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Abstract. The hypersimplex Δ𝑘+1,𝑛 is the image of the positive Grassmannian
Gr≥0𝑘+1,𝑛 under themoment map. It is a polytope of dimension 𝑛−1 inℝ𝑛. Meanwhile,
the amplituhedron𝒜𝑛,𝑘,2(𝑍) is the projection of the positive GrassmannianGr≥0𝑘,𝑛 into
the GrassmannianGr𝑘,𝑘+2 under a map ̃𝑍 induced by a positive matrix 𝑍 ∈ Mat>0𝑛,𝑘+2.
Introduced in the context of scattering amplitudes, it is not a polytope, and has full di-
mension 2𝑘 insideGr𝑘,𝑘+2. Nevertheless, there seem to be remarkable connections be-
tween these two objects viaT-duality, as conjectured by Łukowski, Parisi, andWilliams
[Int. Math. Res. Not. (2023)]. In this paper we use ideas from oriented matroid the-
ory, total positivity, and the geometry of the hypersimplex and positroid polytopes to
obtain a deeper understanding of the amplituhedron. We show that the inequalities
cutting out positroid polytopes—images of positroid cells ofGr≥0𝑘+1,𝑛 under themoment
map—translate into sign conditions characterizing the T-dual Grasstopes—images of
positroid cells ofGr≥0𝑘,𝑛 under ̃𝑍. Moreover, we subdivide the amplituhedron into cham-
bers, just as the hypersimplex can be subdivided into simplices, with both chambers
and simplices enumerated by the Eulerian numbers. We use these properties to prove
the main conjecture of Łukowski, Parisi, and Williams [Int. Math. Res. Not. (2023)]:
a collection of positroid polytopes is a tiling of the hypersimplex if and only if the col-
lection of T-dual Grasstopes is a tiling of the amplituhedron𝒜𝑛,𝑘,2(𝑍) for all 𝑍. More-
over, we prove Arkani-Hamed–Thomas–Trnka’s conjectural sign-flip characterization
of 𝒜𝑛,𝑘,2, and Łukowski–Parisi–Spradlin–Volovich’s conjectures on 𝑚 = 2 cluster ad-
jacency and on positroid tiles for𝒜𝑛,𝑘,2 (images of 2𝑘-dimensional positroid cells which
map injectively into𝒜𝑛,𝑘,2). Finally, we introduce new cluster structures in the ampli-
tuhedron.
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1. Introduction

1.1. Context. This article concerns the interaction between algebraic combinatorics
and high energy physics, particularly scattering amplitudes. In a quantum field theory,
scattering amplitudes are the probability amplitudes for fundamental particles to in-
teract in a scattering process. They are central to understanding both salient features
of the physical theory and experimental data from particle colliders. In a seminal work
[AHT14], physicists Arkani-Hamed and Trnka introduced the amplituhedron 𝒜𝑛,𝑘,𝑚,
which is a subset of the real GrassmannianGr𝑘,𝑘+𝑚 of 𝑘-planes inℝ𝑘+𝑚. The ‘volume’
of the 𝑚 = 4 amplituhedron encodes the scattering amplitudes of maximally super-
symmetric Yang-Mills (𝒩 = 4 SYM), a close cousin of the theory of strong interactions
of quarks and gluons. The𝑚 = 2 amplituhedron is also connected to scattering ampli-
tudes (at the subleading order in perturbation theory) and to correlation functions in
𝒩 = 4 SYM theory [KL20,CHCM23]. A novel way to compute𝒩 = 4 SYM scattering
amplitudes is by ‘tiling’𝒜𝑛,𝑘,𝑚—that is, decomposing the amplituhedron into smaller
‘tiles’—and summing the ‘volumes’ of the tiles.
While its motivation comes from physics, the amplituhedron 𝒜𝑛,𝑘,𝑚 is mathemati-

cally very rich: it interpolates between cyclic polytopes (when 𝑘 = 1) on the one hand,
and the positive Grassmannian (when 𝑘 = 𝑛 − 𝑚) on the other. Cyclic polytopes and
their triangulations have been extensively studied in polyhedral geometry going back
to Carathéodory [Car11] (see also [Ram97]). Meanwhile, the positive Grassmannian is
a prototypical example of the ‘positive part’ of a cluster variety [Pos06,Sco06,FZ02]. In
this paper we focus on the𝑚 = 2 amplituhedron𝒜𝑛,𝑘,2, exploring both its ‘tilings’ (the
appropriate generalization of triangulations) and its connection to cluster algebras. In
particular, we prove that tilings of the amplituhedron𝒜𝑛,𝑘,2 are in bijectionwith tilings
of the hypersimplex Δ𝑘+1,𝑛 by positroid polytopes; this result together with [ŁPW20]
suggests that the positive tropical Grassmannian [SW05] plays the role of ‘secondary
polytope’ in governing the tilings of𝒜𝑛,𝑘,2. Our result also connects the amplituhedron
to a beautiful body ofwork onmatroid subdivisions of the hypersimplex that dates back
to Gel′fand-Goresky-MacPherson-Serganova [GGMS87], see also [Laf03, Spe08]. In a
different direction, we associate a cluster algebra [FZ02] to each tile for 𝒜𝑛,𝑘,2, and
show that the tile can be viewed as the positive part of a cluster variety. This proves the
cluster adjacency conjecture for 𝒜𝑛,𝑘,2 and provides a novel connection between the
amplituhedron, total positivity, and cluster algebras.

1.2. Results. The positive Grassmannian1 Gr≥0𝑘,𝑛 is the subset of the real Grassman-
nian Gr𝑘,𝑛 where all Plücker coordinates are nonnegative [Pos06, Rie98, Lus94]. This
is a remarkable space with connections to cluster algebras, integrable systems, and

1More formally, the totally nonnegative Grassmannian.
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high energy physics [FZ02, Sco06, KW14, AHBC+16], and it has a beautiful CW de-
composition into positroid cells 𝑆𝜋, which are indexed by various combinatorial objects
including decorated permutations 𝜋 [Pos06].
There are several interesting maps which one can apply to the positive Grassman-

nian Gr≥0𝑘,𝑛 and its cells. The first map is the moment map 𝜇, initially studied by
Gel′fand-Goresky-MacPherson-Serganova [GGMS87] in the context of the Grassman-
nian and its torus orbits, who showed that the image of the Grassmannian is the hy-
persimplex Δ𝑘,𝑛 ⊂ ℝ𝑛, a polytope of dimension 𝑛 − 1. When one restricts 𝜇 to Gr≥0𝑘,𝑛,
the image is still the hypersimplex [TW15].
The secondmap is the amplituhedronmap, introduced byArkani-Hamed andTrnka

[AHT14] in the context of scattering amplitudes in 𝒩 = 4 SYM. In particular, any
𝑛 × (𝑘 +𝑚)matrix 𝑍 with maximal minors positive induces a map ̃𝑍 from Gr≥0𝑘,𝑛 to the
Grassmannian Gr𝑘,𝑘+𝑚, whose image has full dimension 𝑘𝑚 and is called the ampli-
tuhedron𝒜𝑛,𝑘,𝑚(𝑍).
Given any surjective map 𝜙 ∶ Gr≥0𝑘,𝑛 → 𝑋 where dim𝑋 = 𝑑, it is natural to try to

decompose 𝑋 using images of positroid cells under 𝜙. This leads to Definition 1.1.2

Definition 1.1. Let 𝜙 ∶ Gr≥0𝑘,𝑛 → 𝑋 be a continuous surjective map where dim𝑋 =
𝑑. A positroid tiling of 𝑋 (with respect to 𝜙) is a collection {𝜙(𝑆𝜋)} of images of 𝑑-
dimensional positroid cells such that

• 𝜙 is injective on each 𝑆𝜋 from the collection
• pairs of distinct images 𝜙(𝑆𝜋) and 𝜙(𝑆𝜋′) are disjoint
• ∪𝜙(𝑆𝜋) = 𝑋 .

When 𝜙 is themomentmap, the (closures of the) images of the positroid cells 𝑆𝜋 are
the positroid polytopes Γ𝜋 [TW15], so a positroid tiling of the hypersimplex is a decom-
position into positroid polytopes. When 𝜙 is the amplituhedron map ̃𝑍, the (closures
of the) images of the positroid cells 𝑆𝜋 are Grasstopes 𝑍𝜋, which were first studied in
[AHT14] as the building blocks of conjectural tilings of the amplituhedron. Note that
neither the amplituhedron nor the Grasstopes are polytopes.
At first glance, the (𝑛 − 1)-dimensional hypersimplex Δ𝑘+1,𝑛 ⊂ ℝ𝑛 doesn’t seem to

have any relation to the 2𝑘-dimensional amplituhedron 𝒜𝑛,𝑘,2(𝑍) ⊂ Gr𝑘,𝑘+2. Never-
theless, the recent paper [ŁPW20] showed that there are surprising parallels between
them. In particular, they showed that T-duality gives a bijection between loopless cells
𝑆𝜋 of Gr≥0𝑘+1,𝑛 and coloopless cells 𝑆𝜋̂ of Gr≥0𝑘,𝑛, and conjectured that T-duality gives a
bijection between positroid tilings {Γ𝜋} of the hypersimplexΔ𝑘+1,𝑛 and positroid tilings
{𝑍𝜋̂} of the amplituhedron 𝒜𝑛,𝑘,2(𝑍). [ŁPW20] proved this conjecture for infinitely
many tilings—specifically, the positroid tilings of𝒜𝑛,𝑘,2(𝑍) obtained from a BCFW-like
recurrence [BH19].
In this paper we use twistor coordinates and the geometry of the hypersimplex and

positroid polytopes to obtain a deeper understanding of the amplituhedron. We prove
the conjecture of Łukowski–Parisi–Spradlin–Volovich [ŁPSV19] classifying positroid

2There are many reasonable variations of Definition 1.1. Onemight want to relax the injectivity assump-
tion, or to impose further restrictions on how boundaries of the images of cells should overlap. Note that in
the literature, positroid tilings are sometimes called (positroid) triangulations. We avoid this terminology in
order to avoid confusion with the notion of e.g. polytopal triangulations.
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tiles, full-dimensional images of positroid cells which map injectively into the ampli-
tuhedron𝒜𝑛,𝑘,2(𝑍). We then give a new characterization of them in terms of the signs
of their twistor coordinates. We use this result to prove a conjecture of Arkani-Hamed–
Thomas–Trnka that 𝒜𝑛,𝑘,2(𝑍) can be characterized using sign flips of twistor coordi-
nates. And we prove two results relating the amplituhedron to cluster algebras. First,
we prove the cluster adjacency conjecture [ŁPSV19] for 𝒜𝑛,𝑘,2(𝑍), which says that the
Plücker coordinates labeling facets of a given positroid tile consist of pairwise compat-
ible cluster variables. We also state and prove a generalization of this conjecture by
showing that twistor coordinates of a positroid tile associated to Plücker coordinates
compatible with the ones labeling its facets have constant sign. Second, we associate a
cluster variety to each positroid tile in𝒜𝑛,𝑘,2(𝑍) ⊂ Gr𝑘,𝑘+2, and show that the positroid
tile is the totally positive part of that cluster variety. We then have the novel phenom-
enon that the 2𝑘-dimensional amplituhedron 𝒜𝑛,𝑘,2(𝑍) can be decomposed into (𝑛−2𝑘 )
2𝑘-dimensional positroid tiles, each of which is the totally positive part of a cluster
variety. (Moreover, there are many such decompositions.)
Additionally, we draw striking parallels between Δ𝑘+1,𝑛 and 𝒜𝑛,𝑘,2(𝑍), some of

which are illustrated in Table 1. We find that the inequalities describing positroid
polytopes translate into sign conditions on twistor coordinates characterizing the cor-
responding Grasstopes. And we show that the sign patterns on twistor coordinates
naturally subdivide the amplituhedron into chambers. We prove that the ones which
are realizable are exactly enumerated by the Eulerian numbers 𝐸𝑘,𝑛−1, just as the hy-
persimplex can be subdivided into simplices enumerated by𝐸𝑘,𝑛−1. We use these prop-
erties to prove the main conjecture of [ŁPW20]: a collection of positroid polytopes is a
positroid tiling of Δ𝑘+1,𝑛 if and only if the collection of T-dual Grasstopes is a positroid
tiling of 𝒜𝑛,𝑘,2(𝑍) for all 𝑍.
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1.3. Connections to physics. Let us now explain how the various geometric objects
in our story are related to scattering amplitudes. In the last fifteen years, it was grad-
ually realized that the Grassmannian, and in particular, the positive Grassmannian,
can be used to encode most of the physical properties of scattering amplitudes in pla-
nar 𝒩 = 4 super Yang-Mills [AHCCK10, BMS10, AHBC+16]. Building on these de-
velopments and on Hodges’ idea that the amplitude should be the ‘volume’ of some
‘polytope’ [Hod13], Arkani-Hamed and Trnka defined the amplituhedron 𝒜𝑛,𝑘,𝑚(𝑍)
[AHT14].
The object most relevant to physics is the 𝑚 = 4 amplituhedron 𝒜𝑛,𝑘,4(𝑍): in this

case, the amplituhedron can be tiled by ‘BCFW cells’ [EZLT21], which implies that
the amplituhedron recovers the Britto-Cachazo-Feng-Witten recurrence [BCFW05] for
computing scattering amplitudes. Meanwhile, the 𝑚 = 2 amplituhedron governs the
geometry of planar 𝒩 = 4 SYM amplitudes at the subleading order in perturbation
theory (‘one-loop’) of some sectors of the theory, specifically the ‘MHV’ and ‘NMHV’
sector [KL20]. It also encodes scattering amplitudes for a Gaussian model on a super-
line [CHCM23], and it is related to correlation functions of determinant operators in
𝒩 = 4 SYM.
Scattering amplitudes in planar𝒩 = 4 SYM enjoy a remarkable duality called ‘Am-

plitude/Wilson loop duality’ [AR08], which was shown to arise from a more funda-
mental duality in String Theory called ‘T-duality’ [BM08]. The geometric counterpart
of this fact is a conjectural duality between collections of 4𝑘-dimensional ‘BCFW’ cells
of Gr≥0𝑘,𝑛 which give positroid tilings of the 𝑚 = 4 amplituhedron 𝒜𝑛,𝑘,4(𝑍), and cor-
responding collections of (2𝑛 − 4)-dimensional cells of Gr≥0𝑘+2,𝑛 which give positroid
tilings of the momentum amplituhedron ℳ𝑛,𝑘,4 [DFŁP19, ŁPW20]. This duality was
evocatively called T-duality in [ŁPW20] and conjectured to generalize for any (even)
𝑚. The present paper explores T-duality for 𝑚 = 2, showing that questions about the
𝑚 = 2 amplituhedron can be reduced to questions about the hypersimplex.
One recent trend in physics is the connection between analytic properties of scatter-

ing amplitudes and cluster algebras [FZ02]; these connections have led to both compu-
tational and theoretical advances [GGS+14, DFG18, DFG19, ŁPSV19, GP20, MSSV20,
HL21]. In this paper, we use twistor coordinates to prove (and generalize) the conjec-
ture of Łukowski–Parisi–Spradlin–Volovich [ŁPSV19] about 𝑚 = 2 cluster adjacency
and probe new cluster structures in the amplituhedron.
Our result that Eulerian numbers count sign chambers of the𝑚 = 2 amplituhedron

is intriguing because Eulerian numbers have also come up in the context of scattering
equations [CHY13]. Scattering equations connect the singularity structure of scatter-
ing amplitudes of 𝑛-particles to that of the boundaries of the moduli space of Riemann
spheres with 𝑛 punctures. For 𝒩 = 4 SYM, the number of solutions of the ‘N𝑘MHV’
sector of the theory is exactly the Eulerian number 𝐸𝑘,𝑛−3 [SV09,CHY13]. Moreover,
[CMZ17] provided an explicit bijection between such solutions and permutations on
[𝑛−3]with 𝑘 descents. Finally, in the case of certain scalar quantum field theories, the
authors of [CEGM19] formulated a generalization of scattering equations. By studying
‘arrays of Feynman diagrams’, they made connections to the positive tropical Grass-
mannian, and, by results of [ŁPW20], to the hypersimplex. It would be fascinating to
explore possible relations between (generalized) scattering equations, simplices of the
hypersimplex, and chambers of the amplituhedron.



THE 𝑚 = 2 AMPLITUHEDRON AND THE HYPERSIMPLEX 335

We note that some of the ideas used in this paper can be applied to amplituhedra
for other 𝑚, and to the momentum amplituhedron; we will pursue this in a separate
work.

1.4. Structure of the paper. The structure of this paper is as follows. In Section 2 we
give background on the positive Grassmannian and the amplituhedron. In Section 3
we define twistor coordinates for the amplituhedron, and define the sign stratification
of 𝒜𝑛,𝑘,𝑚(𝑍), which is analogous to the oriented matroid stratification of the Grass-
mannian. In Section 4 we study positroid tiles of 𝒜𝑛,𝑘,2(𝑍): we prove a conjecture of
Łukowski–Parisi–Spradlin–Volovich characterizing tiles in terms of bicolored subdivi-
sions of a polygon, and we give an inequality description of tiles in terms of signs of
twistor coordinates. In Section 5 we prove Arkani-Hamed–Thomas–Trnka’s conjec-
tural description of 𝒜𝑛,𝑘,2(𝑍) in terms of sign flips of twistor coordinates. In Section 6
we introduce a generalization of the 𝑚 = 2 cluster adjacency conjecture of [ŁPSV19]
and define a cluster variety for each positroid tile. In Section 7 we give background
on the hypersimplex, T-duality, and positroid tilings of the hypersimplex. In Section 8,
we describe T-duality as a map on decorated permutations and plabic graphs. In Sec-
tion 9 we discuss the close parallel between the inequality descriptions and facets of
positroid tiles inΔ𝑘+1,𝑛 and the T-dual positroid tiles in𝒜𝑛,𝑘,2(𝑍). We also prove (a gen-
eralization of) the𝑚 = 2 cluster adjacency conjecture. In Section 10 we show how the
subdivision of Δ𝑘+1,𝑛 into 𝑤-simplices corresponds to the decomposition of 𝒜𝑛,𝑘,2(𝑍)
into𝑤-chambers, where in both cases𝑤 ranges over a set of permutations enumerated
by the Eulerian number. In Section 11 we use this correspondence to prove the main
conjecture of [ŁPW20] about positroid tilings. We also present algorithms to find tilings
of Δ𝑘+1,𝑛 and𝒜𝑛,𝑘,2(𝑍) based on 𝑤-simplices and 𝑤-chambers, and we show some ex-
amples. We also explain other combinatorial manifestations of this correspondence.
In Section 12 we prove that positroid tiles are enumerated by a refinement of Schröder
numbers via a bijection with separable permutations. Appendix A gives background
on the combinatorics of the positroid cell decomposition of Gr≥0𝑘,𝑛.

2. The positive Grassmannian and the amplituhedron

2.1. The Grassmannian and positive Grassmannian. The (real) Grassmannian
Gr𝑘,𝑛 is the space of all 𝑘-dimensional subspaces of ℝ𝑛, for 0 ≤ 𝑘 ≤ 𝑛. An element
of Gr𝑘,𝑛 can be viewed as a 𝑘 × 𝑛 matrix of rank 𝑘, modulo left multiplication by in-
vertible 𝑘 × 𝑘matrices. That is, two 𝑘 × 𝑛matrices of rank 𝑘 represent the same point
in Gr𝑘,𝑛 if and only if they can be obtained from each other by invertible row opera-
tions. For 𝐶 a full-rank 𝑘×𝑛matrix, we will often abuse notation and write 𝐶 ∈ Gr𝑘,𝑛,
identifying 𝐶 with its rowspan.
Let [𝑛] denote {1, . . . , 𝑛}, and ([𝑛]𝑘 ) the set of all 𝑘-element subsets of [𝑛]. We embed

Gr𝑘,𝑛 into projective space ℙ(∧𝑘ℝ𝑛) in the usual way. That is, choose 𝑉 ∈ Gr𝑘,𝑛 and
any representativematrix𝐶 with rows𝐶1, . . . , 𝐶𝑘. Wemap𝑉 to the equivalence class of
𝐶1 ∧⋯∧𝐶𝑘 in ℙ(∧𝑘ℝ𝑛). This equivalence class depends only on 𝑉 , not on the choice
of 𝐶.
The embedding 𝑉 ↦ 𝐶1 ∧ ⋯ ∧ 𝐶𝑘 gives a natural choice of coordinates for the

Grassmannian. Let {𝑒1, . . . , 𝑒𝑛} be the standard basis of ℝ𝑛, and for 𝐼 = {𝑖1 < 𝑖2 < ⋯ <
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𝑖𝑘} ⊂ ([𝑛]𝑘 ), let 𝐸𝐼 ≔ 𝑒𝑖1 ∧⋯ ∧ 𝑒𝑖𝑘 . Writing 𝐶1 ∧⋯ ∧ 𝐶𝑘 in terms of the 𝐸𝐼 , we obtain

(2.1) 𝐶1 ∧⋯ ∧ 𝐶𝑘 = ∑
𝐼∈([𝑛]𝑘 )

𝑝𝐼(𝑉)𝐸𝐼 ∈ ∧𝑘(ℝ𝑛),

where 𝑝𝐼(𝑉) is the maximal minor of 𝐶 located in column set 𝐼. The 𝑝𝐼(𝑉) are the
Plücker coordinates of 𝑉 , and are independent of 𝐶 (up to simultaneous rescaling by a
constant).
We will also use the notation ⟨𝐶1, . . . , 𝐶𝑘⟩ for 𝐶1 ∧⋯ ∧ 𝐶𝑘.

Definition 2.2 ([Pos06, Section 3]). We say that 𝐶 ∈ Gr𝑘,𝑛 is totally nonnegative if
𝑝𝐼(𝐶) ≥ 0 for all 𝐼 ∈ ([𝑛]𝑘 ), and totally positive if 𝑝𝐼(𝐶) > 0 for all 𝐼 ∈ ([𝑛]𝑘 ). The set of all
totally nonnegative 𝐶 ∈ Gr𝑘,𝑛 is the totally nonnegative Grassmannian Gr≥0𝑘,𝑛, and the
set of all totally positive 𝐶 is the totally positive Grassmannian Gr>0𝑘,𝑛. Forℳ ⊆ ([𝑛]𝑘 ),
the positroid cell 𝑆ℳ is the set of 𝐶 ∈ Gr≥0𝑘,𝑛 such that 𝑝𝐼(𝐶) > 0 for all 𝐼 ∈ ℳ, and
𝑝𝐽(𝐶) = 0 for all 𝐽 ∈ ([𝑛]𝑘 ) ⧵ℳ. We callℳ a positroid if 𝑆ℳ is nonempty. We let 𝑄(𝑘, 𝑛)
denote the poset on the cells of Gr≥0𝑘,𝑛 defined by 𝑆ℳ ≤ 𝑆ℳ′ if and only if3 𝑆ℳ ⊆ 𝑆ℳ′ .

Remark 2.3. The positive and nonnegative part of a flag variety 𝐺/𝑃 was first intro-
duced by Lusztig [Lus94] (who gave a Lie-theoretic definition of (𝐺/𝑃)>0 and defined
(𝐺/𝑃)≥0 ≔ (𝐺/𝑃)>0), and proved to have a cell decomposition by Rietsch [Rie98]. Post-
nikov [Pos06] subsequently defined the nonnegative part of the Grassmannian as in
Definition 2.2, and independently gave the above decomposition into cells. From the
beginning it was believed by experts that Postnikov’s definition of Gr≥0𝑘,𝑛 should agree
with Lusztig’s (in the case 𝐺/𝑃 is the Grassmannian); this was first proved by Rietsch
[Rie], and reproved in [TW13, Corollary 1.2], where the authors additionally proved
that the two cell decompositions coincide. Two subsequent proofs that the two defini-
tions of Gr≥0𝑘,𝑛 coincide were given in [Lam16b,Lus19].

There are many ways to index the positroid cells of Gr≥0𝑘,𝑛 [Pos06], including dec-
orated permutations 𝜋, affine permutations 𝑓, and plabic graphs 𝐺. We will refer to
the corresponding positroid cells using the notation 𝑆𝜋, 𝑆𝑓, 𝑆𝐺 . For background, see
Appendix A.

2.2. The amplituhedron. Building on [AHBC+16], Arkani-Hamed and Trnka
[AHT14] introduced a newmathematical object called the (tree) amplituhedron, which
is the image of the totally nonnegative Grassmannian under a particular map. In what
follows, we letMat>0𝑛,𝑝 denote the set of 𝑛× 𝑝matrices whose maximal minors are pos-
itive.

Definition 2.4. Choose positive integers 𝑘 < 𝑛 and 𝑚 such that 𝑘 + 𝑚 ≤ 𝑛, and let
𝑍 ∈ Mat>0𝑛,𝑘+𝑚. Then 𝑍 induces a map ̃𝑍 ∶ Gr≥0𝑘,𝑛 → Gr𝑘,𝑘+𝑚 defined by

̃𝑍(⟨𝑐1, . . . , 𝑐𝑘⟩) ≔ ⟨𝑍(𝑐1), . . . , 𝑍(𝑐𝑘)⟩.
Equivalently, if 𝐶 is a matrix representing an element of Gr≥0𝑘,𝑛, then ̃𝑍(𝐶) is defined
to be the element of Gr𝑘,𝑘+𝑚 represented by the matrix 𝐶𝑍. The (tree) amplituhedron
𝒜𝑛,𝑘,𝑚(𝑍) is defined to be the image ̃𝑍(Gr≥0𝑘,𝑛) inside Gr𝑘,𝑘+𝑚.

3Here, and in what follows, we use closure in the Hausdorff topology.
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The fact that𝑍 has positivemaximalminors ensures that ̃𝑍 is well-defined [AHT14].
See [Kar17, Theorem 4.2] for a necessary and sufficient condition (in terms of sign-
variation) for a matrix 𝑍 to give rise to a well-defined map ̃𝑍. The amplituhedron
𝒜𝑛,𝑘,𝑚(𝑍) has full dimension 𝑘𝑚 inside Gr𝑘,𝑘+𝑚.
In special cases the amplituhedron recovers familiar objects. If 𝑍 is a square matrix,

i.e. 𝑘+𝑚 = 𝑛, then𝒜𝑛,𝑘,𝑚(𝑍) is isomorphic to the totally nonnegative Grassmannian.
If 𝑘 = 1, 𝒜𝑛,1,𝑚(𝑍) is a cyclic polytope in projective space ℙ𝑚 [Stu88]. If 𝑚 = 1, then
𝒜𝑛,𝑘,1(𝑍) can be identified with the complex of bounded faces of a cyclic hyperplane
arrangement [KW19].
We will consider the restriction of the ̃𝑍-map to positroid cells in Gr≥0𝑘,𝑛.

Definition 2.5. Fix 𝑘, 𝑛,𝑚with 𝑘+𝑚 ≤ 𝑛 and choose𝑍 ∈ Mat>0𝑛,𝑘+𝑚. Given a positroid
cell 𝑆𝜋 of Gr≥0𝑘,𝑛, we let 𝑍∘𝜋 = ̃𝑍(𝑆𝜋) and 𝑍𝜋 = ̃𝑍(𝑆𝜋) = ̃𝑍(𝑆𝜋), and we refer to 𝑍∘𝜋 and
𝑍𝜋 as open Grasstopes and Grasstopes, respectively. We call 𝑍𝜋 and 𝑍∘𝜋 a positroid tile
and an open positroid tile for 𝒜𝑛,𝑘,𝑚(𝑍) if dim(𝑆𝜋) = 𝑘𝑚 and ̃𝑍 is injective on 𝑆𝜋.

Definition 2.6. Let 𝑍𝜋 be a Grasstope of𝒜𝑛,𝑘,𝑚(𝑍). We say that 𝑍𝜋′ is a facet of 𝑍𝜋 if it
ismaximal by inclusion among theGrasstopes satisfying the following three properties:

• the cell 𝑆𝜋′ is contained in 𝑆𝜋
• 𝑍𝜋′ is contained in the boundary 𝜕𝑍𝜋
• 𝑍𝜋′ has codimension 1 in 𝑍𝜋.

Remark 2.7. By [Lam16b, Proposition 15.2], ̃𝑍(𝑆𝜋) = ̃𝑍(𝑆𝜋).

If 𝑘 = 1 and 𝑚 = 2, the amplituhedron 𝒜𝑛,1,2(𝑍) is a convex 𝑛-gon in ℙ2. The
positroid tiles are exactly the triangles on vertices of the polygon.
Images of positroid cells under the map ̃𝑍 have been studied since the introduction

of the amplituhedron. In particular, Arkani-Hamed and Trnka [AHT14] conjectured
that the images of certain BCFW collections of 4𝑘-dimensional cells in Gr≥0𝑘,𝑛 give a
positroid tiling of the amplituhedron 𝒜𝑛,𝑘,4(𝑍). Positroid tiles were called generalized
triangles in [ŁPSV19]. The terminology of Grassmann polytopes to describe images of
positroid cells in the amplituhedron was used in [Lam16b]. For brevity, we prefer the
term Grasstopes.

Remark 2.8. While the definition of the amplituhedron𝒜𝑛,𝑘,𝑚(𝑍) depends on a choice
of 𝑍 ∈ Mat>0𝑛,𝑘+𝑚, it is believed that many of its combinatorial properties do not de-
pend on this choice. For example, whether or not ̃𝑍(𝑆𝜋) is a positroid tile should be
independent of the choice of 𝑍; we will see that this is true in Theorem 4.25 in the case
that 𝑚 = 2. It is also believed that whether or not a collection of cells in Gr≥0𝑘,𝑛 gives a
positroid tiling of 𝒜𝑛,𝑘,𝑚(𝑍) should be independent of 𝑍.

