - Te, g lulte.) =

(23)
= |D_Hey + Hint | [0(tc,)),
k#s

i.e., the effective Hamiltonian, which is to be compared with Ho, is

HSp =+ f(Te,,, Ton, - To,, ) | Y Hoy + Hint | (24)
k+#s

assuming that I + f(T¢, ,Tc,,,---,Tc,,, ) is invertible. This Hamiltonian is manifestly non-
Hermitian. More specifically, the parts associated with clocks C,,Cy,,...,C; — are non-

Hermitian and, hence, have non-unitary evolution because of the lack of commutativity between
their individual time and Hamiltonian operators. We find this general appearance of non-
unitarity an interesting phenomenon worthy of further research because it could possibly account
for an inherent irreversibility of time, even on purely quantum mechanical grounds.

4. Accelerating quantum clocks
In this section, we connect the emergence of non-unitarity just studied, with the existence of
acceleration of the clock frame [18]. For that, we need to understand how acceleration affects
the Hamiltonian of a system. This influence should come from the potential V' that can be
added to the Hamiltonian. Our analysis here will be restricted to potentials that functions
of the position x only, but this should be generalized in future work. In this case, we know
from Newtonian physics that ma = —dV/dx, where m is the mass of the system and a is its
acceleration. This implies that V(z) = —m f;} a(x’)dz’, where it was assumed that V(zg) = 0.
Further assuming that the particle is moving in a single direction and that zg is a point very
far away in the direction of motion of it, we can define the function f(z) = [ a(z)da’, which
is always non-negative if the particle’s velocity is never lower than its initial value. In this case,
V(z) = mf(z). Now, with a similar argument to the one used in [47, 5, 48, 49, 6, 12], we can add
a post-Newtonian correction to V' by using the energy-mass equivalence, i.e., m +— m + H/c?,
where H is the Hamiltonian of the particle (other post-Newtonian corrections could be added
as well). For simplicity, we neglect the term with the static mass m and consider only H/c%.
Then, redefining f to absorb the constant 1/c?, we can write V (z) = H f(x).

Observe that the energy-mass equivalence implies that the potential (associated with f) also
couples to internal degrees of freedom of the system [47]. Then, if the clock is an internal degree
of freedom of an accelerating particle, the above discussion leads to the change

Hs = Hs + 3 [f(X)Hs + Hs (X)), (2)

where Hg is the full Hamiltonian of system .S, which includes a particle M, before it accelerates,
and a clock A, and X is its position. It can be checked that this also leads to a non-unitary
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evolution from the perspective of clock A. In fact, consider a system composed of two particles,
M and N, each with its own internal clock, A and B, respectively. If we assume that particles A
starts accelerating at some point and none of the parts interact before that, the total Hamiltonian
of both systems is

H = Ha+ Hp + Hy + Hy + 5 [f(Xar) (Ha+ Hy) + (Ha+ Ha) f(Xa)] (26)

and the effective Hamiltonian from the perspective of clock A after the acceleration is

By = [T+ F(Xan]™ | His+ Hy — S[7(Xar), Hudl| + Har, (27)

which is, generally speaking, non-Hermitian, since in most cases [[+ f(X3/)] ! does not commute
with [f(Xar), Hy|. Now, if the particle has a large enough momentum, it may be possible to
approximate its free Hamiltonian as proportional to its momentum (this can be done in the
relativistic limit or by separating the total non-relativistic momentum into a large expectation
value (P)o at an instant tg, and a “shifted momentum operator” II such that P = (P)ol + II
and then neglecting the quadratic term II? in the free Hamiltonian). In this case, letting the
proportionality constant be the unity, we first observe that [f(Xs), Hy] = ihf' (X ). Moreover,
the Heisenberg equation leads to Xjps/dty = I. As a result, neglecting any initial uncertainty
associated with Xjs, we can write

Hyp =T+ f(ta)" [Hp + Hy — %f’(m) + Hyy. (28)

Observe that, at this stage, we can simplify the analysis by neglecting Hp; and Hpy. This
means that a scenario involving two clocks, A and B, with one of them, A, accelerating with an
acceleration associated with f(7T4), can be considered a simplification of a scenario where H s
is neglected. In this sense, the analysis of both cases where the clock is an independent particle
or where it is an internal degree of freedom are equivalent.

For a concrete example, consider two inertial rocket ships, each with its own clock. Initially,
both are travelling with constant speed. Assuming that there is no interaction between them,
we can write

H =Hs+ Hp, (29)

where, without loss of generality, we simplify our discussion by not including any other system
in the analysis, which is possible based on what was just discussed.

Using Eq. (1), we observe that the Hamiltonian of clock B from the perspective of clock A is
simply H éf ¢ = Hp. Moreover, the Heisenberg equation implies that d1z/dt4 = I, i.e., the flow
of time is the same in both clocks.

