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Abstract
Weprove a universal substitution formula that compares
generating series of Euler characteristics of Nakajima
quiver varieties associated with affine ADE diagrams
at generic and at certain non-generic stability condi-
tions via a study of collapsing fibres in the associated
variation of GIT map, unifying and generalising earlier
results of the last two authorswithNémethi and ofNaka-
jima. As a special case, we compute generating series of
Euler characteristics of non-commutative Quot schemes
of Kleinian orbifolds. In type A and rank 1, we give a
second, combinatorial proof of our substitution formula,
using torus localisation and partition enumeration. This
gives a combinatorial model of the fibres of the varia-
tion of GIT map, and also leads to relations between our
results and the representation theory of the affine and
finite Lie algebras in type A.
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1 INTRODUCTION

Nakajima quiver varieties are hyper-Kähler quotients that often represent moduli functors.
Some examples include the instanton moduli spaces of ALE spaces [16], non-commutative Quot
schemes of Kleinian orbifolds [3] as well as various other moduli spaces which, in many cases,
have some relation to the McKay correspondence.
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In this paper, we consider Nakajima quiver varieties associated to graphs of affine ADE type. It
is known that for generic stability parameters, these spaces are smooth. However, in many cases
when these spaces are closely related to moduli spaces such as non-commutative Quot schemes
of Kleinian orbifolds or, as a specific case, the Hilbert scheme points of a Kleinian singularity,
the quiver moduli spaces are singular. As is well known, for each dimension vector the space of
stability parameters has a wall-and-chamber structure; singular spaces correspond to non-generic
stability parameters in this decomposition.
The Euler numbers of smooth quiver varieties of affine ADE type can be calculated by various

methods. One possibility is the general method of [12], but it is difficult to investigate properties of
the formulae obtained this way. For a specific open chamber 𝐹𝐼 in the space of stability conditions
and rank 1 framing, the combination of the results of [15, 17] and the Frenkel–Kac theorem was
used in [10] to obtain a formula for the generating series in formal variables; see formula (2) below.
In this paper, we compute the generating function of Euler characteristics of Nakajima quiver

varieties of affine ADE type corresponding to non-generic stability conditions lying on the bound-
ary of the chamber 𝐹𝐼 in terms of a universal substitution into the generating function attached
to the smooth models. Our method following Nakajima [20] is to analyse the fibres of the map
induced by the variation of the GIT stability condition

𝜋𝜁∙,𝜁 ∶ 𝔐𝜁(𝑣, 𝑤) → 𝔐𝜁∙(𝑣, 𝑤), (1)

when the stability parameter moves from 𝜁 in the interior of the chamber to 𝜁∙ on a wall.
Let 𝐼 be the vertex set of an affine ADE Dynkin diagram 𝐷. Let

𝑍𝐼(𝑤) =
∑
𝑣∈ℕ𝐼

𝜒(𝔐𝜁(𝑣, 𝑤))𝑒
−𝑣

be the generating function of Nakajima quiver varieties associated to the diagram 𝐷 for a fixed
general framing vector 𝑤, arbitrary dimension vector 𝑣 and generic stability condition 𝜁 (see Sec-
tion 3.1 for the precise definition of the space where such sums live). The following universal
substitution formula, which generalizes and unifies a number of earlier results in [11, 20], is our
first main result.

Theorem 1.1 (Theorem 3.9). Let 𝐼0 ⊂ 𝐼 be a non-empty, proper subset of the vertex set 𝐼 with com-
plement 𝐼+ = 𝐼 ⧵ 𝐼0. Let 𝜁∙ ∈ 𝐹𝐼+ be a degenerate stability condition in the stratum of the boundary
of the open chamber 𝐹𝐼 corresponding to 𝐼+; see Section 2.2. Let

𝑍𝐼+(𝑤) =
∑

𝑣+∈ℕ𝐼+

𝜒(𝔐𝜁∙(𝑣
⊕,𝑤))𝑒−𝑣

+
,

where, for every 𝑣+ ∈ ℕ𝐼+ , 𝑣⊕ ∈ ℕ𝐼 is chosen so that 𝔐𝜁∙(𝑣
⊕,𝑤) is the essentially unique and in

a precise sense largest singular quiver variety containing all other𝔐𝜁∙(𝑣
′, 𝑤) with 𝑣′|𝐼+ = 𝑣+ (see

Proposition 3.6 and surrounding discussion). Then, with the substitution 𝑠𝐼0 defined inDefinition 3.2,
and a specified complex root of unity 𝑐𝑤,𝐼0 , we have

𝑍𝐼+(𝑤) = 𝑐−1
𝑤,𝐼0

⋅ 𝑠𝐼0 (𝑍𝐼(𝑤)).

Building on the ideas of [4] dealing with the case of the Hilbert scheme, in [3], the second and
third authors with their coauthors define certain Quot schemes of modules on simple quotient

 14697750, 2025, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.70074 by D

E
SY

 - Z
entralbibliothek, W

iley O
nline L

ibrary on [20/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



EULER CHARACTERISTICS OF AFFINE ADE NAKAJIMA QUIVER VARIETIES 3 of 28

surface orbifolds, and identify their underlying reduced subschemes with Nakajima quiver
varieties for 𝑤 = Λ0, the zeroth fundamental weight; see Theorem 3.10 below. We can apply
Theorem 1.1 in this context. Let ∅ ≠ 𝐼0 ⊊ 𝐼, 𝐼+ = 𝐼 ⧵ 𝐼0 its complement, and let

𝑍𝐼+(Λ0) =
∑

𝑣+∈ℕ𝐼+

𝜒
(
Quot𝑣

+

𝐼+
([ℂ2∕Γ])

)
𝑒−𝑣

+

be the generating function of Euler characteristics of the orbifold Quot schemes.

Theorem 1.2 (Corollary 3.13)).We have

𝑍𝐼+(Λ0) = (𝑐Λ0,𝐼0 )
−1

(
∞∏
𝑘=1

(1 − 𝑒−𝑘𝛿|𝐼+ )
)−𝑛−1 ∑

𝑣∈ℤ𝐼′

exp(−𝑘𝐼+ ⋅ 𝑣)𝑒−𝑣|𝐼+ 𝑒−( 1
2
𝑣𝐶′𝑣𝑇

)
𝛿|𝐼+ .

Here 𝛿 is the imaginary affine root, 𝐼′ = 𝐼 ⧵ {0} is the vertex set of the finite type Dynkin diagram, 𝐶′

is the finite type Cartan matrix and 𝑘𝐼+ ∈ 2𝜋
√
−1ℚ𝐼′ is a specified vector.

This expresses the generating function of Euler characteristics of our Quot schemes as a kind of
Jacobi–Riemann–type theta-function, twistedwith roots of unity. After further substituting 𝑒−𝛼𝑖 =
𝑞𝛿𝑖 into the above generating series, we get a power series 𝑍𝐼+(𝑞) in a formal variable 𝑞.

Theorem 1.3 (Theorem 3.14). The series 𝑍𝐼+(𝑞) is the 𝑞-expansion of a meromorphic modular form
for some congruence subgroup of SL(2, ℤ).

This result confirms a consequence of S-duality [23] for our singular moduli spaces. In the
abelian case, our series specialise to certain partition functions which have already appeared
in the physics literature as twisted sectors [5]; we thus in particular confirm the modularity of
these expressions.
In a different direction, it is well known that in the type A case, torus localisation often reduces

questions concerning quiver varieties to problems about computing generating functions of cer-
tain partitions (Young diagrams). We perform this analysis, giving a second proof of Theorem 1.2
in type A and rank 1 framing. In Proposition 4.7, we show how this sheds light on the combina-
torics of sets of torus fixed points collapsing together under the variation of GIT map (1). We also
discuss the fermionic Fock space representation of the affine type A Lie algebra 𝔰𝔩𝑛+1, and we
define certain natural subspaces of this representation whose graded dimension agrees with our
generating function 𝑍𝐼+ (Proposition 4.9). We finally derive in Proposition 4.10 a natural combi-
natorial model of highest weight representations of finite-dimensional Lie algebras 𝔰𝔩𝑟 related to
the collapsing fibres; this model may be new and of independent interest.
The structure of the rest of the paper is as follows. In Section 2, we review the necessary nota-

tions and results on Nakajima quiver varieties and ADE root systems. In Section 3.1, we introduce
our substitution, prove Theorem 1.1, then apply our result toQuot schemes to deduce Theorem 1.2,
and finally we prove Theorem 1.3. In Section 4, we give a second, combinatorial proof to Theo-
rem 1.2 in the type A case by investigating the fibres of the variation of GIT map, and discuss
representation-theoretic connections. Appendix A collects information about Cartan matrices
that are required for the evaluation of our formulae.

 14697750, 2025, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.70074 by D

E
SY

 - Z
entralbibliothek, W

iley O
nline L

ibrary on [20/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 of 28 BERTSCH et al.

2 PRELIMINARIES

2.1 Nakajima quiver varieties

We fix an undirected graph𝐷 with vertex set 𝐼. We associate to𝐷 the double quiver𝑄, which is the
directed graph obtained from𝐷 by replacing every undirected edge of 𝑄 by two inversely directed
edges between the same vertices in 𝑄. We write 𝑄 = (𝐼,𝐻, 𝑠, 𝑡) (or short, 𝑄 = (𝐼,𝐻)), where 𝐼 is
the set of vertices,𝐻 is the set of directed edges and 𝑠, 𝑡 ∶ 𝐻 → 𝐼 are the assignment of source and
target vertex to a given edge.
Let 𝑣, 𝑤 ∈ ℕ𝐼 . Fix a stability condition 𝜁 ∈ ℚ𝐼 . Depending on this data, Nakajima defines the

quiver variety𝔐𝜁(𝑣,𝑤) as themoduli space of 𝜁-semistable𝑤-framed𝑄-modules of dimension 𝑣.
We collect here a few relevant facts about quiver representations and Nakajima quiver varieties;
see [19] for details.
A (framed) representation (𝑉,𝑊, 𝑓, 𝑎, 𝑏) (or short, (𝑉,𝑊)) of a quiver𝑄 = (𝐼,𝐻) is a collection

of finite-dimensional vector spaces (𝑉𝑖)𝑖∈𝐼, (𝑊𝑖)𝑖∈𝐼 together with linear maps

𝑓 = (𝑓ℎ ∶ 𝑉𝑠(ℎ) → 𝑉𝑡(ℎ))ℎ∈𝐻, 𝑎 = (𝑎𝑖 ∶ 𝑊𝑖 → 𝑉𝑖)𝑖∈𝐼, and 𝑏 = (𝑏𝑖 ∶ 𝑉𝑖 → 𝑊𝑖)𝑖∈𝐼.