Remark 2.9. We note that matrices whose maximal minors are positive (or nonnega-
tive) have a twisted cyclic symmetry. If 𝑍 ∈ Mat>0𝑛,𝑝 with 𝑛 ≥ 𝑝 has rows 𝑍1, 𝑍2, . . . , 𝑍𝑛,
and if we let ̂𝑍𝑖 denote (−1)𝑝−1𝑍𝑖, then the matrix with rows 𝑍2, . . . , 𝑍𝑛, ̂𝑍1 also lies in
Mat>0𝑛,𝑝. Similarly for the matrix with rows 𝑍3, . . . , 𝑍𝑛, ̂𝑍1, ̂𝑍2, etc.4

4Wewill use the ‘hat’ notation ̂also in the context of T-duality with a differentmeaning. It will be always
clear from context which one we mean.
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2.3. Previous work on the 𝑚 = 2 amplituhedron. The original paper [AHT14]
gave a conjectural positroid tiling {𝑍𝜋} of 𝒜𝑛,𝑘,2(𝑍). [KWZ20] proved that the above
collection consists of positroid tiles, that is, ̃𝑍 is injective on the corresponding positroid
cells. A BCFW-style recursion for positroid tilings of𝒜𝑛,𝑘,2(𝑍) was also conjectured in
[KWZ20]; the fact that this recursion indeed produces positroid tilings was proved in
[BH19]. A conjectural classification of𝑚 = 2 positroid tiles was given in [ŁPSV19].
Meanwhile, [AHTT18] gave a conjectural alternative description of 𝒜𝑛,𝑘,2(𝑍) in

terms of sign flips of twistor coordinates; they gave a proof sketch of one direction of
the conjecture, and an independent proof of the same direction was given in [KW19].
In a different direction, [Łuk19] gave a conjectural description of the boundaries of the
𝑚 = 2 amplituhedron. Finally, [ŁPW20] discovered a link between the 𝑚 = 2 ampli-
tuhedron and the hypersimplex via T-duality and the tropical positive Grassmannian,
which inspired the present paper.

3. The sign stratification of the amplituhedron

In this section we introduce twistor coordinates for the amplituhedron 𝒜𝑛,𝑘,𝑚(𝑍),
and we use them to define the sign stratification of the amplituhedron. We also intro-
duce terminology for sign variation and sign flips. We will subsequently use twistor
coordinates to prove a sign flip description of 𝒜𝑛,𝑘,2 in Theorem 5.1, to characterize
positroid tiles, and to describe Grasstopes.
The definitions and results in this section hold for any positive 𝑚. The subsequent

sections of the paper are mostly concerned with 𝑚 = 2. However, many of our tech-
niques can be applied to other 𝑚, in particular 𝑚 = 4; we plan to investigate this in a
separate paper.
Twistor coordinates were first considered in [AHT14], and subsequently used in

[AHTT18] to give a conjectural ’sign flip’ description of the amplituhedron. In the case
𝑚 = 1, [KW19, Corollary 3.19] studied the sign stratification and proved a sign flip
description of 𝒜𝑛,𝑘,1(𝑍).

3.1. Twistor coordinates for 𝒜𝑛,𝑘,𝑚.

Definition 3.1. Fix positive 𝑘 < 𝑛 and𝑚 such that 𝑘 +𝑚 ≤ 𝑛. Choose 𝑍 ∈ Mat>0𝑛,𝑘+𝑚
and denote its rows by 𝑍1, . . . , 𝑍𝑛 ∈ ℝ𝑘+𝑚. Given a matrix 𝑌 with rows 𝑦1, . . . , 𝑦𝑘
representing an element of 𝐺𝑟𝑘,𝑘+𝑚, and 𝑖1, . . . , 𝑖𝑚 a sequence of elements of [𝑛], we
let

⟨𝑌𝑍𝑖1𝑍𝑖2 . . . 𝑍𝑖𝑚⟩ = ⟨𝑦1, . . . , 𝑦𝑘, 𝑍𝑖1 , . . . , 𝑍𝑖𝑚⟩
denote the determinant of the (𝑘 +𝑚) × (𝑘+𝑚)matrix whose rows are 𝑦1, . . . , 𝑦𝑘, 𝑍𝑖1 ,
. . . , 𝑍𝑖𝑚 . We call ⟨𝑌𝑍𝑖1𝑍𝑖2 . . . 𝑍𝑖𝑚⟩ a twistor coordinate. We abbreviate ⟨𝑌𝑍𝑖1𝑍𝑖2 . . . 𝑍𝑖𝑚⟩
by writing ⟨𝑌𝑖1𝑖2 . . . 𝑖𝑚⟩, when 𝑍 is understood.

Note that the twistor coordinates are a subset of the Plücker coordinates of the
(𝑘 + 𝑚) × (𝑘 + 𝑛) matrix whose columns are 𝑦1, . . . , 𝑦𝑘, 𝑍1, . . . , 𝑍𝑛. There is also an
interpretation of the twistor coordinates as Plücker coordinates in Gr𝑚,𝑛, as we ex-
plain in Proposition 3.3. In the context of scattering amplitudes of 𝑛 particles in SYM
theory, Gr𝑚,𝑛 is the space of momentum twistors5 for 𝑚 = 4, which is why we call

5Momentum twistors, introduced by Hodges in [Hod13], are points 𝑧1, . . . , 𝑧𝑛 in ℙ3 encoding the kine-
matic data of scattering particles. Due to dual conformal symmetry of scattering amplitudes in SYM theory,
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the coordinates from Definition 3.1 twistor coordinates. Remarkable connections be-
tween scattering amplitudes and the cluster algebra associated to the Grassmannian
𝐺𝑟4,𝑛 were discovered in these coordinates [GGS+14].
The fact that the twistor coordinates uniquely determine points of the amplituhe-

dron can be deduced from some results of [KW19].
Definition 3.2 ([KW19, Definition 3.8]). Given 𝑊 ∈ Gr>0𝑘+𝑚,𝑛, we define the ℬ-
amplituhedron

ℬ𝑛,𝑘,𝑚(𝑊) ≔ {𝑉⟂ ∩𝑊 | 𝑉 ∈ Gr≥0𝑘,𝑛} ⊆ Gr𝑚(𝑊),
where 𝑉⟂ ∈ Gr𝑛−𝑘,𝑛 denotes the orthogonal complement of 𝑉 in ℝ𝑛 and Gr𝑚(𝑊) ⊆
Gr𝑚,𝑛 denotes the subset of Gr𝑚,𝑛 of elements 𝑋 ∈ Gr𝑚,𝑛 with 𝑋 ⊆ 𝑊 .
Proposition 3.3 ([KW19, Lemma 3.10, Proposition 3.12]). Fix 𝑘, 𝑛,𝑚 and 𝑍 as in Def-
inition 3.1, and let𝑊 ∈ Gr>0𝑘+𝑚,𝑛 be the column span of 𝑍. Then the map

𝑓𝑍 ∶ Gr𝑚(𝑊) → Gr𝑘,𝑘+𝑚,
𝑋 ↦ 𝑍(𝑋⟂) = {𝑍(𝑥) | 𝑥 ∈ 𝑋⟂} = rowspan(𝑋⟂𝑍) ≕ 𝑌

is an isomorphism. Here 𝑋⟂ ∈ Gr𝑛−𝑚,𝑛 denotes the orthogonal complement of 𝑋 in ℝ𝑛.
Moreover, for 𝑋 ∈ Gr𝑚(𝑊), 𝑌 ≔ 𝑓𝑍(𝑋), and 𝐼 = {𝑖1 < ⋯ < 𝑖𝑚} ⊆ [𝑛], we have

(3.4) 𝑝𝐼(𝑋) = ⟨𝑌𝑍𝑖1 . . . 𝑍𝑖𝑚⟩
(where we view Plücker and twistor coordinates as coordinates on points in projective
space).
Finally, 𝑓𝑍 ∶ ℬ𝑛,𝑘,𝑚(𝑊) → 𝒜𝑛,𝑘,𝑚(𝑍) is a homeomorphism sending𝑉⟂∩𝑊 ↦ ̃𝑍(𝑉).
From (3.4) we see that 𝑌 ∈ Gr𝑘,𝑘+𝑚 is uniquely determined by its twistor coordi-

nates.
Remark 3.5. As an alternative to Proposition 3.3 we can consider the injective map 𝜓𝑍

𝜓𝑍 ∶ Gr𝑘,𝑘+𝑚 → Gr𝑚,𝑛,
𝑌 ↦ 𝑌⟂𝑍𝑇 ≕ 𝑧,

where 𝑌⟂ is any matrix representing the orthogonal complement of 𝑌 . Then it’s not
hard to see that for 𝐼 = {𝑖1 < ⋯ < 𝑖𝑚} ⊆ [𝑛], 𝑝𝐼(𝑧) = ⟨𝑌𝑍𝑖1 . . . 𝑍𝑖𝑚⟩ (viewing both
Plücker and twistor coordinates as coordinates on points in projective space).
The following expansion formula (3.7) will be useful in our proofs on positroid tiles.

Lemma 3.6. Use the notation of Definition 3.1. If we write 𝑌 ∈ Gr𝑘,𝑘+𝑚 as 𝑌 = 𝐶𝑍
with 𝐶 ∈ Gr𝑘,𝑘+𝑛, we can write the twistor coordinates in the form
(3.7) ⟨𝐶𝑍, 𝑍𝑖1 , . . . , 𝑍𝑖𝑚⟩ = ∑

{𝑗1<⋯<𝑗𝑘}∈([𝑛]𝑘 )
𝑝𝐽(𝐶)⟨𝑍𝑗1 , . . . , 𝑍𝑗𝑘 , 𝑍𝑖1 , . . . , 𝑍𝑖𝑚⟩.

Proof. Identifying the 𝑘 × (𝑘 + 𝑚)matrix 𝐶𝑍 with the corresponding element ⟨𝐶𝑍⟩ of
∧𝑘(ℂ𝑘+𝑚), we have

⟨𝐶𝑍⟩ = ∑
{𝑗1<⋯<𝑗𝑘}∈([𝑛]𝑘 )

𝑝𝐽(𝐶)⟨𝑍𝑗1 , . . . , 𝑍𝑗𝑘⟩.

these are defined up to a 𝑃𝐺𝐿4 transformation on ℙ3. Therefore, momentum twistors can be embedded in
𝐺𝑟4,𝑛/(ℂ∗)𝑛−1 and scattering amplitudes are functions of Plücker coordinates in Gr4,𝑛. See [GGS+14].
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This implies the result. □

We will give a description of positroid tiles in 𝒜𝑛,𝑘,2 using signs of twistor coor-
dinates. One ingredient in our proofs is the following easy sufficient condition for a
twistor coordinate to have constant sign on a Grasstope, which follows directly from
(3.7).

Lemma 3.8. Fix positive 𝑘 < 𝑛 and 𝑚 such that 𝑘 + 𝑚 ≤ 𝑛. Let 𝑆ℳ be a cell of Gr≥0𝑘,𝑛.
Fix 𝑍 ∈ Mat>0𝑛,𝑘+𝑚 and as usual let 𝑍1, . . . , 𝑍𝑛 denote the row vectors of 𝑍. Choose an
𝑚-element subset 1 ≤ 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑚 ≤ 𝑛.

• If ⟨𝑍𝑗1 , . . . , 𝑍𝑗𝑘 , 𝑍𝑖1 , . . . , 𝑍𝑖𝑚⟩ ≥ 0 for each 𝐽 = {𝑗1 < ⋯ < 𝑗𝑘} ∈ ℳ, then
⟨𝐶𝑍, 𝑍𝑖1 , . . . , 𝑍𝑖𝑚⟩ ≥ 0 for each 𝐶 ∈ 𝑆ℳ .

• If in addition ⟨𝑍𝑗1 , . . . , 𝑍𝑗𝑘 , 𝑍𝑖1 , . . . , 𝑍𝑖𝑚⟩ > 0 for some 𝐽 = {𝑗1 < ⋯ < 𝑗𝑘} ∈ ℳ
then ⟨𝐶𝑍, 𝑍𝑖1 , . . . , 𝑍𝑖𝑚⟩ > 0 for each 𝐶 ∈ 𝑆ℳ .

3.2. The sign stratification of 𝒜𝑛,𝑘,𝑚. Since 𝑌 ∈ Gr𝑘,𝑘+𝑚 is uniquely determined
by its twistor coordinates, it makes sense to stratify 𝒜𝑛,𝑘,𝑚(𝑍) ⊂ Gr𝑘,𝑘+𝑚 by the signs
of the twistor coordinates. This was done in [KW19] in the case that 𝑚 = 1. More-
over, this sign stratification is closely related to the oriented matroid stratification on
the Grassmannian, which partitions elements of the real Grassmannian into strata
based on the signs of the Plücker coordinates. By Proposition 3.3, the twistor coor-
dinates of 𝑌 ∈ 𝒜𝑛,𝑘,𝑚(𝑍) are Plücker coordinates on the corresponding element of
the B-amplituhedron [KW19] or amplituhedron inmomentum twistor space [AHTT18],
so this sign stratification reduces to the oriented matroid stratification in momentum
twistor space.

Definition 3.9 (Amplituhedron chambers). Fix positive 𝑘 < 𝑛 and𝑚 such that 𝑘+𝑚 ≤
𝑛. Let 𝜎 = (𝜎𝑖1,. . .,𝑖𝑚) ∈ {0, +, −}(𝑛𝑚) be a nonzero sign vector, considered6 modulo
multiplication by ±1. Set

𝒜𝜍
𝑛,𝑘,𝑚(𝑍) ≔ {𝑌 ∈ 𝒜𝑛,𝑘,𝑚(𝑍) | sign⟨𝑌𝑍𝑖1 . . . 𝑍𝑖𝑚⟩ = 𝜎𝑖1,. . .,𝑖𝑚 }.

We call 𝒜𝜍
𝑛,𝑘,𝑚(𝑍) an (amplituhedron) sign stratum. Clearly

𝒜𝑛,𝑘,𝑚(𝑍) = ⊔𝜍𝒜𝜍
𝑛,𝑘,𝑚(𝑍).

If 𝜎 ∈ {+,−}(𝑛𝑚), we call 𝒜𝜍
𝑛,𝑘,𝑚(𝑍) an open (amplituhedron) chamber.7

For 𝑚 = 1, all strata are nonempty [KW19, Definition 5.2], but this is not true for
𝑚 > 1. Moreover, whether or not 𝒜𝜍

𝑛,𝑘,𝑚(𝑍) is empty depends on 𝑍, see Section 11.
Definition 3.10. We say that a sign vector 𝜎 (or sign stratum 𝒜𝜍

𝑛,𝑘,𝑚) is realizable for
𝒜𝑛,𝑘,𝑚 if 𝒜𝜍

𝑛,𝑘,𝑚(𝑍) is nonempty for some 𝑍.
3.3. Sign variation and sign flips. Signs and sign flips will be important to our de-
scription of the amplituhedron, so we introduce some useful terminology here.

Definition 3.11. Given 𝑣 ∈ ℝ𝑛, let var(𝑣) be the number of times 𝑣 changes signwhen
we read the components from left to right and ignore any zeros. If 𝑣 ∈ {0, +, −}𝑛, we
define var(𝑣) in the obvious way.

6Plücker and twistor coordinates are defined only up to multiplication by a common scalar.
7We borrow the word “chamber” from the theory of hyperplane arrangements.
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For example, if 𝑣 ≔ (4, −1, 0, −2) ∈ ℝ4 then var(𝑣) = 1.

Definition 3.12. If 𝑣 ∈ ℝ𝑛, or 𝑣 ∈ {+,−, 0}𝑛, we say that 𝑣 has a sign flip in position
𝑖 if 𝑣𝑖, 𝑣𝑖+1 ≠ 0 and they have different signs, where indices are considered modulo 𝑛.
We define

Flip(𝑣) = Flip(𝑣1, . . . , 𝑣𝑛) ≔ {𝑖 | 𝑣 has a sign flip in position 𝑖} ⊆ [𝑛].

Remark 3.13. We caution the reader that | Flip(𝑣)| may not equal var(𝑣). For exam-
ple, the sequence (+, 0, −, 0, +, +,−) ∈ {+,−, 0}7 has sign flips in positions {6, 7}, but
var(+, 0, −, 0, +, +,−) is 3.

4. Positroid tiles of 𝒜𝑛,𝑘,2

Recall that a positroid tile of 𝒜𝑛,𝑘,𝑚(𝑍) is the full-dimensional image of a positroid
cell on which ̃𝑍 is injective. In this section, we will obtain a detailed description of the
positroid tiles of 𝒜𝑛,𝑘,2(𝑍). The main results of this section are the following:

• In Theorem 4.25 we classify the positroid tiles of𝒜𝑛,𝑘,2(𝑍), describing them as
the Grasstopes 𝑍𝐺̂(𝒯) obtained from the 2𝑘-dimensional positroid cells 𝑆𝐺̂(𝒯)
associated to bicolored subdivisions of polygons, proving a conjecture of
[ŁPSV19]. This implies that whether or not ̃𝑍(𝑆𝜋) is a positroid tile is inde-
pendent of the choice of 𝑍.

• In Theorem 4.28 we characterize each (open) positroid tile 𝑍∘𝐺̂(𝒯) as the subset
of Gr𝑘,𝑘+2 where certain twistor coordinates have a fixed sign; this shows that
each positroid tile is a union of (closures of) amplituhedron chambers.

• In Theorem 4.19 we solve a kind of “inverse problem” for positroid tiles: given
an element𝑌 ∈ Gr𝑘,𝑘+2 which lies in an open positroid tile𝑍∘𝐺̂(𝒯), we explicitly
construct an element 𝐶 ∈ Gr𝑘,𝑛 whose image in 𝒜𝑛,𝑘,2(𝑍) is 𝑌 , i.e. 𝐶𝑍 = 𝑌 ;
the entries of 𝐶 are in fact twistor coordinates.

We note that the techniques that we use in this section can be extended to give a cell
decomposition of 𝒜𝑛,𝑘,2(𝑍). This will be explored in a separate paper.

1 2

3

4

5
6

7

8

9

Figure 1. Two equivalent bicolored triangulations 𝒯1 and 𝒯2 of type
(5, 9), and the corresponding bicolored subdivision 𝒯1 = 𝒯2 of type
(5, 9)

Definition 4.1 (Bicolored triangulations and subdivisions). Let 𝐏𝑛 be a convex 𝑛-gon
with vertices labeled from 1 to 𝑛 in clockwise order. A bicolored triangulation of type
(𝑘, 𝑛) is a triangulation of𝐏𝑛where 𝑘 triangles are colored black and the rest are colored
white. Two bicolored triangulations are equivalent if the union of the black triangles
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of one is equal to the union of the black triangles of the other. We represent the equiv-
alence class of a bicolored triangulation 𝒯 by erasing the diagonals that separate pairs
of triangles of the same color. The resulting object 𝒯 is a subdivision of 𝐏𝑛 into white
and black polygons, and is called a bicolored subdivision of type (𝑘, 𝑛). See Figure 1.
Note that in a bicolored subdivision, as defined above, no two polygons of the same

color share an edge. Bicolored triangulations of type (𝑘, 𝑛)were called 𝑘nonintersecting
triangles in a convex 𝑛-gon in [ŁPSV19]. We will see later (cf. Remark 8.11) that bicol-
ored triangulations and subdivisions are special cases of the plabic tilings of [OPS15].
Given 𝒯 a bicolored triangulation of type (𝑘, 𝑛), we build a corresponding bipartite

graph ̂𝐺(𝒯) as in Figure 2, then use the recipe from Theorem A.7 and Remark A.8 to
construct all points of the 2𝑘-dimensional cell 𝑆𝐺̂(𝒯) of Gr

≥0
𝑘,𝑛.

Definition 4.2. Given 𝒯 a bicolored triangulation of type (𝑘, 𝑛), we build a labeled
bipartite graph ̂𝐺(𝒯) by placing black boundary vertices labeled 𝐵1, 𝐵2, . . . , 𝐵𝑛 in clock-
wise order at the 𝑛 vertices of the 𝑛-gon, and placing a trivalent white vertex in the
middle of each black triangle, connecting it to the three vertices of the triangle. We la-
bel the 𝑘white vertices by𝑊1, . . . ,𝑊 𝑘; we will usually label them in the order specified
by Remark 4.5.

B1

B2

B3

B4

B5

B6

B7

B8

B9

W1

W2

W3W4

W5

α4

β4γ4

α1

β1

γ1

α2

β2

γ2

α3

β3

γ3

α5β5

γ5

Figure 2. The planar bipartite graph ̂𝐺(𝒯1) together with its edge-weighting

Remark 4.3. We can think of ̂𝐺(𝒯) as a plabic graph (see Definition A.2) if we enclose
it in a slightly larger disk and add 𝑛 edges connecting each 𝐵𝑖 to the boundary of the
disk. We will often abuse terminology and refer to ̂𝐺(𝒯) as a plabic graph. Note that
̂𝐺(𝒯) does not depend on the triangulation of the white polygons of 𝒯.

Lemma 4.4. If two bicolored triangulations 𝒯1 and 𝒯2 are equivalent, then the plabic
graphs ̂𝐺(𝒯1) and ̂𝐺(𝒯2) are move-equivalent (see Definition A.3). In other words, these
two plabic graphs represent the same cell of Gr≥0𝑘,𝑛.
Proof. The fact that 𝒯1 and 𝒯2 are equivalent means that we can get from 𝒯1 to 𝒯2 by
flipping diagonals inside the black and white polygons of 𝒯1. A flip inside a white
polygon does not change the plabic graph, while a flip inside a black polygon cor-
responds to performing a square move on the plabic graph. So ̂𝐺(𝒯1) and ̂𝐺(𝒯2) are
move-equivalent. □



THE 𝑚 = 2 AMPLITUHEDRON AND THE HYPERSIMPLEX 343

In light of Lemma 4.4, we let 𝑆𝐺̂(𝒯) denote the cell specified by any triangulation of
𝒯.

Remark 4.5. We identify each black triangle 𝑇 in a bicolored triangulation 𝒯 with its
three vertices 𝑎 < 𝑏 < 𝑐 listed in increasing order. We list the 𝑘 black triangles

(𝑇1, . . . , 𝑇𝑘) = ({𝑎1 < 𝑏1 < 𝑐1}, . . . , {𝑎𝑘 < 𝑏𝑘 < 𝑐𝑘})
in lexicographically increasing order, and label the white vertex inside of 𝑇𝑖 by𝑊 𝑖.

For example, we list the five black triangles of the bicolored triangulation 𝒯1 from
Figure 1 in the order

({1 < 7 < 8}, {1 < 8 < 9}, {2 < 3 < 4}, {2 < 4 < 7}, {4 < 6 < 7}).
We label the white vertices of ̂𝐺(𝒯1) in Figure 2 so as to reflect this ordering on black
triangles.

Definition 4.6 (Statistics of bicolored triangulations). Given a bicolored triangulation
𝒯 of type (𝑘, 𝑛) and a pair of vertices ℎ, 𝑗 of 𝐏𝑛, we say that the arc ℎ → 𝑗 is:

• compatiblewith𝒯 if the arc does not cross any arcs of the underlying bicolored
subdivision 𝒯, i.e. it either bounds a polygon of 𝒯 or it lies entirely inside a
black or white polygon;

• a black arc of 𝒯 if it bounds a black triangle of 𝒯;
• facet-defining if it bounds a black polygon of 𝒯 on its left.

In particular, each black arc of 𝒯 is compatible with 𝒯.
When ℎ → 𝑗 is compatible with 𝒯, we let area(ℎ → 𝑗) = area𝒯(ℎ → 𝑗) denote

the number of black triangles to the left of ℎ → 𝑗 in any triangulation of𝒯 which uses
ℎ → 𝑗.

For example, the arcs 1 → 8, 1 → 7 and 2 → 6 are compatible with the bicolored
triangulation 𝒯 from Figure 2, and we have area(1 → 8) = 4, area(1 → 7) = 3,
area(2 → 6) = 2. However, the arcs 2 → 8 and 3 → 8 are not compatible with 𝒯.
We can easily write down representative matrices for points in 𝑆𝐺̂(𝒯) using the the-

ory of Kasteleyn matrices. Note that matrices with the same pattern of zero/nonzero
entries appeared in [ŁPSV19] (though the authors did not prove Proposition 4.7 there).

Proposition 4.7. Let𝒯 be a bicolored triangulation of type (𝑘, 𝑛). We let
({𝑎1 < 𝑏1 < 𝑐1}, . . . , {𝑎𝑘 < 𝑏𝑘 < 𝑐𝑘})

denote the list of 𝑘 black triangles of 𝒯, written in lexicographically increasing order, as
in Remark 4.5. Choose a set of edge-weights for the graph ̂𝐺(𝒯), which we write as

(𝛼, 𝛽, 𝛾) = ((𝛼1, 𝛽1, 𝛾1), (𝛼2, 𝛽2, 𝛾2), . . . , (𝛼𝑘, 𝛽𝑘, 𝛾𝑘)) ∈ (ℝ>0)3𝑘,
with 𝛼𝑖, 𝛽𝑖, 𝛾𝑖 denoting the weights on the edges from𝑊 𝑖 to 𝐵𝑎𝑖 , 𝐵𝑏𝑖 and 𝐵𝑐𝑖 , respectively.
Let 𝑀𝒯(𝛼, 𝛽, 𝛾) = (𝑀𝑖,𝑗) be the 𝑘 × 𝑛 matrix with precisely 3 nonzero entries in each

row:

(4.8) 𝑀𝑖,𝑎𝑖 = 𝛼𝑖, 𝑀𝑖,𝑏𝑖 = (−1)area(𝑎𝑖→𝑏𝑖)𝛽𝑖, 𝑀𝑖,𝑐𝑖 = (−1)area(𝑎𝑖→𝑏𝑖)+area(𝑏𝑖→𝑐𝑖)𝛾𝑖.

Then the cell 𝑆𝐺̂(𝒯) is the image of the map (ℝ>0)3𝑘 → Gr≥0𝑘,𝑛 sending (𝛼, 𝛽, 𝛾) ↦
𝑀𝒯(𝛼, 𝛽, 𝛾).
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Note that𝑀𝒯(𝛼, 𝛽, 𝛾) has rows and columns indexed by the white and black vertices
of ̂𝐺(𝒯). The 𝑖𝑗-entry is nonzero if and only if there is an edge 𝑒 in ̂𝐺(𝒯) between𝑊 𝑖
and 𝐵𝑗 , and in that case is (up to a sign) equal to the weight of 𝑒.

Remark 4.9. Clearly the image of the map (𝛼, 𝛽, 𝛾) ↦ 𝑀𝒯(𝛼, 𝛽, 𝛾) is unchanged if we
rescale each row of the matrix so that the leftmost nonzero entry is 1, i.e. set each
𝛼𝑖 = 1. This map is then a homeomorphism from (ℝ>0)2𝑘 to the positroid cell 𝑆𝐺̂(𝒯).

Proof of Proposition 4.7. This follows from Theorem A.7 and Remark A.8. For com-
pleteness, we sketch why the choice of signs of entries is correct. For a black triangle
𝑇𝑖 = {𝑎 < 𝑏 < 𝑐} of 𝒯, define
𝜖𝑖,𝑎 ≔ (−1)#{𝑗<𝑖∶𝑎𝑖=𝑎𝑗 }, 𝜖𝑖,𝑏 ≔ 𝜖𝑖,𝑎 ⋅ (−1)area(𝑎𝑖→𝑏𝑖), 𝜖𝑖,𝑐 ≔ 𝜖𝑖,𝑎 ⋅ (−1)area(𝑎𝑖→𝑐𝑖)+1.
Let (𝑑1, . . . , 𝑑𝑘) be a tuple of distinct vertices of black triangles of 𝒯 such that 𝑑𝑖 ∈ 𝑇𝑖.
The sign of the permutation 𝜎 such that 𝑑𝜍(1) < . . . < 𝑑𝜍(𝑘) is the product 𝜖1,𝑑1 ⋯𝜖𝑘,𝑑𝑘 .
Then:

𝑝𝐼(𝑀)𝐸𝐼 = ∑
(𝑑1,. . .,𝑑𝑘)

𝑀1,𝑑1 ⋯𝑀𝑘,𝑑𝑘⟨𝑒𝑑1 , . . . , 𝑒𝑑𝑘⟩ = ∑
(𝑑1,. . .,𝑑𝑘)

(𝜖1,𝑑1𝑀1,𝑑1)⋯ (𝜖𝑘,𝑑𝑘𝑀𝑘,𝑑𝑘) 𝐸𝐼 ,

where the sum is over the collections defined above satisfying {𝑑1, . . . , 𝑑𝑘} = 𝐼. A suf-
ficient condition for 𝑝𝐼(𝑀) ≥ 0 is that sgn𝑀𝑖,𝑑𝑖 = 𝜖𝑖,𝑑𝑖 . Up to rescaling the row 𝑖 of𝑀
by 𝜖𝑖,𝑎𝑖 , this is true, as area(𝑎𝑖 → 𝑐𝑖) = area(𝑎𝑖 → 𝑏𝑖) + area(𝑏𝑖 → 𝑐𝑖) + 1. □

Example 4.10. For example, the matrix𝑀𝒯1 corresponding to the bicolored triangu-
lation 𝒯1 from Figure 2 is

(4.11)

⎛
⎜
⎜
⎜
⎝

𝛼1 0 0 0 0 0 −𝛽1 −𝛾1 0
𝛼2 0 0 0 0 0 0 𝛽2 𝛾2
0 𝛼3 𝛽3 𝛾3 0 0 0 0 0
0 𝛼4 0 −𝛽4 0 0 𝛾4 0 0
0 0 0 𝛼5 0 𝛽5 𝛾5 0 0

⎞
⎟
⎟
⎟
⎠

.

Proposition 4.7 says that if we let the parameters ((𝛼1, 𝛽1, 𝛾1), . . . , (𝛼5, 𝛽5, 𝛾5)) range over
all elements of (ℝ>0)15, the matrices (4.11) will sweep out all points of the cell 𝑆𝐺̂(𝒯1).

