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Abstract

High energy particle colliders provide unique facilities to investigate the physics
that take place at the smallest scales. The thesis present works for both future
and upgraded colliders. CLIC - the Compact Linear Collider - is a proposed high
energy electron-positron collider with collision energies between 350 and 3000
GeV. The LHC is a high energy proton-proton collider at CERN operating at
13 TeV. Over the next few years, it will be upgraded to the High-Luminosity
LHC to operate at higher luminosities. The thesis presents an analysis of the ¢t H
production at CLIC leading to predicted precisions on top -Yukawa coupling and
constraints on the CP properties of the Higgs boson. The thesis also presents
work for the ATLAS experiment investigating the suitability of new sensors for

use in the HL-LHC and studies of physics processes.

The predicted precision on the top-Yukawa coupling using the ete™ — ttH
process is measured to be 2.7% at /s =1.5 TeV at CLIC with polarised beams
and an integrated luminosity of 2.5 ab™! using the CLIC SiD detector model. The
H — bb final state of the Higgs boson and the 6-jet and 8-jet final states are used
for the analysis. A multivariate selection is used to separate the t¢H signal from
the backgrounds. b-tagging information is observed to be the strongest variable

in the multivariate selection.

The CP-proprties of the top-Higgs coupling are also investigated at /s =1.5
TeV using CLIC machine. A Higgs boson containing a mixture of scalar and
pseudoscalar components is characterised by a mixing angle, ¢. The precision
of the mixing angle ¢ is determined to be Asin?¢ ~ 0.07 with cross-section
measurements from both 6-jet and 8-jet final states. The results can be further
improved up to Asin? ¢ ~ 0.03 with an additional angular distribution, up-down

asymmetry, in the semi-leptonic channel.

The ATLAS experiment is upgrading its Inner Detector (ID) to an all-silicon



system, the Inner Tracker (ITk). A new Front End chip, RD53A, has been
developed using 65 nm CMOS technology. The thesis presents the work on the
procedure of setting up the test for the RD53A chip by using testbeam at DESY
with EUDET telescope. The EUTelescope software is used to reconstruct the
tracks of particles and the TBMon2 framework is used to do the final analysis for
the testing module. With data collected in December 2018 at DESY testbeam
facility, the residual of the UK RD53A module with cell size of 50x50 um? is
found to be symmetrical with 50.7 pym in x-axis and 51.3 pm in y-axis. The hit
efficiency is determined to be 97.651%=0.035% which passes the requirement for
the HL-LHC.
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Lay Summary

This thesis presents work investigating some of the big questions about the
Universe using high energy particle colliders such as the Large Hadron Collider
(LHC) at CERN and a proposed new electron—anti-electron collider called CLIC.

The first question is, where does matter get its mass (or weight)? The theory
of particle physics suggests a fundamental subatomic particle called the Higgs
boson that is responsible for giving masses to other fundamental particles. To
understand the behaviour of the Higgs boson, some of the properties of the Higgs
boson are investigated in this thesis.

A second question addressed here is why is there more matter than antimatter
in our Universe? Some theories suggest the Higgs boson could be one of the
sources that contributes to the matter-antimatter inequality in the Universe. To
explore this question, this thesis looks at the properties of the Higgs boson which
would be different for the interaction of the Higgs boson with matter and with
antimatter.

Finally, this thesis includes an R&D study of a new type of detector that can be
used at the ATLAS experiment at the LHC at CERN.

Although proton-proton colliders such as the LHC are more well-known in high
energy particle physics, this thesis shows that an electron-positron collider such
as CLIC can make more precise measurements of the Higgs boson.
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Chapter 1

Introduction

Human beings have been trying to answer big questions about the Universe
since ancient Greek times. Some of the unsolved questions are theoretical,
meaning that existing theory cannot explain the observed phenomenon. Others
are experimental, either because experimental apparatus is not precise enough to
investigate further details or there is difficulty creating an experiment to test a

proposed theory.

One of the most important questions in particle physics is to understand the origin
of masses of fundamental particles. A theoretical model used to solve this is first
proposed by three independent groups in 1964: by Peter Higgs [1]; by Frangois
Englert and Robert Brout [2]; and by Gerald Guralnik, C. R. Hagen, and Tom
Kibble [3]. This model is called the Higgs mechanism and it is part of the Standard
Model (SM) of particle physics. Without the Higgs mechanism, the gauge bosons
responsible for interactions would all be massless, whereas experimental results
suggest W+ and Z bosons have relatively large masses. A particle that explains

this mechanism is the Higgs boson.

In 2012, the Higgs boson is first observed by the ATLAS and CMS experiments at
the LHC with a mass of my, ~ 125 GeV [, 5]. Since then, both the ATLAS and
CMS experiments are measuring the properties of Higgs boson. So far the results
have shown a good consistency with the prediction by the Standard Model (SM)
[6]. Precise measurements on Higgs properties could help to probe physics beyond
the Standard Model (BSM) [7]. There still remains a few pressing questions which
cannot be explained by current theories. One of them is the baryon asymmetry

in the Universe [§]. New sources of CP violation could be able to explain this



question and is predicted by many extension theories of the SM.

The coupling strength between the Higgs boson and a fermion is referred to as
the Yukawa coupling [9]. The SM predicts a linear dependent relation between
the Yukawa coupling strength and the masses of the fermion [7]. The strongest
coupling is therefore to the heaviest fermion - top quark, usually refer to top-
Yukawa coupling, g;7r7. It is kinematically forbidden for Higgs to decay into top
quarks, but the large value of this coupling still leads to high rates of production
of a Higgs boson with a pair of top quarks. Hence, the ttH process is the best
channel to study the top-Yukawa coupling [10, [11].

The ttH process can be accessed at both the CLIC and the LHC. At the Compact
Linear Collider (CLIC), a proposed future e*e™ collider, the t¢H process can be
access with high rate from the second energy stage at /s =1.5 TeV with a
luminosity of 2.5 ab™ [12]. The collision environment at an eTe™ collider is
much cleaner than a pp collider. Therefore, physics quantites are expected to
be measured more precisely at an ete™ collider. In this thesis, the statistical
uncertainty of the top-Yukawa coupling is measured in ete™—tt® where ® is a
CP-mixed Higgs boson at /s = 1.5 TeV with an integrated luminosity assumed
to be 2.5 ab™! with polarised beams. The result can then be compared with the
projection of measurement from the HL-LHC [13] [14].

At the Large Hadron Collider (LHC), an existing pp collider, the ¢t H process was
first observed in 2017 at /s =13 TeV with a luminosity of 36.1+0.8 fb~! [15]. To
increase the potential for more discoveries, the LHC is increasing the luminosity
for the High-Luminsoity LHC (HL-LHC) project. The designed luminosity is
expected to be 10 times more than at the current LHC. This allows access to
rare processes such as ttH with more data and hence can help us understand
the physics in much more detail. For the preparation of the HL-LHC phase, the
ATLAS and the CMS experiments at the LHC are upgrading their detectors to
cope with the high particle density environment near the interaction point. This
requires the detectors to have much smaller pixels, high radiation tolerance and
high rate capability. For this purpose, the ATLAS experiment plans to replace
its current Inner Detector (ID) to a full-silicon system, the Inner Tracker (ITk).
The RD53 collaboration is developing a front end chip for the ATLAS ITk. The
performance of this RD53A chip is tested by testbeam at DESY and is described

in this thesis.

This thesis is structured in 6 chapters. A theoretical description of the Standard



Model and ttH process is presented in Chapter 2. Both the ete™ linear collider,
CLIC, and the pp circular collider, LHC, are described in Chapter 3. A brief
description of the CLIC detector and ATLAS experiment is also presented in this
section. Chapter 4 contains the analysis of top-Yukawa coupling measurements
and CP studies of the Higgs boson at CLIC. Chapter 5 presents the work on the
ATLAS ITk pixel detectors preparing for the upcoming HL-LHC upgrade. The

thesis will finally be concluded and summarised in Chapter 6.



Chapter 2

Current Knowledge of the Universe

2.1 Standard Model

The Standard Model of particle physics (SM) is a theoretical model that describes
the interactions between the elementary particles via three out of the four
fundamental forces. In the SM, the quantum field theory used to describe
phenomena observed in particle physics is very successful at providing accurate
predictions. The SM theorises the interactions between the different types of
elementary particles: fermions and bosons. Fermions include quarks and leptons
which are collectively know as the “matter particles”. Bosons are the force carriers
of the fundamental forces. The Higgs boson, that is also included in the SM,
is responsible for generating the masses of elementary particles via electroweak

symmetry breaking.

The SM is a renormalisable quantum field theory described as gauge fields under
the SU(3)c x SU(2), x U(1)y symmetry groupf]] with fermions introduced as
spinor fields. Each symmetry group describes a type of interaction, which occur
though exchanging gauge bosons. The two symmetry groups SU(2) x U(1) can
be unified into the so-called electroweak interaction [16]. After spontaneous
symmetry breaking, this becomes U(1)., which is governed by the quantum
electrodynamics (QED) [I7]. Quarks are spin-1/2 particles with colour charges
(red, green and blue) and undergo interactions by exchanging massless gluons.

This is the strong nuclear interaction described using SU(3) by the Quantum

!The subscripts indicate the quantum number that the symmetry group couples to. C stands
for colour charge, L stands for left-handed and Y stands for weak hypercharge.



Chromodynamics (QCD) [18, 19]. An overview of the SM is illustrated in
Figure 2.]]

In the following sections, a brief description of the SM, including the fundamental
interactions between particles, is given. The properties of the heaviest SM
particle, the top quark, is discussed in detail. The Higgs mechanism and the
properties of the Higgs boson such as its production, decay and coupling to
other particles, particularly to the top quarks, are described. Furthermore, CP-
violation is briefly described. Shortcomings of the SM are discussed which lead to
other models such supersymmetry, including Minimal Supersymmetric Standard
Model (MSSM) [20]. Finally, CP mixing of the Higgs boson is discussed and

current measurements from the LHC are presented.
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Figure 2.1 Overview of the fermions and bosons described by the SM [21]].

!The subscripts indicate the quantum number that the symmetry group couples to. C stands
for colour charge, L stands for left-handed and Y stands for weak hypercharge.



2.2 Fermions

Fermions (f) are the building block of our Universe. They consists of two types of
particles: leptons (¢) and quarks (g). There are three generations, with increasing
masses. Quarks and leptons are spin-1/2 particles, therefore, in the SM, fermion
fields are described using Dirac spinors denoted as . Helicity is defined as the
projection of spin onto the direction of momentum. If the direction of a particle’s
spin is in the same direction as its momentum, the helicity of the particle is right-
handed and left-handed if opposite. All fermions have various charges: electrical
charge (@), hyper charge (Y'), colour charge (C') and weak isospin (/) as described
in Figure [2.1]

2.2.1 Leptons

Each lepton family is composed of a pair of a charged lepton (—e) and an
associated neutrino in each generation, including electrons e, v, muons y, v, and
taus 7,v,.. Weak isospin [ is a quantum number relating to weak interaction.
Its third component I3 is conserved in all weak interactions. Left-handed
leptons build up doublets (ve,e™)r, (vy, ) and (v, 77) with I3 = +1/2 and
I3 = —1/2 respectively. In the SM, neutrinos are all left-handed and right-handed
leptons are singlets eg, g, Tr with I = 0. The EM force acts on all particles with
a non-zero electric charge and the weak force acts on all particles with a non-
zero weak isospin. Therefore, charged leptons interact via EM and weak forces,

whereas neutrinos only interact through weak force.

2.2.2 Neutrinos

Neutrinos are very hard to detect as they are essentially massless and rarely
interact with matter particles in the SM. However, neutrinos have been found
to have non-zero masses from the observation of neutrino oscillations [22], 23].
Various experiments indicate that neutrinos have very small masses and have set
experimental boundaries with an upper limit of 1.1 eV at 90% confidence level

on the absolute mass scale of neutrinos [24].



2.2.3 Quarks

Quarks have a total of six flavours with two flavours in each generation. Each
generation consists of an up-type and a down-type quark which carry electric
charges of +2/3 e and —1/3 e respectively. The first generation is u and d
quarks, the second generation contains charm ¢ and strange s quarks, and the
third generation includes top ¢ and bottom b quarks. Left-handed quarks have
a weak isospin value of I = 1/2, and right-handed quarks are isospin I = 0.
Left-handed quarks can be grouped into doublets with weak isospin of +1/2 that
behaves the same way as the weak interaction. Up-type quarks (u, ¢, t) have the
third component I3 = +1/2 and always transform into down-type quarks (d, s, b)
that have I3 = —1/2 via weak interaction. The weak interactions can occur either
through charged-current interaction or neutral-current interaction by mediating
a W boson or a Z boson respectively. Quarks never decay weakly into another
quark with the same weak isospin. Right-handed quarks are singlets with both a
weak isospin of I = 0 and the third component I3 = 0 and do not undergo weak

Interactions.

The probabilities of transition between quark flavour ¢ and quark flavour j are
described by the unitary Cabbibbo-Kobayashi-Maskawa (CKM) matrix [25], [26]

with element V;;

d/ Vud Vus Vub d
Sl =1V Ves Va s (2.1)
b Vie Vis Vi

with weak eigenstates on the left side, CKM matrix and a vector of down-type
mass eigenstates on the right. The elements of the CKM matrix, V;;, describes
the transition from a quark of flavour i to a quark of flavour j with a probability of
|Vi;|%. The diagonal elements V,4; = 0.97446 & 0.00010, V., = 0.9735970 00011 and
Vipy = 0.999105 £ 0.000032 represents the transitions within the same generation
[27]. They are determined close to unity which means quarks are most likely to

change flavours within the same generation.

Unlike leptons, quarks cannot be observed as free particles in nature. FEach
quark carries one of three colour charges (red, green or blue) and forms colour-
neutral bound states referred to as hadrons due to confinement. Hadrons can be
formed with either three quarks with three different colour charges (gqq, known
as baryons, or ggq) or a quark with its anti-quark of opposite colour charges (¢,

known as mesons).



2.3 Fundamental Forces in the SM

The SM includes three of the four fundamental forces observed in the nature: the
strong nuclear force, the weak nuclear force and the electromagnetic force (EM). Tt
describes particles interactions though these forces via exchanging gauge bosons.
However, the gravitational force is not included in the SM as its formulation

within quantum field theory is not yet proven successful.

A hypothetical gauge boson, the graviton, would be introduced if gravity were
included in the model. Due to its small coupling to the SM particles, the existence
of gravity in the SM would not be significant enough to affect the predictions from
the SM. The first observation of gravitational waves in 2016 may allow limits to
be set on the mass of hypothetical gravitons to complete a unified theory of all

four fundamental forces [2§].

Physical processes occur when the corresponding symmetry group is invariant un-
der gauge transformation performed at every point in the spacetime coordinates.
The SM has a symmetry group SU(3)c x SU(2), x U(1)r. Starting with gauge
invariance in the electromagnetism symmetry group U(1) with vector potential

AH - (¢7 _A)
The gauge transformation can be written as
A, — AL = A, —0.x. (2.2)

In relativistic quantum mechanics, the symmetry of EM U(1) requires the

invariance of spinor @ under local gauge transformation:

V() = ¢ (2) = U(e)y(z) = e™Op(a). (2.3)

where the phase ¢x(x) is an arbitrary function at any point in space-time. For

this local phase transformation, the free-particle Dirac equation,

' Outp = map, (2.4)

receives an additional term —g¢y*(0,x)¢. Hence, local phase invariance is not

possible without an interaction. Therefore, the free-particle Dirac equation is



modified to include a new degree of freedom A, which becomes
V(O + 1qAL )Y —map = 0, (2.5)

where A, is interpreted as a massless gauge field and ¢y*A,Y becomes an

interaction term. Equation [2.9] can also be expressed using a covariant derivative

D, = 0, + iqA,. (2.6)

and the Dirac equation becomes
"Dy —map = 0. (2.7)

The requirements of phase transformation with gauge invariance of U(1) implies

the existence of a photon field A, and fermions charge g.

2.3.1 The Strong Interaction

The strong interaction is described by Quantum Chromodynamics (QCD) [29]
based on symmetry group SU(3)¢. It is the strongest fundamental force which
is around 137 times of EM force, 10° times of weak force and about 10%° times of

gravitational force. However, it only acts at a distance of 1 fm or less.

