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In this paper, we study the changes of quantum effects of a growing universe by using Wheeler-
DeWitt equation (WDWE) together with de Broglie-Bohm quantum trajectory approach. From WDWE, we 
obtain the quantum modified Friedmann equations which have additional terms called quantum potential 
compared to standard Friedmann equations. The quantum potential governs the behavior of the early 
universe, providing energy for inflation, while it decreases rapidly as the universe grows. The quantum 
potential of the grown-up universe is much smaller than that required for accelerating expansion. This 
indicates that quantum effects of our universe cannot be treated as a candidate for dark energy.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

It has been widely accepted that our universe has been ex-
panding at accelerating rates in recent epochs. Dark energy was 
suggested to explain the acceleration of the universe. Although sci-
entists are still plagued by its intangibility, the quantum effect of 
the universe is considered as the most likely candidate for dark 
energy [1]. In the 1980s, quantum mechanics had already been 
applied to study quantum effects of the universe, for example, the 
formation of the universe and its early evolution [2–4]. In quantum 
cosmology, the universe is described by the universe wavefunction 
rather than classical spacetime. The wavefunction of the universe 
that contains all the information of the universe should satisfy 
the quantum gravity equation, or called Wheeler-DeWitt equation 
(WDWE) [5]. Due to the ADM decomposition, the WDWE equation 
is time-independent, which prevents us from studying the quan-
tum effects as well as dynamics of the universe directly. In order 
to find out how quantum effects change as the universe grows, de 
Broglie-Bohm quantum trajectory approach can be used to evolve 
WDWE.
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In de Broglie-Bohm quantum trajectory theory [6,7], the quan-
tum potential represents the quantum effects of a quantum sys-
tem. Similarly, the quantum potential of the universe describes the 
quantum effects of the universe. Previous studies of the quantum-
to-classical transition show that it is the quantum potential that 
dominates the quantum effects of a physical system and trends 
toward classical behaviors when the quantum potential becomes 
negligible [8]. By solving the quantum potential of the universe, 
the values of the quantum effects at different stages of the uni-
verse can be obtained. It can then be determined that whether 
quantum effects can provide enough power for the accelerating ex-
pansion of the universe or not.

In this article, with de Broglie-Bohm quantum trajectory theory, 
the quantum modified Friedmann equations are derived from the 
WDWE. Then the changes of the quantum potential at different 
stage of the universe are studied, and three typical cosmological 
models, including the radiation-dominated universe, the vacuum 
universe and the universe with a scalar-field, are considered. Fi-
nally, we discuss and conclude.

2. WDWE of the universe

Assumed to be homogeneous and isotropic, the universe can be 
described by a minisuperspace model [9–11] with one parameter, 
the scale factor a. The Einstein-Hilbert action for the model can be 
written as
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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SEH =
∫ (

Rc3

16πG
− ρ

σ 2c

)√−gd4x, (1)

where ρ represents the energy density of the universe, and the 
constant before ρ is chosen for the sake of convenience. Since the 
universe is homogeneous and isotropic, the metric of the universe 
in the minisuperspace model is given by

ds2 = σ 2
[
−N2(t)c2dt2 + a2(t)d�2

3

]
. (2)

Here, d�2
3 = dr2/(1 − kr2) + r2(dθ2 + sin2 θdφ2) is the metric 

on a unit three-sphere, N(t) is an arbitrary lapse function, and 
σ 2 = 2/3π is just a normalization factor for simplifying the for-
mula [12]. Note that r is dimensionless and the scale factor a(t)
has dimensions of length [13]. From Eq. (2), one can obtain the 
scalar curvature

R = 6
ä

σ 2c2N2a
+ 6

ȧ2

σ 2c2N2a2
+ 6k

σ 2a2
, (3)

where the dot denotes the derivative with respect to the time, t . 
Inserting Eqs. (2) and (3) into Eq. (1), one obtains

S E H =
∫

6σ 2Nc4

16πG

(
a2ä

N2c2
+ aȧ2

N2c2
+ ka − 8πGρa3

3c4

)
d4x,

= Nc4

2G

∫ (
− aȧ2

N2c2
+ ka − 8πGρa3

3c4

)
dt.