Remark 4.12. The matrices constructed in Proposition 4.7 may have nonpositive max-
imal minors rather than nonnegative maximal minors. To obtain a matrix which has
nonnegative maximal minors, multiply row 𝑗 by (−1)#{𝑖<𝑗∶𝑎𝑖=𝑎𝑗 }.

Lemma 4.13. Let 𝒯 = {𝑇1, . . . , 𝑇𝑘} be a bicolored triangulation of type (𝑘, 𝑛). Then
𝑃𝐼 ≠ 0 on the positroid cell 𝑆𝐺̂(𝒯) if and only if there is a bijection 𝜙 ∶ 𝐼 = {𝑖1, . . . , 𝑖𝑘} →
{𝑇1, . . . , 𝑇𝑘} with 𝑖 a vertex of 𝜙(𝑖) for all 𝑖.

Proof. It suffices to show that the Plücker coordinate 𝑃𝐼 is nonzero on 𝑆𝐺̂(𝒯) if and only
if there is a bijection 𝜙 ∶ 𝐼 = {𝑖1, . . . , 𝑖𝑘} → {𝑇1, . . . , 𝑇𝑘} with 𝑖 a vertex of 𝜙(𝐼) for all 𝑖.
By Theorem A.7, 𝑝𝐼 ≠ 0 on 𝑆𝐺̂(𝒯) if and only if there is a matching𝑀 of ̂𝐺(𝒯) such

that 𝜕𝑀 = 𝐼. Note that anymatching𝑀 of ̂𝐺(𝒯) consists of 𝑘 edges, obtained by pairing
each white vertex𝑊 𝑗 with one of its three incident black vertices {𝐵𝑎𝑗 , 𝐵𝑏𝑗 , 𝐵𝑐𝑗 }. The 𝑘
black vertices {𝐵𝑖1 , . . . , 𝐵𝑖𝑘 } obtained in this way must be distinct (since 𝑀 is a match-
ing), so we get a bijection between 𝐼 ≔ {𝑖1, . . . , 𝑖𝑘} and the black triangles 𝑇1, . . . , 𝑇𝑘.
Moreover 𝜕𝑀 = 𝐼. □
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Now, we turn to the open Grasstopes 𝑍∘𝐺̂(𝒯) and their properties.

Theorem 4.14 (Definite signs of twistor coordinates). Let 𝒯 be a bicolored triangula-
tion of type (𝑘, 𝑛) and let 𝑌 ≔ 𝐶𝑍 ∈ Gr𝑘,𝑘+2, where 𝐶 is a matrix representing a point of
the cell 𝑆𝐺̂(𝒯). Choose ℎ < 𝑗 such that the chord ℎ → 𝑗 is compatible with𝒯. Then

(4.15) sgn⟨𝑌𝑍ℎ𝑍𝑗⟩ = (−1)area(ℎ→𝑗), or equivalently, (−1)area(ℎ→𝑗)⟨𝑌𝑍ℎ𝑍𝑗⟩ > 0.
In other words, we have that

(4.16) 𝑍∘𝐺̂(𝒯) ⊆ {𝑌 ∈ Gr𝑘,𝑘+2 | (4.15) holds for all arcs ℎ → 𝑗 compatible with𝒯}.

Proof. We start by choosing a bicolored triangulation 𝒯1 such that 𝒯1 = 𝒯, and such
that the chord ℎ → 𝑗 is one of the diagonals of 𝒯1. By Lemma 4.4, the choice of 𝒯1
does not affect the corresponding positroid cell. By Lemma 3.8, it suffices to verify
(4.15) for each 𝑌 ≔ ⟨𝑍𝑖1 , . . . , 𝑍𝑖𝑘⟩ indexed by {𝑖1 < ⋯ < 𝑖𝑘} = 𝐼 such that 𝑝𝐼 ≠ 0 on
the cell 𝑆𝐺̂(𝒯). And by Lemma 4.13, 𝑝𝐼 ≠ 0 on 𝑆𝐺̂(𝒯) if and only if there is a bijection
𝜙 ∶ 𝐼 = {𝑖1, . . . , 𝑖𝑘} → {𝑇1, . . . , 𝑇𝑘} with 𝑖 a vertex of 𝜙(𝑖) for all 𝑖.
Towards this end, choose 𝐼 = {𝑖1 < ⋯ < 𝑖𝑘} such that 𝑝𝐼 ≠ 0 on the cell 𝑆𝐺̂(𝒯). We

need to calculate sgn⟨𝑍𝑖1 , . . . , 𝑍𝑖𝑘 , 𝑍ℎ, 𝑍𝑗⟩.
If ℎ ∈ 𝐼 or 𝑗 ∈ 𝐼, ⟨𝑍𝑖1 , . . . , 𝑍𝑖𝑘 , 𝑍ℎ, 𝑍𝑗⟩ = 0. So without loss of generality, we can as-

sume that ℎ and 𝑗 are not elements of 𝐼. Recall that maximal minors of 𝑍 are positive:
thismeans that for any ordered sequence ℓ1 < ⋯ < ℓ𝑘+2, we have sgn⟨𝑍ℓ1 , . . . , 𝑍ℓ𝑘+2⟩ =
1. To determine sgn⟨𝑍𝑖1 , . . . , 𝑍𝑖𝑘 , 𝑍ℎ, 𝑍𝑗⟩, we need to know how many swaps are re-
quired to put the sequence (𝑖1, . . . , 𝑖𝑘, ℎ, 𝑗) in order. Any 𝑖ℓ which is greater than both ℎ
and 𝑗 needs to get swapped past both of them, which has no effect on the sign of the de-
terminant. Any 𝑖ℓ which is less than both ℎ and 𝑗 does not need to get swapped past ei-
ther. Each 𝑖ℓ such that ℎ < 𝑖ℓ < 𝑗 needs to get swapped past ℎ (but not 𝑗). Therefore the
parity of the number of swaps required to put the sequence (𝑖1, . . . , 𝑖𝑘, ℎ, 𝑗) in order is the
same as the parity of #{𝑖ℓ ∈ 𝐼 ∶ ℎ < 𝑖ℓ < 𝑗}. It follows that sgn⟨𝑍𝑖1 , . . . , 𝑍𝑖𝑘 , 𝑍ℎ, 𝑍𝑗⟩ =
(−1)#{𝑖ℓ∈𝐼∶ℎ<𝑖ℓ<𝑗}. Finally, the existence of the bijection 𝜙 means that #{𝑖ℓ ∈ 𝐼 ∶ ℎ <
𝑖ℓ < 𝑗} is the number of black triangles of 𝒯1 which are to the left of ℎ → 𝑗.
To complete the proof, we must show that there is some 𝐼 ∈ ([𝑛]𝑘 ) containing neither

ℎ nor 𝑗 such that 𝑝𝐼 is nonzero. Equivalently, we must find a matching of ̂𝐺(𝒯1)which
does not have ℎ or 𝑗 in its boundary. We do so by induction on the number of black
triangles of 𝒯1. Clearly there is such a matching if ̂𝐺(𝒯1) has a single black triangle. If
ℎ → 𝑗 is contained in a white polygon of 𝒯1, we cut along ℎ → 𝑗 to obtain two smaller
bicolored triangulations 𝒯2 and 𝒯3. By induction, we can find matchings of ̂𝐺(𝒯2) and
̂𝐺(𝒯3) avoiding ℎ and 𝑗; their union gives the desired matching of ̂𝐺(𝒯1). Otherwise,

ℎ → 𝑗 is the boundary of a black triangle 𝑇𝑟 of 𝒯1. Let 𝑐 be the third vertex of this
triangle. Cut 𝒯1 along ℎ → 𝑗, 𝑗 → 𝑐 and 𝑐 → ℎ to obtain bicolored triangulations of
smaller polygons. The ̂𝐺 plabic graphs of these bicolored triangulations have match-
ings avoiding ℎ, 𝑗, 𝑐 by induction, since each smaller polygon contains exactly two of
these vertices. The union of these matchings, together with the edge from 𝐵𝑐 to 𝑊𝑟,
gives the desired matching of 𝒯1. □

The following result solves a kind of ’inverse problem:’ given 𝑌 ∈ 𝑍∘𝐺̂(𝒯), we can
construct a particular matrix representative 𝐶tw

𝒯 (𝑌) of Gr𝑘,𝑛 whose image in𝒜𝑛,𝑘,2(𝑍)
is 𝑌 .
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Definition 4.17 (Twistor coordinate matrix). Let 𝑌 ∈ Gr𝑘,𝑘+2 and let𝒯 be a bicolored
triangulation of type (𝑘, 𝑛)with black triangles 𝑇1, . . . , 𝑇𝑘 labeled as in Remark 4.5. The
twistor coordinate matrix of 𝑌 is the 𝑘 × 𝑛 matrix 𝐶tw

𝒯 (𝑌) = (𝐶𝑖,𝑗) with precisely 3
nonzero entries in each row:
(4.18) 𝐶𝑖,𝑎𝑖 = ⟨𝑌𝑏𝑖𝑐𝑖⟩, 𝐶𝑖,𝑏𝑖 = −⟨𝑌𝑎𝑖𝑐𝑖⟩, 𝐶𝑖,𝑐𝑖 = ⟨𝑌𝑎𝑖𝑏𝑖⟩.
(Recall that e.g. ⟨𝑌𝑏𝑖𝑐𝑖⟩ is short-hand for ⟨𝑌𝑍𝑏𝑖𝑍𝑐𝑖 ⟩.)
Theorem 4.19 (Inverse problem). Let𝒯 be a bicolored triangulation of type (𝑘, 𝑛) with
black triangles 𝑇1, . . . , 𝑇𝑘 labeled as in Remark 4.5. Let 𝑌 ∈ 𝑍∘𝐺̂(𝒯), i.e. 𝑌 ≔ ̃𝑍(𝑉) for
some 𝑉 ∈ 𝑆𝐺̂(𝒯). Then 𝑉 is the row span of the twistor coordinate matrix 𝐶′ ≔ 𝐶tw

𝒯 (𝑌).
In other words, if we let 𝑌 ′ = 𝐶′𝑍, then there is a global scalar 𝜆 (a polynomial in

⟨𝑌𝑎𝑏⟩’s) such that
⟨𝑌 ′𝑖𝑗⟩ = 𝜆⟨𝑌𝑖𝑗⟩ for all 𝑖, 𝑗.

Example 4.20. Let𝒯1 be the bicolored triangulation from Figure 2. Theorem 4.19 says
that if 𝑉 ∈ 𝑆𝐺̂(𝒯1) and 𝑌 ≔ ̃𝑍(𝑉) is the image of 𝑉 in𝒜𝑛,𝑘,2(𝑍), then 𝑉 is the row span
of the following matrix:

(
⟨𝑌𝑍7𝑍8⟩ 0 0 0 0 0 −⟨𝑌𝑍1𝑍8⟩ ⟨𝑌𝑍1𝑍7⟩ 0
⟨𝑌𝑍8𝑍9⟩ 0 0 0 0 0 0 −⟨𝑌𝑍1𝑍9⟩ ⟨𝑌𝑍1𝑍8⟩

0 ⟨𝑌𝑍3𝑍4⟩ −⟨𝑌𝑍2𝑍4⟩ ⟨𝑌𝑍2𝑍3⟩ 0 0 0 0 0
0 ⟨𝑌𝑍4𝑍7⟩ 0 −⟨𝑌𝑍2𝑍7⟩ 0 0 ⟨𝑌𝑍2𝑍4⟩ 0 0
0 0 0 ⟨𝑌𝑍6𝑍7⟩ 0 −⟨𝑌𝑍4𝑍7⟩ ⟨𝑌𝑍4𝑍6⟩ 0 0

) .

Proof. Choose a weight vector (𝛼, 𝛽, 𝛾) so that the matrix 𝐶 ≔ 𝑀𝒯(𝛼, 𝛽, 𝛾) from Propo-
sition 4.7 represents 𝑉 .
Consider a black triangle {𝑎 < 𝑏 < 𝑐} of 𝒯. Let 𝑊 be the white vertex of ̂𝐺(𝒯) in

the middle of this triangle and let the edges from𝑊 to 𝐵𝑎, 𝐵𝑏, and 𝐵𝑐, respectively, be
denoted 𝑒𝑎, 𝑒𝑏, and 𝑒𝑐. Say the weights of these edges are 𝛼, 𝛽, and 𝛾, respectively.
Choose 𝐽 ∈ ( [𝑛]𝑘−1) which does not contain 𝑎, 𝑏, or 𝑐. Then

(4.21) 1
𝛼𝑝𝐽∪{𝑎}(𝐶) =

1
𝛽𝑝𝐽∪{𝑏}(𝐶) =

1
𝛾𝑝𝐽∪{𝑐}(𝐶).

Indeed, each Plücker coordinate is a sum of weights of matchings. Any matching𝑀𝑎
contributing to 𝑝𝐽∪{𝑎}(𝐶) must include an edge covering the white vertex 𝑊 . Since
𝑏, 𝑐 ∉ 𝐽 ∪ {𝑎}, this edge must be 𝑒𝑎. Now, 𝑀𝑏 ≔ 𝑀𝑎 ⧵ {𝑒𝑎} ∪ {𝑒𝑏} is a valid matching
because𝑀𝑎 does not include any edges covering 𝐵𝑏. Moreover, the boundary of𝑀𝑏 is
𝐽 ∪ {𝑏}. This is easily seen to be a bijection between matchings with boundary 𝐽 ∪ {𝑎}
and matchings with boundary 𝐽 ∪ {𝑏}. It is also easy to see thatwt(𝑀𝑎)/𝛼 = wt(𝑀𝑏)/𝛽,
so the first equality above holds. The second equality is similar.
Now, we consider the twistor coordinate

⟨𝑌𝑏𝑐⟩ = ∑
𝐼∈([𝑛]𝑘 )

𝑝𝐼(𝐶)⟨𝑍𝑖1 , 𝑍𝑖2 , . . . , 𝑍𝑖𝑘 , 𝑍𝑏, 𝑍𝑐⟩

which is nonzero by Theorem 4.14.
Notice that the terms in this sum indexed by 𝐼 containing 𝑏 or 𝑐 are zero. Further,

for 𝐼 ∩ {𝑏, 𝑐} = ∅, 𝑝𝐼(𝐶) is zero if 𝐼 does not contain 𝑎. So we can rewrite ⟨𝑌𝑏𝑐⟩ as

(4.22) ⟨𝑌𝑏𝑐⟩ = 𝛼 ⋅ ∑
𝐽∈( [𝑛]𝑘−1)∶
{𝑎,𝑏,𝑐}∩𝐽=∅

1
𝛼 𝑝𝐽∪𝑎(𝐶)⟨𝑍𝑗1 , 𝑍𝑗2 , . . . , 𝑍𝑎, . . . 𝑍𝑗𝑘−1 , 𝑍𝑏, 𝑍𝑐⟩,
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where 𝑍𝑗1 , . . . , 𝑍𝑎, . . . , 𝑍𝑗𝑘−1 are ordered so the indices are increasing.
Similarly, we can write

⟨𝑌𝑎𝑐⟩ = 𝛽 ⋅ ∑
𝐽∈( [𝑛]𝑘−1)∶
{𝑎,𝑏,𝑐}∩𝐽=∅

1
𝛽 𝑝𝐽∪𝑏(𝐶)⟨𝑍𝑗1 , 𝑍𝑗2 , . . . , 𝑍𝑏, . . . 𝑍𝑗𝑘−1 , 𝑍𝑎, 𝑍𝑐⟩,(4.23)

⟨𝑌𝑎𝑏⟩ = 𝛾 ⋅ ∑
𝐽∈( [𝑛]𝑘−1)∶
{𝑎,𝑏,𝑐}∩𝐽=∅

1
𝛾 𝑝𝐽∪𝑐(𝐶)⟨𝑍𝑗1 , 𝑍𝑗2 , . . . , 𝑍𝑐, . . . 𝑍𝑗𝑘−1 , 𝑍𝑎, 𝑍𝑏⟩.(4.24)

Consider a nonzero term in (4.22), which is indexed by 𝐽 such that 𝑝𝐽∪𝑎(𝐶) is non-
zero. The corresponding term in (4.23) is also nonzero. Because of the first equality in
(4.21), these two terms differ only by the sign (−1)𝑠, where

⟨𝑍𝑗1 , 𝑍𝑗2 , . . . , 𝑍𝑎, . . . 𝑍𝑗𝑘−1 , 𝑍𝑏, 𝑍𝑐⟩ = (−1)𝑠⟨𝑍𝑗1 , 𝑍𝑗2 , . . . , 𝑍𝑏, . . . 𝑍𝑗𝑘−1 , 𝑍𝑎, 𝑍𝑐⟩.
In other words, 𝑠 = |𝐽 ∩ [𝑎 + 1, 𝑏 − 1]| + 1 = |(𝐽 ∪ 𝑎) ∩ [𝑎 + 1, 𝑏 − 1]| + 1. Because
𝐽 ∪ 𝑎 is the boundary of some matching, the size of (𝐽 ∪ 𝑎) ∩ [𝑎 + 1, 𝑏 − 1] is exactly
area(𝑎 → 𝑏), and in particular does not depend on 𝐽.
Similarly, consider the term of (4.24) indexed by 𝐽. The sign difference between this

term and the corresponding one in (4.23) is (−1)𝑠, where
⟨𝑍𝑗1 , 𝑍𝑗2 , . . . , 𝑍𝑏, . . . 𝑍𝑗𝑘−1 , 𝑍𝑎, 𝑍𝑐⟩ = (−1)𝑠⟨𝑍𝑗1 , 𝑍𝑗2 , . . . , 𝑍𝑐, . . . 𝑍𝑗𝑘−1 , 𝑍𝑎, 𝑍𝑏⟩.

It is not hard to see that 𝑠 = area(𝑏 → 𝑐) + 1.
Altogether, we have

⟨𝑌𝑏𝑐⟩ = 𝛼 ⋅ 𝑄,
⟨𝑌𝑎𝑐⟩ = (−1)area(𝑎→𝑏)+1𝛽 ⋅ 𝑄,
⟨𝑌𝑎𝑏⟩ = (−1)area(𝑎→𝑏)+area(𝑏→𝑐)𝛾 ⋅ 𝑄,

where 𝑄 is a nonzero scalar. Notice that up to the factor of 𝑄, these three twistor coor-
dinates recover the entries of 𝐶 corresponding to the edges 𝑒𝑎, 𝑒𝑏, and 𝑒𝑐. This means
that the matrix 𝐶′ with nonzero entries

𝐶′
𝑗,𝑎𝑗 = ⟨𝑌𝑏𝑗𝑐𝑗⟩, 𝐶′

𝑗,𝑏𝑗 = −⟨𝑌𝑎𝑗𝑐𝑗⟩, 𝐶′
𝑗,𝑐𝑗 = ⟨𝑌𝑎𝑗𝑏𝑗⟩

is related to𝑀𝐺̂(𝒯)(𝛼, 𝛽, 𝛾) by rescaling rows, and so also represents the subspace𝑉 . □

Using Theorem 4.19, we can show that ̃𝑍 is injective on 𝑆𝐺̂(𝒯), and moreover prove
that ̃𝑍 is not injective on any other 2𝑘-dimensional positroid cells. This will prove
the conjectural characterization of positroid tiles from [ŁPSV19]. We note that the
injectivity of ̃𝑍 on 𝑆𝐺̂(𝒯) was also proved rather indirectly in [ŁPW20, Proposition 6.4]
using results of [BH19].

Theorem 4.25 (Characterization of positroid tiles). Fix 𝑘 < 𝑛 and 𝑍 ∈ Mat>0𝑛,𝑘+2.
Then ̃𝑍 is injective on the 2𝑘-dimensional cell 𝑆ℳ if and only if 𝑆ℳ = 𝑆𝐺̂(𝒯) for some
bicolored subdivision 𝒯 of type (𝑘, 𝑛). That is, the positroid tiles for𝒜𝑛,𝑘,2(𝑍) are exactly
the Grasstopes 𝑍𝐺̂(𝒯), where𝒯 is a bicolored subdivision of type (𝑘, 𝑛).

Corollary 4.26. Whether or not ̃𝑍(𝑆𝜋) is a positroid tile is independent of 𝑍.
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Proof of Theorem 4.25. This proof uses some facts from Section 8. We first show that
all cells 𝑆𝐺̂(𝒯) are positroid tiles. The cell 𝑆𝐺̂(𝒯) ⊂ Gr≥0𝑘,𝑛 is 2𝑘-dimensional because
it is T-dual to an (𝑛 − 1)-dimensional cell in Gr≥0𝑘+1,𝑛 (see Remark 8.13) and T-duality
preserves codimension (see Proposition 8.1). Say 𝑉, 𝑉 ′ ∈ 𝑆𝐺̂(𝒯) are represented by
matrices 𝐶, 𝐶′, and suppose 𝑌 ≔ 𝐶𝑍, 𝑌 ′ ≔ 𝐶′𝑍 represent the same subspace. Then by
Theorem 4.19 𝑉 and 𝑉 ′ are represented by the twistor coordinate matrices 𝑁 and 𝑁′

of 𝑌 and 𝑌 ′, respectively. But the twistor coordinates of 𝑌 and 𝑌 ′ are the same up to a
global scalar, so 𝑉 = 𝑉 ′.
Now, suppose a 2𝑘-dimensional cell 𝑆ℳ is not equal to 𝑆𝐺̂(𝒯) for any 𝒯. We will

show ̃𝑍 is not injective on 𝑆ℳ .
First, suppose𝑀 has a coloop 𝑐; that is, 𝑝𝐼 is identically 0 on 𝑆ℳ for all 𝐼 ∈ ([𝑛]𝑘 ) that

do not contain 𝑐. Then the twistor coordinate ⟨𝑌𝑐𝑗⟩ is identically zero on 𝑍∘ℳ for all 𝑗.
Indeed, in the sum

⟨𝑌𝑐𝑗⟩ = ∑
𝐼∈([𝑛]𝑘 )

𝑝𝐼(𝐶)⟨𝑍𝑖1 . . . 𝑍𝑖𝑘𝑍𝑐𝑍𝑗⟩,

𝑝𝐼(𝐶) is zero for 𝑐 ∉ 𝐼 and ⟨𝑍𝑖1 . . . 𝑍𝑖𝑘𝑍𝑐𝑍𝑗⟩ is zero for 𝑐 ∈ 𝐼. In particular, 𝑍∘ℳ is con-
tained in the hypersurface {𝑌 ∈ Gr𝑘,𝑘+2 ∶ ⟨𝑌𝑐(𝑐 + 1)⟩ = 0}, and so has dimension at
most 2𝑘 − 1. So ̃𝑍 is not injective on 𝑆ℳ .
Now, ifℳ does not have a coloop, then 𝑆ℳ is 𝑇-dual to an (𝑛 − 1)-dimensional cell

𝑆𝜋 ofGr≥0𝑘+1,𝑛 by Proposition 8.1. Because 𝑆ℳ is not of the form 𝑆𝐺̂(𝒯), a plabic graph 𝐺
with trip permutation 𝜋 is not a tree and so has at least one internal face. Since 𝐺 has
𝑛 faces total, 𝐺 is not connected.
Let 𝐺 be a plabic graph with trip permutation 𝜋, and say [𝑖, 𝑗 − 1], [𝑗, 𝑙] are the

boundary vertex sets of two connected components of 𝐺. There is a single boundary
face 𝑓which is adjacent to 𝑖−1, 𝑖, 𝑗−1 and 𝑗. In the plabic graph ̂𝐺 for 𝑆ℳ (constructed
in Proposition 8.8), notice that 𝑖 and 𝑗 are adjacent to the same black vertex, ̂𝑏(𝑓). After
adding bivalent white vertices to ̂𝐺 so that every boundary vertex is adjacent to a white
vertex, it is clear that all matchings of ̂𝐺 have either 𝑖 or 𝑗 in the boundary. This means
that if 𝐼 contains neither 𝑖 nor 𝑗, then 𝑝𝐼 is identically zero on 𝑆ℳ . Just as in the coloop
case, ⟨𝑌𝑖𝑗⟩ is identically zero on 𝑍∘ℳ , because all terms of

∑
𝐼∈([𝑛]𝑘 )

𝑝𝐼(𝐶)⟨𝑍𝑖1 . . . 𝑍𝑖𝑘𝑍𝑖𝑍𝑗⟩

vanish for 𝐶 ∈ 𝑆ℳ . So 𝑍∘ℳ is contained in a hypersurface and hence dim𝑍∘ℳ ≤ 2𝑘 −
1. □

Remark 4.27. As conjectured in [ŁPSV19], the number of positroid tiles for 𝒜𝑛,𝑘,2 is
sequence A175124 in the OEIS [S+], a refinement of the large Schröder numbers (see
Section 12).

Refining (4.16), wewill now give an explicit description of each open positroid tile as
a subset ofGr𝑘,𝑘+2 where certain twistor coordinates have a definite sign. In fact, since
there are generally multiple bicolored triangulations represented by of one bicolored
subdivision 𝒯, Theorem 4.28 gives multiple descriptions of each open positroid tile –
one for each bicolored triangulation represented by 𝒯.
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Theorem 4.28 (Sign characterization of positroid tiles). Fix 𝑘 < 𝑛, 𝑚 = 2, and 𝑍 ∈
Mat>0𝑛,𝑘+2. Let𝒯 be a bicolored triangulation of type (𝑘, 𝑛). Then we have

𝑍∘𝐺̂(𝒯)={𝑌 ∈Gr𝑘,𝑘+2 | sgn⟨𝑌𝑖𝑗⟩=(−1)
area(𝑖→𝑗) for all black arcs 𝑖 → 𝑗 of𝒯 with 𝑖<𝑗}.

Moreover, if 𝑌 ∈ 𝑍∘𝐺̂(𝒯), then 𝐶
′ ≔ 𝐶tw

𝒯 (𝑌) (cf. Definition 4.17) lies in the positroid cell
𝑆𝐺̂(𝒯), and 𝑌 and 𝐶′𝑍 represent the same element of Gr𝑘,𝑘+2.

In the proof of Theorem 4.28, we use the notation 𝑁 𝑖(𝐴) ≔ #{𝑎 ∈ 𝐴 ∶ 𝑎 < 𝑖} and
𝑁 𝑖,𝑗(𝐴) ≔ #{𝑎 ∈ 𝐴 ∶ 𝑖 < 𝑎 < 𝑗}. We will need the following lemmas.

Lemma 4.29. Let 𝑆 ∈ ( [𝑛]𝑘+3), and define 𝜔
𝑆 ∈ ℝ𝑛 as

𝜔𝑆𝑖 = {(−1)
𝑁𝑖(𝑆)⟨𝑍𝑆⧵{𝑖}⟩ if 𝑖 ∈ 𝑆,

0 else .

Then 𝜔𝑆 is in the left kernel of 𝑍.

Proof. We have that

(𝜔𝑆)𝑇 ⋅ 𝑍 =
𝑛
∑
𝑖=1

𝑍𝑖𝜔𝑆𝑖 = ∑
𝑖∈𝑆
(−1)𝑁𝑖(𝑆)𝑍𝑖 ⟨𝑍𝑆⧵{𝑖}⟩ = ∑

𝑖∈𝑆
𝜖{𝑖},𝑆⧵{𝑖}𝑍𝑖 ⟨𝑍𝑆⧵{𝑖}⟩.

From the rightmost expression, one can see that the 𝑗th coordinate of 𝜔𝑆 ⋅ 𝑍 is the
determinant of the submatrix of𝑍 using rows𝑆 and columns 1, . . . , 𝑗, 𝑗, . . . , 𝑘+2, written
using Laplace expansion along column 𝑗. Therefore it is zero. □

Proposition 4.30. Let 𝑌 ∈ Gr𝑘,𝑘+2 and let𝒯 be a bicolored triangulation of type (𝑘, 𝑛).
Let 𝐶tw

𝒯 = 𝐶tw
𝒯 (𝑌) be the twistor coordinate matrix of 𝑌 and let 𝑌 ′ ≔ 𝐶tw

𝒯 𝑍. Then

rowspan(𝑌 ′) ⊆ rowspan(𝑌).

Proof. We start by writing 𝑌 = 𝐶𝑍, where 𝐶 is a full-rank 𝑘 × 𝑛matrix (we can always
do this because the linear map 𝑍 ∶ ℝ𝑛 → ℝ𝑘+2 is surjective).
Let 𝐶1, . . . , 𝐶𝑘 be the rows of the matrix 𝐶. We will replace each row 𝐶𝑖 with a linear

combination of the rows of 𝐶 and a linear combination of elements of ker(𝑍) to obtain
a new matrix 𝐶′; by construction, the rowspan of 𝐶′𝑍 is contained in the rowspan of
𝐶𝑍. We will show that this new matrix 𝐶′ is equal to 𝐶tw

𝒯 .
Specifically, let 𝑇𝑖 = {𝑎 < 𝑏 < 𝑐} be a black triangle in 𝒯. The 𝑖th row 𝐶′

𝑖 of 𝐶′ is

𝐶′
𝑖 ≔

𝑘
∑
𝑗=1

𝜆𝑗𝐶𝑗 + ∑
𝑆∈( [𝑛]𝑘+3)

𝜌𝑆𝜔𝑆 , where(4.31)

𝜆𝑗 = ∑
𝐽∈([𝑛]𝑘 )

(−1)𝑗+1+𝑁𝑎(𝐽)+𝑁𝑏,𝑐(𝐽)𝑝𝐽⧵{𝑎}(𝐶 ̂𝑗)⟨𝑍𝐽∪{𝑏,𝑐}⟩

and 𝜌𝑆 = (−1)𝑁𝑎(𝑆)+𝑁𝑏,𝑐(𝑆)𝑝𝑆⧵{𝑎,𝑏,𝑐}(𝐶),

where 𝐶 ̂𝑗 denotes the matrix obtained from 𝐶 by removing row 𝑗, and we make the
convention that 𝑝𝐴⧵𝐵(𝐶) = 0 if 𝐵 is not contained in 𝐴, and ⟨𝑍𝐴∪𝐵⟩ = 0 if 𝐴 intersects
𝐵.
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Step 1. We first show that ⟨𝑌𝑏𝑐⟩ = 𝐶′
𝑖𝑎. By (4.31), we have

(4.32) 𝐶′
𝑖𝑎 ≔

𝑘
∑
𝑗=1

𝜆𝑗𝐶𝑗𝑎 + ∑
𝑆∈( [𝑛]𝑘+3)

𝜌𝑆𝜔𝑆𝑎 .