Similar to U(1) local gauge symmetry, QCD is invariant under SU(3) local phase

transformation:

b(x) = ' (x) = U(x)(x) = e9sc@Ty(p), (2.8)

Here gg is the coupling constant of QCD interactions, a(x) = {a(z)*} are eight
functions of space-time coordinate z and T' = {T*} are the eight generators of
the SU(3) symmetry group where a = 1,...,8. The new degree of freedom is
termed colour with red, green and blue labelling the states of the quarks and

gluons. For this local gauge transformation, the Dirac equation becomes
V(O + igsGLT" )Y —myp = 0, (2.9)

with new gauge fields Gf, = d,a(z)®. Each index a = 1, ...,8 corresponds to one
of the eight generators of SU(3) symmetry group, indicating eight colour states

of gluons.



The gluon field between a pair of colour charged particles forms a flux tube
between them and the strong force between the particles stays constant regardless
of separation. To certain extent of separation, the energy required to separate
the particles is sufficient to form another pair of colour-charged particles in the
flux tube and two pairs of quarks are produced. Due to this effect, colour-charged
particles are not observed as free particles and only exist in colour-neutral bound
states in nature. This phenomenon is called confinement. As the energy scale
increases and the corresponding length scale decreases, colour-charged particles
interact weakly with each other and behave almost as free particles. This effect

is referred to as asymptotic freedom.

2.3.2 Weak lIsospin

The weak interactions, governed by symmetry group SU(2), only interact with
left-handed fermions or right-handed anti-fermions. It describes how particles

changes flavours though radioactive decays.

The weak isospin (I) serves as a quantum number of and governs how particles
behave in the weak interactions. All left-handed fermion or right-handed anti-
fermions have a third weak isospin value of either I3 = +1/2 or I3 = —1/2, and
they are the only particles participate in the weak interaction characterised by
the V-A (vector minus axial-vector) structure. This leads to violation of the

parity symmetries and charge conjugation, i.e. CP violation.

Similar to Equation [2.6] the Dirac equation of the weak interaction after SU(2)

local phase transformation can be written as
iV (Op + igwo - Wy)b —myp =0, (2.10)

with weak coupling constant gy, Pauli matrices oﬂ and weak isospin fields W, =
Wi where a = 1,2,3. This indicates three boson fields in the SU(2) symmetry.
Since the SU(2) symmetry group only interacts with left-handed fermions, for

convenience, it is usually represented as SU(2).

2The Pauli matrices o are a set of three 2 x 2 complex matrices which are Hermitian and
unitary. o1 = (93) ,00=(%97") and o3 = (§ ).
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2.3.3 Weak Hypercharge

The weak hypercharge is the generator of the U(1)y group. It is a quantum
number relating to the electric charge () and the third component of weak isospin
I3, defined as Y = 2(Q) — I3). The U(1)y symmetry group acts on particles with
non-zero hypercharge under weak hypercharge field B,. Therefore, the Dirac

interaction becomes
" (O +1g'Y Bu)Y —map =0, (2.11)

with coupling constant ¢'.

2.3.4 The EW Unification

The EM interaction and the weak interaction can be unified into the electroweak
(EW) interaction based on combined symmetry group SU(2) x U(1)y. The
eletroweak symmetry is described by the weak isospin fields W), and the weak
hypercharge field B,. In the EW theory, the W, bosons acquire masses through
spontaneous symmetry breaking by interacting with the Higgs field, while B
boson still remains massless. The mixing of the W), and B,, gauge fields give rise

to masses of W, Z and 7 bosons.

2.3.5 Higgs Mechanism

A new complex scalar field of SU(2), weak isospin doublet, known as Higgs field
¢, is introduced to break the SU(2), x U(1)y symmetry of the EW interaction:

o(z) = (ZZ) (2.12)

The SM Lagrangian density of the Higgs field is defined as
‘CHiggS = (Du¢)T<Du¢) - V(¢)7 (2.13)

with kinetic term and potential term V(¢). The kinetic term which describes
the “motion” of the fields is defined based on the covariant derivative, D, of the

SU(2), x U(1)y symmetry group to keep the Lagrangian invariant under local
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Figure 2.2 An illustration of Higgs potential against two fields Im(¢°) and
Re(#°) with minimum at u/\ [30]. Any point at bottom of the
potential breaks the U(1) symmetry.

U(1) symmetry.

) /)
D,qu = (au + ngo' . WH + §g'YBM)¢, (2.14)

where Y = 1 for the Higgs field. This introduces couplings between the Higgs
field and the EW gauge fields W,,, B,,. The potential term is defined as

V(9) = 12610 + M9 9)?, (2.15)

with parameters g and A (A > 0 ) determining the shape the of the potential. The
symmetry is spontaneously broken for y? < 0, as it creates an infinite number of
minima and the potential forms a “Mexican hat” shape as shown in Figure [2.2]
The unitary gauge sets ¢ to 0 and make ¢° real. This results in a non-zero
expectation value of the Higgs potential (¢) = \/TQ/)\ = v = 246 GeV is the
vacuum expectation value of the Higgs field. Then the Higgs field can be defined

as an excitation H(x) around the vacuum expectation value v:

¢(z) = % (V N 2[(33)), (2.16)

where H indicates the Higgs boson. With the Higgs mechanism, the EW gauge
fields W and B, interact with each other through mixing to produce physically
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observable bosons:

Z boson: Z = cos Oy W3 — sin 6y B,

photon: A = sin Oy W? + cos Oy B, (2.17)
1
W boson: W* = —(W!'FxW?),
\/5( F W)

where Oy = tan~!(gw/¢’) is the weak mixing angle, e = gy sin(fyy) is the electric

charge.

The mass of the Z boson, myz, and the mass of the W boson, my,, are related

as mz = my/ cosfy . In terms of the SU(2), and U(1)y couplings, masses of Z

1 v
my = §9WV7 my = 5V (g5 + 9"%). (2.18)

Thus, the overall gauge symmetry SU(3)c x SU(2);, x U(1)y is broken into
SU(3)c X U(1)em. Since the gauge symmetries of SU(3)¢ and U(1),,, are all

conserved, the associated gauge bosons, gluons and photons, remain as massless

and W are given by:

particles.

A new particle arising from the EW symmetry breaking, the Higgs boson, has a
mass of my = V2Av. The fermions are also given masses through interactions
between the fermion fields ¢ and the Higgs field H:

vgr— 9f 177
L vkawa — T T = - —=H y 2.19
Yuk G vy NG (0 (2.19)
with the Yukawa coupling ¢g; = V2m 7/v. The masses of fermions are determined
to be my = vgy / V2 and the Yukawa interaction couples the interactions
between the fermions and the Higgs boson. Thus, the mechanism of spontaneous
symmetry breaking in EW and the existence of the Higgs field describes the origin

of the masses of the fundamental particles in the SM.

2.4 The Higgs Boson

The Higgs boson is a spin 0 particle carrying neutral electric charge and colour
charge. It was discovered by the ATLAS and the CMS experiments at the LHC

in 2012 with measured mass resonance around my ~ 125 GeV [27]with datasets
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collected at /s = 7 TeV and 8 TeV [27]. Currently the most precise measurement
on the mass of the Higgs boson is my = 125.38£0.14 GeV with dataset collected
from 2011 to 2016 [31].

(a) f (b v (¢) H- v
H H \\\
7 v H- v
(d) H (€ H~, .H
H ”’z \\\\\ ”’,
--------- <. L
“SH H-"" ““H

Figure 2.3 SM interactions of the Higgs boson illustrated using Feynman vertex
terms [32]. (a) Yukawa coupling, (b)(c) vector boson interactions
and (d) (e) Higgs self-coupling.

The Higgs boson couples to fermions, bosons and the Higgs boson itself as shown
in Figure 2.3 The interactions of the Higgs boson can be described by the

following Lagrangian:

L= gy TIH + YHHH pr3 | YHHHH pra 5V, v (gvaH | guHvY Hg)

6 24 5
(2.20)
with
m 2m3 2m? 3m2 32
ng?:_f’ grvy ==, gHHVV:—2V79HHH: HagHHHH:—QHa
v v
(2.21)

where V = W= or Z and dy = 1, 6; = 1/2. The fermion field ¥ in Equation
is replaced with f for simplicity. The strength of the coupling between the
Higgs boson and fundamental fermions gy are linearly proportional to the
fermion masses, and the couplings to bosons gyvyv and gggyy are proportional
to the square of the boson masses. Higgs self couplings gyyy and gyggy are

proportional to squared mass of itself. The coupling of Higgs to fermions is related
to the Yukawa coupling ¢g; in Equation by a factor of v/2.
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2.4.1 Top-Yukawa Coupling

The strength of the Yukawa coupling is linearly dependent on the mass of the
fermion. The heaviest fermion, top quark, is predicted to have the largest Yukawa
coupling ¢; = v2m; /v ~ 1 in the SM.

The Higgs boson couples to fermions mainly through decay process where the
Higgs boson decays into a fermion and an antifermion pair. However, it is
kinematically forbidden for the Higgs boson to decay into a top quark pair,
as top quarks (m; = 172.9 + 0.4 GeV [27]) are heavier than the Higgs boson
(mg = 125.10 £ 0.14 GeV [27]). Therefore, alternative ways for directly probing
the top-Yukawa coupling is needed.

Figure 2.4 Feynman diagrams of the ttH production at electron-positron
colliders. Both processes contribute to the total cross-section of ttH,
but only (a) contributes to the top - Yukawa coupling.

The coupling can be directly measured through the associated production of the
Higgs boson and a top-antitop quark pair (t¢H). The Higgs boson is radiated

from one of the top quarks at which the g,;; can be measured as shown in

Figure 2.4(a).

2.5 C,P and T Symmetries

¥ — —i(Py"y?)"

x —T
C:tp——i(y"¥*0)" P: |yl =y T:t——t (2.22)
AH 5 — AM Z —z

Charge, parity and time reversal symmetries are fundamental discrete symmetries
of the Universe. Charge conjugation (C) changes particles to its anti-particle,

and changes the signs of all charges. Parity transformation (P) flips sign of
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spatial coordinates. Time reversal symmetry (T) reverses time as shown in

Equation [2.22] Combination of C, P and T in any order is conserved symmetries.

2.5.1 CP Symmetry and Violation

CP-symmetry is a product of the charge conjugation and the parity conjugation.
It is usually conserved, however, some processes that violate the CP have been
observed in the weak interaction [33]. This phenomenon can be used to explain
the matter-antimatter asymmetry in the Universe as the Big bang is thought to
produce equal amount of matter and anti-matter. Therefore, it is essential to

search for phenomenon that exhibit CP violation.

2.5.2 Sources of CP Violation in SM

There are at least three sources of CP violation in the SM. The first one,
predicted by the SM, exists in the strong interaction by searching for the electric
dipole moment of the neutron, but the unsuccessful experimental search suggests
that this strong CP violation is too small to account for the matter-antimatter
asymmetry. The second source, which involves the CKM matrix, has been
experimentally observed and can only account for a small fraction ( 1073) of
the necessary CP-violation in the early universe [34]. The first observation of CP
violation was discovered in the decays of neutral kaons in 1964 [35]. Following the
discovery, the Large Hadron Collider beauty (LHCb) experiment is measuring CP
violation in the interactions of b-hadrons to help explain the matter-antimatter
asymmetry [36]. The third source exist in the lepton mixing matrix, the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS ) matrix, similar to the CKM matrix
for quarks. Neutrino oscillation experiments, such as T2K and proposed next-
generation experiments Hyper-Kamiokande and DUNE, will search for evidence
of more CP violation [37]. A process called leptogenisis, a hypothetical process
that produces an asymmetry between lepton and antilepton, could become a

potential explanation for the matter-antimatter asymmetry.

So far the amount of CP violation sources found experimentally are not enough
to account for the matter-antimatter asymmetry observed in the Universe. New
physics beyond the SM would be required to explain the remaining sources of CP

violation. Since CP is not a symmetry of nature, new particles and interactions
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can be introduced to create new sources of CP violation. Higgs boson interactions
would be a good candidate for this new theory. If Higgs boson exhbited any
CP-violating properties, it might propagate its CP properties to other particles
through interactions under Higgs mechanism introducing more sources of CP

violation.

2.6 Beyond the Standard Model

The SM Higgs boson is predicted to be CP even and have spin zero, J°F = 0+,
It is possible to have more than one spin-zero Higgs bosons with CP-odd or no
definite CP quantum number in the Beyond The Standard Model (BSM). For
example, in Supersymmetry models [38], an additional complex Higgs doublets
is introduced (Equation . In the Minimal Supersymmetric extension of the
Standard Model (MSSM) [20], this leads to five physical Higgs states with three
neutral, two CP-even (H° and h°) and one CP-odd (pseudoscalar A°) and two
charged Higgs H*. The Higgs boson may exhibit a mixed CP property if CP
violation is provided by the Higgs sector in the BSM.

2.6.1 Higgs Mixing

Figure 2.5 Feynman diagrams for the ete™ — tt® process with (a) a CP-
violating Higgs boson ® radiates from the top quark, (b) ® radiates
from t and (c) ® radiates from the Z boson which will cause
interference with (a) and (b).

In order to study the CP properties of the Higgs boson, we introduce an arbitrary
CP-violating Higgs boson ® in the ete™ — tt® process where ® is a mixture of
CP-even Higgs and CP-odd Higgs |®) = a |H) + b|A). The cross-section of this
process is sensitive to the CP nature of the Higgs boson which could allow us to

set an upper limit on how precise the CP parameters can be measured.
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The tt® coupling with a general CP-violating Higgs ® can be described as [39]
Coig = —igpala+ibys). (2.23)

The CP parameters a and b are real. With this modification, a = 1, b = 0
represents SM case and a = 0, b # 0 becomes the pure pseudoscalar Higgs boson
case. The exact value of b depends on the model. Assuming that a? + b = 1,
where a = cos ¢ and b = sin ¢, this reduces the free parameter to a mixing angle ¢
[39]. A measurement of ¢ will give direct indication of CP-violation in the Higgs

boson.

For the calculation of the total cross-section of tt®, the interference effect from
ZZ® (Z — tt) needs to be taken into account (Figure [2.5(c)). The SM ZZH
does not couple to the CP-odd Higgs boson at least at tree level. To modify this
effect in the CP-violating case, the SM ZZH coupling is parameterised by a real
parameter ¢ [39],

9oz7 = —ICIHZZ- (2.24)

The parameter ¢ is set to 1 in the analysis in Chapter 4 to make a compatible
comparison with the result from the LHC [40].

2.7 Phenomenology of {tH

The Higgs boson plays an important role in both the SM and many of the BSM
theories [20]. Measurements of its properties can help us understand the SM in
more details as well as possibily explaining some of the phenomenon that cannot
be explained by the SM. The ttH process gives us a direct access to the largest
Yukawa coupling to the Higgs boson [9]. The measurement might be a gateway
to search for BSM as many BSM theories requires a precise measurement of top-
Yukawa coupling [7]. Any small deviation from SM prediction would already be

an indication of new physics.

2.7.1 Decay Products

The ttH production also includes processes where the Higgs boson radiates from
the mediating photon or Z boson (2.4(b)). However, it does not contribute to
the top-Yukawa coupling.
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¢, q

Figure 2.6 Feynman diagram of the dominant decay product of the top quark
and the subsequent W boson.

A top quark decays into a bottom quark and a W™ boson (Figure . The W
boson subsequently decays into either an charged antilepton and a corresponding
neutrino (BR =~ 33%) or a quark antiquark pair (BR ~ 67%) [27]. The bottom

quark produced from top quark begins hadronisation and forms jets of hadrons.

The Higgs boson can decay into a fermion or boson pair as shown in Figure 2.7]
The most common decay is to a bottom-antibottom quark pair with a branching
ratio of 58.2% [27]. Higgs boson decaying into a W boson pair is the
second highest branching ratio with 21.4% [27]. The experimental environment

determines which processes are best to observe Higgs bosons.

In ttH production, depending on the subsequent decay products of the W bosons
from top quarks, the search channels can be classified according to the number
of charged leptons in their final state as shown in Table

No. leptons Process Channel name BR
0 ttH — bbgqqq + bb  Full-hadronic  46%
1 ttH — bbgqlv + bb  Semi-leptonic  45%
2 ttH — bbllvv + bb  Di-leptonic 9%

Table 2.1 Searching channels classified using different number of leptons with
corresponding branching ratio (BR) where q, ¢ and v represent quark,
charged lepton and neutrino.

