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i

Abstract

This thesis investigates multiphoton quantum interference with a particular emphasis on
photonic partial distinguishability stemming from factors such as timelags or polarization
mismatches between the photons. We explore the gray area between the behaviour of
distinguishable classical particles and ideally indistinguishable bosons in large linear
interferometers, with practical implications for photonic quantum computers – especially
boson samplers – as well as fundamental consequences on the many-body physics of
bosonic systems.

Our research leverages recent findings in the mathematical theory of matrix perma-
nents to unravel new aspects of interference phenomena. In particular, we exhibit a
surprising counterexample to the rule of thumb that "identical bosons bunch most",
which can be observed with 7 photons in a 7-mode linear interferometer.

We develop robust techniques to validate boson samplers – that is, to verify the
incompatibility with classical samplers – by analyzing the photon distribution among
partitions of the output modes. This innovative method extends existing validation
tests, providing a comprehensive approach to assessing boson sampling experiments.

An extra contribution of this thesis is the development of BosonSampling.jl, an
open-source, high-performance software package for multiphoton interferometry simula-
tions, featuring versatile tools for boson sampling tasks and a suite of validation tools in
order to rigorously evaluate boson samplers in the presence of partial distinguishability
and other noise sources.

Keywords: Multiphoton interference, Photonic partial distinguishability, Boson
sampling, Validation tests, Quantum computing, Matrix permanents
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Part I

Introduction
This thesis is an exploration of the complex and intriguing world of multiphoton
interference, with a particular focus on the role of photonic partial distinguishability -
the incomplete overlap between the wavefunctions of the photons which may arise from
timelags between them or mismatched polarization.

Intriguingly, the concept of partial distinguishability introduces a certain ‘gray area’
into our understanding of quantum interference, straddling the boundary between the
behavior of classical particles and indistinguishable bosons. Indistinguishable bosons
behave in ways that can only be explained through quantum mechanical effects. The
paradigmatic Hong-Ou-Mandel experiment - where two identical bosons will always
bunch together at the output of a 50:50 linear coupler - is the simplest example. As
particles become distinguishable, this bunching effect declines, which can be seen as a
quantum-to-classical transition. However, this transition becomes much more complex
when considering larger systems. This territory is mostly unexplored and turns out to
be even more challenging and surprising than standard multiphoton interference, which
already is a complex area in itself.

At the heart of this analysis of quantum interference lies the fruitful interplay between
mathematical theory and physical properties. The theory of matrix permanents, in
particular, has emerged as a powerful tool for examining and understanding the behavior
of multiphoton interference. The research presented in this thesis exploits this knowledge
to get new insights into interference phenomena with partially distinguishable photons,
while simultaneously offering intriguing counterexamples that push the boundaries of
our existing understanding. Conversely, we use tools and intuition stemming from
quantum optics to extend mathematical knowledge on matrix permanents.

In the context of quantum computation, a major effect of partial distinguishability
is to reduce the potential computational advantage that is expected from photonic
quantum computers, such as boson samplers. In the time span of a decade, these
boson samplers went from a theoretical idea to large-scale optical devices with claims
of quantum computational advantage by multiple teams. However, as an intrinsic side
effect of the intractability of the task performed, these claims are hard to justify without
proper validation techniques. Indeed, even modest levels of distinguishability between
particles can make a boson sampler easy to simulate on a classical computer, defeating
their purpose.

In this regard, our work in this thesis has developed robust techniques to substantiate
the correct functioning of boson samplers. We present a validation method, grounded
on how photons distribute among partitions of the output modes. The versatility of our
approach allows it to encompass and extend upon previous validation tests based on
bunching phenomena, marginal distributions, and some suppression laws. We develop
a new formalism that allows us to approximate the binned distributions classically in
a computationally efficient manner. Through this, we are able to analyze and assess
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the performance of boson samplers under various noise models, including those with
partially distinguishable photons. We support our findings with rigorous analytical
evidence and extensive numerical simulations. Importantly, our validation method
is also able to process experimental data with photon losses, making the validation
process more practical and efficient, especially in the early stages of “debugging” a boson
sampler.

In the process of this exploration, an original computational tool was conceived —
BosonSampling.jl, an open-source software package designed for high-performance
simulations of multiphoton interferometry. Conceived in Julia, this versatile software
provides a range of features for tasks related to boson sampling and interferometry,
delivering an adaptive and extendable framework that caters to the evolving demands
of this very active field. The package also encompasses a robust suite of validation tools,
enabling researchers to rigorously assess the performance of boson samplers and ensure
accurate results in the presence of partial distinguishability and other sources of noise.

As we progress through this thesis, readers will be introduced to the complexities
of photonic interference, offering a detailed examination of partial distinguishability
and its implications on experiments. We will provide insight into the development
and functionality of the BosonSampling.jl package, focusing on its utility for high-
performance simulations and the integral validation tools it provides. Finally, we will
consider the broader implications of these findings for the field of quantum computing,
particularly in relation to photon-based systems such as boson samplers. This work, we
hope, contributes to the ongoing dialogue within this challenging and rapidly evolving
field.

Works covered in this dissertation

This dissertation addresses a subset of the articles published during this thesis:

• Boson bunching is not maximized by indistinguishable particles, with L. Novo and
N. J. Cerf, accepted in Nature Photonics, arXiv 2203.01306 [quant-ph]

• Efficient validation of Boson Sampling from binned photon-number distributions,
with L. Novo, A. Arkhipov, and N. J. Cerf, submitted to Phys. Rev. X, arXiv
2212.09643 [quant-ph]

• BosonSampling.jl: a Julia package for multiphoton interferometry, with A. Restivo,
submitted to Quantum, arXiv 2212.09537 [quant-ph]

A detailed introduction to each of these works will be given after presenting the essential
theoretical ideas that are needed to understand the context and questions that these
works answer.

https://arxiv.org/abs/2203.01306
https://arxiv.org/abs/2212.09643
https://arxiv.org/abs/2212.09643
https://arxiv.org/abs/2212.09537
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Other works realised during this thesis

The following work was published on the arXiv preprint server but will not be discussed
in this dissertation:

• Programmable multi-photon quantum interference in a single spatial mode, with
L. Carosini, V. Oddi, F. Giorgino, L. M. Hansen, J. S. Piacentini, T. Guggemos,
I. Agresti, J. C. Loredo, and P. Walther, submitted to Science Advances, arXiv
2305.11157 [quant-ph]

The following work was completed during this thesis but is not discussed in the present
dissertation as it concerns a different field:

• Dynamical elastic contact of a rope with the ground, with G. Kozyreff, pub-
lished in Physical Review Research 3, L022026 (2021), https://doi.org/10.1103/
PhysRevResearch.3.L022026.

The following works also concern multiphoton interferometry and have led to significant
progress, but have not yet been submitted to the arXiv preprint server.

• Validation of Gaussian Boson Sampling, with G. Bressanini, L. Novo, N. J. Cerf,
and M. Kim. This works by applying similar techniques as those found in “Efficient
validation of Boson Sampling from binned photon-number distributions".

• Enhanced bunching of nearly indistinguishable bosons with L. Pioge, L. Novo, N.
J. Cerf.

• Experimental demonstration of the effects shown in “Efficient validation scheme
for multiphoton interference" with L. Novo, N. J. Cerf, J. Renema, M. Anguita.

https://arxiv.org/abs/2305.11157
https://arxiv.org/abs/2305.11157
https://doi.org/10.1103/PhysRevResearch.3.L022026
https://doi.org/10.1103/PhysRevResearch.3.L022026
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Part II

Theoretical grounds

1 Multiphoton interference

This section provides a concise overview of the fundamental theoretical concepts of
multiphoton interference, focusing on the essential aspects required to comprehend the
content of this thesis. It is important to note that this only touches the basic notions
required to understand the papers presented in the next part of this manuscript. Readers
seeking a more comprehensive understanding of the subject matter are encouraged to
consult additional references for a thorough discussion ([1, 2, 3, 4, 5, 6, 7, 8, 9]).

The structure of this section is as follows: first, we give a brief reminder of the
quantization of the electromagnetic field, underlying the formalism that will be used in
the rest of this manuscript. Next, we discuss as an example model the interference of
two particles. This allows us to present notions that translate to the more complicated
case of multiparticle interference. After that, we study in generality the mathematics of
generic interference. Special emphasis is put on the notion of partial distinguishability,
which will play an important role in the key publication resulting from this thesis,
"Boson bunching is not maximized by indistinguishable particles", presented in Section
4. We also show how the probabilities of different events are computed. This allows us
to introduce the important matrix function known as the matrix permanent, a direct
analog of the matrix determinant (and the Slater determinant in quantum physics).
We will discuss this object in great detail through this thesis. Indeed, all behaviour
studied is understood from the intricate properties of the permanent. These properties
and their implications will be studied in more depth in the following sections of this
introductory part of the thesis.

1.1 Quantization of the electromagnetic field

Quantum optics is an important field of study in quantum physics, focusing on the
interaction of light with matter at the quantum level. One of the key aspects of quantum
optics is the quantization of the electromagnetic field, which allows for the description
of light as a collection of discrete quanta or photons. We introduce the quantization of
the electromagnetic field through the colloquial example of a one dimensional cavity
with perfectly conducting boundaries in the planes z = 0 and z = L. In vacuum, the
Maxwell equations give

Ex(z, t) =

√
2ω2

V ϵ0
q(t) sin(kz) (1)

By(z, t) =
µ0ϵ0
k

√
2ω2

V ϵ0
q̇(t) cos(kz) (2)
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setting the x−axis along the polarization of the electric field and defining ω the pulsation
and k = ω/c the wave number and with V a normalization. Only the frequencies given
by ωm = cmπ/L with m = 1, 2, . . . are allowed in this example from the boundary
conditions. Let us focus on a single allowed frequency. The Hamiltonian of the
electromagnetic field becomes in this case

H =
1

2
(p2 + ω2q2) (3)

where we identified p = q̇. It is quantized by applying the correspondence rules of
replacing the canonical variables q, p by their operators. We identify

â = (2ℏω)−1/2(ωq̂ + ip̂) (4)

â† = (2ℏω)−1/2(ωq̂ − ip̂) (5)

In turn, we recover the Hamiltonian of a harmonic oscillator

Ĥ = ℏω(â†â+
1

2
) (6)

The product n̂ = â†â is called the number operator. We write

|n⟩ = (â†)n√
n!

|0⟩ (7)

This state is an eigenvector of Ĥ, with energy ℏω(n + 1/2). The action of â† can
therefore be understood as adding a quanta ℏω of energy, while â removes one. While
many other states are used in quantum optics, we will be mostly interested in this thesis
in the states of type |n⟩, colloquially referred to as number states. They contain a fix
number of photons, n.

1.2 Interference of two particles

We begin by studying the interference of two particles through a beam splitter. We
follow the presentation of [1, 2, 3]. When going through a beam splitter, each particle
has a probability R of being reflected and T = 1 − R of being transmitted. We can
find the two following configurations in the detectors: either a coincidence, where each
detector sees one particle, or a bunched event, where the two particles are observed by
the same detector.

1.2.1 Distinguishable particles

Consider first two classical particles ("balls"). The following is also valid for elementary
particles (behaving quantumly) as long as they can be deterministically distinguished,
for instance, if their polarization is orthogonal. We consider these two particles to be
identical. Although they can be traced throughout the entirety of their motion, we will
act as if our detectors are blind to the origin of the particles. That is, these particles are
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fundamentally distinguishable but we consider them observationally indistinguishable.
Given their distinguishability, the particles behave independently to the presence of the
other. Therefore, overall probabilities are computed by summing the probabilities of
each particle.

The probability to find a coincidence is given by pD(1, 1) = T 2+R2 while a bunched
event happens with probability pD(0, 2) = pD(2, 0) = TR.

1.2.2 Indistinguishable particles

Consider now identical particles, such as photons or electrons. These particles cannot
be distinguished: unlike in the classical case, one cannot attach a label to the particles.
They are fundamentally indistinguishable. Let us compute their evolution through the
beam splitter. Their initial state is given by

|Ψin⟩ = â†1â
†
2 |0⟩ (8)

where â†i is the creation operator in mode i and |0⟩ the vacuum. The evolution operators
evolve as

â†j → Û â†jÛ
† =


√
T b̂†1 + i

√
Rb̂†2 if j = 1

i
√
Rb̂†1 +

√
T b̂†2 if j = 2

(9)

by the action of the beam splitter. Restricting to a balanced beam splitter (R = T = 1/2),
the state at the output of the beam splitter is thus

|Ψout⟩ =
1

2

(
i((b̂†1)

2 + (b̂†2)
2) + [b̂†1, b̂

†
2]
)
|0⟩ (10)

with [a, b] = ab− ba the commutator. For bosons, whose creation operators commute,
we are left with

|Ψout,B⟩ =
i

2

(
(b̂†1)

2 + (b̂†2)
2
)
|0⟩ (11)

while for fermions, whose creation operators anticommute,

|Ψout,D⟩ = b̂†1b̂
†
2 |0⟩ (12)

The possible output patterns can be read out from these states: bosons will always
bunch into a single mode, and will never lead to coincidences. The opposite stands true
for fermions (as is expected by Pauli’s exclusion principle). The bunching and absence
of coincidences was first demonstrated by Hong-Ou-Mandel [10].

1.2.3 Partial distinguishability

Photons described above were assumed to be indistinguishable. In practice, this is hard
to realise experimentally: photons sent in different spatial modes may have slightly
different polarizations, or arrival times. This leads to an imperfect interference, as we
will describe now. These photons are said to be partially distinguishable. Photons are
described by their input mode i, as well as an internal wave function |ϕi⟩. The latter
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regroups all information not contained in the spatial mode occupation. Therefore we
can write

|Ψin⟩ = â†1,ϕ1
â†2,ϕ2

|0⟩ (13)

A core assumption is that both the network and detectors are blind to the internal
degrees of freedom. This means that creation operators evolve as

â†i,ϕ → Û â†i,ϕÛ
† =


√
T b̂†1,ϕ + i

√
Rb̂†2,ϕ if j = 1

i
√
Rb̂†1,ϕ +

√
T b̂†2,ϕ if j = 2

(14)

regardless of the internal wave function |ϕ⟩. Likewise, detectors trace out the information
contained in |ϕ⟩.

Repeating the same calculation as in the previous section, we find

p(s) = | ⟨ϕ1|ϕ2⟩ |2pB(s) + (1− | ⟨ϕ1|ϕ2⟩ |2)pD(s) (15)

for s = (1, 1), (2, 0), (0, 2). The probability of a given outcome is now a convex combi-
nation of the ideal probabilities, weighted by the overlap between the internal states
of the photons. This equation can be read as a quantum-to-classical transition, and
follows straightforwardly the intuition that as photons are more distinguishable, the
more they behave as classical particles.

In the case of a varying time delay, this gives rise to the typical HOM-curve, as
displayed in Fig.1

Figure 1: The Hong-Ou-Mandel effect. (a) Two independently prepared photons
are sent through a beam splitter with a possible time delay, or equivalently, a path
delay x. (b) This path delay leads to imperfect overlap of the wave functions of the
photons, leading to partial distinguishability. (c) Exact cancellation of amplitudes leads
to the suppression of the event s = (1, 1) if x = 0. Partial distinguishability monotically
reduces this cancellation. Image from [1].

1.2.4 Bunching and anti-bunching

The bunching of two photons in a single detector observed by HOM is prototypical of
bosons. While one could imagine that the particles "stick" together, we above considered
no interaction between them: this effect is entirely due to the statistics of the particles,
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and the symmetries implied in their wavefunction.
We will study an extension of this phenomenon in one of the papers of this thesis.

1.3 Many-particle interference

We studied above the case of two particles interfering in a simple beam-splitter in order
to introduce basic concepts of photonic interferometry. We will now consider a more
generic case, where n particles are allowed to interfere in a m-mode network described by
a unitary matrix U . The particles occupy the input modes according to r = (rj) where
0 ≤ rj ≤ n is the number of photons occupying input mode j. Naturally

∑m
j=1 rj = n.

We will denote output occupation numbers in the same way by s. We define the mode
assignment list d(r) = ⊕m

j=1 ⊕
rj
k=1 (j) which allows us to define an effective scattering

matrix for (r, s)

U = Ud(r),d(s) (16)

with as convention the jth row corresponding to the jth input, and likewise for columns
and outputs. That is, U is the submatrix constructed by selecting the rows from U

corresponding to the occupied input ports, and the columns for the output ports.
Particles entering mode j have a corresponding internal wave function |ϕj⟩. In

particular, it is implicitly assumed that photons in a given mode have the same internal
wave function : in practice, we are only interested in situations where there is at most
one photon input mode.

We define the distinguishability matrix, or Gram matrix

Sij = ⟨ϕi|ϕj⟩ (17)

which contains the set of overlaps of the internal wave functions of the input photons.
Note that this is relative to a given input configuration d(r), but in practice we will
only be interested in the d(r) = (1, ..., n) input, that is, a single photon in the first n
modes. In particular, S = 1 if all photons are distinguishable, while S = E (Ej,k = 1 for
all j, k) in the case where they are fully indistinguishable. We define a basis Φj for the
internal states, with ∑

j

⟨ϕk|Φj⟩ ⟨Φj |ϕk⟩ = 1 (18)

for all k.

1.4 Time evolution

The initial state is

|Ψ⟩in =

m∏
j=1

1√
rj !

(
â†j,ϕj

)rj
|0⟩ (19)

where |0⟩ is the vacuum state. Defining µ(r) ≡
∏m

j=1 rj !, we can rewrite the input state
as

|Ψ⟩in =
1√
µ(r)

n∏
j=1

â†dj(r),ϕdj(r)
|0⟩ (20)
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The interferometer U acts leaving the internal modes untouched but distributing the
photons in the various output modes, with the amplitude Ujk for the photon j to end
up in mode k

â†j,ϕj
→ Û â†j,ϕj

Û † =
m∑
k=1

Ujk b̂
†
k,ϕj

(21)

(Note that an opposite convention is sometimes used in the literature, leading to easy
confusions. For instance, [1] and [3] have U and U † interchanged.) The output state is
thus

|Ψ⟩out = Û |Ψ⟩in (22)

=
1√
µ(r)

n∏
j=1

m∑
k=1

Udj(r),k b̂
†
k,ϕdj(r)

|0⟩

1.5 Output pattern probabilities

Given an orthonormal basis for the internal states of the photons {|Φj⟩}, we can expand
any n-photon state with mode occupation numbers s = (s1, . . . , sm) into the following
orthonormal basis:

|d(s),Φa⟩ =
1√
µ(s)

n∏
j=1

b̂†dj(s),Φaj
|0⟩ . (23)

Here, a is a vector of dimension n, whose indices aj define that the internal state of the
jth particle is

∣∣Φaj

〉
.

The output state of a boson sampler with partially distinguishable input photons
can then be written as

|Ψout⟩ =
∑

d(s),a

α(d(s),Φa) |d(s),Φa⟩ (24)

where

α(d(s),Φa) =

〈
n∏

j=1

b̂dj(s),Φaj

∣∣∣∣∣∣Ψout

〉
(25)

Tichy defines a set of projectors sending a state on an output mode configuration s

disregarding the internal state

P̂s =
∑
i

n∏
j=1

b̂†dj(s),Φi
|0⟩ ⟨0|

n∏
j=1

b̂dj(s),Φi

such that the probability to find the output state s is [2]

P (s) =
1

µ(r)µ(s)

〈
Ψout

∣∣∣P̂s

∣∣∣Ψout

〉
(26)

Tichy shows that this probability can be expanded as a multi-dimensional tensor
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permanent

P (s) =
1

µ(r)µ(s)

∑
σ,ρ∈Sn

n∏
j=1

(
Uσj ,jU∗

ρj ,jSρj ,σj

)
(27)

or alternatively

P (s) =
1

µ(r)µ(s)

∑
ρ∈Sn

 n∏
j=1

Sj,ρj

perm
(
U ⊙ U∗

ρ,E

)
(28)

This approach makes it clear that computing probabilities in the partial distinguishability
regime is exponentially more costly than in the perfectly bosonic regime, since there
is one more permutation to sum over. In particular, the fully indistinguishable case
(bosonic) S = E as

P (E, U) =
1

µ(r)µ(s)

∑
σ∈Sn

n∏
j=1

Uσj ,j

∑
ρ∈Sn

n∏
j=1

U∗
ρ,j

 =
|perm (U) |2

µ(r)µ(s)
(29)

as well as the fully distinguishable case S = 1 as

P (E, U) =
1

µ(r)µ(s)

∑
σ∈Sn

n∏
j=1

Uσj ,jU∗
σj ,j =

perm
(
|U|2

)
µ(r)µ(s)

(30)

1.6 Matrix permanents

The core of this work and the general interest of the field rely on the properties of
the matrix permanent, as introduced in the computation of the event amplitudes
and probabilities. We will now explore some of the properties of this function. The
permanent belongs to a class of generalized matrix functions. Calling Sn the group of
permutations (also called symmetric group), taking H as a subgroup of Sn and χ are
character of H, we define

dHχ (A) =
∑
σ∈H

χ(σ)
n∏

i=1

Aiσi (31)

the generalized matrix function of a matrix A with respect to H,χ. We can now see
that this definition encompasses multiple useful matrix functions. If H = Sn and
χ(g) = sign(g), we recover the matrix determinant

det(A) =
∑
σ∈Sn

sign(σ)
n∏

i=1

Aiσi (32)

while if χ(g) = 1 we have the matrix permanent

perm (A) =
∑
σ∈Sn

n∏
i=1

Aiσi (33)
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More generally, when H = Sn and χ is an irreducible character, we refer to the
generalized matrix function as the immanant. Another noteworthy case is if H = 1,
from which we recover the product of the diagonal elements of A.

While at first sight expressions Eq. (32) and Eq. (33) might seem very similar,
the properties of the determinant and the permanent are very different. Indeed, while
the expression for the permanent looks more simple, it lacks many of the symmetries
that induce the properties of the determinant. For instance, det(AB) = det(A) det(B)

while perm (AB) ̸= perm (A) perm (B). However, the Laplace rule holds for both the
determinant and permanent, with the difference of the sign of the permutation

det(A) =
n∑

j=1

(−1)i+jAijdet(A[i, j]) (34)

perm(A) =
n∑

j=1

Aijperm(A[i, j]) (35)

where A[i, j] is the matrix constructed by removing row i and column j of A. It is then
easy to understand that the permanent is "just the determinant without the signs".

A particularly striking difference between the permanent and the determinant
lies in the efficiency with which each can be computed. Fast algorithms exist for
the determinant—the most naive being Gaussian elimination—needing only O(n3)

operations for a matrix of size n [11]. In contrast, the best known algorithm to compute
the permanent requires exactly n2n operations, as described by Ryser in [12] (and
improved by a factor n compared to original paper using Gray ordering). This places
the two functions in different complexity classes, as we will describe in Section 3.2. In
fact, is it known that the permanent of matrices with entries of zeros and ones is #P
complete [13].

Another, more physically relevant question is that of approximating matrix perma-
nents. Indeed, experiments consist of a limited number of runs, and for this reason it is
often sufficient to approximate matrix permanents at least as accurately as the experi-
ment allows. We consider two type of approximations: given U , estimating perm (U) is
said to be with an additive error if an algorithm outputs a value perm (U) + ϵ while it
is said to be of multiplicative error if it outputs (1 + ϵ)perm (U), where ϵ can be made
arbitrarily small (through more computation steps).

The difference between a multiplicative and additive error is especially important.
Indeed, the probabilities of most patterns appearing at the output of linear interferometer
are exponentially small. That is, if n is the number of input photons and m is the size
of the network, the average probability p(s) scales as

log(p(s)) ∼ nϵ(ρ) +O(log(n)) (36)

with ϵ(ρ) = ρ log ρ− (1 + ρ) log(1 + ρ) and ρ = n/m the boson density [14]. Therefore,
a algorithm running with an additive error ϵ = O(poly(n)) would not bring a relevant
approximation of outcome probabilities (because the additive error would need to be
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kept exponentially small), while a multiplicative error algorithm would. An additive
error algorithm exists by Gurvits in O(n2/ϵ2) [15] and was later improved by Aaronson
[16] for events with more than one photon per mode.

General matrix permanents are thought as hard to approximate with a multiplicative
error, but some special cases are noteworthy and have deep ties with the physical
processes studied in this thesis. In general, the U matrix describing the network will be
composed of complex entries. However, if U is a matrix of non negative (real) numbers,
the JSV algorithm allows for efficient multiplicative error approximation [17]. This
result has the following physical implication. When looking at Eq. (29), we can see
that the permanent determining event probabilities is that of a generic complex matrix
in the case of indistinguishable photons, while for distinguishable photons in Eq. (30),
the matrix is made of non negative numbers. This implies that bosonic probabilities are
hard to approximate meaningfully, while distinguishable ones are easy. An important
distinction must be made between computing the probabilities of a given event and
sampling. This will be discussed in the Section 3.2, with similar conclusions.

2 Bosonic behaviours

We saw above how the statistics (bosonic, fermionic, distinguishable) of the particles
can dramatically change their behaviour. A natural question arises: what happens
between these cases? Indeed, it is hard to generate perfectly indistinguishable par-
ticles in experiments, and one can reasonable expect that a non negligible degree of
distinguishability will always be present between particles. Generally, fermions are
simple to treat, because the event probabilities are linked to matrix determinants,
which are much easier than the matrix permanents of the bosons. Therefore, we take
interest in what happens in the grey zone of partially distinguishable bosons. One
of the paradigmatic bosonic effects is that of bunching, as emphasized by the HOM
experiment, where bosons are more probable to be grouped together in a single output
mode. Any degree of partial distinguishability reduces this effect, monotonically. It is
known that when considering more photons and modes, the event probabilities may
not transition monotically [18] from their bosonic to distinguishable values. In general,
little formal results exist concerning the qualitative behaviour of partial distinguishable
particles, while some rules of thumb are known by most physicists, such as that bosons
tend to bunch. Shchesnovich formalized this important aspect for more than two modes
and photons, in direct translation the HOM effect, and with more general parameters
[19]. We will first study his theory, and then his conjecture that the HOM effect extends
to more than two modes and particles: ideal bosons bunch most. One of the findings
from this thesis shows that this is not the case, and that the general rule of thumb held
by many physicists is not, in fact, a generic behaviour. This is particularly surprising
and has piqued the interest of the community. Indeed, we will study in this thesis the
numerous reasons why this conjecture appears plausible, and the various important
cases in which it does hold.
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Figure 2: Bunching in a subset. Single photons are sent through the first n input
modes of a m-mode linear interferometer U . Each photon at input j carries internal
degrees of freedom (polarization, arrival time, etc.) described by an (internal) wave
function |ϕj⟩. Not perfectly overlapping wave functions (measured via the Gram matrix
S) gives rise to partial distinguishability amongst the photons, reducing the degree of
quantum interference and bosonic effects such as bunching (see Conjecture 1). We focus
in particular on the probability that all n photons bunch in a subset K (corresponding
to the green detectors) of the output modes, while the red detectors in K do not click.
This is a natural extension of the HOM experiment for more than two modes.

2.1 Generalized bunching

Shchesnovich studies generalized bunching, defined as finding all photons in a subset
K of the output modes. This subset could consist of none or all the modes, in which
case we call it trivial (as it brings no information). Generally, people refer to (strict)
bunching as finding all photons in a single output mode, hence the term generalized
bunching. Below, we will not make this distinction and assume that we are studying
generalized bunching.

