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Abstract

In this work we explore the collider prospects for the asymptotic safety
scenario being realized as a quantum theory of gravity. Testing gravity at
colliders becomes a real possibility in the case of extra dimensional models, or
with additional physics leading to a fundamental scale of gravity significantly
lower than the Planck mass. We present several approximations for the full
non-perturbative renormalization group running, and show how these can be
implemented at the level of the graviton wave-function renormalization. The
issue of scale identification of the physical process with the renormalization
group scale k is clarified and several different choices are compared. The
various approximations are resolved and shown in most cases to generate scheme
independent results. On the phenomenological side, we investigate two separate
observables. First, at tree-level we present results on LHC di-muon production
due to asymptotically safe gravitons. By including fixed point scaling Kaluza-
Klein modes, the predicted signal is enhanced and simultaneously problems
associated with the breakdown of perturbative unitarity are reduced. At the
one-loop level, we outline our calculation for the contribution to electro-weak
precision observables originating from asymptotically safe gravity. New bounds
are derived which show different behavior as a function of the number of extra
dimensions compared with previous effective field theory results. Finally, we
comment on possible further directions for exploring the frontier of collider physics

and quantum gravity.
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Chapter 1
Introduction

Because truths we don’t suspect have a hard time
making themselves felt, as when thirteen species

of whiptail lizards composed entirely of females

stay undiscovered due to bias

against such things existing,

we have to meet the universe halfway.

Nothing will unfold for us unless we move toward what

looks to us like nothing: faith is a cascade.

-Alison Fulton “Cascade Experiment”

1.1 LHC: A Window into Quantum Gravity?

In the summer of 2011, with the arrival of the first successful inverse femto-barn of
proton-proton data, the Large Hadron Collider’s (LHC) stated goal of exploring
the frontier of TeV scale physics is finally coming to fruition. First and foremost,
the LHC program expects to reveal the nature of electroweak symmetry breaking
[91]10]. This may be the scalar Higgs boson predicted in the Standard Model
or something more complicated acting like the Higgs. However, as the history
of physics has shown, quite often the primary motivation for an experiment is
not the a postor: justification. In other words, in addition to identifying the
mass of the Higgs boson, we hope that the LHC discovers the next paradigm in
high-energy physics.



1.1. LHC: A Window into Quantum Gravity?

Typically at the LHC, searches for a new paradigm originate in the more
humble pursuit of new particles. Connecting particles to paradigms and vice versa
is thus the primary occupation of particle phenomenologists. To streamline this
process, assumptions based on the expected nature of new physics is often used
[T1]. An example is dark matter, where the fact that these particles are relatively
stable suggests looking at deviations from the SM prediction for missing energy.
There is a balance though. By making model assumptions we limit the size of
the net cast on beyond the Standard Model theories. For example, searching for
jets plus missing energy is ineffective for other viable dark matter models like
gravitino dark matter [12][I3]. At the LHC then, we would like to cover all bases
and include searches with varying amounts of model assumption.

One such model is the recently revived paradigm of extra dimensions
[T4][I5)[16] [I7][I8]. In this thesis we primarily discuss flat extra dimensions
where only gravity propagates in the additional space. These models predict
a large number of gravitationally interacting massive particles in addition to
the (indirectly measured) massless graviton responsible for general relativity
[19]]20]. At colliders like the LHC, these new particles can be seen in two ways.
Either we produce them directly and they escape as missing energy [21], or the
massive graviton decays back to observable particles creating an excess in some
distribution [22]. The later is theoretically more interesting as the signal probes
off-shell effects of massive gravitons.

Searches for virtual gravitons are plagued with theoretical ambiguities [23]. As
will be discussed in detail, the signal is sensitive to the regime where the effective
description of extra dimensions breaks down and the dynamics of quantum gravity
become relevant. In order to proceed, we can compute observables in the low
energy limit, and reformulate searches for extra dimensions in terms of generic
four-point operators. The advantage here is that no input about the speculative
nature of quantum gravity is necessary. However, the downside is that the
resulting bounds on extra dimensions carry an inherently unquantified theoretical
uncertainty. Alternatively, we can maintain the full dynamics of the extra
dimensions, but cut-off divergent integrals explicitly “by hand”. This implies
that the majority of the signal comes from exactly that region of momentum
space where the cutoff is placed. An unknown dependence on the details of UV

physics is then implicit in most observables. Neither of these methods is fully



1.1. LHC: A Window into Quantum Gravity?

convincing in the search for extra dimensions.

In this thesis, we present an improvement to this search by making the
additional assumption that in the UV gravity possesses an interacting fixed point
[24]. This situation is typically referred to as Asymptotic Safety, as it generalizes
the more well-known Asymptotic Freedom. Moreover, we will see that asymptotic
safety provides robust predictions for the behavior of extra dimensional gravitons,
meaning that it may be possible to actively search for and rule out these new
particles at the LHC.

Along with providing their own unique predictions, a crucial benefit of
assuming asymptotic safety is an improvement in theoretical uncertainty in
searches for extra dimensions. The reason for this is that the conventionally
divergent momentum integral in our approach is regulated by renormalization
effects at the fixed point. In addition, we present a new calculation for the
indirect electroweak constraints originating from contributions to gauge boson
self energies. Naively this amplitude is power divergent, but with a fixed point
becomes finite and independent of the UV cut-off. However, the sensitivity to
the fixed point region is enhanced compared with the tree-level. We present
this calculation as a proof of concept that our techniques can be extended to
observables beyond tree-level.

This thesis is arranged as follows. In Chapter 2 we build the necessary
technology to analyze gravity in perturbation theory. We will see the appearance
of divergences in this straight-forward approach and understand the notion of
gravity as an effective theory. Moving beyond perturbation theory we outline
the growing evidence that gravity may be a continuum quantum field theory.
In Chapter 3, we present the modern paradigm of large extra dimensions, and
exhibit in detail the Kaluza-Klein reduction needed to derive the 4-dimensional
particle spectrum. In particular, we derive the spectrum in two gauges as we
use both in our computations. The experimental constraints on extra dimensions
are outlined. We devote a sizable portion of this section to a discussion on the
ambiguities associated with virtual graviton exchange.

We present our work melding the asymptotic safety scenario with extra
dimensions starting in Chapter 4. In order to make sense out of the generally
complicated form of the asymptotic safety running coupling we build a number

of approximate solutions. A sizable effort is then made to cross-check these
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approximations and also to establish some semblance of scheme independence.
Finally we calculate tree-level and one-loop amplitudes in our formalism. The
phenomenological implications are given in chapter 5. We demonstrate that
asymptotic safety can lead to observable and experimentally interesting results.
Finally, in chapter 6 we conclude this work and offer some possible future
directions.

As of now, there is no definitive evidence for beyond the Standard Model
physics at the LHC, yet there is still reason to believe that the next revolution
in physics is approaching. Regardless of the outcome, stringent bounds will be
placed on many popular models of beyond the Standard Model physics. Whether
or not TeV scale extra dimensions exist in nature is a question the LHC can
answer, and as this thesis shows may also deepen our understanding of quantum

gravity.



Chapter 2

Field Theory Methods in Gravity

2.1 Introduction

In this section, starting from minimal requirements for gravity we build a
consistent action. Our approach is meant to evoke the thought process which
might be followed by a particle physicist inspired by the successful quantization
of Non-Abelian gauge theories like QCD. Basic arguments in dimensional analysis
will help us determine the fate of such actions under quantization. We will see
explicitly how and where a straight-forward quantization of gravity fails.

The motivation for this extended foray into perturbative gravity is two-
fold. First, it allows a pedagogical introduction into the technical aspects of
gravity, which will prove useful in Chapter [4f when we discuss higher dimensional
realizations. Many aspects of 4-dimensional gravity carry-over and assist our
understanding here. The second and more immediate motivation is that by
understanding the downfall of a perturbative description of gravity, we obtain
a better position for achieving a non-perturbative quantization scheme. An

comprehensive and pedagogical reference is Ref. [25].

2.1.1 Einstein-Hilbert Action

In order to build a field theory for gravity we first enumerate the field-content.
The dynamical field is the metric g,,(z), which initially is nothing more than
a necessary tool for defining invariant scalar products. The commutativity of

the scalar product requires g,, = ¢,,. In addition, invariance under similarity
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transformations demands g = det g, = £1 where in order to describe Minkowski
space g = —1. Finally, g,, must be dimensionless.

We can conveniently deduce the transformation laws of the metric by noting
that the basis vectors defining two sets of coordinates x and y are related by a
Jacobian

dxt

dat =y (2.1)

The transformation of the tensor z%z” and the invariance of the scalar product
under basis changes requires that the metric between the two systems transform

as 9 9
po _ Yo OYB ap 29
oz, 0x,” (2:2)

According to Einstein’s equivalence principles, a freely falling observer in a grav-
itational field cannot locally be distinguished from free space. Mathematically
this is reflected in that the gravitational action is invariant under arbitrary local
coordinate transformations. This symmetry corresponds to a variation in the

space-time coordinate
x, = T, + 0z, =, + & (), (2.3)

where £(x) is a function of the original coordinates. For the metric tensor in the

coordinate system defined by §, this leads to the variation

69, (7) = € 0p G + 0" G + 0uE" Gpup- (2.4)

In contrast to Yang-Mills theory, enforcing general covariance on an action

requires several steps.

e Replace normal space-time derivatives with covariant derivatives, acting on

a general rank-2 tensor as,
v, 1", =901, +1° 17,17, T". (2.5)

The connection '}, = 29" (0,9ur + 0u.9pr — 0:9,) does not itself transform

as a tensor.

e The flat metric 7, must everywhere be replaced with a general metric g, .
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e Under (2.3) the measure transforms as

ox'
d'r’ — —d'. 2.6
2= ——d'w (2.6)
This can be made invariant with the replacement d*z — /—gd*z as g

transforms identical to g,,.

These previous conditions are necessary for general covariance in a pre-existing
action, whereas we would also like to construct a kinetic term for the gravitational
field. The relevant question is to identify the gravitational equivalent to the field
strength tensor F),,. The more complicated transformation law as well as
the index structure of g, allow for a tensor with more symmetry. The Riemann
tensor

RY e = O0sTF,, = O, + 19, T, + 17, ", (2.7)

is the analogous field tensor in gravityﬂ. However, the Ricci Scalar, obtained

from the Riemann tensor as R = ¢g"*R* is the invariant object featured in the

vpp
correct (low energy) Lagrangian

L » (2.8)

L= _9167TGN ’

where we have defined the experimentally measured Newton’s constant Gy =
1/M3, in natural units. At first glance this action looks strange in dimensional
analysis as [G'] = 2, and we may conclude this term is super-renormalizable.
However, the equations of motion for the gravitational field generate a dynamical

coupling to matter. From the definition of the symmetric energy-momentum

tensor Y
T,=——o, 2.9
K /_g 5g;w ( )
taking the variation of (2.8)) coupled to matter yields Einstein’s Equations
1
R — §9uuR =81GNn T, (2.10)

LA vperfectly valid generally covariant Lagrangian at this point would be L =
vV—gR!, - R,P, analogous to the YM kinetic term ~ F2. If this were the action chosen
by nature, then gravity in pertubation theory would be similar to YM theories by naive power-
counting.
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where R, = R%,,. The constant G]_\,1 is the pre-factor in 1) precisely
because G acts as the coupling constant of the gravitational field to the energy

momentum tensor on the RHS of Einstein’s Equations.

2.1.2 Quantization

In order to quantize gravity we first perform the flat space expansion of the metric

g =" 4+ \/STGNh". (2.11)

The field h,, is the propagating spin-2 graviton which is now canonically
normalized. The lowest order equations of motion obtained from (2.10) and

(2.11)) for the graviton field are

Ohyy — 0,0%hay — 0,0%hay + 0,0,
— 0w ORE + 1,00 hap = /8TGN T - (2.12)

We deduce the action leading to (2.12]) as
1 1
L=— §h’“’DhW + §hDh — W"0,0,h + " 0,0%h,, — \/8nGNI"T,,. (2.13)

The slightly circumvent logic (Einstein—Hilbert action— Einstein’s equation —
linearized Einstein’s equation — linearized Einstein-Hilbert action) leading us to
is necessary because the energy momentum tensor is generated through
(2.9) when computing the equations of motion. Had we inserted the graviton
decomposition into the Einstein-Hilbert action directly, the resulting linearized
Einstein equations would describe a freely propagating field. Thus, in the
linearized action, the coupling to matter at the level of the action is inserted
by hand. Reproducing Einstein’s Equations at the linearized level forces us to
introduce a non-renormalizable interactionﬂ, the last term in .

The action (2.13)) carries a linearized version of the gauge symmetry

Ohy = =0, — 0,&,, (2.14)

2Graviton self-interactions are also generically non-renormalizable as the three-graviton
vertex contains two derivatives and hence has dimension 5.
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we obtain by inserting (2.11]) in (2.4]). In order to extract the propagator we fix
the gauge. For pure gravity this gauge fixing is simple, and completely analogous
to Yang-Mills theories. A convenient choice which generalizes nicely to higher

dimensional gravity is the unitary gauge where
a,ht 18 h*
i 1/25 vy, (215)

Two notable points are as follows. First, this choice eliminates the last two kinetic
terms in (2.13]), and the remaining tensor is easily inverted. Second, a symmetric
tensor contains 10 components, while eliminates 4. An additional 4
degrees of freedom are dropped by noting that under a linearized gauge
transformation produces the condition 1§, = 0. Thus, there are only 2 remaining
propagating degrees of freedom as we expect for a massless boson in 4-dimensions.

We use a second gauge choice for loop calculations in the D dimensional
theory, the DeDonder gauge, where we include a generic ghost contribution L,

and defining
1 1

750l = 50uh) (2.16)

add to the action a term Ly, = —C,C*. We will see how the KK reduction of the

D dimensional action in these respective gauges leads to differently suited sets of

c, =

Feynman rules.

2.1.3 Divergences

A simple way to compute loops in gauge theories is the background field
method [26]. This proves effective in gravity as well due to the diffeomorphism
invariance realized at the linear level . Suppose we start with an action
containing operators ;. Once we compute loops in the background field method,
divergences are proportional to some set of gauge invariant operators ;. If
all O, are contained in the original Lagrangian O;, then the action is termed
perturbatively renormalizable as all divergences can be soaked up with redefined
couplings. If the O; generate new operators on the other hand, then in order to
eliminate the divergence we must introduce additional terms. Now the quantum
theory containing only ©; is inconsistent.

Using these methods and considering the one-loop graviton self-energy for the
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Einstein-Hilbert action it was shown in Ref. [27] that a divergence

1 1 1 7
L=——\/—g|—R*+ —-R.LR" 2.17

872D — 4 9{120 T30 } (2.17)
is produced which cannot be reabsorbed into the definition of (2.8). However,
there is a solution, d£ in this case vanishes on shell as a solution to the classical

field equations. This means that if we redefine our field g,, — g, + dg,,, Where,

1 1

g, = — —
I =" 420

11
(—mW + ERg,w) (2.18)
then the vacuum equations of motion for g, in (2.10|) are preserved and the one-
loop divergence is eliminated. However, in the presence of matter where 7}, # 0,
the counter-term does not vanish on-shell, and the necessary field redefinition is
not possible. At the two loop level in pure gravity, it was shown in Ref. [28] that

the counter-term

oL = Md i 4 (16;2)2 2280890RWWRUPWRWW’ (2.19)
is generated, and crucially this does not vanish for solutions to the vacuum field
equations. Not surprisingly, loop correction in gravity produce fatal divergences.

One possible way out is to include higher derivative terms in the original
action, and hope that there exists some special set which is closed under
perturbative quantization. In fact, it was proposed and later shown that there is
a set of higher derivative invariants, which along with generate a closed set

of counter-terms to all loop orders. This Lagrangian found in Ref. [29] is

1 2
= /(= —aR? — bR, RM™| | 2.2
L£=1+/(—g) G R AR R R (2.20)

where a and b are dimensionless couplings. This is not heralded as a successful

theory of quantum gravity for an important reason. The scalar part of the
graviton propagator from (12.20)) is

1

Alp) = ——
(p) oGt

(2.21)

where a is an O(1) coefficient depending on a and b. For large energies

10
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where p?Gy ~ 1 we see that the propagator changes sign so that the high-
energy spectrum of this theory contains a ghost obeying the wrong relation
between spin and statistics. However, it was later found in Ref. [30] with
modern BRST techniques that an action containing all diffeomorphism invariant
terms is perturbatively renormalizable and contains ghost free propagators.
Renormalizablility in this case is not surprising as all divergences must be
proportional to an invariant and we may redefine our infinite number of couplings
to cancel these. What is non-trivial is that unitarity is preserved in the propagator
only for the inclusion of an infinite number of terms. An obvious downside is
that an infinite number of experiments are needed to fully specify the theory.
A theory with well behaved UV behavior despite a complete lack of predictive
power is generally referred to as weakly perturbatively renormalizable.

Despite the breakdown of perturbative gravity in the UV, there remains some
hope for a theory of quantum gravity that is both ghost-free and weakly coupled
in the UV (for a recent example see Ref. [31]). However, even if gravity as a field
theory has no sensible UV behavior, it is still possible to discuss quantum gravity

as an effective field theory.

2.1.4 Gravity as an Effective Theory

The Standard Model is likely to be a low-energy effective theory. This picture
neatly explains the perturbative renormalizablity of all measured operators in
terms of the Wilsonian renormalization group, and succinctly determines the
plethora of observed global symmetries. Furthermore, the first instance of
definitive beyond the standard model physics, neutrino oscillations and their
implied masses, follow directly from the least suppressed higher dimensional
operator. Constraining (or better yet determining) the EFT scale of these
operators is a crucial phenonological pursuit.

For some presumably large physical cut-off scale A, contributions to observ-
ables from higher dimensional operators at the characteristic energy scale F are
suppressed by powers of £//A. While renormalizibility is a virtue when computing
loops, it does not assist the determination of the scale when such a description

breaks dowrf’] Conversely, the merit of non-renormalizable interactions is that

3Although the SM is certainly expected to break-down above the Planck scale, the only
intrinsic limit on the validity of the perturbative description of the SM is the Landau pole in
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they transparently predict their own demise, when E/A ~ 1. This defines an
upper-bound on the scale of new physics. For this specific purpose, gravity is more
helpful than the SM. Perturbation theory ceases to be a good description when the
dimensionless expansion parameter E2Gy ~ 1. Consequently, for experiments at
energies far below this scale the effective operator expansion of gravity is well
defined [32][33].

In order to proceed, all operators consistent with general covariance should

be included in the a generalized gravitational Lagrangian

1

LE=V=91T6mGn

R+ caR* + caRuR™ + esV*R + -+ | . (2.22)

The Riemann tensor squared term is not included as the linear combination
of the Ricci tensor, Ricci Scalar and Riemann tensor is equal to a topological
(Gauss-Bonet) invariant. There are very weak constraints on the size of the
dimensionless coefficients ¢, co < 10 from cosmology [32]. We calculate the
first order quantum effects by considering one-loop diagrams, analogous to QED,
which modify the graviton propagator and vertex with matter. The modification
to the Newtonian potential is obtained by considering the exchange of a graviton
between two massive bodies, where an effective vertex is inserted twice and the
one loop propagator is used for the virtual graviton. This calculation is done in

Ref. [32] at leading order in Gy for the Newtonian potential,

Gmlmg

r c2r 307 3r2

(2.23)

where we have temporarily moved away from Planck units. The second term in
brackets corresponds to a relativistic correction which is found in classical General
Relativity. However, the third term is due to genuine quantum effects in gravity.

The important point is that the potential decreases as r gets small. We may
absorb the quantum effects in Gy and define an effective coupling Gn(r) valid

up to energy scales E ~ r~1

) :G(l 167 GNh).

- — 2.24
30w 12 ( )

the electro-weak gauge couplings.

