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Abstract

The covariant lattice formalism provides a consistent method for the construction of chiral
four-dimensional heterotic string vacua. In this work, we seek to develop a systematic under-
standing of this corner of the string landscape, and also attempt to clarify the relationship
with asymmetric orbifolds. Chiral covariant lattice models are classified using the theory of
lattice genera, and by means of the Smith-Minkowski-Siegel mass formula a lower bound of
0O(10'%) on the number of /' = 1 supersymmetric models is calculated. We also perform an
exhaustive enumeration of models for two genera corresponding to certain supersymmetric Zs
and Zg asymmetric orbifolds. In the Z3 case there exist precisely 2030 models, and for these we
carry out a general analysis of discrete flavor and R-symmetries. The Zg case produced in total
O(107) models, but computational resources were insufficient for the elimination of duplicates
among them. Finally, we discuss three-generation models from both genera in detail.
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Chapter 1

Introduction

String theory may eventually provide a consistent quantum-mechanical unification of el-
ementary particle physics with gravity. Although there is numerous evidence that super-
string theory at its core is a unique theory, it possesses a vast landscape of vacuum states
with diverse physical properties. Nevertheless, the prospect of having a unified theory of
all forces and matter in nature has spawned countless efforts on string model building.
Yet, this search for a four-dimensional string vacuum that matches the physical properties
of our universe may appear like that for a needle in a haystack. However, the standard
model of particle physics (SM), which successfully describes particles and interactions at
energy scales below about one hundred GeV, has several attributes that greatly constrain
the search area of the string model building programme. First and foremost, there is the
gauge symmetry group,

Gsm =SUBB)e x SU(2), xU(1)y,

together with three chiral generations of quarks and leptons. String models which re-
produce these properties exist in a considerable number, such as in symmetric orbifold
compactifications of the heterotic string [1-12]. Nonetheless, there are still many open
problems in these models, such as moduli stabilization. It is also difficult to obtain entirely
realistic fermion mass hierarchies and mixing angles [13], yet interesting flavor symmetries
appear to be abundant in orbifold compactifications [14-16]. Other issues such as proton
decay have seen positive developments recently [17, 18].

A feature that has driven the success of symmetric orbifolds is that they are to a
large extent comprehensible in a purely geometric manner: one employs a six-dimensional
compact space having certain singularities, possibly with a nontrivial configuration of
background fields. However, there also exist intrinsically non-geometric compactifications
such as the more general asymmetric orbifolds [19-21], which have also been considered
for model building [22-25].

The covariant lattice formalism provides another such non-geometric construction of
four-dimensional heterotic string vacua [26-28]. These vacua have some characteristic
properties. For example, all chiral covariant lattice theories possess a gauge symmetry
of rank 22. However, since Ggy is of rank 4, some of these extra gauge symmetries
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must either be broken at a high energy scale, or survive as a completely hidden symmetry.
Another feature of covariant lattice theories is that only rather small representations of the
gauge group may appear at the massless level. In particular, adjoint Higgs fields which are
indispensable for grand unified gauge theories are excluded. Hence, the search for realistic
models restricts to gauge groups which contain Ggy as is, or in semi-simple extensions
such as Pati-Salam. Also, many covariant lattice models possess an anomalous U(1)4,
which may be useful for supersymmetry breaking. Moreover, an advantage of covariant
lattice models is that there is only one modulus, the dilaton, and hence the problem of
moduli stabilization is simplified.

Even though the heterotic covariant lattice construction lacks an intuitive geometrical
picture, there is still a chance to find realistic models. Yet, hitherto only few models have
been constructed explicitly using this formalism [29]. Moreover, a systematic classification
of models has only been achieved in ten spacetime dimensions [30], while in eight dimen-
sions 444 chiral models were found to exist [31]. The phenomenologically interesting case
of four dimensions was considered to some extent in [32]. Some covariant lattice models
can also be obtained from other constructions. For example, it is known that by bosoniza-
tion certain asymmetric orbifolds are equivalent to a covariant lattice theory [33—-35]. Also,
there are some overlaps with free fermionic constructions and Gepner models [36].

In this thesis, we attempt to develop a systematic understanding of chiral heterotic
covariant lattice models and clarify the connection to asymmetric orbifolds (cf. [37]). We
also investigate some phenomenological aspects such as discrete flavor and R-symmetries,
and finally provide models with three chiral generations of standard model matter.

An Overview

Any string vacuum is described by a conformal field theory on the world-sheet, which is
the two-dimensional analogue of the world-line of a point particle. All degrees of free-
dom on closed string world-sheets split into a left-mover and a right-mover part. In the
covariant lattice formalism, the internal degrees of freedom, i.e. those unrelated to the
four-dimensional spacetime, are expressed in terms of free bosons with certain periodic
boundary conditions. These boundary conditions force the momenta to lie on a lattice
I'32.14. This lattice — called covariant lattice — has to obey certain consistency condi-
tions: it must be even and self-dual due to the requirement of modular invariance, and also
allow for supersymmetry on the world-sheet. A special feature of chiral four-dimensional
covariant lattice models is that I'yp 14 contains a sublattice of the form (I'g2); @ mR'
In this work we provide a (computer aided) classification of right-mover lattices (I'14)r
which solve the constraints imposed by world-sheet supersymmetry and chiralness, the
result being that there are in total 99 such lattices. Among them, 19 lattices lead to
N = 1 spacetime supersymmetry and we relate some of them to asymmetric orbifolds.
In order to construct a complete model, one has to combine a right-mover lattice with
an appropriate left-mover lattice (I'g2)r,. In fact, due to modular invariance, all lattices
(T22)1, that can be combined with a chosen (I'14)r constitute a genus, so the very well-
developed theory of lattice genera can be used to study them (an introduction on the



subject can be found e.g. in [38]). Most importantly, a genus G contains only finitely
many lattices, and a lower bound on their number |G| can be evaluated by means of the
Smith-Minkowski-Siegel mass formula (refer to [39] for details). This also means that the
total number of chiral models is finite. For some relevant genera Gr, of left-mover lattices
we calculate a lower bound on |Gy,|. In particular, these lower bounds suggest that there
are at least O(10%°) four-dimensional covariant lattice models realizing A" = 1 spacetime
supersymmetry. Furthermore, there exist computational methods which allow the explicit
construction of all lattices in a genus, but these are only practicable for reasonably small
genera. In this work, we conduct an exhaustive enumeration of some genera Gy, of left-
mover lattices, two of which correspond to certain classes of Z3 and Zg asymmetric orbifold
models.

In the Z3 case there exist precisely 2030 models, and for these we perform a general
analysis of discrete flavor and R-symmetries. In particular, a flavor symmetry group
related to (216 x 3) [40] and a Z3 R-symmetry was found. We also perform a search
for realistic models, and present a three-generation model in detail. However, all these
asymmetric Z3 models possess exotic matter fields (especially with color charge) that are
rather difficult to decouple. Also, one can show quite generally that the flavor structure of
these models is not very realistic. We expect some of these problems to be cured in the Zg
case. There, the exhaustive enumeration resulted in a total of O(107) models, but it was
not possible to eliminate duplicates due to insufficient computational resources. We also
do not carry out a general search for realistic models in this case, and instead just present
a particular three-generation model. This model possesses only color singlet exotic matter
and potentially has realistic mass hierarchies: at three-point level there is a Yukawa term
only for the top quark, while the other quarks and leptons must obtain their masses from
higher order terms which are naturally suppressed.

This work is organized as follows. In Chapter 2, we review the required aspects of the
covariant lattice construction. In particular, we introduce the constraints from modular
invariance, world-sheet supersymmetry and the requirement of a chiral four-dimensional
spectrum. These are central to the classification of chiral models which we describe in
Chapter 3. In Chapter 4, we consider phenomenological aspects of some of these mod-
els, and also present three-generation spectra. Finally, in Chapter 5 we summarize and
comment on possible future directions this research could take.
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Chapter 2

Covariant Lattices and Orbifolds

2.1 The Covariant Lattice Formalism

In this section we briefly introduce the covariant lattice (or bosonic supercurrent) for-
malism. We also derive constraints from the requirement of a chiral four-dimensional
spectrum. For a more detailed introduction, please refer to the review [28].

2.1.1 Four-Dimensional Heterotic Strings

Any string theory vacuum is described by a two-dimensional world-sheet conformal field
theory (CFT). Here, we consider such CFTs in their Euclidean form, and adopt the com-
mon convention where the world-sheet coordinate is represented by a complex number z.
The algebra of conformal transformations in two dimensions is generated by the energy-
momentum tensor, which splits into a right-mover (chiral) part 7(z) and a left-mover
(anti-chiral) part T'(Z) due to current conservation. The chiral energy-momentum tensor
obeys an operator product expansion (OPE) of the form

cr/2 n 2T (w) n oT (w)

TETw) ~ i mwe T mw)

, (2.1)
and its Laurent modes L, span a copy of the Virasoro algebra. In above equation, “~7”
denotes the omission of non-singular terms. The anti-chiral component T(Z) obeys a
similar OPE with cr replaced by c,. The OPE of T'(z) (T(z)) with a conformal field
¢(z,Z) in particular determines its conformal weights hgr (hr), which are also given by
the Ly (Lg) eigenvalue of the state in the Hilbert space obtained from the operator-state
correspondence.

Note, that the conformal anomalies are proportional to the respective central charges
cr, and cg, which must vanish in order for a CFT to describe a sensible string vacuum.
World-sheet CFTs usually possess additional symmetries. In particular, local symmetries
are relevant because upon quantization they introduce Fadeev-Popov ghost fields which
contribute to the central charges. Common to all string theories is a local diffeomor-
phism (or reparametrization) symmetry, which after gauge fixing gives rise to a chiral bc
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and an anti-chiral bc-ghost system with respective central charges ¢, = cg = —26. The
world-sheet CFT of a string vacuum with spacetime fermions must further be locally super-
symmetric. The number of local supersymmetries (Ny,, Ng) may differ for left-movers and
right-movers, and string theories where N1, # Ny are called heterotic. The phenomenolog-
ically interesting case is (Nr,, Ng) = (0, 1) (or equivalently (1,0)), which is what is usually
referred to as “the” heterotic string. Due to the single local right-mover supersymmetry, a
chiral Sv-ghost system with central charge cg = 11 must be included, hence resulting in a
ghost sector with total central charges (cr,, cr) = (—26, —15). Heterotic strings also have a
superconformal symmetry generated by a supercurrent G(z) which satisfies the following
OPEs:

$G(w)  9G(w)
(z—w? " (z—w)’
2cr/3 2T (w)
(z—w? " (z—w)’

T(2)G(w) ~ (2.2)

G(2)G(w) ~ (2.3)
These, together with the OPE (2.1) form what is known as a N = 1 super-Virasoro
algebra.

Here, we want to consider (0, 1)-heterotic strings propagating in a four-dimensional
flat Minkowski spacetime. The world-sheet CFT must then contain at least the four
bosons X*#(z,Z) and their superpartners, the chiral Neveu-Schwarz-Ramond fermions
YH(z). Note, that each boson contributes with ¢, = ¢g = 1, and each chiral fermion
with cg = 1/2 to the total central charge. Hence, in order to cancel the conformal anoma-
lies we require an internal unitary CFT with central charges (22,9).

Vertex operators. String scattering amplitudes are calculated from certain correlation
functions of the world-sheet CF'T in which each incoming and outgoing string is represented
by a vertex operator. When constructing vertex operators for physical states, it turns out
to be convenient to bosonize the ¥* and the vy-ghost CFTs (for the ghosts this is in fact
a “rebosonization”). Let us begin with the 1*, which satisfy the OPEs

Ui

P27 (w) ~ (2.4)

G—w)

Here, we use the sign convention n** = (—1,1,1,1). By introducing two chiral bosons,
H' and H? with the standard OPEs

H(2)HP (w) ~ —6* log(z — w) (2.5)

one expresses the fermion fields as follows:

Sy’ +ph) = e (2.6)
%(W + zw?’) — eFiH?, , (2.7)

where the colons denote the usual free field normal ordering. Note, that in above bosoniza-
tion we ignore a slight complication: the exponentials of different bosons commute, whereas
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the corresponding expressions of the ¥* anticommute. This can be resolved by introducing
cocycle operators, which we will discuss in a related context in Subsection 2.1.3. Further,
note that the fields *(z) may either all have periodic (Neveu-Schwarz) or anti-periodic
(Ramond) boundary conditions (w.r.t. the coordinate o in z = e™ 7). Vertex operators
then contain the exponential :e*H:. The OPEs of the vertex operators with the 1* must
be local in the NS-sector, and hence the components of A have to be integral. In the
R-sector they must be half-integral in order to produce the necessary square-root branch
cuts. One also sees from the contribution of Ay to the overall four-dimensional helicity of
a state that spacetime bosons (fermions) belong to the NS(R)-sector, as in the heterotic
string there is no other way for half-integer helicities to arise.

Regarding the Sv-ghost system we only note that the ghost number current :57: can
be expressed as

Py =1i0¢. (2.8)

Here, ¢ is a boson with opposite sign in the OPE,

¢(2)p(w) ~ log(z —w), (2.9)

and with energy momentum-tensor
Ty(z) = % 06091 (2) + (1 - 20)0%4(2). (2.10)

The exponential :e?: produces states with definite ghost charge ¢, and these states have
an unusual conformal weight hg = —q(q + 2)/2. This is unbounded from below, and
one must ask which values of ¢ may appear in vertex operators. In fact, it turns out that
vertex operators come in various equivalent “pictures”, for which the ghost charge ¢ differs
by integers. The form the vertex operators is particularly simple in the canonical ghost
picture, where Neveu-Schwarz states carry ghost charge —1, while Ramond states carry
ghost charge —1/2. Vertex operators in other pictures are then obtained by an operation
called picture-changing: let V,(z) be a vertex operator in the g-picture. The corresponding

vertex operator in the g 4+ 1-picture is given by
Vor1(2) = : P41 Vg (2), (2.11)

where 2, 1(z) = :G(2)e’*®): denotes the picture-changing operator. Here, the supercur-
rent G(z) is of the form

G(z) =" 0X,(2) + Gint(2) + Gahost (2) (2.12)

where Gy denotes the supercurrent of the internal cg = 9 SCFT and Ggpest denotes the
contribution from the ghosts. Note, that picture-changing is crucial for the calculation
of scattering amplitudes: due to an anomaly of the ghost number current, the ghost
numbers of all vertex operators in a correlation function on the sphere must add up to —2.
Although this is trivially fulfilled e.g. for boson-fermion-fermion scattering amplitudes in
the canonical pictures, other correlators necessitate picture changing.
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Summarizing, a general vertex operator contains (among other excitations)

Vag(2) = :eMHHad (5, (2.13)

where
()‘17 A2, Q) € A ) (NS) (214)
(>‘17)‘27Q) € (%’%a%)'}_Z:& (R) (215)

It is customary to treat the A\ and ¢ on the same footing by realizing that the set of
vectors (2.14) and (2.15) together forms a lattice. In general, by a lattice we mean a
discrete subset of a real vector space with a bilinear inner product, that is closed under
addition and subtraction. For any lattice A one also defines a dual lattice A*, which is
given by the vectors in the R-span of A that have integral inner product with all vectors
in A. Note, that the set of vectors (2.14) and (2.15) together is closed under addition and
subtraction. Furthermore, the operator product

-l A+N)-H+i(q+q")¢. (w)

- . i\ - iq’
:el H—quﬁ: (Z) :el H+'Lq ¢: (w) ~ (z — w)—)\'>\/+qq,

... (2.16)

provides us with a natural inner product A - A — g¢’ of signature (2,1). It turns out that
the lattice given by the vectors (2.14) and (2.15) together with this inner product is the
dual lattice of Dy ; (the Lorentzian lattices Dy, ,,, are described in detail in Appendix A.3).
In the following, we shall denote it by D;tf , where the superscript “st” indicates that it
encodes spacetime quantum numbers. Note, that in the language of conjugacy classes, the

NS-sector constitutes the union (0) U (v), and the R-sector the union (s) U (c).

Physical states. In the quantization of the string one has to restrict to a subset of all
vertex operators (2.13) for unitarity reasons. There are several equivalent ways to treat
this, the most systematic one being the BRST formalism. Here we adopt the light-cone
formalism, which is adequate if one is only interested in the spectrum. In this formalism,
physical states belong to a transverse Hilbert space J#~ in which there are no oscillator
excitations in the X0 X1 40 ¢! and ¢ directions (there are also no bc and bc-ghost
excitations). In the canonical ghost picture, the light-cone gauge then fixes (A1, q) as

(A1, q) = (0,-1),  (NS) (2.17)
(Ag)=(-3.-3). (R) (2.18)

This can also be expressed using the decomposition
Dsty > Dyl g DEY (2.19)

where Ay € D" and (A1, q) € D%’thSt*. Light-cone states are then associated either with

the vector conjugacy class (v) of thl%t in the Neveu-Schwarz case, or with the spinor
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conjugacy class (s) in the Ramond case. A physical state must further have conformal
weights hg = hy, = 1. These weights are given by

hy = —iM? + Nx + hi™®, (2.20)
hg = —2M? + Nx + hi¥ + Npo + 3N+ 103 - 12 — ¢, (2.21)

where one has to insert the appropriate values of A\; and ¢ from (2.17) or (2.18), respec-
tively. Also in above equations, M? denotes the four-dimensional mass of the state and
Nx (Ny) denotes the chiral (anti-chiral) oscillator number of the transversal X?2:3(z,%)
CFT. Furthermore, (hi™ hitt) denotes the conformal weights of the excitations of the in-
ternal CFT, and Ny2 denotes the oscillator number of the boson H? that was introduced
in the bosonization of the transversal fermions 12 and 3. The condition hy, + hg = 2 is
a mass-shell condition, whereas the condition h;, — hg = 0 is known as “level matching”.
Also, note that in the NS(R)-sector there is a contribution of at least hg = 1/2 (hg = 5/8)
from the yY*—F~ CFTs.

Modular invariance. Not all choices for the internal CFT give rise to consistent string
vacua. Let us introduce the one-loop partition function

Z(r) = Tr s pypy—o |(—1) g0 Do) (2.22)

2imT and the trace is to be taken over all states in 7+ without momenta in

Here, g = ¢
the X%! directions. The eigenvalues of L and Ly is given by equations (2.21) and (2.20),
respectively. Furthermore, F' denotes the spacetime fermion number. In a consistent string
theory, the partition function Z(7) must be invariant under the modular group PSL(2,7Z)

generated by the transformations

T:7—71+1, (2.23)
1

S:iTH ——. (2.24)
T

This modular invariance condition allows the unambiguous definition of closed string torus
amplitudes (note that there are only closed strings in heterotic theories). There are also
similar conditions from higher-loop amplitudes, but in the relevant cases these are implied
from one-loop modular invariance. Modular invariance at all loops also ensures anomaly
freedom of the effective four-dimensional theory (that is, a Green-Schwarz like cancella-
tion).