Let us expand ⟨𝑌𝑏𝑐⟩ as:
(4.33) ⟨𝑌𝑏𝑐⟩ = ∑

𝐽∈([𝑛]𝑘 )
(−1)𝑁𝑏,𝑐(𝐽)𝑝𝐽(𝐶)⟨𝑍𝐽∪{𝑏,𝑐}⟩.

Call the terms in this sum with 𝑎 ∈ 𝐽 “type A” and the other terms “type B.”
When 𝑎 ∈ 𝐽, we can compute 𝑝𝐽(𝐶) by Laplace expansion around column 𝑎:

𝑝𝐽(𝐶) =
𝑘
∑
𝑗=1

(−1)𝑗+1+𝑁𝑎(𝐽)𝑝𝐽⧵{𝑎}(𝐶 ̂𝑗) 𝐶𝑗𝑎.

Inserting this into the type A terms and summing over 𝐽, we obtain the first term in
the right hand side of (4.32).
For the type B terms, we can change the summation index in (4.33) from 𝐽 to 𝑆 =

𝐽 ∪ {𝑎, 𝑏, 𝑐}, obtaining:
∑

𝑆∈( [𝑛]𝑘+3)
(−1)𝑁𝑏,𝑐(𝑆⧵{𝑎,𝑏,𝑐})𝑝𝑆⧵{𝑎,𝑏,𝑐}(𝐶)⟨𝑍𝑆⧵{𝑎}⟩.

Since 𝑎 < 𝑏 < 𝑐, we have 𝑁𝑏,𝑐(𝑆 ⧵ {𝑎, 𝑏, 𝑐}) = 𝑁𝑏,𝑐(𝑆). This gives the second term in
the right hand side of (4.32). Hence, summing the terms of type A and type B we get
exactly 𝐶′

𝑖𝑎.

Step 2. We will show that ⟨𝑌𝑎𝑐⟩ = −𝐶′
𝑖𝑏.

Let us consider the first term (‘type A’) in the right hand side of (4.31). We observe
that:

𝑘
∑
𝑗=1

(−1)𝑗+1+𝑁𝑎(𝐽)𝑝𝐽⧵{𝑎}(𝐶 ̂𝑗)𝐶𝑗𝑏 = 𝑝𝐽(𝐶𝑎→𝑏) = (−1)𝑁𝑎,𝑏(𝐽)𝑝𝐽⧵{𝑎}∪{𝑏}(𝐶),

where 𝐶𝑎→𝑏 is the matrix 𝐶 with column 𝑎 substituted with column 𝑏. Noting that
𝑁𝑎,𝑏(𝐽) + 𝑁𝑏,𝑐(𝐽) = 𝑁𝑎,𝑐(𝐽) as terms with 𝑏 ∈ 𝐽 do not contribute, type A reads:

∑
𝐽∈([𝑛]𝑘 )

(−1)𝑁𝑎,𝑐(𝐽)𝑝𝐽⧵{𝑎}∪{𝑏}(𝐶)⟨𝑍𝐽∪{𝑏,𝑐}⟩.

Finally, we change summation index into 𝐽′ = 𝐽 ⧵ {𝑎} ∪ {𝑏} and use 𝑁𝑎,𝑐(𝐽′) = 𝑁𝑎,𝑐(𝐽′ ⧵
{𝑏} ∪ {𝑎}) + 1, as 𝑏 ∈ 𝐽′ and 𝑎 < 𝑏 < 𝑐, to obtain:
(4.34) − ∑

𝐽′∈([𝑛]𝑘 )∶𝑏∈𝐽′
(−1)𝑁𝑎,𝑐(𝐽′)𝑝𝐽′(𝐶)𝑍𝐽′∪{𝑎,𝑐}.

Let us consider the second term (‘type B’) in the right hand side of (4.31). Using
𝑁𝑏(𝑆) − 𝑁𝑎(𝑆) = 𝑁𝑎,𝑏(𝑆) − 1 and 𝑁𝑎,𝑏(𝑆) + 𝑁𝑏,𝑐(𝑆) = 𝑁𝑎,𝑐(𝑆) − 1, as 𝑎, 𝑏 ∈ 𝑆, type B
reads:

∑
𝑆∈( [𝑛]𝑘+3)

(−1)𝑁𝑎,𝑐(𝑆)𝑝𝑆⧵{𝑎,𝑏,𝑐}(𝐶)⟨𝑍𝑆⧵{𝑏}⟩.
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Finally, we perform the change of summation index into 𝐽 = 𝑆 ⧵ {𝑎, 𝑏, 𝑐} and note that
𝑁𝑎,𝑐(𝑆) = 𝑁𝑎,𝑐(𝐽 ∪ {𝑎, 𝑏, 𝑐}) = 𝑁𝑎,𝑐(𝐽) + 1, as 𝑏 ∉ 𝐽 and 𝑎 < 𝑏 < 𝑐. We obtain:
(4.35) − ∑

𝐽∈([𝑛]𝑘 )∶𝑏∉𝐽
(−1)𝑁𝑎,𝑐(𝐽)𝑝𝐽(𝐶)⟨𝑍𝐽∪{𝑎,𝑐}⟩.

Hence adding together (4.34) and (4.35) we immediately get −⟨𝑌𝑎𝑐⟩ = 𝐶′
𝑖𝑏.

Step 3. Showing that ⟨𝑌𝑎𝑏⟩ = 𝐶′
𝑖𝑐 is similar to the previous case.

Step 4. We will show that 𝐶′
𝑖ℓ = 0 for ℓ ∉ {𝑎, 𝑏, 𝑐}.

Let us consider the first term (‘type A’) in the right hand side of (4.31). We observe
that:

𝑘
∑
𝑗=1

(−1)𝑗+1+𝑁𝑎(𝐽)𝑝𝐽⧵{𝑎}(𝐶 ̂𝑗)𝐶𝑗ℓ = 𝑝𝐽(𝐶𝑎→ℓ) = (−1)𝑁̃𝑎,ℓ(𝐽)𝑝𝐽⧵{𝑎}∪{ℓ}(𝐶),

where 𝑁̃𝑎,ℓ(𝐽) is defined as 𝑁𝑎,ℓ(𝐽) if 𝑎 < ℓ and 𝑁ℓ,𝑎(𝐽) if ℓ < 𝑎. Then type A reads:

∑
𝐽∈([𝑛]𝑘 )

(−1)𝑁𝑏,𝑐(𝐽)+𝑁̃𝑎,ℓ(𝐽)𝑝𝐽⧵{𝑎}∪{ℓ}(𝐶)𝑍𝐽∪{𝑏,𝑐}.

By changing the summation index into 𝐽′ = 𝐽 ⧵ {𝑎} ∪ {ℓ} and noting that 𝑁𝑏,𝑐(𝐽′ ⧵ {ℓ} ∪
{𝑎}) = 𝑁𝑏,𝑐(𝐽′ ⧵ {ℓ}) and 𝑁̃𝑎,ℓ(𝐽′ ⧵ {ℓ} ∪ {𝑎}) = 𝑁̃𝑎,ℓ(𝐽′), we obtain:

(4.36) ∑
𝐽′∈([𝑛]𝑘 )

(−1)𝑁𝑏,𝑐(𝐽′⧵{ℓ})+𝑁̃𝑎,ℓ(𝐽′)𝑝𝐽′(𝐶)⟨𝑍𝐽′⧵{ℓ}∪{𝑎,𝑏,𝑐}⟩.

The Type B term can be rewritten as:

− ∑
𝑆∈( [𝑛]𝑘+3)

(−1)𝑁𝑏,𝑐(𝑆)+𝑁̃𝑎,ℓ(𝑆)𝑝𝑆⧵{𝑎,𝑏,𝑐}(𝐶)⟨𝑍𝑆⧵{ℓ}⟩

using (−1)𝑁𝑎(𝑆)+𝑁ℓ(𝑆) = (−1)𝑁̃𝑎,ℓ(𝑆)+1. Indeed, 𝑁𝑎(𝑆) − 𝑁ℓ(𝑆) = 𝑁ℓ,𝑎(𝑆) + 1 if ℓ < 𝑎
and 𝑁ℓ(𝑆) − 𝑁𝑎(𝑆) = 𝑁𝑎,ℓ(𝑆) + 1 if ℓ > 𝑎, since ℓ, 𝑎 ∈ 𝑆. Finally, we perform the
change of variables 𝐽′ = 𝑆 ⧵ {𝑎, 𝑏, 𝑐} and note that 𝑁𝑏,𝑐(𝐽′ ∪ {𝑎, 𝑏, 𝑐}) = 𝑁𝑏,𝑐(𝐽′) and
𝑁̃𝑎,ℓ(𝐽′ ∪ {𝑎, 𝑏, 𝑐}) = 𝑁̃𝑎,ℓ(𝐽′ ∪ {𝑏, 𝑐}), as 𝑎 < 𝑏 < 𝑐, obtaining:

(4.37) − ∑
𝐽′∈([𝑛]𝑘 )

(−1)𝑁𝑏,𝑐(𝐽′)+𝑁̃𝑎,ℓ(𝐽′∪{𝑏,𝑐})𝑝𝐽′(𝐶)⟨𝑍𝐽′⧵{ℓ}∪{𝑎,𝑏,𝑐}⟩.

In order to complete the proof, we need to show that the sum of type A in (4.36) with
type B in (4.37) is zero. Therefore it is enough to show that:

(4.38) (−1)𝑁𝑏,𝑐(𝐽′)+𝑁̃𝑎,ℓ(𝐽′∪{𝑏,𝑐}) = (−1)𝑁𝑏,𝑐(𝐽′⧵{ℓ})+𝑁̃𝑎,ℓ(𝐽′),
recalling that the only terms contributing have ℓ ∈ 𝐽′ and 𝑎, 𝑏, 𝑐 ∉ 𝐽′. If ℓ < 𝑏,
then 𝑁̃𝑎,ℓ(𝐽′ ∪ {𝑏, 𝑐}) = 𝑁̃𝑎,ℓ(𝐽′) and 𝑁𝑏,𝑐(𝐽′ ⧵ {ℓ}) = 𝑁𝑏,𝑐(𝐽′). If 𝑏 < ℓ < 𝑐, then
𝑁̃𝑎,ℓ(𝐽′ ∪ {𝑏, 𝑐}) = 𝑁̃𝑎,ℓ(𝐽′) + 1 and 𝑁𝑏,𝑐(𝐽′ ⧵ {ℓ}) = 𝑁𝑏,𝑐(𝐽′) − 1. Finally, if ℓ > 𝑐 then
𝑁̃𝑎,ℓ(𝐽′ ∪ {𝑏, 𝑐}) = 𝑁̃𝑎,ℓ(𝐽′) + 2 and 𝑁𝑏,𝑐(𝐽′ ⧵ {ℓ}) = 𝑁𝑏,𝑐(𝐽′). Therefore (4.38) holds for
all three cases and the proof that 𝐶′

𝑖ℓ = 0 when ℓ ∉ {𝑎, 𝑏, 𝑐} is complete. □

Proof of Theorem 4.28. By (4.16), we just need to show the inclusion

𝑍∘𝐺̂(𝒯) ⊇ {𝑌 ∈ Gr𝑘,𝑘+2 | (4.15) holds for all black chords ℎ → 𝑗 of 𝒯}.
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Wewill do this using the twistor coordinatematrix𝐶′ ≔ 𝐶tw
𝒯 (𝑌) for𝑌 in the right-hand

set. First, we show that 𝐶′ ∈ 𝑆𝐺̂(𝒯). The nonzero entries of 𝐶′ correspond to the edges
of ̂𝐺(𝒯). By Theorem A.7 and Remark A.8, whether or not 𝐶′ represents an element
of 𝑆𝐺̂(𝒯) is just a question of whether or not the nonzero entries have the correct signs.
By assumption, the nonzero entries of 𝐶′ have the same signs as the nonzero entries of
the matrix 𝐶″ from Theorem 4.19. Since the matrix 𝐶″ represents an element of 𝑆𝐺̂(𝒯),
so does 𝐶′.
Now, let 𝑌 ′ ≔ 𝐶′𝑍. By Proposition 4.30, rowspan𝑌 ′ ⊆ rowspan𝑌 . Because 𝐶′ is an

element of Gr≥0𝑘,𝑛, in fact 𝑌 ′ has rank 𝑘, so the two rowspans are equal. Thus, 𝑌 = 𝐶′𝑍,
which shows 𝑌 ∈ 𝑍∘𝐺̂(𝒯). □

Remark 4.39. In the previous proof, the only place that we used the fact that the twistor
coordinates ⟨𝑌ℎ𝑗⟩ associated to black arcs had particular signs was in showing that the
matrix𝐶′ that we constructed hasmaximalminors all nonnegative (or all nonpositive).
Wewill use this observation in Section 6.2, whenwe show that each positroid tile is the
totally positive part of a cluster variety.

Corollary 4.40. Let 𝒯 be a bicolored triangulation of type (𝑘, 𝑛). The map sending the
𝑘 × 𝑛 matrix 𝑀 ≔ 𝑀𝒯(𝛼, 𝛽, 𝛾) from (4.8) representing a point of 𝑆𝐺̂(𝒯) ≅ (ℝ>0)2𝑘 to
𝑌 ≔ 𝑀𝑍 ∈ 𝑍∘𝐺̂(𝒯) is a bijection from 𝑆𝐺̂(𝒯) ≅ (ℝ>0)2𝑘 to 𝑍∘𝐺̂(𝒯), and we have

(4.41)
𝑀𝑖,𝑏𝑖
𝑀𝑖,𝑎𝑖

= −⟨𝑌𝑎𝑖𝑐𝑖⟩⟨𝑌𝑏𝑖𝑐𝑖⟩
and

𝑀𝑖,𝑐𝑖
𝑀𝑖,𝑎𝑖

= ⟨𝑌𝑎𝑖𝑏𝑖⟩
⟨𝑌𝑏𝑖𝑐𝑖⟩

for all black triangles {𝑎𝑖, 𝑏𝑖, 𝑐𝑖} of 𝒯. In particular, the 2𝑘 ratios of twistor coordinates
{ ⟨𝑌𝑎𝑖𝑐𝑖⟩⟨𝑌𝑏𝑖𝑐𝑖⟩

, ⟨𝑌𝑎𝑖𝑏𝑖⟩⟨𝑌𝑏𝑖𝑐𝑖⟩
} are algebraically independent.

Proof. Injectivity follows from Theorem 4.25. Surjectivity follows from Theorem 4.28.
Finally, (4.41) follows from Proposition 4.7 and Theorem 4.19. □

5. The equivalence of the two definitions of the amplituhedron

In this sectionwewill give an alternative description of the amplituhedron𝒜𝑛,𝑘,2(𝑍)
in terms of sign flips of twistor coordinates; this descriptionwas conjectured byArkani-
Hamed–Thomas–Trnka [AHTT18, (5.6)]. In [AHTT18, Section 5.4], they sketched an
argument that all elements of 𝒜𝑛,𝑘,𝑚(𝑍) satisfy the sign flip description; a proof using
a different argument was independently given in [KW19, Corollary 3.21]. However,
the opposite inclusion remained open. We will complete the proof for𝑚 = 2 using the
results of the previous section. Finally, we will translate the sign-flip characterization
of 𝒜𝑛,𝑘,2(𝑍) into a sign-flip characterization of the ℬ-amplituhedron ℬ𝑛,𝑘,2(𝑊).
Recall the definition of ̂𝑍𝑖 from Remark 2.9.

Theorem 5.1 (Sign-flip characterization of 𝒜𝑛,𝑘,2). Fix 𝑘 < 𝑛 and 𝑍 ∈ Mat>0𝑛,𝑘+2. Let
ℱ∘
𝑛,𝑘,2(𝑍) ≔ {𝑌 ∈ 𝐺𝑟𝑘,𝑘+2 | ⟨𝑌𝑍𝑖𝑍𝑖+1⟩ > 0 for 1 ≤ 𝑖 ≤ 𝑛 − 1, and ⟨𝑌𝑍𝑛 ̂𝑍1⟩ > 0,

and var(⟨𝑌𝑍1𝑍2⟩, ⟨𝑌𝑍1𝑍3⟩, . . . ⟨𝑌𝑍1𝑍𝑛⟩) = 𝑘}.

Then𝒜𝑛,𝑘,2(𝑍) = ℱ∘
𝑛,𝑘,2(𝑍).

Proof. Let𝒜∘
𝑛,𝑘,2(𝑍)≔ ̃𝑍(Gr>0𝑘,𝑛). By Remark 2.3 and Remark 2.7,𝒜𝑛,𝑘,2(𝑍)=𝒜∘

𝑛,𝑘,2(𝑍).
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We first show that 𝒜∘
𝑛,𝑘,2 ⊆ ℱ∘

𝑛,𝑘,2(𝑍). Suppose that 𝐶 ∈ Gr>0𝑘,𝑛 and let 𝑌 ≔ 𝐶𝑍.
Choose 1 ≤ 𝑖 ≤ 𝑛 − 1, and consider any 𝐽 = {𝑗1 < ⋯ < 𝑗𝑘} ∈ ([𝑛]𝑘 ). Since 𝑍 has
maximal minors positive, the sign of ⟨𝑍𝑗1 , . . . , 𝑍𝑗𝑘 , 𝑍𝑖, 𝑍𝑖+1⟩ is determined by the parity
of the number of swaps needed to put the sequence {𝑗1, . . . , 𝑗𝑘, 𝑖, 𝑖 + 1} into increasing
order. Clearly this number is even, so ⟨𝑍𝑗1 , . . . , 𝑍𝑗𝑘 , 𝑍𝑖, 𝑍𝑖+1⟩ ≥ 0 (with equality if 𝐽 ∩
{𝑖, 𝑖+1} ≠ ∅). Therefore by Lemma 3.8, ⟨𝑌𝑍𝑖𝑍𝑖+1⟩ > 0. The argument that ⟨𝑌𝑍𝑛 ̂𝑍1⟩ > 0
is similar, using the fact that the matrix with rows 𝑍2, . . . , 𝑍𝑛, ̂𝑍1 has maximal minors
positive. To see that 𝑌 satisfies the sign variation condition, see the proof sketch in
[AHTT18, Section 5.4] or [KW19, Corollary 3.21]. This implies that 𝒜∘

𝑛,𝑘,2 ⊆ ℱ∘
𝑛,𝑘,2(𝑍)

and hence 𝒜𝑛,𝑘,2 ⊆ ℱ∘
𝑛,𝑘,2(𝑍).

For the other direction, we will show that ℱ∘
𝑛,𝑘,2(𝑍) ⊆ 𝒜𝑛,𝑘,2(𝑍). Suppose 𝑌 ∈

ℱ∘
𝑛,𝑘,2(𝑍). We want to show that we can write rowspan𝑌 = rowspan𝐶𝑍 for some
𝐶 ∈ Gr≥0𝑘,𝑛.
Since ⟨𝑌𝑍1𝑍2⟩ > 0, and var(⟨𝑌𝑍1𝑍2⟩, ⟨𝑌𝑍1𝑍3⟩, . . . ⟨𝑌𝑍1𝑍𝑛⟩) = 𝑘, we can find a se-

quence 1 = 𝑖0 < 𝑖1 < ⋯ < 𝑖𝑘 ≤ 𝑛 − 1 such that sgn⟨𝑌𝑍1𝑍𝑖ℓ+1⟩ = (−1)ℓ for all ℓ;
choose the lexicographically minimal such sequence. Let 𝒯 be the bicolored triangu-
lation of type (𝑘, 𝑛) whose 𝑘 black triangles have vertices {1, 𝑖ℓ, 𝑖ℓ + 1} for 1 ≤ ℓ ≤ 𝑘.
By Proposition 4.30, if we let 𝐶tw

𝒯 = 𝐶tw
𝒯 (𝑌) be the twistor coordinate matrix of 𝑌 , and

𝑌 ′ ≔ 𝐶tw
𝒯 𝑍, then rowspan(𝑌 ′) ⊆ rowspan(𝑌). To complete the proof, we need to show

that 𝐶tw
𝒯 ∈ Gr≥0𝑘,𝑛, and 𝑌 ′ has full rank.

Using Theorem A.7 (as in the proof of Theorem 4.28), 𝐶tw
𝒯 (𝑌) is a Kasteleyn matrix

associated to the bipartite graph obtained from ̂𝐺(𝒯), as in Figure 2. (Some of the
twistor coordinates ⟨𝑌𝑍1𝑍𝑖⟩ of 𝑌 may vanish, in which case we just erase some of the
edges of the bipartite graph.) If none of the twistor coordinates vanish, Theorem 4.28
implies that all nonzero minors of 𝐶tw

𝒯 (𝑌) have the same sign. Erasing some of the
edges of the bipartite graph preserves this property. We now claim that 𝐶tw

𝒯 has full-
rank. To see this, note that if we let 𝐼 ≔ {𝑖1, . . . , 𝑖𝑘}, then 𝑝𝐼(𝐶tw

𝒯 ) ≠ 0. This is because
when we restrict to columns 𝑖1, . . . , 𝑖𝑘, the only nonzero entry in column 𝑖ℓ (for 1 ≤ ℓ ≤
𝑘) is the entry ⟨𝑌𝑍1𝑍𝑖ℓ+1⟩ in row ℓ, which has sign (−1)ℓ. Therefore 𝐶tw

𝒯 ∈ Gr≥0𝑘,𝑛, so
𝑌 ′ = 𝐶tw

𝒯 𝑍 has full rank. □

Corollary 5.2. Fix 𝑘 < 𝑛, 𝑚 = 2, and 𝑍 ∈ Mat>0𝑛,𝑘+2. For any 𝑎 with 1 ≤ 𝑎 ≤ 𝑛, we
define

ℱ∘,𝑎
𝑛,𝑘,2(𝑍) = {𝑌 ∈ 𝐺𝑟𝑘,𝑘+2 | ⟨𝑌𝑍𝑖𝑍𝑖+1⟩ > 0 for 1 ≤ 𝑖 ≤ 𝑛 − 1, and ⟨𝑌𝑍𝑛 ̂𝑍1⟩ > 0, and

var(⟨𝑌𝑍𝑎𝑍𝑎+1⟩, . . . ⟨𝑌𝑍𝑎𝑍𝑛⟩, ⟨𝑌𝑍𝑎 ̂𝑍1⟩, . . . , ⟨𝑌𝑍𝑎 ̂𝑍𝑎−1⟩) = 𝑘}.

We have𝒜𝑛,𝑘,2(𝑍) = ℱ∘,𝑎
𝑛,𝑘,2(𝑍) = ℱ∘

𝑛,𝑘,2(𝑍).

Proof. The proof is nearly the same as the one for Theorem 5.1. To adapt it, in the sec-
ond paragraph of that proof, we choose the sequence 𝑖0 < 𝑖1 < ⋯ < 𝑖𝑘 ≤ 𝑛−1 based on
examining the signs of the sequence (⟨𝑌𝑍𝑎𝑍𝑎+1⟩, . . . ⟨𝑌𝑍𝑎𝑍𝑛⟩, ⟨𝑌𝑍𝑎 ̂𝑍1⟩, . . . , ⟨𝑌𝑍𝑎 ̂𝑍𝑎−1⟩).
We then use the bicolored triangulationwhose 𝑘 black triangles have vertices {𝑎, 𝑖ℓ, 𝑖ℓ+
1} for 1 ≤ ℓ ≤ 𝑘. □

By combining Proposition 3.3 with Theorem 5.1 (or Corollary 5.2), we can obtain a
sign-flip characterization of the ℬ-amplituhedron ℬ𝑛,𝑘,2(𝑊) (see Definition 3.2).
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Corollary 5.3. Fix 𝑘 < 𝑛 and𝑊 ∈ Gr>0𝑘+2,𝑛. Let
𝒢∘𝑛,𝑘,2(𝑊) ≔ {𝑋 ∈ Gr2(𝑊) | 𝑝𝑖,𝑖+1(𝑋) > 0 for 1 ≤ 𝑖 ≤ 𝑛 − 1, and 𝑝𝑛,1̂(𝑋) > 0,

and var((𝑝12(𝑋), 𝑝13(𝑋), . . . 𝑝1𝑛(𝑋)) = 𝑘},

where for 𝑖 < 𝑗, 𝑝𝑗 ̂𝑖(𝑋) ≔ (−1)𝑘𝑝𝑖𝑗(𝑋). Thenℬ𝑛,𝑘,2(𝑊) = 𝒢∘𝑛,𝑘,2(𝑊).
The set 𝒢∘𝑛,𝑘,2(𝑊) should agree with the set 𝒢 from [KW19, Prop 3.20] when𝑚 = 2.

6. Cluster algebras and the amplituhedron

In this section, we discuss two aspects of how amplituhedra and their positroid tiles
are related to cluster algebras [FZ02]. We assume the reader has some familiarity with
the basics of cluster algebras and cluster varieties, as in [FWZ16,GHK15].
In Section 6.1, wewill discuss the cluster adjacency conjecture, which says that facets

of a positroid tile for𝒜𝑛,𝑘,𝑚 should be naturally associated to a collection of compatible
cluster variables in Gr𝑚,𝑛. We will prove this conjecture for𝑚 = 2 in Theorem 9.12.
In Section 6.2, we will prove a related but more geometric statement, which illus-

trates a new phenomenon in the setting of amplituhedra: we will associate a cluster
variety to each positroid tile of𝒜𝑛,𝑘,2(𝑍) ⊂ Gr𝑘,𝑘+2, and wewill show that the positroid
tile is the totally positive part of that cluster variety. We then have the strange phenom-
enon that the amplituhedron 𝒜𝑛,𝑘,2(𝑍) can be subdivided into (𝑛−2𝑘 ) 2𝑘-dimensional
positroid tiles, each of which is the totally positive part of a cluster variety. (In contrast,
most other geometric objects with a cluster structure have a unique top-dimensional
stratum which is the totally positive part of a cluster variety.)

6.1. Cluster adjacency. In 2013, Golden–Goncharov–Spradlin–Vergu–Volovich
[GGS+14] established that singularities of scattering amplitudes of planar𝒩 = 4 SYM
at loop level can be described using cluster algebras. In particular, a large class of loop
amplitudes can be expressed in terms of multiple polylogarithms whose branch points
are encoded in the so-called symbol alphabet. Remarkably, elements of this alphabet
were observed to be 𝒳-cluster variables for Gr4,𝑛. This enabled the powerful program
of cluster bootstrap which pushed both the computation and the understanding of the
mathematical structure of scattering amplitudes beyond the frontiers, see [CHDD+20]
for a recent review. In 2017Drummond–Foster–Gürdoğan [DFG18] enhanced the con-
nection with cluster algebras by observing phenomena they called cluster adjacencies,
related to compatibility of cluster variables. Shortly thereafter, they conjectured that
the terms in tree-level𝒩 = 4 SYM amplitudes coming from the BCFW recursions are
rational functions whose poles correspond to compatible cluster variables of the clus-
ter algebra associated to Gr4,𝑛 [DFG19]. In [MSSV19], this conjecture was extended to
all (rational) Yangian invariants, i.e. the ‘building blocks’ of tree-level amplitudes and
leading singularities of planar𝒩 = 4 SYM.
These conjectures can be reformulated in terms of the geometry of the amplituhe-

dron𝒜𝑛,𝑘,𝑚(𝑍) and the facets of its positroid tiles. This version of cluster adjacency for
the𝑚 = 2 amplituhedron was studied in [ŁPSV19], and for the𝑚 = 4 amplituhedron
in [GP20], where the authorsmade connections with leading and Landau singularities.
For each positroid tile 𝑍𝐺̂(𝒯) of 𝒜𝑛,𝑘,2(𝑍), the corresponding Yangian invariant is a

rational function8 in the twistor coordinates. A defining property of this function is
8Within the framework of positive geometries, this is the canonical function of 𝑍𝐺̂(𝒯) [AHBL17].
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that it has a simple pole at ⟨𝑌𝑖𝑗⟩ = 0 if and only if there is a facet of 𝑍𝐺̂(𝒯) lying on the
hypersurface {⟨𝑌𝑖𝑗⟩ = 0}. Let us consider the collection {⟨𝑌𝑖𝑗⟩}𝐺̂(𝒯) of twistor coordi-
nates corresponding to such poles, and identify it via Proposition 3.3 with a collection
of Plücker coordinates {𝑝𝑖𝑗(𝑋)}𝐺̂(𝒯) in theGrassmannianGr2,𝑛(ℂ) (with𝑌 the row span
of 𝑋⟂𝑍). These Plücker coordinates are cluster variables of the type 𝐴𝑛−3 cluster alge-
bra associated to Gr2,𝑛(ℂ) [FZ03]. In this cluster algebra, 𝑝𝑎𝑏 and 𝑝𝑐𝑑 are compatible
cluster variables if the arcs 𝑎 → 𝑏 and 𝑐 → 𝑑 in the polygon 𝐏𝑛 do not cross. The𝑚 = 2
cluster adjacency conjecture of Łukowski–Parisi–Spradlin–Volovich [ŁPSV19] says that
the cluster variables of Gr2,𝑛(ℂ) associated to the facets of a positroid tile of 𝒜𝑛,𝑘,2 are
compatible. We generalize this conjecture as follows.