Regarding strict bunching, analytical results extend the conclusion of the HOM
experiment to more than 2 photons/modes. If we choose K = {j}, the single-mode
bunching probability is given by

Pn(S) =

n∏
i=1

|Uij |2 perm (S) = P (dist.)
n perm (S) , (37)

where P (dist.)
n = Pn(E) corresponds to the multimode bunching probability when the

photons are fully distinguishable. The HOM effect can be recovered: for a two-mode
50:50 beam-splitter, the maximum probability of bunching in a single output mode is
attained for fully indistinguishable photons (S = E) and given by 1/4× 2! = 1/2. The
conclusion is straightforwardly generalized for larger interferometric setups as Pn(S)

is indeed maximum for fully indistinguishable photons since the maximum value of
perm (S) is attained when S = E, with perm (E) = n!.

One could hope that this still holds for a subset K with more than one mode.
Shchesnovich conjectures that

Conjecture 1 (Generalized Bunching). Consider any input state of n classically
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correlated photons. For any linear interferometer and any nontrivial subset K of output
modes, the probability that all photons are found in K is maximal if the photons are
(perfectly) indistinguishable.

There is, in fact, plenty of evidence to support this conjecture, beyond the one
present in Eq. (37). Indeed, when considering random configurations of interferometers
and Gram matrices, we never found a counter example in tens of millions of trials in
various dimensions. The procedure goes as follows: a unitary U is sampled randomly
according to the Haar measure and used to compute the matrix H. The matrix S is
constructed by taking random normalized vectors in a space of dimension r (for instance,
when considering photons sent simultaneously but with potentially different polarization
states, r = 2). Note that r determines the rank of the matrix S.

However, note that with educated numerical choices, counterexamples can be found
in less than a second. This relies on setting a dimension n ≥ 7, and taking an matrix
H of rank for the matrix S of r = 2, 3, · · · ≪ n. In this case, we set the interferometer
as fixed (through the choice of matrix H) and then we use a classical gradient-descent
type optimisation algorithm over the coefficients of the n, r−dimensional generating
vectors of the Gram matrix by optimising on the violation ratio

R =
Pn(S)

Pn(E)
(38)

With this definition, a counter example to Shchesnovich’s conjecture consists of finding
R > 1. We did not investigate in depth the many numerical counter examples we found.
A few of them can be found in the generated with the repository on github and the data
found at OSF. While we can easily find counter examples with these tailored routines,
this does not diminish their scarcity when randomly sampled according to the Haar
measure.

2.2 Mathematical description

Let us see the main mathematical tools needed to formalize Shchesnovich’s statement
(a careful analysis is found in the associated paper). Consider the probability that
all n photons are found in a subset K of the output modes, which we refer to as the
multimode bunching probability Pn(S). We define the matrix

Ha,b =
∑
l∈K

U∗
l,aUl,b, (39)

where a, b ∈ {1, ..., n} and where U,K are the interferometer and the subset, respectively.
Shchesnovich shows how to compute Pn(S) in terms of matrix permanents

Pn(S) = perm
(
H ⊙ ST

)
(40)

where the special product is called the Hadamard (or element-wise) product

(A⊙B)ij ≡ AijBij (41)

https://github.com/benoitseron/generalized_bunching
https://osf.io/ex63z/
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unlike the standard matrix product [19] (see also Methods 4.5 of the associated paper).
The attentive reader will be surprised at the simplicity of this formula. Indeed, when we
are speaking of bunching in subset that contains more than a single mode (or conversely,
which is not composed of all modes but one), finding n photons in the subset can be done
in a great number of different output arrangements. As an example, if n = 2 and the sub-
set K consists of the first two modes, all three configurations (2, 0, ...), (1, 1, ...), (0, 2, ...)

equally qualify as bunching. In general, one may consider subsets with poly(n) num-
ber of modes, making the number of such bunched configurations exponentially large.
The probability of each of these configurations requires the computation of a matrix
permanent. Therefore, it is surprising that when combining exponentially many of
such probabilities, each one being computationally hard, we obtain this single matrix
permanent. In fact, this specific permanent is itself easy to compute. Indeed, note
that H, S and H ⊙ ST are all positive semidefinite matrices. Shchesnovich shows
that these specific permanents are easy to compute in [19], while another result from
Chakhmakhchyan, Cerf, and Garcia-Patron also provides a quantum-inspired algorithm
to approximate such permanents [20] up to quasi-multiplicative error.

Note too that H, S and H ⊙ ST being Hermitian and positive semidefinite ensures
that their permanent is positive [21]. This is, of course, expected given their physical
interpretation as probabilities. Given that, for indistinguishable photons, P (bos)

n =

perm (H), the Conjecture 1, takes the following mathematical form:

perm
(
H ⊙ ST

) ?
≤ perm (H) (42)

with equality holding iff S corresponds to indistinguishable photons.

2.3 Bapat-Sunder conjecture

This inequality was known to mathematicians in the context of matrix permanent
properties (with no apparent ties to quantum optics [22]). In the field of mathematics,
it is referred to as the Bapat-Sunder conjecture [23]:

Conjecture 2 (Bapat-Sunder). For any two positive semi-definite n × n matrices
A = (Aij) and B = (Bij), we have

perm (A⊙B) ≤ perm (A)
n∏

i=1

Bii. (43)

Although Conjecture 2 takes a slightly different form to Eq. (42), they are in fact
equivalent as shown by Zhang in [24]. Only a few analytical results are known regarding
this equation. Zhang [25] studied properties of matrices maximizing the function

fA(X) = perm (A⊙X) (44)
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for a given choice of matrix A. We call MA a maximizing matrix of A if

fA(MA) = max
X∈Cn

perm (A⊙X) (45)

with Cn the space of Gram matrices of dimension n. A violation to Conjecture 2 happens
when

fA(X) > fA(E) (46)

(and in particular if fA(MA) > fA(E)). Physically, maximizing matrices correspond
to the partial distinguishability encoding that maximize bunching, given a choice of
interferometer and subset. Zhang argues that such matrices always exist from the
continuity of f and the compactness of Cn.

These may, however, not be unique. Consider for instance

Proposition 1 (Rank 1 matrices). Let B = (bij) ∈ Cn. The following statements are
equivalent.

1. |Bij | = 1 for all i, j.

2. B is of rank 1 .

3. There exist complex numbers u1, . . . , un all having modulus 1 such that B = u∗u,
where u = (u1, . . . , un) , u

∗ = ūt is the conjugate transpose of u

4. B = D∗ED, where D is some diagonal unitary matrix.

5.
∏n

i=1Biσ(i) = 1, for every σ ∈ Sn

As Zhang argues, statement 4 implies that the rank one correlation matrix is unique
up to diagonally unitary similarity. Equivalently, by scaling through unit complex
numbers, there is only one correlation matrix of rank 1, that is, E.

In his article, Zhang takes the position that Bapat-Sunder’s conjecture holds. In
this case, E is clearly a maximizing matrix. While we now know that the conjecture is
false, the results presented by Zhang are still highly interesting as they have a direct
translation into physical properties.

Zhang points out that for the Hadamard product by a matrix whose elements are of
modulus one does not change the value of the matrix permanent. Indeed, if B ≥ 0 and
|bij | = 1 for all i, j, we write B = u∗u according to (3). Then for any A ≥ 0

perm(A ◦B) = perm (A ◦ (u∗u)) = perm (uiAijuj) =

n∏
i=1

|ui|2 permA = permA (47)

This calculation recovers, in fact, something that is to be expected trivially from physics:
the elements of u are likened to a phase held by each particle’s internal wave function.
These phases multiply into a global phase in front of the input state. What the above
calculation confirms is that such phases do not change the bunching probabilities. We
can intepret this result as some gauge freedom in the choice of Gram matrices.

Zhang then proved the following theorem.
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Theorem 1 (Singularity of maximizing matrices). If A ∈ Cn and A ≠ E, then MA is
singular.

Therefore, maximizing matrices are necessarily rank-deficient. In physical terms,
this means the following:

Corollary 1 (Linear dependance of maximally bunching internal states). Gram matrices
leading to maximal bunching are generated from internal wave functions {|ϕ1⟩ , . . . , |ϕn⟩}.
These functions must be linearly dependant. In particular, they can be described by
r < n basis elements. In turn, the internal wave functions can be seen as belonging to a
space of dimension r.

We remind that this holds true in any interferometric situation, regardless of the
existence of a violation of Conjecture 1. Note that this is stated for maximizing matrices.
Interestingly, this singularity can be destroyed by a minor perturbation. As all the
functions treated are continuous (the permanent is a sum of products), if a violation is
found, full rank counterexamples must exist.

While we saw that maximizing matrices may not be unique, Zhang shows that they
are all linked by the following invariance:

Theorem 2 (Invariance row/column deletion). Let A be an n×n Gram matrix. There
exist real constants λ1, . . . , λn depending solely on A such that for any maximizing
matrix X of A

perm(A ◦X) = perm((A ◦X)[i, i]) + λi, i = 1, . . . , n. (48)

where A[i, j] is the matrix whose row i and column j are removed.

Corollary 2. Let X and Y be maximizing matrices of A. Then,

perm((A ◦X)[i, i]) = perm((A ◦ Y )[i, i]) ∀i = 1, . . . , n (49)

While deleting a row and column might seem like a strange operation, it is interesting
on multiple levels. In his paper, Zhang compares this property of maxizing matrices to
the properties of matrices relating to the most famous conjecture on matrix permanents:
the Van Der Waerden conjecture, later proven by Egorycev [26, 27]. It concerns doubly
stochastic matrices, i.e. matrices with nonnegative real entries and where each row and
column sums to one. These matrices can be likened to the unitary U , for classical mixing
processes. The simplest case of such a matrix is maximally mixing matrix 1/n ∗ E,
whose permanent is trivially

perm
(
1

n
E

)
=
n!

nn
(50)

The Van der Waerden’s conjecture states that:

Theorem 3 (Van der Waerden). A doubly stochastic matrix A obeys

perm (A) ≥ n!

nn
(51)
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with equality achieved iff A is the maximally mixing matrix.

The existence of a similar theorem for quantum processes was one of the initial
questions we pondered in this thesis. In the proof of this theorem, Egorycev makes use
of minimizing matrices, which directly compare to the maximizing matrices of Zhang.
The proof aims to show that the only minimizing matrix is the maximally mixing matrix,
by constraining its structure. These matrices are shown to be invariant by row and
column deletion [28]:

perm (A[i, j]) = perm (A) ∀i, j (52)

making Theorem 2 a very interesting parallel.
Physically, row and column deletion is also relevant. To understand it, let’s study the

formulae of Renema to approximate bosonic processes. In [29], he shows that partially
distinguishable particles have event probabilities that can be expressed as a sum over r
perfectly interfering particles and n− r perfectly distinguishable, with r = 0, . . . , n. The
simplest model of partial distinguishability sets all particles as equally distinguishable
and refer to this colloquial toy-model as the "x-model". We assume that the internal
states are given by

|ϕj⟩ =
√
x |Φ0⟩+

√
1− x |Φj⟩ , (53)

where ⟨Φk|Φl⟩ = δkl for k, l ∈ {0, 1, ...n}. In this case the S matrix becomes

Sii = 1 (54)

Sij = x if i ̸= j, (55)

interpolating between the two extreme cases (x = 0 for the distinguishable case, x = 1

for the bosonic one), i.e. S = (1− x)SD + xSB is a convex interpolation between both
extremes. Let us call σj the permutations in Sn which have n − j elements as fixed
points (a fixed point being defined as σ(l) = l for some value of l ∈ 1, . . . , n). Renema
then obtains a new form for Eq. (27) as

P (s) =
n∑

j=0

∑
σj

xj
∑
ρ

Perm
(
Mρ,1 ∗M∗

ρ,σp

)
Perm

(
|Mρ̄,σu |

2
)

(56)

where ρ denotes the

(
n

j

)
possible combinations of j columns from the matrix M, ρ̄

denotes the complemenary rows, and σp and σu denote the permuted and unpermuted
elements of σ, respectively. In each term of the summation, the first matrix permanent
corresponds to fully interfering particles, while the second corresponds to fully distin-
guishable particles. A way of approximating event probabilities is to truncate the sum
in j.

In the case of Corollary 2, the situation is slightly different than that of the formalism
developed by Renema. He considers the approximation of event probabilities, while we
consider photonic bunching. Nevertheless, the removal of row and column i physically
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Figure 3: The interference process between n partially distinguishable photons splits
into a sum over terms containing k perfectly interfering photons with n− k perfectly
distinguishable ones. The k-th order terms are weighted by the degree of partial
distinguishability xk, making high order interference terms less apparent as photons
become distinguishable. Image from [30].

consists in removing the photon i, as can be readily understood from the definition of
the Gram matrix and the H matrix, and owing to the presence of a Hadamard product
between the two.

Corollary 3. Any two Gram matrices leading to maximal bunching have the same
bunching probability upon removal of a single photon i, for any i.

Again, this holds in any bunching scenario, without the necessity of a violation of
the bunching conjecture. Note also the parallel of this statement with the singularity
requirement. It is, as far as we know, an open question to show that maximizing
matrices are unique modulo gauge transformations.

2.4 General realization

The link between the conjecture of Bapat Sunder and a physical experiment is not
entirely direct: if we compare Eq. (43) and Eq. (64), it is clear that the matrix B

corresponds to the transpose of S. To obtain the internal wave functions corresponding
to a Gram matrix, we need to perform the Cholesky decomposition (note that special
care must be taken when dealing with incomplete rank). Regarding the matrix A,
it directly corresponds to H. However, while using an interferometer U and subset
K to build up a matrix H from Eq. (39) is trivial, going from a matrix H to an
interferometric setup seems less evident. Let’s see how this is performed. The matrix A
admits a Cholesky decomposition

A =M †M (57)

as it is hermitian positive semi-definite. The matrix M is of size r ∗ n where r is the
rank of A. Thus, it is tempting to identify M with U with a subset K of the output
modes being the first r modes as

Aa,b =

r∑
k=1

M †
a,kMk,b =

r∑
k=1

M †
a,k

(
M †

b,k

)∗
(58)
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closely resembles the definition of the matrix H in Eq. (39). The matrix M † however,
may not be unitary as is U in Eq. (39). It is always possible to incorporate a matrix, up
to renormalization, into a bigger one that is unitary following Lemma 29 of the seminal
paper of Aaronson-Arkhipov defining the Boson Sampling paradigm [31]. It states :

Lemma 1 (Incorportation in a unitary). Let X ∈ Cn×n. Then for all m ≥ 2n and
ε ≤ 1/∥X∥, there exists an m×m unitary matrix U that contains εX as a submatrix.
Furthermore, U can be computed in polynomial time given X.

It is easy to understand the need for renormalization as the columns (and rows)
of a unitary matrix need to be of unit norm. This does not impact the Bapat-Sunder
conjecture as we have noted above. The proof of the lemma is constructive and starts
by finding a 2n ∗ n matrix whose columns are orthonormal, and then by filling the n
remaining columns of the described 2n ∗ 2n matrix so that it forms a unitary matrix.
This later step can be implemented, for instance, by filling the remaining n columns with
random entries, and then orthnormalizing them through the Gram-Schmidt procedure.
Note that when A is of incomplete rank (r < n) we can restrict the U to the uppermost
(n+ r) ∗ (n+ r) submatrix found through the procedure of the lemma.

2.5 Other conjectures on permanents

We studied above (generalized) bosonic bunching in its most commonly admitted form,
with independently prepared particles. Shchesnovich also studied another permanental
conjecture, the permanent on top conjecture [32], which relates to bunching of a generic
(possibly entangled) input [19].

In this more generic context, we need to study properties of the Schur power matrix
built from the matrix H of above as

Πσ,ρ(H) =
n∏

α=1

Hσ(α),ρ(α) (59)

where σ, ρ ∈ Sn are permutations. Shchesnovich shows that the maximum (minimum)
eigenvalues of this matrix directly related with maximally (minimally) bunching con-
figurations. Schur showed that the minimum eigenvalue is always the determinant,
corresponding to an input made of indistinguishable fermions.

Conjecture 3 (Permanent On Top). The largest eigenvalue of the Schur matrix Π(H)

is perm (H).

This conjecture was disproven by direct numerical search by Shchesnovich in dimen-
sion n = 5. This result implies the existence of a generic 5 particles input that bunches
more than ideal photons. This counter example does not display any apparent structure.
We are of the opinion that speaking of bunching in this context is less relevant to the
common understanding of physicists, given that the particles are not independently
prepared. Therefore, on an intuitive level, this type of enhanced bunching compared to
ideal bosons is less unexpected, given the surprising features found with the presence of
entanglement in quantum physics.
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Other conjectures on generalized matrices exist in the literature, and are summarised
in [33]. It is interesting to see if more of these purely mathematical conjectures can be
translated into physical behaviours.

3 Sampling problems

Intrinsic to the probabilistic nature of quantum mechanics is the notion of sampling. In
the particular context of the evolution of a state through a linear network, such as the
case presented above of single photons evolving through passive linear optics, one can
define the probability of finding the output state in a particular mode configuration s.
A problem of interest is to obtain samples from the distribution D = {si} of possible
output configurations, given a particular input state |Ψin⟩. This sampling problem is
referred to as Boson Sampling, as introduced by Aaronson and Arkhipov in [31]. We
will speak of boson sampling whether the particles are indistinguishable or have some
degree of distinguishability. A variant of boson sampling where the input particles are
fermions is called Fermion Sampling.

3.1 Boson Sampling

Boson sampling is the quantum version of the famous Galton board tabletop experiment,
in which pebbles fall in a network and distribute in bins as shown in Fig. 4. In the
Galton board experiment, the distribution of balls in bins D′ tends towards a Gaussian
[34]. Because classical balls do not interfere, the problem of sampling from Galton’s
board is easy. Indeed, while probabilities are given by matrix permanents as in Eq.
(30), sampling can be done by considering each particle independently. Let us remind
that if the network is described by the matrix Uij , the index i refers the the input mode
i and j to the output mode. Restricting to at most 1 particle per input mode, we will
consider, without loss of generality, that they are sent in modes 1, . . . , n. The particle
in mode i will end up in mode j with probability |Uij |2. Therefore, one can obtain a
sample of the distinguishable distribution by sampling mode output indexes according
to the weights (|Ui1|2, . . . , |Uim|2) for each particle i independently.

The situation is different for indistinguishable particles. As we saw when studying
the HOM effect, particles do not behave independently: while there is no interaction
term in the Hamiltonian, an effective interaction exists from the symmetry of the wave
function describing the multiparticle state. In practice, the best known algorithm to
sample from D takes a time equal to the computation of a single matrix permanent of
size n, i.e. n2n [35] (with some improvements if the boson density is high [36], which is
not the main case of interest as will be discussed shortly).

Boson sampling can be seen as a primitive quantum computer. A core difference
with most of the schemes found in the quantum computing literature is that is it not
universal: while the choice of input state and interferometer may be altered, one cannot
hope to run a generic algorithm (such as Shor’s prime factorization [37, 38]) on a boson
sampler [31]. It is important to note that if the network that may be adapted given
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Figure 4: The Galton board table-top experiment is the inspiration for boson sampling.
Particles are sent in a network (here, of poles on which they can bounce) and then
collected into bins. After sufficiently many particles are sent, an overall pattern appears:
the distribution of pepples in bins becomes a gaussian. Image from [31].

the result of measurements, then generic quantum computing can be done, as was
demonstrated by Knill, Laflamme and Milburn in [39].

Therefore, it is natural to ask: why one should take interest in boson sampling?
While opinions differ on the possibility of running practical tasks on a boson sampler,
the initial interest comes from the detailed complexity analysis performed by AA. Under
strongly held conjectures of computational complexity theory, boson sampling is a
problem that is hard to simulate on a classical computer. However, as we described
above, the physical implementation of boson sampling is direct in principle. If one was
able to demonstrate an experimental boson sampler, this would invalidate the famous
Church-Turing thesis. In informal terms, it states that problems are computable if and
only if they can be translated to run on a Turing machine, which is a direct equivalent to
classical computers. An extended version of the thesis adds the ability to draw random
numbers, in which case we speak of probabilistic algorithms.

3.2 Computational complexity of boson sampling

Let us present here a few elements on complexity theory in order to better understand
the motivations behind boson sampling and the precise claims of AA. Multiple metrics
can be used to categorize algorithms, such as the number of elementary computation
steps (such as an addition) necessary for execution or the size of the memory array
required. We will be interested only in the number of steps required to execute an
algorithm. Complexity theory is interested in the asymptotic behaviour of the metrics.
If a problem has a size n, (such as the size of two n× n matrices to be multiplied), how
many steps are required to perform the algorithm, at the limit of large n? The answer
to this question allows to classify tasks in different classes. Algorithms that require
only a polynomial number of steps to be executed, often written as poly(n), are said to
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belong to the class P. For instance, naive matrix multiplication requires n3 operations.
We say that these algorithms are efficient. Practically, they may still be very slow: the
polynomial could be dominated by a large power, such as n2048, or simply have large
numerical prefactors.

Another interesting complexity class, NP, is that of problems which may be difficult
to solve, but whose solution can be checked efficiently. A famous example is the task
of factorizing one integer of n digits in a product of prime numbers. This problem is
conjectured to be hard to solve. In fact, most of modern cryptography relies on this
assumption, such as RSA [40]. Best known algorithms take a (quasi-)exponential time
to complete. However, if given a tentative solution, it is trivial to multiply the different
primes to see if we obtain the initial number. One of the most important unsolved
question in computer science is P ?

= NP . It is strongly believed that the answer is
negative: there are problems whose solution can be verified efficiently but not computed
efficiently.

A pivotal moment of quantum computing theory was the publication of an algorithm
by Shor, which efficiently solved the task of prime factorization on a quantum computer
[37, 38]. This naturally lead to the definition of a class of problems that can be solved
efficiently with bounded error on quantum hardware, BQP.

Whether quantum hardware allows us to gain a theoretical advantage compared
to classical hardware relies on the relationship between the various complexity classes.
While little is known with certainty, under the commonly held conjectures by computer
scientists, a boson sampler would not be possible to simulate efficiently on a classical
device [31]. This would, in turn, invalidate the Church-Turing thesis.

An important constraint of the proof of hardness of boson sampling is that the
number of modes must scale roughly as m ≡ n6. It is strongly conjectured that a scaling
of m ≡ n2 is sufficient. In this case, we speak of the no-collision regime: it is unlikely
to find more than one photon per detector [41].

3.3 Experimental realizations of boson sampling

While very simple when stated conceptually - just send photons through an optical
network and detect them - boson sampling revealed challenging experimentally. Nonethe-
less, experiments went from n = 3 to 20 single photons in the time span of a decade [42].
Even more impressively, the alternative scheme of Gaussian Boson Sampling, being
easier experimentally, led to multiple experiments with claims of quantum supremacy
[43, 44]. The most recent experiment displays a mean of 125 photons, up to 219 photon
detected from 216 squeezed modes at the input.

Let us study here how boson sampling is realised experimentally, and what challenges
are faced by experimentalists. This will allow us to better understand the sources of
errors that arise in experiments.
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3.3.1 Sources

Generating single photons can be done in different ways. Historically, Spontaneous
Parametric Down Conversion sources are used. There, a nonlinear (χ2) crystal is
pumped by a laser and splits one photon into a pair of two photons of lower energies,
called signal and idler. The signal photons will be sent to the experiment and interfere,
while the idler signal will be detected as an auxiliary photon that asserts the presence of
the signal photon. The problem with SPDC is its low efficiency, making it challenging
to generate many single photons simulatenously when combining different sources.

Another, more recent technique is to use Quantum Dots. They are artificial two-level
systems realised by creating defects in semiconductors. The whole system is usually
placed inside of an optical microcavity. The dot can be excited by a laser and will
spontaneously descend in energy level by sending a single photon. Quantum dots are
overall vastly superior sources [45] and are now favored in boson sampling experiments.

Typically, a single quantum dot is used and its output is divided (demultiplexed) into
different spatial modes. The laser excitation of the dot is periodic, and therefore a train
of regularly spaced photons is produced at the output of the dot. This predictability can
be used to separate photons deterministically in different modes using optical switches.

One of the key requirements for multiphoton interference is the indistinguishabil-
ity between pairs of photons. In this regard, quantum dots provide high levels of
indistinguishability, with pairwise overlaps above x > 0.90 (see Eq. (53)).

3.3.2 Network

One typically distinguishes two types of optical networks: bulk optics, where optical
elements are macroscopic, and integrated optics, where the network is realised on a
semiconductor of much smaller size. One of the most stringent requirements in the proof
of hardness of boson sampling is the ability to pick a network distributed randomly
in the Haar-measure. In general, any m ∗m unitary can be realised by a collection of
beam-splitter and phase-shifters, with depth m [46] (see also [47, 48]).

It is desirable to have an experimental setup that allows for reconfigurability of the
network [49], in particular for potential applications of boson sampling, as they are
encoded in the choice of unitary.

One of the biggest limitations of boson sampling, with photon distinguishability, is
photon loss. It is known that boson sampling remains hard with a few lost photons [50],
however, in realistic scenarios with universal networks, loss cannot be circumvented
when considering asymptotic scalings. Indeed, the circuit depth needs to be of order
D = poly(n) and the loss probability, for each photon, goes as e−D.

3.3.3 Detectors

Detecting the presence or absence of photons is relatively easy, and is most commonly
done by threshold detectors. These are blind to the number of single photons. In general,
a more advanced type of detector, called photon number resolving (PNR) is preferred.
The latter can distinguish between 0, 1, 2, ... up to a couple of photons with some level
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of confidence. While genuine PNR detectors are still an advanced piece of equipment,
pseudo photon number resolution can be done by demultiplexing a mode in a few extra
modes using beam splitters. For instance, one mode can be divided into 4 by using one
balanced beam splitter, then a layer of two other beam splitters on the output modes
of the first. Photons present in the initial mode will distribute with some probability
in the 4 exit modes, where they can be detected by more readily available threshold
detectors. This commonly used technique allows for some statistical information on
the photon number content, but does not operate strict, deterministic photon number
resolution [51]. Typical problems with detectors are false positive results, called dark
counts. Conversely, missing the presence of light is a false negative, referred to as
detectors inefficiency.

3.3.4 Time-binned boson sampling

A specific type of architecture, called time-binned boson sampling, has attracted
attention recently [52, 44, 53]. It uses an array of impinging photons coming from a
quantum dot excited periodically every τ units of time. These photons are sent through
a time-dependant beam splitter, whose reflectivity can be changed within a time lesser
than τ . One of the output branches of the beam-splitter is sent back to the entrance of
the beam splitter, making for its second input mode. The link is done with an optical
fibre, which we call a delay line. It is configured so that photons need exactly τ units of
time to travel through it. The remaining output port of the beam splitter can either be
sent directly to detectors, or through another network of loops. To achieve a universal
interferometer, it is sufficient to have a second, larger loop of travel time > nτ , see Fig.
5.

In practice, the first impinging photon goes through the beam splitter and part of
its amplitude stays in the loop, while part goes to the detector. The part remaining
in the loop meets the second impinging photon τ later, and interferes with it. In this
way, the array of photons can be decomposed in time bins which are likened to spatial
modes in the original boson sampling picture.

This architecture is especially interesting for experimentalists as it minimizes the
number of devices necessary [54]. Indeed, general boson sampling can performed with
one source (the quantum dot), one time-dependant beam splitter, two optical switches,
and a single detector on top of the optical fibres for the delay lines. In contrast,
standard boson sampling is generally realised with one reconfigurable linear optical
network (either in bulk optics or integrated) with one detector per mode.

3.3.5 Alternative sampling schemes

One of the main difficulties of standard boson sampling is to generate a large number
indistinguishable single photons. Another type of input that is more readily accessible
are single mode squeezed states. We can use this type of Gaussian state at the input
of a linear network and use similar detectors to the standard boson sampling case. In
this case, it is shown that event probabilities depend on the matrix function called the
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Figure 5: Time binned boson sampling. (a) Time binned sampling with one loop.
Photons are sent through a time dependant beam splitter, implementing the matrix
element UBS(t). The loop takes a time τ to travel, equal to the spacing between
the photons. (b) The equivalent picture with spatial modes shows that this scheme
is incomplete. Below is shown one way to create a universal boson sampler, by the
addition of a longer loop, allowing to send back the photon train through the varying
beam splitter multiple times. Figure from [52].
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Hafnian. It is shown that this matrix function is also #P hard, and likewise, that it is
hard to sample from the GBS distribution [55]. Many of the recent developments around
boson sampling have revolved around the GBS paradigm, including major experiments
claiming quantum supremacy [43, 44] as well as practical applications [56, 57, 58, 59].

