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Abstract

In this work we explore the collider prospects for the asymptotic safety

scenario being realized as a quantum theory of gravity. Testing gravity at

colliders becomes a real possibility in the case of extra dimensional models, or

with additional physics leading to a fundamental scale of gravity significantly

lower than the Planck mass. We present several approximations for the full

non-perturbative renormalization group running, and show how these can be

implemented at the level of the graviton wave-function renormalization. The

issue of scale identification of the physical process with the renormalization

group scale k is clarified and several different choices are compared. The

various approximations are resolved and shown in most cases to generate scheme

independent results. On the phenomenological side, we investigate two separate

observables. First, at tree-level we present results on LHC di-muon production

due to asymptotically safe gravitons. By including fixed point scaling Kaluza-

Klein modes, the predicted signal is enhanced and simultaneously problems

associated with the breakdown of perturbative unitarity are reduced. At the

one-loop level, we outline our calculation for the contribution to electro-weak

precision observables originating from asymptotically safe gravity. New bounds

are derived which show different behavior as a function of the number of extra

dimensions compared with previous effective field theory results. Finally, we

comment on possible further directions for exploring the frontier of collider physics

and quantum gravity.
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Chapter 1

Introduction

Because truths we don’t suspect have a hard time

making themselves felt, as when thirteen species

of whiptail lizards composed entirely of females

stay undiscovered due to bias

against such things existing,

we have to meet the universe halfway.

Nothing will unfold for us unless we move toward what

looks to us like nothing: faith is a cascade.

-Alison Fulton “Cascade Experiment”

1.1 LHC: A Window into Quantum Gravity?

In the summer of 2011, with the arrival of the first successful inverse femto-barn of

proton-proton data, the Large Hadron Collider’s (LHC) stated goal of exploring

the frontier of TeV scale physics is finally coming to fruition. First and foremost,

the LHC program expects to reveal the nature of electroweak symmetry breaking

[9][10]. This may be the scalar Higgs boson predicted in the Standard Model

or something more complicated acting like the Higgs. However, as the history

of physics has shown, quite often the primary motivation for an experiment is

not the a postori justification. In other words, in addition to identifying the

mass of the Higgs boson, we hope that the LHC discovers the next paradigm in

high-energy physics.
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1.1. LHC: A Window into Quantum Gravity?

Typically at the LHC, searches for a new paradigm originate in the more

humble pursuit of new particles. Connecting particles to paradigms and vice versa

is thus the primary occupation of particle phenomenologists. To streamline this

process, assumptions based on the expected nature of new physics is often used

[11]. An example is dark matter, where the fact that these particles are relatively

stable suggests looking at deviations from the SM prediction for missing energy.

There is a balance though. By making model assumptions we limit the size of

the net cast on beyond the Standard Model theories. For example, searching for

jets plus missing energy is ineffective for other viable dark matter models like

gravitino dark matter [12][13]. At the LHC then, we would like to cover all bases

and include searches with varying amounts of model assumption.

One such model is the recently revived paradigm of extra dimensions

[14][15][16][17][18]. In this thesis we primarily discuss flat extra dimensions

where only gravity propagates in the additional space. These models predict

a large number of gravitationally interacting massive particles in addition to

the (indirectly measured) massless graviton responsible for general relativity

[19][20]. At colliders like the LHC, these new particles can be seen in two ways.

Either we produce them directly and they escape as missing energy [21], or the

massive graviton decays back to observable particles creating an excess in some

distribution [22]. The later is theoretically more interesting as the signal probes

off-shell effects of massive gravitons.

Searches for virtual gravitons are plagued with theoretical ambiguities [23]. As

will be discussed in detail, the signal is sensitive to the regime where the effective

description of extra dimensions breaks down and the dynamics of quantum gravity

become relevant. In order to proceed, we can compute observables in the low

energy limit, and reformulate searches for extra dimensions in terms of generic

four-point operators. The advantage here is that no input about the speculative

nature of quantum gravity is necessary. However, the downside is that the

resulting bounds on extra dimensions carry an inherently unquantified theoretical

uncertainty. Alternatively, we can maintain the full dynamics of the extra

dimensions, but cut-off divergent integrals explicitly “by hand”. This implies

that the majority of the signal comes from exactly that region of momentum

space where the cutoff is placed. An unknown dependence on the details of UV

physics is then implicit in most observables. Neither of these methods is fully

2



1.1. LHC: A Window into Quantum Gravity?

convincing in the search for extra dimensions.

In this thesis, we present an improvement to this search by making the

additional assumption that in the UV gravity possesses an interacting fixed point

[24]. This situation is typically referred to as Asymptotic Safety, as it generalizes

the more well-known Asymptotic Freedom. Moreover, we will see that asymptotic

safety provides robust predictions for the behavior of extra dimensional gravitons,

meaning that it may be possible to actively search for and rule out these new

particles at the LHC.

Along with providing their own unique predictions, a crucial benefit of

assuming asymptotic safety is an improvement in theoretical uncertainty in

searches for extra dimensions. The reason for this is that the conventionally

divergent momentum integral in our approach is regulated by renormalization

effects at the fixed point. In addition, we present a new calculation for the

indirect electroweak constraints originating from contributions to gauge boson

self energies. Naively this amplitude is power divergent, but with a fixed point

becomes finite and independent of the UV cut-off. However, the sensitivity to

the fixed point region is enhanced compared with the tree-level. We present

this calculation as a proof of concept that our techniques can be extended to

observables beyond tree-level.

This thesis is arranged as follows. In Chapter 2 we build the necessary

technology to analyze gravity in perturbation theory. We will see the appearance

of divergences in this straight-forward approach and understand the notion of

gravity as an effective theory. Moving beyond perturbation theory we outline

the growing evidence that gravity may be a continuum quantum field theory.

In Chapter 3, we present the modern paradigm of large extra dimensions, and

exhibit in detail the Kaluza-Klein reduction needed to derive the 4-dimensional

particle spectrum. In particular, we derive the spectrum in two gauges as we

use both in our computations. The experimental constraints on extra dimensions

are outlined. We devote a sizable portion of this section to a discussion on the

ambiguities associated with virtual graviton exchange.

We present our work melding the asymptotic safety scenario with extra

dimensions starting in Chapter 4. In order to make sense out of the generally

complicated form of the asymptotic safety running coupling we build a number

of approximate solutions. A sizable effort is then made to cross-check these

3



1.1. LHC: A Window into Quantum Gravity?

approximations and also to establish some semblance of scheme independence.

Finally we calculate tree-level and one-loop amplitudes in our formalism. The

phenomenological implications are given in chapter 5. We demonstrate that

asymptotic safety can lead to observable and experimentally interesting results.

Finally, in chapter 6 we conclude this work and offer some possible future

directions.

As of now, there is no definitive evidence for beyond the Standard Model

physics at the LHC, yet there is still reason to believe that the next revolution

in physics is approaching. Regardless of the outcome, stringent bounds will be

placed on many popular models of beyond the Standard Model physics. Whether

or not TeV scale extra dimensions exist in nature is a question the LHC can

answer, and as this thesis shows may also deepen our understanding of quantum

gravity.
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Chapter 2

Field Theory Methods in Gravity

2.1 Introduction

In this section, starting from minimal requirements for gravity we build a

consistent action. Our approach is meant to evoke the thought process which

might be followed by a particle physicist inspired by the successful quantization

of Non-Abelian gauge theories like QCD. Basic arguments in dimensional analysis

will help us determine the fate of such actions under quantization. We will see

explicitly how and where a straight-forward quantization of gravity fails.

The motivation for this extended foray into perturbative gravity is two-

fold. First, it allows a pedagogical introduction into the technical aspects of

gravity, which will prove useful in Chapter 4 when we discuss higher dimensional

realizations. Many aspects of 4-dimensional gravity carry-over and assist our

understanding here. The second and more immediate motivation is that by

understanding the downfall of a perturbative description of gravity, we obtain

a better position for achieving a non-perturbative quantization scheme. An

comprehensive and pedagogical reference is Ref. [25].

2.1.1 Einstein-Hilbert Action

In order to build a field theory for gravity we first enumerate the field-content.

The dynamical field is the metric gµν(x), which initially is nothing more than

a necessary tool for defining invariant scalar products. The commutativity of

the scalar product requires gµν = gνµ. In addition, invariance under similarity

5



2.1. Introduction

transformations demands g ≡ det gµν = ±1 where in order to describe Minkowski

space g = −1. Finally, gµν must be dimensionless.

We can conveniently deduce the transformation laws of the metric by noting

that the basis vectors defining two sets of coordinates x and y are related by a

Jacobian

dxµ =
dxµ

dyν
dyν . (2.1)

The transformation of the tensor xαxβ and the invariance of the scalar product

under basis changes requires that the metric between the two systems transform

as

gµν =
∂yα
∂xµ

∂yβ
∂xν

gαβ. (2.2)

According to Einstein’s equivalence principles, a freely falling observer in a grav-

itational field cannot locally be distinguished from free space. Mathematically

this is reflected in that the gravitational action is invariant under arbitrary local

coordinate transformations. This symmetry corresponds to a variation in the

space-time coordinate

xµ → xµ + δxµ = xµ + ξµ(x), (2.3)

where ξ(x) is a function of the original coordinates. For the metric tensor in the

coordinate system defined by ξµ this leads to the variation

δgµν(x) = ξρ∂ρgµν + ∂µξ
ρgρν + ∂νξ

ρgµρ. (2.4)

In contrast to Yang-Mills theory, enforcing general covariance on an action

requires several steps.

• Replace normal space-time derivatives with covariant derivatives, acting on

a general rank-2 tensor as,

∇µT
ρ
ν = ∂µT

ρ
ν + ΓρτµT

τ
ν − ΓτνµT

ρ
τ . (2.5)

The connection Γµνρ ≡ 1
2
gµτ (∂ρgντ + ∂νgρτ − ∂τgρν) does not itself transform

as a tensor.

• The flat metric ηµν must everywhere be replaced with a general metric gµν .

6



2.1. Introduction

• Under (2.3) the measure transforms as

d4x′ → ∂x′

∂x
d4x′. (2.6)

This can be made invariant with the replacement d4x → √−g d4x as g

transforms identical to gµν .

These previous conditions are necessary for general covariance in a pre-existing

action, whereas we would also like to construct a kinetic term for the gravitational

field. The relevant question is to identify the gravitational equivalent to the field

strength tensor Fµν . The more complicated transformation law (2.4) as well as

the index structure of gµν allow for a tensor with more symmetry. The Riemann

tensor

Rµ
νρσ = ∂σΓµνρ − ∂ρΓµνσ + ΓανσΓµαρ + ΓανρΓ

µ
ασ (2.7)

is the analogous field tensor in gravity1. However, the Ricci Scalar, obtained

from the Riemann tensor as R ≡ gνρRµ
νρµ, is the invariant object featured in the

correct (low energy) Lagrangian

L =
√−g 1

16πGN

R, (2.8)

where we have defined the experimentally measured Newton’s constant GN ≡
1/M2

Pl in natural units. At first glance this action looks strange in dimensional

analysis as [G−1
N ] = 2, and we may conclude this term is super-renormalizable.

However, the equations of motion for the gravitational field generate a dynamical

coupling to matter. From the definition of the symmetric energy-momentum

tensor

Tµν =
2√−g

δS

δgµν
, (2.9)

taking the variation of (2.8) coupled to matter yields Einstein’s Equations(
Rµν −

1

2
gµνR

)
= 8πGN Tµν , (2.10)

1A perfectly valid generally covariant Lagrangian at this point would be L =√−gRµ
νρσR

νρσ
µ , analogous to the YM kinetic term ∼ F 2. If this were the action chosen

by nature, then gravity in pertubation theory would be similar to YM theories by naive power-
counting.
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2.1. Introduction

where Rµν = Rα
µαν . The constant G−1

N is the pre-factor in (2.8) precisely

because GN acts as the coupling constant of the gravitational field to the energy

momentum tensor on the RHS of Einstein’s Equations.

2.1.2 Quantization

In order to quantize gravity we first perform the flat space expansion of the metric

gµν = ηµν +
√

8πGNh
µν . (2.11)

The field hµν is the propagating spin-2 graviton which is now canonically

normalized. The lowest order equations of motion obtained from (2.10) and

(2.11) for the graviton field are

�hµν − ∂µ∂αhαν − ∂ν∂αhαµ + ∂µ∂νh
α
α

− ηµν�hαα + ηµν∂
α∂βhαβ =

√
8πGNTµν . (2.12)

We deduce the action leading to (2.12) as

L =− 1

2
hµν�hµν +

1

2
h�h− hµν∂µ∂νh+ hµν∂µ∂

αhνα −
√

8πGNh
µνTµν . (2.13)

The slightly circumvent logic (Einstein–Hilbert action→ Einstein’s equation →
linearized Einstein’s equation→ linearized Einstein–Hilbert action) leading us to

(2.13) is necessary because the energy momentum tensor is generated through

(2.9) when computing the equations of motion. Had we inserted the graviton

decomposition into the Einstein–Hilbert action directly, the resulting linearized

Einstein equations would describe a freely propagating field. Thus, in the

linearized action, the coupling to matter at the level of the action is inserted

by hand. Reproducing Einstein’s Equations at the linearized level forces us to

introduce a non-renormalizable interaction2, the last term in (2.13).

The action (2.13) carries a linearized version of the gauge symmetry

δhµν = −∂µξν − ∂νξµ, (2.14)

2Graviton self-interactions are also generically non-renormalizable as the three-graviton
vertex contains two derivatives and hence has dimension 5.
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2.1. Introduction

we obtain by inserting (2.11) in (2.4). In order to extract the propagator we fix

the gauge. For pure gravity this gauge fixing is simple, and completely analogous

to Yang-Mills theories. A convenient choice which generalizes nicely to higher

dimensional gravity is the unitary gauge where

∂µh
µ
ν =

1

2
∂νh

µ
µ. (2.15)

Two notable points are as follows. First, this choice eliminates the last two kinetic

terms in (2.13), and the remaining tensor is easily inverted. Second, a symmetric

tensor contains 10 components, while (2.15) eliminates 4. An additional 4

degrees of freedom are dropped by noting that (2.15) under a linearized gauge

transformation produces the condition �ξν = 0. Thus, there are only 2 remaining

propagating degrees of freedom as we expect for a massless boson in 4-dimensions.

We use a second gauge choice for loop calculations in the D dimensional

theory, the DeDonder gauge, where we include a generic ghost contribution Lgh,
and defining

Cµ ≡
1√
2

(∂αh
α
µ −

1

2
∂µh) (2.16)

add to the action a term Lgh = −CµCµ. We will see how the KK reduction of the

D dimensional action in these respective gauges leads to differently suited sets of

Feynman rules.

2.1.3 Divergences

A simple way to compute loops in gauge theories is the background field

method [26]. This proves effective in gravity as well due to the diffeomorphism

invariance realized at the linear level (2.14). Suppose we start with an action

containing operators Oi. Once we compute loops in the background field method,

divergences are proportional to some set of gauge invariant operators Ōi. If

all Ōi are contained in the original Lagrangian Oi, then the action is termed

perturbatively renormalizable as all divergences can be soaked up with redefined

couplings. If the Ōi generate new operators on the other hand, then in order to

eliminate the divergence we must introduce additional terms. Now the quantum

theory containing only Oi is inconsistent.

Using these methods and considering the one-loop graviton self-energy for the

9



2.1. Introduction

Einstein-Hilbert action it was shown in Ref. [27] that a divergence

δL =
1

8π2

1

D − 4

√−g
[

1

120
R2 +

7

20
RµνRµν

]
(2.17)

is produced which cannot be reabsorbed into the definition of (2.8). However,

there is a solution, δL in this case vanishes on shell as a solution to the classical

field equations. This means that if we redefine our field gµν → gµν + δgµν where,

δgµν =
1

D − 4

1

20

(
−7Rµν +

11

3
Rgµν

)
(2.18)

then the vacuum equations of motion for gµν in (2.10) are preserved and the one-

loop divergence is eliminated. However, in the presence of matter where Tµν 6= 0,

the counter-term does not vanish on-shell, and the necessary field redefinition is

not possible. At the two loop level in pure gravity, it was shown in Ref. [28] that

the counter-term

δL =
√

(−g)
1

d− 4

1

(16π2)2

209

2880
R σρ
µν R κτ

σρ R µν
κτ , (2.19)

is generated, and crucially this does not vanish for solutions to the vacuum field

equations. Not surprisingly, loop correction in gravity produce fatal divergences.

One possible way out is to include higher derivative terms in the original

action, and hope that there exists some special set which is closed under

perturbative quantization. In fact, it was proposed and later shown that there is

a set of higher derivative invariants, which along with (2.8) generate a closed set

of counter-terms to all loop orders. This Lagrangian found in Ref. [29] is

L =
√

(−g)

[
1

16πGN

R− aR2 − bRµνRµν

]
, (2.20)

where a and b are dimensionless couplings. This is not heralded as a successful

theory of quantum gravity for an important reason. The scalar part of the

graviton propagator from (2.20) is

∆(p) =
1

p2 − αGNp4
, (2.21)

where α is an O(1) coefficient depending on a and b. For large energies

10



2.1. Introduction

where p2GN ∼ 1 we see that the propagator changes sign so that the high-

energy spectrum of this theory contains a ghost obeying the wrong relation

between spin and statistics. However, it was later found in Ref. [30] with

modern BRST techniques that an action containing all diffeomorphism invariant

terms is perturbatively renormalizable and contains ghost free propagators.

Renormalizablility in this case is not surprising as all divergences must be

proportional to an invariant and we may redefine our infinite number of couplings

to cancel these. What is non-trivial is that unitarity is preserved in the propagator

only for the inclusion of an infinite number of terms. An obvious downside is

that an infinite number of experiments are needed to fully specify the theory.

A theory with well behaved UV behavior despite a complete lack of predictive

power is generally referred to as weakly perturbatively renormalizable.

Despite the breakdown of perturbative gravity in the UV, there remains some

hope for a theory of quantum gravity that is both ghost-free and weakly coupled

in the UV (for a recent example see Ref. [31]). However, even if gravity as a field

theory has no sensible UV behavior, it is still possible to discuss quantum gravity

as an effective field theory.

2.1.4 Gravity as an Effective Theory

The Standard Model is likely to be a low-energy effective theory. This picture

neatly explains the perturbative renormalizablity of all measured operators in

terms of the Wilsonian renormalization group, and succinctly determines the

plethora of observed global symmetries. Furthermore, the first instance of

definitive beyond the standard model physics, neutrino oscillations and their

implied masses, follow directly from the least suppressed higher dimensional

operator. Constraining (or better yet determining) the EFT scale of these

operators is a crucial phenonological pursuit.

For some presumably large physical cut-off scale Λ, contributions to observ-

ables from higher dimensional operators at the characteristic energy scale E are

suppressed by powers of E/Λ. While renormalizibility is a virtue when computing

loops, it does not assist the determination of the scale when such a description

breaks down3. Conversely, the merit of non-renormalizable interactions is that

3Although the SM is certainly expected to break-down above the Planck scale, the only
intrinsic limit on the validity of the perturbative description of the SM is the Landau pole in
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they transparently predict their own demise, when E/Λ ∼ 1. This defines an

upper-bound on the scale of new physics. For this specific purpose, gravity is more

helpful than the SM. Perturbation theory ceases to be a good description when the

dimensionless expansion parameter E2GN ∼ 1. Consequently, for experiments at

energies far below this scale the effective operator expansion of gravity is well

defined [32][33].

In order to proceed, all operators consistent with general covariance should

be included in the a generalized gravitational Lagrangian

L =
√−g

[
1

16πGN

R+ c1R2 + c2RµνR
µν + c3∇2R+ · · ·

]
. (2.22)

The Riemann tensor squared term is not included as the linear combination

of the Ricci tensor, Ricci Scalar and Riemann tensor is equal to a topological

(Gauss-Bonet) invariant. There are very weak constraints on the size of the

dimensionless coefficients c1, c2 < 1074 from cosmology [32]. We calculate the

first order quantum effects by considering one-loop diagrams, analogous to QED,

which modify the graviton propagator and vertex with matter. The modification

to the Newtonian potential is obtained by considering the exchange of a graviton

between two massive bodies, where an effective vertex is inserted twice and the

one loop propagator is used for the virtual graviton. This calculation is done in

Ref. [32] at leading order in GN for the Newtonian potential,

V (r) =
Gm1m2

r

[
1− G(m1 +m2)

c2r
− 167

30π

G~
c3r2

+ · · ·
]

(2.23)

where we have temporarily moved away from Planck units. The second term in

brackets corresponds to a relativistic correction which is found in classical General

Relativity. However, the third term is due to genuine quantum effects in gravity.

