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Abstract
We investigate the speed limit of the state transformation in open quantum systems described by
the Lindblad type quantum master equation. We obtain universal bounds of the total entropy
production described by the trace distance between the initial and final states in the interaction
picture. Our bounds can be tighter than the bound of Vu and Hasegawa (2021 Phys. Rev. Lett. 126
010601) which measures the distance by the eigenvalues of the initial and final states: this distance
is less than or equal to the trace distance. For this reason, our results can significantly improve
Vu–Hasegawa’s bound. The trace distance in the Schrödinger picture is bounded by a sum of the
trace distance in the interaction picture and the trace distance for unitary dynamics described by
only the Hamiltonian in the quantum master equation.

1. Introduction

In recent years, studies of time-dependent open systems have been active [1]. These studies relate to
quantum pumps [2, 3], excess entropy production [4–6], the information geometric approach [7, 8], the
efficiency and power of heat engines [9–11], shortcuts to adiabaticity [12–16], and speed limits [16–28].
Obtaining a fundamental bound on the speed of state transformation is an important issue relevant to
broad research fields including quantum control theory [29] and foundations of nonequilibrium statistical
mechanics [30]. Speed limits for time-dependent closed quantum systems have been studied for more than
a half-century [1]. Since 1945, the Mandelstam–Tamm relation [31] L/

∫ τ

0 dtΔE � 1 has been known
(appendix A. In this paper, we set � = 1). Here, L is the distance between the initial and final states
(the Bures angle, see appendix A), and ΔE is the energy fluctuation.

About a decade ago, speed limits of open quantum systems had been intensively studied by adopting
various distance measures between two quantum states [17–20]. Reference [17] derived the upper bound of
the Bures angle expressed by the quantum Fisher information. For systems described by the quantum
master equation dρ/dt = K̂(ρ) [ρ(t) is the density operator (the state) of the system], reference [18]
provided the upper bound of the relative purity tr[ρ(t)ρ(0)]/tr[ρ(0)2] expressed with the adjoint of the
generator of the dynamical map K̂. Reference [19] estimated Margolus–Levitin-type and
Mandelstam–Tamm-type bounds by using the Bures angle for pure initial state and several norms of K̂(ρ).
A review of quantum speed limits for closed and open systems until around 2017 is given by reference [20].
More recently, the speed limits on observables of open quantum systems are discussed [28].

Recently, even in classical systems, it turns out that there exist speed limits expressed in terms of the
distance between states [21]. Remarkably, the classical speed limits connect the distance and the
thermodynamic entropy. Shiraishi et al [21] demonstrated that

σ � l2∫ τ

0 dt 2Ac(t)
(1)

for a system described by a classical master equation d
dt pn(t) =

∑
mWnmpm(t). Wnm is the transition matrix

satisfying the local detailed balance condition [32] and pn(t) is the probability of state n at time t. σ is the
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total entropy production, the distance l :=
∑

n |pn(τ ) − pn(0)| is the L1 norm, and
Ac(t) :=

∑
n�=m Wnm pm(t) is the activity (total number of transitions per unit time).

The speed limits in terms of the entropy production for the open quantum systems described by the
Lindblad type quantum master equation (the Gorini–Kossakowski–Sudarshan–Lindblad equation),

d

dt
ρ(t) = −i[H(t), ρ(t)] +D(ρ(t)), (2)

have been researched actively in recent years. Here, H(t) :=HS(t) + HL(t), where HS is the system
Hamiltonian and HL is the Lamb shift Hamiltonian, which satisfies [HL(t), HS(t)] = 0. D(ρ) represents
dissipation and is given by D(ρ) =

∑
kγkD̂[Lk](ρ) with D̂[X](Y) :=

(
XYX† − 1

2 X†XY − 1
2 YX†X

)
. In this

paper, X and Y denote linear operators of the system. γk are non-negative real numbers which describe the
strength of the dissipation. The label k is a tuple (b, a,ω) where b is the label of the bath. The jump
operators Lb,a,ω satisfy

[Lb,a,ω, HS] = ωLb,a,ω , Lb,a,−ω = L†
b,a,ω. (3)

We assume the local detailed balance condition

γb,a,−ω = e−βbωγb,a,ω , (4)

where βb is the inverse temperature of the bath b. Note that Lk, ω, γk and βb can depend on time. The total
entropy production is given by σ :=

∫ τ

0 dtσ̇ where

σ̇ := − tr

[
dρ

dt
ln ρ

]
−

∑
b

βb tr[Db(ρ)HS] (5)

is the entropy production rate. Here, Db(ρ) denotes the contribution from the bath b of D(ρ).
For the system described by (2), there are two approaches to speed limits. The first approach is Funo

et al’s approach [22], which treats the first and second terms of the right-hand side of (2) equally. Funo et al
[22] demonstrated that

||ρ(τ) − ρ(0)||1 � c1 + c2 + c3, (6)

with

c1 � 2

∫ τ

0
dtΔE, (7)

c3 �
√

2σ

∫ τ

0
dt A(t). (8)

Here, ||ρ(τ) − ρ(0)||1 is the trace distance and ||X||1 := tr
√

X†X is the trace norm. c1 corresponds to the
contribution from the first term of the right-hand side of (2), c2 and c3 correspond to the contribution from
the second term of the right-hand side of (2) [33]. ΔE :=

√
tr(ρ(t)H(t)2) − [tr(ρ(t)H(t))]2 is the energy

fluctuation. A(t) is defined by

A(t) :=
∑
n �=m

Wmnpn(t) (9)

with Wmn :=
∑

kγk|〈m(t)|Lk|n(t)〉|2. Here, we used the spectral decomposition of ρ(t):

ρ(t) =
∑

n

pn(t)|n(t)〉〈n(t)|. (10)

If the quantum master equation reduces to the classical master equation [34], (6) reduces to (1) because
c1 = c2 = 0. For no dissipation limit γk = 0, (6) becomes a Mandelstam–Tamm type relation because of
c2 = c3 = 0.