3.4 Validation

By construction of the boson sampling problem, it is hard to verify whether an exper-
imental boson sampler is working properly. Indeed, the experiment outputs a series
of samples. Calculating the probability of each sample requires the calculation of a
matrix permanent, which is exponentially hard. On top of that, in the regimes where
AA proved hardness of boson sampling there are exponentially many samples that can
be observed. An experiment can therefore not hope to reconstruct the entire boson
sampling distribution when working with high photon numbers. Other ways have to be
devised to infer the correct working of the experiment, which we refer to as validation.
An even harder task is that of certification, which differentiates between a working
experiment and possibly adversarial actors, actively trying to cheat the certification
method (i.e. samples do not have to come from a physical device). In contrast, a
validation method provides evidence that an experiment, operating under reasonable
physical assumptions, is running as desired.

We expect from a good validation method to apply to any interferometer U . This
generality expectation is not satisfied by all validation methods, such as those relying
on specific symmetries of a limited class of networks (such as the Fourier or Hadamard
interferometer). In this case, a large quantity of events may be forbidden. Observing
them at the output rules out a working boson sampler. In this case we speak of
suppression laws.

Given that the greatest initial motivation in doing boson sampling was reaching a
regime of quantum supremacy, validating the quality of the photonic interference is
particularly high on the list of desiderata. Indeed, if photons are sufficiently distin-
guishable, then the experiment becomes easy to simulate on a classical computer. The
threshold of indistinguishability is quite high, in realistic contexts [29] estimates it at
x > 0.95. Many methods rely on considering quantities that only relate to low order
photon interference. For instance, on can study low order correlation functions of the
number of detected photons in a couple of detectors. While practical, these methods do
not probe the interesting, high order interference terms, whose role is crucial in boson
sampling [60, 61, 62, 63].

We saw above that generating the entire boson sampling distribution D quickly
becomes prohibitively expensive as n increases, and, in fact, even computing a single
event probability. We ask that a validation method be efficient in classical computations.
Likewise, the experiment only has access to a limited number of samples, and we ask
that the method be efficient in the number of samples needed.

In the publication "Efficient validation of Boson Sampling from binned photon-
number distributions", we study more in depth the question of verifying boson sampling
experiments. We then propose a new formalism, unifying under a common frame many
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of the previously existing methods of validation. We then show that it ticks all desired
boxes mentionned above.
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Part III

Publications
This part contains the three articles that form the core of this thesis in their published
form. These articles aim at advancing our understanding of multiphoton interference,
with special emphasis on the specific case of boson sampling — a key topic in quantum
computing that has been the subject of intense investigation over the past decade. The
articles address various aspects of boson sampling, including the role of indistinguisha-
bility in photon bunching, the development of efficient validation methods, and the
introduction of cutting-edge simulation tools.

The first article, "Boson bunching is not maximized by indistinguishable particles,"
investigates the relationship between indistinguishability and photon bunching, a funda-
mental aspect of quantum optics. By exploiting a recent finding in the theory of matrix
permanents, this study challenges the widely-held belief that indistinguishable photons
bunch most. We exhibit a family of optical circuits that show increased photon bunching
when the photons are made partially distinguishable through a specific pattern. This
unexpected behavior calls into question our understanding of multiparticle interference
and has implications for the validation of photonic devices.

In the second article, "Efficient validation of Boson Sampling from binned photon-
number distributions," we address the critical issue of validating experimental boson
samplers. We propose a versatile test based on the distribution of photons among
partitions of output modes. This method encompasses previous validation tests and effi-
ciently distinguishes ideal boson samplers from those affected by realistic imperfections,
such as partial distinguishability. The development of reliable validation techniques is
crucial for establishing the validity of experimental data and for substantiating claims
of quantum computational advantage.

The third article, "BosonSampling.jl: A Julia package for quantum multiphoton
interference," presents an open-source package designed for high-performance simulation
and numerical investigation of boson samplers and multi-photon interferometry in
general. Written in Julia, the package combines the benefits of high-level coding with
C-like performance, enabling researchers to quickly develop and modify code without
requiring advanced programming skills. BosonSampling.jl provides a range of routines
for boson sampling tasks, such as statistical tools, optimization methods, classical
samplers, and validation tools, addressing the growing need for optimized and adaptable
numerical simulations in this rapidly evolving field. The extendable framework allows
researchers to explore new paradigms in multi-photon interferometry and contribute
to the ongoing competition for demonstrating a computational advantage of quantum
devices over classical computers.
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4 Boson bunching is not maximized by indistinguishable
particles

Abstract

Boson bunching is amongst the most remarkable features of quantum physics.
A celebrated example in optics is the Hong-Ou-Mandel effect, where the bunch-
ing of two photons arises from a destructive quantum interference between the
trajectories where they both either cross a beam splitter or are reflected. This
effect takes its roots in the indistinguishability of identical photons. Hence, it is
generally admitted – and experimentally verified – that bunching vanishes as soon
as photons can be distinguished, e.g., when they occupy distinct time bins or have
different polarizations. Here we disproof this alleged straightforward link between
indistinguishability and bunching by exploiting a recent finding in the theory of
matrix permanents. We exhibit a family of optical circuits where the bunching
of photons into two modes can be significantly boosted by making them partially
distinguishable via an appropriate polarization pattern. This boosting effect is
already visible in a 7-photon interferometric process, making the observation of
this phenomenon within reach of current photonic technology. This unexpected
behavior questions our understanding of multiparticle interference in the grey zone
between indistinguishable bosons and classical particles.

In quantum physics, it is common knowledge that a gain of information results
in the extinction of quantum interference. In the iconic double-slit experiment, the
interference fringes originate from the absence of which-path information [64, 65, 66].
As emphasized for instance by Feynman [67], the fringes necessarily disappear as soon
as the experiment allows us to learn that the particles have taken one or the other
path. In quantum optics, photon bunching is another distinctive feature that follows
from quantum interference. Specifically, the indistinguishability of photons makes it
such that one cannot know which photon has followed a given trajectory in a linear
interferometer (see Fig. 6). The Hong-Ou-Mandel (HOM) effect [10], for example,
arises from the fact that one cannot distinguish the trajectory where two photons have
crossed a 50:50 beam splitter from the trajectory where they have both been reflected.
The net result is a tendency of indistinguishable photons to occupy the same mode –
that is, to bunch – as a consequence of this lack of information. In accordance with
Feynman’s rule of thumb, quantum interference effects become less pronounced as soon
as the photons become distinguishable, for example if they occupy distinct temporal or
polarization modes so that one gains information about their individual trajectories
[68]. As a consequence, the HOM dip disappears for two photons with orthogonal
polarization since their distinct trajectories can then be fully traced back. Hence, even
in more general scenarios involving multiple independently prepared photons and larger
interferometers, it is commonly admitted that bunching effects are maximum for fully
indistinguishable photons and gradually decline when photons are made increasingly
distinguishable [69, 19, 70].

Here, we find a quantum interferometric scenario that goes against this intuition
and contradicts the very idea that distinguishability undermines photon bunching. We
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consider the probability of multimode bunching, i.e., the probability that all photons
entering a linear interferometer end up in a certain subset of the output modes. In
accordance with a longstanding mathematical conjecture on matrix permanents due
to Bapat and Sunder [23], this bunching probability must indeed be maximum if
the input state consists of fully indistinguishable photons [19]. However, inspired
by a counter-example to this conjecture recently discovered by Drury [71] we have
found that multimode bunching may, against all odds, be enhanced if photons are
partially distinguishable. To do so, we not only convert Drury’s counterexample into a
linear interferometric experiment but also find a natural generalization, leading to a
family of physical setups where partial distinguishability enhances multimode bunching.
Incidentally, on the mathematical side, this finding even implies new counterexamples
to the Bapat-Sunder conjecture.

More specifically, we construct a family of interferometers such that a higher two-
mode bunching probability is attained if the photons are prepared in a well-chosen
polarization state (making them partially distinguishable) rather than in the same
state (in which case they would all be indistinguishable). In other words, gaining
partial information about the photons paradoxically results in a higher probability for
them to coalesce on two output modes, contradicting common knowledge. We give an
interpretation of the physical process behind this counterintuitive effect and prove that,
in our setup, the enhancement ratio of the two-mode bunching probability actually
grows (at least linearly) with the system size. In the simplest case, an enhancement
of 7% is already visible for 7 photons in 7modes with a specific polarization pattern,
which makes the observation of this remarkable phenomenon within reach of today’s
photonic technology.

4.1 Multimode boson bunching

Consider a general interferometric experiment in which n bosons are sent through a linear
interferometer of m modes, described by the m×m unitary matrix U . Although our
discussion is valid for any bosonic particle, we focus on photons here since, in practice,
controlled linear interferometric experiments are easier to carry out in photonics. In
Ref. [19], Shchesnovich provides compelling evidence for the following conjecture:

Conjecture 1 (Generalized Bunching) Consider any input state of n classically
correlated photons. For any linear interferometer and any nontrivial subset K of output
modes, the probability that all photons are found in K is maximal if the photons are
(perfectly) indistinguishable.

Note that the considered class of input states must exclude entangled photons, so
that it keeps a closer resemblance with the original Hong-Ou-Mandel setting (indeed, a
related conjecture with entangled input states was proven to be false in Ref. [72]). In
fact, it is enough for our purposes to consider a further simplification of the statement
of Conjecture 1 and assume that photons are prepared independently of each other,
i.e., they are uncorrelated, and that there is only one photon in each of the first n
modes. Moreover, we may also assume that the state of each photon is pure. This
setting, depicted in Fig. 6, is enough to demonstrate that Conjecture 1 is false. We refer
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to Ref. [19] for a mathematical treatment of bunching probabilities in more general
scenarios.

The state of each photon is not only described by the spatial mode it occupies but also
by other degrees of freedom, such as its polarization and its spectral distribution, which
we will refer to as internal degrees of freedom. Partial distinguishability can then be
modelled by considering that the internal state of the photon entering mode j is described
by an (internal) wavefunction |ϕj⟩. Let us denote the creation operator associated to
this state as â†j,ϕj

. We make the common assumption that the interferometer acts only
on spatial modes, leaving the internal state of the photon invariant [2, 3, 73]. More
precisely, the interferometer is described by an operator Û which acts as

Û â†j,ϕj
Û † =

∑
k

Ujkâ
†
k,ϕj

, ∀j. (60)

Following Refs. [2, 3], it can be shown that the probabilities of the different outcomes
of the linear interferometric process not only depend on the unitary U but also on the
distinguishability matrix, defined as

Sij = ⟨ϕi|ϕj⟩ . (61)

This is a n × n Gram matrix constructed from all possible overlaps of the internal
wave functions of the input photons. In particular, S = 1 if all photons are fully
distinguishable, while S = E (with Ei,j = 1 for all i, j) in the case where they are fully
indistinguishable 1. Intermediate situations between these two extreme cases are called
partially distinguishable.

In order to compute the probability that all n photons are found in a subset K of
the output modes, which we refer to as the multimode bunching probability Pn(S), it is
useful to define the matrix

Ha,b =
∑
l∈K

U∗
l,aUl,b, (62)

where a, b ∈ {1, ..., n}. For a fixed interferometer U and subset K, the multimode
bunching probability is a function of the distinguishability matrix S and can be expressed
as

Pn(S) = perm
(
H ⊙ ST

)
(63)

i.e., the permanent of the Hadamard (or element-wise) product (H ⊙ ST )ij ≡ HijSji

[19] (see also Methods). It is important to remark that H, S and H⊙ST are all positive
semidefinite matrices, which ensures their permanent is positive [21]. Moreover, note
that for indistinguishable photons, P (bos)

n = perm (H). Hence, Conjecture 1, when
restricted to the setting that we consider (see Fig. 6), takes the following mathematical

1The internal wavefunction of each photon may be multiplied by a phase |ϕi⟩→ eiθi |ϕi⟩, which
does not affect event probabilities. Hence, there is an equivalence class of distinguishability matrices
S for each physical situation as Sij ≡ ei(θj−θi)Sij . Here, we represent the equivalence class of fully
indistinguishable particles with a single matrix S = E.
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Figure 6: Interferometric setup. Single photons are sent through the first n input
modes of a m-mode linear interferometer U , which can always be decomposed into a
network of two-mode couplers [46]. Each photon at input j carries internal degrees
of freedom (polarization, arrival time, etc.) described by an (internal) wave function
|ϕj⟩. Not perfectly overlapping wave functions (measured via the Gram matrix S) give
rise to partial distinguishability amongst the photons, reducing the degree of quantum
interference and bosonic effects such as bunching (see Conjecture 1). We focus in
particular on the probability that all n photons bunch in a subset K (corresponding
to the green detectors) of the output modes, while the red detectors in K do not click.
This is a natural extension of the HOM experiment for more than two modes.

form:
perm

(
H ⊙ ST

) ?
≤ perm (H) , (64)

with equality holding if S corresponds to indistinguishable photons. The reasons to
presume that this conjecture might be an actual physical law governing multiparticle
interferences are manifold and, in what follows, we detail several evidences supporting
this hypothesis.

4.1.1 Single-mode bunching.

If the subset K is a single output mode, then the conjecture holds. In this case, if we
choose K = {1}, the single-mode bunching probability is given by

Pn(S) =

n∏
j=1

|U1j |2 perm (S) = P (dist.)
n perm (S) , (65)

where P (dist.)
n = Pn(1) corresponds to the multimode bunching probability when the

photons are fully distinguishable. Then, Pn(S) is indeed maximum for fully indis-
tinguishable photons since the maximum value of perm (S) is attained when S = E,
with perm (E) = n!. This is also a reason why perm (S) can be seen as a measure
of indistinguishability of the input photons [2, 74]. Note that the celebrated HOM
effect can be simply recovered from Eq. (65): for a two-mode 50:50 beam-splitter,
the maximum probability of bunching in a single output mode is attained for fully
indistinguishable photons and given by 1/4× 2! = 1/2.

In addition, even if we take |K| > 1 but restrict to compare fully indistinguishable
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with fully distinguishable photons, it appears that the multimode bunching probability
satisfies Pn(E) ≥ Pn(1), see [19], further suggesting that any partial distinguishability
is bound to decrease bunching effects.

4.1.2 Fermion antibunching.

Another physical motivation for Conjecture 1 is the fact that an analogous statement on
fermion antibunching can be proved. Indeed, an input state of n fully indistinguishable
fermions minimizes the probability that all of the n fermions are bunched in any subset
K of the output modes. This can be shown using a famous result by Schur [75, 19]. In
the setting we consider, the fermionic multimode bunching probability obeys

P (ferm)
n (S) = det(H ⊙ ST ) ≥ detH, (66)

which follows from the Oppenheim inequality for determinants [76] stating that for any
two positive semidefinite matrices A and B we have

det(A⊙B) ≥ detA detB. (67)

4.1.3 Bapat-Sunder conjecture.

In 1985, Bapat and Sunder have questioned whether an analogue to the Oppenheim
inequality holds for permanents [23]. They conjectured the following:

Conjecture 2 (Bapat-Sunder) For any two positive semi-definite n× n matrices
A = (aij) and B = (bij), we have

perm (A⊙B) ≤ perm (A)

n∏
i=1

bii.

It is easy to see that if this statement was valid, it would imply Eq. (64), thus
confirming the validity of Conjecture 1 in the specific setting of Fig. 6 [19].

Counterexample 1 (Drury). The Bapat-Sunder conjecture was recently disproved
by Drury, who found a 7-dimensional counterexample [71]. It consists in a positive
semidefinite matrix A of dimension 7, whose diagonals are aii = 1, which is such that

perm
(
A⊙AT

)
perm (A)

=
1237

1152
≈ 1.07, (68)

thus implying a violation of Conjecture 2. Instead of presenting the matrix A, it will
be useful to consider its Cholesky decomposition, which can always be found for any
positive semi-definite matrix [77]. Thus, we write A =M †M , with

M =
1√
2

( √
2 0 1 1 1 1 1

0
√
2 1 ω1 ω2 ω3 ω4

)
(69)

where ω = exp(2iπ/5) is the fifth root of unity. As we shall see, the existence of
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this counterexample implies that there are 7-dimensional matrices H and S for which
Eq. (64) is false, hence contradicting Conjecture 1.

Consequently, in spite of the compelling evidences listed above suggesting that
multimode bunching should be maximum for indistinguishable bosons, Drury’s coun-
terexample allows us to predict the existence of boosted boson bunching with partially
distinguishable bosons. Before turning to the optical realization and physical mechanism
behind this counterintuitive phenomenon, we stress that brute-force numerical trials
really seem to support the (now proven wrong) Conjectures 1 and 2. In particular,
we generated 107 samples of dimension n = 7 and of rank r = 2 with the following
physically-inspired procedure: a unitary U is sampled randomly according to the Haar
measure and used to compute the matrix H. The matrix S is constructed by taking
random normalized vectors in a space of dimension r. We did not encounter a single
counterexample, which seems to imply that Conjecture 1 holds in practically all cases,
even when restricting to a dimension and rank where we know that a counterexample
actually exists. Numerical trials of Conjecture 2 with two random Gram matrices also
gave similar results. These observations are corroborated by the numerical searches
reported in Refs. [19, 72] and thus make the finding of enhanced boson bunching via
partial distinguishability even more surprising. Arguably, the violation of the extended
Conjecture 1 for entangled input photons observed in Ref. [72] could be viewed as an
instance of enhanced boson bunching, but these counterexamples do not break any
common assumption on multi-photon interference and it is unclear whether such states
can be prepared experimentally using linear interferometry and currently available
photon sources.

4.2 Optical realization of boosted bunching

As we now prove, Drury’s counterexample entails the existence of a physical experiment
that violates the generalized bunching conjecture. In Fig. 7 (left panel), we present
a possible optical setup realizing this violation and involving 7-photon interferometry.
The details on how to construct the internal states of the photons |φj⟩ and the unitary
matrix U to obtain the desired H and S matrices are explained in Methods. In a
nutshell, the states |φj⟩ can be read from the columns of the matrix M in Eq. (69),
while U is chosen in order to contain a rescaled version of M † as a submatrix.

The resulting setup is surprisingly simple: the 7-mode interferometer U is constructed
with a 5-mode Discrete-Fourier Transform (DFT) supplemented with two additional
beam splitters (with the same transmittance η = 2/7). Since S is of rank 2, the internal
states live in a two-dimensional Hilbert space, hence it is most natural to use photon
polarization, which can easily be manipulated via waveplates (other encodings would
also be possible, such as time-bin encoding).

A single photon is sent in each of the 7 input modes with an appropriately chosen
polarization state, making the 7 photons partially distinguishable. The polarization
pattern is shown in Fig. 7 (right panel) and can be viewed as a 5-star polarization state
denoted as ⋆ (for the 5 photons entering the DFT), supplemented with a horizontally-
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Figure 7: Boosted two-mode bunching. (Left) A 7-mode interferometer which
violates the generalized bunching conjecture for an appropriate input polarization
pattern (depicted in the right panel). Here, 7 photons are sent into the 7 input modes
and the probability of detecting them all in the two output modes indicated with
green detectors exceeds its value for indistinguishable photons (all with the same
polarization). We assume the action of the interferometer is polarization independent,
see Eq. (60). This setup can be generalized to n modes as follows. Defining q = n− 2,
we first send q photons in a q-mode Discrete Fourier Transform (DFT) interferometer
Ujk = 1√

qω
jk with polarization states |φj⟩ = 1√

2
(|H⟩+ωj |V ⟩), where j, k = 0, . . . , q− 1

and ω = exp (2iπ/q). The upper two output modes (labelled 0 and 1) of the DFT are
then sent to two beam splitters of equal transmittance η = 2/n, achieving interference
respectively with a vertically-polarized photon (in mode 0’) and horizontally-polarized
photon (in mode 1’). We measure the bunching of all n photons in the subset K
corresponding to the output modes 0′ and 1′ indicated with green detectors, thus all red
detectors do not click. For n ≥ 7, we observe a boosted 2-mode bunching probability by
comparison with indistinguishable photons. (Right) Bloch-sphere representation of the
input polarization pattern for n = 7. The polarization states of the 5 input photons of
the DFT (indicated as black arrows) are equally spaced along the equator of the Bloch
sphere. We call this special state a 5-star polarization state (or q-star polarization state
for general q) and denote it as ⋆. The two extra photons (indicated as red arrows) have
antipodal – horizontal and vertical – polarization states.
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polarized and a vertically-polarized state. The probability of detecting all 7 photons in
the output bin (modes labelled by 0′ and 1′) is then given by P (⋆)

7 ≈ 7.5× 10−3. By
comparison, for fully indistinguishable photons (all with the same polarization), this
probability is only P

(bos)
7 ≈ 7 × 10−3. This simple experimental setup thus exhibits

a bunching violation greater than 7%, in accordance with Eq. (68). The photon
number distribution in modes 0′ and 1′ is depicted in Fig. 8 for different scenarios (fully
indistinguishable, partially distinguishable, and fully distinguishable photons).

Figure 8: Photon-number probability distributions in mode 0′ at the output of the
7-mode circuit of Fig. 7 for different scenarios. The distributions are normalized, i.e.,
the probabilities are conditioned on events where all 7 photons end up in modes 0’ and 1’
(two-mode bunching events). Due to the symmetry of the circuit, the probability of event
(j, 7− j) is the same as event (7− j, j). For fully indistinguishable bosons (red points),
most events are interferometrically suppressed, originating from the fact that the output
of the 5-mode DFT is a NOON state, see Eq. (71). The only surviving events are (1,6)
and (6,1). Using partially distinguishable bosons (blue points) erases these destructive
interferences and, as proven in this work, enhances the overall two-mode bunching
probability. This also leads to a qualitatively very different photon-number distribution,
which has a Bell-like shape. Interestingly, fully distinguishable particles (green points)
lead to a photon-number distribution of similar shape but a significantly smaller two-
mode bunching probability. The two-mode bunching probabilities in the three cases are
P

(bos)
7 ≈ 7× 10−3, P (⋆)

7 ≈ 7.5× 10−3 and P (dist.)
7 ≈ 1.5× 10−4, respectively.

The outstanding recent progress in boson sampling experiments indicates that the
experimental observation of such a boosted bunching due to partial distinguishability
should be possible with present-day technology [78, 79, 80, 42, 81, 82]. For example,
5-photon coincidence rates in the hundreds of Hz range have already been demonstrated
in optical circuits of a much bigger size that the one represented in Fig. 7 [42]. Moreover,
optical implementations of the DFT of dimension 6 and 8 have already been reported
[83, 84]. The required photon number resolution (up to 7 photons) could be achieved
with single-photon resolving detectors by first multiplexing the output modes 0′ and
1′ into several spatial or temporal modes [85, 51]. In fact, very recently a photon
number resolution of up to a hundred photons was achieved [86]. As a further feasibility
argument, we note that the experimental scheme realizing this boosted bunching is
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stable under small perturbations to the matrix elements of the unitary U as well as to
the distinguishability matrix S, see Fig. 9. This is easy to understand intuitively as
the permanent is a sum of products of matrix elements, thus smooth and well behaved
under Taylor expansion (see Supplementary Information for a formal proof). A fully
realistic treatment of how perturbations affect the bunching violation would depend on
the particular details of the physical implementation of the scheme and is out of the
scope of the current work.

4.3 Physical mechanism and asymptotically large violations

The interferometer shown in Fig. 7 arguably provides only a small relative violation of
the generalized bunching conjecture, as seen from Eq. (68). It is natural to ask whether
larger relative violations can be obtained and what would be the corresponding physical
set-up. Moreover, from a physics perspective, it is important to pinpoint the underlying
mechanism that explains the violation, at least in some particular setting. We answer
these questions and find a way to generalize the 7-mode circuit into an n-mode circuit,
as described in the caption of Fig. 7. For this family of circuits, we show that the ratio
of the bunching probabilities, which we refer to simply as the bunching violation ratio
Rn, obeys the following bound

Rn =
P

(⋆)
n

P
(bos)
n

≥ n

8
+

1

32

(n− 2)2

n− 1
, (70)

for any n ≥ 4. Hence, partial distinguishability can lead to an asymptotically larger
multimode bunching probability with respect to fully indistinguishable bosons. Inciden-
tally, this family of circuits also yields some previously unreported family of H and S
matrices that violate the Bapat-Sunder conjecture. While a detailed derivation of this
bound is given in Methods 4.5.3, we present here the main arguments by comparing the
physical mechanism of bunching for fully indistinguishable and partially distinguishable
photons.

4.3.1 Fully indistinguishable photons.

The first step of the argument is to note that the only possibility for all of the n photons
to be observed in the subset K is if there are q = n− 2 photons in the first two output
modes of the DFT interferometer of dimension q and vacuum on the rest (we assume
q ≥ 2). The corresponding conditional (subnormalized) state of these two output modes
is given by the NOON state [87]

∣∣∣ψ(bos)
out

〉
=

1

qq/2

q−1∏
j=0

(
â†0 + ωj â†1

)
|0⟩

=
1

qq/2

(
(â†0)

q + (−1)q(â†1)
q
)
|0⟩ , (71)
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where ω = exp (2iπ/q) is the qth root of unity. The probability of having q photons
in these two modes is simply given by the square norm of this state, namely 2q!/qq.
The next part of the circuit realizes the interference between modes 0 and 0′ via beam
splitter Û0,0′

BS , as well as between modes 1 and 1′ via beam-splitter Û1,1′

BS . The action
of these beam-splitters on state â†0′ â

†
1′

∣∣∣ψ(bos)
out

〉
followed by postselection on vacuum

in both output modes 0 and 1 is analyzed in Methods. The resulting probability is
governed by the bunching mechanism sketched in the upper part of Fig. 10, where
η denotes the transmittance of the two beam splitters. The first term of state (71)
describing q photons in mode 0 undergoes bunching with the extra photon in mode 0’
with probability (q+1) η(1−η)q, while the extra photon in mode 1’ is simply transmitted
with probability η. The second term of state (71) behaves similarly. Consequently, the
multimode bunching probability (in output modes 0′ and 1′) is given by

P (bos)
n =

2 (q + 1)!

qq
η2(1− η)q (72)

Figure 9: Perturbation effects on the bunching violation ratio Rn (vertical axis) for the
setup of Fig. 7 with n = 7. (Blue) Perturbation of the internal wave functions defined
in the caption of Fig. 7 by a random amount drawn from a Gaussian distribution with
zero mean and standard deviation ϵ (horizontal axis). For each ϵ value, 104 samples are
taken. We observe violations of Conjecture 1 (on average) up to ϵmax ≈ 0.135, which
corresponds to the components of the internal wave functions being perturbed by about
ϵmax/(1 + ϵ2max) ≈ 13.3%. The vertical bars represent the standard deviation for each ϵ
value. (Green) Perturbation of the matrix elements Uij of the 7-mode interferometer.
The same random Gaussian perturbations are added to the columns of the matrix
U , which are then Gram-orthonormalized. In this case, the matrix elements can be
perturbed by about ϵmax ≈ 0.039 to still exhibit a violation (on average). The optical
scheme is thus resilient to perturbations both to the internal states of the photons and
to the interferometer, making a good case for its experimental feasibility.
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4.3.2 Partially distinguishable photons.