2.8 Proton vs Electron Colliders

Protons consists of udd valence quarks and are bounded through exchanging

gluons. These gluons produce additional quarks inside the proton by splitting to
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Figure 2.7 Branching ratios for the main decays of the Higgs boson around
mpy =125 GeV. Theoretical uncertainties are indicated as bands.[27]

form quark anti-quark pairs of sea quarks. Therefore, the composition of a proton
is not only three valence quarks but also gluons and sea quarks; they are defined
as partons. A free quark can be produced in high energy collisions, but it will
quickly hadronise into colour-neutral bound states. Hence, quarks can only be

observed experimentally in the form of bundles of particles known as jets.

As a result, proton-proton colliders are characterised by high multiplicity of jets
and hence processes with hadrons in their final states are harder to observe
experimentally. For instance, Higgs bosons decaying into photon pairs (BR =
2.27 x 1073) and Z boson pairs (BR = 2.62 x 1072) are the key search processes
used for Higgs bosons in a proton-proton collisions, as the leptons (e, u) and

photon pairs in the final state can be successfully identified from other particles.

In electron-positron colliders, due to their cleaner environment, it becomes easier
to reconstruct jets. This makes ete™ — t#H, where H — bb, the best process to
measure g; as it has the largest branching ratio. There will be at least 4 b-quarks

in the final state.
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2.9 Current Measurements

Since the discovery of the Higgs boson in 2012 [4, [5], studies of the Higgs boson
properties have been the primary task at the LHC [31]. The LHC has made
various measurements on the Higgs boson for studying the properties of both SM

and BSM cases. No significant deviation from the SM prediction were found.

2.9.1 ttH Observation

140 ¢ Data ATLAS Preliminary
L Continuum Background Vs = 13 TeV, 139 fo

120 :_ - === Total Background m,, = 125.09 GeV

100 I — Signal + Background All categories

Events/ 1.375 GeV

0]
o
—
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IIIIII|III|III|III|III

lII|III|III
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Figure 2.8 ttH production in the H — ~vy decay mode [{1]. The ttH signal is
indicated by a localised resonant bump in the red curve fitted to the
data of the signal plus background shapes. The green dashed line
represents the other Higgs production modes which provide a small
contribution to the resonant peak.

A direct test of the Higgs-top quark coupling can be performed through the
production of the Higgs boson in association with a top quark pair, ttH. Evidence
of this production was found in 2017 by the ATLAS collaboration using pp dataset
collected at a centre-of-mass energy /s = 13 TeV with an integrated luminosity
of 36.1 £ 0.8 fb™! [15]. With dataset collected from the full of Run 2 from 2015
to 2018 with a luminosity of 139 fb™! at /s =13 TeV, the observed(expected)
ttH production significance is 4.9(4.2) standard deviations (Figure 2.8). The
measured total ttH production cross-section at /s = 13 TeV agrees with the
prediction from the SM [41].
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2.9.2 Higgs Couplings to Particles

According to Equation [2.21] the couplings between the Higgs boson and fermions
are linearly proportional to fermion masses. The measurements results are
consistent with the prediction from the SM as shown in Figure 2.9

2.9.3 CP Properties of Higgs Boson

To investigate the CP properties of Higgs boson, a mathematical description of

the CP-mixing Higgs boson in [40)] is expressed as
my — .
L= ——(¢ri(cos a + isin ays ) ) H (2.25)
v

where x; is the top-Yukawa coupling parameter, o is the CP-mixing angle. In
the SM case, k; = 1, = 0; in CP-odd case, a = 90°. Similar to Equation [2.23],

a is equivalent to ¢ and s, determines the cross-section or magnitude of the ttH.

Measurements of the CP-mixing angle, «, could reveal the CP properties of Higgs
boson. The data in reference [40] was taken with ATLAS detector at /s =13 TeV
with an luminosity of 139 fb~!. The results place constraints on a pure CP-odd
coupling between the Higgs boson and top quark at 3.90, and CP-mixing angle
la] > 43° is excluded at 95% CL. This means a pure CP-odd Higgs has been
ruled out at 95% CL. Higgs boson will only exhibit a pure CP-even property or
a CP-mixed property with <26% of CP-odd Higgs.

2.10 Summary

The theoretical perspectives of the Higgs boson have been discussed in this
chapter. Properties of the Higgs boson need to be precisely measured to test the
SM as well as giving us a gateway of probing BSM. One of the most interesting
physics processes to investigate is the ttH. Both the top-Yukawa coupling and
CP properties of the Higgs boson can be measured in this process (discussed in
Chapter 4). Many of the current and proposed experiments such as the LHC and
CLIC started researches into ttH. In the next Chapter, experimental apparatus

used for this research including accelerators and detectors will be discussed.
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Figure 2.9
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Figure 2.10 Likelihood contours for rk; cos a and k¢ sin a with gluon-gluon fusion

and H — v~ (Equation [40].
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Chapter 3

The Particle Microscopes

3.1 The Particle Microscopes

Many of the unanswered questions about the Universe are hidden inside the
subatomic world. One of the ways to reveal the nature of our Universe is by
smashing two extremely high energetic particles. Modern colliders typically
consist of an accelerator and a detector. The accelerator can accelerate particles
close to speed of light with extremely high energy. Particles will then be brought
to collision at an interaction point. After collisions, many of the byproducts will
decay shortly after being produced and a detector can be used to capture these

fleeting moments.

The most common particles used for higher energy collisions are hadrons (mainly
protons) and electrons/positrons. Both of protons and electrons/positrons are
charged particles and therefore can be accelerated with an electric field. However,
due to huge mass difference (m, = 938.28 MeV/c?*, m. = 0.51 MeV/c?)
[27], much higher energy can be achieved by accelerating protons compared to
electron/positron due to energy loss in synchrotron radiation. This allows a
proton collider to reach a much higher collision energy in order to reach the limit
of current energy scale and to explore new physics. In contrast, electron-positron
collider has a lower collision energy but measurements could be made with higher

precision as the experimental environment is cleaner for analysis Table [3.1]

Hadron colliders accelerate particles in a circular path such as the current world
largest particle collider, the Large Hadron Collider (LHC) [43]. With circular
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Figure 3.1 Major Feynman diagrams of single Higgs boson production in proton
colliders (left) and eTe™ colliders (right) [42] with corresponding
event displays.

p — p collisions ete™ collisions
Cross-section large cross-section small cross-section
—high event rate —low event rate
Initial state  proton composites of quarks ete™ are point-like particles
—initial state unknown —initial state well defined
—limited precision —high precision
Backgrounds high rate of QCD backgrounds clean environment
—complex triggering system —trigger-less readout
—high levels of radiation —low levels of radiation

Table 3.1 Advantages and disadvantages of proton colliders and ete™ colliders.
Initial state includes \/s and polarisation.

geometry, particles can be accelerated to very high energies up to TeV scale as
this can be done over a much longer distance to build up the energy. However,
energy will be lost during circular acceleration as charged particles will emit

synchrotron radiation as they move along bent paths. The energy loss from this
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effect is inversely proportion to the mass to the 4 power of the particles.

G o

This means lighter particles will suffer more from the energy loss in the circular
accelerators and cannot be accelerated to higher energies. An example of this is
LEP (Large Electron-positron Collider) which used to occupy the same tunnel as
the LHC but could only accelerate electrons (0.51 MeV/c?) up to 104.5 GeV per
beam [44], whilst current LHC can accelerate protons up to 7 TeV per beam. The
collision energy of the proposed future e™e™ collider, the Future Circular Collider
(FCC) in particular FCC-ee (electron-positron collider), with a circumference of

100 km will also be limited to 365 GeV by synchrotron radiation as shown in

Figure [45], [46].

Cost

Linear collider Circular machines

copper
------ supercond.
accelerating
cavities
. I _ B |
Total energy ~300 GeV ~500 GeV

Figure 3.2 Cost vs energy for proposed ete™ colliders [{7]. Circular collider
loses energies from synchrotron radiation while accelerating electrons
and the amount of cost to sustain the energy grows exponentially.
Linear collider does not suffer from the same issue, the energy and
cost are linearly dependent on the acceleration tunnel length.

Electrons/positrons can also be accelerated linearly such as the Stanford Linear
Collider at SLAC and the proposed future linear colliders International Linear
Collider (ILC) and Compact Linear Collider (CLIC). Although the event rate
would not be as high as circular colliders, the collision energy can easily surpass

the limit of circular lepton colliders by increasing the length of tunnel linearly (as
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Figure 3.3 Luminosity vs energy for proposed ete™ colliders [48]. Circular
colliders compared to linear colliders have relatively large luminosity
but low in collision energy due to synchrotron radiation.

shown in Figure . The collision energy of ILC could reach up to 1 TeV
with 30 —50 km in length [49], more than 10 times as long as the 50 GeV machine
at SLAC (3.2 km) [50]. Meanwhile CLIC could even reach 3 TeV with 50 km
with novel two-beam acceleration technique. Comparison between ILC and CLIC
is shown in Table [3.2] The high-energy linear colliders will be able to provide a
clean environment for precision measurements (as illustrated in Figure [3.1)). It

also opens up a discovery window to search for potential BSM physics.

ILC CLIC
Energy stages (GeV) 250-1000 380-3000
Acc. Gradient (MV/m) 35 72/100
Main linac tech Super-conduct | Normal-conduct
Bunch spacing (ns) 554 0.5
Polarisation e Jet e”
Total luminosity (cm™2s™!) 1.4x103 1.5x103
Length (km) 20 11-50
Project timeline (years) 31 27
Beamstrahlung photon/electron 1.9 1.5

Table 3.2 Comparison of key parameters between linear ete™ colliders ILC and

CLIC. [51]
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3.2 Compact Linear Collider

Figure 3.4 Owerview of the proposed CLIC machine at CERN. Credit: CERN.

The Compact Linear Collider (CLIC) is a proposed multi-TeV future linear e*e™
collider designed to be built at CERN [12] (Figure [3.4). The accelerator would
span a length of 11 to 50 km with three different centre of mass energy stages 380
GeV, 1.5 TeV and 3 TeV [52]. At CLIC, the accelerating gradient is designed to
have 100 MV /m which means an electron will gain 100 MeV as it is accelerated
through 1 m. The bigger the acceleration gradient, the smaller distance is needed
for any given energy. As a comparison, accelerating gradient at ILC is 35 MV /m.
The accelerating gradient is very important for linear colliders. For circular

machines, particles can gain more energy by looping more turns inside the tunnel.

CLIC is in the “Development Phase” as shown in Figure[3.5(with ongoing research
and development from both the CLIC accelerator and the CLIC detector and
physics teams. There is extensive effort into studies of the physics potential of
the CLIC experiment [53], [54].
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Figure 3.5 Map of the CLIC program (top) with timeline of development,
preparation and construction timeline and (middle) physics program
with collision energy and corresponding luminosity timeline (bottom)

[55].
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3.2.1 CLIC Physics Program
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Figure 3.6 The centre-of-mass dependencies of the cross-sections for the main
Higgs production processes at an eTe™ collider [55].

The different centre of mass energy stages of the proposed CLIC accelerator are
optimised for different physics processes as illustrated in Figure [3.6 At the first
stage of 380 GeV, with an integrated luminosity of 1 ab™!, abundant top quarks
and Higgs bosons can be produced via various processes such as tt and HZ,
which allow a tt threshold scan as well as model independent measurements of
Higgs cross-section to be performed [53]. A second stage reaches a centre of mass
energy of 1.5 TeV providing a better sensitivity to rare Higgs processes such as
Higgs production with a top pair (t£H) with an integrated luminosity of 2.5 ab™!.
The last stage of 3 TeV with an integrated luminosity of 5 ab™! is achieved with
extending its total length to 50 km. More rare Higgs processes can be accessed
with precision measurements, examples are the HHWW quartic coupling and

the Higgs self-coupling [52]. The higher energy stages are adapted to the results
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and discoveries from the LHC (HL-LHC) and from the first stage of CLIC (shown
as “Decision making” in Figure . If hints of new physics were observed, CLIC
can change some of the accelerator parameters such as beam polarisation and

collision energy to focus on studying the specific physics events.

3.2.2 CLIC Accelerator

CLIC uses a novel acceleration technology, a two beam acceleration scheme, to
reach TeV-level energy stages [56]. Electrons and positrons beams (main beams)
are accelerated by the two linear accelerators in opposite directions as shown in
Figure 3.7 Two beams are then collided at the Interaction Point (IP) near the
centre of the CLIC machine.
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Figure 3.7 Conceptual layout of CLIC at the highest energy stage /s =3 TeV
[55]. A two beam acceleration scheme is built in both direction of
the beam.

The main beams are structured in a bunch of trains as shown in Figure 3.8, The
bunch trains are separated by 20 ms in time, resulting in a frequency of 50 Hz for
the CLIC accelerator. Inside each bunch of trains are the 312 trains of electrons

or positrons which are spaced 0.5 ns between each train (bunch spacing).

The acceleration gradient for CLIC is designed to be 100 MV /m to achieve the
highest energy whilst minimising the length of the accelerator. The main beams

are boosted in the copper accelerating cavities by creating a high field through
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Figure 3.8 Schematic sketch of the CLIC beam structure (not to-scale). Each
bunch train is separated by 20 ms and each train consists of 312
bunches of electrons which are separated by 0.5 ns.

feeding Radial Frequency (RF) power with a frequency of 12 GHz [57].

A low-energy but high-intensity drive beam using the traditional Klystron
It is

then fed into a sequence of Power Eztraction and Transfer Structures (PETS)

technologies runs in parallel with each of the main beams (Figure .

which can decelerate the drive beams and extract their energy. The RF energy is
produced from this process and is transferred to the copper cavities to accelerate

the main beams via waveguides.

The main beams are strongly focused at IP to produce a high luminosity. At
a centre of mass energy of 3 TeV, the beams are focused to a transverse size
of 0,/0, ~ 40 nm/Inm. Strong electromagnetic fields are created at the IP
by these dense beam particles at high energy and cause the beam particles to
emit radiations resulting Bremsstrahlung. As a result, the centre of mass energy
of these particles will be lower than nominal energy and creating a luminosity

spectrum as shown in Figure (3.9}

The ete™ beam travels with the photons inside the beam pipe. Beam-beam
interactions arise when the photons interact with each other or with the electric
field generated from the opposing beam. The main backgrounds produced from
this effect are the hadrons produced from photon collisions from opposing beams
(vy — hadrons). Due to the choice of an opening angle of the beam pipe of

> 1072 rad, these hadrons and incoherent electron positron pairs are the main
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Figure 3.9 The luminosity spectrum of CLIC at the highest energy stage with
Vs =3 TeV [58].

source of backgrounds that reach the detector region [59).

This high-rate of backgrounds can be suppressed by setting timing requirements
to the CLIC detector and will be discussed in the following chapter.

3.2.3 CLIC Detector

CLIC_ILD and CLIC_SiD are the two detector concepts used for the CLIC
physics studies [53], 54] adapted from the ILD [61], [62] and SiD [60, 62] detector
concept for the ILC. CLIC detector concepts are optimised for 3 TeV and the
designs modification is motivated by the high-energy collisions as well as the
different beam conditions and the small bunch spacing. This thesis uses the
CLIC_SiD detector concept for the physics analysis and the description will
be focused on the CLIC_SiD. A schematic diagram is shown for CLIC_SiD in
Figure |3.10]

A silicon vertex detector is placed at the centre of the detector near the interaction
point. This is covered by an all-silicon tracker which uses both pixel and strip

detectors to track and identify charged particles that pass through.

Fine-grained electromagnetic and hadronic calorimeters (ECAL and HCAL) are
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Figure 3.10 Owverview of the CLIC-SiD detector (top) and a schematic of the
detector concept (bottim) [55, [60]
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used for particle flow reconstruction. The ECAL and HCAL barrel uses tungsten

as absorbing material, and HCAL endcap uses steel.

Outside the HCAL is the strong solenoidal magnet providing an axial magnetic
field of 5 T inside CLIC_SiD. Momentum of the charged particles can be measured
from the curvature of their tracks in the tracking system. Charged particles with
low momentum will curve away before entering calorimeters under such high

magnetic field to reduce occupancy in the detector.

