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Abstract

The covariant lattice formalism provides a consistent method for the construction of chiral
four-dimensional heterotic string vacua. In this work, we seek to develop a systematic under-
standing of this corner of the string landscape, and also attempt to clarify the relationship
with asymmetric orbifolds. Chiral covariant lattice models are classified using the theory of
lattice genera, and by means of the Smith-Minkowski-Siegel mass formula a lower bound of
O(1010) on the number of N = 1 supersymmetric models is calculated. We also perform an
exhaustive enumeration of models for two genera corresponding to certain supersymmetric Z3
and Z6 asymmetric orbifolds. In the Z3 case there exist precisely 2030 models, and for these we
carry out a general analysis of discrete flavor and R-symmetries. The Z6 case produced in total
O(107) models, but computational resources were insufficient for the elimination of duplicates
among them. Finally, we discuss three-generation models from both genera in detail.
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Chapter 1

Introduction

String theory may eventually provide a consistent quantum-mechanical unification of el-
ementary particle physics with gravity. Although there is numerous evidence that super-
string theory at its core is a unique theory, it possesses a vast landscape of vacuum states
with diverse physical properties. Nevertheless, the prospect of having a unified theory of
all forces and matter in nature has spawned countless efforts on string model building.
Yet, this search for a four-dimensional string vacuum that matches the physical properties
of our universe may appear like that for a needle in a haystack. However, the standard
model of particle physics (SM), which successfully describes particles and interactions at
energy scales below about one hundred GeV, has several attributes that greatly constrain
the search area of the string model building programme. First and foremost, there is the
gauge symmetry group,

GSM = SU(3)C × SU(2)L × U(1)Y ,

together with three chiral generations of quarks and leptons. String models which re-
produce these properties exist in a considerable number, such as in symmetric orbifold
compactifications of the heterotic string [1–12]. Nonetheless, there are still many open
problems in these models, such as moduli stabilization. It is also difficult to obtain entirely
realistic fermion mass hierarchies and mixing angles [13], yet interesting flavor symmetries
appear to be abundant in orbifold compactifications [14–16]. Other issues such as proton
decay have seen positive developments recently [17, 18].

A feature that has driven the success of symmetric orbifolds is that they are to a
large extent comprehensible in a purely geometric manner: one employs a six-dimensional
compact space having certain singularities, possibly with a nontrivial configuration of
background fields. However, there also exist intrinsically non-geometric compactifications
such as the more general asymmetric orbifolds [19–21], which have also been considered
for model building [22–25].

The covariant lattice formalism provides another such non-geometric construction of
four-dimensional heterotic string vacua [26–28]. These vacua have some characteristic
properties. For example, all chiral covariant lattice theories possess a gauge symmetry
of rank 22. However, since GSM is of rank 4, some of these extra gauge symmetries
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2 CHAPTER 1. INTRODUCTION

must either be broken at a high energy scale, or survive as a completely hidden symmetry.
Another feature of covariant lattice theories is that only rather small representations of the
gauge group may appear at the massless level. In particular, adjoint Higgs fields which are
indispensable for grand unified gauge theories are excluded. Hence, the search for realistic
models restricts to gauge groups which contain GSM as is, or in semi-simple extensions
such as Pati-Salam. Also, many covariant lattice models possess an anomalous U(1)A,
which may be useful for supersymmetry breaking. Moreover, an advantage of covariant
lattice models is that there is only one modulus, the dilaton, and hence the problem of
moduli stabilization is simplified.

Even though the heterotic covariant lattice construction lacks an intuitive geometrical
picture, there is still a chance to find realistic models. Yet, hitherto only few models have
been constructed explicitly using this formalism [29]. Moreover, a systematic classification
of models has only been achieved in ten spacetime dimensions [30], while in eight dimen-
sions 444 chiral models were found to exist [31]. The phenomenologically interesting case
of four dimensions was considered to some extent in [32]. Some covariant lattice models
can also be obtained from other constructions. For example, it is known that by bosoniza-
tion certain asymmetric orbifolds are equivalent to a covariant lattice theory [33–35]. Also,
there are some overlaps with free fermionic constructions and Gepner models [36].

In this thesis, we attempt to develop a systematic understanding of chiral heterotic
covariant lattice models and clarify the connection to asymmetric orbifolds (cf. [37]). We
also investigate some phenomenological aspects such as discrete flavor and R-symmetries,
and finally provide models with three chiral generations of standard model matter.

An Overview

Any string vacuum is described by a conformal field theory on the world-sheet, which is
the two-dimensional analogue of the world-line of a point particle. All degrees of free-
dom on closed string world-sheets split into a left-mover and a right-mover part. In the
covariant lattice formalism, the internal degrees of freedom, i.e. those unrelated to the
four-dimensional spacetime, are expressed in terms of free bosons with certain periodic
boundary conditions. These boundary conditions force the momenta to lie on a lattice
Γ22,14. This lattice — called covariant lattice — has to obey certain consistency condi-
tions: it must be even and self-dual due to the requirement of modular invariance, and also
allow for supersymmetry on the world-sheet. A special feature of chiral four-dimensional
covariant lattice models is that Γ22,14 contains a sublattice of the form (Γ22)L ⊕ (Γ14)R.

In this work we provide a (computer aided) classification of right-mover lattices (Γ14)R
which solve the constraints imposed by world-sheet supersymmetry and chiralness, the
result being that there are in total 99 such lattices. Among them, 19 lattices lead to
N = 1 spacetime supersymmetry and we relate some of them to asymmetric orbifolds.
In order to construct a complete model, one has to combine a right-mover lattice with
an appropriate left-mover lattice (Γ22)L. In fact, due to modular invariance, all lattices
(Γ22)L that can be combined with a chosen (Γ14)R constitute a genus, so the very well-
developed theory of lattice genera can be used to study them (an introduction on the
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subject can be found e.g. in [38]). Most importantly, a genus G contains only finitely
many lattices, and a lower bound on their number |G| can be evaluated by means of the
Smith-Minkowski-Siegel mass formula (refer to [39] for details). This also means that the
total number of chiral models is finite. For some relevant genera GL of left-mover lattices
we calculate a lower bound on |GL|. In particular, these lower bounds suggest that there
are at least O(1010) four-dimensional covariant lattice models realizing N = 1 spacetime
supersymmetry. Furthermore, there exist computational methods which allow the explicit
construction of all lattices in a genus, but these are only practicable for reasonably small
genera. In this work, we conduct an exhaustive enumeration of some genera GL of left-
mover lattices, two of which correspond to certain classes of Z3 and Z6 asymmetric orbifold
models.

In the Z3 case there exist precisely 2030 models, and for these we perform a general
analysis of discrete flavor and R-symmetries. In particular, a flavor symmetry group
related to Σ(216 × 3) [40] and a Z3 R-symmetry was found. We also perform a search
for realistic models, and present a three-generation model in detail. However, all these
asymmetric Z3 models possess exotic matter fields (especially with color charge) that are
rather difficult to decouple. Also, one can show quite generally that the flavor structure of
these models is not very realistic. We expect some of these problems to be cured in the Z6
case. There, the exhaustive enumeration resulted in a total of O(107) models, but it was
not possible to eliminate duplicates due to insufficient computational resources. We also
do not carry out a general search for realistic models in this case, and instead just present
a particular three-generation model. This model possesses only color singlet exotic matter
and potentially has realistic mass hierarchies: at three-point level there is a Yukawa term
only for the top quark, while the other quarks and leptons must obtain their masses from
higher order terms which are naturally suppressed.

This work is organized as follows. In Chapter 2, we review the required aspects of the
covariant lattice construction. In particular, we introduce the constraints from modular
invariance, world-sheet supersymmetry and the requirement of a chiral four-dimensional
spectrum. These are central to the classification of chiral models which we describe in
Chapter 3. In Chapter 4, we consider phenomenological aspects of some of these mod-
els, and also present three-generation spectra. Finally, in Chapter 5 we summarize and
comment on possible future directions this research could take.
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Chapter 2

Covariant Lattices and Orbifolds

2.1 The Covariant Lattice Formalism

In this section we briefly introduce the covariant lattice (or bosonic supercurrent) for-
malism. We also derive constraints from the requirement of a chiral four-dimensional
spectrum. For a more detailed introduction, please refer to the review [28].

2.1.1 Four-Dimensional Heterotic Strings

Any string theory vacuum is described by a two-dimensional world-sheet conformal field
theory (CFT). Here, we consider such CFTs in their Euclidean form, and adopt the com-
mon convention where the world-sheet coordinate is represented by a complex number z.
The algebra of conformal transformations in two dimensions is generated by the energy-
momentum tensor, which splits into a right-mover (chiral) part T (z) and a left-mover
(anti-chiral) part T (z) due to current conservation. The chiral energy-momentum tensor
obeys an operator product expansion (OPE) of the form

T (z)T (w) ∼ cR/2
(z − w)4 + 2T (w)

(z − w)2 + ∂T (w)
(z − w) , (2.1)

and its Laurent modes Ln span a copy of the Virasoro algebra. In above equation, “∼”
denotes the omission of non-singular terms. The anti-chiral component T (z) obeys a
similar OPE with cR replaced by cL. The OPE of T (z) (T (z)) with a conformal field
φ(z, z) in particular determines its conformal weights hR (hL), which are also given by
the L0 (L0) eigenvalue of the state in the Hilbert space obtained from the operator-state
correspondence.

Note, that the conformal anomalies are proportional to the respective central charges
cL and cR, which must vanish in order for a CFT to describe a sensible string vacuum.
World-sheet CFTs usually possess additional symmetries. In particular, local symmetries
are relevant because upon quantization they introduce Fadeev-Popov ghost fields which
contribute to the central charges. Common to all string theories is a local diffeomor-
phism (or reparametrization) symmetry, which after gauge fixing gives rise to a chiral bc
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6 CHAPTER 2. COVARIANT LATTICES AND ORBIFOLDS

and an anti-chiral bc-ghost system with respective central charges cL = cR = −26. The
world-sheet CFT of a string vacuum with spacetime fermions must further be locally super-
symmetric. The number of local supersymmetries (NL, NR) may differ for left-movers and
right-movers, and string theories where NL 6= NR are called heterotic. The phenomenolog-
ically interesting case is (NL, NR) = (0, 1) (or equivalently (1, 0)), which is what is usually
referred to as “the” heterotic string. Due to the single local right-mover supersymmetry, a
chiral βγ-ghost system with central charge cR = 11 must be included, hence resulting in a
ghost sector with total central charges (cL, cR) = (−26,−15). Heterotic strings also have a
superconformal symmetry generated by a supercurrent G(z) which satisfies the following
OPEs:

T (z)G(w) ∼
3
2G(w)

(z − w)2 + ∂G(w)
(z − w) , (2.2)

G(z)G(w) ∼ 2cR/3
(z − w)3 + 2T (w)

(z − w) . (2.3)

These, together with the OPE (2.1) form what is known as a N = 1 super-Virasoro
algebra.

Here, we want to consider (0, 1)-heterotic strings propagating in a four-dimensional
flat Minkowski spacetime. The world-sheet CFT must then contain at least the four
bosons Xµ(z, z) and their superpartners, the chiral Neveu-Schwarz-Ramond fermions
ψµ(z). Note, that each boson contributes with cL = cR = 1, and each chiral fermion
with cR = 1/2 to the total central charge. Hence, in order to cancel the conformal anoma-
lies we require an internal unitary CFT with central charges (22, 9).

Vertex operators. String scattering amplitudes are calculated from certain correlation
functions of the world-sheet CFT in which each incoming and outgoing string is represented
by a vertex operator. When constructing vertex operators for physical states, it turns out
to be convenient to bosonize the ψµ and the βγ-ghost CFTs (for the ghosts this is in fact
a “rebosonization”). Let us begin with the ψµ, which satisfy the OPEs

ψµ(z)ψν(w) ∼ ηµν

(z − w) . (2.4)

Here, we use the sign convention ηµµ = (−1, 1, 1, 1). By introducing two chiral bosons,
H1 and H2 with the standard OPEs

Hα(z)Hβ(w) ∼ −δαβ log(z − w) (2.5)

one expresses the fermion fields as follows:

1√
2(±ψ0 + ψ1) = :e±iH1 : , (2.6)
1√
2(ψ2 ± iψ3) = :e±iH2 : , (2.7)

where the colons denote the usual free field normal ordering. Note, that in above bosoniza-
tion we ignore a slight complication: the exponentials of different bosons commute, whereas
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the corresponding expressions of the ψµ anticommute. This can be resolved by introducing
cocycle operators, which we will discuss in a related context in Subsection 2.1.3. Further,
note that the fields ψµ(z) may either all have periodic (Neveu-Schwarz) or anti-periodic
(Ramond) boundary conditions (w.r.t. the coordinate σ in z = eτ+iσ). Vertex operators
then contain the exponential :eiλ·H : . The OPEs of the vertex operators with the ψµ must
be local in the NS-sector, and hence the components of λ have to be integral. In the
R-sector they must be half-integral in order to produce the necessary square-root branch
cuts. One also sees from the contribution of λ2 to the overall four-dimensional helicity of
a state that spacetime bosons (fermions) belong to the NS(R)-sector, as in the heterotic
string there is no other way for half-integer helicities to arise.

Regarding the βγ-ghost system we only note that the ghost number current :βγ : can
be expressed as

:βγ : = i∂φ . (2.8)

Here, φ is a boson with opposite sign in the OPE,

φ(z)φ(w) ∼ log(z − w) , (2.9)

and with energy momentum-tensor

Tφ(z) = 1
2 :∂φ∂φ: (z) + i

2(1− 2λ)∂2φ(z) . (2.10)

The exponential :eiqφ : produces states with definite ghost charge q, and these states have
an unusual conformal weight hR = −q(q + 2)/2. This is unbounded from below, and
one must ask which values of q may appear in vertex operators. In fact, it turns out that
vertex operators come in various equivalent “pictures”, for which the ghost charge q differs
by integers. The form the vertex operators is particularly simple in the canonical ghost
picture, where Neveu-Schwarz states carry ghost charge −1, while Ramond states carry
ghost charge −1/2. Vertex operators in other pictures are then obtained by an operation
called picture-changing: let Vq(z) be a vertex operator in the q-picture. The corresponding
vertex operator in the q + 1-picture is given by

Vq+1(z) = :P+1Vq : (z) , (2.11)

where P+1(z) = :G(z)eiφ(z) : denotes the picture-changing operator. Here, the supercur-
rent G(z) is of the form

G(z) = iψµ∂Xµ(z) +Gint(z) +Gghost(z) , (2.12)

where Gint denotes the supercurrent of the internal cR = 9 SCFT and Gghost denotes the
contribution from the ghosts. Note, that picture-changing is crucial for the calculation
of scattering amplitudes: due to an anomaly of the ghost number current, the ghost
numbers of all vertex operators in a correlation function on the sphere must add up to −2.
Although this is trivially fulfilled e.g. for boson-fermion-fermion scattering amplitudes in
the canonical pictures, other correlators necessitate picture changing.
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Summarizing, a general vertex operator contains (among other excitations)

Vλ,q(z) = :eiλ·H+iqφ : (z) , (2.13)

where

(λ1, λ2, q) ∈ Z3 , (NS) (2.14)
(λ1, λ2, q) ∈ (1

2 ,
1
2 ,

1
2) + Z3 . (R) (2.15)

It is customary to treat the λ and q on the same footing by realizing that the set of
vectors (2.14) and (2.15) together forms a lattice. In general, by a lattice we mean a
discrete subset of a real vector space with a bilinear inner product, that is closed under
addition and subtraction. For any lattice Λ one also defines a dual lattice Λ∗, which is
given by the vectors in the R-span of Λ that have integral inner product with all vectors
in Λ. Note, that the set of vectors (2.14) and (2.15) together is closed under addition and
subtraction. Furthermore, the operator product

:eiλ·H+iqφ : (z) :eiλ′·H+iq′φ : (w) ∼ :ei(λ+λ′)·H+i(q+q′)φ : (w)
(z − w)−λ·λ′+qq′ + . . . (2.16)

provides us with a natural inner product λ · λ′ − qq′ of signature (2, 1). It turns out that
the lattice given by the vectors (2.14) and (2.15) together with this inner product is the
dual lattice of D2,1 (the Lorentzian lattices Dn,m are described in detail in Appendix A.3).
In the following, we shall denote it by Dst∗

2,1, where the superscript “st” indicates that it
encodes spacetime quantum numbers. Note, that in the language of conjugacy classes, the
NS-sector constitutes the union (0) ∪ (v), and the R-sector the union (s) ∪ (c).

Physical states. In the quantization of the string one has to restrict to a subset of all
vertex operators (2.13) for unitarity reasons. There are several equivalent ways to treat
this, the most systematic one being the BRST formalism. Here we adopt the light-cone
formalism, which is adequate if one is only interested in the spectrum. In this formalism,
physical states belong to a transverse Hilbert space H ⊥ in which there are no oscillator
excitations in the X0, X1, ψ0, ψ1, and φ directions (there are also no bc and bc-ghost
excitations). In the canonical ghost picture, the light-cone gauge then fixes (λ1, q) as

(λ1, q) = (0,−1) , (NS) (2.17)
(λ1, q) = (−1

2 ,−
1
2) . (R) (2.18)

This can also be expressed using the decomposition

Dst
2,1 ⊃ Dhel

1 ⊕D
ghost
1,1 , (2.19)

where λ2 ∈ Dhel∗
1 and (λ1, q) ∈ Dghost∗

1,1 . Light-cone states are then associated either with
the vector conjugacy class (v) of Dghost

1,1 in the Neveu-Schwarz case, or with the spinor
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conjugacy class (s) in the Ramond case. A physical state must further have conformal
weights hR = hL = 1. These weights are given by

hL = −1
2M

2 +NX + hint
L , (2.20)

hR = −1
2M

2 +NX + hint
R +NH2 + 1

2λ
2
1 + 1

2λ
2
2 − 1

2q
2 − q , (2.21)

where one has to insert the appropriate values of λ1 and q from (2.17) or (2.18), respec-
tively. Also in above equations, M2 denotes the four-dimensional mass of the state and
NX (NX) denotes the chiral (anti-chiral) oscillator number of the transversal X2,3(z, z)
CFT. Furthermore, (hint

L , hint
R ) denotes the conformal weights of the excitations of the in-

ternal CFT, and NH2 denotes the oscillator number of the boson H2 that was introduced
in the bosonization of the transversal fermions ψ2 and ψ3. The condition hL + hR = 2 is
a mass-shell condition, whereas the condition hL − hR = 0 is known as “level matching”.
Also, note that in the NS(R)-sector there is a contribution of at least hR = 1/2 (hR = 5/8)
from the ψµ–βγ CFTs.

Modular invariance. Not all choices for the internal CFT give rise to consistent string
vacua. Let us introduce the one-loop partition function

Z(τ) = TrH ⊥, k0=k1=0

[
(−1)F q(L0−1)q(L0−1)

]
. (2.22)

Here, q = e2iπτ and the trace is to be taken over all states in H ⊥ without momenta in
the X0,1 directions. The eigenvalues of L0 and L0 is given by equations (2.21) and (2.20),
respectively. Furthermore, F denotes the spacetime fermion number. In a consistent string
theory, the partition function Z(τ) must be invariant under the modular group PSL(2,Z)
generated by the transformations

T : τ 7→ τ + 1 , (2.23)

S : τ 7→ −1
τ
. (2.24)

This modular invariance condition allows the unambiguous definition of closed string torus
amplitudes (note that there are only closed strings in heterotic theories). There are also
similar conditions from higher-loop amplitudes, but in the relevant cases these are implied
from one-loop modular invariance. Modular invariance at all loops also ensures anomaly
freedom of the effective four-dimensional theory (that is, a Green-Schwarz like cancella-
tion).

2.1.2 Covariant Lattices

As a consequence of anomaly cancellation, any four-dimensional heterotic string theory
requires an internal unitary CFT with central charges (cL, cR) = (22, 9). Here, we follow
the approach of the bosonic supercurrent formalism [26, 27] and consider only internal



10 CHAPTER 2. COVARIANT LATTICES AND ORBIFOLDS

CFTs that are realized entirely in terms of free bosons XI
L(z), I ∈ {1, . . . , 22} and Xi

R(z),
i ∈ {1, . . . , 9} that are compactified on a lattice Γint∗

22,9. These bosons obey the OPEs

XI
L(z)XJ

L (w) ∼ −δIJ log(z − w) , (2.25)

Xi
R(z)Xj

R(w) ∼ −δij log(z − w) , (2.26)

and the energy-momentum tensors are given by

T (z) = −1
2 :∂XR · ∂XR : (z) , (2.27)

T (z) = −1
2 :∂XL · ∂XL : (z) . (2.28)

The vertex operator that inserts a state with momentum eigenvalues (kL, kR) ∈ Γint∗
22,9 has

the form

VkL,kR(z, z) = :eikL·XL(z)+ikR·XR(z) : , (2.29)

where we again ignore cocycle operators at the moment. The OPE of above vertex oper-
ators,

VkL,kR(z, z)Vk′L,k′R(w,w) ∼
VkL+k′L,kR+k′R(w,w)

(z − w)−kR·k′R(z − w)−kL·k′L
+ . . . , (2.30)

again provides us with a natural inner product kL · k′L − kR · k′R of signature (22, 9) on
Γint∗

22,9. By adjoining the Dst∗
2,1 part from the bosonization of the ψµ–βγ CFT one constructs

vertex operators VkL,kR,λ,q = VkL,kRVλ,q, and checks that (kL, kR, λ, q) naturally belongs to
the orthogonal sum,

Γint∗
22,9 ⊕Dst∗

2,1 , (2.31)

which has signature (23, 11). Here and in the following, Λ denotes the lattice which is
identical to Λ, except that its inner product is amended by an additional minus sign.

