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Abstract
The high precision measurement of the centre-of-mass

energy in the Future Circular Collider e+e- (FCC-ee) at Z
and W energies can be realized through resonant spin de-
polarization utilizing transversely polarized beams. This
requires a guaranteed sufficiently-high spin polarization in
the presence of lattice imperfections. Investigations of the
impact of misalignments on the equilibrium polarization are
conducted using analytical and Monte-Carlo spin simula-
tions with Bmad. Potential optimization schemes to ensure
high polarization using orbit bumps have been explored.

INTRODUCTION
The Future Circular Collider (FCC) project aims to pro-

vide unprecedented opportunities for high-energy physics
research by exploring the electroweak and Higgs sectors, top
quark physics, and by searching for new physics beyond the
Standard Model [1]. The FCC-ee is the electron-positron col-
lider envisaged for the first phase of the FCC project [2]. The
planned centre-of-mass energy of the FCC-ee ranges from
88 GeV to 365 GeV, to cover the energies from Z0 bosons
(91 GeV) to the tt̄ threshold (350 − 365 GeV) [1].

The current targets for the precision of energy calibra-
tion at the Z and W energies are 4 keV and 100 keV respec-
tively [3], and it is expected that they can be realized us-
ing resonant depolarization with radio-frequency external
electromagnetic fields [4]. For this, at least 10% beam po-
larization should be maintained in the presence of various
misalignments [4]. Thus calculations of spin polarization
have been undertaken to investigate the influence of lattice
imperfections on polarization [5–7]. In this investigation, the
equilibrium polarization levels near the Z energy (45.6 GeV)
are estimated using the software package Bmad [8] with its
facilities for analytical linearized spin-orbit motion and for
3-D Monte-Carlo spin-orbit tracking simulations. Both are
exploited here. In this report, we focus on the use of spe-
cial closed-orbit bumps to alleviate the effects of misalign-
ments. Two possible optimization schemes are employed,
the HERA formalism [9,10] and the Rossmanith-Schmidt
scheme [11, 12], and their efficacies are compared.

The Basics of Electron (Positron) Spin Dynamics
Particle spins precess in electromagnetic fields according

to the T-BMT equation [13, 14]
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d ®𝑆
d𝑡

= ®ΩBMT × ®𝑆, (1)

where ®𝑆 is the single-particle spin-expectation value and
®ΩBMT is the precession vector. The unit-length periodic
solution on the closed orbit is denoted by 𝑛̂0. In a perfectly
aligned flat ring without solenoids, 𝑛̂0 is vertical and the
closed-orbit spin tune 𝜈0, i.e. the number of precessions per
turn around 𝑛̂0 performed by spins on the closed orbit, is 𝑎𝛾,
where 𝑎 is the gyromagnetic anomaly and 𝛾 is the Lorentz
factor, while 𝜈0 deviates from 𝑎𝛾 in the presence of lattice
imperfections [16].

The spin polarization of stored electron (positron) beams
builds up naturally by synchrotron radiation emission to
a theoretical maximum level of 92.38% in uniform mag-
netic fields [17]. This is the Sokolov-Ternov (ST) effect [17].
Meanwhile, the spin diffusion due to stochastic photon emis-
sions combined with non-uniform magnetic fields induces
radiative depolarization [16] which exerts a counteracting
influence. The beam polarization builds up along 𝑛̂0 and by
the Derbenev-Kondratenko (DK) formula [18, 19] reaches
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for electrons (positrons) where 𝜌 is the bending radius,
𝑏̂ = (𝑠 × ¤̂𝑠)/| ¤̂𝑠 | is the direction of the magnetic field and
𝑛̂ is the "invariant spin field" [15] which depends on phase
space and azimuthal positions (𝑥, 𝑝𝑥 , 𝑦, 𝑝𝑦 , 𝑧, 𝛿; 𝑠). The
term (𝜕𝑛̂/𝜕𝛿)2 accounts for the radiative depolarization. The
beam polarization builds up from an initial value 𝑃0 as [16]