We consider the following q-star polarization pattern

∣∣∣ψ(⋆)
in

〉
=

1

2q/2

q−1∏
j=0

(
â†h,j + ωj â†v,j

)
|0⟩ , (73)

as the input state sent to the DFT interferometer. Here, â†h,j (â†v,j) are creation operators
of a photon in spatial mode j and horizontal (vertical) polarization. This state is a
generalization of the 5-star polarization pattern shown in Fig. 7 (right). In order to
understand why multimode bunching is boosted with this special input state, it is
convenient to define the spatio-polarization modes

ĉ†± =
â†h,1 ± â†v,0√

2
. (74)

Similarly as for indistinguishable photons, we compute the conditional output state of
the DFT interferometer that contains q photons in the first two output modes (and
vacuum for the rest) for input state (73), namely

∣∣∣ψ(⋆)
out

〉
=

1

qq/2

q−1∏
j=0

(
â†h,0√
2
+ ωj ĉ†+ + ω2j

â†v,1√
2

)
|0⟩ . (75)

This polarization multi-mode state is the counterpart of the NOON state, Eq. (71). It
comprises many terms, most importantly the one containing q photons in mode ĉ†+,
namely ∣∣∣ψ(⋆)

out

〉
=

(−1)q+1

qq/2
(ĉ†+)

q |0⟩+ . . . . (76)

In what follows, we show that this term alone is enough to prove that the bunching
violation ratio in Eq. (70) grows at least linearly (see Methods for a more detailed
derivation). The other components of state (76) are orthogonal to the state (c†+)

q |0⟩
and thus can only contribute with additional positive terms to the bunching probability.
The probability to have q photons (regardless of their polarization) in the first two
modes is thus lower bounded by q!/qq. The subsequent part of the interferometer is fed
with the state

â†h,1′ â
†
v,0′

∣∣∣ψ(⋆)
out

〉
=

(ĉ′
†
+)

2 − (ĉ′
†
−)

2

2

∣∣∣ψ(⋆)
out

〉
, (77)

where we have described the two extra photons with antipodal polarization (H and V)
using the spatio-polarization modes

ĉ′
†
± =

â†h,1′ ± â†v,0′√
2

, (78)
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defined in analogy with Eq. (74). Thus, the leading term of the final output state of
the interferometer is

(−1)q+1

2 qq/2
V̂
(
(ĉ′

†
+)

2 − (ĉ′
†
−)

2
)
(ĉ†+)

q |0⟩+ . . . , (79)

where we have defined V̂ = Û0,0′

BS Û1,1′

BS as the operator describing the joint operation
of the two beam-splitters in both polarization (see Methods). Using the fact that the
beam splitters have the same transmittance η, it appears that V̂ also acts as a beam
splitter of transmittance η that couples modes ĉ†+ and ĉ′

†
+

2. We thus have interference
between q photons in mode ĉ†+ (occurring with probability q!/qq) and two photons in

mode ĉ′
†
+ (occurring with probability 1/2). Hence, the resulting probability of obtaining

n = q+ 2 photons in output mode ĉ′
†
+ (which leads to the detection of n photons in the

output bin K = {0′, 1′}) is governed by the double-bunching mechanism sketched in
the lower part of Fig. 10, associated with probability

(
q+2
2

)
η2(1− η)q. As a result, we

obtain the following bound on the 2-mode bunching probability in the case of partially
distinguishable photons

P (⋆)
n ≥ (q + 2)!

4 qq
η2(1− η)q. (80)

This probability is asymptotically larger than its counterpart for fully indistinguishable
photons, Eq. (72). Using Eqs. (72) and (80), we indeed obtain a lower bound on the
bunching violation ratio

Rn =
P

(⋆)
n

P
(bos)
n

≥ q + 2

8
=
n

8
, (81)

which confirms the dominant term in Eq. (70) and shows that it grows at least linearly
with n. A more detailed calculation given in Methods leads to the second term in
Eq. (70). As seen in Fig. 11, this bound seems to describe well enough the behavior of
Rn up to n = 30. In the special case where n = 7, we may compute exactly all terms
in Eq. (76), which gives R7 = 1237/1152, in perfect agreement with Eq. (68). Note
also that Eq. (70) shows no dependence on the transmittance η. However, the absolute
probability of bunching events can be maximized by maximizing the term η2(1− η)q

over η, which yields η = 2/n as mentioned in the caption of Fig. 7.

4.4 Discussion and outlook

The complex behavior of interferometric experiments with multiple partially distin-
guishable photons has been explored in several theoretical and experimental works
[88, 18, 1, 89, 90, 91, 92, 93, 94], revealing that many-body interference does not reduce
to a simple dichotomy between distinguishable and indistinguishable photons. This is
evident, for example, from the fact that certain outcome probabilities do not behave
monotonically as one makes photons more distinguishable [88, 18]. However, the scheme

2The beam splitter V̂ also couples ĉ†− and ĉ′
†
− but we disregard the corresponding term here as its

contribution is much smaller and we seek a lower bound on the probability, see Methods.
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Figure 10: Mechanism at the origin of boosted bunching. (a) For indistinguishable
photons, the extra photon in mode â†0′ (or â†1′) bunches with q photons in mode â†0
(or â†1) coming from the NOON state (71). (b) For partially distinguishable photons,
the largest term contributing to the bunching probability (80) comes from the double
bunching of two photons in the delocalized mode ĉ′

†
+ [see Eq. (78)] with q photons in

the delocalized mode ĉ†+ [see Eq. (74)]. The asymptotics of the bunching violation ratio
Rn as shown in Eq. (70) originates from the probabilities of the processes depicted here.

of Fig. 7 is the first explicit setup showing that boson bunching can be boosted by
partial distinguishability to the point where it actually beats ideal (fully indistinguish-
able) bosons. This disproves the common belief that bunching effects are necessarily
maximized in this ideal scenario.

It is intriguing to observe that the state of partially distinguishable photons we
have found to exhibit boosted bunching is, in a sense, far from the state of fully
indistinguishable photons. This can be seen by computing the relative contribution
of the fully (permutation-) symmetric component of the internal wavefunction |Φ⟩ =
|ϕ1⟩ |ϕ2⟩ . . . |ϕn⟩ [74]

d(S) =
〈
Φ
∣∣∣Ŝn

∣∣∣Φ〉 =
perm (S)

n!
, (82)

where Ŝn = (1/n!)
∑

σ∈Sn
P̂σ is the symmetrizer in n dimensions. This measure is 1 for

fully indistinguishable photons (S = E) and 1/n! for fully distinguishable ones (S = 1).
For the simplest case of seven photons, we have that

d(1) =
1

7!
≈ 1.98× 10−4

d(S(⋆)) =
45

7!
≈ 8.93× 10−3 ≪ 1 (83)

where S(⋆) is the Gram matrix of the partially distinguishable polarization state
shown in Fig. 7. This state is thus somehow closer from fully distinguishable photons.
It is also natural to ask whether there may exist states violating the generalized
bunching conjecture already in the vicinity of a fully indistinguishable state. We show
in Supplementary Information that first-order perturbations around S = E leave the
multimode bunching probability constant, which suggests a negative answer. But
the question remains open whether this probability always decreases near S = E if
second-order terms are taken into account, in which case it would be a general feature.
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Furthermore, it must be noted that we have modeled distinguishable photons with
a two-dimensional internal degree of freedom, namely polarization. In contrast, in the
fully distinguishable setting, each photon occupies a different internal state, forming
an orthonormal basis of an n-dimensional space. Is it possible to find counterexamples
where the internal states live in a larger space, going beyond small perturbations around
our conterexamples? This could model realistic situations with photons occupying
partly overlapping time-bins, possibly leading to larger than linear asymptotic scalings
of the bunching violation ratio. We leave this question for future work.

On a final note, we stress that our findings corroborate the deep connections between
bosonic interferences in quantum physics on the one hand, and the algebra of matrix
permanents on the other hand. The transposition of Drury’s 7-dimensional matrix
counterexample into a quantum interferometric experiment has inspired us to find a new
family of n-dimensional matrices that not only violate the Bapat-Sunder conjecture but
also exhibit a relative violation increasing with n. We anticipate that other mathematical
conjectures on permanents may be addressed by exploiting this fruitful interplay with
physics-inspired mechanisms such as those shown in Fig. 10. This may even help
solve other questions on the Bapat-Sunder conjecture [33]. For example, the smallest
known counterexample is 7-dimensional, so it would be interesting to find a simpler
counterexample if it exists, or show that this is not possible. Another open question in
matrix theory is whether there is a counterexample involving a real matrix of dimension
smaller than 16 [95], which may be resolved by considering interferometry within real
quantum mechanics.

Overall, we hope this work will open new paths to explore the connection between
distinguishability and boson bunching, leading not only to a better understanding of
multiparticle quantum interference but perhaps also to novel applications of partially
distinguishable photons to quantum technology.

4.5 Methods

4.5.1 Bunching probability

In this section we summarize the main steps needed to derive Eq. (63). Following
the colloquial conventions of [96], we consider n photons sent through a (m,m) linear
interferometer described by the unitary matrix U . We limit ourselves to at most one
photon per input mode. Without loss of generality, we consider that the photons occupy
the first n input modes. We denote the vector of occupation number of the output modes
as s = (si) where 0 ≤ si ≤ n is the number of photons in output mode i. Naturally∑
si = n. We define the mode assignment list d = d(s) = ⊕m

j=1 ⊕
sj
k=1 (j). For instance

if s = (2, 0, 1) then d = (1, 1, 3).
Consider the probability P (d) that the photons give an output configuration s with

a mode assignment list d = d(s). Tichy shows that this probability can be expanded as
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Figure 11: Bunching violation ratio Rn for the family of optical schemes shown in Fig. 7
as a function of the size n (blue). For n ≥ 7, it appears that partially distinguishable
particles outperform indistinguishable bosons as witnessed by Rn > 1. The lower bound
given by Eq. (70) is also shown (orange).

a multi-dimensional tensor permanent [2]

P (d) =
1

µ(s)

∑
σ,ρ∈Sn

n∏
j=1

(
Uσj ,djU

∗
ρj ,dj

Sρj ,σj

)
(84)

with µ(s) =
∏m

j=1 sj !.
Let us now compute the probability Pn(S) that all n photons bunch in a subset K of

the output modes, for a set interferometer and a Gram matrix S, following a derivation
of Shchesnovich [19]. Without loss of generality, consider that the subset K is the first
K = |K| output modes. The bunching probability is the sum over all event probabilities
P (d) with si = 0 for all i > K

Pn(S) =
1

n!

K∑
d1=1

· · ·
K∑

dn=1

∑
σ,ρ∈Sn

n∏
j=1

(
Uσj ,djU

∗
ρj ,dj

Sρj ,σj

)
(85)

Now, calling

Ha,b =

K∑
i=1

U∗
i,aUi,b (86)

we can rewrite

Pn(S) =
∑
σ′∈Sn

n∏
j=1

(
Hj,σ′

j
ST
j,σ′

j

)
= perm

(
H ⊙ ST

)
(87)

where the last quantity is the permanent of the Hadamard (or elementwise) product
(H ⊙ ST )ij ≡ HijSji. Note that for indistinguishable particles Sij = 1, ∀i, j, so that
Pn(E) = perm (H) .
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4.5.2 Physical realization of violating matrices

It is possible to show that any counterexample to the Bapat-Sunder conjecture can be
used to construct a physical interferometer U and a set of internal states of the photons
{|ϕi⟩} that provide a counterexample to the generalized bunching conjecture. We
assume, without loss of generality [97], a simplified form of the Bapat-Sunder conjecture,
where A and B are Gram matrices and so aii = bii = 1, ∀i ∈ {1, ..., n}. In this case,
Conjecture 2 takes the form perm (A⊙B) ≤ perm (A). Since the distinguishability
matrix S is a Gram matrix, we can choose ST = B. The set of quantum states realizing
any given distinguishability matrix can be obtained from its Cholesky decomposition

B =M ′†M ′. (88)

The matrix M ′ is of size r′ × n where r′ is the rank of B. The n internal photon states
{|ϕi⟩} that realize this Gram matrix can be read out from the columns of M ′. Thus,
the rank of B determines the dimension of the Hilbert space spanned by the states
{|ϕi⟩}. For the physical realization of Drury’s counterexample we chose S = A =M †M ,
with M given in Eq. (69). This implies that the 7 internal states of the bosons live in a
two-dimensional space, where each state is obtained from each column of M .

In addition, it is always possible to construct an interferometer U such that H = αA,
where α is a positive rescaling factor such that α ≤ 1. Note that this rescaling is not
important when it comes to showing a violation of the generalized bunching conjecture 3.
We can write the Cholesky decomposition of αA as

Ha,b = α
r∑

k=1

M †
a,kMk,b = α

r∑
k=1

M †
a,k

(
M †

b,k

)∗
, (89)

where r is the rank of A. By comparing with the definition of the matrix H in Eq. (214),
it is possible to see that we obtain H = αA if we appropriately incorporate the matrix
√
αM † as a submatrix of U , for example, in the top left corner. This choice determines

that the subset K is given by the first r output modes. Note also that it is always
possible to incorporate an arbitrary complex matrix, up to renormalization, into a
bigger unitary matrix, using arguments similar to Lemma 29 of Ref. [31].

In the case discussed in the main text, the aim is to construct an interferometer
U which contains a rescaled version of the 7× 2 matrix

√
αM †, where M is given in

Eq. (69). Here, the procedure to construct U is simplified by the fact that the columns
of M † are already orthogonal vectors. Hence, we can choose α = 2/7 to normalize these
columns and find 5 other orthonormal vectors to construct a 7× 7 unitary matrix. The
unitary built from the circuit presented in Fig. 7 gives one possibility to construct such
a unitary, which was chosen for its simplicity.

3If perm (A⊙B) ≥ perm (A) then perm (αA⊙B) ≥ perm (αA)



4.5 Methods 43

4.5.3 Bound on the bunching violation ratio

We consider the circuit described in the caption Fig. 7, which is a generalization of the
7-mode optical circuit depicted in this figure to a circuit of n modes. The circuit is
composed by a discrete Fourier transform (DFT) circuit of size q = n− 2 applied to
the input modes {0, 1, ..., q − 1} followed by two beam splitters of equal transmittance
applied between the modes 0′ and 0 as well as between the modes 1′ and 1.

Our quantity of interest is the probability of observing all the n photons in the
output modes 0′ and 1′. Let us first compute this quantity when the input photons are
fully indistinguishable. The quantum state at the output of the DFT is given by

Ûdft |ψin⟩ = Ûdft

q−1∏
j=0

â†j |0⟩ (90)

=
1

qq/2

q−1∏
j=0

(
q−1∑
k=0

e2πijk/qâ†k

)
|0⟩ . (91)

The only possibility for all of the n photons to be observed in modes 0′ or 1′ at the output
of the full circuit is if at the output of the DFT interferometer there are q = n−2 photons
in modes 0 or 1 and vacuum on the rest. Hence, we only consider the subnormalized
component of the wavefunction in these output modes, given by

∣∣∣ψ(bos)
out

〉
=

1

qq/2

q−1∏
j=0

(
â†0 + e2πij/qâ†1

)
|0⟩ (92)

To expand this expression, one can think of â†0 and â†1 as complex numbers since
these two operators commute. In this sense, following [87], we can consider that each
term â†0 + e2πij/qâ†1 is an eigenvalue of the circulant matrix of dimension q given by
circ(â†0, â

†
1, 0, . . . , 0). Hence, the previous equation can be rewritten as∣∣∣ψ(bos)

out

〉
=

1

qq/2
det(circ(â†0, â

†
1, 0, . . . , 0)) |0⟩ (93)

=
1

qq/2

(
(â†0)

q + (−1)q(â†1)
q
)
|0⟩ , (94)

which is a NOON state. The subsequent part of the interferometer couples this state
with the ancillary modes 0′ and 1′, each containing a single photon. We denote these
beam-splitters by Û0,0′

BS and Û1,1′

BS and their transmittance by η. We use the following
convention for the unitary representing the action of the beam-splitter

UBS =

( √
η

√
1− η

−
√
1− η

√
η

)
. (95)
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The joint application of Û0,0′

BS and Û1,1′

BS results in the state

Û0,0′

BS Û
1,1′

BS â
†
0′ â

†
1′

∣∣∣ψ(bos)
out

〉
(96)

=
Û0,0′

BS (â†0)
qâ†0′Û

1,1′

BS â
†
1′ + (−1)qÛ1,1′

BS (â†1)
qâ†1′Û

0,0′

BS â
†
0′

qq/2
|0⟩ . (97)

The postselection on the component where all photons occupy output modes {0′, 1′}
yields ∣∣∣ψ(bos)

post

〉
=

(1− η)q/2η

qq/2

(
(â†0′)

q+1â†1′ + (−1)q(â†1′)
q+1â†0′

)
|0⟩ (98)

Finally, the bunching probability in modes 0′ and 1′ is given by

P (bos)
n =

〈
ψ
(bos)
post

∣∣∣ψ(bos)
post

〉
=

2 (q + 1)!

qq
(1− η)qη2. (99)

Consider now the analogous calculation for the specially chosen state of partially
distinguishable photons, described in the caption of Fig. 7. In this case, as discussed in
the main text, the counterpart of the NOON state obtained in Eq. (94) is given by

∣∣∣ψ(⋆)
out

〉
=

1

qq/2

q−1∏
j=0

(
â†h,0√
2
+ ωj ĉ†+ + ω2j

â†v,1√
2

)
|0⟩ . (100)

After the Fourier interferometer, one ancillary photon is introduced in mode 0′ with
vertical polarization and another one in mode 1′ with horizontal polarization. At this
point, the state of the system is given by

â†h,1′ â
†
v,0′

∣∣∣ψ(⋆)
out

〉
=

(ĉ′
†
+)

2 − (ĉ′
†
−)

2

2

∣∣∣ψ(⋆)
out

〉
, (101)

with ĉ′
†
± defined in Eq. (78). To analyse the action of the subsequent part of the

interferometer, it is useful to define the joint action of the beam-splitter operators Û0,0′

BS

and Û1,1′

BS as
V̂ = Û0,0′

BS Û
1,1′

BS . (102)

Using the fact that both beam-splitters have equal transmittance, it can be seen that
the action of V̂ on the delocalized modes ĉ†± and ĉ′

†
± is given by

V̂ ĉ′
†
±V̂

† =
√
ηĉ′

†
± +

√
1− ηĉ†±, (103)

V̂ ĉ†±V̂
† =

√
ηĉ†± −

√
1− ηĉ′

†
±. (104)

We will see that the interference between the modes ĉ†+, which are occupied in the state∣∣∣ψ(⋆)
out

〉
, with the two bosons in mode ĉ′

†
+ from the ancillary photon state will lead to

bosonic bunching effects that are responsible for the largest asymptotic contributions
to the bunching probability in modes {0′, 1′}. In contrast, the other modes occupied
in state

∣∣∣ψ(⋆)
out

〉
, i.e. â†h,0 and â†v,1, do not undergo any enhanced bunching effects since
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they do not couple neither to ĉ′
†
+ nor to ĉ′

†
−. For completeness, we also write the action

of V̂ on these modes

V̂ â†h,0V̂
† =

√
ηâ†h,0 +

√
1− ηâ†h,0′ , (105)

V̂ â†v,1V̂
† =

√
ηâ†v,1 +

√
1− ηâ†v,1′ . (106)

We are now ready to analyse the action of V̂ on the state given in Eq. (101), with the
aim of computing a bound for the bunching probability. For the aforementioned reasons,
it will be useful to expand the state

∣∣∣ψ(⋆)
out

〉
as a superposition of states with different

occupation numbers in mode ĉ†+. To do so, it is useful to define

B̂†
j =

1√
2
(ω−j â†h,0 + ωj â†v,1). (107)

With this definition, we can write

∣∣∣ψ(⋆)
out

〉
=

(−1)q−1

qq/2

q−1∏
j=0

(
ĉ†+ + B̂†

j

)
|0⟩ . (108)

Since all operators involved in this expression commute with each other, we can expand
it as if ĉ†+ and B̂†

j were complex numbers. Precisely, we have the following expansion

q−1∏
j=0

(
ĉ†+ + B̂†

j

)
=

q∑
k=0

(ĉ†+)
q−kêk(B̂

†
0, ..., B̂

†
q−1), (109)

where we have defined

ê0(B̂
†
0, ..., B̂

†
q−1) = 1, (110)

êk(B̂
†
0, ..., B̂

†
q−1) =

∑
0≤j1<...<jk≤q−1

B̂†
j1
...B̂†

jk
. (111)

To simplify the notation we denote êk(B̂
†
0, ..., B̂

†
q−1) simply as êk. Newton’s identities

give us the following recursion relation

kêk =
k∑

i=1

(−1)i−1êk−i p̂i, (112)

where p̂k is the k-th power sum

p̂k =

q−1∑
l=0

(B̂†
l )

k. (113)
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These sums take a simple form for any k ≥ 1, with

p̂k =


0 for k odd,

q

2k/2
(

k
k/2

)
(â†h,0â

†
v,1)

k/2, for k even.
(114)

Using this expression for p̂k together with Eq. (112), it can be seen that all the terms
with odd k in the expansion given in Eq. (109) are suppressed. Moreover, these equations
provide a simple way to calculate the first few terms of the expansion in Eq. (109) and
obtain ∣∣∣ψ(⋆)

out

〉
=

(−1)q−1

qq/2

(
(ĉ†+)

q − 1

2
q(ĉ†+)

q−2â†h,0â
†
v,1 + ...

)
|0⟩ . (115)

The other terms of the expansion are orthogonal to the first two terms and can only
contribute with additional positive terms to the bunching probability. In fact, these two
terms are enough to obtain the lower bound for the bunching violation ratio presented
in the main text (Eq. (70)). After the action of the interferometer V̂ it can be shown
that component of the wavefunction containing all the n photons in modes 0′ and 1′ is
given by ∣∣∣ψ(⋆)

post

〉
=

=
(1− η)q/2η

2qq/2

(
(ĉ′

†
+)

q+2 − 1

2
q(ĉ′

†
+)

qâ†h,0′ â
†
v,1′ + ...

)
|0⟩ . (116)

The omitted terms in the previous equation are orthogonal to the first two terms. Hence,
we obtain the following lower bound for the bunching probability

P (⋆)
n =

〈
ψ
(⋆)
post

∣∣∣ψ(⋆)
post

〉
≥ η2(1− η)q

4 qq

(
(q + 2)! +

1

4
q2q!

)
. (117)

Finally, we can use Eqs. (117) and Eq. (99) to obtain

Rn =
P

(⋆)
n

P
(bos)
n

≥ q + 2

8
+

1

32

q2

q + 1
(118)

≥ n

8
+

1

32

(n− 2)2

n− 1
, (119)

demonstrating the bound on the bunching violation ratio given in Eq. (70).

Code availability

The following project relies on the packages Permanents.jl and BosonSampling.jl
[98], and the source code generating the figures and data of this paper is available on
github and the data at OSF.

https://github.com/benoitseron/Permanents.jl
https://github.com/benoitseron/BosonSampling.jl
https://github.com/benoitseron/generalized_bunching
https://osf.io/ex63z/


4.6 Resilience to perturbations 47

Appendix

4.6 Resilience to perturbations

It is natural to ask whether small perturbations of the interferometer U or the partial
distinguishability matrix S would immediately negate the violation of the generalized
bunching conjecture, or, equivalently of the Bapat-Sunder’s conjecture, in which case
the discussion would be physically insignificant. However it is easy to prove that this is
not the case, as we now show.

We consider for instance a perturbation of the matrix A in perm (A⊙B) > perm (A),
the reasoning being similar if we also consider perturbations in the matrix B. We consider
the perturbation A→ (1− ϵ)A+ ϵ∆ with ∆i,i = 1,∆i,j = O(1), with ϵ≪ 1. Note that

perm ((1− ϵ)A+ ϵ∆)

= perm
(
(1− ϵ)

(
A+

ϵ

(1− ϵ)
∆

))
= (1− ϵ)nperm (A+ δ∆) (120)

setting δ = ϵ
(1−ϵ) = O(ϵ). The same factorization may be operated on both sides of the

Bapat-Sunder inequality.
Next, we present a formula from Minc [99] for the permanent of the a sum of two

matrices

perm (A+B) =
n∑

r=0

∑
α,β∈Qr,n

perm (A[α, β]) perm (B(α, β)) (121)

where Qr,n is the set of increasing sequences. More precisely, if we denote Γr,n as the
set of all nr sequences ω = (ω1, . . . , ωr) of integers, 1 ≤ ωi ≤ n, i = 1, . . . , n, we define

Qr,n = {(ω1, . . . , ωr) ∈ Γr,n | 1 ≤ ω1 < · · · < ωr ≤ n} . (122)

Moreover, A[α, β] denotes the r × r matrix constructed by choosing the rows and
columns of A according to the sets α and β. In contrast, A(α, β) is the (n− r)× (n− r)

matrix where those rows and columns have been excluded. This way, we can expand to
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first order

perm (A+ δ∆) =

= perm (A) + δ

n∑
i,j=1

∆i,jperm (A(i, j)) +O(δ2)

perm ((A+ δ∆)⊙B) =

= perm (A⊙B) + δ
n∑

i,j=1

∆i,jBi,jperm ((A⊙B)(i, j))

+O(δ2) (123)

so that if perm (A⊙B) > perm (A) then, for small enough ϵ, we have that

perm (((1− ϵ)A+ ϵ∆)⊙B) > perm ((1− ϵ)A+ ϵ∆) , (124)

meaning that small enough perturbations to the matrix A still lead to a violation of the
Bapat-Sunder inequality. A similar reasoning can be used to argue about robustness
to perturbations to matrix B. For the particular counterexample of the generalized
bunching conjecture considered in the main text, the robustness to perturbations can
be seen in Fig. 9.

In order to further visualize how the choice of distinguishability matrix can affect the
bunching violation ratio, we consider the following two-parameter family of S matrices
of dimension 7

S(x, y) = (1− x− y)S(⋆) + xS(bos.) + y, S(dist.). (125)

where x, y ≥ 0 and x+ y ≤ 1. Here, S⋆ corresponds to the S matrix of the partially
distinguishable input state from Fig. 7, whereas Sbos = E and Sdist = 1 correspond to
the fully indistinguishable and fully distinguishable cases, respectively. The bunching
violation ratio for these different S matrices is plotted in Fig. 12. As one gets gets closer
to the case of distinguishable particles, the bunching decreases significantly as expected.
However, when we interpolate between the S(bos.) and S⋆, the bunching probability
behaves non-monotonically and the bunching violation ratio P7(S(x, y))/P

(bos)
7 attains

values larger than 1 in a small region around S⋆.

4.7 Stability around the bosonic case

We now turn to the question of whether the violation of the generalized bunching
conjecture could possibly be in the neighborhood of the fully indistinguishable bosonic
case. We demonstrate that first order perturbations to the internal wave functions of the
photons around the fully indistinguishable case leave multimode bunching probabilities
invariant, which corroborates the claim that the violation can only be "far from" the
bosonic case. We start with the internal functions of the photons

|ϕi⟩ = |ϕ0⟩ (126)
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Figure 12: Ternary plot of the log10 of the bunching ratio P7(S(x, y))/P
(bos)
7 for the

optical scheme from Fig. 7, and the two-parameter family of distinguishability matrices
S(x, y) defined in Eq. (125).

for all i = 1, ..., n. Let us first consider a perturbation only to the first photon’s internal
wavefunction ∣∣ϕ′1〉 = |ϕ1 + δϕ1⟩ (127)

In order for this state to be normalized, we need

⟨ϕ1|δϕ1⟩ = ix (128)

with x ∈ R as our (small) perturbation parameter. Consider a perturbation around the
bosonic case: S′ = E + δS with

δS =


0 −ix · · · −ix
ix 0 · · · 0
...

...
. . .