Therefore, the Lagrangian of the universe can be written as

L = Nc4

2G

(
ka − aȧ2

N2c2
− 8πGρa3

3c4

)
, (4)

and the momentum pa can be obtained as

pa = ∂L
∂ȧ

= − c2aȧ

NG
. (5)

Taking N = 1, the Hamiltonian is found to be

H = paȧ −L

= −1

2

(
Gp2

a

c2a
+ c4ka

G
− 8πρa3

3

)
.

With H	 = 0 and p2
a = −h̄2a−p ∂

∂a (ap ∂
∂a ), one gets the WDW equa-

tion [5,3,14],(
h̄2

mp

1

ap

∂

∂a
ap ∂

∂a
− E p

l2p
ka2 + 8πρa4

3lp

)
ψ(a) = 0. (6)

Here, k = 1, 0, −1 are for spatially closed, flat and open universe, 
respectively. The factor p represents the uncertainty in the choice 
of operator ordering, mp , E p , lp , and tp are the Planck mass, Planck 
energy, Planck length, and Planck time, respectively.

3. Quantum modified Friedmann equations

The complex function ψ(a) can be rewritten as

ψ(a) = R(a)exp[i S(a)/h̄], (7)

where R and S are real functions. Inserting ψ(a) into Eq. (6) and 
separating the equation into real and imaginary parts, one can ob-
tain two equations [6,7]

S ′′ + 2
R ′ S ′

R
+ p

a
S ′ = 0, (8)

(S ′)2

m
+ U + Q = 0. (9)
p

Here, the prime denotes derivatives with respect to a, and U (a)

and Q (a) are the classical potential and the quantum potential of 
the universe, respectively,

U (a) = E pka2

l2p
− 8πρa4

3lp
, (10)

Q (a) = − h̄2

mp
(

R ′′

R
+ p

a

R ′

R
). (11)

Using Eq. (8), we can obtain another form of the quantum poten-
tial [15],

Q (a) = − h̄2

mp

[−p2 + 2p

4a2
+ 3(S ′′)2

4(S ′)2
− S ′′′

2S ′

]
. (12)

If one knows R or S of the wavefunction of the universe, then one 
can obtain the quantum potential by using Eq. (11) or Eq. (12).

By analogy with cases in non-relativistic particle physics and 
quantum field theory in flat space-time, quantum trajectories can 
be obtained from the guidance relation [9,16],

∂L
∂ȧ

= − c2

G
aȧ = S ′, (13)

ȧ = − G S ′

c2a
. (14)

From Eqs. (9) and (14), the Hubble parameter can be written as

H2(t) =
(

ȧ

a

)2

= − G2mp

c4

Q (a) + U (a)

a4
. (15)

Inserting Eq. (10) into Eq. (15), we obtain the first Friedmann equa-
tion except for one more term that contains the quantum potential 
Q (a),

H2 = 8πGρ(a)

3c2
− kc2

a2
− l2p

mp

Q (a)

a4
. (16)

By using the state equation P = wρ and energy conservation law 
ρ(a) ∝ a−3(w+1) , the second quantum modified Friedmann equa-
tion (QMFE) can be attained as

ä

a
= −4πG

3c2 [ρ(a) + 3P (a)] + l2p
mp

[
Q

a4
− Q ′(a)

2a3

]
. (17)

These two equations above turn to classical Friedmann equation 
when all terms about the quantum potential trend to zero, i.e., 
Q (a) → 0 and Q ′(a) → 0.

4. The changes of quantum potentials for growing universes

In general, there are different models for the universe. Here we 
consider three representative models, the universe with classical 
potential, the universe of vacuum, and the universe with scalar 
field. We will study the quantum potential and the evolution of 
the universe with these three different models, respectively.