The important point is that the potential decreases as r gets small. We may

absorb the quantum effects in GN and define an effective coupling GN(r) valid

up to energy scales E ∼ r−1

G(r) = G

(
1− 167

30π

GN~
r2

)
. (2.24)

the electro-weak gauge couplings.
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2.1. Introduction

This is in opposition to the effects of QED vacuum polarization, which give a one

loop effective coupling to the fine structure constant α ∼ e2,

e2(µ) = e2(µ0)
1

1− e2(µ0)

6π2
log

(
µ

µ0

) (2.25)

which increases for large energies µ. The effect of electron-positron pair creation

is a screening of the electric charge. The coupling increases as we move closer

to the bare charge. In contrast, gravitational effects appear as anti-screening,

analogous to QCD. In the one loop approximation the gravitational coupling gets

arbitrarily weak for energies

1

r
∼
√

30π

167GN~
. (2.26)

At such high energies, we of course over-extend the expected region of validity

for our one loop calculation. Instead we compute the contribution by inserting

our effective coupling into the one loop propagator recursively,

G(r) = G

(
1− kGN~

r2

)
+G

(
1− kGN~

r2
G

(
1− kGN~

r2

))
+ · · ·

=
G

1 +
167

30π

GN~
r2

(2.27)

where we have defined k ≡ 167/(30π) and resummed the geometric series. Now

we can take the r → 0 limit. Apparently, the resummed coupling still shows

strong anti-screening behavior for large energies.

To conclude, an effective theory approach towards gravity allows us to un-

ambiguously compute the leading order quantum corrections to the gravitational

potential between two sources. Moreover, the fact that the effective force due to

quantum corrections between particles decreases at shorter distances suggests the

possibility of soft scattering amplitudes in the UV. We cannot naively extend this

to energies greater than the denominator of the higher order effective interactions.

At these energies our ordering principle is rendered meaningless and in general,

all effective operators consistent with the symmetries must be included in a

calculation.
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2.2. Asymptotic Safety

In this thesis we summarize current evidence that applying non-perturbative

methods to gravity, the hints of improved UV behavior provided by effective field

theoy in (2.27) can be solidified into a coherent framework of UV finiteness under

the rubric of asymptotic safety. We will argue consequently that gravitational

field theory can be thought of as more than an effective theory in the special

case where the renormalization group trajectory ends on a UV fixed point4. In

the next section we present the ground work which allows us to investigate the

non-perturbative nature of gravity.

2.2 Asymptotic Safety

One of the great lessons of quantum field theory is that observable quantities

depend on the scale at which they are viewed. In other words, when claiming

the numerical value of a dimensionless parameter it is necessary to specify the

energy scale of the measurment. Physically, quantum mechanics demands that an

interacting bare particle be thought of as a cloud of virtual particles. These virtual

effects determine the physically measured mass and couplings in non-trivial ways.

Quantitatively the dynamics of the measured parameters in the Lagrangian are

determined by the renormalization group (RG) flow. In other words, the RG flow

describes the entire structure of the virtual cloud surrounding our bare fields.

We frequently employ the prototypical example of the RG with QCD as a toy

model. The Yang-Mills coupling is classically scale invariant. However, once we

include quantum effects, the coupling decreases with energy and vanishes exactly

in the limit of arbitrarily small distances. The fact that as the energy increases,

the coupling approaches the origin indicates that QCD contains a free-field UV

fixed point. Synonymous to this is that QCD is an asymptotically free theory.

Asymptotic freedom is only one of many possible fates for a generic coupling

in the UV. In general, a coupling may also increase without bound, settle on

some periodic behavior or lead to a non-zero UV fixed point. The last choice is

an example of asymptotic safety, a generalization of asymptotic freedom to the

4There is even a precedent for extending effective theories with non-renormalizable
interactions to arbitrarily high energies. The Gross-Neveu model, N interacting Dirac fermions
with a O(2N) global symmetry, in 2+1 dimensions [34] is an example where a straight-forward
perturbative quantization fails as expected but the non-perturbative handle provided by the
1/N expansion allows a simple proof of renormalizability to all orders [35].
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2.2. Asymptotic Safety

case where the UV fixed point remains interacting. In the next section we will

describe the general features of an interacting fixed point in gravity.

2.2.1 Fixed point for Newtons Constant

In 4 + n-dimensional gravity the coupling constant GD carries mass dimension

−2 − n. Since the renormalization group flow deals exclusively with phyisical,

dimensionless parameters, we define a dimensionless coupling using an at this

stage arbitrary scale µ.

g ≡ µn+2GD (2.28)

In perturbative gravity we expand in g so that some energy scale when µ−2−n ∼
GD, our calculation is bound to fail. However, we anticipate that Newtons

constant GN is in fact a function of µ, and in order to make connection with

RG based literature [36] we define the wave-function renormalization Z−1(µ).

G(µ) = GN Z
−1(µ) (2.29)

We supply a suitable renormalization condition fixing Z−1(µ0) = 1 at the energy

scale µ0. This condition allows us to define the low energy Newtons constant in

4-dimensions as the experimentally measured 6.67 × 10−11m3/kg s2. In practice

we will always take µ0 ∼ 0 and define the IR regime of gravity as the energy

range where Z−1(µ) ≈ 1. At the level of the Lagrangian, Z−1(µ) appears in the

kinetic operator for the graviton and therefore renormalizes the graviton two-

point function. The scale dependence of Z−1(µ) determines the rescaling of the

fields once quantum effects are included in the path integral. For sufficiently

small rescaling perturbation theory remains applicable. More precisely we define

the anomalous dimension

η ≡ −d logZ

d log µ
. (2.30)

which is so named as it measures the rate of deviation from canonical dimension

for the fields. We are generally interested in the fixed-point situation where the

dimensionless renormalized coupling goes to a finite value. For gravity this implies

that the dimensional renormalized Newton’s constant approaches 0 in the UV at

a rate determined by η. This value constitutes the first genuine observable we

discuss in the context of asymptotic safety.
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To gain more traction with this idea, we consider the generic scale derivative

of g, the beta function of the corresponding coupling in quantum field theory

βg ≡ µ
dg(µ)

dµ
= (n+ 2 + η) g(µ). (2.31)

In deriving (2.31) we use the definitions given by (2.28), (2.29) and (2.30). There

are two possible fixed points associated with (2.31). Most simply if g → 0 we

encounter the Gaussian (non-interacting) fixed point where µ → 0. Identifying

µ = E with the center-of-mass energy of the process at hand, we see from our

effective field theory logic delineated in (2.22) that this constitutes the regime

where a perturbative expansion is applicable and corresponds to the region of

classical general relativity.

A more interesting possibility presents itself by observing that (2.31) has

a second fixed point when the anomalous dimension is negative and given by

the value η = −2 − n. This implies that the dimensional Newtons constant

scales in the UV exactly to cancel the canonical scaling factor, or in other words

GNZ
−1(µ) ∼ µ−2−n. We see the essence of the fixed point by considering the

real space 2-point scalar correlation function for a theory with η = −2− n. The

effective propagator once we identify the graviton momentum p2 with the RG

scale µ2 becomes p−4−n. The Fourier transform defining the real space correlator

is

∆(x) ∼
∫
d4+np

p4+n
eip·x ∼ log(Λx) , (2.32)

where Λ is some at this stage arbitrary scale. In (2.32), the residual interaction

of the theory become effectively 2-dimensional. Interestingly, this feature is

confirmed by Lattice studies of gravity deemed Causal Dynamical Triangulations

(CDT) [37].

In order to fully classify fixed points, we need, in addition to the fixed point

coupling and anomalous dimension, the value of the critical exponent defined by

θ = −∂β
∂g

∣∣∣∣
µ?

. (2.33)

The critical exponent for the UV fixed point in gravity is computed by setting

g equal to its fixed point value g? in (2.33). For real critical exponents, the

magnitude determines the rate of approach to fixed point scaling and more
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importantly the sign indicates whether the trajectories ending on the fixed point

are stable under small perturbations.

Before we outline the conditions for asymptotic safety, we briefly generalize

the above discussion to the case where there are an arbitrary number of couplings

in the theory, each providing their own dynamics.

2.2.2 Fixed point for general action

In an EFT approach to gravity one generally orders operators as in (2.22) in

terms of their canonical dimension. At high energies this ordering principle is

insufficient and all operators allowed by symmetries should be included. The

coefficient of each operator then obeys its own RG equation

βi =
dgi

d log µ
{g0, g1 · · · } (2.34)

which in the general case depends on every other coupling in the theory. For a

given truncation of operators, the space of all couplings constitutes theory space.

An interacting (or Non-Gaussian) fixed point occurs at any point where all the

βi vanish and at least one gi is non-zero. We will denote this point ḡ?. At ḡ? we

identify as a generalization of (2.33), a so-called stability matrix

Mij =
∂βi
∂gj

∣∣∣∣
ḡ?

= −d′(i)δij +N(g0, g1, · · · ) . (2.35)

where d′(i) is the canonical dimension of the i-th coupling with no implicit summa-

tion. The function N generalizes the anomalous dimension and encapsulates the

entire quantum structure of the theory. As an example, in gravity since [R] = 2

and [R2] = 4, the canonical dimension for these operators in 4 + n dimensions is

2+n and n respectively. All higher dimensional operators have negative canonical

dimension in 4-dimensions. The eigenvalues of the stability matrix determine the

stability of the fixed point, and are the critical exponents θi of ḡ?.

There is some set of trajectories through theory space which emanate from

ḡ?. As all the βi are smooth functions in the gi and µ, these curves form a

manifold, dubbed the UV critical surface. The dimensionality of this manifold

∆UV is then given by the number of directions attracted to the fixed point in
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g?

g1

g2 g?

g1

g2

Figure 2.1: Simple illustration of a a) 1-dimensional b) 0-dimensional UV critical
surface in a 2-dimensional theory space. A 2-dimensional surface corresponds to
all flows ending on the UV fixed point.

its linearized vicinity. If a coupling gi has θi < 0 (θi > 0) this coupling is

called UV attractive (repulsive). Hence, the dimension of ∆UV is identical to

the number of UV attractive critical exponents in the theory i.e. the number of

eigenvalues of the stability matrix with negative real part. Physically, ∆UV counts

the parameters in the theory which are not fixed by the requirement that the RG

flow ends on a UV fixed point. These couplings can only be determined through

experimental measurement. In the next section we will use these definitions to

define an acceptable theory of quantum gravity which is asymptotically safe.

2.2.3 Criteria for the Scenario

We are in a position to state the two criteria for asymptotic safety in quantum

gravity first enumerated by Weinberg [24]. In order for gravity to be an acceptable

and predictive quantum field theory it must;

1. Contains a UV fixed point in all couplings,

2. Allow a finite dimensional UV critical surface at this fixed point.

The second requirement does not necessarily mean that a finite number of

terms are present in the correct UV action, only that in this case the a priori
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independent couplings must actually be functions of only a finite number [38].

This criteria is the weakest form of in principle predictivity for a continuum

quantum field theory.

2.2.4 Evidence for Asymptotic Safety

As we noted in Sec. 2.1.3, in order to investigate the high energy behavior of

gravity we need to either compute the gravitational path integral directly or find

a useful non-perturbative expansion. The former is the inspiration for numerical

lattice based investigations in gravity called causal dynamical triangulations

(CDT) [37]. We will only mention in passing that there seems to be some evidence

for asymptotic safety in CDT as the spectral dimension of space-time was found

in agreement with (2.32) in Ref. [37]. In order to gain a handle on gravity without

resorting to lattice simulations we need clever techniques.

There are several examples of gravity related field theories which are finite

in the UV by virtue of a non-trivial fixed point. The first example is Einstein

Hilbert gravity in D = 2 + ε dimensions. It is well known that gravity in D = 2

is a topological invariant, but the same cannot be said for gravity for D = 2 + ε.

Furthermore, perturbation theory is valid in D = 2 since GN is dimensionless.

The gravitational β-function was calculated at 1-loop [39] and later at 2-loops

[40] as

βg = εg − bg2 +O(g3). (2.36)

For ε = 0, the β-function is a downward facing parabola, exactly like QCD. Thus

the theory in D = 2 dimensions is asymptotically free. However, as soon as the

theory moves a small distance away from D = 2, an interacting fixed point occurs

at g? = ε/b in the one loop approximation. In this sense, the lack of perturbative

renormalizability for D > 2 gravity is seen as a result of the D = 2 Gaussian fixed

point being continuously shifted off the origin as ε grows. As we will see this is in

agreement with results from renormalization group studies for gravity in D = 4.

Another expansion finding a fixed point is found by minimally coupling N scalar

fields to the metric, and performing a 1/N expansion [41][42].

It was only with the addition of exact renormalization group techniques from

Ref. [43] and Ref. [44] that a rigorous computation of the non-perturbative β-

function became possible [45][46][47]. Details on these techniques are given in

19



2.3. Conclusions

the appendix. More modern computations now include higher order invariants

up to R8 terms [48], also including couplings to matter [49], and truncations

proportional to invariants which do not vanish in perturbation theory [50]. Also,

the fixed point structure in 4-dimensions persists in higher dimensional gravity

theories [51]. In all cases so far, a fixed point with the requisite properties for

asymptotic safety was found. More importantly, the critical exponents indicate

that for RN operators with N > 2, the critical exponents are UV repulsive and

the magnitude of the exponents θi grow as a positive power of N [48]. This is

strong mathematical evidence that the UV critical surface is finite dimensional.

While no rigorous proof demonstrates that the fixed point is truly robust against

even higher invariants, there is are still many promising paths for improving the

study of asymptotic safety.

2.3 Conclusions

Starting from field theory we examined how gravity, defined as the Einstein-

Hilbert action, fails in perturbation theory. This does not mean that gravity

does not make sense as a quantum field theory, only that it cannot be applied at

arbitrarily high energies. Attempts to cure the poor UV behavior of gravity in

perturbation theory have been plagued by among other field theory nightmares,

unphysical ghosts. It is safe to say that so far no consistent perturbative

quantization of gravity has been found without appealing to non-field theory

based objects (i.e. string theory).

Moving beyond perturbation theory there is hope that gravity may be an

acceptable and predictive theory within the asymptotic safety scenario. There

is growing evidence that these criteria are realized in many approximations

and as of this writing no solid counter-example to the conjecture is known.

However, in order to establish the asymptotic safety scenario at a level more

than mathematical existence, we require some form of experimental input. For

this purpose, recent developments on low scale gravity models in extra dimensions

prove useful.

In low scale gravity models, the topic of the next chapter in this thesis, the

energy where fixed point scaling is realized may be as low as a TeV. With these

fortuitous circumstances, effects from the large anomalous dimension may be
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observable at the LHC. This idea was first pointed out in Ref. [52] and Ref. [53].

Further non-collider based applications of asymptotic safety include cosmology

[54][55], black holes [56][57][58] and dark energy [59].
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Chapter 3

Extra Dimensions and KK states

Not into space. Into the space between spaces.

-Prof. Oxley in “Indiana Jones and the Kingdom of the Crystal Skull”

3.1 Introduction

The tantalizing possibility of extra spacial dimensions has trickled through

the thoughts of theoretical physicists beginning with their original proposal by

Kaluza [60]. It was hoped that seemingly different 4-dimensional forces such

as electromagnetism and gravity could be neatly unified in a 5-dimension pure

gravitational multiplet. The 5 degrees of freedom associated with a massless

graviton in 5-dimensions decomposes to 4-dimensions as a scalar φ, vector Aν and

tensor hµν . The tensor is the massless graviton and the vector may be identified

as the photon.

In order to explain the non-observation of these additional dimensions, the

idea of compact extra dimensions proved useful [61]. As opposed to observed

spacial dimensions which possess no boundary, these extra dimensions might

contain an intrinsic size along with boundary conditions specifying their topology.

At length scales large compared with the size of the extra dimensions, all effects

of the higher dimensional theory are visible through effective contact interactions.

The only macroscopic force law in this case is the normal Newtonian potential

F (r) ∼ m1m2

r2
. (3.1)
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3.2. Large Extra Dimensions

As the Compton wavelength of a probing particle reaches this size, the higher

dimensional force law

F (r) ∼ m1m2

r2+n
, (3.2)

takes effect. In the far UV the imbedding of the extra dimension is irrelevant and

all spacial dimensions are treated on equal footing.

In order do enforce dimensional consistency in (3.2), we see from (3.1) that

the numerator must soak up a dimensional quantity. The only two scales in this

set-up are the fundamental scale of gravity M∗ and the radii R of the additional

dimensions. The interplay between these two scales leads us to the next section

on Large Extra Dimensions and in particular the idea of extra dimensions as a

solution to the hierarchy problem.

3.2 Large Extra Dimensions

The theoretical progeny from the original ideas of extra dimensions have inspired

many beyond the SM scenarios in recent years. In [62] the idea of TeV scale extra

dimensions was first introduced in the context of Supersymmetry breaking. Later,

the inspiration provided by string theory [63] and in particular the invention of

D-branes [64] provided a consistent framework for SM imbeddings. In this thesis

we explore one of the simplest modern realizations, the so-called AADD model

[14][15]. For completeness we note that in addition to the AADD model, extra

dimensions proved remarkably useful in other aspects of model building with

warped [16][17] and Universal Extra Dimension [18]. The later two ideas are

mentioned only fleetingly in the remainder of this work.

Before defining the large extra dimensional paradigm in detail, we discuss

the original motivation for these models. Quite subjectively, the vast disparity

between the electroweak scale around 100 GeV and the measured Planck scale at

1019 GeV is aesthetically unappealing. While not a fundamental problem itself,

when taken together with a light SM Higgs scalar, this discrepancy becomes

harrowing to any theorist. Large extra dimensions solve this issue simply by

asserting that the observed vast difference between these scales is an artifact of

low energy observers.
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3.2. Large Extra Dimensions

3.2.1 The Hierarchy Problem

The only particle not yet observed in the Standard Model is the Higgs boson.

In addition to illuminating the mechanism for electro-weak symmetry breaking,

observation of the Higgs may provide the first evidence for the existence of a

fundamental scalar field. As it turns out, the spin of a fundamental field crucially

determines the effect of loop corrections on the measured or renormalized mass

in the theory.

One-loop self-energies for spin-1
2

and spin-1 particles depend logarithmically

on the scale of new physics. To see that this can be at most logarithmic, consider

the massless case where the fields enjoy chiral symmetry and gauge invariance

respectively. In this limit, the mass renormalization vanishes to all orders in

perturbation theory in order to preserve these symmetries. This implies that any

mass renormalization be proportional to the original particle mass, and thus by

power counting can be at most logarithmically divergent. In the language of ’t

Hooft, these fields are deemed technically natural. Colloquially, we refer to mass

terms for these fields as being protected from large radiative corrections.

Scalar fields on the other hand do not enjoy any additional symmetry in the

massless limit. For the standard model Higgs, Pauli-Villars regulated self energy

corrections from additional loops produces the following mass renormalization

m2
H = m2

H,0 + δmH

= m2
H,0 +m2

H,0

3g2

32π2

Λ2

m2
W

, (3.3)

where Λ is the scale of new physics and only the contribution from W loops

is included. If this scale is the EFT cut-off at the GUT or Planck scale, then

the measured Higgs mass mH must be a careful cancellation between mH,0 and

δmH of the order 10−30. Furthermore, in reality (3.3) receives contributions from

all massive particles in the SM (and beyond), so this cancellation is even more

suspect. Often, such an unnatural cancellation between the bare Higgs mass and

the self energy correction is called excessive fine tuning.

Now, a caveat is that if we use dimensional regularization instead of Pauli-

Villars, all quadratically divergent self energy integrals vanish. However,

supposing that the cut-off scale Λ represents the scale where new particles appear,

then the self energies due to these new particles naively acts as a quadratically
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3.2. Large Extra Dimensions

divergent loop contribution even within dimensional regularization. In either

case, the question of why the Higgs mass is so light is not answered within the

Standard Model without appealing to the fine-tuning argument mentioned above.

This constitutes the hierarchy problem.

Two major paradigms conceived as solutions to the hierarchy problem are

Technicolor and Supersymmetry. Both models enforce the stability of the Higgs

mass, through an order TeV compositeness scale or a new symmetry which

protects the scalar mass respectively. As we will see in the next section,

extra dimensions also provide a solution to the Hierarchy problem, and more

importantly motivate the search for quantum gravitational physics far below the

naive Planck scale.

3.2.2 Model details

The ADD model in its simplest manifestation consists of an arbitrary number

of toriodially compactified extra dimensions. First we outline some notation.

We write the 4-dimensional coordinates as xµ, while the (4 + n)-dimensional

coordinates are ya, such that zM = xµ + ya. For indices we use Greek indices

for 4-dimensions µ, ν, α = 0, 1, 2, 3 and denote extra dimensional coordinates with

lower case Roman letters a, b, c = 5, 6, 7, · · ·n. These are unified to capital Roman

letters A,B = 0, 1, 2, 3, 5, · · ·n.

Coordinate transformations no longer mix all spacial components. The

following are requirements on the extra-dimensional space described by metric

gij.

• spatial : the signature for the n extra dimensions is (−1,−1, · · · ).

• separable: the extra dimensions must be orthogonal to the brane so that

the measure d4+nz is well defined. In other words, the metric decomposes

as a product space g(4+n) = g(4) ⊗ g(n).

• flat : the dimensions must be flat so that they can be integrated out

explicitly in the action. In standard gravity the same is true unless sources

induce Tij 6= 0. We therefore restrict matter to the yi = 0 brane:

TAB(x; y) = ηµA η
ν
B Tµν(x) δ(n)(y) =

(
Tµν(x) δ(n)(y) 0

0 0

)
. (3.4)
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3.2. Large Extra Dimensions

The assumption of an infinitely thin brane for our 4-dimensional world

might have to be weakened to generate realistic higher-dimensional opera-

tors for flavor physics or proton decay [65, 66]. Einstein’s equation purely

in the extra dimensions

Rjk −
1

n+ 2
gjkR = 0, (3.5)

contracted with gjk requires R = 0. The full Ricci scalar is then

R = gMNRMN = gµνRµν + gijRij + giµRiµ = gµνRµν = R(4) , (3.6)

using gjkRjk = 0 along with the fact that gµi no longer transforms under

general coordinate transformations.