The second approach is Vu’s approach [24, 25], which focuses on the second term of the right-hand side
of (2). Vu and Hasegawa [24] demonstrated that

σ � σV1 :=
dT (ρ(τ), ρ(0))2∫ τ

0 dt 2B(t)
. (11)
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Here,

B(t) := tr

[
ρ(t)

∑
k

γkL†
kLk

]

= A(t) +
∑

n

∑
k

pn(t)γk|〈n(t)|Lk|n(t)〉|2 (12)

corresponds to the activity [35] (a similar quantity appears in references [36, 37] in the context of
decoherence times). dT is defined by dT(ρ(τ), ρ(0)) :=

∑
n |bn − an| where {an} and {bn} are increasing

eigenvalues of ρ(0) and ρ(τ). For no dissipation limit, (11) is consistent because dT(ρ(τ), ρ(0)) = 0 holds
with B(t) = 0 and σ = 0. (11) is improved as [26]

σ � σV0 :=
dT(ρ(τ), ρ(0))2∫ τ

0 dt 2M(t)
(13)

with

M(t) :=
∑

k

∑
m �=n

Ψ(a(k)
mn, a(−k)

nm ), (14)

a(k)
mn := γk|〈m(t)|Lk|n(t)〉|2pn(t). (15)

Here, we used (10) and −k := (b, a,−ω). Ψ(α,β) is the logarithmic mean of α and β given by
Ψ(α,β) := (β − α)/(lnβ/α) (α �= β) and Ψ(α,α) :=α. The relation Ψ(α,β) � (α+ β)/2 leads to
M(t) � A(t) � B(t) and thus σV0 � σV1.

For a system of which Hilbert space is d-dimensional, Vu and Saito [25] demonstrated that

σ � ||ρ(τ) − ρ0||21∫ τ

0 dt 2B(t)
(16)

under the condition that the initial state is completely mixed as ρ(0) = ρ0 := 1/d. For no dissipation limit,
(16) is also consistent because of ||ρ(τ) − ρ0||1 = 0.

We consider (11) and (16) possess the following shortcomings, which we would like to improve in the
present paper. (i) dT can be zero between different states: when there is an unitary operator Uτ such that
ρ(τ) = Uτρ(0)U†

τ , dT becomes zero and thus cannot distinguish between the two states. (ii) Even in the
classical master equation limit [34], (11) does not lead to (1): dT(ρ(τ ), ρ(0)) does not become l [38] and
B(t) > Ac(t) in general. (iii) In (16), we can not replace ρ0 by an any initial state ρ(0). In fact, in the weak
dissipation limit γk → 0, although σ and B(t) vanish, ||ρ(τ ) − ρ(0)||1 remains.

The structure of the paper is as follows. First, we summarize our main results (section 2). Next, we
explain derivations (section 3). We apply our speed limits to a general system of which Hilbert space is
two-dimensional (section 4.1): it includes a spinless quantum dot coupled to a single lead (section 4.2) and
a qubit system (section 4.3). In section 5, we summarize this paper. In appendix A, we derive the
Mandelstam–Tamm relation for mixed state. Appendix B is for the detailed calculations for section 3. In
appendix C, we derive a bound for the trace distance in the Schrödinger picture. We prove dV � dT in
appendix D. Appendix E is for the detailed calculations for section 4.3.

2. Main results

The main results of this paper are

σ � σ0 � σ1 � σ2, (17)

σ0 :=
||ρ̃(τ) − ρ̃(0)||21∫ τ

0 dt 2Aϕ(t)
, (18)

σ1 :=
||ρ̃(τ) − ρ̃(0)||21∫ τ

0 dt[B(t) + B′(t)]
, (19)

σ2 :=
||ρ̃(τ) − ρ̃(0)||21∫ τ

0 dt[B(t) + B∞(t)]
, (20)

3
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where ρ̃(t) :=U†(t)ρ(t)U(t) denotes the interaction picture. Here, U(t) is defined by d
dt U(t) = −iH(t)U(t)

and U(0) = 1. Aϕ, B, B′, and B∞ are quantum extensions of the activity. Aϕ(t) is given by

Aϕ(t) := tr

(
ρ̃(t)

1

4

∑
k

γk[ϕ, L̃k]†[ϕ, L̃k]

)
. (21)

ϕ(t) is defined by
ϕ(t) :=Φ(ρ̃(t) − ρ̃(0)). (22)

Here, Φ maps a self-adjoint operator X to a self-adjoint operator as Φ(X) :=
∑

n sign(xn)|n〉〈n|, where the
spectral decomposition of X is X =

∑
n xn|n〉〈n|. sign(x) is the sign of x. B′(t) and B∞(t) are defined by

B′(t) := tr

(
ϕρ̃ϕ

∑
k

γkL̃†
kL̃k

)
, (23)

B∞(t) :=
∑

k

γk||Lk||2∞ � B′(t), (24)

where ||Lk||2∞ equals to the maximum eigenvalues of L†
kLk. ||Y||∞ is called the spectral norm.