4.1. Quantum potential and the evolution of the universe with classical 
potential

Let us study the evolution laws of the universe with the QMFE. 
For simplicity, we only consider the case of the flat universe k = 0.1

The WDWE for the flat universe with energy density ρn can be 
written as

1 For k = ±1, we can obtain similar results [15].
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Fig. 1. The change of Hubble parameters with different c1/c2. Here we have set 
n = 3 and p = −2. More detailed calculations show that the Hubble parameters 
oscillate violently when c1/c2 �= 1, regardless of the values of n and p.(

h̄2

mp

1

ap

∂

∂a
ap ∂

∂a
+ 8πρn(a)a4

3lp

)
ψ(a) = 0. (18)

Here ρn(a) = 3λn E pln−3
p /8πan , and λn is a dimensionless param-

eter that relates to the energy density at a = lp , with n = 4, 3, 0
representing the universe dominated by radiation, matter and dark 
energy, respectively [17], and the explicit form of the correspond-
ing classical potential is U (a) = −λn E p(a/lp)4−n . In principle, the 
universe contains all types of energy at the same stage; thus the 
energy density should take the form of ρ = ρ0 + ρ3 + ρ4. In prac-
tice, the universe is mainly dominated by one type of energy ρn
during a specific stage. During the expansion of the universe, n
changes slowly from n = 4 to n = 0. For simplicity, we will take 
h̄ = G = c = 1 in the following.

For an arbitrary n, we can obtain general solutions of Eq. (18),

ψn(a) = a
1−p

2

[
ic1 Jν

(√
λna3−n/2

3 − n/2

)
+c2Yν

(√
λna3−n/2

3 − n/2

)]
.(19)

Here, Jα(x)’s are Bessel functions of the first kind, Yα(x)’s are 
Bessel functions of the second kind, and ν = |(1 − p)/(n − 6)|. It 
should be noted that the wave function (19) diverges at a → 0, 
when p = 1.2 c1 and c2 are constants that should be determined 
by boundary conditions. When c1 �= c2, Hubble parameters will 
oscillate with the expansion of the universe, and the oscillation 
frequencies will increase as the universe growing up, which seems 
quite unreasonable. Numerical solutions are shown in Fig. 1. In the 
following, we set c1 = c2 for reasonable solutions.

First, we study the evolution of the early universe (a � lp) by 
using QMFE Eqs. (16) and (17). From the wavefunction Eq. (19), we 
can obtain

R = a
1−p

2

√
J 2
ν

(√
λna3−n/2

3 − n/2

)
+ Y 2

ν

(√
λna3−n/2

3 − n/2

)
. (20)

Inserting Eq. (20) into Eq. (11), the quantum potential of the uni-
verse can be obtained as

Q (a) =
λ csc4(πν)

[
J 2−ν (

√
λ4a) + J 2

ν (
√

λ4a) − 2 cos(πν) Jν (
√

λ4a) J−ν (
√

λ4a)
]2 − 4π−2a−2

[
J 2
ν (

√
λ4a) + Y 2

ν (
√

λ4a)
]2

.

2 The divergence of the wavefunction in Eq. (19) is due to the divergence of Neu-
mann functions Yν . It is clear that the divergence doesn’t appear when c2 = 0. But, 
as will be discussed in Sec. 5, there is no acceleration for the universe with a purely 
imaginary (or purely real) wavefunction.

Exp
ord
uni

Q (

He
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the
U (a
be 
Ins
p =

H2
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a(t

By 
ten
exp
con
ter

i.e.
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Jν

Yν

If t
c0

√

ψn
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Rn

Tog

Q (

It i
larg
tur
tion
con
wh
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lut
Ḣ

anding Q (a) in series at a = 0 and keeping it to the lowest 
er of a, one can get the form of quantum potential of the early 
verse as

a) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ4 − π2λ2ν
4

�4(ν)

(a

2

)4ν−2
, for a � lp , p �= 1.

− π2

4a2 ln4 a
, for a � lp , p = 1.

(21)

re, we have considered the case of n = 4, since the classi-
 potential of the universe is dominated by the radiation at 
 very early stage, and λ4 equals the classical potential λ4 =
) = −8πρ4(a)a4/3 = Constant . The ordering factor p = −2 can 
determined by the boundary conditions of the universe [18]. 

erting the quantum potential in Eq. (21) for the specific case of 
−2 into the first QMFE Eq. (16), we obtain

= 8πρ4(a)

3
− Q (a)

a4
, (22)

= λ3
4 = Constant. (23)

refore, the universe will expand exponentially during the early 
ge:

) = eH(t+t0). (24)

the calculations above, we have proven that the quantum po-
tial plays a crucial role in the early universe to promote the 
ansion of the universe. This exponential expansion solution is 
sistent with quantum trajectory theory and the dynamical in-

pretation of the universe wavefunction [15,18,19].
Next, we consider the wavefunction for the grown-up universe, 
, a 	 lp . For x 	 ∣∣ν2 − 1/4

∣∣, the Bessel functions take the fol-
ing asymptotic forms:

(x) ∼
√

2

πx
cos(x − νπ/2 − π/4),

(x) ∼
√

2

πx
sin(x − νπ/2 − π/4).

he parameters c1 and c2 in Eq. (19) take the value c1 = c2 =
π/2, the wavefunction can be rewritten as

(a) = c0a
n−2p−4

4 exp

[−i
√

λna3−n/2

3 − n/2
+ iθ

]
, (25)

ere θ = (3n − 2p − 16)π/(4n − 24), and S ′ < 0. From Eq. (14), 
 know that the wavefunction in Eq. (25) describes an expand-
 universe as suggested by Vilenkin [12]. With the wavefunction 
ve, we can obtain

(a) = c0a
n−2p−4

4 (26)

ether with Eq. (11), the above equation gives

a) = 4(p − 1)2 − (n − 6)2

16a2
, for a 	 lp. (27)

s obvious that Q /a4 � ρ(a) and Q ′/a3 � ρ(a), p(a) for the 
e universe. Therefore, we conclude that the QMFEs gradually 

ns into the classical Friedmann equations for a 	 lp ; the evolu-
 laws of the universe obtained from the QMFEs are completely 
sistent with the solution of the classical Friedmann equations 
en a 	 lp .
Numerical solutions of the classical and quantum modified 
dmann equation are shown in Fig. 2 and Fig. 3. From the so-

ion of the classical Friedmann equation, one finds that H and 
are infinities for a → 0, which lead to a big-bang singularity. It 
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Fig. 2. The evolution of Hubble parameter H for the quantum modified Friedmann 
equation (QMFE) solution and classical Friedmann equation (CFE) solution.

Fig. 3. The evolution of Ḣ for the quantum modified Friedmann equation (QMFE) 
solution and classical Friedmann equation (CFE) solution.

is interesting that H and Ḣ are finite when the QMFEs are con-
sidered. In this way, we have shown that QMFE can eliminate the 
big-bang singularity, in principle.

4.2. Quantum potential and the evolution of the vacuum universe

It is widely believed that the total energy of the universe is 
zero [20], and the universe may be a vacuum fluctuation [21]. The 
wavefunction of the vacuum universe satisfies Eq. (6) for ρ = 0. 
For simplicity, we consider the flat universe k = 0.3 In this case, 
the analytic solution of Eq. (6) is

ψ(a) = ic1
a1−p

1 − p
− c2, for p �= 1. (28)

With the wavefunction above, we can obtain

S = tan−1[− c1

c2

a1−p

1 − p
], p �= 1, (29)

R =
√

c2
2 + (c1

a1−p

1 − p
)2, p �= 1. (30)

Using the guidance relation (14), we can get the general form of 
the Bohmian trajectories as

3 For k = ±1 the wavefunction of the vacuum universe is similar to the solution 
Eq. (19) with n = 2 [15].
a(t) =

⎧⎪⎨
⎪⎩

[
c1

c2
(3 − |1 − p|)(t + t0)

] 1
3−|1−p|

, |1 − p| �= 0,3,

ec1(t+t0)/c2 , |1 − p| = 3.

Inserting Eq. (30) into Eq. (11), the quantum potential can be ob-
tained as

Q (a) = − c2
1c2

2(p − 1)4a2p(
c2

2(p − 1)2a2p + a2c2
1

)
2
.

For the small universe (a � 1), the quantum potential approxi-
mates to Q (a) ∼ −a−2+2|p−1| , and for the large universe (a 	 1), 
the quantum potential is about Q (a) ∼ −a−2−2|p−1| . Likewise, only 
the ordering factor takes the value p = −2 (or 4) and c1/c2 > 0, 
will the small true vacuum bubble expand exponentially.