𝑃(𝑡) = 𝑃𝑑𝑘

[
1 − 𝑒−𝑡/𝜏𝑑𝑘

]
+ 𝑃0𝑒

−𝑡/𝜏𝑑𝑘 (2)

for which the build-up rate 𝜏𝑑𝑘 can be written as [16]
1
𝜏𝑑𝑘

=
1

𝜏𝑏𝑘𝑠
+

1
𝜏𝑑𝑒𝑝

, (3)

where 𝜏𝑏𝑘𝑠 is the Baier-Katkov-Strahkovenko (BKS) build-
up rate for arbitrary magnetic guide fields without including
radiative depolarization, and 𝜏𝑑𝑒𝑝 is the depolarization rate.

When the spin precession is coherent with the perturba-
tions from synchro-betatron oscillations, i.e., when 𝜈0 and
the synchro-betatron tunes 𝑄𝑥,𝑦,𝑧 satisfy the resonance rela-
tion 1 [16]

𝜈0 = 𝑘 + 𝑘𝑥𝑄𝑥 + 𝑘𝑦𝑄𝑦 + 𝑘𝑧𝑄𝑧 , (4)
1 It suffices here to use 𝜈0 instead of the amplitude-dependent spin tune [20]

in the expression for the resonance condition.
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where 𝑘 and 𝑘𝑥,𝑦,𝑧 are integers, strong depolarization can
occur. The order of a resonance is |𝑘𝑥 |+|𝑘𝑦 |+|𝑘𝑧 |, with
|𝑘𝑥 |+|𝑘𝑦 |+|𝑘𝑧 |= 1 for first order.

ENERGY SCANS WITH LINEARIZED
AND 3-D SPIN MOTION

For our study, we use the FCC-ee V217 lattice at the Z
pole [21]. Misalignments and angular deviations of all ele-
ments are modeled and generated from truncated Gaussian
distributions [5, 7].

The equilibrium polarization calculated by Tao (Bmad)
[22] at first order i.e., with linearized spin-orbit motion to
obtain (𝜕𝑛̂/𝜕𝛿)2 in the DK formula [16], demonstrates the
influence of first-order resonances, while tracking with 3-D
spin motion and radiation exposes the higher-order reso-
nances and plays a key role in evaluating the overall im-
pact of lattice imperfections. The depolarization rate 𝜏𝑑𝑒𝑝
from tracking can be extracted from the variation of the po-
larization starting from 𝑃0, and fitting the evolution curve
𝑃(𝑡) ≃ 𝑃0𝑒

−𝑡/𝜏𝑑𝑒𝑝 . Next, with the DK formula for a nom-
inally flat ring, one sees that the equilibrium polarization
with 𝜏𝑑𝑒𝑝 calculated at first order or got by tracking can be
well approximated as

𝑃𝑒𝑞 ≃ 𝑃𝑏𝑘𝑠

1
1 + 𝜏𝑏𝑘𝑠/𝜏𝑑𝑒𝑝

, (5)

where 𝑃𝑏𝑘𝑠 is the BKS polarisation level [16].
Figure 1 shows 𝑃𝑒𝑞 in energy scans with linearized and

3-D spin motion using the same error seed that induces
43.7 µm rms vertical orbit distortion. For the 3-D tracking
simulations 1000 electrons are tracked for over 7000 turns
using the Long-Term Tracking module [23]. The first-order
spin-orbit resonances are recognizable, while the higher
order resonances, such as the two synchrotron sidebands
of one of the parent vertical resonance 𝜈0 = 𝑘 + 𝑄𝑦 , can
be observed in the 3-D spin trackings. The sensitivity of
polarization to the orbit distortion justifies the demands for
a high-standard orbit correction and optics tuning.