The second inequality of (17) σ � σ1 leads to (16) for ρ(0) = ρ0 because B′(t) = B(t) and
||ρ̃(τ) − ρ̃0||1 = ||ρ(τ) − ρ0||1 hold and thus σ1 = σV1. In the classical master equation limit, the first
inequality of (17) σ � σ0 leads to (1): in this limit, ||ρ̃(τ) − ρ̃(0)||1 = l and Aϕ � Ac hold (appendix B.3)
and thus σ0 is larger than the right-hand side of (1). Even for no dissipation limit, (17) is consistent because
||ρ̃(τ) − ρ̃(0)||1 = 0 holds with σ = 0 and Aϕ(t) = B(t) = B′(t) = B∞(t) = 0.

We notice that
dT(ρ̃(τ), ρ̃(0)) � ||ρ̃(τ) − ρ̃(0)||1 (25)

for finite dimensional Hilbert space (p 512 in reference [39]) and dT(ρ̃(τ), ρ̃(0)) = dT(ρ(τ), ρ(0)). (25) can
be also derived from [26]

dT(ρ2, ρ1) = min
V∈{U|U†U=1}

||Vρ2V† − ρ1||1. (26)

(25) indicates that our bounds σk (k = 0, 1, 2) can be better than (11).
Similarly to (6), we can separate contributions from unitary dynamics and dissipation. By the triangle

inequality, the trace distance in the Schrödinger picture is bounded as [40]:

||ρ(τ) − ρ(0)||1 � ||ρ̌(τ) − ρ(0)||1 + ||ρ(τ) − ρ̌(τ)||1
= ||ρ̌(τ) − ρ(0)||1 + ||ρ̃(τ) − ρ̃(0)||1. (27)

Here, ρ̌(t) :=U(t)ρ(0)U†(t). The first term of the right-hand side of (27) is related to the unitary time
evolution and is bounded by the Mandelstam–Tamm type relation (appendix A, [22])

||ρ̌(τ) − ρ(0)||1 � 2

∫ τ

0
dtΔĚ. (28)

Here, ΔĚ :=
√
tr(ρ̌(t)H(t)2) − [tr(ρ̌(t)H(t))]2. Using (17) and (18), the second term of the right-hand side

of (27) is bounded as

||ρ̃(τ) − ρ̃(0)||1 �
√

2σ

∫ τ

0
dt Aϕ(t). (29)

In appendix C, we explain an alternative bound for the trace distance in the Schrödinger picture which does
not refer to the virtual isolated system.

We discuss the meaning of the two distances when the Hilbert space is two-dimensional. In this case, the
state of the system can be written as ρ̃(t) = 1

2 (1 + r(t) · τ ). Here, τ = (τ x, τ y, τ z), τ i is the Pauli matrix,
and r(t) is the Bloch vector. The trace distance and dT are given by

||ρ̃(τ) − ρ̃(0)||1 = |r(τ) − r(0)|, (30)

dT (ρ̃(τ), ρ̃(0)) = ||r(τ)| − |r(0)||, (31)

with |x| :=
√

x · x. dT measures the difference between the length of the two Bloch vectors and does not
quantify the coherence.

4
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3. Derivation of the main results

Our key idea is the use of the trace distance in the interaction picture within Vu’s framework [24, 25]. We
introduce a semi-inner product by

〈〈X, Y〉〉ρ̃,k := tr
[
X†{ρ̃}k(Y)

]
(32)

with

{ρ}k(X) :=

∫ 1

0
ds(γ−kρ)sX(γkρ)1−s. (33)

Here, γ−k = γb,a,−ω. {ρ}k(X) is the logarithmic mean transformation [41]. The semi-inner product satisfies(
〈〈X, Y〉〉ρ̃,k

)∗
= 〈〈Y , X〉〉ρ̃,k and ||X||2ρ̃,k := 〈〈X, X〉〉ρ̃,k � 0. This semi-inner product differs from Vu’s

semi-inner product tr[X†Ô(b)(Y)] where Ô(b)(X) := 1
2

∑
a,ω[L̃†

k, {ρ̃}k([L̃k, X])] [24]. The super-operator Ô(b)

corresponds to the Laplacian of a weighted graph [42] (see (35) and appendix B.2). We consider the
semi-inner product (32) provides more transparent descriptions (appendix B).

Using the semi-inner product, we can obtain

d

dt
||ρ̃(t) − ρ̃(0)||1 = tr

[
ϕ(t)

dρ̃

dt

]

=
1

2

∑
k

〈〈[L̃k,ϕ(t)], [L̃k,− ln ρ̃− βbH̃S]〉〉ρ̃,k. (34)

We used d
dt tr[ f(X(t))] = tr

[
f ′(X(t)) dX(t)

dt

]
for a self-adjoint operator X(t) and a differentiable function f (x)

in the first line. In the second line, we used the quantum master equation in the interaction picture
(appendix B.2)

d

dt
ρ̃(t) =

∑
k

γkD̂[L̃k](ρ̃)

=
1

2

∑
k

[L̃†
k, {ρ̃}k([L̃k,− ln ρ̃− βbH̃S])]. (35)

Further, (34) leads to

||ρ̃(τ) − ρ̃(0)||1 =
1

2

∑
k

∫ τ

0
dt 〈〈[L̃k,ϕ(t)], [L̃k,− ln ρ̃− βbH̃S]〉〉ρ̃,k

� 1

2

∑
k

∫ τ

0
dt

√∥∥[L̃k,ϕ]
∥∥2

ρ̃,k

∥∥[L̃k,− ln ρ̃− βbH̃S]
∥∥2

ρ̃,k

�
√∫ τ

0
dt

1

2

∑
k

∥∥[L̃k,ϕ]
∥∥2

ρ̃,k
·
√
σ. (36)

