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1 | INTRODUCTION

Nakajima quiver varieties are hyper-Kidhler quotients that often represent moduli functors.
Some examples include the instanton moduli spaces of ALE spaces [16], non-commutative Quot
schemes of Kleinian orbifolds [3] as well as various other moduli spaces which, in many cases,
have some relation to the McKay correspondence.
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In this paper, we consider Nakajima quiver varieties associated to graphs of affine ADE type. It
is known that for generic stability parameters, these spaces are smooth. However, in many cases
when these spaces are closely related to moduli spaces such as non-commutative Quot schemes
of Kleinian orbifolds or, as a specific case, the Hilbert scheme points of a Kleinian singularity,
the quiver moduli spaces are singular. As is well known, for each dimension vector the space of
stability parameters has a wall-and-chamber structure; singular spaces correspond to non-generic
stability parameters in this decomposition.

The Euler numbers of smooth quiver varieties of affine ADE type can be calculated by various
methods. One possibility is the general method of [12], but it is difficult to investigate properties of
the formulae obtained this way. For a specific open chamber F; in the space of stability conditions
and rank 1 framing, the combination of the results of [15, 17] and the Frenkel-Kac theorem was
used in [10] to obtain a formula for the generating series in formal variables; see formula (2) below.

In this paper, we compute the generating function of Euler characteristics of Nakajima quiver
varieties of affine ADE type corresponding to non-generic stability conditions lying on the bound-
ary of the chamber F; in terms of a universal substitution into the generating function attached
to the smooth models. Our method following Nakajima [20] is to analyse the fibres of the map
induced by the variation of the GIT stability condition

77:;'-’{ . mg(v, w) - m;«-(v,w% (1)

when the stability parameter moves from ¢ in the interior of the chamber to {* on a wall.
Let I be the vertex set of an affine ADE Dynkin diagram D. Let

Ziw) = ) (M (v, w)e™

veN!

be the generating function of Nakajima quiver varieties associated to the diagram D for a fixed
general framing vector w, arbitrary dimension vector v and generic stability condition ¢ (see Sec-
tion 3.1 for the precise definition of the space where such sums live). The following universal
substitution formula, which generalizes and unifies a number of earlier results in [11, 20], is our
first main result.

Theorem 1.1 (Theorem 3.9). Let I° C I be a non-empty, proper subset of the vertex set I with com-
plement I" =T\ I° Let{* € F,+ be a degenerate stability condition in the stratum of the boundary
of the open chamber F; corresponding to I'*; see Section 2.2. Let

Zrpw) = Y, x(Me. (0, w)e™",

vrent*

where, for every vt € NI, v® e N! is chosen so that mg.(uﬁB, w) is the essentially unique and in
a precise sense largest singular quiver variety containing all other M. ', w) with V'|;+ = v™ (see
Proposition 3.6 and surrounding discussion). Then, with the substitution s defined in Definition 3.2,
and a specified complex root of unity c,, o, we have
Zp+(w) = C;}Io -sp(Zp(w)).
Building on the ideas of [4] dealing with the case of the Hilbert scheme, in [3], the second and
third authors with their coauthors define certain Quot schemes of modules on simple quotient
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surface orbifolds, and identify their underlying reduced subschemes with Nakajima quiver
varieties for w = A, the zeroth fundamental weight; see Theorem 3.10 below. We can apply
Theorem 1.1 in this context. Let @ # I° C I, IT = I \ I° its complement, and let

Zi(h) = Y, x(Quottl(c?/r])e™’

vten

be the generating function of Euler characteristics of the orbifold Quot schemes.

Theorem 1.2 (Corollary 3.13)). We have

o —n—1
—(LpcroT
ZI+(A0) — (CAOJ())_l (H(l _ e—k5|,+ )) Z eXp(—kI+ . v)e—U|I+e <ZUC v )5|1+.
k=1

vez!

Here 6 is the imaginary affine root, I' = I \ {0} is the vertex set of the finite type Dynkin diagram, C’
is the finite type Cartan matrix and k;+ € 2ry/—-1Q! "isa specified vector.

This expresses the generating function of Euler characteristics of our Quot schemes as a kind of
Jacobi-Riemann-type theta-function, twisted with roots of unity. After further substitutinge™% =
q° into the above generating series, we get a power series Z;+(g) in a formal variable q.

Theorem 1.3 (Theorem 3.14). The series Z;+(q) is the g-expansion of a meromorphic modular form
for some congruence subgroup of SL(2, Z).

This result confirms a consequence of S-duality [23] for our singular moduli spaces. In the
abelian case, our series specialise to certain partition functions which have already appeared
in the physics literature as twisted sectors [5]; we thus in particular confirm the modularity of
these expressions.

In a different direction, it is well known that in the type A case, torus localisation often reduces
questions concerning quiver varieties to problems about computing generating functions of cer-
tain partitions (Young diagrams). We perform this analysis, giving a second proof of Theorem 1.2
in type A and rank 1 framing. In Proposition 4.7, we show how this sheds light on the combina-
torics of sets of torus fixed points collapsing together under the variation of GIT map (1). We also
discuss the fermionic Fock space representation of the affine type A Lie algebra é\In +1» and we
define certain natural subspaces of this representation whose graded dimension agrees with our
generating function Z;+ (Proposition 4.9). We finally derive in Proposition 4.10 a natural combi-
natorial model of highest weight representations of finite-dimensional Lie algebras 3!, related to
the collapsing fibres; this model may be new and of independent interest.

The structure of the rest of the paper is as follows. In Section 2, we review the necessary nota-
tions and results on Nakajima quiver varieties and ADE root systems. In Section 3.1, we introduce
our substitution, prove Theorem 1.1, then apply our result to Quot schemes to deduce Theorem 1.2,
and finally we prove Theorem 1.3. In Section 4, we give a second, combinatorial proof to Theo-
rem 1.2 in the type A case by investigating the fibres of the variation of GIT map, and discuss
representation-theoretic connections. Appendix A collects information about Cartan matrices
that are required for the evaluation of our formulae.
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2 | PRELIMINARIES
2.1 | Nakajima quiver varieties

We fix an undirected graph D with vertex set I. We associate to D the double quiver Q, which is the
directed graph obtained from D by replacing every undirected edge of Q by two inversely directed
edges between the same vertices in Q. We write Q = (I, H, s,t) (or short, Q = (I, H)), where [ is
the set of vertices, H is the set of directed edges and s, ¢t : H — I are the assignment of source and
target vertex to a given edge.

Let v,w € N. Fix a stability condition ¢ € Q. Depending on this data, Nakajima defines the
quiver variety (v, w) as the moduli space of ¢-semistable w-framed Q-modules of dimension v.
We collect here a few relevant facts about quiver representations and Nakajima quiver varieties;
see [19] for details.

A (framed) representation (V, W, f, a, b) (or short, (V, W)) of a quiver Q = (I, H) is a collection
of finite-dimensional vector spaces (V;);cs, (W;);er together with linear maps

F=Unt Vs = Viwnens a=(a: Wy = Vg, and b=(b;: V; > W))g.

We call a representation of Q a module if (f, a, b) additionally satisfy the relations of the prepro-
jective algebra (the definition of which we will not go into here). Given ¢ € Q, a module (V, W)
is called {-semistable, if for any subspace V’ of V, closed under all f, we have

V' C Ker(b) = ¢ - dim(V") < 0,
V' 2 Im(a) = ¢ - dim(V’) < ¢ - dim(V),

where dim(V) denotes the vector (dim(V;));c; and ¢ - dim(V) = Y;,; {; dim(V;). The module
(V,W) is called ¢-stable if it is {-semistable and the above inequalities are strict for all proper,
non-zero subspaces V' satisfying the stated conditions. We assume throughout that ¢; > 0 for all
iel

By a submodule of (V, W) we mean a subspace V' as above, that is, closed under f, with either
V' € Ker(b) or V! 2 Im(a). In the first case, we view (VV/, 0) as an (unframed) module, and in the
second case we view (V/, W) as another W-framed module.