...
ix 0 · · · 0

 (129)

Note that the perturbation part of the S matrix is not a Gram matrix. Then

perm
(
A⊙ ST

)
= perm

(
A+A⊙ δST

)
= perm (A) +

n∑
i,j=1

δSj,iAi,jperm (A(i, j)) +O(x2) (130)

To alleviate the notations, let us define the matrix F such that

Fi,j = Hi,j perm (H(i, j)) , (131)
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and note that F can be proven to be Hermitian (since H is an Hermitian matrix). Then,
the first-order perturbation to the bunching probability is

n∑
i,j=1

(δST ⊙ F )i,j = −2x
n∑

j=2

I(F1,j) = 0 (132)

where I stands for the imaginary part. The second equality holds because the Laplace
expansion of the permanent of H gives perm (H) =

∑n
j=1 F1,j = F1,1+

∑n
j=2 F1,j , which

is real (in fact ≥ 0) since H is Hermitian (positive semidefinite), and F1,1 is real (≥ 0)
since F is Hermitian, hence

∑n
j=2 F1,j is real too. Thus, we have

perm
(
H ⊙ (E + δST )

)
= perm (H) +O(x2). (133)

A similar procedure can be applied when every photon’s internal wave function is
modified by a small quantity such that ⟨ϕ0|δϕj⟩ = ixj = O(x) with j = 1, . . . , n, giving
the same result to first order. This means that a small physical perturbation of the
internal wavefunctions of the photons around the bosonic case (fully indistinguishable
particles) leads to a bunching probability that is unchanged to first order. We leave
open the question of whether the bosonic case corresponds to a local maximum of the
multimode bunching probability, as suggested by the scheme considered in the main
text. This would be true only if second-order perturbations always give a negative
contribution to this probability.
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5 Efficient validation of Boson Sampling from binned
photon-number distributions

Abstract

In order to substantiate claims of quantum computational advantage, it is
crucial to develop efficient methods for validating the experimental data. We
propose a test of the correct functioning of a boson sampler with single-photon
inputs that is based on how photons distribute among partitions of the output
modes. Our method is versatile and encompasses previous validation tests based on
bunching phenomena, marginal distributions, and even some suppression laws. We
show via theoretical arguments and numerical simulations that binned-mode photon
number distributions can be used in practical scenarios to efficiently distinguish
ideal boson samplers from those affected by realistic imperfections, especially
partial distinguishability of the photons.

5.1 Introduction

An important milestone in the field of quantum computing is the construction of a
quantum device that can surpass even the most advanced classical super-computers at
a specific task [100, 101]. For the purposes of demonstrating quantum computational
advantage with near-term quantum devices, one of the problems that has been intensely
investigated is that of Boson sampling. In their seminal paper [102], Aaronson and
Arkhipov presented strong complexity theoretic arguments showing that the task of
sampling the output of a linear interferometry process involving many single photons
is likely to be intractable for classical computers. Boson sampling sparked a great
interest over the last decade and various alternative schemes were constructed, such as
Scattershot boson sampling, Gaussian Boson sampling and others, in order to facilitate
experimental implementations [103, 55, 104, 105]. These efforts culminated in multiple
claims of quantum computational advantage with Gaussian Boson sampling [106, 43, 44],
while standard boson sampling saw experimental implementations with n = 20 photons
in m = 60 modes [42]. Other experimental platforms than photonics were also considered
[107].

Crucially, experimental implementations are unavoidably subject to different noise
sources, such as those induced by partial distinguishability or particle loss, which may
compromise claims of quantum computational advantage. Indeed, if the amount of
noise is too large, then classical algorithms can sample from the outcome distribution
efficiently [108, 109, 110, 50, 111, 30, 60]. Therefore, a thin line exists between the
regime of classical computational hardness and efficient classical simulability.

It is therefore of highest importance to develop efficient methods to discriminate
an ideal boson sampler from a noisy one. However, the very formulation of the task at
hand, which involves sampling from an exponentially large set of possibilities, makes
the problem of verifying that the device is working properly highly non-trivial. Ideally,
one would like to assert that the experiment is generating samples from a distribution
that is close enough to the ideal one simply by post-processing the classical data
generated by the experiment. However, due to the flatness of the boson sampling
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distribution, this requires exponentially many samples [112]. Efficient verification
schemes that guarantee closeness to the ideal distribution exist, but they require an
active control over the experiment via the ability to do Gaussian measurements on
the ouput states [113]. Upon reasonable physical assumptions about the nature of
noise [114, 115, 116, 117, 118, 119, 120, 121], and forgetting about adversarial scenarios,
we can restrict ourselves to the easier task of validation. It consists of verifying that
the experiment passes some easy-to-check tests, which a boson sampler working in
the quantum supremacy regime is expected to pass. These tests should be sufficiently
sensitive to noise, so we can efficiently discriminate an ideal boson sampler from a noisy
one. This is the question we consider in this paper.

5.2 Validation of Boson Sampling

A plethora of validation tests for boson samplers have been proposed which are able to
discriminate between ideal boson samplers and other mock-up distributions, such as the
uniform distribution, distributions generated by distinguishable input photon, or mean-
field samplers [6]. Techniques such as pattern recognition or machine learning [122, 123],
Bayesian testing [124], coarse-grained measurements [125, 83], Heavy Output Generation
[106], or the analysis of marginal distributions have also been applied [63]. Each method
offers its own advantages and disadvantages. A recent publication combined a variety of
the tests cited the above applied sequentially to come up with a single metric describing
the quality of the experiment, the Photonic Quality Factor [126]. In the context of
our work, we put forward the following list of desiderata for a faithful validation test,
focusing on sensitivity to realistic noise sources and computational efficiency. We would
like a validation test to obey the following criteria:

1. Generality: The interferometer in a boson sampling experiment is drawn at
random from the Haar measure, so an important requirement for a validation test
is that it is applicable to an arbitrary linear interferometer.

2. Sensitivity to multiphoton interference: High-order multiphoton interference is
at the core of the classical hardness of boson sampling [60, 61]. Partial distin-
guishability of the input photons is one of the most important noise sources in
boson sampling, which may render the outcome probabilities easy to approximate.
Experiments with a constant amount of photon distinguishability may be simu-
lated by considering only k-photon interference terms, for some fixed value of k
[109, 127]. Hence, a validation test should be sensitive to high-order multiphoton
interference in order to discriminate an ideal boson sampler from one with partially
distinguishable photons.

3. Sampling efficiency: Resources available for validation are limited since, compared
to the exponentially large system size (domain of the sampled distribution), only
a moderate amount of samples are observed. For this reason, we request that
a validation test is able to discriminate a noisy boson sampler (with some fixed
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noise parameters) from an ideal one by using a number of samples that scales
only polynomially in the system size.

4. Computational efficiency: A last requirement is efficiency in post-processing the
classical data. Many validation tests that aim at comparing the experiment to
an ideal boson sampler require the computation of outcome probabilities, or the
classical simulation of ideal boson sampling, which takes exponential time. This
becomes prohibitive as experiments grow larger, which is why we restrict ourselves
to polynomial-time computations in the system size.

Additionally, it is important to remark that, in a realistic setting, photon loss also
plays a prominent role. Unlike partial distinguishability, the amount of loss is easy
to estimate from data coming from the experiment (or even tests with classical light).
We can assume that a lossy boson sampling experiment that aims at demonstrating
quantum computational advantage is able to obtain high-enough output photon counts
such that, if the rest of the experiment was ideal, it would still surpass the best classical
simulation algorithms. As most of the outcomes would correspond to events with lost
photons, it is important that a validation test is able to use this data in order to
diagnose other sources of noise, such as partial distinguishability, which may render the
experiment classically simulable. If validation required considering only postselected
outcomes with no lost photons, this would sharply decrease the sampling rate of usable
events, possibly making the validation unfeasible in a reasonable amount of time. We
shall come back to this point later in this work.

5.2.1 Our contribution

We propose a validation scheme for Boson Sampling which aims at fulfilling the list
of requirements stated above. Our scheme (Sec. 5.5) is based on a simple coarse-
graining of the data coming from the boson sampling device: we group the output
modes into different subsets and count how many photons end up in each of them.
Our outcomes are thus given by a vector k = (k1, . . . , kK), where kz is the number of
photons observed in subset Kz (see left panel of Fig. 13). This binning of the output
modes into different subsets allows us to deal with a space of events of much smaller
size than the exponentially many outcomes of the boson sampler. For a fixed number K
of subsets, the number of possible configurations of the photons in the bins is bounded
by (n+ 1)K , where n is the photon number. This implies that some of the probabilities
are relatively large (of size 1/poly(n)), and thus a meaningful estimation (i.e. up to
relative error) of these large probabilities can be obtained from a polynomial number of
experimental runs. Crucially, we show that a classical algorithm exists that can also
estimate these probabilities efficiently, not only for ideal boson samplers but also noisy
ones, involving partially distinguishable input photons as well as loss.

The validation test we consider is based on comparing these theoretically predicted
probabilities to the experimentally observed ones. We provide analytical and numerical
evidence that it is possible to use binned output distributions to efficiently discriminate
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Figure 13: (Left) Interferometric setup. Single photons are sent through the first
n input modes of a m-mode linear interferometer U . Each photon at input j carries
internal degrees of freedom (polarization, arrival time, etc.) described by an (internal)
wavefunction |ϕj⟩. To validate the device we use the probability distribution obtained
by counting photons in binned-together output modes. In the figure, we represent in
green the detectors that have detected one photon and in red the detectors that did not
click. In this example, we have 3 bins and the outcome observed is k⃗ = (2, 1, 1) (the
first subset K1 observes two photons, K2 observes a single photon, etc.). Such outcome
probabilities are sensitive to partial distinguishability of the input and can be used to
discriminate an ideal boson sampler from a noisy one. (Right) Virtual interferometer.
The binned output mode probabilities can be obtained from the characteristic function
of this distribution. The latter can be interpreted as a probability amplitude in a
virtual interferometry process. More precisely, computing x(η) as described in Eq. (155)
(through Eq. (148)) is equivalent to computing the amplitude of the process where
the input state of the boson sampler is left unchanged while going through a virtual
interferometer V built by sandwiching the physical interferometer U and its hermitian
conjugate U † with a diagonal matrix of phases, encoding the choice of partition (as
defined in Eq. (150) to (152)).

between bosonic and classical input particles, as well as some models of partial distin-
guishability. We also argue that this way of validating boson samplers is sensitive to
partial distinguishability, even in the presence of small amounts of loss.

5.3 Comparison to other existing methods

The versatility of the method we consider lies in the fact that it can be used for any
interferometer and that the choice of the bins is completely arbitrary. It can even
be done after the experiment – the same data can be tested using multiple choices
of subsets, possibly ones chosen randomly. This versatility allows us to connect this
method to some important validation tests for standard boson samplers that have been
suggested in previous literature and even retrieve some of them as particular cases.

5.3.1 Correlators and marginal distributions

One of the most common validation protocol for boson samplers relies on low-order
correlation functions of the output mode counts n̂i [128, 129] such as

ci = ⟨ni⟩ (134)

cij = ⟨ninj⟩ − ⟨ni⟩⟨nj⟩ (135)

Correlations of order 3 and 4 have also been considered [130, 43].
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A closely related validation method is that of computing k-marginals of the boson
sampling distributions of an ideal experiment – which results from looking at the photon
counts coming from a constant number k of detectors – and comparing them to the
experiment itself [63]. This data can be used to estimate the correlators mentioned above.
While marginals of fixed size and low-order correlators can be computed in polynomial
time, they are known to be insensitive to higher order multiphoton interferences. As
previously mentioned, the latter are crucial to reproduce the boson sampling distribution
to sufficient precision [62]. In fact, it is possible to construct efficient classical mock-up
samplers that are consistent with all marginals of order k [63]. Therefore, this scheme
alone cannot be used to justify claims of quantum computational advantage.

We note that marginals distribution can be recovered as a particular case of our
scheme, as it corresponds to choosing K = k subsets with a single output mode in
each. Our scheme however can be adapted to be sensitive to higher order interferences:
if, for example, two equal-sized subsets are chosen, the way photons distribute in this
partition of the output modes cannot be well approximated by taking into account only
few-photon interference terms.

5.3.2 Full bunching

Shchesnovich presents an interesting scheme that aims at fulfilling all the requirements
stated in Sec. 5.2 [19, 61]. It relies on observing full bunching in a subset of the output
modes, i.e. all the input photons are found in some chosen subset. Equivalently, one
can focus on observing no photon in the complementary subset [61].

Full bunching probabilities can be approximated efficiently and numerical simulations
predict that, for Haar random matrices, this quantity is maximized when photons are
fully indistinguishable and decreases when they are partially distinguishable. While
explicit counter-examples to this general rule of thumb were demonstrated in [131],
going against general physical intuition, the method remains practical as it holds very
well on average, independently of which subset is chosen.

While there is evidence that validation using bunching probabilities ticks all the boxes
of desirable properties put forward in Sec. 5.2, we improve on this method quantitatively.
In fact, the full bunching probability in a subset can be seen as a particular outcome
probability of our more general scheme, which takes into account full photon counting
distribution in one or more subsets. This allows for better distinguishing power, requiring
fewer experimental samples for the validation task.

5.3.3 Suppression laws

Certain validation tests rely on a specific choice of optical network [132]. Symmetries in
the unitary matrix lead to suppression laws where many outputs are prohibited , as
initially noticed in [96] and later applied to boson sampling in [133, 134, 135]. These
methods are interesting tools to diagnose noise in the network or input state, but are
restricted to only a handful of networks, such as the Fourier or Sylvester matrices.
However, the arguments for the hardness of boson sampling require the unitary to be
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chosen randomly according the the Haar measure [102]. If one can precisely tune a
reconfigurable network [44], then validation can be executed first through suppression
laws, and then the network can be changed to a random unitary to obtain samples.
The main drawbacks are that this method leaves the door open for errors to appear in
the samples when the circuit is reconfigured and provides no way to validate the final
samples after circuit reconfiguration.

Nevertheless, interferometers possessing some symmetries such as the Fourier inter-
ferometer are interesting devices to test multiphoton interference due these suppression
laws and their sensitivity to distinguishability of the photons. We show in Sec. 5.6
that our formalism allows us to compute analytically some binned output distribu-
tions for Fourier interferometers, revealing striking differences between the behavior of
distinguishable particles and ideal bosons. We also observe that some characteristic
suppressions observed for ideal bosons are inherited by the binned output distribution,
for an appropriate choice of the bins.

5.3.4 Validation from coarse-grained measurements

Other proposals exist to validate boson samplers using coarse-grained data. In [125],
the authors classify observed events in bubbles in the state space (unlike our binning of
output spatial modes). Bubbles are constructed iteratively and are centered around
high probability events. Numerical evidence is given to show that this is a good
validation method against, for example, distinguishable input photons. However, with
this validation method, the comparison of the experiment to an ideal boson sampler
would still require a classical simulator of the latter which would not be efficient. A
similar statement also applies to pattern recognition techniques [122].

5.4 Structure of the paper

The core of our work is divided into three sections followed by a discussion section. In
Sec. 5.5, we explain in detail the mathematical techniques to compute the binned output
distribution generated by ideal or noisy boson samplers. We focus on the analysis of the
complexity of the method, showing that efficient approximations of the distribution can
be obtained. In Sec. 5.6, we present analytical results for binned distributions in Fourier
interferometers. This section may be skipped entirely by a reader who is only interested
in our results regarding the validation of experiments with Haar-random interferometers.
The latter are presented in our main results section (Sec. 6.3.4). We conclude with a
discussion section containing open questions and perspectives for future work.

5.5 Formalism

As previously mentioned, the boson sampling validation method we consider in this
work is based on how photons distribute into subsets of output modes, which we will
also refer to as bins.

We consider the partition of M = {1, 2, . . . ,m} into K non-empty and mutually
disjoint subsets Kz ⊂ M with z ∈ {1, . . . ,K}. If the photon configuration at the output
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of a boson sampler is s = (s1, s2, . . . , sm), the way photons distribute in this partition
denoted as K = {K1, . . . ,KK} is fully defined by a vector k of dimension K, whose
components are given by

kz =
∑
j∈Kz

sj . (136)

We are interested in computing the probabilities P (k) of observing the different possible
photon number configurations in this partition. In this Section, we show a classical
algorithm that, for an experiment with n input photons, efficiently estimates the
probabilities P (k) up to 1/poly(n) additive errors, given some theoretical model for the
experiment which may include partial distinguishability between the photons as well as
losses. Our derivation is based on the approximation of the characteristic function of
the distribution P (k) and is inspired by a result of Arkhipov for approximating linear
statistics of ideal boson samplers [136]. The main idea we use is that this characteristic
function can be interpreted as a probability amplitude of a virtual interferometric
process, as depicted in Fig. 13, and thus it can be approximated via Gurvits randomized
algorithm for permanent approximation [102].

5.5.1 Photon-counting probabilities in partitions

For a given partition K = {K1, . . . ,KK}, the probability of observing a certain photon
number configuration k can be obtained by summing the probabilities of all outcomes
of the boson sampler that are consistent with it. However, this is impractical – each
outcome probability is hard to compute (a tensor permanent if photons are partially
distinguishable [2]), and there can be an exponentially large number of events that are
consistent with a given photon number configuration in the partition.

A better way to compute these probabilities P (k) is via the characteristic function
associated with this distribution, defined as

x(η) = E
k
[exp (iη · k)] (137)

=
∑

k∈ΩK

Pk exp (iη · k) , (138)

with η ∈ RK . Here, we have defined the set

ΩK = {(k1, k2, . . . , kK) | kz ∈ Ω,∀z ∈ {1, . . . ,K}}, (139)

with Ω = {0, 1, . . . , n}. It can be seen that the probabilities P (k) can be retrieved by
evaluating x(η) at (n+ 1)K points on a K-dimensional grid, namely,

νl =
2πl

n+ 1
, with lz ∈ Ω, ∀z ∈ {1, . . . ,K} (140)



58 5 Efficient validation of Boson Sampling from binned photon-number distributions

and taking the multidimensional Fourier transform, i.e.

P (k) =
1

(n+ 1)K

∑
l∈ΩK

x(νl) exp (−iνl · k) . (141)

To evaluate the characteristic function we consider the usual boson sampling setting
where n photons are sent through a linear interferometer of m modes, with one photon
occupying each of the first n input modes (a more general input, with more than
one photon per mode, is considered in Appendix 5.10). In order to model partial
distinguishability between photons, we assume the internal degrees of freedom of the
photon entering mode j, such as polarization or spectral distribution, are described by
an internal state |ϕj⟩. The input state can then be written as

|Ψ⟩in =

n∏
j=1

(
â†j,ϕj

)
|0⟩ (142)

where |0⟩ is the vacuum state and â†j,ϕj
is the creation operator corresponding to a

photon in mode j and internal state |ϕj⟩. We also define a basis {|Φj⟩} for the internal
Hilbert space of the photons such that∑

j

⟨ϕk|Φj⟩ ⟨Φj |ϕk⟩ = 1, ∀k. (143)

Note that, even though the internal Hilbert space of the photons may be of infinite
dimension, we only need at most n basis elements to span the Hilbert space generated
by the n states |ϕj⟩. In addition, since the basis {|Φj⟩} is orthonormal, the operators
âi,Φj and â†i,Φj

obey the usual commutation relations [âi,Φj , â
†
k,Φl

] = δikδjl. Therefore,
we can define the number operator, which counts the number of photons in a spatial
mode independently of their internal states, as

n̂i =
∑
j

â†i,Φj
âi,Φj . (144)

Following the formalism of [2, 3], we assume that the interferometer Û acts only on
the spatial modes, leaving the internal wavefunctions untouched. The relation between
input and output modes is hence described by an m ×m unitary matrix U via the
equation

â†j,ϕj
→ b̂†k,ϕj

with

â†j,ϕj
= Û b̂†j,ϕj

Û † =
m∑
k=1

Ujk b̂
†
k,ϕj

. (145)

The operator which counts the number of photons in a given subset of output spatial
modes is then

N̂Kz =
∑
j∈Kz

n̂j =
∑
j∈Kz

∑
k

b̂†j,Φk
b̂j,Φk

. (146)
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We demonstrate in Appendix 5.10 that the characteristic function x(η) can be computed
as the quantum expectation value

x(η) = ⟨Ψout| eiη·N̂K |Ψout⟩ (147)

= ⟨Ψin| Û †eiη·N̂KÛ |Ψin⟩ , (148)

where we have used the notation

η · N̂K =
K∑
z=1

ηzN̂Kz . (149)

At this point, it is useful to note that V̂ (η) = Û †eiη·N̂KÛ is a linear interferometer
characterized by an m×m unitary matrix V (η) (see right panel of Fig. 13). This matrix
is constructed as

V (η) = U †Λ(η)U, (150)

where Λ(η) is a diagonal matrix given by a product of diagonal matrices

Λ(η) =

K∏
z=1

D(z)(ηz), (151)

such that

D
(z)
ab (ηz) =


eiηz , if a = b and a ∈ Kz,

1, if a = b and a /∈ Kz,

0, if a ̸= b.

(152)

Using the results of Ref. [102], it can be shown that in the ideal boson sampling
scenario where all photons are indistinguishable, the computation of the characteristic
function is given by a matrix permanent

x(η) = perm (Vn(η)) , (153)

where Vn corresponds to the n× n upper left submatrix of the matrix V . In the more
general case where the input photons can have different internal wavefunctions (see
Eq. (142)), this expression is modified in a simple way. By defining the Gram matrix

Sij = ⟨ϕi|ϕj⟩ (154)

of the overlaps of the internal states of the photons, the expression takes the form

x(η) = perm (S ⊙ Vn(η)) , (155)

where ⊙ is the Hadamard (elementwise) product: (A ⊙ B)ij = AijBij . An explicit
derivation of the expression is done in Appendix 5.10.
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5.5.2 Loss and dark counts

We can accommodate photon loss at little extra cost with this formalism. In general, a
lossy linear optical circuit can be described by first applying a lossless linear interferom-
eter W1, followed by m parallel loss channels and a final lossless linear interferometer
W2 [50]. In turn, a loss channel acting on a given optical mode can be modelled in
a unitary way, by introducing an ancillary environment mode in the vacuum state
and applying a beam-splitter with a given transmissivity λi. This implies that the
output statistics of a lossy boson sampler of m modes can be recovered by considering
a larger lossless interferometer of 2m modes, described by a unitary matrix Ũ , where
only the first m modes are measured. In the case of uniform loss, the scheme can be
simplified by considering an array of beam-splitters with the environment modes before
the interferometer described by a unitary U =W1W2 (see Fig. 14).

Figure 14: Lossy interferometer model. We use a simple model of uniform loss:
each photon has a goes through a beam-splitter of transmissivity η before entering the
interferometer. If the photon is reflected, it is sent into an environment mode, which
simulates a lost photon. The photon number distribution in binned modes of a lossy
boson sampler can be computed by considering this larger lossless interferometer.

Taking this into consideration, it is easy to adapt the formalism from Sec. 5.5.1
to obtain the photon-counting probabilities in a partition of the output modes of a
lossy interferometer. We simply consider the distribution in a partition of the larger
interferometer {K1, . . . ,KK ,Kenv}, where the last subset contains all the environment
modes. Note that the size of the matrix whose permanent we need to compute in Eq. (155)
depends only on the number of input photons. Hence, even for lossy interferometers, the
characteristic function of the photon number distribution in the binned output modes
is still given by a permanent of an n× n matrix (see Eqs. (148) and (155))), which in
this case is a submatrix of a 2m× 2m unitary matrix.

Another source of experimental noise is dark counts from the detectors. Even though
we do not consider explicitly this effect in our work we note that the effect of dark counts
can be incorporated in the calculation of the probabilities P (k). Indeed, dark counts
are a default of detectors, and do not change the underlying physics of the experiment.
It suffices to add their statistical contribution on top of the of the experiment with no
dark counts. For example, consider the simple case of a uniform dark count probability
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generation pd ≪ 1, and a single subset of size K, the probability of observing kd dark
counts is given by a binomial

q(kd) =

(
K

kd

)
pkdd (1− pd)

K−kd (156)

The overall probability Pd(k) of observing k photons is thus the convolution of the
original probability distribution P (k) with (156)

Pd(k) = (P ∗ q)(k) =
k∑

kd=0

q(kd)P (k − kd) (157)

This has a moderate effect in the complexity of computing the probability distribution
we are interested in.

5.5.3 Complexity analysis

As shown in Eq. (141), the probabilities P (k) can be evaluated by taking a multidimen-
sional DFT of the values of the characteristic function x(η). Using fast methods to
compute the multidimensional DFT, the full distribution can be computed in time

T = O(K(n+ 1)K log(n+ 1)Cx), (158)

where Cx is the cost of computing a single value of x(η). Each quantity xη requires the
evaluation of a n×n permanent which can be computed exactly using Ryser’s algorithm
– the best known classical algorithm for the exact computation of permanents – in time
O(n2n). However, in a practical scenario, the exact computation of the probabilities
is not necessary since the experimental estimation of these probabilities will always
carry an error due to the finite number of samples. Precisely, we need O(1/ϵ2) samples
to estimate the probabilities Pexp.(k) up to an additive error ϵ. Hence, if we assume
we can run the experiment a polynomial number of times, we can only estimate the
probabilities to a polynomially small error.

In what follows, we show that classical algorithms can also efficiently obtain such
polynomially small additive error approximations due to Gurvits’ permanent approxi-
mation algorithm [15]. This algorithm allows for the approximation of permanents of
unitary matrices up to error ϵ in time O(n2/ϵ2). Our result regarding the computation
of the approximate binned distribution up to a fixed total variation distance β is the
following.

For a constant partition size K, there is a classical algorithm that computes an
approximate distribution of probabilities P̃ (k) such that∑

k

|P̃ (k)− P (k)| ≤ β

in time O(n2K+2 log(n)β−2)
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Proof. Consider an approximate distribution of probabilities P̃ (k)

P̃ (k) =
1

(n+ 1)K

∑
l∈ΩK

x̃(νl) exp (−iνl · k) , (159)

obtained from the Fourier transform of approximate values of the characteristic function

x̃(νl) = x(νl) + ϵl, (160)

where ϵl is an error term. It can be shown that

∑
k

|P̃ (k)− P (k)|2 =
∑
k

∣∣∣∣∣∑
l

ϵl
(n+ 1)K

e−iνl·k

∣∣∣∣∣
2

(161)

=

∑
l |ϵl|2

(n+ 1)K
,

where we have used Parseval’s theorem. By defining ϵ = maxl ϵl, we can bound the
ℓ2-norm between the approximate and exact distribution by√∑

k

|P̃ (k)− P (k)|2 ≤ ϵ. (162)

This implies that the ℓ1-norm is bounded by∑
k

|P̃ (k)− P (k)| ≤ (n+ 1)K/2ϵ. (163)

Therefore, in order to obtain an ℓ1-norm bounded by some constant value β, we need to
compute the approximate values x̃(νl) up to an error ϵl ≤ ϵ ≤ β(n+ 1)−K/2. The cost
of evaluating each of these values using Gurvits algorithm is Cx = O(nK+2β−2). This
can be seen as follows. For any distinguishability matrix S, we can evaluate x(η) up to
error ϵ||S ⊙ Vn(η)||n in time O(n2/ϵ2) [102]. Due to a theorem by Schur (see section of
Hadamard product from Ref. [137]), we have that

||S ⊙ Vn(η)|| ≤ (max
i
Sii) ||Vn(η)|| ≤ 1. (164)

Finally, the complexity of obtaining the full approximate probability distribution
P̃ (k) can be bounded using Eq. (158) by

T = O(n2K+2 log(n)β−2), (165)

where we considered K to be a constant independent of n.

This shows that the photon counting probabilities in the binned output modes can be
approximated efficiently (in polynomial time) for any polynomially small additive error
4. While this fact is practically irrelevant to efficiently estimate usual boson sampling

4We ignore the complexity of computing the matrix V (η), which is polynomial in m, the number of
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event probabilities (as they, on average, decrease exponentially, hence requiring ϵ to be
exponentially small), it is relevant here as the probabilities P (k) sum to one and that
there are only O((n+ 1)K) of them.