• compact/periodic: the simplest compact space is a torus with periodic

boundary conditions and a radius R of the compactified dimension yi =

yi + 2πR.

At the classical level, compact extra dimensions lead to the following relationship

between the 4-dimensional and D-dimensional gravitational constant. Starting

with the action in D-dimensions we have

SD =
1

Mn+2
∗

∫
d4+nx

√−gR (3.7)

=
1

Mn+2
∗

∫
dny d4x

√
−g(4)R(4)

=
Vn

Mn+2
∗

∫
d4x
√
−g(4)R(4) (3.8)

In the the final line of (3.8) we reproduce experimentally measured Einstein

gravity provided we identify Mn+2
∗ = M2

PlVn. In the case of the simplest toriodal

compactification with equal radii R we have

Vn = (2πR)n. (3.9)

Therefore, if the radius of the extra dimensions is large in Planck units, then the

fundamental scale of gravity can be significantly lower than 1016 TeV. Now we

make connection with the original inspiration for these models, namely that for a

fundamental Planck scale of the order of a TeV, the size of the extra dimensions
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3.2. Large Extra Dimensions

can be small enough to have avoided detection thus far. In this case the mass

renormalization to the scalar higgs mass should be proportional to M2
∗/(16π2)

as opposed to M2
Pl/(16π2) and the amount of fine tuning is eliminated or greatly

reduced.

This leads us to the basis of extra dimensions as a solution to the hierarchy

problem: our 4-dimensional Planck scale MPl is not the fundamental scale of

gravity. It is merely a derived parameter which depends on the fundamental (4 +

n)–dimensional Planck scale and the geometry of the extra dimensions, e.g. the

compactification radius of the n–dimensional torus. Matching the two theories

translates into

MPl = M∗ (2πRM∗)
n/2. (3.10)

If the proportionality factor (2πRM∗)n/2 is large we can postulate that the

fundamental Planck scale M∗ be not much larger than 1 TeV. In that case

the UV cutoff of our field theory is of the same order as the Higgs mass and there

is no problem with the stability of the two scales.

Assuming M∗ = 1 TeV we can solve the equation above for the compactifica-

tion radius R — transferring the hierarchy problem into space-time geometry:

n R

1 1012 m

2 10−3 m

3 10−8 m

... ...

6 10−11 m

At least in the simplest model n = 1 is ruled out by classical bounds on gravity. A

possible exception is if there is a larger than expected mass-gap between massless

and massive excitations [23]. For larger values of n we need to test Newtonian

gravity at small distances [67][68][69] and we discuss these constraints in Sec. 3.4.

Note that the analysis in this section is purely classical, and it is obvious that its

physical degrees of freedom do not survive compactification. For this we resort

to the original ideas of Kaluza and Klein and decompose the higher-dimensional

gravitational theory as an effective 4-D theory with residual gauge symmetries.
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3.3. Kaluza-Klein States

3.3 Kaluza-Klein States

With a clear geometrical picture of large extra dimensions, we now perform a KK

reduction and identify the propagating degrees of freedom in the 4-dimensional

effective theory. Physically this corresponds to classifying components of the

higher dimensional metric as representations under the 4-dimensional Poincaré

group. In a fully modern treatment, this procedure was carried out in [19, 20],

although we follow closely the approach of Ref. [7].

3.3.1 Spectrum

Just as with the 4-dimensional case, we expand about a flat background ηMN

and define the D-dimensional graviton field hMN so that gMN = ηMN + κDhMN .

Here we define the D-dimensional coupling constant κD = 32π/Mn+2
∗ . The D-

dimensional action is

S =

∫
d4xdnyLD (3.11)

with LD the D-dimensional generalization of (2.13)

LD =− 1

2
hAB�hAB +

1

2
h�h− hAB∂A∂Bh+ hAB∂A∂Mh

MB − κDhABTAB.
(3.12)

Periodic boundary conditions allow us to Fourier decompose the y component of

the graviton field

hAB(z) =
∞∑

m1=−∞
· · ·

∞∑
mn=−∞

h
(~n)
AB(x)√
(2πR)n

einjyj/R

= h
(0)
AB(x) +

∞∑
n1=1

· · ·
∞∑

nn=1

1√
(2πR)n

[
h

(~n)
AB(x)einjyj/R + h

†(~n)
AB (x)e−injyj/R

]
,

(3.13)

where h
(~n)
AB(x) is a four dimensional bosonic field with mass ~n ·~n/R2. The second

step is possible because hAB(z) is real.

To avoid confusion we emphasize that h
†(~n)
AB (x) does not constitute an

additional degree of freedom in the theory. The internal index ~n can be thought

of as a discretized momentum index, such that h
(~n)
AB(x) and h

†(~n)
AB (x) differ only
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3.3. Kaluza-Klein States

by the sign of the extra-dimensional momentum h
†(~n)
AB (x) = h

(−~n)
AB (x). This is also

obvious from the fact that h
(~n)
AB(x) and h

(~n′)
AB (x) are not distinct field excitations.

It is now simple to work out the form of Einstein’s equations in terms of the field

h
(~n)
AB(x). For example, the first term in (3.12) decomposes as

�(4+n)hAB(z) =
∑
nj

1

(2πR)n/2
∂C∂

C
[
h

(~n)
AB(x) ei(n·y)/R

]
=
∑
mj

1

(2πR)n/2
∂C

[(
δCµ ∂

µh
(~n)
AB(x) + δCj h

(~n)
AB(x)

inj
R

)
ei(n·y)/R

]

=
∑
mj

1

(2πR)n/2

[
�(4) − njnj

R2

]
h

(~n)
AB(x) ei(n·y)/R (3.14)

An independent check on the consistency of this method is that the 4-dimensional

massive graviton field h
(~n)
µν (x) only has a Pauli–Fierz mass term, ∝ [hµν − ηµνh]

and no mass terms originating from mixed index derivatives. This is required for

a consistent massive spin-2 field [70].

In order to derive the propagator for the 4-dimensional fields h
(~n)
AB(z) we fix

the gauge using a generalization of the ’t Hooft ξ for spontaneously broken gauge

theories. We add the gauge fixing term

LGF = −F
2

ξ
, (3.15)

with

F = ∂µh̄µN + ξ∂i(hiN −
1

2ξ
ηiNh), (3.16)

and

h̄MN = hMN −
1

2
ηMNh. (3.17)

The DeDonder and Unitary gauge for the 4-dimensional theory correspond to

ξ = 1 and ξ = ∞ respectively. We now derive the decomposed effective 4-

dimensional action in both gauges. In the remainder of this work we will suppress

the extra dimensional label (~n) for notational clarity.
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3.3. Kaluza-Klein States

3.3.2 DeDonder Gauge

We decompose the action first in the DeDonder gauge. This corresponds to the

only value of ξ which maintains Lorentz invariance in (3.16), and the resulting

term is the generalization of the 4-dimensional gauge fixing used in (2.16). The

still D-dimensional action is

L = −1

2
hAB�hAB +

1

4
h�h . (3.18)

In order to proceed it is helpful to write the D dimensional graviton field in

matrix notation in terms its 4-dimensional irreducible components.

hAB =

(
hµν − 1

2
ηµνφ

1√
2
Aiµ

1√
2
Aνj φij,

)
. (3.19)

Inserting (3.19) into (3.18) conveniently produces diagonal kinetic terms. Upon

integrating over the extra coordinates we obtain the canonically normalized

kinetic Lagrangian for the various fields

L =
∑(

hµν(�+m2
KK)hµν − 1

2
h(�+m2

KK)h

+ φij(�+m2
KK)φij −

1

2
φ(�+m2

KK)φ+ Aiµ(�+m2
KK)Aµi

)
. (3.20)

The corresponding propagators for tensor, vectors and scalars we obtain by

inverting the kinetic terms.

∆DeDonder
µναβ (p,mKK) =

1

2
δ(~n,−~n)∆G(ηµαηνβ + ηµβηνα − ηµνηαβ) (3.21)

∆DeDonder
iµjν (p,mKK) = δ(~n,−~n)δijηµν∆G (3.22)

∆DeDonder
ijkl (p,mKK) =

1

2
δ(~n,−~n)∆G

(
δikδjl + δilδjk −

2

δ + 2
δijδkl

)
. (3.23)

Here we define ∆G = (p2−m2
KK)−1. By subtracting the trace in the definition of

(3.19) we avoid unwanted mixing between hµν and φ coming from the decomposed
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3.3. Kaluza-Klein States

second term in (3.18). In physical terms, the DeDonder gauge choice maintains

translation invariance in the extra dimensions and corresponds to a freely floating

brane in the extra dimensions. In this sense the dynamics of the brane are

decoupled from the gravitational sector. The degrees of freedom are as follows.

First we have the ±2 components of the massive graviton with 2 polarizations.

Next, there are the n massless components of the vector each containing 2 degrees

of freedom. Finally, there are the n(n+ 1)/2 scalar components in the symmetric

tensor φij.

Since the brane moves in the extra dimensions, we must also consider its

action. For this purpose it is helpful to follow the lead of Ref. [71] and define the

brane coordinates yµ(x) = (xµ, (τ)−1/2ξi(x)) where τ is the brane tension. Since

this choice of coordinates breaks translation invariance, the ξi(x) correspond to n

Goldstone modes. The induced metric of the brane then simply defines the brane

dynamics through minimal coupling. We do not provide details on this procedure

here as our chosen processes are insensitive to the brane dynamics assuming the

particular energy hierarchy delineated in Ref. [72]. We mention their existence

though as they correspond to an additional n degrees of freedom. From this result

and the previous paragraph we see that the total number of physical degrees of

freedom in the DeDonder gauge is (n2 + 5n+ 4)/2.

Finally, we note that this choice demands ghost fields η, η̄ be included in

the original Lagrangian. For gravity these are spin-1 anti-commuting fields with

propagator ∆µν = ηµν/k
2 around flat space [73]. As with QCD in Feynman gauge,

ghosts modify gauge boson legs in diagrams involving self interaction vertices. For

our considerations in this work, tree-level virtual graviton exchange and one-loop

self energy corrections, these conditions are never satisfied and we do not need

to specify specifically the ghost-gravity interactions. Moreover, even for real-

graviton emission, the ghost contribution only comes in at next-to-leading order

in the gravitational coupling.

3.3.3 Unitary Gauge

The goldstone modes associated with the breaking of translation invariance

are eaten by the massive vectors in the unitary gauge. Explicitly, the KK

decomposition proceeds as follows. Fixing the gauge parameter ξ → ∞ gives
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3.3. Kaluza-Klein States

a translation breaking gauge fixing operator

LGF = (∂ihiN)2 → m2
KKh

2
ij +m2

KKh
2
iµ , (3.24)

after integrating over the extra dimensions. The result in (3.24) corresponds to

the eaten Goldstone modes needed to form the massive tensor and n massive

vectors. The kinetic action now reads

LD =− 1

2
hAB�hAB +

1

2
h�h− hAB∂A∂Bh+ hµB∂µ∂νh

ν
B (3.25)

which when inverted for the propagators in terms of the same 4-dimensional fields

gives

∆unitary
µναβ (p,mKK) =

1

2
δ(~n,−~n)∆G(tµαtνβ + tµαtνβ −

2

n+ 2
tµνtαβ), (3.26)

∆DeDonder
iµjν (p,mKK) = δ(~n,−~n)Pijtµν∆G, (3.27)

∆DeDonder
ijkl (p,mKK) =

1

2
δ(~n,−~n)∆G

(
PikPjl + PilPjk −

2

δ + 2
PijPkl

)
, (3.28)

using the notation of Ref. [7] that

tµν = ηµν −
pµpν
m2

KK

, Pij = δij −
ninj
n2

. (3.29)

Here ni/R = pi⊥ is the momentum component perpendicular to the brane.

The two gauges are identical up to longitudinal terms. The interpretation of

the unitary gauge is that the brane breaks translation invariance in the extra

dimensions, and the resulting n goldstone bosons are eaten by the now massive

vectors. Note that the denominator of (3.27) matches that of a massive weak

gauge boson in the (electroweak) unitary gauge. The counting of degrees of

freedom are as follows. There are now 5 corresponding to the massive graviton

which has eaten a massive vector, leaving an additional n − 1 vectors. This is

evident by rewriting the fields in terms of the mass eigenstates as in Ref. [19].

The scalars maintain the same number n(n− 1)/2 so we obtain (n2 + 5n+ 4)/2
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3.4. Search for Extra Dimensions

as in the DeDonder gauge.

In passing we note that strictly speaking the two gauge choices describe the

same physics, but in the DeDonder gauge, fluctuations of the brane can be

decoupled from the interaction of the massive spin-2 graviton and spin-1 gravi-

photons. For loop calculations, the longitudinal modes of the spin-2 graviton lead

to IR divergences which must be regulated, carried through the calculation and

eventually checked for cancelation in the end for a genuine physical observable.

In practice, this is a poor choice for sufficiently involved loop calculations. We

find that the DeDonder gauge where IR divergences are prohibited by naive IR

power counting provides the simplest set-up for loop computations.

Finally, interactions between KK particles and the SM are determined

either by expanding the minimally coupled gravity-matter interactions in the

decomposed fields, or through the standard operator hMNT
MN for a suitably

brane confined energy momentum tensor. The definition of TMN guarantees that

these are equivalent. We derive the necessary vertices in the appendix. Note that

at lowest order matter interacts solely with the tensor mode through the energy

momentum tensor. In addition to simplifying computations, this has the positive

effect of eliminating equivalence principle violating fields which may in principle

appear with the interactions of the KK scalar 0-modes.

As we enumerated the particle content of the AADD model, we now outline

some of the constraints on the many experimental predictions.

3.4 Search for Extra Dimensions

Perhaps the most appealing aspect of AADD models is that they provide several

entirely orthogonal experimental predictions [74]. These can be divided into two

classes, those which are sensitive to the first massive KK excitation, deemed IR

constraints, and those probing higher modes in the KK tower. The later are

further divided into loop-based indirect constraints and direct constraints from

collider production. The main focus of this thesis is collider experiments, but

first we briefly overview the other classes of experimental constraints.
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3.4. Search for Extra Dimensions

Figure 3.1: Constraints on deviations to the Newtonian force law taken from Ref.
[6].

3.4.1 IR Constraints on Extra Dimensions

First, as mentioned in Sec. 3.2.2, differences from the 4-dimensional force law

are tested in gravitational experiments at small distance scales. We parameterize

deviations from the Newtonian potential as

V (r) = VN(r)(1 + α e−r/λ), (3.30)

where α and λ are calculated in the specific theory. For extra dimensions we

identify λ = R and α is the degeneracy of the first KK excitation. The most

recent bounds are summarized in Fig. 3.1 taken from [6]. From this data for

example with n = 6 extra dimensions, the constraint is M∗ > 6.4 TeV using the

relation in (3.10) between M∗ and R.

The second class of low energy constraints are due to the abundance of new

light particles. Such states are constrained by astrophysics [75] and cosmology

[76][77] in a similar manner as for example axions [78]. These carry different types

of bounds compared to the direct tests. For n > 4 extra dimensions, R−1 need
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to be bigger than a few TeV. For 2 and 3 extra dimensions the constraints are

many TeV. With these constraints taken seriously, we are at odds to reconcile

the hierarchy problem with extra dimensions. However, since these constraints

are generically low-energy, dealing with the first massive KK excitation, we can

perfectly well adjust this to fit within the above constraints, but leave the rest

of the model untouched [23]. Therefore we turn to the UV side of theory and

constraints originating from the lowered cut-off in the standard model.

3.4.2 Indirect Constraints on Extra Dimensions

With the cut-off scale of the SM at the TeV, we expect extra dimension to generate

higher dimensional operators suppressed by a TeV energy scale. However, we

know from proton decay, flavor physics and the observation of neutrino masses

that the suppression scale should not be less than 1012, 102−3 and 1011 TeV

respectively [74]. This generically occurs in theories of new physics at a low scale,

and there certainly exist circumventions most simply by enforcing new additional

flavor symmetries.

There are also indirect constraints coming from operators which appear in

the SM and are measured precisely. Two examples are the muon g − 2 [79] and

electroweak precision constraints. In the former, constraints are generally weaker

around 400 GeV on the generic scale of strong gravity. For higher numbers

of extra dimensions n > 6 this is pushed up to the TeV level. Electroweak

precision computations in Ref. [80] and later in Ref. [81] found strong multi TeV

level constraints in the STU fomalism [82]. However, the validity of these

computations was questioned in Ref. [7], which then computed new bounds

using the ε̄ parameter with

ε̄ =
Π(m2

W )

m2
W

− Π(m2
Z)

m2
Z

. (3.31)

Here Π(m2
W ) is the W± boson self-energy evaluated at the scale mW . Physically,

this tests the value of the tree-level SM weak mixing angle using the forward-

backward asymmetry in Z → l+l−. Note that ε̄ is closely related though

not identical to the Peskin-Takeuchi T parameter used previously. Generically,

theories of higher numbers of extra dimensions are primarily constrained by low

energy precision experiments. For recent examples in the warped case see Ref.
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[83] and Ref. [84]. We will present the constraints on M∗ for various numbers of

extra dimensions together with our results implementing the asymptotic safety

scenario.

3.4.3 Real Emission Searches

Of the two classes of collider observables we first consider the real emission of

Kaluza–Klein gravitons at the LHC [19, 20]. The outgoing gravitons cannot

be detected directly and appear as missing transverse momentum or missing

transverse energy /ET . One likely process to radiate a gravitons is single jet

production [85]. For the graviton–jet final state an obvious irreducible background

is qq̄ → Zg where the gluon is emitted from an initial-state quark and the Z

decays invisibly. This background is known to next-to-leading order [86], but at

large partonic energies the rate prediction becomes increasingly uncertain, due to

large logarithms. Extracting new physics from pure QCD signatures at the LHC

is therefore always difficult.

Due to the structure of the parton densities of quarks and gluons inside a

proton, Tevatron searches for large extra dimensions concentrate on γ /ET final

states. Similarly, at the LHC a one photon final state could be resolved in the

detectors optimized for Higgs searches in the H → γγ decay channel. Hard

single photon events would constitute a revealing signature for physics beyond

the Standard Model.

Similarly, the Drell–Yan process qq̄ → γ∗, Z → `+`− with two leptons

(electrons or muons) in the final state is the arguably best known hadron collider

process [87]. A large amount of missing energy in this channel would be a

particularly clean signal for physics beyond the Standard Model at the LHC [88].

Depending on the detailed analysis, both of these electroweak signatures do have

smaller rates than a jet+graviton final state, but the lack of QCD backgrounds

and QCD-sized experimental and theory uncertainties result in discovery regions

of similar size [19][21].

Going back to the theoretical basis, the partonic cross section for the emission

of one graviton is not the appropriate observable. We are interested in is the entire
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3.4. Search for Extra Dimensions

KK tower contributing to the missing energy signature

dσtower =
∑
~n

dσgraviton =

∫
dN dσgraviton, (3.32)

where
∫
dN is an integration over an n-dimensional sphere in KK density space.

Here we define∫
dN ≡ Sn−1 |~n|n−1 d|~n|, Sn−1 =

2πn/2

Γ(n/2)
. (3.33)

In the ultraviolet the sum over ~n is truncated to those states which satisfy

kinematic constraints. In particular, the KK mass satisfies mKK = |~n|/R <
√
s

where
√
s is the partonic center of mass energy (related to the proton center of

mass energy via s = (ECOM)2 x1x2).

We rewrite the KK state density as a mass density kernel using dmKK/d|~n| =
1/R

dN = Sn−1R
nmn−1

KK dmKK =
Sn−1

(2πM∗)n

(
MPl

M∗

)2

mn−1
KK dmKK . (3.34)

This implies for the production of a Kaluza–Klein tower

dσtower = dσgraviton Sn−1m
n−1
KK dmKK

(2πM∗)n

(
MPl

M∗

)2

. (3.35)

The key aspects of this formula are:

• The factor MPl from the KK tower summation can be absorbed into the

one-graviton matrix element squared. The effective coupling of the entire

tower at the LHC energy scale E is then E/M∗ & 1/10 instead of E/MPl,

i.e. roughly of the same size as the Standard Model gauge couplings.

• In particular for larger n the integral is infrared finite with the largest

contributions arising from higher mass modes. This is the effect that KK

modes are more tightly spaced as we move to higher masses and even more

so for an increasing number of extra dimensions n.

• The mKK integration at least on the partonic level — i.e. without the parton
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3.4. Search for Extra Dimensions

Table 3.1: Real emission constraints on the Fundemental scale M∗ (in TeV) taken
from Ref. [8].

Experiment and channel n = 2 n = 3 n = 4 n = 5 n = 6
LEP Combined 1.60 1.20 0.94 0.77 0.66
CDF monophotons, 2.0 1.08 1.00 0.97 0.93 0.90
DØ monophotons, 2.7 0.97 0.90 0.87 0.85 0.83
CDF monojets, 1.1 fb−1 1.31 1.08 0.98 0.91 0.88
CDF combined 1.42 1.16 1.06 0.99 0.95

densities — can be done without specifying the process.∫
dN =

∫ Λ

0

Sn−1

(2πM∗)n

(
MPl

M∗

)2

mn−1
KK dmKK =

Sn−1

(2πM∗)n

(
MPl

M∗

)2
Λn

n

(3.36)

The scale Λ in this case is related to the kinematics of the problem and is

roughly the hard scale E of the partonic collision. Therefore the result is

insensitive to physics far above the LHC energy scale.