Here, we used the Cauchy–Schwarz inequalities

|〈〈X, Y〉〉ρ̃,k| �
√
||X||2ρ̃,k||Y ||2ρ̃,k (37)

and ∑
k

∫ τ

0
dt

√
αk(t)βk(t) �

√∑
k

∫ τ

0
dt αk(t)

√∑
k

∫ τ

0
dt βk(t). (38)

Here, αk(t) and βk(t) are non-negative real numbers. The entropy production rate can be written by using
the semi-inner product [24]:

σ̇ =
1

2

∑
k

∥∥[L̃k,− ln ρ̃− βbH̃S]
∥∥2

ρ̃,k
. (39)

In (36), we can demonstrate (appendix B.3)

1

2

∑
k

∥∥[L̃k,ϕ]
∥∥2

ρ̃,k
� 2Aϕ(t), (40)

5
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which leads to the tightest inequality of (17). We can demonstrate

2Aϕ(t) � B(t) + B′(t) � B(t) + B∞(t) (41)

using tr
(
ρ̃(t){ϕ, L̃k}†{ϕ, L̃k}

)
� 0, ϕ(t)2 = 1, and B∞(t) � B′(t). Here, {X, Y} = XY + YX. Then, we obtain

the other inequalities of (17).
We compare the derivations of (11) and (17). (11) can be derived as follows [24, 25]. For the spectral

decomposition ρ̃(t) =
∑

npn(t)|ñ(t)〉〈ñ(t)|, we put

φ̃(t) :=
∑

n

cn(t)|ñ(t)〉〈ñ(t)| , cn(t)2 = 1. (42)

Then, [ρ̃(t), φ̃(t)] = 0 and φ̃(t)2 = 1 hold. For cn(t) = sign(pn(t) − pn(0)) or cn(t) = sign(pn(τ) − pn(0)),

dV (ρ̃(τ), ρ̃(0)) :=
∑

n

|pn(τ) − pn(0)| = tr

∫ τ

0
dt φ̃(t)

d

dt
ρ̃(t) (43)

holds [43]. By repeating similar calculations from (36) and by exploiting dV (ρ̃(τ), ρ̃(0)) � dT (ρ̃(τ), ρ̃(0))
(appendix D) and dV (ρ̃(τ), ρ̃(0)) = dV (ρ(τ), ρ(0)), we derive (11) (appendices B.3 and B.4). Note that
φ̃(t) �= ϕ for any cn(t) in general.

4. Application

4.1. General two-dimensional system
In this subsection, we consider a general system of which Hilbert space is two-dimensional. In general, the
jump operators are written as [44]

L̃k = (Rk + iIk) · τ . (44)

Here, the components of Rk and Ik are real numbers. The equation of the motion of the Bloch vector of ρ̃ is
given by

dr

dt
= 2

∑
k

γk[−(R2
k + I2

k)r + (Rk · r)Rk + (Ik · r)Ik + 2Rk × Ik]. (45)

The activities are given by

Aϕ =
∑

k

γk

[
R2

k − (ϕ · Rk)2 + I2
k − (ϕ · Ik)2 − 2[ϕ · (Rk × Ik)]ϕ · r

]
, (46)

B =
∑

k

γk

[
R2

k + I2
k − 2(Rk × Ik) · r

]
, (47)

B′ =
∑

k

γk

[
R2

k + I2
k − 2(Rk × Ik) · r′

]
, (48)

B∞ =
∑

k

γk

[
R2

k + I2
k + 2|Rk × Ik|

]
. (49)

Here, we expanded ϕ as ϕ = ϕ · τ with ϕ := 1
|r−r(0)| [r − r(0)]. r′ = (x′(t), y′(t), z′(t)) is the Bloch vector of

ϕ(t)ρ̃ϕ(t):

r′ = −r +
2([r − r(0)] · r)[r − r(0)]

|r − r(0)|2 . (50)

(46) is simplified as

Aϕ =
B + B′

2
−

∑
k

γk

[
(ϕ · Rk)2 + (ϕ · Ik)2

]
. (51)

Because ϕ depends on the initial state, Aϕ and B′ depend on it. One can check for ρ(0) = ρ0, i.e., r(0) = 0,
B = B′, and ||ρ̃(τ) − ρ̃(0)||1 = dT(ρ(τ), ρ(0)), and thus σ1 = σV1.

4.2. Quantum dot
We analyze our inequality (17) for a spinless quantum dot coupled to a single lead [2, 6]. The quantum
mater equation is given by

dρ

dt
= −i[HS, ρ] + γ[1 − f(ε)]D̂[a](ρ) + γf(ε)D̂[a†](ρ) (52)

6
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Figure 1. (a) ||ρ̃(t) − ρ̃(0)||1, dT(ρ̃(t), ρ̃(0)), y(t), z(t), and |r(t)|. (b) The total entropy production σ and its bounds σ0, σ1, σ2,
σV0, and σV1. The horizontal axes are time. x(t) equals zero identically. βε = 1 and ρ(0) = 1

2 (1 + 0.3τy).