We call a representation of 𝑄 a module if (𝑓, 𝑎, 𝑏) additionally satisfy the relations of the prepro-
jective algebra (the definition of which we will not go into here). Given 𝜁 ∈ ℚ𝐼 , a module (𝑉,𝑊)

is called 𝜁-semistable, if for any subspace 𝑉′ of 𝑉, closed under all 𝑓, we have

𝑉′ ⊆ Ker(𝑏) ⇒ 𝜁 ⋅ dim(𝑉′) ⩽ 0,

𝑉′ ⊇ Im(𝑎) ⇒ 𝜁 ⋅ dim(𝑉′) ⩽ 𝜁 ⋅ dim(𝑉),

where dim(𝑉) denotes the vector (dim(𝑉𝑖))𝑖∈𝐼 and 𝜁 ⋅ dim(𝑉) =
∑

𝑖∈𝐼 𝜁𝑖 dim(𝑉𝑖). The module
(𝑉,𝑊) is called 𝜁-stable if it is 𝜁-semistable and the above inequalities are strict for all proper,
non-zero subspaces 𝑉′ satisfying the stated conditions. We assume throughout that 𝜁𝑖 ⩾ 0 for all
𝑖 ∈ 𝐼.
By a submodule of (𝑉,𝑊)wemean a subspace 𝑉′ as above, that is, closed under 𝑓, with either

𝑉′ ⊆ Ker(𝑏) or 𝑉′ ⊇ Im(𝑎). In the first case, we view (𝑉′, 0) as an (unframed) module, and in the
second case we view (𝑉′,𝑊) as another𝑊-framed module.
Modules of a given double quiver admit Harder–Narasimhan filtrations and a notion of S-

equivalence. The space𝔐𝜁(𝑣,𝑤) is a coarse moduli space of 𝜁-semistable modules (𝑉,𝑊) with
dim(𝑉) = 𝑣 and dim(𝑊) = 𝑤, up to S-equivalence. It contains an open subset𝔐𝑠

𝜁
(𝑣, 𝑤), which is

a fine moduli space for 𝜁-stable modules, up to isomorphism. Furthermore, each S-equivalence
class of semistable modules contains a unique polystable member which is a direct sum of
stable modules, and 𝔐𝜁(𝑣,𝑤) is likewise a coarse moduli space of 𝜁-polystable modules up
to isomorphism.

2.2 Nakajima quiver varieties for affine ADE Dynkin diagrams

From now on, we assume that 𝑄 is the double quiver associated to a Dynkin diagram 𝐷 of affine
ADE type, with vertex set 𝐼. According to the McKay correspondence, to such a diagram 𝐷, there
corresponds a finite subgroup Γ < SL(2, ℂ), up to conjugation. The vertices of 𝐷 in turn corre-
spond to the irreducible representations of Γ; denote these representations {𝜌𝑖 ∶ 𝑖 ∈ 𝐼}, with 𝜌0
the trivial representation.

 14697750, 2025, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.70074 by D

E
SY

 - Z
entralbibliothek, W

iley O
nline L

ibrary on [20/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



EULER CHARACTERISTICS OF AFFINE ADE NAKAJIMA QUIVER VARIETIES 5 of 28

Pick a subset 𝐼+ ⊆ 𝐼 and let

𝐹𝐼+ = {𝜁 ∈ ℚ𝐼 | 𝜁𝑖 ⩾ 0 for all 𝑖 ∈ 𝐼, and 𝜁𝑖 > 0 ⇔ 𝑖 ∈ 𝐼+}.

Then 𝐹𝐼 is an open cone in the spaceℚ𝐼 of stability conditions; we call a stability condition 𝜁 ∈ 𝐹𝐼
generic. The sets 𝐹𝐼+ for 𝐼+ ⊊ 𝐼 form a stratifiction of the boundary of 𝐹𝐼 . For any 𝜁 ∈ 𝐹𝐼+ and
𝜁∙ ∈ 𝐹𝐼+ , (the closure of 𝐹𝐼+ in ℚ𝐼 ; equivalently, 𝜁∙ ∈ 𝐹𝐼+′ with 𝐼+

′
⊆ 𝐼+), there is a projective

morphism

𝜋𝜁∙,𝜁 ∶ 𝔐𝜁(𝑣, 𝑤) → 𝔐𝜁∙(𝑣, 𝑤)

which is obtained by GIT degeneration. This morphism is an isomorphism if 𝜁∙ ∈ 𝐹𝐼+ as well.
The set of such morphisms is closed under all possible compositions.
The stable part𝔐𝑠

𝜁
(𝑣, 𝑤) is always smooth. For a generic stability condition 𝜁 ∈ 𝐹𝐼 ,𝔐𝜁(𝑣,𝑤) =

𝔐𝑠
𝜁
(𝑣, 𝑤), and is therefore smooth. Any𝜋𝜁∙,𝜁 induces an isomorphism from𝜋−1

𝜁∙,𝜁
(𝔐𝑠

𝜁∙
(𝑣, 𝑤)) onto

its image. At the special stability condition 𝜁 = 0 ∈ 𝐹∅, the quiver variety 𝔐0(𝑣,𝑤) is an affine
algebraic variety.
Let 𝜁∙ ∈ 𝐹𝐼+ be a non-generic stability condition for 𝐼+ ⊊ 𝐼. Let 𝐼0 = 𝐼 ⧵ 𝐼+ denote the com-

plement of 𝐼+. The direct-sum decomposition of any 𝜁∙-polystable module (𝑉,𝑊) is of the
form

(𝑉,𝑊) = (𝑉′,𝑊) ⊕
⨁
𝑖∈𝐼0

(𝑆𝑖, 0)
⊕𝑣𝑠

𝑖 ,

where (𝑉′,𝑊) is 𝜁∙-stable, 𝑆𝑖 denotes the unframed module which is a one-dimensional vector
space at vertex 𝑖 and zero everywhere else, and 𝑣𝑠 = 𝑣 − 𝑣′; this follows from [16, Proposition 6.7]
since 𝑣𝑠 is supported on a finite-typeDynkin diagram. This allows us to decompose𝔐𝜁∙(𝑣, 𝑤) into
locally closed strata, each isomorphic to𝔐𝑠

𝜁∙
(𝑣′, 𝑤) for some 𝑣′ ⩽ 𝑣with 𝑣′

𝑖
= 𝑣𝑖 for all 𝑖 ∈ 𝐼+; here

𝑣′ ⩽ 𝑣 denotes the obvious componentwise partial order on ℕ𝐼 . Conversely, for any such 𝜁∙-stable
module (𝑉′,𝑊), and vector 𝑣𝑠 ⩾ 0 supported on 𝐼0, the direct sum above is a 𝜁-polystable module.
Hence, every such𝔐𝑠

𝜁∙
(𝑣′, 𝑤), if non-empty, appears as a stratum in𝔐𝜁∙(𝑣, 𝑤).

For the rest of this paper, 𝜁 ∈ 𝐹𝐼 will denote a generic stability condition, and 𝜁∙ ∈ 𝐹𝐼+ a non-
generic stability condition, with 𝐼+ ⊊ 𝐼.

2.3 Root systems

Let 𝔤 be the affine Lie algebra associated to 𝐷, and let 𝔥 ⊆ 𝔤 be a Cartan subalgebra. Let
(𝛼𝑖 ∈ 𝔥∨)𝑖∈𝐼 be the fundamental roots, 𝛿 ∈ 𝔥∨ the imaginary root, (𝛼∨

𝑖
∈ 𝔥)𝑖∈𝐼 the fundamental

coroots and (Λ𝑖 ∈ 𝔥∨)𝑖∈𝐼 the fundamental weights. The components of the imaginary root 𝛿 =∑
𝑖∈𝐼 dim(𝜌𝑖)𝛼𝑖 in the root basis coincide with the dimensions of the irreducible representations

of the finite group Γ.
We furthermore denote by ⟨ , ⟩∶ 𝔥∨ ⊗ 𝔥 → ℂ the natural pairing, and by 𝐶 = (𝐶𝑖𝑗)𝑖,𝑗∈𝐼 the

Cartan matrix. We have the following relations:

⟨𝛼𝑖, 𝛼∨𝑗 ⟩ = 𝐶𝑖𝑗 , ⟨𝛿, 𝛼∨
𝑗
⟩ = 0 , ⟨Λ𝑖, 𝛼

∨
𝑗
⟩ = 𝛿𝑖𝑗 for all 𝑖, 𝑗 ∈ 𝐼 .
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6 of 28 BERTSCH et al.

We can write 𝛿 =
∑

𝑖∈𝐼 𝑎𝑖𝛼𝑖 , for some 𝑎𝑖 ∈ ℕ. Also pick a distinguished root 𝛼0 (labelled by 𝑖 = 0)
satisfying 𝑎0 = 1, and introduce the scaling element 𝑑 ∈ 𝔥 by the conditions

⟨𝛼𝑖, 𝑑⟩ = 𝛿𝑖0 and ⟨Λ𝑖, 𝑑⟩ = 0 for all 𝑖 ∈ 𝐼 .

Then {𝛼∨
𝑖
}𝑖∈𝐼 ∪ {𝑑} is a basis for 𝔥. As a consequence we also obtain the relation

𝛼𝑖 = 𝛿𝑖0𝛿 +
∑
𝑗∈𝐼

𝐶𝑖𝑗Λ𝑗 for all 𝑖 ∈ 𝐼 .

Now suppose we are given a subset 𝐼0 ⊊ 𝐼 as above. Let 𝐷0 denote the (possibly disconnected)
Dynkin diagram which is the full subgraph of 𝐷 on the vertex set 𝐼0. The following is clear.

Lemma 2.1. 𝐷0 is a union of Dynkin diagrams of finite ADE type.

Let 𝔤fin be the finite-dimensional semisimple Lie algebra associated to 𝐷0. Let 𝔥fin be a Cartan
subalgebra. We denote simple roots and fundamental weights by 𝛼fin

𝑖
and Λfin

𝑖
, respectively, each

defined for 𝑖 ∈ 𝐼0. We furthermore make the identification 𝛼𝑖 = 𝛼fin
𝑖

for 𝑖 ∈ 𝐼0, which embeds
(𝔥fin)∨ into 𝔥∨. The associated finite Cartanmatrix 𝐶fin = (𝐶𝑖𝑗)𝑖,𝑗∈𝐼0 is invertible. The relations we
gave in the affine case are the same for 𝔤fin, except all the terms including 𝛿 or 𝑑 either become
irrelevant or vanish. In particular, we have

𝛼𝑖 =
∑
𝑗∈𝐼0

𝐶𝑖𝑗Λ
fin
𝑗 for all 𝑖 ∈ 𝐼0 .

This data will be used in the description of the geometry of Nakajima quiver varieties. We
identify dimension vectors 𝑣with affine roots and framing vector𝑤with affine weights as follows:

𝑣 =
∑
𝑖∈𝐼

𝑣𝑖𝛼𝑖 and 𝑤 =
∑
𝑖∈𝐼

𝑤𝑖Λ𝑖 .

We also consider Nakajima quiver varieties associated to the finite-type Dynkin diagram 𝐷0,
which we denote by 𝔐fin

𝜁
(𝑣𝑠, 𝑤𝑠), where 𝑣𝑠, 𝑤𝑠 ∈ ℕ𝐼0 (or, by abuse of notation, 𝑣𝑠 ∈ ℕ𝐼 with

non-vanishing coefficients only over 𝐼0) and 𝜁 ∈ ℚ𝐼0 is a stability parameter. Again, we identify

𝑣𝑠 =
∑
𝑖∈𝐼0

𝑣𝑠
𝑖
𝛼fin𝑖 =

∑
𝑖∈𝐼0

𝑣𝑠
𝑖
𝛼𝑖 and 𝑤𝑠 =

∑
𝑖∈𝐼0

𝑤𝑠
𝑖
Λfin
𝑖 .

The following results hold.

(1) 𝔐𝑠
𝜁∙
(𝑣, 𝑤) ≠ ∅ if and only if 𝑤 − 𝑣 ∈ 𝔥∨ appears as an 𝐼0-dominant weight of the highest-

weight representation𝑉(𝑤) of 𝔤. Here the difference is taken after identificationwithweights,
not component-wise, and 𝐼0-dominant means that ⟨𝑤 − 𝑣, 𝛼∨

𝑖
⟩ ⩾ 0 for all 𝑖 ∈ 𝐼0. This result

is [19, Proposition 2.30].
(2) Let 𝜁 ∈ 𝐹𝐼 be a generic stability condition for𝐷 and 𝜁∙ ∈ 𝐹𝐼+ . Let 𝑣 = 𝑣′ + 𝑣𝑠, 𝑣𝑠 supported on

𝐼0, determine a stratum isomorphic to𝔐𝑠
𝜁∙
(𝑣′, 𝑤) in𝔐𝜁∙(𝑣, 𝑤). Let 𝜁|𝐼0 ∈ ℚ𝐼0 be the restricted

stability condition for 𝐷0. By [19, Section 2.7], the fibre of 𝜋𝜁∙,𝜁 over any point in this stratum

 14697750, 2025, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.70074 by D

E
SY

 - Z
entralbibliothek, W

iley O
nline L

ibrary on [20/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



EULER CHARACTERISTICS OF AFFINE ADE NAKAJIMA QUIVER VARIETIES 7 of 28

is isomorphic to a distinguished Lagrangian subvariety fin
𝜁|𝐼0 (𝑣𝑠, 𝑤𝑠) ⊂ 𝔐fin

𝜁|𝐼0 (𝑣𝑠, 𝑤𝑠), where

𝑤𝑠 =
∑
𝑖∈𝐼0

⟨𝑤 − 𝑣′, 𝛼∨
𝑖
⟩Λfin

𝑖 .