Finally, we conclude the discussion on the real emission of graviton by providing

a table of constraints based on the previously mentioned processes taken from

Ref. [8].

3.4.4 KK Integral and Virtual Graviton Exchange

Virtual gravitons at the LHC demand a markedly different analysis since by

definition they do not produce gravitational missing energy. These signals are

gravitons which decay within the detector into observable states. In the Standard

Model some of these final states, leptons and weak gauge bosons, can only be

produced by a qq̄ initial state. Since at LHC energies the protons mostly consist

of gluons, graviton signatures get a head start. The Tevatron mostly looks for

two-photon or two-electron final states [89]. At the LHC the cleanest signal

taking into account backgrounds as well as experimental complications is a pair

of muons [90]. In Higgs physics the corresponding channel H → ZZ → 4µ is

referred to as the ‘golden channel’, because it is so easy to extract.

In the Standard Model the Drell–Yan process mediates muon pair production

via the s-channel exchange of on-shell and off-shell γ and Z bosons. Aside from
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3.4. Search for Extra Dimensions

the squared amplitude for graviton production, these Standard Model amplitudes

interfere with the graviton amplitude, affecting the total rate as well as kinematic

distributions. This mix of squared amplitudes and interference effects make it

hard to apply any kind of golden cut to cleanly separate signal and background.

One useful property of the s-channel process is that the final state particles decay

from a pure d-wave (spin-2) state. This results in a distinctive angular separation

∆φ of the final state muons [91].

Since the properties of each KK mode are identical other than mass, for a

given inclusive process, we generically sum over all modes. This is a distinct

feature of extra dimensional theories which we now discuss in detail. Consider

an s-channel graviton exchange

M = �
g

g

µ+

µ−

h(~n)

+ �
q̄

q

µ+

µ−

h(~n)

where any graviton in the KK tower can appear as an intermediate state. These

states must be summed at the amplitude level. Since this KK sum involves a

very large number of states (∼ 1032) [92] with mostly regular spacing well below

any experimental resolution, we replace it with an integral

1

M2
Pl

∞∑
n1=−∞

· · ·
∞∑

nn=−∞
· · · −→ Sn−1

Mn+2
∗

∫
dmKK m

n−1
KK · · · . (3.37)

Absorbing the geometric size of the extra dimensions R into the coupling, MPl =

M∗(2πRM∗)n/2, the tower of KK states now couples proportional to M∗. It

is instructive to go back to the full (4 + n)-dimensional theory, where we only

have the fundamental Planck scale M∗ and the gravitons propagating in the

the full (brane + bulk) space. In this case the sum leading to (3.37) is merely

a loop integral over the unfixed bulk momentum, with the appropriate powers

of M∗ in front. The power of M∗ is fixed by the higher-dimensional coupling,

[κD] = −(2 + n).

From the KK graviton Feynman rules [19, 20] it follows that for a massless

Standard Model (T µµ = 0) and energy-momentum conservation (kµT
µν = 0), the

tensor structure of the graviton matter coupling simplifies significantly. Tree–level
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graviton exchange is described by the amplitude A = S · T , where

T = TµνT
µν − 1

2 + n
T µµ T

ν
ν (3.38)

is a function of the energy-momentum tensor, and

S(s) ≡ Sn−1

Mn+2
∗

∫
dm

mn−1

s−m2 + iε
. (3.39)

defines the summed KK kernel. The amplitude (3.39) is ultraviolet divergent for

n ≥ 2. For 0 < n < 2 the integral (3.39) converges. By dimensional analysis the

amplitude behaves as [1]

S(s) =
Sn−1

M4
∗

(
s

M2
∗

)n/2−1

C , (3.40)

where the coefficient C may be divergent. We can compute the amplitudes for

n > 2 by analytic continuation of the result from 0 < n < 2, corresponding

to dimensional regularization. In this case one finds CDR = πn/2Γ
(
1− n

2

)
.

For odd dimensions CDR is finite, but remains divergent for even dimensions.

Alternatively, an upper limit of the integration Λ may be placed in (3.39), in

which case C → C(Λ/
√
s). In either case the regularized version of the effective

operator takes the form

S = −Sn−1

M4
∗

(
Λ

M∗

)n−2

C (3.41)

for sufficiently small s/M2
∗ � 1 where Λ stands for the UV cutoff scale introduced

to regularize C,

C =

∫ ∞
0

dx xn−3 F (x) , (3.42)

and F (x) denotes the explicit regularization for the integral (x = m/Λ). The

coefficient C now parameterizes the effective operator in terms of the (unknown)

UV completion of the theory. There are several ways to implement a UV

cutoff [19, 90, 89, 85, 93]. For a sharp cutoff the UV modes are suppressed

by hand above m = Λ and Fsharp(x) = θ(1− x). This leads to

Csharp =
1

n− 2
. (3.43)
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Note that the strong UV divergence of the single graviton amplitude (3.39) is

now parameterized by the strong sensitivity of (3.41) on the UV cutoff scale Λ.

Note additionally that the logarithmic divergence at n = 2 becomes a simple pole

in the coefficient (3.43).

On dimensional grounds and to lowest order in s�M∗, the effective operator

representing s-channel graviton exchange is written

S = − 4π

M4
eff

. (3.44)

This parameterization using the scale Meff is commonly applied in the literature.

In general, the mass scale Meff cannot be determined from low-energy consider-

ations alone, but requires input from the full quantum dynamics at the Planck

scale. The regularization (3.42) also fixes the mass scale Meff in (3.44) as(
M∗
Meff

)4

=
Sn−1

4π

(
Λ

M∗

)n−2

C . (3.45)

We will study in this thesis how quantum gravity regularizes the amplitude (3.39)

dynamically, provided that the high-energy behavior of gravity is governed by a

renormalization group fixed point.

3.5 Conclusions

In this chapter we saw that the decomposition of a D-dimensional massless

graviton into 4-dimensional fields produces massive scalar, vector and tensor

excitations. We specified two specific gauge choices, the DeDonder and Unitary

gauge, and found that the propagators in these two cases are identical up to

longitudinal terms. In the DeDonder gauge, the Goldstone modes are treated

somewhat separately from the gravitational physics. Although unequal terms

between the two gauges must drop out for any physical observable, there are

substantial differences in the complexity based on this choice. In the next chapter

we will compute observables in both gauges based on technical convenience.

The massive spectrum of particles in AADD like models is interesting not only

from a theoretical point of view, but from the experimental perspective as well

since these have observable consequences. In the simplest geometry where the KK
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modes are compactified on a n-dimensional torus, the spectrum of massive modes

follows the pattern of integer multiplets on Sn−1. Summing over these modes is

well approximated as an integral, and once all powers of mKK are accounted

for, the integral is divergent in n > 1 dimensions. Withholding input from

quantum gravity there are two options. First, the divergent KK integral may

be replaced with a dimensionally consistent effective interaction as in (3.44). The

search for extra-dimensions via virtual graviton exchange is transformed into a

generic search for four-fermion or two-boson-two-fermion contact interactions. In

other words, all dynamics associated with the KK gravitons are lost. Testing

this hypothesis on LHC distribution is certainly meaningful, but does not really

constitute a search for extra dimensions. The second option is to apply some

type of cut-off regularization but keep the s dependence of the integral. Since the

original integral is UV divergent this means cutting of the integral in exactly the

regime where the contribution to the cross-section is largest. A large sensitivity

to the details of UV physics is then reflected in the positive powers of the cut-off

ΛKK .

In the next chapter we will apply asymptotic safety inspired arguments in

an attempt to remedy the divergent KK integral in models with n > 1 extra

dimension. We will find that the cut-off on KK modes can be completely removed

in this case, at both tree and one-loop level.
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Chapter 4

RG Improved Gravitons

4.1 Introduction

Inspired by the previous chapters on asymptotic safety and extra dimensions, we

attempt here to meld these two promising ideas. The reason for this undertaking

is that KK gravitons on their own do not satisfactorily describe virtual graviton

processes. By assuming the UV fixed point, we find first and foremost that the

KK integral is cut-off independent. Moreover, we find in this chapter several

other improvements with the UV fixed point.

The ordering of the chapter is as follow; first we develop some helpful

approximations to the full anomalous dimension at the fixed point. Second, we

carefully study the KK integral in the low
√
s-limit and derive a useful renor-

malization condition. This allows a full comparison of scheme (in)dependence

among the various approximations. Finally, we compute the full amplitude

for s-channel tree-level virtual graviton exchange and one-loop contribution to

massive gauge boson propagators. These assist in the next chapter when we

make phenomenological predictions.

4.2 Approximations of Asymptotic Safety

We require non-perturbative techniques in order to study gravity in the vicinity

of the non-trivial fixed point. These are outlined in Appendix .1.4. Within this

framework we recall a convenient form of the β-function in the minimal Einstein-
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4.2. Approximations of Asymptotic Safety

Hilbert truncation [94].

βg =
(1− 4(4 + n)g)(n+ 2)

1− (2n+ 4)g
(4.1)

Note that (4.1) is inherently an all-orders expression due to the factor of g in the

denominator. Likewise, from the definition of the β-function in (2.31) we obtain

an expression for the anomalous dimension

η(g) = −(n+ 2)
2(n+ 6)g

1− 2(n+ 2)g
. (4.2)

Integrating the differential equation in (4.1) produces

ln
µ

µ0

=
1

θG
ln
g(µ)

g0

− 1

θNG

ln
g? − g(µ)

g? − g0

, (4.3)

where we define the specific value of the non-Gaussian fixed point

g? =
1

4(4 + n)
, (4.4)

and the critical exponents for the two fixed points

θG = n+ 2 , θNG = 2
(n+ 4)(n+ 2)

n+ 6
. (4.5)

The magnitude of the critical exponents determine how quickly the RG flow

approaches the respective fixed points. For all n > 0 we have θNG > θG. Note

also that the critical exponents have opposite sign indicating that they are UV

and IR attractive. We see in (4.2) that as g approaches its fixed point value

1/(4(4+n)), the anomalous dimension η approaches the value −2−n as required.

We integrate (4.3) and obtain

µ

µ0

=

(
g(µ)

g0

)1/θG
(
g∗ − g(µ)

g∗ − g0

)−1/θNG

, (4.6)

which should be inverted in order to define the running coupling. However,

without making some approximation for (4.6) this is not algebraically possible.

Nevertheless, we can obtain a final expression for the wave-function renormaliza-
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tion by integrating up to the scale µ the anomalous dimension

Z−1(µ) = Z−1(µ0) exp

(∫ µ

µ0

dk η(k)

)
. (4.7)

In Section 2.2 we saw that in an entirely generic way, the renormalization group

improved coupling Z−1(µ)GN for asymptotic safety approaches the non-trivial

fixed point at a rate corresponding to an anomalous dimension of η = −(2 + n).

In principle we can obtain the exact solution by inverting (4.6) with the critical

exponents given in (4.5), plugging this in for the anomalous dimension (4.2) and

integrating the result up to the scale µ in (4.7). However, even in the simplest

Einstein-Hilbert truncation this is not analytically possible. Solving for Z−1(µ)

numerically on the other hand contains its own downsides. First of all, the

expression itself will enter the KK integral, which in some case should be carefully

evaluated via contour integration. Second, we would like to implement the

running coupling in a Monte Carlo event generator, and a complicated numerical

form for this expression will drastically slow down computational speed.

4.2.1 Phenomenological Models

In order to make progress we introduce three approximations for Z−1(µ) which

capture the correct dynamics of asymptotic safety while remaining sufficiently

agile for use in our LHC computations. First of all, we define the ΛT to be the

crossover scale for fixed point scaling. Later we will make this definition more

precise. The three requirements for an acceptable form of the wave-function

renormalization are the following.

1. For µ < ΛT we insist that Z−1 is classical so that Z−1(µ� ΛT ) ≈ 1.

2. At high-energies µ� ΛT , Z−1 → 0 with exactly the power law behavior

d logZ

d log µ
= D − 2 (4.8)

3. The interpolation between the two regimes should be a smooth1 function

of µ.

1We will consider one example of a discontinuous function and mention how this can lead
to unphysical results
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4.2. Approximations of Asymptotic Safety

With the previous three considerations we introduce first the linear approxima-

tion [1]

Z−1
lin (µ) =

1

1 + GNµn+2/g∗
. (4.9)
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Figure 4.1: Z−1(µ) representing the cross-over from classical to fixed point scaling
for the quenched (red), linear (blue), quadratic (magenta) approximations and

n = (3, 4, 5, 6) extra dimensions. For ease of comparison we have set Λ
(0)
T = Λ

(1)
T =

Λ
(2)
T for all curves.

A second form we make use of is the quadratic approximation [1]

Z−1
quad(µ) =

√
1 +

(
GNµ2+n

2g∗

)2

− GNµ
2+n

2g∗,
, (4.10)

The steps necessary to derive (4.9) and (4.10) from (4.6) are found in Ref. [1].

Note that the cross-over width in (4.10) is smaller than the one in the linear

approximation (4.9). In fact as evident in Fig. 4.2, the cross-over width of the

solution (4.6) is bounded by the width of the linear cross-over (4.9) and the width

of the quadratic approximation (4.10). In general, the fixed point value of the

dimensionless coupling g∗ contains gauge and cut-off dependency. Therefore, for
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Figure 4.2: Comparison of RG flow equation (dashed) with the linear (blue) and
quadratic (magenta) approximations for n = (3, 4, 5, 6) extra dimensions. For
increasing n the gap between the approximations diminishes.

our purposes we let g∗/GN = Λn+2
T where now ΛT is treated as a parameter

related to the fundamental scale of gravity M∗ by an O(1) number. However,

we separately label the transition scale Λ
(1)
T and Λ

(2)
T in the linear and quadratic

approximations respectively.

Finally, we have the quenched approximation [52]

Z−1
quen(µ) =

{
1 for µ < Λ

(0)
T

(Λ
(0)
T )n+2/µn+2 for µ ≥ Λ

(0)
T

η(µ) =

{
0 for µ < Λ

(0)
T

−2− n for µ ≥ Λ
(0)
T

(4.11)

In the quenched approximation we identify the cross-over scale ΛT with the

parameter Λ
(0)
T in (4.11). The implicit θ function used in the piecewise definition is

non-analytic function of the RG scale µ. In contrast, the smooth approximations,

(4.9) and (4.10), exhibit two useful properties. First that they contain no

additional poles in the external momenta once this is identified with the RG

scale µ. Second, they imply a KK kernel which falls of sufficiently quickly as a

function of the momenta that the contour around the classical pole can be closed

at ∞, and the Cauchy’s theorem can be applied as usual. This will prove useful
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when we evaluate tree-level and one-loop amplitudes.

In Fig. (4.1) we compare (4.9), (4.10) and (4.11) featuring identical scale ΛT .

In Fig. (4.2) we contrast the two smooth approximations with the shape of the

full RG result obtained in the following way. First we invert (4.2) and define

g(η) = g(logZ(µ)µ). Now (4.9) and (4.10) may be used to define g(µ), itself

inverted for the RG equation given in (4.3). Finally, the scale µ0 is fixed so that

the shapes are conveniently compared. In general, the deviation from the full

result is modest for both the linear and quadratic approximation.

4.2.2 Scale identification

The tree-level single graviton amplitude in extra dimensions includes an integral

over perturbative KK propagators. Quantum gravitational corrections are

included by replacing perturbative propagators with quantum corrected running

propagators, and perturbative vertex functions with running vertex functions. We

include only the RG correction to the propagator, and ignore vertex corrections.

This step requires that the RG scale µ is identified with the scale relevant for the

physical process under investigation

µ = µ(
√
s,m), (4.12)

in general depending on some combination of the center-of-mass energy
√
s and

the KK mass m. A discussion of a matching which involves several scales is given

in Ref. [58] in the context of black hole production. The RG improved amplitude

takes the form [1]

S(s) = −Sn−1

M4
∗

(
ΛT

M∗

)n−2

C(s; ΛT ), (4.13)

where

C(s; ΛT ) =

∫ ∞
0

dx
xn−1

−s/Λ2
T + x2

Z−1
(
µ = µ(

√
s,m,ΛT )

)
, (4.14)

and x = m/ΛT . The energy dependence of (4.14) is encoded in the wave function

factor Z(µ), itself defined via the running of the gravitational coupling.
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Figure 4.3: The n-dependence of the amplitude |S|M4
∗/(4π) defined in (4.13).

Thin grey lines cover ΛT/M∗ = 0.5 to 1.5 in steps of 0.05 (from bottom to top).
Close to ΛT/M∗ = 1 (thick black line), the overall n-dependence of the amplitude
is very weak. From Ref. [1]

4.2.3 Low-Energy Matching

First, we analyze the virtual graviton exchange (4.13) and (4.14) in the limit

of small center-of-mass energy where
√
s � M∗,ΛT . Withholding input from

quantum gravity the integration over the KK gravitons is cut off and we obtain

the well-known result (3.43). We apply the renormalization group corrections

predicted by asymptotically safe gravity. In the limit of small
√
s � M∗, the

matching (4.12) becomes

µ = m, (4.15)

so that the RG scale is matched to the KK mass. For the now s independent

number (4.14), we find

C =

∫ ∞
0

dx xn−3 Z−1(xΛT ) . (4.16)
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where x = m/ΛT . The scale-dependence of the wave function factor Z−1 acts

as the regulator F (x) in (3.42). The coefficient (4.16) is computed for a given

renormalization group trajectory G(µ) = GNZ
−1(µ) or in other words once we

integrate over µ. We can analytically compute (4.16) in the three approximations

using the identification (4.15). In the quenched approximation (4.11), we find [95]

C(0) =
1

n− 2
+

1

4
≡ CEFT + CUV . (4.17)

The first term CEFT is identical to the contribution within effective theory (3.43),

provided the effective theory cutoff coincides with the energy scale where gravity

becomes non-perturbative. The second term CUV originates solely from the KK

gravitons with mass m > ΛT (x > 1). The cross-over point is for n = 6 extra

dimensions, below which the IR contribution is larger. For more dimensions the

UV regime dominates. For the linear approximation (4.9), we have [1]

C(1) =
1

4
Γ

(
n− 2

n+ 2

)
Γ

(
n+ 6

n+ 2

)
=

1

4
+

2

3
(
π

n
)2 +O

(
1

n3

)
. (4.18)

We see that (4.18) reaches the same limit as (4.17). For the quadratic

approximation (4.10), we obtain [1]

C(2) = −
Γ

(
n+ 4

n+ 2

)
Γ

(
− 4

n+ 2

)
(n+ 2) Γ

(
2
n+ 1

n+ 2

) =
1

4
+

1

2n
+O

(
1

n2

)
. (4.19)

The large-n limit implies that C(0) ≥ C(2) ≥ C(1), which furthermore holds for

all n > 2. In the next section we choose to match these coefficients through the

definition of the scale Λ
(i)
T .

Finally we discuss and illustrate in Fig. 4.3 the n-dependence of the amplitude

(4.13). The phase space factor Sn−1 grows until n ≈ 8. The coefficients (4.17),

(4.18), and (4.19) decrease until n ≈ 10 and stay at their asymptotic value

thereafter. Roughly speaking the product does not depend on n for intermediate

values n = 3...8 so that the main dependence of (4.13) is in the prefactor

(ΛT/M∗)n−2. Therefore, the signal will depend greatly on the value of ΛT in

4 + n dimensions.
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Figure 4.4: The variation between the fundamental cross-over scale ΛT and the
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blue) and quadratic (Λ
(2)
T , magenta) approximations. The scale parameters differ

at the 10% level for n = 3, 4, and rapidly approach each other with increasing n.
From Ref. [1].

4.2.4 Universality

In the previous section we labelled the transition scales in the linear, quadratic

and quenched approximation as Λ
(1)
T , Λ

(2)
T and Λ

(0)
T respectively. The reason

for this is that the specific transition scale, especially in the case of a smooth

function is not well defined, and in general will depend on the form of the function

itself. Although the transition scales in the various approximations are related in

magnitude, we allow them to be independent. The issue remains as to how these

scales should be related by the underlying physics.

For this purpose we turn to some wisdom provided by perturbative quanti-

zation. As summarized in for example [96], a superficially divergent one-loop

scattering amplitude regulated by some cut-off scale Λ is made independent of

Λ by introducing a running coupling constant. In addition, the independence

demands a renormalization condition enforced at the level of an observable. In

QED, where the scattering amplitude is well defined at vanishing center-of-mass

energy, s = 0 is used as the renormalization point, sometimes referred to as the
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4.2. Approximations of Asymptotic Safety

Thompson limit. We would like to find a similar way to assure that the low

energy scattering amplitude involving virtual gravitons does not depend on the

approximations used. This suggest that we adjust the parameters Λ
(1)
T , Λ

(2)
T and

Λ
(0)
T in order to define an analogous condition.