Conjecture 6.1. Let 𝑍𝐺̂(𝒯) be a positroid tile of𝒜𝑛,𝑘,2(𝑍). Each facet lies on a hypersur-
face ⟨𝑌𝑖𝑗⟩ = 0, and the collection of Plücker coordinates {𝑝𝑖𝑗}𝐺̂(𝒯) corresponding to facets
is a collection of compatible cluster variables for Gr2,𝑛(ℂ).
Moreover, if 𝑝ℎ𝑙 is compatible with {𝑝𝑖𝑗}𝐺̂(𝒯), then ⟨𝑌ℎ𝑙⟩ has a fixed sign on 𝑍∘𝐺̂(𝒯).

We will prove Conjecture 6.1 in Theorem 9.12.
We now generalize Conjecture 6.1 for other 𝑚. The relevant cluster algebra is the

homogeneous coordinate ring of Gr𝑚,𝑛(ℂ) [Sco06]. Each cluster variable is a polyno-
mial 𝑄(𝑝𝐼) in the (𝑛𝑚) Plücker coordinates. Each facet of a positroid tile 𝑍𝜋 of 𝒜𝑛,𝑘,𝑚
lies on a hypersurface defined by the vanishing of some (often nonlinear) polynomial
𝑄(⟨𝑌𝑍𝐼⟩) in the (𝑛𝑚) twistor coordinates, where we write ⟨𝑌𝑍𝐼⟩ for ⟨𝑌𝑍𝑖1 . . . 𝑍𝑖𝑚⟩.
Conjecture 6.2 (Cluster adjacency for 𝒜𝑛,𝑘,𝑚). Let 𝑍𝜋 be a positroid tile of the ampli-
tuhedron𝒜𝑛,𝑘,𝑚(𝑍) and let

Facet(𝑍𝜋) ≔ {𝑄(𝑝𝐼) | a facet of 𝑍𝜋 lies on the hypersurface 𝑄(⟨𝑌𝑍𝐼⟩) = 0},
where 𝑄 is a polynomial in the (𝑛𝑚) Plücker coordinates. Then

(1) Each 𝑄 ∈ Facet(𝑍𝜋) is a cluster variable for Gr𝑚,𝑛(ℂ).
(2) Facet(𝑍𝜋) consists of compatible cluster variables.
(3) If 𝑄̃ is a cluster variable compatible with Facet(𝑍𝜋), the polynomial 𝑄̃(⟨𝑌𝑍𝐼⟩) in

twistor coordinates has a fixed sign on 𝑍∘𝜋.
Positroid tiles for 𝑚 = 4 are not yet characterized.9 In general, the polynomials

appearing in the sets Facet(𝑍𝜋) are unknown. Moreover, for 𝑛 ≥ 8, there is no classi-
fication of the cluster variables of Gr4,𝑛. Also note that Part (1) of Conjecture 6.2 is in
a similar spirit to [Lam16b, Conjecture 19.8].

6.2. Positroid tiles are totally positive parts of cluster varieties. In this subsec-
tion, we build a cluster variety 𝒱𝒯 in Gr𝑘,𝑘+2(ℂ) for each positroid tile 𝑍𝐺̂(𝒯) of𝒜𝑛,𝑘,2.
Each bicolored triangulation represented by 𝒯 gives a seed torus of 𝒱𝒯 . We will show
that the positroid tile 𝑍∘𝐺̂(𝒯) is exactly the totally positive part of 𝒱𝒯 .
Fix a bicolored subdivision 𝒯 of type (𝑘, 𝑛), with black polygons 𝑃1, . . . , 𝑃𝑟. For each

black polygon 𝑃𝑖, fix an arc ℎ𝑖 → 𝑗𝑖 with ℎ𝑖 < 𝑗𝑖 in the boundary of 𝑃𝑖. We call this
the distinguished boundary arc of 𝑃𝑖. We will build 𝒱𝒯 by defining seeds in the field of
rational functions on Gr𝑘,𝑘+2(ℂ).

9Conjecturally they are images of positroid cells with intersection number one [GP20], which correspond
to ‘rational’ Yangian invariants [MSSV19].
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Figure 3. In orange, a bicolored triangulation𝒯. In black, the seed
Σ𝒯 . The distinguished boundary arcs are 2 → 3 and 8 → 9.

Definition 6.3 (Cluster variables). Let 𝑎 → 𝑏with 𝑎 < 𝑏 be an arc which is contained
in a black polygon 𝑃𝑖 and is not the distinguished boundary arc ℎ𝑖 → 𝑗𝑖. We define

𝑥𝑎𝑏 ≔
(−1)area(𝑎→𝑏)⟨𝑌𝑎𝑏⟩
(−1)area(ℎ𝑖→𝑗𝑖)⟨𝑌ℎ𝑖𝑗𝑖⟩

.

This is a rational function on Gr𝑘,𝑘+2(ℂ) and is regular away from the hypersurface
{⟨𝑌ℎ𝑖𝑗𝑖⟩ = 0}.

Definition 6.4 (Seeds). Let 𝒯 be a bicolored triangulation represented by 𝒯. The
quiver 𝑄𝒯 is obtained as follows:

• Place a frozen vertex on each boundary arc of 𝑃1, . . . , 𝑃𝑟 and amutable vertex on
every other black arc of 𝒯.

• If arcs 𝑎 → 𝑏, 𝑏 → 𝑐, 𝑐 → 𝑎 form a triangle, put arrows between the corre-
sponding vertices, going clockwise around the triangle. Then delete the frozen
vertex on the distinguished boundary arc (and all arrows involving this vertex)
and arrows connecting two frozen vertices.

We label the vertex of 𝑄𝒯 on arc 𝑎 → 𝑏 of 𝒯 with the function 𝑥𝑎𝑏. The collection
of vertex labels is the (extended) cluster 𝐱𝒯 . The pair (𝑄𝒯 , 𝐱𝒯) is the seed Σ𝒯 .

Note that there are no frozen variables corresponding to the distinguished bound-
ary arcs, and the cluster 𝐱𝒯 has size 2𝑘. Note also that Σ𝒯 does not depend on the
triangulation of the white polygons of 𝒯. See Figure 3 for an example.
Now we show that each seed gives a seed torus in Gr𝑘,𝑘+2(ℂ).

Proposition 6.5. Let 𝒯 be a bicolored triangulation represented by 𝒯. Consider the
Zariski-open subset

𝒱𝒯 ≔ {𝑌 ∈ Gr𝑘,𝑘+2(ℂ) ∶ ∏
𝑎→𝑏 black arc of𝒯

⟨𝑌𝑎𝑏⟩ ≠ 0} .

This is birational to an algebraic torus of dimension 2𝑘, with field of rational functions
ℂ(𝐱𝒯), the field of rational functions in the cluster 𝐱𝒯 .

Proof. The main idea is that Corollary 4.40—which gave a bijection between

𝑍∘𝐺̂(𝒯) = {𝑌 ∈ Gr𝑘,𝑘+2(ℝ) ∶ for all arcs 𝑖 → 𝑗 of 𝒯 with 𝑖 < 𝑗, (−1)area(𝑖→𝑗)⟨𝑌𝑖𝑗⟩ > 0}
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and (ℝ>0)2𝑘—extends directly to give a birational morphism from𝒱𝒯 to (ℂ∗)2𝑘. When
we let the edge weights 𝛼𝑖, 𝛽𝑖, 𝛾𝑖 (used to define matrix𝑀 in (4.8)) range over all non-
zero complex numbers, the set of 𝑘 × 𝑛 matrices we get sweeps out the open Deodhar
stratum10 𝐷𝒯 as opposed to the positroid cell 𝑆𝐺̂(𝒯). That is, the stratum𝐷𝒯 ⊂ Gr𝑘,𝑛(ℂ)
consists of subspaces represented by the matrices 𝑀𝒯(𝛼, 𝛽, 𝛾) of (4.8), where (𝛼, 𝛽, 𝛾)
vary over (ℂ∗)3𝑘 rather than (𝑅>0)3𝑘.
Let us define the map

𝒱𝒯 → (ℂ∗)2𝑘,
𝑌 ↦ 𝐱𝒯(𝑌).

To see that themap is surjective onto a Zariski-open subset of (ℂ∗)2𝑘, consider some
2𝑘-tuple of nonzero complex numbers 𝐪𝒯 . Define a weight vector (𝛼, 𝛽, 𝛾) for ̂𝐺(𝒯),
where for a triangle {𝑎𝑖, 𝑏𝑖, 𝑐𝑖}, the weights are

𝛼𝑖 = 𝑞𝑏𝑖𝑐𝑖 , 𝛽𝑖 = 𝑞𝑎𝑖𝑐𝑖 , 𝛾𝑖 = 𝑞𝑎𝑖𝑏𝑖 .
(As usual, if 𝑎 → 𝑏 is a distinguished boundary arc, we take 𝑞𝑎𝑏 = 1.) Let 𝐶 ≔
𝑀𝒯(𝛼, 𝛽, 𝛾).
Thematrix𝐶 lies in theDeodhar stratum𝐷𝒯 and so has full rank. Let𝑌 ≔ 𝐶𝑍. Con-

sider an arc 𝑎 → 𝑏 of𝒯 which is in a black polygon 𝑃. From the proof of Theorem 4.19,
we have

⟨𝑌𝑎𝑏⟩ = (−1)area(𝑎→𝑏)𝑞𝑎𝑏 ⋅ 𝒬𝑃 ,
where 𝒬𝑃 is a polynomial with positive coefficients in the 𝑞𝑖𝑗 ’s and the minors of 𝑍,
and depends only on the polygon 𝑃. 𝒬𝑃 is generically nonzero, in which case it is easy
to check that 𝑥𝑎𝑏(𝑌) = 𝑞𝑎𝑏. Moreover, in this case, 𝑌 is a full-rank matrix, since it has
at least one nonzero twistor coordinate.
Now, suppose 𝐪𝒯 lies in the open subset 𝑂 of (ℂ∗)2𝑘 where the polynomials 𝒬𝑃 are

nonzero for all polygons 𝑃. Then 𝑌 , as defined above, lies in 𝒱𝒯 and maps to 𝐪𝒯 .
The map is injective on the preimage of 𝑂. Indeed, pick 𝑌, 𝑌 ′ ∈ 𝒱𝒯 which map

to 𝐪𝒯 ∈ 𝑂. Consider the twistor coordinate matrices 𝐶 ≔ 𝐶tw
𝒯 (𝑌) and 𝐶′ ≔ 𝐶tw

𝒯 (𝑌 ′).
Proposition 4.30 works equally well formatrices with complex entries, so the rowspans
of 𝐶𝑍 and 𝐶′𝑍 are contained in 𝑌 and 𝑌 ′, respectively. On the other hand, the rows
of 𝐶 and 𝐶′ can both be rescaled to obtain the matrix𝑀𝒯(𝛼, 𝛽, 𝛾) defined above, so the
rowspans of 𝐶𝑍 and 𝐶′𝑍 are the same. Finally, because of the assumption 𝐪𝒯 ∈ 𝑂, the
matrix 𝐶𝑍 has some nonzero twistor coordinate and so in particular is full rank. This
shows the rowspan of 𝐶𝑍 is equal to 𝑌 and to 𝑌 ′. □

Next, we verify that the seeds given by different bicolored triangulations are related
by mutation.

Proposition 6.6. Let 𝒯 be a bicolored triangulation represented by 𝒯 and let 𝑎 → 𝑏
correspond to a mutable vertex of Σ𝒯 . Let 𝒯′ be related to 𝒯 by flipping the arc 𝑎 → 𝑏.
Then Σ𝒯 and Σ𝒯′ are related by mutation at 𝑥𝑎𝑏.
The seeds which can be obtained from Σ𝒯 by an arbitrary sequence of mutations are

exactly the seeds Σ𝒯′ where𝒯′ is represented by𝒯.
In light of Proposition 6.6, we can make Definition 6.7.
10Parameterizations of Deodhar strata in flag varieties are given in [MR04]; in the Grassmannian, these

can be equivalently parameterized using weighted networks, as shown in [TW13].



358 M. PARISI, M. SHERMAN-BENNETT, AND L. K. WILLIAMS

Definition 6.7. Let𝒯 be a bicolored triangulation and𝒯 the corresponding bicolored
subdivision. We let 𝒜(𝒯) denote the cluster algebra𝒜(𝑄𝒯 , 𝐱𝒯).

Proof of Proposition 6.6. On the level of quivers, the first statement follows immedi-
ately from the well-known combinatorics of type A cluster algebras.
Say the arc 𝑎 → 𝑏 is in triangles {𝑎 < 𝑢 < 𝑏} and {𝑎 < 𝑏 < 𝑣} in 𝒯, so 𝑎 → 𝑏 is

flipped to 𝑢 → 𝑣 (the argument is analogous if instead 𝑣 < 𝑎). We need to check that,
in the field of rational functions on Gr𝑘,𝑘+2(ℂ), we have

𝑥𝑎𝑏𝑥ᵆ𝑣 = 𝑥𝑎ᵆ𝑥𝑏𝑣 + 𝑥𝑎𝑣𝑥ᵆ𝑏
(where 𝑥ℎ𝑖𝑗𝑖 is defined to be 1). This follows easily from the 3-term Plücker relations
for the corresponding twistor coordinates.
The second statement follows from the fact that triangulations are flip-connected.

□

Together, Proposition 6.5 and Proposition 6.6 tell us that the union of the seed tori
is a cluster variety in Gr𝑘,𝑘+2(ℂ).

Theorem 6.8. Let𝒯 be a bicolored subdivision of type (𝑘, 𝑛). Then
𝒱𝒯 ≔⋃

𝒯
𝒱𝒯

is a cluster variety in Gr𝑘,𝑘+2(ℂ), where the union is over bicolored triangulations repre-
sented by𝒯. We call 𝒱𝒯 the amplituhedron (cluster) variety

11 of 𝑍𝐺̂(𝒯).
Moreover, the positive part

𝒱>0
𝒯 ≔ {𝑌 ∈ 𝒱𝒯 ∶ 𝑥𝑎𝑏(𝑌) > 0 for all cluster variables 𝑥𝑎𝑏}

is equal to the positroid tile 𝑍∘𝐺̂(𝒯).

Proof. The first assertion follows from the definition of cluster variety and Proposi-
tions 6.5 and 6.6.
For the second statement, note that by Theorem 4.28, points of 𝑍∘𝐺̂(𝒯) are in the

positive part 𝒱>0
𝒯 . To see the opposite inclusion, take a point 𝑌 in the positive part and

choose a bicolored triangulation 𝒯 represented by 𝒯. Let 𝐶 ≔ 𝐶tw
𝒯 (𝑌) be the twistor

coordinate matrix of 𝑌 .
If row 𝑖 of 𝐶 corresponds to a triangle in 𝒯 lying in polygon 𝑃𝑖, rescale row 𝑖 by

(−1)area(ℎ𝑖→𝑗𝑖)/⟨𝑌ℎ𝑖𝑗𝑖⟩. Call the resultingmatrix𝐶′. Because 𝑥𝑎𝑏 > 0 for all arcs 𝑎 → 𝑏
of 𝒯, the entry ⟨𝑌𝑎𝑏⟩ of 𝐶 has been rescaled to a real number with sign (−1)area(𝑎→𝑏).
By the same argument as the last paragraph of Theorem4.28,𝐶′ (and thus𝐶) represents
an element of 𝑆𝐺̂(𝒯). This, together with Proposition 4.30, implies that 𝑌 ∈ 𝑍∘𝐺̂(𝒯). □

Theorem 6.9. The cluster algebra 𝒜(𝒯) equals the upper cluster algebra 𝒜(𝒯). If the
bicolored subdivision𝒯 has black polygons 𝑃1, . . . , 𝑃𝑟, where 𝑃𝑖 has 𝑛𝑖 vertices, then𝒜(𝒯)
is a finite type cluster algebra of Cartan-Killing type 𝐴𝑛1−2 ×⋯ × 𝐴𝑛𝑟−2.

Proof. The quiver we are associating to each bicolored triangulation is a disjoint union
quiver associated to a triangulated 𝑛𝑖-gon, or equivalently to ℂ[Gr2,𝑛𝑖−2]. Notice that

11This is closely related to the amplituhedron variety defined in [Lam16a].
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for each one of these quivers, the corresponding exchange matrix has full ℤ-rank (the
argument is very similar to the one in [FWZ17, Proof of Theorem 5.3.2]).
It is well known that the quiver associated to a triangulated 𝑟-gon has Cartan-Killing

type 𝐴𝑟−2 [FZ02]. This implies that 𝒜(𝒯) = 𝒜(𝑄𝒯 , 𝐱𝒯) has type 𝐴𝑛1−2 ×⋯ × 𝐴𝑛𝑟−2.
Because our quiver is just a disjoint union of type 𝐴 quivers (one from each 𝑃𝑖), our

cluster algebra has an acyclic seed. Moreover, since the exchangematrix corresponding
to each of these type𝐴 quivers is full rank,𝒜(𝒯) also has a fullℤ-rank exchangematrix.
Using [BFZ05, Proposition 1.8 and Remark 1.22], the fact that 𝒜(𝒯) has an acyclic

seed and also has a full rank exchange matrix implies that the upper cluster algebra
𝒜(𝒯) equals the cluster algebra𝒜(𝒯). □
Remark 6.10. Given what we’ve proved, one can make an argument as in the proof of
[BFZ05, Theorem 2.10] that 𝒜(𝒯) is the coordinate ring of the amplituhedron variety
𝒱𝒯 and also the closely related variety

𝑉𝒯 ≔ {𝑌 ∈ Gr𝑘,𝑘+2(ℂ) | ⟨𝑌𝑖𝑗⟩ ≠ 0 for ℎ → 𝑗 a boundary arc of a black polygon of 𝒯}.

7. Background on the hypersimplex, T-duality, and positroid tilings

In [ŁPW20], a surprising parallel was found between the amplituhedron map ̃𝑍 on
Gr≥0𝑘,𝑛 and the moment map 𝜇 on Gr≥0𝑘+1,𝑛. A correspondence called T-dualitywas used
to relateGrasstopes in the amplituhedron𝒜𝑛,𝑘,2 to positroid polytopes in the hypersim-
plex Δ𝑘+1,𝑛. In the second part of this paper, we further explore this relationship and
prove some of the conjectures of [ŁPW20]. We present relevant background here.12

7.1. The hypersimplex Δ𝑘+1,𝑛 and positroid polytopes. Throughout, for 𝑥 ∈ ℝ𝑛

and 𝐼 ⊂ [𝑛], we use the notation 𝑥𝐼 ≔ ∑𝑖∈𝐼 𝑥𝑖.
Definition 7.1 (The hypersimplex). Let 𝑒𝐼 ≔ ∑𝑖∈𝐼 𝑒𝑖 ∈ ℝ𝑛, where {𝑒1, . . . , 𝑒𝑛} is the
standard basis ofℝ𝑛. The (𝑘+1, 𝑛)-hypersimplex Δ𝑘+1,𝑛 is the convex hull of the points
𝑒𝐼 where 𝐼 runs over ( [𝑛]𝑘+1).
Remark 7.2. The hypersimplex Δ𝑘+1,𝑛 is obtained by intersecting the unit hypercube�𝑛 with the hyperplane 𝑥[𝑛] = 𝑘+1. Alternatively, under the projection 𝑃∶(𝑥1, . . . , 𝑥𝑛)
↦ (𝑥1, . . . , 𝑥𝑛−1), Δ𝑘+1,𝑛 is linearly equivalent to

Δ̃𝑘+1,𝑛 ≔ {(𝑥1, . . . , 𝑥𝑛−1) | 0 ≤ 𝑥𝑖 ≤ 1; 𝑘 ≤ 𝑥[𝑛−1] ≤ 𝑘 + 1} ⊂ ℝ𝑛−1.
That is, Δ̃𝑘+1,𝑛 is the slice of �𝑛−1 between the hyperplanes 𝑥[𝑛−1] = 𝑘 and 𝑥[𝑛−1] =
𝑘 + 1.
The torus 𝑇 = (ℂ∗)𝑛 acts on Gr𝑘+1,𝑛 by scaling the columns of a matrix representa-

tive 𝐴. (This is really an (𝑛− 1)-dimensional torus since the Grassmannian is a projec-
tive variety.) We let 𝑇𝐴 denote the orbit of 𝐴 under the action of 𝑇, and 𝑇𝐴 its closure.
Themoment map from the Grassmannian Gr𝑘+1,𝑛 to ℝ𝑛 is defined as follows.

Definition 7.3 (The moment map). Let 𝐴 be a (𝑘 + 1) × 𝑛matrix representing a point
of Gr𝑘+1,𝑛. Themoment map 𝜇 ∶ Gr𝑘+1,𝑛 → ℝ𝑛 is defined by

𝜇(𝐴) =
∑𝐼∈( [𝑛]𝑘+1)

|𝑝𝐼(𝐴)|2𝑒𝐼
∑𝐼∈( [𝑛]𝑘+1)

|𝑝𝐼(𝐴)|2
.

12We use ‘𝑘 + 1’ instead of ‘𝑘’ here in order to match conventions of later sections.
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It is well known that the image of the Grassmannian Gr𝑘+1,𝑛 under the moment
map is the hypersimplex Δ𝑘+1,𝑛. If one restricts the moment map to Gr≥0𝑘+1,𝑛 then the
image is again the hypersimplex Δ𝑘+1,𝑛 [TW15, Proposition 7.10].
In general, it follows from classical work of Atiyah [Ati82] and Guillemin-Sternberg

[GS82] that the image 𝜇(𝑇𝐴) is a convex polytope, whose vertices are the images of the
torus-fixed points, i.e. the vertices are the points 𝑒𝐼 such that 𝑝𝐼(𝐴) ≠ 0 and 𝑝𝐽(𝐴) = 0
for 𝐽 ≠ 𝐼. This motivates the notion ofmatroid polytope. Recall that any full rank (𝑘 +
1)×𝑛matrix𝐴 gives rise to a matroidℳ(𝐴) = ([𝑛], ℬ), whereℬ = {𝐼 ∈ ( [𝑛]𝑘+1) | 𝑝𝐼(𝐴) ≠
0}.
Definition 7.4. Given a matroidℳ = ([𝑛], ℬ), the (basis) matroid polytope Γℳ ofℳ
is the convex hull of the indicator vectors of the bases ofℳ:

Γℳ ≔ convex{𝑒𝐵 ∶ 𝐵 ∈ ℬ} ⊂ ℝ𝑛.
Matroid polytopes also have a straightforward description in terms of inequalities.

Proposition 7.5 ([Wel76]). Let ℳ = ([𝑛], ℬ) be any matroid of rank 𝑘 + 1, and let
𝑟ℳ ∶ 2[𝑛] → ℤ≥0 be its rank function. Then the matroid polytope Γℳ can be described as

Γℳ = {𝐱 ∈ ℝ𝑛 ∶ 𝑥[𝑛] = 𝑘 + 1, 𝑥𝐴 ≤ 𝑟ℳ(𝐴) for all 𝐴 ⊂ [𝑛]},
Γℳ = {𝐱 ∈ ℝ𝑛 ∶ 𝑥[𝑛] = 𝑘 + 1, 𝑥𝐴 ≥ 𝑘 + 1 − 𝑟ℳ([𝑛] ⧵ 𝐴) for all 𝐴 ⊂ [𝑛]}.

Here, we are interested in positroid polytopes, that is, matroid polytopes Γℳ where
ℳ is a positroid. They arise as 𝜇(𝑇𝐴)where 𝐴 is a totally nonnegative matrix. Of more
interest to us, they can also be obtained as moment map images of positroid cells.

Proposition 7.6 ([TW15, Proposition 7.10]). Letℳ be the positroid associated to the
positroid cell 𝑆𝜋. Then Γℳ = 𝜇(𝑆𝜋) = 𝜇(𝑆𝜋).
Wewill be particularly interested in the cells on which themomentmap is injective.

Definition 7.7 (Positroid polytopes). Given a positroid cell 𝑆𝜋 of Gr≥0𝑘+1,𝑛, we let Γ∘𝜋 =
𝜇(𝑆𝜋) andΓ𝜋 = 𝜇(𝑆𝜋), andwe refer toΓ∘ andΓ𝜋 as open positroid polytopes and positroid
polytopes, respectively. We call Γ𝜋 a positroid tile for Δ𝑘+1,𝑛 if dim(𝑆𝜋) = 𝑛 − 1, and 𝜇
is injective on 𝑆𝜋.
Theorem 7.8 (Characterization of positroid tiles of Δ𝑘+1,𝑛 [ŁPW20, Propositions 3.15,
3.16]). Consider a positroid cell 𝑆𝐺 ⊂ Gr≥0𝑘+1,𝑛, with 𝐺 a reduced plabic graph. Then
the moment map is injective on 𝑆𝐺 if and only if 𝐺 is a forest. When 𝐺 is a forest, 𝜇 is
moreover a stratification-preserving homeomorphism from 𝑆𝐺 to the polytope Γ𝐺 ⊂ ℝ𝑛.
We have dim𝑆𝐺 = dimΓ𝐺 = 𝑛− 𝑐, where 𝑐 is the number of connected components of𝐺.
In particular, given an (𝑛− 1)-dimensional cell 𝑆𝐺 ⊂ Gr≥0𝑘+1,𝑛, Γ𝐺 is a positroid tile for

Δ𝑘+1,𝑛 if and only if 𝐺 is a tree.

7.2. T-duality and positroid tilings. Recall the definition of positroid tiling from
Definition 1.1. Specializing to𝒜𝑛,𝑘,2(𝑍), we get the following.
Definition 7.9 (Positroid tilings of𝒜𝑛,𝑘,2). Let 𝒞 = {𝑍𝜋} be a collection of Grasstopes,
with {𝑆𝜋} positroid cells of Gr≥0𝑘,𝑛. We say that 𝒞 is a positroid tiling of 𝒜𝑛,𝑘,2(𝑍) if:

• each Grasstope 𝑍𝜋 is a positroid tile (i.e. 𝑍 is injective on 𝑆𝜋 and dim𝑍𝜋 = 2𝑘);
• pairs of distinct open Grasstopes 𝑍∘𝜋 and 𝑍∘𝜋′ in the collection are disjoint;
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• ∪𝜋𝑍𝜋 = 𝒜𝑛,𝑘,2(𝑍).
Remark 7.10. Alternatively, one could define a positroid tiling as coming from a col-
lection {𝑆𝜋} of cells such that {𝑍𝜋} is a positroid tiling (as above) for all choices of 𝑍.
We use Definition 7.9 here since some objects we define will be sensitive to the choice
of 𝑍.
In the case of the hypersimplex, a positroid tiling is as follows.

Definition 7.11 (Positroid tilings of Δ𝑘+1,𝑛). Let 𝒞 = {Γ𝜋} be a collection of positroid
polytopes, with {𝑆𝜋} positroid cells of Gr≥0𝑘+1,𝑛. We say that 𝒞 is a positroid tiling of
Δ𝑘+1,𝑛 if:

• each Γ𝜋 is a positroid tile (𝜇 is injective on 𝑆𝜋, and dim𝑆𝜋 = 𝑛 − 1);
• pairs of distinct open positroid polytopes Γ∘𝜋 and Γ∘𝜋′ in the collection are dis-
joint;

• ∪𝜋Γ𝜋 = Δ𝑘+1,𝑛.
Remark 7.12. “Positroid tiling” differs slightly from “positroid triangulation” in
[ŁPW20].
By Theorem 7.8, the positroid tiles of Δ𝑘+1,𝑛 are the positroid polytopes Γ𝐺 where 𝐺

is a plabic tree. And by Theorem 4.25, the positroid tiles of𝒜𝑛,𝑘,2(𝑍) are the Grasstopes
𝑍𝐺̂(𝒯) for 𝒯 a bicolored subdivision of type (𝑘, 𝑛). In [ŁPW20], it was conjectured that
positroid tiles and the two notions of positroid tiling are related by a very simple corre-
spondence, called T-duality.
Definition 7.13 (T-duality on decorated permutations). Let 𝜋 = 𝑎1𝑎2 . . . 𝑎𝑛 be a loop-
less decorated permutation (written in one-line notation). The T-dual decorated per-
mutation is 𝜋̂ ∶ 𝑖 ↦ 𝜋(𝑖 − 1), so that 𝜋̂ = 𝑎𝑛𝑎1𝑎2 . . . 𝑎𝑛−1. Any fixed points in 𝜋̂ are
declared to be loops.
Remark 7.14. This map was previously defined in [KWZ20, Definition 4.5] and was
studied in [ŁPW20], where it was used to draw parallels between the hypersimplex
Δ𝑘+1,𝑛 and the 𝑚 = 2 amplituhedron 𝒜𝑛,𝑘,2(𝑍). The T-duality map was also studied
in [BCTJ22] in relation to quotients of positroids, and in [Gal21], in relation to critical
varieties and the Ising model. The map 𝜋 → 𝜋̂ is an 𝑚 = 2 version of a map that
appeared in [AHBC+16] for the case𝑚 = 4.
Lemma 7.15 ([ŁPW20, Lemma 5.2]). The T-duality map 𝜋 ↦ 𝜋̂ is a bijection from
loopless decorated permutations of type (𝑘+1, 𝑛) to coloopless decorated permutations of
type (𝑘, 𝑛). That is, the map 𝑆𝜋 ↦ 𝑆𝜋̂ is a bijection from the set of loopless cells inGr≥0𝑘+1,𝑛
to the set of coloopless cells in Gr≥0𝑘,𝑛.
The philosophy of [ŁPW20] is that if the moment map behaves well on 𝑆𝜋, then

the ̃𝑍-map behaves well on 𝑆𝜋̂. For example, if the image of 𝑆𝜋 is a positroid tile for
Δ𝑘+1,𝑛, then the image of 𝑆𝜋̂ is a positroid tile for 𝒜𝑛,𝑘,2(𝑍) [ŁPW20, Proposition 6.6.].
Moreover, there is a main conjecture involving positroid tilings:
Conjecture 7.16 ([ŁPW20, Conjecture 6.9]). A collection {Γ𝜋} of positroid polytopes in
Δ𝑘+1,𝑛 gives a positroid tiling of Δ𝑘+1,𝑛 if and only if for all 𝑍 ∈ Mat>0𝑛,𝑘+2, the collection
{𝑍𝜋̂} of Grasstopes gives a positroid tiling of𝒜𝑛,𝑘,2(𝑍).
In Section 8.2, we will prove a number of additional results on T-duality, upgrading

it to a map on plabic graphs. We will also prove Conjecture 7.16 in Theorem 11.6.
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8. T-duality on decorated permutations and plabic graphs

In this section we prove that T-duality is a poset isomorphism and can be extended
to a map on plabic graphs and plabic tilings.
We refer the reader toAppendixA for the definition of decorated permutations, their

affinizations, loops, coloops, etc., as well as details on plabic graphs and trips.