Modular invariance. The OPEs of the vertex operators VkL,kR,λ,q(z, z) is non-local be-
cause not all inner products are integers. Also, the partition function obtained from (2.22)
is not modular invariant. In order to construct a local and modular invariant theory, one
must restrict to a subset of vectors in Γint∗

22,9 ⊕Dst∗
2,1 and also make additional assumptions

on Γint
22,9.
Let us in the following assume that Γint

22,9 is an even lattice (i.e. all vectors contained
in this lattice are supposed to have even norm) and that Γint∗

22,9/Γint
22,9 consists of four cosets

which we call (0), (s), (v) and (c). Furthermore, these cosets shall form a Z4 group and
the vectors k = (kL, kR) shall have norms

k2 ∈ 2Z , for k ∈ (0) , (2.32)
k2 ∈ 5

4 + 2Z , for k ∈ (s) , (2.33)
k2 ∈ 1 + 2Z , for k ∈ (v) , (2.34)
k2 ∈ 5

4 + 2Z , for k ∈ (c) , (2.35)
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very much in analogy to the D22,9 lattice. Then, we can construct an even lattice

Γ22,10 = (0, 0) ∪ (v, v) ⊃ Γint
22,9 ⊕Dhel

1 , (2.36)

similar to the decomposition D22,10 ⊃ D22,9 ⊕D1. Then, the cosets Γ∗22,10/Γ22,10 have the
same properties as those of D22,10, i.e. they form a Z2 × Z2 group and their norms are
given by

u2 ∈ 2Z , for u ∈ (0) , (2.37)
u2 ∈ 1 + 2Z , for u ∈ (s) , (2.38)
u2 ∈ 1 + 2Z , for u ∈ (v) , (2.39)
u2 ∈ 1 + 2Z , for u ∈ (c) , (2.40)

where u = (kL, kR, λ2). Here, we use the same naming as for the corresponding D22,10
conjugacy classes. One can go a step further and construct a lattice

Γ22,9;2,1 ⊃ Γ22,10 ⊕Dghost
1,1 (2.41)

as the following union of conjugacy classes:

Γ22,9;2,1 = (0, 0) ∪ (s, s) ∪ (v, v) ∪ (c, c) . (2.42)

This lattice is called odd covariant lattice. It is a sublattice of Γint∗
22,9 ⊕Dst∗

2,1, and the coset
decomposition (2.42) also holds in the same form for

Γ22,9;2,1 ⊃ Γint
22,9 ⊕Dst

2,1 . (2.43)

One now verifies that this lattice is odd integral (all vectors have integral inner product
and there are vectors of odd norm) and self-dual, i.e. Γ22,9;2,1 = Γ∗22,9;2,1.

We now check that restricting to vertex operators VkL,kR,λ,q with (kL, kR, λ, q) ∈ Γ22,9;2,1
results in a local and modular invariant theory. First, let us note that the contribution
of the transversal X2,3(z, z) CFT to the partition function (2.22) is modular invariant by
itself. Hence, we must show modular invariance of the partition function corresponding
to the internal CFT and the bosonization of the ψ2,3 CFT, which is given by

Z22,10(τ) = 1
η(τ)22

η(τ)10

 ∑
(kL,kR,λ2)∈(v)

−
∑

(kL,kR,λ2)∈(s)

 q
1
2k

2
Lq

1
2 (k2

R+λ2
2) . (2.44)

Here one sums only over the vectors of the conjugacy classes (s) and (v) of Γ22,10 due
to the truncation conditions (2.17) and (2.18), and the relative sign comes from the in-
sertion of (−1)F in (2.22). The function Z22,10(τ) is obviously invariant under the T -
transformation (2.23) because we sum only over odd lattice vectors (cf. (2.38) and (2.39)),
and due to the following property of the Dedekind η-function:

η(τ + 1) = eiπ/12η(τ) . (2.45)
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In order to show invariance of Z22,10(τ) under the S-transformation (2.24), let us first
introduce the general partition function of a CFT of n left-moving and m right-moving
bosons compactified on an integral lattice Λn,m of signature (n,m):

ZΛn,m(τ) = 1
η(τ)nη(τ)m

∑
(xL,xR)∈Λn,m

q
1
2x

2
Lq

1
2x

2
R . (2.46)

This function is S-modular invariant if and only if Λn,m is self-dual (this is shown by
Poisson resummation). Now, from the conjugacy classes of Γ22,10 we can construct two
self-dual lattices (0) ∪ (v) and (0) ∪ (s). Hence, the partition functions Z(0)∪(v)(τ) and
Z(0)∪(s)(τ) are S-modular invariant. However, then also

Z22,10(τ) = Z(0)∪(v)(τ)−Z(0)∪(s)(τ) (2.47)

is modular invariant, as we claimed. Finally, locality follows from the fact that the inner
product on Γ22,9;2,1 is integral. Showing that such a covariant lattice theory is also multi-
loop modular invariant is more tricky [28].

The bosonic string map. Let us now make the observation that the conjugacy classes
(0, 0) and (v, v) in equation (2.42) have even norm, whereas (s, s) and (c, c) have odd
norm. Then, by replacing the Dghost

1,1 factor in the decomposition Γ22,10 ⊕ Dghost
1,1 with a

Dghost
4 factor we can again construct a lattice

Γ22,14 = (0, 0) ∪ (s, s) ∪ (v, v) ∪ (c, c) ⊃ Γ22,10 ⊕Dghost
4 , (2.48)

which is again self-dual. It is also even since the conjugacy classes (s), (v) and (c) of
D4 have odd norm. The lattice Γ22,14 is called even covariant lattice (or just covariant
lattice) and has signature (22, 14). Above replacement is also known as the bosonic string
map [41, 42], because by adjoining a right-moving E8 factor to Γ22,14 we obtain a lattice
that serves as a bosonic string compactification. This map also plays a role in the proof
of multi-loop modular invariance.

Exchanging Dghost
1,1 with Dghost

4 is also equivalent to replacing Dst
2,1 by Dst

5 , thus giving
a similar decomposition of the form

Γ22,14 ⊃ Γint
22,9 ⊕Dst

5 . (2.49)

Recall that we required that the cosets in Γint∗
22,9/Γint

22,9 satisfy properties similar to those in
D∗22,9/D22,9. These conditions are sufficient for the evenness and self-duality of Γ22,14. It is
also possible to show their necessity. Hence, we can construct a modular invariant theory
from Γint

22,9 if and only if there exists an even and self-dual lattice Γ22,14 that decomposes
as in (2.49).

2.1.3 Bosonic Realizations of Supersymmetry

The covariant lattice must obey additional consistency conditions from superconformal
invariance of the internal cR = 9 CFT: there has to exist a supercurrent Gint(z) that
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obeys the OPEs (2.2) and (2.3). Obviously, we need to express the supercurrent in terms
of the Xi

R(z). The OPE (2.2) states that Gint(z) is a primary field of conformal weight
3/2. This condition is solved by the following expression:

Gint(z) =
∑
s2=3

A(s) :eis·XR(z) : ε(s, p̂R) +
∑
r2=1

iB(r) · ∂XR(z) :eir·XR(z) : ε(r, p̂R) . (2.50)

Here, one sums over two sets of vectors r and s of norm 1 and 3, respectively. Also, the
coefficients Bi(r) are subject to a transversality condition,

r ·B(r) = 0 . (2.51)

Moreover, in equation (2.50),

p̂iR = 1
2π

∮
dz ∂Xi

R(z) (2.52)

denotes the zero-mode (momentum operator) and ε(s, t) is a cocycle that has to be intro-
duced to ensure correct statistics. The constraints from the OPE (2.3) on the coefficients
A(s) and Bi(r) shall not be considered in full generality here. Instead, we will discuss a
special case in Subsection 2.1.5, where we additionally require a chiral four-dimensional
spectrum.

Constraint vectors. Due to an additional consistency condition, for each vector r and
s that appears in (2.50) with non-zero coefficient, the covariant lattice Γ22,14 must contain
all vectors (kL, kR, x) of the form

(0, r, v) and (0, s, v) , (2.53)

called constraint vectors of the supercurrent [28]. In above notation, the third entry cor-
responds to the subspace spanned by Dst

5 , and v denotes a weight in the vector conjugacy
class of D5. This condition ensures that the picture-changing operator acts on the states
of the theory in a well defined manner. It also arranges that the states of the theory
appear in representations of the four-dimensional Lorentz algebra.

Since the covariant lattice is an even lattice and v2 is an odd integer, an immediate
consequence is that the vectors r and s span an odd integral lattice. In the following, we
denote this “supercurrent lattice” by Ξ, and sums in expressions such as (2.50) are to be
interpreted as sums over vectors in Ξ.

The cocycle. We now need to discuss some properties of the 2-cocycle, ε : Ξ×Ξ 7→ C×

(here, C× shall denote the non-zero complex numbers). It is subject to the conditions

ε(s, t) ε(s+ t, u) = ε(s, t+ u) ε(t, u) , (2.54)

ε(s, t) = (−1)s·t+s2t2 ε(t, s) , (2.55)
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for all s, t, u ∈ Ξ. These conditions are preserved if the cocycle is multiplied by a cobound-
ary δη(s, t), i.e.

ε(s, t)′ = ε(s, t) η(s) η(t) η(s+ t)−1 (2.56)

is also a valid cocycle. Then, by choosing η appropriately, the cocycle can be gauged to
satisfy

ε(0, s) = 1 , (2.57)
ε(s,−s) = 1 , (2.58)
ε(s, t) = ε(t,−s− t) = ε(−s− t, s) , (2.59)
ε(s, t)∗ = ε(−t,−s) = ε(s, t)−1 , (2.60)

for all s, t ∈ Ξ (cf. also [43]). These properties are assumed in the rest of this work.
A particularly useful way to obtain an explicit realization is as follows. First, define

ε(bi, bj) for a basis {b1, . . . , b9} of Ξ in such a way that the conditions

ε(bi, bi) = 1 , (2.61)
ε(bi, bj) ε(bj , bi) = 1 , (2.62)

ε(bi, bj) = (−1)bi·bj+b
2
i b

2
j ε(bj , bi) , (2.63)

are satisfied, and then consider the linear continuation to Ξ× Ξ. One can show that this
implies the other properties.

2.1.4 Massless Spectra and Symmetries

Let us now discuss the spectra of covariant lattice theories. Physical states must sat-
isfy (2.17)–(2.18) and (2.20)–(2.21). This results in the conditions:

1
2M

2 = 1
2k

2
L +NX +NL − 1 , (2.64)

1
2M

2 = 1
2k

2
R +NX + 1

2λ
2
2 +NR − 1

2 . (2.65)

Here, NL (NR) denotes the oscillator number of the 22 left-mover (10 right-mover) bosons
corresponding to Γ22,10, and NX (NX) is the oscillator number of the right-moving (left-
moving) part of X2,3. Also, (kL, kR, λ2) belongs either to the (v) conjugacy class of Γ22,10
for the NS sector, or to (s) conjugacy class for the R sector. Note, that the internal
CFT given by the lattice Γint

22,9 always gives rise to a left-mover and a right-mover Kac-
Moody algebra gL and gR of level one. The algebra gL is spanned by the currents i∂XI

L
and :eikL·XL : , where k2

L = 2 and (kL, 0) ∈ Γint
22,9 (and similarly for gR). These Kac-Moody

algebras contain zero-mode Lie algebras g0
L and g0

R, which are important because the states
at a given mass level always form a representation of g0

L ⊕ g0
R.

There is another method to formally determine the spectrum which makes use of the
bosonic string map, and it is especially convenient if one is just interested in the massless
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states. In that case, we solve

0 = 1
2x

2
L +NX +NL − 1 , (2.66)

0 = 1
2x

2
R +NX +NR − 1 , (2.67)

where NX , NX and NL are as above, but now (xL, xR) ∈ Γ22,14 and NR is supposed to
include oscillations in the Dghost

4 directions (note, that physically there are no oscillator
excitations in the Dghost

4 direction). Then, one formally obtains complete representations
of the zero-mode SO(10) Lie-algebra associated with Dst

5 . Recall though that there is
no one-to-one relationship between physical states and Dst

5 lattice vectors. Rather, by
the truncation rules (2.17) and (2.18) the SO(10) representation allows to read off the
spacetime Lorentz representation:

45 of Dst
5 −→ (left-mover) gauge vector boson, (2.68)

10 of Dst
5 −→ complex scalar, (2.69)

16 of Dst
5 −→ Weyl fermion, (2.70)

16 of Dst
5 −→ Weyl fermion (CPT conjugate state). (2.71)

for NX = 0 and x2
L/2 +NL = 1, as well as

45 of Dst
5 −→ graviton + complex dilaton, (2.72)

10 of Dst
5 −→ (right-mover) gauge vector boson, (2.73)

16 of Dst
5 −→ gravitino + dilatino, (2.74)

16 of Dst
5 −→ gravitino + dilatino (CPT conjugate states). (2.75)

for NX = 1 and x2
L = 0. In above massless case also x2

R is determined as x2
R = 0 for the

45, x2
R = 1 for the 10, and x2

R = 3/4 for the 16 and 16 of Dst
5 . Further, note that above

mass shell equations (2.66) and (2.67) resemble those of the bosonic string. Let us now
discuss some generic properties of the massless spectrum.

Gauge and discrete symmetries. The effective theory of a covariant lattice model
always has a compact gauge symmetry group GL with Lie-algebra g0

L, as for each current in
gL there exists a corresponding gauge boson in the spectrum. Due to the U(1)22 subalgebra
spanned by the zero-modes p̂IL of the 22 currents i∂XI

L, one observes that the rank of this
left-mover gauge-group is always 22.

Under special circumstances there are also right-moving gauge bosons in the spec-
trum [44]. One sees that this happens exactly when Dst

5 enhances to some Dst
5+k ⊃ Dst

5 .
However, in these cases the spectrum is always non-chiral, because the spinor representa-
tion of Dst

5+k always decompose into non-chiral pairs of spinors of the Dst
5 subalgebra. In

any case the rank nine Lie algebra g0
R gives rise to a continuous symmetry group GR of

the CFT correlation functions. Yet this symmetry does not result in a global symmetry
of the effective theory. In fact, couplings obtained from amplitudes which do not require
picture changing are GR invariants. An example would be the three-point coupling in the
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effective superpotential of a supersymmetric theory. This coupling is calculated from the
amplitude

〈V (1)
−1 (z1, z1)V (2)

−1/2(z2, z2)V (3)
−1/2(z3, z3)〉, (2.76)

which does not require picture-changing (here, Vq denotes an operator in the q-picture).
However, for example the four-point coupling that is obtained from the amplitude

〈 :P+1V
(1)
−1 (z1, z1):V (2)

−1 (z2, z2)V (3)
−1/2(z3, z3)V (4)

−1/2(z4, z4)〉, (2.77)

is not GR invariant because the internal supercurrent Gint(z) which enters P+1 transforms
nontrivially under GR. Nonetheless, there may be a nontrivial subgroup HR ⊂ GR which
stabilizes Gint(z), and this subgroup gives a valid symmetry of the effective theory. Note,
that for chiral theories HR is necessarily discrete. For non-chiral theories HR may contain
continuous symmetries, which are necessarily gauged and lead to above described right-
moving gauge bosons.

Spacetime supersymmetry. Spacetime supersymmetry is attained whenever the co-
variant lattice contains vectors that extend Dst

5 to one of the exceptional root lattices Est
6

(N = 1), Est
7 (N = 2), and Est

8 (N = 4). Supersymmetric spectra are tachyon-free and
always contain the corresponding gravitinos.

The case N = 1 shall be of special importance to us. The states solving (2.67) then
necessarily come in representations of Est

6 , the relevant ones for the massless case being
78, 27 and 27. These branch as

78→ 450 ⊕ 161/4 ⊕ 16−1/4 ⊕ 10 ,

27→ 16−1/12 ⊕ 101/6 ⊕ 1−1/3 ,

27→ 161/12 ⊕ 10−1/6 ⊕ 11/3 ,

(2.78)

under E6 → SO(10) × U(1). Hence, we identify 78 with a vector multiplet and 27 with
a chiral multiplet (27 contains CPT conjugate states).

The N = 4 case also deserves some extra mentioning. Then, Γ22,14 contains an Est
8 -

sublattice, which is self-dual by itself. Hence, the covariant lattice can be written as an
orthogonal sum,

Γ22,14 = Γ22,6 ⊕ Est
8 , (2.79)

where Γ22,6 is self-dual and known as Narain lattice. This scenario describes the most
general toroidal compactification of ten-dimensional heterotic strings including constant
background fields [45, 46]. The enhancement of Dst

5 to Est
8 then arises due to the bosoniza-

tion of the compactified right-mover NSR-fermions.

2.1.5 Covariant Lattices for Chiral Models

Now, we require that the four-dimensional effective theory has a chiral spectrum. Then,
it can be shown that chiralness is spoiled if the supercurrent lattice Ξ contains vectors r
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of norm 1 [28]. In that case, Dst
5 is enhanced to some Dst

5+k ⊃ Dst
5 , which causes massless

fermion matter to appear in vector-like pairs. Hence, in the following we assume the
absence of norm 1 vectors and use the ansatz

Gint(z) =
∑
s2=3

A(s) :eis·XR(z) : ε(s, p̂R) (2.80)

for the internal supercurrent. Note that the absence of norm 1 vectors is only a necessary
condition for chiralness and it is nonetheless possible to obtain non-chiral models this way.

The supercurrent equations. Until now, we did not consider equation (2.3). So, the
next step is to calculate the GG-OPE using the ansatz in equation (2.80) and compare
it with the r.h.s. of equation (2.3). Then, one obtains the following system of quadratic
equations in the coefficients A(s): ∑

s2=3
|A(s)|2sisj = 2δij , (2.81)

∑
s2=t2=3
s+t=u

A(s)A(t)ε(s, t) = 0 for all u2 = 4 , (2.82)

∑
s2=t2=3
s+t=u

A(s)A(t)ε(s, t) (si − ti) = 0 for all u2 = 2 . (2.83)

Here, we also imposed a hermiticity condition,

Gint(z)† = (z∗)−3Gint(1/z∗) , (2.84)

which implies A(s)∗ = A(−s). A generalized version of equations (2.81)–(2.83) which
includes also non-vanishing B(r) can be found in [31].

Left-right decomposition of the covariant lattice. As an immediate consequence
of equation (2.81), the supercurrent lattice Ξ must completely span the nine-dimensional
space it resides in. Then, the constraint vectors (0, s, v) generate a negative-definite 14-
dimensional sublattice Γ14 of Γ22,14. We also define (Γ22)L as the 22-dimensional lattice of
vectors belonging to the orthogonal complement of Γ14 in Γ22,14, and similarly (Γ14)R as the
lattice of vectors in the orthogonal complement of (Γ22)L in Γ22,14. Clearly, Γ14 ⊆ (Γ14)R,
and we obtain the following decomposition:

Γ22,14 ⊃ (Γ22)L ⊕ (Γ14)R . (2.85)

This decomposition does not contain self-glue, i.e. all elements of Γ22,14 that belong to
the R-span of (Γ14)R also lie in (Γ14)R, and those belonging to the R-span of (Γ22)L also
lie in (Γ22)L. In the following, we always assume that decompositions such as in (2.85)
are self-glue free, and, that the lattice dimensions on the l.h.s. and on the r.h.s. of the
inclusion relation match.
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Symmetries of the supercurrent equations. Equations (2.81)–(2.83) possess several
symmetries (also cf. [28]). First, note that the internal cR = 9 right-mover CFT always
contains the Kac-Moody algebra gR spanned by the currents i∂Xi

R(z). To these currents
corresponds the U(1)9 symmetry group which is infinitesimally generated by the p̂iR. Then,
if Gint(z) as in (2.80) satisfies the super-Virasoro algebra, so does the conjugate

U(ξ)Gint(z)U(ξ)† =
∑
s2=3

A(s)eis·ξ :eis·XR(z) : ε(s, p̂R) , (2.86)

where U(ξ) = eiξ·p̂R denotes an element of the symmetry group. One also verifies that if
A(s) solves (2.81)–(2.83), then so does A(s)eis·ξ.

Whenever there exist norm 2 vectors in Ξ, the U(1)9 symmetry is enlarged to a non-
Abelian group by additional Frenkel-Kac currents. Then, the norm 3 vectors correspond
to weights of a (in general reducible) representation of this non-Abelian group, and group
transformations can be used to set some of the A(s) to zero. In this case it may happen that
the A(s) become non-zero only on a sublattice Ξ′ ⊂ Ξ, which can then be considered more
fundamental than Ξ. Besides these continuous symmetries, there may also be additional
discrete symmetries (e.g. those induced by lattice automorphisms) that transform one
solution into another.

In any case, above symmetries only correspond to a change of basis, and as such
produce physically equivalent supercurrents. However, one can not rule out the possibility
that equations (2.81)–(2.83) allow for distinct solutions not related by a physical symmetry.
Then, one obtains inherently different string vacua. These vacua share the same spectrum,
but string amplitudes which necessitate picture changing may differ.

2.2 Asymmetric Orbifolds

Orbifolding [1, 2] is an elegant method that allows the construction of new string vacua
from existing ones by dividing out a finite group Gorb of symmetries. The spectrum of the
new theory then contains an untwisted sector and (possibly several) twisted sectors. The
untwisted sector is obtained simply by projecting on Gorb-invariant states of the original
theory, but is not modular invariant by itself. Modular invariance is only restored by
including the twisted sectors, which contain strings with an additional set of boundary
conditions. With orbifold constructions it is possible to reduce the number of supersym-
metries. It is in particular possible to obtain chiral N = 1 theories from a N = 4 toroidally
compactified string.

2.2.1 The Asymmetric Orbifold Construction

Let us now introduce a ZN orbifold construction that starts from a Narain compactified
heterotic string [19, 20]. The internal (cL, cR) = (22, 9) CFT of Narain compactification
contains 22 left-mover bosons XI

L(z) and 6 right-mover bosons Xi
R(z) compactified on a

Narain lattice Γ22,6, as well as six right-mover NSR-fermions ψiR(z). Modular invariance
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is ensured by demanding that Γ22,6 is even and self-dual, and by applying the usual GSO
projection to the fermion sector [47]. The internal supercurrent of this theory is given by

Gint(z) = iψR(z) · ∂XR(z) . (2.87)

In order to specify the orbifold group, one defines the action of a generator of ZN on the
internal fields XI

L, Xi
R and ψiR:

XL 7→ θLXL + 2πvL ,

XR 7→ θRXR − 2πvR ,

ψR 7→ θRψR ,

(2.88)

where θL and θR denote (orthogonal) twist matrices and vL and vR are shift vectors. Note,
that this twisting preserves the internal supercurrent (2.87). In order for the action (2.88)
to be a symmetry of the theory, θ = θL ⊕ θR must be an automorphism of the Narain
lattice Γ22,6. Then, the action on the vertex operators

Vk(z, z) = :eikL·XL(z)+ikR·XR(z) : ε(k, p̂) , (2.89)

is given by
Vk 7→ ηθ(k)−1e2πi(vL·kL−vR·kR)Vθ−1k . (2.90)

Again, ε(s, t) denotes a cocycle, and p̂ = (p̂L, p̂R) denotes the zero-mode operators of the
left-mover and right-mover currents i∂XL and i∂XR, respectively. Moreover, ηθ(k) is a
phase factor that must satisfy

ε(θ−1k, θ−1k′) = ε(k, k′) ηθ(k) ηθ(k′) ηθ(k + k′)−1 . (2.91)

This phase factor ensures that the orbifold action is an automorphism of the vertex opera-
tor algebra (that is, the transformed quantities have identical OPEs as the original ones),
and is also important because it can cause that the order of Gorb doubles when acting on
the vertex operators. The calculation of ηθ(k) for a convenient choice of the cocycle is
described in [48].