We compare different approximations for the RG improved couplings for a

given cross-over scale ΛT . The definition of ΛT is fixed through the low-energy

amplitude S(s = 0). We further choose that ΛT coincides with the scale Λ
(0)
T set

in the quenched approximation, as the transition scale in this case is the most

well-defined. The definition of the corresponding scale Λ
(i)
T in terms of ΛT for a

smooth crossover of Newton’s coupling is then obtained from [1]

(ΛT )n−2Cquench(s = 0; ΛT ) = (Λ
(i)
T )n−2C(i)(s = 0; Λ

(i)
T ) . (4.20)

This uniquely fixes the scale Λ
(i)
T in terms of ΛT for any explicit wave function

factor Z−1
(i) . Quantitatively, the scales ΛT and Λ

(i)
T will at worst differ by 15%.

We display this in Fig. 4.4.

4.2.5 Form-factor approximation

Another possible scale identification is the exchanged 4-momentum
√
s so that

µ2 = s . (4.21)

This choice is made in Ref. [53] along with the linear approximation (4.9). The

coefficient C(s) in this case remains divergent in the KK integral, and must be

regulated as in effective field theory. We denote the regularized version of the

KK integral as CKK, so that this choice implies the factorization of the coefficient

C(s) as

C(s) = Z−1(
√
s)CKK . (4.22)

Furthermore, the parameter t introduced in the form-factor of Ref. [53] is related

to g∗ in (4.9) and the scale ΛT as t = (g∗)1/(n+2) = ΛT/MD. This suggest that

the form-factor approximation (4.22) can be obtained from a matching (4.12)

provided that a further factorization Z(µ(
√
s,m)) ∝ Zs(

√
s)Zm(m) is realized

in the relevant kinematical regime. The virtue of the matching (4.21) is that,

provided an s independent regularization such as the lowest dimensional EFT
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below ΛT . From Ref. [1]

(3.44), the s dependence is contained solely in C(s) which behaves like s−n/2−1.

Applying a regularization maintaining the dynamics of the KK integration as

in (3.40) produces S(s) ∼ s−2. In the next section we will see that this power

behavior is a necessary condition for perturbative unitarity.

The downsides of the form-factor matching are first, that depending on the

relation between ΛT andM∗, this scaling may not be realized in the single graviton

exchange process. Second, the opportunity to extract low energy contributions

from quantum gravity is missed by matching a purely 4-dimensional scale such

as (4.21). In the next section we will introduce a scale choice which maintains s

dependence in addition to regulating the KK integral.

4.2.6 Euclidean Matching

We are interested in the behavior of amplitudes at center-of-mass energies not

parametrically lower than M∗ where the expansion in
√
s/M∗ from the previous
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4.2. Approximations of Asymptotic Safety

section is ill-suited. In this case we identify the renormalization group scale µ

with the 4 + n-dimensional euclidean momentum scale

µ2 = s+m2 . (4.23)

This identification is most natural from a 4 + n-dimensional perspective as the

effective single graviton amplitude is sensitive to the 4 +n-dimensional momenta

running through the propagator. Using the definition for Z(µ) in (2.29), we find

C(s) =

∫ ∞
0

dx
xn−1

y2 + x2
Z−1

(√
y2 + x2 ΛT

)
with y2 = s/Λ2

T . (4.24)

The s-dependence of (4.24) originates from both the graviton propagator and

the RG improved coupling. In Fig. 4.5, we compute (4.24) in the quenched

approximation for various extra dimensions. For small s/Λ2
T � 1 the variation

compared to C(s = 0) is small though increases with n. With increasing number

of extra dimensions, the crossover from perturbative scaling to high-energy scaling

sets in at lower energy scales s < Λ2
T . We learn here that as the number of extra

dimensions increases, the deviation from the low energy coefficient sets-in at lower

energy scales. Two implications are that as the number of dimensions increase,

the amplitudes become better behaved with respect to perturbative unitarity and

consequently that the effective theory computation is less applicable.

For large s/Λ2
T � 1, the amplitude (4.24) is integrated analytically. Since Z

is in the scaling regime for large
√
s we find that limµ→∞ µn+2Z−1(µ) becomes a

µ-independent constant. The leading behavior reads

C(s) = cn

(
Λ2
T

s

)2

, (4.25)

with the coefficient

cn = lim
s→∞

∫ ∞
ΛT /
√
s

dz
zn−1

(1 + z2)n/2+2
=

2

n(n+ 2)
, (4.26)

where we have substituted z = m/
√
s. The leading large-s decay (4.25) is

universal and independent of the number of extra dimensions. The only evidence

of the dimensionality of the underlying theory remains in the the constant cn.

Furthermore, the scaling s−2 in the UV implies that the effective 4-dimensional
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coupling constant behaves like GN/E
2, exactly as expected for a purely 4-

dimensional fixed point. It seems that the lower dimensional theory, upon KK

integration, inherits some of the general properties of asymptotically safe gravity

present at the higher dimensional fixed point.

4.2.7 Pole region and virtuality

In this section, we evaluate the KK integral in the pole region, where s ≈ m2 and

the graviton is deemed on-shell. KK gravitons can also decay into lighter particles

and therefore have a non-zero decay width. We explore the implications of the

graviton width in more detail in Appendix .1.2. Here, we adopt the principal value

prescription. In addition, we compare the matching (4.23) with the alternative

choice

µ2 = |s−m2
KK| (4.27)

where the RG scale is identified with the virtuality of a KK graviton. Note that

the main difference between the choice µ2 = s+m2 from (4.23) and (4.27) relates

to the pole region where s ≈ m2. Around the pole, (4.27) implies µ ≈ 0, meaning

that this region is only sensitive to classical physics G(µ ≈ 0), even for energies

with s,m2 � M2
∗ . In contrast, the matching (4.23) leads to µ ≈ m at the pole,

which is sensitive to RG corrections.

For illustration, the physics content of the matching (4.27) is depicted in Fig

4.6 for a specific choice of M∗ and ΛT . Single graviton exchange is reliable for
√
s below the fundamental Planck scale. For KK modes starting with masses of

the order
√
s+ Λ2

T , RG corrections must be taken into account. This is denoted

as the high mass region (HM) in Fig 4.6. A high energy region (HE) requiring

RG effects may also exist, provided that the cross-over scale ΛT is below the

fundamental scale of gravity M∗. As the collider energy approaches M∗, we

expect multi-graviton processes or the production of mini-black holes to become

important. Finally, we define the pole region (P), where s ≈ m2 and the graviton

is on-shell.

We quantify the pole contribution using the RG running in the linear

approximation (4.9), together with the matching in (4.27). The KK kernel falls
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Figure 4.6: UV/IR division of integration kernel using (4.27) with ΛT = 5 TeV
and M∗ = 7 TeV in the quenched approximation for illustration. The red region
corresponds to physics above s ≥ M2

∗ (chosen for illustrative purposes), where
multi-graviton and width effects become relevant. KK states in the high mass
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in four dimensions, and thus probe the underling 4 + n dimensional quantum
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off sufficiently quickly as a function of mKK and we can adopt the prescription

Z−1 mn−1

s−m2
KK + iε

= Z−1 P
mn−1

s−m2
KK

+
iπ√
s
mn−1

KK δ(
√
s−mKK) . (4.28)

We also use the fact that Z−1 = 1 at µ = 0 for all approximations. The second

term in (4.28) is responsible for the on-shell production of KK gravitons. The

principal value integration we perform analytically for all n = 2 + 4i and integer

i. For n = 2 we obtain

C(s) = P

∫
dx

x

−s+ x2
Z−1(µ2 = |s− x2|Λ2

T ) =
1

4
ln

(
1 +

1

s2

)
(4.29)

with x = m/ΛT , and s → s/Λ2
T . We note that the amplitude is well-defined for
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all s > 0, and the result agrees with the one obtained by analytical continuation.

The amplitude decays asymptotically as ∝ 1/s2. For comparison, effective theory

gives Ceff(s) = 1
2

ln(1/s − 1) valid for s/Λ2
T < 1, which produces a logarithmic

singularity at the EFT boundary [20]. We can see the cause for this as follows. In

our s versus mKK plane, the effective theory contribution is a box with sides ΛT .

We evaluate the principle value over the pole by essentially canceling the divergent

terms on each-side. However, any cut-off we place on the mKK integration

automatically produces a singularity as the ΛT − ε contribution is no longer

cancelled. In the region where s,mKK → ΛT this is precisely the contribution

giving rise to the effective field theory singularity. In our approach the principle

value integration is singularity free for all energies.

Next we consider n = 6, where

C(s) =
π s

2
√

2
+
s2

8
ln

(
1 +

1

s4

)
−
(

s

4
√

2
ln
(
A(s) + s2

)
− A(s)

4
arctanA(s) + (s↔ −s)

)
, (4.30)

and A(s) = 1 −
√

2s, x = m/ΛT , while s is again expressed in units of Λ2
T .

The result includes the terms of the Euclidean matching (4.24) after analytical

continuation s → −s. In the high scattering energy limit, (4.30) grows linearly

with s, approaching π s/
√

2 +O(1/s2). We stress that the linearly growing term

in s originates from the density of states at the pole region for s,m2 > Λ2
T . As

discussed above, this behavior is an effect of the virtuality matching (4.27), which

treats modes at the pole with s,m2 � Λ2
T as classical. Essentially, for n = 6 we

obtain sub-leading pole terms in addition to the one in (4.28). Neglecting the

pole terms we obtain exactly the euclidean matched result decaying universally

as 1/s2 in the UV. Only by incorporating the full effects of the graviton decay

width can we realistically study the pole terms. In fact, Ref. [97] pointed out that

gravitons produced with mKK ∼
√
s may actually decay outside of the detector

and thus should be included in the missing energy search. From the perspective

of the KK integral for virtual graviton exchange, these effects are unphysical and

an artifact of the virtuality matching along with principle value prescription.

Now for illustrative purposes let us examine the quenched approximation.

The additional poles prohibit a straight-forward Wick rotation of the momenta

to Euclidean space. Therefore, defined in the Minkowski regime the computation
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produces large contributions at the boundary between the classical and UV

regions. In this case even the UV region remains sensitive to the pole and grows

in general as sn/2+1. This leads to an unphysical breakdown of perturbative

unitarity at an intermediate energy scale. The purpose here is to emphasize that

the quenched approximation cannot be applied in the virtuality matching in any

meaningful sense. As a corollary, we find no low energy matching condition which

generates scheme independence in the sense of (4.20).

To conclude, we obtain a good approximation for the amplitude (4.14) within a

principal value integration via the euclidean matching (4.23). The virtual graviton

KK kernel decays like s−2 for large s and quantitatively becomes equivalent to

analytical continuation in s from (4.24). The significance of the s−2 scaling is

that a necessary condition for perturbative unitarity is that the cross-section2 be

bounded by 1/s. Examining the full s-channel cross-section

dσ ∼ ds dt dY
1

s2
s4|S(s)|2, (4.31)

we see that C(s) ∼ s−2 produces exactly this behavior at the level of σ. Hence,

the amplitude decays asymptotically as required by perturbative unitarity for all

physically motivated matchings. For ΛT/M∗ up to the order of a few, the s-

channel amplitude is unitary. In turn, for large ΛT/M∗ � 1, our results fall back

on those from standard effective theory where perturbative unitarity is violated

for center-of-mass energies approaching the fundamental Planck scale [98]. Hence,

the high-energy fixed point improves s-channel unitarity of the single graviton

amplitude.

4.3 Evaluation of Diagrams

Now that we understand the integral over KK propagators, we focus on the

tensorial part of the amplitude for tree-level and one-loop processes. The

evaluation of tree level amplitudes is straight-forward, especially in the unitary

gauge where longitudinal modes of the graviton do not contribute. The KK mass

kernel S(s) then produces an overall (energy dependent) multiplicative factor. For

one-loop computations on the other hand, the loop integral essentially extends

2In the Standard Model, W+W− longitudinal scattering decays like 1/s only after including
the propagating Higgs
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to 4 + n dimensions and must be performed at once. While this makes the scale

identification very natural, it is technically more involved. We devote a sizable

portion of this section to describing these details.

4.3.1 Tree-Level

Using the Feynman rules in the appendix, we compute the tree-level s-channel

exchange of a virtual graviton originating from either gg or qq̄ initial states. Using

the definition of S(s) from (3.39), the gg → µ+µ− amplitude in the Unitary gauge

is

�
g

g

µ+

µ−

h(~n)

=
iS(s)

4

[
εα1 ε

β
2 (Wµναβ +Wνµαβ)∆µνρσū1[Wρσ +Wσρ]v2

]
.

Here, εα1 is the polarization of the gluon with momentum k1, Wµν is the ff̄h

vertex found in the appendix, Wµναβ is the ggh vertex and ū1 is the outgoing

spinor for the muon with momentum p1. Squaring the amplitude and noting the

factor of 1/2 in the phase space due to identical gluons we obtain [23],

dσ

dt
(gg → µ+µ−) = −|S(s)|2

256πs2

[
|S(s)|2t(s+ t)(s2 + 2st+ 2t2)

]
(4.32)

Here there is no tree-level interference term with the SM. For the qq̄ initial state

on the other hand there exist a SM contribution mediated by Z/γ, itself with its

own interference, along with the graviton-Z/γ mixing [23].

dσ

dt
(qq̄ → µ+µ−) =

u2(|GLL|2 + |GRR|2) + t2(|GLR
s |2 + |GRL

s |2) + s2(|GLR
t |2 + |GRL

t |2)

48πs2

+
1

384πs2

[ |S(s)|2
4

(s4 + 10s3t+ 42s2t2 + 64st3 + 32t4)

+ 2ReS(s)∗
(

(GLR
s +GRL

s )t2(3s+ 4t) + (GLL +GRR)(s+ 4t)u2

)]
(4.33)
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Here we have defined the electroweak couplings and propagators in the canonical

way so that for example

GLL
s =

∑
i=γ,Z

gL(q)gL(µ)

s−m2
i + imiΓi

(4.34)

Squaring these introduces the Z/γ mixing. Details are available in [23] and [3].

4.3.2 One-loop

While the tree-level amplitude can be quite easily separated from the KK integral,

loop computations inevitably mix the two. In our computation the loop integral

and the KK sum are combined and regulated at once using the D-dimensional

scale matching of the previous section. To demonstrate this we compute the

massive gauge boson, W± and Z, self-energy corrections.

Evaluation

We start with the seagull diagram in the DeDonder gauge [2]. From the Feynman

rules we obtain

Πµν
S (p2) =

1

2�
hµν

p p

q

= − 32π

M2+n
∗

∫
d4+nq

(2π)4+n
∆G

3

2

(
p2ηµν − pµpν

)
, (4.35)

in agreement with the transverse nature of the amplitude for a massless gauge

boson. Here, p is the external momentum, q is the bulk loop momentum,

and ∆G the scalar part of the graviton propagator. Furthermore, the gravi-

scalar contribution in four dimensions is proportional to the trace of the energy-

momentum tensor and thus can only couple to the mass term. However we

find in the metric expansion that there is no term of order M−2
Pl φ

2 and thus the

only contribution from extra dimensions is (4.35). We will not simplify the loop
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integral at this point. The rainbow diagram is

Πµν
R (p2) =

�
φ

p pk + p +

�
hµν

p pk + p

=
32π

M2+n
∗

∫
d4+nq

(2π)4+n
∆G

Aµν(k, p)

(k + p)2 −m2
V

, (4.36)

We have also introduced k, the brane only component of the full loop momentum.

The tensor Aµν ≡ Aµν1 + Aµν2 + Aµν3 contains additionally terms proportional to

m2
V and m4

V .

Aµν1 (k, p) =
1

2

[
−4pµpνp2 − 4pµpνp · k − pµpνk2 − 4pµkνp2 − 3pµkνp · k

+ pνkµp · k − kµkνp2 +8ηµνp2p · k + ηµνp2k2 + 4ηµνp4 + 3ηµν(p · k)2
]

(4.37)

Aµν2 (k, p) = 3m2
V (ηµν(p · k + p2)− pµkν − pµpν) (4.38)

Aµν3 =
5m4

V

2
ηµν (4.39)

At this point we could introduce Feynman parameters and perform a cut-off or

dimensional regularization. We expect that the leading UV divergences would

cancel with similar terms from the seagull diagram. However, the amplitude

would retain power and logarithmic sensitivity to the cut-off scale [7]. In both

cases the amplitude is UV sensitive, and the effects of quantum gravity are

explicitly cut-off.

For now we tensor reduce this amplitude without making specific reference

to the regulator. Additionally, the amplitude in (4.36) can be reduced to scalar

integrals without any knowledge of the higher dimensional theory. Using Lorentz
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invariance on the brane, we project the tensor integral onto the scalar integrals

Ã0 =

∫
d4+nq

(2π)4+n
∆G

B̃0 =

∫
d4+nq

(2π)4+n
∆G

1

(k + p)2 −m2
V

p2B̃1 =

∫
d4+nq

(2π)4+n
∆G

p · k
(k + p)2 −m2

V

p2B̃2 =

∫
d4+nq

(2π)4+n
∆G

k2

(k + p)2 −m2
V

(4.40)

The notation is meant to evoke the similarity to the normal basis integrals

obtained in Passarino-Veltman reduction [99]. The seagull contribution simply

reads

Πµν
S (p2) = − 32π

M2+n
∗

3

2

(
p2ηµν − pµpν

)
Ã0 , (4.41)

while the rainbow self energy in terms of the basis integrals is

Πµν
R (p2) =

16π

M2+n
∗

(
(p2ηµν − pµpν)

[
12m2

V

(
B̃1 + B̃0

)
+3p2B̃2 + 16p2B̃1 + 8p2B̃0

]
+ ηµνm4

V

[
10 +

n

2 + n

]
B̃0

)
. (4.42)

It should be noted that we have not taken into account brane fluctuations,

coupling proportional to the brane tension τ . It is not clear how one would

incorporate this parameter within the framework of asymptotic safety. Moreover,

we are physically justified to neglect this contribution if we restrict ourselves to

rigid branes or more precisely the energy hierarchy described in Ref. [72].

Finiteness

We can heuristically show the finiteness of our calculation in the asymptotic

safety framework. We apply both the quadratic (4.10) and quenched (4.11)

approximations to account for the large anomalous dimension in the UV. First

of all, we consider the UV portion of the seagull integral in (4.35), assuming the

wave-function renormalization in the the quenched approximation (4.11). The
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momentum integral is then trivial

Πquenched
S ∼

∫ ΛUV

ΛT

dq

q
= log

ΛUV

ΛT

. (4.43)

For the rainbow diagram we first write the brane momenta as the 4-dimensional

projection of the 4 + n-dimensional momentum i.e. k2 = q2χ2. We will only

display an explicit form of χ at a later point, since it is not required for showing

UV finiteness. Considering small values of the external momenta, the leading

divergence is

Πquenched
R ∼

∫ ΛUV

ΛT

dq

q

q2χ2

q2χ2 +m2
V

= log
ΛUV

ΛT + · · · . (4.44)

Once we properly perform the tensor reduction the seagull and rainbow diagrams

acquire pre-factors (3/2)(p2ηµν−pµpν) with opposite signs, and the sum of (4.43)

and (4.44) becomes independent of ΛUV and hence finite.

It is instructive as well to consider the same integrals for the quadratic

approximation. For the seagull we find

Πquadratic
S ∼ Λn+2

T

(n+ 2)
sinh−1 Λn+2

UV

2Λn+2
T

. (4.45)

We obtain the term in ΛUV by expanding (4.45), finding the same leading

logarithmic dependence on ΛUV as in the quenched case. The rainbow we evaluate

using the techniques described above, and when summed with (4.45) the result is

again finite. Had either of these computations provided sub-leading divergences

of any type, we would not have a sufficiently regulated theory, so the fact that

the only divergences are logarithmic serves as evidence of finiteness at one-loop.

We have not mentioned terms in the amplitude proportional to the m2
V and m4

V .

By power counting the later cannot produce a divergence, while the former can

at worst admit a term proportional to p · k and not k2. This can be seen by

examining the momentum structure of the vertices. These terms are individually

finite in asymptotically safe gravity.

The lack of sensitivity to ΛUV in the self energy amplitude is of course only

valid for the DeDonder gauge and will not be true for any other choice. However,

also in a less appropriate gauge any physical observable must be independent
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of ΛUV. To emphasize this point we outline the related computation in unitary

gauge. The amplitude for the seagull diagram is

Πµν
S (unitary) =

32π

M2+n
∗

∫
d4+nq

(2π)4+n
∆G

(
p2ηµν − pµpν

)
×(

3

2
− 3

4

k2

k2
T

+
1

16

k4

k4
T

)
, (4.46)

with a similar, albeit lengthy, expression for the rainbow. There are no higher

UV divergences since upon substitution as described in the following sections the

additional terms are proportional only to the ratio of the angular parts, with no q

dependence. However, the cancellation of the additional logarithmic terms must

also be checked. For genuine physical observables, such as the one presented later

in Chapter 5, this cancellation does indeed take place and the result is finite.

Warm-up in 2 + 1 dimensions

To illustrate the geometrical picture of our loop integral we consider the same

integral with a (Euclidean) 2 dimensional brane and a single extra dimension. In

momentum space we can easily picture the integral over brane and bulk momenta

as a three dimensional integral in terms of spherical polar coordinates. For a

rainbow like diagram we have

Π2+1(p2) =

∫
d3q

1

q2

k2
2

(k2 + p)2 +m2
V

=

∫
dq q2

∫ π

0

dθ sin θ

∫ 2π

0

dφ

1

q2

q2 sin2 θ

q2 sin2 θ + 2|p||q| sin θ cosφ+ p2 +m2
V

, (4.47)

where we denote the 2-dimensional brane analogy of the full momentum by k2.