12
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This is in opposition to the effects of QED vacuum polarization, which give a one

loop effective coupling to the fine structure constant a ~ €2,

00 = ) — : <:;>110g )

(2.25)

which increases for large energies ;1. The effect of electron-positron pair creation
is a screening of the electric charge. The coupling increases as we move closer
to the bare charge. In contrast, gravitational effects appear as anti-screening,
analogous to QCD. In the one loop approximation the gravitational coupling gets

arbitrarily weak for energies

1 307

Y

- —_—. 2.2

At such high energies, we of course over-extend the expected region of validity
for our one loop calculation. Instead we compute the contribution by inserting

our effective coupling into the one loop propagator recursively,

G(r)=G (1 - k:GNh) +G (1 Gk (1 - kGNh» +

2 2 2
G

- 167 Gnh
1 -
+ 30m 712

(2.27)

where we have defined & = 167/(307) and resummed the geometric series. Now
we can take the r — 0 limit. Apparently, the resummed coupling still shows
strong anti-screening behavior for large energies.

To conclude, an effective theory approach towards gravity allows us to un-
ambiguously compute the leading order quantum corrections to the gravitational
potential between two sources. Moreover, the fact that the effective force due to
quantum corrections between particles decreases at shorter distances suggests the
possibility of soft scattering amplitudes in the UV. We cannot naively extend this
to energies greater than the denominator of the higher order effective interactions.
At these energies our ordering principle is rendered meaningless and in general,
all effective operators consistent with the symmetries must be included in a

calculation.

13
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In this thesis we summarize current evidence that applying non-perturbative
methods to gravity, the hints of improved UV behavior provided by effective field
theoy in can be solidified into a coherent framework of UV finiteness under
the rubric of asymptotic safety. We will argue consequently that gravitational
field theory can be thought of as more than an effective theory in the special
case where the renormalization group trajectory ends on a UV fixed pointlz_f]. In
the next section we present the ground work which allows us to investigate the

non-perturbative nature of gravity.

2.2 Asymptotic Safety

One of the great lessons of quantum field theory is that observable quantities
depend on the scale at which they are viewed. In other words, when claiming
the numerical value of a dimensionless parameter it is necessary to specify the
energy scale of the measurment. Physically, quantum mechanics demands that an
interacting bare particle be thought of as a cloud of virtual particles. These virtual
effects determine the physically measured mass and couplings in non-trivial ways.
Quantitatively the dynamics of the measured parameters in the Lagrangian are
determined by the renormalization group (RG) flow. In other words, the RG flow
describes the entire structure of the virtual cloud surrounding our bare fields.
We frequently employ the prototypical example of the RG with QCD as a toy
model. The Yang-Mills coupling is classically scale invariant. However, once we
include quantum effects, the coupling decreases with energy and vanishes exactly
in the limit of arbitrarily small distances. The fact that as the energy increases,
the coupling approaches the origin indicates that QCD contains a free-field UV
fixed point. Synonymous to this is that QCD is an asymptotically free theory.
Asymptotic freedom is only one of many possible fates for a generic coupling
in the UV. In general, a coupling may also increase without bound, settle on
some periodic behavior or lead to a non-zero UV fixed point. The last choice is

an example of asymptotic safety, a generalization of asymptotic freedom to the

4There is even a precedent for extending effective theories with non-renormalizable
interactions to arbitrarily high energies. The Gross-Neveu model, N interacting Dirac fermions
with a O(2N) global symmetry, in 2+ 1 dimensions [34] is an example where a straight-forward
perturbative quantization fails as expected but the non-perturbative handle provided by the
1/N expansion allows a simple proof of renormalizability to all orders [35].

14
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case where the UV fixed point remains interacting. In the next section we will

describe the general features of an interacting fixed point in gravity.

2.2.1 Fixed point for Newtons Constant

In 4 + n-dimensional gravity the coupling constant Gp carries mass dimension
—2 — n. Since the renormalization group flow deals exclusively with phyisical,
dimensionless parameters, we define a dimensionless coupling using an at this
stage arbitrary scale p.

g=u"Gp (2.28)

In perturbative gravity we expand in g so that some energy scale when 27" ~
Gp, our calculation is bound to fail. However, we anticipate that Newtons
constant G is in fact a function of u, and in order to make connection with

RG based literature [36] we define the wave-function renormalization Z~1(u).
G(p) = Gy Z7 (1) (2.29)

We supply a suitable renormalization condition fixing Z~!(10) = 1 at the energy
scale pp. This condition allows us to define the low energy Newtons constant in
4-dimensions as the experimentally measured 6.67 x 107" m3/kg s?. In practice
we will always take pg ~ 0 and define the IR regime of gravity as the energy
range where Z () ~ 1. At the level of the Lagrangian, Z1(u) appears in the
kinetic operator for the graviton and therefore renormalizes the graviton two-
point function. The scale dependence of Z~!(u) determines the rescaling of the
fields once quantum effects are included in the path integral. For sufficiently
small rescaling perturbation theory remains applicable. More precisely we define
the anomalous dimension
dlog Z

= — ) 2.30
(T (2.30)

which is so named as it measures the rate of deviation from canonical dimension
for the fields. We are generally interested in the fixed-point situation where the
dimensionless renormalized coupling goes to a finite value. For gravity this implies
that the dimensional renormalized Newton’s constant approaches 0 in the UV at
a rate determined by 7. This value constitutes the first genuine observable we

discuss in the context of asymptotic safety.
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To gain more traction with this idea, we consider the generic scale derivative
of g, the beta function of the corresponding coupling in quantum field theory
dg(p)

By = W g (n+2+mn)g(p). (2.31)

In deriving (2.31]) we use the definitions given by (2.28)), (2.29) and (2.30)). There
are two possible fixed points associated with (2.31)). Most simply if ¢ — 0 we

encounter the Gaussian (non-interacting) fixed point where p — 0. Identifying
i = E with the center-of-mass energy of the process at hand, we see from our
effective field theory logic delineated in that this constitutes the regime
where a perturbative expansion is applicable and corresponds to the region of
classical general relativity.

A more interesting possibility presents itself by observing that has
a second fixed point when the anomalous dimension is negative and given by
the value n = —2 — n. This implies that the dimensional Newtons constant
scales in the UV exactly to cancel the canonical scaling factor, or in other words
GNZ7 ) ~ p=2". We see the essence of the fixed point by considering the
real space 2-point scalar correlation function for a theory with n = —2 —n. The
effective propagator once we identify the graviton momentum p? with the RG
scale 12 becomes p~4~". The Fourier transform defining the real space correlator
is

d4+np .
A(ZL’) ~ /Wesz . log(Ax) , (2.32)

where A is some at this stage arbitrary scale. In , the residual interaction
of the theory become effectively 2-dimensional. Interestingly, this feature is
confirmed by Lattice studies of gravity deemed Causal Dynamical Triangulations
(CDT) [37].

In order to fully classify fixed points, we need, in addition to the fixed point

coupling and anomalous dimension, the value of the critical exponent defined by

9B

0 = )
dg s

(2.33)

The critical exponent for the UV fixed point in gravity is computed by setting
g equal to its fixed point value g, in (2.33). For real critical exponents, the

magnitude determines the rate of approach to fixed point scaling and more
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importantly the sign indicates whether the trajectories ending on the fixed point
are stable under small perturbations.

Before we outline the conditions for asymptotic safety, we briefly generalize
the above discussion to the case where there are an arbitrary number of couplings

in the theory, each providing their own dynamics.

2.2.2 Fixed point for general action

In an EFT approach to gravity one generally orders operators as in (2.22)) in
terms of their canonical dimension. At high energies this ordering principle is
insufficient and all operators allowed by symmetries should be included. The

coefficient of each operator then obeys its own RG equation

dg;

bi = dlog p

{90,91---} (2.34)

which in the general case depends on every other coupling in the theory. For a
given truncation of operators, the space of all couplings constitutes theory space.
An interacting (or Non-Gaussian) fixed point occurs at any point where all the
B; vanish and at least one g; is non-zero. We will denote this point g,. At g, we
identify as a generalization of , a so-called stability matriz

o
9g; 13,

where d'(l.) is the canonical dimension of the i-th coupling with no implicit summa-
tion. The function N generalizes the anomalous dimension and encapsulates the
entire quantum structure of the theory. As an example, in gravity since [R] = 2
and [R?] = 4, the canonical dimension for these operators in 4 + n dimensions is
2-+n and n respectively. All higher dimensional operators have negative canonical
dimension in 4-dimensions. The eigenvalues of the stability matrix determine the
stability of the fixed point, and are the critical exponents 6; of g,.

There is some set of trajectories through theory space which emanate from
Jx. As all the §; are smooth functions in the g; and u, these curves form a
manifold, dubbed the UV critical surface. The dimensionality of this manifold

Ayy is then given by the number of directions attracted to the fixed point in
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Figure 2.1: Simple illustration of a a) 1-dimensional b) 0-dimensional UV critical
surface in a 2-dimensional theory space. A 2-dimensional surface corresponds to
all flows ending on the UV fixed point.

its linearized vicinity. If a coupling ¢g; has 6; < 0 (; > 0) this coupling is
called UV attractive (repulsive). Hence, the dimension of Ay is identical to
the number of UV attractive critical exponents in the theory i.e. the number of
eigenvalues of the stability matrix with negative real part. Physically, Ayy counts
the parameters in the theory which are not fixed by the requirement that the RG
flow ends on a UV fixed point. These couplings can only be determined through
experimental measurement. In the next section we will use these definitions to

define an acceptable theory of quantum gravity which is asymptotically safe.

2.2.3 Criteria for the Scenario

We are in a position to state the two criteria for asymptotic safety in quantum
gravity first enumerated by Weinberg [24]. In order for gravity to be an acceptable

and predictive quantum field theory it must;
1. Contains a UV fixed point in all couplings,
2. Allow a finite dimensional UV critical surface at this fixed point.

The second requirement does not necessarily mean that a finite number of

terms are present in the correct UV action, only that in this case the a prior:
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independent couplings must actually be functions of only a finite number [3§].
This criteria is the weakest form of in principle predictivity for a continuum

quantum field theory.

2.2.4 Evidence for Asymptotic Safety

As we noted in Sec. [2.1.3] in order to investigate the high energy behavior of
gravity we need to either compute the gravitational path integral directly or find
a useful non-perturbative expansion. The former is the inspiration for numerical
lattice based investigations in gravity called causal dynamical triangulations
(CDT) [37]. We will only mention in passing that there seems to be some evidence
for asymptotic safety in CDT as the spectral dimension of space-time was found
in agreement with in Ref. [37]. In order to gain a handle on gravity without
resorting to lattice simulations we need clever techniques.

There are several examples of gravity related field theories which are finite
in the UV by virtue of a non-trivial fixed point. The first example is Einstein
Hilbert gravity in D = 2 4 € dimensions. It is well known that gravity in D = 2
is a topological invariant, but the same cannot be said for gravity for D = 2 +e.
Furthermore, perturbation theory is valid in D = 2 since Gy is dimensionless.
The gravitational S-function was calculated at 1-loop [39] and later at 2-loops
[40] as

By =eg —bg® + O(g%). (2.36)

For € = 0, the S-function is a downward facing parabola, exactly like QCD. Thus
the theory in D = 2 dimensions is asymptotically free. However, as soon as the
theory moves a small distance away from D = 2, an interacting fixed point occurs
at g, = €/b in the one loop approximation. In this sense, the lack of perturbative
renormalizability for D > 2 gravity is seen as a result of the D = 2 Gaussian fixed
point being continuously shifted off the origin as € grows. As we will see this is in
agreement with results from renormalization group studies for gravity in D = 4.
Another expansion finding a fixed point is found by minimally coupling N scalar
fields to the metric, and performing a 1/N expansion [41][42].

It was only with the addition of exact renormalization group techniques from
Ref. [43] and Ref. [44] that a rigorous computation of the non-perturbative /-

function became possible [45][46][47]. Details on these techniques are given in
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the appendix. More modern computations now include higher order invariants
up to R® terms [48], also including couplings to matter [49], and truncations
proportional to invariants which do not vanish in perturbation theory [50]. Also,
the fixed point structure in 4-dimensions persists in higher dimensional gravity
theories [51]. In all cases so far, a fixed point with the requisite properties for
asymptotic safety was found. More importantly, the critical exponents indicate
that for RN operators with N > 2, the critical exponents are UV repulsive and
the magnitude of the exponents 6; grow as a positive power of N [48]. This is
strong mathematical evidence that the UV critical surface is finite dimensional.
While no rigorous proof demonstrates that the fixed point is truly robust against
even higher invariants, there is are still many promising paths for improving the

study of asymptotic safety.

2.3 Conclusions

Starting from field theory we examined how gravity, defined as the Einstein-
Hilbert action, fails in perturbation theory. This does not mean that gravity
does not make sense as a quantum field theory, only that it cannot be applied at
arbitrarily high energies. Attempts to cure the poor UV behavior of gravity in
perturbation theory have been plagued by among other field theory nightmares,
unphysical ghosts. It is safe to say that so far no consistent perturbative
quantization of gravity has been found without appealing to non-field theory
based objects (i.e. string theory).

Moving beyond perturbation theory there is hope that gravity may be an
acceptable and predictive theory within the asymptotic safety scenario. There
is growing evidence that these criteria are realized in many approximations
and as of this writing no solid counter-example to the conjecture is known.
However, in order to establish the asymptotic safety scenario at a level more
than mathematical existence, we require some form of experimental input. For
this purpose, recent developments on low scale gravity models in extra dimensions
prove useful.

In low scale gravity models, the topic of the next chapter in this thesis, the
energy where fixed point scaling is realized may be as low as a TeV. With these

fortuitous circumstances, effects from the large anomalous dimension may be

20



2.3. Conclusions

observable at the LHC. This idea was first pointed out in Ref. [52] and Ref. [53].
Further non-collider based applications of asymptotic safety include cosmology
[54][55], black holes [56][57][58] and dark energy [59].
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Chapter 3
Extra Dimensions and KK states

Not into space. Into the space between spaces.

-Prof. Oxley in “Indiana Jones and the Kingdom of the Crystal Skull”

3.1 Introduction

The tantalizing possibility of extra spacial dimensions has trickled through
the thoughts of theoretical physicists beginning with their original proposal by
Kaluza [60]. It was hoped that seemingly different 4-dimensional forces such
as electromagnetism and gravity could be neatly unified in a 5-dimension pure
gravitational multiplet. The 5 degrees of freedom associated with a massless
graviton in 5-dimensions decomposes to 4-dimensions as a scalar ¢, vector A, and
tensor h,,. The tensor is the massless graviton and the vector may be identified
as the photon.

In order to explain the non-observation of these additional dimensions, the
idea of compact extra dimensions proved useful [61]. As opposed to observed
spacial dimensions which possess no boundary, these extra dimensions might
contain an intrinsic size along with boundary conditions specifying their topology.
At length scales large compared with the size of the extra dimensions, all effects
of the higher dimensional theory are visible through effective contact interactions.

The only macroscopic force law in this case is the normal Newtonian potential

mims

F(r) ~

. (3.1)

r2
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As the Compton wavelength of a probing particle reaches this size, the higher

dimensional force law
mimes

T2+n )

F(r) ~ (3.2)

takes effect. In the far UV the imbedding of the extra dimension is irrelevant and
all spacial dimensions are treated on equal footing.

In order do enforce dimensional consistency in (3.2)), we see from that
the numerator must soak up a dimensional quantity. The only two scales in this
set-up are the fundamental scale of gravity M, and the radii R of the additional
dimensions. The interplay between these two scales leads us to the next section
on Large Extra Dimensions and in particular the idea of extra dimensions as a

solution to the hierarchy problem.

3.2 Large Extra Dimensions

The theoretical progeny from the original ideas of extra dimensions have inspired
many beyond the SM scenarios in recent years. In [62] the idea of TeV scale extra
dimensions was first introduced in the context of Supersymmetry breaking. Later,
the inspiration provided by string theory [63] and in particular the invention of
D-branes [64] provided a consistent framework for SM imbeddings. In this thesis
we explore one of the simplest modern realizations, the so-called AADD model
[14][15]. For completeness we note that in addition to the AADD model, extra
dimensions proved remarkably useful in other aspects of model building with
warped [16][17] and Universal Extra Dimension [I8]. The later two ideas are
mentioned only fleetingly in the remainder of this work.

Before defining the large extra dimensional paradigm in detail, we discuss
the original motivation for these models. Quite subjectively, the vast disparity
between the electroweak scale around 100 GeV and the measured Planck scale at
10'Y GeV is aesthetically unappealing. While not a fundamental problem itself,
when taken together with a light SM Higgs scalar, this discrepancy becomes
harrowing to any theorist. Large extra dimensions solve this issue simply by
asserting that the observed vast difference between these scales is an artifact of

low energy observers.
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3.2.1 The Hierarchy Problem

The only particle not yet observed in the Standard Model is the Higgs boson.
In addition to illuminating the mechanism for electro-weak symmetry breaking,
observation of the Higgs may provide the first evidence for the existence of a
fundamental scalar field. As it turns out, the spin of a fundamental field crucially
determines the effect of loop corrections on the measured or renormalized mass
in the theory.

One-loop self-energies for spin-% and spin-1 particles depend logarithmically
on the scale of new physics. To see that this can be at most logarithmic, consider
the massless case where the fields enjoy chiral symmetry and gauge invariance
respectively. In this limit, the mass renormalization vanishes to all orders in
perturbation theory in order to preserve these symmetries. This implies that any
mass renormalization be proportional to the original particle mass, and thus by
power counting can be at most logarithmically divergent. In the language of 't
Hooft, these fields are deemed technically natural. Colloquially, we refer to mass
terms for these fields as being protected from large radiative corrections.

Scalar fields on the other hand do not enjoy any additional symmetry in the
massless limit. For the standard model Higgs, Pauli-Villars regulated self energy

corrections from additional loops produces the following mass renormalization

my = mi + ompy
2 A2

— b+ m%,o%ﬁ—% (33)
where A is the scale of new physics and only the contribution from W loops
is included. If this scale is the EFT cut-off at the GUT or Planck scale, then
the measured Higgs mass my must be a careful cancellation between my and
dmy of the order 1073°. Furthermore, in reality receives contributions from
all massive particles in the SM (and beyond), so this cancellation is even more
suspect. Often, such an unnatural cancellation between the bare Higgs mass and

the self energy correction is called excessive fine tuning.
Now, a caveat is that if we use dimensional regularization instead of Pauli-
Villars, all quadratically divergent self energy integrals vanish. However,
supposing that the cut-off scale A represents the scale where new particles appear,

then the self energies due to these new particles naively acts as a quadratically
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divergent loop contribution even within dimensional regularization. In either
case, the question of why the Higgs mass is so light is not answered within the
Standard Model without appealing to the fine-tuning argument mentioned above.
This constitutes the hierarchy problem.

Two major paradigms conceived as solutions to the hierarchy problem are
Technicolor and Supersymmetry. Both models enforce the stability of the Higgs
mass, through an order TeV compositeness scale or a new symmetry which
protects the scalar mass respectively. As we will see in the next section,
extra dimensions also provide a solution to the Hierarchy problem, and more
importantly motivate the search for quantum gravitational physics far below the

naive Planck scale.

3.2.2 Model details

The ADD model in its simplest manifestation consists of an arbitrary number
of toriodially compactified extra dimensions. First we outline some notation.
We write the 4-dimensional coordinates as x,, while the (4 4+ n)-dimensional
coordinates are y,, such that zy; = x, + y,. For indices we use Greek indices
for 4-dimensions u, v, = 0, 1, 2, 3 and denote extra dimensional coordinates with
lower case Roman letters a,b,c = 5,6, 7, ---n. These are unified to capital Roman
letters A, B=10,1,2,3,5,---n.