2.1.2 Covariant Lattices

As a consequence of anomaly cancellation, any four-dimensional heterotic string theory
requires an internal unitary CFT with central charges (cr,,cr) = (22,9). Here, we follow
the approach of the bosonic supercurrent formalism [26, 27] and consider only internal
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CFTs that are realized entirely in terms of free bosons X{ (%), I € {1,...,22} and X§}(z),
i€{l,...,9} that are compactified on a lattice I' ‘2‘12t’§ These bosons obey the OPEs

XL 2)X{ (@) ~ -6 log(z — W), (2.25)
Xﬁ(z)Xﬂ(w) ~ —89log(z — w), (2.26)
and the energy-momentum tensors are given by
T(z) = —% :0XR - 0XR:(2), (2.27)
T(z) = —% DX - OX1: (3). (2.28)

The vertex operator that inserts a state with momentum eigenvalues (kr,, kr) € F12n2t’5 has

the form

Vi ko (2,7) = et XL@Hik Xr(z), (2.29)

where we again ignore cocycle operators at the moment. The OPE of above vertex oper-
ators,
Ve k] e+, (W, )

(2 — w)~Frk (7 — ) TRkt

VkL,kR(Z,z)kak%{(w,w) ~ —+ ... y (230)
again provides us with a natural inner product k, - kf, — kg - kg of signature (22,9) on
I35, By adjoining the D5'f part from the bosonization of the ¢*~3y CFT one constructs
vertex operators Vi kn vq = Vip ks Vg, and checks that (kr,, kg, A, ¢) naturally belongs to
the orthogonal sum,

%56 @ DS (2.31)
which has signature (23,11). Here and in the following, A denotes the lattice which is
identical to A, except that its inner product is amended by an additional minus sign.

Modular invariance. The OPEs of the vertex operators Vi, i. 14(%,%) is non-local be-
cause not all inner products are integers. Also, the partition function obtained from (2.22)
is not modular invariant. In order to construct a local and modular invariant theory, one

must restrict to a subset of vectors in ['l'5 @ D5 and also make additional assumptions

int

Let us in the following assume that Figngt,g is an even lattice (i.e. all vectors contained

in this lattice are supposed to have even norm) and that Fggg / I_‘i2n2t79 consists of four cosets

which we call (0), (s), (v) and (c¢). Furthermore, these cosets shall form a Z; group and
the vectors k = (kr,, kr) shall have norms
k% € 27, for k € (0), (2.32)
k* €5 +27Z, for k€ (s), (2.33)
k2 e1+2Z, for k € (v), (2.34)
k* €2 +27, for k€ (c), (2.35)
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very much in analogy to the Do g lattice. Then, we can construct an even lattice
Ia2,10 = (0,0) U (v,v) D I'syg & Dhel, (2.36)

similar to the decomposition Da 190 D Da2 g ® D;. Then, the cosets F§2710/F22710 have the
same properties as those of Dag 10, i.e. they form a Z3 x Zs group and their norms are
given by

u? € 27, for u € (0), (
u? €14 27, for u € (s), (2.38
u? € 1+27Z, foru € (v), (
u? €1+ 2Z, foru € (c), (

where u = (kr, kr, \2). Here, we use the same naming as for the corresponding Dag 10
conjugacy classes. One can go a step further and construct a lattice

La2.9:21 D 22,10 @ thfSt (2.41)

as the following union of conjugacy classes:

22921 =(0,0)U(s,s) U (v,v)U(c,c). (2.42)

This lattice is called odd covariant lattice. It is a sublattice of Fg‘ig @ D3}, and the coset

decomposition (2.42) also holds in the same form for
T22921 D oy @ D'y . (2.43)

One now verifies that this lattice is odd integral (all vectors have integral inner product
and there are vectors of odd norm) and self-dual, i.e. T'299.01 =I5 9.9 -

We now check that restricting to vertex operators Vi, gy ¢ With (K, kr, A, @) € '22.9:21
results in a local and modular invariant theory. First, let us note that the contribution
of the transversal X%3(z,Z) CFT to the partition function (2.22) is modular invariant by
itself. Hence, we must show modular invariance of the partition function corresponding
to the internal CFT and the bosonization of the ¢?3 CFT, which is given by

1
Z29,10(7) = —% 0 ( Z - Z ) g2kt qa (kX)) | (2.44)
(M) \c e(s)

n(r) n ko ko A2)E(®)  (krkro Ao

Here one sums only over the vectors of the conjugacy classes (s) and (v) of I'ep 19 due
to the truncation conditions (2.17) and (2.18), and the relative sign comes from the in-
sertion of (—1)F" in (2.22). The function 229 19(7) is obviously invariant under the T-
transformation (2.23) because we sum only over odd lattice vectors (cf. (2.38) and (2.39)),
and due to the following property of the Dedekind n-function:

n(r+1) =™/ 2p(1). (2.45)
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In order to show invariance of Z3310(7) under the S-transformation (2.24), let us first
introduce the general partition function of a CFT of n left-moving and m right-moving
bosons compactified on an integral lattice A, ,, of signature (n,m):

1
Znnl) = = Y Al 240
77(7—) 77(7) (:BL,$R)€An,m

This function is S-modular invariant if and only if A, ,, is self-dual (this is shown by
Poisson resummation). Now, from the conjugacy classes of I'g9p 19 we can construct two
self-dual lattices (0) U (v) and (0) U (s). Hence, the partition functions Zg)ye,)(7) and
Z(0)u(s)(T) are S-modular invariant. However, then also

Z2210(7) = Z0)uw)(T) = Z0)u(s)(T) (2.47)

is modular invariant, as we claimed. Finally, locality follows from the fact that the inner
product on I'g2 9.9 1 is integral. Showing that such a covariant lattice theory is also multi-
loop modular invariant is more tricky [28].

The bosonic string map. Let us now make the observation that the conjugacy classes
(0,0) and (v,v) in equation (2.42) have even norm, whereas (s,s) and (c¢,c) have odd

norm. Then, by replacing the D%}llOSt factor in the decomposition I'sg 109 ® D%}llost with a
DihOSt factor we can again construct a lattice
Ta2.14 = (0,0) U (s,5) U (v,0) U (¢, ¢) D Tag 19 ® DF (2.48)

which is again self-dual. It is also even since the conjugacy classes (s), (v) and (¢) of
Dy have odd norm. The lattice I'g2 14 is called even covariant lattice (or just covariant
lattice) and has signature (22, 14). Above replacement is also known as the bosonic string
map [41, 42], because by adjoining a right-moving Eg factor to I's2 14 we obtain a lattice
that serves as a bosonic string compactification. This map also plays a role in the proof
of multi-loop modular invariance.

Exchanging D%ﬁOSt with DihOSt is also equivalent to replacing D;fl by Dg', thus giving
a similar decomposition of the form

Ty914 D Thyg & DEL. (2.49)

Recall that we required that the cosets in I“Q%t’g / Fiﬂg satisfy properties similar to those in
D359/ Da2,9. These conditions are sufficient for the evenness and self-duality of T'ag 14. It is
also possible to show their necessity. Hence, we can construct a modular invariant theory
from Fizrg“’g if and only if there exists an even and self-dual lattice I'99 14 that decomposes
as in (2.49).

2.1.3 Bosonic Realizations of Supersymmetry

The covariant lattice must obey additional consistency conditions from superconformal
invariance of the internal cg = 9 CFT: there has to exist a supercurrent Giy(z) that
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obeys the OPEs (2.2) and (2.3). Obviously, we need to express the supercurrent in terms
of the X} (z). The OPE (2.2) states that Gint(2) is a primary field of conformal weight
3/2. This condition is solved by the following expression:

Gint (2) = Z A(s) :eis-XR(Z):E(s’ﬁR) + Z iB(r) - 0Xg(2) :eir~XR(Z):€(T’I§R)' (2.50)

s2=3 r2=1

Here, one sums over two sets of vectors r and s of norm 1 and 3, respectively. Also, the
coefficients B(r) are subject to a transversality condition,

r-B(r)=0. (2.51)

Moreover, in equation (2.50),

AL 1 7
Ph= oo 7{ dz X% (2) (2.52)

denotes the zero-mode (momentum operator) and (s, t) is a cocycle that has to be intro-
duced to ensure correct statistics. The constraints from the OPE (2.3) on the coefficients
A(s) and B(r) shall not be considered in full generality here. Instead, we will discuss a
special case in Subsection 2.1.5, where we additionally require a chiral four-dimensional
spectrum.

Constraint vectors. Due to an additional consistency condition, for each vector r and
s that appears in (2.50) with non-zero coefficient, the covariant lattice I's2 14 must contain
all vectors (kr,, kr, x) of the form

(0,7,v) and (0, s,v), (2.53)

called constraint vectors of the supercurrent [28]. In above notation, the third entry cor-

responds to the subspace spanned by D', and v denotes a weight in the vector conjugacy
class of D5. This condition ensures that the picture-changing operator acts on the states
of the theory in a well defined manner. It also arranges that the states of the theory
appear in representations of the four-dimensional Lorentz algebra.

Since the covariant lattice is an even lattice and v? is an odd integer, an immediate
consequence is that the vectors  and s span an odd integral lattice. In the following, we
denote this “supercurrent lattice” by =, and sums in expressions such as (2.50) are to be
interpreted as sums over vectors in =.

The cocycle. We now need to discuss some properties of the 2-cocycle, € : = x = +— C*
(here, C* shall denote the non-zero complex numbers). It is subject to the conditions

e(s,t)e(s+t,u) =ce(s,t +u)e(t,u), (2.54)
e(s,t) = (—1)%H5°F (¢, 5) (2.55)
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for all s,t,u € =. These conditions are preserved if the cocycle is multiplied by a cobound-
ary on(s,t), i.e

e(s,1)" = e(s,t)n(s) n(t)n(s +1)~" (2.56)

is also a valid cocycle. Then, by choosing n appropriately, the cocycle can be gauged to
satisfy

/\
CIJ

)

)= :
(s,t): e(t,—s—t)=¢e(—s—t,s),
e(s,t)" = e(~t,—s) =e(s,8) 7",

for all s,t € E (cf. also [43]). These properties are assumed in the rest of this work.

A particularly useful way to obtain an explicit realization is as follows. First, define

(bi, b;) for a basis {b1,...,bg} of Z in such a way that the conditions
e(bibi) = 1, (2.61)
e(bi, bj)e(bj, b)) =1, (2.62)
e(bi.bj) = (1) (b, b) (2.63)

are satisfied, and then consider the linear continuation to = x Z. One can show that this
implies the other properties.

2.1.4 Massless Spectra and Symmetries

Let us now discuss the spectra of covariant lattice theories. Physical states must sat-
isfy (2.17)—(2.18) and (2.20)—(2.21). This results in the conditions:

IM? =3k + Nx + N, — 1, (2.64)
$M? =1k + Nx + )5+ Ng — 3. (2.65)

Here, N, (INr) denotes the oscillator number of the 22 left-mover (10 right-mover) bosons
corresponding to ' 10, and Nx (Nx) is the oscillator number of the right-moving (left-
moving) part of X23. Also, (k, kr, A2) belongs either to the (v) conjugacy class of I'a2 10
for the NS sector, or to (s) conjugacy class for the R sector. Note, that the internal
CFT given by the lattice I‘mtg always gives rise to a left-mover and a right-mover Kac-
Moody algebra gr, and gr of level one. The algebra gr, is spanned by the currents zaXL
and :e*L XL where kZ = 2 and (ky,,0) € Fi2‘12t79 (and similarly for gg). These Kac-Moody
algebras contain zero-mode Lie algebras g% and gOR, which are important because the states
at a given mass level always form a representation of g[ﬁ <) gOR.

There is another method to formally determine the spectrum which makes use of the
bosonic string map, and it is especially convenient if one is just interested in the massless
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states. In that case, we solve

0=32f + Nx+N, -1, (2.66)
0= 32k + Nx +Ng — 1, (2.67)

where Ny, Ny and Ny, are as above, but now (zr,,zg) € I's214 and Ny is supposed to
include oscillations in the DihOSt directions (note, that physically there are no oscillator
excitations in the D%hOSt direction). Then, one formally obtains complete representations
of the zero-mode SO(10) Lie-algebra associated with DE'. Recall though that there is
no one-to-one relationship between physical states and D' lattice vectors. Rather, by
the truncation rules (2.17) and (2.18) the SO(10) representation allows to read off the
spacetime Lorentz representation:

45 of Di* — (left-mover) gauge vector boson, (2.68)
10 of D' — complex scalar, (2.69)
16 of DS — Weyl fermion, (2.70)
16 of D' — Weyl fermion (CPT conjugate state). (2.71)
for Nx =0 and 2% /2 + Ni, = 1, as well as
45 of D' — graviton + complex dilaton, (2.72)
10 of D' — (right-mover) gauge vector boson, (2.73)
16 of D' — gravitino + dilatino, (2.74)
16 of D' — gravitino + dilatino (CPT conjugate states). (2.75)

for Ny =1 and 1:% = 0. In above massless case also x2R is determined as x%{ = 0 for the
45, :1:12DL =1 for the 10, and x% = 3/4 for the 16 and 16 of D§'. Further, note that above
mass shell equations (2.66) and (2.67) resemble those of the bosonic string. Let us now
discuss some generic properties of the massless spectrum.

Gauge and discrete symmetries. The effective theory of a covariant lattice model
always has a compact gauge symmetry group Gy, with Lie-algebra g? , as for each current in
gL there exists a corresponding gauge boson in the spectrum. Due to the U(1)?2 subalgebra
spanned by the zero-modes ]3£ of the 22 currents z’gXI{, one observes that the rank of this
left-mover gauge-group is always 22.

Under special circumstances there are also right-moving gauge bosons in the spec-
trum [44]. One sees that this happens exactly when D" enhances to some D', D Dg'.
However, in these cases the spectrum is always non-chiral, because the spinor representa-
tion of Dgik always decompose into non-chiral pairs of spinors of the D' subalgebra. In
any case the rank nine Lie algebra g% gives rise to a continuous symmetry group Ggr of
the CF'T correlation functions. Yet this symmetry does not result in a global symmetry
of the effective theory. In fact, couplings obtained from amplitudes which do not require
picture changing are Gg invariants. An example would be the three-point coupling in the
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effective superpotential of a supersymmetric theory. This coupling is calculated from the
amplitude

(VO (21, 200V D)y (22, 22) V) (2. 73)), (2.76)

which does not require picture-changing (here, V, denotes an operator in the g-picture).
However, for example the four-point coupling that is obtained from the amplitude

2V (21,20): VS (22, 22) V) (25, 2) VI (20 70)), (2.77)
is not G invariant because the internal supercurrent Giy(z) which enters #2; transforms
nontrivially under Gg. Nonetheless, there may be a nontrivial subgroup Hgr C Ggr which
stabilizes Gint(2), and this subgroup gives a valid symmetry of the effective theory. Note,
that for chiral theories Hy is necessarily discrete. For non-chiral theories Hgr may contain
continuous symmetries, which are necessarily gauged and lead to above described right-
moving gauge bosons.

Spacetime supersymmetry. Spacetime supersymmetry is attained whenever the co-
variant lattice contains vectors that extend D' to one of the exceptional root lattices Eg'
(N =1), E5* (N =2), and E§* (N = 4). Supersymmetric spectra are tachyon-free and
always contain the corresponding gravitinos.

The case N' = 1 shall be of special importance to us. The states solving (2.67) then
necessarily come in representations of K¢, the relevant ones for the massless case being
78, 27 and 27. These branch as

78 — 450 @ 16, ,, & 16_,,4 & 1o,
27 5 16_1,1,® 1016 1_y 3, (2.78)
27 = 161,10 @ 10_1 /56 ® 113,

under Eg — SO(10) x U(1). Hence, we identify 78 with a vector multiplet and 27 with
a chiral multiplet (27 contains CPT conjugate states).

The N = 4 case also deserves some extra mentioning. Then, I'y9 14 contains an Eigt—
sublattice, which is self-dual by itself. Hence, the covariant lattice can be written as an
orthogonal sum,

T9,14 = Dagg @ B, (2.79)

where I'yp ¢ is self-dual and known as Narain lattice. This scenario describes the most
general toroidal compactification of ten-dimensional heterotic strings including constant
background fields [45, 46]. The enhancement of D' to E5' then arises due to the bosoniza-
tion of the compactified right-mover NSR-fermions.

2.1.5 Covariant Lattices for Chiral Models

Now, we require that the four-dimensional effective theory has a chiral spectrum. Then,
it can be shown that chiralness is spoiled if the supercurrent lattice = contains vectors r
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of norm 1 [28]. In that case, D' is enhanced to some D;EHC D D§', which causes massless
fermion matter to appear in vector-like pairs. Hence, in the following we assume the
absence of norm 1 vectors and use the ansatz

Gint(2) = D Als) ™ "3 e(s, pr) (2.80)

52=3

for the internal supercurrent. Note that the absence of norm 1 vectors is only a necessary
condition for chiralness and it is nonetheless possible to obtain non-chiral models this way.

The supercurrent equations. Until now, we did not consider equation (2.3). So, the
next step is to calculate the GG-OPE using the ansatz in equation (2.80) and compare
it with the r.h.s. of equation (2.3). Then, one obtains the following system of quadratic
equations in the coefficients A(s):

D A(s)Ps'sT =267 (2.81)
s2=3
Z A(s)A(t)e(s,t) = 0 for all u® = 4, (2.82)
s2=t?=3
s+t=u
Z A(s)A(t)e(s,t) (s° —t') = 0 for all u* = 2. (2.83)
s2=t2=3
s+t=u

Here, we also imposed a hermiticity condition,
Gint(2)" = ()G (1/27) (2.84)

which implies A(s)* = A(—s). A generalized version of equations (2.81)—(2.83) which
includes also non-vanishing B(r) can be found in [31].

Left-right decomposition of the covariant lattice. As an immediate consequence
of equation (2.81), the supercurrent lattice Z must completely span the nine-dimensional
space it resides in. Then, the constraint vectors (0, s,v) generate a negative-definite 14-
dimensional sublattice I'14 of I'29.14. We also define (I'g2);, as the 22-dimensional lattice of
vectors belonging to the orthogonal complement of Ti4in I'22 14, and similarly mR as the
lattice of vectors in the orthogonal complement of (I's2);, in I'9214. Clearly, I'iy C (I'14)g,

and we obtain the following decomposition:

[22.14 D (T'22)L ® (T14)g - (2.85)

This decomposition does not contain self-glue, i.e. all elements of I'2 14 that belong to

the R-span of (I'14)g also lie in (I'14), and those belonging to the R-span of (I'y2); also
lie in (I'22);,. In the following, we always assume that decompositions such as in (2.85)
are self-glue free, and, that the lattice dimensions on the L.h.s. and on the r.h.s. of the
inclusion relation match.
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Symmetries of the supercurrent equations. Equations (2.81)—(2.83) possess several
symmetries (also cf. [28]). First, note that the internal cg = 9 right-mover CFT always
contains the Kac-Moody algebra gr spanned by the currents i@Xﬁ(z). To these currents
corresponds the U(1)? symmetry group which is infinitesimally generated by the ﬁ%{. Then,
if Gint(2) as in (2.80) satisfies the super-Virasoro algebra, so does the conjugate

U©)Gue()U(E)T = D7 Als)e™ e 1) e (s, pr) (2.86)

$2=3

where U(&) = e®PR denotes an element of the symmetry group. One also verifies that if
A(s) solves (2.81)(2.83), then so does A(s)e®*<.