For the case of exponential expansion, the quantum poten-
tial for the vacuum bubble can be obtained as Q (a → 0) =
−(c1/c2)

2a4, while the classical potential is V (a) = 0. This defi-
nitely indicates that quantum potential Q (a) is the origin of expo-
nential expansion for the small true vacuum bubble. However, the 
quantum potential rapidly trends to zero when the universe grows 
up, Q (a) ∼ −a−2−2|p−1| , which is too tiny to support the acceler-
ating expansion of the universe.

When p = 1, the wavefunction of the vacuum universe is

ψ(a) = ic1 − c2 ln a.

It is easy to obtain that the quantum potential

Q (a) = − c2
1c2

2

a2
(

c2
2 ln2 a + c2

1

)
2
.

The quantum potential approaches infinity when the universe is 
very small a → 0, but rapidly tends to zero when the universe 
grows up.

4.3. Quantum potential of the universe with a scalar field

In quantum cosmology, a widely used model to describe the 
universe is the minisuperspace model containing a scalar field. In 
this model, the WDWE can be written as [4,22][

1

ap

∂

∂a
ap ∂

∂a
− 1

a2

∂2

∂φ2
− U (a, φ)

]
ψ(a, φ) = 0, (31)

where the classical potential U (a, φ) = a2[k − a2 V (φ)], V (φ) is the 
potential of the scalar field, and ψ(a, φ) is the wavefunction of 
the universe. Inserting ψ(a, φ) = R(a, φ)eiS(a,φ) into Eq. (31) and 
separating the equation into real and imaginary parts, one obtains 
two equations:

Saa + 2
Ra Sa

R
+ pSa

a
− a−2

(
Sφφ + 2Rφ Sφ

R

)
= 0, (32)

(Sa)
2 − a−2 Sφ

2 + U (a, φ) + Q (a, φ) = 0, (33)

where Xa denotes X derivatives with respect to a, etc. The quan-
tum potential Q (a, φ) is

Q (a, φ) = −(
Raa

R
+ p

a

Ra

R
) + Rφφ

a2 R
. (34)

The quantum Hamilton-Jacobi theory gives the guidance rela-
tions [10]

∂a S(a, φ) = −aȧ, (35)

∂φ S(a, φ) = a3φ̇. (36)
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Inserting Eq. (35) and (36) into Eq. (33), we can obtain

H2 = φ̇2 − U (a, φ) + Q (a, φ)

a4
. (37)

Generally, is it hard to obtain analytic solutions to Eq. (31), and 
therefore, we cannot obtain analytic solutions of the quantum po-
tential and the quantum trajectory of the universe. Considering 
the slow changing of the current universe, if there is indeed a 
scalar field, it is likely to be a slow-rolling scalar field. In fact, a 
slow-rolling scalar field itself may be considered as a cosmologi-
cal constant that can accelerate the expansion of the universe, in 
principle. However, we still want to know whether the quantum 
potential of the universe is comparable to the dark energy as re-
quired when a slow-rolling scalar field exists, particularly the total 
effects of the classical potential of the scalar field and the quantum 
potential.

Since the scalar field is slow-rolling, the dependency on φ in 
Eq. (31) can be effectively ignored. In this case, the WKB solutions 
of Eq. (31) are found to be [23]

	(a, φ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A±e
∓i
4 π

a(p+1)/2
(
a2 V − 1

)1/4
exp

⎡
⎣±i

(
a2 V − 1

) 3
2

3V

⎤
⎦ ,

for a2 V > 1.

B±
a(p+1)/2

(
1 − a2 V

)1/4
exp

⎡
⎣± (

a2 V − 1
) 3

2

3V

⎤
⎦ ,

for a2 V < 1.

The specific form of the wave function should be determined by 
the boundary conditions. Here we focus on the case of present 
universe that satisfies the condition a2 V > 1. Using the Hartle-
Hawking boundary condition, the wave function can be deter-
mined as [23]

	HH =
Ce

1
3V cos

[
(a2 V −1)3/2

3V − π
4

]
a(p+1)/2

(
a2 V − 1

)1/4
. (38)

Since 	HH is a pure real function, one can get that S(a, φ) = 0
and hence the universe cannot accelerate expansion, i.e., ȧ = 0 in 
Eq. (35). One can also get the total effects of the classical potential 
and the quantum potential as Q (a, φ) + U (a, φ) = 0 from Eq. (33).