Modules of a given double quiver admit Harder-Narasimhan filtrations and a notion of S-
equivalence. The space 9, (v, w) is a coarse moduli space of ¢-semistable modules (V, W) with
dim(V) = v and dim(W) = w, up to S-equivalence. It contains an open subset Em;;(v, w), which is
a fine moduli space for ¢-stable modules, up to isomorphism. Furthermore, each S-equivalence
class of semistable modules contains a unique polystable member which is a direct sum of
stable modules, and I, (v, w) is likewise a coarse moduli space of {-polystable modules up
to isomorphism.

2.2 | Nakajima quiver varieties for affine ADE Dynkin diagrams

From now on, we assume that Q is the double quiver associated to a Dynkin diagram D of affine
ADE type, with vertex set I. According to the McKay correspondence, to such a diagram D, there
corresponds a finite subgroup I' < SL(2, C), up to conjugation. The vertices of D in turn corre-
spond to the irreducible representations of I'; denote these representations {p; : i € I}, with p,
the trivial representation.
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Pick a subset I™ C I and let
Fu={¢eal |¢>0foralliel, and¢; >0 it}

Then F; is an open cone in the space Q' of stability conditions; we call a stability condition ¢ € F;
generic. The sets F+ for I C I form a stratifiction of the boundary of F;. For any ¢ € F;+ and
" € Fy+, (the closure of Fy. in @'; equivalently, ¢* € F, with T + C I'), there is a projective
morphism

71'{-’;« . m{(U,W) - mg-(v, LU)

which is obtained by GIT degeneration. This morphism is an isomorphism if {* € F;+ as well.
The set of such morphisms is closed under all possible compositions.

The stable part sm;(u, w) is always smooth. For a generic stability condition § € F;, M, (v, w) =
ng(v, w), and is therefore smooth. Any 7. - induces an isomorphism from ﬂgl ¢ (zmg. (v, w)) onto
its image. At the special stability condition { = 0 € Fy;, the quiver variety 3,(v, w) is an affine
algebraic variety.

Let ¢* € F;+ be a non-generic stability condition for It C I. Let I° = I \ I denote the com-
plement of I". The direct-sum decomposition of any ¢°-polystable module (V,W) is of the
form

v, w) =", w)e P, 0%,

iel®

where (V/, W) is {"-stable, S; denotes the unframed module which is a one-dimensional vector
space at vertex i and zero everywhere else, and v® = v — v’; this follows from [16, Proposition 6.7]
since v* is supported on a finite-type Dynkin diagram. This allows us to decompose ;. (v, w) into
locally closed strata, each isomorphic to smg (v, w) for some v’ < vwith vl.’ =y, foralli € I'*; here

v’ < v denotes the obvious componentwise partial order on N/. Conversely, for any such ¢*-stable
module (V/, W), and vector v® > 0 supported on I°, the direct sum above is a ¢-polystable module.
Hence, every such 9)22,(0’ , w), if non-empty, appears as a stratum in M. (v, w).

For the rest of this paper, { € F; will denote a generic stability condition, and {* € F;+ a non-
generic stability condition, with It C I.

2.3 | Root systems

Let g be the affine Lie algebra associated to D, and let § C g be a Cartan subalgebra. Let
(a; € §Y);e; be the fundamental roots, § € h” the imaginary root, (&’ € §);¢; the fundamental
coroots and (A; € §V),c; the fundamental weights. The components of the imaginary root § =
Yier dim(p;)a; in the root basis coincide with the dimensions of the irreducible representations
of the finite group I'.
We furthermore denote by (, ): § ® ) — C the natural pairing, and by C = (C; )i jer the
Cartan matrix. We have the following relations:
(@, oc;.’) =C

(6.a))=0, (A,a¥)=8; foralli,jel.

ij o ij
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We can write § = ), ; a;a;, for some a; € N. Also pick a distinguished root «, (labelled by i = 0)
satisfying a, = 1, and introduce the scaling element d € fj by the conditions

(aj,d) =38;, and (A;,d)=0 foralliel.
Then {a;’}ie 1 U {d} is a basis for §j. As a consequence we also obtain the relation

o =80+ ) CyA; foralliel.
JeI

Now suppose we are given a subset I’ C I as above. Let D denote the (possibly disconnected)
Dynkin diagram which is the full subgraph of D on the vertex set I°. The following is clear.

Lemma 2.1. D is a union of Dynkin diagrams of finite ADE type.

Let /1" be the finite-dimensional semisimple Lie algebra associated to D°. Let " be a Cartan
subalgebra. We denote simple roots and fundamental weights by ociﬁ“ and Afi“, respectively, each
defined for i € I°. We furthermore make the identification a; = ocl.ﬁn for i € I9, which embeds
(5"™)Y into §Y. The associated finite Cartan matrix C'™ = (C;;); jeo is invertible. The relations we
gave in the affine case are the same for ¢'"
irrelevant or vanish. In particular, we have

, except all the terms including 6§ or d either become

a = CyA™ foralliel”.

JeI°

This data will be used in the description of the geometry of Nakajima quiver varieties. We
identify dimension vectors v with affine roots and framing vector w with affine weights as follows:

U=Zviocl- and w=2wiAl-.

iel iel

We also consider Nakajima quiver varieties associated to the finite-type Dynkin diagram D,
which we denote by W?n(vs,ws), where U5, w® € N (or, by abuse of notation, v® € N/ with
non-vanishing coefficients only over I°) and ¢ € Q' is a stability parameter. Again, we identify

v = 2 vl.socl.f‘“ = Z via; and w’= Z wl.sAf”1 .

iel® iel® iel®

The following results hold.

D Em;,(v, w) # @ if and only if w — v € §" appears as an I°-dominant weight of the highest-
weight representation V(w) of g. Here the difference is taken after identification with weights,
not component-wise, and I°-dominant means that (w — v, oc;/) > 0 for all i € I°. This result
is [19, Proposition 2.30].

(2) Let¢ € F; be ageneric stability condition for D and ¢* € Fy+. Letv = v’ + v, v® supported on
I°, determine a stratum isomorphic to 21722 (', w)in M. (v,w). Let | € Qo be the restricted

stability condition for D°. By [19, Section 2.7], the fibre of g+ ¢ over any point in this stratum
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is isomorphic to a distinguished Lagrangian subvariety Efm (LS, w%) C smfm (v, w®), where
w' = Z(w - v’,ociv)Alﬁ“ .
ielf

Further, the inclusion Eﬁn (5, w’) C m?fo (v%, w®) is a homotopy equivalence by [16, Cor.5.5].
I

So as far as the Euler characterlstlcs of fibres are concerned, one can work with the full quiver
varieties for finite-type diagrams. We learned this trick from [20, 1(iv)].

3 | THE SUBSTITUTION FORMULA AND ITS APPLICATIONS
3.1 | The substitution rule and its properties

In order to write down our generating functions in an economical way, we introduce formal

variables eV for all v € §jV, subject to the relations e? =1 and eV11V2 = eY1¢%2, We will consider

generating functions in which infinitely many e’ appear with non-zero coefficients, keeping in

mind that one needs to take care that products or substitutions of such functions are well-defined.
In order to define our substitution of variables, we first introduce some notation.

* Let j € I°. The Dynkin diagram D has a connected component D%/ containing j, which is the
Dynkin diagram corresponding to a finite-dimensional simple Lie algebra. Let h; denote the
dual Coxeter number of D%/,

* Recall that Cfi™ denotes the Cartan matrix of D°. For j € I° define

= (™™

ker®

the sum of elements of the j-th row of the inverse of Cfi",

Lemma 3.1. Consider the finite type Dynkin diagram which is the full subgraph on vertex set I \ {0},
and let h be its dual Coxeter number. Then

h=1+ Z Cjs
0—jel\{0}

where we sum over all arrows in Q starting at 0 and ending at a vertexin I \ {0}.
Proof. The equality can be checked case by case, using the data presented in Appendix A. O

Definition 3.2. We define the substitution s;0 as follows.

e“u—>exp<2”\/__l>, ielf,

hi+1

: : 2y — .
e%i > e%i Hl_)]eloexp< ¢ T >, iel*.