Whenever there exist norm 2 vectors in Z, the U(1)? symmetry is enlarged to a non-
Abelian group by additional Frenkel-Kac currents. Then, the norm 3 vectors correspond
to weights of a (in general reducible) representation of this non-Abelian group, and group
transformations can be used to set some of the A(s) to zero. In this case it may happen that
the A(s) become non-zero only on a sublattice Z' C =, which can then be considered more
fundamental than =. Besides these continuous symmetries, there may also be additional
discrete symmetries (e.g. those induced by lattice automorphisms) that transform one
solution into another.

In any case, above symmetries only correspond to a change of basis, and as such
produce physically equivalent supercurrents. However, one can not rule out the possibility
that equations (2.81)—(2.83) allow for distinct solutions not related by a physical symmetry.
Then, one obtains inherently different string vacua. These vacua share the same spectrum,
but string amplitudes which necessitate picture changing may differ.

2.2 Asymmetric Orbifolds

Orbifolding [1, 2] is an elegant method that allows the construction of new string vacua
from existing ones by dividing out a finite group G of symmetries. The spectrum of the
new theory then contains an untwisted sector and (possibly several) twisted sectors. The
untwisted sector is obtained simply by projecting on G-invariant states of the original
theory, but is not modular invariant by itself. Modular invariance is only restored by
including the twisted sectors, which contain strings with an additional set of boundary
conditions. With orbifold constructions it is possible to reduce the number of supersym-
metries. It is in particular possible to obtain chiral A/ = 1 theories from a N = 4 toroidally
compactified string.

2.2.1 The Asymmetric Orbifold Construction

Let us now introduce a Zy orbifold construction that starts from a Narain compactified
heterotic string [19, 20]. The internal (cr,,cr) = (22,9) CFT of Narain compactification
contains 22 left-mover bosons X{(Z) and 6 right-mover bosons X} () compactified on a
Narain lattice s 6, as well as six right-mover NSR-fermions 1% (z). Modular invariance
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is ensured by demanding that I'so ¢ is even and self-dual, and by applying the usual GSO
projection to the fermion sector [47]. The internal supercurrent of this theory is given by

Gint(z) = ’LwR(Z) . 6XR(Z) . (2.87)

In order to specify the orbifold group, one defines the action of a generator of Zx on the
internal fields X{, Xf;{ and %{3

X1, — 0L.X1, + 27og,,
XR — GRXR — 27TUR, (2.88)
YR — ORYR

where 61, and g denote (orthogonal) twist matrices and vy, and vy are shift vectors. Note,
that this twisting preserves the internal supercurrent (2.87). In order for the action (2.88)
to be a symmetry of the theory, § = 01, @ fg must be an automorphism of the Narain
lattice I'92 6. Then, the action on the vertex operators

Vi(2,7) = M XuEHERXR () ok, p) (2.89)

is given by
Vi = (k) te?miukL—vrebr) (2.90)

Again, £(s,t) denotes a cocycle, and p = (pr,, pr) denotes the zero-mode operators of the
left-mover and right-mover currents i0X7, and i0XR, respectively. Moreover, ny(k) is a
phase factor that must satisfy

(0 k07K = e(k, k') o (k) mo (k") mo(k + k)" . (2.91)

This phase factor ensures that the orbifold action is an automorphism of the vertex opera-
tor algebra (that is, the transformed quantities have identical OPEs as the original ones),
and is also important because it can cause that the order of G, doubles when acting on
the vertex operators. The calculation of ny(k) for a convenient choice of the cocycle is
described in [48].

As in the heterotic string the number of left-mover and right-mover bosons is differ-
ent, the above is an intrinsically asymmetric construction. One nevertheless calls such
an orbifolding symmetric if 0, = 0r @ 014 for some 16-dimensional twist 014, and asym-
metric otherwise. Here, we do not care about the difference and just call above general
construction “asymmetric orbifolding”.

For the following discussion it is convenient to bosonize the fermions wﬁ of the original

Narain theory. Then, one obtains a covariant lattice theory with T'9g 14 = I'926 @ Egt.
Since our orbifold group is Abelian, it is always possible to choose the chiral bosons H3,
H* and H® of the bosonization such that g acts as a shift,

H® — H® = 2mvy, . (2.92)
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Note, that here we adopt the notation of Section 2.1 and let H' and H? denote the
bosonization of the y*. As these are untouched by the orbifolding, we assume that the
components v}p and vi vanish. The other ’Ug are then determined from the twist vector

+27mwit™

t®, which appears in the eigenvalues e of Or (here, we assume det(fg) = 1) as

vg = t®. However, there is a small ambiguity in this prescription which we will resolve in

A H*

Subsection 2.2.2. Under the action (2.92), the vertex operators :e : obtain a phase

— 7 @
e 2m)\avw‘

The twist-shift correspondence. The Narain theory that is the starting point of
above construction is always equivalent to a covariant lattice theory, but the orbifold
theory need not be so in general. For example, any twist 61, that breaks the rank of the
gauge group will necessarily result in a theory that is not describable by free bosons on
a lattice. However, we now discuss a rather general class of asymmetric orbifolds which
are equivalent to a covariant lattice theory [33-35]. Henceforth, we assume that 6y, is the
identity (vy, may still be non-zero, as the shift action does not project out the i0.X1,). Yet
there remains the problem that #g might reduce the rank of the right-mover Kac-Moody
algebra gr. However, for certain combinations of Narain lattices and twists g it is possible
perform a “rebosonization” of the X, i.e. a change of basis, that allows one to trade O
for a shift vg [34]. Then, the complete orbifold action is given by a shift, which maps the
original Narain theory on another covariant lattice theory.
Let us in the following assume that the Narain lattice decomposes as

a6 O (Ta2)r. ® (T's)g (2.93)

where (I'g)r shall be a root lattice of a rank 6 semi-simple Lie algebra of ADE type. Note
that I'gg 14 is then of the form (2.85), with

(T14)r = (Te)r @ B . (2.94)

In this setup, it is possible to express the i0Xg in terms of exponentials of new chiral
boson fields XI’{:

10Xk = Z a(r) e Xre(r, ) . (2.95)
r2=2
Here, the sum is over a set of vectors r € (I'g)r of norm 2, and the a(r) are some suitable
coefficients that must be chosen such that the r.h.s. of (2.95) has the same OPEs as i0X}.
Then, for special choices of the g, the twist action on the X} from (2.88) is equivalent
to a shift action on the X{ as

Xi — Xf — 27oR (2.96)

The 6y for which this twist-shift correspondence is applicable turn out to be exactly those
that belong to the Weyl group of the simply-laced root system of (I'g)R.

Note, that the change of basis (2.95) can also be understood as an automorphism of
the underlying vertex operator algebra. In particular, it gives an automorphism of the
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zero-mode Lie algebra gOR. For Weyl twists, i.e. inner automorphisms of the corresponding
Lie group GR, this automorphism can be used to conjugate the original action (2.90) into
the maximal torus of Gg, hence giving a shift action. For outer automorphisms there does
not exist such a conjugation. There is also another way to see that an outer automorphism
twist Or is not viable in this framework: such a twist acts as a symmetry of the Dynkin
diagram corresponding to (I's)r, and it nontrivially permutes the conjugacy classes of
('¢)r. Then, g will not be a symmetry of the Narain lattice, unless we also twist the
left-movers in a similar way.

Now, one might ask why we discussed the original twist action (2.88) at all, if we
could just have started with a pure shift action action on the N' = 4 covariant lattice
theory. The answer lies in the requirement of world-sheet supersymmetry: an arbitrary
shift vector that acts on the nine chiral bosons Xﬁ and H>%5 would project out the
supercurrent. However, we saw that the construction (2.88) retains the supercurrent, and
this fact is not spoiled by bosonizing the 1/1{'{ and by the base change (2.95). In other
words, above construction provides us with a relation between vg and v, that ensures
world-sheet supersymmetry in the orbifold theory. We also observe that in terms of the
X and H?, the supercurrent takes the form (2.80), which we have shown to be necessary
for chiral covariant lattice theories.

The orbifold spectrum. Let us now discuss the orbifold theory that is obtained from
the complete shift action. The shift vector is written compactly as v = (v, VR, vy, 0),
where the zero entry corresponds to the D' part that we do not touch at all. Also, if
the twist-orbifolding defines a modular invariant theory, one can always choose v such
that v? € 2Z (cf. [28, Appendix A.4]). Let in the following N denote the smallest natural
number such that Nv € I'y2 14 (we assume N > 1 as the orbifolding would be trivial
otherwise).

In order to calculate the untwisted spectrum, one has to project on Gy invariant
states (or vertex operators). The untwisted sector of the shift-orbifold theory is then
represented by the sublattice I'j, 14 of vectors x € T'y214 with vanishing orbifold phase,
i.e. - v € Z. This lattice always has a (self-glue free) decomposition

[514 D (T)L ® (Ify)R - (2.97)

Moreover, [['9214/T%9 14| = N, so I's; 1, is not self-dual. However, the inclusion of the
twisted sectors provides additional glue vectors of the form

nv+ 1914, ne{l,...,N—1}. (2.98)

These cosets complete I'fy 1, to an even self-dual lattice T 14 D I'Sy 14. Then, in particular
(T4)r 2 (I'Y4)R, where the equality is achieved for appropriate choices of vr,.
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2.2.2 Twists for Chiral Models

To obtain a chiral spectrum, v, must break E§' to E§* (N = 1) or D' (N = 0). If one
considers E5' decomposed as

Egt DD D1 DD Det , (2.99)
one sees that all conjugacy classes of the form
(’U, 07 07 /U) 9
(0,v,0,v), (2.100)
(07 07 Ua U) 9

must be projected out, as otherwise DE' would be enhanced at least to some D?)EH@ For
this to happen, it is necessary that

YA (2.101)

This is equivalent to demanding that fg is non-degenerate, i.e. det(fg — 1) # 0. The
decomposition (2.99) also contains the eight conjugacy classes:

(s,s8,8,8), (c,c,e,c), (s,8,¢,0), (2.102)

the underline denoting all possible permutations. The massless states are given by the
momenta A = (A2, Az, Aq, A5) of the form

(£3,£5,+£3,+1), (2.103)

with an even number of minus signs (A2 corresponds to H? which appears in the bosoniza-
tion of ¥? and 3, equation (2.7)). In order to attain A/ = 1, it is necessary that

vl £ £ 0, €27 (2.104)
or
Z
vi + vf/, + vfp € Z and at least one vy, € 5 (2.105)

for any sign combination: one sees that this causes a cancellation of the phase Ay, for
exactly one CPT-conjugate pair of momenta in (2.103), leading to a single gravitino in
the spectrum.

Let us now discuss an ambiguity in the choice of the vy, First note that the components
of the twist vector t* are only determined modulo integers and signs from the eigenvalues
of fr. While one can show that any sign combination of the vy gives the same theory,
adding arbitrary integers to them can result in different theories. However, adding an
even vector to (vi’}, vf‘p, v;?}) produces equivalent theories because such a vector belongs to
the Ds factor in the decomposition E§' D D3 & Df' and thus has integral inner product
with all vectors in E5'. Thus, for a given g there are in principle two different choices
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for vy, which act equally on the NS sector, but differently on the R sector. Now, if a shift
vector vy, satisfies (2.105), then adding an odd vector to vy, will destroy this condition,
except when any of the vy, 18 half-integral: in that case, adding an odd vector is reverted
by a sign change. Hence, depending on the twist g there are three possibilities:

1. The twist always breaks supersymmetry completely. For these, neither (2.104) nor
(2.105) can be satisfied.

2. The twist always retains N' = 1 supersymmetry. In this case, (2.105) is satisfied.

3. The twist allows two inequivalent shifts: one which destroys supersymmetry com-
pletely, and one which retains N' = 1. In this case, none of the vy, is half-integral
but it is possible to satisfy (2.104) by adding an odd vector to vy.

Finally, let us note that it possible to restore non-chirality and further supersymmetries
from twisted sectors. This usually happens when the order of the action of Gy, is different
on left-movers and right-movers. It is however possible to remove these cases by imposing
additional conditions on the shifts vr,.

Non-degenerate Weyl twists. In order to construct a chiral orbifold theory we require
a non-degenerate Weyl twist. Non-degenerate elements of Weyl groups were classified by
Carter [49] using certain generalized Dynkin diagrams that are known as Carter diagrams.
In particular, for any semi-simple Lie-algebra there is always a Carter diagram which
corresponds to the Coxeter element, and it is identical to the respective Dynkin diagram.
Also, any Carter diagram of a simply-laced subalgebra of the same rank is allowed. A
method to calculate the twist vector t* and the shift vector vg from a Carter diagram is
given in [34]. In Table 2.1 we give a list of all degenerate Weyl twists and corresponding
root lattices (I'¢)R.
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Table 2.1: Possible twists (I's)r and root lattices leading to chiral asymmetric orbifold models
which are equivalent to a covariant lattice. Note that the twists corresponding to the Carter
diagrams A2 and A?D4(a;) are conjugate to each other within Dg. The attainable number N of
supersymimetries is also given.

Order t* Carter Diagram N (T'g)r
Z2 (17171)/2 A? 0 A??‘A%D%DG
Z3 (1,1,1)/3 A3 0,1 A3 Fg
(1,1,2)/4 A3 1 A2 Dg
Zy (1,1,2)/4  A7Dy(a1) 1 A}D4, Dg
(1,2,2)/4  A3A3 0  A$A3 A1Ds
(1, 1,2)/6 E6(a2) O,l E6
(1,1,3)/6  Dg(a2) 0 Dg
(1,2,3)/6  A1A4s 1 AAs, Es
Zs (1,2,3)/6  AsDy 1 AsDy
(1,3,3)/6  A2D, 0  A2Dy4,Dg
(2,2,3)/6  A2A3 0  A2A%
(2,3,3)/6  AfA, 0  A}As, AsDy
Z7 (1,2,3)/7  Ag 0,1 Ag
7 (1,2,3)/8 Dﬁ(al) 0,1 D6
" (1,34)/8 AD;s 1 ADs
Zy (1,2,4)/9  Eg(a1) 0 Es
p (1,3,5)/10 Dg 0 Dg
Y (2,4,5)/10 A24, 0 A244
(1,4,5)/12 Es 0,1 FEs
7 (2,3,6)/12 A1D5(a1) 0 A1D5
2 (3,3,4)/12  AsDa(ar) 0 AsDy
(3,4,6)/12 A1 AxA3 0  A1AA
Zl5 (3,5,6)/15 A2A4 0 A2A4




Chapter 3

Classification of Chiral Models

In the previous chapter we introduced the heterotic covariant lattice formalism and saw
that it can be used to construct chiral four-dimensional string models. However, we are
lacking a systematic and exhaustive understanding of this particular corner of the four-
dimensional string landscape. The purpose of this chapter is to fill this gap by providing
an overall classification of chiral covariant lattice models.

Let us start by giving an overview on the classification process. In Subsection 2.1.5
we concluded that, in a chiral model, the covariant lattice I's2 14 must decompose as in
equation (2.85) into a left-mover lattice (I'e2);, and a right-mover lattice (I'14)g. The
covariant lattice also obeys several consistency conditions from modular invariance and
world-sheet supersymmetry. However, while modular invariance involves I'22 14 as a whole,
the requirement of world-sheet supersymmetry directly affects only the right-mover lat-
tice. In particular we saw that (I‘14)R must contain a sublattice I'14 which is constructed
from a nine-dimensional lattice = using the constraint vectors. On this “supercurrent lat-
tice” = there must exist a solution to equations (2.81)—(2.83). Our first step will be the
classification of these supercurrent lattices, which will be treated in Section 3.1.

Once these lattices are classified, it is possible to construct all right-mover lattices that
may appear in a chiral model. Modular invariance then greatly restricts the choice of the
left-mover lattice (I'y2); , and one is naturally led to the conclusion that the possible (I'22);,
are organized in what is known as lattice genera. The well-established theory of lattice
genera then allows us to calculate a lower bound on the number of left-mover lattices, and
also provides us exact methods for their classification. This all is subject of Section 3.2.

Finally, one has to keep in mind the possibility that for a pair of lattices (I'22);, and
(I'14)R there may be several inequivalent embeddings of the form (2.85). This depends
on the existence of certain automorphisms of these lattices. We do not treat this issue
generally, but we consider special cases in Chapter 4, where we perform explicit model
building.

25
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3.1 The Supercurrent Lattices

Let us begin with the classification of the nine-dimensional supercurrent lattices that were
introduced in Section 2.1. For a chiral model, = must satisfy the following properties:

1. Basic. = is positive definite, integral, generated by its norm 3 vectors, and contains
no norm 1 vectors.

2. Supersymmetry. There exists a solution A(s) to equations (2.81)—(2.83) on =.

We call a positive-definite lattice = that obeys above two properties admissible. An ad-
missible lattice can further be reduced to certain fundamental building blocks, that we
now describe.

First, note that an orthogonal sum of admissible lattices is again admissible. One also
verifies that the converse is true: if an orthogonal sum of several factors is admissible,
then so is each factor. This is because any norm 3 vector vz that were not contained in
one of the orthogonal factors would be a sum of lattice vectors v; and ve, where v; has
norm 1 and vy is of norm 2. However, by the “basic” properties such vectors v; do not
exist and hence equations (2.81)—(2.83) must have a solution independently for each factor.
Another point is that we do not need to care about an admissible lattice which contains
an admissible sublattice of the same dimension. These facts motivate the definition of the
following properties:

1. Primitivity. = is not isomorphic to an orthogonal sum =1 & ... ® =g, k > 1.

2. Elementarity.
sublattice 2’ C

is admissible and does not contain a strictly smaller admissible

= of the same dimension.

Then, any admissible lattice = can be built from primitive elementary building blocks by
orthogonal composition and gluing. In the following we classify these building blocks by
first constructing a set of candidate lattices and then solving equations (2.81)—(2.83).

3.1.1 Construction of Candidate Lattices

Let us start by classifying all lattices satisfying above “basic” and “primitivity” properties.
This is done by induction over n = dim(Z) up to n = 9.

At this point we need to discuss a rather important subtlety. First, recall that any
lattice A has a basis {b1,...,b,} with basis vectors b; € A such that each = € A is repre-
sented by a unique integer linear combination of the b;. Then, n denotes the dimension
of A. When we say that a lattice A is spanned (or generated) by a finite set {ai,...,an}
of vectors a; € A, we mean that any = € A can be written as a, not necessarily unique,
integer linear combination of the a;. Now, one might hope that, for any such generating
set, it is possible to choose a basis where all basis vectors b; belong to that generating
set. While this is certainly true for vectors spaces, it is not so for lattices (consider, for
example, the lattice Z and the generating set {2,3}). A counterexample that comes close
to our situation has been found in [50]. The lattice constructed there is generated by its
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vectors of minimal length, but does not possess a basis solely out of these minimal vectors.
After this discovery such lattices have received some interest [51]: they were shown not to
exist for n < 9, while for n = 10 a concrete example of such a lattice was found.
Although here we are only interested in the case n < 9, our lattices are allowed to
contain vectors of norm 2, so the theorem of [51] is not applicable. Thus, among the
lattices that satisfy our basic properties there might exist “pathological” lattices which do
not possess a basis of norm 3 vectors. However, suppose Z' be such a pathological case.
Then, there must exist a sublattice 2 C Z’ that is not pathological. Hence, we can at the
moment restrict our classification to lattices which do have a basis of norm 3 vectors and
care about the pathological cases afterwards. Now, the idea is to enumerate these lattices
by constructing all possible Gram matrices, in a way similar to the “lamination” process
introduced in [52, 53]. For a lattice with basis {b1,...,b,}, the Gram matrix is defined by

Gi; =bi-b;. (3.1)

It determines the lattice up to O(n) rotations in the ambient space, but is not a basis
independent quantity. In our case we assume the existence of a basis of norm 3 vectors, so
we only need to consider Gram matrices where the diagonal elements are G;; = 3. Now,
suppose G’ be such a Gram matrix of a (n + 1)-dimensional lattice which satisfies our
basic properties. The lattice corresponding to the restricted Gram matrix G = (G;Lj)i,jﬁn
then must also fulfill these properties. Now, we can write G’ as

G = (f; Z) , (3.2)

where v is a column vector. From positive definiteness it follows that det(G’) > 0. This
translates into the following condition:

TGy < 3. (3.3)

Since the v; are integers and G is positive definite, there are only finitely many possible v
satisfying equation (3.3).

