
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

A federated Xrootd cache
To cite this article: E Fajardo et al 2018 J. Phys.: Conf. Ser. 1085 032025

View the article online for updates and enhancements.

This content was downloaded from IP address 131.169.5.251 on 25/10/2018 at 21:09

https://doi.org/10.1088/1742-6596/1085/3/032025
http://oas.iop.org/5c/iopscience.iop.org/10413220/Middle/IOPP/IOPs-Mid-JPCS-pdf/IOPs-Mid-JPCS-pdf.jpg/1?

1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890 ‘’“”

ACAT2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1085 (2018) 032025 doi :10.1088/1742-6596/1085/3/032025

A federated Xrootd cache

E Fajardo1, A Tadel1, M Tadel1, B Steer2, T Martin1, F Würthwein1

1 University of California San Diego, La Jolla, CA, USA
2 Monash University, Wellington Rd, Clayton VIC 3800, Australia

E-mail: emfajard@ucsd.edu

Abstract. With the shift in the LHC experiments from the computing tiered model where
data was prefetched and stored at the computing site towards a bring data on the fly, model
came an opportunity. Since data is now distributed to computing jobs using XrootD federation
of data, a clear opportunity for caching arose.

In this document, we present the experience of installing and using a Federated Xrootd
Cache (A Xrootd Cache consistent of several independent nodes). There is some fine tuning
towards and scaling tests performed to make it fit for the CMS Analysis case.

Finally, we show how this federated cache can be expanded into a federation of caches in
which the caches can be distributed among computing centers.

1. Introduction and Physics motivation
The LHC physics program, especially the large general purpose collaborations ATLAS and CMS,
depend on a distributed compute and storage infrastructure comprising roughly 150 Petabytes
of disk space and 100-200,000 hyperthreads of Intel X86 compute power. For CMS, roughly
1/3 of this compute power, and nearly all of the disk space is deployed to support physics data
analysis. Typically, a thousand scientists are active in a given month. More than 1000 peer
reviewed science papers have been produced this way by the two collaborations.

In CMS, two data formats are used for data analysis, AOD and MINIAOD, that differ in size
per event by x10. While MINIAOD is used by more than 90% of the analysis activity, AOD
occupies most of the disk space. Most of the analysis activity is focused on a single coherent set
of datasets produced with a consistent set of releases. CMS uses a data popularity mechanism
to place replicas of datasets based on their popularity [1]. This mechanism works on timescales
of one year or more before it deletes the datasets replicas from disk.

The present paper describes initial exploratory work towards a much more agile data
replication mechanism based on caches inside the CMS global data federation. Given that
the experiment knows in advance that the MINIAOD format will be heavily used in analysis.
We set aside a relatively small fraction of the total disk space for caching a complete version
of it with the objective of making that format maximally available at sites dynamically with
minimal explicit maintenance beyond specifying the namespace cached. Hence the cache allows
for a more efficient use of the sites disk space in which the data being cached is the one on
demand right now as opposed to the data that was popular several months ago.

By allowing distributed caches across site boundaries among sites that are ”close” in terms
of network latency, we can further economize on the amount of disk space used for serving data
analysis.

http://creativecommons.org/licenses/by/3.0

2

1234567890 ‘’“”

ACAT2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1085 (2018) 032025 doi :10.1088/1742-6596/1085/3/032025

The present work describes the basic ideas, and initial benchmarking towards such a system.

2. Xrootd and Data Federations
As demonstrated by the Anydata, Anytime, Anywhere project (AAA) [2] XRootd [3] was
the missing piece of the puzzle allowing the HEP community to step up from the concept of
distributed, multi-tiered storage to the level of global data federations with a single data-access
entry point and a common data-access protocol. Hierarchical deployment of XRootd redirectors
allows for a real-time discovery of sites where required data is available now, bypassing entirely
the file catalogues where information might be stale or the site listed there might be temporarily
inaccessible. While XRootd supported multi-storage deployments before, the novel idea of AAA
was to extend and improve this XRootd functionality to seamlessly function in a global, multi-
site environment. On the storage side, XRootd frontends or data-access plugins had to be
developed for all storage solutions used by CMS (hdfs, dCache, and DPM).

With AAA extending from the United States based pilot to a global CMS data federation
in 2014 [4], the usage of AAA quickly grew from the initial use-cases (fallback to remote data
access, overflow of jobs from oversubscribed sites[5], direct remote access for data exploration
and visualization) to the point of profoundly affecting the Computing model of CMS and also
using remote data access for production jobs as well as for data access from jobs running
on opportunistic resources. With all relevant CMS data being accessible through AAA, the
data placement and data movement strategies started to change as well, becoming based on
data popularity [1] or actual data access (by using XRootd caching proxy – just in time data
placement).