Further, the inclusionfin
𝜁|𝐼0 (𝑣𝑠, 𝑤𝑠) ⊂ 𝔐fin

𝜁|𝐼0 (𝑣𝑠, 𝑤𝑠) is a homotopy equivalence by [16, Cor.5.5].
So as far as the Euler characteristics of fibres are concerned, one can work with the full quiver
varieties for finite-type diagrams. We learned this trick from [20, 1(iv)].

3 THE SUBSTITUTION FORMULA AND ITS APPLICATIONS

3.1 The substitution rule and its properties

In order to write down our generating functions in an economical way, we introduce formal
variables 𝑒𝑣 for all 𝑣 ∈ 𝔥∨, subject to the relations 𝑒0 = 1 and 𝑒𝑣1+𝑣2 = 𝑒𝑣1𝑒𝑣2 . We will consider
generating functions in which infinitely many 𝑒𝑣 appear with non-zero coefficients, keeping in
mind that one needs to take care that products or substitutions of such functions are well-defined.
In order to define our substitution of variables, we first introduce some notation.

∙ Let 𝑗 ∈ 𝐼0. The Dynkin diagram 𝐷0 has a connected component 𝐷0,𝑗 containing 𝑗, which is the
Dynkin diagram corresponding to a finite-dimensional simple Lie algebra. Let ℎ𝑗 denote the
dual Coxeter number of 𝐷0,𝑗 .

∙ Recall that 𝐶fin denotes the Cartan matrix of 𝐷0. For 𝑗 ∈ 𝐼0 define

𝑐𝑗 ∶=
∑
𝑘∈𝐼0

((𝐶fin)−1)𝑗,𝑘,

the sum of elements of the 𝑗-th row of the inverse of 𝐶fin.

Lemma 3.1. Consider the finite type Dynkin diagramwhich is the full subgraph on vertex set 𝐼 ⧵ {0},
and let ℎ be its dual Coxeter number. Then

ℎ = 1 +
∑

0→𝑗∈𝐼⧵{0}

𝑐𝑗 ,

where we sum over all arrows in 𝑄 starting at 0 and ending at a vertex in 𝐼 ⧵ {0}.

Proof. The equality can be checked case by case, using the data presented in Appendix A. □

Definition 3.2. We define the substitution 𝑠𝐼0 as follows.

𝑠𝐼0 ∶

⎧⎪⎨⎪⎩
𝑒𝛼𝑖 ↦ exp

(
2𝜋

√
−1

ℎ𝑖+1

)
, 𝑖 ∈ 𝐼0 ,

𝑒𝛼𝑖 ↦ 𝑒𝛼𝑖
∏

𝑖→𝑗∈𝐼0 exp

(
−𝑐𝑗

2𝜋
√
−1

ℎ𝑗+1

)
, 𝑖 ∈ 𝐼+ .

These formulae are then extended to substitutions of the terms 𝑒Λ
fin
𝑖 , possibly involving higher-

order roots of unity.
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8 of 28 BERTSCH et al.

Example 3.3. Let 𝐼+ = {0}. Then the subgraph 𝐷0 is a connected finite type Dynkin diagram; let
ℎ denote its dual Coxeter number. By virtue of Lemma 3.1, the substitution in this case specialises
to

𝑠𝐼0 ∶

⎧⎪⎨⎪⎩
𝑒𝛼𝑖 ↦ exp

(
2𝜋

√
−1

ℎ+1

)
, 𝑖 ≠ 0 ,

𝑒𝛼𝑖 ↦ 𝑒𝛼𝑖 exp

(
4𝜋

√
−1

ℎ+1

)
, 𝑖 = 0 .

This formula is equivalent to the substitution subject to the conjecture of the last two authors
and Némethi [10], which was proven by Nakajima [20].

Our substitution has the following two properties, which are crucial for our calculations. We
first obtain a slight generalisation of Nakajima’s quantum dimension result.

Proposition 3.4. For a generic stability condition 𝜁 ∈ 𝐹𝐼 , we have

𝑠𝐼0

⎛⎜⎜⎝
∑

𝑣𝑠∈ℕ𝐼0

𝜒
(
𝔐fin

𝜁|𝐼0 (𝑣𝑠, 𝑤𝑠)
)
𝑒𝑤

𝑠−𝑣𝑠
⎞⎟⎟⎠ = 1 for all 𝑤𝑠 ∈ ℕ𝐼0 .

Proof. The statement is proved in [20, Theorem 2] for connected finite-type Dynkin diagrams, by
interpreting the left-hand side as the quantum dimension of the standardmodule of the quantum
loop algebra over 𝔤fin.
The statement for disconnected Dynkin diagrams is then obtained as follows. Notice that, since

𝜁|𝐼0 > 0, a 𝑄0-module is 𝜁|𝐼0 -(semi)stable if and only if it does not contain any proper, non-zero
submodules ⊆ Ker(𝑏), which, in turn, holds if and only if its restrictions to the connected com-
ponents of 𝑄0 satisfy the same condition. Hence, the quiver variety in this case is just the product
of the quiver varieties associated with the connected components. Since the Euler characteristic
is multiplicative on products, the generating series above is simply the product of the respective
generating series for the connected components. □

In order to state the second property, we introduce new variables

𝛼̃𝑖 ∶=
∑
𝑗∈𝐼0

𝐶𝑖𝑗Λ
fin
𝑗 for all 𝑖 ∈ 𝐼 .

Notice that 𝛼̃𝑖 = 𝛼𝑖 for 𝑖 ∈ 𝐼0 but not for 𝑖 ∈ 𝐼+.

Proposition 3.5.

𝑠𝐼0
(
𝑒𝛼𝑖−𝛼̃𝑖

)
= 𝑒𝛼𝑖 for all 𝑖 ∈ 𝐼+.

Proof. Unravelling the linear relations between 𝛼𝑖 , Λ𝑖 , and 𝛼̃𝑖 , we obtain

𝛼𝑖 − 𝛼̃𝑖 =
∑
𝑗∈𝐼

𝐵𝑖𝑗𝛼𝑗 , where 𝐵 =

(
id𝐼+ 𝐵̃

0 0

)
,
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EULER CHARACTERISTICS OF AFFINE ADE NAKAJIMA QUIVER VARIETIES 9 of 28

and 𝐵̃ is a matrix whose rows are indexed by 𝐼+ andwhose columns are indexed by 𝐼0, determined
as follows. For 𝑖 ∈ 𝐼+ the 𝑖-th row of 𝐵̃ is the sum of 𝑗-rows of (𝐶fin)−1, where we sum over edges
connecting 𝑖 to some 𝑗 ∈ 𝐼0. Collecting all the corresponding factors one can now see that

𝑠𝐼0
(
𝑒𝛼𝑖−𝛼̃𝑖

)
= 𝑒𝛼𝑖

⎛⎜⎜⎝
∏

𝑖→𝑗∈𝐼0

exp

(
−𝑐𝑗

2𝜋
√
−1

ℎ𝑗 + 1

)⎞⎟⎟⎠
⎛⎜⎜⎝

∏
𝑖→𝑗∈𝐼0

exp

(
𝑐𝑗
2𝜋

√
−1

ℎ𝑗 + 1

)⎞⎟⎟⎠ = 𝑒𝛼𝑖 .

□

3.2 Proof of the universal substitution formula

The following finiteness result will explain why the substituted generating function is actually
well defined, and what exactly it enumerates.

Proposition 3.6. For any 𝑣+ ∈ ℕ𝐼+ , there are only finitely many 𝑣 ∈ ℕ𝐼 with 𝑣|𝐼+ = 𝑣+ and
𝔐𝑠

𝜁∙
(𝑣, 𝑤) ≠ ∅. Consequently there exists 𝑣⊕ ∈ ℕ𝐼 such that

(1) 𝑣⊕|𝐼+ = 𝑣+, and
(2) any 𝑣 ∈ ℕ𝐼 with 𝑣|𝐼+ = 𝑣+ and𝔐𝑠

𝜁∙
(𝑣, 𝑤) ≠ ∅ satisfies 𝑣 ⩽ 𝑣⊕.

For any such 𝑣⊕, we furthermore have

𝜒(𝔐𝜁∙(𝑣
⊕,𝑤)) =

∑
𝑣∈ℕ𝐼

𝑣|𝐼+=𝑣+
𝜒(𝔐𝑠

𝜁∙
(𝑣, 𝑤)).

Proof. Recall that 𝔐𝑠
𝜁∙
(𝑣, 𝑤) ≠ ∅ if and only if 𝑤 − 𝑣 is an 𝐼0-dominant weight in the highest

weight representation 𝑉(𝑤) of 𝔤. 𝐼0-dominance of 𝑤 − 𝑣 is equivalent to

⟨𝑤, 𝛼∨
𝑖
⟩ ⩾ ⟨𝑣, 𝛼∨

𝑖
⟩ = ⟨𝑣+, 𝛼∨

𝑖
⟩ + ⟨𝑣0, 𝛼∨

𝑖
⟩ for all 𝑖 ∈ 𝐼0 ,

where 𝑣0 = 𝑣 − 𝑣+ ⩾ 0 is supported on 𝐼0. Since the dimension vectors 𝑣0 have only non-negative
components, we furthermore have the inequality ⟨𝑣0, 𝑐|𝐼0⟩ ⩾ 0, where 𝑐|𝐼0 = ∑

𝑖∈𝐼0 𝛿𝑖𝛼
∨
𝑖
is the

restriction of the central element of 𝔤. Since the coefficients of 𝑐|𝐼0 with respect to the 𝛼𝑖 are pos-
itive, the region in ℝ𝐼0 cut out by the above inequalities for 𝑣0 is bounded (in fact, a simplex),
and hence contains only finitely many 𝑣0 with integer coefficients. One can then choose 𝑣⊕, for
example, as the component-wise maximum of all such 𝑣.
The second claim follows from the fact that𝔐𝜁∙(𝑣

⊕,𝑤) is stratifiedwith strata in bijectionwith
and isomorphic to𝔐𝑠

𝜁∙
(𝑣, 𝑤), for 𝑣|𝐼+ = 𝑣+. □

Remark 3.7. Note that Proposition 3.6 does not state that the stable locus𝔐𝑠
𝜁∙
(𝑣⊕,𝑤) is non-empty.