The naive algorithm then goes as follows. Suppose we have a set %, that contains a
Gram matrix for each non-pathological lattice of dimension n with the basic properties.
Set Bn+1 = {}. Then, for each pair (G,v) with G € %, and v satisfying equation (3.3)
do the following;:

1. Construct the matrix G’ as in (3.2). It is necessarily positive definite.

2. If the lattice corresponding to G’ contains norm 1 vectors, continue to the next pair

(G,v).

3. Otherwise, check whether %, already contains a Gram matrix that is equivalent
to G’ by a change of basis. If not, replace %,,+1 by %1 U{G'}.
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After completion, 4,11 contains a Gram matrix for each non-pathological lattice of di-
mension n + 1 satisfying our basic properties. The algorithm is initialized with %;, which
contains the only possible Gram matrix in one dimension, and then repeatedly applied un-
til we obtain %y. Since we start with only finitely many lattices, we only produce finitely
many new lattices in each step and hence 4, is finite for all n.

In this form, the algorithm also produces non-primitive lattices. However, the non-
primitive cases are excluded if we consider only non-vanishing v in each step. This can be
seen as follows. Suppose that a lattice = with Gram matrix G € %; be an orthogonal sum
two lattices =; and Z5. Then G is necessarily of the form G; ® G2 up to permutations of
the basis vectors b;. Here, G; and G5 denote Gram matrices of Z1 and =9, respectively.
This is because any potential basis vector of norm 3 in = must belong to either =; or =s.
Then one sees that, in order to obtain GG, we have at some stage in the naive algorithm
chosen a vanishing v. Thus, by leaving out the case v = 0 one restricts to primitive lattices.
One also sees that this prescription does not accidentally remove some primitive lattices,
because for them one can always find a Gram matrix for which the vectors v are non-zero
at any stage.

Finally we have to check for the existence of pathological cases. This is done as fol-
lows: for each lattice we found (including the non-primitive ones obtained by considering
orthogonal sums), one constructs all overlattices Z' that are obtained by including addi-
tional norm 3 vectors. If we encounter a primitive lattice that was not yet obtained, we
must add it to our results.

The actual computation showed that for n < 9 no pathological case exists. Also, in
Table 3.1 the number of primitive basic lattices that were obtained for each dimension is
listed. At this point it should also be noted that above naive algorithm is very slow for large
n, and the actual implementation includes several optimizations. One such optimization
arises if one also computes the automorphism groups of the lattices corresponding to the
Gram matrices G. The automorphism group naturally acts on the vectors v, and we can
compute its orbits. Then we only need to consider one representative vector v in each
orbit.

3.1.2 Solutions to the Supercurrent Equations

At this stage we possess a list of all lattices with the basic and primitivity properties.
The next step is to solve the conditions imposed by world-sheet supersymmetry. First,
it is practical to consider only equation (2.81), which is a system of linear equations in
the |A(s)|%. Tt turns out that in total only 59 lattices possess a solution, so the number
of candidate lattices is drastically reduced (cf. Table 3.1). For these candidates we then
consider, in a somewhat case by case manner, the full set of equations (2.81)-(2.83). This
is done using the following strategies:

e By means of the U(1)? symmetry discussed in Subsection 2.1.5, we may fix the phases
of some A(s). Moreover, if U(1)? is extended to some non-Abelian symmetry, we
may use this symmetry to set some A(s) to zero. This procedure radically reduces



3.2. RIGHT-MOVER AND LEFT-MOVER LATTICES 29

Table 3.1: The number of lattices with the respective properties: basic (B), supersymmetry (S),
primitivity (P), elementarity (E).

dim (=) PB PB + (2.81) PBS PE
1 1 11
2 0 0 0
3 1 11
4 28 0 0 0
5 136 1 11
6 911 6 6 3
7 8665 2 2 2
8 131316 8 7 4
9 3345309 0 36 14

Total ~ 3486375 59 54 26

the complexity of the problem in most cases.

e Sometimes, systems of polynomial equations are easier to solve if one first computes
a Grobner basis of the corresponding ideal. Especially, if the computed Groébner
basis is trivial then the system has no solutions.

With these methods it was possible to rule out the existence of a solution for 5 out of the
59 candidate lattices. For further 26 candidates an explicit solution was found, albeit with
some trial and error. Then, it was proven that these lattices are elementary and that all
remaining candidates can be reproduced by gluing together orthogonal sums thereof.

Thus, for dim(Z) < 9, there exist 54 primitive admissible lattices of which 26 are
primitive elementary. By orthogonally combining them one obtains in dim(Z) = 9 a total
of 63 admissible lattices, and 32 of them are elementary. A summary of these results is
shown in Table 3.1.

In the rest of this work we identify a primitive elementary lattice by its dimension,
and, in the cases 6 < dim(Z) < 9, also by an additional uppercase Latin subscript which
is assigned in alphabetical order. Moreover, we use a shorthand notation where e.g. 361
denotes the orthogonal sum of the primitive elementary lattices 3 and 6 4. Gram matrices
for the 26 primitive elementary lattices are provided in Table B.1, together with some
further information.

3.2 Right-Mover and Left-Mover Lattices

We have now classified the possible supercurrent lattices = that may appear in a chiral co-
variant lattice model. From these we can construct all possible right-mover lattices (I'14)r
and discuss the associated left-mover lattices that are compatible with modular invariance.
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Before we are able to do this, we must briefly study some facts about discriminant forms
and lattice genera.

3.2.1 Discriminant Forms and Lattice Genera

Let us begin by introducing the concept of discriminant forms [54]. Let A be an integral
lattice with Gram matrix G, and let det(A) = |det(G)| denote its discriminant. Since A
is integral, it must be contained in the dual lattice A*, and hence we can construct the
quotient group A*/A. This quotient is a product of (finite) cyclic groups whose orders
are given by the elementary divisors of A. These are in turn defined to be the elementary
divisors obtained from the Smith normal form of G.

The important point is now that the bilinear form on A naturally induces a bilinear
form By(+,+) : A*/A x A*/A — Q/Z, given by

Bo+Aw+A)=v-w (3.4)

for v,w € A*. This is indeed well-defined because (v + z) - (w+y) —v-w € Z, for any
z,y € A. For even lattices A we also define a quadratic form Qp : A*/A — Q/2Z,

Qa(v+A) =22, (3.5)

with v € A*. Again, this is well-defined because (v + z)? — v? € 27 for all x € A.

The quotient A*/A together with the bilinear form By is called the discriminant bi-
linear form, disc_(A) of A. Similarly, for even lattices we also define the discriminant
quadratic form disc;(A) as the tuple (A*/A,Qp). Moreover one defines morphisms for
these structures to be group morphisms ¢ : A7 /A; — A%/Ay which preserve the respective
bilinear or quadratic form, i.e.

BA2(¢()7¢()) = BA1('7')7 (36)
in the case of disc_, and further
QAQ © d) = QA1 . (37)

in the case of disc. A fortiori, a morphism of a discriminant quadratic form discy (A)
also gives us a morphism of the corresponding discriminant bilinear form disc_(A).
Now, there is a well known theorem [38], proven in Appendix A.2:

Theorem 1. For any integral self-dual lattice A with a self-glue free decomposition of the
form A D Ay @ Ag, where dim(A) = dim(A;) + dim(Az), one obtains an isomorphism

disc_ (A1) = disc_(A2), (3.8)
which at the same time is an isomorphism

discy (A1) = disc4(Asg) . (3.9)
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if A is even. Also the “converse” statement is true: given two integral lattices A1, Ay and
an isomorphism ¢ : disc_ (A1) — disc_(Az), then there exists a self-dual lattice A with a
self-glue free decomposition A D Ay @ Ao. If furthermore Ay and Ao are even and ¢ is also
an isomorphism of the corresponding discriminant quadratic forms, then also A is even.

In the remainder of this work we also adopt the following convention. When we call
something a discriminant form disc(A) of a lattice A (without the attribute “bilinear” or
“quadratic”), we mean disc4(A) in the case where A is even, and disc_(A) in the case
where A is odd.

Lattice genera. Now, we want to introduce the concept of lattice genera. Let A; and
As denote two integral lattices with Gram matrices G; and Go. Then one defines an

“—m

equivalence relation as follows: we say that A; = Ay if for every prime number p

there exists an invertible p-adic integral matrix U, such that
UpG1U] =Gy, (3.10)

and if further A; and As have the same signature. The corresponding equivalence classes
are called genera. An alternative characterization of the genus is due to Nikulin [54]: two
lattices A1 and A lie in the same genus G if and only if they have identical signatures,
they are either both even or odd, and their discriminant forms are isomorphic. Note that
the isomorphism already implies p; — ¢1 = p2 — g2 = 0 mod 8 for the respective signatures
(p1,q1) and (p2, g2). In particular, two lattices in the same genus have identical elementary
divisors.

There is a classic result that states that a genus G contains only finitely many lattices,
and the predominant method for the enumeration of all lattices in a genus is known as
Kneser’s neighborhood method [55]. It is related to the “shift vector method” in [28,
Appendix A.4], which is in turn related to certain shift-orbifold constructions. Also, in
some cases the “replacement” lattice engineering method (cf. [28, Appendix A.4]) turns
out to be useful (we will apply it in Subsection 3.2.4).

The mass formula. Another relevant tool in the study of lattice genera is the Smith-
Minkowski-Siegel mass formula [39, 56]. The mass of a genus is defined as

m(G) =Y A (3.11)

Here, Aut(A) denotes the automorphism group (point group) of A (definiteness of the
lattices is assumed). Note, that the definition of the mass depends on all lattices in G. The
mass formula then provides another way of computing the mass which only requires explicit
knowledge of a single A € G. This computation is rather complicated (the technicalities
are found in [39]) and we will not go into the details here.

An important application of the mass formula is the computation of a lower bound on
|G|: from |Aut(A)| > 2 one obtains

G| > 2m(G). (3.12)
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However, this bound is rather crude in many cases. The mass formula also allows to verify
whether an explicit enumeration of lattices in a genus is exhaustive.

Consequences for chiral models. Using the theorem stated earlier, we now conclude
from the self-duality of I'sp 14 that the lattices (I'22)1, and (I'14)r appearing in the de-
composition (2.85) must have isomorphic discriminant forms. Hence, by the theorem of
Nikulin [54], the right-mover lattice completely determines the genus Gy, of (I'a2)1,. More-
over, (I'y2)1, can be replaced by any other lattice from Gy, without destroying self-duality,
so set of possible left-mover lattices that can be paired with some specific (I'14)r is given
precisely by the corresponding genus Gr,. Not surprisingly, it is also possible to exchange
(T'14)r with a different lattice from the same genus, provided that it also obeys the con-
straints from world-sheet supersymmetry.

It thus possible to use the Smith-Minkowski-Siegel mass formula to give a lower bound
on the number of models — or to use one of the earlier mentioned methods and attempt
their exact classification.

3.2.2 The Lattice Inclusion Graph

We now use our classification of supercurrent lattices and the theory of lattice genera to
obtain an overall insight into the space of covariant lattice models. First, for each of the 32
elementary supercurrent lattices that we classified in Section 3.1, one constructs a right-
mover lattice (I'i4)r = I'14 from the constraint vectors (0, s, v). These lattices are minimal,
in the sense that there is no solution to the supersymmetry constraints (2.81)—(2.83) for
any strictly smaller sublattice. However, any even overlattice

(T1a)r 2 (T1a)r (3.13)

clearly inherits the solution A(s) from (I'14)r (it may violate the chiralness constraint
from Subsection 2.1.5, though), and only finitely many such overlattices can exist. The
explicit construction of all these overlattices produced a total of 414 right-mover lattices.

From these lattices it is possible to construct a directed graph ¢ in which each lattice
is represented by a node, and two lattices A and B are connected by an arrow, A — B,
if A D B and the index |A/B| is prime. It turns out that the graph splits into nine
disjoint connected components 4 to 9. Consequently, for most right-mover lattices,
more than one of the 32 elementary supercurrents can be chosen, and, as pointed out in
Subsection 2.1.5, it is possible that these choices are related by a symmetry transformation.
In Figures 3.1-3.3 we display the connected components 4 to ¥ and 9%, but only the
subgraphs thereof consisting of nodes with spacetime supersymmetry. Table 3.2 lists the
number of lattices in each connected component, separately for the different levels of
spacetime supersymmetry. It turns out that among all 414 lattices, only 99 comply with
the chiralness condition introduced in Subsection 2.1.5, and merely 19 lead to N' = 1
spacetime supersymmetry.

In the following, we discuss in detail some interesting parts of the lattice inclusion
graph ¢ together with the corresponding left-mover genera Gy,.
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Table 3.2: Statistics of the lattice inclusion graph ¢ in total, and also separately for each con-
nected component ¥;. Denoted are the total number of lattices, as well as the number of lattices
with certain spacetime sublattice (k > 0).

D¢ EY EY EY Df, Total

% 19 6 6 3 36 70
“ 35 9 9 4 115 172
s 1 0 1 1 4
7 8 2 3 2 45 60
“s 10 1 3 2 41 o7
“s 2 0 0 1 8
“Gr 1 0 0 1 8
93 1 0 0 1 10 12
Y 3 0 1 1 18 23
Total9 80 19 22 16 277 414

The bottom nodes. Our graph ¢ contains certain nodes B for which there do not exist
any other nodes B’ +— B. We call them “bottom nodes”, and they clearly correspond
to those 32 lattices (I'14)r constructed from the elementary supercurrent lattices = using
the constraint vectors. Using the Smith-Minkowski-Siegel mass formula, it is possible to
calculate a lower bound on the respective |G| (note that in order to apply this formula, we
explicitly need a representative of each Gy, which can however be given by (I'14)g @ Eg).
The bottom nodes together with these bounds are listed in Table 3.3.

One recognizes that from the bottom nodes alone one obtains a total of at least O(10%3)
models. Of course, these models are not guaranteed to be chiral. They are also not
supersymmetric, and supposedly many of them contain tachyons. In any case though
these high numbers rule out an explicit enumeration and evaluation of all these models.

The top nodes. We call a node T € ¢ a “top node” if there do not exist other nodes
T' — T. Remarkably, each connected component contains, among others, also a top
node representing a N’ = 4 theory. These theories are Narain-compactifications of the ten-
dimensional theory where (I'14)R is of the form (I'g)gr @ E5' and (I'¢)r is the root lattice
of a rank 6 semi-simple Lie algebra of ADE type. Recall that these right-mover lattices
appeared in the twist-shift correspondence of asymmetric orbifolds in Subsection 2.2.1.

It also turns out that, separately for each connected component of ¢, the respective
top nodes belong to the same genus. For each of these “top node genera” we performed an
exact classification using the “replacement” method described in [28, Appendix A.4] (in
some cases, for practicability reasons a generalized method which involves also odd lattices
was used). This classification is described in detail in Subsection 3.2.4. In Table 3.4, the
top nodes and the respective |Gy | are listed.
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Table 3.3: The bottom nodes of ¢, i.e. the lattices (I'i4)r generated from the 32 elementary
lattices =. Here, Aj denotes the root system of norm 2 vectors orthogonal to D', Also, some
information on the corresponding genera Gy, is provided.

Genus Lattice (T'14)r
Component |G| Bound Divisors = Ay
3.1-1017 3762 19 -
1.3-10° 2441120 18 A%
o 4.2- 101 3le? 8L -
! 34.10'2 31182 9L A
1.0- 101 2161122 9% -
2.9 - 10! 3261181 9l -
5.8 -10'7 62122 27y -
3.8-10'7 26122 11315!
2.1-10'° 42122 I T
1.8-10%° 2246 33 -
1.2-10'2 2141 3tel, -
G, 2.1- 10" 2482 9% A3
5.2-10° 2482 9% -
4.4-10° 224* 9% -
4.2-10M 43161 9% -
3.6- 10 22202 9% -
1.7-10% 224782 9%, -
Gs 4.1-10" 71142 9% -
6.1-10'® 2141242 118},
8.4-10'7 214382 e, -
9! A2
2 1.9-107 244181 a !
93 Al
5.1-10'3 234182 9% —
3.0- 10 4183 97 -
1.2-10'%  216° 15t -
s 8.2-10% 2241123 1332 -
6.0-10'7  2%'12*  1°6}, -
G 6.5-10%2 15302 %6L -
4y 2.6 - 102 21101202 3'6L, -
Gy 5.2 - 1022 21121242 1364 -
@ 2.7-10% 3262122 1631 -
’ 5.6-1010 2662 127y, -




38 CHAPTER 3. CLASSIFICATION OF CHIRAL MODELS

Table 3.4: The top nodes in 4. The corresponding left-mover genera Gp, were enumerated
completely. Here, I'** denotes the spacetime sublattice, and Az is the root system of norm 2
vectors orthogonal to I't.

Genus Lattice (I'14)r

Component  |Gr| Divisors Ag rst
4 31 3! Ee ig:t
13

Dg Egt

Gy 68 22 A3 D5,
- D

Gs 153 7! Ag ESt
A1Ds  ES

G, 326 2'4! Ay As Ds},
A D5,

ADy  ES

s 382 216! A3 D5t
Ay D,

G 1163 15! Az Ay Eg’
% 4043 210! fA"‘ igi
4 10

Gy 9346 2'12! jljz”% i{
1442 11

AtA3 E

Gy 19832 62 ﬁg g?g

st
- D12
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Nodes with A/ = 1 spacetime supersymmetry. Finally, let us consider the 19 right-
mover lattices in ¢ that lead to N/ = 1 supersymmetry. These lattices are listed in
Table 3.5, together with information on their associated left-mover genera.

For the lattice AJES® (3%) which is contained in ¢4 (cf. Figure 3.1), a complete clas-
sification of the corresponding genus Gi, was performed (this is described in detail in
Subsection 3.2.5). It was found that |Gr,| = 2030, so one can construct 2030 models from
this right-mover lattice. These models are discussed in Section 4.1. Interestingly, the
right-mover lattices A3ES (3%) and A3E§ (3%) belong to the same genus. Hence, the 2030
left-mover lattices we classified also appear in Narain-compactified N’ = 4 models.

Using the same method, we also computed an upper bound of |Gy | < 5033195 on the
size of the left-mover genus corresponding to the right-mover lattice ATES® (3162). The
lower bound from the mass formula is given as |Gr,| > 1504. An explicit model belonging
to this genus is considered in Section 4.2.