8.1. T-duality as a poset isomorphism. Here we show that the bijection from
Lemma 7.15 is a poset isomorphism. Abusing notation, in this subsection we use 𝜋, 𝜈
to denote bounded affine permutations rather than decorated permutations.

Proposition 8.1 (T-duality as a poset isomorphism). T-duality is a codimension-
preserving poset isomorphism between loopless cells of 𝐺𝑟≥0𝑘+1,𝑛 and coloopless cells of
Gr≥0𝑘,𝑛. That is, for 𝜋, 𝜈 loopless decorated permutations of type (𝑘 + 1, 𝑛), 𝑆𝜈 ⊂ 𝑆𝜋 if
and only if 𝑆 ̂𝜈 ⊂ 𝑆𝜋̂. Furthermore, codim𝑆𝜈 = codim𝑆 ̂𝜈.

Proof. We will work with the poset Bound(𝑘, 𝑛) of bounded affine permutations with
respect to the Bruhat order [KLS13], which is dual to the poset 𝑄(𝑘, 𝑛) (see Defini-
tion 2.2). In Bound(𝑘, 𝑛), 𝜋 ⋗ 𝜈 if 𝜋 = 𝜏 ∘ 𝜈 for some transposition 𝜏 and inv(𝜋) =
inv(𝜈) + 1.
Let 𝛿 ∶ ℤ → ℤ be the map 𝑖 ↦ 𝑖 − 1. For loopless 𝜋 ∈ Bound(𝑘 + 1, 𝑛), the T-dual

of 𝜋 is 𝜋̂ = 𝜋 ∘ 𝛿. Fix loopless 𝜋, 𝜈 ∈ Bound(𝑘 + 1, 𝑛). Note that 𝜋 and 𝜋 ∘ 𝛿 have the
same length. Further, 𝜏 ∘ 𝜈 = 𝜏 ∘ 𝜈 ∘ 𝛿 = 𝜏 ∘ ̂𝜈. So 𝜋 ⋗ 𝜈 if and only if 𝜋̂ ⋗ ̂𝜈.
To extend this beyond cover relations, notice that if 𝜈 ∈ Bound(𝑘+1, 𝑛) has 𝜈(𝑖) = 𝑖

or 𝜈(𝑖) = 𝑖 + 𝑛, then for all 𝜋 ∈ Bound(𝑘 + 1, 𝑛) with 𝜋 > 𝜈, we have 𝜋(𝑖) = 𝜈(𝑖). In
matroidal terms, if the positroidℳ𝜈 has a loop (resp. coloop) at 𝑖, then so doesℳ𝜋 for
allℳ𝜋 ⊂ ℳ𝜈.
Now, 𝜋 ≥ 𝜈 if and only if there exists a maximal chain 𝜋 ⋗ 𝜋1 ⋗ ⋯ ⋗ 𝜋𝑟 ⋗ 𝜈.

Since 𝜋 is loopless, the observation in the previous paragraph shows that 𝜋𝑖 is loopless
for 𝑖 = 1, . . . , 𝑟. Since T-duality and its inverse preserve cover relations, we have such a
chain if and only if we have the chain 𝜋̂ ⋗ 𝜋̂1 ⋗ ⋯ ⋗ 𝜋̂𝑟 ⋗ ̂𝜈 in Bound(𝑘, 𝑛), which is
equivalent to 𝜋̂ ≥ ̂𝜈.
The codimension statement follows from the fact that the codimension of 𝑆𝜋 in 𝑆𝜈

is the length of any maximal chain from 𝜋 to 𝜈 in Bound(𝑘, 𝑛). □

T-duality can also be defined for arbitrary even 𝑚, as in [ŁPW20, Equation 5.13],
and is also of interest for understanding the 𝑚 = 4 amplituhedron. As is clear from
[ŁPW20, Equation 5.13], the T-duality map for even𝑚 is a composition of the “𝑚 = 2”
T-duality map𝑚/2 times. Proposition 8.1 also gives us information about this compo-
sition.

Definition 8.2. Let 𝐿𝑟 Gr≥0𝑘,𝑛 be the set of cells 𝑆𝜋 ⊂ Gr≥0𝑘,𝑛 such that 𝜋(𝑖) ≥ 𝑖 + 𝑟 for
all 𝑖. Analogously, let us define 𝐶𝐿−𝑟 Gr≥0𝑘,𝑛 to be the set of cells 𝑆𝜈 ⊂ Gr≥0𝑘,𝑛 such that
𝜈(𝑖) ≤ 𝑖 + 𝑛 − 𝑟 for all 𝑖. Each is ordered by inclusion on the closures of cells.

Remark 8.3. The composition of T-duality 𝑟 times is awell-definedmap from𝐿𝑟 Gr≥0𝑘+𝑟,𝑛
to 𝐶𝐿−𝑟 Gr≥0𝑘,𝑛. Indeed, if 𝜋(𝑖) ≥ 𝑖 + 𝑟, then applying T-duality 𝑠 times gives a loopless
bounded affine permutation for 𝑠 = 1, . . . , 𝑟−1. Moreover, it is easy to see that applying
T-duality 𝑟 times to such a 𝜋 gives a bounded affine permutation 𝜈with 𝜈(𝑖) ≤ 𝑖+𝑛−𝑟.
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Remark 8.4. The bounded affine permutations labeling cells in 𝐿𝑟 Gr≥0𝑘,𝑛 (𝐶𝐿−𝑟 Gr≥0𝑘,𝑛)
can be equivalently described in terms of the sets ̃𝑆(−𝑎, 𝑏) defined in [GL20, Section
2].

From Proposition 8.1 we immediately have the following:

Proposition8.5. The composition of T-duality 𝑟 times gives a poset isomorphismbetween
𝐿𝑟 Gr≥0𝑘+𝑟,𝑛 and 𝐶𝐿−𝑟 Gr≥0𝑘,𝑛.

8.2. T-duality as amap on plabic graphs. T-duality extends to an operation on par-
ticular plabic graphs.

Definition 8.6. A reduced plabic graph is called black-trivalent (resp. white-trivalent)
if all of its interior black (resp. white) vertices are trivalent.

Note that in particular, black-trivalent (white-trivalent) graphshavenoblack (white)
lollipops, so their trip permutations are loopless (coloopless).
Starting from a black-trivalent graph 𝐺 with trip permutation 𝜋, we now give an

explicit construction of a white-trivalent graph ̂𝐺 with trip permutation 𝜋̂. This con-
struction streamlines the bijection of [GPW19, Proposition 7.15] and [Gal21, Proposi-
tion 8.3], and phrases the bijection entirely in terms of plabic graphs, rather than plabic
and zonotopal tilings.

Definition 8.7 (T-duality on plabic graphs). Let 𝐺 be a reduced black-trivalent plabic
graph. The T-dual of 𝐺, denoted ̂𝐺, is the graph obtained as follows:

(1) In each face 𝑓 of 𝐺, place a black vertex ̂𝑏(𝑓).
(2) “On top of” each black vertex 𝑏 of 𝐺, place a white vertex 𝑤̂(𝑏);
(3) For each black vertex 𝑏 of 𝐺 in face 𝑓, put an edge ̂𝑒 connecting 𝑤̂(𝑏) and ̂𝑏(𝑓);
(4) Put ̂𝑖 on the boundary of 𝐺 between vertices 𝑖 − 1 and 𝑖 and draw an edge from

̂𝑖 to ̂𝑏(𝑓), where 𝑓 is the adjacent boundary face.
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Figure 4. In black: A plabic graph 𝐺 of type (4, 8) with trip permu-
tation (2, 4, 7, 1, 8, 5, 3, 6). In blue: The T-dual plabic graph ̂𝐺 of type
(3, 8) with trip permutation (6, 2, 4, 7, 1, 8, 5, 3), which is built using
Definition 8.7.



364 M. PARISI, M. SHERMAN-BENNETT, AND L. K. WILLIAMS

Proposition 8.8. Let 𝐺 be a reduced black-trivalent plabic graph with trip permutation
𝜋. Then ̂𝐺 is a reduced white-trivalent plabic graph with trip permutation 𝜋̂.

Proof. First observe that since 𝐺 is black-trivalent, ̂𝐺 is white-trivalent (see Figure 5).

v

ŵ(v)

Figure 5. Black trivalent vertices of 𝐺 correspond to white trivalent
vertices of ̂𝐺

Wenow show that if𝐺 has the trip 𝛾 ∶ 𝑖 → 𝜋(𝑖), then ̂𝐺 has the trip ̂𝛾 ∶ 𝑖 + 1 → 𝜋(𝑖).
Say 𝛾 starts at 𝑖. Let 𝑣 be the first black vertex 𝛾meets. By the rules of the road, there

is one edge 𝑒 attached to 𝑣 at the left of 𝛾 (as 𝐺 is black-trivalent). Note that vertex 𝑣 is
in the boundary face 𝑓 containing boundary vertices 𝑖 and 𝑖 + 1. This is because before
meeting 𝑣, 𝛾meets only white vertices, and by the rules of the road there are no edges
involving these vertices lying to the left of 𝛾. So 𝑤̂(𝑣) is also connected to ̂𝑏(𝑓). And by
definition, 𝑖 + 1 is connected to ̂𝑏(𝑓). Note that at the vertex ̂𝑏(𝑓), if we start at the edge
to 𝑖 + 1 and go counterclockwise, we see the edge to 𝑤̂(𝑣). This means ̂𝛾 starts at 𝑖 + 1,
goes to ̂𝑏(𝑓), then to 𝑤̂(𝑣) (see Figure 6). Now, let 𝑔 be the face of 𝐺 which contains 𝑒
and the edge of 𝛾 following 𝑣. Clearly ̂𝑏(𝑔) is connected to 𝑤̂(𝑣). At the vertex 𝑤̂(𝑣), if
we start at the edge to ̂𝑏(𝑓) and go clockwise, we see the edge to ̂𝑏(𝑔). This means that
𝛾 goes from 𝑤̂(𝑣) to ̂𝑏(𝑔).

i

̂i+ 1 f g

v v′ π(i)

̂π(i)

γ

h

Figure 6. Black edges and vertices are in 𝐺; blue are ̂𝐺. In orange,
the trip 𝛾 ∶ 𝑖 → 𝜋(𝑖) in 𝐺. The trip ̂𝛾 follows the solid blue edges.

Now, let 𝑣′ be the next black vertex 𝛾 meets. Again, the edges involving any white
vertices on 𝛾 between 𝑣, 𝑣′ must lie to the right of 𝛾, and there is exactly one edge 𝑒′ at
𝑣′ to the left of 𝛾. So the face 𝑔 also contains 𝑣′. Let ℎ be the face of 𝐺 which contains
𝑒′ and the edge of 𝛾 following 𝑣′. Then ̂𝛾 goes from ̂𝑏(𝑔) to 𝑤̂(𝑣′) to ̂𝑏(ℎ) (see Figure 6).
Continuing in this way, we see that if 𝛾 passes through a black vertex 𝑣, then ̂𝛾 passes
through 𝑤̂(𝑣) and then goes to ̂𝑏(𝑓), where 𝑓 is the face to the left of 𝛾 containing 𝑣
and the edge of 𝛾 following 𝑣. If 𝑣 is the last black vertex on 𝛾, then 𝑓 is the boundary
face touching 𝜋(𝑖) − 1 and 𝜋(𝑖). Note that at the vertex ̂𝑏(𝑓), if we start at the edge to
𝑤̂(𝑣) and go counterclockwise, we see the edge to 𝜋(𝑖). So 𝛾 will turn maximally right
at ̂𝑏(𝑓) to go to 𝜋(𝑖).
If 𝛾 meets no black vertices, there are no edges of 𝐺 at the left of 𝛾. This means

𝜋(𝑖) = 𝑖 + 1. The boundary face 𝑓 between 𝑖 and 𝜋(𝑖) contains only white vertices, so
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there will be a loop in ̂𝐺 at boundary vertex 𝑖 + 1. Clearly 𝜋̂(𝑖 + 1) = 𝑖 + 1 = 𝜋(𝑖) as
desired.
To show that ̂𝐺 is reduced, it suffices to show ̂𝐺 has dim(𝑆𝜋̂) + 1 faces [FWZ21,

Corollary 7.4.26 and Corollary 7.10.5]. Note that Definition 8.7 does not depend on
the white vertices of 𝐺, so we may assume that 𝐺 is bipartite and has a white vertex
adjacent to every boundary vertex. With this assumption, it is not hard to see that the
faces of ̂𝐺 are in bijection with white vertices of 𝐺.
Let 𝐵,𝑊, 𝐹, 𝐸 denote the number of white vertices, black vertices, faces (excluding

the infinite face), and edges (excluding edges between two boundary vertices) of𝐺. Say
that 𝐺 is of type (𝑘 + 1, 𝑛). Since T-duality preserves codimension, we have

dim(𝑆𝜋̂) = dim(𝑆𝜋) − 𝑛 + 2𝑘 + 1.
As 𝐺 is reduced, 𝐹 = dim(𝑆𝜋) + 1. So to show𝑊 = dim(𝑆𝜋̂) + 1, it suffices to show
that𝑊 = 𝐹 − 𝑛 + 2𝑘 + 1. This follows immediately from

𝐸 = 3𝐵 + 𝑛, 𝐹 = 1 − (𝑊 + 𝐵) + 𝐸, 𝑊 − 𝐵 = 𝑘 + 1.
The first equation holds because every edge between two internal vertices contains a
unique black vertex, and all black vertices are trivalent. The second equation follows
fromEuler’s formula for planar graphs. The third holds because𝐺 is type (𝑘+1, 𝑛). □

Remark 8.9. It is straightforward to check that exchanging the roles of black and white
vertices in Definition 8.7 gives a map from white-trivalent plabic graphs to black-
trivalent graphs. This shows that T-duality is a bijection between black-trivalent graphs
of type (𝑘 + 1, 𝑛) and white trivalent graphs of type (𝑘, 𝑛) (where we consider both sets
of graphs up to edge contraction and bivalent vertex addition/removal).

The map 𝐺 → ̂𝐺 can also be phrased in terms of plabic tilings13 [OPS15], which are
dual to plabic graphs. Our notion of plabic tiling is slightly looser than that in [OPS15].

Definition 8.10 (Plabic tilings). Let 𝐺 be any connected reduced plabic graph with 𝑛
boundary vertices, and let 𝐏𝑛 be a convex 𝑛-gon, whose vertices are labeled from 1 to 𝑛
in clockwise order. The plabic tiling𝒯(𝐺) dual to𝐺 is a tiling of 𝐏𝑛 by colored polygons
(bigons allowed) such that: (i) it is the planar dual of 𝐺; (ii) each black (white) vertex
of 𝐺 is dual to a black (white) polygon in 𝒯(𝐺); (iii) vertex 𝑖 of 𝐏𝑛 is dual to the face
of 𝐺 touching boundary vertices 𝑖 − 1 and 𝑖. We consider two plabic tilings 𝒯(𝐺) and
𝒯′(𝐺′) equivalent if 𝐺 and 𝐺′ are move-equivalent.
Conversely, if 𝒯 is a plabic tiling, the dual plabic graph 𝐺(𝒯) is obtained from 𝒯

by placing a black vertex in each black polygon, a white vertex in each white polygon,
and connecting two vertices whenever they correspond to two polygons which share
an edge.

Figure 7 shows three move-equivalent plabic graphs and the corresponding plabic
tilings.

Remark 8.11. A bicolored subdivision or triangulation𝒯 of type (𝑘, 𝑛) is a plabic tiling
whose dual plabic graph 𝐺(𝒯) is a tree plabic graph of type (𝑘 + 1, 𝑛). All tree plabic
graphs of type (𝑘 + 1, 𝑛) arise in this way.

13We caution the reader that plabic tilings and positroid tilings are very different objects, despite having
a word in common.
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Figure 7. Three equivalent plabic tilings𝒯 (in orange), and the cor-
responding dual plabic graphs 𝐺(𝒯) (in black). The center plabic
tiling is dual to a black-trivalent plabic graph.

The construction of ̂𝐺 from 𝐺 of Proposition 8.8 can also be phrased in terms of
plabic tilings as follows. (This is equivalent to the construction in the proof of [Gal21,
Proposition 8.3], though the description there uses horizontal sections of fine zonotopal
tilings.) Figure 8 illustrates the following construction.

Proposition 8.12 (T-duality and plabic graphs). Let 𝐺 be a connected reduced black-
trivalent plabic graph and let𝒯 = 𝒯(𝐺) be the dual plabic tiling. Then the T-dual plabic
graph ̂𝐺 = ̂𝐺(𝒯) is obtained as follows:

(1) Place a black vertex at each vertex of each black triangle in𝒯.
(2) Place a white vertex in the middle of each black triangle of𝒯 and connect it to the

vertices of the triangle.
(3) Add an edge of ̂𝐺 from boundary vertex 𝑖 on the disc to the black vertex on bound-

ary vertex 𝑖 of𝒯.

Figure 8. Left: In orange, the plabic tiling 𝒯 dual to the black-
trivalent graph in the center of Figure 7. In blue, the result of op-
erations (1), (2) of Proposition 8.12. Right: the graph ̂𝐺(𝒯).

Remark 8.13. The construction ̂𝐺(𝒯) from Proposition 8.12 generalizes the construc-
tion from Definition 4.2 (viewing a bicolored triangulation as a special case of a plabic
tiling). So Proposition 8.12 shows that the plabic graph ̂𝐺(𝒯) from Definition 4.2 is
T-dual to the plabic tree 𝐺(𝒯).
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9. T-duality, positroid tiles and cluster adjacency

In this section, we show T-duality gives a bijection between positroid tiles of Δ𝑘+1,𝑛
and positroid tiles for 𝒜𝑛,𝑘,2(𝑍) (Corollary 9.1). We then investigate parallels between
the inequalities cutting out positroid polytopes Γ𝜋 and the T-dual Grasstopes 𝑍∘𝜋̂; for
positroid tiles, both pieces of data are encoded by the same bicolored subdivision (The-
orem 9.2). We establish a similar parallel for facets of positroid tiles (Theorem 9.10),
and use this to prove the 𝑚 = 2 cluster adjacency conjecture of [ŁPSV19] in Theo-
rem 9.12.

9.1. T-duality, inequalities and signs. In this subsection, we will see how bicolored
triangulations encode positroid tiles of both Δ𝑘+1,𝑛 and 𝒜𝑛,𝑘,2(𝑍).
Theorem4.25 andTheorem7.8 characterize positroid tiles of𝒜𝑛,𝑘,2(𝑍) andΔ𝑘+1,𝑛 in

terms of bicolored subdivisions and tree plabic graphs, respectively. These results with
Remark 8.13 imply that positroid tiles of𝒜𝑛,𝑘,2(𝑍) and Δ𝑘+1,𝑛 are in bijection, and that
both can be read off easily from bicolored subdivisions of type (𝑘, 𝑛) (see Figure 9).
Corollary 9.1. Apositroid polytopeΓ𝐺 is a positroid tile ofΔ𝑘+1,𝑛 if and only if the T-dual
Grasstope 𝑍𝐺̂ is a positroid tile of𝒜𝑛,𝑘,2(𝑍). We read Γ𝐺 and 𝑍𝐺̂ off of the same bicolored
subdivision𝒯 as follows:

• Choose any triangulation𝒯 of𝒯.
• We let 𝐺 ∶= 𝐺(𝒯) be the dual plabic tree, as in Definition 8.10.
• We let ̂𝐺 ≔ ̂𝐺(𝒯) be the graph from Definition 4.2 (equivalently, in Proposi-
tion 8.12).

Figure 9. In the top row: A bicolored subdivision of type (5, 9) 𝒯. In
the bottom row: A bicolored triangulation 𝒯 obtained by triangulat-
ing𝒯, with the dual graph𝐺(𝒯) to its left, and the T-dual graph ̂𝐺(𝒯)
to its right.

From a bicolored subdivision 𝒯, we can obtain inequality descriptions of the
positroid tile Γ𝐺(𝒯) ⊂ Δ𝑘+1,𝑛 and the T-dual positroid tile 𝑍∘𝐺̂(𝒯) ⊂ 𝒜𝑛,𝑘,2(𝑍).
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Given two positive numbers 𝑎, 𝑏 ∈ [𝑛], the cyclic interval [𝑎, 𝑏] is defined to be

[𝑎, 𝑏] ≔ {{𝑎, 𝑎 + 1, . . . , 𝑏 − 1, 𝑏} if 𝑎 ≤ 𝑏,
{𝑎, 𝑎 + 1, . . . , 𝑛, 1, . . . , 𝑏} otherwise.

Theorem 9.2 (Inequalities and signs via T-duality). Let 𝒯 be a bicolored subdivision
and let ℎ → 𝑗 be a compatible arc, with ℎ < 𝑗. Let𝐺(𝒯) denote the tree plabic graph dual
to𝒯, and ̂𝐺(𝒯) the T-dual. Then:

(1) area(ℎ → 𝑗) + 1 > 𝑥[ℎ,𝑗−1] > area(ℎ → 𝑗) for 𝑥 ∈ Γ∘𝐺(𝒯),
(2) sgn⟨𝑌ℎ𝑗⟩ = (−1)area(ℎ→𝑗) for 𝑌 ∈ 𝑍∘𝐺̂(𝒯).

The inequalities given by the arcs of any triangulation𝒯′ of𝒯 cut out Γ∘𝐺(𝒯) and 𝑍∘𝐺̂(𝒯).

Example 9.3. Consider the bicolored subdivision 𝒯 in Figure 9. We have
5 > 𝑥[1,7] > 4, 4 > 𝑥[1,6] > 3, 3 > 𝑥[2,5] > 2, for 𝑥 ∈ Γ∘𝐺(𝒯),
⟨𝑌18⟩ > 0, ⟨𝑌17⟩ < 0, ⟨𝑌26⟩ > 0, for 𝑌 ∈ 𝑍∘𝐺̂(𝒯).

To prove Theorem 9.2, we need a few results on positroid polytopes Γ𝐺 .
Lemma 9.4. Let 𝐺 be a bipartite plabic graph and let 𝒯 be the dual plabic tiling. Let
𝑊(𝐺) and 𝐵(𝐺) denote the set of white and black vertices of 𝐺, respectively. Then
|𝑊(𝐺)| − |𝐵(𝐺)| + |{bdry vt of 𝐺 adjacent to a black vt}| = area(𝒯) − punc(𝒯) + 1,

where area(𝒯) is the number of black triangles in any triangulation of 𝒯 and punc(𝒯)
is the number of internal vertices of𝒯.
Proof. Let 𝐸 denote the edges of 𝐺 involving at least one internal vertex. Each black
vertex of 𝐺 is dual to a black polygon of 𝒯 with deg(𝑣)many sides, so we have

area(𝒯) = ∑
𝑣∈𝐵(𝐺)

(deg(𝑣) − 2) = ∑
𝑣∈𝐵(𝐺)

deg(𝑣) − 2|𝐵(𝐺)|

= |𝐸(𝐺)| − |{bdry vt adjacent to a white vt}| − 2|𝐵(𝐺)|,
where the last equality follows from the fact that every edge of 𝐺 contains a unique
black vertex, except edges between a boundary vertex and a white vertex. The claim
follows from this formula together with Euler’s formula for planar graphs. □

Proposition 9.5. Let𝒯 be a bicolored subdivision and𝐺(𝒯) the dual bipartite tree plabic
graph. For all arcs ℎ → 𝑗 compatible with𝒯, points of Γ𝐺(𝒯) satisfy

area(ℎ → 𝑗) + 1 ≥ 𝑥[ℎ,𝑗−1] ≥ area(ℎ → 𝑗).
Proof. Let 𝐺 be the graph obtained from 𝐺(𝒯) by adding bivalent white vertices so
that every boundary vertex is adjacent to a white vertex. Note that 𝐺 is bipartite and
represents the same positroidℳ as𝐺(𝒯). In particular, the boundaries ofmatchings of
𝐺 give the bases ofℳ. Let𝑊(𝐺) and 𝐵(𝐺) denote the sets of white and black vertices
of 𝐺, respectively.
Note that if 𝑗 = ℎ + 1, the inequality is clear.
We first deal with the case where ℎ → 𝑗 is an internal arc of𝒯. Let 𝑒 be the edge of𝐺

which is dual to ℎ → 𝑗, and say the vertices of 𝑒 are a white vertex𝑤 and black vertex 𝑏.
If we remove the edge 𝑒,𝐺⧵𝑒 has two connected components,𝐺𝑤 containing𝑤 and𝐺𝑏
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containing 𝑏. Notice that both connected components are again bipartite plabic trees.
Let 𝐼𝑤 and 𝐼𝑏 denote the boundary vertices of 𝐺𝑤 and 𝐺𝑏, respectively. Because vertex
𝑖 of 𝒯 lies between boundary vertices 𝑖 − 1, 𝑖 of 𝐺, {𝐼𝑤, 𝐼𝑏} = {[ℎ, 𝑗 − 1], [𝑗, ℎ − 1]}.
Now, we would like to compute the ranks of 𝐼𝑤, 𝐼𝑏. That is, for a matching𝑀 of 𝐺,

we need to compute the maximum size of 𝜕𝑀 ∩ 𝐼𝑤 and 𝜕𝑀 ∩ 𝐼𝑏.
Let𝑀 be a matching of 𝐺. If𝑀 does not contain 𝑒, then𝑀 restricts to a matching of

𝐺𝑤 and 𝐺𝑏. It is easy to see that
|𝜕𝑀 ∩ 𝐼𝑤| =|𝑊(𝐺𝑤)| − |𝐵(𝐺𝑤)|,
|𝜕𝑀 ∩ 𝐼𝑏| =|𝑊(𝐺𝑏)| − |𝐵(𝐺𝑏)|.

If𝑀 does contain 𝑒, then choose a path 𝑃 from boundary to boundary which uses 𝑒
and alternates between edges in𝑀 and edges not in𝑀. Such a path can be constructed
greedily because 𝐺 is a tree. Orient 𝑃 so it sees first 𝑤 and then 𝑏. The edges of 𝑃 in𝑀
are exactly the ones oriented from a white vertex to a black vertex. The first edge of 𝑃
touches a boundary vertex in 𝐼𝑤 and is oriented to a white vertex, so is not in𝑀. The
last edge of 𝑃 touches a boundary vertex in 𝐼𝑏 and is in 𝑀. Define a new matching 𝑁
of 𝐺 by 𝑁 ≔ (𝑀 ⧵ 𝑃) ∪ (𝑃 ⧵ 𝑀). The boundary 𝜕𝑁 contains one more element of 𝐼𝑤
than 𝜕𝑀, and one fewer element of 𝐼𝑏. The matching 𝑁 does not contain 𝑒, so using
the previous computation, we see that

|𝜕𝑀 ∩ 𝐼𝑤| =|𝑊(𝐺𝑤)| − |𝐵(𝐺𝑤)| − 1,
|𝜕𝑀 ∩ 𝐼𝑏| =|𝑊(𝐺𝑏)| − |𝐵(𝐺𝑏)| + 1.

We conclude that rank(𝐼𝑤) = |𝑊(𝐺𝑤)|−|𝐵(𝐺𝑤)| and rank(𝐼𝑏) = |𝑊(𝐺𝑏)|−|𝐵(𝐺𝑏)|+1.
FromProposition 7.5 and the fact that the rank ofℳ is |𝑊(𝐺)|−|𝐵(𝐺)| = |𝑊(𝐺𝑤)|−

|𝐵(𝐺𝑤)| + |𝑊(𝐺𝑏)| − |𝐵(𝐺𝑏)|, we see that the points of Γ𝐺(𝒯) satisfy
|𝑊(𝐺𝑤)| − |𝐵(𝐺𝑤)| − 1 ≤𝑥𝐼𝑤 ≤ |𝑊(𝐺𝑤)| − |𝐵(𝐺𝑤)|,

|𝑊(𝐺𝑏)| − |𝐵(𝐺𝑏)| ≤𝑥𝐼𝑏 ≤ |𝑊(𝐺𝑏)| − |𝐵(𝐺𝑏)| + 1.
All that remains is to rewrite the right hand sides of these inequalities in terms of

area. Cut 𝒯 along the arc ℎ → 𝑗, to get two smaller bicolored subdivisions 𝒯𝑤 and 𝒯𝑏

containing the polygons dual to 𝑤 and 𝑏, respectively. Notice that the graph 𝐺(𝒯𝑤)
dual to 𝒯𝑤 can be obtained from 𝐺𝑤 by adding a boundary vertex adjacent to 𝑤. Sim-
ilarly, 𝐺(𝒯𝑏) is obtained from 𝐺𝑏 by adding a boundary vertex adjacent to 𝑏. So, using
Lemma 9.4,

|𝑊(𝐺𝑤)| − |𝐵(𝐺𝑤)| = area(𝒯𝑤) + 1,
|𝑊(𝐺𝑏)| − |𝐵(𝐺𝑏)| + 1 = area(𝒯𝑏) + 1.