3. XRootd File-based Caching Proxy
XRootd file-based caching proxy (known as Proxy File Cache (PFC) within XRootd code and
documentation) acts as an intermediary between local XRootd clients and a remote XRootd
service, either a single data-server or a complete data federation. As a proxy cache it serves
data available on local disk directly and forwards requests for missing data to the remote service,
serving the data to the requesting client and writing it into the cache. Caching proxy will only
open a remote connection if data is actually not available locally or when a segment of a file
not already in the cache is accessed by a client. This guarantees that data in the cache remains
usable even when the data source is not available. Data can be automatically prefetched when
it is known that most of the file will be read once it is open. As all caches, the available space
is automatically managed and least recently used files get purged once disk usage reaches a
predetermined level.

A set of caching proxy servers can be connected into a Caching Proxy Cluster by using a
standard XRootd manager as an entry point into the distributed cache. Further, using the same
mechanism, several caching clusters can be connected into a federation of proxy clusters. This
makes sense when caching clusters in the federation are significantly closer to each other than
to the source data federation.

3.1. Local Xrootd Cache hardware setup
For the pilot XrootD cache system at UCSD we tried to maximize the number of spindles while
minimizing the amount of XrootD redirections a job needs to read its input data. Older worker
nodes were chosen that had the capacity for 12 3.5” disks drives of modest size. The systems
use two Intel Xeon X5650(6C/12HT) processors, 48GB of RAM, and 12 2TB HGST Hard drives
each. We have 11 systems in our Xcache for a total disk capacity of 264TB. In order to make best
use of the disks we retrofitted the systems with Mellanox MT27520 10Gbps network interfaces
and connected them directly to our Arista 7150S switch using 10Gbps Mellanox AOC Cables.

3

1234567890 ‘’“”

ACAT2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1085 (2018) 032025 doi :10.1088/1742-6596/1085/3/032025

3.2. Local tricks to increase use of the cache
The main use case for the cache is for CMS. We wanted CMS jobs to run at the UCSD Tier-2 site
(and use the cache) for jobs that run over the datasets that were in the cache but not necessarily
advertised as such via the global CMS PhEDEx data management system [6] (i.e jobs that would
not originally be routed to the UCSD Tier-2 cluster). We decided to serve all MINIAOD(SIM)
data from CMS for the 2016 data taking period, and corresponding simulations. This namespace
was configured to be cached in the XRootd cache. Configuration changes were then made to
the CMS overflow mechanism [5] to steer jobs to UCSD that pend for more than 6 hours in
the global HTCondor pool of CMS[7], and declare files in the cached namespace as input. In
addition there were some modifications needed for the site local configuration, so jobs requiring
these datasets would not try to access the local storage system but the Xrootd cache cluster.

4. Scale tests and estimated throughput
Given the potential for the cache (two sites, and hundreds of terabytes of data) ensuring that
it would scale with the current and future availability of compute nodes was a must. In this
section we present the methodology and the scale results obtained while stressing the proxy
cache cluster infrastructure. The base case for the test was the fact that CMS jobs read at
1MByte/s per core (client) [2]. All the measurements were done using clients that read at least
twice this rate.

The scale tests for this project were divided into two different sections. Section involved
holding the number of concurrent data requests fixed, while varying the rate at which individual
processes requested data. Section4.2 investigated holding the total requested data rate fixed
while varying the number of concurrent requests and individual data request rates.

Multiple large file requests were made from host machines at UCSD prior to the experiments
to ensure that the cache was hot (desired files already present in the cache) when experiments
were performed. This guaranteed a high cache hit/rate since requests were made for files from
this same dataset.

GlideinWMS[8] was used to submit several jobs (clients) at the same time to request files
from the cache, i.e create the artificial load. To gather the highest amount of distributed cores
while reducing the impact on production operations in the cluster a sleeper pool was used. A
sleeper pool consist of a batch system pool in which compute nodes are configured to advertise
more cores than they have, under the premise that those extra slots will consume a negligable
amount of resources(CPU, memory and disk). The sleeper pool is thus ”overlayed” on top of
the UCSD Tier-2 production system.