Coordinate transformations no longer mix all spacial components. The

following are requirements on the extra-dimensional space described by metric
Gij-
e spatial: the signature for the n extra dimensions is (—1,—1,---).

e separable: the extra dimensions must be orthogonal to the brane so that
the measure d**"z is well defined. In other words, the metric decomposes

as a product space g(4+") = g(4) & g(”)-

e flat: the dimensions must be flat so that they can be integrated out
explicitly in the action. In standard gravity the same is true unless sources

induce T;; # 0. We therefore restrict matter to the y; = 0 brane:

(3.4)

0
Tap(xyy) = s 0 T (x) 60 (y) = ( T (x) 6™ (y) O ) |

0 0
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The assumption of an infinitely thin brane for our 4-dimensional world
might have to be weakened to generate realistic higher-dimensional opera-
tors for flavor physics or proton decay [65] [66]. Einstein’s equation purely

in the extra dimensions

1

— R =0, (3.5)

Rk —

contracted with ¢7% requires R = 0. The full Ricci scalar is then
R = gunR™Y = g R™ + gy RV + g3, R" = g R =RW . (3.6)
using ¢/*R . = 0 along with the fact that g,; no longer transforms under

general coordinate transformations.

e compact/periodic: the simplest compact space is a torus with periodic
boundary conditions and a radius R of the compactified dimension y; =
Yi + 2w R.

At the classical level, compact extra dimensions lead to the following relationship
between the 4-dimensional and D-dimensional gravitational constant. Starting

with the action in D-dimensions we have

Sp = / d* " r/—gR (3.7)
/ d"yd'z\/—gORW

/d4 V—g®R® (3.8)

M"+2
Mn+2

Mn+2

In the the final line of (3.8) we reproduce experimentally measured Einstein
gravity provided we identify M"™? = M2V, In the case of the simplest toriodal

compactification with equal radii R we have
V., = (27R)". (3.9)

Therefore, if the radius of the extra dimensions is large in Planck units, then the
fundamental scale of gravity can be significantly lower than 10'® TeV. Now we
make connection with the original inspiration for these models, namely that for a

fundamental Planck scale of the order of a TeV, the size of the extra dimensions
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can be small enough to have avoided detection thus far. In this case the mass
renormalization to the scalar higgs mass should be proportional to M2 /(1672)
as opposed to M3, /(167?) and the amount of fine tuning is eliminated or greatly
reduced.

This leads us to the basis of extra dimensions as a solution to the hierarchy
problem: our 4-dimensional Planck scale Mp; is not the fundamental scale of
gravity. It is merely a derived parameter which depends on the fundamental (4 +
n)—dimensional Planck scale and the geometry of the extra dimensions, e.g. the
compactification radius of the n—dimensional torus. Matching the two theories

translates into
Mpy = M, (2nRM,)"?. (3.10)

If the proportionality factor (2mRM,)™? is large we can postulate that the
fundamental Planck scale M, be not much larger than 1 TeV. In that case
the UV cutoff of our field theory is of the same order as the Higgs mass and there
is no problem with the stability of the two scales.

Assuming M, = 1 TeV we can solve the equation above for the compactifica-

tion radius R — transferring the hierarchy problem into space-time geometry:

n R

1| 102 m
21 103 m
31 10%m
6 | 107" m

At least in the simplest model n = 1 is ruled out by classical bounds on gravity. A
possible exception is if there is a larger than expected mass-gap between massless
and massive excitations [23]. For larger values of n we need to test Newtonian
gravity at small distances [67][68][69] and we discuss these constraints in Sec. [3.4]
Note that the analysis in this section is purely classical, and it is obvious that its
physical degrees of freedom do not survive compactification. For this we resort
to the original ideas of Kaluza and Klein and decompose the higher-dimensional

gravitational theory as an effective 4-D theory with residual gauge symmetries.
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3.3. Kaluza-Klein States

3.3 Kaluza-Klein States

With a clear geometrical picture of large extra dimensions, we now perform a KK
reduction and identify the propagating degrees of freedom in the 4-dimensional
effective theory. Physically this corresponds to classifying components of the
higher dimensional metric as representations under the 4-dimensional Poincaré
group. In a fully modern treatment, this procedure was carried out in [19] 20],

although we follow closely the approach of Ref. [7].

3.3.1 Spectrum

Just as with the 4-dimensional case, we expand about a flat background 7y
and define the D-dimensional graviton field hy;n so that gy nv = nyun + Kphan.
Here we define the D-dimensional coupling constant kp = 327/M"™2. The D-

dimensional action is

S = /d4xd”y£D (3.11)

with L£p the D-dimensional generalization of ([2.13|)

1 1
Lp=— §hABDhAB + 5h0h — hABo405h + hABOL0hMP — kphAB T p.
(3.12)

Periodic boundary conditions allow us to Fourier decompose the y component of

the graviton field

h(n) N
o) = 3 3 A e

mip=—o0 My =—00

(1) e/ 1 K ()il ]

i+ £ 5 o

ni=1 np=1

(3.13)

where hi@(w) is a four dimensional bosonic field with mass 7 - 77/ R?. The second
step is possible because hap(z) is real.

To avoid confusion we emphasize that hi@ (x) does mnot constitute an
additional degree of freedom in the theory. The internal index 7 can be thought

of as a discretized momentum index, such that hffg(x) and hz(g)(m) differ only
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3.3. Kaluza-Klein States

by the sign of the extra-dimensional momentum hl(g) (x) = h(A_gL) (x). This is also
obvious from the fact that hfg(x) and h%}) (x) are not distinct field excitations.

It is now simple to work out the form of Einstein’s equations in terms of the field
hf%(x). For example, the first term in 1) decomposes as

1

O hyp(z) = Z (2w R)™/?

nj

1 C () 0y AT\ itn)/R
== ;Wﬁc {(5M(9“hAB(x)+5j hAB('x)Ej 6( v)/

0c0” W) /]

1 Jo . . )
=S TR [DM) - ”RZJ} W) (x) i)/ R (3.14)

An independent check on the consistency of this method is that the 4-dimensional
massive graviton field hl(ﬁ,) (x) only has a Pauli-Fierz mass term, o [h,, — 1,7
and no mass terms originating from mixed index derivatives. This is required for
a consistent massive spin-2 field [70].

In order to derive the propagator for the 4-dimensional fields hf@(z) we fix
the gauge using a generalization of the 't Hooft £ for spontaneously broken gauge

theories. We add the gauge fixing term

F2
Lop = ——, (3.15)
3
with .
F = 8“1_1#1\, -+ f(?’(th — 2—5772]\[}7,), (316)
and .
BMN = hMN — 577MNh (317)

The DeDonder and Unitary gauge for the 4-dimensional theory correspond to
¢ = 1 and £ = oo respectively. We now derive the decomposed effective 4-
dimensional action in both gauges. In the remainder of this work we will suppress

the extra dimensional label (77) for notational clarity.
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3.3. Kaluza-Klein States

3.3.2 DeDonder Gauge

We decompose the action first in the DeDonder gauge. This corresponds to the
only value of ¢ which maintains Lorentz invariance in (3.16]), and the resulting
term is the generalization of the 4-dimensional gauge fixing used in (2.16)). The

still D-dimensional action is

1 1
L= —éhABDhAB + hOh. (3.18)

In order to proceed it is helpful to write the D dimensional graviton field in

matrix notation in terms its 4-dimensional irreducible components.

h 1/_l v LAZ
hAB:< ”’1277“¢ V2 “). (3.19)
7§AVj ¢ij7

Inserting (3.19)) into (3.18) conveniently produces diagonal kinetic terms. Upon
integrating over the extra coordinates we obtain the canonically normalized

kinetic Lagrangian for the various fields
, 1
£= Y (hul O+ mii e — L0+ i
1
+ ¢ (0 + migg ) dij — Fo0+ migk )¢ + A (O + m%(K>A¢> - (320

The corresponding propagators for tensor, vectors and scalars we obtain by

inverting the kinetic terms.

eDonder 1 ,—7
AR (p, mkk) = 55( NG (Mallos + MusTva — NawTlag) (3.21)
A?LZBonder(p’ mKK) — 6(ﬁ’7ﬁ)5ij77,ul/AG (322)
DeDonder — lé(ﬁv_ﬁ)A 0:1.0 5 0:10:. — id 0 3.23
igkl (p7 mKK) 2 G ikl + it Jk §+2 iy okl | - ( ) )

Here we define Ag = (p? — m%)~!. By subtracting the trace in the definition of

(13.19)) we avoid unwanted mixing between h,,, and ¢ coming from the decomposed
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3.3. Kaluza-Klein States

second term in (3.18). In physical terms, the DeDonder gauge choice maintains
translation invariance in the extra dimensions and corresponds to a freely floating
brane in the extra dimensions. In this sense the dynamics of the brane are
decoupled from the gravitational sector. The degrees of freedom are as follows.
First we have the +2 components of the massive graviton with 2 polarizations.
Next, there are the n massless components of the vector each containing 2 degrees
of freedom. Finally, there are the n(n+ 1)/2 scalar components in the symmetric
tensor ¢;;.

Since the brane moves in the extra dimensions, we must also consider its
action. For this purpose it is helpful to follow the lead of Ref. [T1] and define the
brane coordinates y,(z) = (2#, ()"Y/2¢'(x)) where 7 is the brane tension. Since
this choice of coordinates breaks translation invariance, the £(x) correspond to n
Goldstone modes. The induced metric of the brane then simply defines the brane
dynamics through minimal coupling. We do not provide details on this procedure
here as our chosen processes are insensitive to the brane dynamics assuming the
particular energy hierarchy delineated in Ref. [72]. We mention their existence
though as they correspond to an additional n degrees of freedom. From this result
and the previous paragraph we see that the total number of physical degrees of
freedom in the DeDonder gauge is (n? + 5n + 4)/2.

Finally, we note that this choice demands ghost fields 7,7 be included in
the original Lagrangian. For gravity these are spin-1 anti-commuting fields with
propagator A, = 7,,/k? around flat space [73]. As with QCD in Feynman gauge,
ghosts modify gauge boson legs in diagrams involving self interaction vertices. For
our considerations in this work, tree-level virtual graviton exchange and one-loop
self energy corrections, these conditions are never satisfied and we do not need
to specify specifically the ghost-gravity interactions. Moreover, even for real-
graviton emission, the ghost contribution only comes in at next-to-leading order

in the gravitational coupling.

3.3.3 Unitary Gauge

The goldstone modes associated with the breaking of translation invariance
are eaten by the massive vectors in the unitary gauge. Explicitly, the KK

decomposition proceeds as follows. Fixing the gauge parameter £ — oo gives
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3.3. Kaluza-Klein States

a translation breaking gauge fixing operator

Laor = (0"hin)* — mithj + mithw (3.24)

after integrating over the extra dimensions. The result in (3.24]) corresponds to
the eaten Goldstone modes needed to form the massive tensor and n massive

vectors. The kinetic action now reads
1 1
Lp=— §hABDhAB + §hDh — h*B9,405h + h*B0,0,h%, (3.25)

which when inverted for the propagators in terms of the same 4-dimensional fields

gives

unitar 7, —17 2
A (0, mik) = 55( TVAG(tpatvs + tuatus — g tmtas); (3.26)
Aiiejl?/onder(p7 mKK) — 5(ﬁ,—ﬁ)3thVAG’ (327)

1 .. . 2
gzll)onder(p’ mik) = 5(5( ’_")AG (szljjl + Py Py, — mpijpkl) ) (3.28)

using the notation of Ref. [7] that

_ PuPv . N
Ly = Nyw — mZ P = 0;; — 3 (3.29)
Here n;/R = p;; is the momentum component perpendicular to the brane.

The two gauges are identical up to longitudinal terms. The interpretation of
the unitary gauge is that the brane breaks translation invariance in the extra
dimensions, and the resulting n goldstone bosons are eaten by the now massive
vectors. Note that the denominator of matches that of a massive weak
gauge boson in the (electroweak) unitary gauge. The counting of degrees of
freedom are as follows. There are now 5 corresponding to the massive graviton
which has eaten a massive vector, leaving an additional n — 1 vectors. This is
evident by rewriting the fields in terms of the mass eigenstates as in Ref. [19].

The scalars maintain the same number n(n — 1)/2 so we obtain (n? + 5n + 4)/2
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3.4. Search for Extra Dimensions

as in the DeDonder gauge.

In passing we note that strictly speaking the two gauge choices describe the
same physics, but in the DeDonder gauge, fluctuations of the brane can be
decoupled from the interaction of the massive spin-2 graviton and spin-1 gravi-
photons. For loop calculations, the longitudinal modes of the spin-2 graviton lead
to IR divergences which must be regulated, carried through the calculation and
eventually checked for cancelation in the end for a genuine physical observable.
In practice, this is a poor choice for sufficiently involved loop calculations. We
find that the DeDonder gauge where IR divergences are prohibited by naive IR
power counting provides the simplest set-up for loop computations.

Finally, interactions between KK particles and the SM are determined
either by expanding the minimally coupled gravity-matter interactions in the
decomposed fields, or through the standard operator hynT™M¥ for a suitably

TMN guarantees that

brane confined energy momentum tensor. The definition of
these are equivalent. We derive the necessary vertices in the appendix. Note that
at lowest order matter interacts solely with the tensor mode through the energy
momentum tensor. In addition to simplifying computations, this has the positive
effect of eliminating equivalence principle violating fields which may in principle
appear with the interactions of the KK scalar 0-modes.

As we enumerated the particle content of the AADD model, we now outline

some of the constraints on the many experimental predictions.

3.4 Search for Extra Dimensions

Perhaps the most appealing aspect of AADD models is that they provide several
entirely orthogonal experimental predictions [74]. These can be divided into two
classes, those which are sensitive to the first massive KK excitation, deemed IR
constraints, and those probing higher modes in the KK tower. The later are
further divided into loop-based indirect constraints and direct constraints from
collider production. The main focus of this thesis is collider experiments, but

first we briefly overview the other classes of experimental constraints.
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Figure 3.1: Constraints on deviations to the Newtonian force law taken from Ref.

[6].

3.4.1 IR Constraints on Extra Dimensions

First, as mentioned in Sec. [3.2.2] differences from the 4-dimensional force law
are tested in gravitational experiments at small distance scales. We parameterize

deviations from the Newtonian potential as
V(r)=Vy(r)(1+ae?), (3.30)

where o and A are calculated in the specific theory. For extra dimensions we
identify A = R and « is the degeneracy of the first KK excitation. The most
recent bounds are summarized in Fig. taken from [6]. From this data for
example with n = 6 extra dimensions, the constraint is M, > 6.4 TeV using the
relation in between M, and R.

The second class of low energy constraints are due to the abundance of new
light particles. Such states are constrained by astrophysics [75] and cosmology
[76][77] in a similar manner as for example axions [7§]. These carry different types

of bounds compared to the direct tests. For n > 4 extra dimensions, R~! need
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to be bigger than a few TeV. For 2 and 3 extra dimensions the constraints are
many TeV. With these constraints taken seriously, we are at odds to reconcile
the hierarchy problem with extra dimensions. However, since these constraints
are generically low-energy, dealing with the first massive KK excitation, we can
perfectly well adjust this to fit within the above constraints, but leave the rest
of the model untouched [23]. Therefore we turn to the UV side of theory and

constraints originating from the lowered cut-off in the standard model.

3.4.2 Indirect Constraints on Extra Dimensions

With the cut-off scale of the SM at the TeV, we expect extra dimension to generate
higher dimensional operators suppressed by a TeV energy scale. However, we
know from proton decay, flavor physics and the observation of neutrino masses
that the suppression scale should not be less than 10'2, 102~ and 10! TeV
respectively [74]. This generically occurs in theories of new physics at a low scale,
and there certainly exist circumventions most simply by enforcing new additional
flavor symmetries.

There are also indirect constraints coming from operators which appear in
the SM and are measured precisely. Two examples are the muon g — 2 [79] and
electroweak precision constraints. In the former, constraints are generally weaker
around 400 GeV on the generic scale of strong gravity. For higher numbers
of extra dimensions n > 6 this is pushed up to the TeV level. Electroweak
precision computations in Ref. [80] and later in Ref. [81] found strong multi TeV
level constraints in the STU fomalism [82]. However, the validity of these
computations was questioned in Ref. [7], which then computed new bounds
using the € parameter with

(miy)  TI(m%)

€ = — . 3.31
¢ mé, m2 ( )

Here I1(m%,) is the W* boson self-energy evaluated at the scale my,. Physically,
this tests the value of the tree-level SM weak mixing angle using the forward-
backward asymmetry in Z — [T[~. Note that € is closely related though
not identical to the Peskin-Takeuchi 7" parameter used previously. Generically,
theories of higher numbers of extra dimensions are primarily constrained by low

energy precision experiments. For recent examples in the warped case see Ref.
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[83] and Ref. [84]. We will present the constraints on M, for various numbers of
extra dimensions together with our results implementing the asymptotic safety

scenario.

3.4.3 Real Emission Searches

Of the two classes of collider observables we first consider the real emission of
Kaluza—Klein gravitons at the LHC [19, 20]. The outgoing gravitons cannot
be detected directly and appear as missing transverse momentum or missing
transverse energy Fp. One likely process to radiate a gravitons is single jet
production [85]. For the graviton—jet final state an obvious irreducible background
is q¢ — Zg where the gluon is emitted from an initial-state quark and the Z
decays invisibly. This background is known to next-to-leading order [86], but at
large partonic energies the rate prediction becomes increasingly uncertain, due to
large logarithms. Extracting new physics from pure QCD signatures at the LHC
is therefore always difficult.

Due to the structure of the parton densities of quarks and gluons inside a
proton, Tevatron searches for large extra dimensions concentrate on yJ, final
states. Similarly, at the LHC a one photon final state could be resolved in the
detectors optimized for Higgs searches in the H — <7 decay channel. Hard
single photon events would constitute a revealing signature for physics beyond
the Standard Model.

Similarly, the Drell-Yan process ¢q¢ — ~*,Z — (T¢~ with two leptons
(electrons or muons) in the final state is the arguably best known hadron collider
process [87]. A large amount of missing energy in this channel would be a
particularly clean signal for physics beyond the Standard Model at the LHC [8§].
Depending on the detailed analysis, both of these electroweak signatures do have
smaller rates than a jet+graviton final state, but the lack of QCD backgrounds
and QCD-sized experimental and theory uncertainties result in discovery regions
of similar size [19][21].

Going back to the theoretical basis, the partonic cross section for the emission

of one graviton is not the appropriate observable. We are interested in is the entire
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KK tower contributing to the missing energy signature

dotover — Z do_graviton _ /dN do_graviton7 (332)

where [ dN is an integration over an n-dimensional sphere in KK density space.

Here we define

_ ~in—1 g 2"/
/ AN = S,y |7 |, S11 = o7 (3.33)
In the ultraviolet the sum over 7 is truncated to those states which satisfy
kinematic constraints. In particular, the KK mass satisfies mgx = |fi|/R < /s
where /s is the partonic center of mass energy (related to the proton center of
mass energy via s = (Ecom)? 2172).
We rewrite the KK state density as a mass density kernel using dmxg /d|7i| =
1/R

Sp-1 ( Mpr\’

This implies for the production of a Kaluza—Klein tower

LS mitdmgk [ Mpy ?
d tower __ d graviton ~n KK . 3.35
o o QM) L (3.35)

The key aspects of this formula are:

e The factor Mp; from the KK tower summation can be absorbed into the

one-graviton matrix element squared. The effective coupling of the entire
tower at the LHC energy scale E is then E/M, 2 1/10 instead of E/Mpy,

~J

i.e. roughly of the same size as the Standard Model gauge couplings.

e In particular for larger n the integral is infrared finite with the largest
contributions arising from higher mass modes. This is the effect that KK
modes are more tightly spaced as we move to higher masses and even more

so for an increasing number of extra dimensions n.

e The mkg integration at least on the partonic level — i.e. without the parton
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Table 3.1: Real emission constraints on the Fundemental scale M, (in TeV) taken
from Ref. [§].

