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Abstract

We investigate the speed limit of the state transformation in open quantum systems described by
the Lindblad type quantum master equation. We obtain universal bounds of the total entropy
production described by the trace distance between the initial and final states in the interaction
picture. Our bounds can be tighter than the bound of Vu and Hasegawa (2021 Phys. Rev. Lett. 126
010601) which measures the distance by the eigenvalues of the initial and final states: this distance
is less than or equal to the trace distance. For this reason, our results can significantly improve
Vu—Hasegawa’s bound. The trace distance in the Schrédinger picture is bounded by a sum of the
trace distance in the interaction picture and the trace distance for unitary dynamics described by
only the Hamiltonian in the quantum master equation.

1. Introduction

In recent years, studies of time-dependent open systems have been active [1]. These studies relate to
quantum pumps [2, 3], excess entropy production [4—6], the information geometric approach [7, 8], the
efficiency and power of heat engines [9—11], shortcuts to adiabaticity [12—16], and speed limits [16—28].
Obtaining a fundamental bound on the speed of state transformation is an important issue relevant to
broad research fields including quantum control theory [29] and foundations of nonequilibrium statistical
mechanics [30]. Speed limits for time-dependent closed quantum systems have been studied for more than
a half-century [1]. Since 1945, the Mandelstam—Tamm relation [31] £/ fOTthE < 1 has been known
(appendix A. In this paper, we set h = 1). Here, £ is the distance between the initial and final states

(the Bures angle, see appendix A), and AE is the energy fluctuation.

About a decade ago, speed limits of open quantum systems had been intensively studied by adopting
various distance measures between two quantum states [17—20]. Reference [17] derived the upper bound of
the Bures angle expressed by the quantum Fisher information. For systems described by the quantum
master equation dp/dt = K (p) [p(t) is the density operator (the state) of the system], reference [18]
provided the upper bound of the relative purity tr[p(£)p(0)]/tr[p(0)?] expressed with the adjoint of the
generator of the dynamical map K. Reference [19] estimated Margolus—Levitin-type and
Mandelstam—Tamm-type bounds by using the Bures angle for pure initial state and several norms of K(p).
A review of quantum speed limits for closed and open systems until around 2017 is given by reference [20].
More recently, the speed limits on observables of open quantum systems are discussed [28].

Recently, even in classical systems, it turns out that there exist speed limits expressed in terms of the
distance between states [21]. Remarkably, the classical speed limits connect the distance and the
thermodynamic entropy. Shiraishi et al [21] demonstrated that

lz

Jo dr2A(1) M)

oz

for a system described by a classical master equation % Pu(t) =D, Wampm(t). Wy, is the transition matrix
satisfying the local detailed balance condition [32] and p,(¢) is the probability of state # at time t. ¢ is the
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total entropy production, the distance [:= Y, |p,(7) — p,(0)| is the L' norm, and
A (t):= Zn#m Womp,, () is the activity (total number of transitions per unit time).

The speed limits in terms of the entropy production for the open quantum systems described by the
Lindblad type quantum master equation (the Gorini—Kossakowski—Sudarshan—Lindblad equation),

d
ap(t) = —i[H(1), p(1)] + D(p(1)), (2)

have been researched actively in recent years. Here, H(t) := Hs(t) + H(t), where Hg is the system
Hamiltonian and H is the Lamb shift Hamiltonian, which satisfies [H.(t), Hs(f)] = 0. D(p) represents
dissipation and is given by D(p) = Zk’ykD[Lk](p) with D[X](Y):= (XYXT — %XTXY — %YXTX). In this
paper, X and Y denote linear operators of the system. -y, are non-negative real numbers which describe the
strength of the dissipation. The label k is a tuple (b, a,w) where b is the label of the bath. The jump
operators Ly, satisfy

[Loawr Hs] = Whyaw>  Loaw =L} ,.- (3)

We assume the local detailed balance condition

Yba,—w = eiﬁbwryb,u,w) (4)

where f3, is the inverse temperature of the bath b. Note that L, w, 7y, and 3, can depend on time. The total
entropy production is given by o := fOTdtd where

. dp
o= —tr {a In P] - Xb:ﬁb tr[Dy(p)Hs] (5)
is the entropy production rate. Here, Dj(p) denotes the contribution from the bath b of D(p).