SIO .

fi
These formulae are then extended to substitutions of the terms ei", possibly involving higher-
order roots of unity.
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Example 3.3. Let I* = {0}. Then the subgraph D is a connected finite type Dynkin diagram; let
h denote its dual Coxeter number. By virtue of Lemma 3.1, the substitution in this case specialises
to

e“iv—>exp<272\fl__l), i#0,
471\/—_1> i=0

SIO .
a; a;
e e exp< o

This formula is equivalent to the substitution subject to the conjecture of the last two authors
and Némethi [10], which was proven by Nakajima [20].

Our substitution has the following two properties, which are crucial for our calculations. We
first obtain a slight generalisation of Nakajima’s quantum dimension result.

Proposition 3.4. For a generic stability condition { € F;, we have

i S_ps 0
Spo Z X(ng?o(vs,ws))ew “lI=1 forallw®eN".

0
vseN!

Proof. The statement is proved in [20, Theorem 2] for connected finite-type Dynkin diagrams, by
interpreting the left-hand side as the quantum dimension of the standard module of the quantum
loop algebra over gfi".

The statement for disconnected Dynkin diagrams is then obtained as follows. Notice that, since
{150 > 0, a Q°-module is ¢ | o-(semi)stable if and only if it does not contain any proper, non-zero
submodules C Ker(b), which, in turn, holds if and only if its restrictions to the connected com-
ponents of QU satisfy the same condition. Hence, the quiver variety in this case is just the product
of the quiver varieties associated with the connected components. Since the Euler characteristic
is multiplicative on products, the generating series above is simply the product of the respective
generating series for the connected components. O

In order to state the second property, we introduce new variables

5£l- = Z Cleiln fOI‘ all l (S 1 .
JEI®

Notice that &; = «; fori € I° but not fori € I'*.
Proposition 3.5.
510 (e“i_&i) =e% foralliel".

Proof. Unravelling the linear relations between «;, A;, and &;, we obtain

id+ B
ai—&i=ZBijaj, where B=< é+ 0> ,
Jel
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and B is a matrix whose rows are indexed by I'* and whose columns are indexed by I°, determined
as follows. For i € I the i-th row of B is the sum of j-rows of (C'")~!, where we sum over edges
connecting i to some j € I°. Collecting all the corresponding factors one can now see that

sIo(e“f—z =% H exp< 12;:\_{_?> H exp<cj%) =e% .

i—jel® i—jeI°

d

3.2 | Proof of the universal substitution formula

The following finiteness result will explain why the substituted generating function is actually
well defined, and what exactly it enumerates.

Proposition 3.6. For any vt € NI, there are only finitely many v € N with v|;+ = vt and
m;,(u, w) # @. Consequently there exists v® € N! such that

1) v®|+ =v*, and
(2) anyv € N withv|;+ = v and WZ;,(U, w) # @ satisfies v < VO.

For any such v®, we furthermore have

X MO w) = Y X (. (0, w)).

veN!
U]+ =vt

Proof. Recall that imzl,(v, w) # ¢ if and only if w — v is an I°-dominant weight in the highest
weight representation V(w) of g. I°-dominance of w — v is equivalent to

\ Vy + Y% 0 % : 0
(w,a) =2 (v, /) = (", /) +(v,)) forall iel”,

where v = v — v* > 0is supported on I°. Since the dimension vectors v° have only non-negative
components, we furthermore have the inequality (v°,¢|;0) > 0, where ¢|;0 = X cj0 51-0([.\’ is the
restriction of the central element of g. Since the coefficients of c|;0 with respect to the «; are pos-
itive, the region in R cut out by the above inequalities for v° is bounded (in fact, a simplex),
and hence contains only finitely many v° with integer coefficients. One can then choose v®, for
example, as the component-wise maximum of all such v.

The second claim follows from the fact that 90t ¢ (v®, w) is stratified with strata in bijection with
and isomorphic to ﬂ)?z;,(v, w), for v|;+ = vt. O

Remark 3.7. Note that Proposition 3.6 does not state that the stable locus fmg (v®, w) is non-empty.
The vector v® is merely chosen so that Emg.(v@, w) contains all the non-empty mz;,(u, w) with

v|;+ = vt asstrata. In particular once a vector v® satisfying Proposition 3.6 is found, any other
vector v® > v® with v®' |+ = v will satisfy Proposition 3.6 as well.

It seems likely that, up to isomorphism, Emg. (v®, w) does not actually depend on the choice of
v® as long as it satisfies the conditions of Proposition 3.6. For any two such dimension vectors
v® < v®, the map given by adding a (v®" — v®)-dimensional trivial module to a given Q-module
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induces a closed embedding Emg.(v@, w) — smg.(v@’, w); the details of this will be investigated
in forthcoming work. From the properties given in Section 2, we furthermore know that this
morphism is a bijection on closed points. Hence, at least the underlying reduced subscheme of
M. (v®, w) does not depend on the choice of v®.

Now recall that our framing vector for the fibre of Ttg- ¢ Over the stratum in Emg.(v,w)
isomorphic to m;,(u' ,w) is defined as

S . ! VA Afin
w® = Z(w—v,ai)Ai ,
eIl

which depends on w and v’. For brevity, let us denote w|;o = Y, wl-Al.ﬁn, where w = )., WA
- /
and v’ = ¥ vla;.

Lemma 3.8.

s _ ' ’ -
w’ =wlp—v +Zvj(ocj—ocj).
jeI

Proof.

w® Z(w -/, a;’)A?“

i€l
=wlp — Y (', a YA
iel°
_ ’ fi
=w|p — Z ijjl-Aim
iell,jel
=wlp -0 + Zv’.(m —d)
I i i’
Jel ]

As in the Introduction, fix a framing vector w # 0 and a generic stability condition {. We
consider the generating function

Zj(w) 1= Y x(Me (v, w))e™

veN!

of smooth Nakajima quiver varieties at generic stability. Our main result is the following.

Theorem 3.9. The substituted generating series s;o(Z;(w)) is well defined. The substitution formula

spZW) =cpp Y. x(Me- (W2, w)e™"

vtent™
+ . . ey
holds, where for every vt € N, v® e N is chosen as in Proposition 3.6, and
Cw’IO = SI()(e_wllo)

is a complex root of unity.

85UBD17 SUOWILLIOD BAIER1D) 3(eot|dde aLy A pauenob afe S YO ‘88N 4O S3INJ 104 AX1q 1T BUIIUO /|1 UO (SUORIPLICD-PUR-SWLB)LI0D A3 1M AReiq U UO// A1) SUORIPUOD PUe SWS L 83U} 88S *[5202/20/02] Uo Atelqiauliuo AB|IM Ruio!lqiqRAusZ - ASA Ad 2002 SWII/ZTTT OT/I0p/LI00 A8 |1M*ALeIq 1 BUIIUO"D0SLTRLIPUO|//SARY WO papeojumod ‘2 'S20Z ‘0G2L69%T



EULER CHARACTERISTICS OF AFFINE ADE NAKAJIMA QUIVER VARIETIES | 11 of 28

Proof. By means of the stratification of 9. (v, w) and homotopy type of fibres of 7. », we obtain
that

X(Me0,w)) = ) x (M., w))x smfm % w)),
¢
U/
where the sum runs over all v’ for which sm; W, w)#6,v" =v—-1/,and

.
w' = Z(w — v, )N

iel®

as above. Summing over all v, we obtain the following equality of generating functions.