The spherical coordinates we orient such that p is located at φ = 0 and the dot

product occurs between the brane projection |q| sin θ with the brane external

momentum p. This integral is evaluated numerically, or in this simple case

analytically over the angular coordinates. The full result in (4 +n) dimensions is

merely a higher dimensional generalization of (4.47).
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Bulk Polar Coordinates

Explicitly the variable change we make is

q2 = k̄2
1 + · · ·+ k̄2

n + k2
0 + k2

1 + k2
2 + k2

3

k̄1 = |q| cosφ1

k̄2 = |q| sinφ1 cosφ2

...

k̄n = |q| sinφ1 sinφ2 · · · cosφn

k0 = |q| sinφ1 sinφ2 · · · sinφn cosφn+1

k1 = |q| sinφ1 sinφ2 · · · sinφn sinφn+1 cosφn+2

k2 = |q| sinφ1 sinφ2 · · · sinφn sinφn+1 sinφn+2 cosφn+3

k3 = |q| sinφ1 sinφ2 · · · sinφn sinφn+1 sinφn+2 sinφn+3

In Euclidean space we are free to orient these coordinates in the unconventional

way where the φi = 0 momenta are orthogonal to the brane. The virtue of taking

these momentum space coordinates is that the brane-confined 4-momentum

squared is

k2 = k2
0 + k2

1 + k2
2 + k2

3 = q2 sin2 φ1 sin2 φ2 · · · sin2 φn

≡ q2φ2. (4.48)

For completeness we also list the form of the transverse momentum coordinates.

k̄2
T = q2

(
cos2 φ1 + sin2 φ1 cos2 φ2 + · · ·+ sin2 φ1 · · · sin2 φn−1 cos2 φn

)
≡ q2ϕ̄ (4.49)

We can now deduce the effects of using the unitary gauge. There is no UV

enhancement as the q dependence cancels and the only difference is terms of the

form k2/k̄2
T = ϕ/ϕ̄. Now how do the spurious IR divergences present themselves

here. For φi → π/2 this expression becomes singular and we have exactly the

case which we expect; an IR divergence as we approach a 4-dimensional massless

graviton.

65



4.3. Evaluation of Diagrams

Result in 4 + n dimensions

Having established the finiteness of our computation in both the quenched

and quadratic approximation, we can numerically evaluate the rainbow and

seagull diagrams. It is clear at this point that we would like to perform the

(4 + n)-dimensional momentum integral over a radial coordinate |q|, but the

loop momentum in the gauge boson propagator depends on only the brane

projection of |q|. Thus our integral in (4 + n) dimensions must retain some

angular dependence as the bulk and brane momentum are not interchangeable in

the rainbow diagram.

A straightforward solution is to define a (4 +n) dimensional Euclidean vector

q = (kT , k4) in polar coordinates. Treating the brane momentum as the last

entries in this (4 + n)-vector allows us to make the variable change k2
4 + k2

T ≡ q2

which in turn requires the projection

k2
4 ≡ q2 sin2 φ1 sin2 φ2 · · · sin2 φn ≡ q2χ2 , (4.50)

where the last step is simply a shorthand notation. The physical interpretation of

the angular variables should be clear as they measure the 4-dimensional projection

of q. The configuration with all φi = π/2 corresponds to momenta confined to

the brane, and the corresponding integral is the conventional 4-dimensional case.

This simplifies our loop integrals and is easily evaluated numerically. Under the

coordinate change the measure in our (4+n)-dimensional loop integration should

be replaced as∫
d4+nq

(2π)4+n
=

π

(2π)4+n

∫
dq q3+n

∫ π

0

dφ1 sin2+n φ1 · · ·∫ π

0

dφn sin3 φn

∫ 2π

0

dφ3+n. (4.51)

The pre-factor π in front is the result of integrating over the 2-additional brane

angular coordinates φ1+n and φ2+n which our amplitude does not depend on. For

the angular measure related to χ we write
∫
dχ, so the basis integrals from (4.40)

with the renormalization group improved scalar propagator become

Ã0 =
2

(2π)4+n

πn/2+2

Γ[n/2 + 2]

∫
dq qn+1Z−1 (4.52)
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B̃0 =
π

(2π)4+n

∫
dq q3+n

∫
dχ

∫ 2π

0

dφ3+n

Z−1

q2

1

q2χ2 + 2|p||q| cosφ3+nχ+ (p2 +m2
V )

(4.53)

p2B̃1 =
π

(2π)4+n

∫
dq q3+n

∫
dχ

∫ 2π

0

dφ3+n

Z−1

q2

|p||q| cosφ3+n

q2χ+ 2|p||q| cosφ3+n + (p2 +m2
V )χ−1

(4.54)

p2B̃2 =
π

(2π)4+n

∫
dq q3+n

∫
dχ

∫ 2π

0

dφ3+n

Z−1

q2 + 2|p||q| cosφ3+nχ−1 + (p2 +m2
V )χ−2

(4.55)

Even though these expression are somewhat lengthy, the crucial point is that

they are one-dimensional and without singularities. We can numerically compute

the gauge bosons self energies in (4.35) and (4.42). The sum of the two integrals

does not depend on ΛUV. In the next chapter we will see how this method of

computing the KK integral compares with an effective theory analysis.

4.4 Conclusions

In this chapter we computed the UV complete KK integral using the fixed

point consistent with asymptotic safety. We applied this first to single graviton

exchange for collider energies below M∗. Therefore we neglect diagrams with for

example two virtual gravitons in the intermediate state which in some way or

another will eventually lead to black hole formation [100].

The KK integral was found to be finite without any additional UV regulation.

For the one-loop computation we found that similarly the KK integral and loop

integral could be performed to all energies without a UV cutoff. The technical

aspect of this calculation led to a new method for tensor reduction, which allowed

a convenient handling of the brane and bulk momentum.

We add here for completeness that there are of course completely unrelated
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4.4. Conclusions

theories of quantum gravity or approximations which offer solutions to the cut-off

dependence of the KK integral. In string theory, instead of gravitons in low scale

extra dimensions, the dominant new physics contribution to virtual processes

comes from higher string excitations [85][101]. The scattering mediated by these

new states is well-described and obeys perturbative unitarity by virtue of an

exponential suppression above the string scale MS ∼ M∗. There are a number

of effective-theory proposals which side-step this complication by defining the

integral in a cutoff independent scheme. One such treatment relates to the eikonal

approximation to the 2 → 2 process [102], another involves introducing a finite

brane thickness [103]. In this example, the gravitational coupling is exponentially

suppressed above M∗ by a brane rebound effect. However, neither of these models

offer a compelling UV completion for the KK effective theory.
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Chapter 5

Phenomenology

5.1 Introduction

In this section we analyze the experimental consequences of the previous chapter.

We consider first LHC collider signatures based on virtual graviton exchange.

Then we compute the contribution to an electroweak precision parameter arising

from massive graviton loops. In both case we implement asymptotic safety at the

level of the wave-function renormalization.

5.2 Virtual gravitons at the LHC

The LHC has several on-going searches for extra-dimensions (for recent publica-

tions see [104][105]). These include real graviton emission, black-hole production

and virtual graviton exchange. Real emission searches are generally well-defined,

and have little sensitivity to Planck scale physics at sub-Planckian collider

energies. Similarly, black-hole production only becomes relevant at center-of-mass

energies above the Planck scale. Virtual graviton exchange probes the quantum

gravity effects in the ultraviolet range of the Kaluza-Klein spectrum. This makes

this production process the prime candidate to test different descriptions of

quantum gravity in low-scale gravity models. Hence, we apply our findings from

the previous sections to gravitational processes at the LHC.
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5.2. Virtual gravitons at the LHC

5.2.1 Kinematics and cuts

The generic prediction for virtual graviton exchange at the LHC is an enhance-

ment of rates at increasing invariant masses. This does not include a mass peak

or any kind of side-bin analysis, which means we must test the Standard-Model-

only hypothesis as well as the Standard-Model-plus-graviton hypothesis on the

kinematic distributions of the Drell-Yan process [19][20]. This signature may

be further refined through the use of angular correlation techniques [91]. Our

reference channel is pp → µ+µ− at
√
s = 14 TeV but other channels will show

similar behavior. For the di-muon final state one advantage from the theory point

of view is that we need only consider s-channel diagrams. The benefit here is that

we define S(s) for the KK propagator depending only on s and not t/u. Based on

the discussion in Sect. 4.2.7, we evaluate the relevant amplitudes in the Euclidean

matching.

As model parameter we consider 2-6 extra dimensions and fix the fundamental

Planck scale to M∗ = 5 TeV. The experimental cuts which we apply throughout

the section to take into account detector features are

pT,µ > 50 GeV, |ηµ| < 2.5. (5.1)

where pT,µ is the transverse momentum of the muon with respect to the beam

pipe and ηµ = (1/2) log(E + pz)/(E − pz) is the rapidity. The detection

efficiency for muons we assume to be 100%, including triggering, as well as

the energy resolution. Whenever we compare signal and background rates we

require mµµ > M∗/3 to enhance the graviton signal over the Standard Model

backgrounds. Combined with the cuts in (5.1) this suppresses the highly IR

peaked photon and Z backgrounds which generically fall off with the partonic

center-of-mass energy fast. As said above, the idea of this section is not to

present a comprehensive LHC analysis, but to test our results for the behavior of

the graviton KK integral at the level of LHC signals.

5.2.2 LHC signatures of the fixed point

We first compare LHC predictions from fixed point gravity with those from

effective theory with the amplitude given by (4.14) [1]. We compare the total

cross section from fixed point gravity using Z−1 from the quenched approximation
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5.2. Virtual gravitons at the LHC
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Figure 5.1: LHC total cross-section versus the fundamental scale of gravity M∗
for events with

√
ŝ < M∗ for n = 3 (blue) and n = 6 (red) extra dimensions.

Solid lines are asymptotically safe gravity and Dashed lines are effective theory.
The difference in the total hadronic cross-section between the two persists even
for higher M∗. From Ref. [1].

(4.11) with the predictions from effective theory with UV cutoffs at m = ΛT and

at Λs = M∗, which we implement as Z−1
eff = θ(ΛT −mKK) θ(M∗−

√
s). The result

is displayed in Fig. 5.1 for ΛT = M∗. Dashed lines denote the result from effective

theory, full lines stand for fixed point gravity. This figure shows that the difference

between an effective theory and fixed point gravity description does not disappear

as we raise the fundamental scale of gravity. We expect this based on the UV

sensitivity of the KK integral. Furthermore, we see an overall enhancement of

the signal for reasonable values of M∗.

This last fact is not a priori obvious. In effective theory the KK integral

is cut-off separately in the KK mass mKK < ΛT and the graviton 4-momentum
√
s < ΛT , and thus (after an analytic continuation) may include modes with√
m2

KK + s > ΛT . The region outside this circle is suppressed by UV effects

in our framework. On the other hand, modes with max(
√
s,mKK) > ΛT are not

included in the effective theory computation, while these modes will contribute in

our computation albeit with the UV suppression provided by asymptotic safety.

The answer however provided by (4.14) is that it is the UV modes in asymptotic

safety which win and provide the bigger cross-section.
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5.2. Virtual gravitons at the LHC

σ[fb] n = 3 n = 6

M∗[TeV] 5 8 5 8
a) 0.317 0.015 0.393 0.020
b) 0.320 0.015 0.394 0.020
c) 0.215 0.009 0.209 0.007
d) 0.182 0.009 0.190 0.007

Table 5.1: Comparison of total cross-sections for di-muon production via virtual
graviton exchange at the LHC in different approximations. a) fixed point gravity
with ΛT = M∗, cutoff in

√
s at Λs = M∗ b) fixed point gravity with ΛT = M∗ (no

cutoff in
√
s) c) effective theory with UV cut-off in both mKK and

√
s at Λ = M∗,

d) form factor approximation with cutoff at Λ = M∗. From Ref [1].

In Tab. 5.1 we compare the production cross-sections in various approxima-

tions for M∗ = ΛT = 5 TeV. For the UV contributions arising from KK modes,

comparing fixed point gravity a,b) with effective theory c), we find an increase in

the total rate. On the other hand, including the UV events in
√
s by comparing

a) with b) we find only a modest increase. Evidently, the 1/s2 behavior for

large energies and the rapidly falling parton distribution functions makes these

contributions sub-leading. The form factor approximation d) comes out below

the effective theory estimate c), introducing a modest extra reduction of overall

rates with energy slightly below M∗. Provided the cross-over scale takes the larger

value M∗ = 8 TeV, we find that the LHC is only very weakly sensitive to the UV

KK modes, leaving no difference between a) and b), and c) and d), respectively.

Still, the difference between a), b) and c), d) persists, also evident from Fig. 5.1.

Next we compare the results from fixed point gravity using the linear (4.9),

quadratic (4.10) and quenched (4.11) forms of the RG running, at fixed transition

scale ΛT . The variation of results under changes in the RG running allow an

estimate for the ‘RG scheme dependence’ in the present set-up. We expect

weak scheme dependence for the s-dependent amplitudes. In order to verify

this we present in Fig. 5.2 and Fig. 5.3 LHC distribution for n = 3 and

n = 6 extra-dimensions, respectively, for several values of the transition scale

ΛT . The variation is minute at the low-end of the spectrum but increases at

higher energies. We expect this because the matching condition applies to the

s = 0 low-energy coefficients. In all cases the uncertainty due to the scheme is

smaller than uncertainties coming from QCD effects, conservatively estimated at
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Figure 5.2: Signal distribution for di-muon production via virtual graviton
exchange at the LHC with M∗ = 5 TeV and n = 3 (6) extra dimensions
show left (right). Comparison of several RG schemes and transition scales ΛT :
quenched (red lines), linear (blue), and quadratic (magenta) approximation with
ΛT/M∗ = 1.2 (dotted lines), ΛT/M∗ = 1 (full), and ΛT/M∗ = 0.8 (dashed).
With increasing ΛT/M∗, the di-muon production rate increases. The scheme
dependence is small. From Ref. [1].

∼ 15% here.

A second point illustrated in Fig. 5.4 and Fig. 5.5 is that the total rates

depend strongly on the transition scale ΛT . This is especially true for higher n,

as pointed out in Sect. 4.2.3, and illustrated in the n = 6 plot. The reason for this

is that the suppression of amplitudes due to the gravitational fixed point sets in

at about ΛT , leading to larger rates for larger ΛT . However, the s-dependence in

the signal is mostly independent of ΛT . Therefore, in the next section we study

also the normalized distributions in order to obtain a handle on the signals.
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Figure 5.3: Same as FIg. 5.2 but for n = 6. From Ref. [1].

5.2.3 LHC Phenomenology

In this section, we discuss signatures of asymptotically safe gravity and large extra

dimensions at the LHC. If not stated otherwise, we set M∗ = ΛT = 5 TeV and

examine distributions with respect to mµµ, the invariant mass of the produced di-

muon pair. We also compare our results, and in particular the mµµ-dependence,

with those from effective field theory [19, 23, 93], the form-factor approximation

[53], and the Standard Model background.

In Fig. 5.4 and Fig. 5.5 we compute normalized and un-normalized differential

cross sections for M∗ = 5 TeV and ΛT = M∗ for n = 2, 3, 6 extra dimensions

respectively. Again, we contrast fixed point gravity results with those from

effective theory. Comparing the full
√
s-dependence from a) asymptotically safe

gravity with b) effective theory (full versus dashed colored lines), we note that

they essentially agree for n = 2. The reason for this is that the perturbative

amplitude is only logarithmically divergent. For n = 3 and n = 6 the decay

of the differential cross section with invariant mass becomes more pronounced

within fixed point gravity. Here, the difference is due to the UV divergence of
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Figure 5.4: Normalized differential cross sections (1/σ) dσ/dmµµ (left column)
and un-normalized ones dσ/dmµµ (right column) for gravitational di-muon
production at the LHC for n = 2 with M∗ = 5 TeV and cross-over scale ΛT =
5 TeV. a) fixed point gravity (FP) with full s-dependence (full magenta/blue/red
lines); b) fixed point gravity in the form factor approximation with UV cutoff at
m = ΛT (full black lines); c) effective theory (EFT) with UV cutoff at ΛT (dotted
magenta/blue/red lines); d) effective theory in the s = 0 approximation (low s)
and UV cutoff at ΛT (dotted grey lines). From Ref. [1].

the perturbative amplitude. Note in particular that with increasing number of

extra dimensions n, the difference between a) and b) grows. Turning to the low-s

approaches, we note that the differential cross section decays more slowly within

the form-factor approximation c) (full black lines) for all n. This comes about

because a dynamical suppression with energy sets in only close to
√
s ≈ ΛT ,

unlike a). Also, the form-factor approximation c) deviates from the effective

theory approximation (with s = 0) d) only close to ΛT . Overall, we see that fixed

point gravity falls off most quickly with increasing energy
√
s. Technically, this

results from the powers of s in the denominator of the RG improved KK sum,

not present in the lowest dimensional operator from effective theory.

In Fig. 5.6 we present for the first time a comparison of our data including the

SM background from (4.32) and (4.33). For larger values of mµµ ∼ M∗/2 signal

to background S/B becomes of order 1. Note that the cross section for n = 2, 3

and n = 6 are very close to each other. This near-degeneracy is a consequence of

our choice ΛT = M∗, which is lifted as soon as ΛT 6= M∗, see Fig. 4.3. In view of

perturbative unitarity, our calculations in (4.25) and the behavior in Fig. 5.4-??

indicate a clear improvement over effective theory.

Phenomenologically, for the LHC we now know that the on-set of fixed point
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Figure 5.5: Same as Fig. 5.4 with n = 3 (top) and n = 6 (bottom). From Ref.
[1].

scaling should be distinguishable from effective field theory descriptions. Turning

this argument around, the ad hoc assumption of an effective field theory is not

well suited to analyze LHC data which should be expected to strongly depend on

ultraviolet effects. This is even more obvious for string theory signatures [101][85]

with their peak structure dictated by the Veneziano amplitude. Therefore, the

two existing descriptions of quantum gravity at the LHC, fixed point gravity

and string theory could not look more different in their predictions for the

mµµ distribution. Fig. 5.6 provides a realistic signature for asymptotic safety.

Moreover, the differential cross section as a function of mµµ can be used to

distinguish our effect uniquely and study in some detail the transition from the

classical to the quantum gravity regime. Although the cross-sections can be small,

with 1000 fb−1 at 14TeV it is entirely possible to delineate such a distribution.
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From Ref. [1].

5.3 Electroweak Precision Constraints

We now discuss indirect constraints on asymptotic safety, based on measurments

mostly at high luminosity e+e− colliders. In order to constrain new physics based

on precision measurements it is typical to use either the oblique parameter set

{S, T, U} [82] or the ε parameterization [106]. However, the former are not well

suited for gravitons, which in general will modify more than just gauge boson

self-energies. The later can be related to the weak mixing angle s0, c0 to define

the leading corrections

ρ− 1 ' ε̄ = ε1 − ε2 −
s2

0

c2
0

ε3 , (5.2)

quantifying the violation of custodial symmetry [107, 108]. The individual

observables ε1, ε2 and ε3 in the context of gravity require additional computations
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asymptotically safe gravity in linear (4.9) (dot-dashed), quadratic (4.10) (solid)
and in effective theory (dashed) from Ref. [7]. Values above the dashed horizontal
curve are in tension with data. For all asymptotic safety curves we have taken
M∗ = ΛT . From Ref. [2].

beyond the self-energies, but the specific linear combination

ε̄ =
Π(m2

W )

m2
W

− Π(m2
Z)

m2
Z

(5.3)

has to be smaller than roughly 10−3, assuming a light Standard Model Higgs

boson [109]. The exact central value depends on the Higgs mass, but the

uncertainty of ε̄ also ranges around 10−3. We treat this value a generic upper

bound on new physics effects. The effective theory result for gravity contributions

from Ref. [7] in our notation reads

∆ρ ' ∆ε̄ =
s2m2

Z

M2
∗

(
Λeft

M∗

)n
1

Γ(2 + n/2)

5(8 + 5n)

48π2−n/2 , (5.4)

for mKK � mZ . Here, Λeft is the effective theory cut-off scale. In Figure 5.7

we compare this result to our computation as described in the previous chapter.

The numerical results are similar for n = 3, where fundamental Planck masses

below M∗ . 1 TeV are forbidden. In asymptotically safe gravity the limits are
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Figure 5.8: Contribution to ε̄ as a function of the highest momentum mode q < k0

in the (4 + n)-dimensional integration. We see the approximate pattern of Eq.
(5.5) in the ratio of IR to UV contributions. From Ref. [2].

significantly weakened when we increase the number of extra dimensions, which

is not the case for the effective theory computation in Eq. (5.4). In other words,

once we take the higher dimensional quantum effects seriously there are essentially

no limits on large extra dimensions with n > 3 from electroweak precision data.

The explanation for this discrepancy is the following: in effective theory, the

amplitudes are dominated by modes with both k and mKK near the cut-off,

i.e. in the corner of a square in the k vs mKK plane. However, in our picture

of asymptotic safety with |µ| =
√
k2 +m2

KK this region is outside the central

circle which means it is suppressed. For higher numbers of extra dimensions

this effect is more pronounced, as shown by the lessening contribution to ε̄ as n

increases.