For the system described by (2), there are two approaches to speed limits. The first approach is Funo
et al’s approach [22], which treats the first and second terms of the right-hand side of (2) equally. Funo et al
[22] demonstrated that

[lp(T) — p(O)]1 < a1 + 2 + 355 (6)
with
a <2/ dtAE, (7)
0
<y [20 | dt A(t). (8)

Here, ||p(T) — p(0)]| is the trace distance and ||X||, := tr v/XTX is the trace norm. ¢; corresponds to the
contribution from the first term of the right-hand side of (2), ¢; and ¢; correspond to the contribution from
the second term of the right-hand side of (2) [33]. AE:= \/tr(p(t)H(t)z) — [tr(p(t)H(¢))]? is the energy
fluctuation. A(t) is defined by

A1) = Wanpu(t) 9)
n#Em

with Wi := > k| (m(2) |Li|n(1))|?. Here, we used the spectral decomposition of p(1):

p(t) = pu()|n(0)) (n(1)]. (10)

If the quantum master equation reduces to the classical master equation [34], (6) reduces to (1) because
c1 = ¢; = 0. For no dissipation limit v, = 0, (6) becomes a Mandelstam—Tamm type relation because of
C) = (3 = 0.
The second approach is Vu’s approach [24, 25], which focuses on the second term of the right-hand side
of (2). Vu and Hasegawa [24] demonstrated that

o dT(p(T),p(O))Z_

> gy 1= 2P
7=z o [7de2B(r) (1)
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Here,

B(t):= tr lp(t)z vkLlLk]
k
= A0+ YD POl ()| L n(0) [ (12)
n k

corresponds to the activity [35] (a similar quantity appears in references [36, 37] in the context of
decoherence times). dr is defined by dr(p(7), p(0)) := ", |by — a,| where {a,} and {b,} are increasing
eigenvalues of p(0) and p(7). For no dissipation limit, (11) is consistent because dr(p(7), p(0)) = 0 holds
with B(t) = 0 and o = 0. (11) is improved as [26]

_dr(p(7), p(0))

2 ovoi=—7Fr 1
ovo Jrde2M(r) (13)
with
M(t):= Z Z T(a®) al K, (14)
k m#n
al), := i (m(®) | Li|n(t)) P pu (). (15)
Here, we used (10) and —k:= (b, a, —w). ¥(«, B) is the logarithmic mean of « and 3 given by
U(a, B):=(8 —a)/(InB/a) (o # ) and ¥ (v, ) := av. The relation ¥(c, 8) < (a + 3)/2 leads to
M(t) < A(t) < B(t) and thus ovy > ov;.
For a system of which Hilbert space is d-dimensional, Vu and Saito [25] demonstrated that
e

~ [, dt2B(1)

under the condition that the initial state is completely mixed as p(0) = p, := 1/d. For no dissipation limit,
(16) is also consistent because of ||p(T) — pyll1 = 0.

We consider (11) and (16) possess the following shortcomings, which we would like to improve in the
present paper. (i) dr can be zero between different states: when there is an unitary operator U, such that
p(1) = U, p(0)Ul, dr becomes zero and thus cannot distinguish between the two states. (ii) Even in the
classical master equation limit [34], (11) does not lead to (1): dr(p(7), p(0)) does not become I [38] and
B(t) > A.(t) in general. (iii) In (16), we can not replace p, by an any initial state p(0). In fact, in the weak
dissipation limit v, — 0, although ¢ and B(¢) vanish, ||p(7) — p(0)||; remains.

The structure of the paper is as follows. First, we summarize our main results (section 2). Next, we
explain derivations (section 3). We apply our speed limits to a general system of which Hilbert space is
two-dimensional (section 4.1): it includes a spinless quantum dot coupled to a single lead (section 4.2) and
a qubit system (section 4.3). In section 5, we summarize this paper. In appendix A, we derive the
Mandelstam—Tamm relation for mixed state. Appendix B is for the detailed calculations for section 3. In
appendix C, we derive a bound for the trace distance in the Schrodinger picture. We prove dy > dr in
appendix D. Appendix E is for the detailed calculations for section 4.3.