For the other lattices in Table 3.5, only a lower bound on the respective |G| was
calculated using the mass formula (in the case of the lattice with elementary divisors 26
it was lower than one and therefore meaningless). The bottom line is that, even in the
N = 1 case, we expect at least O(10'°) models. However one must keep in mind the
crudeness of the lower bound. Out of curiosity, we can quantify this crudeness in the case
of the right-mover lattice AJES' (33) where we enumerated Gy, exactly: there, the lower
bound calculated using the mass formula is of O(1073), thus the deviation is of O(106).

3.2.3 Relationship With Asymmetric Orbifolds

In Section 2.2 we discussed certain twist-orbifolds of Narain compactified heterotic strings
that could be expressed as a shift-orbifold of a covariant lattice I'2214. We saw that the
shift-orbifolding produces a new covariant lattice I'y 1, which contains a sublattice '}, 14
describing the untwisted sector. Now, that we have a complete classifiaction of right-mover
lattices for chiral models, it is interesting to investigate what right-mover lattices (I'ly)r
actually arise due to this mechanism. Let us restrict to those (I'¢)g and twists g that lead
to N =1 spacetime supersymmetry (cf. the summary in Table 3.6). Then, the obtained
right-mover lattices (I'},)r must be among those 19 right-mover lattices in Table 3.5. An
explicit calculation verified that this in fact happens (in Table 3.5 it is also denoted which
type of orbifold corresponds to which right-mover lattice). Interestingly, in several cases
it happens that different types of twist-orbifold lead to the same right-mover lattice. One
such case is given by the Z} and Z{! orbifolds constructed from (I'¢)r = Fg, as both lead
to the ATES' (3'162) right-mover lattice shown in Figure 3.1. This indicates the possibility
that some models could be obtained from either twist-orbifold construction.

Let us finally treat the question whether all elementary supercurrent lattices can be
obtained from the Zy twist-orbifold construction with Weyl twists that we introduced in
Section 2.2 (or a possible generalization thereof that also includes e.g. the Zxn x Zys case).
In [34], a simple condition is provided that allows to check whether a given admissible
supercurrent lattice Z can be obtained from the twist-orbifold construction: there must

I I — slJ

exist three orthonormal vectors e’ in Z*, i.e. e , so that for each norm 3 vector
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Table 3.5: Right-mover lattices (I'14)g with /' = 1. Here, Ay denotes the root system of norm
2 vectors orthogonal to ES'. Also, some information on the corresponding genera Gy, is provided.

Where applicable, the corresponding Zy twist-orbifolds are shown.

Genus Lattice (I'14)r
Component Divisors |G| Ay (T¢)r/Zn Orbifolds
33 2030 A3 Eg/Z3
3162 1504 < |G| < 5033195 A} Eg/Z}, FEe/Zi
@ 35 >6.9-103 Ay A3)Z3
! 339! > 2.7-10° -
31122 > 1.5-10° - Ee/Z1, A1 A5/ ZE
37 >4.1-10% —~
26 — As
2242 >3 Af
2242 > 6 A Dg/Z,
2442 >1.3-10° A} A3D4)Z4
Gy 2442 >1.3-10% -
2282 > 4.8-106 Ay A3/Z4, Dg)Z4
2282 > 8.0-10° —~
44 > 8.0-10° -
2244 > 1.7-10° —~
Gs 73 > 4.0-107 —~ Ag¢/Zy
» 224181 > 44103 A2
4 214182 > 2.3.10? ~ AyDy/ZL
s 2163 >5.2-107 — AsDy/Z{
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Table 3.6: All different types of twist-orbifolds that were found in [34] to lead to N' = 1 covariant
lattice theories. For the vg, the notation of [34] is adopted.

Component (I's)r  Type Carter Diagram vy VR
Z3 A3 (1,1,-2)/3  (1,1,0,1,1,1)/3
E ZfIi E6(a2) (1>1>_2)/6 (17031707170)/6
oz A4 (1,2,-3)/6  (1,1,1,1,1,3)/6
% Zly  Es (1,4,-5)/12 (1,1,1,1,1,1)/12
A1As  ZH A A5 (1,2,-3)/6  (3,1,1,1,1,1)/6
Ag Z3 A% (1>1>_2)/3 (17171717171)/3
D Zy A3Dy(ay) or A3 (1,1,-2)/4  (2,0,1,0,1,1)/4
" ZL  Dsla) (1,2,-3)/8  (1,1,0,1,1,1)/8
2 2 o A (1L,1,-2)/4  (1,1,1,1,1,1)/4
A2D,  Z4 A2Dy(ay) (1,1,-2)/4  (2,2,1,0,1,1)/4
g?) A6 Z7 AG (1>2> _3)/7 (17171717171)/7
4, A1Ds  Z§ AiDs (1,3,-4)/8  (4,1,1,1,1,1)/8
G AsDy  ZE AyD,y (1,2,-3)/6  (2,2,1,1,1,1)/6

t € Z there is exactly one e! such that ¢ - el = +1.

We explicitly checked this condition for all 32 elementary supercurrent lattices that
resulted from our classification. It turned out that, except for cases 127}4, 118h and
9}4, it was possible to satisfy the condition. Moreover, for these exceptional cases the
corresponding (I'14)g built from the constraint vectors are not contained in a lattice of the
form (Tg)r @ ES (note, that this would be required if above condition were true). Hence,
it is impossible for these supercurrents to appear in a N/ = 1 model.

3.2.4 Classification of Top Node Genera

In this section we classify the left-mover genera associated with the top nodes of our lattice
inclusion graph ¢. While these genera themselves do not lead to chiral models, they are
important because they can serve as a starting point for the classification of all the other
left-mover genera. The main method we use in this section is related to the “replacement”
technique of [28, Appendix A.4].

We have already observed that for each connected component ¥;, the top nodes belong
to a single genus. Hence, there are nine genera G, to classify. Furthermore, each of these
genera contains a lattice of the form I'¢ @ Eg, where I'g is the root lattice of a semi-simple
rank 6 lie algebra of ADE type. Since Ejg is self-dual, this means that the discriminant
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Table 3.7: Pairs of even lattices I's and I's. Where appropriate, I's is represented by a Gram
matrix.

Component Divisors Ig I's
gl 31 E6 A2
G 22 D A2
1 2 -1
4, 7 Ag (_1 ) )
g4 2141 A1D5 A12(4)
101 4 -2
7 216 AsDy (_2 4)
1 2 -1
g% 15 Ar Ay <_1 . )
1101 2 4 -2
@ 210! A24, (_2 ) )
% 21128 A1 Ag Ay A\Zgy
Gy 62 A3 A3 Ll

forms of the corresponding left-mover lattices (I'a2)1, must be isomorphic to that of I's:
disc ((T'22)1,) = disc(Ts) . (3.14)

Moreover, one shows that for each genus, there exists an even Euclidean lattice I's such
that Fg D I'¢®T'9 is a self-glue free decomposition (these lattices I'y are listed in Table 3.7).
Hence,

disc(T'g) = disc(T'z). (3.15)

By combining above isomorphisms we see that for any (I's2)r, € G, there must exist an
Euclidean even self-dual lattice I'o4 which has a self-glue free decomposition

[aq D (Ta2) @ T2 (3.16)

The even self-dual lattices in 24 dimensions form a genus G, for which a classification
is available due to Niemeier [57] (it turns out that |G| = 24). Then, by reversing above
argument one notices that it is possible to classify the Gy, in question by computing the
orthogonal complement of I's in I'y4 for all inequivalent embeddings of the respective I's
into a I'yy € Q;g

Note, that the case ¥ where I'¢ = FEjg has already been classified by hand using
this method [24], and we explicitly list the lattices in this left-mover genus in Table 3.8.
Although above technique works in principle for all the ¥, the available computational
resources were sufficient only for the cases ¢ to ¢;. This is because these cases are in
principle controlled by enumerating only norm 2 and norm 4 vectors in I'y4, which turned
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out to be viable for all I'yy € QSZL. The other cases involve the enumeration of vectors
of larger norm, which happened to be computationally too expensive. Nonetheless, it
was possible to classify the remaining genera by similar methods which make use of odd
lattices. In the following we describe these methods.

Method for A-type lattices. Let us begin by describing an technique that is in prin-
ciple applicable in cases where I'g consists only of factors of A-type. First, note that for
any n € NT there exists a (self-glue free) decomposition of the form

Z" D A ® Zpi1y (3.17)
and hence
dise_(Ay) = dise_ (Zay)) - (3.18)

With this in mind, let us now consider the genus Gy, associated with the top nodes of %
(i.e. the case I's = ApAy). Using the embeddings Z3 D Ay @ Z(3) and 75 D Ay & Z5) we
then obtain

dise_(Tg) = disc_ (Z)Zs) ) (3.19)

one concludes that for each (I'z2)1, € Gy, there must exist an odd self-dual lattice I';, which
decomposes as

Iy 2 (T @ Z(g)Z(g,) . (3.20)

The genus G,, of odd and self-dual lattices in 24 dimensions was classified in [39, 58], with
the result that [Gy,| = 273. Then, by determining the orthogonal complement of Z3)Z s
in I'y,, for all inequivalent embeddings of Z3)Z5) in a I'y, € Gy, it was possible to classify
G1,. Besides the even lattices (I'a2)1, that we are interested in, this procedure also produces
odd lattices (I'22)r, which we must discard.

Method for lattices with D-type factors. Let us now introduce a further alternative
method which is applicable in the cases where I'g contains a factor of D-type. First, note
that the vector conjugacy class (v) of a D, lattice has integral norm (in this context we
use Dy = Zy), Dy = A} and D3 = A3), and that Z" = D, U (v). We can thus map a D,
factor contained in I'¢ to Z", giving us an odd lattice I'y D I's. Since

disc_ (T'g) = disc_ ((T'22)1,) = disc_(T'2), (3.21)

we can perform an analogous mapping also for (I's2), and I'g, resulting in some odd lattices
I'55 and I'; . The lattices I'g and I'; are listed in Table 3.9. Then, by using a generalization
of a lemma proven in Appendix A.2 (Lemma 1) that also covers odd lattices, one obtains

disc_ (I'y ) = disc— (T'yp) = disc_(Ty) . (3.22)
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Table 3.8: The genus of 22-dimensional even Euclidean lattices I' of determinant 3, given by
providing a sublattice I'g and glue vectors.

27 AZwyZL2) 2'6112!
28 DiZwyZazy — 2°4

3,0,0,3,1/2,0), (0,1,1,4,1/2,0), (1,0,1,2,1/4,1/4)
¢, 8,0,v,8,0,1/2), (¢,0,¢,v,v,1/2,1/2),
v,0,¢,0,¢,1/2,1/2), (¢,v,v,¢,0,1/2,1/2),
0,c,v,v,¢,1/2,1/2), (s,8,8,8,8,1/4,1/4)
0,0,2,3,3,2,1/5), (

1,4,1,0,1,4,1/10)

0,1,1,2,0,0,1,1/4), (1,0,1,1,2,0,0,1/4),
0,1,0,1,1,2,0,1/4), (0,0,1,0,1,1,2,1/4)
1,1,0,0,1,0,2,0,2,0,2), (1,1,2,1,0,0,0,2,2,0,0),
1,0,0,0,0,1,2,2,2,1,0), (0,1,2,0,1,0,2,2,0,1,0),
1,0,2,1,0,0,2,0,0,1,2)

29 A1 A3Z 50 52101 0,2,0,2,3,3,1/5),
30 AlZqo 44

31 AL 35

No. I /Ty Generators of I'/T'y
1 DnZ 41 (s,1/4)
2 Di3EsZ12) 41 (5,0,1/4)
3 DigEs 2! ( 0)
4 EgE? -
5 AgZge) 221 (5,1/22)
6 DgD127Z12) 2141 (v,5,0), (s,v,1/4)
7 AuE:Zq 10! (3,1,1/10)
8 AsAir 6! (3,3)
9 DiE2Zs 2141 (v,1,1,0), (s,1,0,1/4)
10  AsDioEr 22 (3,5,0), (0,¢,1)
11 ADoZsg 52! (2,5,1/52)
12 A13DeZayy 28 (0,v,1/2), (2,s,1/4)
13 D5D3Z12) 2241 (v, 8,v,0), (v,v,5,0),(s,v,v,1/4)
14 AgA1oZgze0) 130" (1,5,1/130)
15 AsD:EZsg — 36" (1,5,1,1/36)
16 ADsEeZay 21120 (0,0,0,1/2), (1,5,1,1/4)
17 A3A11D; 12! (1,1,1,s)
18 AZE3 32 (1,1,1,2,0), (1,1,2,0,1)
19 AgAgDeZeoy 270" (0,5,v,1/2), (1,2,5,1/70)
20  A3A27Z 5 21201 (0,5,5,1/2), (1,2,9,1/4)
21 A3D§Z19) 2341 (2,v,v,v,0), (2,¢,5,v,1/2), (2,5,v,¢,1/2),
(3,v,5,0,1/4)
22 A5A27Z s 31181 (0,3,6,0), (1,4,1, 1/18)
23 A4A7D2Z(100) 4140 (0,0,¢,¢,1/4), (1,1, s,v,1/40)
24 AAZD;Zy 2148 (1,1,0,0,0,1/2), (1,0,2,0,¢,1/4), (1,1,1,7,s,0)
25 AgARZsa 71280 (0,0,2,6,1/7), (1,6,2,1,1/28)
26 AsA3D,Zg  2'62 (0,3,0,0,5,1/2), (1,2,3,4,v,1/6), (1,4,2,3,¢,1/6)
(
(c,
(
(
(
(
(
(
(1,
(1,
(1,
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Table 3.9: Pairs of odd lattices I'y and I'; .

Component I'y ry
Gy A /e
2 AZP AZ
Gs Ay Z3)Z
G A2 L)L
G AL AZE AL
Gy A37? Lt

Thus, there must exist an odd self-dual lattice I'y, € G, with self-glue free decomposition
I, OT5aT; . (3.23)

We can then determine the genus Gy of the lattices I'y, by determining the inequivalent
embeddings of I'; in an odd self-dual lattice I'y; € Gy, (in cases where I'; contains Z
factors the problem can be reduced to lower-dimensional odd self-dual lattices). Finally
for each I'y, € G; we can determine the corresponding (I's2)r, and thus the genus G,
by computing the sublattice of even vectors. Note that the correspondence Gy <« Gy, is
one-to-one, except for the case ¥ which involves D4. In that case the correspondence is
many-to-one due to the triality of Dy.

Note that this method is similar to to the one described at the beginning of this
subsection. However, the lattices I'; are controlled by lower-norm vectors than their even
counterparts I's which made the problem solvable on a computer. The resulting numbers
for |G| are then listed in Table 3.4.

3.2.5 The Subgenus Method

We now introduce a method that is suitable for the enumeration of the remaining left-
mover genera, but begin with a rather generic discussion. Let Ag be an even lattice that
belongs to a genus Gp. Furthermore, assume that there is a vector w € A§ with w ¢ Ag
that satisfies w? € 2Z, so that we can construct the even overlattice

A= (Ao U{w)), (3.24)

belonging to some genus G. Clearly, A/Ag is a cyclic group. Let in the following denote
N =|A/Ag|. Then, by a theorem proven in Appendix A.2 (Theorem 3), there must exist
another vector v € Aj satisfying

Nv e A",

(3.25)
kv¢ A" for ke {1,...,N -1},
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so that Ag = I,,(A). Here, we define I,,(A) for a lattice A and a vector v in the R-span of
A as

IL(A)={zeA|z-veTZ}. (3.26)

This suggests a method for the classification of Gy. Suppose we have already completely
classified the genus G. Then, for each A € G we compute the vectors satisfying (3.25) and
the corresponding lattices I,(A) as in (3.26). Of course, there are infinitely many such
vectors v, but two vectors v and v’ satisfying (3.25) produce same I,,(A) if

v —fv e A* (3.27)

for some automorphism 6 of A. Hence, it is sufficient to consider only one representative
v of each orbit of the natural action of Aut(A) on the set A*/(INA*) (clearly, there are
only finitely many orbits). Nevertheless, we may still obtain several isomorphic copies of
a lattice I,,(A) for different A € G and v, and we must remove the duplicates at this stage.
Now, let S denote the (finite and duplicate-free) set of all I,,(A) obtained this way. We
claim that this set always is a (disjoint) union of complete subgenera G; of G, the original
Go being among them (a subgenus of a genus G shall be the genus of a sublattice of a
lattice in G). We now sketch a proof of this claim. What we basically have to show is
that, if some lattice Ag € G; belongs to S, then any other lattice Aj, € G; also belongs to
S. Clearly, for such a lattice A{, there must exist a discriminant form isomorphism

¢ : disc(Ag) +— disc(Ag) , (3.28)

because Ay and Aj, belong to the same genus. Also, we know that there must be a vector
w € Aj satisfying A = (AgU{w}) € G. Then, we can choose a representative w’ € ¢(w+Ag)
and construct another even lattice

A = (AU {w'}) (3.29)

Clearly, |A’/Ay] = N. Also, by Theorem 3 there exists a v’ with the same properties as
v in (3.25), but with A replaced by A’, so that Aj = I,y(A’). Now from a lemma proven
in Appendix A.2 (Lemma 1), one observes that A and A’ have isomorphic discriminant
forms. Thus, A’ also belongs to G. But then, as we constructed S from all lattices in G,
also A{, € S, which proves our claim.

Above method does in general also produce subgenera G; of G other than the desired Gy.
A simple way to deal with this is of course to remove the unwanted genera afterwards. It is
also possible to impose additional conditions on v which allow to single out Gy. However,
the explicit form of such conditions depends on the concrete genus G and the subgenus of
it we wish to classify.

All left-mover lattices (I'22)1, belong to some genus Gy, that is a subgenus of a top node
genus. Using above method for prime subgenera (i.e. N being a prime number) we can
classify the left-mover genera corresponding to the right-mover lattices directly below the
top nodes. By repeating this procedure in the obvious way it is in principle possible to
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classify all left-mover genera (in practice though this is not computationally viable, as the
genera become very large).

Note, that the way we compute I,(A) in (3.26) clearly resembles the calculation of
untwisted sectors in the shift-orbifold construction studied in Section 2.2 (in the following
we also refer to the vectors v as shift vectors).

The Eg/Z3 left-mover genera. The right-mover lattice (I'14); = ASES (3%) in Fig-
ure 3.1 is a sublattice of the top node (I'14)r = EgE§' (3') whose associated left-mover
genus Gy, was classified in Subsection 3.2.4 (the 31 lattices in Gy, are displayed in Table 3.8).
Using the subgenus method, a classification of the left-mover genus G| corresponding to
(I'14)R was performed. Note that N = 3, and in fact this right-mover lattice appears in
Z3 orbifolds of from Narain theories with (I's)g = FEs.

First, we calculate all inequivalent shift vectors v satisfying

3v € (Fgg)i, (3.30)
v ¢ ()i, (3.31)

for each of the 31 lattices in (I'a2)1, € Gi, as described above. In order to single out the
left-mover genus associated with (I'14)g, we impose the additional constraints:

3v € (FQQ)L, (3.32)
30 €27, (3.33)

These also originate from a modular invariance condition in the asymmetric Z3 orbifold
construction [25]. By computing orbits under the respective Aut((I'22)1,) it turned out
that in total there are 5317 inequivalent shift vectors v, so that one obtains 5317 lattices
(T'22);, € G by computing the respective I,((I'e2)1,). After removing duplicates, 2030
lattices remained and thus |G | = 2030.