As in the heterotic string the number of left-mover and right-mover bosons is differ-
ent, the above is an intrinsically asymmetric construction. One nevertheless calls such
an orbifolding symmetric if θL ∼= θR ⊕ θ16 for some 16-dimensional twist θ16, and asym-
metric otherwise. Here, we do not care about the difference and just call above general
construction “asymmetric orbifolding”.

For the following discussion it is convenient to bosonize the fermions ψiR of the original
Narain theory. Then, one obtains a covariant lattice theory with Γ22,14 = Γ22,6 ⊕ Est

8 .
Since our orbifold group is Abelian, it is always possible to choose the chiral bosons H3,
H4 and H5 of the bosonization such that θR acts as a shift,

Hα 7→ Hα − 2πvαψ . (2.92)
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Note, that here we adopt the notation of Section 2.1 and let H1 and H2 denote the
bosonization of the ψµ. As these are untouched by the orbifolding, we assume that the
components v1

ψ and v2
ψ vanish. The other vαψ are then determined from the twist vector

tα, which appears in the eigenvalues e±2πitα of θR (here, we assume det(θR) = 1) as
vαψ = tα. However, there is a small ambiguity in this prescription which we will resolve in
Subsection 2.2.2. Under the action (2.92), the vertex operators :eiλαHα : obtain a phase
e−2πiλαvαψ .

The twist-shift correspondence. The Narain theory that is the starting point of
above construction is always equivalent to a covariant lattice theory, but the orbifold
theory need not be so in general. For example, any twist θL that breaks the rank of the
gauge group will necessarily result in a theory that is not describable by free bosons on
a lattice. However, we now discuss a rather general class of asymmetric orbifolds which
are equivalent to a covariant lattice theory [33–35]. Henceforth, we assume that θL is the
identity (vL may still be non-zero, as the shift action does not project out the i∂XL). Yet
there remains the problem that θR might reduce the rank of the right-mover Kac-Moody
algebra gR. However, for certain combinations of Narain lattices and twists θR it is possible
perform a “rebosonization” of the Xi

R, i.e. a change of basis, that allows one to trade θR
for a shift vR [34]. Then, the complete orbifold action is given by a shift, which maps the
original Narain theory on another covariant lattice theory.

Let us in the following assume that the Narain lattice decomposes as

Γ22,6 ⊃ (Γ22)L ⊕ (Γ6)R , (2.93)

where (Γ6)R shall be a root lattice of a rank 6 semi-simple Lie algebra of ADE type. Note
that Γ22,14 is then of the form (2.85), with

(Γ14)R = (Γ6)R ⊕ Est
8 . (2.94)

In this setup, it is possible to express the i∂XR in terms of exponentials of new chiral
boson fields X ′iR:

i∂Xi
R =

∑
r2=2

α(r) :eir·X′R : ε(r, p̂′R) . (2.95)

Here, the sum is over a set of vectors r ∈ (Γ6)R of norm 2, and the α(r) are some suitable
coefficients that must be chosen such that the r.h.s. of (2.95) has the same OPEs as i∂Xi

R.
Then, for special choices of the θR, the twist action on the Xi

R from (2.88) is equivalent
to a shift action on the X ′iR as

X ′R 7→ X ′R − 2πvR . (2.96)

The θR for which this twist-shift correspondence is applicable turn out to be exactly those
that belong to the Weyl group of the simply-laced root system of (Γ6)R.

Note, that the change of basis (2.95) can also be understood as an automorphism of
the underlying vertex operator algebra. In particular, it gives an automorphism of the
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zero-mode Lie algebra g0
R. For Weyl twists, i.e. inner automorphisms of the corresponding

Lie group GR, this automorphism can be used to conjugate the original action (2.90) into
the maximal torus of GR, hence giving a shift action. For outer automorphisms there does
not exist such a conjugation. There is also another way to see that an outer automorphism
twist θR is not viable in this framework: such a twist acts as a symmetry of the Dynkin
diagram corresponding to (Γ6)R, and it nontrivially permutes the conjugacy classes of
(Γ6)R. Then, θR will not be a symmetry of the Narain lattice, unless we also twist the
left-movers in a similar way.

Now, one might ask why we discussed the original twist action (2.88) at all, if we
could just have started with a pure shift action action on the N = 4 covariant lattice
theory. The answer lies in the requirement of world-sheet supersymmetry: an arbitrary
shift vector that acts on the nine chiral bosons Xi

R and H3,4,5 would project out the
supercurrent. However, we saw that the construction (2.88) retains the supercurrent, and
this fact is not spoiled by bosonizing the ψiR and by the base change (2.95). In other
words, above construction provides us with a relation between vR and vψ that ensures
world-sheet supersymmetry in the orbifold theory. We also observe that in terms of the
X ′R and Hα, the supercurrent takes the form (2.80), which we have shown to be necessary
for chiral covariant lattice theories.

The orbifold spectrum. Let us now discuss the orbifold theory that is obtained from
the complete shift action. The shift vector is written compactly as v = (vL, vR, vψ, 0),
where the zero entry corresponds to the Dst

5 part that we do not touch at all. Also, if
the twist-orbifolding defines a modular invariant theory, one can always choose v such
that v2 ∈ 2Z (cf. [28, Appendix A.4]). Let in the following N denote the smallest natural
number such that Nv ∈ Γ22,14 (we assume N > 1 as the orbifolding would be trivial
otherwise).

In order to calculate the untwisted spectrum, one has to project on Gorb invariant
states (or vertex operators). The untwisted sector of the shift-orbifold theory is then
represented by the sublattice Γu

22,14 of vectors x ∈ Γ22,14 with vanishing orbifold phase,
i.e. x · v ∈ Z. This lattice always has a (self-glue free) decomposition

Γu
22,14 ⊃ (Γu

22)L ⊕ (Γu
14)R . (2.97)

Moreover, |Γ22,14/Γu
22,14| = N , so Γu

22,14 is not self-dual. However, the inclusion of the
twisted sectors provides additional glue vectors of the form

nv + Γu
22,14 , n ∈ {1, . . . , N − 1} . (2.98)

These cosets complete Γu
22,14 to an even self-dual lattice Γ′22,14 ⊃ Γu

22,14. Then, in particular
(Γ′14)R ⊇ (Γu

14)R, where the equality is achieved for appropriate choices of vL.
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2.2.2 Twists for Chiral Models

To obtain a chiral spectrum, vψ must break Est
8 to Est

6 (N = 1) or Dst
5 (N = 0). If one

considers Est
8 decomposed as

Est
8 ⊃ D1 ⊕D1 ⊕D1 ⊕Dst

5 , (2.99)

one sees that all conjugacy classes of the form

(v, 0, 0, v) ,
(0, v, 0, v) ,
(0, 0, v, v) ,

(2.100)

must be projected out, as otherwise Dst
5 would be enhanced at least to some Dst

5+k. For
this to happen, it is necessary that

vαψ /∈ Z . (2.101)

This is equivalent to demanding that θR is non-degenerate, i.e. det(θR − 1) 6= 0. The
decomposition (2.99) also contains the eight conjugacy classes:

(s, s, s, s), (c, c, c, c), (s, s, c, c) , (2.102)

the underline denoting all possible permutations. The massless states are given by the
momenta λ = (λ2, λ3, λ4, λ5) of the form

(±1
2 ,±

1
2 ,±

1
2 ,±

1
2) , (2.103)

with an even number of minus signs (λ2 corresponds to H2 which appears in the bosoniza-
tion of ψ2 and ψ3, equation (2.7)). In order to attain N = 1, it is necessary that

v3
ψ ± v4

ψ ± v5
ψ ∈ 2Z (2.104)

or

v3
ψ ± v4

ψ ± v5
ψ ∈ Z and at least one vαψ ∈

Z
2 (2.105)

for any sign combination: one sees that this causes a cancellation of the phase λαvαψ for
exactly one CPT-conjugate pair of momenta in (2.103), leading to a single gravitino in
the spectrum.

Let us now discuss an ambiguity in the choice of the vαψ. First note that the components
of the twist vector tα are only determined modulo integers and signs from the eigenvalues
of θR. While one can show that any sign combination of the vαψ gives the same theory,
adding arbitrary integers to them can result in different theories. However, adding an
even vector to (v3

ψ, v
4
ψ, v

5
ψ) produces equivalent theories because such a vector belongs to

the D3 factor in the decomposition Est
8 ⊃ D3 ⊕ Dst

5 and thus has integral inner product
with all vectors in Est

8 . Thus, for a given θR there are in principle two different choices
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for vψ, which act equally on the NS sector, but differently on the R sector. Now, if a shift
vector vψ satisfies (2.105), then adding an odd vector to vψ will destroy this condition,
except when any of the vαψ is half-integral: in that case, adding an odd vector is reverted
by a sign change. Hence, depending on the twist θR there are three possibilities:

1. The twist always breaks supersymmetry completely. For these, neither (2.104) nor
(2.105) can be satisfied.

2. The twist always retains N = 1 supersymmetry. In this case, (2.105) is satisfied.

3. The twist allows two inequivalent shifts: one which destroys supersymmetry com-
pletely, and one which retains N = 1. In this case, none of the vαψ is half-integral
but it is possible to satisfy (2.104) by adding an odd vector to vψ.

Finally, let us note that it possible to restore non-chirality and further supersymmetries
from twisted sectors. This usually happens when the order of the action of Gorb is different
on left-movers and right-movers. It is however possible to remove these cases by imposing
additional conditions on the shifts vL.

Non-degenerate Weyl twists. In order to construct a chiral orbifold theory we require
a non-degenerate Weyl twist. Non-degenerate elements of Weyl groups were classified by
Carter [49] using certain generalized Dynkin diagrams that are known as Carter diagrams.
In particular, for any semi-simple Lie-algebra there is always a Carter diagram which
corresponds to the Coxeter element, and it is identical to the respective Dynkin diagram.
Also, any Carter diagram of a simply-laced subalgebra of the same rank is allowed. A
method to calculate the twist vector tα and the shift vector vR from a Carter diagram is
given in [34]. In Table 2.1 we give a list of all degenerate Weyl twists and corresponding
root lattices (Γ6)R.
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Table 2.1: Possible twists (Γ6)R and root lattices leading to chiral asymmetric orbifold models
which are equivalent to a covariant lattice. Note that the twists corresponding to the Carter
diagrams A2

3 and A2
1D4(a1) are conjugate to each other within D6. The attainable number N of

supersymmetries is also given.

Order tα Carter Diagram N (Γ6)R

Z2 (1, 1, 1)/2 A6
1 0 A6

1, A
2
1D4, D6

Z3 (1, 1, 1)/3 A3
2 0,1 A3

2, E6

Z4

(1, 1, 2)/4 A2
3 1 A2

3, D6

(1, 1, 2)/4 A2
1D4(a1) 1 A2

1D4, D6

(1, 2, 2)/4 A3
1A3 0 A3

1A3, A1D5

Z6

(1, 1, 2)/6 E6(a2) 0,1 E6

(1, 1, 3)/6 D6(a2) 0 D6

(1, 2, 3)/6 A1A5 1 A1A5, E6

(1, 2, 3)/6 A2D4 1 A2D4

(1, 3, 3)/6 A2
1D4 0 A2

1D4, D6

(2, 2, 3)/6 A2
1A

2
2 0 A2

1A
2
2

(2, 3, 3)/6 A4
1A2 0 A4

1A2, A2D4

Z7 (1, 2, 3)/7 A6 0,1 A6

Z8
(1, 2, 3)/8 D6(a1) 0,1 D6

(1, 3, 4)/8 A1D5 1 A1D5

Z9 (1, 2, 4)/9 E6(a1) 0 E6

Z10
(1, 3, 5)/10 D6 0 D6

(2, 4, 5)/10 A2
1A4 0 A2

1A4

Z12

(1, 4, 5)/12 E6 0,1 E6

(2, 3, 6)/12 A1D5(a1) 0 A1D5

(3, 3, 4)/12 A2D4(a1) 0 A2D4

(3, 4, 6)/12 A1A2A3 0 A1A2A3

Z15 (3, 5, 6)/15 A2A4 0 A2A4



Chapter 3

Classification of Chiral Models

In the previous chapter we introduced the heterotic covariant lattice formalism and saw
that it can be used to construct chiral four-dimensional string models. However, we are
lacking a systematic and exhaustive understanding of this particular corner of the four-
dimensional string landscape. The purpose of this chapter is to fill this gap by providing
an overall classification of chiral covariant lattice models.

Let us start by giving an overview on the classification process. In Subsection 2.1.5
we concluded that, in a chiral model, the covariant lattice Γ22,14 must decompose as in
equation (2.85) into a left-mover lattice (Γ22)L and a right-mover lattice (Γ14)R. The
covariant lattice also obeys several consistency conditions from modular invariance and
world-sheet supersymmetry. However, while modular invariance involves Γ22,14 as a whole,
the requirement of world-sheet supersymmetry directly affects only the right-mover lat-
tice. In particular we saw that (Γ14)R must contain a sublattice Γ14 which is constructed
from a nine-dimensional lattice Ξ using the constraint vectors. On this “supercurrent lat-
tice” Ξ there must exist a solution to equations (2.81)–(2.83). Our first step will be the
classification of these supercurrent lattices, which will be treated in Section 3.1.

Once these lattices are classified, it is possible to construct all right-mover lattices that
may appear in a chiral model. Modular invariance then greatly restricts the choice of the
left-mover lattice (Γ22)L, and one is naturally led to the conclusion that the possible (Γ22)L
are organized in what is known as lattice genera. The well-established theory of lattice
genera then allows us to calculate a lower bound on the number of left-mover lattices, and
also provides us exact methods for their classification. This all is subject of Section 3.2.

Finally, one has to keep in mind the possibility that for a pair of lattices (Γ22)L and
(Γ14)R there may be several inequivalent embeddings of the form (2.85). This depends
on the existence of certain automorphisms of these lattices. We do not treat this issue
generally, but we consider special cases in Chapter 4, where we perform explicit model
building.

25
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3.1 The Supercurrent Lattices

Let us begin with the classification of the nine-dimensional supercurrent lattices that were
introduced in Section 2.1. For a chiral model, Ξ must satisfy the following properties:

1. Basic. Ξ is positive definite, integral, generated by its norm 3 vectors, and contains
no norm 1 vectors.

2. Supersymmetry. There exists a solution A(s) to equations (2.81)–(2.83) on Ξ.

We call a positive-definite lattice Ξ that obeys above two properties admissible. An ad-
missible lattice can further be reduced to certain fundamental building blocks, that we
now describe.

First, note that an orthogonal sum of admissible lattices is again admissible. One also
verifies that the converse is true: if an orthogonal sum of several factors is admissible,
then so is each factor. This is because any norm 3 vector v3 that were not contained in
one of the orthogonal factors would be a sum of lattice vectors v1 and v2, where v1 has
norm 1 and v2 is of norm 2. However, by the “basic” properties such vectors v1 do not
exist and hence equations (2.81)–(2.83) must have a solution independently for each factor.
Another point is that we do not need to care about an admissible lattice which contains
an admissible sublattice of the same dimension. These facts motivate the definition of the
following properties:

1. Primitivity. Ξ is not isomorphic to an orthogonal sum Ξ1 ⊕ . . .⊕ Ξk, k > 1.

2. Elementarity. Ξ is admissible and does not contain a strictly smaller admissible
sublattice Ξ′ ⊂ Ξ of the same dimension.

Then, any admissible lattice Ξ can be built from primitive elementary building blocks by
orthogonal composition and gluing. In the following we classify these building blocks by
first constructing a set of candidate lattices and then solving equations (2.81)–(2.83).

3.1.1 Construction of Candidate Lattices

Let us start by classifying all lattices satisfying above “basic” and “primitivity” properties.
This is done by induction over n = dim(Ξ) up to n = 9.

At this point we need to discuss a rather important subtlety. First, recall that any
lattice Λ has a basis {b1, . . . , bn} with basis vectors bi ∈ Λ such that each x ∈ Λ is repre-
sented by a unique integer linear combination of the bi. Then, n denotes the dimension
of Λ. When we say that a lattice Λ is spanned (or generated) by a finite set {a1, . . . , aN}
of vectors ai ∈ Λ, we mean that any x ∈ Λ can be written as a, not necessarily unique,
integer linear combination of the ai. Now, one might hope that, for any such generating
set, it is possible to choose a basis where all basis vectors bi belong to that generating
set. While this is certainly true for vectors spaces, it is not so for lattices (consider, for
example, the lattice Z and the generating set {2, 3}). A counterexample that comes close
to our situation has been found in [50]. The lattice constructed there is generated by its
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vectors of minimal length, but does not possess a basis solely out of these minimal vectors.
After this discovery such lattices have received some interest [51]: they were shown not to
exist for n ≤ 9, while for n = 10 a concrete example of such a lattice was found.

Although here we are only interested in the case n ≤ 9, our lattices are allowed to
contain vectors of norm 2, so the theorem of [51] is not applicable. Thus, among the
lattices that satisfy our basic properties there might exist “pathological” lattices which do
not possess a basis of norm 3 vectors. However, suppose Ξ′ be such a pathological case.
Then, there must exist a sublattice Ξ ⊂ Ξ′ that is not pathological. Hence, we can at the
moment restrict our classification to lattices which do have a basis of norm 3 vectors and
care about the pathological cases afterwards. Now, the idea is to enumerate these lattices
by constructing all possible Gram matrices, in a way similar to the “lamination” process
introduced in [52, 53]. For a lattice with basis {b1, . . . , bn}, the Gram matrix is defined by

Gij = bi · bj . (3.1)

It determines the lattice up to O(n) rotations in the ambient space, but is not a basis
independent quantity. In our case we assume the existence of a basis of norm 3 vectors, so
we only need to consider Gram matrices where the diagonal elements are Gii = 3. Now,
suppose G′ be such a Gram matrix of a (n + 1)-dimensional lattice which satisfies our
basic properties. The lattice corresponding to the restricted Gram matrix G = (G′ij)i,j≤n
then must also fulfill these properties. Now, we can write G′ as

G′ =
(
G v

vT 3

)
, (3.2)

where v is a column vector. From positive definiteness it follows that det(G′) > 0. This
translates into the following condition:

vTG−1v < 3 . (3.3)

Since the vi are integers and G is positive definite, there are only finitely many possible v
satisfying equation (3.3).

The naive algorithm then goes as follows. Suppose we have a set Bn that contains a
Gram matrix for each non-pathological lattice of dimension n with the basic properties.
Set Bn+1 = {}. Then, for each pair (G, v) with G ∈ Bn and v satisfying equation (3.3)
do the following:

1. Construct the matrix G′ as in (3.2). It is necessarily positive definite.

2. If the lattice corresponding to G′ contains norm 1 vectors, continue to the next pair
(G, v).

3. Otherwise, check whether Bn+1 already contains a Gram matrix that is equivalent
to G′ by a change of basis. If not, replace Bn+1 by Bn+1 ∪ {G′}.
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After completion, Bn+1 contains a Gram matrix for each non-pathological lattice of di-
mension n+ 1 satisfying our basic properties. The algorithm is initialized with B1, which
contains the only possible Gram matrix in one dimension, and then repeatedly applied un-
til we obtain B9. Since we start with only finitely many lattices, we only produce finitely
many new lattices in each step and hence Bn is finite for all n.

In this form, the algorithm also produces non-primitive lattices. However, the non-
primitive cases are excluded if we consider only non-vanishing v in each step. This can be
seen as follows. Suppose that a lattice Ξ with Gram matrix G ∈ Bi be an orthogonal sum
two lattices Ξ1 and Ξ2. Then G is necessarily of the form G1 ⊕G2 up to permutations of
the basis vectors bi. Here, G1 and G2 denote Gram matrices of Ξ1 and Ξ2, respectively.
This is because any potential basis vector of norm 3 in Ξ must belong to either Ξ1 or Ξ2.
Then one sees that, in order to obtain G, we have at some stage in the naive algorithm
chosen a vanishing v. Thus, by leaving out the case v = 0 one restricts to primitive lattices.
One also sees that this prescription does not accidentally remove some primitive lattices,
because for them one can always find a Gram matrix for which the vectors v are non-zero
at any stage.

Finally we have to check for the existence of pathological cases. This is done as fol-
lows: for each lattice we found (including the non-primitive ones obtained by considering
orthogonal sums), one constructs all overlattices Ξ′ that are obtained by including addi-
tional norm 3 vectors. If we encounter a primitive lattice that was not yet obtained, we
must add it to our results.

The actual computation showed that for n ≤ 9 no pathological case exists. Also, in
Table 3.1 the number of primitive basic lattices that were obtained for each dimension is
listed. At this point it should also be noted that above naive algorithm is very slow for large
n, and the actual implementation includes several optimizations. One such optimization
arises if one also computes the automorphism groups of the lattices corresponding to the
Gram matrices G. The automorphism group naturally acts on the vectors v, and we can
compute its orbits. Then we only need to consider one representative vector v in each
orbit.

3.1.2 Solutions to the Supercurrent Equations

At this stage we possess a list of all lattices with the basic and primitivity properties.
The next step is to solve the conditions imposed by world-sheet supersymmetry. First,
it is practical to consider only equation (2.81), which is a system of linear equations in
the |A(s)|2. It turns out that in total only 59 lattices possess a solution, so the number
of candidate lattices is drastically reduced (cf. Table 3.1). For these candidates we then
consider, in a somewhat case by case manner, the full set of equations (2.81)–(2.83). This
is done using the following strategies:

• By means of the U(1)9 symmetry discussed in Subsection 2.1.5, we may fix the phases
of some A(s). Moreover, if U(1)9 is extended to some non-Abelian symmetry, we
may use this symmetry to set some A(s) to zero. This procedure radically reduces
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Table 3.1: The number of lattices with the respective properties: basic (B), supersymmetry (S),
primitivity (P), elementarity (E).

dim(Ξ) PB PB + (2.81) PBS PE

1 1 1 1 1
2 2 0 0 0
3 7 1 1 1
4 28 0 0 0
5 136 1 1 1
6 911 6 6 3
7 8665 2 2 2
8 131316 8 7 4
9 3345309 40 36 14

Total 3486375 59 54 26

the complexity of the problem in most cases.

• Sometimes, systems of polynomial equations are easier to solve if one first computes
a Gröbner basis of the corresponding ideal. Especially, if the computed Gröbner
basis is trivial then the system has no solutions.

With these methods it was possible to rule out the existence of a solution for 5 out of the
59 candidate lattices. For further 26 candidates an explicit solution was found, albeit with
some trial and error. Then, it was proven that these lattices are elementary and that all
remaining candidates can be reproduced by gluing together orthogonal sums thereof.

Thus, for dim(Ξ) ≤ 9, there exist 54 primitive admissible lattices of which 26 are
primitive elementary. By orthogonally combining them one obtains in dim(Ξ) = 9 a total
of 63 admissible lattices, and 32 of them are elementary. A summary of these results is
shown in Table 3.1.