The vector 𝑣⊕ is merely chosen so that 𝔐𝜁∙(𝑣
⊕,𝑤) contains all the non-empty 𝔐𝑠

𝜁∙
(𝑣, 𝑤) with

𝑣|𝐼+ = 𝑣+ as strata. In particular, once a vector 𝑣⊕ satisfying Proposition 3.6 is found, any other
vector 𝑣⊕′

⩾ 𝑣⊕ with 𝑣⊕′ |𝐼+ = 𝑣+ will satisfy Proposition 3.6 as well.
It seems likely that, up to isomorphism,𝔐𝜁∙(𝑣

⊕,𝑤) does not actually depend on the choice of
𝑣⊕ as long as it satisfies the conditions of Proposition 3.6. For any two such dimension vectors
𝑣⊕ ⩽ 𝑣⊕

′ , the map given by adding a (𝑣⊕′
− 𝑣⊕)-dimensional trivial module to a given 𝑄-module
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10 of 28 BERTSCH et al.

induces a closed embedding 𝔐𝜁∙(𝑣
⊕,𝑤) → 𝔐𝜁∙(𝑣

⊕′
, 𝑤); the details of this will be investigated

in forthcoming work. From the properties given in Section 2, we furthermore know that this
morphism is a bijection on closed points. Hence, at least the underlying reduced subscheme of
𝔐𝜁∙(𝑣

⊕,𝑤) does not depend on the choice of 𝑣⊕.

Now recall that our framing vector for the fibre of 𝜋𝜁∙,𝜁 over the stratum in 𝔐𝜁∙(𝑣, 𝑤)

isomorphic to𝔐𝑠
𝜁∙
(𝑣′, 𝑤) is defined as

𝑤𝑠 ∶=
∑
𝑖∈𝐼0

⟨𝑤 − 𝑣′, 𝛼∨
𝑖
⟩Λfin

𝑖 ,

which depends on 𝑤 and 𝑣′. For brevity, let us denote 𝑤|𝐼0 = ∑
𝑖∈𝐼0 𝑤𝑖Λ

fin
𝑖
, where 𝑤 =

∑
𝑖∈𝐼 𝑤𝑖Λ𝑖

and 𝑣′ =
∑

𝑖∈𝐼 𝑣
′
𝑖
𝛼𝑖 .

Lemma 3.8.

𝑤𝑠 = 𝑤|𝐼0 − 𝑣′ +
∑
𝑗∈𝐼

𝑣′𝑗(𝛼𝑗 − 𝛼𝑗).

Proof.

𝑤𝑠 =
∑
𝑖∈𝐼0

⟨𝑤 − 𝑣′, 𝛼∨
𝑖
⟩Λfin

𝑖

=𝑤|𝐼0 − ∑
𝑖∈𝐼0

⟨𝑣′, 𝛼∨
𝑖
⟩Λfin

𝑖

=𝑤|𝐼0 − ∑
𝑖∈𝐼0,𝑗∈𝐼

𝑣′𝑗𝐶𝑗𝑖Λ
fin
𝑖

=𝑤|𝐼0 − 𝑣′ +
∑
𝑗∈𝐼

𝑣′𝑗(𝛼𝑗 − 𝛼𝑗) .
□

As in the Introduction, fix a framing vector 𝑤 ≠ 0 and a generic stability condition 𝜁. We
consider the generating function

𝑍𝐼(𝑤) ∶=
∑
𝑣∈ℕ𝐼

𝜒(𝔐𝜁(𝑣, 𝑤))𝑒
−𝑣

of smooth Nakajima quiver varieties at generic stability. Our main result is the following.

Theorem 3.9. The substituted generating series 𝑠𝐼0(𝑍𝐼(𝑤)) is well defined. The substitution formula

𝑠𝐼0(𝑍𝐼(𝑤)) = 𝑐𝑤,𝐼0
∑

𝑣+∈ℕ𝐼+

𝜒(𝔐𝜁∙(𝑣
⊕,𝑤))𝑒−𝑣

+

holds, where for every 𝑣+ ∈ ℕ𝐼+ , 𝑣⊕ ∈ ℕ𝐼 is chosen as in Proposition 3.6, and

𝑐𝑤,𝐼0 = 𝑠𝐼0(𝑒
−𝑤|𝐼0 )

is a complex root of unity.
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EULER CHARACTERISTICS OF AFFINE ADE NAKAJIMA QUIVER VARIETIES 11 of 28

Proof. By means of the stratification of𝔐𝜁∙(𝑣, 𝑤) and homotopy type of fibres of 𝜋𝜁∙,𝜁 , we obtain
that

𝜒
(
𝔐𝜁(𝑣,𝑤)

)
=
∑
𝑣′

𝜒
(
𝔐𝑠

𝜁∙
(𝑣′, 𝑤)

)
𝜒
(
𝔐fin

𝜁|𝐼0 (𝑣𝑠, 𝑤𝑠)
)
,

where the sum runs over all 𝑣′ for which𝔐𝑠
𝜁∙
(𝑣′, 𝑤) ≠ ∅, 𝑣𝑠 = 𝑣 − 𝑣′, and

𝑤𝑠 =
∑
𝑖∈𝐼0

⟨𝑤 − 𝑣′, 𝛼∨
𝑖
⟩Λfin

𝑖

as above. Summing over all 𝑣, we obtain the following equality of generating functions.

𝑍𝐼(𝑤) =
∑
𝑣′

(∑
𝑣𝑠

𝜒(𝔐fin
𝜁|𝐼0 (𝑣𝑠, 𝑤𝑠))𝑒𝑤

𝑠−𝑣𝑠

)
𝜒(𝔐𝑠

𝜁∙
(𝑣′, 𝑤))𝑒−𝑣

′−𝑤𝑠
.

Now, by Proposition 3.6, we have∑
𝑣∈ℕ𝐼

𝑣|𝐼+=𝑣+
𝜒(𝔐𝑠

𝜁∙
(𝑣, 𝑤)) = 𝜒

(
𝔐𝜁∙(𝑣

⊕,𝑤)
)
.

Hence, the generating series
∑

𝑣′ 𝜒(𝔐
𝑠
𝜁∙
(𝑣′, 𝑤))𝑒−𝑣

′|𝐼+ is well defined and equals:
∑

𝑣+∈ℕ𝐼+

𝜒
(
𝔐𝜁∙(𝑣

⊕,𝑤)
)
𝑒−𝑣

+
=

∑
𝑣′

𝜒(𝔐𝑠
𝜁∙
(𝑣′, 𝑤))𝑒−𝑣

′|𝐼+

=
∑
𝑣′

𝜒(𝔐𝑠
𝜁∙
(𝑣′, 𝑤))𝑠𝐼0

(
𝑒
−
∑

𝑗∈𝐼 𝑣
′
𝑗
(𝛼𝑗−𝛼𝑗)

)

= 𝑠𝐼0(𝑒
𝑤|𝐼0 )𝑠𝐼0

(∑
𝑣′

𝜒(𝔐𝑠
𝜁∙
(𝑣′, 𝑤))𝑒−𝑣

′−𝑤𝑠

)
= 𝑠𝐼0(𝑒

𝑤|𝐼0 )
⋅ 𝑠𝐼0

(∑
𝑣′

(∑
𝑣𝑠

𝜒(𝔐fin
𝜁|𝐼0 (𝑣𝑠, 𝑤𝑠))𝑒𝑤

𝑠−𝑣𝑠

)
𝜒(𝔐𝑠

𝜁∙
(𝑣′, 𝑤))𝑒−𝑣

′−𝑤𝑠

)
= 𝑠𝐼0(𝑒

𝑤|𝐼0 )𝑠𝐼0 (𝑍𝐼(𝑤)) .
Here we used Proposition 3.5 in the second, Lemma 3.8 in the third and Proposition 3.4 in the
fourth equality. □

3.3 Quot schemes of Kleinian orbifolds

Recall the finite group Γ < SL(2, ℂ) associated to our Dynkin diagram 𝐷 by the MacKay corre-
spondence. It defines the quotient stack [ℂ2∕Γ], the Kleinian orbifold. Given 𝑣 ∈ ℕ𝐼 , there is
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12 of 28 BERTSCH et al.

an orbifold Hilbert scheme Hilb𝑣([ℂ2∕Γ]) which parameterises Γ-invariant ideals 𝐽 of ℂ[𝑥, 𝑦] for
which the quotient ℂ[𝑥, 𝑦]∕𝐽 is a finite-dimensional Γ-module of representation type

⨁
𝑖∈𝐼 𝜌

⊕𝑣𝑖
𝑖

.
For a generic stability condition 𝜁 ∈ 𝐹𝐼 , it is well known that there is an isomorphism

𝔐𝜁(𝑣, Λ0) → Hilb𝑣([ℂ2∕Γ]).

More recently, the last two authors together with Craw and Gammelgaard constructed in [3]
more general orbifoldQuot schemes associated to theKleinian orbifold. For any non-empty subset
𝐼+ ⊆ 𝐼 and 𝑣+ ∈ ℕ𝐼+ , there exists amoduli spaceQuot𝑣+

𝐼+
([ℂ2∕Γ]) of quotients of dimension vector

𝑣+ of a certain module 𝑅𝐼+ over a non-commutative algebra 𝐵𝐼+ . For 𝐼+ = 𝐼 the full subset and
𝑣 ∈ ℕ𝐼 , we have

Quot𝑣𝐼 ([ℂ
2∕Γ]) ≅ Hilb𝑣([ℂ2∕Γ]),

while for 𝐼+ = {0} the distinguished vertex and 𝑣 ∈ ℕ, we have

Quot𝑣
{0}
([ℂ2∕Γ]) ≅ Hilb𝑣(ℂ2∕Γ),

the Hilbert scheme of points on the singular surface ℂ2∕Γ.
The general Quot schemes Quot𝑣+

𝐼+
([ℂ2∕Γ]) can be related to Nakajima quiver varieties as fol-

lows. For ∅ ≠ 𝐼+ ⊊ 𝐼, pick a non-generic stability condition 𝜁∙ ∈ 𝐹𝐼+ , and a dimension vector
𝑣+ ∈ ℕ𝐼+ .

Theorem 3.10. Let 𝐼+ ⊆ 𝐼 be a non-empty subset and 𝑣+ ∈ ℕ𝐼+ be a dimension vector. The orbifold
Quot schemeQuot𝑣+

𝐼+
([ℂ2∕Γ]) is non-empty if and only if the Nakajima quiver variety𝔐𝜁∙(𝑣, Λ0) is

non-empty for some vector 𝑣 ∈ ℕ𝐼 satisfying 𝑣|𝐼+ = 𝑣+. In this case, for a suitable choice of 𝑣⊕ ∈ ℕ𝐼

with 𝑣⊕|𝐼+ = 𝑣+, we have an isomorphism

Quot𝑣
+

𝐼+
([ℂ2∕Γ])red ≅ 𝔐𝜁∙(𝑣

⊕,Λ0)red,

where on both sides we take the reduced scheme structure.

Oneproof of this resultwas recently given byCraw in [2, Theorem 1]. An independent argument
was given in a previous version of this paper. This argument and its further consequences will be
discussed in forthcoming work.
Theorem 3.10 implies that our substitution formula applies directly to the setting of Quot

schemes.

Theorem3.11. For any non-empty, proper subset 𝐼+ ⊂ 𝐼, let 𝐼0 = 𝐼 ⧵ 𝐼+ and consider the generating
function

𝑍𝐼+(Λ0) ∶=
∑

𝑣+∈ℕ𝐼+

𝜒
(
Quot𝑣

+

𝐼+
([ℂ2∕Γ])

)
𝑒−𝑣

+
.

Then we have the substitution formula

𝑍𝐼+(Λ0) = (𝑐Λ0,𝐼0 )
−1𝑠𝐼0(𝑍𝐼(Λ0)),
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EULER CHARACTERISTICS OF AFFINE ADE NAKAJIMA QUIVER VARIETIES 13 of 28

where 𝑐Λ0,𝐼0 is a complex root of unity and 𝑍𝐼(Λ0) =
∑

𝑣∈ℕ𝐼 𝜒
(
Hilb𝑣([ℂ2∕Γ])

)
𝑒−𝑣 is the generating

function associated with the full subset 𝐼.