Two compact ECALs, the luminosity calorimeter (LumiCal) and the beam
calorimeter (BeamCal), are located in the forward region of the detector. The
LumiCal is particularly useful in determining luminosity spectrum via measuring
the energy and trajectory of electrons and positrons produced from Bhabha
scattering [63]. The BeamCal measures forward electrons by extending the

detector coverage up to 10 mrad in polar angle.

An iron return yoke, covering the whole detector, is instrumented with Resistive
Plate Chambers (RPC). It is used to detect muons and support the calorimeters

and the inner detectors.

Detector Requirements of CLIC

The vertex and tracking system of CLIC_SiD provides a track momentum
resolution of 0, /p3 < 2x107° GeV~! needed for reconstructing high-py charged
leptons for accurate vertex reconstruction at high energy environment at CLIC
[12]. Heavy flavour quarks, which have comparably long lifetimes, can be traced
and reconstructed by this system. In a collision event, the primary vertex is
defined as the collision point and the secondary vertex is defined at a displaced
vertex where a particle starts to decay. The main requirement for the CLIC
vertex detector is a precise measurement of the transverse impact parameter d,
defined as the closest distance between the primary vertex and the reconstructed

track.

The resolution of the transverse impact parameter oy, is written as [12]

04y = \/@2 + b2 - GeV?/p?sin? 6, (3.2)

where p is the momentum and 6 is the polar angle.
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For particles with high momenta at CLIC, the constant terms a and b dominate
the impact parameter resolution and they are required to be <5 um and < 15

pm respectively [12].

Many of the physics processes at CLIC produce heavy flavour quarks in their
final states, such as Higgs decays or top quark decays. These requirements on the
impact parameters enable CLIC detector to perform flavour-tagging with clean
separation of b-quark, c-quark and light-quark jets which is crucial for top -quark
identification and background rejections. As shown in Figure 3.6] ete™ — ¢g
(¢ = u,d,s,c,b) is the most dominant process but considered as backgrounds
in most of the physics analysis at CLIC. Some of the physics process such as
ttH has many jets in its final states, separating and identifying all the jets will
significantly improve the significance of signal events and have a more precise

measurement (discussed in Chapter 4).

Due to the relative large pixel size of traditional calorimeters, it is difficult to
reconstruct particles within jets as particles are travelling very close to each
other inside the calorimeters in high energy environment. CLIC uses fine-
grained electromagnetic and hadronic calorimeters (ECAL and HCAL) which
allows showers from individual particles to be separated. The particles can
then be identified and tracked throughout the whole detector using particle flow
reconstruction technique [64,[65]. Charged particles are measured most accurately
in the tracker, photons are measured with good precision in ECAL and neutrons
are measured less precisely in HCAL but only contribute to 10% of the jet energy
measurements. This reconstruction technique yields optimal jet energy resolution.
At CLIC_SiD, the jet resolution is og/E < 3.5% for isolated central light-quark
jets with energy between 100 GeV and 1 TeV [54 [60].

CLICdet

CLIC is developing its own detector model, CLICdet, as shown in Figure It
is optimised for the 3 TeV energy stage, where the backgrounds from beam-beam
interactions are most challenging. The layout of CLICdet detector concept is
based on full simulations with respect to the requirements from the experimental

environment and the physics goals.

At the very centre of CLICdet is the vertex detector [66]. It comprises ultra-thin

hybrid pixel sensors and uses air-flow cooling and power-pulsing to minimise the

37



Return Yoke

Iron return yoke with
detectors for muon ID

Solenoidal Magnet

Superconducting magnet,
magpnetic field of 4 tesla

The CLIC detector model

Fine-grained Calorimeters

Tracking Detector

Silicon pixel detector,
outer radius 1.5 metres

Electromagnetic and hadronic calorimeters
used for particle flow analysis

Forward Region

Vertex Detector Electromagnetic calorimeters
for luminosity measurement and

Ultra-low mass silicon pixel
extended angular coverage

detector, inner radius
31 millimetres

Tracking detector

Material: 1-2% X, / layer

Single-point resolution: 7 micrometres
Vertex detector

25 micrometre pixels

Material: 0.2% X, / layer

Single-point resolution: 3 micrometres
Forced air-flow cooling
Electromagnetic calorimeter
40 layers (silicon sensors, tungsten plates)
Material: 22 X+ 1\

Hadronic calorimeter

60 layers (plastic scintillators, steel plates)
Material: 7.5 \

Height: 12.9 metres; Length: 11.4 metres; Weight: 8100 tonnes &

Figure 3.11 Overview of the CLICdet [55]

Learn more about the CLIC detector at clic.cern

material budget. Next to the vertex detector is the tracking system which is fully
based on silicon pixel and strip technology. Fine-grained calorimetry is designed
to enable particle flow analysis techniques. A 4 T solenoidal magnetic field is
embedded around both calorimeters to minimise the material scattering. It is
a cheaper option compared to the ATLAS detector where the magnet is built
inside calorimeters. The outermost region is covered by an iron yoke to provide

magnetic flux return and to measure particles that penetrated through.

The CLICdet has a similar layout as the CLIC_ILD and CLIC_SiD models.
However, key parameters of CLICdet are different to other detector concepts,
which are designed specifically to fit the CLIC program. Comparison of key
parameters of different CLIC detector concepts can be found in [66].

3.3 Summary and Outlook of Future Colliders

The LHC is currently the most precise particle microscope that have ever built.
Physicists continue to push the limit on extending our ability to understand
the Universe. The proposed ete™ collider, CLIC, is expected to exhibit a cleaner
analysis environment and make more precise measurements than the LHC or HL -

LHC. Tt will exceed the collision energy limit of circular e*e™ colliders by having a
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linear accelerator powered with two drive beams. The collision energy is expected
to be up to 3 TeV with an acceleration gradient of 100 MV /m. Many physics
processes will be able to accessed at such high energy. Vertex detector is one of
the most important parts for precision measurements. It defines the performance
of flavour-tagging, which is a one of the key tools in physics analysis at CLIC.
Potential physics processes motivate the design of CLIC machine. Meanwhile,
performance of the future machine needs to be evaluated with benchmark studies

to see its potential.

The next chapter will be using one of the most interesting physics processes, ttH,
to discuss the potential of a proposed linear ete™ collider, the CLIC, in precision

measurements. Results will be compared with a pp collider, the LHC.
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Chapter 4

Top -Yukawa Coupling and Higgs
Boson CP Analysis

4.1 Top-Yukawa Coupling Measurement

Precision measurements of the coupling between the Higgs boson and the top
quark could help us to gain a deeper understanding of the nature of Higgs boson,
as well as the SM. The ttH processes is a direct, and the most dominant, process
to probe the coupling strength between the Higgs boson and top quarks. However,
due to the large number of jets in the t¢H final state, it is crucial to identify each
individual jet. Electron-positron colliders (such as CLIC), with a much cleaner
background than the proton colliders (such as LHC), are more suitable for such

precision measurements.

This chapter presents a precision measurement of the top-Yuakwa coupling in
the ete” — ttH process where H — bb at /s = 1.4 TeV at CLIC. The
analysis focuses on the 6 jets and 8 jets final states channels using particle
flow techniques [64]. First, leptons are identified and the remaining particles
are clustered into jets. These jets are then flavour-tagged to allow identification
of b-quarks. Optimal selection are investigated to select leptons and to suppress
the beam-induced backgrounds. Finally, a collection of variables are used as input
to the BDT to select signals.
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4.1.1 Analysis Strategy

The analysis strategy for the top -Yukawa coupling is briefly described below. SM
Higgs bosons with mass of 125 GeV /c? that decay into a pair of bb (BR ~ 56%)
are considered. The top quark decays into a bottom quark and a W boson and
the W boson subsequently decays into either quarks (68%) or leptons (32%) as
shown in Figure 4.1} The search channels are classified according to number of

charged leptons in their final state and is summarised in Table [4.1]

t.q

0, q

Figure 4.1 Feynman diagram of the dominant decay product of the top quark
and the subsequent W boson.

No. leptons Process Channel name BR
0 ttH — bbgqqq + bb  Full-hadronic  46%
1 ttH — bbgqlv +bb  Semi-leptonic ~ 45%
2 ttH — bbllvv +bb  Di-leptonic 9%

Table 4.1 Searching channels classified using different number of leptons in the
final states with corresponding branching ratio (BR). q, { and v
represent quark, charged lepton and neutrino.

The di-leptonic channel is not considered in this analysis due to a much smaller

cross-section. The procedure of the analysis is described as follow:

Particles that pass the lepton selection criteria are identified as leptons as
described in Section 4.2. Each event is classified according to the number of
charged leptons in its final state: events with 0 charged leptons are classified as
fully-hadronic, events with 1 charged lepton are classified as semi-leptonic, and

events with more than 1 charged lepton are be analysed further.
Particles that are not identified as leptons are clustered into specific number of
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jets, 6 jets for semi-leptonic and 8 jets for full-hadronic. The kr jet clustering
algorithm [67] also identifies the incoming beam particles as jets. These jets are

classified as “beam jets” and are removed from further consideration.

The LCFIP1us package [68] is used to perform flavour-tagging on jets as described
in Section 4.6. Jets are combined to reconstruct the top quark, W+ and Higgs
boson candidates. A multi-variant analysis using the TMVA package [69] is used to
separate signal from backgrounds with selected variables as presented in Section
4.7.

4.1.2 Simulation Samples

_ ; b
e W+
v/Z
N\ WwW-
et t _
b

Figure 4.2 Feynman diagrams of the backgrounds ol)ie*‘ef — ttH where H —
bb. (a) other decays of ttH where H /s bb, (b) ttbb, (¢) ttZ and (d)
tt.

All of the signal and background events are simulated with unpolarised beams.
Hadronic signal events are simulated with 6 jets from tf and 2 b-jets from Higgs.
Semi-leptonic signal events are simulated with 4 jets from ¢t and 2 b-jets from
Higgs. Other final states of the ttH system are considered as backgrounds.
Irreducible backgrounds arise when the backgrounds have similar final states as
the signal. These include tZ and ttbb that both have eight fermion final states
as shown in Figure [£.2] The top quark in these processes radiates a Z boson or

a hard gluon that can decay into a bb pair. A significant background comes from
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Process Cross-section Sample Evt in  Generator

(fb) weight 1.5 ab™!
ttH, 6 jets, H — bb 0.431 0.03 647 Physsim
ttH, 4 jets, H — bb 0.415 0.03 623  Physsim
ttH, 6 jets, H / bb 0.315 0.02 473 Physsim
ttH, 4 jets, H / bb 0.303 0.02 455  Physsim
ttH, 2 jets, H — bb 0.100 0.006 150  Physsim
ttH, 2 jets, H / bb 0.073 0.004 110  Physsim
ttZ, 6 jets 1.895 0.1 2843  Physsim
ttZ, 4 jets 1.825 0.1 2738  Physsim
ttZ, 2 jets 0.439 0.03 659  Physsim
ttbb, 6 jets 0.549 0.03 824  Physsim
tthb, 4 jets 0.529 0.03 794  Physsim
tthh, 2 jets 0.127 0.008 191  Physsim
tt 135.8 1.5 203700 PYTHIA

Table 4.2 Signal and background samples simulated for the analysis. Samples
are simulated with unpolarised beams at /s =1.4 TeV and assuming
a integrated luminosity of 1.5 ab™'. All samples are simulated by
assuming a Standard Model Higgs boson with 125 GeV/c*. The first
two rows are the ttH signal channels. The number of jets refers to
the decay of tt. The event in 1.5 ab™! is calculated from the sample
weight and integrated luminosity.

the six-fermion final state of ¢t due to its huge relative cross-section compared
to the signal. The ¢t samples are generated using PYTHIA [70], other samples
are simulated using Physsim [71]. ISR effect and CLIC luminosity spectrum are
included. Details of the simulated samples can be found in Table

4.2 Event Reconstruction

Output from the Monte Carlo simulations are processed through the Marlin
framework [72]. Marlin is a reconstruction and analysis tool both for Monte
Carlo-based physics analysis and for optimisation of detectors. First, the
simulated tracks and calorimeter hits are digitised. Tracks are then reconstructed
using the MarlinReco package [73] in Marlin. The reconstructed tracking
information is used by PandoraPFA [74] to reconstruct particle flow objects

(PFOs), as described in the following sections.
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4.2.1 PandoraPFA

PandoraPFA is a reconstruction package that follows the particle flow concept [74]
where every particle in a jet is identified and reconstructed. The energy of each
particle is then extracted from the highest-resolution detector measurements,

i.e. energies of charged particles are taken from the tracking information, whereas

energies of neutral particles are taken from the calorimeter information.

o I 2 3 4 5 6

/(\
G\

— )

&

L
-

Initial cluster Unmatched hit
direction seeds new cluster
Figure 4.3 Illustrations

of PandoraPFA

cone-based
Picture taken from [75].

clustering algorithms.

Cone-based clustering algorithms are used in PandoraPFA. These algorithms
gather hit information from the calorimeters and group them into clusters. The
division of energy deposits into particles starts by using a simple cone-based

clustering algorithm. The clusters are seeded by projections of the reconstructed
tracks pointing to the surface of the calorimeter.

Starting at the innermost
calorimeter layers, and working outwards, each calorimeter hit is considered in

turn. If the hit lies within the cone defined by the existing cluster, it is added

to the cluster; if the hit is unmatched, it is used to form a new cluster. This is
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illustrated in Figure 4.3|

Once the clusters are defined, the Pandora track—cluster association algorithm
looks for consistency between the clusters and the tracks. Tracks and clusters
are matched by looking for close proximity between cluster and track positions,
consistent track and initial cluster directions, and consistent track momentum

and cluster energy.

A re-clustering step takes place to resolve ambiguities when several particles
overlap and are initially reconstructed as one cluster. Using tracking and
topological information, the re-clustering typically results in splitting the initial

cluster into two or more lower-energy clusters.

Finally, particle flow objects (PFOs) are defined from the reconstructed tracks and
their final associated clusters. PFOs can also be defined from cluster information

without any associated tracks.

These PandoraPF0Os, which are the final output of the event reconstruction, are

used for subsequent analysis.

4.3 Beam-Induced Background Suppression

e *e Pairs

@/ ,@

Beamstrahlung

Figure 4.4 Illustrations of beam induced backgrounds. (Left) Beamstrahlung and
(Right) vy —hadrons interactions.

At /s = 1.4 TeV, there are, on average, 1.3 vy — hadrons interactions
per bunch crossing occurring at the interaction point (Figure [12]. They
tend to have low transverse momenta and small angle to the beam axis. This
background can deposit energies up to 200 GeV in the calorimeters. Although
the majority of the particles have a very small angle to the beam axis, they

still deposit approximately 20 GeV into the calorimeters. This effect will cause
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Figure 4.5 Plot of reconstructed W mass and effects from ~vy —hadrons
interactions. A truth-matched reconstructed W mass without any
backgrounds is shown in blue line. With an addition of vy —hadrons
interactions, the reconstructed W mass is plotted in red line. With
timing and momentum cuts as well as background suppression, the
reconstructed W mass is shown in green line.

an overestimation of the jet energy and smear the reconstructed hadronic W=
invariant mass distribution (My,,) as shown in Figure To reduce such
background, timing and momentum cuts are imposed on the reconstructed
PandoraPFO objects (TightSelectedPandoraPFOCollection). A time window
of 10 ns following the physics event is applied to the hits of the background event
and physics event. This is to account for the expected detector timing resolution
and integration times. All the hits within the time window are then proceeded
to the reconstruction. The combination of timing and momentum cuts enables
the background from v+ —hadrons to be reduced from 19 TeV per bunch train
to approximately 100 GeV per reconstructed physics event. An illustration of
the effect of this selection is also shown in Figure Details of this background

suppression can be found in [58].
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Figure 4.6 Fvent display of tt production at 8 TeV at CLIC. (top) Before and
(bottom) after timing and momentum cuts as well as background
SUpPPression.
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4.4 Lepton ldentification

To classify the channels, leptons from W7 decays need to be identified and
reconstructed from the events. The tau lepton decays rapidly before it reaches
the detector due to its short lifetime and therefore is treated using a separate
method. Firstly, isolated leptons (electrons and muons) are searched for by
using a combination of impact parameter, track energy, calorimeter energy and
isolation information. Then tau leptons are searched for by investigating the
high-energy low-multiplicity jets that are isolated in the detector. The properties
of the reconstructed leptons from W* decays are determined by using the
truth-matching method that matches generated particles with the reconstructed

particles by using generator-level information.