Z(w) = Z <Z ;((EDZ?EO(US, ws))ew’“‘”“)x(fv?g.(v’, w))e=v' v

Now, by Proposition 3.6, we have

Y X (0,w)) = x (M- (0, w)) .

veN!
U|1+ =ot

Hence, the generating series ), )((EUZZ, ', w))e—"'|z+ is well defined and equals:

> (MO, w))e Zx(wts ', w)eV'lr

vrentt

= Z X(mz,(v’, w))spo (e— Xjer U}(aj_dj))
U/

= s70("10)s0 (Z )((SUZZ. ', w))e_U’_ws>

=s70(e%l0)

(Z (Z X(mﬁn (%, w*)e? ™ >X(W22.(v’,w))e_l/_ws>

= SIO(ewl’O )spo(Z;(w)) -
Here we used Proposition 3.5 in the second, Lemma 3.8 in the third and Proposition 3.4 in the
fourth equality. ]
3.3 | Quot schemes of Kleinian orbifolds

Recall the finite group I' < SL(2, C) associated to our Dynkin diagram D by the MacKay corre-
spondence. It defines the quotient stack [C?/T], the Kleinian orbifold. Given v € N/, there is
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an orbifold Hilbert scheme Hilb"([C?/T]) which parameterises I'-invariant ideals J of C[x, y] for
which the quotient C[x, y]/J is a finite-dimensional I'-module of representation type @, pi@”i.
For a generic stability condition ¢ € Fy, it is well known that there is an isomorphism

M, (v, Ay) — Hilb®([C*/T]).

More recently, the last two authors together with Craw and Gammelgaard constructed in [3]
more general orbifold Quot schemes associated to the Kleinian orbifold. For any non-empty subset
I* CITandvt € NI, there exists a moduli space Quot}’:([{i2 /T) of quotients of dimension vector
vt of a certain module R;+ over a non-commutative algebra B;.. For It = I the full subset and
v € NI, we have

Quot}([C*/T]) 2 Hilb"([C*/T]),
while for It = {0} the distinguished vertex and v € N, we have

Quot?o}([ﬂj2 /T]) = Hilb’(C?/T),
the Hilbert scheme of points on the singular surface C?/T.

The general Quot schemes Quot?:([c2 /T]) can be related to Nakajima quiver varieties as fol-
lows. For @ # I C I, pick a non-generic stability condition ¢* € F;+, and a dimension vector
vt e N,

Theorem 3.10. Let IT C I be a non-empty subset and v+ € N " be a dimension vector. The orbifold
Quot scheme Quot‘;:([Cz/F]) is non-empty if and only if the Nakajima quiver variety M. (v, Ay) is
non-empty for some vector v € N! satisfying v|;+ = v™. In this case, for a suitable choice of vV® € N
with v$|1+ = v*, we have an isomorphism

+
QuOt;)+ ([Cz/r])red = mg"(U@’ AO)red’
where on both sides we take the reduced scheme structure.

One proof of this result was recently given by Craw in [2, Theorem 1]. An independent argument
was given in a previous version of this paper. This argument and its further consequences will be
discussed in forthcoming work.

Theorem 3.10 implies that our substitution formula applies directly to the setting of Quot
schemes.

Theorem 3.11. For any non-empty, proper subset I* C I, letI° = I \ I' and consider the generating
function

Z-(h) = Y, x(Quottl (/T )e" .

vtent

Then we have the substitution formula

Z1+(Ag) = (epo 10) ' 870(Z1 (M),
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where cyo jo is a complex root of unity and Z;(Ag) = Y cnt X (Hilb“([C2 / F])) e~V is the generating
function associated with the full subset I.

Finally, recall from [10] that the full generating function Z;(A,) can be expressed in the form
of a Jacobi-Riemann-type theta-function as

b -l 1.,01,T
Z/(A) = <H<1 —e"“S)) Y oo e @
k=1 vez!

where I’ = I — {0}, C’ is the finite-type Cartan matrix with Dynkin diagram the full subgraph of D
on the vertex set I, and we identify v = Y, v;;. To use our substitution (Definition 3.2), define

the vector of roots of unity k;+ € 271/—1@! as follows:

271'\/—_1

_ iel,
o) h; +1
kI+ i =
2/ -1
— Z cjﬁ’ ielt.
i—jelo it

Lemma 3.12. We have

kpv - 8 1= ) (kp+); dim(p;) = 0.

iel
Hence, in the substitution of =%, the different roots of unity cancel out:
sp(e™0) = e oM+,

Proof. Since ¢ is in the kernel of the Cartan matrix, and since the Cartan matrix is symmetric, it
suffices to show that k;- is in the image of the Cartan matrix. In fact, we have

kI+ = C (Cﬁn)_l(k1+ |10) N

where (CT")~1(k;+|;0) is viewed as a vector in Q! with zero entries on I*. O

Applying Theorem 3.11 and Lemma 3.12, we obtain the following formula, which gives a Jacobi-
Riemann-type formula for the generating function of all Quot schemes for a fixed non-empty
proper subset I of the vertex set I also.
Corollary 3.13. We have

00 —n—1 Lo\ s
Zp (M) = (o o)™ <H<1 — el >> > exp(—kps - p)e-vlrve(3€77 )l
k=1 vez!

where kp+ - v = Y (kp+);v;.
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In light of the isomorphism Quot?o}( [C?/T]) ~ Hilb’(C?/T") as well as Example 3.3, for It = {0},
this becomes the main conjecture of [10], already proved by Nakajima [20] of course.

3.4 | Modularity

Let q be a formal variable. Consider the generating series

Zi@ =Y, x(Quotr(e2/TD)q"",

vrent

where

qv+ — H q“i dim Pi

iel*t

Setting g = exp(27it), we may regard Z;+(q) as a function of r € H, where H is the upper half-
plane. Our next result is the following.

Theorem 3.14. The series Z;+(q) is, up to a suitable rational power of q, the Fourier expansion of a
meromorphic modular form of weight |I|/2 for some congruence subgroup of SL(2, Z) acting on the
upper half-plane H.

Let (Z", Q) be a lattice equipped with a positive definite quadratic form. Extend Q to a form on
Q" = 7" ® Q. Let moreover z € Q" be a vector. The shifted theta series associated with the pair

(Q,z)is

©0.(@) 1= Y, ¢¥*2.
kezn

It is known that @ ,(q) is a modular form of weight n/2 for some congruence subgroup of
SL(2, Z); see, for example, [13, section 13.6]. Theorem 3.14 is an immediate corollary of the
following statement.

Proposition 3.15. The series Z;+(q) is a Q-linear combination of shifted theta series associated
with integer valued positive definite quadratic forms on Z". That is, there exist N > 1, a; € Q, integer
valued positive definite quadratic forms Q; on Z" and z; € Q" for 1 <i < N, such that Z;+(q) can
be written as

N
Z1(@) = ), a0, ;. (q)-
i=1

Proof. The methods of [22, section 3] generalise to the current setting. We omit the details. []

Remark 3.16. The question arises whether our series Z;+(q) can be expressed as an eta product.
Recall that one advantage of expressing a modular form as an eta product is that many specific
modular properties of eta products can be calculated easily (the congruence subgroup, order of
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vanishing at cusps, etc.), see [14]. We performed some numerical calculations in type A for low
rank cases; see also [ 5, section 6] for such calculations in the physics literature. For the root systems
A, and A,, all Quot scheme generating functions lead to eta products. However, Z,_ (y is not
expressible as an eta product, and we do not expect eta products to exist for larger root systems.

3.5 | Higher rank framings

Our universal substitution result Theorem 3.9 holds for arbitrary framing vector w; note that sin-
gular quiver varieties with higher rank framing can sometimes be related to moduli spaces of
framed sheaves on certain non-commutative surfaces that can be interpreted as partial resolutions
of the scheme P? /T [8, 9]. Our formula is however not really useful for explicit results unless one
has some information about the generating function Z;(w) computed at a generic stability con-
dition. For weight vectors other than w = A, (and the other fundamental weights related to it by
diagram automorphisms of D), we are not aware of useful formulae away from type A. Nakajima
in [17, Theorem 5.2] states a result for the total cohomology of quiver varieties of affine ADE type,
which however contains terms involving intersection cohomology spaces which appear hard to
control for higher rank framing. A formula of a different nature is presented by Hausel in [12,
Theorem 1], which also appears difficult to work with. In the finite type D case, see also [18,
Proposition 5.5].