5.5.4 Complexity of computing marginals

The formalism we presented also allows us to compute marginal boson sampling dis-
tributions, a commonly used validation test for boson sampling experiments [63]. For
example, if we are interested in the distribution over the first K modes, we take each
subset to be a single mode, i.e. Kz = {z}, for z ∈ {1, . . . ,K}. It is known that
marginal distributions of ideal boson sampler (with fully indistinguishable photons) can
be computed exactly in polynomial time [102, 138]. Here we show that the formalism
we consider allows us to recover this result and extend it to any input (pure) state of
partially distinguishable photons, as long as the internal states of the photons belong to
a Hilbert space of constant size. The latter is given by the rank of the S matrix (see
Eq. (154)), which we denote as rS .

To show this result, we follow very similar lines to Ref. [138] and use on the existence
of an efficient algorithm to exactly compute the permanent of n-dimensional square
matrices of the form 1+A, where A has some constant rank rA. Precisely, this takes
time O(n2rA+1). In order to compute the marginal distribution we now consider the
characteristic function (also called generating function) given by

x(η) = ⟨Ψin| Û †ei
∑r

j=1 ηj n̂j Û |Ψin⟩ (166)

= perm (Vn(η)⊙ S) . (167)

In this case, we can write

Vn(η ⊙ S) = 1n +W (η)⊙ S, (168)

where 1n is the identity matrix of dimension n and

W (η) = U †(Λ(η)− 1n)U. (169)

It is possible to see that W (η) is a matrix of rank r and thus rank(W (η)⊙ S) ≤ KrS .
This way, we can bound the cost of exactly calculating the generating function of the
marginal distribution corresponding to a subsystem of K output modes by

Cx = O(n2KrS+1). (170)

This result can be of use to speed up computations of marginals, for example, when the
main source of partial distinguishability are perturbations to the polarization state of
the photons.

In more general scenarios though, the n internal states of the photons span a Hilbert
space of dimension at most n and so this result is of limited use as W (η) can have a

modes, itself assumed to be polynomial in the number of photons n in most use cases.
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rank which scales with the system size, implying that computing the marginals exactly
with this method takes exponential time in the system size. In this case, we can may use
different approaches allowing us to exploit partial distinguishability for more efficient
approximations of the characteristic function. For example, using the techniques from
Refs. [109, 139], we may obtain approximations where the error scales as log(1/x), where
x represents a distinguishability parameter.

5.6 Signatures of multiphoton interference in Fourier interferometers

In this section, we give analytical evidence that the photon distribution in binned output
modes contains important information about multiphoton interference. To do so, we
focus on the Fourier interferometer, defined by the unitary transformation

Fjk =
1√
m
e−2πi(j−1)(k−1)/m.

This interferometer that has been widely studied in the context of validating multiphoton
interference. Due to its symmetries, it has been shown that most of the outcome
probabilities are suppressed (that is, equal zero) if the inputs are fully indistinguishable
[96, 132]. A violation of these suppression laws can be used to test indistinguishability
of the input photons.

Here we demonstrate that the formalism discussed in Sec. 5.5 can be used to obtain
analytical results about how photons distribute in subsets of output modes of a Fourier
interferometer. We show that even considering a single subset, the way indistinguishable
photons behave is drastically different than distinguishable ones. We focus on two
interesting examples, namely, the computation of the single-mode density matrix and
on the photon-counting distribution on the odd output modes. Our results go beyond
suppression laws as they allow us to predict the full distribution in these subsets and
not only which events are suppressed.

5.6.1 Single-mode density matrix

One of the simplest ways of looking for signatures of multiphoton interference is by
measuring subsystems of the output state of the linear interferometer, i.e. the reduced
state of a few output modes. We focus here on the single-mode density matrix of a
Fourier interferometer, with a single-photon in each of the input modes, i.e. n = m.
This in an interesting setting as it falls within the scope of the results of Refs. [140, 141],
which allows us to predict that the asymptotics of the single-mode density matrix is
given by a thermal state with average photon number ⟨n⟩ = 1.

To our knowledge, the exact form of the distribution for finite-sized systems has
not been shown explicitly before. We show in Appendix 5.11.2 that the formalism of
Sec. 5.5 allows us to obtain this distribution analytically. The probability of observing
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k photons, if the input photons are fully indistinguishable, is given by

PB
k =

n∑
a=k

(−1)k+a

(
a

k

)(
n

a

)
a!

na
. (171)

Although this distribution is well approximated by the geometric distribution with a
mean equal to 1, it has some important differences. For example, the probability of
observing n− 1 photons is always 0, a fact that can also be predicted from suppression
laws [96]. In contrast, interference of distinguishable photons results into a very different
distribution. Using simple combinatorial arguments, one can see that the probability of
observing k-photons in a single mode is given by the binomial distribution

PD
k =

(
n

k

)
1

nk

(
1− 1

n

)n−k

. (172)

Asymptotically, this tends to a Poisson distribution with a mean equal to 1. This shows
that photon distinguishability already plays a significant role in the photocounting
statistics of a single detector.

5.6.2 Photon number distribution in larger subsets

Figure 15: Comparison of the probability of seeing k photons in the odd output modes
of the Fourier interferometer with 1 particle per input mode. For bosons we see a
suppression of events with odd k, whereas the events with even k follow a binomial
distribution. For distinguishable particles the probabilities follow a simple binomial
distribution.

In the previous section, we have chosen to look at a very simple subset of the
output modes, given by a single mode. Our formalism, however, allows us to look
for signatures of multiphoton interference by considering more general subsets. If the
interferometer has some particular symmetries, it is expected that choices of subsets
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that reflect these symmetries should reveal larger differences between the behavior of
indistinguishable and distinguishable photons [34]. We give a specific example in what
follows. Let us consider again the Fourier interferometer with a single photon in each
of the input modes and analyse how many photons end up in the odd modes, i.e. the
set K = {1, 3, . . . , n− 1}, where we take the number of modes n to be even. Using the
formalism of Sec. 5.5, we compute analytically the photon-counting probabilities in this
subset in the two extreme cases of indistinguishable vs distinguishable photons, which
we plot in Fig. 15 (see Appendix 5.11.3 for a detailed derivation). For ideal bosons, we
obtain

PB
k =

0 if k is odd,
1

2n/2

(n/2
k

)
if k is even.

(173)

Events with an odd number of photons are fully suppressed, whereas the events with an
even photon number follow a simple binomial distribution. A sharp contrast is observed
with respect to the behavior of distinguishable photons, which follows a simple binomial
distribution

PD
k =

1

2n

(
n

j

)
. (174)

This suggests that, in an experimental setting, the analysis of photon distributions in
properly chosen subsets may be used to diagnose partial distinguishability in the input
photons. In particular, it would be interesting to investigate whether the measured
statistical deviations to the ideal distribution of Eq. (173) may be used to bound the
degree of genuine multiphoton indistinguishability of the input state [142].

5.7 Validation of boson samplers

The main premise of our work is that, from the way photons distribute in partitions
of the output modes of a boson sampler, it is possible to tell whether we are in the
presence of an ideal boson sampler from a noisy one. In this section we justify this claim
for Haar-random interferometers. First, we introduce the models of noise we analyse,
namely partial distinguishability and photon loss. Subsequently we give analytical and
numerical arguments showing the binned output distributions are sensitive to partial
distinguishability and may be used for efficient validation tests. Finally, we stress
that taking into account outcomes with a few lost photons may significantly speed-up
validation tests as they still carry information about photon distinguihability.

5.8 Noise models

Although the formalism of Sec. 5.5 is able to encompass arbitrary inputs of partially
distinguishable photons, here we consider a specific model of partial distinguishability,
for the sake of performing numerical simulations about the validation method we propose
in this work. We assume that the wave-functions describing the internal degrees of
freedom of any pair of photons have an overlap given by a distinguishability parameter
0 ≤ x ≤ 1. The off-diagonal elements of the distinguishability matrix S from Eq. (154)
are thus Sij = x whereas the diagonal elements are one by definition. In this model, the
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distinguishability matrix is a convex interpolation of the distinguishability matrices of
two extreme cases. At x = 0, the photons behave as fully distinguishable particles and
the observed statistics corresponds to the classical case (no interference), when each one
of the photons is sent at different times to the interferometer. At x = 1, we recover the
ideal boson sampling case of linear interference between fully indistinguishable bosons.
This interpolation model has been widely studied in works such as Refs. [2, 3, 61, 109],
both from the perspective of understanding interference phenomena in the "quantum-to-
classical" transition or with the aim of providing efficient classical simulation algorithms
for noisy boson samplers.

Regarding photon loss, we restrict to the uniform loss model (Fig. 21). Each photon
has a probability 0 ≤ η ≤ 1 to go through the interferometer and thus lead to a detection.
Mathematically, this is equivalent to adding a beam-splitter of transmissivity η at the
end of each output source, with the reflected branch of the beam-splitter becoming an
environment mode to which the photon can be sent (and thus represent a lost photon).
We are interested in the photon configuration in a partition of the first m modes, from
which we can infer how many photons where lost to the environment modes.

5.8.1 Comparison to asymptotic formulas

The results in Sec. 5.6 indicate that the photon-counting statistics in output mode
partitions can reveal striking signatures of multiparticle interference in certain symmetric
interferometers. It is important to understand if this is also true in the usual boson
sampling scenario, where the unitary characterizing the interferometer is drawn at
random from the Haar measure. This question was addressed in the work of Shchesnovich
in Refs. [143, 34], with the derivation of asymptotic laws characterizing how photons
distribute in the binned output modes in large interferometers. Using combinatorial
arguments, it was found that these photon-counting probabilities, when averaged over
the Haar-random interferometers, are given by

pD(k) =
n!∏K

z=1 kz!

K∏
z=1

qkzz (175)

pB(k) = pD(k)

∏K
z=1(

∏kz−1
l=0 [1 + l/Kz])∏n−1

l=0 [1 + l/m]
(176)

where D signifies distinguishable particles, and B fully indistinguishable (bosonic) ones.
We also define the bin size Kz = |Kz| as well as the relative bin size qz = Kz/m. Here,
it is assumed that the K bins span all the output modes, so from particle number
conservation we have that kK = n−

∑K−1
z=1 kz. Assuming a constant relative bin size qz,

the asymptotic form of the previous expressions, as n,m→ ∞, is given by a multivariate
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Gaussian:

P σ(k⃗|K) =
exp{−n

∑K
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ρδσ,+
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with xz = kz/m and σ = 1 for indistinguishable particles and 0 for distinguishable
ones. The difference between the behavior of these two extreme cases shows up via
the particle density ρ = n/m which influences the standard deviation of the Gaussian
statistics when the input particles are ideal bosons. For the technical details about the
validity regime of the asymptotic formula, as well as the error of this approximation, we
refer to Ref. [34].

These results suggest that the probability distribution in binned output modes
is sensitive to partial distinguishability between the photons even for Haar-random
unitaries. To our knowledge, there exist no explicit asymptotic formulae in this scenario
and so we resort to numerical simulations to confirm this hypothesis, using the method
detailed in Sec. 5.5. For simplicity, we consider a bipartition of the output modes
into two sets of equal size and the partially distinguishability model introduced in
Sec. 5.8, which interpolates between distinguishable and indistinguishable particles via
a indistinguishability parameter x. The observed distribution for 14 photons in 14
output modes for several values of x is plotted in Fig. 16. The figure reveals significant
differences in the probabilities as the indistinguishability parameter is varied. The width
of the bell-shaped curve decreases as photons become more and more distinguishable,
as suggested by the asymptotic formulas from Eqs. (176) and (175) which describe the
extremes. This indicates that boson bunching effects play a role, since events where a
large fraction of the photons are observed in the same bin are more likely as the photons
become more indistinguishable.

5.8.2 Distance between distributions

A standard quantity used to quantify the distance between probability distributions is
the total variation distance (TVD), defined as

tvd(p, q) =
∑
j

|pj − qj |. (178)

This is an especially pertinent metric regarding the problem of distinguishing two distri-
butions [144, 145] via sampling, since the number of samples ns needed to distinguish a
distribution p from another q scales as

ns = O(tvd(p, q)−2). (179)

In what follows, we analyse how the TVD varies in different cases, depending on system
size, partial distinguishability and loss.
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Figure 16: Effect of partial distinguishability on a subset distribution. We
consider the photon number distribution in a subset consisting of the first half of the
m = 14 output modes with n = 14. The probabilities are averaged on 1000 Haar-
random unitaries. Error bars show one standard deviation. We see that they are well
approximated by a Gaussian distribution, with the main difference between each case
being the width of the curve.

For the rest of this paper, and unless specified otherwise, we will always select the
bins to form an equipartition, as defined in Appendix 5.12.1.

Bosons vs. distinguishable particles First, let us compare the two extreme cases
of indistinguishable vs distinguishable particles. In Fig. 17, we analyse how the TVD,
averaged over Haar-random unitaries, depends on the number of input photons. We do
so in two different scenarios: when the density ρ = n/m is constant as well as in the
regime usually considered in boson sampling, where the number of modes m = O(n2)

(and thus ρ = 1/n), which ensures that the probability of observing events with collisions
is small [102]. As suggested by the asymptotic formulae, the density plays an important
role. For constant density the TVD remains constant independently of the number
of photons and consequently, the number of samples needed to distinguish the two
distributions does not scale with the system size. In contrast, the bottom curve in
Fig. 17 suggests an inverse polynomial decay for the TVD in the collision-free regime.
This implies that the two distributions can still be distinguished efficiently, i.e. with a
polynomial number of samples. We also remark the significant increase of the TVD if
we take a larger partition size. For example, we observe that the TVD roughly doubles
when we compare K = 2 with K = 4, which implies we need 4 times less samples to
distinguish the two distributions, according to Eq. (179).

Partial distinguishability As previously mentioned, partial distinguishability between
the input photons is one of the main sources of noise in boson samplers and may render
the experiment easy to simulate classically [109, 127]. Hence, a good validation test
should be able to differentiate between an ideal boson sampler from one with partially
distinguishable photons. To have a better understanding about the sensitivity of our
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Figure 17: Evolution of the TVD with the system size. Haar-averaged TVD
between the binned output distributions of bosonic and distinguishable inputs with
varying system size. We consider two equipartions of size K = 2 and K = 3. In the
top subplot, we consider a sparse but constant density m = 5n, while in the bottom
subplot it is the no-collision regime m = n2. The error bars represent the standard
deviation when averaged over 100 trials. Fluctuations come from the intrinsic random
Haar sampling, as well as the limited batch size used in the averaging. It can be seen
that coefficient of variation decreases with increased system size (see Appendix 5.12).
We also see a significant increase of the TVD when we choose a larger partition size.

validation test to partial distinguishability we again make use of the the one-parameter
model interpolating between distinguishable and indistinguishable photons (see Sec. 5.8).
In Fig. 18 we compare the distance between the photon-counting probabilities in the
partitions when the input photons are indistinguishable (x = 1) and when they are
partially distinguishable, as a function of the parameter x. We see a sharp increase
in the TVD as we move away from the ideal case, suggesting that the probability
distributions can be distinguished in practical scenarios.

Similarly, we have also analysed how the variation of the TVD between the distribu-
tions coming from ideal bosons or partially distinguishable ones (with some fixed x)
varies as a function of the system size. Interestingly, the behavior follows the same trend
as that that of Fig. 17: for constant densities the TVD remains constant whereas in the
“collision free" regime it suggests a polynomial decay. A specific example for x = 0.9,
can be found in Fig. 23 of Appendix 5.12. This numerical evidence strongly suggests
that the method of analysing photon-counting distributions in subsets can efficiently
distinguish ideal boson samplers from ones with partially distinguishable inputs.

Dependency on photon density The previous results reaffirm the important role
of photon density in the efficiency of discriminating ideal and noisy boson samplers.
Although analytical results about this dependency may be difficult to obtain, we may
use the numerical data to extract power laws that approximately govern this behavior.
For different values of partial distinguishability, and considering equipartitions with a
small number of subsets, the data suggests that TVD between the ideal distribution and
that coming from partially distinguishable input photons with a fixed x is approximately
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Figure 18: Effect of partial distinguishability on TVD. The TVD between the
binned distributions corresponding to ideal photons (x = 1) and partially distinguishable
ones is displayed as a function of the distinguishability parameter x. In this figure we
took m = n = 10 and equipartitions of size K = 2, 3, 4.

described by the following behavior

tvd(B, x) ≃ c(K,x)ρ. (180)

Here, ρ = n/m is the photon density and c(K,x) is a numerical constant depending on
the number of subsets K and the level of partial distinguishability x. More precisely,
when fitting the numerical data with an ansatz model tvd(B, x) ≃ c(K,x)ρr, we obtain
a value of r ≈ 0.95, with some small variability depending on the value of partial
distinguishability chosen, which may be also due to the finite number of trials. Further
plots and details regarding the quality of the approximation are given in Appendix 5.12.
While not formally proven, this approximate power law in the regimes we explored
further suggests the efficiency of the validation scheme, with a polynomial decrease of
the TVD between binned distributions when ρ decreases polynomially in the number of
photons.

5.8.3 Hypothesis testing

Given a collection of experimental samples and two possible theoretical descriptions
of the experiment, the formalism of Bayesian hypothesis testing allows us to predict
how many samples are needed to decide which one is more likely to describe the
observed data. This strategy has been exploited in the context of boson sampling
in Refs. [124, 146, 147]. We may assume that one of the hypothesis to describe the
experiment is an ideal boson sampler, with indistinguishable input photons. We call this
the null hypothesis H0, which we would like to test against an alternative description of
the experiment Ha. The later could be for example a boson sampler with distinguishable
or partially distinguishable input photons. Given an output sample s = (s1, s2, . . . , sm),
we can compute the ratio between the probability of observing this sample assuming
the null hypothesis p(s|H0), and its counterpart assuming the alternative hypothesis
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p(s|Ha). The product of these ratios over the different samples give us the Bayesian
factor

χ =

ns∏
i=1

p(s(i)|H0)

p(s(i)|Ha)
, (181)

where s(i) refers to the i-th sample and ns to the total number of samples. The
confidence in the hypothesis H0 can be computed from χ as

pnull = χ/(χ+ 1). (182)

Although there is numerical evidence that this method requires only a modest number
of samples to validate an ideal boson sampler against certain alternative hypothe-
sis [124, 146, 147], the main drawback is that the computation of the confidence pnull
is not efficient. Indeed, the output probabilities of ideal boson samplers p(s(i)|H0) are
exponentially hard to approximate.

Figure 19: Number of samples required to distinguish the indistinguishable and
distinguishable inputs. This number of samples is determined by taking the average
number of samples required to obtain a certainty of pnull = 95% using the Bayesian
approach laid out in the main text, see (181). We numerically confirmed that this
quantity depends to a good approximation only from boson density ρ in numerical
trials, as is discussed in the main text for the TVD. This specific figure was generated
using parameters n = 10, m = 10, . . . , 300 and each point is an average over 1000
Haar-random unitaries.

In this section, we consider as output samples the events k, corresponding to the
photon number distribution in K bins as discussed in Sec. 5.5. We show that this
simpler-to-compute probability distribution can be used to validate boson sampling
experiments, instead of the full outcome distribution. In particular, we are interested
in the following question: how many samples do we need to reject the hypothesis that
we have an ideal boson sampler when we are in the presence of a noisy one? To give
an example, we again focus on the interpolating model of partial distinguishability
discussed in Sec. 5.8. In Fig. 20, we plot the number of samples needed to reject the null
hypothesis with a confidence of 95% if the experiment is described by a boson sampler
whose input has a distinguishability parameter x. We observe that for 10 photons in 10
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modes and a distinguishability parameter x = 0.8, a few hundred samples are enough
to reject the null hypothesis even in the simplest case where we choose two equal-sized
bins. This is improved by a factor of about one half if we bin the output modes into
three subsets, thus gaining more information about the full probability distribution.
We remark also that, as expected, the number of samples to reject the null hypothesis
sharply increases as the noisy boson sampler becomes closer to ideal, i.e. as x tends to
one.

Numerical evidence also suggests that it is possible to extract approximate power
laws, that allow us to predict the number of samples needed as a function of the photon
density, in analogy to what was done for the TVD in Sec. 5.8.2. In the case where the
task is to differentiate between distinguishable vs. indistinguishable input photons, we
verify numerically that this dependence is well described by the following power law

ns ≈
d(K)

ρ5/2
, (183)

which we extract from the data of Fig. 19. Here, d(K) a constant depending on the
choice of partition and level of partial distinguishability. Similar power laws may be
extracted when the input photons are partially distinguishable (more details in Appendix
5.12). Such extrapolations are useful to predict the necessary sampling rates for validate
experiments when scaling up the system size.

Figure 20: Number of samples required to reject the null hypothesis of having
indistinguishable bosons when the input is actually the one parameter interpolation
with indistinguishability 0.8 ≤ x ≤ 0.99. This number of samples is determined by
taking the average number of samples required to obtain a certainty less than pnull = 5%
using the Bayesian approach laid out in the main text, see (181). This specific figure
was generated using parameters n = 10, m = 10 and each point is an average over 1000
Haar-random unitaries.

5.8.4 Validation in the presence of loss

Thus far, we have not yet considered the role of loss in the validation task. The average
number of photons that go through the linear optical circuit decreases exponentially with
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the circuit depth [50], which is usually linear with the number of modes. Hence, most of
the experimental observations will be of lossy events and even though postselection on
"lossless" events is possible, it would lead to an exponential decrease of the sampling rate.
For this reason, it is interesting to consider events with a few lost photons for the task
of validating an experiment trying to demonstrate a quantum computational advantage
– this not only increases significantly the sampling rate but also these experiments may
still be difficult to simulate with classical algorithms, provided that the photons are
fully indistinguishable from each other [120].

The question we address in this section is whether such lossy events can be used to
validate the experiment faster, i.e. whether they contain useful information about other
sources of noise affecting the experiment, namely photon distinguishability, which may
render the experiment easy to simulate classically. Let us consider again the hypothesis
testing setting using the data from how photons distribute in subsets of output modes.
Here we consider only a single subset with half the modes for simplicity. We define
the validation time as the time needed to distinguish between the ideal hypothesis H0

and an alternative one Ha with some predetermined confidence (say 95%), assuming
a constant sampling rate of the lossy boson sampler. As we will see, using data with
lost photons to test for photon distinguishability, may lead to a significant speed-up in
the validation time. To give a concrete example, we consider the task of validating a
boson sampler with 10 photons in 10 modes for different loss parameters. We assume
our boson sampler has a partially distinguishable input state with distinguishability
parameter x = 0.9 (hypothesis Ha) and the task is to test if it is an ideal one with
x = 1 (hypothesis H0). We define Tl as the average validation time over Haar-random
interferometers, if we take into account the data up to l lost photons. In Fig. 21, we
plot the ratio T0/Tl as a function of the loss rate which we assume to be uniform. This
quantity reflects the average speed-up obtained by considering data with lost photons.
For a loss rate of 0.2, a speed-up of around 40-fold is obtained when considering all
the data, independently of how many photons were lost. Fig. 21 also reveals that,
as expected, events where more photons were lost contain less information about the
distinguishability of the input. This is visible, for example, from the fact that the
speed-up obtained when taking the data with up to five lost photons is very similar to
taking all the data. We have verified numerically that this speed up tends to increase
in larger systems, even for a fixed η.

5.9 Discussion

In this work, we have showed that a coarse-graining of the boson sampling output
distribution by grouping the output modes into bins, provides a simpler to analyse
outcome distribution and a natural validation test for boson samplers. We demonstrate
that, given a theoretical model of the experiment, the binned output distribution can
be classically approximated as efficiently as if we run the experiment itself. The main
technique we use to obtain this result is the computation of the (discrete) characteristic
function of the binned distribution via Gurvits randomized algorithm for permanent
approximation [102].
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Figure 21: Validation speed up using lost photons. In this figure, we take a single
subset of half the m = 10 output modes with n = 10 photons. We validate that the
observations are indistinguishable bosons versus the one-parameter model with x = 0.9.
We consider a model of uniform loss, with single photon transmissivity η. The reference
curve shows validation with no lost photons (y-coordinate is 1). Curves with l ≤ 1, . . . , 5
show that the including output data with up to l photons lost gives significantly a faster
validation scheme. This speed up becomes less and less important as l increases. The
data is averaged over 100 Haar-random unitaries and 1000 validation runs for each
unitary.

Even for a small number of output bins, the distribution reveals great sensitivity to
photon distinguishability. Our numerical simulations using this validation test suggest
that a polynomial number of samples is sufficient to distinguish an ideal boson sampler
from one with partially distinguishable input photons. We also showed how in realistic
situations – where the experimental data includes a vast majority of events where
photons are lost – the outcomes with lost photons contain useful information about
partial distinguishability and that the effective use of this data can greatly speed-up
validation tests.

Multiple interesting research questions arise related to this validation test. If we do
not trust that the data is coming from an actual physical experiment, can we guarantee
that no efficient classical algorithm exists that may spoof the test? An important
property of the validation test we consider in our work is that the subsets we choose to
test the experimental data can be chosen arbitrarily a posteriori. At first sight, this
makes the test harder to spoof: a potential adversary trying to mimic the behavior of an
ideal boson sampler would have to generate samples such that they are consistent with
the correct coarse-grained photon-counting distributions for exponentially many possible
subset choices. However, one may wonder whether the knowledge of the analytic form of
the average over Haar-random unitaries of the binned-output distribution (see Eq. (176)
and Refs. [34, 143]) may be used to spoof the test. We leave this question for future
consideration.

Another interesting question is whether it is possible to obtain analytical results cor-
roborating our numerical evidence about the sample efficiency of the method. Previous
results on validation tests based on generalized bunching probabilities from Ref. [19],
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which can be seen as a particular outcome of a binned distribution, suggest that compar-
ing bosonic and distinguishable particles can be done in a sample efficient way. However,
the problem becomes more difficult when different models of partial distinguishability
come into play.

Moreover, while we set our interest in using binned output probabilities as a validation
method, we also believe that it could be a useful tool for probing partial distinguishability.
Deviations from the expected binned output distributions may possibly be used to
quantify the degree of indistinguishability of the input photons, specially in highly
symmetric interferometers such as the Fourier transform, where large differences between
distinguishable and indistinguishable particles are observed.

Our work also opens up the question of whether certain decision or function problems
that can be solved by boson samplers proposed in Refs. [148, 149], with potential
cryptographic applications, may actually be solved by efficient classical algorithms.
Some of these problems are also based on questions related to probability distributions
obtained after certain binning of the boson sampling data. Even though the binning
procedure is not directly equivalent to ours, it would be worth investigating if the binned
distributions from Refs. [148, 149] may be approximated via a similar formalism to that
presented in Sec. 5.5.

During the completion of this work, we became aware of the recent works from
Refs. [150, 151, 152]. Ref. [150] develops an efficient classical algorithm to approximate
molecular vibronic spectra, using a Formalism similar to Sec. 5.5 based on approximating
Fourier components of the target probability distribution using Gurvits algorithms. In
turn, Refs. [151, 152] consider photon-number distributions in binned output modes
as validation tests of Gaussian boson samplers. The authors use phase space methods
to approximate these distributions, which are referred to as group-count probabilities.
In contrast, we focus on validation of standard boson samplers and develop a different
formalism to compute group-count probabilities which does not involve phase space
averages. Another difference of our work is that, while the authors of Refs. [151, 152]
focus on noise sources more likely to affect Gaussian boson samplers, we focus on testing
the sensitivity of the method to photon distinguishability as this is one of the main
noise sources affecting standard boson samplers. Overall, we believe our contribution,
together with those previous works, suggests that analysing how photons distribute
in binned output modes is a scalable and practical method to use for validation of
near-future experiments.