4.1. Fixed number of concurrent slots
For the this part, the number of concurrent jobs is fixed to 1000 and the data request rate is
varied. The rate being specified in units of MB/10s reflects the nature of the script submitted
in each job, which sleeps for 10 seconds between making remote file requests. The expected
data-rate per job (see green data in Figure 1) is simply the specified data request rate divided
by 10, changing to units MB/s.

4.2. Fixed Total Data Rate
In this section the total data request-rate is fixed at 5GB/s and the other parameters are varied.
For example, this can be achieved with 1000 concurrent jobs making average requests of 5MB/s,
or equally with 5000 concurrent jobs making average requests of 1MB/s. We would expect the
system throughput to decrease when the number of clients increases because of the degradation
of the service when disks in the cache cannot handle enough read requests. This is exactly
what we see in Figure 2. Notice that in the worst case scenario at 1MB/sec (the expected data

4

1234567890 ‘’“”

ACAT2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1085 (2018) 032025 doi :10.1088/1742-6596/1085/3/032025

Figure 1. Average data-rate throughput
(per job) for 1000 jobs Figure 2. Average data-rate (per job) for a

fixed total data request-rate.

rate) and usage of the entire cluster (5000 clients) the cache can only deliver up to 60% of the
expected data-rate.

5. Conclusions and Future Work
We see in the future more sites setting up similar cache clusters like this one. In particular
Caltech setting one up in which jobs running at either site can access seamlessly files from each
other cache. This will require doing some these tests again across the Wide Area Network.

More work and tests will be needed to understand and mitigate the performance degradation
when running at extreme concurrency levels if the data rates per core of CMS were to greatly
increase in the future. However, given the rates seen today on the production Tier-2s we are
confident based on these results that the existing cache will operate smoothly and efficiently.
We are thus since running this cache as part of the regular production Tier-2 system for CMS.

Acknowledgments
This work is supported in part by the National Science Foundation through awards PHY-1148698
and PHY-1624356.

References
[1] Kuznetsov V, Li T, Giommi L, Bonacorsi D and Wildish T 2016 Journal of Physics: Conference Series 762

012048 URL http://stacks.iop.org/1742-6596/762/i=1/a=012048

[2] Bauerdick L, Benjamin D, Bloom K, Bockelman B, Bradley D, Dasu S, Ernst M, Gardner R, Hanushevsky A,
Ito H, Lesny D, McGuigan P, McKee S, Rind O, Severini H, Sfiligoi I, Tadel M, Vukotic I, Williams
S, Wrthwein F, Yagil A and Yang W 2012 Journal of Physics: Conference Series 396 042009 URL
http://stacks.iop.org/1742-6596/396/i=4/a=042009

[3] Dorigo A, Elmer P, Furano F and Hanushevsky A 2005 Xrootd/txnetfile: A highly scalable architecture
for data access in the root environment Proceedings of the 4th WSEAS International Conference
on Telecommunications and Informatics TELE-INFO’05 (Stevens Point, Wisconsin, USA: World
Scientific and Engineering Academy and Society (WSEAS)) pp 46:1–46:6 ISBN 960-8457-11-4 URL
http://dl.acm.org/citation.cfm?id=1391157.1391203

[4] Bloom K and the Cms Collaboration 2014 Journal of Physics: Conference Series 513 042005 URL
http://stacks.iop.org/1742-6596/513/i=4/a=042005

[5] Sfiligoi I, Wuerthwein F, Bockelman B, Bradley D C, Tadel M, Bloom K, Letts J and Tadel A M 2012 Journal
of Physics: Conference Series 396 032102 URL http://stacks.iop.org/1742-6596/396/i=3/a=032102

[6] Rehn J 2006 Phedex high-throughput data transfer management system

5

1234567890 ‘’“”

ACAT2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1085 (2018) 032025 doi :10.1088/1742-6596/1085/3/032025

[7] Balcas J, Belforte S, Bockelman B, Colling D, Gutsche O, Hufnagel D, Khan F, Larson K, Letts J, Mascheroni
M, Mason D, McCrea A, Piperov S, Saiz-Santos M, Sfiligoi I, Tanasijczuk A and Wissing C 2015 Journal
of Physics: Conference Series 664 062031 URL http://stacks.iop.org/1742-6596/664/i=6/a=062031

[8] Sfiligoi I, Bradley D C, Holzman B, Mhashilkar P, Padhi S and Wurthwein F 2009 The pilot way to grid
resources using glideinwms 2009 WRI World Congress on Computer Science and Information Engineering
vol 2 pp 428–432