Experiment and channel n=2 n=3 n=4 n=5 n==6
LEP Combined 1.60 120 094 0.77 0.66
CDF monophotons, 2.0 1.08 1.00 097 093 0.90
D@ monophotons, 2.7 097 090 087 085 0.83
CDF monojets, 1.1 fb=!  1.31  1.08 0.98 091  0.88
CDF combined 1.42 116 1.06 099 0.95

densities — can be done without specifying the process.

A 2 2
Sn—1 Mpy 1 Sn—1 Mp\ ™ A"
/ /0 (27 M,)" (M) KK TR = o <M) n

(3.36)

The scale A in this case is related to the kinematics of the problem and is
roughly the hard scale E of the partonic collision. Therefore the result is

insensitive to physics far above the LHC energy scale.

Finally, we conclude the discussion on the real emission of graviton by providing
a table of constraints based on the previously mentioned processes taken from
Ref. [§].

3.4.4 KK Integral and Virtual Graviton Exchange

Virtual gravitons at the LHC demand a markedly different analysis since by
definition they do not produce gravitational missing energy. These signals are
gravitons which decay within the detector into observable states. In the Standard
Model some of these final states, leptons and weak gauge bosons, can only be
produced by a qq initial state. Since at LHC energies the protons mostly consist
of gluons, graviton signatures get a head start. The Tevatron mostly looks for
two-photon or two-electron final states [89]. At the LHC the cleanest signal
taking into account backgrounds as well as experimental complications is a pair
of muons [90]. In Higgs physics the corresponding channel H — ZZ — 4u is
referred to as the ‘golden channel’, because it is so easy to extract.

In the Standard Model the Drell-Yan process mediates muon pair production

via the s-channel exchange of on-shell and off-shell v and Z bosons. Aside from
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the squared amplitude for graviton production, these Standard Model amplitudes
interfere with the graviton amplitude, affecting the total rate as well as kinematic
distributions. This mix of squared amplitudes and interference effects make it
hard to apply any kind of golden cut to cleanly separate signal and background.
One useful property of the s-channel process is that the final state particles decay
from a pure d-wave (spin-2) state. This results in a distinctive angular separation
A¢ of the final state muons [91].

Since the properties of each KK mode are identical other than mass, for a
given inclusive process, we generically sum over all modes. This is a distinct
feature of extra dimensional theories which we now discuss in detail. Consider

an s-channel graviton exchange

]|

where any graviton in the KK tower can appear as an intermediate state. These
states must be summed at the amplitude level. Since this KK sum involves a
very large number of states (~ 10%?) [92] with mostly regular spacing well below

any experimental resolution, we replace it with an integral

1 - = Sn—l n—
i D D W/deKmKKl..._ (3.37)

Absorbing the geometric size of the extra dimensions R into the coupling, Mp, =
M, (2rRM,)"/?, the tower of KK states now couples proportional to M,. It
is instructive to go back to the full (4 + n)-dimensional theory, where we only
have the fundamental Planck scale M, and the gravitons propagating in the
the full (brane 4+ bulk) space. In this case the sum leading to is merely
a loop integral over the unfixed bulk momentum, with the appropriate powers
of M, in front. The power of M, is fixed by the higher-dimensional coupling,
[kp] = —=(2+n).

From the KK graviton Feynman rules [19, 20] it follows that for a massless
Standard Model (T} = 0) and energy-momentum conservation (k, 7" = 0), the

tensor structure of the graviton matter coupling simplifies significantly. Tree—level

39



3.4. Search for Extra Dimensions

graviton exchange is described by the amplitude A =S - T, where

T =T, T" — THTY (3.38)

24n HY

is a function of the energy-momentum tensor, and

S(s) = 2t / dm " (3.39)

— M

defines the summed KK kernel. The amplitude (3.39) is ultraviolet divergent for
n > 2. For 0 < n < 2 the integral (3.39) converges. By dimensional analysis the

amplitude behaves as [1]

Snfl s n/2—1

where the coefficient C' may be divergent. We can compute the amplitudes for
n > 2 by analytic continuation of the result from 0 < n < 2, corresponding
to dimensional regularization. In this case one finds Cpg = =/T (1 — %)
For odd dimensions Cpg is finite, but remains divergent for even dimensions.
Alternatively, an upper limit of the integration A may be placed in (3.39), in
which case C' — C(A/+/s). In either case the regularized version of the effective

operator takes the form

B A n—2
S= —5;\’“‘441 (M ) C (3.41)

for sufficiently small s/M? < 1 where A stands for the UV cutoff scale introduced

to regularize C,
C= / dr 2" ? F(x), (3.42)
0

and F(z) denotes the explicit regularization for the integral (z = m/A). The
coefficient C' now parameterizes the effective operator in terms of the (unknown)
UV completion of the theory. There are several ways to implement a UV
cutoff [19, 00, 89, 85, ©3]. For a sharp cutoff the UV modes are suppressed
by hand above m = A and Fiarp(2) = 6(1 — ). This leads to

Osharp - n - (343)
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Note that the strong UV divergence of the single graviton amplitude (3.39) is
now parameterized by the strong sensitivity of (3.41)) on the UV cutoff scale A.

Note additionally that the logarithmic divergence at n = 2 becomes a simple pole

in the coefficient (3.43]).

On dimensional grounds and to lowest order in s < M,, the effective operator

representing s-channel graviton exchange is written
S=——+. (3.44)

This parameterization using the scale Mg is commonly applied in the literature.
In general, the mass scale M.z cannot be determined from low-energy consider-

ations alone, but requires input from the full quantum dynamics at the Planck
scale. The regularization ([3.42)) also fixes the mass scale Mg in (3.44]) as

) =32 () < (3.45)

We will study in this thesis how quantum gravity regularizes the amplitude ({3.39)
dynamically, provided that the high-energy behavior of gravity is governed by a

renormalization group fixed point.

3.5 Conclusions

In this chapter we saw that the decomposition of a D-dimensional massless
graviton into 4-dimensional fields produces massive scalar, vector and tensor
excitations. We specified two specific gauge choices, the DeDonder and Unitary
gauge, and found that the propagators in these two cases are identical up to
longitudinal terms. In the DeDonder gauge, the Goldstone modes are treated
somewhat separately from the gravitational physics. Although unequal terms
between the two gauges must drop out for any physical observable, there are
substantial differences in the complexity based on this choice. In the next chapter
we will compute observables in both gauges based on technical convenience.
The massive spectrum of particles in AADD like models is interesting not only
from a theoretical point of view, but from the experimental perspective as well

since these have observable consequences. In the simplest geometry where the KK
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modes are compactified on a n-dimensional torus, the spectrum of massive modes
follows the pattern of integer multiplets on S,_;. Summing over these modes is
well approximated as an integral, and once all powers of mgyk are accounted
for, the integral is divergent in n > 1 dimensions. Withholding input from
quantum gravity there are two options. First, the divergent KK integral may
be replaced with a dimensionally consistent effective interaction as in . The
search for extra-dimensions via virtual graviton exchange is transformed into a
generic search for four-fermion or two-boson-two-fermion contact interactions. In
other words, all dynamics associated with the KK gravitons are lost. Testing
this hypothesis on LHC distribution is certainly meaningful, but does not really
constitute a search for extra dimensions. The second option is to apply some
type of cut-off regularization but keep the s dependence of the integral. Since the
original integral is UV divergent this means cutting of the integral in exactly the
regime where the contribution to the cross-section is largest. A large sensitivity
to the details of UV physics is then reflected in the positive powers of the cut-off
Axk.

In the next chapter we will apply asymptotic safety inspired arguments in
an attempt to remedy the divergent KK integral in models with n > 1 extra
dimension. We will find that the cut-off on KK modes can be completely removed

in this case, at both tree and one-loop level.
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Chapter 4

RG Improved Gravitons

4.1 Introduction

Inspired by the previous chapters on asymptotic safety and extra dimensions, we
attempt here to meld these two promising ideas. The reason for this undertaking
is that KK gravitons on their own do not satisfactorily describe virtual graviton
processes. By assuming the UV fixed point, we find first and foremost that the
KK integral is cut-off independent. Moreover, we find in this chapter several
other improvements with the UV fixed point.

The ordering of the chapter is as follow; first we develop some helpful
approximations to the full anomalous dimension at the fixed point. Second, we
carefully study the KK integral in the low y/s-limit and derive a useful renor-
malization condition. This allows a full comparison of scheme (in)dependence
among the various approximations. Finally, we compute the full amplitude
for s-channel tree-level virtual graviton exchange and one-loop contribution to
massive gauge boson propagators. These assist in the next chapter when we

make phenomenological predictions.

4.2 Approximations of Asymptotic Safety

We require non-perturbative techniques in order to study gravity in the vicinity
of the non-trivial fixed point. These are outlined in Appendix 1.4 Within this

framework we recall a convenient form of the g-function in the minimal Einstein-
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Hilbert truncation [94].

(1—4(4+n)g)(n+2)

bo = 1—(2n+4)yg

(4.1)

Note that (4.1]) is inherently an all-orders expression due to the factor of g in the
denominator. Likewise, from the definition of the S-function in (2.31)) we obtain

an expression for the anomalous dimension

2(n+6)g
=— 2)———. 4.2
Integrating the differential equation in (4.1)) produces
1 1 . —
o Oc g0 O g — 90
where we define the specific value of the non-Gaussian fixed point
1
*x — 9 4.4
g 4(4+n) (4.4)
and the critical exponents for the two fixed points
4 2
bo—n+2, fyg—2t+ (4.5)

n-+6

The magnitude of the critical exponents determine how quickly the RG flow
approaches the respective fixed points. For all n > 0 we have Oyg > 0. Note
also that the critical exponents have opposite sign indicating that they are UV
and IR attractive. We see in that as g approaches its fixed point value
1/(4(4+n)), the anomalous dimension 7 approaches the value —2—n as required.
We integrate (4.3) and obtain

which should be inverted in order to define the running coupling. However,
without making some approximation for (4.6)) this is not algebraically possible.

Nevertheless, we can obtain a final expression for the wave-function renormaliza-
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4.2. Approximations of Asymptotic Safety

tion by integrating up to the scale i the anomalous dimension

M

27 () = 7" (o) exp ( / dkn(k‘))- (47)

0
In Section we saw that in an entirely generic way, the renormalization group
improved coupling Z~!(u)Gy for asymptotic safety approaches the non-trivial
fixed point at a rate corresponding to an anomalous dimension of n = —(2 + n).
In principle we can obtain the exact solution by inverting with the critical
exponents given in (4.5]), plugging this in for the anomalous dimension and
integrating the result up to the scale y in ([4.7). However, even in the simplest
Einstein-Hilbert truncation this is not analytically possible. Solving for Z~!(1)
numerically on the other hand contains its own downsides. First of all, the
expression itself will enter the KK integral, which in some case should be carefully
evaluated via contour integration. Second, we would like to implement the
running coupling in a Monte Carlo event generator, and a complicated numerical

form for this expression will drastically slow down computational speed.

4.2.1 Phenomenological Models

In order to make progress we introduce three approximations for Z~!(u) which
capture the correct dynamics of asymptotic safety while remaining sufficiently
agile for use in our LHC computations. First of all, we define the A to be the
crossover scale for fixed point scaling. Later we will make this definition more
precise. The three requirements for an acceptable form of the wave-function

renormalization are the following.
1. For p < Ar we insist that Z~! is classical so that Z71(u < Ap) ~ 1.

2. At high-energies p > Ay, Z7' — 0 with exactly the power law behavior

dlog Z
dlogpu

D-2 (4.8)

3. The interpolation between the two regimes should be a smooth] function

of p.

'We will consider one example of a discontinuous function and mention how this can lead
to unphysical results
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4.2. Approximations of Asymptotic Safety

With the previous three considerations we introduce first the linear approxima-

tion [I]
1

Zli_nl (:u) (49)

10f==== 10p====
o8l 0.8;
06[ 0.6;
04l 0.4;
02! 0.2;
ook, 0oL
10F 10F
08[ 0.8; n=6
06! o.e; Z7 ()
04r 0.4;
02} 02
E i/ A
ook ook ‘

0.0 0.5 10 15 20 25 3.0 0.0 0.5 1.0 15 2.0 25 3.0

Figure 4.1: Z~!(u) representing the cross-over from classical to fixed point scaling
for the quenched (red), linear (blue), quadratic (magenta) approximations and

n = (3,4,5,6) extra dimensions. For ease of comparison we have set Ag? ) = A(T1 ) =
Ag? ) for all curves.

A second form we make use of is the quadratic approximation [I]

3 GNMZ—HL 2 GNM2+n
Z1 —4/1 — 4.10
ka0 \/ v (S e (410

The steps necessary to derive (4.9) and (4.10) from (4.6) are found in Ref. [IJ.
Note that the cross-over width in (4.10)) is smaller than the one in the linear

approximation (£.9). In fact as evident in Fig. [1.2] the cross-over width of the
solution (4.6)) is bounded by the width of the linear cross-over (4.9)) and the width
of the quadratic approximation (4.10)). In general, the fixed point value of the

dimensionless coupling ¢g* contains gauge and cut-off dependency. Therefore, for
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Figure 4.2: Comparison of RG flow equation (dashed) with the linear (blue) and
quadratic (magenta) approximations for n = (3,4,5,6) extra dimensions. For
increasing n the gap between the approximations diminishes.

our purposes we let ¢,/Gn = AT}“ where now A7 is treated as a parameter
related to the fundamental scale of gravity M, by an O(1) number. However,
we separately label the transition scale A(T1 ) and Ag? ) in the linear and quadratic
approximations respectively.

Finally, we have the quenched approximation [52]

1 1 for,u<Ag]) 0 foru<A§9)
unen(:u) = 0)\n+2 /7, n+2 (0) 77(:“’) = (0)
(A7) 1 for pn > A7 —2—n for p> Ay

(4.11)

In the quenched approximation we identify the cross-over scale Ar with the
parameter Ag? ) in 1} The implicit 6 function used in the piecewise definition is
non-analytic function of the RG scale p. In contrast, the smooth approximations,
(4.9) and (4.10), exhibit two useful properties. First that they contain no
additional poles in the external momenta once this is identified with the RG
scale p. Second, they imply a KK kernel which falls of sufficiently quickly as a
function of the momenta that the contour around the classical pole can be closed

at 0o, and the Cauchy’s theorem can be applied as usual. This will prove useful
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4.2. Approximations of Asymptotic Safety

when we evaluate tree-level and one-loop amplitudes.

In Fig. we compare , and featuring identical scale Arp.
In Fig. we contrast the two smooth approximations with the shape of the
full RG result obtained in the following way. First we invert and define
g(n) = g(log Z(p),). Now (4.9) and may be used to define g(u), itself
inverted for the RG equation given in (4.3]). Finally, the scale p is fixed so that
the shapes are conveniently compared. In general, the deviation from the full

result is modest for both the linear and quadratic approximation.

4.2.2 Scale identification

The tree-level single graviton amplitude in extra dimensions includes an integral
over perturbative KK propagators. Quantum gravitational corrections are
included by replacing perturbative propagators with quantum corrected running
propagators, and perturbative vertex functions with running vertex functions. We
include only the RG correction to the propagator, and ignore vertex corrections.
This step requires that the RG scale i is identified with the scale relevant for the

physical process under investigation

= p(y/'s,m), (4.12)

in general depending on some combination of the center-of-mass energy /s and
the KK mass m. A discussion of a matching which involves several scales is given
in Ref. [58] in the context of black hole production. The RG improved amplitude
takes the form [I]

S(s) = — R (M*> C(s; Ar), (4.13)
where - 1
" 1
. _ - — A 4.14
C(S, AT) /0 dx—S/A% T 332 A (H' H’(\/Ea m, T)) ) ( )

and x = m/Ap. The energy dependence of (4.14]) is encoded in the wave function

factor Z(u), itself defined via the running of the gravitational coupling.
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4.2. Approximations of Asymptotic Safety

Figure 4.3: The n-dependence of the amplitude |S| M?/(47) defined in (4.13).
Thin grey lines cover Ar/M, = 0.5 to 1.5 in steps of 0.05 (from bottom to top).
Close to Ar/M, =1 (thick black line), the overall n-dependence of the amplitude
is very weak. From Ref. [I]

4.2.3 Low-Energy Matching

First, we analyze the virtual graviton exchange and in the limit
of small center-of-mass energy where /s < M,, A7. Withholding input from
quantum gravity the integration over the KK gravitons is cut off and we obtain
the well-known result . We apply the renormalization group corrections
predicted by asymptotically safe gravity. In the limit of small \/s < M,, the

matching (4.12)) becomes
w=m, (4.15)

so that the RG scale is matched to the KK mass. For the now s independent

number (4.14]), we find

C= / dra" 2 Z Y xAr). (4.16)
0
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4.2. Approximations of Asymptotic Safety

where z = m/Ar. The scale-dependence of the wave function factor Z~! acts
as the regulator F'(z) in (3.42). The coefficient is computed for a given
renormalization group trajectory G(u) = GnZ~!(u) or in other words once we
integrate over p. We can analytically compute (4.16|) in the three approximations
using the identification . In the quenched approximation (4.11)), we find [95]

Cloy = : + Lo Crrr + Cuv . (4.17)

n—2 4

The first term Cgpr is identical to the contribution within effective theory ,

provided the effective theory cutoff coincides with the energy scale where gravity

becomes non-perturbative. The second term Cyy originates solely from the KK
gravitons with mass m > Ap (x > 1). The cross-over point is for n = 6 extra
dimensions, below which the IR contribution is larger. For more dimensions the

UV regime dominates. For the linear approximation (4.9)), we have [I]

1 n—2 n+6 1 2 1
Cay=-T r =-+-(=)+0(=). 4.18
W=y (n+2) (n+2) 3G (m) (4.18)
We see that (4.18) reaches the same limit as (4.17). For the quadratic

approximation (4.10]), we obtain [1]

r(”ii)r(— i2) 11 1
Clg) = ——— " = —+—+0<—). (4.19)

1 o 2
(n—|—2)F 2n+ 4 2n n
n+2

The large-n limit implies that Co) > C) > C(y), which furthermore holds for
all n > 2. In the next section we choose to match these coefficients through the
definition of the scale Agf).

Finally we discuss and illustrate in Fig. [4.3|the n-dependence of the amplitude
(4.13). The phase space factor S,_1 grows until n = 8. The coefficients ,
(4.18), and decrease until n ~ 10 and stay at their asymptotic value
thereafter. Roughly speaking the product does not depend on n for intermediate
values n = 3...8 so that the main dependence of is in the prefactor
(Ap/M,)""2. Therefore, the signal will depend greatly on the value of Ap in

4 + n dimensions.
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Figure 4.4: The variation between the fundamental cross-over scale Ay and the

RG parameters ARG appearing in the quenched (A(TO) = Arp, red), linear (A(Tl),

blue) and quadratic (qu2 ), magenta) approximations. The scale parameters differ

at the 10% level for n = 3,4, and rapidly approach each other with increasing n.
From Ref. [1].

4.2.4 Universality

In the previous section we labelled the transition scales in the linear, quadratic
and quenched approximation as A(Tl), Ag?) and A§9) respectively. The reason
for this is that the specific transition scale, especially in the case of a smooth
function is not well defined, and in general will depend on the form of the function
itself. Although the transition scales in the various approximations are related in
magnitude, we allow them to be independent. The issue remains as to how these
scales should be related by the underlying physics.

For this purpose we turn to some wisdom provided by perturbative quanti-
zation. As summarized in for example [96], a superficially divergent one-loop
scattering amplitude regulated by some cut-off scale A is made independent of
A by introducing a running coupling constant. In addition, the independence
demands a renormalization condition enforced at the level of an observable. In
QED, where the scattering amplitude is well defined at vanishing center-of-mass

energy, s = 0 is used as the renormalization point, sometimes referred to as the

o1



4.2. Approximations of Asymptotic Safety

Thompson limit. We would like to find a similar way to assure that the low
energy scattering amplitude involving virtual gravitons does not depend on the
approximations used. This suggest that we adjust the parameters A(T1 ), Ag? ) and
Ag? ) in order to define an analogous condition.