On the other hand, for affine type A, torus localisation arguments closely related to those
explained in the next section lead to the explicit formula [7, Corollary 4.12] for Z;(w) for all framing
vectors w. This formula is entirely analogous to the Jacobi-Riemann theta-function-type formu-
lae above, so we will not repeat it here. Using our universal substitution, for I* C I one can then
derive an expression for Z;+(w) analogous to that of Corollary 3.13. The results of 3.4 imply the
modularity of the corresponding one-variable series Z;+(q) for non-generic stability conditions.

4 | TYPE A: COMBINATORICS AND REPRESENTATION THEORY

In this section, we will assume that the Dynkin diagram D is of affine type A, and we consider the
framing vector w = A as in Section 3.3. In this case, the generating functions can be studied via
the combinatorics of coloured partitions, and are related to the Fock space representation of the
affine type A Lie algebra. In this section, we make this explicit, providing an alternative proof of
our substitution result in this case.

4.1 | Torus fixed points

Fix an integer n and let T be the cyclic subgroup of SL(2, C) of order n + 1. The corresponding
Dynkin diagram D has vertex set I = {0, ..., n} labelled in a cyclic manner. The quotient vari-
ety C2/T has an A,, singularity at the origin. The action of I' commutes with the natural action
of the two-torus T = (C*)? on the plane. Hence, T acts on the quotient C?/I" and the orbifold
[C?/T7], as well as the orbifold Hilbert schemes Hilb’([C?/T]) and the orbifold Quot schemes
Quot?; ([C2/T)).

Consider the set N X N of pairs of natural numbers; these are drawn as a set of blocks on the
plane, occupying the first quadrant. Label blocks diagonally with (n + 1) labels O, ..., n as in the
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figure below; the block with coordinates (i, j) is labelled with (i — j) mod (n + 1). We will call
this the pattern of type A,,.

0 1
1 2
n 0 n—2\n—1| n 0
0 1 n—1| n 0 1

Let P denote the set of partitions. We identify a partition 1 = (4,,...,4;) € P, where 4, > ... >
Ay are positive integers, with its Young diagram, the subset of N X N which consists of the 1; lowest
blocks in column i — 1. The blocks in the Young diagram inherit the n + 1 labels from the A,
pattern. For a partition 4 € P, let wt;(4) denote the number of blocks in 4 labelled j in the above
pattern, and define the multi-weight of 1 to be wt(1) = (Wty(4), ..., wt,(1)) € NL.

Lemma 4.1 [6, 7]. For any v € N/, the fixed points of the T-action on Hilb"([C?/T]) are in bijection
with the set {1 € P |wt(4) = v}.

Idea of proof. The T-fixed points on Hilb([C?/T']), which coincide with the T-fixed points on
Hilb(C?), are the monomial ideals in C[x, y] of finite colength. The monomial ideals are enumer-
ated in turn by Young diagrams of partitions. The labelling of each block gives the weight of the
I'-action on the corresponding monomial. O

We immediately deduce the following.

Corollary 4.2. The orbifold generating series of the simple surface singularity of type A, can be
identified with the generating function for (n + 1)-labelled partitions:

Zy(Ag) = Y, e ™M@
AEP

‘We now turn to the T-fixed points on the Quot schemes Quot;f([(:2 /T1]). Consider a non-empty
subset I C I. A partition A € P will be called I'*-generated, if the complement of its Young dia-
gram in N XN can be covered by translates of N X N whose bottom-left corner block is labelled
by some i € I'". Equivalently, 1 is I"-generated if all its addable boxes (i.e. boxes in N X N that,
when added to 4, again produce the Young diagram of a partition — those boxes are also called
generators) are labelled by an element of I*. Notice that for It = I the full set, every partition
is I-generated, and for I*' C I'*, every It -generated partition is I*-generated. We denote the
set of I'*-generated partitions by P;+. We define the I'*-weight of a partition 1 as the restricted
multi-weight vector wt,, (1) = (Wt;(A));c+ € N
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Example 4.3. Let n = 2. We indicated the generators on the following {0, 2}-generated Young
diagram:

0 1
1 2 0
2 0 1

Its {0, 2}-weight is (3,3).

Lemma 4.4. Foranyv* € N/ " the fixed points of the T-action on Quot'jj([@2 /T1) areisolated and
in bijection with the set {1 € P+ |wt,, (1) = v*}.

Proof. 1t is easy to check that the B;+-module R;+ defined by [3] has a monomial-type basis
consisting of elements corresponding to blocks in the type A, pattern labelled by i € I'*. The T-
fixed points of Quot;+([C?/T]) correspond to quotients of R;+ by monomial submodules of finite
colength. The dimension of the p;-isotypic component of such a quotient is precisely the number
of blocks labelled i in the diagram corresponding to it. The result follows. O

Corollary 4.5. For a non-empty subset It C I, the generating series of Euler characteristics of I'*-

Quot schemes of the Kleinian orbifold [C? /T of type A,, can be viewed as the generating function for
(n + 1)-labelled I't-generated partitions:

ZI+(A0)= Z e_th”(M .
lep1+

We again denote by a;,i € I the standard basis elements of N/. From now on we also assume
that I'" is a proper non-empty subset, write I = I \ I'* and denote by D° the full subgraph of the
Dynkin diagram on the vertex set I°.

4.2 | Combinatorics of the substitution

Denote by I the preimage of I'* under the covering Z — {0, ..., n} mapping k to k mod (n + 1),
and the same for I°. For any i € I'+, we now define

ri=max({j € Z |i<jand{i+1,...,j} CI°}) —i,
and
L=i—-min({j ez |j<iand{j,..,i—1} CI°)).
In other words, r; is the number of consecutive integers to the right of i which do not belong to

I+ and [; is the number of consecutive integers to the left of i which do not belong to I'+. Flnally,
for any i € I°, we define n; to be the length of the maximal sequence of consecutive integers in I 0
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containing i. Evidently, the numbers r;, [; and n; only depend on the congruence class of i modulo
n + 1, and are hence well defined also on I° and I'*, respectively.

In type A, the connected components of D° are type A finite Dynkin diagrams, which are con-
nected to I only at their endpoints. In finite type Ay, wehave h; = n; + 1 and the two occurring
constants ¢; at the endpoints of this connected component, are equal to % The constant ¢, o is
1if 0 € I't and can otherwise be computed as

Chg.10 = €XP <_COM) =(—1)"exp <27r\/—m(m + D)

ny + 2 2(ny +2)

where m is the distance between 0 and It (measured on either of the two sides). Using these
calculations, Definition 3.2 and Theorem 3.11 take the following form.

Theorem 4.6. Consider the following substitution of variables.

27{\/_ 27{\/_> iert

a
et ex +
p( ri+2 I;+2
% s

SIO: e
exp (2”—\/_—1>, iell.

n;+2

Then the generating function Z;+(A,) of I'*-generated (n + 1)-labelled partitions is obtained from
the generating function Z;(A,) of all (n + 1)-labelled partitions by

Z1+ (o) = ¢55'5p0(Z1(Ag))

where cjo = cp jo is a complex root of unity which is determined as follows. Let m denote the
minimum of It inI = {0, ..., n}, then

cpo =(—=1)"exp <2ﬂ\/—m(m + D)

+2)

In the following paragraphs, we give an alternative, combinatorial proof of this result. Consider
the projection

7TI+ : P - PI+,

which associates to 1 € P the smallest I"-generated Young diagram containing A. For example,
forn = 4,1t = {1, 2}, it maps

3]
(4| 4|
0| 0|
1]2]3 12134
S Y Y PR ~ 2134l
SE 3/alo]1
4lol1]2]3 alol1]2]3 0
o[1][2]3]4]0]1] ol1]2]3]4]0 3)
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Conversely, the boundary of any partition mapping to the one on the right must run through each
of the grey rectangles from the top-left to the bottom-right corner.