4.4.1 Impact Parameter

—3% tracks b jet

------ b hadron \

—————— impact
parameter

ja8 secondary
/! vertex

\ (7 §mary vertex

Figure 4.7 Diagram of b-jet decay at a displaced vertex with indication of impact
parameter, dg.

Top quarks and W* bosons have a very short lifetime, this causes electron and
muons from the W= decays appear to originate from the primary vertex (PV)
of the event, whereas the decay products of the top quark and tau leptons from
W= originate at a displaced vertex due to their longer lifetime. An illustration
of this effect is shown in Figure This effect can be studied using the impact

parameter (IP) which parameterises the relation between a track and the PV.

The 3D IP is defined as
RO =1/ Zg + d%, (41)
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where 7 is the longitudinal component and dj is the radial component. Isolated
leptons tend to have relatively smaller impact parameters compare to particles
from showers within jets and tau decay products. By constraining the 3D IP, the
isolated leptons can be separated. From Figure [4.8] it is concluded that Z,, djy

and Ry are required to be less than 0.05 mm to separate out the isolated leptons.

— Electrons — Electrons 1. — Electrons

— Muons — Muons — Muons

0.8 0.8
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— Others
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Figure 4.8 Impact parameter distribution of truth-matched reconstructed
charged leptons (a) radial component, (b) longitudinal component
and (¢) combined 3D IP for electrons (red), muons (blue), tau decay
products (green) and all other reconstructed particles (black) that are
not truth-matched to a lepton. Semi-leptonic ttH sample is used.

4.4.2 Track Energy and Calorimeter Energy

The reconstructed track energies of electrons and muons from W= decays are
typically within the range of 50 - 350 GeV (Figure (left)), which are much
larger than the energy of particle inside jets. Although the decay products of
tau leptons do not have as high energy as the other two leptons, they are still

significantly more energetic than other particles from showers within jets.

To distinguish leptons from hadrons, we look at the energy deposited in the ECAL

and HCAL:
Ercar

Rear = (4.2)

Egcar + Encar
For example, it is likely to be an electron or photon if Rca; =~ 1. Although
muons are detected by the iron yoke in the outmost layer of the detector, they
still deposit a minimum amount of ionisation energy throughout the calorimeters
which causes the peak around Reay, >~ 0.2 (Figure[£.9(right)). Tau lepton shares a
similar shape in R¢ 47, with hadrons as its decay products can be either leptonic or
hadronic. This makes taus harder to be identified using this method. Therefore,
the isolated leptons are selected using deposited calorimeter energies with Ro 4z >
0.9 and 0.05 < Rcar < 0.3.
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Figure 4.9
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(Left) Reconstructed track energies of truth-matched isolated charged
leptons, tau decay products from W* decays and other reconstructed
particles which are not truth-matched to a simulated lepton. (Right)
Calorimeter energy ratio of charged leptons and other reconstructed
particles. Only 'Other’ reconstructed particles are not truth-matched
to a simulated signal lepton. Semi-leptonic ttH sample is used.

Figure (left) suggests optimal the selections for isolated lepton is particle’s

track energy Fy .. > 15 GeV as it cuts away majority of tau decay products and
other reconstructed particles.

4.4.3

Isolation Information

Another way to identify isolated leptons from other particles is to consider their

isolation in the event. Most particles are reconstructed in the detector region

with high occupancy, since most of the particles originate from showers within
jets. Electrons and muons from W¥ decays are expected to be more isolated

whereas tau decay products are not isolated from each other.
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Figure 4.10 Cone energy with cone size cos 0=0.995 vs track energy for (left)

electrons, (middle) muons and (right) other reconstructed particles.
Semi-leptonic ttH sample is used.

The energy within a cone size of cos § = 0.995 around the particle’s track direction

is added to its cone energy, F .one-

The relationship between particle’s cone

20



energy, F...., and particle’s reconstructed track energy, Fi.q., is considered.
Highly-isolated particles tend to have low cone energy (Figure [1.10)left, middle))
and electrons are observed to radiate more than muons. Both isolated leptons
are more energetic and more isolated compare to other reconstructed particles

(Figure4.10[right)). This helps to identify highly energetic leptons which radiates
photons at small angles.
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Figure 4.11 Cone energy with cone size cos 0=0.995 vs track energy after cut on

impact parameters for (left) electrons, (middle) muons and (right)
other reconstructed particles. Semi-leptonic ttH sample is used.

An IP cut (|Zo|, |do] and Ry <0.05 mm) is firstly applied (Figure 4.11)). It

is observed that a lot of the reconstructed particles, other than electrons and

muons are still misidentified as leptons (Figure [4.11|right)) with low track energy
spreading across a range of cone energy.
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Figure 4.12 Cone energy with cone size cos 0=0.995 vs track energy after impact
parameter cuts and polynomial isolation cut for (left) electrons,

(middle) muons and (right) other reconstructed particles. Semi-
leptonic ttH sample is used.

Therefore, polynomial isolation cut is set to select the isolated leptons: (1) if
the cone energy of a particle is larger than 10 GeV, then particle with track
energy greater than 100 GeV will be selected; (2) if the particle’s cone energy
is lower than 10 GeV, then particle with track energy greater than 10 times the
cone energy will be selected. The result of the combination of the cuts is shown

in Figure The combined selection criteria helps to remove majority of the
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hadronic particles. The remaining reconstructed particles shown in Figure [£.12)(c)
has a large fraction of leptons coming from jets as they are not truth-matched to

originate from W+ decays.

4.4.4 Summary of Isolated Lepton Selections

For the electrons and muons from W decays, the IsolatedLeptonFinder
Marlin processor [72] was used. The criteria to be selected as an electron or

muon are summarised below:

| Zol, |do| and Ry < 0.05 mm,
Eirac > 15 GeV,
Roar > 09 or 0.05 < Roarp < 0.3,
100 if cone energy > 10GeV

particle energy (GeV) >
10 x cone energy if cone energy < 10GeV.

The Rcar cut removes particles which do not behave as isolated leptons. The
last selection retains highly energetic leptons which radiate a photon whilst
removing non-leptons. It is found that 87.3% of truth-matched electrons and
muons are selected using a combination of these requirements, only 0.4% of other

reconstructed particles that are not truth-matched to a lepton are selected.

4.4.5 Summary of Tau Lepton Selections

The tau leptons are searched using the Marlin TauFinder [77] processor which
uses PandoraPF0s. The following criteria are used when selecting tau leptons,
definition of parameters are shown in Figure [4.13] examples of selection criteria
are shown in Figure [£.14}

a seed track of pr > 10 GeV /c,

e a cone angle, 0 4, of 0.04 rad to be added to the seed to form tau candidate,
e all particles to have pr > 2 GeV/c,

e Ry to be within the range 0.01 mm—0.5 mm,

e the reconstructed tau to have invariant mass less than 1.5 GeV/c?,

e isolation ring, 6;,, to be within 0.04 — 0.25 rad around tau seed,

e less than 5 particles within the isolation ring to have a total energy less than
5 GeV.

o2



— signal

with tau candidate

seed track —— isolation
My
!
Vi
VL
/ l : ) esig
not associated ! Giso

Figure 4.13 An illustration of a tau lepton cone used to reconstruct a tau
candidate. Red cone indicates the signal from a tau lepton, blue
cone isolates the tau lepton signal from other particle traces, taken

from [76].
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Figure 4.14 Plots of investigation for tau lepton. (left) Reconstructed tau
invariant mass, (right) comparison of number of ring particles

of reconstructed tau and particle flow objets. Semi-leptonic ttH
sample is used.

4.4.6 Performance of Lepton Selections

The lepton finders process all events to find charged leptons for all signal and
background samples with selection criteria described above. A summary of the
lepton finding rate is presented in Table [.3] Approximately 86% of the events in
the fully hadronic t¢H channel are classified with 0 leptons, and 69% in the semi-
leptonic ttH decays are classified with 1 lepton. In the semi-leptonic channel,
29.5% of the event with one lepton is identified as a tau candidate. The selection

includes the impact from non-isotropic detector coverage and detection efficiency.
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Figure 4.15 The number of leptons are selected by using a number of criteria
listed in Section 4.4.4 and 4.4.5. The shaded region indicates the

ttH semi-leptonic signal.

Process Evt in 1.5 ab™! | Evt with 0 leptons | Evt With 1 lepton
ttH, 6 jets, H — bb 647 553 (85.6%) 86 (13.4%)
ttH, 4 jets, H — bb 623 144 (23.1%) 432 (69.4%)
ttH, 6 jets, H % bb 473 271 (57.4%) 143 (30.2%)
ttH, 4 jets, H % bb 455 70 (15.4%) 237 (52.2%)
ttH, 2 jets, H — bb 150 9 (6.04%) 53 (35.6%)
ttH, 2 jets, H / bb 110 4 (4.02%) 27 (25.0%)
ttZ, 6 jets 2843 2177 (76.6%) 445 (15.7%)
ttZ, 4 jets 2738 567 (20.7%) 1726 (63.0%)
ttZ, 2 jets 659 36 (5.53%) 214 (32.5%)
ttbb, 6 jets 824 719 (87.3%) 95 (11.6%)
ttbb, 4 jets 794 190 (24.0%) 552 (69.5%)
ttbb, 2 jets 191 12 (6.07%) 70 (36.7%)
tt 203700 110430 (54.2%) 76732 (37.7%)

Table 4.3 Summary of the results from lepton identification.

The last two

columns show events that are selected with either 0 lepton or 1 lepton.
The passing rate is presented as percentage. The number of jets refer
to the decay of tt only.
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4.5 Jet Grouping and Particle Reconstruction

Particles that are not identified as leptons are clustered into eight (hadronic) or
six (semi-leptonic) jets plus two beam jets. Beam jets from forward particles
induced by the ete™ beams are removed (Figure . This is done by using
the FastJetProcessor [7§ with the implemented kr algorithm [67] using
PandoraPFOs.
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Figure 4.16 Fitted invariant mass distributions of truth-matched and recon-
structed W boson, top quark and Higgs boson as a function of
jet clustering radius with different levels of background suppression
179].

In the jet clustering, jets originating from top quarks (3 jets) could be
misclusterred into 2 jets if the jet clustering radius is too large. This will cause a
bump in the top mass region in Myy,,. For this purpose, the optimal jet clustering
radius is determined to be 1.0 rad as shown in Figure [£.16]

The clustered jets are then combined using kinematic information to form W, top
and Higgs candidates. A y? is defined to constraint reconstruction of the W=+, ¢
and H candidates:

s (M — My+)?  (Myaz — My)?  (Mys — Mp)?
X6 = 2 + 2 + 2
OPs op oy
My — Myr+)? M3 — M,)? Myz — My+)?
ng( 12 ! we) +( 123 . t) +( 45 i we) (4.3)
OPs op 0P
Myse — M,)? Mg — My)?
n (Mase i +) " (Mzs i i)
o Oh

where the indices of the mass M indicate each of the reconstructed jets and
o is the resolution of the reconstructed candidate. Each reconstructed jet 7 is

combined with another jet j to form an invariant mass M;;. The W*, ¢ and
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Higgs candidates are selected through iterating all combinations of reconstructed
jets to find the smallest value of y? determined in Equation [4.3]

Since the shapes of the invariant mass distributions are slightly asymmetric as
shown in Figure .17, the values of o and mass M for the reconstructed W=, ¢
and Higgs candidates are determined by fitting with a modified Gaussian:

)

with mean g, width o g and tail modification parameter oy r. Examples of
the fitted distribution is shown in Figure for truth-matched reconstructed

candidates.

=202 +ap(v—pn)?, x<
g =20} +ar(z—p) p (4.4)

g=20%+agp(x—pu)?, z>p
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Figure 4.17 The fitted distribution of the truth-matched reconstructed W=, top
and Higgs candidates using Equation [{.4) from the semi-leptonic
ttH sample. The top right corner indicates the values of mean
W, width or, g and oy gr. Second row shows X2 walues (calculated
i equation from all possible combinations of jets versus the
corresponding reconstructed invariant mass in the semi-leptonic
channel for W, top and Higgs candidates.

The values obtained from the fitting distributions using Equation [£.4] are insert
back into Equation to further constrain the selection of particle candidates.
The performance of the x? method (Figure 4.17)) shows the majority of the W*,

top and Higgs candidates sit close to the expected value with minimal x? values.
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As shown in Figure [4.17 the masses of reconstructed W=, top and Higgs
candidates are not reconstructed to their true values. This is due to tighter
background suppression and energy loss when reconstructing jets. For the latter
reason, it can be fixed by adding energy correction to the jets when reconstructing
the candidates. However this will not affect the performance of the BDT training
and testing as we only care about the shape of the variables, therefore this

correction is not implemented in this analysis.

The missing transverse momentum, pr, is calculated by summing the momentum

of all visible particles in the system:

%:_Zpgm p/y:_zp;p p/T: \/ﬁ;—i_zféa (4’5)

where n = 7 or 8 and ¢ runs over all the jets and the lepton, where present.
It accounts for momentum of the neutrinos in the system, particularly useful in

separating semi-leptonic t¢H channel from other backgrounds.

4.6 Flavour Tagging

It is important to identify the b-jets as many background events do not have four
b-jets in their final states. The dominant background ¢t events contain at most
two b-jets, as do about 80% of t¢Z. This makes flavour tagging a very useful tool
in discriminating signal from backgrounds. The flavour tagging is implemented
in the LCFIPlus package [68] and is tuned by using eTe™ — ¢qqqqq samples with

the same flavour for all quarks.

Particles are clustered using the Durham algorithm [80]. Flavour tagging are
performed for each jet using LCFIPlus. b-tag and c-tag values are calculated
using MVA selections implemented in the LCFIPlus package. Large values of
b-tag (c-tag), close to 1, indicate the jet is likely to be a b-jet (c-jet). Figure [£.18]
illustrates the value of the b-tag calculated by LCFIPlus for the jet with the 3rd
highest value of b-tag, and the c-tag value of the jet with the highest value of
b-tag. The major background, ¢, has 2 b-jets in the final states whiles our signal,
ttH, has 4 b-jets in its flinal states. Therefore, the 3rd highest value of b-tag will
be the most effective discriminating variable to separate our signal from this huge

background.
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The distance between the two closest jets, y;;, is used in distinguishing signal from
lower jet multiplicity backgrounds such as ¢t events. The distance y;; between jet

i and jet j(j =1+ 1) is defined as:

min(E?, E?)(1 — cos6; ;)
ym = J J s (46)

S

with centre of mass energy /s, angle 6 between the two jets and jet energy E; ;
that choose to minimise the distance between the two jets which are merged.
Due to many jets in both of semi-leptonic and fully-hadronic signal channels (>4

jets), signals can be separated from low jet multiplicity backgrounds by looking

at Yas, Yse and yer.

1E Semi-leptonic Semi-leptonic 0.14F Semi-leptonic

brl|
;
E
7
e
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Third highest b-tag c-tag of highest b-tag -log, (¥ 6)

Figure 4.18 Jet information used to train the BDTs (left) third highest b-tag
probability, (middle) c-tag/(c-tag+b-tag) for the third highest b-tag
and c-tag values and (right) distance between two merged jets yse.
Colour labels follows Figure where shaded area indicates the

semi-leptonic signal.

4.7 Signal Selection using Multivariate Analysis

Signal events are selected using a Boosted Decision Tree Gradient (BDTG)
classifier implemented in TMVA [69]. The samples for signal and background are
separated randomly into two sets. The first half of the sample is used to train and
test the BDTG and the second half of the sample is used as “real” data samples
where the weight from BDTG is applied. This prevents any bias in the MVA
selection. In the first half of the sample, a pre-selection is applied to constrain to
exactly 0 or 1 isolated leptons and to either 6 or 8 jets. The following variables

are used as input to train and test the BDTG.

e number of reconstructed particles in the event;
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e visible energy contained within jets;

e missing transverse momentum pf;

e reconstructed Higgs mass, my;

e 2 of combined jets as defined in Equation

e four highest b-tag and c-tag values;

e distance between two closest jets y;; as described in Equation specifically
Ya5, Y565 Yor1;

e cosine of the angle of between the two b quarks from H — bb decay:;

e cosine of the angles between the Higgs and each of the top quark.