Finally, recall from [10] that the full generating function 𝑍𝐼(Λ0) can be expressed in the form
of a Jacobi–Riemann–type theta-function as

𝑍𝐼(Λ0) =

(
∞∏
𝑘=1

(1 − 𝑒−𝑘𝛿)

)−𝑛−1 ∑
𝑣∈ℤ𝐼′

𝑒−𝑣𝑒
−
(
1
2
𝑣𝐶′𝑣𝑇

)
𝛿
, (2)

where 𝐼′ = 𝐼 − {0}, 𝐶′ is the finite-type Cartanmatrix with Dynkin diagram the full subgraph of𝐷
on the vertex set 𝐼′, and we identify 𝑣 =

∑
𝑖∈𝐼′ 𝑣𝑖𝛼𝑖 . To use our substitution (Definition 3.2), define

the vector of roots of unity 𝑘𝐼+ ∈ 2𝜋
√
−1ℚ𝐼 as follows:

(𝑘𝐼+)𝑖 ∶=

⎧⎪⎪⎨⎪⎪⎩

2𝜋
√
−1

ℎ𝑖 + 1
, 𝑖 ∈ 𝐼0 ,

−
∑

𝑖→𝑗∈𝐼0

𝑐𝑗
2𝜋

√
−1

ℎ𝑗 + 1
, 𝑖 ∈ 𝐼+ .

Lemma 3.12. We have

𝑘𝐼+ ⋅ 𝛿 ∶=
∑
𝑖∈𝐼

(𝑘𝐼+)𝑖 dim(𝜌𝑖) = 0.

Hence, in the substitution of 𝑒−𝛿 , the different roots of unity cancel out:

𝑠𝐼0 (𝑒
−𝛿) = 𝑒−𝛿|𝐼+ .

Proof. Since 𝛿 is in the kernel of the Cartan matrix, and since the Cartan matrix is symmetric, it
suffices to show that 𝑘𝐼+ is in the image of the Cartan matrix. In fact, we have

𝑘𝐼+ = 𝐶 (𝐶fin)−1(𝑘𝐼+ |𝐼0 ) ,
where (𝐶fin)−1(𝑘𝐼+ |𝐼0 ) is viewed as a vector in ℚ𝐼 with zero entries on 𝐼+. □

Applying Theorem 3.11 and Lemma 3.12, we obtain the following formula, which gives a Jacobi–
Riemann–type formula for the generating function of all Quot schemes for a fixed non-empty
proper subset 𝐼+ of the vertex set 𝐼 also.

Corollary 3.13. We have

𝑍𝐼+(Λ0) = (𝑐Λ0,𝐼0 )
−1

(
∞∏
𝑘=1

(1 − 𝑒−𝑘𝛿|𝐼+ )
)−𝑛−1 ∑

𝑣∈ℤ𝐼′

exp(−𝑘𝐼+ ⋅ 𝑣)𝑒−𝑣|𝐼+ 𝑒−( 1
2
𝑣𝐶′𝑣𝑇

)
𝛿|𝐼+ ,

where 𝑘𝐼+ ⋅ 𝑣 =
∑

𝑖∈𝐼(𝑘𝐼+)𝑖𝑣𝑖 .
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14 of 28 BERTSCH et al.

In light of the isomorphismQuot𝑣
{0}
([ℂ2∕Γ]) ≅ Hilb𝑣(ℂ2∕Γ) as well as Example 3.3, for 𝐼+ = {0},

this becomes the main conjecture of [10], already proved by Nakajima [20] of course.

3.4 Modularity

Let 𝑞 be a formal variable. Consider the generating series

𝑍𝐼+(𝑞) =
∑

𝑣+∈ℕ𝐼+

𝜒
(
Quot𝑣

+

𝐼+
([ℂ2∕Γ])

)
𝑞𝑣

+
,

where

𝑞𝑣
+
=

∏
𝑖∈𝐼+

𝑞𝑣𝑖 dim 𝜌𝑖 .

Setting 𝑞 = exp(2𝜋𝑖𝜏), we may regard 𝑍𝐼+(𝑞) as a function of 𝜏 ∈ ℍ, where ℍ is the upper half-
plane. Our next result is the following.

Theorem 3.14. The series 𝑍𝐼+(𝑞) is, up to a suitable rational power of 𝑞, the Fourier expansion of a
meromorphic modular form of weight |𝐼|∕2 for some congruence subgroup of SL(2, ℤ) acting on the
upper half-plane ℍ.

Let (ℤ𝑛, 𝑄) be a lattice equipped with a positive definite quadratic form. Extend 𝑄 to a form on
ℚ𝑛 = ℤ𝑛 ⊗ ℚ. Let moreover 𝑧 ∈ ℚ𝑛 be a vector. The shifted theta series associated with the pair
(𝑄, 𝑧) is

Θ𝑄,𝑧(𝑞) ∶=
∑
𝑘∈ℤ𝑛

𝑞𝑄(𝑘+𝑧).

It is known that Θ𝑄,𝑧(𝑞) is a modular form of weight 𝑛∕2 for some congruence subgroup of
SL(2, ℤ); see, for example, [13, section 13.6]. Theorem 3.14 is an immediate corollary of the
following statement.

Proposition 3.15. The series 𝑍𝐼+(𝑞) is a ℚ-linear combination of shifted theta series associated
with integer valued positive definite quadratic forms onℤ𝑛. That is, there exist𝑁 ⩾ 1, 𝑎𝑖 ∈ ℚ, integer
valued positive definite quadratic forms 𝑄𝑖 on ℤ𝑛 and 𝑧𝑖 ∈ ℚ𝑛 for 1 ⩽ 𝑖 ⩽ 𝑁, such that 𝑍𝐼+(𝑞) can
be written as

𝑍𝐼+(𝑞) =

𝑁∑
𝑖=1

𝑎𝑖Θ𝑄𝑖,𝑧𝑖
(𝑞).

Proof. The methods of [22, section 3] generalise to the current setting. We omit the details. □

Remark 3.16. The question arises whether our series 𝑍𝐼+(𝑞) can be expressed as an eta product.
Recall that one advantage of expressing a modular form as an eta product is that many specific
modular properties of eta products can be calculated easily (the congruence subgroup, order of
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EULER CHARACTERISTICS OF AFFINE ADE NAKAJIMA QUIVER VARIETIES 15 of 28

vanishing at cusps, etc.), see [14]. We performed some numerical calculations in type A for low
rank cases; see also [5, section 6] for such calculations in the physics literature. For the root systems
𝐴1 and 𝐴2, all Quot scheme generating functions lead to eta products. However, 𝑍𝐴3,{0}

is not
expressible as an eta product, and we do not expect eta products to exist for larger root systems.

3.5 Higher rank framings

Our universal substitution result Theorem 3.9 holds for arbitrary framing vector 𝑤; note that sin-
gular quiver varieties with higher rank framing can sometimes be related to moduli spaces of
framed sheaves on certain non-commutative surfaces that can be interpreted as partial resolutions
of the scheme ℙ2∕Γ [8, 9]. Our formula is however not really useful for explicit results unless one
has some information about the generating function 𝑍𝐼(𝑤) computed at a generic stability con-
dition. For weight vectors other than 𝑤 = Λ0 (and the other fundamental weights related to it by
diagram automorphisms of 𝐷), we are not aware of useful formulae away from type A. Nakajima
in [17, Theorem 5.2] states a result for the total cohomology of quiver varieties of affine ADE type,
which however contains terms involving intersection cohomology spaces which appear hard to
control for higher rank framing. A formula of a different nature is presented by Hausel in [12,
Theorem 1], which also appears difficult to work with. In the finite type 𝐷 case, see also [18,
Proposition 5.5].
On the other hand, for affine type A, torus localisation arguments closely related to those

explained in the next section lead to the explicit formula [7, Corollary 4.12] for𝑍𝐼(𝑤) for all framing
vectors 𝑤. This formula is entirely analogous to the Jacobi–Riemann theta-function–type formu-
lae above, so we will not repeat it here. Using our universal substitution, for 𝐼+ ⊂ 𝐼 one can then
derive an expression for 𝑍𝐼+(𝑤) analogous to that of Corollary 3.13. The results of 3.4 imply the
modularity of the corresponding one-variable series 𝑍𝐼+(𝑞) for non-generic stability conditions.

4 TYPE A: COMBINATORICS AND REPRESENTATION THEORY

In this section, we will assume that the Dynkin diagram𝐷 is of affine type A, and we consider the
framing vector 𝑤 = Λ0 as in Section 3.3. In this case, the generating functions can be studied via
the combinatorics of coloured partitions, and are related to the Fock space representation of the
affine type A Lie algebra. In this section, we make this explicit, providing an alternative proof of
our substitution result in this case.

4.1 Torus fixed points

Fix an integer 𝑛 and let Γ be the cyclic subgroup of SL(2, ℂ) of order 𝑛 + 1. The corresponding
Dynkin diagram 𝐷 has vertex set 𝐼 = {0, … , 𝑛} labelled in a cyclic manner. The quotient vari-
ety ℂ2∕Γ has an 𝐴𝑛 singularity at the origin. The action of Γ commutes with the natural action
of the two-torus 𝑇 = (ℂ×)2 on the plane. Hence, 𝑇 acts on the quotient ℂ2∕Γ and the orbifold
[ℂ2∕Γ], as well as the orbifold Hilbert schemes Hilb𝑣([ℂ2∕Γ]) and the orbifold Quot schemes
Quot𝑣

+

𝐼+
([ℂ2∕Γ]).

Consider the set ℕ × ℕ of pairs of natural numbers; these are drawn as a set of blocks on the
plane, occupying the first quadrant. Label blocks diagonally with (𝑛 + 1) labels 0, … , 𝑛 as in the
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16 of 28 BERTSCH et al.

figure below; the block with coordinates (𝑖, 𝑗) is labelled with (𝑖 − 𝑗) mod (𝑛 + 1). We will call
this the pattern of type 𝐴𝑛.

Let  denote the set of partitions. We identify a partition 𝜆 = (𝜆1, … , 𝜆𝑘) ∈  , where 𝜆1 ⩾ … ⩾

𝜆𝑘 are positive integers, with its Young diagram, the subset ofℕ × ℕwhich consists of the 𝜆𝑖 lowest
blocks in column 𝑖 − 1. The blocks in the Young diagram inherit the 𝑛 + 1 labels from the 𝐴𝑛

pattern. For a partition 𝜆 ∈  , letwt𝑗(𝜆) denote the number of blocks in 𝜆 labelled 𝑗 in the above
pattern, and define the multi-weight of 𝜆 to be wt(𝜆) = (wt0(𝜆), … ,wt𝑛(𝜆)) ∈ ℕ𝐼 .

Lemma 4.1 [6, 7]. For any 𝑣 ∈ ℕ𝐼 , the fixed points of the 𝑇-action onHilb𝑣([ℂ2∕Γ]) are in bijection
with the set {𝜆 ∈  |wt(𝜆) = 𝑣}.

Idea of proof. The 𝑇-fixed points on Hilb([ℂ2∕Γ]), which coincide with the 𝑇-fixed points on
Hilb(ℂ2), are the monomial ideals in ℂ[𝑥, 𝑦] of finite colength. The monomial ideals are enumer-
ated in turn by Young diagrams of partitions. The labelling of each block gives the weight of the
Γ-action on the corresponding monomial. □

We immediately deduce the following.

Corollary 4.2. The orbifold generating series of the simple surface singularity of type 𝐴𝑛 can be
identified with the generating function for (𝑛 + 1)-labelled partitions:

𝑍𝐼(Λ0) =
∑
𝜆∈

𝑒−wt(𝜆) .