Proposition 4.7. Given v € N/, the morphism

Hilb®([C?/T') - Quot’™ ([C?/T1)

is T-equivariant, and hence maps fixed points to fixed points. Under the bijections of Lemmas 4.1
and 4.4, this mapping is given by my+.

Proof. LetJ be the monomial ideal in C[x, y] corresponding to a T-fixed point of
Hilb’([C?/T)).
Take its decomposition
J =@ierdis

where J; is the p;-isotypic component of J. Combining [3, section 3, Proposition 4.2 and Theo-
rem 6.9], we see that the map from the orbifold Hilbert scheme to the Quot scheme associates to J
the point in the Qout scheme represented by the B;+-module

T = @icped;.

On the level of monomials, taking a p;-isotypic subspace corresponds to keeping the boxes labelled
i. Therefore, JT* is generated by the monomials with labels in I just outside the Young diagram
of J. We recover the map 7;+. O

Denote the g-binomial coefficient by

<n> _(-g9---g""h
k/q 1-g9--Q0-q

€ Z[q]. 4)

It is known that (Z)q is the generating function for partitions that are contained in a k X (n —

k)-rectangle, weighted by number of boxes. Our proof of Theorem 4.6 is based on the following
observation.

Lemma 4.8. Let 0 < k < n be integers. If € is a primitive (n + 1)th root of unity, then substituting
q = £ gives

Y\ _ o ykg—sk(kt1)
(1), = corgae

Proof. Since £ is a primitive (n + 1)th root of unity, we can substitute £ into (4), and obtain
<n> _a-&--a-g
k) A—¢Eky..(1-¢)

3 1-— é‘n 1-— %’n—k+1

=T TIom
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= (=E)(=ED) (=7
_ (_1)k§—%k(k+1)' ]

Proof of Theorem 4.6. We verify the substitution formula along the fibres of 7;+. Precisely, we
show that for any I -generated partition A,

S50 e WM | = ¢pem Wt (D),

per l(2)

For i € 7, let the ith diagonal be the set of boxes with coordinates (x, y) such that x —y =i, so
boxes on the ith diagonal are labelled i mod (n + 1). We cover the pattern of type A,, by diagonal
strips consisting of ith diagonals for iy < i < i}, where iy,i; € I and iy + 1,...,i; — 1 € I°. Notice
that any box labelled i € I° will lie in exactly one of these strips, while any box labelled i € I'* will
lie simultaneously in two neighbouring strips.

Fix the I't-generated partition A, then each of the diagonal strips contains exactly one of the grey
rectangles as depicted in (3). The partitions in the fibre 71';} (4) are obtained from A by removing
boxes from the grey rectangles. A rectangle which lies on the strip bounded by diagonals i, < i;
has width plus height equal to i} — i, =r; +1 =1; + 1. When we apply the substitution, all the
e~ % corresponding to labels appearing on boxes in that rectangle are substituted by the same root

of unity £ = exp(—%). By Lemma 4.8. We therefore see that taking the sum over all ways to
i

remove grey boxes from the rectangle and then substituting becomes equivalent to multiplying
by the root of unity
41 o1
A, A) i= (V’O , ) = (-1)/g/0", ©)
J g1

where j is either the width or the height of the rectangle. In total, these factors multiply and we
obtain

so| YL e W =1 T 4, @) [sple @) .

,uer[’_&(/l) ipel*
Next, since e~ Y™ is a monomial in the variables e~%, and since substitution gets rid of the
ones where i € I9, we have
sp(e™ D) = ¢(R)e™ WD),
where ¢ (1) is some root of unity. We can factor {(1) into contributions from the diagonal strips,

¢t = Hioeﬂ {io(/l), where ¢ i, 18 exp(—%) to the power of the number of boxes in the
intersection of A with the diagonal strip bounded to the left by the iyth diagonal. We obtain

sp| Y, e @ =] [T 4, @), @) Jem 2+ @

/4671';3(/1) iper+
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We now calculate A, ¢ o (1) for the three possible shapes of strips. For i € I'* let L; be the
number of boxes on the ith diagonal contained in 4.

(1) iy > 0: The following diagram represents the contributions of a strip with i, > 0, Ly =51 =

2,and r;) = ; = 6. Each box shown contributes a factor of exp <—Zf€> The blue boxes

o
do not belong to 4 and were added to represent the triangular power in the factor A; (2).

ko

iy

ko

i i

We see that each row has a length of ri, + 2, so the roots of unity cancel out row-wise. The
only remaining factor is the sign from A; , so

A, (A, (D) = (=Dl

(2) i, < 0: The procedure is analogous to case (1), but here we use column-wise cancellation.

Ly

iy

b

i

‘We obtain
A, (DS, () = (=1)Fa o,

(3) iy < 0 < i;: In this case, the roots of unity do not cancel along the columns (or rows), but
instead give a fixed root of unity which only depends on I and not on A. In the diagram
below, the inverse of this root of unity is represented by the black boxes, which are again not
part of 1.
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b

‘We obtain

R )

Notice that this case occurs at most once in the partition, and when it does i; is the minimal
positive element of I+

Now m, as defined in the statement of the theorem, is the i; of case (3) or zero if this case
does not occur. The signs (—1)Li0 ~Li from cases (1) telescope to give (—1)'m and so do the signs
(—1)Li1 ~Lio from cases (2) and (3), so they cancel out. What remains is

m m(m + 1)
ile_[ﬂ Ay (DG, (4) = (=1)" exp (271'\/—_1m> =cp,

thus concluding the proof of Theorem 4.6. O

4.3 | Representation theory

Continuing to work with the type A case, we finally explain how the generating functions studied
above arise as graded dimensions of certain naturally defined vector subspaces of Fock space. We
recall that a version of (Fermionic) Fock space is the infinite-dimensional vector space

F=Pclv)

YeP

generated by a basis indexed by the set P of all partitions, which we are going to represent as
before by their Young diagrams.

We will initially use a labelling of diagrams Y € P by the set of integers Z, assigning to a block
s € Y in the ith row and jth column the label I(s) = j —i € Z. This rule labels the boxes of a
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partition diagonally with infinitely many labels. As in our earlier discussion, for ¢ € Z, we have
the c-weight map wt, : P — N, with wt,(Y) the number of blocks s € Y of label c. For a partition
Y € P, we call a block s € Y removable, if Y/ =Y \ {s} € P; we call a block ¢t ¢ Y addable, if
Y' =Y Uuf{t} € P.ForY € P, we denote by h.(Y) € {+1, 0} the difference between the number of
addable and removable blocks of label c.

Define four sets of operators on F, indexed by ¢ € Z, as follows:

Elv)y= ) |Y), Flv)y= ) ¥,
Y'=Y\{s} Y'=YU{s}
I(s)=c 1(s)=c
H.|Y) =h.(Y)|Y), D.Y)=wt(Y)|Y).

It is easy to check by direct computation that these operators satisfy Serre-type commutation
relations

[He,Hy]1 =0, [E.,Fo]=6.H,, [Hy, Ev] = awEy, [HeyFol=—a,Fy,
ad(E,)'"% (E,) = 0forc # ¢/, ad(F,)'"%(F.)=0forc #c,

as well as grading relations
[De, D] =0, [D,Hs]=0, [E;,Dy]=8.E. [Fe;Dy]=-b.F,,
forc,c’ € 7z, where
2 ife=/,
. =1-1 iflc—=c|=1,
0  otherwise.
In other words, F is a representation of the algebra

a=(E.,F.,H.,D,: c€e€Z)

with the above set of relations. This is a version of 81, the Lie algebra defined by the root system
A, extended by an infinite set of grading operators {D,}. It is clear from the definitions that F is
an irreducible a-module.