Figure 1: Polarization levels from first-order analytical 𝜏𝑑𝑒𝑝
and Monte-Carlo tracking using V217 lattice [5]

HARMONIC SPIN MATCHING SCHEMES
In the presence of misalignments, 𝑛̂0 is not vertical ev-

erywhere but experiences a deviation 𝛿𝑛̂0, which together
with the horizontal orbital oscillations, tends to lead to the
strongest source of spin diffusion [9]. However, 𝛿𝑛̂0 can be
reduced and the polarization increased by using multiple
vertical orbit correctors to create a controllable 𝑛̂0 tilt and
reduce (𝛿𝑛̂0)rms [9]. Thus closed vertical bumps, each con-
sisting of three vertical orbit correctors in arc sections, are
used to generate additional tilt for correction without influ-
encing the closed orbit overall. The HERA formalism [9,10]
and Rossmanith-Schmidt scheme [11, 12] are two promis-
ing spin matching schemes that can be used in the FCC-ee
and we study them using the FCC-ee V22 lattice [24] to-
gether with an effective lattice with 72 µm rms vertical orbit
distortion to simulate the ring after correction.

Simplified HERA Formalism
In the HERA formalism, the 𝛿𝑛̂0 can be written as [9]

𝛿𝑛̂0 = 𝛼𝑚̂ + 𝛽𝑙, (6)

where 𝑚̂, 𝑙 and 𝑛̂0 comprise a 1-turn-periodic orthonormal
basis on the design orbit. Under Fourier analysis of the
perturbations causing closed-orbit distortion, and then the
tilt 𝛿𝑛̂0, we have

(𝛼 − 𝑖𝛽)(𝑠) = −𝑖 𝐶
2𝜋

∑︁
𝑘

𝑓𝑘

𝑘 − 𝜈̃
𝑒𝑖2𝜋𝑘𝑠/𝐶 , (7)

where 𝐶 is the circumference, 𝑘 is an integer, 𝜈̃ is the frac-
tional part of the spin tune, and the 𝑓𝑘 are the Fourier coeffi-
cients related to the perturbations [9]. Then the harmonics
for 𝑘 = 0 and 𝑘 = 1, making the largest contribution, should
be minimized.

The simplified HERA formalism used here takes simu-
lated information on the direction of 𝑛̂0 at every element,
expands 𝑛0𝑥(𝑠) + 𝑖𝑛0𝑧(𝑠) into a Fourier series and minimizes
Fourier coefficients of harmonics 0 and 1 using four closed
vertical bumps. The strength of the first corrector is the
independent variable of a closed bump, and each bump has
a linear contribution to the harmonics, which is expressed
as MK = C, where K is the column matrix of bump am-
plitudes, and C contains the real and imaginary parts of
the Fourier coefficients of harmonics 0 and 1. In order to
correct 𝛿𝑛̂0 in a misaligned ring with the coefficients for
harmonics 0 and 1 being A, the required bump amplitudes
are estimated via K = M−1(−A). The matrix M is obtained
by analyzing the contribution to the vector of a single closed
bump in every possible location in a lattice without errors
and selecting stored vectors of four locations out of them.
The best bump locations correspond to the ones that create
the largest determinant of M, so that the same correction
effect is achieved with the smallest orbit distortion [9].

The correction is conducted at 45.82 GeV (𝑎𝛾 = 103.983)
which is close to the integer resonance 𝜈0 = 104 and where
𝑛̂0 experiences larger deviation. Figure 2 shows the polar-
ization curves for first-order 𝜏𝑑𝑒𝑝 near the Z energy with
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and without the correction scheme. By using four bumps
optimized at 𝑎𝛾 = 103.983, (𝛿𝑛̂0)rms is decreased from
2.28 mrad to 0.90 mrad and the polarization is elevated from
10.68% to 90.96% by the suppression of the nearby first-
order parent synchrotron resonance. Although the polariza-
tion near 104 is largely improved when bumps are set at
45.82 GeV, the level near 103 is reduced while the level far
from integer resonances is unaffected. Thus the simplified
HERA formalism is shown to be locally effective for 𝛿𝑛̂0
correction and polarization improvement.