Note that, for the sake of conciseness and ease of reading, we made the choice
to limit the numerical analysis exposed in this paper to simple noise models such as
uniform partial distinguishability and loss. In Ref. [153], we provide tools that allow for
general noise models, see below.

Code availability

A complete Julia package, BosonSampling.jl, and its related package, Perma-
nents.jl, includes all the tools presented in this paper and many more regarding boson
sampling. They are written in a user-friendly way and are aimed at experimentalists

https://github.com/benoitseron/BosonSampling.jl
https://github.com/benoitseron/Permanents.jl
https://github.com/benoitseron/Permanents.jl
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wanting to use this work. This package is already being used in boson sampling ex-
periments. The package is also focused on making it easy to write new models (such
as noisy detectors, or new types of boson sampling) in an easy to write manner while
being as fast as low-level languages such as C.

A related publication [98] regarding BosonSampling.jl is available on the arxiv.
A complete tutorial and documentation are provided and interested users are welcome

to contact the authors for possible extensions or specific needs.
All available Figures and data found in this article can be reproduced directly from

the /docs/publication/partition/ folder of the package.

https://github.com/benoitseron/BosonSampling.jl
https://benoitseron.github.io/BosonSampling.jl/stable/
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Appendix

5.10 Transition amplitudes in the partially distinguishable case

5.10.1 Expression of the characteristic function as an amplitude

Let us first show that the characteristic function introduced in Eq. 137

x(η) = E
k
[exp (iη · k)] (184)

=
∑

k∈ΩK

P (k) exp (iη · k) (185)

can be expressed as through computing expectation values (also referred to as ampli-
tudes)

x(η) =
〈
Ψout

∣∣∣ei∑K
z=1 ηzN̂Kz

∣∣∣Ψout

〉
. (186)

Given an orthonormal basis for the internal states of the photons {|Φj⟩}, we can expand
any n-photon state with mode occupation numbers s = (s1, . . . , sm) into the following
orthonormal basis:

|d(s),Φa⟩ =
1√
µ(s)

n∏
j=1

b̂†dj(s),Φaj
|0⟩ . (187)

Here, d(s) is the mode assignment list, a vector of dimension n constructed as d(s) =

⊕n
j=1 ⊕

sj
k=1 (j) [1]. The component dj(s) reflects the spatial mode occupied by the jth

particle and is formally constructed by repeating sj times the mode number j. In turn,
a is also a vector of dimension n, whose indices aj define that the internal state of the
jth particle is

∣∣Φaj

〉
. Moreover, we also define µ(s) = s1! · · · sm!.

The output state of a boson sampler with partially distinguishable input photons
can then be written as

|Ψout⟩ =
∑

d(s),a

α(d(s),Φa) |d(s),Φa⟩ (188)

where

α(d(s),Φa) =

〈
n∏

j=1

b̂dj(s),Φaj

∣∣∣∣∣∣Ψout

〉
(189)



5.10 Transition amplitudes in the partially distinguishable case 79

We can now expand part of the right side of Eq. (186) as

ei
∑K

z=1 ηzN̂Kz |Ψout⟩ (190)

= ei
∑K

z=1 ηz
∑

j∈Kz
n̂j |Ψout⟩ (191)

=
∑

d(s),a

ei
∑K

z=1 ηz
∑

j∈Kz
n̂jα(d(s),Φa) |d(s),Φa⟩ (192)

=
n∑

k1=0

· · ·
n∑

kK=0

ei
∑K

z=1 ηzkz
∑

d(s)|k,a

α(d(s),Φa) |d(s),Φa⟩ (193)

where d(s)|k is understood as the vectors s compatible with finding the partition output
count k. By applying ⟨Ψout|, we obtain

x(η) =

n∑
k1=0

· · ·
n∑

kK=0

ei
∑K

z=1 ηzkz
∑

d(s)|k,a

|α(d(s),Φa)|2 (194)

Remark that
P (k) =

∑
d(s)|k,a

|α(d(s),Φa)|2 (195)

is the probability to find the photon count k, by construction, which proves that we
recover Eq. (185). Therefore, by simply applying a K-dimensional Fourier transform,
we can obtain the binned output probabilities from the values of the xη’s by computing:

P (k) =
1

(n+ 1)K

n∑
l1=0

· · ·
n∑

lK=0

x

(
2πl

n+ 1

)
e−2πil·k/(n+1) (196)

5.10.2 Computation of the amplitudes as permanents

Let us derive the expression for x(η) from Eq. (155). We recall that

x(η) = ⟨Ψout| eiη·N̂K |Ψout⟩ (197)

= ⟨Ψin| Û †eiη·N̂KÛ |Ψin⟩ (198)

Written in this form, x(η) can be interpreted as the amplitude of |Ψin⟩ staying intact
through a virtual interferometer

V̂ (η) = Û †eiη·N̂KÛ

To ease notation, we will denote V (η) as simply V . Even though in the main part of the
paper we consider an input state with one photon per mode, here we do a slightly more
general derivation encompassing states of more than one photon per input mode, with
mode occupation numbers given by a vector r. Using the standard trick of inserting
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V̂ V̂ † in between each creation operator, we obtain

x(η) =
1

µ(r)

〈
0

∣∣∣∣∣∣
n∏

j=1

âdj(r),ϕdj(r)

n∏
j=1

m∑
k=1

Vdj(r),kâ
†
k,ϕdj(r)

∣∣∣∣∣∣0
〉

(199)

=
1

µ(r)

m∑
k1,...,kn=1

 n∏
j=1

Vdi(r),ki

〈0
∣∣∣∣∣∣

n∏
j=1

âdj(r),ϕdj(r)
â†kj ,ϕdj(r)

∣∣∣∣∣∣0
〉
. (200)

(201)

Let’s now compute the quantity between brackets by expanding the internal degrees of
freedom into a basis

|ϕj⟩ =
m∑
α

cjα |Φα⟩ . (202)

As there are only n photons, we could stop the sum to n as the other coefficients will be
zero, but to ease the notation we keep the sum running up to m with the understanding
that some coefficients are zero by construction. Thus〈

0

∣∣∣∣∣∣
n∏

j=1

âdj(r),ϕdj(r)
â†kj ,ϕdj(r)

∣∣∣∣∣∣0
〉

=
m∑

α1,...,αn,β1,...,βn=1

c∗d1,α1
. . . c∗dn,αn

cd1,β1 . . . cdn,βn (203)

×

〈
0

∣∣∣∣∣∣
n∏

j=1

âdj(r),Φαj
â†kj ,Φβj

∣∣∣∣∣∣0
〉

(204)

This last quantity is given by〈
0

∣∣∣∣∣∣
n∏

j=1

âdj(r),Φαj
â†kj ,Φβj

∣∣∣∣∣∣0
〉

=
∑
σ∈Sn

n∏
i=1

δdi(r),kσi δαi,βσi
. (205)

Plugging into the expression for x(η) we obtain

x(η) =
1

µ(r)

m∑
α1,...,αn

∑
σ∈Sn

n∏
j=1

Vdi(r),dσ−1
i

(r)c
∗
di,αi

cdi,ασ−1
i

(206)

where we use the fact that if σ ∈ Sn then
∏n

i=1Ai,σi =
∏n

i=1Aσ−1
i ,i to rearrange the

product. Next, we eliminate the sums over α′s by recombining the coefficients cj,α into
scalar products of the wavefunctions of internal degrees of freedom as

⟨ϕi|ϕj⟩ =
∑
α

c∗i,αcj,α ≡ Sij . (207)

This leads to the expression

x(η) =
1

µ(r)

∑
σ∈Sn

n∏
j=1

Vdi(r),dσ−1
i

(r)Sdi(r),dσ−1
i

(r) (208)
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By defining, as is conventional, the following reduced matrices to lighten the notation

M̃ij = Vdi(r),dj(r) (209)

S̃ij = Sdi(r),dj(r) (210)

we recover a compact expression

x(η) =
1

µ(r)

∑
σ∈Sn

n∏
j=1

S̃i,σiM̃i,σi (211)

=
1

µ(r)
perm

(
S̃ ⊙ M̃

)
(212)

involving a single n× n permanent of the elementwise (Hadamard) product between
two matrices: the first constructed from entries of the Gram matrix of the internal
degrees of freedom and the second from the interferometer V . When considering an
input of photons occupying modes (1, . . . , n), this reduces to the expression presented
in the main text.

5.11 Binned distributions of Fourier interferometers

5.11.1 Explicit probabilities for a single subset

In order to derive the expressions for the single-mode distributions obtained in Sec. 5.6.1,
we first derive a general expression for the photon-number distribution in a single subset
of output modes which may be of independent interest. First we note that we can write
Eq. (150) as

V (η) =
(
1+ (eiη − 1)H

)
, (213)

where the matrix H is defined in terms of the interferometer U as

Ha,b =
∑
l∈K

U∗
l,aUl,b, (214)

for some subset of interest denoted as K. Let us define Hn as the n × n submatrix
obtained from the first n rows and columns of Hn and H ′

n = S ⊙Hn. Using the fact
that the diagonal elements of the S matrix are Sii = 1 we can write

S ⊙ Vn(η) = S ⊙
(
1n + (eiη − 1)Hn

)
(215)

= 1n + (eiη − 1)H ′
n (216)

Using an identity from Minc [154] (Chapter 2.2 exercise 5), the expression for the
amplitudes x(νl), with νl = 2πl/(n+ 1) can be expanded as follows

x(νl) = perm
(
1n + (eiνl − 1)H ′

n

)
(217)

= 1 +
n∑

a=1

ca(1− eiνl)a. (218)
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The coefficients ca are given by

ca = (−1)a
∑

w̄∈Qa,n

perm
(
H ′

n[w̄]
)
, (219)

where Qa,n denotes the set of all strictly ordered subsets of w̄ ⊂ {1, 2, . . . , n} containing
a elements. Furthermore, H ′

n[w̄] denotes an a × a submatrix of H ′
n whose rows and

columns are picked according to w̄. Plugging in Eq. (218) into Eq. (141) we can obtain,
after some manipulations, an explicit expression for the probabilities of observing k
photons in the subset K

P (k) = (−1)k
n∑

a=k

(
a

k

)
ca. (220)

This expression is of limited use since in general it is given by a sum of exponentially
many permanents. However, in some particular cases (such as the one in Sec. 5.6.1) it
can be used to obtain analytical results for the probabilities. Moreover, it can be used
to recover some results that were previously obtained. In particular, it can be seen from
this expression that the probability that all photons end up in the chosen subset, which
can be seen as a generalized bunching probability, is given by

P (n) = perm
(
H ′

n

)
, (221)

retrieving the result derived in [19]. It is also possible to see from the probability of not
observing any photons in subset K is given by

P (0) = perm
(
1n −H ′

n

)
. (222)

The latter expression is consistent with the fact that this probability is the same as that
of seeing n photons in the complement of subset K and was considered in [61]. Therein,
it was also shown that this quantity can be used to distinguish certain efficient classical
simulation algorithms from boson samplers with partially distinguishable inputs for
constant density ρ = n/m.

5.11.2 Single mode output distribution

We now apply our previous derivation to the problem of obtaining the photon number
distribution in a single detector of the Fourier interferometer. Without loss of generality
we choose the subset K1 = {1}. In this case, for an m-mode Fourier interferometer the
H matrix takes the simple form

Hi,j = F ∗
1iF1j =

1

m
. (223)
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For indistinguishable photons we have that H ′
n = Hn and the coefficients ca from

Eq. (219) are given by

ca = (−1)a
∑

w̄∈Qa,n

perm (Hn[w̄])

= (−1)a
∑

w̄∈Qa,n

a!

ma

= (−1)a
(
n

a

)
a!

ma
,

where we used the fact that the number of possible strictly order subsets from Qa,n is
|Qa,n| =

(
n
a

)
. Plugging in Eq. (220), we obtain

PB
k =

n∑
a=k

(−1)k+a

(
a

k

)(
n

a

)
a!

ma
. (224)

Although to our knowledge this expression has not been derived before, it is known
from the general results of Ref. [140] that the single mode density matrix converges to a
thermal state with an average number of photons n/m. In contrast, it can be seen that
if we have fully distinguishable particles at the input, the distribution PD

k is a binomial
distribution. In this case, the probability that each particle appears in the first output
mode is 1/m and hence the probability of observing k particles in this mode is

PD
k =

(
n

k

)
1

mk

(
1− 1

m

)n−k

. (225)

In the regime of constant density ρ = n/m = const., this probability distribution tends
to a Poisson distribution with mean ρ. It can be seen that these two distributions are
sufficiently far apart and that it should be possible to distinguish them efficiently, i.e.
with a number of samples growing polynomially in n, both in the constant density
regime and in the collision free regime m = n2.

5.11.3 Photon number distribution in the odd modes

We will now restrain ourselves to the case where the number of modes m is equal
to the number of input photons n and thus consider exactly one photon per input
mode. We will show that for the choice of a specific partition of the output modes,
a striking difference exists between the distinguishable and indistinguishable cases by
computing analytically those probability density functions. Namely, we will consider
the special subset of the output modes consisting of the modes with odd numbers
K = {1, 3, 5, . . . , n− 1} and will restrict ourselves to n even. In this scenario, we show
that if the input are bosons the probability of seeing an odd number of photons in
K is 0, whereas the probability of seeing an even number of photons follows a simple
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binomial distribution. We start by computing

x(η) = perm
(
F †Λ(η)F

)
. (226)

We will first simplify the matrix product inside the permanent. We start by writing

Λ(η) = 1+
∑
j∈K

(
eiη − 1

)
|j⟩ ⟨j|

so that

(F †Λ(η)F )ab = δab +
(
eiη − 1

)∑
j∈K

F †
ajFjb

= δab +
(
eiη − 1

)∑
j∈K

1

n
exp

(
2πi

n
(j − 1)(a− b)

)

= δab +
(
eiη − 1

) 1
n

n/2−1∑
k=0

exp

(
4πi

n
k(a− b)

)

Now, let’s note that the sum is a geometric series

n/2−1∑
k=0

exp

(
4πi

n
k(a− b)

)
=

=

n
2 , if |a− b| = 0 or n

2

0 otherwise

given that a, b are integers. Thus

(F †Λ(η)F )ab =


eiη+1

2 if a = b

eiη−1
2 if |a− b| = n

2

0 otherwise

(227)

In other words,

V (η) = F †Λ(η)F = (228)

= circ
(
eiη + 1

2
, 0, . . . , 0,

eiη − 1

2
, 0, . . . , 0

)
(229)

where circ(v⃗) denotes the circulant matrix whose first row is v⃗. Now let’s see that this
form allows us to compute the permanent analytically. We have that

perm (V (η)) =
∑
σ∈Sn

∏
i

V (η)iσ(i). (230)

Due to the large number of zeros in V (ϕ) the sum over all permutations can be greatly
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simplified. In fact, the only permutations that lead to a non-zero product
∏

i V (η)iσ(i)
are those such that σ(i) = i or σ(i) = i + n/2 (mod n). Such permutations can be
written as a product of disjoint permutations

σ = γ1γ2 . . . γn/2 (231)

where γi ∈ {e, τi}, e is the identity permutation and τi is the transposition that switches
elements i with element i+ n/2 (mod n). Hence we can write

perm (V (ϕ)) =
∑
γ1

∑
γ2

· · ·
∑
γn/2

n/2∏
i=1

V (η)i,γi(i)V (η)n
2
+i,γi(

n
2
+i) (232)

=

n/2∏
i=1

∑
γi

V (η)i,γi(i)V (η)n
2
+i,γi(

n
2
+i) (233)

=

n/2∏
i=1

((
eiη + 1

2

)2

+

(
eiη − 1

2

)2
)

(234)

=

((
eiη + 1

2

)2

+

(
eiη − 1

2

)2
)n/2

(235)

=
1

2n/2
(e2iη + 1)n/2 (236)

In the second step we used the fact that the γi’s are disjoint permutations to switch the
product with the sum. Finally, by applying Eq. (141) we obtain

PB
k =

0 if k is odd
1

2n/2

(n/2
k

)
if k is even

(237)

Comparatively, we can find the counterpart of this expression for distinguishable
particles following a simple statistical argument. For an unbiased interferometer (such as
the Fourier interferometer), the probability that a given particle falls into the partition
A is q = |A|/m such that the probability to find j photons inside the partition is given
by the binomial distribution

PD
j =

(
n

j

)
qj(1− q)n−j

which, in the case discussed above, reduces to

pDj =
1

2n

(
n

j

)
.

The striking difference between the two cases is represented in Fig. 15. It is possible to
see that the TVD between these two probability distributions tends to a constant as n
goes to infinity.
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5.12 Further numerical investigations

In this appendix, we present extra numerical evidence to support the claims made in
the main text. All plots of this paper are reproducible by using the associated project,
BosonSampling.jl which contains the exact code needed for their execution. The
package also allows to explore different parameter ranges.

5.12.1 Default partition choice

Unless otherwise specified, the choice of partition is made as follows. We divide all
physical output modes m in K bins. For a lossy boson sampler, all the environment
modes are always grouped together in a single bin. If K divides m, each physical bin is
contains m/K modes. Otherwise, we can decompose m = p(K − 1) + q. Then the first
K − 1 bins are of size p while the remaining one of size q. We always take consecutive
modes in building each bin. This choice is not very important as we approximately
obtain the Haar average value of the probabilities by computing them for several Haar
random unitaries. We remark that for the Haar averaged probabilities only the size of
each bin matters and not the specific choice of partitionas. Arbitrary arrangements
for the bins, which may be useful to test particular interferometers, can readily be
simulated with the provided codes.

5.12.2 Variability of the TVD

In Fig. 22, we show the behaviour of the variance bars of Fig. 17, showing how the
TVD converges to its mean value.

Figure 22: Variability of the TVD with system size. We plot the same parameters
as in Fig. 17 but instead of looking at the TVD we display its coefficient of variation
(CV), defined as the standard deviation divided by the mean. To a good approximation,
it follows a power law of form CV ∝ n−1 in all plots with a slightly varying prefactor of
order one.
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5.12.3 TVD with partial distinguishability

In Fig. 23, we show here that the TVD decreases in a similar fashion than described
in Fig. 17 when comparing indistinguishable particles to nearly indistinguishable ones.
This is an important observation as this gives strong evidence for the scalability of our
validation protocol even in real-world use cases. In addition, the fact that the distance
between distributions may allow for the estimation of the distinguishability levels in the
experiment, by finding the distinguishability parameter that gives the highest agreement
with the experimental data.

Figure 23: TVD between bosonic and nearly indistinguishable particles. This
figure shows that the results shown in Fig. 17 hold even when comparing indistinguish-
able photons to nearly indistinguishable ones. All parameters are identical to those from
Fig. 17, except from the fact that we compare ideal bosons to partially distinguishable
ones with x = 0.9 (instead of x = 0). We confirmed this trend in multiple numerical
trials with other values of distinguishability parameter x.

5.12.4 The role of boson density

Our numerical investigations highlight the preponderant role of boson density ρ = n/m

in the behavior of the TVD between binned distributions of different types of input
particles. This dependency is shown in Fig. 24 for the TVD between distinguishable
and indistinguishable photons. These power law fits at low number of photons are
useful to understand the scalability of the validation technique we consider for larger
experiments. Overall, we find that

tvd(B, x) ≈ c(K,x)ρ (238)

with c(2, 0) ≈ 0.41, c(3, 0) ≈ 0.67. We see how the above equation holds when using
different values of n in Fig. 25. While some slight variation is found in small sized systems,
the power law seems to become nearly independent of n in larger systems. Likewise,
we also check that it holds to a good approximation when comparing indistinguishable
photons to some with partial distinguishability x in Fig. 26.
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Figure 24: Effect of boson density. The Haar-averaged TVD between bosonic and
distinguishable particles (asymptotically) depends only on the boson density ρ, see
(177). We show how it evolves in the example of n = 10 and m = 10, . . . , 300 with a
number of subsets K = 2, 3, 4. Real-world experiments typically have a high boson
density, for instance [42] has n = 20 and m = 60 thus ρ = 1/3. Note that the hardness
of boson sampling is shown in a very dilute case of m ∝ n6 and conjectured in the "no
collision" regime m ∝ n2 [102].

Figure 25: Validity of the power law. In Fig 24 we claim that the density is the
prime factor modifying the TVD. Here we provide a justification for this by looking at
the power-law fit tvd(B,D) = c(K, 0)ρr with K the number of subsets in the partition.
We plot the coefficients for various values of n. The values of m are such that the
density ranges from 1, . . . , 0.03. 10 values of m are taken and are equally distributed in
logarithm (such as seen on Fig. 24). For each point, 100 iterations are performed.
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Figure 26: Validity of the power law for various values of x.. We show the
evolution of the coefficient c(2, x) as well as the power r for n = 8 over various values of
x. We see small variations in the r but the overall behaviour seems to hold well. For
each point, 100 iterations are performed. The last point on the right has value x = 0.99.

5.12.5 Dependency of number of samples on density

In this subsection, we give some details about Eq. 183. We use as ansatz the following
equation describing the dependence of the number of samples to validate the ideal boson
sampler hypothesis against a model with partial distinguishable photons:

ns ≈
d(K,x)

ρr
(239)

The value of d(K,x) depends on the partition size and the value of partial distinguisha-
bility. For x = 0 we obtain d(2, 0) = 17.9 and the power fit gives an exponent of
r = 2.53 when using n = 10 input photons. Our numerical evidence suggests that the
fit becomes better and better as the density decreases, as finite size/density effects
may be at play. The same can be said for the number of input photons. We also
obtained preliminary evidence suggesting that the power law holds for other values of
partial distinguishability, although a complete analysis is out of the scope of the paper.
More precise numbers can be obtained using the publicly available codes (see Code
Availability).
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6 BosonSampling.jl: A Julia package from quantum multi-
photon interference

Abstract

We present a free open source package for high performance simulation and
numerical investigation of boson samplers and, more generally, multi-photon in-
terferometry. Our package is written in Julia, allowing C-like performance with
easy notations and fast, high-level coding. Underlying building blocks can easily
be modified without complicated low-level language modifications. We present a
great variety of routines for tasks related to boson sampling, such as statistical
tools, optimization methods, classical samplers and validation tools.

6.1 Introduction

Quantum computing holds strong hopes for a profound change of computational
paradigm and power in the coming years [155, 37, 156]. A large number of exper-
imental and theoretical efforts took place in the last decades, leading to the fast growth
in experiments’ complexity. While a general purpose, universal quantum computer
seems so far out of reach, non-universal models already claim a quantum advantage
for specialized tasks on a quantum system that cannot be simulated in a reasonable
amount of time with the most advanced classical super-computers [100, 101]. One of
these restricted models is that of boson sampling. In their seminal paper [31], Aaronson
and Arkhipov describe a quantum version of Galton’s board where n bosons - generally
photons - are sent through a m-modes linear interferometer implementing a unitary
transformation U . The task consists in sampling output mode patterns of particles,
such as finding 2 photons in the first mode, none in the second, etc. Depending on
the importance of the noise sources from the experimental components, the output
distribution D can be hard or easy to sample from. By hard we understand that it
takes an exponential amount of steps O(en) to generate a sample from D on a classical
computer. Indeed, for modest experimental noise, AA prove that this task remains hard,
under widely believed conjectures in complexity theory. However, when sufficiently
strong noise is present, e.g. due to partial distinguishability or particle loss, then
classical algorithms can sample from D efficiently [108, 29, 110, 50, 111, 30, 60].

Boson sampling sparked a great interest both from theoreticians and experimentalists.
Various alternative schemes were constructed, such as Scattershot and Gaussian boson
sampling (GBS) [157, 55] to alleviate the technical difficulties in generating single
photons. These efforts culminated in multiple claims of quantum advantage in GBS,
while standard boson sampling saw experimental implementations with n = 20 photons
in m = 60 modes [42]. Other experimental platforms than photonics were also considered
[107].

These factors imply a great need for optimized, high performance numerical simu-
lations of multi-photon interferometry. As the fight for quantum supremacy is played
between quantum devices and classical computers, scalable, versatile and fast implemen-
tations of the boson sampling algorithms become even more important. In particular,
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Figure 27: Validating boson sampling using Bayesian methods (see Sec. 6.3.4). Is
displayed the confidence ξ that the input is made of 10 indistinguishable photons,
averaged over ntrials = 500, as more samples ns are provided to the validation protocol.
The color scale represents the density of ξ curves. White curves are examples of
validation runs.

an adaptive framework for the boson sampling community is of great interest given the
speed of growth of this field of research. Indeed, many new boson sampling paradigms
were introduced theoretically, and a great variety of experimental techniques were
refined, enhancing the demand for evolutive code bases.

In this paper we expose our package, BosonSampling.jl, written in the Julia
programming language to tackle classical tasks related to boson sampling. It intends
to solve the challenges discussed above by providing an adaptable and extendable
framework for multi-photon interferometry designed to study new boson sampling
paradigms. The choice of Julia solves the two-language problem: instead of using a high-
level wrapper (e.g. Python) with time-critical functions written in a low-level languages
(e.g. C, Fortran), Julia is fast out-of-the-box while being easy to write. As a byproduct,
all functions are fast, and not only time-critical ones. This is especially relevant for
time-crunched researchers who are not professional-programmers but still require a
fast execution time for this type of computationally intensive research. The package is
evolutive and obeys the Open Source Software standards. It welcomes contributions
from the community through its GitHub portal [158]. A complete documentation as
well as a pedagogical tutorial are provided [159].

The paper is structured as follows. We first give an overview of the package content.
We describe what kind of problems it aims to solve, as well as novel functionalities. We
then explain how the specific choice of the Julia programming language is, in the eyes
of the authors, optimal for both theoreticians and experimentalists and how it affects
the structure of our package and benefits users. In the second section of this paper,
we expose how our package is globally structured, including more specific descriptions
and examples in the third section. It contains worked-through examples of well-known
physical phenomena such as the Hong-Ou-Mandel effect. We also show how one can
make use of the package architecture to take into account new sources of noise for
instance. Finally, we compare our package to other existing software and discuss possible
future features.
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6.1.1 Package overview

Our package, BosonSampling.jl together with its paired package Permanents.jl,
provides tools to classically simulate multi-photon interferometry experiments. This
includes the well-known cases of standard boson sampling, scattershot and Gaussian
boson sampling.

Our platform is aimed at high-performance computations for scientists. This is
reflected in the choice of the language, Julia, and the modular architecture. Our goal
is to make it both easy and fast to implement new models while maintaining all the
provided methods and tools adapted to the new features with fast execution time.

The package is evolutive, and welcomes outside contributions from the community.
It is intended to be a toolkit for both experimentalists and theoreticians, allowing to
easily bridge between new theoretical models and their realistic implementation.

We provide state-of-the-art tools addressing relevant boson sampling problems. Let
us now give an overview of these tools made available.

1. Boson-samplers, which allow to get samples as if performing an experiment.
These samplers are based on the best known algorithms from the literature. Those
samplers, unlike that found in other packages, include experimental noise such as
photons’ partial distinguishability and loss. This noise is critical as it will affect
the classical hardness of simulating a given experiment.

2. Event probability computation routines, allow to observe specific input/output
patterns. Special interest is given to noise, and in particular to a fast implementa-
tion in the case of partial distinguishability.

3. Bunching tools, aimed at investigating the tendency of bosons to bunch and
of fermions to anti-bunch, as exemplified by the Hong-Ou-Mandel effect. We
provide functions to investigate the link between bunching and matrix permanent
conjectures [131, 19].

4. Validation tools for boson-samplers. These allow, given experimental as well as
black-box samples, to discuss the degree of multi-photon interference observed in
a boson sampler device, and to estimate the level of noise. This gives indications
as to whether the device outputs samples that are classically hard to obtain, i.e. if
quantum advantage can be claimed. Standard tools from the literature are unified
in a recent validation protocol [160] along with the common method of correlators
[128, 129], suppression laws [132, 133, 134, 135], and full bunching [19, 61] and
also allowing to recover marginal probabilities [139].