with HS = εa†a. Here, a is the annihilation operator of the electron of the system, ε is the energy level of the
system, f(ε) = 1

eβε+1
is the Fermi distribution, β is the inverse temperature of the lead, and γ is the coupling

strength. From (52), we obtain L1 = 2a, γ1 =
1
4γ[1 − f(ε)], L2 = 2a†, and γ2 =

1
4γf(ε). These lead to

R1 = R2 = (0, 0, 1), and I1 = −I2 = (0, 1, 0). The equation of the motion of the Bloch vector r = (x, y, z) is
given by

d

dt
x = −1

2
γx ,

d

dt
y = −1

2
γy ,

d

dt
z = −γ(z − [1 − 2f(ε)]). (53)

We calculate the trace distance and dT by (30) and (31). The activity B(t) and its upper limit B∞(t) are given
by using B(t) = γ

(
1 + [2f(ε) − 1]z(t)

)
/2 and B∞(t) = γ. B′(t) is obtained from B(t) by replacing z(t) with

z ′(t). Aϕ(t) is given by

Aϕ(t) =
γ

4

(
1 +

[z − z(0)]2

|r − r(0)|2 + 2[2f(ε) − 1]
[z − z(0)][r − r(0)] · r

|r − r(0)|2

)
. (54)

The entropy production is calculated as

σ = H2

(
1 + |r(τ)|

2

)
− H2

(
1 + |r(0)|

2

)
+

∫ τ

0
dt βJ(t). (55)

Here, H2(p) := − p ln p − (1 − p) ln(1 − p) is the binary entropy. The heat current J(t) := − tr[HSD(ρ)] is
given by

J(t) =
1

2
γε

(
[1 − 2f(ε)] − z(t)

)
. (56)

For γt � 1 and βε(t) � 1 region, B(t) ≈ 0 holds, however, Aϕ(t) and B′(t) remain finite in general.
Figure 1(a) shows that the direction of the Bloch vector changes from the y-direction to the z-direction.

In this process, the norm of the Bloch vector and then dT (ρ̃(t), ρ̃(0)) change only slightly, see (31). At
γt = 0.547 . . . , although ρ̃(t) �= ρ̃(0), the distance dT(ρ̃(t), ρ̃(0)) becomes zero. On the other hand,
||ρ̃(t) − ρ̃(0)||21 is much larger than dT (ρ̃(t), ρ̃(0))2. Figure 1(b) shows that our bounds σ0, σ1 and σ2 are
superior to Vu–Hasegawa’s bound σV1. The Vu–Saito relation (16) is not applicable in this case.

4.3. Qubit
We compare our bounds and Vu–Hasegawa’s bound in the system studied in reference [25]. We consider
the qubit system described by the quantum master equation (see appendix E for detailed calculation)

dρ

dt
= −i[HS(t), ρ] + αγε(t)n(ε(t))D̂[τ+(θ(t))](ρ) + αγε(t)[n(ε(t)) + 1]D̂[τ−(θ(t))](ρ) (57)

with

HS(t) =
1

2
ε(t)τz(θ(t)). (58)

7
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Figure 2. (a) σ and its bounds for ρ(0) = 1
2 (1 − 0.5τy). (b) m(τ ) :=

∫ τ

0 dt M(t), b(τ ) :=
∫ τ

0 dt B(t), aϕ(τ ) :=
∫ τ

0 dt Aϕ(t),
b′(τ ) :=

∫ τ

0 dt B′(t), b∞(τ ) :=
∫ τ

0 dt B∞(t), and 1
2 [b(τ ) + b′(τ )] for ρ(0) = 1

2 (1 − 0.5τy). (c) σ and its bounds for ρ(0) = 1
2 . The

horizontal axes are time. α = 0.2β, βγ = 1, βε0 = 0.4, βε1 = 10, γT = 20. In (a), for γτ < 0.15, σV0 is larger than σ0.
In (c), σ0 is slightly larger than σ1.

n(ε) = 1
eβε−1

is the Bose distribution. Here,

τ±(θ) :=
1

2
(τx(θ) ± iτy(θ)) (59)

with
τx(θ) := τx cos θ − τz sin θ, τy(θ) := τy, τz(θ) := τz cos θ + τx sin θ. (60)

We consider the ‘nonoptimal protocol’ in reference [25]:

θ(t) = π
( t

T
− 1

)
, ε(t) = ε0 + (ε1 − ε0)sin2 πt

T
. (61)

Figure 2 shows σ and its bounds σ0, σ1, σ2, σV0, and σV1 for (a) ρ(0) = 1
2 (1 − 0.5τy) and (c) ρ(0) = 1

2 and
(b) the integrals of the activities for ρ(0) = 1

2 (1 − 0.5τy). Figure 2(a) shows that our bounds σ0 and σ1 are
superior in a wide range. In figure 2(b), for γt > 12, M(t) ≈ 0 and B(t) ≈ 0 hold, however, Aϕ(t) and B′(t)
remain finite because they depend on the initial state. If we fix ε(t) at ε1 after t > T while θ(t) = π

(
t
T − 1

)
,

σ0 cross to σV1 at γτ ≈ 120. In this protocol, if r(0) �= 0 and βε1 � 1, our bounds get worse over time in
general. For small ε(t), whether our bounds σ0 and σ1 or Vu–Hasegawa’s bound σV1 decreases faster
depends on the initial condition r(0). Figure 2(c) corresponds to the figure 1(c) in reference [25]. In this
case, σV0 is superior to σ0. In figure 2(c), not only M(t) and B(t) but also Aϕ(t) and B′(t) almost vanish for
γt > 12.