Figure 2: Polarization levels from first-order analytical 𝜏𝑑𝑒𝑝
with and without harmonic bumps optimized at 45.82 GeV
(𝑎𝛾 = 103.983) using the HERA formalism in V22 lattice

The complete HERA formalism is a rigorous and sys-
tematic approach that relies on the analysis of 𝛿𝑛̂0. This is
too small to be directly accessible with a polarimeter. So
empirical bump adjustments based on the feedback from po-
larization measurements are inevitable. These can be made
practical by using wigglers which are to be used to lessen the
polarization build-up time of pilot bunches used for energy
calibration. Ways to apply the complete HERA formalism
in spin simulation are under investigation.

Rossmanith-Schmidt Scheme
By assuming that the spin precession around vertical di-

rection takes place only in bending magnets, and the radial
perturbing fields on the closed orbit only exist between bend-
ing magnets, the Rossmanith-Schmidt scheme formulates
𝛿𝑛̂0 as [11],

|𝛿®𝑛0 |=
(1 + 𝑎𝛾)

2(1 − cos 2𝜋𝑎𝛾)

[(
𝑁∑︁
𝑖=1

sin(𝑎𝛾𝜃𝑖)Δ𝑦
′
𝑖

)2

+

(
𝑁∑︁
𝑖=1

cos(𝑎𝛾𝜃𝑖)Δ𝑦
′
𝑖

)2]
,

(8)

where 𝜃𝑖 is the accumulated deflecting angle after 𝑖th bend-
ing magnet, and Δ𝑦

′
𝑖

is the change of vertical closed orbit
angle between two adjacent dipoles. The function Δ𝑦

′ (𝜃)
can be expanded into a Fourier series [11, 12]

Δ𝑦
′
(𝜃) =

∞∑︁
𝑘=1

(𝑎𝑘 cos 𝑘𝜃 + 𝑏𝑘 sin 𝑘𝜃), (9)

where
𝑎𝑘
𝑏𝑘

=
1
𝑁

∑︁
Δ𝑦

′
𝑖(𝜃𝑖)

cos 𝑘𝜃𝑖
sin 𝑘𝜃𝑖

. (10)

The 𝑘s which are adjacent to 𝑎𝛾 make the biggest contribu-
tions to the sum. For this demonstration, Fourier coefficients
of 𝑘 = 103 and 𝑘 = 104 are minimized using four closed
bumps optimized at 45.82 GeV. Figure 3 shows the polar-
ization curves for first-order 𝜏𝑑𝑒𝑙 before and after applying
bumps set at 45.82 GeV. The (𝛿𝑛̂0)rms is decreased from
2.28 mrad to 0.90 mrad at 45.82 GeV, with the polarization
being elevated from 10.68% to 89.65% with the weakening
of the first-order parent synchrotron resonance. The first-
order synchrotron resonance near 𝑘 = 103 is also weakened
so that the polarization near both 103 and 104 is improved us-
ing this scheme. This weakening of the first-order resonances
would also weaken the highly-depolarizing synchrotron side-
bands.

Figure 3: Polarization levels from first-order analytical 𝜏𝑑𝑒𝑝
with and without harmonic bumps optimized at 45.82 GeV
(𝑎𝛾 = 103.983) using the Rossmanith-Schmidt scheme in
V22 lattice

The Rossmanith-Schmidt scheme is less general than the
HERA formalism. Applying it directly in a real ring requires
the knowledge of 𝑦′ of the closed orbit at every dipole. This
could be solved by mounting BPMs at both ends of each
dipole. However, the additional high cost it brings and the
influence of BPM misalignments and calibration errors are
the main obstacles to applying this scheme.

CONCLUSIONS AND OUTLOOK
Spin simulations are pivotal for revealing the impact of

lattice imperfections on the attainable level of polarization.
Both first-order analytical and Monte-Carlo spin simulations
have been performed for the FCC-ee using Bmad, and the
equilibrium polarization near the nominal energy remains
high in the effective lattice employed. After a conventional
lattice correction, two spin matching schemes, the HERA
formalism and the Rossmanith-Schmidt scheme, are effec-
tive for correcting 𝛿𝑛̂0 and for improving the polarization
level. The challenges around applying these schemes in the
real ring are under investigation. The spin matching strategy
that relies on the analysis of the beam-based observables is
the focus of the ongoing research.
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