5. Optical circuits built from optical elements. While in the standard boson
sampling problem, networks, described by a unitary matrix U , are chosen from the
Haar measure, specific interferometers are also implemented such as the Fourier
and Hadamard transformations. In addition, a suite of linear-optical elements is
provided, so that networks can be constructed as in an experimental setting.
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6. Optimization routines to maximize cost functions over unitary matrices. Maxi-
mizing certain properties of interferometers, such as photonic bunching, can be
convenient for the design of experiments. We include algorithms from Ref. [161]
that can optimize cost-functions on the Haar measure.

7. Time-bin interferometry types and circuits to simulate the experimental boson
sampling proposal of [52], where photons are separated in time bins and sent
through a time-dependant beam-splitter and delay lines.

6.1.2 Julia

Julia is a high-level and dynamic programming language originally designed for technical
computing, in particular, the simulation of physical systems. It is catching more and
more attention from the scientific community and has been adopted in several high
class projects such as working with dynamical systems [162], satellites simulations
[163], the Celeste project (1.54 petaFLOPS) [164], the Climate Modelling Alliance
[165], as well as NASA who saw a 15.000 times speed improvement over their previous
Simulink/MATLAB code [166]. The field of quantum information and computation is
already well covered, with several packages such as Yao.jl and Quantum Optics.jl
rivalling in scope and efficiency with the leaders of the market [167, 168, 169, 170].

The main strength of Julia, in particular for scientists, is its goal to solve the
"two-languages problem". It is very common that code is first prototyped in a high-level,
easy to write, language such as Python and then made fast to execute in low-level,
and hard to write languages such as C++. Julia allows the coding to be convenient
and efficient, while being as fast as lower level languages (such as C and Fortran)
out of the box. This performance comes from its just-in-time (JIT) compilation and
specific type architecture, more akin to functional programming than Oriented Object
Programming (OOP) found in most languages (C++, Java, Python,...). This bottom-up
approach is especially suited for scientists, whose code evolve organically as results are
found, without a set roadmap ("proofs then theorems") as would be preferred for OOP
programming [171].

Another strength of Julia’s type structure is multiple dispatch: functions are written
without strong restrictions to the type of their arguments, and can be reused with
custom types with no modifications [172] (provided that the function makes sense for
these new types). For instance, a function computing the square root would be restricted
to specific types (say, Float64) in strongly typed languages. A new type, say BigFloat,
would require a rewriting of the function, while in Julia the same square root algorithm
will work automatically. This design philosophy, is, once again, a blessing for scientists
who may not know in advance what the future of their code looks like.

6.2 Package architecture

The two main procedures achievable with this package are the simulation of photonic
experiments and validation for multi-photon quantum experiments. We will first describe
the simulation architecture and then the validation procedure.
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6.2.1 Simulation

The present package takes advantage of Julia’s type system through a hierarchy used
to classify the building blocks of a quantum interferometry experiment, namely: a
photonic Input state sent through an Interferometer and measured according to an
OutputMeasurement. This last category also includes (classical) sampling. Those three
elements are represented by abstract types, that is, they cannot be instantiated and
form the backbone of the package structure. They can be seen as containers of sets of
related concrete types, which can be instantiated. Concrete types will represent the
specific building blocks of a given interferometric setup. For instance, an interferometer
defined from a Haar distributed unitary, RandHaar, is a concrete type of the abstract
type Interferometer as displayed in Fig. 28.

The latter structure is at the core of the code efficiency and tunability. Indeed,
the generic programming allowed by Julia combined to the inherent type hierarchy
makes the package easy to adapt depending on the user’s needs. As a new model can
simply be embedded as a concrete type of an existing abstract type, implementing
new elements can be done easily without modifying the overall package structure, or
any function that acts in the same conceptual fashion on the new type. For instance,
a function adding noise could work similarly on any type of Interferometer, be it
RandHaar or Hadamard. We will now describe the three main abtract building blocks
used in simulating an experiment.

Input When considering photons in Fock states at the input, BosonSampling.jl
offers three families of input types depending on the partial distinguishability of the
particles. We refer to indistinguishable photons (identical arrival time, polarization)
using Bosonic. When they are partially distinguishable, they fall under PartDist.
Finally, we use Distinguishable for completely distinguishable input photons. The
type PartDist allows for a general description of the partial distinguishability. Common
models used in the literature are also implemented as subtypes [2].

The input state can also be Gaussian. In order to take into account partial
distinguishability, we adopt the model introduced in [173]. More precisely, any Gaussian
input will be model of fully indistinguishable states while, partial distinguishability
can be introduced at the level of the interferometer. The input state is decomposed
into interfering and non-interfering modes which evolve independently through the
interferometer.

Interferometers The second building block of a quantum multi-photon experiment is
the interferometer. A common practice when simulating boson sampling is sample a
unitary matrix according to the Haar random measure. Specific interferometers, such as
the discrete Fourier and the Hadamard transforms are built-in, together with elementary
linear optical circuit elements such as beamsplitters or phase shifts. This allows the
user to build networks from scratch. Generic interferometers are supported. Loss can
be accounted for in generality.
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Figure 28: Architecture of BosonSampling.jl (a) Simulation framework: the abstract
types representing the experimental setup are displayed as the colored boxes, containing
they related concrete types. (b) Validation framework.
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Measurement/Sample This object represents the output of the experiment, which
we classify between a measurement that can be the probability of a specific output
pattern, property or a randomly generated sample. For Fock states, a possibility is
to observe a given output mode occupation s = (s1, s2, ...), where 0 ≤ si ≤ n is the
number of photons in mode i. Likewise, we can observe a specific partition photon
count k = (k1, k2, ...), where 0 ≤ ki ≤ n is the number photons in a bin Ki gathering
multiple output modes.

Different samplers are available depending on the level of distinguishability of the
input particles or the use of a lossy interferometer. For exact sampling, we provide
Clifford-Clifford’s algorithm [35]. For imperfect sampling, we rely on the works of
Moylett et al. [174]. Their detailed implementations are discussed in the package
documentation.

6.2.2 Validation

Experimental data can be analysed within this package to validate boson sampling
devices. The procedure is straightforward for the user: data is held in form of Events,
comprising all known experimental parameters, such as the detector outputs. Hypotheses
are provided, such as that the input is made of indistinguishable particles. An alternative
hypothesis could be that they are distinguishable. Another task that can be addressed
with this package is to estimate the amount of noise, e.g due to partial distinguishability.

Common validation protocols are implemented, with a comprehensive statistical
analysis, providing p-values, etc. A detailed description of these protocols can be found
in [6, 160, 60, 147].

6.3 Examples

This section presents some basic experiments that can be simulated by BosonSam-
pling.jl. Further details about the package, as well as a complete, step-by-step tutorial,
can be found in the documentation, hosted on the GitHub page of the package. As for
any registered Julia package, BosonSampling.jl can be installed by simply executing
the following commands in the Julia REPL:

using Pkg
Pkg.add("BosonSampling")

Code sample 1: Installing BosonSampling.jl.

6.3.1 Hong-Ou-Mandel

It is well known since the experimental work of Hong, Ou and Mandel [175] that two
indistinguishable photons impinging on the two input modes of a balanced beamsplitter
will bunch in one of the two output modes, leaving a zero probability to observe one
photon at each output mode (the coincidence probability). As an introductory example,
we review the effect of partial distinguishability in the HOM effect. In this context, it
is a common practice to use the time delay ∆τ between the two incoming beams as a

https://benoitseron.github.io/BosonSampling.jl/stable/tutorial/installation.html
https://benoitseron.github.io/BosonSampling.jl/stable/
https://github.com/benoitseron/BosonSampling.jl
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source of partial distinguishability, while the distinguishability parameter itself is ∆ω∆τ
with ∆ω the uncertainty of the frequency distribution. In order to make the parallel
with the built-in interpolating model, we substitute its linear parameter x by e−∆ω2∆τ2 .
In this way, a distinguishable input is recovered for ∆ω∆τ → ∞ and a bosonic input
for ∆τ = 0.

We reproduce in the code sample 2 the HOM experiment as described in Fig. 29(a),
with a variable overlap between the two initial wave functions (Fig. 29(b)) and compute
the coincidence probability.

# Set experimental parameters
delta_omega = 1
# Set the model of partial distinguishability
T = OneParameterInterpolation
# Define the unbalanced beams-plitter
B = BeamSplitter(1/sqrt(2))
# Set each particle in a different mode
r_i = ModeOccupation([1,1])

# Define the output as detecting a coincidence
r_f = ModeOccupation([1,1])
o = FockDetection(r_f)

# Will store the events probability
events = []

for delta_t in -4:0.01:4
# distinguishability
dist = exp(-(delta_omega * delta_t)ˆ2)
i = Input{T}(r_i,dist)

# Create the event
ev = Event(i,o,B)
# Compute its probability to occur
compute_probability!(ev)

# Store the event and its probability
push!(events, ev)

end

Code sample 2: Effect of Partial distinguishability in the Hong-Ou-Mandel effect.

(a) (b) (c)

Figure 29: The Hong-Ou-Mandel effect: (a) experimental setup (b) time delay between
the incoming wave packets (c) HOM dip translating the bosonic interference appears
when the overlap between the beams is perfect.
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6.3.2 Sampling

As described in Sec. 6.1.1, several classical algorithms for boson sampling are im-
plemented, such as the Clifford and Clifford’s algorithm [35] for exact sampling and
algorithms taking into account typical sources of noise when considering realistic schemes
[174]. To simulate a boson sampling experiment, one defines an input, the interferometer
and a measurement. As in the previous example, an Event type is used as a container
to hold all interferometric parameters.

n = 20
m = 400

# Define an input of 20 photons among 400 modes
i = Input{Bosonic}(first_modes(n,m))

# Define the interferometer
interf = RandHaar(m)

# Set the output measurement
o = FockSample()

# Create the event
ev = Event(i, o, interf)

# Simulate
sample!(ev)
# output:
# state = [0,1,0,...]

Code sample 3: Simulate a perfect boson sampling experiment involving 20 single-photon Fock
states in 400 modes via Clifford and Clifford’s algorithm.

Given n photons and m modes, the package proposes methods to compute the
entire photon-counting distribution exactly or approximately when different sources
of noise are included [30] through the noisy_distribution function. It returns by
default the exact distribution, an approximated distribution in which the computation
of the probabilities are truncated and a distribution reconstructed from a Metropolis
Independent Sampler (MIS). Below we compute those three distributions for n = 3

photons in m = 5 modes with a distinguishability parameter x = 0.74 and a loss l = 0.63

(see Fig. 30).

# Set the model of partial distinguishability
T = OneParameterInterpolation

# Define an input of 3 photons placed
# among 5 modes
x = 0.74
i = Input{T}(first_modes(3,5), x)

# Interferometer
l = 0.63
U = RandHaar(i.m)

# Compute the full output statistics
p_exact, p_truncated, p_sampled =
noisy_distribution(input=i,loss=l,interf=U)

Code sample 4: Computing the output mode occupation statistics with partial distinguishability
and loss for 3 photons at the input of a (5,5) Haar distributed unitary.
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Both computing p_truncated and p_sampled have by default a probability of failure
and a maximal error equal to 10−4. It is still possible to refine their computations by set-
ting the keywords error and failure_probability when calling noisy_distribution.

Figure 30: Photon-counting statistics at the output of a 5-mode Haar distributed unitary
matrix. (a) Comparison between the ideal distribution and the approximated one. (b)
Comparison between the theoretical distribution and a sampled distribution from 105

samples.

6.3.3 Photon counting in partitions

One of the novel theoretical tools implemented in this package is the ability to effi-
ciently compute photon counting probabilities in partitions of the output modes of the
interferometer. A detailed theoretical and numerical investigation can be found in Ref.
[160].

Let us now show how we can obtain the probability of finding k = 0, ..., n photons
in a subset consisting of the first half of the modes of a Haar-randomly chosen an
interferometer with n = 25 photons and m = 400 modes. With these parameters, a
brute force calculation would be pratically impossible, while the new methods used in
this package allow for a fast computation.
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n = 25
m = 400

# Experiment parameters
input_state = first_modes(n,m)
interf = RandHaar(m)
i = Input{Bosonic}(input_state)

# Subset selection
s = Subset(first_modes(Int(m/2),m))
part = Partition(s)

# Want to find all photon counting probabilities
o = PartitionCountsAll(part)

# Define the event and compute probabilities
ev = Event(i,o,interf)
compute_probability!(ev)
# About 30s execution time on a single core
#
# output:
#
# 0 in subset = [1, 2,..., 200]
# p = 4.650035467008141e-8
# ...

Code sample 5: This snippet retrieves the probability of finding k = 0, ..., n photons in the
top half of the output modes, with n = 25 and m = 400. Note that this calculation would be
completely out of reach using a brute-force approach.

6.3.4 Validation

We now show how experimental data can be validated. In this example, we compare the
null hypothesis H0 = (bosonic input) to the alternative Ha = (distinguishable input).
Multiple validation protocols are implemented in this package, as shown for instance
in Fig. 28. We choose to use the new formalism developed by some of the authors of
photon counting in binned output modes.

In Fig. 27, we display an example of validation protocol. Data is assessed using a
Bayesian procedure on the event probabilities (instead of partition photon counting
in the code sample). As explained in detail in [147, 160], each sample updates the
confidence level ξ. To be satisfied that the null hypothesis is true, we could require
ξ = 95% for instance. We plot this curve averaged over ntrials = 500 with nsamples = 300

events for each run, in a randomly chosen interferometer with m = 30 modes and n = 10

photons. The input photons are set to be indistinguishable. The heatmap shows the
density of the ξ-curves, on a logarithmic scale.

6.3.5 Incorporating new detectors: dark counts

We now show one of the main advantages of this package and Julia: the ability to create
new models while keeping most of the structure untouched.

Consider a simple model of threshold detector. With a probability p the detector
clicks even though no photon was present, so-called dark count.
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We start by defining a new type of output measurement that we label
DarkCountFockSample, which is a sub-type of OutputMeasurement. It takes as
arguments the probability p to observe a dark count. A variable holds the sampled
ModeOccupation, but is first initialised empty at creation of DarkCountFockSample. It
will be filled later. This is an interesting feature of Julia: the absence of an argument is
integrated efficiently by the compiler while a typical, variable-size array would not.

mutable struct DarkCountFockSample
<: OutputMeasurement

s::Union{ModeOccupation, Nothing}
p::Real

function DarkCountFockSample(p::Real)
if isa_probability(p)

new(nothing, p)
else

error("invalid probability")
end

end
end

Code sample 6: Implementation of dark counts in the detectors in the BosonSampling

framework.

The second step is to define a new method sample! that implements a sampling
algorithm for this specific type of detector.

As mentioned before, Julia enables multiple dispatch, which means that the new
method will not overwrite the already existing ones but will extend the method to
the new detectors. That is, when calling sample!, Julia will automatically apply the
relevant method for a given type (FockSample, DarkCountFockSample,...). The new
algorithm first extracts a sample without dark counts, then adds their influence on the
photon counts:

function sample!(ev::Event{TIn,TOut})
where {TIn <: InputType,

TOut <: DarkCountFockSample}

# sample without dark counts
ev_no_dark = Event(ev.input_state,

FockSample(),
ev.interferometer)

sample!(ev_no_dark)
sample_no_dark =
ev_no_dark.output_measurement.s

# add count with probablity p
observe_dark_count(p) =
Int(do_with_probability(p))
dark_counts =
[observe_dark_count(ev.output_measurement.p)
for i in 1: ev.input_state.m]

ev.output_measurement.s =
sample_no_dark + dark_counts

end

Code sample 7: Defining a new sampling algorithm.

Now, our new measurement can be used like any other in the previous examples
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n = 10
m = 10
p_dark = 0.1
input_state = first_modes(n,m)
interf = RandHaar(m)
i = Input{Bosonic}(input_state)
o = DarkCountFockSample(p_dark)
ev = Event(i,o,interf)

sample!(ev)
# output:
# state = [3, 1, 0, 3, 0, 1, 2, 0, 0, 1]

Code sample 8: Usage of the newly added detectors.

6.4 Benchmarks

6.4.1 Julia is fast!

When simulating a boson sampling experiment, the most time consuming part comes
from the computation of the transition probabilities, since they are related to the
evaluation of the permanent. The best known exact algorithm for its computation
is due to Ryser [176] and runs in O

(
2n−1n

)
time for a matrix of size n (using Gray

ordering). Having an intensive usage of Ryser’s algorithm, we compare the running
time of its implementation in Julia with two other interpreted languages: Matlab and
Python. Fig. 31 shows how Julia outperforms the two other implementations by two
orders of magnitude in computation time.

Figure 31: Benchmarks for the single-core running time of Ryser’s algorithm in Julia,
Matlab and Python on a 3.2GHz Apple M1 processor.

6.4.2 Comparison to existing softwares

The present package is designed for multi-photon interference and boson sampling
experiments, taking into account sources of noise and providing a wide variety of
validation tools while remaining highly flexible to new paradigms. Other packages for
the numerical evaluations of matrix functions and simulation bosonic systems were
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published in the last few years. Among the most popular softwares are The Walrus
[177] and Perceval [178], both written in Python with a C++ backend.

We illustrate how the Julia programming language is efficient and how, indeed, it
can reach C-like performance while keeping the coding as easy, fast and convenient
as in Python. We benchmark common functionalities in the three softwares. We
first compute permanents of Haar distributed unitary matrices5 (Fig. 32.a) showing
that our implementation of Ryser’s algorithm remains faster even on single-core. Our
simulations of perfect boson sampling through Clifford and Clifford’s algorithm achieves
comparable performance to what is possible on Perceval, and is more performant
only via multithreading (Fig. 32.b).

5Benchmarks inspired from https://the-walrus.readthedocs.io/en/latest/gallery/permanent_tutorial.
html and https://github.com/Quandela/Perceval/blob/main/scripts/performance.py

https://the-walrus.readthedocs.io/en/latest/gallery/permanent_tutorial.html
https://the-walrus.readthedocs.io/en/latest/gallery/permanent_tutorial.html
https://github.com/Quandela/Perceval/blob/main/scripts/performance.py
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Figure 32: (a) Benchmarks measuring the average time elapsed when computing the
permanent of matrices with increasing size n. Are displayed the running times of (blue
dots) The Walrus, version 0.19, on a single-core, (orange curve) Ryser implementation
of Permanent.jl, version 0.1.1, single-core, (green dots) Glynn implementation of
Perceval, version 0.6.2 (Quandelibc version 0.5.3), on a single-core, (purple dots) Ryser
implementation of Perceval, 4 threads. (b) Average time elapsed when simulating
perfectly indistinguishable bosons via Clifford and Clifford’s algorithm in Julia on 1, 4
and 8 threads compared to Perceval’s implementation. Both benchmarks are realized
with the same configuration as in Fig. 31.

In the final stages of writing this paper, SOQCS [179] was released, a C++ library
centered around performance at cost of handiness and ease of modification.

6.5 Development path

This package is a continuously expanding, and many more features are expected to
be implemented in the coming years. Current development areas are Gaussian boson
sampling related functionalities, in particular simulating GBS with partial distinguisha-
bility in a lossy channel. Many of the functions used in this package will be made faster,
such as computing permanents and hafnians via GPU computing, and HPC-friendly
deployment through multithreading and distributed computing.

Potential users are welcome to contact the authors for more details or specific
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development paths, either through the emails listed above or directly through the
Github interface.

Outside contributions are welcome, and multiple improvement paths are outlined
on the Github discussion page.

6.6 Conclusion

In this paper we introduced a new, free open source Julia package for the high-
performance simulation of multi-photon interference. We motivated how the choice of
language is particularly relevant for scientists, and allows for a package structure that
is easy to modify while keeping execution time as fast as in low-level languages. This
package is therefore aimed at experimentalists, who need to implement specifics of their
hardware and at theoreticians, who want to develop new models and boson sampling
paradigms. We showed how the performance positively compares to similar packages
written in other languages.
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Part IV

Conclusion
In conclusion, this thesis has explored the complex behavior of quantum interferences
with multiple partially distinguishable photons, as well as the development of compu-
tational tools (BosonSampling.jl) for the simulation of such experiments. We also
proposed an extensive study on the validation of photonic interferometers. Through
this work, we have gained a deeper understanding of the intricacies of multiphoton
interference and the impact of photon distinguishability on the observed phenomena.

We have presented the first explicit setup that demonstrates the boosting of photon
bunching into several modes due to partial distinguishability, disproving the common
belief that bunching effects are maximized in the ideal scenario of fully indistinguishable
photons. We have also investigated the stability of the bunching violation ratio with
respect to experimental imperfections and the potential existence of other counterexam-
ples, raising questions about the generality of this phenomenon and the role of partial
distinguishability in practical applications of quantum technology.

We hope to see this setup being realised in a photonic experiment within the near
future. While the technology is available and progressing rapidly, our proposal is at the
edge of what is feasible today as it combines different technical challenges. It is therefore
an interesting open question as to whether one could find even simpler counter-examples
with a better experimental prospect - either with a larger bunching probability or a
smaller number of photons.

Furthermore, it is interesting to analyze whether other conjectures on permanents
or related matrix functions could lead to similar physical interpretations. We recently
found out that another conjecture on matrix permanents (from the same authors, Bapat
and Sunder [180] and, funnily enough, disproven by the same author, Drury [181])
implies the existence of violations to the multimode bunching conjecture arbitrarily
close to the bosonic case. While preliminary evidence indicated that this was a local
extrema, as reported in this thesis, we now know that is possible to observe this strange
behaviour even for nearly indistinguishable particles. This is true despite the fact that
all numerically found counter-examples are far from indistinguishable particles.

From a more mathematical perspective, it is interesting to see if physics can help
prove (or disprove) similar conjectures that are still open. Further, even if the validity
of the conjecture is settled, it is relevant to make a link with boson bunching. One such
conjecture that is also related to bunching is the Permanent-on-Top (POT) conjecture,
which was disproved by Shchesnovich [72]. It can be associated with a boosted bunching
with a generic input state, with photons having potentially entangled internal wave
functions. Speaking of bunching is less justified here since the input photons are not
independent, so that weird behaviours of the output probabilities are expected. Yet,
Shchesnovich provides a counterexample to the POT conjecture that can be translated
into physics, so understanding the reason for this violation would be interesting. More-
over, if a linear optics procedure could be found in order to prepare a state violating
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the POT conjecture, then a direct correspondence could be asserted between the POT
conjecture and the Bapat-Sunder conjecture.

Overall, a great deal of mathematical features related to matrix permanents are
left essentially unexplored, with various matrix functions potentially playing a role in
the physics of interfering quantum particles. Of particular interest to mathematicians
is Lieb’s permanental dominance conjecture, which has been actively discussed for
more than half a century [182, 183]. Relating it to physics could lead to a deeper
understanding of its meaning, and perhaps even to a solution. In turn, this type of
exploration would strengthen our knowledge on the opposite interferometric behaviour
of bosons and fermions: in the words of Lieb, “the few inequalities that are known for
the permanent are suspiciously similar to certain special cases of classical inequalities
for the determinants of such matrices – the only difference being that the direction of
the inequality is reverse” [remember that determinants directly relate to fermions]. We
even believe that studying the interference of anyons along the same lines could lead
to interesting results. Indeed, so far we know that sampling bosons is computationally
hard, while fermions and distinguishable particles are easy. A natural extension would
be to study Anyon Sampling. It is unknown if any deviation of bosonic statistics would
lead to classically efficient sampling. Interesting work in this direction was done by
Tichy and Mølmer on hypothetical immanons [184].

Given the computationally demanding aspects of the physics and mathematics
involved in this thesis, extensive numerical simulations were undertaken. In order to
help advance the work of colleagues and future researchers interested in the same type
of questions, we chose to publish this numerical development in full details. Given the
size of the codebase, we have introduced a standalone free open-source Julia package
for the high-performance simulation of multi-photon interference, providing a versatile
and efficient tool for both experimentalists and theoreticians to study and develop new
models and boson sampling paradigms. We have demonstrated the performance and
advantages of this Julia package compared to similar tools written in other programming
languages.

This package has recently been of use to experimentalists of the group of Philip
Walter in Vienna, with whom a paper was published [54]. Of particular interest to
this experiment, realising time-binned boson sampling, was the validation of the data.
A large portion of the work from this thesis pushes forward the known techniques to
assert the correct functioning of multiphoton interferometry experiments. We have
proposed a validation test based on a coarse-graining of the output photon-number
distribution, allowing for an efficient classical approximation of the binned distribution
and hence offering a sensitive method to probe photon distinguishability and effectively
use experimental data with photon losses.

This validation test raises questions about the classical spoofability of the method
and the potential use of binned distributions to quantify the degree of indistinguishability
of input photons. Indeed, we have so far limited ourselves to assert that this method
can verify the quality of an experiment known to have physical sources of errors. At
the opposite of the spectrum, we could ask if the binned distributions contain sufficient
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information to discriminate between a valid boson sampler and a black-box adversary.
We believe that this is the case, at least up to some level of precision. Indeed, the
partition choice is completely arbitrary, and, in fact, multiple binned distributions can
be classically computed and compared to the single set of data that we wish to validate.
As the number of subsets grows, an exponential number of partitions can be chosen.
Our numerical evidence suggests that the information from each partition is different
enough to provide additional certification power (more precisely, polynomial decrease of
the standard deviation). Therefore, it seems unlikely that an adversary could efficiently
output a classical distribution compatible with such a large, a priori unknown, choice
of partitions.

On another note, it is interesting to ask whether the same technique of grouped
counts could be applied to the Gaussian Boson Sampling (GBS) paradigm. While this
is yet ongoing work, we can answer this question positively. In particular, we have
found interesting asymptotic laws echoing that of Shchesnovich [Eq. (177)] but for GBS.
However, the notion of partial distinguishability with Gaussian states is more intricate
and deserves further analysis. Only the works of Shchesnovich [185] and Renema [186]
provide a starting point for formalizing partial distinguishability in this case, while the
account of partial distinguishability is well established in the case of single photons. A
noteworthy toy-model is that of Shi and Byrnes [187].

The formalism for binned photon number distributions should also allow us to
question the computational hardness of some applications of boson sampling, such
as some decision problems. A recent example is the cryptographic one-way function
introduced by Nikopoulos [188, 189] and recently implemented experimentally by Wang
[190]. We believe that this function could actually be simulated on a classical computer,
exactly as the binned distribution used to validate it.

A broader question follows: Can any practical task be sped up using a boson
sampler? Unlike for a generic-purpose quantum computer, it is indeed much less clear
whether these primitive devices can hold any practical computational advantage. As a
simple argument raising some doubts, let us remember that, while event probabilities
are linked to matrix permanents (which are computationally hard), a boson sampler
does not allow us to approximate these permanents efficiently [191]. In the past, certain
tasks were thought to be efficient on a boson sampler, such as calculations of vibronic
spectra of molecules [192] but were later shown to be classically simulatable [150]. In
this regard, Gaussian boson sampling seems to hold the highest promises (although this
might be due to skewed research efforts as GBS is a prime candidate for some private
companies in the race for developing a quantum computer). Various tasks have been
proposed using GBS, such as finding dense subgraphs [193, 194] or studying molecular
docking [195] and drug discovery [59]. A recent proposal to achieve tasks related to
graphs was also proposed for single photons [196]. A notable mention on quantum
advantage and sampling problems is the work of Novo, Bermejo-Vega and García-Patrón
[197].

We conclude this dissertation with a sense of optimism for the future of this field,
anticipating not only a more profound understanding of nature’s laws but also the
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emergence of potent, novel quantum technologies that could greatly benefit society.
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