2. Main results

The main results of this paper are

o =002 0120, (17)
_ Ip(r) — p(o)| I3

Jodi2A,(0) (18)

o P = pOl: (19)

VT [Tde[B(r) + B(D)]

||p(T) — p(0)]]?
Jo dt[B(t) + B (1)1’

0 i— (20)
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where p(t):= U'(t)p(t)U(t) denotes the interaction picture. Here, U(t) is defined by % U(t) = —iH(t)U(t)
and U(0) = 1. A,, B, B, and By, are quantum extensions of the activity. A,(¢) is given by

Ag(r):= tr (i)(t)iz el Ll e, ik]>. (21)
k

(1) is defined by
o(t):=2(p(t) — p(0)). (22)

Here, ® maps a self-adjoint operator X to a self-adjoint operator as ®(X) := >, sign(x,)|n)(n|, where the
spectral decomposition of X is X = Y x,|n)(n|. sign(x) is the sign of x. B'(¢) and B (t) are defined by

B(t):=tr (<Pﬁ<ﬂz Vkilik> , (23)

k

Boo():= > WLz = B (o), (24)
k

where ||L¢||2, equals to the maximum eigenvalues of LlLk. ||Y]| is called the spectral norm.

The second inequality of (17) o > o leads to (16) for p(0) = p, because B'(¢) = B(¢) and
[|p(T) — poll1 = ||p(7) — pol|1 hold and thus o; = oy,. In the classical master equation limit, the first
inequality of (17) o > ¢ leads to (1): in this limit, ||p(7) — p(0)||; = I and A, < A, hold (appendix B.3)
and thus oy is larger than the right-hand side of (1). Even for no dissipation limit, (17) is consistent because
[|p(1) — p(0)||; = 0 holds with o = 0 and A, (1) = B(t) = B'(t) = B (t) = 0.

We notice that

dr(p(r), p(0)) < |[p(7) = p(O)] (25)

for finite dimensional Hilbert space (p 512 in reference [39]) and d7(p(7), p(0)) = dr(p(7), p(0)). (25) can
be also derived from [26]

dT(Pz,Pl) = min HVP2VT - PlHl- (26)
ve{ulutu=1}

(25) indicates that our bounds o (k = 0, 1, 2) can be better than (11).
Similarly to (6), we can separate contributions from unitary dynamics and dissipation. By the triangle
inequality, the trace distance in the Schrodinger picture is bounded as [40]:

[[p(7) = pO)||y < [|p(T) — p(O)||1 + ||p(T) — p(T)]||x
= |[p(1) = p(O)||s + ||p(T) — p(O)|]:. (27)

Here, j(t) := U(t)p(0)U'(t). The first term of the right-hand side of (27) is related to the unitary time
evolution and is bounded by the Mandelstam—Tamm type relation (appendix A, [22])

15(r) — p(O)[|s < 2 / drAE. (28)
0

Here, AE:= \/tr(p'(t)H(t)z) — [tr(p(t)H(¢))]?. Using (17) and (18), the second term of the right-hand side

of (27) is bounded as
15(r) = O < /20 / dr A, (0). (29)
0

In appendix C, we explain an alternative bound for the trace distance in the Schrodinger picture which does
not refer to the virtual isolated system.

We discuss the meaning of the two distances when the Hilbert space is two-dimensional. In this case, the
state of the system can be written as p(t) = %(1 +r(t) - 7). Here, T = (74, Ty, T2), Ti is the Pauli matrix,
and r(t) is the Bloch vector. The trace distance and dr are given by

[[p(1) — p(0)]|y = |r(1) — r(0)], (30)
dr(p(1), p(0)) = |[r(1)| — [r(0)]], (31)

with |x| := /X - x. dr measures the difference between the length of the two Bloch vectors and does not
quantify the coherence.
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3. Derivation of the main results

Our key idea is the use of the trace distance in the interaction picture within Vu’s framework [24, 25]. We
introduce a semi-inner product by

(X Y)pu:= tr[XT{p}e(Y)] (32)
with

1
(p}(0) = / ds(y_ip) X () (33)
0

Here, v 1 = Yp0 - {p}x(X) is the logarithmic mean transformation [41]. The semi-inner product satisfies
((x, Y));,)k)* = (Y, X));x and ||X] \%k = (X, X))k = 0. This semi-inner product differs from Vu’s

semi-inner product tr[XTO® (Y)] where O (X) := %Za,w[i;i, {ﬁ}k([l:k,X])] [24]. The super-operator ow
corresponds to the Laplacian of a weighted graph [42] (see (35) and appendix B.2). We consider the
semi-inner product (32) provides more transparent descriptions (appendix B).