The Egs/Zs left-mover genera. From Figure 3.1 we see that the right-mover lattice
AZEE (3) has a sublattice ATES (3'62) of index N = 2. We are interested in its left-mover
genus G, which corresponds to Zg orbifold models from Narain theories with (I's)g = Eg.
Then, similarly to above case, we calculate inequivalent shift vectors of order 2,

2v € (F22)£k , (3.34)
v ¢ (Ta2)l, (3.35)

for each of the 2030 lattices in (I'g2)f, € Gf . It turned out that there are in total 10069090
such shift vectors, and that the corresponding lattices as calculated using (3.26) split into
precisely two genera. Among these lattices, 5033195 belong to the genus G;'. However,
due to the computational complexity it was not possible to remove duplicates, thus the
number 5033195 may only be interpreted as an upper bound on |G{|.
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Chapter 4

Model Building

In the previous chapter, we investigated the general structure of the space of chiral covari-
ant lattice models by classifying the right-mover lattices (I'14)r. We observed that only
19 right-mover lattices lead to models with N/ = 1 spacetime supersymmetry, and that
some of them arise in certain Zy orbifold compactifications. In this chapter, we discuss
explicit models belonging to two of these 19 classes of covariant lattice models, one class
corresponding to Z3 orbifolds and the other to Zg orbifolds.

4.1 A Class of Asymmetric Z3 Orbifolds

In this section, we consider covariant lattice model building with the right-mover lattice
ASES® (3%), which corresponds to asymmetric Z3 orbifolds built from a Narain lattice
containing an Eg factor. Some of these models were already considered previously in
the asymmetric orbifold framework [25]. We start by giving an explicit construction of
the right-mover lattice and study its phenomenological implications. Then, we search for
(semi-)realistic models, and discuss one particular model in detail.

4.1.1 Massless Right-Mover Spectrum and Supercurrent

The right-mover lattice (I'14)r = A3ES (3%) is defined by the following union of conjugacy
classes of AJEg:

(T'14)r = (0,0,0,0,0) U (1,1,1,1,1) U (2,2,2,2,2). (4.1)

One checks, using Q4,(1) = Q4,(2) = 2/3 and Qg,(1) = Qg,(2) = 4/3, that by above
definition (I'14)r contains only even norm vectors. The quotient group, (I'ia)g/(T'14)r is
of Z3 structure, and is generated by the following unions of conjugacy classes:

xi= (1,0,0,0,1)U(2,1,1,1,2) U (0,2,2,2,0),
X2 = (07 1,0,0, 1) U (1727 1, 172) U (27072a 2a0) 5 (42)
3= (0,0,1,0,1) U (1,1,2,1,2) U(2,2,0,2,0).

49
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In the following, we identify a coset in (I'14)/(I'14)r, by an integer triple (Q1,Q2,Q3)
that denotes a linear combination of the generators y;. The “sector charges” @); are defined
only modulo 3, and we choose them to lie in the range {0,1,2}. Note, that the sector
charges of a state can also be determined from its gauge representation, which depends
on the left-mover lattice.

Massless right-mover spectrum. Following the prescription in Subsection 2.1.4, we
now determine the massless right-mover spectrum. Let us begin with the (0,0, 0)-sector
which corresponds to (I'14)g. This sector generically gives us a spacetime N/ = 1 vector
multiplet from the 78 of E§'. The other states with hg = 1 form an adjoint representation
of A3, but they are unphysical due to the truncation condition (2.17)—(2.18).

Chiral multiplets arise from the 27 representation of E§', i.e. from its (1) conjugacy
class (27 contains the CPT conjugates). Note that such a conjugacy class is contained in
each sector, but only some give rise to massless states: the norm in the A3 part must be
2/3 to satisfy the masslessness condition. This happens precisely for the conjugacy classes

(1,0,0,0,1),
(0,1,0,0,1),
(0,0,1,0,1),
(0,0,0,1,1),

(4.3)

which belong to sector (1,0,0), (0,1,0), (0,0,1) and (2,2,2), respectively. Each of these
gives three massless right-mover states forming a triplet 3 of the corresponding SU(3).
In the effective theory they are represented by chiral N' = 1 superfields @, which are
denoted in Table 4.1.

Interpretation in the orbifold setup. When considering (I'14)r in the Z3 orbifold
setup, one can distinguish between untwisted and twisted sectors. It turns out that the
untwisted sector corresponds to one of above four sectors, and the other three originate
from twisted sectors. Furthermore, each sector is threefold degenerate. For the untwisted
sector, this degeneracy is determined from orbifold phases that are assigned to the mo-
menta of the chiral bosons H®. The degeneracy of the twisted sectors can be calculated
from the formula [19]

I, i¢2(2sin(mt"))
det(Ig(Fggﬁ))

D= (4.4)

Here, 6 denotes the twist 01, ®0r and 0 < ¢ < 1 the corresponding twist vector. Moreover,
Ip(T'22,6) denotes the sublattice of the Narain lattice I'yg ¢ that is left invariant under the
twist. In our construction 6, is the identity and g has twist vector (1,1,2)/3. Hence,
the invariant sublattice is given by (I'22)r, which must have det((I'22)1,) = 3 because also
det(Eg) = 3. From this one calculates the degeneracy of the g and the (CPT-conjugate)



4.1. A CLASS OF ASYMMETRIC Z3 ORBIFOLDS 51

Table 4.1: Massless chiral superfields from the A3Eg(3%) right-mover lattice. The index k
transforms as the fundamental triplet of the corresponding SU(3).

Superfield SU(3)* Q1 Q2 Qs

Dyp (3,1,1,1) 1 0 0
Doy, (1,3,1,1) 0 1 0
Dy, (1,1,3,1) 0 0 1
Dy (1,1,1,3) 2 2 2

Gf{l twisted sector as D = 3, in accordance with our result from the covariant lattice
description.

Note, that the right-mover lattice AJES® (3%) has a symmetry that permutes the four
sectors. In fact, any of above four sectors serves equally well as an untwisted sector in
the orbifold description. This is related to the fact that the same model may be obtained
from different (Narain) left-mover lattices (I'a2)r.

The supercurrent. Let us now fix a realization of the supercurrent Giy(z). First,
we determine all norm 3 vectors s that can possibly appear in the constraint vectors
(0,s,v) € (T'14)r of a supercurrent. For this we decompose the root lattice ES' as

Eg > DS & Zz) - (4.5)
The conjugacy classes of Eg' then branch as

(0) = (0,0) U (s,1/4) U (v,1/2) U (c, 3/4),
(1) — (0,2/3) U (s,11/12) U (v,1/6) U (¢, 5/12) , (4.6)
(2) — (0,1/3) U (s,7/12) U (v,5/6) U (¢, 1/12) ,

and the corresponding representations as in (2.78) under Eg — SO(10) x U(1)r. We also
let Ag denote the orhogonal complement of D' in (I'14)g. It is given by

Ag = (0,0,0,0,0) U (1,1,1,1,2/3) U (2,2,2,2,1/3) (4.7)

in conjugacy classes of A @ Z(12), as can be deduced from the definition (4.1) and the
branchings (4.6). The norm 3 vectors s then must lie in the dual lattice A§, and in
particular belong to a conjugacy classes which is glued to the (v) of D§'. Using (4.6) one
finds that the these are:

(0,0,0,0,1/2) U (1,1,1,1,1/6) U (2,2,2,2,5/6), (4.8)

in terms of A3 @ Z(12)- Then, we obtain two norm 3 vectors from the conjugacy class
(0,0,0,0,1/2). In the conjugacy class (1,1,1,1,1/6) there are another 81 such vectors
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forming the (3,3, 3,3,1/6) representation of SU(3)* x U(1)z. Among them we choose the
following nine:
w1, W1, W1, Wi, 1/6 )

w2, w2, W2, W1, ]-/6 3

w3, w3, ws, Wi, 1/6 )

= ( )

= ( )

= ( )

= (w1, wq, ws, wa,1/6),
= (wa, w3, w1, ws,1/6), (4.9)
= (w3, w1, w2,w2,1/6),
= (w1, w3, w2, w3, 1/6),

ss = (w2, w1, w3, ws, 1/6),

sg = (w3, we, w1, ws,1/6),

where w;, wy and w3 denote the weights of the triplet of SU(3):

2000 o
= — 4 = 4.10
w1 3 3 ) ( )
aq Qa2
=——4 —= 4.11
w2 3 3 ) ( )
a7 20&2
- = 4.12
w3 3 3 ’ ( )

a1 and ap being simple roots. The vectors s; fulfill s;-s; = 30;;. Since the conjugacy class
(2,2,2,2,5/6) contains the vectors —s;, it is possible construct the 19 supercurrent as

9
mt Z

k=1

( isp-Xg(2). €(3k,ﬁR) + ;@_isk'XR(z)ZE(_Sk;ﬁR)> . (413)

5\**

Henceforth, we let = denote the lattice spanned by the s;. Note that we do not fix an
explicit form of the cocycle &(s,t). This is not necessary because in this particular case
the supercurrent can be taken as (4.13) for any choice of the cocycle. Note that for this
right-mover lattice also the 118}, 91 95 and 9} elementary supercurrents are possible.

4.1.2 Discrete Symmetries and the Superpotential

The right-mover spectrum that we determined formally comes in representations of the
right-mover zero-mode Lie algebra A3 x U(1)g (the U(1)z coming from the lattice decom-
position E§' — DS @ Z(12)). To this Lie algebra corresponds a symmetry group

Gr=SUB)* xU(1)p/Zs, (4.14)

where the origin of the Z3 becomes clear later. Although Gg is a symmetry of the CFT
correlation functions, it is not a symmetry of the effective four-dimensional theory. This
is due to insertions of the picture-changing operator &1 = :G(z)ei¢(z):, which is not
a singlet under Ggr. However, in Subsection 2.1.4 we argued that the (necessarily finite)
stabilizer subgroup Hr C Ggr which acts trivially on the supercurrent is a symmetry of
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the effective theory. Among these symmetries one clearly finds the Z3 from the conserva-
tion of the sector charges @;: they are conserved (modulo 3) in any interaction because
the picture-changing operator belongs to the (0,0,0) sector. The representation of the
remaining symmetries in Hg depends on the explicit form of the supercurrent, which we
in the following assume to be that of equation (4.13).

Let us now determine the subgroup Hg of SU(3)* x U(1)r/Z3 that stabilizes Gint(2).
Although the supercurrent transforms inside the representation

(3,3,3,3,1/6) @ (3,3,3,3,-1/6), (4.15)

it is sufficient to consider only the (3,3,3,3,1/6) part due to the Hermiticity prop-
erty (2.84) that the supercurrent (4.13) obeys. Henceforth this representation is denoted
by a tensor ¢;jx, and from (4.9) we infer that the special subspace inside this representation
corresponding to the supercurrent can be given by

C1111 = €2221 = €3331 = C1232 = C1323 = 17 (4'16)

and zero for all other combinations of indices (the underline denotes all cyclic permuta-
tions). Let us now denote an element of SU(3)* x U(1)g by a tuple

(UlvUQaU3aU4aC) ; (417)
where Us € SU(3) and ¢ € U(1)g. The supercurrent then transforms as
Cijkl = C;jkl = CZ(Ul);n(UQ)?(US)z(U4)§)Cmnop7 (418)

where we used the fact that the U(1)gr charges are quantized as multiples of 1/12. The
component fields of the chiral superfields ®;,

Dy = dsi + 0 s + 0°Fy; (4.19)

and the superspace variable 6 transform as

Gsi > Oy = C (UL} s (4.20)
i > Py = ¢ (Us)f s (4.21)
Fyr Fly = MU Fak (4.22)

00 =%, (4.23)

The first thing that we immediately recognize is that the transformation

(wl,wl,wl,wl,w), (4.24)

where w = ¢2m/3

, acts trivially on the supercurrent and the fields (also in the massive
sector). This transformation generates a Z3 central subgroup N of SU(3)* x U(1)g, and

its origin can be traced back to the fact that

Ao/ (A3 & Zra)) = Zs. (4.25)



o4 CHAPTER 4. MODEL BUILDING

Due to this trivially acting Z3 subgroup, the actual symmetry group G is given not as
SU(3)* x U(1)g, but rather as the factor group (4.14). In the following, let Hy denote
the subgroup of SU(3)* x U(1)r given by those tug)les (4.17) for which ¢[;;; = cijpi. The
group of discrete symmetries Hy is then given by Hg/N.

Let us begin by determining the subgroup of Hg, that lies in the Cartan subgroup U (1)°
of SU(3)* x U(1)g generated by the right-mover momentum operator pr. We denote an
element of this group by e2™P&. Now, in order for such a transformation to stabilize the
supercurrent, £ must belong to =Z*. Furthermore, since the internal right-mover quantum
numbers kg (the eigenvalues of pr) of a physical state must lie in the dual lattice A§, £ is
only determined modulo vectors in Ag. Hence, we obtain a symmetry of the form Z*/Ag.
This quotient has, as one shows preferably by a computer calculation, the structure Z$ x Z.
The Z5 factor corresponds to the symmetry that assigns each spacetime fermion a minus
sign, and corresponds to the superspace transformation 6§ — —60. It is given by a vector
&9 € E* of the form

& =(0,0,0,0,1/2), (4.26)

in components of A3 ® Z12)- The remaining 7§ is generated by the following independent
vectors in =2*:

& = (—w1,0,0,wy,0), (4.27)
&2 = (0, —w1,0,w1,0), (4.28)
&= (0,0, —w1,w1,0), (4.29)
& = g1, 01,01,0,0), (4.30)
& = 3(0,—a1, a1, —a2,0), (4.31)
¢ = (w1, wi,wi,wi,5/3). (4.32)

One checks that above vectors ¢ satisfy € - kr € Z for kg € =. Note, that we recover the
sector charges (Q1,Q2,Q3) as 3(&1 - kr, &2 - kr, &3 - kr) for the states in our spectrum. We
also define Q4 = 3&4 - kr and Q5 = 3¢5 - kr. These charges are different for the component
fields in the SU(3) triplets. Finally, one checks using the branching rules (2.78) that
R = 3£Rr - kr gives different values for bosonic and fermionic states in the same chiral
multiplet:

R(fermion) = R(boson) +1 mod 3. (4.33)

Hence it is a discrete Z3 R-symmetry. Since the R-charge of a chiral multiplet is defined
to be that of its bosonic state, the discrete R-charge of the superpotential must add up to
1 mod 3. The discrete charges for the massless chiral multiplets are listed in Table 4.2.

Let us now rewrite above Z§ x Z; symmetry in the language of the tuples (4.17). The
Zo symmetry associated with &y is then represented by

(1,1,1,1,—1). (4.34)
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Table 4.2: Discrete Z3 charges of the massless N' = 1 chiral superfields from the A3ES(3%)
right-mover lattice. The discrete R-charge of the superspace variable 6 is defined as 2 (mod 3).

Superfield @1 Q2 Q3 Q4 @5 R

P14 1 0 0 1 0 1
D9 1 0 0 2 0 0
Pq3 1 0 0 0 0 0
d9y 0 1 0 1 2 1
Doy 0 1 0 2 1 0
Dog 0 1 0 0 0 0
B o 0o 1 1 1 1
P39 0 0 1 2 2 0
P33 0 0 1 0 0 0
Dy 2 2 0o 0 1
Dy 2 2 0 2 0
Dy3 0 1 0

The symmetries corresponding to above discrete charges are given by

Qr: (wl,1,1,w%1,1), (4.35)
Qo (1,wl,1,0?1,1), (4.36)
Qz: (1,1,wl,w?1,1), (4.37)
Qi: (AA A1), (4.38)
Qs: (1,4% A,wA% 1), (4.39)
R: (B,B,B,B,ew), (4.40)
and one may verify again that they stabilize c;j5;. Here we use € = e*™/9 and the SU (3)
matrices
w 0 0 e O
A=(0 w? 0|, B=|0 e? 0 |. (4.41)
0 0 1 0 0 ew?

Let us now discuss the possibility of symmetries other than the above. First, note that
the projection of all tuples (U, Us, Us, Uy, ¢) € Hg on the i-th SU(3) must give a finite
subgroup of SU(3) which we call G; in the following. From (4.35)—(4.40) we see that,
regardless of which component we choose, GG; contains the Z3 x Zg subgroup generated by
A and B. The possible finite subgroups of SU(3) are well studied [40, 59, 60], and the
existence of a Z3 X Zg subgroup essentially restricts possible extensions of the G; to the
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groups Cg(,g and Dég of [61], and to the exceptional group ¥(216 x 3) which has received

some interest as flavor group in the past [62]. These groups are interrelated as

CS C D§Y) € £(216 x 3), (4.42)
and one can choose them to be generated them as follows:
C§ . A,B,CiCo, (4.43)
D{y: A B,Ci,Cy, (4.44)
¥(216 x3): A, B,Cy,D. (4.45)

Here we additionally use the SU(3) matrices

-1 0 0 0 0 -1 . 1 1 1
Ci=(0 0 -1, Co=]0 -1 0|, D=—2|[1 w w?|, (446)
Z\/g
0 -1 0 -1 0 0 1 w? w

and C3 = C1CyCy. Note that any two of the C; generate a lift of the Weyl group S3 of
SU(3) into SU(3), and that D? = Cy. The next step is to check that the elements

(025 02) 027 C17 1) ) (4.47)
(C1,C2,C5,C, 1), (4.48)
(D.D.D,D.1), (4.49)

of SU(3)* x U(1)g stabilize c;jr;. For the first three this can easily be seen because
they only act as permutations on the vectors s;. The last one is better verified on a
computer. As a consequence, one observes that the G; are given by (216 x 3), so Hp
must be a subgroup of ¥(216 x 3)%. In fact one can check that the group generated by
the tuples (4.34), (4.35)(4.40) and (4.47)—(4.49) already span the whole group Hy, which
turns out to be of order |Hg| = 314928. Hence, the discrete symmetry group Hg = Hg/Z3
has order |Hg| = 104976.

The superpotential. Let us now construct the most general effective superpotential,
up to fourth order, that is consistent with the symmetries we found. Obviously, the three-
point coupling in the superpotential does not require picture changing, and hence it must
be an SU(3)?* invariant. The only such invariant that we can write is of the form

4
W= c*P,; 0 Py @ Dy, (4.50)
s=1
where we use the notation “®” to indicate that we must also produce gauge-singlets, whose
form depends on the choice of the left-mover lattice. From invariance under the discrete
symmetries, the four-point term boils down to the somewhat expected form

Wy = cMP @ Byj @ Byp, @ Dy (4.51)

where ¢kl = c;‘jkl. The next higher terms of the superpotential are six-point couplings,

by invariance under the sector charges.
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4.1.3 Search for Three-Generation Models

In order to construct a complete model, we have to provide a left-mover lattice (I'a2)r,
that belongs the genus Gy, associated with the right-mover lattice AJES® (3%). In Subsec-
tion 3.2.5 we described the classification of this genus, the result being |Gr,| = 2030. Thus,
we can construct 2030 models from this right-mover lattice. Two models belonging to this
genus were already described in [25].