5. Summary

In open quantum systems described by the Lindblad type quantum master equation, we obtained universal
bounds of the total entropy production described by the trace distance between the initial and final states.
We considered the trace distance in the interaction picture instead of the distance of reference [24]
(measured by the eigenvalues of the initial and final states) and trace distance in the Schrödinger picture
[25]. Our bounds can be tighter than the bound of Vu and Hasegawa [24]. Our results are applicable to an
arbitrary initial state, beyond Vu–Saito’s bound [25] applicable only to the completely mixed initial state. In
the classical master equation limit, our tightest inequality leads to the inequality by Shiraishi et al [21]. The
trace distance in the Schrödinger picture is bounded by a sum of the trace distance for unitary dynamics
described by the system Hamiltonian and the trace distance in the interaction picture.

8
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Appendix A. Mandelstam–Tamm relation

In this section, we demonstrate that the Mandelstam–Tamm relation for mixed state [18]

L(ρ(τ), ρ(0)) �
∫ τ

0
dtΔE (A.1)

and
1

2
||ρ(τ) − ρ(0)||1 �

∫ τ

0
dtΔE (A.2)

for a closed quantum system S (described by dρ
dt = −i[H(t), ρ]). Here, L(ρ,σ) := cos−1 F(ρ,σ) is the Bures

angle, F(ρ,σ) := tr
√√

ρσ
√
ρ is the fidelity [39], and ΔE :=

√
tr(ρH2) − [tr(ρH)]2. First, we demonstrate

(A.1). For the spectral decomposition

ρ(0) =
∑

i

pi|φi〉S〈φi|, (A.3)

we define a state
|ρ(t)〉〉 :=U(t)

∑
i

√
pi|φi〉S ⊗ |i〉A. (A.4)

Here, U(t) is given by dU(t)/dt = −iH(t)U(t) and U(0) = 1. {|i〉A} is an orthonormal basis of the ancilla
system A. Because trA(|ρ(t)〉〉〈〈ρ(t)|) = ρ(t) holds, |ρ(t)〉〉 is a purification of ρ(t). We consider the
Robertson inequality

ΔXΔE � 1

2
|〈i[H, X]〉t | (A.5)

with X = |ρ(0)〉〉〈〈ρ(0)|. Here, ΔY :=
√
〈Y2〉t − 〈Y〉2

t and 〈Y〉t := 〈〈ρ(t)|Y|ρ(t)〉〉. For a operator YS of
system S, 〈YS〉t = trS(ρ(t)YS) holds. Using d|ρ(t)〉〉/dt = −iH|ρ(t)〉〉 and (A.5), we obtain

ΔE �
∣∣∣∣∣

d
dt

√
〈X〉t√

1 − 〈X〉t

∣∣∣∣∣. (A.6)

Then,

L :=

∣∣∣∣∣
∫ τ

0
dt

d
dt

√
〈X〉t√

1 − 〈X〉t

∣∣∣∣∣ �
∫ τ

0
dt

∣∣∣∣∣
d
dt

√
〈X〉t√

1 − 〈X〉t

∣∣∣∣∣ �
∫ τ

0
dtΔE (A.7)

holds. Here,
L = |cos−1

√
〈X〉τ − cos−1

√
〈X〉0| = cos−1|〈〈ρ(τ)|ρ(0)〉〉|. (A.8)

Because |〈〈ρ(t)|ρ(0)〉〉| � F(ρ(t), ρ(0)) (theorem 9.4 in reference [39]), we obtain the Mandelstam–Tamm
relation

L(ρ(τ), ρ(0)) � cos−1|〈〈ρ(τ)|ρ(0)〉〉| �
∫ τ

0
dtΔE. (A.9)

Next, we demonstrate (A.2). We utilize the following inequality ((9.110) in reference [39])

1

2
||ρ− σ||1 �

√
1 − [F(ρ,σ)]2. (A.10)

This leads to
1

2
||ρ− σ||1 � sin L(ρ,σ) � L(ρ,σ). (A.11)

This relation and (A.9) lead to (A.2).

9
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Appendix B. Total entropy production rate and activities

B.1. Semi-inner product
If we diagonalize ρ̃(t) as

ρ̃(t) =
∑

n

pn(t)|n(t)〉〈n(t)|, (B.1)

we obtain

〈〈X, Y〉〉ρ̃,k = tr

[
X†

∫ 1

0
ds (γ−kρ̃)s Y(γkρ̃)1−s

]

=
∑
n,m

〈n|X†|m〉〈m|Y |n〉
∫ 1

0
ds (γ−kpm)s(γkpn)1−s

=
∑
n,m

Mk(m, n)〈m|X|n〉∗〈m|Y |n〉. (B.2)

Here, Mk(m, n) :=Ψ(γ−kpm, γk pn) is a weight and Ψ(a, b) is the logarithmic mean. Then, the semi-inner
product corresponds to a weighted inner product introduced for the master equation in reference [42].
Note that ||X||2ρ̃,k = 0 does not lead to X = 0. Even if ||X||2ρ̃,k = 0, 〈m|X|n〉 can remain for (m, n) such that
Mk(m, n) = 0.