Now, choose 𝑣 ∈ {𝑏, 𝑤} so that 𝐼𝑣 = [ℎ, 𝑗 − 1]. Since 𝒯𝑣 is exactly the part of 𝒯 to
the left of ℎ → 𝑗, the proposition now follows.
We now consider the case where ℎ → 𝑗 is not an arc of 𝒯. In this case, let 𝒯′ be

the plabic tiling obtained from 𝒯 by adding the arc ℎ → 𝑗. Let 𝐺 be the tree plabic
graph dual to𝒯′, which wemake bipartite by adding an appropriately colored bivalent
vertex 𝑣 to the edge dual to ℎ → 𝑗. We also add bivalent white vertices to 𝐺 to make all
boundary vertices adjacent to a white vertex. Let 𝑒 and 𝑓 denote the edges containing
𝑣, and say 𝑒 is to the left of ℎ → 𝑗. Similar to the first case, removing edges 𝑒, 𝑓 and
vertex 𝑣 from 𝐺 gives a graph with two connected components 𝐺𝑒, 𝐺𝑓 which contain
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vertices adjacent to 𝑒 and 𝑓, respectively. Notice that the boundary vertices 𝐼𝑒 of 𝐺𝑒 are
exactly [ℎ, 𝑗 − 1]. The rest of the argument is very similar to the first case. □

Recall that an arc ℎ → 𝑗 of a bicolored subdivision is facet-defining if it bounds a
black polygon on its left.

Proposition 9.6. Let 𝒯 be a bicolored subdivision, and let 𝐺 be the dual plabic tree of
type (𝑘 + 1, 𝑛). Then Γ𝐺 is cut out of ℝ𝑛 by the equality 𝑥[𝑛] = 𝑘 + 1 and the following
inequalities, each of which defines a facet:

(1) 𝑥𝑖 ≥ 0 for 𝑖 a boundary vertex adjacent to a white vertex
(2) 𝑥[ℎ,𝑗−1] ≥ area(ℎ → 𝑗) for ℎ → 𝑗 a facet-defining arc of𝒯.

Proof. Recall from Theorem 7.8 that the moment map 𝜇 is a stratification-preserving
homeomorphism on the closure of 𝑆𝐺 . So the facets of Γ𝐺 are exactly the positroid
polytopes Γ𝐺′ where 𝑆𝐺′ is a positroid cell contained in 𝑆𝐺 with codimension 1. From
[Pos06, Corollary 18.10], each such cell is indexed by a reduced plabic graph 𝐺′ ob-
tained from 𝐺 by removing a single edge (if the edge removed is between a boundary
vertex and an internal vertex 𝑣, we also add a lollipop which is the opposite color of 𝑣).
Because 𝐺 is a tree, 𝐺′ = 𝐺 ⧵ 𝑒 is reduced for all edges 𝑒. If 𝑒 is between a boundary

vertex 𝑖 and a white vertex, then 𝐺′ has a black lollipop at 𝑖. Thus 𝑆𝐺′ has a loop at 𝑖,
and Γ𝐺′ is contained in the hyperplane 𝑥𝑖 = 0. Clearly Γ𝐺 lies on the positive side of
this hyperplane, which explains the facet inequalities of type 1.
If 𝑒 is an edge between a boundary vertex 𝑖 and a black vertex, then 𝑒 is dual to the

arc (𝑖 + 1) → 𝑖 of 𝒯, which is a facet-defining arc. Then 𝐺′ has a white lollipop at 𝑖, so
Γ𝐺′ is contained in the hyperplane 𝑥𝑖 = 1. Since we also have 𝑥[𝑛] = 𝑘 + 1, Γ𝐺′ is also
contained in the hyperplane 𝑥[𝑖+1,𝑖−1] = 𝑘 = area(𝑖 + 1 → 𝑖).
Now, consider the case when 𝑒 is an edge between two internal vertices of 𝐺. The

edge 𝑒 is dual to the arcℎ → 𝑗 of𝒯, which bounds a black polygon on the left. The proof
of Proposition 9.5 shows thatΓ𝐺′ is contained in the hyperplane 𝑥[ℎ,𝑗−1] = area(ℎ → 𝑗).
This covers all edges of 𝐺, so we have described all facets. The directions of the facet
inequalities follow immediately from Proposition 9.5. □

We can now prove Theorem 9.2.

Proof of Theorem 9.2. (1) follows from Proposition 9.5 and (2) follows from
Theorem 4.14. The statement about inequalities cutting out 𝑍∘𝐺̂(𝒯) and Γ

∘
𝐺(𝒯) follows

from Theorem 4.28, Proposition 9.6 and the fact that 𝑥[𝑛] = area(ℎ → 𝑗) + area(𝑗 →
ℎ) + 1. □

We next generalize Theorem 9.2 by providing inequalities for full-dimensional
positroid polytopes and Grasstopes from statistics of plabic tilings. We first general-
ize the definition of compatible arcs from Definition 4.6.

Definition 9.7 (Statistics of plabic tilings). Let 𝒯 be a plabic tiling in a convex 𝑛-gon
𝐏𝑛 and ℎ, 𝑗 a pair of vertices of 𝐏𝑛. We say that the arc ℎ → 𝑗 is compatible with 𝒯
if the arc either bounds or lies entirely inside a single polygon of 𝒯. When ℎ → 𝑗 is
compatible with 𝒯, we let area(ℎ → 𝑗) = area𝒯(ℎ → 𝑗) denote the number of black
triangles to the left of ℎ → 𝑗 in any triangulation of𝒯. We call the internal vertices of𝒯
punctures. We also let punc(ℎ → 𝑗) = punc𝒯(ℎ → 𝑗) denote the number of punctures
of 𝒯 to the left of the arc ℎ → 𝑗. Note that black bigons do not contribute to the area.
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For example, the tiling 𝒯 in Figure 7 has two punctures, and 1 → 3, 1 → 5, 5 → 7
are compatible arcs. We have area(1 → 3) = 0, area(1 → 5) = 2, area(5 → 7) = 1,
punc(1 → 3) = punc(5 → 7) = 0, punc(1 → 5) = 1.
Theorem 9.8. Let 𝒯 be a plabic tiling and let ℎ → 𝑗 be a compatible arc, with ℎ < 𝑗.
Let 𝐺(𝒯) denote the plabic graph dual to𝒯, and ̂𝐺(𝒯) the T-dual. Then:

(1) area(ℎ → 𝑗) − punc(ℎ → 𝑗) + 1 > 𝑥[ℎ,𝑗−1] > area(ℎ → 𝑗) − punc(ℎ →
𝑗) for 𝑥 ∈ Γ∘𝐺(𝒯)

(2) sgn⟨𝑌ℎ𝑗⟩ = (−1)area(ℎ→𝑗)−punc(ℎ→𝑗) for 𝑌 ∈ 𝑍∘𝐺̂(𝒯).

Note that compatible arcs depend on the tiling 𝒯, while Γ∘𝐺(𝒯) and 𝑍∘𝐺̂(𝒯) depend
only on 𝒯. Any arc compatible with any tiling equivalent to 𝒯 gives inequalities for
Γ∘𝐺(𝒯) and 𝑍∘𝐺̂(𝒯) via Theorem 9.8.

Proof. The proof of (1) proceeds similarly as in Proposition 9.5, where we compute the
rank of [ℎ, 𝑗 − 1]. The arc ℎ → 𝑗 is dual to an edge 𝑒 of 𝐺(𝒯) (or a graph which differs
from 𝐺(𝒯) only by uncontracting an edge and adding a bivalent vertex). Removing
𝑒 gives two connected components, the boundary vertices of which are [ℎ, 𝑗 − 1] and
[𝑗, ℎ − 1]. Again, any matching of 𝐺(𝒯) will either use 𝑒 or differ from a matching
using 𝑒 by a “swivel” (see [MS17, Appendix B]) along one of the two boundary faces
containing 𝑒 (which changes the boundary’s intersection with [ℎ, 𝑗 − 1] by precisely 1)
followed by swivels at faces contained in one of the connected components (which do
not change the boundary’s intersection with [ℎ, 𝑗 − 1]). In this way we compute the
rank of [ℎ, 𝑗−1] and [𝑗, ℎ−1]. Onemust apply Lemma 9.4 to obtain the ranks in terms
of area and punc.
The proof of (2) proceeds similarly as in Theorem4.14. Any almost-perfectmatching

𝑀 of ̂𝐺(𝒯)which does not have ℎ or 𝑗 in 𝜕𝑀 will have |𝜕𝑀 ∩ [ℎ+1, 𝑗−1]| = area(ℎ →
𝑗) − punc(ℎ → 𝑗). Indeed, there are exactly area(ℎ → 𝑗) internal white vertices to
the left of ℎ → 𝑗, which must be covered by an edge of 𝑀, and exactly punc(ℎ → 𝑗)
many internal black vertices, which also must be covered. This leaves area(ℎ → 𝑗) −
punc(ℎ → 𝑗) edges of𝑀 which cover a boundary vertex. □

Example 9.9. For the plabic tiling 𝒯 in Figure 7, Theorem 9.8 tells us that
1 > 𝑥[1,2] > 0, 2 > 𝑥[1,4] > 1, 2 > 𝑥[5,6] > 1, for 𝑥 ∈ Γ𝐺(𝒯);
⟨𝑌13⟩ > 0, ⟨𝑌15⟩ < 0, ⟨𝑌57⟩ < 0, for 𝑌 ∈ 𝑍∘𝐺̂(𝒯).

9.2. T-duality, facets and cluster adjacency. From a bicolored subdivision 𝒯, we
can also read off the facets of both Γ𝐺(𝒯) and 𝑍𝐺̂(𝒯) (see Definition 2.6).
Theorem 9.10 (Facets via T-duality). Let 𝒯 be a bicolored triangulation and let ℎ → 𝑗
be a facet-defining arc of 𝒯. Let 𝐺 ≔ 𝐺(𝒯) be the plabic tree dual to 𝒯 and let 𝐺′ be the
plabic forest obtained from 𝐺 by deleting the edge dual to ℎ → 𝑗. Let ̂𝐺 and ̂𝐺′ denote
their T-duals.

(1) The positroid polytope Γ𝐺′ is a facet of Γ𝐺 , and lies on the hyperplane
𝑥[ℎ,𝑗−1] = area(ℎ → 𝑗).

(2) The Grasstope 𝑍𝐺̂′ is a facet of 𝑍𝐺̂ , and lies on the hypersurface
⟨𝑌ℎ𝑗⟩ = 0.
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Moreover, if we let ℎ → 𝑗 range over the facet-defining arcs of 𝒯 which are not on the
boundary of 𝐏𝑛, we obtain all facets of Γ𝐺 and 𝑍𝐺̂ in the interior of Δ𝑘+1,𝑛 and𝒜𝑛,𝑘,2(𝑍).

Proof. (1) follows immediately from Proposition 9.6 and its proof.
For (2), we first show that 𝑍𝐺̂′ is contained in the hypersurface {⟨𝑌ℎ𝑗⟩ = 0}. The

arc ℎ → 𝑗 is in a unique triangle 𝑇𝑟 of𝒯; say its third vertex is 𝑖. Using Proposition 8.8,
it is not hard to see that ̂𝐺′ is obtained from ̂𝐺 by deleting the edge 𝑒 from 𝐵𝑖 to 𝑊𝑟.
This means that every almost perfect matching of ̂𝐺′ must use either the edge from 𝐵ℎ
to 𝑊𝑟 or the edge from 𝐵𝑗 to 𝑊𝑟, so ℎ or 𝑗 is in the boundary. From Lemma 3.6, we
immediately conclude that ⟨𝑌ℎ𝑗⟩ is identically zero on 𝑍∘𝐺̂′ and thus on 𝑍𝐺̂′ .
Now, we show that ̃𝑍 is injective on 𝑍𝐺̂′ , by showing Theorem 4.19 holds for 𝑍𝐺̂′

and then applying the first paragraph in the proof of Theorem 4.25. Consider 𝑌 ∈ 𝑍𝐺̂′ ,
let 𝐶 ≔ 𝐶tw

𝒯 (𝑌) be the twistor coordinate matrix of 𝑌 and let 𝑌 ′ ≔ 𝐶𝑍. We would
like to show that 𝐶 ∈ 𝑆𝐺̂′ and that rowspan𝑌 ′ = rowspan𝑌 ; by Proposition 4.30, it
suffices to show the former. Note that the Kasteleyn matrix 𝐾′ for ̂𝐺′ is obtained from
the Kasteleyn matrix 𝐾 for ̂𝐺 by setting the parameter in row 𝑟 and column 𝑖 to 0. So
we only need to show that for all arcs 𝑎 → 𝑏 of𝒯 with {𝑎, 𝑏} ≠ {ℎ, 𝑗}, ⟨𝑌 ′𝑎𝑏⟩ is nonzero.
Pick such an arc 𝑎 → 𝑏 of𝒯. It suffices to show that there is a matching of ̂𝐺 which

does not use 𝑒 and does not have 𝑎 or 𝑏 in its boundary. We will argue by induction on
the number of black triangles of𝒯. The base case, with 1 triangle, is clear by inspection.
The arc 𝑎 → 𝑏 bounds some black triangle 𝑇𝑠 of 𝒯, with third vertex 𝑐. Cut 𝒯 along
the arcs 𝑎 → 𝑏, 𝑏 → 𝑐 and 𝑐 → 𝑎 to obtain bicolored triangulations𝒯1, 𝒯2, 𝒯3 of smaller
polygons (one ofwhichmay be empty), which each contain a single edge of𝑇𝑠. Onewill
have ℎ → 𝑗 as a facet-defining arc. By induction, ̂𝐺(𝒯𝑖) has an almost-perfect matching
𝑀𝑖 whose boundary avoids the appropriate vertices of 𝑇𝑠 and does not use the edge 𝑒.
Take the union of these matchings, together with the edge 𝑓 from𝑊𝑠 to 𝐵𝑐. This gives
a matching of ̂𝐺 whose boundary avoids 𝑎, 𝑏. Note that since {𝑎, 𝑏} ≠ {ℎ, 𝑗}, the edge 𝑓
is different from 𝑒, so this matching does not use 𝑒.
Now we check that 𝑍𝐺̂′ is a facet of 𝑍𝐺̂ . We first show that the hypersurface 𝐻 ≔

{⟨𝑌ℎ𝑗⟩ = 0} intersects 𝑍𝐺̂ only on the boundary of 𝑍𝐺̂ , which shows 𝑍𝐺̂′ is contained
in the boundary as well. Recall that the open positroid tile 𝑍∘𝐺̂ is dense in 𝑍𝐺̂ andmore-
over, (−1)area(ℎ→𝑗)⟨𝑌ℎ𝑗⟩ is positive on 𝑍∘𝐺̂ (Theorem 4.14). This implies that
(−1)area(ℎ→𝑗)⟨𝑌ℎ𝑗⟩ is positive on the interior of𝑍𝐺̂ . Indeed, if the hypersurface𝐻 inter-
sected the interior of 𝑍𝐺̂ , one could find an open set in the interior where
(−1)area(ℎ→𝑗)⟨𝑌ℎ𝑗⟩ is negative. (This is because ⟨𝑌ℎ𝑗⟩ is linear in the Plücker coor-
dinates, so ⟨𝑌ℎ𝑗⟩ takes both positive and negative values on any open set in Gr𝑘,𝑘+2
containing a point of 𝐻). But such a set cannot be in 𝑍∘𝐺̂ .
Now we verify that 𝑍𝐺̂′ has the correct codimension. From the proof of Proposi-

tion 9.6, 𝑆𝐺′ is codimension 1 in 𝑆𝐺 . Since T-duality is a rank-preserving poset isomor-
phism, we also have that 𝑆𝐺̂′ is contained in 𝑆𝐺̂′ and has codimension 1; that is, 𝑆𝐺̂′

has dimension 2𝑘 − 1. Because ̃𝑍 is injective on 𝑆𝐺̂′ , 𝑍∘𝐺̂′ and 𝑍𝐺̂′ also have dimension
2𝑘 − 1.
To see the last statement of the proposition, note that any codimension 1 cell 𝑆𝐻 ⊂

𝑆𝐺̂ with a coloop 𝑞 will have 𝑍𝐻 contained in the hypersurface {⟨𝑌𝑞(𝑞 + 1)⟩ = 0}. So
the facets 𝑍𝐻 avoiding the amplituhedron boundaries must come from coloopless cells
𝑆𝐻 . These coloopless cells are T-dual to loopless codimension 1 cells contained in 𝑆𝐺 .
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As ℎ → 𝑗 varies over all facet-defining arcs of𝒯, 𝑆𝐺′ varies over all such loopless cells,
by Proposition 9.6. So the facets 𝑍𝐻 avoiding the amplituhedron boundary are of the
form 𝑍𝐺̂′ for some arc ℎ → 𝑗. From the proof above, we see that 𝑍𝐺̂′ is not contained
in an amplituhedron boundary precisely when ℎ → 𝑗 is not a boundary arc of 𝒯. □

Example 9.11. Consider the bicolored subdivision 𝒯 in Figure 1. The facet-defining
arcs not on the boundary of 𝐏9 are 1 → 7, 2 → 7 and 4 → 6, with area(1 → 7) =
area(2 → 7) = 3, area(4 → 6) = 0. The corresponding internal facets lie on the
following hyperplanes:

⟨𝑌17⟩ = 0, ⟨𝑌27⟩ = 0, ⟨𝑌46⟩ = 0, for 𝑍𝐺̂(𝒯);
𝑥[1,6] = 3, 𝑥[2,6] = 3, 𝑥[4,5] = 0, for Γ𝐺(𝒯).

One facet-defining arc at the boundary of 𝐏9 is 2 → 3, with area(2 → 3) = 0. This gives
an external facet lying on ⟨𝑌23⟩ = 0 for 𝑍𝐺̂(𝒯) and 𝑥2 = 0 for Γ𝐺(𝒯).

We can now prove Conjecture 6.1, which extends the 𝑚 = 2 cluster adjacency con-
jecture of Łukowski–Parisi–Spradlin–Volovich [ŁPSV19].

Theorem 9.12 (Cluster adjacency for𝒜𝑛,𝑘,2). Let 𝑍𝐺̂(𝒯) be a positroid tile of𝒜𝑛,𝑘,2(𝑍).
Set Facet(𝑍𝐺̂(𝒯)) ≔ {𝑝𝑖𝑗 | there is a facet of 𝑍𝐺̂(𝒯) on the hypersurface ⟨𝑌𝑖𝑗⟩ = 0}. Then:

(1) Facet(𝑍𝐺̂(𝒯)) consists of compatible cluster variables for Gr2,𝑛.
(2) If 𝑝ℎℓ is compatible with Facet(𝑍𝐺̂(𝒯)), then ⟨𝑌ℎℓ⟩ has a fixed sign on 𝑍∘𝐺̂(𝒯).

Proof. The first part follows directly fromTheorem 9.10 as𝑍𝐺̂(𝒯) has a facet on {⟨𝑌𝑖𝑗⟩ =
0} if and only if 𝑖 → 𝑗 is a facet defining arc in 𝒯, and the facet-defining arcs do not
cross. The second part follows from Theorem 9.2. □

Using Theorems 9.2 and 9.10, we can translate the cluster adjacency theorem for
the𝑚 = 2 amplituhedron into a cluster adjacency theorem for the hypersimplex.

Theorem 9.13 (Cluster adjacency for Δ𝑘+1,𝑛). Let Γ𝐺(𝒯) be a positroid tile of Δ𝑘+1,𝑛.
Set Facet(Γ𝐺(𝒯)) ≔ {𝑝𝑖𝑗 | there is a facet of Γ𝐺(𝒯) on the hyperplane 𝑥[𝑖,𝑗−1] = 𝑎𝑖,𝑗},

where 𝑎𝑖,𝑗 are some nonnegative integers. Then:
(1) Facet(Γ𝐺(𝒯)) consists of compatible cluster variables for Gr2,𝑛.
(2) If 𝑝ℎℓ is compatible with Facet(Γ𝐺(𝒯)), then 𝑥[ℎ,ℓ−1] > area(ℎ → ℓ) in Γ∘𝐺(𝒯).

10. Eulerian numbers: 𝑤-Simplices in Δ𝑘+1,𝑛 and 𝑤-chambers in 𝒜𝑛,𝑘,2

In this sectionwe study the amplituhedron chambers of𝒜𝑛,𝑘,2(𝑍). Because positroid
tiles in 𝒜𝑛,𝑘,2(𝑍) are defined by sign conditions, the decomposition of 𝒜𝑛,𝑘,2(𝑍) into
chambers refines every positroid tiling. Separately, the hypersimplexΔ𝑘+1,𝑛 has a well-
known decomposition into simplices which refines every positroid tiling. Both decom-
positions have chambers/maximal simplices which are naturally indexed by permuta-
tions of 𝑛 − 1 with 𝑘 descents. We use this correspondence in Section 11 to establish
results on tilings.
We begin by reviewing the decomposition of the hypersimplex Δ𝑘+1,𝑛. It is well

known that the volume of the hypersimplex Δ𝑘+1,𝑛 is the Eulerian number 𝐸𝑘,𝑛−1
[Sta12], which counts the permutations on 𝑛 − 1 letters with 𝑘 descents. A triangu-
lation of Δ𝑘+1,𝑛 into unit simplices indexed by such permutations was first discovered
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by Stanley [Sta77]. Sturmfels [Stu96] later gave an a priori different triangulation of
Δ𝑘+1,𝑛. Lam and Postnikov [LP07] then gave two other triangulations, and showed
that all four triangulations coincide. After defining some permutation statistics, we
will define this triangulation.

Definition 10.1. Let 𝑤 ∈ 𝑆𝑛. We call a letter 𝑖 ≥ 2 in 𝑤 a left descent (or a left descent
top) if 𝑖 occurs to the left of 𝑖 − 1 in𝑤. In other words,𝑤−1(𝑖) < 𝑤−1(𝑖 − 1). And we say
that 𝑖 ∈ [𝑛] in 𝑤 is a cyclic left descent if either 𝑖 ≥ 2 is a left descent of 𝑤 or if 𝑖 = 1 and
1 occurs to the left of 𝑛 in 𝑤, that is, 𝑤−1(1) < 𝑤−1(𝑛). We let cDesL (𝑤) denote the set
of cyclic left descents of 𝑤, and DesL (𝑤) the set of left descents. We frequently refer to
cyclic left descents as simply cyclic descents.

Remark 10.2. Left and right descents and descent sets are discussed extensively in
[BB05, Chapter 1]. Left descents are sometimes called recoils in the literature.

Let𝐷𝑘+1,𝑛 be the set of permutations𝑤 ∈ 𝑆𝑛 with 𝑘+1 cyclic descents and𝑤𝑛 = 𝑛.
Note that |𝐷𝑘+1,𝑛| = 𝐸𝑘+1,𝑛−1.

Definition 10.3 (𝑤-Simplices). For 𝑤 ∈ 𝐷𝑘+1,𝑛, let 𝑤(𝑎) denote the cyclic rotation of
𝑤 ending at 𝑎. We define

𝐼𝑟 = 𝐼𝑟(𝑤) ≔ cDesL (𝑤(𝑟−1)).
The w-simplex Δ𝑤 ⊆ Δ𝑘+1,𝑛 is the simplex with vertices 𝑒𝐼1 , . . . , 𝑒𝐼𝑛 .

Example 10.4. Let 𝑤 = 324156 in one-line notation. Then 𝑤 has cyclic descents
{1, 2, 3} = 𝐼1. The rotation of 𝑤 ending at 1 is 563241, which has cyclic descents 𝐼2 =
{2, 3, 5}. The rotation of𝑤 ending at 2 is 415632, which has cyclic descents 𝐼3 = {1, 3, 4}.

Notice that 𝑟 is always in 𝐼𝑟 and 𝑟 − 1 is never in 𝐼𝑟.
The following triangulation of the hypersimplex first appeared in [Sta77], though

the description there was slightly different.

Proposition 10.5 ([Sta77]). The 𝑤-simplices {Δ𝑤 ∶ 𝑤 ∈ 𝐷𝑘+1,𝑛} are the maximal sim-
plices of a triangulation of the hypersimplex Δ𝑘+1,𝑛. Moreover, projecting {Δ𝑤 ∶ 𝑤 ∈ 𝑆𝑛}
into ℝ𝑛−1 (see Remark 7.2), we obtain the maximal simplices in a triangulation of the
hypercube�𝑛−1 which refines the subdivision of the hypercube into hypersimplices.

Remark 10.6. The𝑤-simplexΔ𝑤 as defined above agreeswith the simplex denotedΔ(𝑤)
in [LP07, Section 2.4]. In particular, the directed circuit the authors use to define Δ(𝑤)
is given by 𝑒𝐼1 → 𝑒𝐼𝑤1+1

→ 𝑒𝐼𝑤2+1
→ .. . → 𝑒𝐼𝑤𝑛−1+1

→ 𝑒𝐼1 . Another way to say this is
𝐼𝑤𝑖+1 is equal to (𝐼𝑤𝑖−1+1 ⧵ {𝑤𝑖}) ∪ {𝑤𝑖 + 1}.

It follows from the results of [LP07] that every full-dimensional positroid polytope
also has a triangulation into 𝑤-simplices. Indeed, the triangulation of Δ𝑘+1,𝑛 given by
𝑤-simplices is the simultaneous refinement of all positroid subdivisions of Δ𝑘+1,𝑛.
We now turn to the amplituhedron side. We define some special chambers in

𝒜𝑛,𝑘,2(𝑍) whose sign vectors are obtained from cyclic descents of permutations. We
later will show that these are precisely the realizable sign chambers (Theorem 10.10,
Theorem 11.5).
Recall that for 𝑣 ∈ ℝ𝑛, Flip(𝑣) records where coordinates of 𝑣 change sign (Defini-

tion 3.12).
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Definition 10.7 (𝑤-Chambers). Let𝑤∈𝐷𝑘+1,𝑛 and let the vertices ofΔ𝑤 be 𝑒𝐼1 , . . . , 𝑒𝐼𝑛 ,
as in Definition 10.3. Then the open amplituhedron 𝑤-chamber Δ̂∘𝑤(𝑍) ≔ 𝒜𝑤

𝑛,𝑘,2(𝑍)
consists of 𝑌 ∈ 𝒜𝑛,𝑘,2(𝑍) such that ⟨𝑌𝑖𝑗⟩ ≠ 0 for 𝑖 ≠ 𝑗 and for 𝑎 = 1, . . . , 𝑛,

Flip(⟨𝑌𝑎1̂⟩, ⟨𝑌𝑎2̂⟩, . . . , ⟨𝑌𝑎𝑎 − 1⟩, ⟨𝑌𝑎𝑎⟩, ⟨𝑌𝑎𝑎 + 1⟩, . . . , ⟨𝑌𝑎𝑛⟩) = 𝐼𝑎 ⧵ {𝑎}.
Equivalently,𝒜𝑤

𝑛,𝑘,2(𝑍) consists of 𝑌 ∈ Gr𝑘,𝑘+2 such that
sgn⟨𝑌𝑎𝑗⟩ = (−1)|𝐼𝑎∩[𝑎,𝑗−1]|−1 for 𝑗 > 𝑎,
sgn⟨𝑌𝑎 ̂𝑗⟩ = (−1)|𝐼𝑎∩[𝑎,𝑗−1]|−1 for 𝑗 < 𝑎.

The closedamplituhedron𝑤-chamber is the closure Δ̂𝑤(𝑍) ≔ 𝒜𝑤
𝑛,𝑘,2(𝑍). Abusingno-

tation, we will often refer to closed amplituhedron𝑤-chambers as simply𝑤-chambers.
Remark 10.8. One might hope that the structure of Δ̂𝑤(𝑍) does not depend on the
choice of 𝑍 ∈ Mat>0𝑛,𝑘+2. However, even the property that Δ̂𝑤(𝑍) is nonempty depends
on 𝑍. More precisely, while we know that each Δ̂𝑤(𝑍) is nonempty for some choice of
𝑍 (Theorem 11.5), it may be empty for other choices of 𝑍 (see Section 11.3).
Because the positroid tiles of𝒜𝑛,𝑘,2(𝑍) can be described entirely in terms of signs of

twistor coordinates and the signs of twistor coordinates in Δ̂𝑤(𝑍) are constant, we have
Lemma 10.9. It is the analogue of the fact that for a tree positroid polytope Γ𝜋, either
Δ𝑤 ∩ Γ∘𝜋 = ∅ or Δ𝑤 ⊆ Γ𝜋.
Lemma 10.9. Let 𝑍∘𝜋 be a positroid tile for 𝒜𝑛,𝑘,2(𝑍) and let Δ̂𝑤(𝑍) be a nonempty 𝑤-
chamber. Then either Δ̂𝑤(𝑍) ∩ 𝑍∘𝜋 = ∅ or Δ̂𝑤(𝑍) ⊂ 𝑍𝜋.
Despite the subtleties regarding the nonemptiness of Δ̂𝑤(𝑍), the closed𝑤-chambers

always cover 𝒜𝑛,𝑘,2(𝑍), in direct analogy to 𝑤-simplices in Δ𝑘+1,𝑛.

Theorem 10.10 (𝒜𝑛,𝑘,2 is the union of 𝑤-chambers). Fix 𝑘 < 𝑛 and 𝑍 ∈ Mat>0𝑛,𝑘+2.
Then

𝒜𝑛,𝑘,2(𝑍) = ⋃
𝑤∈𝐷𝑘+1,𝑛

Δ̂𝑤(𝑍).

To prove Theorem 10.10, we use a characterization of the simplices Δ𝑤 given by
Sturmfels [Stu96], involving sorted collections. We follow the presentation of [LP07,
Section 2.2].