In the rest of this work we identify a primitive elementary lattice by its dimension,
and, in the cases 6 ≤ dim(Ξ) ≤ 9, also by an additional uppercase Latin subscript which
is assigned in alphabetical order. Moreover, we use a shorthand notation where e.g. 3161

A

denotes the orthogonal sum of the primitive elementary lattices 3 and 6A. Gram matrices
for the 26 primitive elementary lattices are provided in Table B.1, together with some
further information.

3.2 Right-Mover and Left-Mover Lattices

We have now classified the possible supercurrent lattices Ξ that may appear in a chiral co-
variant lattice model. From these we can construct all possible right-mover lattices (Γ14)R
and discuss the associated left-mover lattices that are compatible with modular invariance.
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Before we are able to do this, we must briefly study some facts about discriminant forms
and lattice genera.

3.2.1 Discriminant Forms and Lattice Genera

Let us begin by introducing the concept of discriminant forms [54]. Let Λ be an integral
lattice with Gram matrix G, and let det(Λ) = |det(G)| denote its discriminant. Since Λ
is integral, it must be contained in the dual lattice Λ∗, and hence we can construct the
quotient group Λ∗/Λ. This quotient is a product of (finite) cyclic groups whose orders
are given by the elementary divisors of Λ. These are in turn defined to be the elementary
divisors obtained from the Smith normal form of G.

The important point is now that the bilinear form on Λ naturally induces a bilinear
form BΛ(·, ·) : Λ∗/Λ× Λ∗/Λ 7→ Q/Z, given by

B(v + Λ, w + Λ) = v · w (3.4)

for v, w ∈ Λ∗. This is indeed well-defined because (v + x) · (w + y) − v · w ∈ Z, for any
x, y ∈ Λ. For even lattices Λ we also define a quadratic form QΛ : Λ∗/Λ 7→ Q/2Z,

QΛ(v + Λ) = v2 , (3.5)

with v ∈ Λ∗. Again, this is well-defined because (v + x)2 − v2 ∈ 2Z for all x ∈ Λ.
The quotient Λ∗/Λ together with the bilinear form BΛ is called the discriminant bi-

linear form, disc−(Λ) of Λ. Similarly, for even lattices we also define the discriminant
quadratic form disc+(Λ) as the tuple (Λ∗/Λ, QΛ). Moreover one defines morphisms for
these structures to be group morphisms φ : Λ∗1/Λ1 7→ Λ∗2/Λ2 which preserve the respective
bilinear or quadratic form, i.e.

BΛ2(φ(·), φ(·)) = BΛ1(·, ·) , (3.6)

in the case of disc−, and further

QΛ2 ◦ φ = QΛ1 . (3.7)

in the case of disc+. A fortiori, a morphism of a discriminant quadratic form disc+(Λ)
also gives us a morphism of the corresponding discriminant bilinear form disc−(Λ).

Now, there is a well known theorem [38], proven in Appendix A.2:

Theorem 1. For any integral self-dual lattice Λ with a self-glue free decomposition of the
form Λ ⊇ Λ1 ⊕ Λ2, where dim(Λ) = dim(Λ1) + dim(Λ2), one obtains an isomorphism

disc−(Λ1) ∼= disc−(Λ2) , (3.8)

which at the same time is an isomorphism

disc+(Λ1) ∼= disc+(Λ2) . (3.9)
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if Λ is even. Also the “converse” statement is true: given two integral lattices Λ1, Λ2 and
an isomorphism φ : disc−(Λ1) 7→ disc−(Λ2), then there exists a self-dual lattice Λ with a
self-glue free decomposition Λ ⊇ Λ1⊕Λ2. If furthermore Λ1 and Λ2 are even and φ is also
an isomorphism of the corresponding discriminant quadratic forms, then also Λ is even.

In the remainder of this work we also adopt the following convention. When we call
something a discriminant form disc(Λ) of a lattice Λ (without the attribute “bilinear” or
“quadratic”), we mean disc+(Λ) in the case where Λ is even, and disc−(Λ) in the case
where Λ is odd.

Lattice genera. Now, we want to introduce the concept of lattice genera. Let Λ1 and
Λ2 denote two integral lattices with Gram matrices G1 and G2. Then one defines an
equivalence relation “≡” as follows: we say that Λ1 ≡ Λ2 if for every prime number p
there exists an invertible p-adic integral matrix Up such that

UpG1U
T
p = G2 , (3.10)

and if further Λ1 and Λ2 have the same signature. The corresponding equivalence classes
are called genera. An alternative characterization of the genus is due to Nikulin [54]: two
lattices Λ1 and Λ2 lie in the same genus G if and only if they have identical signatures,
they are either both even or odd, and their discriminant forms are isomorphic. Note that
the isomorphism already implies p1− q1 = p2− q2 = 0 mod 8 for the respective signatures
(p1, q1) and (p2, q2). In particular, two lattices in the same genus have identical elementary
divisors.

There is a classic result that states that a genus G contains only finitely many lattices,
and the predominant method for the enumeration of all lattices in a genus is known as
Kneser’s neighborhood method [55]. It is related to the “shift vector method” in [28,
Appendix A.4], which is in turn related to certain shift-orbifold constructions. Also, in
some cases the “replacement” lattice engineering method (cf. [28, Appendix A.4]) turns
out to be useful (we will apply it in Subsection 3.2.4).

The mass formula. Another relevant tool in the study of lattice genera is the Smith-
Minkowski-Siegel mass formula [39, 56]. The mass of a genus is defined as

m(G) =
∑
Λ∈G

1
|Aut(Λ)| . (3.11)

Here, Aut(Λ) denotes the automorphism group (point group) of Λ (definiteness of the
lattices is assumed). Note, that the definition of the mass depends on all lattices in G. The
mass formula then provides another way of computing the mass which only requires explicit
knowledge of a single Λ ∈ G. This computation is rather complicated (the technicalities
are found in [39]) and we will not go into the details here.

An important application of the mass formula is the computation of a lower bound on
|G|: from |Aut(Λ)| ≥ 2 one obtains

|G| ≥ 2m(G) . (3.12)
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However, this bound is rather crude in many cases. The mass formula also allows to verify
whether an explicit enumeration of lattices in a genus is exhaustive.

Consequences for chiral models. Using the theorem stated earlier, we now conclude
from the self-duality of Γ22,14 that the lattices (Γ22)L and (Γ14)R appearing in the de-
composition (2.85) must have isomorphic discriminant forms. Hence, by the theorem of
Nikulin [54], the right-mover lattice completely determines the genus GL of (Γ22)L. More-
over, (Γ22)L can be replaced by any other lattice from GL without destroying self-duality,
so set of possible left-mover lattices that can be paired with some specific (Γ14)R is given
precisely by the corresponding genus GL. Not surprisingly, it is also possible to exchange
(Γ14)R with a different lattice from the same genus, provided that it also obeys the con-
straints from world-sheet supersymmetry.

It thus possible to use the Smith-Minkowski-Siegel mass formula to give a lower bound
on the number of models — or to use one of the earlier mentioned methods and attempt
their exact classification.

3.2.2 The Lattice Inclusion Graph

We now use our classification of supercurrent lattices and the theory of lattice genera to
obtain an overall insight into the space of covariant lattice models. First, for each of the 32
elementary supercurrent lattices that we classified in Section 3.1, one constructs a right-
mover lattice (Γ14)R = Γ14 from the constraint vectors (0, s, v). These lattices are minimal,
in the sense that there is no solution to the supersymmetry constraints (2.81)–(2.83) for
any strictly smaller sublattice. However, any even overlattice

(Γ14)′R ⊇ (Γ14)R (3.13)

clearly inherits the solution A(s) from (Γ14)R (it may violate the chiralness constraint
from Subsection 2.1.5, though), and only finitely many such overlattices can exist. The
explicit construction of all these overlattices produced a total of 414 right-mover lattices.

From these lattices it is possible to construct a directed graph G in which each lattice
is represented by a node, and two lattices A and B are connected by an arrow, A −→ B,
if A ⊃ B and the index |A/B| is prime. It turns out that the graph splits into nine
disjoint connected components G1 to G9. Consequently, for most right-mover lattices,
more than one of the 32 elementary supercurrents can be chosen, and, as pointed out in
Subsection 2.1.5, it is possible that these choices are related by a symmetry transformation.
In Figures 3.1–3.3 we display the connected components G1 to G5 and G9, but only the
subgraphs thereof consisting of nodes with spacetime supersymmetry. Table 3.2 lists the
number of lattices in each connected component, separately for the different levels of
spacetime supersymmetry. It turns out that among all 414 lattices, only 99 comply with
the chiralness condition introduced in Subsection 2.1.5, and merely 19 lead to N = 1
spacetime supersymmetry.

In the following, we discuss in detail some interesting parts of the lattice inclusion
graph G together with the corresponding left-mover genera GL.
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Table 3.2: Statistics of the lattice inclusion graph G in total, and also separately for each con-
nected component Gi. Denoted are the total number of lattices, as well as the number of lattices
with certain spacetime sublattice (k > 0).

Dst
5 Est

6 Est
7 Est

8 Dst
5+k Total

G1 19 6 6 3 36 70
G2 35 9 9 4 115 172
G3 1 1 0 1 1 4
G4 8 2 3 2 45 60
G5 10 1 3 2 41 57
G6 2 0 0 1 5 8
G7 1 0 0 1 6 8
G8 1 0 0 1 10 12
G9 3 0 1 1 18 23

Total G 80 19 22 16 277 414

The bottom nodes. Our graph G contains certain nodes B for which there do not exist
any other nodes B′ ←− B. We call them “bottom nodes”, and they clearly correspond
to those 32 lattices (Γ14)R constructed from the elementary supercurrent lattices Ξ using
the constraint vectors. Using the Smith-Minkowski-Siegel mass formula, it is possible to
calculate a lower bound on the respective |GL| (note that in order to apply this formula, we
explicitly need a representative of each GL, which can however be given by (Γ14)R ⊕ E8).
The bottom nodes together with these bounds are listed in Table 3.3.

One recognizes that from the bottom nodes alone one obtains a total of at least O(1023)
models. Of course, these models are not guaranteed to be chiral. They are also not
supersymmetric, and supposedly many of them contain tachyons. In any case though
these high numbers rule out an explicit enumeration and evaluation of all these models.

The top nodes. We call a node T ∈ G a “top node” if there do not exist other nodes
T ′ −→ T . Remarkably, each connected component contains, among others, also a top
node representing a N = 4 theory. These theories are Narain-compactifications of the ten-
dimensional theory where (Γ14)R is of the form (Γ6)R ⊕ Est

8 and (Γ6)R is the root lattice
of a rank 6 semi-simple Lie algebra of ADE type. Recall that these right-mover lattices
appeared in the twist-shift correspondence of asymmetric orbifolds in Subsection 2.2.1.

It also turns out that, separately for each connected component of G , the respective
top nodes belong to the same genus. For each of these “top node genera” we performed an
exact classification using the “replacement” method described in [28, Appendix A.4] (in
some cases, for practicability reasons a generalized method which involves also odd lattices
was used). This classification is described in detail in Subsection 3.2.4. In Table 3.4, the
top nodes and the respective |GL| are listed.
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Table 3.3: The bottom nodes of G , i.e. the lattices (Γ14)R generated from the 32 elementary
lattices Ξ. Here, ∆⊥2 denotes the root system of norm 2 vectors orthogonal to Dst

5 . Also, some
information on the corresponding genera GL is provided.

Genus Lattice (Γ14)R

Component |GL| Bound Divisors Ξ ∆⊥2

G1

3.1 · 1017 3762 19 –
1.3 · 109 2441121 1181

A A2
1

4.2 · 1014 3164 1181
D –

3.4 · 1012 31182 91
D A1

1.0 · 1014 2161122 91
J –

2.9 · 1011 3261181 91
K –

G2

5.8 · 1017 62122 1271
B –

3.8 · 1017 26122 113151 –
2.1 · 1015 42122 1181

B –
1.8 · 1015 2246 33 –
1.2 · 1012 2444 3161

A –
2.1 · 1011 2482 91

C A2
1

5.2 · 109 2482 91
E –

4.4 · 109 2244 91
F –

4.2 · 1011 43161 91
G –

3.6 · 1014 22202 91
L –

1.7 · 1015 224282 91
M –

G3 4.1 · 1013 71142 91
N –

G4

6.1 · 1018 2141242 1181
C –

8.4 · 1017 214382 3161
B –

1.9 · 107 244181 91
A A2

1
91

B A2
1

5.1 · 1013 234182 91
H –

3.0 · 1014 4183 91
I –

G5

1.2 · 1018 2165 1451 –
8.2 · 1021 2241123 1332 –
6.0 · 1017 2361122 1361

A –

G6 6.5 · 1022 151302 1361
C –

G7 2.6 · 1020 21101202 3161
C –

G8 5.2 · 1022 21121242 1361
B –

G9
2.7 · 1023 3262122 1631 –
5.6 · 1011 2662 1271

A –
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Table 3.4: The top nodes in G . The corresponding left-mover genera GL were enumerated
completely. Here, Γst denotes the spacetime sublattice, and ∆⊥2 is the root system of norm 2
vectors orthogonal to Γst.

Genus Lattice (Γ14)R

Component |GL| Divisors ∆⊥2 Γst

G1 31 31 E6 Est
8

– Dst
13

G2 68 22
D6 Est

8
A2

1 Dst
12

– Dst
14

G3 153 71 A6 Est
8

G4 326 2141
A1D5 Est

8
A1A3 Dst

10
A1 Dst

13

G5 382 2161
A2D4 Est

8
A3

1 Dst
10

A2 Dst
12

G6 1163 151 A2A4 Est
8

G7 4043 21101 A2
1A4 Est

8
A4 Dst

10

G8 9346 21121 A1A2A3 Est
8

A1A2 Dst
11

G9 19832 62

A2
1A

2
2 Est

8
A2

1 Dst
10

A2
2 Dst

10
– Dst

12
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Nodes with N = 1 spacetime supersymmetry. Finally, let us consider the 19 right-
mover lattices in G that lead to N = 1 supersymmetry. These lattices are listed in
Table 3.5, together with information on their associated left-mover genera.

For the lattice A4
2E

st
6 (33) which is contained in G1 (cf. Figure 3.1), a complete clas-

sification of the corresponding genus GL was performed (this is described in detail in
Subsection 3.2.5). It was found that |GL| = 2030, so one can construct 2030 models from
this right-mover lattice. These models are discussed in Section 4.1. Interestingly, the
right-mover lattices A4

2E
st
6 (33) and A3

2E
st
8 (33) belong to the same genus. Hence, the 2030

left-mover lattices we classified also appear in Narain-compactified N = 4 models.
Using the same method, we also computed an upper bound of |GL| ≤ 5033195 on the

size of the left-mover genus corresponding to the right-mover lattice A4
1E

st
6 (3162). The

lower bound from the mass formula is given as |GL| ≥ 1504. An explicit model belonging
to this genus is considered in Section 4.2.

For the other lattices in Table 3.5, only a lower bound on the respective |GL| was
calculated using the mass formula (in the case of the lattice with elementary divisors 26

it was lower than one and therefore meaningless). The bottom line is that, even in the
N = 1 case, we expect at least O(1010) models. However one must keep in mind the
crudeness of the lower bound. Out of curiosity, we can quantify this crudeness in the case
of the right-mover lattice A4

2E
st
6 (33) where we enumerated GL exactly: there, the lower

bound calculated using the mass formula is of O(10−3), thus the deviation is of O(106).

3.2.3 Relationship With Asymmetric Orbifolds

In Section 2.2 we discussed certain twist-orbifolds of Narain compactified heterotic strings
that could be expressed as a shift-orbifold of a covariant lattice Γ22,14. We saw that the
shift-orbifolding produces a new covariant lattice Γ′22,14 which contains a sublattice Γu

22,14
describing the untwisted sector. Now, that we have a complete classifiaction of right-mover
lattices for chiral models, it is interesting to investigate what right-mover lattices (Γu

14)R
actually arise due to this mechanism. Let us restrict to those (Γ6)R and twists θR that lead
to N = 1 spacetime supersymmetry (cf. the summary in Table 3.6). Then, the obtained
right-mover lattices (Γu

14)R must be among those 19 right-mover lattices in Table 3.5. An
explicit calculation verified that this in fact happens (in Table 3.5 it is also denoted which
type of orbifold corresponds to which right-mover lattice). Interestingly, in several cases
it happens that different types of twist-orbifold lead to the same right-mover lattice. One
such case is given by the ZI

6 and ZII
6 orbifolds constructed from (Γ6)R = E6, as both lead

to the A4
1E

st
6 (3162) right-mover lattice shown in Figure 3.1. This indicates the possibility

that some models could be obtained from either twist-orbifold construction.
Let us finally treat the question whether all elementary supercurrent lattices can be

obtained from the ZN twist-orbifold construction with Weyl twists that we introduced in
Section 2.2 (or a possible generalization thereof that also includes e.g. the ZN ×ZM case).
In [34], a simple condition is provided that allows to check whether a given admissible
supercurrent lattice Ξ can be obtained from the twist-orbifold construction: there must
exist three orthonormal vectors eI in Ξ∗, i.e. eI · eJ = δIJ , so that for each norm 3 vector
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Table 3.5: Right-mover lattices (Γ14)R with N = 1. Here, ∆⊥2 denotes the root system of norm
2 vectors orthogonal to Est

6 . Also, some information on the corresponding genera GL is provided.
Where applicable, the corresponding ZN twist-orbifolds are shown.

Genus Lattice (Γ14)R

Component Divisors |GL| ∆⊥2 (Γ6)R/ZN Orbifolds

G1

33 2030 A4
2 E6/Z3

3162 1504 ≤ |GL| ≤ 5033195 A4
1 E6/Z

I
6, E6/Z

II
6

35 > 6.9 · 103 A2 A3
2/Z3

3391 > 2.7 · 105 –
31122 > 1.5 · 109 – E6/Z

I
12, A1A5/Z

II
6

37 > 4.1 · 108 –

G2

26 − A3

2242 > 3 A4
1

2242 > 6 A6
1 D6/Z4

2442 > 1.3 · 105 A2
1 A2

1D4/Z4

2442 > 1.3 · 104 –
2282 > 4.8 · 106 A1 A2

3/Z4, D6/Z
I
8

2282 > 8.0 · 105 –
44 > 8.0 · 105 –
2244 > 1.7 · 109 –

G3 73 > 4.0 · 107 – A6/Z7

G4
224181 > 4.4 · 103 A2

1
214182 > 2.3 · 109 – A1D5/Z

II
8

G5 2163 > 5.2 · 107 – A2D4/Z
II
6
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Table 3.6: All different types of twist-orbifolds that were found in [34] to lead to N = 1 covariant
lattice theories. For the vR, the notation of [34] is adopted.

Component (Γ6)R Type Carter Diagram vψ vR

G1

E6

Z3 A3
2 (1, 1,−2)/3 (1, 1, 0, 1, 1, 1)/3

ZI
6 E6(a2) (1, 1,−2)/6 (1, 0, 1, 0, 1, 0)/6

ZII
6 A1A5 (1, 2,−3)/6 (1, 1, 1, 1, 1, 3)/6

ZI
12 E6 (1, 4,−5)/12 (1, 1, 1, 1, 1, 1)/12

A1A5 ZII
6 A1A5 (1, 2,−3)/6 (3, 1, 1, 1, 1, 1)/6

A3
2 Z3 A3

2 (1, 1,−2)/3 (1, 1, 1, 1, 1, 1)/3

G2

D6
Z4 A2

1D4(a1) or A2
3 (1, 1,−2)/4 (2, 0, 1, 0, 1, 1)/4

ZI
8 D6(a1) (1, 2,−3)/8 (1, 1, 0, 1, 1, 1)/8

A2
3 Z4 A2

3 (1, 1,−2)/4 (1, 1, 1, 1, 1, 1)/4

A2
1D4 Z4 A2

1D4(a1) (1, 1,−2)/4 (2, 2, 1, 0, 1, 1)/4

G3 A6 Z7 A6 (1, 2,−3)/7 (1, 1, 1, 1, 1, 1)/7

G4 A1D5 ZII
8 A1D5 (1, 3,−4)/8 (4, 1, 1, 1, 1, 1)/8

G5 A2D4 ZII
6 A2D4 (1, 2,−3)/6 (2, 2, 1, 1, 1, 1)/6

t ∈ Ξ there is exactly one eI such that t · eI = ±1.
We explicitly checked this condition for all 32 elementary supercurrent lattices that

resulted from our classification. It turned out that, except for cases 1271
A, 1181

A and
91
A, it was possible to satisfy the condition. Moreover, for these exceptional cases the

corresponding (Γ14)R built from the constraint vectors are not contained in a lattice of the
form (Γ6)R⊕Est

8 (note, that this would be required if above condition were true). Hence,
it is impossible for these supercurrents to appear in a N = 1 model.

3.2.4 Classification of Top Node Genera

In this section we classify the left-mover genera associated with the top nodes of our lattice
inclusion graph G . While these genera themselves do not lead to chiral models, they are
important because they can serve as a starting point for the classification of all the other
left-mover genera. The main method we use in this section is related to the “replacement”
technique of [28, Appendix A.4].

We have already observed that for each connected component Gi, the top nodes belong
to a single genus. Hence, there are nine genera GL to classify. Furthermore, each of these
genera contains a lattice of the form Γ6⊕E8, where Γ6 is the root lattice of a semi-simple
rank 6 lie algebra of ADE type. Since E8 is self-dual, this means that the discriminant
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Table 3.7: Pairs of even lattices Γ6 and Γ2. Where appropriate, Γ2 is represented by a Gram
matrix.

Component Divisors Γ6 Γ2

G1 31 E6 A2

G2 22 D6 A2
1

G3 71 A6

(
2 −1

−1 4

)
G4 2141 A1D5 A1Z(4)

G5 2161 A2D4

(
4 −2

−2 4

)
G6 151 A2A4

(
2 −1

−1 8

)
G7 21101 A2

1A4

(
4 −2

−2 6

)
G8 21121 A1A2A3 A1Z(12)

G9 62 A2
1A

2
2 Z2

(6)

forms of the corresponding left-mover lattices (Γ22)L must be isomorphic to that of Γ6:

disc ((Γ22)L) ∼= disc(Γ6) . (3.14)

Moreover, one shows that for each genus, there exists an even Euclidean lattice Γ2 such
that E8 ⊃ Γ6⊕Γ2 is a self-glue free decomposition (these lattices Γ2 are listed in Table 3.7).
Hence,

disc(Γ6) ∼= disc(Γ2) . (3.15)

By combining above isomorphisms we see that for any (Γ22)L ∈ GL there must exist an
Euclidean even self-dual lattice Γ24 which has a self-glue free decomposition

Γ24 ⊃ (Γ22)L ⊕ Γ2 . (3.16)

The even self-dual lattices in 24 dimensions form a genus G+
24, for which a classification

is available due to Niemeier [57] (it turns out that |G+
24| = 24). Then, by reversing above

argument one notices that it is possible to classify the GL in question by computing the
orthogonal complement of Γ2 in Γ24 for all inequivalent embeddings of the respective Γ2
into a Γ24 ∈ G+

24.
Note, that the case G1 where Γ6 = E6 has already been classified by hand using

this method [24], and we explicitly list the lattices in this left-mover genus in Table 3.8.
Although above technique works in principle for all the Gi, the available computational
resources were sufficient only for the cases G1 to G5. This is because these cases are in
principle controlled by enumerating only norm 2 and norm 4 vectors in Γ24, which turned
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out to be viable for all Γ24 ∈ G+
24. The other cases involve the enumeration of vectors

of larger norm, which happened to be computationally too expensive. Nonetheless, it
was possible to classify the remaining genera by similar methods which make use of odd
lattices. In the following we describe these methods.