We compare different approximations for the RG improved couplings for a
given cross-over scale Ar. The definition of Ay is fixed through the low-energy
amplitude S(s = 0). We further choose that Az coincides with the scale A§9 ) set
in the quenched approximation, as the transition scale in this case is the most
well-defined. The definition of the corresponding scale Agf) in terms of Ay for a

smooth crossover of Newton’s coupling is then obtained from [I]
(A7) "2 Cquencn (s = 0; Ar) = (AF)"2 Cpyy (s = 0; AY). (4.20)

This uniquely fixes the scale Agf) in terms of Ay for any explicit wave function
factor Z(_Z.)l. Quantitatively, the scales A and A§E> will at worst differ by 15%.
We display this in Fig. [£.4]

4.2.5 Form-factor approximation

Another possible scale identification is the exchanged 4-momentum +/s so that
ur=s. (4.21)

This choice is made in Ref. [53] along with the linear approximation (4.9). The
coefficient C(s) in this case remains divergent in the KK integral, and must be
regulated as in effective field theory. We denote the regularized version of the
KK integral as Ckxk, so that this choice implies the factorization of the coefficient
C(s) as

C(s) = Z7'(\/5) Okk - (4.22)

Furthermore, the parameter ¢ introduced in the form-factor of Ref. [53] is related
to g. in and the scale Ay as t = (g,)"/"*?) = Ap/Mp. This suggest that
the form-factor approximation (4.22) can be obtained from a matching
provided that a further factorization Z(u(v/s,m)) o< Zs(\/s) Zm(m) is realized
in the relevant kinematical regime. The virtue of the matching is that,

provided an s independent regularization such as the lowest dimensional EFT
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Figure 4.5: The energy-dependence of the functions C(s) from in the
quenched approximation with the euclidean matching, for n = 4,6,8,10 and 12

(top to bottom). The amplitude can become suppressed at scales significantly
below Ar. From Ref. [1]

(3.44)), the s dependence is contained solely in C/(s) which behaves like s~/

Applying a regularization maintaining the dynamics of the KK integration as
in produces S(s) ~ s72. In the next section we will see that this power
behavior is a necessary condition for perturbative unitarity.

The downsides of the form-factor matching are first, that depending on the
relation between A7 and M,, this scaling may not be realized in the single graviton
exchange process. Second, the opportunity to extract low energy contributions
from quantum gravity is missed by matching a purely 4-dimensional scale such
as (4.21)). In the next section we will introduce a scale choice which maintains s

dependence in addition to regulating the KK integral.

4.2.6 Euclidean Matching

We are interested in the behavior of amplitudes at center-of-mass energies not

parametrically lower than M, where the expansion in /s/M, from the previous
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4.2. Approximations of Asymptotic Safety

section is ill-suited. In this case we identify the renormalization group scale pu

with the 4 + n-dimensional euclidean momentum scale
W =s+m’. (4.23)

This identification is most natural from a 4 + n-dimensional perspective as the
effective single graviton amplitude is sensitive to the 4 4+ n-dimensional momenta
running through the propagator. Using the definition for Z(u) in (2.29)), we find

o0 n—1
C(s) = / dz— z7! (\/ y? + 22 AT> with ¢? = s/A%. (4.24)
0

y2+$2

The s-dependence of originates from both the graviton propagator and
the RG improved coupling. In Fig. [4.5] we compute in the quenched
approximation for various extra dimensions. For small s/A2 < 1 the variation
compared to C'(s = 0) is small though increases with n. With increasing number
of extra dimensions, the crossover from perturbative scaling to high-energy scaling
sets in at lower energy scales s < A2. We learn here that as the number of extra
dimensions increases, the deviation from the low energy coefficient sets-in at lower
energy scales. Two implications are that as the number of dimensions increase,
the amplitudes become better behaved with respect to perturbative unitarity and
consequently that the effective theory computation is less applicable.

For large s/A2% > 1, the amplitude is integrated analytically. Since Z
is in the scaling regime for large /s we find that lim, . " 22~ "(1) becomes a

p-independent constant. The leading behavior reads

O(s) = e, <A—2T>2 , (4.25)

S

with the coefficient

[e%¢) Zn—l 2

¢, = lim dz = : (4.26)
L N (s T Rt )

where we have substituted z = m/y/s. The leading large-s decay (4.25) is
universal and independent of the number of extra dimensions. The only evidence
of the dimensionality of the underlying theory remains in the the constant c,.

2

Furthermore, the scaling s in the UV implies that the effective 4-dimensional
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4.2. Approximations of Asymptotic Safety

coupling constant behaves like Gn/E?, exactly as expected for a purely 4-
dimensional fixed point. It seems that the lower dimensional theory, upon KK
integration, inherits some of the general properties of asymptotically safe gravity

present at the higher dimensional fixed point.

4.2.7 Pole region and virtuality

In this section, we evaluate the KK integral in the pole region, where s ~ m? and
the graviton is deemed on-shell. KK gravitons can also decay into lighter particles
and therefore have a non-zero decay width. We explore the implications of the
graviton width in more detail in Appendix[.1.2] Here, we adopt the principal value
prescription. In addition, we compare the matching with the alternative
choice

= |s — mi| (4.27)

where the RG scale is identified with the virtuality of a KK graviton. Note that
the main difference between the choice ;> = s+m? from and relates
to the pole region where s ~ m?. Around the pole, implies 1 ~ 0, meaning
that this region is only sensitive to classical physics G(u = 0), even for energies
with s, m? > M?2. In contrast, the matching leads to 1 ~ m at the pole,
which is sensitive to RG corrections.

For illustration, the physics content of the matching is depicted in Fig
for a specific choice of M, and Ar. Single graviton exchange is reliable for
\/s below the fundamental Planck scale. For KK modes starting with masses of
the order m, RG corrections must be taken into account. This is denoted
as the high mass region (HM) in Fig 4.6l A high energy region (HE) requiring
RG effects may also exist, provided that the cross-over scale Ar is below the
fundamental scale of gravity M,. As the collider energy approaches M,, we
expect multi-graviton processes or the production of mini-black holes to become
important. Finally, we define the pole region (P), where s &~ m? and the graviton
is on-shell.

We quantify the pole contribution using the RG running in the linear
approximation , together with the matching in (4.27). The KK kernel falls
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Figure 4.6: UV/IR division of integration kernel using with Ap = 5 TeV
and M, = 7TeV in the quenched approximation for illustration. The red region
corresponds to physics above s > M2 (chosen for illustrative purposes), where
multi-graviton and width effects become relevant. KK states in the high mass
(HM) and high energy (HE) regions are sufficiently far from their mass shell
in four dimensions, and thus probe the underling 4 + n dimensional quantum
gravitational theory. The boundaries between pole, HM and HE regions are
indicative, and smeared-out due to the RG running in the linear and quadratic
approximation. From Ref. [J.

off sufficiently quickly as a function of mkgk and we can adopt the prescription

mn1 mn1 im
e = 7'P——— + 1 — . 4.28
s — miy + i€ s —miy + \/EmKK (Vs = mick) (4.28)
We also use the fact that Z=* = 1 at u = 0 for all approximations. The second
term in (4.28)) is responsible for the on-shell production of KK gravitons. The
principal value integration we perform analytically for all n = 2 + 47 and integer

1. For n = 2 we obtain
C(s) = P/davL 7N p? = s — 2?|A}) = 111r1 1+ L (4.29)
—5 + 22 4 52

with z = m/Ar, and s — s/A%. We note that the amplitude is well-defined for
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4.2. Approximations of Asymptotic Safety

all s > 0, and the result agrees with the one obtained by analytical continuation.
The amplitude decays asymptotically as oc 1/s?. For comparison, effective theory
gives Ce(s) = 31In(1/s — 1) valid for s/A% < 1, which produces a logarithmic
singularity at the EFT boundary [20]. We can see the cause for this as follows. In
our s versus mgg plane, the effective theory contribution is a box with sides Ar.
We evaluate the principle value over the pole by essentially canceling the divergent
terms on each-side. However, any cut-off we place on the mggk integration
automatically produces a singularity as the Ay — e contribution is no longer
cancelled. In the region where s, mxx — Ar this is precisely the contribution
giving rise to the effective field theory singularity. In our approach the principle
value integration is singularity free for all energies.

Next we consider n = 6, where

C(s) = 27:/85+%21n (1+S—14>
- (ﬁln (A(s) + %) —

and A(s) = 1 — /25, © = m/Ap, while s is again expressed in units of AZ.
The result includes the terms of the Fuclidean matching (4.24)) after analytical
continuation s — —s. In the high scattering energy limit, (4.30) grows linearly

A(s

) arctan A(s) + (s <> —s)) : (4.30)

with s, approaching 7 s/v/2 + O(1/s%). We stress that the linearly growing term
in s originates from the density of states at the pole region for s,m? > AZ. As
discussed above, this behavior is an effect of the virtuality matching , which
treats modes at the pole with s, m? > AZ as classical. Essentially, for n = 6 we
obtain sub-leading pole terms in addition to the one in (4.28]). Neglecting the
pole terms we obtain exactly the euclidean matched result decaying universally
as 1/s* in the UV. Only by incorporating the full effects of the graviton decay
width can we realistically study the pole terms. In fact, Ref. [97] pointed out that
gravitons produced with mxk ~ /s may actually decay outside of the detector
and thus should be included in the missing energy search. From the perspective
of the KK integral for virtual graviton exchange, these effects are unphysical and
an artifact of the virtuality matching along with principle value prescription.
Now for illustrative purposes let us examine the quenched approximation.
The additional poles prohibit a straight-forward Wick rotation of the momenta

to Euclidean space. Therefore, defined in the Minkowski regime the computation
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produces large contributions at the boundary between the classical and UV
regions. In this case even the UV region remains sensitive to the pole and grows
in general as s™2?*!. This leads to an unphysical breakdown of perturbative
unitarity at an intermediate energy scale. The purpose here is to emphasize that
the quenched approximation cannot be applied in the virtuality matching in any
meaningful sense. As a corollary, we find no low energy matching condition which
generates scheme independence in the sense of .

To conclude, we obtain a good approximation for the amplitude (4.14]) within a
principal value integration via the euclidean matching (4.23). The virtual graviton
KK kernel decays like s72 for large s and quantitatively becomes equivalent to
analytical continuation in s from . The significance of the s=2 scaling is
that a necessary condition for perturbative unitarity is that the cross-section?] be

bounded by 1/s. Examining the full s-channel cross-section
Ly 2
do ~dsdtdY 25 IS(s)|%, (4.31)

we see that C'(s) ~ s72 produces exactly this behavior at the level of o. Hence,
the amplitude decays asymptotically as required by perturbative unitarity for all
physically motivated matchings. For Ap/M, up to the order of a few, the s-
channel amplitude is unitary. In turn, for large Ar/M, > 1, our results fall back
on those from standard effective theory where perturbative unitarity is violated
for center-of-mass energies approaching the fundamental Planck scale [98]. Hence,
the high-energy fixed point improves s-channel unitarity of the single graviton

amplitude.

4.3 Evaluation of Diagrams

Now that we understand the integral over KK propagators, we focus on the
tensorial part of the amplitude for tree-level and one-loop processes. The
evaluation of tree level amplitudes is straight-forward, especially in the unitary
gauge where longitudinal modes of the graviton do not contribute. The KK mass
kernel S(s) then produces an overall (energy dependent) multiplicative factor. For

one-loop computations on the other hand, the loop integral essentially extends

2In the Standard Model, W+W ~ longitudinal scattering decays like 1/s only after including
the propagating Higgs
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to 4 + n dimensions and must be performed at once. While this makes the scale
identification very natural, it is technically more involved. We devote a sizable

portion of this section to describing these details.

4.3.1 Tree-Level

Using the Feynman rules in the appendix, we compute the tree-level s-channel
exchange of a virtual graviton originating from either gg or ¢q initial states. Using
the definition of S(s) from (3.39)), the gg — p*p~ amplitude in the Unitary gauge

1S

h(7) iS(s
— i ) [6?65(Wuua5 + Wonap) A7 [Woe + Woplua | -

Here, € is the polarization of the gluon with momentum k;, W, is the ffh
vertex found in the appendix, W43 is the ggh vertex and #; is the outgoing
spinor for the muon with momentum p;. Squaring the amplitude and noting the

factor of 1/2 in the phase space due to identical gluons we obtain [23],

do

dt

_18(s)?

g 1S(s)[*t(s + t)(s* + 2st + 2t%) (4.32)

(99 = ptp™) =

Here there is no tree-level interference term with the SM. For the ¢ initial state
on the other hand there exist a SM contribution mediated by Z/~, itself with its

own interference, along with the graviton-Z/~ mixing [23].

do _
G laa =) =

wP(GH? 4 (GO + R(GER? + |G + (G + |GFH?)

48752
1 |5(5>|2 4 3 2,2 3 4
1 42 4 2
+384782{ 1 (s* + 10s°t + 42s°t° + 64st° 4 32t)
+ 2Re S(s)* ((GSLR + GR35 + 4t) + (GMF + G (s + 4t)u2>]

(4.33)
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Here we have defined the electroweak couplings and propagators in the canonical

way so that for example

2 .
s —ms + L
i .+ am;ly

Squaring these introduces the Z/v mixing. Details are available in [23] and [3].

4.3.2 One-loop

While the tree-level amplitude can be quite easily separated from the KK integral,
loop computations inevitably mix the two. In our computation the loop integral
and the KK sum are combined and regulated at once using the D-dimensional
scale matching of the previous section. To demonstrate this we compute the

massive gauge boson, W+ and Z, self-energy corrections.

Evaluation

We start with the seagull diagram in the DeDonder gauge [2]. From the Feynman

rules we obtain

Py
1
TI#Y 2y = = WJ@\N\‘
s (p7) 5 D >
327 d**trg 3 90w )
= 3 | G S g O )

in agreement with the transverse nature of the amplitude for a massless gauge
boson. Here, p is the external momentum, ¢ is the bulk loop momentum,
and Ag the scalar part of the graviton propagator. Furthermore, the gravi-
scalar contribution in four dimensions is proportional to the trace of the energy-
momentum tensor and thus can only couple to the mass term. However we
find in the metric expansion that there is no term of order My ¢? and thus the
only contribution from extra dimensions is . We will not simplify the loop
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integral at this point. The rainbow diagram is

¢ h,uu
v 2 _
IR () = M’Em + ESD D
327 d* g A (K, p)
= A ’ 4.
i | G A 499

We have also introduced k, the brane only component of the full loop momentum.
The tensor A* = A" + ALY + AL” contains additionally terms proportional to
m} and mj,.
1
A (k,p) = 5 [—4p"p”p* — 4p"p"p - k — p"p'k* — Ap'kVp? — 3pPkVp - k

+ p"k"p - k — KRV pE 80" pPp - k 4 0t pPk? 4 A pt + 30t (p - k) }

(4.37)

AL (k,p) = 3mi (" (p - k + p®) — p"k” — p'p") (4.38)
4

AL = _5”;V " (4.39)

At this point we could introduce Feynman parameters and perform a cut-off or
dimensional regularization. We expect that the leading UV divergences would
cancel with similar terms from the seagull diagram. However, the amplitude
would retain power and logarithmic sensitivity to the cut-off scale [7]. In both
cases the amplitude is UV sensitive, and the effects of quantum gravity are
explicitly cut-off.

For now we tensor reduce this amplitude without making specific reference
to the regulator. Additionally, the amplitude in (4.36]) can be reduced to scalar

integrals without any knowledge of the higher dimensional theory. Using Lorentz
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4.3. Evaluation of Diagrams

invariance on the brane, we project the tensor integral onto the scalar integrals

5 d4+nq
Ao = / (2m)4tn Ag

5 d4+nq 1
By = A
" / (2m)tn T (k +p)2 — mi

5 d4+nq p- k»
’B, = / A
P2 ) o 2 e p2 —md
_ d4+nq /{32
’B, = / A 4.40
b2 (2m)4+n =9 (k+ p)2 — mé, (4.40)

The notation is meant to evoke the similarity to the normal basis integrals
obtained in Passarino-Veltman reduction [99]. The seagull contribution simply

reads
327 3

B

while the rainbow self energy in terms of the basis integrals is

I (p*) = (P*n™ —p"p*) Ao | (4.41)

y 167 5 5 - -
1% (p*) = 1P ((pgn" — p'p") [12m2V (31 + Bo)
+3p2B2 + 16p2B1 + 8p2B0] + n““m%/ |:10 + Q—I—LTL:| B0> . (442)

It should be noted that we have not taken into account brane fluctuations,
coupling proportional to the brane tension 7. It is not clear how one would
incorporate this parameter within the framework of asymptotic safety. Moreover,
we are physically justified to neglect this contribution if we restrict ourselves to

rigid branes or more precisely the energy hierarchy described in Ref. [72].

Finiteness

We can heuristically show the finiteness of our calculation in the asymptotic
safety framework. We apply both the quadratic and quenched
approximations to account for the large anomalous dimension in the UV. First
of all, we consider the UV portion of the seagull integral in , assuming the

wave-function renormalization in the the quenched approximation (4.11). The
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4.3. Evaluation of Diagrams

momentum integral is then trivial
quenched Aoy dq AUV
IT§ ~ — =log — . (4.43)

For the rainbow diagram we first write the brane momenta as the 4-dimensional
projection of the 4 + n-dimensional momentum i.e. k* = ¢*y%. We will only
display an explicit form of x at a later point, since it is not required for showing
UV finiteness. Considering small values of the external momenta, the leading

divergence is

AUV d 2.2 A
pgenched / Y _TX g2V (4.44)
Ar O @XE+m Ar -

T

Once we properly perform the tensor reduction the seagull and rainbow diagrams
acquire pre-factors (3/2)(p*n™ — p*p”) with opposite signs, and the sum of
and becomes independent of Ayy and hence finite.

It is instructive as well to consider the same integrals for the quadratic

approximation. For the seagull we find

ngadraticN A%+2 sinhfl A%tf . (445)
(n+2) 207+

We obtain the term in Ayy by expanding , finding the same leading
logarithmic dependence on Ayy as in the quenched case. The rainbow we evaluate
using the techniques described above, and when summed with the result is
again finite. Had either of these computations provided sub-leading divergences
of any type, we would not have a sufficiently regulated theory, so the fact that
the only divergences are logarithmic serves as evidence of finiteness at one-loop.
We have not mentioned terms in the amplitude proportional to the m?, and mj,.
By power counting the later cannot produce a divergence, while the former can
at worst admit a term proportional to p - k& and not k2. This can be seen by
examining the momentum structure of the vertices. These terms are individually
finite in asymptotically safe gravity.

The lack of sensitivity to Ayy in the self energy amplitude is of course only
valid for the DeDonder gauge and will not be true for any other choice. However,

also in a less appropriate gauge any physical observable must be independent
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of Ayy. To emphasize this point we outline the related computation in unitary

gauge. The amplitude for the seagull diagram is

y 327 d**g o0 ,
Hg‘ (unitary) = M*2+n /(27_(_)44_” AG (p 7]“ —pﬂp ) X

2 4

(122, 1y o
with a similar, albeit lengthy, expression for the rainbow. There are no higher
UV divergences since upon substitution as described in the following sections the
additional terms are proportional only to the ratio of the angular parts, with no ¢
dependence. However, the cancellation of the additional logarithmic terms must

also be checked. For genuine physical observables, such as the one presented later

in Chapter 5 this cancellation does indeed take place and the result is finite.