Wenow turn to the 𝑇-fixed points on the Quot schemesQuot𝑣+
𝐼+
([ℂ2∕Γ]). Consider a non-empty

subset 𝐼+ ⊆ 𝐼. A partition 𝜆 ∈  will be called 𝐼+-generated, if the complement of its Young dia-
gram in ℕ×ℕ can be covered by translates of ℕ×ℕ whose bottom-left corner block is labelled
by some 𝑖 ∈ 𝐼+. Equivalently, 𝜆 is 𝐼+-generated if all its addable boxes (i.e. boxes in ℕ×ℕ that,
when added to 𝜆, again produce the Young diagram of a partition — those boxes are also called
generators) are labelled by an element of 𝐼+. Notice that for 𝐼+ = 𝐼 the full set, every partition
is 𝐼-generated, and for 𝐼+′

⊆ 𝐼+, every 𝐼+
′ -generated partition is 𝐼+-generated. We denote the

set of 𝐼+-generated partitions by  𝐼+ . We define the 𝐼+-weight of a partition 𝜆 as the restricted
multi-weight vector wt

𝐼+
(𝜆) = (wt𝑖(𝜆))𝑖∈𝐼+ ∈ ℕ𝐼+ .
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EULER CHARACTERISTICS OF AFFINE ADE NAKAJIMA QUIVER VARIETIES 17 of 28

Example 4.3. Let 𝑛 = 2. We indicated the generators on the following {0, 2}-generated Young
diagram:

Its {0, 2}-weight is (3,3).

Lemma 4.4. For any 𝑣+ ∈ ℕ𝐼+ , the fixed points of the 𝑇-action onQuot𝑣+
𝐼+
([ℂ2∕Γ]) are isolated and

in bijection with the set {𝜆 ∈  𝐼+ |wt
𝐼+
(𝜆) = 𝑣+}.

Proof. It is easy to check that the 𝐵𝐼+ -module 𝑅𝐼+ defined by [3] has a monomial-type basis
consisting of elements corresponding to blocks in the type 𝐴𝑛 pattern labelled by 𝑖 ∈ 𝐼+. The 𝑇-
fixed points of Quot𝐼+([ℂ2∕Γ]) correspond to quotients of 𝑅𝐼+ by monomial submodules of finite
colength. The dimension of the 𝜌𝑖-isotypic component of such a quotient is precisely the number
of blocks labelled 𝑖 in the diagram corresponding to it. The result follows. □

Corollary 4.5. For a non-empty subset 𝐼+ ⊆ 𝐼, the generating series of Euler characteristics of 𝐼+-
Quot schemes of the Kleinian orbifold [ℂ2∕Γ] of type𝐴𝑛 can be viewed as the generating function for
(𝑛 + 1)-labelled 𝐼+-generated partitions:

𝑍𝐼+(Λ0) =
∑

𝜆∈𝐼+

𝑒−wt𝐼+ (𝜆) .

We again denote by 𝛼𝑖, 𝑖 ∈ 𝐼 the standard basis elements of ℕ𝐼 . From now on we also assume
that 𝐼+ is a proper non-empty subset, write 𝐼0 = 𝐼 ⧵ 𝐼+ and denote by 𝐷0 the full subgraph of the
Dynkin diagram on the vertex set 𝐼0.

4.2 Combinatorics of the substitution

Denote by ̃𝐼+ the preimage of 𝐼+ under the covering ℤ → {0,… , 𝑛}mapping 𝑘 to 𝑘 mod (𝑛 + 1),
and the same for 𝐼0. For any 𝑖 ∈ ̃𝐼+, we now define

𝑟𝑖 = max({𝑗 ∈ ℤ | 𝑖 ⩽ 𝑗 and {𝑖 + 1, … , 𝑗} ⊆ 𝐼0}) − 𝑖,

and

𝑙𝑖 = 𝑖 − min({𝑗 ∈ ℤ | 𝑗 ⩽ 𝑖 and {𝑗, … , 𝑖 − 1} ⊆ 𝐼0}).

In other words, 𝑟𝑖 is the number of consecutive integers to the right of 𝑖 which do not belong to
̃𝐼+ and 𝑙𝑖 is the number of consecutive integers to the left of 𝑖 which do not belong to ̃𝐼+. Finally,
for any 𝑖 ∈ 𝐼0, we define 𝑛𝑖 to be the length of the maximal sequence of consecutive integers in 𝐼0
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18 of 28 BERTSCH et al.

containing 𝑖. Evidently, the numbers 𝑟𝑖 , 𝑙𝑖 and 𝑛𝑖 only depend on the congruence class of 𝑖modulo
𝑛 + 1, and are hence well defined also on 𝐼0 and 𝐼+, respectively.
In type A, the connected components of 𝐷0 are type A finite Dynkin diagrams, which are con-

nected to 𝐼+ only at their endpoints. In finite type𝐴𝑛𝑖
, we have ℎ𝑖 = 𝑛𝑖 + 1 and the two occurring

constants 𝑐𝑖 at the endpoints of this connected component, are equal to
𝑛𝑖
2
. The constant 𝑐Λ0,𝐼

0 is
1 if 0 ∈ 𝐼+ and can otherwise be computed as

𝑐Λ0,𝐼
0 = exp

(
−𝑐0

2𝜋
√
−1

𝑛0 + 2

)
= (−1)𝑚 exp

(
2𝜋

√
−1

𝑚(𝑚 + 1)

2(𝑛0 + 2)

)
,

where 𝑚 is the distance between 0 and 𝐼+ (measured on either of the two sides). Using these
calculations, Definition 3.2 and Theorem 3.11 take the following form.

Theorem 4.6. Consider the following substitution of variables.

𝑠𝐼0 ∶ 𝑒𝛼𝑖 ↦

⎧⎪⎨⎪⎩
𝑒𝛼𝑖 exp

(
2𝜋

√
−1

𝑟𝑖+2
+

2𝜋
√
−1

𝑙𝑖+2

)
, 𝑖 ∈ 𝐼+,

exp

(
2𝜋

√
−1

𝑛𝑖+2

)
, 𝑖 ∈ 𝐼0.

Then the generating function 𝑍𝐼+(Λ0) of 𝐼+-generated (𝑛 + 1)-labelled partitions is obtained from
the generating function 𝑍𝐼(Λ0) of all (𝑛 + 1)-labelled partitions by

𝑍𝐼+(Λ0) = 𝑐−1
𝐼0
𝑠𝐼0 (𝑍𝐼(Λ0)) ,

where 𝑐𝐼0 = 𝑐Λ0,𝐼
0 is a complex root of unity which is determined as follows. Let 𝑚 denote the

minimum of 𝐼+ in 𝐼 = {0, … , 𝑛}, then

𝑐𝐼0 = (−1)𝑚 exp

(
2𝜋

√
−1

𝑚(𝑚 + 1)

2(𝑙𝑚 + 2)

)
.

In the following paragraphs, we give an alternative, combinatorial proof of this result. Consider
the projection

𝜋𝐼+ ∶  →  𝐼+ ,

which associates to 𝜆 ∈  the smallest 𝐼+-generated Young diagram containing 𝜆. For example,
for 𝑛 = 4, 𝐼+ = {1, 2}, it maps

(3)

 14697750, 2025, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.70074 by D

E
SY

 - Z
entralbibliothek, W

iley O
nline L

ibrary on [20/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



EULER CHARACTERISTICS OF AFFINE ADE NAKAJIMA QUIVER VARIETIES 19 of 28

Conversely, the boundary of any partition mapping to the one on the right must run through each
of the grey rectangles from the top-left to the bottom-right corner.

Proposition 4.7. Given 𝑣 ∈ ℕ𝐼 , the morphism

Hilb𝑣([ℂ2∕Γ]) → Quot
𝑣|𝐼+
𝐼+

([ℂ2∕Γ])

is 𝑇-equivariant, and hence maps fixed points to fixed points. Under the bijections of Lemmas 4.1
and 4.4, this mapping is given by 𝜋𝐼+ .

Proof. Let 𝐽 be the monomial ideal in ℂ[𝑥, 𝑦] corresponding to a 𝑇-fixed point of

Hilb𝑣([ℂ2∕Γ]).

Take its decomposition

𝐽 = ⊕𝑖∈𝐼𝐽𝑖,

where 𝐽𝑖 is the 𝜌𝑖-isotypic component of 𝐽. Combining [3, section 3, Proposition 4.2 and Theo-
rem 6.9], we see that the map from the orbifold Hilbert scheme to the Quot scheme associates to 𝐽
the point in the Qout scheme represented by the 𝐵𝐼+ -module

𝐽𝐼
+
= ⊕𝑖∈𝐼+𝐽𝑖.

On the level ofmonomials, taking a 𝜌𝑖-isotypic subspace corresponds to keeping the boxes labelled
𝑖. Therefore, 𝐽𝐼+ is generated by the monomials with labels in 𝐼+ just outside the Young diagram
of 𝐽. We recover the map 𝜋𝐼+ . □

Denote the 𝑞-binomial coefficient by(
𝑛

𝑘

)
𝑞

=
(1 − 𝑞𝑛)⋯ (1 − 𝑞𝑛−𝑘+1)

(1 − 𝑞𝑘)⋯ (1 − 𝑞)
∈ ℤ[𝑞]. (4)

It is known that
(𝑛
𝑘

)
𝑞
is the generating function for partitions that are contained in a 𝑘 × (𝑛 −

𝑘)-rectangle, weighted by number of boxes. Our proof of Theorem 4.6 is based on the following
observation.

Lemma 4.8. Let 0 ⩽ 𝑘 ⩽ 𝑛 be integers. If 𝜉 is a primitive (𝑛 + 1)th root of unity, then substituting
𝑞 = 𝜉 gives (

𝑛

𝑘

)
𝜉

= (−1)𝑘𝜉−
1
2
𝑘(𝑘+1).

Proof. Since 𝜉 is a primitive (𝑛 + 1)th root of unity, we can substitute 𝜉 into (4), and obtain(
𝑛

𝑘

)
𝜉

=
(1 − 𝜉𝑛)⋯ (1 − 𝜉𝑛−𝑘+1)

(1 − 𝜉𝑘)⋯ (1 − 𝜉)

=
1 − 𝜉𝑛

1 − 𝜉
⋯

1 − 𝜉𝑛−𝑘+1

1 − 𝜉𝑘
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20 of 28 BERTSCH et al.

= (−𝜉−1)(−𝜉−2)⋯ (−𝜉−𝑘)

= (−1)𝑘𝜉−
1
2
𝑘(𝑘+1). □

Proof of Theorem 4.6. We verify the substitution formula along the fibres of 𝜋𝐼+ . Precisely, we
show that for any 𝐼+-generated partition 𝜆,

𝑠𝐼0

⎛⎜⎜⎜⎝
∑

𝜇∈𝜋−1
𝐼+
(𝜆)

𝑒−wt(𝜇)

⎞⎟⎟⎟⎠ = 𝑐𝐼0𝑒
−wt𝐼+ (𝜆).