B.2. Total entropy production rate
In this subsection, we demonstrate that

σ̇ =
1

2

∑
k

∥∥[L̃k,− ln ρ̃− βbH̃S]
∥∥2

ρ̃,k
. (B.3)

As we will prove in the end of this section,

{ρ}k([X, ln ρ] + βbωX) = γkXρ− γ−kρX (B.4)

holds. Using (B.4), we obtain

γkL̃kρ̃− γ−kρ̃L̃k = {ρ̃}k([L̃k, ln ρ̃] + βbωL̃k)

= {ρ̃}k([L̃k, ln ρ̃+ βbH̃S]). (B.5)

Here, we used (3) in the second line. Using this, we obtain

1

2

∑
a,ω

[L̃†
k, {ρ̃}k([L̃k,− ln ρ̃− βbH̃S])] =

1

2

∑
a,ω

[L̃†
k,−γkL̃kρ̃+ γ−kρ̃L̃k]

=
1

2

∑
a,ω

(
−γk{L̃†

kL̃kρ̃− L̃kρ̃L̃†
k}+ γ−k{L̃†

kρ̃L̃k − ρ̃L̃kL̃†
k}

)

=
1

2

∑
a,ω

γk

(
−L̃†

kL̃kρ̃+ L̃kρ̃L̃†
k + L̃kρ̃L̃†

k − ρ̃L̃†
kL̃k}

)

= D̃b(ρ̃). (B.6)

Here, we used (3) in the third line, and D̃b(ρ̃) :=
∑

a,ωγkD̂[L̃k](ρ̃). (B.6) demonstrates that the Laplacian

Ô(b)(X) = 1
2

∑
a,ω[L̃†

k, {ρ̃}k([L̃k, X])] acting on the operator of thermodynamic force (X = − ln ρ̃− βbH̃S)
becomes the dissipator [42]. Eventually, we relate the entropy production rate with the norms of the
commutators:

10
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σ̇ =
∑

b

tr{(− ln ρ− βbHS)Db(ρ)}

=
∑

b

tr{(− ln ρ̃− βbH̃S)D̃b(ρ̃)}

=
∑

b

tr

[
(− ln ρ̃− βbH̃S)

1

2

∑
a,ω

[L̃†
k, {ρ̃}k([L̃k,− ln ρ̃− βbH̃S])]

]

=
1

2

∑
k

∥∥[L̃k,− ln ρ̃− βbH̃S]
∥∥2

ρ̃,k
. (B.7)

The equality (B.4) is derived as follows:

{ρ}k([X, ln ρ] + βbωX) =

∫ 1

0
ds(γ−kρ)s(X ln ρ− ln ρX − βbωX)(γkρ)1−s

= −γk

∫ 1

0
ds

d

ds
[e−sβbωes ln ρXe(1−s) ln ρ]

= γkXρ− γ−kρX. (B.8)

Here, we used (4). (B.8) corresponds to (S5e) of reference [24].

B.3. Activity
In this subsection, we demonstrate that

B(t) :=
1

2

∑
k

∥∥[L̃k,ϕ]
∥∥2

ρ̃,k
� 2Aϕ(t). (B.9)

Using (B.2) and Ψ(a, b) � a+b
2 , we obtain [24, 25]

||X||2ρ̃,k � 1

2

∑
n,m

(
γ−kpm〈n|X†|m〉〈m|X|n〉+ γkpn〈n|X†|m〉〈m|X|n〉

)

=
1

2

[
γ−k tr

(
ρ̃XX†) + γk tr

(
ρ̃X†X

)]
. (B.10)

Then, for Xk := [L̃k,ϕ],

B(t) � 1

4

∑
k

[
γk tr(ρ̃X†

k Xk) + γ−k tr(ρ̃XkX†
k )

]

=
1

2

∑
k

γk tr(ρ̃X†
k Xk)

= 2Aϕ(t) (B.11)

holds. Here, we used (3) in the second line of (B.11). Further by using

tr
(
ρ̃(t){ϕ, L̃k}†{ϕ, L̃k}

)
� 0, (B.12)

ϕ(t)2 = 1, and B∞(t) � B′(t), we obtain (41).

B.4. Partial activity
Because of (43),

σ � dV (ρ(τ), ρ(0))2∫ τ

0 dt 2Aφ(t)
(B.13)

can be derived in the same way as (36) and appendix B.3. dV(ρ(τ), ρ(0)) is defined by

dV (ρ(τ), ρ(0)) :=
∑

n

|pn(τ) − pn(0)| (B.14)

using the spectral decomposition

ρ(t) =
∑

n

pn(t)|n(t)〉〈n(t)| (B.15)

11
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with differentiable eigenstates {|n(t)〉}. Aφ(t) is given by (21) replacing ϕ with φ̃:

Aφ(t) = tr

(
ρ(t)

1

4

∑
k

γk[φ, Lk]†[φ, Lk]

)
. (B.16)

Here,
φ(t) :=

∑
n

cn(t)|n(t)〉〈n(t)|, (B.17)

and cn(t) = sign(pn(t) − pn(0)) or cn(t) = sign(pn(τ) − pn(0)). We obtain

Aφ(t) =
∑
n,m

1

4
{cm(t) − cn(t)}2pn(t)

∑
k

γk|〈m(t)|Lk|n(t)〉|2

=
∑

cn(t)�=cm(t)

pn(t)
∑

k

γk|〈m(t)|Lk|n(t)〉|2

�
∑
n �=m

pn(t)
∑

k

γk|〈m(t)|Lk|n(t)〉|2 = A(t). (B.18)

Here, A(t) is given in (9). Aφ(t) corresponds to the partial activity [24]. In the classical master equation
limit, Aϕ(t) becomes Aφ(t) with cn(t) = sign(pn(t) − pn(0)).

Appendix C. Supplement for (27)

We derive a bound for the trace distance in the Schrödinger picture. This bound does not refer to the virtual
isolated system, as opposed to the first term of the right-hand side of (27) referencing it.

