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ABSTRACT

Two kinds of constraints are proposed and studied in the N = 2-
superspace formulation of the constant magnetic field system.
The constraints differ by the number of fermionic variables left
effectively independent in the superspace formulation. Both ty-
pes are recognized as being associated with the so-called stan-
dard and spin orbit coupling supersymmetrization procedures res-
pectively and deal with chiral-type constraints. Our simple
change of variables connecting the two-dimensional harmonic os-
cillator and the constant magnetic field contexts does also work
in these superspace formulations.

The N = 2-guperspace [1] is characterized by the time t and a

pair of anticommuting parameters $ and § such that :
[t,8] = {8,8} = {§,5} = {8,8} =0 m
so that the usual superderivatives are defined by
D= ag-i&at and D = 8&'i§8t . (2)
The fundamental superfields take here the form :

Zi(t,S,ﬁ) = qi(t) + igwi(t) + i&@i(t) + &gFi(t) . (3)

Then, the superlagrangian appears as
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L = j dSdeL = J d¥ds [} Bz,07, - W(z5)] (4)

where W refers to the superpotential associated with the central

potential :

U(g,2+a,%) = 2(q,2+q,0) (— 2 | (5)
1772 1 72 2 2
3(q,"+q,%)
12

With the following definitions :

2, =27, iz, (6)
the superdensity &f reads

1

£(Z+,Z_,Dz+,DZ+,DZ_,GZ') = 4 [62,Dz_-bz Dz 1 - W(z.2)) . (7)

Let us constraint this density in two different ways.

a) Chiral constraints

We first impose the so-called chiral constraints [2] :

(a) : D7 =0 ¢« DZ+ =0 . (8)

Within the classical point of view, these equations are expressed in

components by

(9)
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They imply that only two fermionic variables are left independent.

By imposing the constraints (a) in the expression (7) we obtain :
(a) _ 1 p5o(a)y,(a) (a),(a)
872 - 20202 - w@ %) (10)
with 28 = g 48y +i888. and 2'®) = g +i9% -i988
+ S 4 + q, - =4 - a -

The resulting lagrangian is then given by
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L) =g g, 2 (D0, D u )i (avd_~a_8,) - (Wsq q WOT Y, (1)

2

where W' = —T-ﬁﬂ-— s = AW
= ; =
9 q+q-) 8(q+q_)2
Now by defining the new functions
eA, = iq W' , eA = -ig W' (12a)
with
B--ie(@—n -2 n) =20 + q,q W) (12b)
aq+ + 9q_ - + - ’
we can rewrite L(a) an the form :
L s +2 Qo bu)verq +eng -Bgy (13)
Sl P /L O L + - -2 ety T

This lagrangian [2] is associated with the description of the interac-
tion with a magnetic field B oriented along the z-axis. The cor-

responding equations of motion are given by

Gy = eBq, - e(aq1a)®1¢1

(14)
qz = —qu,l - B(qus)mf'\l)»l ’
for the bosonic variables and by
¢1 z ~ieB¢1¢: wz = -iesz
(15)
&1 = ieB@1 € @2 = ieB@2

for the fermionic variables.
Let us consider now the guantum point of view. In such a con-
text the two independent fermionic variables w1 and ¢1 satisfy :
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{w1,x’b1} =1 . (16)

Then, from the relations (9) and (16), we directly obtain the follo-

wing anticommutation relstions :
{11)1@2} = -i1 , {‘l’zgm?} =il , (17)
so that we can summarize all these relations on the form :

Gij + ieij (18)

H

with €9 = -i1 = “€5q
This has to be related with the spin-orbit coupling procedure of su-
persymmetrization [3].

b) More general constraints

The second way to constraint the superdensity (7) is given by consi-

dering the following relations [4] :
(b) : 502_ = 0« DDZ+ =0 . (19)

Within the classical point of view, these relations are expressed in

components on the form :

Fo=-i4_; y_=0¢> F+ = iﬁ+ H ¢+ =0 , (20)

which have to be compared with Egs. (9). Then the constraints (19)
appear weaker than the chiral ones and they leave four fermionic va-

riables independent :

R R (21)
For the associated superdensity we get :
glb) _

(Bas0R) - 4 (02 ®)yp2 P w2 (P4 P (22)

-+

&l
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with

(b) . 0S¢ ol
z, q++15¢++19¢+195q+ ,

20 = q +iBgrisD -19%q_

and

A= -} 3$+¢_ 1 5¢+¢_ .

The corresponding lagrangian reads :

L(B) | 8,4 +_15 (;p_¢+_¢_¢+) +eh G_+ehq, - Z—B v +0 ) +

ie[<g—q+ AOVT, - (o AV D] (23)
with exactly the same definition for the functions A+, A_and B as
before (see Egs. (12)).

It results from all these considerations that we can also make
here the connection with the interaction with a magnetic field B
oriented along the z-axis,

(b)

Let us notice that the lagrangian L is not gauge invariant.
However we can restore it if and only if the magnetic field is cons-
tant. Fipally, in the quantum context, we can make the connection
with the standard [31,{5] procedure of supersymmetrization characte-
rized by four independent fermionic variables which satisfy a Clif-

ford algebra (i, j = 1, 2) :
{¢is¢j} = Gij ’ {w17WJ} =0 = {mi9¢j} ¢ (24)

c) A change of variables between the harmonic oscillator and magnetic

contexts
Let us consider now a very simple change of variables [6] between the
two-dimensional harmonic oscillator and the constant magnetic field
systems in the superspace formalism. It will illuminate certain
points of our above considerations. The change of variables is here

extended to bosonic as well as to fermionic variables. It becomes
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q?(t) = Rij(t)q?(t) )
W20 = Ry vle) , 30 = R 0T
with
cos wt -sin wt
R(t) = ,e=2 (25)
sin wt cos wt

where the superscripts 0 and M refer respectively to the harmonic os-
cillator and magnetic contexts. This change of variables puts in a
one-to-one correspondence the constant magnetic field with an harmo-
nic oscillator whose the frequency is ;E . It implies the follo-

wing relations between the corresponding superfields :

0 M M 0
Z, = Rij(t)zj(t,s,s) €7, = Rji(t)zj(t,&,S) . (26)

Then, by applying the change of variables to the superdensity

D

0 _ 0 w 0,0
£ =3 02.07) - 5 2.7, (27)

characteristic of the harmonic oscillator, we obtain
M M M W M_M
€ =14 (Dzi)(Dzi) -7 (1+m%)zizi +
iw M_M M_M
7 [(90—30)2221 + (SD-SD)Z122] (28)

which corresponds to the magnetic case. The classical associated

®quations of motion are given by

M M
q1 = GBQZ
(29)
<M .M
q2 = ~qu1

for the bosonic variables and by
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wﬂ = —ieB¢T¢: = ey
(30)
\J)M:O = {[’M-O

for the fermionic variables. By solving the fermionic equations (30)

we obtain

-~ constant
and (31)
mM = ¢ = constant .

Mg

Hi

Such a result shows that this approach contains the two kinds of
constraints we have considered before. The first one was associated
to the annulation of the constants ¢ and ¢ (see (a)) while the

second one gave a nonzero value to these same constants {see (b)).
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