Using the semi-inner product, we can obtain

d ds
150~ 501l =0 7 |
= %Z (Lt oD, [Lio —In p— ByHs ) pc (34)
k

We used % tr[ f(X(2))] = tr[ (X (t))%] for a self-adjoint operator X(¢) and a differentiable function f(x)
in the first line. In the second line, we used the quantum master equation in the interaction picture
(appendix B.2)

d .
3P0 = ; wDIL] (p)
= %Z (L}, {p}k([Lk, — In p— B,H))]. (35)
k

Further, (34) leads to

15 = 5O = 53 [ dt (1B 0L 1~ In p = Bofts])ss
k 0

N

1 T _ _ N ~
2;A dt \/H[Lk) SO]HZ,kH[Lk)_ln p— ﬂbHS]H;)k

\/ [a 1 el e (36)
k

Here, we used the Cauchy—Schwarz inequalities

N

G YN okl < AJIXIR Y112 (37)

and

zkj /0 "4t/ OB < \/; /0 Tdmkm\/; /0 "t (o). (38)

Here, a(t) and (5,(t) are non-negative real numbers. The entropy production rate can be written by using
the semi-inner product [24]:

. 1 T D &
= 1 -t >

In (36), we can demonstrate (appendix B.3)

P

%Z 1L @1, < 2440, (40)
k
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which leads to the tightest inequality of (17). We can demonstrate
24,(1) < B(t) + B'(t) < B(t) + B (1) (41)

using tr(f)(t){gp, I:k}T{go, ik}) >0, p(t)* = 1,and B, (¢) = B'(1). Here, {X, Y} = XY + YX. Then, we obtain
the other inequalities of (17).
We compare the derivations of (11) and (17). (11) can be derived as follows [24, 25]. For the spectral

decomposition p(t) = > p(t)|7(t))(7(t)|, we put

A1) = cu(O|AD) (At)],  eu(t)* =1. (42)

Then, [p(1), a)(t)] =0and (}S(t)2 = 1 hold. For ¢,(t) = sign(p,(t) — p,(0)) or c,(t) = sign(p,(T) — p,(0)),

- - T~ od.
dv(p(7), p(0)) :=Xn: [pn(T) — pu(0)] = tr/o dtd?(t)ap(t) (43)
holds [43]. By repeating similar calculations from (36) and by exploiting dv (p(7), p(0)) = dr(p(7), p(0))
(~appendix D) and dy(p(7), p(0)) = dv(p(7), p(0)), we derive (11) (appendices B.3 and B.4). Note that
¢(t) # ¢ for any ¢, (¢) in general.

4. Application

4.1. General two-dimensional system
In this subsection, we consider a general system of which Hilbert space is two-dimensional. In general, the
jump operators are written as [44]

ik = (R +ily) - T. (44)
Here, the components of Ry and I are real numbers. The equation of the motion of the Bloch vector of p is
given by
dr
3 = 2 W R+ I+ (Re R+ (I I+ 2R x T, (45)
k

The activities are given by

Ap =) %R — (@ R’ +I; — (¢ - L) — 2 - (R x I]ep - 7], (46)
k

B=Y w[Ri+ I} - 2R x It) - 1], (47)
k

B =) %R +I - 2R x Iy) - 7], (48)
k

Boo =Y w[R}+ I} +2|Re x Ii|]. (49)
k

Here, we expanded ¢ as ¢ = ¢ - T with ¢ := L [r — r(0)]. ¥ = (X(1), (1), Z(t)) is the Bloch vector of

— |r—r(0)
() pp(t):
/ 2([r —r(0)] - r)[r — r(0)]

r=—-r+ I — r(0)2 . (50)
(46) is simplified as
B+ B
Ap=— —zkjvk[«a-Rk)u(wlk)Z]. (51)

Because ¢ depends on the initial state, A, and B’ depend on it. One can check for p(0) = p, i.e., r(0) = 0,
B =B, and ||p(1) — p(0)||, = dr(p(7), p(0)), and thus o = ov;.