Additionally for the semi-leptonic channel, we make use of the lepton information:

e cone energy of the isolated lepton with cone size cosf = 0.995;

e ratio of the calorimeter energy Ry as defined in Equation [4.2]
For the fully-hadronic channel, we make use of the jet information:

e energy of the four lowest-energy jets;

e cosine of the angle between the two jets that are closest to the beam axis.

All the samples are weighted assuming an integrated luminosity of 1.5 ab™!.
Using the first half of the samples, the BDTG response of the testing and training
samples are found(see Figure [4.19(left)). No sign of overtraining is observed. The
weight from BDTG training is then applied to the other half of the samples which
act as “real data”. The BDTG response for each of the signal and background
events is then calculated as shown in Figure [£.19|right).

The optimal selection on the signal events is calculated by finding the maximum
significance. Significance defined as S/v/S + B where S is the yield of selected
signal events and B is the yield of selected background events after the MVA cut.
All the ttH events are considered as signal in the significance calculation. By
looping over a range of MVA cut values, the best cut which yield the maximal
significance is found to be > 0.069 for the semi-leptonic channel (Figure and
> (.181 for hadronic channel. This gives a significance of 9.00 for semi-leptonic

channel and 10.44 for hadronic channel.

The summary of results from both pre-selection and MVA selection are shown
in Table 4.4, Most backgrounds are reduced to less than 10%, while a high
proportion of signal events remain 56.8% (Had) and 43.4% (SL). The largest
background, ¢, has the least signal-like events and has been cut by 99.6% (SL) and
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99.8% (Had). The irreducible background from ¢£bb still remains with relatively
high percentage due to the b-tagging. A dedicated study into how to separate
the t£bb from ttH signals could improve the result.
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Figure 4.20 The optimal significance is calculated with the best MVA cut value
(right), S/\/S + B, by looping over a range of MVA wvalues for
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4.8 Results on Precision of Top-Yukawa Coupling

The uncertainty on the cross-section is calculated from the inverse of the signal
significance. This gives a combined (leptonic+hadronic) precision of 7.3% for

measuring the cross-section by assuming an integrated luminosity of 1.5 ab™!.

Figure 4.21 Feynman diagrams for the ete™ — ttH process with (a) a Higgs
boson radiates from the top quark and (b) a Higgs boson radiates
from the Z boson which is also called the Higgs-strahlung process
ete™ — Z*H with Z* — tt.

The precision on the top-Yukawa coupling (g,) is calculated from the uncer-
tainty measurement on the ttH cross-section (o). However, the Higgs-strahlung
process ete” — ZZH with Z — t as shown in Figure [1.21(b) needs to be taken
into account. It contributes a small, but non-negligible, contribution to the total
cross section, but is independent of g;z. We can evaluate this by plotting the
predicted cross-section against the corresponding top -Yukawa coupling. A linear

approximation

Agt%H/gtEH =hK- AJ/Uv (4-7)

and k£ = 0.53 is found with the presence of the diagram at /s = 1.4 TeV at
LO (see Figure . This is due to the interference between the two Feynman
diagrams in Figure [4.21] If the interference didn’t exist, x = 0.5 [81]. This
suggests a non-negligible contribution from the Higgs-strahlung diagram to the

total cross-section at high centre of mass energies.

4.8.1 LO to NLO Correction

The latest NLO prediction for the parameter s has been produced to translate the
uncertainty on the t£H cross-section to an uncertainty of the top -Yukawa coupling
[81]. A modified version of WHIZARD 2.6.2 was used at NLO QCD which gives
k = 0.4886 +0.0013 with linear fit (as done in [81]) and x = 0.5032 £ 0.0005 with
quadratic fit (as done in Figure [1.22).
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Figure 4.22 The cross-section of the eTe™ — ttH process as a function of the
top - Yukawa coupling values gig at /s =1.4 TeV, including the
Higgs-strahlung effect [79].

As all of the simulation studies are done under LO where agg D —1.558040.0014
fb. The cross sections are scaled to NLO with 0']%(25 = 1.4625 £ 0.0015 fb. This
leads to a NLO cross-section measurement of 7.5%. The precision on the top-
Yukawa coupling can then extracted by using the factor x = 0.5032 4+ 0.0005:
Ao (ttH)

Agin
=0.503————. 4.8
Giin o(ttH) (4.8)

This gives an uncertainty of 3.8% on the top-Yukawa coupling measurement
in NLO by combining results from both fully-hadronic and semi-leptonic ttH
channels at /s =1.4 TeV without polarisation.

4.8.2 CLIC Luminosity Scheme with Polarised Beam

An updated CLIC luminosity scheme proposes an integrated luminosity of
2.5 ab™! using a polarised electron beam. An integrated luminosity of 2.0 ab™!
is taken with P(e”) = —80% and 0.5 ab™' with P(e”) = +80%. With this
new scheme, the uncertainty on the cross-section is improved to 5.4% and the
uncertainty on the top -Yukawa coupling is improved to 2.7% due to the increased
cross-section in ttH signal. The new results are obtained from recalculating the
significance (S/ V'S + B) by scaling the signal and the backgrounds. These results
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are comparable with a similar study carried out by ILC that obtains statistical
precision of 4.5% on the top-Yukawa coupling at /s = 1 TeV using unpolarised
beam [82].

The statistical uncertainty of the measurement of the cross-section (5.4%) is
expected to dominate over the systematic uncertainty due to the relatively clean
environment. Sources of systematic uncertainty such as jet energy scale, lepton
reconstruction and flavour-tagging are expected to be very small (well below
10%) compare to the cross-section measurement. A previous study of systematic

uncertainty of the luminosity spectrum reconstruction was found to be small at
Vs = 1.4 TeV [83].

4.9 Higgs Boson CP Analysis

Figure 4.23 Feynman diagrams for the ete™ — tt® process with (a) a CP-
violating Higgs boson ® radiates from the top quark, (b) ® radiates
from t and (¢) ® radiates from the Z boson which will cause
interference with (a) and (b).

An extension of the t¢tH study looking at the CP properties of the Higgs boson
is presented in this section. As introduced in Section 2.6.1, the Higgs boson is a
mixed state of scalar and psuedoscalar components, which is written as . The

tt® coupling can be then described as
Coig = —igma(a +ibys). (4.9)

Setting a = cos ¢ and b = sin ¢, this reduces the free parameter to a mixing angle
¢. A measurement of ¢ will give direct indication of CP-violation in the Higgs

boson.
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4.9.1 Event Generation

Samples are generated using Physsim [71] with different values of sin? ¢ for both
hadronic and semi-leptonic channels. This is to be consistent with the top-
Yukawa coupling measurement presented in Section 4.8 where the result will be
used in the CP study. The centre-of-mass energy is 1.4 TeV with unpolarised
beams. ISR and beamstrahlung effects are included. The CLIC luminosity
spectrum [63] is employed and 12 samples are produced in total. The ZZ®

is included in the cross-section calculation with ¢ = 1 in Equation [2.24]

{s=1.4 TeV,pol=(0,0)

— 2 T T T T T T T T T T T T T T T
é i CL|Cd[II)PreIiminar3I/ | | ]
*,F 15 R C.o =-igm_l(cos¢+isin¢y ]
I ]
o | ]
e} L i
1 | p—
0.5
0 i 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 ]
0 0.2 0.4 0.6 08 2‘I
sin“g

Figure 4.24 The cross-section calculation for simulated ete™ — tt® samples
with mizing angle, ¢, 0 < sin?¢ < 1 with unpolarised beam at
Vs =1.4 TeV, including contribution from ZZ®.

4.9.2 Cross-Section Measurement

The coupling strength becomes weaker as the proportion of pseudoscalar Higgs
increases, since the coupling between ZZ and CP-odd Higgs is zero at tree level.
This leads to a reduction in the total cross section. The signal and backgrounds
samples used in this analysis are the same as shown in Table [£.2] To translate
the expected number of events to the corresponding sin? ¢ value, a scale factor
ocp/osy (values can be found in [84]) is applied to all possible {t® decay samples
and the branching ratio of H — bb is assumed to be unchanged. The expected

cross-section measurements from simulation for all sin® ¢ values are presented in

Figure [4.24]
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4.9.3 Results on Sensitivity to CP-Mixing in Higgs Boson

The precisions on the cross-section are obtained separately for hadronic and semi-
leptonic samples with the same sin® ¢ value. The cross-section measurements are
performed with same procedure as described in Section 4.7 to all semi-leptonic
samples with different CP values whereas for hadronic channel the results are
extrapolated by only applying the ocp/ogy scale factor. The results from both

channels are combined to give a better precision measurement.

The cross-section measurements become less precise as sin ¢ increases, with
an uncertainty of ~24% for a pure pseudoscalar Higgs boson. This is due to
decreasing total cross-section of the t£® at higher sin? ¢ values. If assuming any
reduction in the observed cross-section is due to CP mixing, then this effect can
be used to discriminate the pseudoscalar Higgs boson from the scalar Higgs boson.
With the CLIC machine, measurements can be performed to a very high precision.
By using the cross-section measurement used in top-Yukawa coupling analysis,

the precision on the cross-section for different sin? ¢ values can be determined.

Vs=1.4 TeV,pol=(0,0)
— T

s=1.4 TeV,pol=(0,0

S0S TT '60-5 AL L L L | S' T 'el p'o '( T )
E. L CL|CdpPreIiminary ] = N CL|Cdpworkin progress ]
T C Ciw="- ig'?H(cos¢+isin¢y5) 1 & r Ciw="- igﬁH(cos¢+isin¢y5) ]
=04 Hadronic(extrapolation)y % 0.4 - Hadronic(extrapolation)
! C - = - Semi-Leptonic 1 < C - < - Semi-Leptonic ]
o r —=— ttH Combined C —=— ttH Combined ]
0.3 A 03 ]
) [ i [ ]
3 | 3 r ]
02 - 02 .
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Figure 4.25 (Left) Measurements on the precision of cross-section for mixing
angle, ¢, 0 < sin®?¢ < 1 with unpolarised beam at \/s =1.}
TeV with luminosity of 1.5 ab™!. (Right) The calculated
uncertainty on sin®¢ for CP-violating Higgs boson ® using
Equation [{.10, Results obtained for semi-leptonic channel is from
cross-section measurement, results for hadronic channel are from
extrapolation. Data points are connected with lines of best fit.
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Firstly, measurements of cross-section of mixing angle 0 < sin? ¢ < 1 are produced
(Figure . Then a linear fit, ¢ = ksin® ¢ + ¢, is applied to relate the cross
-section with sin? ¢. This then allows us to deduce the uncertainty on sin® ¢ by
error propagation:

1 Aoy

A(Sil’l2 ¢) = EU_¢O¢7 (410)

where k is the gradient of the slope in Figure [£.24] o4 is the cross-section at

specific ¢ value and Aoy /04 becomes the precision on cross-section measurements

at specific ¢ value. This can be directly obtained from data points in Figure [4.25]

The result from Figure shows the uncertainty of Asin® ¢ or A cos?¢ (from
cos?¢ + sin?¢ = 1) can be constrained to around 0.1 with unpolarised beam
and an integrated luminosity of 1.5 ab™! at y/s = 1.4 TeV. In other words, the

contribution from pure CP-odd Higgs can be measured to ~ 10% accuracy at 1o.

4.9.4 Angular Observable: Up-Down Asymmetry

The up-down asymmetry is defined by the angle between the ¢ direction and the
top -electron plane where the electron is the electron beam. This observable is
sensitive to CP violation as it accounts for the interference between the on-shell
process and the off-shell process as in Figure according to [39]. The up-down
angle ¢ between the ¢ and the top-electron plane is given by

Pi(ge= % pt)

Al % pi (4.11)

sin( =

and the up-down asymmetry is defined as

_ N(sin¢ > 0) — N(sin¢ < 0)
Ac= N(sin¢ > 0) + N(sin¢ < 0)’ (4.12)

where N(sin¢ > 0) denotes the number of events that ¢ is above the plane and

N(sin¢ < 0) denotes the number of events that ¢ is below the plane.

The semi-leptonic channel where the charge of the lepton in the final state can be
used to identify the ¢ and ¢ candidates is used. Then the ¢ and ¢ can be identified
as follows: if the lepton charge is negative, the reconstructed leptonic candidate
(blv) is assigned to be a t and the hadronic candidate (bqq) is assigned as an t,
vice versa. The 4-momentum of the reconstructed ¢ and ¢ are obtained in their

rest frame and are boosted to the t£® rest frame to calculate sin .
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Figure 4.26 Correlation of up-down sin( in Equation between reconstruc-
tion and MC at sin® ¢ = 0.5 before cuts using semi-leptonic ttH
sample.

To match the reconstruction events to the MC events, cuts are investigated by
looking at events passing or failing the requirement |sin (... — sin (.| < 0.05,
MVA cuts obtained from cross-section measurements for different CP values are
applied to the corresponding CP samples by default. As shown in Figure [4.26]
a clear diagonal line is expected from (—1,—1) to (1,1). The off-diagonal line
is due to the mis-identification of the charge of the top quark, the backgrounds
are due to the mis-reconstruction of the top quark. Final state leptons include
hadronic tau leptons for which the charge are hard to reconstruct, this causes
mis-identification of the top quark. Therefore, events with tau lepton in the final
states are removed. The jet matching x2 defined in Equation is constrained
below 10 to reduce the mis-reconstructed top quarks. Another cut that can be
applied to improve the matching is to constraint the mass of leptonic top quark
my,,- This is because the reconstruction of a leptonic top is by combining jet
information together with an isolated lepton and a neutrino. If jets and neutrino
are mis-reconstructed and mis-assigned to a leptonic quark, the value of sin (.. in
Equarion [1.11] will be mis-calculated. However, due to the high tail of the leptonic
top mass distribution Figure (right), this will cut away a lot of signals and

thus reduce the precision.
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Figure 4.27 Reconstructed leptonic top mass distribution with (left) new
neutrino reconstruction method with jet matching X% < 10 and
my,, < 220 GeV, and (right) old method. Semi-leptonic ttH
sample is used.

4.9.5 Neutrino Reconstruction

The cause of the high tail in the leptonic top mass distribution is found to be the
reconstructed neutrino. The traditional method of reconstructing the neutrino is
to assign all the missing momentum to the neutrino. This method includes the
ISR effect and thus cause a high tail in the reconstructing leptonic top mass as
illustrated in Figure [£.27] (right). A new method is implemented to constraint the
neutrino pr such that the neutrino-lepton invariant mass is above the W boson
mass. Then a solution that is closest to the top mass is selected after combining
with other jets. With the new reconstruction method, the cuts are investigated
again. As shown in Figure (left), the high tail of leptonic top mass issue has
been resolved. MVA cuts are applied and tau leptons are removed. The best cuts
are found to be (1) jet matching xg < 10 and (2) my,, < 220 GeV.

The newly investigated cuts are applied to select the signals. As shown
in Figure the reconstructed up-down angle distribution matches the
MC distribution. The correlation of sin( between reconstruction and MC
(Figure shows a much clearer diagonal line, indicating a higher level of
matching. Finally, the up-down asymmetry with different CP values shows a
better agreement between the reconstruction and MC after investigation into

neutrino reconstruction as shown in Figure [4.30]
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Figure 4.30 Up-down asymmetry with (top left) no cuts, (top right) my,,, < 220
GeV, (bottom) my,,, < 220 GeV and jet matching x§ < 10. Then

up-down asymmetry is calculated using Equation .
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4.9.6 ? Template Fit

To extract the uncertainty measurement of sin? ¢ from up-down asymmetry, a x>

template fit is used:

nbins

O in2 b= - OMC(n)
2/ .. 9 —05) = data(sin® ¢=0.5) 2 413
Vit =05) = 3 (ISR,

where n is the different sin? ¢ samples (sin? ¢ = 0.5 is an example that we are
calculating y? value for sin® ¢ = 0.5), Ogata is the number of reconstructed events
in the bin, Oys¢ is the number of MC events in the same bin of different sin? ¢
samples and ogq, is the error of Ogge. For example, if x? is calculated with
reconstructed data points at sin®¢ = 0.5 and MC data points at sin®¢ = 0.2,
this will give the forth x? value in Figure [£.31|right).

N 10 Xt T
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Figure 4.31 Results of template fit as discussed in Section 4.9.6. (left) weighted
sin ¢ distribution with mizing angle sin? ¢ = 0.5, (right) calculated
x2 at sin? ¢ = 0.5 with best polynomial fit.