Vilenkin’s tunneling proposal suggests that the wave function 
restricted by a2 V > 1 should be [23]

	V = e− 1
3V eiπ/4

a(p+1)/2
(
a2 V − 1

)1/4
exp

−i(a2 V − 1)3/2

3V
. (39)

In this case, we can obtain that

R(a, φ) = e− 1
3V

a(p+1)/2
(
a2 V − 1

)1/4
, (40)

S(a, φ) = − (a2 V − 1)3/2

3V
+ π

4
. (41)

Using the guidance relation (35), we obtain the present Hubble 
parameter

H2
0 =

(
ȧ

a

)
≈ V . (42)

This shows that the evolution of the grown-up universe is almost 
determined by the classical potential of the scalar field. Inserting 
R(a, φ) into Eq. (34), and taking a specific but widely used scalar 
field, V (φ) = m2φ2/2, we obtain

Q (a) = (p − 4)(p + 2)

4a2
+ 1

a2

(
2m2

9V 3
− 4m2

3V 2
+ 3m2

8V

)
. (43)

One can get that Q (a, φ)/U (a, φ) ∼ a−6 for a 	 1. This clearly 
shows that the quantum effects of the universe are ignorable com-
pared with classical potentials when the universe is large. It is not 
the quantum potential but the slow-rolling scalar field play the 
role of dark energy to promote the accelerating expansion of the 
universe in this case.

Another interesting case is the Wheeler-DeWitt equation con-
taining a free massless scalar, which has been studied in [24]. It 
was shown that the quantum effects are significant near the re-
gion a = 1, and quantum potential becomes negligible compared 
with classical potential when a 	 1 [24]. This means that when 
the universe with a free massless scalar field grows up, quan-
tum effects have disappeared, and the behavior of the universe is 
completely governed by classical potential, which is similar to our 
results above.

5. Discussion and conclusion

In Eqs. (19) and (28), we have obtained general solutions of 
the wavefunctions of the universe. We want to discuss some spe-
cial case of the wavefunctions, e.g., the wavefunction is purely 
real. In the case of ψ(r) = R(r), it is easy to get S(r) = 0, which 
means there is no acceleration for the universe. In fact, according 
to Schrödinger equation, one can obtain that

∇2

[
− h̄2

2m2

(
1

R
∇2 R

)
+ V

]
≡ 0. (44)

Therefore, a quantum potential obtained from a purely real, (or 
purely imaginary, i.e., R(r) = 0) wavefunction cannot provide an 
accelerating universe.4

In summary, based on WDWE, we have derived the quantum 
modified Friedmann equations by using de Broglie-Bohm quantum 
trajectory approach. We have shown that quantum effects of the 
universe cannot play a role as dark energy for a large universe, 
neither for a matter-dominated universe, nor for a vacuum uni-
verse. For a universe with a slow-rolling scalar-field, the behavior 
of the large universe depends on the boundary condition of wave-
function. The Hartle-Hawking boundary condition cannot provide 
accelerating expansion since the wavefunction is real, and the ef-
fect of the classical scalar field is completely offset by the quantum 
potential. On the other side, Vilenkin’s tunneling wavefunction al-
lows a large universe with a slow-rolling scalar field to accelerate 
expansion. Our results indicate that we should reexamine more 
carefully whether our universe is expanding at an accelerating 
rate or not. Since the quantum effects of a vacuum universe or a 
matter-dominated universe cannot provide accelerated expansion, 
we should seriously consider some other theoretical models, such 
as the slow-rolling scalar field model, the field particle model,5 or 
the modified gravity theory [27].

4 In [25], they used a real wavefunction to explain the quantum potential (i.e., 
the quantum correction term) as current cosmology constant. It is obvious that a 
real wavefunction cannot provide an accelerating universe, neither accelerating ex-
pansion nor accelerating shrink.

5 According to the current value of dark energy density, it has recently been 
proposed that there may be a field particle with mass m ∼ 2 × 10−33 eV, whose 
quantum potential can be explained as cosmological constant [26]. If such particles 
can be observed in the future experiments, then the mystery of dark energy can be 
uncovered.
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