Now, if the rocket associated with clock A starts accelerating, as was just discussed, the
effective Hamiltonian of clock B from the perspective of clock A is given by

iy =+ 1] #5570, (30)

which implies that evolution is non-unitary. Still, from the perspective of clock B, which is still
an inertial frame, clock’s A evolution is unitary. In fact, the effective Hamiltonian in this case is

HY;=Ha+ % [f(TaA)Ha + Haf(Ta)). (31)
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However, there will be no perspective from which a unitary evolution is recovered if all clocks
are accelerating. In fact, if g is a function associated with B’s acceleration, it holds that

1 1
H=Ha+ Hp+ 5 [f(Ta)Ha + Haf(Ta)l + 5 l9(Ts)Hp + Hpg(Ts)], (32)
which results in non-Hermitian effective dynamics from the perspective of either clock A or B.
In future work we would like to generalize this case to motion in curvilinear coordinates and
to the case of gravitationally interacting quantum systems — first within non-relativistic quantum
mechanics, and then within the Klein-Gordon and Dirac equations.

5. Gravitationally interacting quantum clocks

Next is the case of gravitationally interacting clocks. We shall only present the gist of the
argument, while the detailed analysis is available in [18]. In previous studies, it was shown that
this type of interaction leads to a type of time dilation, although the unitarity of the evolution
persists [5, 48, 49, 6, 11]. The time dilation can be even associated with loss of interferometric
visibility [50].

In those analyses, a Newtonian gravitational potential of the form V(r) = —Gmamp/r was
assumed, together with the post-Newtonian energy-mass equivalence correction, as in the above
example. Then, the gravitational interaction between two clocks A and B can be added to the
Hamiltonian as a term proportional to the product of their free Hamiltonians, i.e., AH4Hp,
where A = —G//cr.

It can be noticed that the distance between the clocks is assumed to remain constant. Thus,
despite the gravitational effects, both clocks work as inertial frames. In our exploration, however,
we will allow the relative position of the clocks to change as a result of the gravitational
interaction.

As an example, we will start by assuming that clocks A and B are internal degrees of
freedom of particles M and N, respectively. Then, the gravitational potential can be written
as V(zny — xp) = —Gmpympy/|zy — xpr|. Moreover, if S is much more massive than R, for
some periods of time we can assume that zxy — x)r &= TN — x9, where xg is the initial position
of system M. Letting the latter vanish, we have V(zy) = —Gmyrmpy/|zn]|.

Now, using the mass-energy equivalence, we write V(Xy) = —GHaHp|Xy|7!/2¢*. For
simplicity and to make sure that any change to the ticking of either clock is due to the
gravitational interaction between the systems, we assume no other interaction between them.
This means that the total Hamiltonian of the composed system is

H=1[+ f(Xn,Hp+ Hn)|(Ha + Hy) + Hp + Hy, (33)

where f(Xy, Hg) = —GHp|Xn|7'/2¢*. As a result, the dynamics from the perspective of clock
A is given by
Hi =1+ f(Xn,Hp)| "(Hp + Hy + Hy), (34)

which is non-Hermitian since f(Xy, Hp) does not commute with Hpy. This is so in spite of
system S being assumed to be approximately inertial. This might seem surprising in view of
the example with the rocket ships. However, a crucial aspect in that example is that the rockets
had no interaction between them whatsoever. Here, system S interacts with the non-inertial
system R.

Moreover, the effective Hamiltonian from the perspective of clock B is also non-Hermitian,
as expected. More precisely,

Hlg = [T+ f(Xn, Ha)] "' (Ha + Hy + Hy). (35)
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This, however, is a simple case of Newtonian attraction. It could be interesting to study
post-Newtonian and other general-relativistic corrections affecting the dynamics of gravitating
quantum clocks.

It is worth highlighting that gravitationally interacting systems were also considered in a
recently introduced spacetime quantum reference frame [51]. There, the weak-field limit was
assumed in order to avoid the problem of ordering of operators. In this limit, the dynamics was
found to be unitary. This is also consistent with our results since the non-Hermitian character of
the dynamics is accentuated at higher energies. However, since the Hermiticity of the dynamics
appears only as an approximation, predictions using this type of approximation might likely
deviate from the ones using the non-Hermitian Hamiltonians found here in experiments that are
not relatively short.

It is also noteworthy that an analysis of the dynamics of quantum systems in the presence
of singularities with different clocks has revealed the manifestation of non-Hermitian dynamics
and, more specifically, non-unitary evolution [52]. In fact, it was found that, in this scenario,
unitarity depends on the choice of the clock — even if every clock under consideration is a
counterpart of good clocks at the classical level. Moreover, it was concluded that the general
covariance of general relativity turns out to be incompatible with quantum unitary dynamics.

6. Dynamical nonlocality in space and time
This section continues to employ the same timeless framework, but for a completely different
purpose — introduction and preliminary analysis of dynamical nonlocality in time. However,
we begin the discussion with a review of dynamical nonlocality in space. In [53, 23] we have
proposed a nonlocal ontology for quantum particles based on a deterministic set of operators
within the Heisenberg picture. We have shown that some operators belonging to this set may,
in general, evolve in a dynamically nonlocal way. For instance, the operator ¢*’/" akin to the
modular momentum P,,,g = P mod hl/¢, where ¢ has units of length, changes in time according
to:
G erun— LI ] = L (X ey - V()P (36)
dt h h
which depends on two remote spatial locations separated by a distance ¢. This apparent
nonlocality is mitigated via quantum uncertainty [23]. The operator e’/ is important when
discussing interference phenomena since its expectation value explicitly depends on the relative
phase, e.g. in the case of the double slit experiment [23].