The measurement of sin¢ is obtained by using a polynomial fit to find the
minimum point of the x? curve. By smearing the reconstructed data point Ogga
within its uncertainty o4, we can perform pseudo experiments to obtain more
measurements of sin? ¢. The data points are smeared as Poisson distribution as
most of the bin entries are below 10 counts. Measurements of sin® ¢ obtained

from each pseudo experiment is then filled into a histogram as in Figure [4.32]

The uncertainty measurements of sin? ¢ can then be extracted from Figure [4.32)

and are determined by fitting with a modified Gaussian as in Equation [4.4. Due
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Figure 4.32 Pseudo experiments of sin? ¢ with (a) pure CP even sin®¢ = 0, (b)
50% mizing of CP even and CP odd sin® ¢ = 0.5, (¢) pure CP odd
2
sin“¢ = 1.

to the definition of sin? ¢ in Equation sin? ¢ value can only lie within 0 and
1. Therefore, uncertainty measurements of sin® ¢ near point sin® ¢ = 0 will take

oy, and points near sin? ¢ = 1 will take op.

sin¢:0—0.1 sin®¢:02—-08 sin®¢:09—1

Asin?¢p=o0r Asin®¢ = ’;V/V% Asin® ¢ = o,

Table 4.5 Uncertainty estimation of sin? ¢ according to the definition of sin® ¢
for being within range [0,1].

4.9.7 Sensitivity to CP Properties of the Higgs Boson

By collecting all the uncertainty measurements presented above, we can compare
the results between traditional method and new method of reconstructing
neutrinos (described in Section 4.9.5) as well as old luminosity scheme with 1.5
ab™! and new luminosity scheme with 2.5 ab™! as shown in Figure 4.33(left). The
improved neutrino reconstruction has increased the number of events passing the
selection cuts and therefore improves the A sin? ¢ measurements and has improved
the results by around 20%. The new luminosity scheme with 2.5 ab™! improves

the Asin® ¢ measurements in a similar way by having more t£H signal events.

With the luminosity plan for 2.5 ab™! (2 ab™! of +80% electron polarisation and
0.5 ab™! of —80% electron polarisation), the precision of measuring A sin® ¢ can be
measured up to A sin® ¢ ~ 0.07 with cross-section as an observable only from both
semi-leptonic and hadronic channels. Adding an additional angular observable,
the up-down asymmetry, can improve the precision up to Asin? ¢ ~ 0.03 in the

semi-leptonic channel.
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Figure 4.33 Measurements of Asin®¢ by using template fit. (Left) Results
are compared between mnew method of reconstructing neutrinos
with no polarisation (green) and new luminosity scheme with
polarised beam and 2.5 ab™' (purple). (Right) Results of Asin? ¢
extracted from cross-section measurements (dotted and straight
lines) from both semi-leptonic channel and hadronic channel as
well as results extracted from wup-down asymmetry plus cross-
section measurements from semi-leptonic channel (purple dots)
with 1.5 TeV and 2.5 ab™'.

4.9.8 Other Observables

Further observables that are sensitive to the CP property of the Higgs boson can
be combined to further improve the uncertainty measurement on the CP-mixing
parameters. Examples like top polarisation and differential cross-section can be

investigated in future [39].

4.10 Comparison with the LHC and Conclusion

The ttH process was first observed with a significance over 50 in 2017 at the LHC
[15]. Much more ttH signals will be observed in the upcoming HL-LHC phase.
The projected statistical precision on the top-Yukawa coupling from the LHC is
expected to reach 14% — 15% with 300 fb~! of data and 7% — 8% using 3000
fb~! of data [85]. At a proposed linear eTe~ collider, CLIC, the uncertainty of
the top-Yukawa coupling can be lower to 2.7%. Hence, CLIC is a better option

for precision measurements on the top-Yukawa coupling.

With the observation of ttH over 50, the LHC now has the access to this channel
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to directly study the CP properties of the Higgs boson via ttH process. A similar
study on the CP properties of the Higgs boson is carried out by the ATLAS
experiment at /s = 13 TeV with 139 fb=! [40].

The results show that a pure CP-odd coupling between the Higgs boson and
top quark is excluded at 3.90, and CP-mixing angle |a| > 43° is excluded at
95% CL [40]. The x;sin(«) in Equation is similar to the notation that we
used in Equation [2.23| where we used ¢ for representing the mixing angle. From
Figure [2.10] the uncertainty of x;sin(«) approximately equals 0.7. If assuming
#; = 1, the ATLAS result can be translated into Asin®(a) ~ 0.5 whereas CLIC
is able to achieve Asin?(a) < 0.07. This shows a significant advantage of using

the CLIC machine for precision studies of the CP properties of the Higgs boson.
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Chapter 5

The ATLAS ITk Pixel detector

CLIC is a future project to be approved and constructed. However, the HL-LHC
phase of the LHC is due to operate in the next few years. It will provide us
with much more data to study the ttH process as well as potential discoveries
for guiding the direction of physics in the future. In order to cope with the new
challenging environment of the HL-LHC, the current detectors are upgrading and

preparing for new measurements.

5.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is world’s largest circular collider with
circumference of about 27 km spanning across the Franco-Swiss boarder near
Geneva [43]. One of the motivations for building the LHC is to reach high enough

energy to observe the Higgs boson.

The LHC primarily collides proton beams, but also collides heavy ions such as
lead. A schematic of proton acceleration is shown in Figure [5.1} Proton sources
are hydrogen atoms that are produced by stripping the electrons of the hydrogen
gases using an electric field. The protons are first accelerated to 50 MeV by
the linear accelerator LINAC2. The beam is then injected into the Proton
Synchrotron Booster (PSB) to increase its energy to 1.4 TeV followed by the
Proton Synchrotron (PS) to boost to 25 GeV. Then the proton beams accelerated
further to 450 GeV inside the Super Proton Synchrotron (SPS) before entering

the main ring of LHC. Two beams of protons are circulating in opposite directions
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Figure 5.1 LHC accelerator complex [806].

inside the main ring of the LHC to accelerate further to its maximum energy. The
highest energy at which the LHC was operated by far reaches 6.5 GeV per proton
beam, which results in a collision energy of /s = 13 TeV. Each proton bunch
consists of 10'! hydrogen atoms and are accelerated with a bunch spacing of 25

ns which translates to a collision rate of 40 MHz.

The proton beams are brought to collision at four locations of the LHC main
ring. Four major detectors have been constructed at these intersection points
located 100 m beneath the ground, as illustrated in Figure Each of
the detectors focuses on specific fields of research which are all independent
collaborations. Two general-purpose detectors, A Toroidal LHC Apparatus
(ATLAS) and Compact Muon Solenoid (CMS), have the same direction of
research but provide independent measurements for cross-checking each others’
results. In 2012, both ATLAS and CMS collaborations announced the discovery
of the Higgs boson that complete the last puzzle for the SM [4, [5]. Additionally,
the LHC-beauty (LHCD) experiment specialises in measuring the parameters of
CP violation from the interactions of b-hadrons in order to explain the matter-
antimatter asymmetry in the universe. The last major detector, A Large Ion
Collider Ezxperiment (ALICE), is designed to study the heavy-ion (Pb) collisions
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that is able to produce quark-gluon plasma. Such conditions are believed to have
existed shortly after the Big Bang at which quarks and gluons are free before
bounding together to form heavy particles. This will help us understand the
history of the universe and reveal the mystery of the Big Bang. For this purpose,

the LHC will collide heavy ions for a period of time during each run.
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Figure 5.2 Timeline of the LHC program. In Run 1 7-8 TeV with 30 fb—', Run
2 13-14 TeV with 150 b=, Run 3 at 14 TeV with 300 fb~' and
finally HL-LHC at 14 TeV with 3000 fo~1 [87]

The LHC has a scientific program that spans over 20 years as shown in Figure[5.2]
It is undergoing a series of upgrades which will eventually lead to an accumulated
integrated luminosity for pp collisions of 3000 fb~!. The necessary upgrades
for achieving this performance will be realised during long shut downs where
there will be no beams accelerating inside the LHC tunnel. Long Shutdown 3
(LS3) starting from the end of 2023 will implement major improvements of the
accelerator as well as some of major detector components preparing for the High-
Luminosity LHC (HL-LHC).

5.1.1 The ATLAS Experiment

The ATLAS detector is a general-purpose detector that measures a broad range
of physics [88, 89]. It is world’s largest particle detector and has a cylindrical
shape with 46 meters in length, 25 meters in diameter and weights around 7000
tonnes. ATLAS is located at one of the intersection points of the proton beams
at LHC close to the main CERN cite at Meyrin, Geneva.

The detector is built around the collision point where proton beams collide as
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Figure 5.3 Overview of the ATLAS detector [90).

illustrated in Figure [5.3] The current ATLAS detector has four major parts: the
Inner Detector, the Calorimeters, the Muon Detectors and the Magnet Systems.
In addition, ATLAS employs the Trigger and Data Acquisition system to select
only interesting data for analysis from the huge amount of data produced from

pp collisions.

The HL-LHC will present an extreme challenging environment for the ATLAS
experiment. The anticipated increased luminosity, along with the associated
high data rate and the damage from radiation will make the current ATLAS
inner tracker inoperable. The Inner Detector currently used situated at the heart
of ATLAS will be replaced with a new all-silicon tracker to maintain tracking
performance under a high-occupancy environment and resist the much higher

integrated radiation.

5.1.2 Coordinate System

The ATLAS detector is described by a common coordinate system. The origin
is situated at the IP in the centre of the detector. The z-axis is along the beam
line while the x-y plane is perpendicular to the beam direction and is called the
transverse plane. The azimuth angle ¢ is defined around the beam axis and polar

angle 6 is defined from the beam line. The positive x axis is pointing from the IP to
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the centre of the LHC while the positive y axis pointing upwards. Pseudorapidity,

71, an additional parameter used to describe the angle of a particle relative to the

) -

The value of n = 0 represents the perpendicular direction to the beam axis and

beam axis is defined as

In| = oo describes direction along the beam axis. In hadron collider physics,
pseudorapidity is a preferred parameter as particle flux is constant as a function

of pseudorapidity at IP.

The ATLAS detector provides a hermetic coverage in ¢ up to |n| = 2.7. Sub
detectors extend the range to cover more physics data along the beam line, e.g.
the ECAL extends to |n| = 3.2 and the HCAL to |n| = 4.9.

5.2 The ATLAS Inner Tracker
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Figure 5.4 Schematic layout of the ATLAS ITk tracker for the HL-LHC phase.
Only one quadrant and only active detectors elements are shown
here. The horizontal axis, z, is the axis along the beam direction
with zero being at the interaction point. The vertical axis, R, is the
radius of the detector measured from the interaction point. [91)]
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The new ATLAS Inner Tracker (ITk) is designed for 10 years of operation at
HL-LHC environment with instantaneous luminosity of £ = 7.5 x 103* cm 2571,
25 ns between bunch crossing and an integrated luminosity of 3000 fb~'[91]. Tt

will replace the existing Inner Detector.

The ITk detector is built around the interaction point with cylindrical silicon
detectors around the beam axis up to the solenoid bore. The innermost part has
five layers of pixel detectors followed by two short-strip paired stereo modules
and then two-long paired stereo modules. Six strip disks and a number of pixel
rings will be positioned at the forward regions. A schematic layout of the ITk
detector is shown in Figure[5.4 The total silicon surface of pixel detector will be

almost ten times of current detector reaching about 13 m?.

Despite higher particle density in the HL-LHC, the current level of occupancy
per pixel can be maintained by reducing the pixel size from 50umx250um and
50pum x400pm to 50pumx50um or 25um x 100um. The thickness of planar sensors
are also reduced from 200 ym and 250 pm to 100 gm and 150 pm. This reduces
the required bandwidth for the readout of data. Furthermore, it also leads to an
increased radiation tolerance and reduced power dissipation as lower bias voltage

is required for operation and leakage current is reduced.

Sensor Technologies

Silicon pixel and strip sensors are used for detecting charged particles. As a
charged particle passes through the sensor area, electrons and holes are created
from ionisation. These electrons and holes drift towards the n and p junction by

the electric field for readout.

Different silicon sensor technologies will be implemented in the pixel detectors
(Figure to cope with the requirements for HL-LHC to balance the required
radiation tolerance and production costs. The planar sensor uses a n-in-p
technology as sketched in Figure [p.6|(left) which makes it easy to handle and
fast in production (low cost). The 3D-sensor has n-type and p-type pillars built
vertically across the sensor as shown in Figure [5.6{right). This kind of structure
provides a better radiation tolerance compare to planar sensors due to the shorter
collection distance. However, the complex structure makes the production process
much longer and more expensive than the planar sensors. Therefore, 3D silicon

sensors are employed in the innermost layer of the pixel detector and planar silicon
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Figure 5.5 Schematic layout of the ATLAS ITk tracker for the HL-LHC phase.

92
pt*  MIP p* nt MIP p* n*
| | | ] A e A
A *-.
5|d dh *"g-:
<0 |0
! ! LR ~e|o~ A
¢ e
28 S
f 1 L J “‘. O-'*
7 h Y
’ ! PE—
n* L

Figure 5.6 Schematic cross-sections of (left) a planar sensor design and (right)
a 3D sensor, showing how the active thickness (A) and collection
distance, L, are decoupled in the latter. p™, n* means p-doped and

n-doped [93].

sensors with thickness between 100 pm and 150 pym are used in the remaining

layers.

A new type of Front End (FE) chip, RD53A, has been developed by the RD53
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collaboration [94] using 65 nm CMOS technology for the ATLAS and CMS
experiments at the HL-LHC. The performance of RD53A chip is designed to
be low noise rate with low threshold (less than 107¢ at a threshold of 600 ™)
with a data transmitting rate of 1.28 Gbps. The characteristics and features of
the RD53A chip such as efficiency is evaluated by testbeam and the results are

represented here.

5.3 Test Beam Facility

A test beam provides a realistic environment for measurements of the property
and performance of a prototype module, RD53A. Particles are accelerated,
focused and directed into a test beam telescope. A telescope consists of several
well-known pixel sensors, these are used to reconstruct the trajectory of the test
beam particles, and the hit position of the particles can be interpolated for the
device under test (DUT). With these information, the DUT can then be studied

further and properties like hit efficiency can be determined.

The test beam measurements for this study is performed at the German Electron
Synchrotron (DESY) in December 2018 with EUDET telescope [95]. The
EUTelescope software is used to reconstruct the tracks of particles and the TBMon2
framework is used to do the final analysis for the DUT [96H9§].

5.3.1 DESY

The DESY II synchrotron situated in Germany operates an electron-positron
accelerator with energies up to 7 GeV. It feeds high energy electron and positrons
into the storage rings DORIS and PETRA as well as the testbeam facility. The
primary beam generates bremsstrahlung photons by hitting a 25 um thick carbon-
fibre target. These photons consequently convert into electron-positron pairs by
a metal converter target. A dipole magnet spreads out the electron and positron
beams into a horizontal fan. The final beam is sliced with a collimator and
directed to the experiment areas as shown in Figure [5.7 The final beam has
a particle energy range of 1-6 GeV with a 5% energy spread and an angular

divergence of 5 mrad [99].

A beam energy of around 4 GeV is usually selected to ensure a good compromise of

83



Converter .

Ty
Target o Collimator
Fiber x S wi - g
ipoie vViagnet &
Target Vo~ % 7p\ g :
‘ T~ P AT

@) DESY Il

Figure 5.7 Schematic layout of DESY testbeam facility indicating the beam
generation process.

intensity and energy. At low energies, the telescope space-resolution deteriorates
as particles deviate from its original trajectory when passing through matter due

to Coulomb scattering.

5.3.2 The EUDET Telescope

The EUDET telescope consists of 6 sensor planes using MIMOSA 26 monolithic
active pixel devices sitting on two arms with one DUT in the middle and a
reference plane at the far end of the telescope as shown in Figure and [5.9
The geometry defines the telescope resolution. The highest resolution depends on
the beam energy and the thickness of the DUT. Therefore, different DUTs have
specific configuration. For the RD53A, the first three MIMOSA planes are placed
100 mm apart while the last three MIMOSA planes together with the reference
planes FE-14 are sitting 50 mm apart. The DUT is placed 100 mm after the third
MIMOSA plane and 180 mm before the forth MIMOSA plane.