Next fix a natural number n > 1, and let us also consider, for [c] € Z /(n + 1) Z, operators

€] = Z E., fiq= Z F,,

c=[c] mod n+1 c=[c] mod n+1
h[c] = Z Hc‘ d[c] = Z Dc‘
c¢=[c] mod n+1 c¢=[c] mod n+1

An alternative, equivalent definition of these operators first considers the labellingof Y € P by n
labels, applied diagonally and periodically, as in the earlier sections.

The operators €[c] f [c]’ h[c], d[c] still act on F, since for every fixed Y, the number of terms in
each sum will become finite. In particular, the d|.|-eigenvalue of |Y') € F is the number wt;.(Y) of
[c]-coloured blocks in Y under the periodic diagonal labelling. In this way, as is well known [13],
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we get the algebras

4
n+1’

<€[C],f[c],]’l[c] . [C] S Z/(n +1) Z> = é\I
the derived algebra of the affine Lie algebra attached to A, and the full affine Lie algebra
<d[0J;elCJ,flCJ, h’[c] . [C]G Z /(n + 1) Z> = é\In+1'

Note that F is reducible as an .9;\[” 4+1-module, though it becomes irreducible if one introduces a
further set of operators forming a Heisenberg algebra, leading to a representation of the larger
algebra gl, , ;. On the other hand, we get a subalgebra inside 81, , ;, the algebra

(e[c],f[c], ]’l[c] . [C] ez /(n + 1)Z \{[0]}> e §In+1,

corresponding to the inclusion of the root system of finite-type A, into the affine root system.
The inclusion 81, ; < 8, , has an analogue at the level of the infinite root system: Define the
subalgebra

ag=(E.,F,,H.,,D,: c€Z,c#0mod n+1) < a.

It is clear that aj, is isomorphic to an infinite direct sum, indexed by Z, of copies of 81, ;.

Let us connect this discussion with the ideas in earlier sections. We proceed to show that sev-
eral of the generating functions studied earlier can be written as traces of grading operators on
Fock space and certain subspaces. First of all, we have the orbifold generating series Z;(A,); as
Corollary 4.2 agrees with the generating function of diagonally (n + 1)-labelled partitions. The
generating function Z;(q) of Euler characteristics of Quot schemes of [C2/T] corresponding to
the subset It = {0}, in other words to Hilbert schemes of points of the singular surface C?/T,
is given by the generating function of 0O-generated partitions P, in the periodic labelling. By
Corollary 4.5, this generalises to an arbitrary non-empty subset I C I.

In our context, define

Fp+ = N ker(F,) C F.
(c mod (n+1))eIl+

Itis then clear by the definition of an I't-generated partition that the vector space F;+ has a natural
basis consisting of vectors |T) for Y € P;+. An important point is that F;.+ cannot be defined in
terms of the algebra of periodicised operators §AIn +1, but only in terms of operators belonging to
the much larger algebra a. On the other hand, it follows from the commutation relations of a that
the operators D, for c mod (n + 1) € I'", and thus the operators d; for i € I, still act on Fy+.

Proposition 4.9. We have the identity
ZI+ (Ao) = trFI+ e_d1+ ,

Wlth dI+ = Zieﬁ diai.
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Proposition 4.9 ‘categorifies’ the Euler characteristic calculations to computing graded dimen-
sions of naturally occurring vector spaces. One potential application is to consider the residual
symmetries of these vector spaces.

Indeed, starting with the case I = {0}, define

¢y = Cqrlag)

to be the subalgebra of a of operators that commute with the action of a, on F. This Lie subalgebra
¢y C a clearly acts on the space F,. However, it is easy to see that this algebra is rather small and
in particular abelian, as the decomposition of F as an ay,-module is multiplicity free. So it is not
clear that this is a particularly fruitful idea to study further. Note that the commutator w of 81, ;
of 81 n+1 i its action on F is a much larger, interesting algebra that contains ¢y Investigated first
by Frenkel, w is a version of the W-algebra W(%AIH +1)-

Using the same idea, one can more generally define slightly larger subalgebras ¢;+ of the full
algebra a that may be of interest.

We finally give a representation-theoretic meaning to the partitions in rectangles which appear
in the enumeration of the fibres, as described in Section 4.2. In the pattern of type A,,, consider a

rectangle R, , . with sides parallel to the coordinate axes, such that:

(1) R, intersects at most one diagonal of any given label,
(2) the box in the top-left corner of R, ;, . is labelled a,

(3) the box in the bottom-left corner of R, ;, . is labelled b, and
(4) the box in the bottom-right corner of R, ;, . is labelled c.

C
Notice that these conditions determine the width and height of the rectangle, as well as the

labelling of its boxes uniquely, and also force b to lie between a and c along the cyclic labelling of
the Dynkin diagram. We consider now the set P, ;, . of Young diagrams contained in R, ;, ., and

Fo,. = @ cy).

YEP b

Now, consider the finite type A Dynkin diagram D¢ that is the subgraph of the affine Dynkin
diagram going from vertex a to vertex c along the cyclic labelling (in particular, via b). Let I*¢
denote its vertex set, and k its cardinality. For any vertex i € I*¢, we define operators e;, f;, ;
acting on F, ;, . exactly as for general partitions. The relations between these generators are the
same as before, so we have an algebra

<ei,fi,hl' | ie Ia’c> ad §Ik+1'

Proposition 4.10. The space F, ., as a representation of 8, ,,, is isomorphic to the irreducible
fundamental highest weight representation V (/).

Proof. Any partition inside R, j, . can be obtained from the empty partition Y, by repeatedly adding
boxes. Hence, F, , . = nY,, where n = (f; | i € [*€) is the negative triangular direct summand of
81, ;. Furthermore, since Y, has no removable boxes, and only one addable box, which is labelled
b, we have

hYo = 6pYo = (Ap, b)Y,
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80 Y, has weight A;,. The assertion follows, since we know that the dimension of F, , . agrees with
that of R

a,b,c*

width plus height of R, },

=dim(V(A})),
width of R > V(A))

dim Fa,b,c = | 7)a,b,c | = <

a,b,c

see, for example, [1, Proposition 13.2]. O

We finally remark that according to Nakajima [20], the type A fundamental representations
V(Ay) are the same as the so-called standard modules of 81, ;, whose underlying vector spaces
fin

are the cohomology spaces s H*(IM Zho (v, Ap)). Nakajima’s central result (cf. Proposition 3.4)
I

is that the quantum dimensions of these standard modules are equal to 1. His proof in type A is
essentially the same as that of our Lemma 4.8.

APPENDIX A: INVERSES OF ADE CARTAN MATRICES
We collect here data about finite-type ADE Cartan matrices and their inverses, entries of which
appear in our substitution formula, Definition 3.2 (see, e.g. [21, Reference Chapter §2]). We let h
denote the dual Coxeter number of each Dynkin diagram.