4.2. Quantum dot
We analyze our inequality (17) for a spinless quantum dot coupled to a single lead [2, 6]. The quantum
mater equation is given by

dp

5 = “ilHs pl 4901 — f(€)1Dlal(p) + ~f(e)Dla'1(p) (52)
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0.5, 113(2) — p(0)|1

0.10}

0.05/

0 05 10 15 20 0
(a) (b)

Figure 1. (a) |[p(t) — p(0)|]1, dr(p(t), p(0)), (1), z(¢), and |r(1)]. (b) The total entropy production ¢ and its bounds oy, 7y, 03,
ovp, and oy;. The horizontal axes are time. x(t) equals zero identically. e = 1 and p(0) = %(1 +0.37,).

with Hy = ea'a. Here, a is the annihilation operator of the electron of the system, ¢ is the energy level of the
system, f(e) = —=— is the Fermi distribution, /3 is the inverse temperature of the lead, and +y is the coupling
strength. From (52) we obtain Ly = 2a, 7, = 4’y[l —f(e)], L, = 2a',and , = lWf(s) These lead to
Ry =R, =(0,0,1),and I, = —I, = (0, 1,0). The equation of the motion of the Bloch vector r = (x, y, z) is
given by

d 1 d 1

d
T T &ZZ—W(Z—U—ZJC(E)]) (53)

We calculate the trace distance and dr by (30) and (31). The activity B(¢) and its upper limit B (f) are given
by using B(t) = 'y(l + [2f(e) — l]z(t))/Z and B, () = ~y. B'(#) is obtained from B(t) by replacing z() with
z'(t). A, (1) is given by

7 [z — 2(0)])? [z—2(0)][r—r(0)] - r
Ay(t) = Z<l+m+2[2ﬂ5)_ 1] r— rO)P ) (54)
The entropy production is calculated as
o= m(%) —H2<1 ha r(°)> / dt B (t). (55)
Here, H>(p) := — plnp — (1 — p) In(1 — p) is the binary entropy. The heat current J(¢) := — tr[HsD(p)] is
given by
16 = J7e(11 = 2(0)] - 2(0). (56)

For vt > 1 and Be(t) > 1 region, B(t) ~ 0 holds, however, A, (#) and B'(t) remain finite in general.

Figure 1(a) shows that the direction of the Bloch vector changes from the y-direction to the z-direction.
In this process, the norm of the Bloch vector and then dy(p(t), p(0)) change only slightly, see (31). At
vt = 0.547 ..., although p(t) # p(0), the distance dr(p(¢), p(0)) becomes zero. On the other hand,
[|p(t) — p(0)]|? is much larger than dr(p(t), p(0))?. Figure 1(b) shows that our bounds oy, oy and o, are
superior to Vu—Hasegawa’s bound ov,. The Vu—Saito relation (16) is not applicable in this case.

4.3. Qubit
We compare our bounds and Vu—Hasegawa’s bound in the system studied in reference [25]. We consider
the qubit system described by the quantum master equation (see appendix E for detailed calculation)

dp

a = Hs(0),pl + aye(t)n(e(®)DIT4 (0(1)1(p) + ave(®) [n(e(t) + 1IDIT- (0] (p)  (57)

with )
Hs(t) = 5€(t)7'z(9(t))~ (58)
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G
(a) p(0) = 3(1—0.57).
0.42-
o.3§
0.2}

0.1}

(c) p(0) = 1.

Figure2. (a) o and its bounds for p(0) = 1(1 — 0.57,). (b) m(7):= [ dt M(1), b(7):= [ dt B(t), a (7)== [] dt A (1),
V(7)== []dtB(t), boo(7):= [ dt B (1), and 1 [b(7) + ¥/ (7)] for p(0) = 1(1 — 0.57,). (c) o and its bounds for p(0) = 1. The
horizontal axes are time. « = 0.2/3, By = 1, B¢, = 0.4, S, = 10,yT = 20. In (a), for y7 < 0.15, oy, is larger than o.