Warm-up in 2 + 1 dimensions

To illustrate the geometrical picture of our loop integral we consider the same
integral with a (Euclidean) 2 dimensional brane and a single extra dimension. In
momentum space we can easily picture the integral over brane and bulk momenta
as a three dimensional integral in terms of spherical polar coordinates. For a

rainbow like diagram we have

1 k2
o1 (p?) = /dgq

QQ ks +p) +mv

2
/dqq/d@smé’/ do

¢>sin® 6

¢ ¢ sin 20 + 2|p||q| sin O cos ¢ + p? + m?2, (447)
where we denote the 2-dimensional brane analogy of the full momentum by ks.
The spherical coordinates we orient such that p is located at ¢ = 0 and the dot
product occurs between the brane projection |g|sin# with the brane external
momentum p. This integral is evaluated numerically, or in this simple case
analytically over the angular coordinates. The full result in (4 4+ n) dimensions is

merely a higher dimensional generalization of (4.47)).
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Bulk Polar Coordinates

Explicitly the variable change we make is

=k A+ o+ k2 kK kS 4k
k1 = |q| cos ¢
ko = |q| sin ¢1 cos ¢y

k, = |q| sin ¢y sin g5 - - - cos ¢y,

ko = |q| sin ¢y sin ¢ - - - sin ¢y, cOS ¢y 11

k1 = |q| sin ¢y sin ¢g - - - Sin ¢y, SN @y 11 COS Ppin

ko = |q| sin ¢y sin ¢g - - - Sin @y, SN Py 11 SIN Py 12 COS Ppy3

ks = |q| sin ¢y sin ¢ - - - sin ¢y, Sin Py,1 SIN Py 08I0 Py 13

In Euclidean space we are free to orient these coordinates in the unconventional
way where the ¢; = 0 momenta are orthogonal to the brane. The virtue of taking
these momentum space coordinates is that the brane-confined 4-momentum

squared is

k* = ki + k7 + k3 + k3 = ¢*sin® ¢y sin® ¢y - - - sin® ¢,
= ¢*¢>. (4.48)

For completeness we also list the form of the transverse momentum coordinates.

25 (4.49)

We can now deduce the effects of using the unitary gauge. There is no UV
enhancement as the ¢ dependence cancels and the only difference is terms of the
form k2/k% = p/@. Now how do the spurious IR divergences present themselves
here. For ¢; — m/2 this expression becomes singular and we have exactly the
case which we expect; an IR divergence as we approach a 4-dimensional massless

graviton.
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Result in 4 + n dimensions

Having established the finiteness of our computation in both the quenched
and quadratic approximation, we can numerically evaluate the rainbow and
seagull diagrams. It is clear at this point that we would like to perform the
(4 + n)-dimensional momentum integral over a radial coordinate |¢|, but the
loop momentum in the gauge boson propagator depends on only the brane
projection of |g|. Thus our integral in (4 + n) dimensions must retain some
angular dependence as the bulk and brane momentum are not interchangeable in
the rainbow diagram.

A straightforward solution is to define a (4 4+ n) dimensional Euclidean vector
q = (kr,ks4) in polar coordinates. Treating the brane momentum as the last
entries in this (4 + n)-vector allows us to make the variable change k% + k% = ¢*

which in turn requires the projection
k2 = ¢° sin? ¢y sin® ¢y - - sin? ¢, = ¢*x?, (4.50)

where the last step is simply a shorthand notation. The physical interpretation of
the angular variables should be clear as they measure the 4-dimensional projection
of g. The configuration with all ¢; = 7/2 corresponds to momenta confined to
the brane, and the corresponding integral is the conventional 4-dimensional case.
This simplifies our loop integrals and is easily evaluated numerically. Under the
coordinate change the measure in our (4 +n)-dimensional loop integration should

be replaced as

d4+nq T in s .
/ (2m)4tn - (2m)4+n /dqq /0 dgy sin“™" ¢y - - -
Q 27

/0 d¢n Sing ¢n /0 d¢3+n- (451)

The pre-factor 7 in front is the result of integrating over the 2-additional brane
angular coordinates ¢, and ¢5.,, which our amplitude does not depend on. For
the angular measure related to x we write [ dy, so the basis integrals from (4.40))

with the renormalization group improved scalar propagator become

A L PR 4.52
0= (27r)4+”F[n/2+2]/ 1749 (4.52)
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_ T 27
By = W/dqq‘””/dx/ A3
0
zZ1 1

4.53
@ 2+ 2|pllg| cos pzinx + (P> + mi) (4.53)
2T
P'Bi = (2m)4+n / dgq’" / dx / dp31n
. [pllgl cos ¢31n _ s
¢*  ¢*x +2[pllq| cos g31n + (p* +mi,)x
21 s 34 27
v (27r)4+"/ 19 / X/O Pt
71
(4.55)

g2 + 2[p||q| cos gyt + (P + mP)x 2

Even though these expression are somewhat lengthy, the crucial point is that
they are one-dimensional and without singularities. We can numerically compute
the gauge bosons self energies in and . The sum of the two integrals
does not depend on Ayy. In the next chapter we will see how this method of

computing the KK integral compares with an effective theory analysis.

4.4 Conclusions

In this chapter we computed the UV complete KK integral using the fixed
point consistent with asymptotic safety. We applied this first to single graviton
exchange for collider energies below M,. Therefore we neglect diagrams with for
example two virtual gravitons in the intermediate state which in some way or
another will eventually lead to black hole formation [100].

The KK integral was found to be finite without any additional UV regulation.
For the one-loop computation we found that similarly the KK integral and loop
integral could be performed to all energies without a UV cutoff. The technical
aspect of this calculation led to a new method for tensor reduction, which allowed
a convenient handling of the brane and bulk momentum.

We add here for completeness that there are of course completely unrelated
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theories of quantum gravity or approximations which offer solutions to the cut-off
dependence of the KK integral. In string theory, instead of gravitons in low scale
extra dimensions, the dominant new physics contribution to virtual processes
comes from higher string excitations [85][101]. The scattering mediated by these
new states is well-described and obeys perturbative unitarity by virtue of an
exponential suppression above the string scale Mg ~ M,. There are a number
of effective-theory proposals which side-step this complication by defining the
integral in a cutoff independent scheme. One such treatment relates to the eikonal
approximation to the 2 — 2 process [102], another involves introducing a finite
brane thickness [103]. In this example, the gravitational coupling is exponentially
suppressed above M, by a brane rebound effect. However, neither of these models

offer a compelling UV completion for the KK effective theory.

68



Chapter 5

Phenomenology

5.1 Introduction

In this section we analyze the experimental consequences of the previous chapter.
We consider first LHC collider signatures based on virtual graviton exchange.
Then we compute the contribution to an electroweak precision parameter arising
from massive graviton loops. In both case we implement asymptotic safety at the

level of the wave-function renormalization.

5.2 Virtual gravitons at the LHC

The LHC has several on-going searches for extra-dimensions (for recent publica-
tions see [104][105]). These include real graviton emission, black-hole production
and virtual graviton exchange. Real emission searches are generally well-defined,
and have little sensitivity to Planck scale physics at sub-Planckian collider
energies. Similarly, black-hole production only becomes relevant at center-of-mass
energies above the Planck scale. Virtual graviton exchange probes the quantum
gravity effects in the ultraviolet range of the Kaluza-Klein spectrum. This makes
this production process the prime candidate to test different descriptions of
quantum gravity in low-scale gravity models. Hence, we apply our findings from

the previous sections to gravitational processes at the LHC.
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5.2. Virtual gravitons at the LHC

5.2.1 Kinematics and cuts

The generic prediction for virtual graviton exchange at the LHC is an enhance-
ment of rates at increasing invariant masses. This does not include a mass peak
or any kind of side-bin analysis, which means we must test the Standard-Model-
only hypothesis as well as the Standard-Model-plus-graviton hypothesis on the
kinematic distributions of the Drell-Yan process [19][20]. This signature may
be further refined through the use of angular correlation techniques [91]. Our
reference channel is pp — ptp~ at /s = 14 TeV but other channels will show
similar behavior. For the di-muon final state one advantage from the theory point
of view is that we need only consider s-channel diagrams. The benefit here is that
we define S(s) for the KK propagator depending only on s and not ¢/u. Based on
the discussion in Sect. [£.2.7] we evaluate the relevant amplitudes in the Euclidean
matching.

As model parameter we consider 2-6 extra dimensions and fix the fundamental
Planck scale to M, = 5 TeV. The experimental cuts which we apply throughout

the section to take into account detector features are
pru > 50 GeV, 1Nl < 2.5. (5.1)

where pr, is the transverse momentum of the muon with respect to the beam
pipe and 7, = (1/2)log(E + p.)/(E — p.) is the rapidity. The detection
efficiency for muons we assume to be 100%, including triggering, as well as
the energy resolution. Whenever we compare signal and background rates we
require my, > M,/3 to enhance the graviton signal over the Standard Model
backgrounds. Combined with the cuts in this suppresses the highly IR
peaked photon and Z backgrounds which generically fall off with the partonic
center-of-mass energy fast. As said above, the idea of this section is not to
present a comprehensive LHC analysis, but to test our results for the behavior of

the graviton KK integral at the level of LHC signals.

5.2.2 LHC signatures of the fixed point

We first compare LHC predictions from fixed point gravity with those from
effective theory with the amplitude given by (4.14) [1]. We compare the total

cross section from fixed point gravity using Z~! from the quenched approximation
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Figure 5.1: LHC total cross-section versus the fundamental scale of gravity M,
for events with v/5 < M, for n = 3 (blue) and n = 6 (red) extra dimensions.
Solid lines are asymptotically safe gravity and Dashed lines are effective theory.

The difference in the total hadronic cross-section between the two persists even
for higher M,. From Ref. [I].

(4.11)) with the predictions from effective theory with UV cutoffs at m = Az and
at Ay = M,, which we implement as Z3' = 0(Ap —mxx) 0(M,. — /). The result
is displayed in Fig. for Ap = M,. Dashed lines denote the result from effective
theory, full lines stand for fixed point gravity. This figure shows that the difference
between an effective theory and fixed point gravity description does not disappear
as we raise the fundamental scale of gravity. We expect this based on the UV
sensitivity of the KK integral. Furthermore, we see an overall enhancement of
the signal for reasonable values of M,.

This last fact is not a priori obvious. In effective theory the KK integral
is cut-off separately in the KK mass mgx < Ar and the graviton 4-momentum
Vs < Ar, and thus (after an analytic continuation) may include modes with
\/m > Ap. The region outside this circle is suppressed by UV effects
in our framework. On the other hand, modes with max(y/s, mgk) > Ar are not
included in the effective theory computation, while these modes will contribute in
our computation albeit with the UV suppression provided by asymptotic safety.
The answer however provided by is that it is the UV modes in asymptotic

safety which win and provide the bigger cross-section.

71



5.2. Virtual gravitons at the LHC

o[fb] n=3 n==6
M.[TeV] 5 8 5 8
a 0.317 0.015 | 0.393 0.020

0.320 0.015 | 0.394 0.020
0.215 0.009 | 0.209 0.007
0.182 0.009 | 0.190 0.007

O

S
NSNS

S

Table 5.1: Comparison of total cross-sections for di-muon production via virtual
graviton exchange at the LHC in different approximations. a) fixed point gravity
with Ar = M,, cutoff in /s at A, = M, b) fixed point gravity with Az = M, (no
cutoff in 1/s) ¢) effective theory with UV cut-off in both mkk and /s at A = M,,
d) form factor approximation with cutoff at A = M,. From Ref [I].

In Tab. we compare the production cross-sections in various approxima-
tions for M, = Ar = 5TeV. For the UV contributions arising from KK modes,
comparing fixed point gravity a,b) with effective theory c), we find an increase in
the total rate. On the other hand, including the UV events in /s by comparing
a) with b) we find only a modest increase. Evidently, the 1/s* behavior for
large energies and the rapidly falling parton distribution functions makes these
contributions sub-leading. The form factor approximation d) comes out below
the effective theory estimate c¢), introducing a modest extra reduction of overall
rates with energy slightly below M,. Provided the cross-over scale takes the larger
value M, = 8 TeV, we find that the LHC is only very weakly sensitive to the UV
KK modes, leaving no difference between a) and b), and ¢) and d), respectively.
Still, the difference between a),b) and ¢), d) persists, also evident from Fig. |5.1]

Next we compare the results from fixed point gravity using the linear ,
quadratic and quenched forms of the RG running, at fixed transition
scale Ap. The variation of results under changes in the RG running allow an
estimate for the ‘RG scheme dependence’ in the present set-up. We expect
weak scheme dependence for the s-dependent amplitudes. In order to verify
this we present in Fig. and Fig. LHC distribution for n = 3 and
n = 6 extra-dimensions, respectively, for several values of the transition scale
Ar. The variation is minute at the low-end of the spectrum but increases at
higher energies. We expect this because the matching condition applies to the
s = 0 low-energy coefficients. In all cases the uncertainty due to the scheme is

smaller than uncertainties coming from QCD effects, conservatively estimated at
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do /dm,,, (fb/TeV)
0-08_'"'I""I""I""I""I""I"":
007 - Ar = 6TeV n=3 -
006 E= T .
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0.04 5TeV i

0.03
0.02
0.01

........
(T S

.Lll IIII|III5I|IIII|III|IIII|IIIIE:IIII|III

[

Figure 5.2: Signal distribution for di-muon production via virtual graviton
exchange at the LHC with M, = 5 TeV and n = 3 (6) extra dimensions
show left (right). Comparison of several RG schemes and transition scales Ar:
quenched (red lines), linear (blue), and quadratic (magenta) approximation with
Ar/M, = 1.2 (dotted lines), Ap/M, = 1 (full), and Ar/M, = 0.8 (dashed).
With increasing Ar/M,, the di-muon production rate increases. The scheme
dependence is small. From Ref. [I].

~ 15% here.

A second point illustrated in Fig. and Fig. [5.5] is that the total rates
depend strongly on the transition scale Ap. This is especially true for higher n,
as pointed out in Sect. [£.2.3] and illustrated in the n = 6 plot. The reason for this
is that the suppression of amplitudes due to the gravitational fixed point sets in
at about Ar, leading to larger rates for larger Ay. However, the s-dependence in
the signal is mostly independent of A7. Therefore, in the next section we study

also the normalized distributions in order to obtain a handle on the signals.
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do /dm,,,,(fb/TeV)
1 S '§
Ar=6TeV nep
10" & 5TeV R, -
0% g g
107 &
4 L .
10 1.5 5

Figure 5.3: Same as Flg. but for n = 6. From Ref. [I].

5.2.3 LHC Phenomenology

In this section, we discuss signatures of asymptotically safe gravity and large extra
dimensions at the LHC. If not stated otherwise, we set M, = Ar = 5TeV and
examine distributions with respect to m,,,, the invariant mass of the produced di-
muon pair. We also compare our results, and in particular the m,,-dependence,
with those from effective field theory [19, 23| 03], the form-factor approximation
[53], and the Standard Model background.

In Fig. and Fig. [5.5 we compute normalized and un-normalized differential
cross sections for M, = 5 TeV and Ay = M, for n = 2,3,6 extra dimensions
respectively. Again, we contrast fixed point gravity results with those from
effective theory. Comparing the full y/s-dependence from a) asymptotically safe
gravity with b) effective theory (full versus dashed colored lines), we note that
they essentially agree for n = 2. The reason for this is that the perturbative
amplitude is only logarithmically divergent. For n = 3 and n = 6 the decay
of the differential cross section with invariant mass becomes more pronounced

within fixed point gravity. Here, the difference is due to the UV divergence of
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(1/0)do/dm,, (TeV™") do/dm,,, (fb/TeV)
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Figure 5.4: Normalized differential cross sections (1/0)do/dm,,, (left column)
and un-normalized ones do/dm,, (right column) for gravitational di-muon
production at the LHC for n = 2 with M, = 5 TeV and cross-over scale Ar =
5 TeV. a) fixed point gravity (FP) with full s-dependence (full magenta/blue/red
lines); b) fixed point gravity in the form factor approximation with UV cutoff at
m = Ar (full black lines); c) effective theory (EFT) with UV cutoff at Ar (dotted
magenta/blue/red lines); d) effective theory in the s = 0 approximation (low s)
and UV cutoff at Ap (dotted grey lines). From Ref. [1].

the perturbative amplitude. Note in particular that with increasing number of
extra dimensions n, the difference between a) and b) grows. Turning to the low-s
approaches, we note that the differential cross section decays more slowly within
the form-factor approximation c¢) (full black lines) for all n. This comes about
because a dynamical suppression with energy sets in only close to /s &~ Ar,
unlike a). Also, the form-factor approximation c¢) deviates from the effective
theory approximation (with s = 0) d) only close to Ar. Overall, we see that fixed
point gravity falls off most quickly with increasing energy +/s. Technically, this
results from the powers of s in the denominator of the RG improved KK sum,
not present in the lowest dimensional operator from effective theory.

In Fig. [5.6| we present for the first time a comparison of our data including the
SM background from (4.32)) and (4.33). For larger values of m,, ~ M, /2 signal
to background S/B becomes of order 1. Note that the cross section for n = 2,3

and n = 6 are very close to each other. This near-degeneracy is a consequence of
our choice Ar = M,, which is lifted as soon as Ar # M., see Fig.[£.3] In view of
perturbative unitarity, our calculations in and the behavior in Fig. ??
indicate a clear improvement over effective theory.

Phenomenologically, for the LHC we now know that the on-set of fixed point
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Figure 5.5: Same as Fig. [5.4) with n = 3 (top) and n = 6 (bottom). From Ref.
.

scaling should be distinguishable from effective field theory descriptions. Turning
this argument around, the ad hoc assumption of an effective field theory is not
well suited to analyze LHC data which should be expected to strongly depend on
ultraviolet effects. This is even more obvious for string theory signatures [101][85]
with their peak structure dictated by the Veneziano amplitude. Therefore, the
two existing descriptions of quantum gravity at the LHC, fixed point gravity
and string theory could not look more different in their predictions for the
m,,, distribution. Fig. provides a realistic signature for asymptotic safety.
Moreover, the differential cross section as a function of m,, can be used to
distinguish our effect uniquely and study in some detail the transition from the
classical to the quantum gravity regime. Although the cross-sections can be small,
with 1000 fb™! at 14TeV it is entirely possible to delineate such a distribution.
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do/dm,,,(tb/TeV)

1 1 IIIIIIi

1.5 2 25 3 35 4 4.5 5

Myp

Figure 5.6: Differential cross-sections (in fb/TeV) for di-muon production within
fixed point gravity (FP) for n = 2 (magenta), n = 3 (blue) and n = 6 (red) extra
dimensions, in comparison with Standard Model background (black dashed line).

From Ref. [1].

5.3 Electroweak Precision Constraints

We now discuss indirect constraints on asymptotic safety, based on measurments
mostly at high luminosity e*e™ colliders. In order to constrain new physics based
on precision measurements it is typical to use either the oblique parameter set
{S,T,U} [82] or the e parameterization [I06]. However, the former are not well
suited for gravitons, which in general will modify more than just gauge boson
self-energies. The later can be related to the weak mixing angle sg, ¢y to define

the leading corrections

82

p—loé=€ —e— e, (5.2)
“

quantifying the violation of custodial symmetry [107, [108]. The individual

observables €1, €5 and €3 in the context of gravity require additional computations
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Figure 5.7: Contribution to € ~ 1 — p from extra dimensions computed in
asymptotically safe gravity in linear (4.9)) (dot-dashed), quadratic (4.10]) (solid)
and in effective theory (dashed) from Ref. [7]. Values above the dashed horizontal
curve are in tension with data. For all asymptotic safety curves we have taken
M, = Ar. From Ref. [2].

beyond the self-energies, but the specific linear combination

__ Hmyy)  1(m3) (5.3)

miy, msy

has to be smaller than roughly 1073, assuming a light Standard Model Higgs
boson [109]. The exact central value depends on the Higgs mass, but the
uncertainty of € also ranges around 1073. We treat this value a generic upper
bound on new physics effects. The effective theory result for gravity contributions

from Ref. [7] in our notation reads

$*m% (A \" 1 5(8 + 5n)
Ap~Ae=""2(=2 5.4
p=oe (M> T(2+n/2) 487212’ (5:4)

for mixx > my. Here, Ay is the effective theory cut-off scale. In Figure
we compare this result to our computation as described in the previous chapter.
The numerical results are similar for n = 3, where fundamental Planck masses

below M, < 1 TeV are forbidden. In asymptotically safe gravity the limits are
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Figure 5.8: Contribution to € as a function of the highest momentum mode ¢ < kg
in the (4 + n)-dimensional integration. We see the approximate pattern of Eq.
(5.5) in the ratio of IR to UV contributions. From Ref. [2].

significantly weakened when we increase the number of extra dimensions, which
is not the case for the effective theory computation in Eq. . In other words,
once we take the higher dimensional quantum effects seriously there are essentially
no limits on large extra dimensions with n > 3 from electroweak precision data.