Let us now perform a systematic search for standard-model like models. The first
thing we do is to restrict to models that contain the standard model gauge group Ggym =
SU@3)c x SU(2)r x U(1)y (without extending to a larger group), and three generations
(or families) of chiral matter. As most of the 2030 models contain several U (1) factors, it
will be convenient to define the family number in terms of the non-Abelian factors only:

Ny = #(3a 2) - #(57 2)7 (4'52)

Furthermore, a model may contain several SU(3) or SU(2) factors, and we may obtain
different family numbers for different assignments. Note that due to anomaly cancellation
also

2N = #(3,1) — #(3,1), (4.53)

as the only representations allowed at the massless level are singlets and doublets in the
case of SU(2), as well as singlets and triplets in the case of SU(3). Note that since the
chiral fields in these models always come in a threefold degeneracy, the family number
must necessarily be a multiple of three. An explicit calculation showed that among the
2030 spectra, 499 allowed for an assignment of SU(3)c x SU(2); with |Np| = 3, the
total number of such assignments being 1507 (here, we do not exclude possible equivalent
assignments, for which a permutation of the corresponding Ggn factors is induced by a
lattice automorphism).

All of these assignments contain exotic fields (in particular colored fields) which one
must decouple at some high scale. However, there is a general difficulty to decouple such
fields at three-point level of the superpotential, which we now explain. Let us consider in
the following a singlet s uncharged under Ggy (including hypercharge), and two fields d
and d oppositely charged under Ggyp. For these fields there shall exist a superpotential
term of the form sdd, which reads

€ijk8iajdk s (4.54)

where we explicitly write out the SU(3) triplet indices of the right-mover Gg representa-
tion. Now, assuming s obtains a vacuum expectation value (VEV) the mass matrix of the
fields d; and Ej is completely antisymmetric. Such a matrix always has a zero eigenvalue
and hence one pair of chiral fields remains massless. Also, the remaining two vector-like
fields would obtain the same mass. Then, in order to decouple the exotic fields we must
also study the four-point terms. Note that this argument also applies for a Yukawa term
such as H,Qu¢, resulting in a light up quark but equally heavy charm and top quarks.
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Hence, it will be difficult to obtain realistic Yukawa terms, and the inclusion of higher
terms of the effective superpotential is indispensable.

Let us now consider a concrete | Ng| = 3 model by choosing a specific left-mover lattice
(T22)1,. In order to describe this lattice, we define a sublattice 92 in terms of root lattices
and specify a set of conjugacy classes. The sublattice is as follows:

[ao = A?A2A3A4Z(4)Z%g)Z(10)Z(12)Z(24)Z(60)Z(120) (4.55)

Note, that I'sp has elementary divisors 2761122602120%2. The cosets in (I'go)r/T'a2 are
generated by the following conjugacy classes:

(0,0,0,0,1,0,0,0; 3,0,0,3,0,0,0,0),

. 1 11
(]-aOaOaOaOaOv/UaO?O)O,§7Oa§a57070)7
(0,0,0,1,0,0,0,0; 3, 3,0,0, 3, 3,0,0),

. 1 1111
(1’1a170707031}7070>07§70a5753575)7 (456)
(170707171707670;%7070707070707%)7

. 1 2 1 7 7 3
(Lov1707072707270>67§a0aﬁaﬁv%??{))a

.15 1 7 3 17 3 61
(0707070707277)7271)6737@717%72707m)7

where we choose to separate the semi-simple part and its orthogonal complement by a
semicolon. The group ('22)1,/T'a2 then is of the structure ZjZ4Zs0Z120.

We now have to glue (I'a2)1, and (I'14)r together to an even self-dual lattice I'gg 14. For
the right-mover lattice we consider here, there is only one inequivalent way to perform this
gluing. To see this, first note that in (I'14)}/(T'14)r there are only 8 cosets of even norm,
which correspond to the four sectors in Table 4.1 and their CPT conjugates. Furthermore,
the automorphism group of disc((I'14)r) is of structure O(3,F3) = Zy x Syi, where the
Sy acts by permuting the four sectors, and the Z; as CPT conjugation (here, F3 denotes
the finite field of three elements). However, all these discriminant form automorphisms
are induced by lattice automorphisms of (I'14)r (note that there is an S4 group which
permutes the four Ay factors), so all embeddings in an even self-dual lattice I'yp 14 are
equivalent. Hence, there is no need to explicitly write down the glue vectors.

Now, separately for each sector, we read off the massless left-mover spectrum by solving
equation (2.66). First, we recognize that this model has gauge group

SU(2)% x SU(3) x SU(4) x SU(5) x U(1)%, (4.57)

(divided by some central subgroup). The chiral multiplets are displayed in Table 4.3,
where we understand that the right-mover structure of a sector is as in Table 4.1. In
Table 4.3, we have already chosen an assignment of the standard model gauge group Gs,
for which SU(2)r, corresponds to the fifth A; factor in (4.55). The hypercharge is given
as the following linear combination of the ¢;:

Y:$+q74+@_%_ gs

—_—. 4.
4 ) 6 24 120 (4.58)
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This model also possesses an anomalous U(1) 4, as is apparent by computing the traces:

1
35 Tr(@) = (-3.1,0,-1,5, 1,1, -9). (4.59)

One can show that above assignment of the hypercharge is non-anomalous, and that it
further ensures that all exotic matter is vector-like under Ggys.

Next, we write down the gauge-invariant terms of the superpotential (the right-mover
structure is as in (4.50) and (4.51)).

W3 = LE°Hy + QU H, + nsdg D¢
+ s1ning + sadids + s3nzng + sadgds
+ s5dgdr + sgdiodi1 + s7di2dis + ssdigdir - (4.60)

Wy = ningnsny + ninadizdir + didsnsUC + dodrdi3U€
+ dod7d17 D¢ + nyngLH,, + nsdgdigL + de D°H,Hy
+ s1dgdioHy + sadgdii Hy + s3D°QHg + sgningny
+ 54d1d10U° + s4d1d15D° + s4dg EUC + s5dgnsdia
+ $5d12d17EC + sgnangny + sedadedie + sedads@
+ s7d7QL + ssdidrdiy + ssdgdi3Hg + s153d12d16
+ s186ds5d15 + s158d7dg + s2s3dindie + s2s5d10di7
+ sgs5d13d1s + s287d5di17 + S487d3d1a + S588n2M6
+ sgssdsdy + s7sgnans . (4.61)

We observe that there are Yukawa terms for the charged leptons and the up-type quarks.
However, from the preceding discussion we know that this results in m, ~ m, and m. ~
my, so this model does not appear very realistic. By giving the field s3 a VEV we obtain
further Yukawa terms for the down-type quarks. Let us now discuss the decoupling of
exotic matter fields d;. Except for di, do, dg and dg, we obtain mass terms for these
fields from #, by giving VEVs to the s; fields. The remaining four fields obtain mass
terms from #3, but due to the antisymmetric mass matrix only two of the three flavors
decouple. Thus, in order to completely decouple the exotic fields it will be necessary to
obtain mass terms from #4 or higher superpotential terms.

4.2 A Class of Asymmetric Z5 Orbifolds

The Z3 models that we discussed in the last section had some obvious phenomenological
deficiences: it appeared difficult to decouple exotic matter fields, and the Yukawa sector
is rather unrealistic. Both problems originate from the fact that the chiral fields in these
models always appear in formal triplets of some right-mover A, algebra, and that the
three-point coupling must be an SU(3) invariant. In this section, we consider covariant
lattice models that correspond to Zg asymmetric orbifolds built from a Narain lattice with
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Table 4.3: Chiral left-mover spectrum of a Eg/Zs asymmetric orbifold/covariant lattice model.
Here, Ghidden = SU(2)* x SU(4) x SU(5) denotes the hidden non-Abelian gauge group and the ¢;

are the U(1)® charges. The hypercharge is given from the linear combination (4.58).

q2 q3 g4 qs g6 qr qs

q1

Ghidden

Field No. Gsum

Sector

o © 0 <H
(.
00—~ <f
[
<f &N N
,
— - O
[
S~
|
—
(.
—
(.
o O A
—~~ T~
— -
— =
— N
N~
— = =
— N~
—_ = —
o o o
—~ = =
—
— - -
S— Nt
— N ™M
— o =
w o &

-1

(17 ]'7 25 ]‘,47 ]‘)

[enBENORE Y]
|
w0 <H -
[
S AN~
(.
— O
S~
[
— O O
— O O
o O
|
o~
— = O
— = =
N~
— = -
— — 27
— N~
—_ = —
m 0
S
— | |
—~ A~ —~
™ o -
™o —~
S— N

Dy

0
1
1

(1,1,1,1,1,1)
(17 1’ 17 17 17 1)

(1,2) 10

(1,1,1,1,1,1)

(1,2)_1/2
(171)0
(171)0

10

Hy

11

1
0
1
-1
0
-1

(1,1,1,1,1,1)
(17 ]'7 1’ ]‘7 ]‘7 1)

(17 2’ 1’ 17 17 1)

11
12

83

84

S5

(1,1,1,1,4,1)
(1,1,1,1,4,1)
(1,1,1,1,1,5)
(1,1,1,2,1,1)
(1,1,1,1,1,1)

(1,2,1,1,1,1)

1

n3

(1,1)1y5

15
16
17
18
19
20

Uz
dy

Doy

(1,1)1/2

ds

(37 1)71/3

dg

0
0

(3’1)1/3
(1,2)0
(1,1)o
(1,1)o
(1,1)o
(1,1)o

dy

(2,1,2,1,1,1)

dg

1
1
0
-1

(17 ]" 2’ 17 17 1)

21

56

(1,2,1,1,1,1)

22

87

(1,1,1,1,1,1)

23
24
25

ns

(1,1,1,1,4,1)
(17 1’ 17 17 17 1)

Ne

-1

0
-1
-1

(1,1,1,2,1,1)
(1,1,2,2,1,1)

(3,1) 13
(1, 1)1/2

26
27
28
29
30

dy
dyo

D3y

(]-7 1)—1/2

dll

3 =5 =5

-1

(27 ]" ]‘5 17 17 1)

(17 1)—1/2

d12

0
1

(2,2,1,1,1,1)

(1,112

dy3

(1,1,1,1,1,1)

(37 1)1/3
(17 1)0
(1’ 1)0

DC

1
0

(1,2,2,1,1,1)

31

58

(1,1,1,1,6,1)
(17 17 17 17 17 5)
(1,1,1,2,1,1)

(27 17 27 17 17 ]‘)

32

nr

(1,115

33
34
35

d14

(1, 1)71/2
(]-7 1)1/2

dys

0
-1
-1

d16

Dy

(2,2,1,1,1,1)

(17 1)—1/2

36
37
38
39

dq7

(17 1’ 1’ 17 17 1)

(3,2)1/6

0
1

(1,1,1,1,1,1)
(17 ]'7 1’ ]‘7 ]‘? 1)

(3,1)_2/3

UC

(17 2)1/2




4.2. A CLASS OF ASYMMETRIC Zs ORBIFOLDS 61

a right-mover Eg factor. The relevant right-mover lattice is the lattice AJE§ (3'62) in
Figure 3.1. We immediately see that the difficulties of the Z3 models cannot be present in
the same form for these Zg models, as there are no As factors in the right-mover lattice.
Further note that although we do not have a strict classification of the genus Gy, as in
the Z3 case, we obtained an exhaustive but not duplicate-free list of 5033195 left-mover
lattices in Gy, by the method described in Subsection 3.2.5.

4.2.1 Massless Right-Mover Spectrum

Let us first describe (I'4)r = A}ES (3'6%) right-mover lattice. For this we define a
sublattice I'ig C (I'14)R:

Ty = A1 Zj By (4.62)

which has elementary divisors 236°. Then, (I'14)r/T14 = Z3 x Z3 is generated by the

following conjugacy classes:

1,1,0,0,%,2,0,0,0

(1, )
(0,1,1,0,0,1,1 0,0,
( )

9

)272’
0,0,1,1,0,0,%,4

20
2 2 2 2
(00007373a37§ 1)

(4.63)

)

Similarly, (I'14)%/(I'14)r is generated by the following unions of conjugacy classes:

1
(0000,3,

Y3 = (1 0,000

’.:
=
=)
[a)
19
@“—‘ b wh—l

,0,0 :
50U, (4.64)
1
5,0

O:\)—l oo\»—t w‘,_.

where the ellipsis represents the other conjugacy classes which are obtained by adding those
from (4.63). In the following, we identify a coset in the quotient group (I'4)%/(T'14)r,
by an integer triple (Q1,Q2,Q3) that denotes a linear combination of the generators ;.
Note that 3y; = 6x2 = 6x3 = (I'14)r, and that the quotient group has the structure
Z3 x ZZ. The sector charge @ is then defined only modulo 3, whereas Q2 and Q3 are
defined modulo 6.

The massless right-mover spectrum is then calculated similarly as in Section 4.1. Here,
we do not carry out the calculation in detail, but only show the result in Table 4.4. Note,
that for this right-mover lattice both the 18}, and the 9} elementary supercurrents are
possible.

The superpotential. Here, we do not determine the discrete symmetry group Hgr as
we did for the Eg/Z3 case in Section 4.1. Thus, we only write down the three-point
superpotential, as it is controlled by SU(2)* x U(1)* conservation:

4 4
W= USR,®Ss+ ) e80T T (4.65)
s=1 s=1
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Table 4.4: Massless chiral superfields from the A]ES'(3'62) right-mover lattice. The index k
transforms as the doublet of the corresponding SU(2). The ¢; denote the U(1)* charges.

Superfield ~ SU(2)* et e 3 g Q1 Q2 Q3
U (L, &+ + + 4+ 0 3 3
Ry (L,,,1) &+ -+ -1 -1 0 3 1
Ry (1,1,1,1) - &+ -+ - 0 5 3
R; (,,1,1) -+ -+ & -+ 1 1 5
R4 (,,1,1) -+ -+ -t L+ 2 3 3
Sh (1,1,1,1) -+ o 0 0 0O 0 2
Sy (L,,,1) 0o -% 0 0 0 4 0
S5 (1,1,1,1) 0 0 -2 0 2 2 4
Sy (1,1,1,1) 0o 0 0 -%f 1 0 0
Tk (2,1,1,1) ¢ 0 0 0 0 3 2
Ty, (,2,1,1) 0 ¢ 0O O O 1 0
Ty, (1,1,2,1) 0 0 & 0 2 5 4
o (1,,,2) 0 0 O & 1 3 0

4.2.2 A Three-Generation Model

Let us now construct a three-generation model based on this right-mover lattice by spec-

ifying a left-mover lattice (I'y2)r,. For this,

Ty = AV AsZiy) L) Ls) L1y Laa »

which has elementary divisors 2647125242,
by the conjugacy classes

(1,1,1,1,1,0;0, 3,0, 3, 3,0,
(0,1,0,1,0,0; 3,0,1, %0,
(0,1,0,1,0,0;3,%,2, 1.1
(0,0,0,0,1,0;1,2, 21,3
(1,0,0,0,1,0; 4,2, 2 3 1
(1,0,1,0,1,0;1,0,3, 3.2
(1,0,1,0,1,0;3,0,%,2,3
(0,0,1,1,0,0; 3,0, %, 3,5
(1,0,1,0,1,1;0,3,3,2,3

we define the following sublattice:
(4.66)

Then, (Tao)1,/Tas & Z2Z3 Z19 794 is generated

127227202020

,0,0,0,0,3,0,0,0, 3

0,0,0),
3)

(4.67)

SRS

=

21) -

Here, for better readability, we separate the semi-simple part from its orthogonal comple-

ment by a semi-colon.
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We now have to glue (I'e2)1, and (I'14)r together to an even self-dual lattice I'z2 14.
Unlike the Fg/Z3 case, there is the possibility of having several inequivalent embeddings

of a chosen (I'yp2);, @ (I'1a)g into an even self-dual lattice. In fact one can show that
depending on the left-mover lattice, there are either one or two inequivalent embeddings.
In the following we discuss only a single embedding. However, we will not give an explicit
form of the glue vectors and instead just show the spectrum. This is sufficient, because
the spectrum uniquely determines the embedding.

Let us now calculate the massless left-mover spectrum by solving equation (2.66).
First, we observe that there is a gauge group

SU(2)° x SU(3) x U(1)", (4.68)

(divided by a central subgroup). The chiral multiplets are given as in Table 4.5. There,
we already assigned the fifth A; factor to SU(2); and the hypercharge is given by the
linear combination

y_ @ _ @ _G_ & @ B G0 _du_ G2 03 05 (4.69)

2 4 4 4 4 3 4 6 12 12 6

which one can show to be non-anomalous. This model has an anomalous U(1)4, which
one shows by calculating the traces:

1
T3 Tr@) = (2:3,1,2,-1,-1,0,-5,-2,4,6,7,5,1,-2). (4.70)

This model has three generations of standard model matter and only vector-like exotics.
In Table 4.5, the fields s; denote singlets of SU(3)c x SU(2)r, whereas the L; are lepton
or Higgs doublets. The ); denote quark doublets, and U and Df are up-type and down-
type quark singlets. Note, that in this model all exotics are color singlets. Besides the
lepton doublets, there are five additional pairs of (1,2),/, and (1,2)_; /5, which may serve
as Higgs doublets or as exotic matter. Furthermore, ()2 and 3 come as a doublet of a
right-mover SU(2), and (U§, U$) form a doublet of an extra SU(2) gauge flavor symmetry.
Here, we do not write down the entire three-point superpotential, but merely note that
the only term involving quark fields is

WS — [ QuUY . (4.71)

%Quarks as a

It is therefore natural to identify L, as a H, Higgs doublet and interpret
top quark Yukawa term. Thus, at three-point level only the top quark obtains a mass,
indicating that all other quark masses are suppressed.

Finally, note that there is another interesting possibility to take the hypercharge in
this model by replacing Y in (4.69) with Y' =Y + I3, where I5 denotes the isospin of the
second SU(2) factor in Ghiqden- Using this hypercharge assignment all exotic fields obtain

integer electric charge.
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Chiral left-mover spectrum of a Fg/Zg asymmetric orbifold/covariant lattice model (cont’d).

Table 4.5
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Chapter 5

Conclusions and Outlook

In this work, chiral four-dimensional covariant lattice models were revisited and a classi-
fication of all possible right-mover lattices was performed. Also, it was found that once a
right-mover lattice is fixed, modular invariance requires that the set of possible left-mover
lattices forms a genus. The result is that there are in total 99 right-mover lattices which
may lead to chiral models, and only 19 of them lead to N = 1 spacetime supersymmetry.
Then, using the Smith-Minkowski-Siegel mass formula, a lower bound of O(10'°) models
with N' = 1 supersymmetry was calculated. Furthermore, some of the relevant genera
were enumerated completely. In particular, for two classes of covariant lattice models that
correspond to Z3 and Zg asymmetric orbifolds we performed an exhaustive enumeration
of models, which resulted in exactly 2030 models in the Z3 case, and in O(107) models
(including duplicates) for the Zg case. We also considered some generic phenomenological
properties of these models, such as discrete flavor and R-symmetries, and also gave spec-
tra of three-generation models. Finally, we studied how the equivalence between certain
covariant lattice and twist-orbifold models fits into our picture, and found that there exist
some covariant lattices which cannot be obtained as a twist-orbifold theory.