For type A;, we have,h =1+ 1,andfor1 <i,j <1,

2, i=], .
_ . CIN e s 2]
Cij - _1’ |l - Jl - 1’ (C )l_] - mln{l’ J} - l'i'_l .
0, otherwise.
For type D;, we have, h =2l —2,and for 1 < i, j <,
2, i=}], min{i, j}, Lj<l-2,
o )L li-ji=tandij<i-g, — s i<l-2,j>1-1,
Y-, Gp=3a-2Dor(11-2), YL ixl-1,j<l-2,
0, otherwise. TA=2i—jh, iLjzl-1.
For type E;, we have h = 12, and
2 -1 4 5 6 4 2 3
-1 2 -1 5 10 12 8 4 6
C= -1 2 -1 -1 -1 116 12 18 12 6 9
- -1 2 -1 ’ 3|4 8 12 10 5 6
-1 2 2 4 6 5 4 3
-1 2 3 6 9 6 3 6
For type E,, we have h = 18, and
2 -1 3 4 5 6 4 2 3
-1 2 -1 4 8 10 12 8 4 6
-1 2 -1 1 5 10 15 18 12 6 9
C= -1 2 -1 —1,c—1=5 6 12 18 24 16 8 12
-1 2 -1 4 8 12 16 12 6 8
-1 2 2 4 6 8 6 4 4
—1 2 3 6 9 12 8 4 7
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Finally for type Eg, we have h = 30, and

2 -1 2 3 4 5 6 4 2 3

-1 2 -1 3 6 8 10 12 8 4 6
-1 2 -1 4 8 12 15 18 12 6 9

C= -1 2 -1 cl = 5 10 15 20 24 16 8 12
-1 2 -1 -1/ 6 12 18 24 30 20 10 15

-1 2 -1 4 8 12 16 20 14 10

-1 2 2 4 6 8 10 7 4 5

-1 2 36 9 12 15 10 5 8

ACKNOWLEDGEMENTS

We would like to thank Pavel Etingof, Hiraku Nakajima, Michael Wemyss, Yehao Zhou and Alas-
tair Craw for conversations and comments. We are especially grateful to Seren Gammelgaard for
numerous comments and for carefully reading the paper. A. Gy. was supported by the Janos Bolyai
Research Scholarship of the Hungarian Academy of Sciences and by the National Research, Devel-
opment and Innovation Fund of Hungary, within the Program of Excellence TKP2021-NVA-02 at
the Budapest University of Technology and Economics.

JOURNAL INFORMATION

The Journal of the London Mathematical Society is wholly owned and managed by the London
Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission.
All surplus income from its publishing programme is used to support mathematicians and
mathematics research in the form of research grants, conference grants, prizes, initiatives for
early career researchers and the promotion of mathematics.

ORCID
Addm Gyenge ® https://orcid.org/0000-0002-1329-8833

REFERENCES

1. R. W. Carter, Lie algebras of finite and affine type, Cambridge University Press, Cambridge, 2005.

2. A. Craw, Orbifold Quot schemes via the Le Bruyn-Procesi theorem, arXiv preprint arXiv:2407.18740, 2024.

3. A.Craw, S. Gammelgaard, A. Gyenge, and B. Szendr6i, Quot schemes for Kleinian orbifolds, SIGMA Symmetry
Integrability Geom. Methods Appl. 17 (2021), 099.

4. A.Craw, S. Gammelgaard, A. Gyenge, and B. Szendr6i, Punctual Hilbert schemes for Kleinian singularities as
quiver varieties, Algebr. Geom. 8 (2021), 680-704.

5. R. Dijkgraaf and P. Sutkowski, Instantons on ALE spaces and orbifold partitions, J. High Energy Phys. 2008
(2008), no. 03, 013.

6. G. Ellingsrud and S. A. Stremme, On the homology of the Hilbert scheme of points in the plane, Invent. Math.
87 (1987), no. 2, 343-352.

7. S. Fujii and S. Minabe, A combinatorial study on quiver varieties, SIGMA Symmetry Integrability Geom.
Methods Appl. 13 (2017), 052.

8. S. Gammelgaard, Quiver varieties and framed sheaves on compactified Kleinian singularities, to appear in
Journal of Algebra and its Applications, arXiv:2306.09054.

9. S. Gammelgaard and A. Gyenge, Noncommutative projective partial resolutions and quiver varieties, arXiv
preprint arXiv:2406.00709, 2024.

10. A. Gyenge, A. Némethi, and B. Szendr6i, Euler characteristics of Hilbert schemes of points on surfaces with

simple singularities, Int. Math. Res. Not. 2017 (2017), no. 13, 4152-4159.

85UBD17 SUOWILLIOD BAIER1D) 3(eot|dde aLy A pauenob afe S YO ‘88N 4O S3INJ 104 AX1q 1T BUIIUO /|1 UO (SUORIPLICD-PUR-SWLB)LI0D A3 1M AReiq U UO// A1) SUORIPUOD PUe SWS L 83U} 88S *[5202/20/02] Uo Atelqiauliuo AB|IM Ruio!lqiqRAusZ - ASA Ad 2002 SWII/ZTTT OT/I0p/LI00 A8 |1M*ALeIq 1 BUIIUO"D0SLTRLIPUO|//SARY WO papeojumod ‘2 'S20Z ‘0G2L69%T


https://orcid.org/0000-0002-1329-8833
https://orcid.org/0000-0002-1329-8833

28 of 28 BERTSCH ET AL.

1

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

. A. Gyenge, A. Némethi, and B. Szendréi, Euler characteristics of Hilbert schemes of points on simple surface
singularities, Eur. J. Math. 4 (2018), no. 2, 439-524.

T. Hausel, Kac’s conjecture from Nakajima quiver varieties, Invent. Math. 181 (2010), no. 1, 21-37.

V. G. Kac, Infinite-dimensional Lie algebras, Cambridge University Press, Cambridge, 1990.

G. Kohler, Eta products and theta series identities, Springer-Verlag, Berlin, Germany, 2011.

A. Kuznetsov, Quiver varieties and Hilbert schemes, Mosc. Math. J. 7 (2007), no. 4, 673-697.

H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J. 76 (1994), no.
2,365-416.

H. Nakajima, Geometric construction of representations of affine algebras, Proceedings of the International
Congress of Mathematicians, vol. I (Beijing, 2002), Higher Ed. Press, Beijing, 2002, pp. 423-438.

H. Nakajima, t-analogs of g-characters of quantum affine algebras of type A,, D,,, Contemp. Math. 325 (2003),
141-160.

H. Nakajima, Quiver varieties and branching, SIGMA Symmetry Integrability Geom. Methods Appl. 5 (2009),
003.

H. Nakajima, Euler numbers of Hilbert schemes of points on simple surface singularities and quantum
dimensions of standard modules of quantum affine algebras, Kyoto J. Math. 61 (2021), no. 2, 377-397.

A. Onishchik and E. Vinberg, Lie groups and algebraic groups, Springer Series in Soviet Mathematics, Springer,
Berlin, Heidelberg, 1990.

Y. Toda, S-duality for surfaces with A,,-type singularities, Math. Ann. 363 (2015), no. 1-2, 679-699.

C. Vafa and E. Witten, A strong coupling test of S-duality, Nuclear Phys. B 431 (1994), no. 1-2, 3-77.

85UBD17 SUOWILLIOD BAIER1D) 3(eot|dde aLy A pauenob afe S YO ‘88N 4O S3INJ 104 AX1q 1T BUIIUO /|1 UO (SUORIPLICD-PUR-SWLB)LI0D A3 1M AReiq U UO// A1) SUORIPUOD PUe SWS L 83U} 88S *[5202/20/02] Uo Atelqiauliuo AB|IM Ruio!lqiqRAusZ - ASA Ad 2002 SWII/ZTTT OT/I0p/LI00 A8 |1M*ALeIq 1 BUIIUO"D0SLTRLIPUO|//SARY WO papeojumod ‘2 'S20Z ‘0G2L69%T



	Euler characteristics of affine ADE Nakajima quiver varieties via collapsing fibres
	Abstract
	1 | INTRODUCTION
	2 | PRELIMINARIES
	2.1 | Nakajima quiver varieties
	2.2 | Nakajima quiver varieties for affine ADE Dynkin diagrams
	2.3 | Root systems

	3 | THE SUBSTITUTION FORMULA AND ITS APPLICATIONS
	3.1 | The substitution rule and its properties
	3.2 | Proof of the universal substitution formula
	3.3 | Quot schemes of Kleinian orbifolds
	3.4 | Modularity
	3.5 | Higher rank framings

	4 | TYPE A: COMBINATORICS AND REPRESENTATION THEORY
	4.1 | Torus fixed points
	4.2 | Combinatorics of the substitution
	4.3 | Representation theory

	APPENDIX A: INVERSES OF ADE CARTAN MATRICES
	ACKNOWLEDGEMENTS
	JOURNAL INFORMATION
	ORCID
	REFERENCES