The explanation for this discrepancy is the following: in effective theory, the
amplitudes are dominated by modes with both k£ and mgk near the cut-off,
i.e. in the corner of a square in the k vs mgk plane. However, in our picture
of asymptotic safety with |u| = \/k% + m¥k this region is outside the central
circle which means it is suppressed. For higher numbers of extra dimensions
this effect is more pronounced, as shown by the lessening contribution to € as n
increases.

To confirm our observation of an increasing impact from the UV regime we
need to study the distribution of the momentum modes contributing to €. More
specifically, we would like to know the size of the contribution to the observable
for UV momentum modes with |g| > Azp. In the quenched approximation we

can easily estimate this fraction. Neglecting terms of order my /Ar the leading
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5.4. Conclusions

momentum integrals are of the form

€

2 42
- q° q° + n
> AF 1 A}
g~ dgg*thn L~ ~ T 5.5

This expansion in my /Ar is well validated, for example compared with LHC
tree level virtual graviton exchange where v/3/Ar can easily become O(1). For
n = 2 approximately 50% of the combined integral comes from the quantum
gravity regime, and for a larger number of extra dimensions this fraction increases.
Numerically, Fig. shows that the exact results follow the pattern delineated
in . The UV region becomes the dominant contribution already for n > 2
extra dimensions.

This can be contrasted with the case of LHC tree level graviton exchange
in the previous section, where in a similar limit the UV graviton contribution
becomes dominant only for n > 6 [95]. This is not surprising though as the
integral in the tree-level exchange is over four less directions in momentum space,
and thus we see the rough equivalence of the n = 6 case in tree-level with the

n = 2 case at one-loop.

5.4 Conclusions

In this chapter we quantified observable consequences of asymptotic safety. First
we found that at the level of the cross-section, the LHC signal may be dominated
by the fixed point regime of gravity even for collider energies below M,. Moreover,
the total cross-section while not depending largely on the scheme, does in fact
depend greatly on the scale Ar. For this purpose we considered normalized
distributions and found that the scaling with /s depends the scale identification.
We looked at the form-factor /s, low energy mgk and D-dimensiona s + mgy
matching and found the later to be the most appealing. Note that the D-
dimensional scheme is equivalent to the virtuality matching for n =2 and n =6
extra dimensions provided that we abandon the pole terms. Most importantly,
we found that the kinematic distribution with respect to invariant mass in the

di-muon channel, behaves very differently compared with effective field theory.
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5.4. Conclusions

This is the strategy currently used by LHC experimentalists to exclude large extra
dimensions.

By computing the contribution to the € parameter we found significantly
weakened constraints on higher numbers of extra dimensions. The explanation
given in terms of regions in the /s versus mxky plane also applies to the results of
the total cross-section, for example depicted in Fig. 5.1} An additional contrast
between the tree-level and one-loop result is depicted in Fig. namely that

the amplitude becomes UV dominated already in n > 2 extra dimensions.
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Chapter 6
Conclusions

In this thesis we explored the possibility of asymptotic safety existing in large
extra dimensional scenarios where the fundamental scale of gravity is around the
TeV. The motivation for this was primarily that that virtual gravitons in these
models inevitably probe the UV regime of quantum gravity. Applying the effects
of asymptotic safety though a running coupling and the resulting large anomalous
dimension, we found that there are several possible choices for identifying the
RG scale. The best choice was found to be the euclidean scale yu? = s + my,
and in cases where it could be evaluated analytically via contour integration,
the virtuality matching p? = |s — mgy|. In LHC Drell-Yan production, these
choices led to amplitudes behaving much differently than effective field theory
and still show a sizable deviation from the standard model for the chosen model
parameters, namely M, = 5TeV. At the one-loop level we found stronger bounds
on n = 2 models compared with effective field theory, and in general weakening
bounds for higher n. However, there still remains some open questions and further
directions which we now discuss.

On the experimental side, we did not present exclusion bounds based on the
virtual graviton process at the LHC, but in principle this should be possible in
a three-parameter fit for the number of extra dimension n, the transition scale
A7 and the fundamental scale of gravity M,. With the LHC running at full
energy, we expect these bounds somewhere above the 10 TeV range. It would be
interesting, though rather long and tedious, using likelihood methods to combine
the results from all search channels, including real emission, into single exclusion

bounds. Furthermore, the one-loop amplitude we computed provides a method

82



for evaluating general loop-integral involving KK gravitons. This can in principle
be extended to many phenomenologically interesting applications, for example
the muon g — 2. In principle our methods should be applicable to all higher order
effects.

Theoretically, there are still questions to be answered regarding the compu-
tation of the principle value of the KK integral in the virtuality matching in
particular regarding the effect of a physical decay width. The sub-leading pole
terms which grow as a function of energy in the n = 6 computation are still not
fully understood, although perhaps the most remarkable result of the thesis is that
in the linear approximation the virtuality matching factorizes into a pole terms
plus the exact euclidean matched result. In the appendix we discuss one example
of a 5-dimensional theory where the effect of the KK width can be understood
analytically.

We did not consider the effects of asymptotic safety in warped scenarios.
Although KK gravitons are generically observable in RS like realizations, the
fundamental scale of gravity where naively quantum gravitational effects become
relevant is still close to Mp;. Whether the “warping” down of the KK gravitons
and other fields might nevertheless be sensitive to asymptotic safety like effects
requires additional investigation. Similarly, another known low-scale gravity
mechanism due to the RG running of a large number of additional (though strictly
4-dimensional) fields may be experimentally distinguishable from large extra
dimensions for the following reason. In the 4-dimensional case the anomalous
dimension at the UV fixed point would remain exactly —2 to all orders. It would
be useful to add this insight to for example the study of Ref. [92]. On the
more technical side, we only included the Einstein-Hilbert term in this work, and
including the cosmological constant changes the running of gn. We know from
experimental results that this term should be included and its effects on the RG
well studied. Nevertheless, it would be interesting to include the cosmological
constant in the running of gy and repeat our computations. FInally, we did not
consider vertex corrections due to the fixed point. The influence of the fixed point
on matter-graviton vertices was considered in some approximations in Ref. [49],
but it is not clear how to implement this analysis in our framework.

Although there is currently no evidence for low scale extra dimensions, they

continue to be an intriguing possibility for beyond the standard model physics. If
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and when the LHC sees a non-resonant excess it will be very important to study
the scaling behavior of this excess. In this thesis, we demonstrate a systematic

way that asymptotic safety can be studied in this situation.
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.1. Appendix

.1 Appendix

.1.1 Feynman rules and Amplitudes

Starting with the minimally coupled interaction Lagrangian

2
my

- 1.,
L=~y (“W”DM/) - Zg“ GapFuaFs + 5

PUT). 1)

we derive the vertices by first expanding out the metric to order A% in the graviton

field. Defining the gravitational coupling constant kp = 327 /M2 we have

2

1 1 1
(V=99"Jn = K (—w + §h77"”) +%2 <2hh — 1 hagnf — R + Zh%ﬂ”)
(2)

VvV 1
(V -99"g ﬁ)h = /‘fD(_h;wnaﬁ - haﬁn/w + Ehn/wnaﬂ) + /{QD (h;u/hoz,@’ + huvhwnaﬁ

1 1 1
+ hmhwmu - §hhuu7]o¢5 - ihhaﬁnpl/ + gnuunaﬁ (h2 - 2hophop>) :
(3)

In addition our weak field expansion in ([3.19)) implies that scalar component ¢ also
couples to the 4-dimensional brane confined energy momentum tensor. Therefore

we also require

(V=99" ) = =500, (4)

2
vV vV _ O /€ I 7aNNe)
(V=99""9"")s = —kpn"n* ¢ + 7’377‘ n*’¢?. (5)

We will not write the fully expanded Lagrangian, but using the FORM [110]
symbolic manipulation package it is a simple matter to derive the following

vertices. We list only the terms proportional to the mass, as the others may
be found in Ref. [I11] for example. The relevant terms in the VVhh and VVh
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vertices are,

2

my o

- b
2

— (_nuvnaﬂnw + n;wnownﬁtf + nuvnwnﬁw

_ nuanl/ﬁnw + nuanwnﬂo + nuanwnﬁv + nuﬁnvanw _ annvanﬂo

+77M77VB77M + nwnwna/ﬁ _ Qnuanvanﬂv + nlwnl//o’now + nuanvvnaﬁ)
(6)

= —Lkp (0 —nPp — ety . (7)

The final rule needed is the ffh vertex for massless fermions. Taken all momenta

as incoming we have

= kp (k1 = k2)py + (k1 — K2)uy,] - (8)

1.2 KK Width

In order to justify the virtuality matching, we discuss the narrow-width assump-
tion for KK gravitons. This aspect is independent of the UV sector, and also
applies within standard effective theory. Using a Breit-Wigner propagator in the
KK sum means we ignore interference between KK states. In terms of the KK
mass splitting this requires

oxx > T, (9)

for mxx ~ /s where dgk is the spacing between consecutive KK modes. It
is simple to compute the lowest order graviton decay width to Standard Model
particles, as it appears in @ This decay is suppressed by 1/M2 since it occurs

only on the brane. A calculation based on the Feynman rules given in Ref. [20]

86



.1. Appendix

yields

TCom(mux) =y +99+ ff+q@+ZZ+W W~ + HH

_mi [1 gl o1 03 B[ 1]

© M27 [80 80 160 160 12 |80 40| 480
293 miy

= , 10
960 M (10)

We may also consider on-shell decays of a single massive graviton to two
other (less) massive gravitons. This contribution would produce a much larger
decay width, suppressed only by factors of 1/M,. However, extra-dimensional
momentum conservation persists as KK number conservation in the compactified
theory (also the basis for dark matter in UED models [I12]). The occupation
vectors of all gravitons participating in an interaction must sum to zero at any
vertex. When combined with energy momentum conservation |7i;|? > |fa|?+|7i3]?,
the on-shell decay amplitude vanishes for all graviton self interactions. In fact,
the next contribution to the decay width will come from higher orders in the

expanded action

I' ~Im + + =©=+

r 3 3 n+2
Mgk Mgk mKK
~ + KK 4 0 + -], (11
| M MR, M+ } "

based on power counting. We emphasize again the null contribution due to self-
interactions. The second diagram includes a sum over the intermediate graviton
as KK number is not conserved due to the matter coupling. Indeed, below M,
the graviton width is tiny, but at this scale the resummation quickly breaks down
and the width in general exceeds the spacing. Therefore, we have little reason to
extend our classical results in the pole region above the scale M,. We emphasize
that the gravitons contributing in this case probe IR physics. A rephrasing of
this physical picture is that multi-graviton exchange such as the second diagram
in becomes relevant at the scale M,. It is still possible to use perturbation
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Figure 1: KK mass splitting dkk (solid black) and the KK width I" (dashed black)
as a function of mkyg, using M, = 5 TeV. The red dashed curves indicate the
spacing 1/R. Starting from the bottom counting upwards we have n = 2 — 6.
From Ref. [1J.

theory in the pole region above Ar as long as we have a hierarchy Ar < M,.
The KK mass spacing is often estimated using dxx = 1/R [I13]. We improve
this estimate to assure that the narrow-width condition in (9) does not break
down at scales significantly below M,. To that end, we consider a state 7i; where
i? = N is some integer. In general, there will exist another state 7;_; such that
iz, = N — 1. If there is no state satisfying this relation then the spacing will be
larger than our estimate, leaving intact @ The integer N fixes mix = VN /R

so that for two non-degenerate KK modes the spacing is at least

OKK >

VN =N =1 [ (n)"Mr2\"e
R B Mg

27y M2
L) (12)

| \/m“‘ (s

We note that is sensitive to the equality of the radii of the extra dimensions.
For the case of unequal radii, the lower bound may be set by choosing the largest
radius.

In Fig. 1| we see that this lower bound for the spacing is much larger than the
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lowest order graviton width for any number of extra dimension n > 2 and for all
energy scales relevant to LHC physics. For example, for n = 2 and M, = 5TeV
we expect the lines to cross only around mgg ~ 1000 TeV, far above the scale
at which the leading order approximation width breaks down. For the LHC
observables computed in the following, (12]) confirms the hierarchy between the
tiny KK width and the level spacing.

Although the spacing between modes is much larger than the width, we have
not discussed how the decay width manifests itself in the KK sum. For this
purpose it will prove useful to specialize to 5 dimensions. For a completely stable
particle, the KK sum is performed explicitly and leads to equally spaced single
particle poles as expected.

Z 1 _ TR cot(mR+/s) (13)

s —n?/R? NG

The principle value integration over each particle pole is well defined in this

sense as the analytically continued result is obtained from by replacing the
cotangent function with its hyperbolic counterpart.

Now if we add a Breit-Wigner decay width of the form icm?3 /M3, as in (10,
the KK sum must be recomputed. After some trivial redefinitions the resulting

sum is,

R? & 1
S(s)s = 14

(s)s M§1;a2—n2+ibn4 (14)
where we define dimensionless variables a = v/sR and b = ¢/(MZR). Physically,
the last term in resemble a damped oscillator with the critical damping
condition given by a simple relation between a and b. We find that the
exponentially damped oscillation persist up to the point aei; ~ b~/3. In terms of

the physical parameters this corresponds to /s_.. ~ M,c™'/3. Most importantly

crit
this number is independent of Mp; even though Mp, appears explicitly in I'(mkxk).
In other words, after summing over all modes the physical size of I' has completely

dropped out. To see this we evaluate analytically. The full solution is lengthy
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but the oscillatory behavior is contained in the term

boot | i T= 1 - 1
Vi(VT—da% 1

= %cot [\/%u} (15)

Expanding out the term u for small a?, and b not too large

S(8)5 ~

u = \/i(\/%—l)%%(l—i-i?%—---) (16)

Now the squared amplitude |S(s)5|? is in fact the observable quantity we desire,

so from and we have

_ 3 3
e~ 2math 4 omab o 2 + 1

e=2ma’b _ oma®b 0052 4 1
1
~ (17)

1 — e b cos 2a’

[S(s)s/* ~

We see that the oscillating cosine term is exponentially damped. Moreover if we
solve for example for the half life of the decay, we obtain the relation as previously
stated that agy ~ b~1/3.

Now taken at face value, the form of this propagator has three distinct regions.
First for /s < M,c™'/3, there are large oscillations due to the insufficient
dampening turn provided by the width. Next, for intermediate energies the
principle value integral well approximates the damped oscillating term, and in
this region our assumptions are well justified. Now at some energy, typically
around but not exactly at M, the geometric series needed to define the width in
the propagator no longer convergences and more powerful techniques are needed.
The propagator in this region naively behaves like 1/s* here, but this prospect is
never physically realized.

Finally, for higher numbers of extra dimensions we can no longer analytically
compute the KK sum. Within a numerical implementation we find that there is
no simple relation between the coefficient in the width and the damping, as now

in general the position of v/s_.. depends on Mp;, M, and c.

crit
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Figure 2: Squared KK kernel in the 5-D width given in blue plotted as a
function of y/s. Given for comparison is the analytic result computed by taking
the principle value of the width-less propagator in the integral approximation.
Phenomenological parameters taken for this plot are M, = 2TeV and ¢ = 1.5.
For clarity Mp; = 20TeV so that the individual oscillations can be identified
graphically. The difference in the blue and red curve above /s_;, ~ 2.28 TeV
vanishes for Mp; — oo.

.1.3 Monte Carlo Numerical Integrator

A VEGAS numerical integration routine is one important technique for calcu-
lating collider signatures. The internals of VEGAS will not be described in
detail here, but essentially by linearizing the given function it obtains an efficient
method of numerical integration. For the purposes of calculating LHC cross-

sections, it is necessary to evaluate the integral,

Ohaa(p+p —Y) =/ d$1/ dry Y fr(1) f7(x2) o(qp(21P) + Gs(22P) = V)
0 0 1l

(18)
For a 2 — 2 process there will be one additional integration over the phase
space in the partonic cross-section. The vegas routine employed integrates over
the the momentum fractions x; and x5, as well as the angle 6 from phase space
integration. In addition, the user may numerically integrate over the KK mass

mkk, provided that a chosen scale matching does not contain singularities. The
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angle 6 is defined in the partonic center of mass. The boost which transforms
from the partonic to hadronic center-of-mass is solely along the beam axis and is

given in terms of x; and x5 as

Ay = A (v(,22), B, 22)) (19)
2

Yom) =y 2 (20

5(371,5172) ZZI_Z (21)

Note that transverse momentum of the initial state is neglected. Kinematic cuts
can then be applied, and for most purposes this amounts to ignoring dilepton
pairs with invariant mass less than 20 GeV. The squared and averaged matrix
element can then be calculated using the momenta in either frame. This is passed
first to the PDF function. The PDF used is cteq6ll [114], with the factorization
scale set equal to p;, which returns a weight equal to the probability of finding
the initial partons with momentum fractions z; + dx; and x5 + dxs. Finally the

phase space integrator computes the total cross-section as

ar 9 5 929

o //2E12E2\v1—v2!(27r)32E3 (2%)32E4( m™)0() (22)
|IM|?sin 6 Es

= | e . 23

/ 64w E\Ey E4 (23)

where the delta function expresses overall energy momentum conservation. This
integral is evaluated in the partonic center-of-mass frame due to the definition of 6.
The value returned is then multiplyed by the VEGAS weight, produced internally
in VEGAS when linearizing the function, which gives the contribution to the total
cross-section for a particular iteration. Histogramming the partonic invariant
COM energy with the associated weights for each iteration, give a distribution of

do/dm? as a function of m?2. This can be seen by considering rewriting the total

cross-section

Ohad = X:Am2 Z do(m?) — 8877:2 = Zda(mz) (24)
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where the n represents contributions with mg +nAm? < m? < m2+ (n+1)Am?.
The background results for the total cross-section and distribution were verified
using the MadGraph and MadEvent package [115].

.1.4 Generating Functional

In this section we review functional renormalization techniques needed to study
gravity in the non-perturbative regime. In particular we derive the exact
renormalization group equation for the average effective action from [43]. The
fundamental quantity we wish to evaluate in any generic quantum field theory is

the partition function
211 = [laglesere, (25)

where ¢ is a scalar field for simplicity. Contained in the functional Z are
all n-point Green functions, and solving for them explicitly deems the theory
completely known. Related to the functional Z is the generator of connected

Green functions.

W[J] = In Z[J] (26)

Functionally differentiating W|[J] n-times with respect to the sources J therefore
generates the connected n-point Green Functions. Differentiating with respect to
only one source we obtain

J [ldepletJEFT) ()

3@V = T et~ e = o) (27)

In the final step we have defined the classical field ¢ as the expectation value of the
quantum fluctuations ¢. In other words, the weighted average of all the quantum
effects is precisely the field which we measure in experiment ¢. Therefore the
final functional we use is the effective action I'[¢]; making use of this new field ¢.

This is simply the Legendre Transform of W[.J].
I = -WJ—J-¢ (28)

In analogy to the equation of motion for the classical action,

05[9]
6¢()

= J(z) (29)
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we can compute the equation of motion for the action of our full quantum theory.