In (c), oy is slightly larger than o;.

n(e) = egg%l is the Bose distribution. Here,

ra(6) = 5 () % ir(®)) (59)

with
Tx(8) :=17x cos  — 7, sin 0, 7,(0): =7, T.(0):=T, cos 0 + 7, sin 0. (60)

We consider the ‘nonoptimal protocol’ in reference [25]:

o) =m(£ 1), ) =co+ (1 —eo)sin® T (61)
T T

Figure 2 shows ¢ and its bounds o, 01, 02, vy, and oy, for (a) p(0) = %(1 —0.57,) and (c) p(0) = % and
(b) the integrals of the activities for p(0) = %(1 — 0.57;). Figure 2(a) shows that our bounds o and o, are
superior in a wide range. In figure 2(b), for v¢ > 12, M(t) ~ 0 and B(#) ~ 0 hold, however, A, () and B'(¢)
remain finite because they depend on the initial state. If we fix £(¢) at &, after t > T while 0(¢) = w(% — 1) ,
0p cross to oy at y7 & 120. In this protocol, if r(0) # 0 and e, > 1, our bounds get worse over time in
general. For small £(#), whether our bounds ¢ and ¢, or Vu—Hasegawa’s bound ov, decreases faster
depends on the initial condition (0). Figure 2(c) corresponds to the figure 1(c) in reference [25]. In this
case, oy is superior to oy. In figure 2(c), not only M(t) and B(t) but also A, (t) and B'(t) almost vanish for

it > 12.

5. Summary

In open quantum systems described by the Lindblad type quantum master equation, we obtained universal
bounds of the total entropy production described by the trace distance between the initial and final states.
We considered the trace distance in the interaction picture instead of the distance of reference [24]
(measured by the eigenvalues of the initial and final states) and trace distance in the Schrodinger picture
[25]. Our bounds can be tighter than the bound of Vu and Hasegawa [24]. Our results are applicable to an
arbitrary initial state, beyond Vu—Saito’s bound [25] applicable only to the completely mixed initial state. In
the classical master equation limit, our tightest inequality leads to the inequality by Shiraishi et al [21]. The
trace distance in the Schrodinger picture is bounded by a sum of the trace distance for unitary dynamics
described by the system Hamiltonian and the trace distance in the interaction picture.

8
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Appendix A. Mandelstam—Tamm relation

In this section, we demonstrate that the Mandelstam—Tamm relation for mixed state [18]

L(p(7), pl0)) < / FN: (A1)
0

and

o) =l < [ aea (A2)
0

for a closed quantum system S (described by ‘31[ = —i[H(t), p]). Here, L(p, o) := cos™! F(p, o) is the Bures

angle, F(p, o) := tr/\/po/p is the fidelity [39], and AE:= \/tr(sz) — [tr(pH)]?. First, we demonstrate
(A.1). For the spectral decomposition

p(0) =D pildi)s(dil, (A3)

we define a state

p(1))) : U(t)Z VPilbi)s @ [ia- (A4)

Here, U(t) is given by dU(¢)/dtr = —iH(¢) U(¢) and U(0) = 1. {]i)4} is an orthonormal basis of the ancilla
system A. Because tra(|p(9))){({p(t)|) = p(¥) holds, |p(?))) is a purification of p(t). We consider the
Robertson inequality

AXAE > %\(i[H,X]M (A5)

with X = [p(0)))({p(0)|. Here, AY :=+/(Y?), — (Y)? and (Y),:= ({p(#)|Y]|p(t))). For a operator Y5 of
system S, (Ys): = trs(p(t)Ys) holds. Using d|p(#)))/dt = —iH|p(¢))) and (A.5), we obtain

d
=\ (X
AE > RV . (A.6)
1 — (X):
Then,
T d T d / T
L: dtdtim g/ dr| 4 X g/ dtAE (A.7)
0 1 —(X); 0 V31— (X) 0
holds. Here,

L= eos™"\/(X), — cos™' \/(X)| = cos™![((p(T)[p(0)))]. (A.8)

Because |({p(1)|p(0)))] < F(p(1), p(0)) (theorem 9.4 in reference [39]), we obtain the Mandelstam—Tamm
relation

L(p(1), p(0)) < cos™{p(T)]|p(0)))] / dtAE. (A.9)
Next, we demonstrate (A.2). We utilize the following inequality ((9.110) in reference [39])
1
Sl =alli < V1= [Flp,0)]. (A.10)
This leads to
—Hp—aHl sin L(p, o) < L(p,0). (A.11)

This relation and (A.9) lead to (A.2).
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Appendix B. Total entropy production rate and activities

B.1. Semi-inner product
If we diagonalize p(t) as

Py = pu(®)|n(®O) (n(t)], (B.1)

we obtain

1
(6 V) = tr [x* / ds (149’ mml-s}
0
1
=3 (X! ) (| Y1) / ds (s (rp)
n,m 0

= ZMk(m, n)(m|X|n)*(m|Y|n). (B.2)

Here, Mi(m, n) := W (y_ip,,» ViP,) is @ weight and W (a, b) is the logarithmic mean. Then, the semi-inner
product corresponds to a weighted inner product introduced for the master equation in reference [42].
Note that ||X[|3, = 0 does not lead to X = 0. Even if ||X[|2; = 0, (m|X|n) can remain for (1n, ) such that
M (m,n) = 0.