The timeless framework allows to similarly analyze the modular energy operator e
where 7 is a parameter with units of time and Hg is the Hamiltonian of the system of interest.
Here, I consider the case studied in Ref. [11], where system R was assumed to be composed of
the main system of interest S and a clock B, i.e.

tHgt/h
)

Hr =Hp+ Hs+ Hps(Tg), (37)

where Hpg(Tg), assumed to be such that [Hp, Hps(t)] = 0 for a parameter ¢, generates the
inner unitary transformation of system S controlled by the time in clock B, i.e., changes on
system R when it is completely isolated.

For simplicity, the term Hpg(Tg) is assumed to be null. This implies that the effective
Hamiltonian of system R from the perspective of clock A is

Hfjy = Hp + Hs + Hint(ta). (38)

I also restrict to cases where [Hp, Hin(T4)] = 0, i.e., Hip is not a function of Tp.
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The goal is to obtain the dynamics of the systems from the perspective of clock B, although
a similar conclusion can be drawn based on an analysis from the perspective of clock A. Then,
writing (tg|¥) = |¢(tB)) € Ha ® Hg, it holds that

m%@(m» — [Ha + Hs + Hine(Ta)]l0(t5)), (39)
B

i.e., from B’s perspective, the effective Hamiltonian is

HE ¢ = Ha+ Hs + Hini(Ta) (40)

e

From the Heisenberg equation of motion, we obtain the ¢g-evolution, i.e., the evolution from
the perspective of the clock B of the modular energy e~ #47/% of clock A, where 7 is a parameter
with units of time. Explicitly,

d iHaT/h i 1HaT/h B
i :_ﬁ[e I Heg g
= *% [eiHAT/hHmt(TA) - Hmt(TA)eiHAT/h} (41)

— o [Hint(Ta + 71) = Hyng(Ta)] 74711,

which is to be compared with the equation of motion of the modular momentum. Observe
that no particular set of assumptions was made in this derivation. In fact, the result follows
from the fact that e7a7/" generates translations in the time variable of clock A and H 5 7 1s,in
general, a function of T4. Also, although Eq. (41) seems to allow backwards-in-time signaling,
this is not the case due to quantum uncertainty. Nevertheless, we find it interesting to further
pursue these dynamical types of nonlocality — in space and time — and connect them with
kinematic (entanglement-based) nonlocality. We have shown in [54] that kinematic nonlocality
(even in theories beyond quantum mechanics) will not violate relativistic causality if generalized
uncertainty relations are obeyed, which could be interesting to compare with the dynamical
case. Additional analysis and specific examples are given in [16].

It may seem that the kinematic and dynamic types of nonlocality are unrelated to each other,
but in some recent works [22, 55, 56, 25] connections were made between them relying, on the
necessity of quantum entanglement in order to explain the latter type. We would suggest to
further pursue this direction in order to unify these two types of nonlocality or alternatively,
render them inherently different.

7. Discussion
Qualitative and quantitative features of time in physics remain subtle and deep but the Page-
Wootters approach has shown once more to be constructive. We have utilized it above to find
new time-energy uncertainty relations pertaining to the interplay between internal and external
clocks during the process of energy measurement [17]. We have also employed it to introduce
the phenomenon of dynamical nonlocality in quantum time, which is further exemplified in [16].
Finally, we have identified what seems to be a general feature of this approach, namely, the
appearance of non-Hermiitan dynamics when non-inertial clocks are used. In particular, we
showed how acceleration or (Newtonian) gravitation of massive particles lead to the emergence
of non-unitarity from the perspective of quantum clocks internal to them. These results come
as a consequence of the coupling between external and internal degrees of freedom of a quantum
system including a clock subsystem (associated with the system’s proper time).

While this latter result may seem unexpected, it is in line with the expectations of part of the
community regarding the breakdown of unitarity in certain quantum gravity scenarios. In fact,
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using the equivalence principle, we can associate the non-unitarity to a gravitational effect, and
some authors have hypothesized that deviations from unitary evolution should be an ingredient
of the dynamics of quantum systems affected by gravity [42, 43, 44]. Although, in principle,
it is always possible to find a locally inertial frame, in practice, every system of reference is
inertial up to a certain order. Thus, further studies of these non-Hermitian systems seem to
be of fundamental importance. If one wishes to approximate a clock as an inertial frame for
a long period, what type of control must be applied to the clock? Analogously, if the clock is
approximated as inertial, for how long can it predict the correct state of a dynamical system
within some margin of error? What type of challenges does it bring to the comparison between
two quantum clocks? How is the flow of information across systems affected by the non-unitary
correction? These are some questions of interest for future work. There are also some possible
relations to make with P7-symmetric systems on the one hand (see some discussion in [17, 18],
and gravitational approaches towards the problem of time, as well as gravitationally-related
decoherence on the other hand.
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