To confirm our observation of an increasing impact from the UV regime we

need to study the distribution of the momentum modes contributing to ε̄. More

specifically, we would like to know the size of the contribution to the observable

for UV momentum modes with |q| > ΛT . In the quenched approximation we

can easily estimate this fraction. Neglecting terms of order mV /ΛT the leading
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momentum integrals are of the form

ε̄

∣∣∣∣∣
IR

∼
∫ ΛT

0

dq q3+n 1

q2

1

q2 + · · · ≈
Λn
T

n

ε̄

∣∣∣∣∣
UV

∼
∫ ∞

ΛT

dq q3+n Λ2+n
T

q4+n

1

q2 + · · · ≈
Λn
T

2
. (5.5)

This expansion in mV /ΛT is well validated, for example compared with LHC

tree level virtual graviton exchange where
√
s̄/ΛT can easily become O(1). For

n = 2 approximately 50% of the combined integral comes from the quantum

gravity regime, and for a larger number of extra dimensions this fraction increases.

Numerically, Fig. 5.8 shows that the exact results follow the pattern delineated

in (5.5). The UV region becomes the dominant contribution already for n > 2

extra dimensions.

This can be contrasted with the case of LHC tree level graviton exchange

in the previous section, where in a similar limit the UV graviton contribution

becomes dominant only for n > 6 [95]. This is not surprising though as the

integral in the tree-level exchange is over four less directions in momentum space,

and thus we see the rough equivalence of the n = 6 case in tree-level with the

n = 2 case at one-loop.

5.4 Conclusions

In this chapter we quantified observable consequences of asymptotic safety. First

we found that at the level of the cross-section, the LHC signal may be dominated

by the fixed point regime of gravity even for collider energies below M∗. Moreover,

the total cross-section while not depending largely on the scheme, does in fact

depend greatly on the scale ΛT . For this purpose we considered normalized

distributions and found that the scaling with
√
s depends the scale identification.

We looked at the form-factor
√
s, low energy mKK and D-dimensiona s + mKK

matching and found the later to be the most appealing. Note that the D-

dimensional scheme is equivalent to the virtuality matching for n = 2 and n = 6

extra dimensions provided that we abandon the pole terms. Most importantly,

we found that the kinematic distribution with respect to invariant mass in the

di-muon channel, behaves very differently compared with effective field theory.
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5.4. Conclusions

This is the strategy currently used by LHC experimentalists to exclude large extra

dimensions.

By computing the contribution to the ε̄ parameter we found significantly

weakened constraints on higher numbers of extra dimensions. The explanation

given in terms of regions in the
√
s versus mKK plane also applies to the results of

the total cross-section, for example depicted in Fig. 5.1. An additional contrast

between the tree-level and one-loop result is depicted in Fig. 5.8, namely that

the amplitude becomes UV dominated already in n > 2 extra dimensions.
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Chapter 6

Conclusions

In this thesis we explored the possibility of asymptotic safety existing in large

extra dimensional scenarios where the fundamental scale of gravity is around the

TeV. The motivation for this was primarily that that virtual gravitons in these

models inevitably probe the UV regime of quantum gravity. Applying the effects

of asymptotic safety though a running coupling and the resulting large anomalous

dimension, we found that there are several possible choices for identifying the

RG scale. The best choice was found to be the euclidean scale µ2 = s + m2
KK,

and in cases where it could be evaluated analytically via contour integration,

the virtuality matching µ2 = |s − m2
KK|. In LHC Drell-Yan production, these

choices led to amplitudes behaving much differently than effective field theory

and still show a sizable deviation from the standard model for the chosen model

parameters, namely M∗ = 5 TeV. At the one-loop level we found stronger bounds

on n = 2 models compared with effective field theory, and in general weakening

bounds for higher n. However, there still remains some open questions and further

directions which we now discuss.

On the experimental side, we did not present exclusion bounds based on the

virtual graviton process at the LHC, but in principle this should be possible in

a three-parameter fit for the number of extra dimension n, the transition scale

ΛT and the fundamental scale of gravity M∗. With the LHC running at full

energy, we expect these bounds somewhere above the 10 TeV range. It would be

interesting, though rather long and tedious, using likelihood methods to combine

the results from all search channels, including real emission, into single exclusion

bounds. Furthermore, the one-loop amplitude we computed provides a method
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for evaluating general loop-integral involving KK gravitons. This can in principle

be extended to many phenomenologically interesting applications, for example

the muon g−2. In principle our methods should be applicable to all higher order

effects.

Theoretically, there are still questions to be answered regarding the compu-

tation of the principle value of the KK integral in the virtuality matching in

particular regarding the effect of a physical decay width. The sub-leading pole

terms which grow as a function of energy in the n = 6 computation are still not

fully understood, although perhaps the most remarkable result of the thesis is that

in the linear approximation the virtuality matching factorizes into a pole terms

plus the exact euclidean matched result. In the appendix we discuss one example

of a 5-dimensional theory where the effect of the KK width can be understood

analytically.

We did not consider the effects of asymptotic safety in warped scenarios.

Although KK gravitons are generically observable in RS like realizations, the

fundamental scale of gravity where naively quantum gravitational effects become

relevant is still close to MPl. Whether the “warping” down of the KK gravitons

and other fields might nevertheless be sensitive to asymptotic safety like effects

requires additional investigation. Similarly, another known low-scale gravity

mechanism due to the RG running of a large number of additional (though strictly

4-dimensional) fields may be experimentally distinguishable from large extra

dimensions for the following reason. In the 4-dimensional case the anomalous

dimension at the UV fixed point would remain exactly −2 to all orders. It would

be useful to add this insight to for example the study of Ref. [92]. On the

more technical side, we only included the Einstein-Hilbert term in this work, and

including the cosmological constant changes the running of gN . We know from

experimental results that this term should be included and its effects on the RG

well studied. Nevertheless, it would be interesting to include the cosmological

constant in the running of gN and repeat our computations. FInally, we did not

consider vertex corrections due to the fixed point. The influence of the fixed point

on matter-graviton vertices was considered in some approximations in Ref. [49],

but it is not clear how to implement this analysis in our framework.

Although there is currently no evidence for low scale extra dimensions, they

continue to be an intriguing possibility for beyond the standard model physics. If
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and when the LHC sees a non-resonant excess it will be very important to study

the scaling behavior of this excess. In this thesis, we demonstrate a systematic

way that asymptotic safety can be studied in this situation.
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.1. Appendix

.1 Appendix

.1.1 Feynman rules and Amplitudes

Starting with the minimally coupled interaction Lagrangian

L =
√−g

(
iψ̄γµDµψ −

1

4
gµνgαβFµαFνβ +

m2
V

2
gµνVµVν

)
. (1)

we derive the vertices by first expanding out the metric to order h2 in the graviton

field. Defining the gravitational coupling constant κD = 32π/Mn+2
∗ we have

(
√−ggµν)h = κD

(
−hµν +

1

2
hηµν

)
+
κ2
D

2

(
2hµαhαν − 1

2
hαβhαβη

µν − hhµν +
1

4
h2ηµν

)
(2)

(
√−ggµνgαβ)h = κD(−hµνηαβ − hαβηµν +

1

2
hηµνηαβ) + κ2

D (hµνhαβ + hµγhγνηαβ

+ hαγhγβηµν −
1

2
hhµνηαβ −

1

2
hhαβηµν +

1

8
ηµνηαβ

(
h2 − 2hσρhσρ)

)
.

(3)

In addition our weak field expansion in (3.19) implies that scalar component φ also

couples to the 4-dimensional brane confined energy momentum tensor. Therefore

we also require

(
√−ggµν)φ = −κD

2
ηµνφ, (4)

(
√−ggµνgαβ)φ = −κDηµνηαβφ+

κ2
D

2
ηµνηαβφ2. (5)

We will not write the fully expanded Lagrangian, but using the FORM [110]

symbolic manipulation package it is a simple matter to derive the following

vertices. We list only the terms proportional to the mass, as the others may

be found in Ref. [111] for example. The relevant terms in the V V hh and V V h
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vertices are,

� =
m2
V

2
κ2
D

(
−ηµνηαβηγσ + ηµνηαγηβσ + ηµνηασηβγ

− ηµαηνβηγσ + ηµαηνγηβσ + ηµαηνσηβγ + ηµβηναηγσ − 2ηµγηναηβσ

+ηµγηνβηασ + ηµγηνσηαβ − 2ηµσηναηβγ + ηµσηνβηαγ + ηµσηνγηαβ
)

(6)

� =
m2
V

2
κD
(
ηµνηαβ − ηµβηνα − ηµαηνβ

)
. (7)

The final rule needed is the ff̄h vertex for massless fermions. Taken all momenta

as incoming we have

	 = κD [(k1 − k2)µγν + (k1 − k2)νγµ] . (8)

.1.2 KK Width

In order to justify the virtuality matching, we discuss the narrow-width assump-

tion for KK gravitons. This aspect is independent of the UV sector, and also

applies within standard effective theory. Using a Breit-Wigner propagator in the

KK sum means we ignore interference between KK states. In terms of the KK

mass splitting this requires

δKK � Γ, (9)

for mKK ∼
√
s where δKK is the spacing between consecutive KK modes. It

is simple to compute the lowest order graviton decay width to Standard Model

particles, as it appears in (9). This decay is suppressed by 1/M2
Pl since it occurs

only on the brane. A calculation based on the Feynman rules given in Ref. [20]
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.1. Appendix

yields

ΓSM(mKK) = γγ + gg + ff̄ + qq̄ + ZZ +W+W− +HH

=
m3

KK

M̄2
Pπ

[
1

80
+ 8

1

80
+ 6

1

160
+ 6

3

160
+

13

12

[
1

80
+

1

40

]
+

1

480

]
=

293

960π

m3
KK

M2
Pl

. (10)

We may also consider on-shell decays of a single massive graviton to two

other (less) massive gravitons. This contribution would produce a much larger

decay width, suppressed only by factors of 1/M∗. However, extra-dimensional

momentum conservation persists as KK number conservation in the compactified

theory (also the basis for dark matter in UED models [112]). The occupation

vectors of all gravitons participating in an interaction must sum to zero at any

vertex. When combined with energy momentum conservation |~n1|2 > |~n2|2+|~n3|2,

the on-shell decay amplitude vanishes for all graviton self interactions. In fact,

the next contribution to the decay width will come from higher orders in the

expanded action

Γ ∼ Im


 +� +� + · · ·



∼
[

m3
KK

M2
Pl

+
m3

KK

M2
Pl

mn+2
KK

Mn+2
∗

+ 0 + · · ·
]
, (11)

based on power counting. We emphasize again the null contribution due to self-

interactions. The second diagram includes a sum over the intermediate graviton

as KK number is not conserved due to the matter coupling. Indeed, below M∗

the graviton width is tiny, but at this scale the resummation quickly breaks down

and the width in general exceeds the spacing. Therefore, we have little reason to

extend our classical results in the pole region above the scale M∗. We emphasize

that the gravitons contributing in this case probe IR physics. A rephrasing of

this physical picture is that multi-graviton exchange such as the second diagram

in (11) becomes relevant at the scale M∗. It is still possible to use perturbation
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Figure 1: KK mass splitting δKK (solid black) and the KK width Γ (dashed black)
as a function of mKK, using M∗ = 5 TeV. The red dashed curves indicate the
spacing 1/R. Starting from the bottom counting upwards we have n = 2 − 6.
From Ref. [1].

theory in the pole region above ΛT as long as we have a hierarchy ΛT < M∗.

The KK mass spacing is often estimated using δKK = 1/R [113]. We improve

this estimate to assure that the narrow-width condition in (9) does not break

down at scales significantly below M∗. To that end, we consider a state ~ni where

~n2
i ≡ N is some integer. In general, there will exist another state ~ni−1 such that

~n2
i−1 = N − 1. If there is no state satisfying this relation then the spacing will be

larger than our estimate, leaving intact (9). The integer N fixes mKK =
√
N/R

so that for two non-degenerate KK modes the spacing is at least

δKK ≥
√
N −

√
N − 1

R
=

(
(2π)nMn+2

∗
M2

Pl

)1/(2n)

×

√mKK −

√
mKK −

(
(2π)nMn+2

∗
M2

Pl

)1/n
 . (12)

We note that (12) is sensitive to the equality of the radii of the extra dimensions.

For the case of unequal radii, the lower bound may be set by choosing the largest

radius.

In Fig. 1 we see that this lower bound for the spacing is much larger than the
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lowest order graviton width for any number of extra dimension n ≥ 2 and for all

energy scales relevant to LHC physics. For example, for n = 2 and M∗ = 5 TeV

we expect the lines to cross only around mKK ∼ 1000 TeV, far above the scale

at which the leading order approximation width breaks down. For the LHC

observables computed in the following, (12) confirms the hierarchy between the

tiny KK width and the level spacing.

Although the spacing between modes is much larger than the width, we have

not discussed how the decay width manifests itself in the KK sum. For this

purpose it will prove useful to specialize to 5 dimensions. For a completely stable

particle, the KK sum is performed explicitly and leads to equally spaced single

particle poles as expected.

∑ 1

s− n2/R2
=
πR cot(πR

√
s)√

s
(13)

The principle value integration over each particle pole is well defined in this

sense as the analytically continued result is obtained from (13) by replacing the

cotangent function with its hyperbolic counterpart.

Now if we add a Breit-Wigner decay width of the form icm3/M2
Pl as in (10),

the KK sum must be recomputed. After some trivial redefinitions the resulting

sum is,

S(s)5 =
R2

M2
Pl

∞∑
n=1

1

a2 − n2 + ibn4
(14)

where we define dimensionless variables a =
√
sR and b = c/(M2

PlR). Physically,

the last term in (14) resemble a damped oscillator with the critical damping

condition given by a simple relation between a and b. We find that the

exponentially damped oscillation persist up to the point acrit ∼ b−1/3. In terms of

the physical parameters this corresponds to
√
scrit ∼M∗c−1/3. Most importantly

this number is independent of MPl even though MPl appears explicitly in Γ(mKK).

In other words, after summing over all modes the physical size of Γ has completely

dropped out. To see this we evaluate (14) analytically. The full solution is lengthy
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but the oscillatory behavior is contained in the term

S(s)5 ∼
b cot

[
π√
2b

√
i(
√

1− 4a2b− 1

]
√
i(
√

1− 4a2b− 1

≡ b

u
cot

[
π√
2b
u

]
(15)

Expanding out the term u for small a2, and b not too large

u ≡
√
i(
√

1− 4a2b− 1) ≈
√

2a2b

(
1 + i

a2b

2
+ · · ·

)
(16)

Now the squared amplitude |S(s)5|2 is in fact the observable quantity we desire,

so from (15) and (16) we have

|S(s)5|2 ∼
e−2πa3b + eπa

3b cos 2πa+ 1

e−2πa3b − eπa3b cos 2πa+ 1

≈ 1

1− e−πa3b cos 2πa
. (17)

We see that the oscillating cosine term is exponentially damped. Moreover if we

solve for example for the half life of the decay, we obtain the relation as previously

stated that acrit ∼ b−1/3.

Now taken at face value, the form of this propagator has three distinct regions.

First for
√
s < M∗c−1/3, there are large oscillations due to the insufficient

dampening turn provided by the width. Next, for intermediate energies the

principle value integral well approximates the damped oscillating term, and in

this region our assumptions are well justified. Now at some energy, typically

around but not exactly at M∗ the geometric series needed to define the width in

the propagator no longer convergences and more powerful techniques are needed.

The propagator in this region naively behaves like 1/s2 here, but this prospect is

never physically realized.

Finally, for higher numbers of extra dimensions we can no longer analytically

compute the KK sum. Within a numerical implementation we find that there is

no simple relation between the coefficient in the width and the damping, as now

in general the position of
√
scrit depends on MPl, M∗ and c.
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Figure 2: Squared KK kernel in the 5-D width given in blue plotted as a
function of

√
s. Given for comparison is the analytic result computed by taking

the principle value of the width-less propagator in the integral approximation.
Phenomenological parameters taken for this plot are M∗ = 2 TeV and c = 1.5.
For clarity MPl = 20 TeV so that the individual oscillations can be identified
graphically. The difference in the blue and red curve above

√
scrit ≈ 2.28 TeV

vanishes for MPl →∞.

.1.3 Monte Carlo Numerical Integrator

A VEGAS numerical integration routine is one important technique for calcu-

lating collider signatures. The internals of VEGAS will not be described in

detail here, but essentially by linearizing the given function it obtains an efficient

method of numerical integration. For the purposes of calculating LHC cross-

sections, it is necessary to evaluate the integral,

σhad(p+ p→ Y ) =

∫ 1

0

dx1

∫ 1

0

dx2

∑
fl

ff (x1)ff̄ (x2)σ(qf (x1P ) + q̄f (x2P )→ Y )

(18)

For a 2 → 2 process there will be one additional integration over the phase

space in the partonic cross-section. The vegas routine employed integrates over

the the momentum fractions x1 and x2, as well as the angle θ from phase space

integration. In addition, the user may numerically integrate over the KK mass

mKK, provided that a chosen scale matching does not contain singularities. The
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angle θ is defined in the partonic center of mass. The boost which transforms

from the partonic to hadronic center-of-mass is solely along the beam axis and is

given in terms of x1 and x2 as

Λν
µ = Λν

µ (γ(x1, x2), β(x1, x2)) (19)

γ(x1, x2) =

√
(x1 + x2)2

4x1x2

(20)

β(x1, x2) =
x1 − x2

x1 + x2

(21)

Note that transverse momentum of the initial state is neglected. Kinematic cuts

can then be applied, and for most purposes this amounts to ignoring dilepton

pairs with invariant mass less than 20 GeV. The squared and averaged matrix

element can then be calculated using the momenta in either frame. This is passed

first to the PDF function. The PDF used is cteq6ll [114], with the factorization

scale set equal to pt, which returns a weight equal to the probability of finding

the initial partons with momentum fractions x1 + dx1 and x2 + dx2. Finally the

phase space integrator computes the total cross-section as

σpar =

∫ ∫ |M̄|2
2E12E2|v1 − v2|

d3p3

(2π)32E3

d3p4

(2π)32E4

(2π)4δ() (22)

=

∫
dθ
|M̄|2 sin θ

64πE1E2

E3

E4

(23)

where the delta function expresses overall energy momentum conservation. This

integral is evaluated in the partonic center-of-mass frame due to the definition of θ.

The value returned is then multiplyed by the VEGAS weight, produced internally

in VEGAS when linearizing the function, which gives the contribution to the total

cross-section for a particular iteration. Histogramming the partonic invariant

COM energy with the associated weights for each iteration, give a distribution of

dσ/dm2 as a function of m2. This can be seen by considering rewriting the total

cross-section (18)

σhad =
∑

∆m2
∑
n

dσ(m2)→ ∂σ

∂m2
=
∑
n

dσ(m2) (24)
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where the n represents contributions with m2
0 +n∆m2 < m2 < m2

0 + (n+ 1)∆m2.

The background results for the total cross-section and distribution were verified

using the MadGraph and MadEvent package [115].

.1.4 Generating Functional

In this section we review functional renormalization techniques needed to study

gravity in the non-perturbative regime. In particular we derive the exact

renormalization group equation for the average effective action from [43]. The

fundamental quantity we wish to evaluate in any generic quantum field theory is

the partition function

Z[J ] =

∫
[dϕ]e−S[ϕ]+J ·ϕ, (25)

where φ is a scalar field for simplicity. Contained in the functional Z are

all n-point Green functions, and solving for them explicitly deems the theory

completely known. Related to the functional Z is the generator of connected

Green functions.

W [J ] = lnZ[J ] (26)

Functionally differentiating W [J ] n-times with respect to the sources J therefore

generates the connected n-point Green Functions. Differentiating with respect to

only one source we obtain

δ

δJ(x)
W [J ] = −

∫
[dϕ]ei

∫
(L+Jϕ)ϕ(x)∫

[dϕ]ei
∫

(L+Jϕ)
= 〈ϕ〉J ≡ φ(x). (27)

In the final step we have defined the classical field φ as the expectation value of the

quantum fluctuations ϕ. In other words, the weighted average of all the quantum

effects is precisely the field which we measure in experiment φ. Therefore the

final functional we use is the effective action Γ[φ]; making use of this new field φ.

This is simply the Legendre Transform of W [J ].

Γ[J ] ≡ −W [J ]− J · φ (28)

In analogy to the equation of motion for the classical action,

δS[φ]

δφ(x)
= J(x) (29)
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we can compute the equation of motion for the action of our full quantum theory.

δ

δφ(x)
Γ[φ] = − δ

δφ(x)
W [J ]−

∫
ddy

δJ(y)

δφ(x)
φ(y) − J(x)

= −
∫
ddy

δJ(y)

δφ(x)

δW [J ]

δJ(y)
−
∫
ddy

δJ(y)

δφ(x)
φ(y) − J(x)

= −J(x) (30)

We have made use of (27) in the final step. For the functionals Z, W and Γ

it is often too ambitious to include a measure which contains field modes with

arbitrarily large and small momenta. Therefore, it is typical to cut-off the path

integration in some manner and the theory is analysed in a particular momentum

regime. The simplest implementation of this idea is called the Wilsonian cutoff,

Zk[J ] =

∫
[dϕ]p2>k2e

−S[ϕ]+J ·ϕ (31)

where the integration is only carried out for field modes with momenta larger that

k. This is a similar idea to the Wilsonian effective action, except in that case the

cutoff is on UV modes, and the path integration is not carried out. Instead the

UV cutoff is expected to modify the classical theory by the generation of higher

dimensional operators, introducing new interactions at low energy.