Method for A-type lattices. Let us begin by describing an technique that is in prin-
ciple applicable in cases where Γ6 consists only of factors of A-type. First, note that for
any n ∈ N+ there exists a (self-glue free) decomposition of the form

Zn+1 ⊃ An ⊕ Z(n+1) , (3.17)

and hence

disc−(An) ∼= disc−
(
Z(n+1)

)
. (3.18)

With this in mind, let us now consider the genus GL associated with the top nodes of G6
(i.e. the case Γ6 = A2A4). Using the embeddings Z3 ⊃ A2 ⊕ Z(3) and Z5 ⊃ A4 ⊕ Z(5) we
then obtain

disc−(Γ6) ∼= disc−
(
Z(3)Z(5)

)
, (3.19)

one concludes that for each (Γ22)L ∈ GL there must exist an odd self-dual lattice Γ−24 which
decomposes as

Γ−24 ⊃ (Γ22)L ⊕ Z(3)Z(5) . (3.20)

The genus G−24 of odd and self-dual lattices in 24 dimensions was classified in [39, 58], with
the result that |G−24| = 273. Then, by determining the orthogonal complement of Z(3)Z(5)
in Γ−24, for all inequivalent embeddings of Z(3)Z(5) in a Γ−24 ∈ G

−
24, it was possible to classify

GL. Besides the even lattices (Γ22)L that we are interested in, this procedure also produces
odd lattices (Γ22)L which we must discard.

Method for lattices with D-type factors. Let us now introduce a further alternative
method which is applicable in the cases where Γ6 contains a factor of D-type. First, note
that the vector conjugacy class (v) of a Dn lattice has integral norm (in this context we
use D1 = Z(4), D2 = A2

1 and D3 = A3), and that Zn = Dn ∪ (v). We can thus map a Dn

factor contained in Γ6 to Zn, giving us an odd lattice Γ−6 ⊃ Γ6. Since

disc−(Γ6) ∼= disc− ((Γ22)L) ∼= disc−(Γ2) , (3.21)

we can perform an analogous mapping also for (Γ22)L and Γ2, resulting in some odd lattices
Γ−22 and Γ−2 . The lattices Γ−6 and Γ−2 are listed in Table 3.9. Then, by using a generalization
of a lemma proven in Appendix A.2 (Lemma 1) that also covers odd lattices, one obtains

disc−(Γ−6 ) ∼= disc−(Γ−22) ∼= disc−(Γ−2 ) . (3.22)
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Table 3.8: The genus of 22-dimensional even Euclidean lattices Γ of determinant 3, given by
providing a sublattice Γ0 and glue vectors.

No. Γ0 Γ/Γ0 Generators of Γ/Γ0

1 D21Z(12) 41 (s, 1/4)
2 D13E8Z(12) 41 (s, 0, 1/4)
3 D16E6 21 (s, 0)
4 E6E

2
8 – –

5 A21Z(66) 221 (5, 1/22)
6 D9D12Z(12) 2141 (v, s, 0), (s, v, 1/4)
7 A14E7Z(10) 101 (3, 1, 1/10)
8 A5A17 61 (3, 3)
9 D7E

2
7Z(12) 2141 (v, 1, 1, 0), (s, 1, 0, 1/4)

10 A5D10E7 22 (3, s, 0), (0, c, 1)
11 A12D9Z(156) 521 (2, s, 1/52)
12 A15D6Z(12) 2181 (0, v, 1/2), (2, s, 1/4)
13 D5D

2
8Z(12) 2241 (v, s, v, 0), (v, v, s, 0),(s, v, v, 1/4)

14 A9A12Z(390) 1301 (1, 5, 1/130)
15 A8D7E6Z(36) 361 (1, s, 1, 1/36)
16 A11D4E6Z(12) 21121 (0, v, 0, 1/2), (1, s, 1, 1/4)
17 A2

2A11D7 121 (1, 1, 1, s)
18 A2

2E
3
6 32 (1, 1, 1, 2, 0), (1, 1, 2, 0, 1)

19 A6A9D6Z(210) 21701 (0, 5, v, 1/2), (1, 2, s, 1/70)
20 A3A

2
9Z(12) 21201 (0, 5, 5, 1/2), (1, 2, 9, 1/4)

21 A3D
3
6Z(12) 2341 (2, v, v, v, 0), (2, c, s, v, 1/2), (2, s, v, c, 1/2),

(3, v, s, 0, 1/4)
22 A5A

2
8Z(18) 31181 (0, 3, 6, 0), (1, 4, 1, 1/18)

23 A4A7D
2
5Z(120) 41401 (0, 0, c, c, 1/4), (1, 1, s, v, 1/40)

24 A2
1A

2
7D5Z(12) 214181 (1, 1, 0, 0, 0, 1/2), (1, 0, 2, 0, c, 1/4), (1, 1, 1, 7, s, 0)

25 A3A
3
6Z(84) 71281 (0, 0, 2, 6, 1/7), (1, 6, 2, 1, 1/28)

26 A2A
3
5D4Z(6) 2162 (0, 3, 0, 0, s, 1/2), (1, 2, 3, 4, v, 1/6), (1, 4, 2, 3, c, 1/6)

27 A4
5Z(4)Z(12) 2161121 (3, 0, 0, 3, 1/2, 0), (0, 1, 1, 4, 1/2, 0), (1, 0, 1, 2, 1/4, 1/4)

28 D5
4Z(4)Z(12) 2541 (c, s, v, v, s, 0, 1/2), (c, 0, c, v, v, 1/2, 1/2),

(v, v, c, 0, c, 1/2, 1/2), (c, v, v, c, 0, 1/2, 1/2),
(0, c, v, v, c, 1/2, 1/2), (s, s, s, s, s, 1/4, 1/4)

29 A1A
5
4Z(30) 52101 (0, 0, 2, 3, 3, 2, 1/5), (0, 2, 0, 2, 3, 3, 1/5),

(1, 4, 1, 0, 1, 4, 1/10)
30 A7

3Z(12) 44 (0, 1, 1, 2, 0, 0, 1, 1/4), (1, 0, 1, 1, 2, 0, 0, 1/4),
(0, 1, 0, 1, 1, 2, 0, 1/4), (0, 0, 1, 0, 1, 1, 2, 1/4)

31 A11
2 35 (1, 1, 0, 0, 1, 0, 2, 0, 2, 0, 2), (1, 1, 2, 1, 0, 0, 0, 2, 2, 0, 0),

(1, 0, 0, 0, 0, 1, 2, 2, 2, 1, 0), (0, 1, 2, 0, 1, 0, 2, 2, 0, 1, 0),
(1, 0, 2, 1, 0, 0, 2, 0, 0, 1, 2)



3.2. RIGHT-MOVER AND LEFT-MOVER LATTICES 45

Table 3.9: Pairs of odd lattices Γ−6 and Γ−2 .

Component Γ−6 Γ−2

G2 Z6 Z2

G4 A1Z5 A1Z
G5 A2Z4 Z(3)Z
G7 A4Z2 Z(5)Z
G8 A1A2Z3 A1Z(3)

G9 A2
2Z2 Z2

(3)

Thus, there must exist an odd self-dual lattice Γ−24 ∈ G
−
24 with self-glue free decomposition

Γ−24 ⊃ Γ−22 ⊕ Γ−2 . (3.23)

We can then determine the genus G−L of the lattices Γ−22 by determining the inequivalent
embeddings of Γ−2 in an odd self-dual lattice Γ−24 ∈ G

−
24 (in cases where Γ−2 contains Z

factors the problem can be reduced to lower-dimensional odd self-dual lattices). Finally
for each Γ−22 ∈ G

−
L we can determine the corresponding (Γ22)L and thus the genus GL

by computing the sublattice of even vectors. Note that the correspondence G−L ↔ GL is
one-to-one, except for the case G5 which involves D4. In that case the correspondence is
many-to-one due to the triality of D4.

Note that this method is similar to to the one described at the beginning of this
subsection. However, the lattices Γ−2 are controlled by lower-norm vectors than their even
counterparts Γ2 which made the problem solvable on a computer. The resulting numbers
for |GL| are then listed in Table 3.4.

3.2.5 The Subgenus Method

We now introduce a method that is suitable for the enumeration of the remaining left-
mover genera, but begin with a rather generic discussion. Let Λ0 be an even lattice that
belongs to a genus G0. Furthermore, assume that there is a vector w ∈ Λ∗0 with w /∈ Λ0
that satisfies w2 ∈ 2Z, so that we can construct the even overlattice

Λ = 〈Λ0 ∪ {w}〉 , (3.24)

belonging to some genus G. Clearly, Λ/Λ0 is a cyclic group. Let in the following denote
N = |Λ/Λ0|. Then, by a theorem proven in Appendix A.2 (Theorem 3), there must exist
another vector v ∈ Λ∗0 satisfying

Nv ∈ Λ∗ ,
kv /∈ Λ∗ for k ∈ {1, . . . , N − 1} ,

(3.25)
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so that Λ0 = Iv(Λ). Here, we define Iv(Λ) for a lattice Λ and a vector v in the R-span of
Λ as

Iv(Λ) = {x ∈ Λ | x · v ∈ Z} . (3.26)

This suggests a method for the classification of G0. Suppose we have already completely
classified the genus G. Then, for each Λ ∈ G we compute the vectors satisfying (3.25) and
the corresponding lattices Iv(Λ) as in (3.26). Of course, there are infinitely many such
vectors v, but two vectors v and v′ satisfying (3.25) produce same Iv(Λ) if

v′ − θv ∈ Λ∗ (3.27)

for some automorphism θ of Λ. Hence, it is sufficient to consider only one representative
v of each orbit of the natural action of Aut(Λ) on the set Λ∗/(NΛ∗) (clearly, there are
only finitely many orbits). Nevertheless, we may still obtain several isomorphic copies of
a lattice Iv(Λ) for different Λ ∈ G and v, and we must remove the duplicates at this stage.
Now, let S denote the (finite and duplicate-free) set of all Iv(Λ) obtained this way. We
claim that this set always is a (disjoint) union of complete subgenera Gi of G, the original
G0 being among them (a subgenus of a genus G shall be the genus of a sublattice of a
lattice in G). We now sketch a proof of this claim. What we basically have to show is
that, if some lattice Λ0 ∈ Gi belongs to S, then any other lattice Λ′0 ∈ Gi also belongs to
S. Clearly, for such a lattice Λ′0 there must exist a discriminant form isomorphism

φ : disc(Λ0) 7→ disc(Λ′0) , (3.28)

because Λ0 and Λ′0 belong to the same genus. Also, we know that there must be a vector
w ∈ Λ∗0 satisfying Λ = 〈Λ0∪{w}〉 ∈ G. Then, we can choose a representative w′ ∈ φ(w+Λ0)
and construct another even lattice

Λ′ = 〈Λ′0 ∪ {w′}〉 . (3.29)

Clearly, |Λ′/Λ′0| = N . Also, by Theorem 3 there exists a v′ with the same properties as
v in (3.25), but with Λ replaced by Λ′, so that Λ′0 = Iv′(Λ′). Now from a lemma proven
in Appendix A.2 (Lemma 1), one observes that Λ and Λ′ have isomorphic discriminant
forms. Thus, Λ′ also belongs to G. But then, as we constructed S from all lattices in G,
also Λ′0 ∈ S, which proves our claim.

Above method does in general also produce subgenera Gi of G other than the desired G0.
A simple way to deal with this is of course to remove the unwanted genera afterwards. It is
also possible to impose additional conditions on v which allow to single out G0. However,
the explicit form of such conditions depends on the concrete genus G and the subgenus of
it we wish to classify.

All left-mover lattices (Γ22)L belong to some genus GL that is a subgenus of a top node
genus. Using above method for prime subgenera (i.e. N being a prime number) we can
classify the left-mover genera corresponding to the right-mover lattices directly below the
top nodes. By repeating this procedure in the obvious way it is in principle possible to
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classify all left-mover genera (in practice though this is not computationally viable, as the
genera become very large).

Note, that the way we compute Iv(Λ) in (3.26) clearly resembles the calculation of
untwisted sectors in the shift-orbifold construction studied in Section 2.2 (in the following
we also refer to the vectors v as shift vectors).

The E6/Z3 left-mover genera. The right-mover lattice (Γ14)′R = A4
2E

st
6 (33) in Fig-

ure 3.1 is a sublattice of the top node (Γ14)R = E6E
st
8 (31) whose associated left-mover

genus GL was classified in Subsection 3.2.4 (the 31 lattices in GL are displayed in Table 3.8).
Using the subgenus method, a classification of the left-mover genus G′L corresponding to
(Γ14)′R was performed. Note that N = 3, and in fact this right-mover lattice appears in
Z3 orbifolds of from Narain theories with (Γ6)R = E6.

First, we calculate all inequivalent shift vectors v satisfying

3v ∈ (Γ22)∗L , (3.30)
v /∈ (Γ22)∗L , (3.31)

for each of the 31 lattices in (Γ22)L ∈ GL as described above. In order to single out the
left-mover genus associated with (Γ14)′R, we impose the additional constraints:

3v ∈ (Γ22)L , (3.32)
3v2 ∈ 2Z . (3.33)

These also originate from a modular invariance condition in the asymmetric Z3 orbifold
construction [25]. By computing orbits under the respective Aut((Γ22)L) it turned out
that in total there are 5317 inequivalent shift vectors v, so that one obtains 5317 lattices
(Γ22)′L ∈ G′L by computing the respective Iv((Γ22)L). After removing duplicates, 2030
lattices remained and thus |G′L| = 2030.

The E6/Z6 left-mover genera. From Figure 3.1 we see that the right-mover lattice
A4

2E
st
6 (33) has a sublattice A4

1E
st
6 (3162) of indexN = 2. We are interested in its left-mover

genus G′′L, which corresponds to Z6 orbifold models from Narain theories with (Γ6)R = E6.
Then, similarly to above case, we calculate inequivalent shift vectors of order 2,

2v ∈ (Γ22)′∗L , (3.34)
v /∈ (Γ22)′∗L , (3.35)

for each of the 2030 lattices in (Γ22)′L ∈ G′L. It turned out that there are in total 10069090
such shift vectors, and that the corresponding lattices as calculated using (3.26) split into
precisely two genera. Among these lattices, 5033195 belong to the genus G′′L. However,
due to the computational complexity it was not possible to remove duplicates, thus the
number 5033195 may only be interpreted as an upper bound on |G′′L|.
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Chapter 4

Model Building

In the previous chapter, we investigated the general structure of the space of chiral covari-
ant lattice models by classifying the right-mover lattices (Γ14)R. We observed that only
19 right-mover lattices lead to models with N = 1 spacetime supersymmetry, and that
some of them arise in certain ZN orbifold compactifications. In this chapter, we discuss
explicit models belonging to two of these 19 classes of covariant lattice models, one class
corresponding to Z3 orbifolds and the other to Z6 orbifolds.

4.1 A Class of Asymmetric Z3 Orbifolds

In this section, we consider covariant lattice model building with the right-mover lattice
A4

2E
st
6 (33), which corresponds to asymmetric Z3 orbifolds built from a Narain lattice

containing an E6 factor. Some of these models were already considered previously in
the asymmetric orbifold framework [25]. We start by giving an explicit construction of
the right-mover lattice and study its phenomenological implications. Then, we search for
(semi-)realistic models, and discuss one particular model in detail.

4.1.1 Massless Right-Mover Spectrum and Supercurrent

The right-mover lattice (Γ14)R = A4
2E

st
6 (33) is defined by the following union of conjugacy

classes of A4
2E

st
6 :

(Γ14)R = (0, 0, 0, 0, 0) ∪ (1, 1, 1, 1, 1) ∪ (2, 2, 2, 2, 2) . (4.1)

One checks, using QA2(1) = QA2(2) = 2/3 and QE6(1) = QE6(2) = 4/3, that by above
definition (Γ14)R contains only even norm vectors. The quotient group, (Γ14)∗R/(Γ14)R is
of Z3

3 structure, and is generated by the following unions of conjugacy classes:

χ1 = (1, 0, 0, 0, 1) ∪ (2, 1, 1, 1, 2) ∪ (0, 2, 2, 2, 0) ,
χ2 = (0, 1, 0, 0, 1) ∪ (1, 2, 1, 1, 2) ∪ (2, 0, 2, 2, 0) ,
χ3 = (0, 0, 1, 0, 1) ∪ (1, 1, 2, 1, 2) ∪ (2, 2, 0, 2, 0) .

(4.2)

49
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In the following, we identify a coset in (Γ14)∗R/(Γ14)R, by an integer triple (Q1, Q2, Q3)
that denotes a linear combination of the generators χi. The “sector charges” Qi are defined
only modulo 3, and we choose them to lie in the range {0, 1, 2}. Note, that the sector
charges of a state can also be determined from its gauge representation, which depends
on the left-mover lattice.

Massless right-mover spectrum. Following the prescription in Subsection 2.1.4, we
now determine the massless right-mover spectrum. Let us begin with the (0, 0, 0)-sector
which corresponds to (Γ14)R. This sector generically gives us a spacetime N = 1 vector
multiplet from the 78 of Est

6 . The other states with hR = 1 form an adjoint representation
of A4

2, but they are unphysical due to the truncation condition (2.17)–(2.18).
Chiral multiplets arise from the 27 representation of Est

6 , i.e. from its (1) conjugacy
class (27 contains the CPT conjugates). Note that such a conjugacy class is contained in
each sector, but only some give rise to massless states: the norm in the A4

2 part must be
2/3 to satisfy the masslessness condition. This happens precisely for the conjugacy classes

(1, 0, 0, 0, 1) ,
(0, 1, 0, 0, 1) ,
(0, 0, 1, 0, 1) ,
(0, 0, 0, 1, 1) ,

(4.3)

which belong to sector (1, 0, 0), (0, 1, 0), (0, 0, 1) and (2, 2, 2), respectively. Each of these
gives three massless right-mover states forming a triplet 3 of the corresponding SU(3).
In the effective theory they are represented by chiral N = 1 superfields Φsk, which are
denoted in Table 4.1.

Interpretation in the orbifold setup. When considering (Γ14)R in the Z3 orbifold
setup, one can distinguish between untwisted and twisted sectors. It turns out that the
untwisted sector corresponds to one of above four sectors, and the other three originate
from twisted sectors. Furthermore, each sector is threefold degenerate. For the untwisted
sector, this degeneracy is determined from orbifold phases that are assigned to the mo-
menta of the chiral bosons Hα. The degeneracy of the twisted sectors can be calculated
from the formula [19]

D =
∏
i,ti /∈Z(2 sin(πti))√
det(Iθ(Γ22,6))

. (4.4)

Here, θ denotes the twist θL⊕θR and 0 ≤ ti < 1 the corresponding twist vector. Moreover,
Iθ(Γ22,6) denotes the sublattice of the Narain lattice Γ22,6 that is left invariant under the
twist. In our construction θL is the identity and θR has twist vector (1, 1, 2)/3. Hence,
the invariant sublattice is given by (Γ22)L which must have det((Γ22)L) = 3 because also
det(E6) = 3. From this one calculates the degeneracy of the θR and the (CPT-conjugate)
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Table 4.1: Massless chiral superfields from the A4
2E

st
6 (33) right-mover lattice. The index k

transforms as the fundamental triplet of the corresponding SU(3).

Superfield SU(3)4 Q1 Q2 Q3

Φ1k (3, 1, 1, 1) 1 0 0
Φ2k (1,3, 1, 1) 0 1 0
Φ3k (1, 1,3, 1) 0 0 1
Φ4k (1, 1, 1,3) 2 2 2

θ−1
R twisted sector as D = 3, in accordance with our result from the covariant lattice
description.

Note, that the right-mover lattice A4
2E

st
6 (33) has a symmetry that permutes the four

sectors. In fact, any of above four sectors serves equally well as an untwisted sector in
the orbifold description. This is related to the fact that the same model may be obtained
from different (Narain) left-mover lattices (Γ22)L.

The supercurrent. Let us now fix a realization of the supercurrent Gint(z). First,
we determine all norm 3 vectors s that can possibly appear in the constraint vectors
(0, s, v) ∈ (Γ14)R of a supercurrent. For this we decompose the root lattice Est

6 as

Est
6 ⊃ Dst

5 ⊕ Z(12) . (4.5)

The conjugacy classes of Est
6 then branch as

(0)→ (0, 0) ∪ (s, 1/4) ∪ (v, 1/2) ∪ (c, 3/4) ,
(1)→ (0, 2/3) ∪ (s, 11/12) ∪ (v, 1/6) ∪ (c, 5/12) ,
(2)→ (0, 1/3) ∪ (s, 7/12) ∪ (v, 5/6) ∪ (c, 1/12) ,

(4.6)

and the corresponding representations as in (2.78) under E6 → SO(10)×U(1)R. We also
let Λ9 denote the orhogonal complement of Dst

5 in (Γ14)R. It is given by

Λ9 = (0, 0, 0, 0, 0) ∪ (1, 1, 1, 1, 2/3) ∪ (2, 2, 2, 2, 1/3) (4.7)

in conjugacy classes of A4
2 ⊕ Z(12), as can be deduced from the definition (4.1) and the

branchings (4.6). The norm 3 vectors s then must lie in the dual lattice Λ∗9, and in
particular belong to a conjugacy classes which is glued to the (v) of Dst

5 . Using (4.6) one
finds that the these are:

(0, 0, 0, 0, 1/2) ∪ (1, 1, 1, 1, 1/6) ∪ (2, 2, 2, 2, 5/6) , (4.8)

in terms of A4
2 ⊕ Z(12). Then, we obtain two norm 3 vectors from the conjugacy class

(0, 0, 0, 0, 1/2). In the conjugacy class (1, 1, 1, 1, 1/6) there are another 81 such vectors
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forming the (3,3,3,3, 1/6) representation of SU(3)4×U(1)R. Among them we choose the
following nine:

s1 = (w1, w1, w1, w1, 1/6) ,
s2 = (w2, w2, w2, w1, 1/6) ,
s3 = (w3, w3, w3, w1, 1/6) ,
s4 = (w1, w2, w3, w2, 1/6) ,
s5 = (w2, w3, w1, w2, 1/6) ,
s6 = (w3, w1, w2, w2, 1/6) ,
s7 = (w1, w3, w2, w3, 1/6) ,
s8 = (w2, w1, w3, w3, 1/6) ,
s9 = (w3, w2, w1, w3, 1/6) ,

(4.9)

where w1, w2 and w3 denote the weights of the triplet of SU(3):

w1 = 2α1
3 + α2

3 , (4.10)

w2 = −α1
3 + α2

3 , (4.11)

w3 = −α1
3 −

2α2
3 , (4.12)

α1 and α2 being simple roots. The vectors si fulfill si ·sj = 3δij . Since the conjugacy class
(2, 2, 2, 2, 5/6) contains the vectors −si, it is possible construct the 19 supercurrent as

Gint(z) =
9∑

k=1

1√
3

(
:eisk·XR(z) : ε(sk, p̂R) + :e−isk·XR(z) : ε(−sk, p̂R)

)
. (4.13)

Henceforth, we let Ξ denote the lattice spanned by the si. Note that we do not fix an
explicit form of the cocycle ε(s, t). This is not necessary because in this particular case
the supercurrent can be taken as (4.13) for any choice of the cocycle. Note that for this
right-mover lattice also the 1181

D, 91
D, 91

J and 91
K elementary supercurrents are possible.