As in the case of the genus corresponding to Fg/Z3 orbifold models that we enumerated
exactly, some smaller genera (e.g. the Dg/Zy case) may be studied exactly in the future.
However, an exact evaluation of the larger genera does not seem to be practicable, both
from the viewpoint of computation time and required memory. This became already
manifest in our enumeration of the left-mover lattices corresponding to asymmetric Eg/Zg
orbifolds, where it was not feasible to eliminate duplicates. For even larger genera, one
might resort to other methods. For example, a randomized search that just produces a
large number of models is perfectly viable, as long as one does not mind obtaining duplicate
models. Another approach would be to impose more phenomenological constraints. Then,
it might be possible to circumvent the lower bounds that we calculated.

Furthermore, there is no need to restrict on supersymmetric models. In fact, the non-
supersymmetric case seems even richer, as for the number of these models we obtained
a lower bound of O(10%%). However, some of these theories inevitably contain tachyons.
Nevertheless, four-dimensional non-supersymmetric models from string theory have re-
ceived some interest recently, and in some specific symmetric orbifold setup a quite large
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fraction of tachyon-free models was obtained [63].

There is another remark on the supercurrent lattices that we found. Here, we used a
rather brute force approach to classify them. However, it would be interesting to have a
more fundamental and geometrical understanding of these lattices, maybe in a way similar
to how we understand root systems in terms of simple roots. One could also ask which
of the admissible supercurrent lattices allow for an additional world-sheet supercurrent
that completes the N = 2 super-Virasoro algebra. Clearly, such a supercurrent must be
allowed for the maximal admissible lattice obtained from a right-mover lattice with A/ = 1
spacetime supersymmetry. This is because spacetime supersymmetry always implies at
least N = 2 supersymmetry on the world-sheet. An example for this would be the 9y
supercurrent lattice that appears in the Ag/Z7 orbifold. Also, the one-dimensional super-
current lattice allows for an additional world-sheet supersymmetry because it corresponds
to a N = 2 minimal model.

The lattice theories discussed in this work only cover CFTs with Kac-Moody algebras
of level one, so a generalization that takes into account also higher levels would be desirable
(note that a generalization of the theory of lattice genera to general CFTs was attempted
in [64]). Nevertheless, our results may be useful in the construction of some sort of hybrid
models. For example, one could combine our primitive elementary lattices with N = 2
minimal models to fill up the required central charge cg = 9.

Note on the Computational Methods

Most of the computations for this work were performed using the computer algebra sys-
tem GAP [65]. The calculation of lattice automorphism groups and isomorphisms between
lattices was a crucial part for which a modified version of the algorithm described in [66]
was implemented. The computation of the Smith-Minkowski-Siegel mass formula relied on
the built-in method conway_mass () of the computer algebra system SAGE [67]. Grobner
bases were calculated using Singular [68] and the GAP package “singular”. The calculation
of orbits in Subsection 3.2.5 was carried out using a highly specialized C++ implementa-
tion.



Appendix A

Lattices

A.1 Basic Definitions

Lattices are crucial for most of this work, and here we wish to formalize some aspects of
them. A lattice A shall be defined as a discrete subset of points in a real Euclidean or
Lorentzian inner product space that is closed under addition and subtraction. As such, we
also regard it as an Abelian group or as a free Z-module that is endowed with a bilinear
form (-,-) : A x A — R. For two vectors z,y € A we often also write x - y for (z,y) and
x? for {x,z). Any lattice A has a basis {b1,...,b,} with basis vectors b; € A, so that each
x € A can be written as a unique linear combination of the b;. The number n of basis
vectors is called the dimension dim(A) of A. Moreover, for such a basis one defines the

Gram matrix G as

A subset A" C A (A’ C A) that is closed under addition and subtraction is called
a sublattice (strict sublattice) of A. Let A be a lattice with Gram matrix G, and let
det(A) = |det(G)| denote its discriminant. Then, for any sublattice A’ C A one can
construct the quotient group A/A’. Its order, |A/A’|, is called the index of A’ in A and is
given by

A/N| = y/det(A')/ det(A) . (A.2)

Furthermore, we define the orthogonal sum A; & As of two lattices Ay and Ay as the
Cartesian product A; x Ay endowed with the bilinear form

((z1,22), (1, 92)) = (T1,91) + (72,92) , (A.3)

for all (1'1,1'2), (yl,yg) € A x As.

We also call a map ¢ : A; — Ay between two lattices A; and Ao a lattice homomor-
phism, if it is a homomorphism of the corresponding Abelian groups (and a fortiori also
of the Z-modules), and if it preserves the bilinear form, i.e.

<(;5(£C)7 ¢(y)>/\2 = <£C, y>A1 ) for all T,y € Al . (A4)
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Such a map is called an isomorphism if it is bijective, and and automorphism if it is
bijective and further A; = As.

The dual lattice A* of a lattice is defined as the set of vectors in the R-span of A that
has integer inner product with all vectors in A. Taking the dual lattice is an involution,
i.e. A* = A. For a lattice A, let A denote the lattice that is identical to A except that
the inner product is amended by a minus sign.

A special role is played by integral lattices. A lattice A is called integral if (x,y) € Z
for all 2,y € A. Furthermore, an integral lattice is called even if 2% € 27Z for all z € A.
Integral lattices that are not even are called odd. For an integral lattice A, one defines
the quotient group A*/A, whose order is given by |A*/A| = det(A). A lattice for which
A = A* is called self-dual. Furthermore, we define the elementary divisors of a lattice
to be the elementary divisors obtained from the Smith normal form of the Gram matrix
G. For these divisors we often use the abbreviated notation dj' ---d}', which also gives
a factorization of det(A), but do not explicitly write down the number of appearances of
the unit 1, as it can be deduced from the dimension of the lattice.

Discriminant forms. Let in the following A be an integral lattice. The bilinear form
on A naturally induces a bilinear form on By(+,-) : A*/A x A*/A — Q/Z, given by

Bv+Aw+A)=v-w (A.5)
for v,w € A*. This is indeed well-defined because
(x+MNy+A) —(z,y)=(r+y,A)+ (AN € Z, (A.6)
for any x,y € A. For A even we also define a quadratic form Q : A*/A — Q/2Z,

QA(m + A) = <l’,l’> ) (A7)

with 2 € A*. Again, this is well-defined because (v + )% — v? € 2Z for all z € A.

The quotient A*/A together with the bilinear form B is called the discriminant bi-
linear form, disc_(A) of A. Similarly, for even lattices we also define the discriminant
quadratic form discy(A) as the tuple (A*/A,Qp). Moreover one defines morphisms for
these structures as group morphisms ¢ : Aj/A; — A%5/Ay which preserve the respective
bilinear or quadratic form, i.e.

BA2 (¢()7 ¢()) = BAI (" ) > (A8)

in the case of disc_, and further

QAz o d) = QAl . (Ag)

in the case of disc4. A fortiori, a morphism of a discriminant quadratic form disc, (A) also
gives us a morphism of the corresponding discriminant bilinear form disc_(A). When we
just write “discriminant form” without the attribute “bilinear” or "quadratic”, we mean
disc4 in the case of even lattices and disc_ in the case of odd lattices. Furthermore, we
say that two lattices are in the same genus if simultaneously their signatures are equal,
they are either both even or odd, and their discriminant forms are isomorphic.
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A.2 Lattice Gluing

In this section, we formalize some aspects of lattice gluing. Most of the following is used
implicitly in the main text. A decomposition A D A; @ Ay of an integral lattice A shall be
called self-glue free if A/(A; @ Ag) does not contain cosets of the form (n, Ag) and (A, &),
with n € A7/A; and & € A%/Ay where neither  nor ¢ is the zero coset. Now, there is a
theorem about self-glue free decompositions of self-dual lattices [39]:

Theorem 1. For any integral self-dual lattice A with a self-glue free decomposition of the
form A D Ay & Ay, where dim(A) = dim(A;) + dim(As), one obtains an isomorphism

disc_ (A1) = disc_(A2), (A.10)
which at the same time is an isomorphism
discy (A1) = disc4(Ag) . (A.11)

if A is even. Also the “converse” statement is true: given two integral lattices A1, Ay and
an isomorphism ¢ : disc_ (A1) — disc_(Az), then there exists a self-dual lattice A with a
self-glue free decomposition A DO Ay @ Ay. If furthermore Ay and Ao are even and ¢ is also
an isomorphism of the corresponding discriminant quadratic forms, then also A is even.

Proof. First, one realizes that each coset in A/(A; @ As) can be uniquely represented by a
pair (£1,&2) of cosets &1 € A7/A1 and & € AS5/As. Since we are considering a self-glue free
decomposition, each coset in Aj/A; and A5/As can appear at most once in such a pair
(assuming otherwise immediately produces a contradiction). This gives us the following
inequalities:

A*

T ie{ua. (A.12)

‘Al@AQ

Also, since A is self-dual, each & € Aj/A; and & € A5/As must appear at least once in a
pair (£1,&2). This can be seen by deriving

2 . det(A1 @Kz) . A*
N det(A) Al

A*
Ay

‘ _ (A.13)
A @Ay

using det(A) = 1. Hence, in (A.12) equalities must hold and the set of pairs ({1, &2) defines
a bijective map ¢ : A7/A1 — A5/As which preserves the group structure. Thus, we have

established the following group isomorphies:
A AT A3
o~ 2 (A.14)
AeAy A A

Moreover, By, (£1,&1) — Ba,(6(&1),#(&1)) = 0, and if A is even it follows further that
Qa,(&1) — Qa,(¢(&1)) = 0. Here, the minus sign originates from the fact that Ay appears
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with negated inner product in the decomposition of A. The “converse” is shown by giving

an explicit construction:

A= U €xae), (A.15)

EEAT /M
This lattice clearly has the desired properties. Here, the Cartesian product £ x ¢(&) is to
be interpreted as an element of (A; ® Kg)*/(Al D KQ). O

Let A be a lattice and Ag be a sublattice of A. For some coset £ € A/Ag let €]
denote the order of that coset, i.e. the smallest natural number n such that n{ = Ag.
Furthermore, (£) shall be the linear span of all vectors in that coset, i.e. (§) = U|,§|:1 k€.

Lemma 1. Let Ay and As denote two even lattices and ¢ : disc(Ay) — disc(A2) be an

isomorphism. Moreover, let £ € Aj/A1 be a non-zero coset which contains only even
vectors. Then, it follows that disc((£)) = disc((p(£))).

Proof. First, note that (£) and (¢(€)) are again even lattices. Let us now define a homo-

morphism ¥ : (£)*/(§) — (9(£))*/((£)):

10(55 + <€>) = ¢(x + A1)|rep + <¢(§)> > (A16)
and a homomorphism 3 : ($(€))*/(B(€)) > (€)*/(€):
By +(D(€) = 67 (Y + A2 rep + (€) (A.17)

where x € (§)*, y € (¢(§))", and |wp means taking any representative. One checks that
they are well defined. Now one shows

botp(z+(€) = ¢ (B@ + A)lrep + A2)lrep + (§) = 2 + (€) - (A.18)

It follows that ¢) = 1! so ¢ is an isomorphism. Now it remains to prove that the
isomorphism fulfills Qg(¢)y © ¥ = Q¢). However, we see for some x € (£)* that

Qe ((z +(£))) = Qo (B + A1) |rep + (9(£)))
= ((z + A1)lreps &(7 + A1)lrep) A,
= Qn,(p(z + A1)
= Qn, (T + A1)
= (2, T)a,

= Qe (z +(8)), (A.19)

equalities being understood modulo 2. So, we established that v is an isomorphism of
discriminant forms. O

Theorem 2 (Regluing Theorem). Let A D Ay @ Ay be a self-glue free decomposition of
an even self-dual lattice A, and & be a coset in AT /Ay with Qp,(§) = 0 not containing the
null vector. Then, there exists an even self-dual lattice A" with self-glue free decomposition
N D (&) @ (p(£)), where ¢ : disc(Aq) — disc(Ag) is an isomorphism.
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Proof. The existence of ¢ is ensured by Theorem 1. Then, from Lemma 1 it follows that
disc((€)) = disc({(¢(€))). Again, from Theorem 1 follows the existence of A’. O

Lemma 2. Let A be an even lattice and & € AN*/A be a coset of only even vectors that
does not contain the null vector. Then, there exists another coset u € N*/{€)* so that
A={z e (&) | (v,x) € Z} for any given v € p.

Proof. Let us define a bilinear form B(-,-) : A*/(§)* x (&§)/A — Z/|{|Z:
Bz + (€)% y+A) = [¢]{z,y) (A.20)

with € A* and y € (£). Note, that both A*/(¢)* and (¢)/A are cyclic and of the same
order, as seen from the following argument. Define a homomorphism ¢ : A*/(£)* — (€)/A:

¥(n) = B,£)E, (A.21)

This is injective because n € kervp = B(n,£) = 0 (mod [£|) which is only possible for
n = (£)*. However, since |A*/(£)*| = |£] = |(§)/A] it follows that v is also surjective, so
it is an isomorphism. Now, choose p = ¥ ~1(¢&) so from (i) = & one obtains B(u, &) = 1
(mod |£]). It follows that

B, v) =0 (mod |¢]) = v = A,
and thus A = {z € (£) | (v,z) € Z}, for any v € p. O

Theorem 3. Let A be an even lattice and Ay be a sublattice of A so that A/Ag is nontrivial
and cyclic. Further, let N denote the order of A/Ag. Then, there exists a vector v fulfilling

(a) Nv e A*
(b) kv A* forke{l,...,N —1}

so that Ao = {z € A | (v,z) € Z}, and an integer n # 1 dividing the exponent of A§/Ao
such that

(a) N |n
(b) nveA
(c) n{v,v) € Z and n{v,v) € 2Z if 2¢n

Proof. Let £ generate A/Ag, so we can write A = (£). From Lemma 2 we then obtain a
€ Aj/A* so that Ag = {x € A | (v,z) € Z} for any fixed v € . Since Ny = A* we have
Nv € A*. Furthermore, because v € Ag but v € Af, there is some smallest n # 1 dividing
the exponent of Aj/Ag so that nv € Ag. Then we have n(v,v) € Z and (nv, nv) € 2Z, so it
follows that actually n(v,v) € 2Z if 2t n. Clearly, N must divide n because A C A*. [0
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A.3 The Lorentzian Lattices D, ,,

Let us define the lattice D, ,, as the set of vectors a € Z"™™ satisfying a*> = a - a € 2Z.
The bilinear form is given by

n n+m
a-a = Zaiag — Z a;al (A.22)
i=1 i=n+1

and has signature (n,m). For m = 0 one also denotes these lattices by D,,, and they are
isomorphic to the root lattices of SO(2n).

One then checks that the dual lattice of Dy, ., is given by the union of four cosets 0),
(v), (s) and (c), which are defined as

These are also called root (0), vector (v), spinor (s), and cospinor (c) conjugacy classes
due to their connection to Lie theory. Vectors in these conjugacy classes have the following

norms:
2 € 2%, for z € (0), (A.27)
x® € ™ 427, for x € (s), (A.28)
2?2 €142Z, for z € (v), (A.29)
x® € ™ 427, for x € (c). (A.30)

Furthermore, note that these cosets form a group, Dy, ,, /Dy, which is isomorphic to
Zy X Zo in the case where n + m is even, and to Z4 otherwise.
A lattice Dy, ;, can be decomposed into an orthogonal sum of sublattices,

Dn,m D) Dnl,ml @ Dng,mz ) (Agl)

where n = n1 + no and m = my + mso. The conjugacy classes then decompose as follows:

(0) — (0,0) U (v,v), (A.32)
(s) — (s,8)U(c,0), (A.33)
(v) — (v,0) U (0,v), (A.34)
(c) — (s,¢) U(c, ) (A.35)

Note that the pairs on the r.h.s. in above equations are to be interpreted as a Cartesian
product of the corresponding conjugacy classes of the sublattices.

From a lattice Dy, ,, we can always construct the self-dual lattice (0) U (v) = Z™™. In
the cases where n —m € 47 also the lattice E,,,, = (0) U (s) (or equivalently (0) U (c))
is self-dual. Furthermore, this lattice is even if n — m € 8Z. Also, due to triality Fy is
isomorphic to Z.
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Table B.1: Gram matrices for the primitive elementary supercurrent lattices. Also shown are the
elementary divisors, the root system A, of norm 2 vectors and the number ng of norm 3 vectors.

= Gram Matrix Divisors Ay ns
1 (3) 3! - 2
3 -1 -1
3 1 3 -1 42 - 8
-1 -1 3
3 -1 -1 -1 -1
-1 3 -1 -1 1
5 1 -1 3 1 -1 2361 20
-1 -1 1 3 -1
-1 1 -1 -1 3
3 -1 -1 -1 -1 -1
-1 3 -1 -1 -1 1
6.4 -1 -1 3 1 1 -1 a1 39
-1 -1 1 3 1 -1
-1 -1 1 1 3 -1
-1 1 -1 -1 -1 3
3 -1 -1 -1 -1 -1
-1 3 -1 -1 1 1
6 -1 -1 3 1 -1 1 91g2 20
-1 -1 1 3 0 0
-1 1 -1 0 3 o0
-1 1 1 o0 o0 3
3 -1 -1 -1 -1 0
-1 3 -1 0 o0 -1
6 -1 -1 3 0 1 o0 53 B 20
-1 0 0 3 -1 -1
-1 0 1 -1 3 o0
0 -1 0 -1 0 3
3 -1 -1 -1 -1 -1 -1
-1 3 -1 -1 -1 -1 1
-1 -1 3 1 1 1 -1
A -1 -1 1 3 1 1 -1 26 - 56
-1 -1 1 1 3 1 -1
-1 -1 1 1 1 3 -1
-1 1 -1 -1 -1 -1 3
3 -1 -1 -1 -1 -1 -1
-1 3 -1 -1 -1 1 1
-1 -1 3 1 1 -1 -1
B -1 -1 1 3 1 -1 0 122 - 32
-1 -1 1 1 3 0 -1
-1 1 -1 -1 0 3 1
-1 1 -1 0 -1 1 3
3 -2 -2 -1 -1 -1 -1 -1
-2 3 1 0 0 o0 o0 1
-2 1 3 0 0 0 o0 1
8A -1 0 0 3 1 1 1 -1 2441 A% 30
-1 0 0 1 3 1 1 -1
-1 0 o0 1 1 3 1 -1
-1 0 0o 1 1 1 3 -1
-1 1 1 -1 -1 -1 -1 3
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The primitive elementary supercurrent lattices (cont’d).

Table B.1

n3

Az

Divisors

Gram Matrix

<t (] [\
< n [3e)
—
<
— o
(o] — 3]
— o0 Ne)
[a\] — N
<t (o] ™
— — — —
— = — —
— — — —
R N N | @ M = o = —
— — —
— — —
— = = — —
— o= = = — o= = = — —
(3]
[ | [ | |
Q 0 Q
0 o0 o8}

88

A

2481

84

A

224181

60

A

2282

-1

0

-1

0

-1
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The primitive elementary supercurrent lattices (cont’d).

Table B.1

ng

Az

Divisors

Gram Matrix

[1]

54

Ay

3192

64

2282

56

44

56

42161

44

214182

44

83

-1

0

-1

-1

0

9p

9E

9F
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The primitive elementary supercurrent lattices (cont’d).

.
.

Table B.1

ns

Ag

Divisors

Gram Matrix

(1]

44

31122

o6

3391

44

32

4282

44

73

-1

-1

97
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