The modern implementation for restricting the path integral is to cut-off field

modes in a smooth way by inserting a mode suppression operator ∆Sk, and

leaving the measure unchanged.

Zk[J ] =

∫
[dϕ]e−S[ϕ]+J ·φ−∆Sk[ϕ] (32)

The functional ∆Sk[φ] has the form of a mass term with variable coefficient,

∆Sk[ϕ] =
1

2
ϕ ·Rk · ϕ (33)

where Rk has certain restrictions. Rk is large for modes with momenta less than

k in order to suppress the path integral. For large momenta in the path integral,
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Rk goes to 0 so that the region q2 >> k2 is not affected.

lim
q2

k2
→0

Rk(q
2) = 0, lim

k2

q2
→0

Rk(q
2) > 0 (34)

At first it may seem surprising that Rk(q
2) > 0 when k2/q2 → 0 is sufficient to

eliminate IR divergences. Effectively, a non-zero Rk acts as a mass term, and this

alone cures any IR pathology in the same way as a non-zero photon mass eliminate

IR singularities in QED. In order for the path integral to fully suppress all modes

with momentum less that k2 it is necessary to stipulate that Rk → k2 for q2 < k2

since in effect we have introduced a mass gap in our theory of order k2. Now we

must confront the problem that in general, our functionals do not have explicit

UV regulation. However, it turns out that we may still study certain aspects of

our theory. Varying the cut-off scale k, induces a change in our functional which

can be traced back to the effect of slightly higher or lower momentum modes.

This leads to genuine physical behaviour of our theory at different energy scales.

The quantity we wish to calculate in this framework is the k-derivative of the

relevant generating functional.

k
∂

∂k
Zk[J ] = −k ∂

∂k
〈∆Sk〉 = −

∫
q

k
∂

∂k
Rk〈ϕ(q)ϕ(−q)〉 (35)

since the only k dependence is in the cutoff function. In practice it is simpler to

first define the smoothly cutoff effective action,

Γk[φ] = − lnZk[J ] + J · φ−∆Sk[φ] (36)

here and henceforth known as the effective average action. This quantity has a

very intuitive physical meaning. This can be seen by considering the limits as we

take the cut-off either to 0 or very large. In the first case, taking k → 0 removes

the cut-off all together, and we are left with the unregulated quantum action Γ[φ].

In the second case, if our theory is endowed with a physical UV cut-off Λ, taking

k → Λ removes all quantum fluctuations in the theory. This is the classical action

S[φ]. Therefore, the average effective action can be seen as interpolating between

a fully quantum and classical theory. The crucial observation for our purposes

though is that when we take the UV cut-off Λ → ∞ we are asking whether or

not very high momentum modes render the path integral ill-defined. The action
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which results from this procedure is thus defined Γ? = ΓΛ→∞. There are three

possibilities,

• Γ? does not exist, we know immediately that Γ is not a renormalizable

theory.

• Γ? = Scl in which case the theory is perturbatively renormalizable and

asymptotically free.

• Γ? exist as some non-trivial theory, where it is said to be non-perturbatively

renormalizable.

For the second case, the analogy of QCD is instructive. Asymptotic freedom

at high energies implies that QCD is non-interacting, and the action is neatly

described by L = −1
4
FµνF

µν . The asymptotic safety scenario is predicated on

the possibility that gravity will fit into the third category. In any case, defining

k
∂

∂k
=

∂

∂ ln k
≡ ∂

∂t
= ∂t, (37)

we compute the derivative of (36)

∂tΓk[φ] =
1

2

∫
q

∂tRk(q
2) [〈ϕ(q)ϕ(−q)〉 − φ(q)φ(−q)] , (38)

where now we have the term in brackets 〈ϕ(q)ϕ(−q)〉 − 〈ϕ(q)〉〈ϕ(−q)〉 compared

to (35). This is just the connected corralator.

〈ϕ(q)ϕ(−q)〉 − 〈ϕ(q)〉〈ϕ(−q)〉 =
δ2Wk[J ]

δJδJ
(39)

We would like to have our differential equation (38) completely in terms of

Γk[φ]. Hence, we start with the quantum equation of motion (30), and take

the functional derivative with respect to J(y) on both sides,

δ(x− y) = − δ

δJ(y)

δΓk
δφ(x)

=

∫
ddz

δφ(z)

δJ(y)

δ2Γk
δφ(z)δφ(x)

(40)

where in the second line we have used the chain rule and introduced a dummy

integration over z. Now, we replace φ(z) with its definition in (27). Our final
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expression then is

δ(x− y) =

∫
ddz

δ2Wk[J ]

δJ(y)δJ(z)

δ2Γk[J ]

δφ(z)δφ(x)
, (41)

and it is clear that the two terms are functional inverses. Therefore, (38) turns

into a functional differential equation containing only Γk[φ]

∂tΓk[φ] =
1

2

∫
q

∂tRk

(
δ2Γk[J ]

δφδφ
+Rk

)−1

. (42)

It is typical to generalize the integration to include a sum over all internal indices

in the theory, and represent this as a trace. In final form, the flow equation for

the average effective action is,

∂tΓk[φ] =
1

2
Tr

[(
δ2Γk[J ]

δφδφ
+Rk

)−1

∂tRk

]
(43)

This result was originally derived in [43]. First of all, the second derivative of

the effective action is the exact propagator. Thus, as a Feynman diagram the

RHS of this equation is a single loop for the exact propagator, with insertions

at the vertex corresponding to regulator terms. The crucial point though is that

the function Rk appears in (43) as a multiplicative factor ∂tRk. By construction,

the function Rk(q
2) → 0 for large q2, and this is enough to guarantee that ∂tRk

will go to 0 as well. If Rk → 0 at an exponential rate, the flow equation (43) is

UV finite even when Γk[φ] is not. All UV modes in this case are exponentially

suppressed. Our point of interest though is the case when the flow ends on a

UV fixed point. It is in this (and only this) case that we can define our Γ[φ] as

representing a fundamental theory.

We are always at liberty to integrate our flow equation, starting at some well

defined boundary action ΓΛ. With our a foot in the door so to speak, we can

apply the (finite) flow equation to define our theory Γ as,

Γ = ΓΛ +

∫ 0

Λ

dk

k

1

2
Γk

∂tRk

Γ
(2)
k +Rk

(44)

without making any reference to the path integral itself. Essentially, we have

differentiated then re-integrated (36) and in doing so have defined a sufficient

97



.1. Appendix

regularization scheme.

Perturbation theory is easily reproduced from the flow equation, and in the

case of small coupling accurately describes our theory. The first step is to replace

Γk[φ] with the classical action S[φ] on the left hand side of (43). Since the only

k dependence in the trace is contained in the Rk we can rewrite this as

∂tΓk = ∂t
1

2
Tr ln

[
δ2S

δφ(z)δφ(x)
+Rk

]
. (45)

Integrating gives the one loop effective action,

Γ1-loop
k =

1

2
Tr ln

[
S(2) +Rk

]∣∣∣∣k=0

k=Λ

= S[φ] +
1

2
Tr ln

[
S(2)

]
(46)

where R0 = 0 since no modes will be suppressed in that case. We use the fact

that for the momentum integral over (S(2) +RΛ)−1, there is a mass gap m2 ∼ Λ2,

so that only Scl remains. The result (46) is the normal one-loop equation derived

from Schwinger-Dyson methods.

As the goal of the renormalization group flow equation is to provide a type

of non-perturbative description of a theory, it is useful to formulate an ordering

scheme of the effective action which does not rely on a small coupling. The

derivative expansion is commonly used and involves ordering all terms with no

derivatives first, all terms with two (for the case of a scalar theory) second, and

so on. Schematically,

Γk[φ] =

∫
ddx

(
Uk(φ) + Zkφ(∂φ)2 + · · ·+ Yk(φ)φ∂4φ+ · · ·

)
(47)

Uk is the exact potential function in this case, and using the flow equation it

is possible to calculate the flow for each coefficient function Zk[φ] for example.

Obviously any term which violate the symmetries of the underlying theory is

disallowed, in this scheme and any other. A second ordering scheme for the

average effective action is called the vertex expansion. This involves ordering

operators by the number of field.

Γk[φ] =
∑
n

1

n!
Γ

(n)
k (x1, · · · xn)φ(x1) · · ·φ(x2) (48)
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where the Γ
(n)
k is the average effective action for all invariants with n powers

of the fields. A final point, is that in some sense the vertex expansion and

the derivative expansion are orthogonal, since the first term in the derivative

expansion for example, contains terms from all orders of the vertex expansion,

and vice versa. In gravity, we use mainly the derivative expansion.

.1.5 ERG Formalism of Gravity

In order to apply RG methods to quantum gravity it is necessary to formulate

a fully quantum effective action. The RG flow equation will then be used to

determine whether such an action is free of UV singularities. Equivalently, the

effective action exists if the RG trajectory ends on an UV fixed point. These

steps for quantizing gravity were first carried out in Ref. [45]. The structure and

some of the main results are from Ref. [4].

The Asymptotic safety scenario states that the metric, a dimensionless second

rank tensor, carries the degrees of freedom of the gravitational field in both the IR

and UV. However, it is also expected to be a fluctuating field in accordance with

quantum theory, and in effect, off-shell geometries must also be included in the

path integral. We define the quantum metric analogous to ϕ in our previous

discussions as γµν . The combined average effects of this fluctuating metric

produce the classical field gµν = 〈γµν〉. The original symmetries of the theory

are maintained in the path integral by using the background field method. To

implement this we introduce the background field ḡµν so that Γ[gµν ]→ Γ[ḡµν , gµν ].

The field ḡµν is non-propagating and can be identified with the physical field

gµν following quantization. With this definition, we define the quantum metric

γµν = ḡµν + hµν where ḡµν is not necessarily flat, but is constant, and the field

hµν contains all quantum effects. This replacement means that path integration

over γµν can be replaced by integration over hµν .

The metric is required to be invariant under changes in the space time

coordinates δxµ = ξµ(x). It is important now to examine how our diffeomorphism

transformation acts on our fields gµν , ḡµν , hµν and γµν . First of all, the dynamical

field in the path integral transforms under δ as,

δγµν = Lξ(ḡµν + hµν) (49)

δḡµν = 0 (50)
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However under the background variation,

δ̄hµν = Lξhµν (51)

δ̄ḡµν = Lξḡµν (52)

Thus the quantum symmetry is realized by a non-linear and trivial transformation

of hµν and ḡµν respectively. The background symmetry transforms both fields

linearly. In effect we have merely divided the symmetry in different proportions

in the background case. The crucial consequence for our purposes is that δ and

δ̄ act identically on γµν .

In analogy to the quantization of non-Abelian gauge theories, field configura-

tions related by diffeomorphism are counted an infinite number of times in the

path integral. Hence we introduce a gauge fixing term (harmonic gauge).

Sgf =
1

2α

∫
ddx
√
gḡµνFµFν (53)

where

Fµ =
√

64πGN [δβµ ḡ
αγD̄γ −

1

2
ḡαβD̄µ]hαβ (54)

and D̄γ is the covariant derivative defined with respect to ḡµν . Evaluation of the

Faddeev-Popov determinant also produces ghost terms with field Cµ. Although

we have not shown it explicitly, the combined quantum and background variation

of the effective action Γ[g, ḡ] is,

(δ + δ̄)Γ(g, ḡ)|ḡ=g = 0 (55)

modulo terms coming explicitly from the gauge fixing. Therefore, the action is

invariant under diffeomorphism,

Γ[φ+ Lξφ] = Γ[φ] (56)

where φ = {gµν , ḡµν , Cµ, C̄µ]. The action we use is

Γk =

∫
ddx
√
g

{
1

16πGN

(−R + 2Λk) +O(R2) + Lmatter + Lgf + Lgh
}
, (57)
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in the RG flow equation (43) and in order to see evidence for Asymptotic safety it

is only necessary to include the Einstein-Hilbert term with cosmological constant.

Thus, we neglect all matter interactions.

Γk =

∫
ddx
√
g

{
1

16πGN

(−R + 2Λk) + Lgf + Lgh
}

(58)

Solving the flow equation and extracting the β-functions even for this simple

action is technically involved and we will not present the details. Instead we

quote results for the beta functions of the dimensionless couplings g and λ,

βg = (d− 2 + η)g (59)

βλ = (−2 + η)λ+ g (a1(λ)− ηa2(λ)) (60)

η =
gb1(λ)

1 + gb2(λ)
(61)

Writing out a1, a2, b1 and b2 and η explicitly

βg = (d− 2)g +
2(d− 2)(d+ 2)g2

2(d− 2)g − (1− 2λ)2
(62)

βλ = −2λ+
g

2
d(d+ 2)(d+ 5)− d(d+ 2)g

(d− 1)g − 1
d−2

(
1− 4d−1

d
λ
)

2g − 1
d−2

(1− 2λ)2
, (63)

where the g is rescaled with a factor cd = Γ
(
d
2

+ 2
)

(4π)d/2−1. Gauge fixing

dependency is responsible for the relative complexity of (62) and (63) compared

with (59) and (60), which are valid for any gauge fixing condition.

There are several interesting results contained in (62) and (63). First and

foremost, these equations have UV fixed points with non-vanishing λ and g in

d = 4 dimensions. More precisely both β-functions vanish for (g?, λ?) = ( 1
64
, 14)

although these are not physical and depends on the gauge fixing as well as the

cut-off scheme. We will refer to such quantities as being non-universal.

What is physically relevant though, is that the FP in d = 4 is continuously

connected to the Gaussian FP known to exist in d = 2 gravity. A second physical

point is that the phase diagram for λ and g exhibits a separatix trajectory, which

connects the Gaussian and non-gaussian FP. All other trajectories are repelled

from the Gaussian FP, so that for example, in the IR these trajectories flow

towards values of g = 0 and λ = ±∞. Connecting physics around the Gaussian

101



.1. Appendix

FP with perturbation theory, we say that λ is a relevant perturbation. The actual

position of our universe on the λ− g phase diagram is argued in Ref. [54] to just

miss the separatix trajectory and flow towards +∞ in the IR. While the position

of FP show a fairly strong cut-off scheme and gauge fixing dependence, their

existence is considered a universal quantity. Another set of universal quantities

are the critical exponents θ in the vicinity of a particular FP. The eigenvalues

of the stability matrix are defined as −θi. From inspection of (62) and (63) the

matrix Mij =
∂βj
∂gi

will have non-vanishing components in every entry. An explicit

calculations in d = 4 shows that the critical exponents are a complex-conjugate

pair parametrized as θ = θ′ ± iθ′′ with θ′ = 1.1 − 2.3 and θ′′ = 2.4 − 7.0. These

number show a small variation due to scheme dependence, but are numerically

relatively stable. Most importantly, varying the gauge fixing and cut-off do not

change the signs of the critical exponent (nor do they destroy the FP altogether).

The final aspect of the Asymptotic safety scenario we would like to address

with our analysis using the RG, is whether it predicts explicit anti-screening

effects to GN in the UV. If we expand the generic form of βg and η in (59) to

order g2, and set λ = 0, we obtain.

βg = (d− 2)g − (d− 2)ωg2 +O(g3, g2λ) (64)

The constant ω ≡ cdb1(0)
2−d where cd is defined in (63), and b1(0) is in general scheme

dependent. The replacement g → Gµd−2 leads to,

βG = −(d− 2)ωG2µd−2 (65)

This equation is easily integrated to obtain

Gk =
GΛ

1− ωGΛ(Λd−2 − kd−2)
(66)

where Λ is some reference scale, and k is the energy of our process. If we take

Λ = 0 then our reference scale is GN and we obtain a one loop formula for the

the running of GN ,

Gk =
G0

1 + ωG0kd−2
(67)
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which is the resummation of the one loop contribution to the gravitational

coupling previously derived using effective theory techniques in (2.27). Formally,

this is equivalent to the linear approximation defined in (4.9). Since ω is

universally positive (its magnitude however is non-universal), the gravitational

coupling show signs of anti-screening as one moves away from the Gaussian FP.

This does not a constitute a proof that gravity is a finite theory. As we saw

in perturbative calculations, higher derivative invariants play a crucial role in the

action and it may be that the fixed point does not remain after the inclusion of

these terms. In addition to being a more robust test of the asymptotic safety

scenario, the inclusion of higher order invariant allow us to judge the stability of

numerical results. In general, we require that the addition of new couplings in

the theory does not change significantly θ′ and θ′′. Using similar computational

methods to the ones used for Einstein-Hilbert action, the β-functions can be

calculated for the action,

Γk =

∫
ddx
√
g

{
1

16πGN

(−R + 2Λk) + c2R
2 + Lgf + Lgh

}
(68)

The results in Ref. [116] show that c3 is also a UV attractive coupling. The

critical exponent θ2 shows a rather large scheme dependence but the physically

relevant sign in unchanged by varying the gauge fixing condition. Therefore, it

should be included in any fundamental theory of gravity in the formal sense. It is

also speculated that the other term RµνR
µν will have a UV attractive coupling.

Further polynomial invariants Rn have been included in the effective action

and the numerical results are in [48]. The results show not only that θ′ and θ′′ are

stable, but also that the higher order critical exponents θn for n ≥ 3 are negative,

and thus these terms are UV repulsive. This is encouraging for our requirement

that the theory be predictive. UV repulsive couplings do not need to be specified

for the theory to have a well defined UV limit. Of course these terms may have

non-trivial effects away from the non-Gaussian FP.

The addition of minimally coupled matter, especially in the R2 truncation,

provides a non-trivial test for Asymptotic Safety. This is particularly interesting

since gravitational interactions with matter were shown to be divergent at the

R2 level, with no hope for renormalization or field redefinition. The computation

in [50] reveals that not only does the fixed point survive this inclusion, but the
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critical exponents are affected in a fairly trivial manner; Evidence perhaps that

the underlying physics probed by the ERG is truly non-perturbative.

.1.6 Toy RG Model of Gravity

In this section we outline some explicit calculation in a simplified model of gravity

presented in Ref. [4]. The stability matrix (2.35) is essential for gaining physical

insight about our theory. In order to demonstrate the variety of qualitatively

different fixed point behaviours, we will compute explicitly this matrix for a simple

gravitational action. Furthermore, quantum corrections to the β-functions will be

estimated on a very heuristic level. The theory we will study is the gravitational

action,

L =
√
gZ(−R + 2Λ) (69)

in D = 4 Euclidean dimensions. The parameter Z = G−1
N and the factor 16π has

been absorbed into G for convenience. In addition we will consider U = 2ΛZ as

the vacuum energy. In order for the Lagrangian to have mass dimension 4, we

have [G] = −2, [Z] = 2, [Λ] = 2 and [U ] = 4. However, as already mentioned,

the physically relevant parameters are dimensionless so we define,

g = GNµ
2 z = Zµ−2 λ = Λµ−2 u = Uµ−4 (70)

with β-functions,

βg = 2g βz = −2Z βλ = −2λ βu = −4u (71)

Since there are only two independent parameters, it is only necessary to compute

Mij twice. At the Gaussian fixed point we have,

M (λ,g) =

(
2 0

0 −2

)
M (g,u) =

(
2 0

0 −4

)
M (z,u) =

(
−2 0

0 −4

)
(72)

which are stability matrices for a classically scaling theory. However, there is a

qualitatively different Gaussian fixed point for our theory described by (g, u) and

(g, z). This can be seen from the last two stability matrices, where the first has

M (g,u) has one IR stable directions and M (z,u) has two unstable IR directions.

Quantum effects are expected to modify the simple scaling region of the
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classical theory. The one loop modification to the dimensionful β-functions can

be guessed by dimensional analysis

βU = aµ4, βZ = bµ2. (73)

By making the replacement U → uµ4, and similarly for Z, we can derive βu and

βz

βu = −4u+ a, βz = −2z + b. (74)

The effect of the quantum fluctuations then is to shift the previously Gaussian

fixed point to a new value (z, u) = (b/2, a/4). The stability matrix remains the

same as (72).

What is more physically apparent for gravity is the behaviour of the β-

functions for g and λ. These can be derived from βz for example as

µ
d

dµ
z = µ

dg

dµ

d

dg

1

g
= −2z + b, (75)

so that

βg = 2g − bg2. (76)

A similar computation reveals

βλ = −2λ+
ag

2
− bgλ. (77)

In addition to the trivial fixed point there is a non-trivial one for (g, λ) =

(2/b, a/(4b)). We have two stability matrices to calculate,

M (Gaussian) =

(
2 0

a/2 −2

)
M (NG) =

(
−2 0

a/4 −4

)
(78)

The flow in the vicinity of each fixed point is tilted due to the off-diagonal

components of the stability matrix. Instead of having straight line solutions which

lie on the axes, the new straight line solutions are the eigenvectors of Mij denoted

v1 and v2. In fact vGi = vNGi so that in order for there to be exactly 2 fixed points,

the non-gaussion FP must lie on the straight line trajectory emanating from the

Gaussian FP. The genuine physics is encoded in the eigenvalues of (78) where

we see that the quantum effects at the NG fixed point overcome the canonical

105



.1. Appendix

dimension and render g an UV attractive direction. The UV critical surface is

thus two dimensional.

In order to analyze quantum effects in gravity quantitatively, more powerful

techniques are required. The functional renormalization group picture from the

previous section is necessary for us to move beyond these simple manipulations.
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