After alignment, DUTs are placed inside a light-weight Styrofoam cooling box
for taking measurements at a low temperature. Temperatures below —50°C are
achieved with dry ice blocks. The dry ice is replaced every few hours to maintain

low temperature environment for measurements.
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Figure 5.8 Photograph of the EUDET telescope at DESY with 6 MIMOSA26
planes and one DUT in the middle and a reference plane FE-1j at

the far end. This picture is taken on a different testbeam which had
a different setup.

PlanelD: 1 2 3 30 4 5 6 21

= = = beam

6mimosa  RD53A  FEl4
planes (test target) (reference)

Figure 5.9 Schematic of the EUDET telescope setup (not to scale). Plane 1-6

are MIMOSA Planes, Plane 30 is the DUT (RD53A), Plane 21 is
the reference plane (FE-14).
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5.4 Track Reconstruction
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Figure 5.10 Framework of FEUTelescope consisting of five steps:  data
conversion, clustering, hit making, alignment and track fitting.

Tracks are reconstructed using the EUTelescope software framework [100] from
raw telescope data. The construction consists of five steps: data conversion,
clustering, hit making, alignment and track fitting as illustrated in Figure [5.10]
After processing all steps, the data is ready to perform post-reconstruction

analysis.

Data Conversion

Raw data from the telescope is decoded into LCIO (linear collider input/output)
format for further reconstruction and analysis in the first step. This is achieved
by using the Native Reader provided by EUDAQ software. Firing frequency cuts
are used to identify the noisy pixels in the MIMOSA planes, FE-14 and DUT and

the noisy pixels will be masked in the clustering step.
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Clustering

The clustering step converts single hits into clusters. In each plane, pixels that
are hit by the same incident particle are grouped together to form clusters. The
constrained cluster size can pick which hits belong to the same cluster. The

identified noisy pixels are masked in this step.

Hit Maker

In this step, the global hit position of the clusters is obtained. Clusters are
converted to hit information. Correlations plots between hits and neighbouring
planes are obtained to allow a prealignment of the telescope. This allows us to
check the positions and rotation of the DUT and reference plane (FE-14). In
the prealignment, positions of the hits are compared between different planes to
minimise the difference between planes as shown in Figure [5.11] A new gear file
which describes the geometry of the DUT will be produced in this step. A fine

alignment of the telescope is made in the next step.

Alignment

The position of the sensors needs to be known more accurately than just using
mechanical measurements. The tracks are fitted by comparing the grouped hits
among all planes. The distance between the fitted tracks and the point of hits in
each plane, known as the residual, is determined to find the right parameters for
alignment. This is performed by using a y? minimisation from the MillepedeIl.
Goodness-of-the-track is tuned with this y? cut. The reconstructed tracks are
shifted by the offset value calculated from the difference between the residuals

and hit positions.

The alignment is performed few times. Each iteration gives a better starting

point in guessing the alignment position.

Track Fitting

After the alignment, an entire reconstruction chain needs to be performed with

the full dataset and the new aligned geometry. All step excluding alignment
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has been rerun with an additional track fitter step at the end to reconstruct the

tracks. A root file is produced for post-reconstruction analysis.

The tracks are obtained only using the MIMOSA planes, and the track positions

in the DUT are extrapolated. This avoids any bias to the track position by

excluding the hit information from the DUT. The mean of the residuals should

be close to 0 if the alignment is correct. A misalignment can be observed if the

mean deviates from 0.
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Figure 5.11 Correlation plots from the hit maker step of the first MIMOSA
plane d1 with RD53A d30 (top), third MIMOSA plane d3 (middle)
and reference plane FE-1j d21 (bottom). Mistmatch of pitch size
gives artificial structure, obvious in plane FE-1J.
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5.5 Post-Reconstruction Analysis

A post-reconstruction analysis framework, TBMon2 [101], is used to extract
properties of the DUTs such as hit efficiencies from the reconstruction data. The
track and hit information from EUTelescope are analysed to match hits with
tracks. It is considered inefficient if a hit is matched with a track and the track

has no corresponding hit.

5.5.1 TBmon2

After the adjustment of the reconstructed track position, several criteria are
applied to the selection of good tracks. An important one is if the track is
matched. Matched means that an interpolated track is associated with a hit in
pixel within a certain range. Additionally, a matched track in the reference plane,
FE-14, is required. After a trigger signal is send by the two scintillators located
on the telescope, the active time window of DUT and telescope are different. The
readout time of the MIMOSA planes is about 112 us whereas the DUT readouts
every 25 ns. As a result, each track that passes through the MIMOSA planes
can associated with multiple hits in the DUT (less readout time). Therefore,
a reference plane is needed to ensure a time stamp to allow the track in the
MIMOSA planes to match with the hit on the DUT. FE-14 with 16x25 ns (16
bits) readout time is used for this purpose. Only tracks within the active time of

the FE-14 are considered for analysis.

The selection criteria of a good track is summarised as follows (selecting from
matched track):

e A matched track in the reference plane is required to be within the active time
span of the FE-14 readout chip.

e The x? of the track fit needs to be below a certain value to assure a good track
fit quality. The default value is set to be 15.

e The track is required to not hit a masked pixel to affect the total cluster charge.

e The track needs to be in the central region and not near an edge pixel.

TBMon2 uses these information to perform several analyses for the DUT. One of

the most important one is the hit efficiency of the DUT.
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5.6 Properties of RD53A
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Figure 5.12 RD53A layout from top view. The height is 11.6 mm and 192

pizels, and the width is 20.0 mm and 400 pizels [97)].

The DUT in this thesis uses one of RD53A prototyes, UK module 3292-01-45. It

is arranged as a matrix of 192 x 400 pixels with cell size of 50 um x50 yum and a

total active area of 20.0 umx11.8 ym with thickness of 150 um as illustrated in

Figure[5.12] Data used in this analysis is taken from testbeam runs in December

2018 at DESY with a bias voltage of 400 V and threshold of 1027 e.
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5.6.1 Residual

Transverse momentum (pr) of charged particles is one of the most important
measurements in physics analysis and BSM searches. Therefore, a precise

measurement in the x-y direction of RD53A is prioritised compared to z direction.
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Figure 5.13 Residuals for RD53A (top), FE-1j (middle) and all MIMOSA

planes (bottom) after track reconstruction.

Figure presents the residuals of hits to fitted tracks on RD53A (50pumx50um),
FE-14 and all 6 MIMOSA Planes. The resolution, extracted standard deviation of
the residual distribution, is achieved by folding the device itself with uncertainties
coming from the beam telescope and other experimental sources such as multiple

scattering. The resolution for a pixel detector with pitch size p can be calculated
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as [102]
p

O position = Nivh (5.2)
Table 6.1l summarises the theoretical and measured resolutions of RD53A and
FE-I4 with corresponding pitch sizes. The experimental resolution is bigger
than the theoretical prediction as it includes both telescope and experimental
uncertainties. One of the reasons is due to the non-ideal operation such as
bias and threshold settings. The effect from multiple scattering also affects
the efficiency calculation of the DUTSs, especially with relatively low momentum

particles from DESY testbeam facility (= 5 GeV electrons).

DUT Pitch Theoretical Experimental
[pm] | resolution [pm] resolution [pm]
50 (x) 14.4 58.2
FE-I o5 (y) 72.2 92.1
50 (x) 14.4 50.7
RDS3AL 50 (v) 14.4 51.3

Table 5.1 Residual values of RD53A and FE-14. Theoretical resolution is
calculated using FEquation .

5.6.2 Efficiency

The DUT hit efficiency is calculated by the number of good tracks with matched
DUT hit divided by the total number of good tracks and is calculated per pixel
and overall efficiency. There are two parameters directly affect the efficiency
calculation. One of the controlling parameter is the MatchX/Y in the config file,
this opens a window with a certain size around the cluster centre when assigning
a track to a cluster. And a good track is the one that minimises the distance
to the cluster centre. Another parameter is the MatchPixelMargin which opens
a global window around the pixels by checking the tracks that passes through.
This allows us to study the edge efficiency. The size of the window is calculated
as pixel_size+MatchPixelMargin. Increasing this parameter leads to an increase
in the number of good tracks. However, too large of this value could lead to allow

far tracks to pass the selection which leads to high rate of mismatching.

To make a fair comparison with other measurements of different bias voltage, a
suitable combination of the settings need to be pre-defined. The MatchX/Y is
set to have a size of double the pitch size and the MatchPixelMargin is set to be
half of the pitch size. For RD53A with pitch size of 50 um, the MatchX/Y are set
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Figure 5.14 Top two are the hit maps for RD53A (DUT30) and FE-1
(DUT21), bottom two are the in pizel efficiency maps. This is
for run 457, bias = 400V, with RD53A as DUT and FE-1j as
reference/timing plane.

to 100 pm and MatchPixelMargin are set to 25 um. The track and hit matching
is set to be below 15.

Hit maps and efficiency pixel maps of DUT RD53A and reference plane FE-
I4 are shown in Figure [5.14] (single run) and Figure [5.16] (all runs). As shown
in Figure [5.15 efficiencies of both RD53A and FE-14 remains constant for a
consecutive measurements with the same bias voltage and threshold. Using data
collected at bias voltage of 400 V and a threshold of 1027 e in December 2018 at
DESY, the overall efficiency of DUT RD53A is measured to be 97.65% and the
efficiency of reference plane FE-I4 is measured to be 99.86% as summarised in
Table |5.2l The results have met the required hit efficiency of >97% at 400V for

2 x 10" n,,/cm? for an irradiated device with a thickness of 150 pm.

| DUT | Tracks | Tracks w/ hit | Efficiency | Uncertainty |

RD53A | 190967 186482 97.651% 0.035%
FE-14 | 1099920 1098390 99.861% 0.004%

Table 5.2 Efficiencies of RD53A and FE-1j measured from test beam data (all
runs) collected at bias voltage of 400V in December 2018 at DESY.
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Eff vs Run for testbeam in DEC 2018 at DESY
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Figure 5.15 Efficiencies against run numbers for testbeam data collected in
December at DESY with bias voltage of 400V. The uncertainties
of efficiencies are too small to be shown on plots.
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Figure 5.16 Top two are the hit maps for RD53A (DUT30) and FE-Ij
(DUTZ21), bottom two are the in pizel efficiency maps (larger bins)
for all runs with bias voltage of 400V, with RD53A as DUT and
FE-1} as reference and timing plane.
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5.7 Outlook from the Results

Hit information from the RD53A are successfully reconstructed into tracks using
the EUTelescope software framework. After telescopes alignment, the residuals
of DUT RD53A are measured to be 50.7 pym in x-direction and 51.3 pm in y-
direction. The experimental resolution is bigger than the theoretical prediction
as it includes both telescope and experimental uncertainties such as the non-ideal

operation of the telescopes and the effect from multiple scattering.

Reconstructed track information are evaluated using the TBmon2 analysis soft-
ware. Tracks are selected through various criteria and matched hit information
to the reference plane FE-I4. The overall efficiency of RD53A is measured to
97.651% with an uncertainty of 0.035%. The efficiency of the reference plane,
FE-14, is measured to be 99.861% with an uncertainty of 0.004%. Result shows a
high consistency for a consecutive data taking runs whilst retaining high efficiency

and meeting the hit efficiency requirement for the HL-LHC.

Overall, the preliminary results from the UK RD53A module successfully passed
the requirement for the HL-LHC phase. However, the study of the RD53A
module is still during the R&D phase, meaning that sensor design, reconstruction
and analysis softwares are still under development. Next step that is currently
being carried out by the UK RD53A group is to improve the reconstruction
software. The improvement will directly reflect on the reduced residual value of
the testing module. Different designs of RD53A modules will be tested for market

survey research.
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Chapter 6

Summary and Conclusion

A proton-proton collider is able to reach a much higher collision energy and
luminosity than an electron-positron collider, therefore it is usually used for
discovery of new particles. In contrast, an e"e~ collider has relatively lower
luminosity but its collision environment is much cleaner with well-defined initial
states. This allows a more precise measurement of physics quantities. Although
a circular ete” collider retains high luminosity, it will reach a limited collision
energy due to bremsstrahlung loss. In order to achieve higher collision energy,
linear ete™ colliders are a more favourable option by extending tunnel length or
increasing acceleration gradient. CLIC is one of the proposed projects for this
purpose to make precise measurements of SM physics and potentially observe

evidences from BSM.

As the ttH physics process is first observed in 2017 [103], the next physics
goal would be to make precise measurement of ttH process to extract more
information about the Higgs boson. The second phase of the CLIC experiment,
with collisions at 1.5 TeV, allows the production of tH. In this thesis, the
analysis is performed with fully-hadronic and semi-leptonic channels of tt H which
account for ~91% of total ttH cross-section. The analysis uses MARLIN for event
reconstruction and TMVA for event selection. The uncertainty of measurement
on the ttH cross-section is determined to A, qimy =7.5% with unpolarised beam
and an integrated luminosity of 1.5 ab™! at /s =1.4 TeV. With polarised beams
and an integrated luminosity of 2.5 ab™! (80% of P(e™) = —80% and 20% of
P(e™) = +80%) at /s =1.5 TeV, the uncertainty of cross-section is improved

to Ayuzmy =5.37%. The uncertainty on the top-Yukawa coupling measurement

96



is deduced using factor x = 0.5032 £ 0.0005 (Equation giving a value of
Oy =2.7%. Comparing to HL-LHC projection of 7%-8% with 3000 fb~*, the
CLIC experiment is able to measure more precisely on the top-Yukawa coupling

to study the properties of Higgs boson.

High precision measurement of the ttH process gives us a great window to study
CP properties of Higgs boson. In the efe™ — tt® process, where ® is the
CP-mixing Higgs boson, the total cross-section decreases linearly as the amount
of CP-odd Higgs increases as shown in Figure [£.24] With the proposed CLIC
luminosity scheme of 2.5 ab™! and polarised beam, the contribution from pure
CP-odd Higgs can be measured to ~ 7% accuracy at 1o (Figure with cross-
section as an observable. The CP properties of Higgs can be measured more
precisely with additional observables, e.g. up-down asymmetry A.. This can
further improve measurement of CP-mixing angle to Asin ¢? ~ 0.03. Additional
observables can further improve the sensitivity to CP-mixing angle. In conclusion,
the CLIC experiment would be an ideal tool for making precise measurements

and has great potential to search for physics beyond the SM.

While waiting for approval of the CLIC experiment, the LHC is upgrading to
HL-LHC for a much higher luminosity (up to 3000 fb™!) whilst keeping the
same collision energy of /s = 14 TeV. In order to cope with the new collision
environment, one of the most important tasks of the ATLAS experiment is to

upgrade its Inner Detector to a full-silicon Inner Tracker (ITk).

A new front end chip, RD53A, has been developed by the RD53 collaboration
to be implemented in the ATLAS ITk pixel sensor system using 65 nm CMOS
technology. Properties of a UK RD53A module with cell size of 50x50 pm? are
tested with testbeam dataset collected in December 2018 at DESY using EUDET
telescope. Residuals of this chip is found to be symmetrical with 50.7 pm in x-
axis and 51.3 pm in y-axis. Although the theoretical resolution is 14.4 pm, the
deviation is expected from non-ideal operation (bias and threshold settings), and
multiple scattering of tracks through the telescope. Especially the testbeam at
DESY has a relatively low energy (~5 GeV electrons) compared to e.g. CERN
with 120 GeV pions.

The hit efficiency in Technical Specification document for testbeam qualification
is required to be over 97% for irradiated DUTs. Efficiency of the RD53A module
in this thesis is determined to be 97.651%+0.035% using TBmon2 analysis which
satisfies the requirement. The study of the ATLAS ITk pixel sensor is still in
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the R&D phase, i.e. operation conditions such as bias voltage, sensor design,
reconstruction and analysis softwares are still under development. The main

purpose of the study is to set up the system and perform preliminary studies.

The LHC is usually referred to as the discovery collider, whilst ete™ colliders such
as CLIC are expected to be the most powerful particle microscopes for precision
measurements. Now that the LHC has finished its job of discovering the ttH
process, it is time for CLIC, and other high-energy e®e™ colliders, to help us
gain more knowledge about the Higgs boson and the Standard Model. Hopefully,
even a mere hint of Beyond the Standard Model physics will emerge from these

powerful machines that could disclose the blueprint of the Universe.
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