For 𝑖 ∈ ℤ, let the 𝑖th diagonal be the set of boxes with coordinates (𝑥, 𝑦) such that 𝑥 − 𝑦 = 𝑖, so
boxes on the 𝑖th diagonal are labelled 𝑖 mod (𝑛 + 1). We cover the pattern of type𝐴𝑛 by diagonal
strips consisting of 𝑖th diagonals for 𝑖0 ⩽ 𝑖 ⩽ 𝑖1, where 𝑖0, 𝑖1 ∈ ̃𝐼+ and 𝑖0 + 1, … , 𝑖1 − 1 ∈ 𝐼0. Notice
that any box labelled 𝑖 ∈ 𝐼0 will lie in exactly one of these strips, while any box labelled 𝑖 ∈ 𝐼+ will
lie simultaneously in two neighbouring strips.
Fix the 𝐼+-generated partition 𝜆, then each of the diagonal strips contains exactly one of the grey

rectangles as depicted in (3). The partitions in the fibre 𝜋−1
𝐼+
(𝜆) are obtained from 𝜆 by removing

boxes from the grey rectangles. A rectangle which lies on the strip bounded by diagonals 𝑖0 < 𝑖1
has width plus height equal to 𝑖1 − 𝑖0 = 𝑟𝑖0 + 1 = 𝑙𝑖1 + 1. When we apply the substitution, all the
𝑒−𝛼𝑖 corresponding to labels appearing on boxes in that rectangle are substituted by the same root
of unity 𝜉 = exp(−

2𝜋
√
−1

𝑟𝑖0+2
). By Lemma 4.8. We therefore see that taking the sum over all ways to

remove grey boxes from the rectangle and then substituting becomes equivalent to multiplying
by the root of unity

Δ𝑖0
(𝜆) ∶=

(
𝑟𝑖0 + 1

𝑗

)
𝜉−1

= (−1)𝑗𝜉
1
2
𝑗(𝑗+1), (5)

where 𝑗 is either the width or the height of the rectangle. In total, these factors multiply and we
obtain

𝑠𝐼0

⎛⎜⎜⎜⎝
∑

𝜇∈𝜋−1
𝐼+
(𝜆)

𝑒−wt(𝜇)

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎝
∏
𝑖0∈

̃𝐼+

Δ𝑖0
(𝜆)

⎞⎟⎟⎠𝑠𝐼0 (𝑒−wt(𝜆)) .

Next, since 𝑒−wt(𝜆) is a monomial in the variables 𝑒−𝛼𝑖 , and since substitution gets rid of the
ones where 𝑖 ∈ 𝐼0, we have

𝑠𝐼0 (𝑒
−wt(𝜆)) = 𝜁(𝜆)𝑒−wt𝐼+ (𝜆),

where 𝜁(𝜆) is some root of unity. We can factor 𝜁(𝜆) into contributions from the diagonal strips,
𝜁(𝜆) =

∏
𝑖0∈

̃𝐼+ 𝜁𝑖0 (𝜆), where 𝜁𝑖0 is exp(−
2𝜋

√
−1

𝑟𝑖0+2
) to the power of the number of boxes in the

intersection of 𝜆 with the diagonal strip bounded to the left by the 𝑖0th diagonal. We obtain

𝑠𝐼0

⎛⎜⎜⎜⎝
∑

𝜇∈𝜋−1
𝐼+
(𝜆)

𝑒−wt(𝜇)

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎝
∏
𝑖0∈

̃𝐼+

Δ𝑖0
(𝜆)𝜁𝑖0 (𝜆)

⎞⎟⎟⎠𝑒−wt𝐼+ (𝜆) .
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EULER CHARACTERISTICS OF AFFINE ADE NAKAJIMA QUIVER VARIETIES 21 of 28

We now calculate Δ𝑖0
(𝜆)𝜁𝑖0 (𝜆) for the three possible shapes of strips. For 𝑖 ∈ ̃𝐼+ let 𝐿𝑖 be the

number of boxes on the 𝑖th diagonal contained in 𝜆.

(1) 𝑖0 ⩾ 0: The following diagram represents the contributions of a strip with 𝑖0 ⩾ 0, 𝐿𝑖0 = 5, 𝐿𝑖1 =

2, and 𝑟𝑖0 = 𝑙𝑖1 = 6. Each box shown contributes a factor of exp
(
−

2𝜋
√
−1

𝑟𝑖0+2

)
. The blue boxes

do not belong to 𝜆 and were added to represent the triangular power in the factor Δ𝑖0
(𝜆).

We see that each row has a length of 𝑟𝑖0 + 2, so the roots of unity cancel out row-wise. The
only remaining factor is the sign from Δ𝑖0

, so

Δ𝑖0
(𝜆)𝜁𝑖0 (𝜆) = (−1)𝐿𝑖0−𝐿𝑖1 .

(2) 𝑖1 ⩽ 0: The procedure is analogous to case (1), but here we use column-wise cancellation.

We obtain

Δ𝑖0
(𝜆)𝜁𝑖0 (𝜆) = (−1)𝐿𝑖1−𝐿𝑖0 .

(3) 𝑖0 < 0 < 𝑖1: In this case, the roots of unity do not cancel along the columns (or rows), but
instead give a fixed root of unity which only depends on 𝐼+ and not on 𝜆. In the diagram
below, the inverse of this root of unity is represented by the black boxes, which are again not
part of 𝜆.
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22 of 28 BERTSCH et al.

We obtain

Δ𝑖0
(𝜆)𝜁𝑖0 (𝜆) = (−1)𝐿𝑖1−𝐿𝑖0+𝑖1 exp

(
2𝜋

√
−1

𝑖1(𝑖1 + 1)

2(𝑟𝑖0 + 2)

)
.

Notice that this case occurs at most once in the partition, and when it does 𝑖1 is the minimal
positive element of ̃𝐼+.

Now 𝑚, as defined in the statement of the theorem, is the 𝑖1 of case (3) or zero if this case
does not occur. The signs (−1)𝐿𝑖0−𝐿𝑖1 from cases (1) telescope to give (−1)𝐿𝑚 and so do the signs
(−1)𝐿𝑖1−𝐿𝑖0 from cases (2) and (3), so they cancel out. What remains is

∏
𝑖0∈

̃𝐼+

Δ𝑖0
(𝜆)𝜁𝑖0 (𝜆) = (−1)𝑚 exp

(
2𝜋

√
−1

𝑚(𝑚 + 1)

2(𝑙𝑚 + 2)

)
= 𝑐𝐼0 ,

thus concluding the proof of Theorem 4.6. □

4.3 Representation theory

Continuing to work with the type A case, we finally explain how the generating functions studied
above arise as graded dimensions of certain naturally defined vector subspaces of Fock space. We
recall that a version of (Fermionic) Fock space is the infinite-dimensional vector space

𝐅 =
⨁
𝑌∈

ℂ|𝑌⟩
generated by a basis indexed by the set  of all partitions, which we are going to represent as
before by their Young diagrams.
We will initially use a labelling of diagrams 𝑌 ∈  by the set of integers ℤ, assigning to a block

𝑠 ∈ 𝑌 in the 𝑖th row and 𝑗th column the label 𝑙(𝑠) = 𝑗 − 𝑖 ∈ ℤ. This rule labels the boxes of a

 14697750, 2025, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.70074 by D

E
SY

 - Z
entralbibliothek, W

iley O
nline L

ibrary on [20/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



EULER CHARACTERISTICS OF AFFINE ADE NAKAJIMA QUIVER VARIETIES 23 of 28

partition diagonally with infinitely many labels. As in our earlier discussion, for 𝑐 ∈ ℤ, we have
the 𝑐-weight mapwt𝑐 ∶  → ℕ, withwt𝑐(𝑌) the number of blocks 𝑠 ∈ 𝑌 of label 𝑐. For a partition
𝑌 ∈  , we call a block 𝑠 ∈ 𝑌 removable, if 𝑌′ = 𝑌 ⧵ {𝑠} ∈  ; we call a block 𝑡 ∉ 𝑌 addable, if
𝑌′ = 𝑌 ∪ {𝑡} ∈  . For 𝑌 ∈  , we denote by ℎ𝑐(𝑌) ∈ {±1, 0} the difference between the number of
addable and removable blocks of label 𝑐.
Define four sets of operators on 𝐅, indexed by 𝑐 ∈ ℤ, as follows:

𝐸𝑐|𝑌⟩ = ∑
𝑌′=𝑌⧵{𝑠}

𝑙(𝑠)=𝑐

|𝑌′⟩, 𝐹𝑐|𝑌⟩ = ∑
𝑌′=𝑌∪{𝑠}

𝑙(𝑠)=𝑐

|𝑌′⟩,
𝐻𝑐|𝑌⟩ = ℎ𝑐(𝑌)|𝑌⟩, 𝐷𝑐|𝑌⟩ = wt𝑐(𝑌)|𝑌⟩.

It is easy to check by direct computation that these operators satisfy Serre-type commutation
relations

[𝐻𝑐,𝐻𝑐′] = 0, [𝐸𝑐, 𝐹𝑐′ ] = 𝛿𝑐𝑐′𝐻𝑐, [𝐻𝑐, 𝐸𝑐′ ] = 𝑎𝑐𝑐′𝐸𝑐′ , [𝐻𝑐, 𝐹𝑐′ ] = −𝑎𝑐𝑐′𝐹𝑐′ ,

ad(𝐸𝑐)
1−𝑎𝑐𝑐′ (𝐸𝑐′ ) = 0 for 𝑐 ≠ 𝑐′, ad(𝐹𝑐)

1−𝑎𝑐𝑐′ (𝐹𝑐′ ) = 0 for 𝑐 ≠ 𝑐′,

as well as grading relations

[𝐷𝑐, 𝐷𝑐′ ] = 0, [𝐷𝑐,𝐻𝑐′] = 0, [𝐸𝑐, 𝐷𝑐′ ] = 𝛿𝑐𝑐′𝐸𝑐, [𝐹𝑐, 𝐷𝑐′ ] = −𝛿𝑐𝑐′𝐹𝑐,

for 𝑐, 𝑐′ ∈ ℤ, where

𝑎𝑐𝑐′ =

⎧⎪⎨⎪⎩
2 if 𝑐 = 𝑐′,

−1 if |𝑐 − 𝑐′| = 1,

0 otherwise.

In other words, 𝐅 is a representation of the algebra

𝔞 = ⟨𝐸𝑐, 𝐹𝑐,𝐻𝑐, 𝐷𝑐 ∶ 𝑐 ∈ ℤ⟩
with the above set of relations. This is a version of 𝔰𝔩∞, the Lie algebra defined by the root system
𝐴∞, extended by an infinite set of grading operators {𝐷𝑐}. It is clear from the definitions that 𝐅 is
an irreducible 𝔞-module.
Next fix a natural number 𝑛 ⩾ 1, and let us also consider, for [𝑐] ∈ ℤ∕(𝑛 + 1)ℤ, operators

𝑒[𝑐] =
∑

𝑐≡[𝑐] mod 𝑛+1

𝐸𝑐, 𝑓[𝑐] =
∑

𝑐≡[𝑐] mod 𝑛+1

𝐹𝑐,

ℎ[𝑐] =
∑

𝑐≡[𝑐] mod 𝑛+1

𝐻𝑐. 𝑑[𝑐] =
∑

𝑐≡[𝑐] mod 𝑛+1

𝐷𝑐.

An alternative, equivalent definition of these operators first considers the labelling of 𝑌 ∈  by 𝑛
labels, applied diagonally and periodically, as in the earlier sections.
The operators 𝑒[𝑐], 𝑓[𝑐], ℎ[𝑐], 𝑑[𝑐] still act on 𝐅, since for every fixed 𝑌, the number of terms in

each sumwill become finite. In particular, the 𝑑[𝑐]-eigenvalue of |𝑌⟩ ∈ 𝐅 is the numberwt[𝑐](𝑌) of
[𝑐]-coloured blocks in 𝑌 under the periodic diagonal labelling. In this way, as is well known [13],
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24 of 28 BERTSCH et al.

we get the algebras

⟨𝑒[𝑐], 𝑓[𝑐], ℎ[𝑐] ∶ [𝑐] ∈ ℤ∕(𝑛 + 1)ℤ⟩ ≅ 𝔰𝔩
′

𝑛+1,

the derived algebra of the affine Lie algebra attached to 𝐴𝑛, and the full affine Lie algebra

⟨𝑑[0]; 𝑒[𝑐], 𝑓[𝑐], ℎ[𝑐] ∶ [𝑐]∈ ℤ∕(𝑛 + 1)ℤ⟩ ≅ 𝔰𝔩𝑛+1.