B.2. Total entropy production rate
In this subsection, we demonstrate that

1 - -
&= ikj | —1n p = BoFs] (B.3)

As we will prove in the end of this section,
{ph([X, In p] + BpwX) = wXp — v-kpX (B.4)
holds. Using (B.4), we obtain

YVelkp — Y-xpLe = {p}([Li> In p] + BpwLy)
= {p}x([LioIn p + ByHs)). (B.5)

Here, we used (3) in the second line. Using this, we obtain
S (L~ In = BysD] = 3 37 L i + -0
= %Z (_'Yk{i;iikﬁ — LipLi} + v {L{pL — ﬁikil})
= 23 (< E{Ep + Ll + Ll — pE{L )
= Dy(p). (B.6)

Here, we used (3) in the third line, and f)b(ﬁ) = Zu)wq/kb[ik] (p). (B.6) demonstrates that the Laplacian
oW (x) = %Zw [I:,TC, {p}«([Lx, X])] acting on the operator of thermodynamic force (X = —In p — (,Hs)
becomes the dissipator [42]. Eventually, we relate the entropy production rate with the norms of the
commutators:

10
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o= tr{(—In p— ByHs)Ds(p)}

b

=" w{(~In p - BH)Dy(P)}
b

=> [(— Inp— Bbﬁméz (L4 A} ([Lks = In p — BpHs))]
b a,w
_ %Z (L —n 5 - Bus) | (B.7)
k
The equality (B.4) is derived as follows:
{p}([X,In p] + BwX) = /0 ldswfkpﬂx In p—1In pX — BywX)(1p)'

1
d 3w
— _’Yk/ ds di[e—sﬂbu,es In pXe(l—s)ln p]
0 S
= NnXp — v-kpX. (B.8)
Here, we used (4). (B.8) corresponds to (S5e) of reference [24].

B.3. Activity
In this subsection, we demonstrate that

1 ~
B(1):= 3 || (L[l < 24,0). (B.9)
k
Using (B.2) and ¥(a, b) < “er—b, we obtain [24, 25]
1
[1X]154 < EZ (Y-km ([ X [m) (m|X| ) + iy (n|XT [1m) (m| X|))

%[’y,k tr(pXX") + e tr(pX'X)]. (B.10)

Then, for X; := [L, ],

1 N N
B(1) < ikj [ (XX + 7o tr(pXex) |

1 N
= EZ Ve tr(pXXi)
k
= 2A,(t) (B.11)
holds. Here, we used (3) in the second line of (B.11). Further by using

w(pM{p L} o Li}) = 0, (B.12)

()2 = 1, and B, () > B'(t), we obtain (41).

B.4. Partial activity
Because of (43),

dy(p(1), p(0))?*
o> A (B.13)
can be derived in the same way as (36) and appendix B.3. dv(p(7), p(0)) is defined by
dy(p(7), p(0)):=>_ [pu(T) — pa(0)| (B.14)
using the spectral decomposition
p(t) = pu(®)|n())(n(1)] (B.15)

11
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with differentiable eigenstates {|n(f))}. A4(¢) is given by (21) replacing ¢ with ¢:

A(t) = tr (“”iz il L) 6, Lk1> . (B.16)
k

Here,

B(1) = calt)|n(1)) (n(r)], (B.17)
and ¢, (1) = sign(p, (t) — p,(0)) or ¢,(t) = sign(p,(7) — p,(0)). We obtain
Ay(t) = Z {em(®) — cult)} pnmz Vel (m(8) | Li|n(0))
Z pn(t)z el (m ()| L n(1))

(OFcm(t

Z pn(t)z el (m(6)| Len(®)) > = A(). (B.18)
n#Em

Here, A(t) is given in (9). A,(t) corresponds to the partial activity [24]. In the classical master equation
limit, A, (¢) becomes Ay () with ¢,(#) = sign(p, () — p,(0)).