4.1.2 Discrete Symmetries and the Superpotential

The right-mover spectrum that we determined formally comes in representations of the
right-mover zero-mode Lie algebra A4

2×U(1)R (the U(1)R coming from the lattice decom-
position Est

6 → Dst
5 ⊕ Z(12)). To this Lie algebra corresponds a symmetry group

GR = SU(3)4 × U(1)R/Z3 , (4.14)

where the origin of the Z3 becomes clear later. Although GR is a symmetry of the CFT
correlation functions, it is not a symmetry of the effective four-dimensional theory. This
is due to insertions of the picture-changing operator P+1 = :G(z)eiφ(z) : , which is not
a singlet under GR. However, in Subsection 2.1.4 we argued that the (necessarily finite)
stabilizer subgroup HR ⊂ GR which acts trivially on the supercurrent is a symmetry of



4.1. A CLASS OF ASYMMETRIC Z3 ORBIFOLDS 53

the effective theory. Among these symmetries one clearly finds the Z3
3 from the conserva-

tion of the sector charges Qi: they are conserved (modulo 3) in any interaction because
the picture-changing operator belongs to the (0, 0, 0) sector. The representation of the
remaining symmetries in HR depends on the explicit form of the supercurrent, which we
in the following assume to be that of equation (4.13).

Let us now determine the subgroup HR of SU(3)4 ×U(1)R/Z3 that stabilizes Gint(z).
Although the supercurrent transforms inside the representation

(3,3,3,3, 1/6)⊕ (3,3,3,3,−1/6) , (4.15)

it is sufficient to consider only the (3,3,3,3, 1/6) part due to the Hermiticity prop-
erty (2.84) that the supercurrent (4.13) obeys. Henceforth this representation is denoted
by a tensor cijkl, and from (4.9) we infer that the special subspace inside this representation
corresponding to the supercurrent can be given by

c1111 = c2221 = c3331 = c1232 = c1323 = 1 , (4.16)

and zero for all other combinations of indices (the underline denotes all cyclic permuta-
tions). Let us now denote an element of SU(3)4 × U(1)R by a tuple

(U1, U2, U3, U4, ζ) , (4.17)

where Us ∈ SU(3) and ζ ∈ U(1)R. The supercurrent then transforms as

cijkl 7→ c′ijkl = ζ2(U1)mi (U2)nj (U3)ok(U4)pl cmnop , (4.18)

where we used the fact that the U(1)R charges are quantized as multiples of 1/12. The
component fields of the chiral superfields Φsi,

Φsi = φsi + θ · ψsi + θ2Fsi , (4.19)

and the superspace variable θ transform as

φsi 7→ φ′si = ζ2(Us)ki φsk , (4.20)
ψsi 7→ ψ′si = ζ−1(Us)ki ψsk , (4.21)
Fsi 7→ F ′si = ζ−4(Us)ki Fsk , (4.22)
θ 7→ θ′ = ζ3θ . (4.23)

The first thing that we immediately recognize is that the transformation

(ω1, ω1, ω1, ω1, ω) , (4.24)

where ω = e2πi/3, acts trivially on the supercurrent and the fields (also in the massive
sector). This transformation generates a Z3 central subgroup N of SU(3)4 × U(1)R, and
its origin can be traced back to the fact that

Λ9/(A4
2 ⊕ Z(12)) = Z3 . (4.25)
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Due to this trivially acting Z3 subgroup, the actual symmetry group GR is given not as
SU(3)4 × U(1)R, but rather as the factor group (4.14). In the following, let H̃R denote
the subgroup of SU(3)4 × U(1)R given by those tuples (4.17) for which c′ijkl = cijkl. The
group of discrete symmetries HR is then given by H̃R/N .

Let us begin by determining the subgroup of H̃R that lies in the Cartan subgroup U(1)9

of SU(3)4 × U(1)R generated by the right-mover momentum operator p̂R. We denote an
element of this group by e2πiξ·p̂R . Now, in order for such a transformation to stabilize the
supercurrent, ξ must belong to Ξ∗. Furthermore, since the internal right-mover quantum
numbers kR (the eigenvalues of p̂R) of a physical state must lie in the dual lattice Λ∗9, ξ is
only determined modulo vectors in Λ9. Hence, we obtain a symmetry of the form Ξ∗/Λ9.
This quotient has, as one shows preferably by a computer calculation, the structure Z6

3×Z2.
The Z2 factor corresponds to the symmetry that assigns each spacetime fermion a minus
sign, and corresponds to the superspace transformation θ 7→ −θ. It is given by a vector
ξθ ∈ Ξ∗ of the form

ξθ = (0, 0, 0, 0, 1/2) , (4.26)

in components of A4
2⊕Z(12). The remaining Z6

3 is generated by the following independent
vectors in Ξ∗:

ξ1 = (−w1, 0, 0, w1, 0) , (4.27)
ξ2 = (0,−w1, 0, w1, 0) , (4.28)
ξ3 = (0, 0,−w1, w1, 0) , (4.29)
ξ4 = 1

3(α1, α1, α1, 0, 0) , (4.30)
ξ5 = 1

3(0,−α1, α1,−α2, 0) , (4.31)
ξR = 1

3(w1, w1, w1, w1, 5/3) . (4.32)

One checks that above vectors ξ satisfy ξ · kR ∈ Z for kR ∈ Ξ. Note, that we recover the
sector charges (Q1, Q2, Q3) as 3(ξ1 · kR, ξ2 · kR, ξ3 · kR) for the states in our spectrum. We
also define Q4 = 3ξ4 · kR and Q5 = 3ξ5 · kR. These charges are different for the component
fields in the SU(3) triplets. Finally, one checks using the branching rules (2.78) that
R = 3ξR · kR gives different values for bosonic and fermionic states in the same chiral
multiplet:

R(fermion) = R(boson) + 1 mod 3 . (4.33)

Hence it is a discrete Z3 R-symmetry. Since the R-charge of a chiral multiplet is defined
to be that of its bosonic state, the discrete R-charge of the superpotential must add up to
1 mod 3. The discrete charges for the massless chiral multiplets are listed in Table 4.2.

Let us now rewrite above Z6
3 ×Z2 symmetry in the language of the tuples (4.17). The

Z2 symmetry associated with ξθ is then represented by

(1,1,1,1,−1) . (4.34)
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Table 4.2: Discrete Z3 charges of the massless N = 1 chiral superfields from the A4
2E

st
6 (33)

right-mover lattice. The discrete R-charge of the superspace variable θ is defined as 2 (mod 3).

Superfield Q1 Q2 Q3 Q4 Q5 R

Φ11 1 0 0 1 0 1
Φ12 1 0 0 2 0 0
Φ13 1 0 0 0 0 0

Φ21 0 1 0 1 2 1
Φ22 0 1 0 2 1 0
Φ23 0 1 0 0 0 0

Φ31 0 0 1 1 1 1
Φ32 0 0 1 2 2 0
Φ33 0 0 1 0 0 0

Φ41 2 2 2 0 0 1
Φ42 2 2 2 0 2 0
Φ43 2 2 2 0 1 0

The symmetries corresponding to above discrete charges are given by

Q1 : (ω1,1,1, ω21, 1) , (4.35)
Q2 : (1, ω1,1, ω21, 1) , (4.36)
Q3 : (1,1, ω1, ω21, 1) , (4.37)
Q4 : (A,A,A,1, 1) , (4.38)
Q5 : (1, A2, A, ωA2, 1) , (4.39)
R : (B,B,B,B, εω) , (4.40)

and one may verify again that they stabilize cijkl. Here we use ε = e4iπ/9 and the SU(3)
matrices

A =


ω 0 0
0 ω2 0
0 0 1

 , B =


ε 0 0
0 εω2 0
0 0 εω2

 . (4.41)

Let us now discuss the possibility of symmetries other than the above. First, note that
the projection of all tuples (U1, U2, U3, U4, ζ) ∈ H̃R on the i-th SU(3) must give a finite
subgroup of SU(3) which we call Gi in the following. From (4.35)–(4.40) we see that,
regardless of which component we choose, Gi contains the Z3×Z9 subgroup generated by
A and B. The possible finite subgroups of SU(3) are well studied [40, 59, 60], and the
existence of a Z3 × Z9 subgroup essentially restricts possible extensions of the Gi to the
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groups C(1)
9,3 and D(1)

9,3 of [61], and to the exceptional group Σ(216× 3) which has received
some interest as flavor group in the past [62]. These groups are interrelated as

C
(1)
9,3 ⊂ D

(1)
9,3 ⊂ Σ(216× 3) , (4.42)

and one can choose them to be generated them as follows:

C
(1)
9,3 : A,B,C1C2 , (4.43)

D
(1)
9,3 : A,B,C1, C2 , (4.44)

Σ(216× 3) : A,B,C2, D . (4.45)

Here we additionally use the SU(3) matrices

C1 =


−1 0 0
0 0 −1
0 −1 0

 , C2 =


0 0 −1
0 −1 0
−1 0 0

 , D = 1
i
√

3


1 1 1
1 ω ω2

1 ω2 ω

 , (4.46)

and C3 = C1C2C1. Note that any two of the Ci generate a lift of the Weyl group S3 of
SU(3) into SU(3), and that D2 = C1. The next step is to check that the elements

(C2, C2, C2, C1, 1) , (4.47)
(C1, C2, C3, C2, 1) , (4.48)
(D,D,D,D, 1) , (4.49)

of SU(3)4 × U(1)R stabilize cijkl. For the first three this can easily be seen because
they only act as permutations on the vectors si. The last one is better verified on a
computer. As a consequence, one observes that the Gi are given by Σ(216 × 3), so H̃R
must be a subgroup of Σ(216 × 3)4. In fact one can check that the group generated by
the tuples (4.34), (4.35)–(4.40) and (4.47)–(4.49) already span the whole group H̃R, which
turns out to be of order |H̃R| = 314928. Hence, the discrete symmetry group HR = H̃R/Z3
has order |HR| = 104976.

The superpotential. Let us now construct the most general effective superpotential,
up to fourth order, that is consistent with the symmetries we found. Obviously, the three-
point coupling in the superpotential does not require picture changing, and hence it must
be an SU(3)4 invariant. The only such invariant that we can write is of the form

W3 =
4∑
s=1

εijkΦsi ⊗ Φsj ⊗ Φsk , (4.50)

where we use the notation “⊗” to indicate that we must also produce gauge-singlets, whose
form depends on the choice of the left-mover lattice. From invariance under the discrete
symmetries, the four-point term boils down to the somewhat expected form

W4 = cijklΦ1i ⊗ Φ2j ⊗ Φ3k ⊗ Φ4l , (4.51)

where cijkl = c∗ijkl. The next higher terms of the superpotential are six-point couplings,
by invariance under the sector charges.
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4.1.3 Search for Three-Generation Models

In order to construct a complete model, we have to provide a left-mover lattice (Γ22)L
that belongs the genus GL associated with the right-mover lattice A4

2E
st
6 (33). In Subsec-

tion 3.2.5 we described the classification of this genus, the result being |GL| = 2030. Thus,
we can construct 2030 models from this right-mover lattice. Two models belonging to this
genus were already described in [25].

Let us now perform a systematic search for standard-model like models. The first
thing we do is to restrict to models that contain the standard model gauge group GSM =
SU(3)C × SU(2)L × U(1)Y (without extending to a larger group), and three generations
(or families) of chiral matter. As most of the 2030 models contain several U(1) factors, it
will be convenient to define the family number in terms of the non-Abelian factors only:

NF = #(3,2)−#(3,2), (4.52)

Furthermore, a model may contain several SU(3) or SU(2) factors, and we may obtain
different family numbers for different assignments. Note that due to anomaly cancellation
also

2NF = #(3, 1)−#(3, 1), (4.53)

as the only representations allowed at the massless level are singlets and doublets in the
case of SU(2), as well as singlets and triplets in the case of SU(3). Note that since the
chiral fields in these models always come in a threefold degeneracy, the family number
must necessarily be a multiple of three. An explicit calculation showed that among the
2030 spectra, 499 allowed for an assignment of SU(3)C × SU(2)L with |NF| = 3, the
total number of such assignments being 1507 (here, we do not exclude possible equivalent
assignments, for which a permutation of the corresponding GSM factors is induced by a
lattice automorphism).

All of these assignments contain exotic fields (in particular colored fields) which one
must decouple at some high scale. However, there is a general difficulty to decouple such
fields at three-point level of the superpotential, which we now explain. Let us consider in
the following a singlet s uncharged under GSM (including hypercharge), and two fields d
and d oppositely charged under GSM. For these fields there shall exist a superpotential
term of the form sdd, which reads

εijksidjdk , (4.54)

where we explicitly write out the SU(3) triplet indices of the right-mover GR representa-
tion. Now, assuming s obtains a vacuum expectation value (VEV) the mass matrix of the
fields di and dj is completely antisymmetric. Such a matrix always has a zero eigenvalue
and hence one pair of chiral fields remains massless. Also, the remaining two vector-like
fields would obtain the same mass. Then, in order to decouple the exotic fields we must
also study the four-point terms. Note that this argument also applies for a Yukawa term
such as HuQu

c, resulting in a light up quark but equally heavy charm and top quarks.
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Hence, it will be difficult to obtain realistic Yukawa terms, and the inclusion of higher
terms of the effective superpotential is indispensable.

Let us now consider a concrete |NF| = 3 model by choosing a specific left-mover lattice
(Γ22)L. In order to describe this lattice, we define a sublattice Γ22 in terms of root lattices
and specify a set of conjugacy classes. The sublattice is as follows:

Γ22 = A5
1A2A3A4Z(4)Z2

(6)Z(10)Z(12)Z(24)Z(60)Z(120) (4.55)

Note, that Γ22 has elementary divisors 27611226021202. The cosets in (Γ22)L/Γ22 are
generated by the following conjugacy classes:

(0, 0, 0, 0, 1, 0, 0, 0; 1
2 , 0, 0,

1
2 , 0, 0, 0, 0) ,

(1, 0, 0, 0, 0, 0, v, 0; 0, 0, 1
2 , 0,

1
2 ,

1
2 , 0, 0) ,

(0, 0, 0, 1, 0, 0, 0, 0; 1
2 ,

1
2 , 0, 0,

1
2 ,

1
2 , 0, 0) ,

(1, 1, 1, 0, 0, 0, v, 0; 0, 0, 1
2 , 0,

1
2 ,

1
2 ,

1
2 ,

1
2) ,

(1, 0, 0, 1, 1, 0, c, 0; 3
4 , 0, 0, 0, 0, 0, 0,

3
4) ,

(1, 0, 1, 0, 0, 2, 0, 2; 0, 1
6 ,

2
3 , 0,

1
12 ,

7
12 ,

7
20 ,

3
20) ,

(0, 0, 0, 0, 0, 2, v, 2; 1
4 ,

5
6 ,

1
3 ,

7
10 ,

3
4 ,

17
24 ,

3
20 ,

61
120) ,

(4.56)

where we choose to separate the semi-simple part and its orthogonal complement by a
semicolon. The group (Γ22)L/Γ22 then is of the structure Z4

2Z4Z60Z120.
We now have to glue (Γ22)L and (Γ14)R together to an even self-dual lattice Γ22,14. For

the right-mover lattice we consider here, there is only one inequivalent way to perform this
gluing. To see this, first note that in (Γ14)∗R/(Γ14)R there are only 8 cosets of even norm,
which correspond to the four sectors in Table 4.1 and their CPT conjugates. Furthermore,
the automorphism group of disc((Γ14)R) is of structure O(3,F3) ∼= Z2 × S4, where the
S4 acts by permuting the four sectors, and the Z2 as CPT conjugation (here, F3 denotes
the finite field of three elements). However, all these discriminant form automorphisms
are induced by lattice automorphisms of (Γ14)R (note that there is an S4 group which
permutes the four A2 factors), so all embeddings in an even self-dual lattice Γ22,14 are
equivalent. Hence, there is no need to explicitly write down the glue vectors.

Now, separately for each sector, we read off the massless left-mover spectrum by solving
equation (2.66). First, we recognize that this model has gauge group

SU(2)5 × SU(3)× SU(4)× SU(5)× U(1)8 , (4.57)

(divided by some central subgroup). The chiral multiplets are displayed in Table 4.3,
where we understand that the right-mover structure of a sector is as in Table 4.1. In
Table 4.3, we have already chosen an assignment of the standard model gauge group GSM,
for which SU(2)L corresponds to the fifth A1 factor in (4.55). The hypercharge is given
as the following linear combination of the qi:

Y = q1
4 + q4

5 + q5
6 −

q6
24 −

q8
120 . (4.58)
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This model also possesses an anomalous U(1)A, as is apparent by computing the traces:

1
36Tr(qi) = (−3, 1, 0,−1, 5,−1, 1,−9) . (4.59)

One can show that above assignment of the hypercharge is non-anomalous, and that it
further ensures that all exotic matter is vector-like under GSM.

Next, we write down the gauge-invariant terms of the superpotential (the right-mover
structure is as in (4.50) and (4.51)).

W3 = LEcHd +QU cHu + n5d9D
c

+ s1n1n2 + s2d1d2 + s3n3n4 + s4d8d8

+ s5d6d7 + s6d10d11 + s7d12d13 + s8d16d17 . (4.60)

W4 = n1n3n5n7 + n1n4d13d17 + d1d5n5U
c + d2d7d13U

c

+ d2d7d17D
c + n4n6LHu + n5d8d16L+ d6D

cHuHd

+ s1d8d12Hu + s2d8d11Hu + s3D
cQHd + s4n1n6n7

+ s4d1d10U
c + s4d1d15D

c + s4d9E
cU c + s5d3n5d14

+ s5d12d17E
c + s6n2n4n7 + s6d2d6d16 + s6d2d8Q

+ s7d7QL+ s8d1d7d11 + s8d8d13Hd + s1s3d12d16

+ s1s6d5d15 + s1s8d7d9 + s2s3d11d16 + s2s5d10d17

+ s2s5d13d15 + s2s7d5d17 + s4s7d3d14 + s5s8n2n6

+ s6s8d3d4 + s7s8n2n3 . (4.61)

We observe that there are Yukawa terms for the charged leptons and the up-type quarks.
However, from the preceding discussion we know that this results in mµ ≈ mτ and mc ≈
mt, so this model does not appear very realistic. By giving the field s3 a VEV we obtain
further Yukawa terms for the down-type quarks. Let us now discuss the decoupling of
exotic matter fields di. Except for d1, d2, d6 and d8, we obtain mass terms for these
fields from W4 by giving VEVs to the si fields. The remaining four fields obtain mass
terms from W3, but due to the antisymmetric mass matrix only two of the three flavors
decouple. Thus, in order to completely decouple the exotic fields it will be necessary to
obtain mass terms from W6 or higher superpotential terms.

4.2 A Class of Asymmetric Z6 Orbifolds

The Z3 models that we discussed in the last section had some obvious phenomenological
deficiences: it appeared difficult to decouple exotic matter fields, and the Yukawa sector
is rather unrealistic. Both problems originate from the fact that the chiral fields in these
models always appear in formal triplets of some right-mover A2 algebra, and that the
three-point coupling must be an SU(3) invariant. In this section, we consider covariant
lattice models that correspond to Z6 asymmetric orbifolds built from a Narain lattice with
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Table 4.3: Chiral left-mover spectrum of a E6/Z3 asymmetric orbifold/covariant lattice model.
Here, Ghidden = SU(2)4 × SU(4)× SU(5) denotes the hidden non-Abelian gauge group and the qi

are the U(1)8 charges. The hypercharge is given from the linear combination (4.58).