Note that 𝐅 is reducible as an 𝔰𝔩𝑛+1-module, though it becomes irreducible if one introduces a
further set of operators forming a Heisenberg algebra, leading to a representation of the larger
algebra 𝔤𝔩𝑛+1. On the other hand, we get a subalgebra inside 𝔰𝔩𝑛+1, the algebra

⟨𝑒[𝑐], 𝑓[𝑐], ℎ[𝑐] ∶ [𝑐] ∈ ℤ∕(𝑛 + 1)ℤ ⧵{[0]}⟩ ≅ 𝔰𝔩𝑛+1,

corresponding to the inclusion of the root system of finite-type 𝐴𝑛 into the affine root system.
The inclusion 𝔰𝔩𝑛+1 ↪ 𝔰𝔩𝑛+1 has an analogue at the level of the infinite root system: Define the

subalgebra

𝔞0 = ⟨𝐸𝑐, 𝐹𝑐,𝐻𝑐, 𝐷𝑐 ∶ 𝑐 ∈ ℤ, 𝑐 ≠ 0 mod 𝑛 + 1⟩ ↪ 𝔞.

It is clear that 𝔞0 is isomorphic to an infinite direct sum, indexed by ℤ, of copies of 𝔰𝔩𝑛+1.
Let us connect this discussion with the ideas in earlier sections. We proceed to show that sev-

eral of the generating functions studied earlier can be written as traces of grading operators on
Fock space and certain subspaces. First of all, we have the orbifold generating series 𝑍𝐼(Λ0); as
Corollary 4.2 agrees with the generating function of diagonally (𝑛 + 1)-labelled partitions. The
generating function 𝑍{0}(𝑞) of Euler characteristics of Quot schemes of [ℂ2∕Γ] corresponding to
the subset 𝐼+ = {0}, in other words to Hilbert schemes of points of the singular surface ℂ2∕Γ,
is given by the generating function of 0-generated partitions 0 in the periodic labelling. By
Corollary 4.5, this generalises to an arbitrary non-empty subset 𝐼+ ⊂ 𝐼.
In our context, define

𝐅𝐼+ =
⋂

(𝑐 mod (𝑛+1))∉𝐼+

ker(𝐹𝑐) ⊂ 𝐅.

It is then clear by the definition of an 𝐼+-generated partition that the vector space𝐅𝐼+ has a natural
basis consisting of vectors |𝑇⟩ for 𝑌 ∈ 𝐼+ . An important point is that 𝐅𝐼+ cannot be defined in
terms of the algebra of periodicised operators 𝔰𝔩𝑛+1, but only in terms of operators belonging to
the much larger algebra 𝔞. On the other hand, it follows from the commutation relations of 𝔞 that
the operators 𝐷𝑐 for 𝑐 mod (𝑛 + 1) ∈ 𝐼+, and thus the operators 𝑑𝑖 for 𝑖 ∈ 𝐼+, still act on 𝐅𝐼+ .

Proposition 4.9. We have the identity

𝑍𝐼+(Λ0) = tr𝐅I+ 𝑒
−𝐝𝐼+ ,

with 𝐝𝐼+ =
∑

𝑖∈𝐼+ 𝑑𝑖𝛼𝑖 .
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Proposition 4.9 ‘categorifies’ the Euler characteristic calculations to computing graded dimen-
sions of naturally occurring vector spaces. One potential application is to consider the residual
symmetries of these vector spaces.
Indeed, starting with the case 𝐼+ = {0}, define

𝔠{0} = 𝐶𝔞,𝐅(𝔞0)

to be the subalgebra of 𝔞 of operators that commute with the action of 𝔞0 on𝐅. This Lie subalgebra
𝔠{0} ⊂ 𝔞 clearly acts on the space 𝐅0. However, it is easy to see that this algebra is rather small and
in particular abelian, as the decomposition of 𝐅 as an 𝔞0-module is multiplicity free. So it is not
clear that this is a particularly fruitful idea to study further. Note that the commutator𝔴 of 𝔰𝔩𝑛+1
of 𝔰𝔩𝑛+1 in its action on 𝐅 is a much larger, interesting algebra that contains 𝔠{0}: Investigated first
by Frenkel, 𝔴 is a version of the𝑊-algebra(𝔰𝔩𝑛+1).
Using the same idea, one can more generally define slightly larger subalgebras 𝔠𝐼+ of the full

algebra 𝔞 that may be of interest.
We finally give a representation-theoretic meaning to the partitions in rectangles which appear

in the enumeration of the fibres, as described in Section 4.2. In the pattern of type 𝐴𝑛, consider a
rectangle 𝑅𝑎,𝑏,𝑐 with sides parallel to the coordinate axes, such that:

(1) 𝑅𝑎,𝑏,𝑐 intersects at most one diagonal of any given label,
(2) the box in the top-left corner of 𝑅𝑎,𝑏,𝑐 is labelled 𝑎,
(3) the box in the bottom-left corner of 𝑅𝑎,𝑏,𝑐 is labelled 𝑏, and
(4) the box in the bottom-right corner of 𝑅𝑎,𝑏,𝑐 is labelled 𝑐.

Notice that these conditions determine the width and height of the rectangle, as well as the
labelling of its boxes uniquely, and also force 𝑏 to lie between 𝑎 and 𝑐 along the cyclic labelling of
the Dynkin diagram. We consider now the set 𝑎,𝑏,𝑐 of Young diagrams contained in 𝑅𝑎,𝑏,𝑐, and

𝐅𝑎,𝑏,𝑐 ∶=
⨁

𝑌∈𝑎,𝑏,𝑐

ℂ|𝑌⟩ .
Now, consider the finite type A Dynkin diagram 𝐷𝑎,𝑐 that is the subgraph of the affine Dynkin

diagram going from vertex 𝑎 to vertex 𝑐 along the cyclic labelling (in particular, via 𝑏). Let 𝐼𝑎,𝑐
denote its vertex set, and 𝑘 its cardinality. For any vertex 𝑖 ∈ 𝐼𝑎,𝑐, we define operators 𝑒𝑖, 𝑓𝑖, ℎ𝑖
acting on 𝐅𝑎,𝑏,𝑐 exactly as for general partitions. The relations between these generators are the
same as before, so we have an algebra

⟨𝑒𝑖, 𝑓𝑖, ℎ𝑖 | 𝑖 ∈ 𝐼𝑎,𝑐⟩ ≃ 𝔰𝔩𝑘+1.

Proposition 4.10. The space 𝐅𝑎,𝑏,𝑐, as a representation of 𝔰𝔩𝑘+1, is isomorphic to the irreducible
fundamental highest weight representation 𝑉(Λ𝑏).

Proof. Anypartition inside𝑅𝑎,𝑏,𝑐 can be obtained from the empty partition𝑌0 by repeatedly adding
boxes. Hence,𝐅𝑎,𝑏,𝑐 = 𝔫𝑌0, where𝔫 = ⟨𝑓𝑖 | 𝑖 ∈ 𝐼𝑎,𝑐⟩ is the negative triangular direct summand of
𝔰𝔩𝑘+1. Furthermore, since𝑌0 has no removable boxes, and only one addable box, which is labelled
𝑏, we have

ℎ𝑖𝑌0 = 𝛿𝑏𝑖𝑌0 = ⟨Λ𝑏, ℎ𝑖⟩𝑌0,
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so𝑌0 has weightΛ𝑏. The assertion follows, since we know that the dimension of𝐅𝑎,𝑏,𝑐 agrees with
that of 𝑅𝑎,𝑏,𝑐:

dim𝐅𝑎,𝑏,𝑐 = |𝑎,𝑏,𝑐 | = (
width plus height of 𝑅𝑎,𝑏,𝑐

width of 𝑅𝑎,𝑏,𝑐

)
= dim(𝑉(Λ𝑏)) ,

see, for example, [1, Proposition 13.2]. □

We finally remark that according to Nakajima [20], the type A fundamental representations
𝑉(Λ𝑏) are the same as the so-called standard modules of 𝔰𝔩𝑘+1, whose underlying vector spaces
are the cohomology spaces

⨁
𝑣𝑠 𝐻

∗(𝔐fin
𝜁|𝐼0 (𝑣𝑠, Λ𝑏)). Nakajima’s central result (cf. Proposition 3.4)

is that the quantum dimensions of these standard modules are equal to 1. His proof in type A is
essentially the same as that of our Lemma 4.8.

APPENDIX A: INVERSES OF ADE CARTANMATRICES
We collect here data about finite-type ADE Cartan matrices and their inverses, entries of which
appear in our substitution formula, Definition 3.2 (see, e.g. [21, Reference Chapter §2]). We let ℎ
denote the dual Coxeter number of each Dynkin diagram.
For type 𝐴𝑙, we have, ℎ = 𝑙 + 1, and for 1 ⩽ 𝑖, 𝑗 ⩽ 𝑙,

𝐶𝑖𝑗 =

⎧⎪⎨⎪⎩
2, 𝑖 = 𝑗,

−1, |𝑖 − 𝑗| = 1,

0, otherwise.
(𝐶−1)𝑖𝑗 = min{𝑖, 𝑗} −

𝑖𝑗

𝑙 + 1
.

For type 𝐷𝑙, we have, ℎ = 2𝑙 − 2, and for 1 ⩽ 𝑖, 𝑗 ⩽ 𝑙,

𝐶𝑖𝑗 =

⎧⎪⎪⎨⎪⎪⎩

2, 𝑖 = 𝑗,

−1, |𝑖 − 𝑗| = 1 and 𝑖, 𝑗 ⩽ 𝑙 − 1,

−1, (𝑖, 𝑗) = (𝑙 − 2, 𝑙) or (𝑙, 𝑙 − 2),

0, otherwise.

(𝐶−1)𝑖𝑗 =

⎧⎪⎪⎨⎪⎪⎩

min{𝑖, 𝑗}, 𝑖, 𝑗 ⩽ 𝑙 − 2,
𝑖

2
, 𝑖 ⩽ 𝑙 − 2, 𝑗 ⩾ 𝑙 − 1,

𝑗

2
, 𝑖 ⩾ 𝑙 − 1, 𝑗 ⩽ 𝑙 − 2,

1

4
(𝑙 − 2|𝑖 − 𝑗|), 𝑖, 𝑗 ⩾ 𝑙 − 1.

For type 𝐸6, we have ℎ = 12, and

𝐶 =

⎛⎜⎜⎜⎜⎜⎜⎝

2 −1

−1 2 −1

−1 2 −1 −1

−1 2 −1

−1 2

−1 2

⎞⎟⎟⎟⎟⎟⎟⎠
, 𝐶−1 =

1

3

⎛⎜⎜⎜⎜⎜⎜⎝

4 5 6 4 2 3

5 10 12 8 4 6

6 12 18 12 6 9

4 8 12 10 5 6

2 4 6 5 4 3

3 6 9 6 3 6

⎞⎟⎟⎟⎟⎟⎟⎠
.

For type 𝐸7, we have ℎ = 18, and

𝐶 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1

−1 2 −1

−1 2 −1

−1 2 −1 −1

−1 2 −1

−1 2

−1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝐶−1 =

1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 4 5 6 4 2 3

4 8 10 12 8 4 6

5 10 15 18 12 6 9

6 12 18 24 16 8 12

4 8 12 16 12 6 8

2 4 6 8 6 4 4

3 6 9 12 8 4 7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Finally for type 𝐸8, we have ℎ = 30, and

𝐶 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1

−1 2 −1

−1 2 −1

−1 2 −1

−1 2 −1 −1

−1 2 −1

−1 2

−1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝐶−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 3 4 5 6 4 2 3

3 6 8 10 12 8 4 6

4 8 12 15 18 12 6 9

5 10 15 20 24 16 8 12

6 12 18 24 30 20 10 15

4 8 12 16 20 14 7 10

2 4 6 8 10 7 4 5

3 6 9 12 15 10 5 8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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