0 ___9 _ g, 2 W) — J(x

= 5 = [ as o) —Jw@)
[ WYL )
- [ 55 S5m ~ | Pagew -
=—J(x) (30)

We have made use of in the final step. For the functionals Z, W and I"
it is often too ambitious to include a measure which contains field modes with
arbitrarily large and small momenta. Therefore, it is typical to cut-off the path
integration in some manner and the theory is analysed in a particular momentum

regime. The simplest implementation of this idea is called the Wilsonian cutoff,

Zi ] = / [dp] 2 pae ST (31)

where the integration is only carried out for field modes with momenta larger that
k. This is a similar idea to the Wilsonian effective action, except in that case the
cutoff is on UV modes, and the path integration is not carried out. Instead the
UV cutoff is expected to modify the classical theory by the generation of higher
dimensional operators, introducing new interactions at low energy.

The modern implementation for restricting the path integral is to cut-off field
modes in a smooth way by inserting a mode suppression operator ASy, and

leaving the measure unchanged.
ZplJ] = \/[dgp]e_s[S@]‘f‘J‘qﬁ_ASk[%’] (32)

The functional ASk[¢] has the form of a mass term with variable coefficient,

1
ASil¢) = 50 Riy (3)

where Rj, has certain restrictions. Ry is large for modes with momenta less than

k in order to suppress the path integral. For large momenta in the path integral,
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Ry, goes to 0 so that the region ¢ >> k? is not affected.

lim Ri(¢*) =0, lim Ri(¢*) >0 (34)

k2 20 =0

At first it may seem surprising that Ri(¢?) > 0 when k?/¢*> — 0 is sufficient to
eliminate IR divergences. Effectively, a non-zero Rj acts as a mass term, and this
alone cures any IR pathology in the same way as a non-zero photon mass eliminate
IR singularities in QED. In order for the path integral to fully suppress all modes
with momentum less that k2 it is necessary to stipulate that Rj — k? for ¢* < k?
since in effect we have introduced a mass gap in our theory of order k2. Now we
must confront the problem that in general, our functionals do not have explicit
UV regulation. However, it turns out that we may still study certain aspects of
our theory. Varying the cut-off scale k, induces a change in our functional which
can be traced back to the effect of slightly higher or lower momentum modes.
This leads to genuine physical behaviour of our theory at different energy scales.
The quantity we wish to calculate in this framework is the k-derivative of the

relevant generating functional.

0
k—2Zy|J k— (ASy) k— Ry ( 35
— 2] = 0= [kgpstelae(-a) (3)
since the only k dependence is in the cutoff function. In practice it is simpler to

first define the smoothly cutoff effective action,
Lplo] = —InZy[J] + J - ¢ — ASi[g] (36)

here and henceforth known as the effective average action. This quantity has a
very intuitive physical meaning. This can be seen by considering the limits as we
take the cut-off either to 0 or very large. In the first case, taking k — 0 removes
the cut-off all together, and we are left with the unregulated quantum action I'[¢].
In the second case, if our theory is endowed with a physical UV cut-off A, taking
k — A removes all quantum fluctuations in the theory. This is the classical action
S[¢|. Therefore, the average effective action can be seen as interpolating between
a fully quantum and classical theory. The crucial observation for our purposes
though is that when we take the UV cut-off A — oo we are asking whether or

not very high momentum modes render the path integral ill-defined. The action
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which results from this procedure is thus defined I'y = I'y_,o.. There are three

possibilities,

e [', does not exist, we know immediately that I' is not a renormalizable

theory.

e [, = S, in which case the theory is perturbatively renormalizable and

asymptotically free.

e [, exist as some non-trivial theory, where it is said to be non-perturbatively

renormalizable.

For the second case, the analogy of QCD is instructive. Asymptotic freedom
at high energies implies that QCD is non-interacting, and the action is neatly
described by £ = —}LF w ™. The asymptotic safety scenario is predicated on
the possibility that gravity will fit into the third category. In any case, defining

9 o 9
Kok T omk —ar O (37)
we compute the derivative of
1
aTue) = 5 [ AR (ela)o(-a)) -~ ool-a)), (39)

where now we have the term in brackets (¢(q)p(—q)) — (¢(q)){¢(—q)) compared
to (35]). This is just the connected corralator.

((@)e(-0)) — (e@)e(-) = 1] (39)

We would like to have our differential equation completely in terms of
I't[¢]. Hence, we start with the quantum equation of motion (30, and take

the functional derivative with respect to J(y) on both sides,

1) ol
o =) = =51y 6o
_ d, do(2) 6°Ty
- [ 57(y) 36(2)50() (40)

where in the second line we have used the chain rule and introduced a dummy
integration over z. Now, we replace ¢(z) with its definition in . Our final
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expression then is

o [ P T
w-v)= [ d 5T0)0J(=) 59(2)00(a) (4D

and it is clear that the two terms are functional inverses. Therefore, (38) turns

into a functional differential equation containing only I'x[¢]

5204 [J] -
8Tkl /atz%k(&m5 R> . (42)

It is typical to generalize the integration to include a sum over all internal indices

in the theory, and represent this as a trace. In final form, the flow equation for

the average effective action is,

orfo] = Tr

(52Fk[ Iy Rk> h O, Ry, (43)

090

This result was originally derived in [43]. First of all, the second derivative of
the effective action is the exact propagator. Thus, as a Feynman diagram the
RHS of this equation is a single loop for the exact propagator, with insertions
at the vertex corresponding to regulator terms. The crucial point though is that
the function R appears in as a multiplicative factor 0;Ry. By construction,
the function Ry(¢?) — 0 for large ¢2, and this is enough to guarantee that 0, Ry,
will go to 0 as well. If R, — 0 at an exponential rate, the flow equation is
UV finite even when I'y[¢] is not. All UV modes in this case are exponentially
suppressed. Our point of interest though is the case when the flow ends on a
UV fixed point. It is in this (and only this) case that we can define our I'[¢] as
representing a fundamental theory.

We are always at liberty to integrate our flow equation, starting at some well
defined boundary action I'y. With our a foot in the door so to speak, we can

apply the (finite) flow equation to define our theory I' as,

0

1

F:FA—l-/ %_Fk(f)ti (44)
A B2 TP 4Ry

without making any reference to the path integral itself. Essentially, we have

differentiated then re-integrated and in doing so have defined a sufficient
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regularization scheme.

Perturbation theory is easily reproduced from the flow equation, and in the
case of small coupling accurately describes our theory. The first step is to replace
[k[¢] with the classical action S[@] on the left hand side of (43). Since the only

k dependence in the trace is contained in the Rj we can rewrite this as

629

1
atrk = athl” In [W

+ . (45)

Integrating gives the one loop effective action,

1 k=0
F,lg'lo‘)p = 5Tr In [5(2) + Rk]

k=A

= S[¢] + %Tr In [S®)] (46)

where Ry = 0 since no modes will be suppressed in that case. We use the fact
that for the momentum integral over (S® + Ry)™!, there is a mass gap m? ~ A2,
so that only S, remains. The result is the normal one-loop equation derived
from Schwinger-Dyson methods.

As the goal of the renormalization group flow equation is to provide a type
of non-perturbative description of a theory, it is useful to formulate an ordering
scheme of the effective action which does not rely on a small coupling. The
derivative expansion is commonly used and involves ordering all terms with no
derivatives first, all terms with two (for the case of a scalar theory) second, and

so on. Schematically,

Lil¢] = /ddﬂ? (Uk(®) + Zrp(99)* + - - + Yi(0)pd )+ - - ) (47)

Uy is the exact potential function in this case, and using the flow equation it
is possible to calculate the flow for each coefficient function Zj[¢| for example.
Obviously any term which violate the symmetries of the underlying theory is
disallowed, in this scheme and any other. A second ordering scheme for the
average effective action is called the vertex expansion. This involves ordering

operators by the number of field.
L n
gl =Y =T (@1, wn)(an) -+ dlaa) (48)
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where the F,(:) is the average effective action for all invariants with n powers
of the fields. A final point, is that in some sense the vertex expansion and
the derivative expansion are orthogonal, since the first term in the derivative
expansion for example, contains terms from all orders of the vertex expansion,

and vice versa. In gravity, we use mainly the derivative expansion.

.1.5 ERG Formalism of Gravity

In order to apply RG methods to quantum gravity it is necessary to formulate
a fully quantum effective action. The RG flow equation will then be used to
determine whether such an action is free of UV singularities. Equivalently, the
effective action exists if the RG trajectory ends on an UV fixed point. These
steps for quantizing gravity were first carried out in Ref. [45]. The structure and
some of the main results are from Ref. [4].

The Asymptotic safety scenario states that the metric, a dimensionless second
rank tensor, carries the degrees of freedom of the gravitational field in both the IR
and UV. However, it is also expected to be a fluctuating field in accordance with
quantum theory, and in effect, off-shell geometries must also be included in the
path integral. We define the quantum metric analogous to ¢ in our previous
discussions as 7,,. The combined average effects of this fluctuating metric
produce the classical field g,, = (7). The original symmetries of the theory
are maintained in the path integral by using the background field method. To
implement this we introduce the background field " so that I'[g,.] = T'[guw, 9]
The field g,, is non-propagating and can be identified with the physical field
9w following quantization. With this definition, we define the quantum metric
Y = Guv + hy where g, is not necessarily flat, but is constant, and the field
h,. contains all quantum effects. This replacement means that path integration
over 7, can be replaced by integration over h,,,.

The metric is required to be invariant under changes in the space time
coordinates 0z, = &,(z). It is important now to examine how our diffeomorphism
transformation acts on our fields g,., g.v, by and 7,,. First of all, the dynamical

field in the path integral transforms under ¢ as,

5%“/ = £5(§MV + hIU/) (49)
(5§W =0 (50)
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However under the background variation,

Shw = Eghw, (51)
ggw = Eﬁgﬁw (52)

Thus the quantum symmetry is realized by a non-linear and trivial transformation
of hy,, and g, respectively. The background symmetry transforms both fields
linearly. In effect we have merely divided the symmetry in different proportions
in the background case. The crucial consequence for our purposes is that § and
§ act identically on .

In analogy to the quantization of non-Abelian gauge theories, field configura-
tions related by diffeomorphism are counted an infinite number of times in the

path integral. Hence we introduce a gauge fixing term (harmonic gauge).

1
Sy = gq [ dvaT" ELE, (53
(6%
where
— Y AN 1 —a 3
F, = \/64nGy[025° D, — 59 D, has (54)

and 1_)7 is the covariant derivative defined with respect to g,,. Evaluation of the
Faddeev-Popov determinant also produces ghost terms with field C),. Although
we have not shown it explicitly, the combined quantum and background variation

of the effective action I'[g, g] i,

(04 0)I'(9,9)lg= =0 (55)

modulo terms coming explicitly from the gauge fixing. Therefore, the action is

invariant under diffeomorphism,

[ + Leg] = Tg] (56)

where ¢ = {g,u, G, Cuy C,.]. The action we use is

1
Fk = /ddx\/§ { 167TGN(_R + 2Ak) + O<R2) + ‘Cmatter + ‘Cgf + ‘Cgh} ) (57)
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in the RG flow equation and in order to see evidence for Asymptotic safety it
is only necessary to include the Einstein-Hilbert term with cosmological constant.

Thus, we neglect all matter interactions.

1
= [ atoyi{ g (=R 2000+ Lo + L (58)

Solving the flow equation and extracting the [-functions even for this simple
action is technically involved and we will not present the details. Instead we

quote results for the beta functions of the dimensionless couplings g and A,

By=(d—2+n)g (59)
Br=(=2+n)A+ g (ar(N) —naz(N)) (60)
__ghi(V)
1+ gba(N) (6

Writing out aq, as, by and by and 7 explicitly

2(d —2)(d + 2)g*

b= =2)9% 50 =51 = 1= 22

(62)

(d—1)g — 75 (1 -44))
29 — 75(1 — 2))? ’

By = —2\+ gd(d +2)(d+5) — d(d+2)g (63)
where the g is rescaled with a factor ¢; = I' (4 +2) (47)%?7'. Gauge fixing
dependency is responsible for the relative complexity of and compared
with and , which are valid for any gauge fixing condition.

There are several interesting results contained in and . First and
foremost, these equations have UV fixed points with non-vanishing A\ and ¢ in

(64’ 14)
although these are not physical and depends on the gauge fixing as well as the

d = 4 dimensions. More precisely both S-functions vanish for (g,, \,) =

cut-off scheme. We will refer to such quantities as being non-universal.

What is physically relevant though, is that the FP in d = 4 is continuously
connected to the Gaussian FP known to exist in d = 2 gravity. A second physical
point is that the phase diagram for \ and g exhibits a separatiz trajectory, which
connects the Gaussian and non-gaussian FP. All other trajectories are repelled
from the Gaussian FP, so that for example, in the IR these trajectories flow

towards values of ¢ = 0 and A = +oo. Connecting physics around the Gaussian
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FP with perturbation theory, we say that A is a relevant perturbation. The actual
position of our universe on the A\ — g phase diagram is argued in Ref. [54] to just
miss the separatix trajectory and flow towards +o0 in the IR. While the position
of FP show a fairly strong cut-off scheme and gauge fixing dependence, their
existence is considered a universal quantity. Another set of universal quantities
are the critical exponents # in the vicinity of a particular FP. The eigenvalues

of the stability matrix are defined as —6;. From inspection of and the

9B;
9gi

calculations in d = 4 shows that the critical exponents are a complex-conjugate
pair parametrized as 0 = ¢’ +i6” with ¢/ = 1.1 — 2.3 and #” = 2.4 — 7.0. These

number show a small variation due to scheme dependence, but are numerically

matrix M;; = will have non-vanishing components in every entry. An explicit

relatively stable. Most importantly, varying the gauge fixing and cut-off do not
change the signs of the critical exponent (nor do they destroy the FP altogether).

The final aspect of the Asymptotic safety scenario we would like to address
with our analysis using the RG, is whether it predicts explicit anti-screening
effects to Gy in the UV. If we expand the generic form of 5, and n in (59)) to

order ¢2, and set A = 0, we obtain.
By =(d—2)g — (d = 2)wg® + O(g°, g°) (64)

The constant w = %l(do) where cg4 is defined in , and b1 (0) is in general scheme

dependent. The replacement g — Gu¢=2 leads to,
Ba = —(d — 2)wG?pt=2 (65)

This equation is easily integrated to obtain

71— wG (A = 2

Gh (66)
where A is some reference scale, and k is the energy of our process. If we take
A = 0 then our reference scale is Gy and we obtain a one loop formula for the

the running of Gy,

Go

- 1+ WGokd_Q (67)

G,
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which is the resummation of the one loop contribution to the gravitational
coupling previously derived using effective theory techniques in (2.27). Formally,
this is equivalent to the linear approximation defined in (4.9). Since w is
universally positive (its magnitude however is non-universal), the gravitational
coupling show signs of anti-screening as one moves away from the Gaussian FP.

This does not a constitute a proof that gravity is a finite theory. As we saw
in perturbative calculations, higher derivative invariants play a crucial role in the
action and it may be that the fixed point does not remain after the inclusion of
these terms. In addition to being a more robust test of the asymptotic safety
scenario, the inclusion of higher order invariant allow us to judge the stability of
numerical results. In general, we require that the addition of new couplings in
the theory does not change significantly " and #”. Using similar computational
methods to the ones used for Einstein-Hilbert action, the f-functions can be

calculated for the action,

1
D= [atoyi{ o (CRE2 +ali Lyt La) (69

The results in Ref. [I16] show that ¢z is also a UV attractive coupling. The
critical exponent 6y shows a rather large scheme dependence but the physically
relevant sign in unchanged by varying the gauge fixing condition. Therefore, it
should be included in any fundamental theory of gravity in the formal sense. It is
also speculated that the other term R, R*” will have a UV attractive coupling.

Further polynomial invariants R"™ have been included in the effective action
and the numerical results are in [48]. The results show not only that 6" and 6" are
stable, but also that the higher order critical exponents 6" for n > 3 are negative,
and thus these terms are UV repulsive. This is encouraging for our requirement
that the theory be predictive. UV repulsive couplings do not need to be specified
for the theory to have a well defined UV limit. Of course these terms may have
non-trivial effects away from the non-Gaussian FP.

The addition of minimally coupled matter, especially in the R? truncation,
provides a non-trivial test for Asymptotic Safety. This is particularly interesting
since gravitational interactions with matter were shown to be divergent at the
R? level, with no hope for renormalization or field redefinition. The computation

in [50] reveals that not only does the fixed point survive this inclusion, but the
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critical exponents are affected in a fairly trivial manner; Evidence perhaps that

the underlying physics probed by the ERG is truly non-perturbative.

.1.6 Toy RG Model of Gravity

In this section we outline some explicit calculation in a simplified model of gravity
presented in Ref. [4]. The stability matrix is essential for gaining physical
insight about our theory. In order to demonstrate the variety of qualitatively
different fixed point behaviours, we will compute explicitly this matrix for a simple
gravitational action. Furthermore, quantum corrections to the S-functions will be
estimated on a very heuristic level. The theory we will study is the gravitational

action,

L= /gZ(—R+2A) (69)

in D = 4 Euclidean dimensions. The parameter Z = G5! and the factor 167 has
been absorbed into G for convenience. In addition we will consider U = 2AZ as
the vacuum energy. In order for the Lagrangian to have mass dimension 4, we
have [G] = =2, [Z] = 2, [A] = 2 and [U] = 4. However, as already mentioned,

the physically relevant parameters are dimensionless so we define,
g = Gnp? 2= Zu > A= Ap? w=Up* (70)
with S-functions,

Bg = 29 ﬁz =27 BA = =2\ ﬁu = —4u (71>

Since there are only two independent parameters, it is only necessary to compute

M;; twice. At the Gaussian fixed point we have,

2 0 2 0 -2 0
M(A,g) — M(g’u) — M(qu) — (72)
0 -2 0 —4 0 —4

which are stability matrices for a classically scaling theory. However, there is a
qualitatively different Gaussian fixed point for our theory described by (g, u) and
(g,2). This can be seen from the last two stability matrices, where the first has
M©" has one IR stable directions and M *% has two unstable IR directions.

Quantum effects are expected to modify the simple scaling region of the

104



.1. Appendix

classical theory. The one loop modification to the dimensionful g-functions can

be guessed by dimensional analysis
Bu =ap', Bz =bu’. (73)

By making the replacement U — uu?, and similarly for Z, we can derive 3, and

B
Bu=—4u+a, [,=-22+Dh. (74)

The effect of the quantum fluctuations then is to shift the previously Gaussian
fixed point to a new value (z,u) = (b/2,a/4). The stability matrix remains the
same as (72).

What is more physically apparent for gravity is the behaviour of the (-

functions for g and A. These can be derived from S, for example as

d dg d 1
—z=pu——-=-=2z+b, 75
M = M nda g (75)
so that
By =29 — bg”. (76)

A similar computation reveals
@A::—2A4-%§—wyA. (77)

In addition to the trivial fixed point there is a non-trivial one for (g,\) =
(2/b,a/(4b)). We have two stability matrices to calculate,

M(Gaussian) — 2 0 M(NG) — —2 0 (78)
a/2 —2 a/4 —4

The flow in the vicinity of each fixed point is tilted due to the off-diagonal
components of the stability matrix. Instead of having straight line solutions which
lie on the axes, the new straight line solutions are the eigenvectors of M;; denoted
v; and vy. In fact v¥ = vV so that in order for there to be exactly 2 fixed points,
the non-gaussion FP must lie on the straight line trajectory emanating from the
Gaussian FP. The genuine physics is encoded in the eigenvalues of where

we see that the quantum effects at the NG fixed point overcome the canonical
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dimension and render g an UV attractive direction. The UV critical surface is
thus two dimensional.

In order to analyze quantum effects in gravity quantitatively, more powerful
techniques are required. The functional renormalization group picture from the

previous section is necessary for us to move beyond these simple manipulations.
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