Sector Field No. GSM Ghidden q1 q2 q3 q4 q5 q6 q7 q8

Φ1k

s1 1 (1, 1)0 (1, 1,2, 1, 1, 1) 0 −1 −1 0 −1 −4 5 0
s2 2 (1, 1)0 (2, 1, 1,2, 1, 1) 0 −1 −1 1 −1 2 −1 −6
n1 3 (1, 1)0 (1, 1, 1, 1,4, 1) 1 1 1 −1 0 2 −4 −4
n2 4 (1, 1)0 (1, 1,2, 1,4, 1) −1 0 0 1 1 2 −1 4
d1 5 (3, 1)1/6 (1, 1, 1,2, 1, 1) 0 1 1 0 1 0 5 0
d2 6 (3, 1)−1/6 (2, 1, 1, 1, 1, 1) 0 0 0 −1 0 −2 −4 6
d3 7 (1, 1)−1/5 (1,2, 1, 1, 1,5) −1 0 0 −1 1 −1 −1 −5
L 8 (1,2)−1/2 (1, 1, 1, 1, 1, 1) 0 −2 1 −2 0 2 2 2
Ec 9 (1, 1)1 (1, 1, 1, 1, 1, 1) 1 1 −2 1 3 −1 −1 −1
Hd 10 (1,2)−1/2 (1, 1, 1, 1, 1, 1) −1 1 1 1 −3 −1 −1 −1

Φ2k

s3 11 (1, 1)0 (1, 1, 1, 1, 1, 1) 1 1 0 −1 1 3 1 11
s4 12 (1, 1)0 (1, 1, 1, 1, 1, 1) 0 −2 0 2 −2 0 −2 8
s5 13 (1, 1)0 (1,2, 1, 1, 1, 1) 1 0 2 −1 −1 −3 1 1
n3 14 (1, 1)0 (1, 1, 1, 1,4, 1) −1 −1 1 1 0 0 4 −6
n4 15 (1, 1)0 (1, 1, 1, 1,4, 1) 0 0 −1 0 −1 −3 −5 −5
d4 16 (1, 1)1/5 (1, 1, 1, 1, 1,5) −1 1 0 1 1 −3 1 5
d5 17 (1, 1)1/2 (1, 1, 1,2, 1, 1) 0 −1 1 0 3 0 −5 0
d6 18 (3, 1)−1/3 (1, 1, 1, 1, 1, 1) −1 −1 −2 −1 1 1 1 1
d7 19 (3, 1)1/3 (1,2, 1, 1, 1, 1) 0 1 0 2 0 2 −2 −2
d8 20 (1,2)0 (2, 1,2, 1, 1, 1) 0 1 0 −1 1 0 1 −4

Φ3k

s6 21 (1, 1)0 (1, 1,2, 1, 1, 1) 1 0 1 1 −2 3 4 −1
s7 22 (1, 1)0 (1,2, 1, 1, 1, 1) 1 2 0 −1 −1 −3 1 1
n5 23 (1, 1)0 (1, 1, 1, 1, 1, 1) 0 0 −2 2 −2 0 −2 8
n6 24 (1, 1)0 (1, 1, 1, 1,4, 1) −1 1 −1 1 0 0 4 −6
d9 25 (3, 1)−1/3 (1, 1, 1, 1, 1, 1) −1 1 2 −1 1 1 1 1
d10 26 (1, 1)1/2 (1, 1, 1,2, 1, 1) 0 1 −1 0 3 0 −5 0
d11 27 (1, 1)−1/2 (1, 1,2,2, 1, 1) −1 −1 0 −1 −1 −3 1 1
d12 28 (1, 1)−1/2 (2, 1, 1, 1, 1, 1) −1 −1 0 0 −1 3 −5 −5
d13 29 (1, 1)1/2 (2,2, 1, 1, 1, 1) 0 −1 0 1 2 0 4 4
Dc 30 (3, 1)1/3 (1, 1, 1, 1, 1, 1) 1 −1 0 −1 1 −1 1 −9

Φ4k

s8 31 (1, 1)0 (1,2,2, 1, 1, 1) 1 −1 −1 −1 0 1 −4 1
n7 32 (1, 1)0 (1, 1, 1, 1,6, 1) 0 0 0 −2 2 −2 2 2
d14 33 (1, 1)1/5 (1, 1, 1, 1, 1,5) 0 0 0 0 2 4 2 −4
d15 34 (1, 1)−1/2 (1, 1, 1,2, 1, 1) −1 2 −1 −1 0 1 −4 1
d16 35 (1, 1)1/2 (2, 1,2, 1, 1, 1) 0 1 1 1 1 −2 −1 −6
d17 36 (1, 1)−1/2 (2,2, 1, 1, 1, 1) −1 0 0 0 −1 1 5 5
Q 37 (3,2)1/6 (1, 1, 1, 1, 1, 1) −1 −1 −1 1 1 −1 −1 −1
U c 38 (3, 1)−2/3 (1, 1, 1, 1, 1, 1) 0 0 0 −2 −2 0 2 −8
Hu 39 (1,2)1/2 (1, 1, 1, 1, 1, 1) 1 1 1 1 1 1 −1 9
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a right-mover E6 factor. The relevant right-mover lattice is the lattice A4
1E

st
6 (3162) in

Figure 3.1. We immediately see that the difficulties of the Z3 models cannot be present in
the same form for these Z6 models, as there are no A2 factors in the right-mover lattice.
Further note that although we do not have a strict classification of the genus GL as in
the Z3 case, we obtained an exhaustive but not duplicate-free list of 5033195 left-mover
lattices in GL by the method described in Subsection 3.2.5.

4.2.1 Massless Right-Mover Spectrum

Let us first describe (Γ14)R = A4
1E

st
6 (3162) right-mover lattice. For this we define a

sublattice Γ14 ⊂ (Γ14)R:

Γ14 = A4
1Z

4
(6)E

st
6 , (4.62)

which has elementary divisors 2365. Then, (Γ14)R/Γ14 ∼= Z3
2 × Z3 is generated by the

following conjugacy classes:
(1, 1, 0, 0, 1

2 ,
1
2 , 0, 0, 0) ,

(0, 1, 1, 0, 0, 1
2 ,

1
2 , 0, 0) ,

(0, 0, 1, 1, 0, 0, 1
2 ,

1
2 , 0) ,

(0, 0, 0, 0, 2
3 ,

2
3 ,

2
3 ,

2
3 , 1) .

(4.63)

Similarly, (Γ14)∗R/(Γ14)R is generated by the following unions of conjugacy classes:

χ1 = (0, 0, 0, 0, 1
3 ,

1
3 ,

1
3 , 0, 0) ∪ . . . ,

χ2 = (1, 0, 0, 0, 5
6 , 0,

1
3 ,

1
3 , 0) ∪ . . . ,

χ3 = (1, 0, 0, 0, 0, 1
6 ,

1
6 ,

1
6 , 0) ∪ . . . ,

(4.64)

where the ellipsis represents the other conjugacy classes which are obtained by adding those
from (4.63). In the following, we identify a coset in the quotient group (Γ14)∗R/(Γ14)R,
by an integer triple (Q1, Q2, Q3) that denotes a linear combination of the generators χi.
Note that 3χ1 = 6χ2 = 6χ3 = (Γ14)R, and that the quotient group has the structure
Z3 × Z2

6 . The sector charge Q1 is then defined only modulo 3, whereas Q2 and Q3 are
defined modulo 6.

The massless right-mover spectrum is then calculated similarly as in Section 4.1. Here,
we do not carry out the calculation in detail, but only show the result in Table 4.4. Note,
that for this right-mover lattice both the 1181

D and the 91
J elementary supercurrents are

possible.

The superpotential. Here, we do not determine the discrete symmetry group HR as
we did for the E6/Z3 case in Section 4.1. Thus, we only write down the three-point
superpotential, as it is controlled by SU(2)4 × U(1)4 conservation:

W3 =
4∑
s=1

U ⊗Rs ⊗ Ss +
4∑
s=1

εijSs ⊗ Tsi ⊗ Tsj (4.65)
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Table 4.4: Massless chiral superfields from the A4
1E

st
6 (3162) right-mover lattice. The index k

transforms as the doublet of the corresponding SU(2). The ci denote the U(1)4 charges.

Superfield SU(2)4 c1 c2 c3 c4 Q1 Q2 Q3

U (1, 1, 1, 1) 1
6

1
6

1
6

1
6 0 3 3

R1 (1, 1, 1, 1) 1
6 −1

6 −1
6 −1

6 0 3 1
R2 (1, 1, 1, 1) −1

6
1
6 −1

6 −1
6 0 5 3

R3 (1, 1, 1, 1) −1
6 −1

6
1
6 −1

6 1 1 5
R4 (1, 1, 1, 1) −1

6 −1
6 −1

6
1
6 2 3 3

S1 (1, 1, 1, 1) −1
3 0 0 0 0 0 2

S2 (1, 1, 1, 1) 0 −1
3 0 0 0 4 0

S3 (1, 1, 1, 1) 0 0 −1
3 0 2 2 4

S4 (1, 1, 1, 1) 0 0 0 −1
3 1 0 0

T1k (2, 1, 1, 1) 1
6 0 0 0 0 3 2

T2k (1,2, 1, 1) 0 1
6 0 0 0 1 0

T3k (1, 1,2, 1) 0 0 1
6 0 2 5 4

T4k (1, 1, 1,2) 0 0 0 1
6 1 3 0

4.2.2 A Three-Generation Model

Let us now construct a three-generation model based on this right-mover lattice by spec-
ifying a left-mover lattice (Γ22)L. For this, we define the following sublattice:

Γ22 = A5
1A2Z8

(4)Z(6)Z(8)Z4
(12)Z(24) , (4.66)

which has elementary divisors 2647125242. Then, (Γ22)L/Γ22 ∼= Z2
2Z

5
4Z12Z24 is generated

by the conjugacy classes

(1, 1, 1, 1, 1, 0; 0, 1
2 , 0,

1
2 ,

1
2 , 0, 0,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 0, 0, 0) ,

(0, 1, 0, 1, 0, 0; 1
2 , 0,

1
2 ,

1
2 , 0,

1
2 , 0, 0, 0, 0,

1
2 , 0, 0, 0,

1
2) ,

(0, 1, 0, 1, 0, 0; 1
2 ,

1
4 ,

3
4 ,

1
2 ,

1
2 ,

3
4 ,

1
2 ,

1
4 , 0,

1
2 , 0, 0, 0, 0,

1
2) ,

(0, 0, 0, 0, 1, 0; 1
2 ,

3
4 ,

1
2 ,

1
2 ,

3
4 ,

3
4 ,

3
4 ,

1
2 , 0,

1
4 ,

3
4 , 0,

1
2 ,

3
4 ,

1
4) ,

(1, 0, 0, 0, 1, 0; 1
4 ,

3
4 ,

1
2 ,

3
4 ,

1
4 ,

1
2 , 0,

3
4 , 0,

3
4 , 0,

1
2 ,

3
4 , 0,

3
4) ,

(1, 0, 1, 0, 1, 0; 1
2 , 0,

1
2 ,

1
2 ,

3
4 , 0, 0, 0,

1
2 , 0, 0,

3
4 ,

1
4 ,

1
4 ,

1
4) ,

(1, 0, 1, 0, 1, 0; 1
2 , 0,

1
2 ,

3
4 ,

3
4 , 0,

1
2 ,

1
2 ,

1
2 ,

3
4 ,

1
4 ,

1
4 ,

1
2 , 0,

1
4) ,

(0, 0, 1, 1, 0, 0; 1
2 , 0,

1
2 ,

1
2 ,

1
2 ,

1
4 , 0,

1
4 ,

5
6 ,

1
4 ,

1
3 ,

1
6 ,

5
12 ,

11
12 ,

1
2) ,

(1, 0, 1, 0, 1, 1; 0, 1
2 ,

1
2 ,

3
4 ,

3
4 ,

1
4 ,

1
4 ,

3
4 ,

1
6 ,

5
8 ,

11
12 ,

1
12 ,

3
4 ,

2
3 ,

5
24) .

(4.67)

Here, for better readability, we separate the semi-simple part from its orthogonal comple-
ment by a semi-colon.
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We now have to glue (Γ22)L and (Γ14)R together to an even self-dual lattice Γ22,14.
Unlike the E6/Z3 case, there is the possibility of having several inequivalent embeddings
of a chosen (Γ22)L ⊕ (Γ14)R into an even self-dual lattice. In fact one can show that
depending on the left-mover lattice, there are either one or two inequivalent embeddings.
In the following we discuss only a single embedding. However, we will not give an explicit
form of the glue vectors and instead just show the spectrum. This is sufficient, because
the spectrum uniquely determines the embedding.

Let us now calculate the massless left-mover spectrum by solving equation (2.66).
First, we observe that there is a gauge group

SU(2)5 × SU(3)× U(1)15 , (4.68)

(divided by a central subgroup). The chiral multiplets are given as in Table 4.5. There,
we already assigned the fifth A1 factor to SU(2)L and the hypercharge is given by the
linear combination

Y = q1
2 −

q3
4 −

q4
4 −

q6
4 −

q7
4 + q9

3 + q10
4 −

q11
6 −

q12
12 + q13

12 −
q15
6 , (4.69)

which one can show to be non-anomalous. This model has an anomalous U(1)A, which
one shows by calculating the traces:

1
12Tr(qi) = (2, 3, 1, 2,−1,−1, 0,−5,−2, 4, 6, 7, 5, 1,−2) . (4.70)

This model has three generations of standard model matter and only vector-like exotics.
In Table 4.5, the fields si denote singlets of SU(3)C × SU(2)L, whereas the Li are lepton
or Higgs doublets. The Qi denote quark doublets, and U ci and Dc

i are up-type and down-
type quark singlets. Note, that in this model all exotics are color singlets. Besides the
lepton doublets, there are five additional pairs of (1,2)1/2 and (1,2)−1/2, which may serve
as Higgs doublets or as exotic matter. Furthermore, Q2 and Q3 come as a doublet of a
right-mover SU(2), and (U c2 , U c3) form a doublet of an extra SU(2) gauge flavor symmetry.
Here, we do not write down the entire three-point superpotential, but merely note that
the only term involving quark fields is

W Quarks
3 = L1Q1U

c
1 . (4.71)

It is therefore natural to identify L1 as a Hu Higgs doublet and interpret W Quarks
3 as a

top quark Yukawa term. Thus, at three-point level only the top quark obtains a mass,
indicating that all other quark masses are suppressed.

Finally, note that there is another interesting possibility to take the hypercharge in
this model by replacing Y in (4.69) with Y ′ = Y + I2, where I2 denotes the isospin of the
second SU(2) factor in Ghidden. Using this hypercharge assignment all exotic fields obtain
integer electric charge.
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Chapter 5

Conclusions and Outlook

In this work, chiral four-dimensional covariant lattice models were revisited and a classi-
fication of all possible right-mover lattices was performed. Also, it was found that once a
right-mover lattice is fixed, modular invariance requires that the set of possible left-mover
lattices forms a genus. The result is that there are in total 99 right-mover lattices which
may lead to chiral models, and only 19 of them lead to N = 1 spacetime supersymmetry.
Then, using the Smith-Minkowski-Siegel mass formula, a lower bound of O(1010) models
with N = 1 supersymmetry was calculated. Furthermore, some of the relevant genera
were enumerated completely. In particular, for two classes of covariant lattice models that
correspond to Z3 and Z6 asymmetric orbifolds we performed an exhaustive enumeration
of models, which resulted in exactly 2030 models in the Z3 case, and in O(107) models
(including duplicates) for the Z6 case. We also considered some generic phenomenological
properties of these models, such as discrete flavor and R-symmetries, and also gave spec-
tra of three-generation models. Finally, we studied how the equivalence between certain
covariant lattice and twist-orbifold models fits into our picture, and found that there exist
some covariant lattices which cannot be obtained as a twist-orbifold theory.

As in the case of the genus corresponding to E6/Z3 orbifold models that we enumerated
exactly, some smaller genera (e.g. the D6/Z4 case) may be studied exactly in the future.
However, an exact evaluation of the larger genera does not seem to be practicable, both
from the viewpoint of computation time and required memory. This became already
manifest in our enumeration of the left-mover lattices corresponding to asymmetric E6/Z6
orbifolds, where it was not feasible to eliminate duplicates. For even larger genera, one
might resort to other methods. For example, a randomized search that just produces a
large number of models is perfectly viable, as long as one does not mind obtaining duplicate
models. Another approach would be to impose more phenomenological constraints. Then,
it might be possible to circumvent the lower bounds that we calculated.

Furthermore, there is no need to restrict on supersymmetric models. In fact, the non-
supersymmetric case seems even richer, as for the number of these models we obtained
a lower bound of O(1023). However, some of these theories inevitably contain tachyons.
Nevertheless, four-dimensional non-supersymmetric models from string theory have re-
ceived some interest recently, and in some specific symmetric orbifold setup a quite large
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fraction of tachyon-free models was obtained [63].
There is another remark on the supercurrent lattices that we found. Here, we used a

rather brute force approach to classify them. However, it would be interesting to have a
more fundamental and geometrical understanding of these lattices, maybe in a way similar
to how we understand root systems in terms of simple roots. One could also ask which
of the admissible supercurrent lattices allow for an additional world-sheet supercurrent
that completes the N = 2 super-Virasoro algebra. Clearly, such a supercurrent must be
allowed for the maximal admissible lattice obtained from a right-mover lattice with N = 1
spacetime supersymmetry. This is because spacetime supersymmetry always implies at
least N = 2 supersymmetry on the world-sheet. An example for this would be the 9N
supercurrent lattice that appears in the A6/Z7 orbifold. Also, the one-dimensional super-
current lattice allows for an additional world-sheet supersymmetry because it corresponds
to a N = 2 minimal model.

The lattice theories discussed in this work only cover CFTs with Kac-Moody algebras
of level one, so a generalization that takes into account also higher levels would be desirable
(note that a generalization of the theory of lattice genera to general CFTs was attempted
in [64]). Nevertheless, our results may be useful in the construction of some sort of hybrid
models. For example, one could combine our primitive elementary lattices with N = 2
minimal models to fill up the required central charge cR = 9.

Note on the Computational Methods

Most of the computations for this work were performed using the computer algebra sys-
tem GAP [65]. The calculation of lattice automorphism groups and isomorphisms between
lattices was a crucial part for which a modified version of the algorithm described in [66]
was implemented. The computation of the Smith-Minkowski-Siegel mass formula relied on
the built-in method conway_mass() of the computer algebra system SAGE [67]. Gröbner
bases were calculated using Singular [68] and the GAP package “singular”. The calculation
of orbits in Subsection 3.2.5 was carried out using a highly specialized C++ implementa-
tion.



Appendix A

Lattices

A.1 Basic Definitions

Lattices are crucial for most of this work, and here we wish to formalize some aspects of
them. A lattice Λ shall be defined as a discrete subset of points in a real Euclidean or
Lorentzian inner product space that is closed under addition and subtraction. As such, we
also regard it as an Abelian group or as a free Z-module that is endowed with a bilinear
form 〈·, ·〉 : Λ × Λ 7→ R. For two vectors x, y ∈ Λ we often also write x · y for 〈x, y〉 and
x2 for 〈x, x〉. Any lattice Λ has a basis {b1, . . . , bn} with basis vectors bi ∈ Λ, so that each
x ∈ Λ can be written as a unique linear combination of the bi. The number n of basis
vectors is called the dimension dim(Λ) of Λ. Moreover, for such a basis one defines the
Gram matrix G as

Gij = 〈bi, bj〉 . (A.1)

A subset Λ′ ⊆ Λ (Λ′ ⊂ Λ) that is closed under addition and subtraction is called
a sublattice (strict sublattice) of Λ. Let Λ be a lattice with Gram matrix G, and let
det(Λ) = |det(G)| denote its discriminant. Then, for any sublattice Λ′ ⊆ Λ one can
construct the quotient group Λ/Λ′. Its order, |Λ/Λ′|, is called the index of Λ′ in Λ and is
given by

|Λ/Λ′| =
√

det(Λ′)/det(Λ) . (A.2)

Furthermore, we define the orthogonal sum Λ1 ⊕ Λ2 of two lattices Λ1 and Λ2 as the
Cartesian product Λ1 × Λ2 endowed with the bilinear form

〈(x1, x2), (y1, y2)〉 = 〈x1, y1〉+ 〈x2, y2〉 , (A.3)

for all (x1, x2), (y1, y2) ∈ Λ1 × Λ2.
We also call a map φ : Λ1 7→ Λ2 between two lattices Λ1 and Λ2 a lattice homomor-

phism, if it is a homomorphism of the corresponding Abelian groups (and a fortiori also
of the Z-modules), and if it preserves the bilinear form, i.e.

〈φ(x), φ(y)〉Λ2 = 〈x, y〉Λ1 , for all x, y ∈ Λ1 . (A.4)
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Such a map is called an isomorphism if it is bijective, and and automorphism if it is
bijective and further Λ1 = Λ2.

The dual lattice Λ∗ of a lattice is defined as the set of vectors in the R-span of Λ that
has integer inner product with all vectors in Λ. Taking the dual lattice is an involution,
i.e. Λ∗∗ = Λ. For a lattice Λ, let Λ denote the lattice that is identical to Λ except that
the inner product is amended by a minus sign.

A special role is played by integral lattices. A lattice Λ is called integral if 〈x, y〉 ∈ Z
for all x, y ∈ Λ. Furthermore, an integral lattice is called even if x2 ∈ 2Z for all x ∈ Λ.
Integral lattices that are not even are called odd. For an integral lattice Λ, one defines
the quotient group Λ∗/Λ, whose order is given by |Λ∗/Λ| = det(Λ). A lattice for which
Λ = Λ∗ is called self-dual. Furthermore, we define the elementary divisors of a lattice
to be the elementary divisors obtained from the Smith normal form of the Gram matrix
G. For these divisors we often use the abbreviated notation dn1

1 · · · dnrr , which also gives
a factorization of det(Λ), but do not explicitly write down the number of appearances of
the unit 1, as it can be deduced from the dimension of the lattice.

Discriminant forms. Let in the following Λ be an integral lattice. The bilinear form
on Λ naturally induces a bilinear form on BΛ(·, ·) : Λ∗/Λ× Λ∗/Λ 7→ Q/Z, given by

B(v + Λ, w + Λ) = v · w (A.5)

for v, w ∈ Λ∗. This is indeed well-defined because

〈x+ Λ, y + Λ〉 − 〈x, y〉 = 〈x+ y,Λ〉+ 〈Λ,Λ〉 ∈ Z , (A.6)

for any x, y ∈ Λ. For Λ even we also define a quadratic form QΛ : Λ∗/Λ 7→ Q/2Z,

QΛ(x+ Λ) = 〈x, x〉 , (A.7)

with x ∈ Λ∗. Again, this is well-defined because (v + x)2 − v2 ∈ 2Z for all x ∈ Λ.
The quotient Λ∗/Λ together with the bilinear form BΛ is called the discriminant bi-

linear form, disc−(Λ) of Λ. Similarly, for even lattices we also define the discriminant
quadratic form disc+(Λ) as the tuple (Λ∗/Λ, QΛ). Moreover one defines morphisms for
these structures as group morphisms φ : Λ∗1/Λ1 7→ Λ∗2/Λ2 which preserve the respective
bilinear or quadratic form, i.e.

BΛ2(φ(·), φ(·)) = BΛ1(·, ·) , (A.8)

in the case of disc−, and further

QΛ2 ◦ φ = QΛ1 . (A.9)

in the case of disc+. A fortiori, a morphism of a discriminant quadratic form disc+(Λ) also
gives us a morphism of the corresponding discriminant bilinear form disc−(Λ). When we
just write “discriminant form” without the attribute “bilinear” or ”quadratic”, we mean
disc+ in the case of even lattices and disc− in the case of odd lattices. Furthermore, we
say that two lattices are in the same genus if simultaneously their signatures are equal,
they are either both even or odd, and their discriminant forms are isomorphic.
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A.2 Lattice Gluing

In this section, we formalize some aspects of lattice gluing. Most of the following is used
implicitly in the main text. A decomposition Λ ⊃ Λ1⊕Λ2 of an integral lattice Λ shall be
called self-glue free if Λ/(Λ1 ⊕Λ2) does not contain cosets of the form (η,Λ2) and (Λ1, ξ),
with η ∈ Λ∗1/Λ1 and ξ ∈ Λ∗2/Λ2 where neither η nor ξ is the zero coset. Now, there is a
theorem about self-glue free decompositions of self-dual lattices [39]:

Theorem 1. For any integral self-dual lattice Λ with a self-glue free decomposition of the
form Λ ⊇ Λ1 ⊕ Λ2, where dim(Λ) = dim(Λ1) + dim(Λ2), one obtains an isomorphism

disc−(Λ1) ∼= disc−(Λ2) , (A.10)

which at the same time is an isomorphism

disc+(Λ1) ∼= disc+(Λ2) . (A.11)

if Λ is even. Also the “converse” statement is true: given two integral lattices Λ1, Λ2 and
an isomorphism φ : disc−(Λ1) 7→ disc−(Λ2), then there exists a self-dual lattice Λ with a
self-glue free decomposition Λ ⊇ Λ1⊕Λ2. If furthermore Λ1 and Λ2 are even and φ is also
an isomorphism of the corresponding discriminant quadratic forms, then also Λ is even.