From the quantum master equation (2) and the triangle inequality, we obtain [16, 22]

||ρ(τ) − ρ(0)||1 �
∫ τ

0
dt

∥∥∥∥dρ

dt

∥∥∥∥
1

�
∫ τ

0
dt

(
|| − i[HS, ρ]||1 + ||D(ρ)||1

)
. (C.1)

For simplicity, in this section, we suppose that the dimension of the Hilbert space of the system is finite.
The polar decomposition [39] of D(ρ) is given by D(ρ) = V†

√
[D(ρ)]†D(ρ) (V†V = 1). This

decomposition leads to
||D(ρ)||1 = tr(VD(ρ)). (C.2)

By repeating similar calculations from (34), we obtain

tr(VD(ρ)) �
√
σ̇

√
1

2

∑
k

‖[Lk, V]‖2
ρ,k (C.3)

with
1

2

∑
k

‖[Lk, V]‖2
ρ,k � 2AV (t) � B(t) + BV (t) � B(t) + B∞(t) (C.4)

where

AV (t) := tr

(
ρ
∑

k

γk
1

4
[V , Lk]†[V , Lk]

)
(C.5)

and BV (t) := tr
(

VρV†∑
kγkL†

kLk

)
. Thus, we obtain a bound for the trace distance in the Schrödinger

picture:

||ρ(τ) − ρ(0)||1 �
∫ τ

0
dt|| − i[HS, ρ]||1 +

√
σ

√∫ τ

0
dt 2AV (t). (C.6)

Because || − i[HS, ρ]||1 � 2ΔE [22], the first term of the right-hand side is bounded by the
Mandelstam–Tamm type term. The second term of the right-hand side corresponds to Shiraishi et al’s

12
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relation (1) and c2 + c3 in (6). In the classical master equation limit, V becomes a diagonal matrix of which
components are sgn( dpn

dt ) = ±1. In this case, the first term of the right-hand side of (C.6) vanishes and
AV � Ac.

Appendix D. Distances dT and dV

The distance dT is defined by

dT(ρ(τ), ρ(0)) :=
∑

n

|bn − an| (D.1)

where {an} and {bn} are increasing eigenvalues of ρ(0) and ρ(τ ). dV(ρ(τ), ρ(0)) is defined by (B.14) and
can be rewritten as

dV (ρ(τ), ρ(0)) =
∑

n

|bχ(n) − an|. (D.2)

Here, χ is a permutation. For any two increasing sequences {xn} and {yn}, we can demonstrate that

∑
n

|yσ(n) − xn| �
∑

n

|yn − xn| (D.3)

for an arbitrary permutation σ. Then, we obtain

dV (ρ(τ), ρ(0)) � dT(ρ(τ), ρ(0)). (D.4)

If the eigenvalues of ρ(t) do not intersect, dV(ρ(τ), ρ(0)) = dT(ρ(τ ), ρ(0)) holds.
We prove (D.3). For i < j with σ(i) > σ( j), we can prove that

|yσ(i) − xi|+ |yσ(j) − xj| � |yσ(j) − xi|+ |yσ(i) − xj|. (D.5)

The above equation leads to (D.3) because {yσ(n)} becomes the increasing sequence {yn} by repeating this
type of exchanging.

Appendix E. Detailed calculation for section 4.3

From (57), we obtain L1 = 2σ+(θ(t)), γ1 =
1
4αγε(t)n(ε(t)), L2 = 2σ−(θ(t)), and

γ2 =
1
4αγε(t)[n(ε(t)) + 1]. Denoting U†(t)τ i(θ(t))U(t) by

∑
k Tik(t)τ k, we obtain (R1)i = (R2)i = T1i,

(I1)i = −(I2)i = T2i, and (R1 × I1)i = T3i. The equations of motion of Tik are given by

dT1j

dt
= −ε(t)T2j − T3j

dθ(t)

dt
, (E.1)

dT2j

dt
= ε(t)T1j, (E.2)

dT3j

dt
= T1j

dθ(t)

dt
. (E.3)

The equation of motion of the Bloch vector is given by

dri

dt
= −αγε(t)

(
[2n(ε(t)) + 1]

[
ri −

∑
k

1

2
{T1kT1i + T2kT2i}rk

]
+ T3i

)
. (E.4)

The activities Aϕ(t), B(t), B′(t), and B∞(t) are given by

Aϕ(t) =
αγε(t)

4

(
[2n(ε(t)) + 1]

[
1 + (ϕ · T3)2

]
+ 2(ϕ · T3)(ϕ · r)

)
, (E.5)

B(t) =
αγε(t)

2
[2n(ε(t)) + 1 + x3], (E.6)

B′(t) =
αγε(t)

2
[2n(ε(t)) + 1 − x3 + 2(ϕ · T3)(ϕ · r)], (E.7)

and B∞(t) = Γ(t) :=αγε(t)[2n(ε(t)) + 1]. Here, (T3)i :=T3i and xi :=
∑

k Tikrk. The equations of motion
of xi(t) are given by

13
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dx1

dt
= −ε(t)x2 −

dθ(t)

dt
x3 −

1

2
Γ(t)x1, (E.8)

dx2

dt
= ε(t)x1 −

1

2
Γ(t)x2, (E.9)

dx3

dt
=

dθ(t)

dt
x1 − Γ(t)

[
x3 +

1

2n(ε(t)) + 1

]
. (E.10)

The heat current is given by

J(t) = −ε(t)

2

∑
k

T3k
drk

dt

=
ε(t)

2
αγε(t)([2n(ε(t)) + 1]x3 + 1). (E.11)

The entropy production is calculated by (55).
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