Appendix C. Supplement for (27)

We derive a bound for the trace distance in the Schrodinger picture. This bound does not refer to the virtual
isolated system, as opposed to the first term of the right-hand side of (27) referencing it.
From the quantum master equation (2) and the triangle inequality, we obtain [16, 22]

dp

o) =l < [ ar |7

1

</ dt (| = itHs, 1l + 1D 1)
0

For simplicity, in this section, we suppose that the dimension of the Hilbert space of the system is finite.
The polar decomposition [39] of D(p) is given by D(p) = VI1/[D(p)]"D(p) (VIV = 1). This
decomposition leads to

ID(p)]]1 = tr(VD(p)). (C2)

By repeating similar calculations from (34), we obtain

1
t(VD(p)) < V& ikj 1[Le V124 (C.3)

fZH [Lis V12 < 2Av(#) < B(t) + By(#) < B(t) + B (1) (C.4)

with

where

Av(t) =1 <pz wi[v,Lk]T[v,Lu) (C5)
k

and By (t) := tr(VpVT ZkaL,T(Lk). Thus, we obtain a bound for the trace distance in the Schrodinger
picture:

|\p<7>—p<0)\|1</ de|| = ilHs, pl||s + V& /dtZAV(t). (C.6)
0 0

Because || — i[Hs, pl||1 < 2AE [22], the first term of the right-hand side is bounded by the
Mandelstam—Tamm type term. The second term of the right-hand side corresponds to Shiraishi et al’s

12
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relation (1) and ¢, + ¢; in (6). In the classical master equation limit, V becomes a diagonal matrix of which
components are sgn(%) = =+1. In this case, the first term of the right-hand side of (C.6) vanishes and
Ay < A..

Appendix D. Distances drand dy

The distance dr is defined by
dr(p(7), p(0)) =Y |by — | (D.1)

where {a,} and {b,} are increasing eigenvalues of p(0) and p(7). dv(p(7), p(0)) is defined by (B.14) and
can be rewritten as

dy(p(1), p(0) = D [byn) — anl. (D.2)

Here, x is a permutation. For any two increasing sequences {x, } and { yn}, we can demonstrate that

Z Votn) — %u| = Z yn — %u (D.3)

for an arbitrary permutation o. Then, we obtain

dy (p(1), p(0)) = dr(p(7), p(0)). (D.4)

If the eigenvalues of p(#) do not intersect, dv(p(7), p(0)) = dr(p(7), p(0)) holds.
We prove (D.3). For i < jwith o(i) > o(j), we can prove that

Yoty — % + Vo) — Xi| = Vo) — xil + Vo) — %] (D.5)

The above equation leads to (D.3) because {y,, } becomes the increasing sequence {y, } by repeating this
type of exchanging.

Appendix E. Detailed calculation for section 4.3

From (57), we obtain L; = 20 (6(¢)), 71 = iowe(t)n(e(t)), L, =20_(6(t)), and
v, = +ave(t)[n(e(t)) + 1]. Denoting U'(£)7;(6(1)) U(t) by 3, Tie(£) 7%, we obtain (Ry); = (Ry); = Thi,
(In)i = —(I,); = Ty, and (Ry x I ); = T5;. The equations of motion of Tj are given by

% = (0T~ T3j$, (E.1)
B oy, (E2)
M, 0 (E3)

The equation of motion of the Bloch vector is given by
% — —arelt) ([211(6(1‘)) IS %{len,- + TuTodre| + T3i>. (E.4)

:

The activities A, (t), B(t), B'(t), and By (1) are given by
4,0 = T2 (2ue(0) + 111+ (0 127 + 200 T 1), (E5)
50 = 20 () 41+ ), (E6)
B0 = 0 nen) +1 -5+ 200 T ) (E7)

and B, (1) = I'(t) := arye(t)[2n(e(t)) + 1]. Here, (T3); := T5; and x;:= >, Tyt The equations of motion
of x;(t) are given by

13
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% — —(t)x — di(:)xs - %F(t)xl, (E8)
% =e(t)x; — %F(t)xz, (E.9)
% - di(:)xl —T() {xg + m . (E.10)
The heat current is given by
1t - —5(2”; 7,
= ?a’ys(t)([Zn(e(t)) + 1)x; + 1). (E.11)

The entropy production is calculated by (55).
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