Proof. First, one realizes that each coset in Λ/(Λ1⊕Λ2) can be uniquely represented by a
pair (ξ1, ξ2) of cosets ξ1 ∈ Λ∗1/Λ1 and ξ2 ∈ Λ∗2/Λ2. Since we are considering a self-glue free
decomposition, each coset in Λ∗1/Λ1 and Λ∗2/Λ2 can appear at most once in such a pair
(assuming otherwise immediately produces a contradiction). This gives us the following
inequalities: ∣∣∣∣ Λ

Λ1 ⊕ Λ2

∣∣∣∣ ≤ ∣∣∣∣Λ∗iΛi

∣∣∣∣ , i ∈ {1, 2} . (A.12)

Also, since Λ is self-dual, each ξ1 ∈ Λ∗1/Λ1 and ξ2 ∈ Λ∗2/Λ2 must appear at least once in a
pair (ξ1, ξ2). This can be seen by deriving

∣∣∣∣ Λ
Λ1 ⊕ Λ2

∣∣∣∣2 = det(Λ1 ⊕ Λ2)
det(Λ) =

∣∣∣∣Λ∗1Λ1

∣∣∣∣ ∣∣∣∣Λ∗2Λ2

∣∣∣∣ , (A.13)

using det(Λ) = 1. Hence, in (A.12) equalities must hold and the set of pairs (ξ1, ξ2) defines
a bijective map φ : Λ∗1/Λ1 7→ Λ∗2/Λ2 which preserves the group structure. Thus, we have
established the following group isomorphies:

Λ
Λ1 ⊕ Λ2

∼=
Λ∗1
Λ1
∼=

Λ∗2
Λ2

(A.14)

Moreover, BΛ1(ξ1, ξ
′
1) − BΛ2(φ(ξ1), φ(ξ′1)) = 0, and if Λ is even it follows further that

QΛ1(ξ1)−QΛ2(φ(ξ1)) = 0. Here, the minus sign originates from the fact that Λ2 appears
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with negated inner product in the decomposition of Λ. The “converse” is shown by giving
an explicit construction:

Λ =
⋃

ξ∈Λ∗1/Λ1

ξ × φ(ξ) , (A.15)

This lattice clearly has the desired properties. Here, the Cartesian product ξ × φ(ξ) is to
be interpreted as an element of (Λ1 ⊕ Λ2)∗/(Λ1 ⊕ Λ2).

Let Λ be a lattice and Λ0 be a sublattice of Λ. For some coset ξ ∈ Λ/Λ0 let |ξ|
denote the order of that coset, i.e. the smallest natural number n such that nξ = Λ0.
Furthermore, 〈ξ〉 shall be the linear span of all vectors in that coset, i.e. 〈ξ〉 =

⋃|ξ|
k=1 kξ.

Lemma 1. Let Λ1 and Λ2 denote two even lattices and φ : disc(Λ1) 7→ disc(Λ2) be an
isomorphism. Moreover, let ξ ∈ Λ∗1/Λ1 be a non-zero coset which contains only even
vectors. Then, it follows that disc(〈ξ〉) ∼= disc(〈φ(ξ)〉).

Proof. First, note that 〈ξ〉 and 〈φ(ξ)〉 are again even lattices. Let us now define a homo-
morphism ψ : 〈ξ〉∗/〈ξ〉 7→ 〈φ(ξ)〉∗/〈φ(ξ)〉:

ψ(x+ 〈ξ〉) = φ(x+ Λ1)|rep + 〈φ(ξ)〉 , (A.16)

and a homomorphism ψ̃ : 〈φ(ξ)〉∗/〈φ(ξ)〉 7→ 〈ξ〉∗/〈ξ〉:

ψ̃(y + 〈φ(ξ)〉) = φ−1(y + Λ2)|rep + 〈ξ〉 , (A.17)

where x ∈ 〈ξ〉∗, y ∈ 〈φ(ξ)〉∗, and |rep means taking any representative. One checks that
they are well defined. Now one shows

ψ̃ ◦ ψ (x+ 〈ξ〉) = φ−1(φ(x+ Λ1)|rep + Λ2)|rep + 〈ξ〉 = x+ 〈ξ〉 . (A.18)

It follows that ψ̃ = ψ−1 so ψ is an isomorphism. Now it remains to prove that the
isomorphism fulfills Q〈φ(ξ)〉 ◦ ψ = Q〈ξ〉. However, we see for some x ∈ 〈ξ〉∗ that

Q〈φ(ξ)〉(ψ(x+ 〈ξ〉)) = Q〈φ(ξ)〉(φ(x+ Λ1)|rep + 〈φ(ξ)〉)
= 〈φ(x+ Λ1)|rep, φ(x+ Λ1)|rep〉Λ2

= QΛ2(φ(x+ Λ1))
= QΛ1(x+ Λ1)
= 〈x, x〉Λ1

= Q〈ξ〉(x+ 〈ξ〉) , (A.19)

equalities being understood modulo 2. So, we established that ψ is an isomorphism of
discriminant forms.

Theorem 2 (Regluing Theorem). Let Λ ⊃ Λ1 ⊕ Λ2 be a self-glue free decomposition of
an even self-dual lattice Λ, and ξ be a coset in Λ∗1/Λ1 with QΛ1(ξ) = 0 not containing the
null vector. Then, there exists an even self-dual lattice Λ′ with self-glue free decomposition
Λ′ ⊃ 〈ξ〉 ⊕ 〈φ(ξ)〉, where φ : disc(Λ1) 7→ disc(Λ2) is an isomorphism.
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Proof. The existence of φ is ensured by Theorem 1. Then, from Lemma 1 it follows that
disc(〈ξ〉) ∼= disc(〈φ(ξ)〉). Again, from Theorem 1 follows the existence of Λ′.

Lemma 2. Let Λ be an even lattice and ξ ∈ Λ∗/Λ be a coset of only even vectors that
does not contain the null vector. Then, there exists another coset µ ∈ Λ∗/〈ξ〉∗ so that
Λ = {x ∈ 〈ξ〉 | 〈v, x〉 ∈ Z} for any given v ∈ µ.

Proof. Let us define a bilinear form B(·, ·) : Λ∗/〈ξ〉∗ × 〈ξ〉/Λ 7→ Z/|ξ|Z:

B(x+ 〈ξ〉∗, y + Λ) = |ξ|〈x, y〉 , (A.20)

with x ∈ Λ∗ and y ∈ 〈ξ〉. Note, that both Λ∗/〈ξ〉∗ and 〈ξ〉/Λ are cyclic and of the same
order, as seen from the following argument. Define a homomorphism ψ : Λ∗/〈ξ〉∗ 7→ 〈ξ〉/Λ:

ψ(η) = B(η, ξ)ξ , (A.21)

This is injective because η ∈ kerψ =⇒ B(η, ξ) = 0 (mod |ξ|) which is only possible for
η = 〈ξ〉∗. However, since |Λ∗/〈ξ〉∗| = |ξ| = |〈ξ〉/Λ| it follows that ψ is also surjective, so
it is an isomorphism. Now, choose µ = ψ−1(ξ) so from ψ(µ) = ξ one obtains B(µ, ξ) = 1
(mod |ξ|). It follows that

B(µ, ν) = 0 (mod |ξ|)⇐⇒ ν = Λ ,

and thus Λ = {x ∈ 〈ξ〉 | 〈v, x〉 ∈ Z}, for any v ∈ µ.

Theorem 3. Let Λ be an even lattice and Λ0 be a sublattice of Λ so that Λ/Λ0 is nontrivial
and cyclic. Further, let N denote the order of Λ/Λ0. Then, there exists a vector v fulfilling

(a) Nv ∈ Λ∗

(b) kv 6∈ Λ∗ for k ∈ {1, . . . , N − 1}

so that Λ0 = {x ∈ Λ | 〈v, x〉 ∈ Z}, and an integer n 6= 1 dividing the exponent of Λ∗0/Λ0
such that

(a) N | n

(b) nv ∈ Λ

(c) n〈v, v〉 ∈ Z and n〈v, v〉 ∈ 2Z if 2 - n

Proof. Let ξ generate Λ/Λ0, so we can write Λ = 〈ξ〉. From Lemma 2 we then obtain a
µ ∈ Λ∗0/Λ∗ so that Λ0 = {x ∈ Λ | 〈v, x〉 ∈ Z} for any fixed v ∈ µ. Since Nµ = Λ∗ we have
Nv ∈ Λ∗. Furthermore, because v 6∈ Λ0 but v ∈ Λ∗0, there is some smallest n 6= 1 dividing
the exponent of Λ∗0/Λ0 so that nv ∈ Λ0. Then we have n〈v, v〉 ∈ Z and 〈nv, nv〉 ∈ 2Z, so it
follows that actually n〈v, v〉 ∈ 2Z if 2 - n. Clearly, N must divide n because Λ ⊂ Λ∗.
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A.3 The Lorentzian Lattices Dn,m

Let us define the lattice Dn,m as the set of vectors a ∈ Zn+m satisfying a2 = a · a ∈ 2Z.
The bilinear form is given by

a · a′ =
n∑
i=1

aia
′
i −

n+m∑
i=n+1

aia
′
i , (A.22)

and has signature (n,m). For m = 0 one also denotes these lattices by Dn, and they are
isomorphic to the root lattices of SO(2n).

One then checks that the dual lattice of D∗n,m is given by the union of four cosets (0),
(v), (s) and (c), which are defined as

(0) = Dn,m , (A.23)
(v) = (1, 0, . . . , 0) +Dn,m , (A.24)
(s) = (1

2 ,
1
2 , . . . ,

1
2) +Dn,m , (A.25)

(c) = (−1
2 ,

1
2 , . . . ,

1
2) +Dn,m . (A.26)

These are also called root (0), vector (v), spinor (s), and cospinor (c) conjugacy classes
due to their connection to Lie theory. Vectors in these conjugacy classes have the following
norms:

x2 ∈ 2Z , for x ∈ (0) , (A.27)
x2 ∈ n−m

4 + 2Z , for x ∈ (s) , (A.28)
x2 ∈ 1 + 2Z , for x ∈ (v) , (A.29)
x2 ∈ n−m

4 + 2Z , for x ∈ (c) . (A.30)

Furthermore, note that these cosets form a group, D∗n,m/Dn,m, which is isomorphic to
Z2 × Z2 in the case where n+m is even, and to Z4 otherwise.

A lattice Dn,m can be decomposed into an orthogonal sum of sublattices,

Dn,m ⊃ Dn1,m1 ⊕Dn2,m2 , (A.31)

where n = n1 + n2 and m = m1 +m2. The conjugacy classes then decompose as follows:

(0) −→ (0, 0) ∪ (v, v) , (A.32)
(s) −→ (s, s) ∪ (c, c) , (A.33)
(v) −→ (v, 0) ∪ (0, v) , (A.34)
(c) −→ (s, c) ∪ (c, s) . (A.35)

Note that the pairs on the r.h.s. in above equations are to be interpreted as a Cartesian
product of the corresponding conjugacy classes of the sublattices.

From a lattice Dn,m we can always construct the self-dual lattice (0) ∪ (v) = Zn,m. In
the cases where n −m ∈ 4Z also the lattice En,m = (0) ∪ (s) (or equivalently (0) ∪ (c))
is self-dual. Furthermore, this lattice is even if n −m ∈ 8Z. Also, due to triality E4 is
isomorphic to Z4.
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Table B.1: Gram matrices for the primitive elementary supercurrent lattices. Also shown are the
elementary divisors, the root system ∆2 of norm 2 vectors and the number n3 of norm 3 vectors.

Ξ Gram Matrix Divisors ∆2 n3

1
(
3
)

31 – 2

3

 3 −1 −1
−1 3 −1
−1 −1 3

 42 – 8

5


3 −1 −1 −1 −1
−1 3 −1 −1 1
−1 −1 3 1 −1
−1 −1 1 3 −1
−1 1 −1 −1 3

 2361 – 20

6A


3 −1 −1 −1 −1 −1
−1 3 −1 −1 −1 1
−1 −1 3 1 1 −1
−1 −1 1 3 1 −1
−1 −1 1 1 3 −1
−1 1 −1 −1 −1 3

 2441 – 32

6B


3 −1 −1 −1 −1 −1
−1 3 −1 −1 1 1
−1 −1 3 1 −1 1
−1 −1 1 3 0 0
−1 1 −1 0 3 0
−1 1 1 0 0 3

 2182 – 20

6C


3 −1 −1 −1 −1 0
−1 3 −1 0 0 −1
−1 −1 3 0 1 0
−1 0 0 3 −1 −1
−1 0 1 −1 3 0
0 −1 0 −1 0 3

 53 – 20

7A



3 −1 −1 −1 −1 −1 −1
−1 3 −1 −1 −1 −1 1
−1 −1 3 1 1 1 −1
−1 −1 1 3 1 1 −1
−1 −1 1 1 3 1 −1
−1 −1 1 1 1 3 −1
−1 1 −1 −1 −1 −1 3


26 – 56

7B



3 −1 −1 −1 −1 −1 −1
−1 3 −1 −1 −1 1 1
−1 −1 3 1 1 −1 −1
−1 −1 1 3 1 −1 0
−1 −1 1 1 3 0 −1
−1 1 −1 −1 0 3 1
−1 1 −1 0 −1 1 3


122 – 32

8A



3 −2 −2 −1 −1 −1 −1 −1
−2 3 1 0 0 0 0 1
−2 1 3 0 0 0 0 1
−1 0 0 3 1 1 1 −1
−1 0 0 1 3 1 1 −1
−1 0 0 1 1 3 1 −1
−1 0 0 1 1 1 3 −1
−1 1 1 −1 −1 −1 −1 3


2441 A2

1 80
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Table B.1: The primitive elementary supercurrent lattices (cont’d).

Ξ Gram Matrix Divisors ∆2 n3

8B



3 −1 −1 −1 −1 −1 −1 −1
−1 3 −1 −1 −1 −1 1 1
−1 −1 3 1 1 1 −1 −1
−1 −1 1 3 1 1 −1 0
−1 −1 1 1 3 1 −1 0
−1 −1 1 1 1 3 0 −1
−1 1 −1 −1 −1 0 3 1
−1 1 −1 0 0 −1 1 3


42121 – 44

8C



3 −1 −1 −1 −1 −1 −1 −1
−1 3 −1 −1 −1 1 1 1
−1 −1 3 1 1 −1 −1 1
−1 −1 1 3 1 −1 0 0
−1 −1 1 1 3 0 0 0
−1 1 −1 −1 0 3 1 0
−1 1 −1 0 0 1 3 0
−1 1 1 0 0 0 0 3


2181241 – 32

8D



3 −1 −1 −1 −1 −1 −1 0
−1 3 −1 0 0 0 0 −1
−1 −1 3 0 0 1 1 0
−1 0 0 3 1 −1 0 −1
−1 0 0 1 3 0 −1 0
−1 0 1 −1 0 3 1 1
−1 0 1 0 −1 1 3 −1
0 −1 0 −1 0 1 −1 3


3262 – 32

9A



3 −2 −2 −1 −1 −1 −1 −1 −1
−2 3 1 0 0 0 0 0 1
−2 1 3 0 0 0 0 0 1
−1 0 0 3 1 1 1 1 −1
−1 0 0 1 3 1 1 1 −1
−1 0 0 1 1 3 1 1 −1
−1 0 0 1 1 1 3 1 −1
−1 0 0 1 1 1 1 3 0
−1 1 1 −1 −1 −1 −1 0 3


2481 A2

1 88

9B



3 −2 −2 −1 −1 −1 −1 −1 −1
−2 3 1 0 0 0 0 1 1
−2 1 3 0 0 0 0 1 1
−1 0 0 3 1 1 1 −1 −1
−1 0 0 1 3 1 1 −1 0
−1 0 0 1 1 3 1 −1 0
−1 0 0 1 1 1 3 −1 0
−1 1 1 −1 −1 −1 −1 3 1
−1 1 1 −1 0 0 0 1 3


224181 A2

1 84

9C



3 −2 −2 −1 −1 −1 −1 −1 0
−2 3 1 0 0 0 0 1 0
−2 1 3 0 0 0 0 1 0
−1 0 0 3 1 1 1 −1 0
−1 0 0 1 3 1 1 −1 0
−1 0 0 1 1 3 1 −1 0
−1 0 0 1 1 1 3 0 0
−1 1 1 −1 −1 −1 0 3 −1
0 0 0 0 0 0 0 −1 3


2282 A2

1 60
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Table B.1: The primitive elementary supercurrent lattices (cont’d).

Ξ Gram Matrix Divisors ∆2 n3

9D



3 −2 −1 −1 −1 −1 −1 −1 −1
−2 3 0 0 0 0 0 0 1
−1 0 3 0 0 0 0 0 0
−1 0 0 3 0 0 0 0 1
−1 0 0 0 3 0 1 1 −1
−1 0 0 0 0 3 1 1 0
−1 0 0 0 1 1 3 0 −1
−1 0 0 0 1 1 0 3 0
−1 1 0 1 −1 0 −1 0 3


3192 A1 54

9E



3 −1 −1 −1 −1 −1 −1 −1 −1
−1 3 −1 −1 −1 −1 −1 1 1
−1 −1 3 1 1 1 1 −1 −1
−1 −1 1 3 1 1 1 −1 0
−1 −1 1 1 3 1 1 −1 0
−1 −1 1 1 1 3 1 −1 0
−1 −1 1 1 1 1 3 0 0
−1 1 −1 −1 −1 −1 0 3 1
−1 1 −1 0 0 0 0 1 3


2282 – 64

9F



3 −1 −1 −1 −1 −1 −1 −1 −1
−1 3 −1 −1 −1 −1 −1 1 1
−1 −1 3 1 1 1 1 −1 −1
−1 −1 1 3 1 1 1 −1 0
−1 −1 1 1 3 1 1 −1 0
−1 −1 1 1 1 3 1 0 −1
−1 −1 1 1 1 1 3 0 −1
−1 1 −1 −1 −1 0 0 3 1
−1 1 −1 0 0 −1 −1 1 3


44 – 56

9G



3 −1 −1 −1 −1 −1 −1 −1 0
−1 3 −1 −1 −1 −1 1 1 0
−1 −1 3 1 1 1 −1 −1 0
−1 −1 1 3 1 1 −1 0 −1
−1 −1 1 1 3 1 −1 0 −1
−1 −1 1 1 1 3 0 −1 −1
−1 1 −1 −1 −1 0 3 1 1
−1 1 −1 0 0 −1 1 3 1
0 0 0 −1 −1 −1 1 1 3


42161 – 56

9H



3 −1 −1 −1 −1 −1 −1 −1 −1
−1 3 −1 −1 −1 −1 1 1 1
−1 −1 3 1 1 1 −1 −1 1
−1 −1 1 3 1 1 −1 0 0
−1 −1 1 1 3 1 −1 0 0
−1 −1 1 1 1 3 0 0 0
−1 1 −1 −1 −1 0 3 1 0
−1 1 −1 0 0 0 1 3 0
−1 1 1 0 0 0 0 0 3


214182 – 44

9I



3 −1 −1 −1 −1 −1 −1 −1 0
−1 3 −1 −1 −1 −1 1 1 0
−1 −1 3 1 1 1 −1 −1 0
−1 −1 1 3 1 1 −1 0 −1
−1 −1 1 1 3 1 −1 0 −1
−1 −1 1 1 1 3 0 0 0
−1 1 −1 −1 −1 0 3 1 1
−1 1 −1 0 0 0 1 3 0
0 0 0 −1 −1 0 1 0 3


83 – 44
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Table B.1: The primitive elementary supercurrent lattices (cont’d).

Ξ Gram Matrix Divisors ∆2 n3

9J



3 −1 −1 −1 −1 −1 −1 −1 −1
−1 3 −1 −1 −1 −1 1 1 1
−1 −1 3 1 1 1 −1 −1 0
−1 −1 1 3 1 1 −1 0 −1
−1 −1 1 1 3 1 0 −1 −1
−1 −1 1 1 1 3 0 0 0
−1 1 −1 −1 0 0 3 1 1
−1 1 −1 0 −1 0 1 3 1
−1 1 0 −1 −1 0 1 1 3


31122 – 44

9K



3 −1 −1 −1 −1 −1 −1 −1 −1
−1 3 −1 −1 −1 0 0 0 0
−1 −1 3 1 1 0 0 0 1
−1 −1 1 3 1 0 0 1 0
−1 −1 1 1 3 0 1 0 0
−1 0 0 0 0 3 −1 −1 −1
−1 0 0 0 1 −1 3 1 1
−1 0 0 1 0 −1 1 3 1
−1 0 1 0 0 −1 1 1 3


3391 – 56

9L



3 −1 −1 −1 −1 −1 −1 0 0
−1 3 −1 −1 −1 1 1 0 0
−1 −1 3 1 1 −1 −1 0 0
−1 −1 1 3 1 −1 0 −1 −1
−1 −1 1 1 3 0 −1 −1 1
−1 1 −1 −1 0 3 1 0 0
−1 1 −1 0 −1 1 3 0 0
0 0 0 −1 −1 0 0 3 0
0 0 0 −1 1 0 0 0 3


202 – 44

9M



3 −1 −1 −1 −1 −1 −1 0 0
−1 3 −1 −1 −1 1 1 0 0
−1 −1 3 1 1 −1 1 0 0
−1 −1 1 3 1 0 0 −1 −1
−1 −1 1 1 3 0 0 −1 1
−1 1 −1 0 0 3 0 0 0
−1 1 1 0 0 0 3 0 0
0 0 0 −1 −1 0 0 3 0
0 0 0 −1 1 0 0 0 3


4282 – 32

9N



3 −1 −1 −1 −1 −1 −1 −1 −1
−1 3 −1 −1 0 0 0 0 0
−1 −1 3 1 0 0 0 1 1
−1 −1 1 3 0 0 1 0 1
−1 0 0 0 3 0 −1 −1 1
−1 0 0 0 0 3 0 0 1
−1 0 0 1 −1 0 3 1 −1
−1 0 1 0 −1 0 1 3 0
−1 0 1 1 1 1 −1 0 3


73 – 44
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