Definition 10.11. Let (𝐽1, . . . , 𝐽𝑡) be a tuple of distinct elements of ( [𝑛]𝑘+1), where we
write 𝐽𝑠 = {𝑗𝑠1 < 𝑗𝑠2 < ⋯ < 𝑗𝑠(𝑘+1)}. We call (𝐽1, . . . , 𝐽𝑡) a sorted collection if 𝑗11 ≤ 𝑗21 ≤
⋯ ≤ 𝑗𝑡1 ≤ 𝑗12 ≤ 𝑗22 ≤ ⋯ ≤ 𝑗𝑡(𝑘+1). If (𝐽1, 𝐽2) is a sorted collection, we call them a
sorted pair.

The 𝑤-simplices of Δ𝑘+1,𝑛 are exactly the simplices with vertices 𝑒𝐽1 , . . . , 𝑒𝐽𝑛 for
(𝐽1, . . . , 𝐽𝑛) a sorted collection. To see if a collection is sorted, one need only check pairs
of elements.

Lemma 10.12. Given {𝐽1, . . . , 𝐽𝑡} ⊂ ( [𝑛]𝑘+1), suppose that for all 𝑎 ≠ 𝑏, either (𝐽𝑎, 𝐽𝑏) or
(𝐽𝑏, 𝐽𝑎) is a sorted pair. Then 𝐽1, . . . , 𝐽𝑡 can be ordered to give a sorted collection.
Proof. First, notice that if (𝐽𝑎, 𝐽𝑏) is a sorted pair and (𝐽𝑏, 𝐽𝑐) is a sorted pair, then (𝐽𝑎, 𝐽𝑐)
is a sorted pair. Indeed, if 𝑎 ≠ 𝑏, then there exists 𝑖 such that 𝑗𝑎𝑖 < 𝑗𝑏𝑖 ≤ 𝑗𝑐𝑖. It
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follows that (𝐽𝑐, 𝐽𝑎) is not a sorted pair, so (𝐽𝑎, 𝐽𝑐)must be. So on {𝐽1, . . . , 𝐽𝑡}, the property
of being a sorted pair is reflexive, antisymmetric, and transitive, which means it is a
partial order. We’ve assumed every pair is comparable, so we have a total order. The
result follows. □

Proof of Theorem 10.10. Let 𝑌 ∈ 𝒜𝑛,𝑘,2 be a point whose twistor coordinates are all
nonzero. We will show that 𝑌 lies in Δ̂𝑤(𝑍) for some 𝑤. The points with nonzero
twistor coordinates form a dense subset of𝒜𝑛,𝑘,2 (their complement, a union of hyper-
surfaces, has codimension 1), so this will show the desired equality.

Set 𝐿𝑎 ≔ Flip(⟨𝑌𝑎1̂⟩, ⟨𝑌𝑎2̂⟩, . . . , ⟨𝑌𝑎 𝑎 − 1⟩, ⟨𝑌𝑎 𝑎⟩, ⟨𝑌𝑎 𝑎 + 1⟩, . . . , ⟨𝑌𝑎 𝑛⟩).
By Corollary 5.2, we have |𝐿𝑎| = 𝑘. Choose 𝑎 < 𝑏. We will show that 𝐼𝑎 ≔ 𝐿𝑎 ∪ {𝑎} and
𝐼𝑏 ≔ 𝐿𝑏 ∪ {𝑏} are distinct and, for some ordering, form a sorted pair. We temporarily
abuse notation by omitting the 𝑌 ’s and hats from our notation; if 𝑎 > 𝑖, we write ⟨𝑎𝑖⟩
for ⟨𝑌𝑎 ̂𝑖⟩.
Certain 3-term Plücker relations constrain sign flips, as noted in [AHTT18, Section

5]. For 𝑗 ∈ [𝑎 − 2] ∪ [𝑏 + 1, 𝑛], we have the relation
(10.13) ⟨𝑗 𝑗 + 1⟩⟨𝑎 𝑏⟩ = ⟨𝑎 𝑗⟩⟨𝑏 𝑗 + 1⟩ − ⟨𝑏 𝑗⟩⟨𝑎 𝑗 + 1⟩
and for 𝑗 ∈ [𝑎 + 1, 𝑏 − 2] we have
(10.14) ⟨𝑗 𝑗 + 1⟩⟨𝑏 𝑎⟩ = ⟨𝑏 𝑗⟩⟨𝑎 𝑗 + 1⟩ − ⟨𝑎 𝑗⟩⟨𝑏 𝑗 + 1⟩.
Because sgn⟨𝑗 𝑗+1⟩ = + for all 𝑗, the sign of the left hand sides of Equations (10.13)

and (10.14) does not depend on 𝑗. This means that if sgn⟨𝑎 𝑏⟩ = +, then for 𝑗 ∈
[𝑎 − 2] ∪ [𝑏 + 1, 𝑛]

(10.15) (sgn⟨𝑎 𝑗⟩ sgn⟨𝑎 𝑗 + 1⟩
sgn⟨𝑏 𝑗⟩ sgn⟨𝑏 𝑗 + 1⟩) ≠ (𝛿 𝜖

𝜖 −𝛿)

for any 𝛿, 𝜖 ∈ {+,−}. Similarly, if sgn⟨𝑎 𝑏⟩ = −, then for 𝑗 ∈ [𝑎 − 2] ∪ [𝑏 + 1, 𝑛]

(10.16) (sgn⟨𝑎 𝑗⟩ sgn⟨𝑎 𝑗 + 1⟩
sgn⟨𝑏 𝑗⟩ sgn⟨𝑏 𝑗 + 1⟩) ≠ (𝛿 −𝜖

𝜖 𝛿 ) .

If sgn⟨𝑏 𝑎⟩ = + (respectively, −), then for 𝑗 ∈ [𝑎 + 1, 𝑏 − 1], the sign pattern in Equa-
tion (10.16) (respectively, Equation (10.15)) never occurs.
Suppose 𝑗 is a value where the sign pattern in Equation (10.15) is forbidden. If there

is a sign flip after ⟨𝑎 𝑗⟩ and not after ⟨𝑏 𝑗⟩, then sgn⟨𝑎 𝑗⟩ = sgn⟨𝑏 𝑗⟩; if there is a sign flip
after ⟨𝑏 𝑗⟩ and not after ⟨𝑎 𝑗⟩, then sgn⟨𝑎 𝑗⟩ ≠ sgn⟨𝑏 𝑗⟩. When the sign pattern in Equa-
tion (10.16) is forbidden, there are analogous statements with conclusions swapped.
This means that for any interval 𝐼 ⊂ [𝑛]where one of the patterns is forbidden, |𝐿𝑎 ∩ 𝐼|
and |𝐿𝑏 ∩ 𝐼| differ by at most one and either (𝐿𝑎 ∩ 𝐼, 𝐿𝑏 ∩ 𝐼) or (𝐿𝑏 ∩ 𝐼, 𝐿𝑎 ∩ 𝐼) is sorted.14
Which one of (𝐿𝑎 ∩ 𝐼, 𝐿𝑏 ∩ 𝐼) and (𝐿𝑏 ∩ 𝐼, 𝐿𝑎 ∩ 𝐼) is sorted gives us additional infor-

mation.
Let 𝑃 ≔ 𝐿𝑎 ∩ [𝑎 − 2], 𝑄 ≔ 𝐿𝑏 ∩ [𝑎 − 2]. Suppose 𝑃 ≠ 𝑄, and consider the smallest

𝑗 so that there is a sign flip after exactly one of ⟨𝑎 𝑗⟩ and ⟨𝑏 𝑗⟩. Clearly, (𝑃, 𝑄) is sorted
if and only if there is a sign flip after ⟨𝑎 𝑗⟩ and not after ⟨𝑏 𝑗⟩. If the latter occurs, then
sgn⟨𝑎𝑏⟩ = + and sgn⟨𝑎 1⟩ = sgn⟨𝑏 1⟩, or sgn⟨𝑎𝑏⟩ = − and sgn⟨𝑎 1⟩ ≠ sgn⟨𝑏 1⟩; in short,

14We extend the definition of sorted in the obvious way to sets whose sizes differ by at most one. In
particular, if (𝐼, 𝐽) are sorted, we must have |𝐼| ≥ |𝐽|.
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sgn⟨𝑎 𝑏⟩ ⋅ sgn⟨𝑎 1⟩ = sgn⟨𝑏 1⟩. Analogously, if (𝑄, 𝑃) is sorted, then sgn⟨𝑎 𝑏⟩ ⋅ sgn⟨𝑎 1⟩ ≠
sgn⟨𝑏 1⟩.
Let 𝑇 ≔ 𝐿𝑎 ∩ [𝑎 + 1, 𝑏 − 2] and 𝑈 = 𝐿𝑏 ∩ [𝑎 + 1, 𝑏 − 2], and suppose 𝑇 ≠ 𝑈. By

essentially identical reasoning as in the previous paragraph, if (𝑇, 𝑈) is sorted, then
sgn⟨𝑏 𝑎⟩ ⋅ sgn⟨𝑎 𝑎 + 1⟩ ≠ sgn⟨𝑏 𝑎 + 1⟩. Since ⟨𝑎 𝑎 + 1⟩ > 0 by assumption, the latter
condition implies we have a sign flip between ⟨𝑏 𝑎⟩ and ⟨𝑏 𝑎 + 1⟩, so 𝑎 ∈ 𝐿𝑏. Similar
reasoning gives that if (𝑈, 𝑇) is sorted, then 𝑎 ∉ 𝐿𝑏.
Let 𝑉 ≔ 𝐿𝑎 ∩[𝑏+1, 𝑛] and𝑊 ≔ 𝐿𝑏 ∩[𝑏+1, 𝑛] and suppose that 𝑉 ≠ 𝑊 . Repeating

the arguments of the previous paragraphs gives that if (𝑉,𝑊) is sorted, then 𝑏 ∉ 𝐿𝑎,
and if (𝑊, 𝑉) is sorted, then 𝑏 ∈ 𝐿𝑎.
Now, there are two cases: |𝐿𝑎 ∩ [𝑏, 𝑛]| and |𝐿𝑏 ∩ [𝑏, 𝑛]| have the same parity or they

have opposite parity. They are similar, so we will assume we are in the first case, and
leave the second to the reader.
Suppose |𝐿𝑎∩[𝑏, 𝑛]| and |𝐿𝑏∩[𝑏, 𝑛]| have the same parity. Note that (−1)|𝐿𝑖∩[𝑖+1,𝑗−1]|

is sgn⟨𝑖 𝑗⟩, and, since 𝑏 ∉ 𝐿𝑏, 𝐿𝑏 ∩ [𝑏, 𝑛] and 𝐿𝑏 ∩ [𝑏 + 1, 𝑛] are equal. So
sgn⟨𝑏 𝑛⟩ = (−1)|𝐿𝑎∩[𝑏,𝑛]|

= (−1)|𝐿𝑎∩[𝑎+1,𝑏−1]|(−1)|𝐿𝑎∩[𝑎+1,𝑛]|

= sgn⟨𝑎 𝑏⟩ ⋅ sgn⟨𝑎 1⟩
and thus (𝑃, 𝑄) is sorted. We will show that (𝐼𝑎, 𝐼𝑏) is sorted and 𝐼𝑎 ≠ 𝐼𝑏.
If 𝑏 ∈ 𝐿𝑎, then |𝑉| and |𝑊| have different parity. In particular, 𝑉 and 𝑊 are not

equal, so (𝑊, 𝑉) is sorted and |𝑊| = |𝑉| + 1. The two sets interweave like
𝑤1 ≤ 𝑣1 ≤ 𝑤2 ≤ 𝑣2 ≤ ⋯ ≤ 𝑤𝑟 ≤ 𝑣𝑟 ≤ 𝑤𝑟+1.

Since 𝑉 = 𝐼𝑎∩[𝑏+1, 𝑛] and𝑊 = 𝐼𝑏∩[𝑏+1, 𝑛], we also have that 𝐼𝑎 and 𝐼𝑏 are distinct.
Note that 𝐼𝑏 ∩ [𝑏, 𝑛] = 𝑊 ∪ {𝑏} and 𝐼𝑎 ∩ [𝑏, 𝑛] = 𝑉 ∪ {𝑏} and we have

𝑏 ≤ 𝑏 < 𝑤1 ≤ 𝑣1 ≤ 𝑤2 ≤ 𝑣2 ≤ ⋯ ≤ 𝑤𝑟 ≤ 𝑣𝑟 ≤ 𝑤𝑟+1,
so (𝐼𝑏 ∩ [𝑏, 𝑛], 𝐼𝑎 ∩ [𝑏, 𝑛]) form a sorted pair. If 𝑏 ∉ 𝐿𝑎, then |𝑉| and |𝑊| have the same
parity. The pair (𝑉,𝑊) is sorted, and 𝐼𝑎 ∩ [𝑏, 𝑛] = 𝑉 , while 𝐼𝑏 ∩ [𝑏, 𝑛] = 𝑊 ∪ {𝑏}. So
(𝐼𝑏 ∩ [𝑏, 𝑛], 𝐼𝑎 ∩ [𝑏, 𝑛]) are a sorted pair in this case as well, since we have

𝑏 < 𝑣1 ≤ 𝑤1 ≤ 𝑣2 ≤ 𝑤2 ≤ ⋯ ≤ 𝑣𝑟 ≤ 𝑤𝑟.
Note that 𝑏 is in 𝐼𝑏 but not in 𝐼𝑎, so we also have that 𝐼𝑎 and 𝐼𝑏 are distinct in this case.
Now we turn to the sets 𝑇 and 𝑈. Because sgn⟨𝑎 𝑏⟩ = (−1)𝑘 sgn⟨𝑏 𝑎⟩, we have

(−1)|𝐿𝑎∩[𝑎,𝑏−1]| = (−1)𝑘(−1)|𝐿𝑏∩[𝑏,𝑎−1]|

= (−1)|𝐿𝑏∩[1,𝑛]|+|𝐿𝑏∩[𝑏,𝑎−1]|

= (−1)|𝐿𝑏∩[𝑎,𝑏−1]|.
Note that |𝑇| ≤ |𝐿𝑎 ∩ [𝑎, 𝑏 − 1]| ≤ 1 + |𝑇|, since 𝑎 ∉ 𝐿𝑎. If 𝑎 ∈ 𝐿𝑏, then (𝑇, 𝑈)

is sorted and |𝐿𝑏 ∩ [𝑎, 𝑏 − 1]| = 1 + |𝑈|, since 𝑏 − 1 ∉ 𝐿𝑏. If 𝑇 and 𝑈 have the same
cardinality, then |𝐿𝑎 ∩ [𝑎, 𝑏 − 1]| must be equal to 1 + |𝑇| in order to have the same
parity as 1 + |𝑈|. Thus 𝑏 − 1 ∈ 𝐿𝑎. This means that (𝐼𝑎 ∩ [𝑎, 𝑛], 𝐼𝑏 ∩ [𝑎, 𝑛]) is a sorted
pair, as we have

𝑎 ≤ 𝑎 < 𝑡1 ≤ 𝑢1 ≤ ⋯ ≤ 𝑡𝑗 ≤ 𝑢𝑗 < 𝑏 − 1 < 𝑏 ≤ ⋯ ≤ 𝑣𝑟 ≤ 𝑤𝑟.
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If |𝑇| = |𝑈| + 1, we conclude by similar reasoning that 𝑏 − 1 ∉ 𝐿𝑎, and again (𝐼𝑎 ∩
[𝑎, 𝑛], 𝐼𝑏 ∩ [𝑎, 𝑛]) is a sorted pair, as we have

𝑎 ≤ 𝑎 < 𝑡1 ≤ 𝑢1 ≤ ⋯ ≤ 𝑡𝑗 ≤ 𝑢𝑗 ≤ 𝑡𝑞+1 < 𝑏 ≤ ⋯ ≤ 𝑣𝑟 ≤ 𝑤𝑟.
If 𝑎 ∉ 𝐿𝑏, then (𝑈, 𝑇) is sorted and 𝐿𝑏 ∩ [𝑎, 𝑏 − 1] = 𝑈, since 𝑎 and 𝑏 − 1 are not in

𝐿𝑏. A parity argument as in the last paragraph shows that if |𝑈| = |𝑇|, then 𝑏−1 ∉ 𝐿𝑎;
if |𝑈| = |𝑇| + 1, then 𝑏 − 1 ∈ 𝐿𝑎. Either way, (𝐼𝑎 ∩ [𝑎, 𝑛], 𝐼𝑏 ∩ [𝑎, 𝑛]) is a sorted pair; we
see

𝑎 ≤ 𝑢1 ≤ 𝑡1 ≤ ⋯ ≤ 𝑢𝑗 ≤ 𝑡𝑗 < 𝑏 ≤ ⋯ ≤ 𝑣𝑟 ≤ 𝑤𝑟
in the first case and

𝑎 ≤ 𝑢1 ≤ 𝑡1 ≤ ⋯ ≤ 𝑢𝑗 ≤ 𝑡𝑗 ≤ 𝑢𝑞+1 < 𝑏 − 1 < 𝑏 ≤ ⋯ ≤ 𝑣𝑟 ≤ 𝑤𝑟

in the second.
Finally, we deal with 𝑃 and 𝑄. Recall that (𝑃, 𝑄) are sorted. Since |𝐿𝑎 ∩ [𝑏, 𝑛]| and

|𝐿𝑏 ∩[𝑏, 𝑛]| have the same parity and |𝐿𝑎 ∩[𝑎, 𝑏−1]| and |𝐿𝑏 ∩[𝑎, 𝑏−1]| have the same
parity, |𝐿𝑎 ∩ [1, 𝑎 − 1]| and |𝐿𝑏 ∩ [1, 𝑎 − 1]| have the same parity. Since 𝑎 − 1 ∉ 𝐿𝑎,
we have that 𝑃 = 𝐿𝑎 ∩ [1, 𝑎 − 1]. On the other hand |𝑄| ≤ |𝐿𝑏 ∩ [1, 𝑎 − 1]| ≤ |𝑄| + 1.
If |𝑃| = |𝑄|, then for parity reasons 𝑄 = 𝐿𝑏 ∩ [1, 𝑎 − 1] and thus 𝑎 − 1 ∉ 𝐿𝑏. So
(𝐼𝑎 ∩ [1, 𝑎 − 1], 𝐼𝑏 ∩ [1, 𝑎 − 1]) are a sorted pair, as we have

𝑟1 ≤ 𝑠1 ≤ ⋯ ≤ 𝑟𝑖 ≤ 𝑠𝑖.
Similarly, if |𝑃| = |𝑄| + 1, then 𝑎 − 1 ∈ 𝐿𝑏 and (𝐼𝑎 ∩ [1, 𝑎 − 1], 𝐼𝑏 ∩ [1, 𝑎 − 1]) again are
a sorted pair, since we have

𝑟1 ≤ 𝑠1 ≤ ⋯ ≤ 𝑟𝑖 ≤ 𝑠𝑖 ≤ 𝑟𝑖+1 ≤ 𝑎 − 1.
Since (𝐼𝑎 ∩ [1, 𝑎 − 1], 𝐼𝑏 ∩ [1, 𝑎 − 1]) is a sorted pair ending in an element of 𝐼𝑏 and

(𝐼𝑎 ∩ [𝑎, 𝑛], 𝐼𝑏 ∩ [𝑎, 𝑛]) is a sorted pair, it follows that (𝐼𝑎, 𝐼𝑏) is a sorted pair. □

Using Theorem 10.10, we can conclude that positroid tiles are unions of ampli-
tuhedron 𝑤-chambers, just as tree positroid polytopes are unions of hypersimplex 𝑤-
simplices. More precisely, wehaveCorollary 10.17, whichwe sharpen further in Propo-
sition 11.1.

Corollary 10.17 (Positroid tiles are unions of 𝑤-chambers). Let 𝑍𝜋 be a positroid tile
for𝒜𝑛,𝑘,2(𝑍). Then

𝑍𝜋 = ⋃
∆̂𝑤(𝑍)∶

∆̂∘𝑤(𝑍)∩𝑍∘𝜋≠∅

Δ̂𝑤(𝑍).

11. T-duality and positroid tilings

In this section we show one of our main results: we prove that a collection {Γ𝜋} of
positroid polytopes is a positroid tiling of Δ𝑘+1,𝑛 if and only if for all 𝑍 ∈ Mat>0𝑛,𝑘+2, the
collection of T-dual Grasstopes {𝑍𝜋̂} is a positroid tiling of𝒜𝑛,𝑘,2(𝑍). Along the way we
show that realizable amplituhedron chambers are exactly counted by Eulerian num-
bers. We also explore the phenomena that𝑤-chambers can be empty, and define the 𝒢-
amplituhedron – a 𝑍-independent analogue of the amplituhedron inGr2,𝑛. Finally, we
introduce the total amplituhedron 𝒢(2)𝑛 ⊂ Gr2,𝑛 which is the amplituhedron-analogue
of the hypercube, and discuss positroid tilings based on descents/sign-flips.
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11.1. Positroid tilings of Δ𝑘+1,𝑛 and 𝒜𝑛,𝑘,2. Recall that 𝑤-simplices in Δ𝑘+1,𝑛 are
indexed by 𝐷𝑘+1,𝑛. One main tool is the following.

Proposition 11.1. Fix 𝑘 < 𝑛 and𝑍 ∈ Mat>0𝑛,𝑘+2. Suppose𝑤 ∈ 𝐷𝑘+1,𝑛 and that Δ̂𝑤(𝑍) ≠
∅. For any tree positroid polytope Γ𝜋, Δ𝑤 ⊂ Γ𝜋 if and only if Δ̂𝑤(𝑍) ⊂ 𝑍𝜋̂.

Proof. Fix a bicolored triangulation 𝒯 so that 𝐺(𝒯) is a plabic tree with trip permuta-
tion𝜋 and ̂𝐺(𝒯) has trip permutation 𝜋̂. FromTheorem 9.2, 𝑍∘𝜋̂ consists of𝑌 ∈ Gr𝑘,𝑘+2
such that for all arcs 𝑎 → 𝑏 of 𝒯

{sgn⟨𝑌𝑎𝑏⟩ = (−1)area(𝑎→𝑏) if 𝑎 < 𝑏,
sgn⟨𝑌𝑎 ̂𝑏⟩ = (−1)area(𝑎→𝑏) if 𝑎 > 𝑏

and Γ𝜋 consists of the points 𝑥 ∈ ℝ𝑛 satisfying
area(𝑎 → 𝑏) ≤ 𝑥[𝑎,𝑏−1] ≤ area(𝑎 → 𝑏) + 1

for all arcs 𝑎 → 𝑏 of 𝒯. (In fact, to cut out 𝑍∘𝜋̂, it suffices to consider arcs with 𝑎 < 𝑏.)
Suppose Δ𝑤 ⊂ Γ𝜋. Then the vertices 𝑒𝐼1 , . . . , 𝑒𝐼𝑛 of Δ𝑤 satisfy the defining inequali-

ties of Γ𝜋. In particular, for each arc 𝑎 → 𝑏 of 𝒯,
area(𝑎 → 𝑏) ≤ |𝐼𝑎 ∩ [𝑎, 𝑏 − 1]| ≤ area(𝑎 → 𝑏) + 1.

By Remark 10.6, there is another vertex 𝑒𝐼𝑟 of Δ𝑤 satisfying 𝐼𝑟 = 𝐼𝑎 ⧵ {𝑎} ∪ {𝑎 − 1}.
This vertex also satisfies the defining inequalities of Γ𝜋. Moreover, |𝐼𝑟 ∩ [𝑎, 𝑏 − 1]| is 1
smaller than |𝐼𝑎 ∩ [𝑎, 𝑏 − 1]|, so we must have

|𝐼𝑎 ∩ [𝑎, 𝑏 − 1]| = area(𝑎 → 𝑏) + 1.
Consider 𝑌 ∈ Δ̂∘𝑤(𝑍). By definition, for 𝑎 < 𝑏, sgn⟨𝑌𝑎𝑏⟩ = (−1)|𝐼𝑎∩[𝑎,𝑏−1]|−1. By the

above computation, sgn⟨𝑌𝑎𝑏⟩ = (−1)area(𝑎→𝑏) for every arc 𝑎 → 𝑏, so we have shown
Δ̂∘𝑤(𝑍) ⊂ 𝑍∘𝜋̂. Taking closures gives the desired containment.
Now, suppose Δ̂𝑤(𝑍) ⊂ 𝑍𝜋̂. This means that for all arcs 𝑎 → 𝑏 of𝒯, area(𝑎 → 𝑏)+1

is the same parity as |𝐼𝑎 ∩ [𝑎, 𝑏 − 1]|. We will show that for all 𝑞,
area(𝑎 → 𝑏) ≤ |𝐼𝑞 ∩ [𝑎, 𝑏 − 1]| ≤ area(𝑎 → 𝑏) + 1.

From the alcove description of 𝑤-simplices in [LP07, Section 2.3], there is some 𝑑
so that Δ𝑤 lies between the hyperplanes {𝑥[𝑎,𝑏−1] = 𝑑− 1} and {𝑥[𝑎,𝑏−1] = 𝑑}. As noted
above, there is a vertex 𝑒𝐼𝑟 of Δ𝑤 satisfying 𝐼𝑟 = 𝐼𝑎 ⧵{𝑎}∪ {𝑎−1}. Since |𝐼𝑟∩[𝑎, 𝑏−1]| =
|𝐼𝑎 ∩ [𝑎, 𝑏 − 1]| − 1, we conclude that 𝑑 is |𝐼𝑎 ∩ [𝑎, 𝑏 − 1]|. Thus, it suffices to show that
(11.2) area(𝑎 → 𝑏) + 1 = |𝐼𝑎 ∩ [𝑎, 𝑏 − 1]|.
This is proved in Lemma 11.3. □

Lemma 11.3. Let𝒯 be a bicolored triangulation of type (𝑘, 𝑛) and let Δ𝑤 ⊂ Δ𝑘+1,𝑛 be a
𝑤-simplex with vertices 𝑒𝐼1 , . . . , 𝑒𝐼𝑛 . Suppose for all arcs 𝑎 → 𝑏 of𝒯,

area(𝑎 → 𝑏) + 1 ≡ |𝐼𝑎 ∩ [𝑎, 𝑏 − 1]| (mod 2).
Then area(𝑎 → 𝑏) + 1 = |𝐼𝑎 ∩ [𝑎, 𝑏 − 1]| for all arcs 𝑎 → 𝑏 of𝒯.

Proof. We use induction on 𝑛. The base cases are 𝑛 = 3 and 𝑘 = 0, 1, which are clear.
Without loss of generality, we may assume that 𝒯 contains the arc 1 → (𝑛 − 1).

Indeed, 𝒯 contains some arc (𝑟 + 1) → (𝑟 − 1). We can rotate 𝒯 by 𝑟 to obtain a new
triangulation with an arc 1 → (𝑛 − 1). We can also apply the corresponding cyclic
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shift 𝑒𝑖 ↦ 𝑒𝑖−𝑟 to Δ𝑤 to obtain a new simplex Δᵆ. The vertex 𝑒𝐼𝑝 of Δ𝑤 is mapped to
vertex 𝑒𝐽𝑝−𝑟 of Δᵆ, where 𝐽𝑝−𝑟 = {𝑖 − 𝑟 ∶ 𝑖 ∈ 𝐼𝑝}. If the proposition is true for the new
triangulation and Δᵆ, it is easy to see (by shifting back) that it is true for 𝒯 and Δ𝑤.
Let 𝒯′ be the bicolored triangulation of type (𝑘′, 𝑛 − 1) obtained by chopping the

triangle with vertices 1, 𝑛 − 1, 𝑛 off of 𝒯. Note that 𝑘′ = 𝑘 if this triangle is white, and
𝑘′ = 𝑘 − 1 otherwise. Let 𝑣 ∈ 𝑆𝑛−1 be the permutation obtained from 𝑤 by deleting
𝑤𝑛 = 𝑛 and moving 𝑛 − 1 to the end.

Case I. Suppose the triangle deleted from𝒯 iswhite, so𝑘′ = 𝑘. Then area𝒯(1 → (𝑛−1))
is equal to area𝒯(1 → 𝑛), so the assumption on parities means that 𝐼1 ∩ [1, 𝑛 − 1] has
the same size as 𝐼1∩[1, 𝑛−2]. That is, 𝑛−1 ∉ 𝐼1, whichmeans that 𝑛−1 appears to the
right of 𝑛 − 2 in 𝑤. Deleting 𝑤𝑛 and moving 𝑛 − 1 to the end results in a permutation
with the same number of cyclic descents as 𝑤, meaning that Δ𝑣 ⊂ Δ𝑘′,𝑛−1.
The vertices of Δ𝑣 are 𝑒𝐽1 , . . . , 𝑒𝐽𝑛−1 , where

𝐽𝑎 = {𝐼𝑎 if 𝑛 ∉ 𝐼𝑎,
𝐼𝑎 ⧵ {𝑛} ∪ {𝑛 − 1} if 𝑛 ∈ 𝐼𝑎.

For the moment, we will denote cyclic intervals in [𝑛 − 1] by [𝑎, 𝑏]′.
Let 𝑎 → 𝑏 be an arc of 𝒯′. Because 𝑏 ≠ 𝑛, [𝑎, 𝑏 − 1] either contains both 𝑛 − 1 and

𝑛, or neither. So 𝐽𝑎 ∩ [𝑎, 𝑏 − 1]′ and 𝐼𝑎 ∩ [𝑎, 𝑏 − 1] have the same cardinality. Also,
area𝒯′(𝑎 → 𝑏) is equal to area𝒯(𝑎 → 𝑏), so𝒯′ and Δ̂𝑣(𝑍) satisfy the assumptions of the
proposition. By induction, we can conclude that |𝐽𝑎 ∩ [𝑎, 𝑏 − 1]′| = area𝒯′(𝑎 → 𝑏) + 1.
In light of the equalities in this paragraph, thismeans that for all arcs 𝑎 → 𝑏 of𝒯 where
𝑎, 𝑏 are not 𝑛, we have |𝐼𝑎 ∩ [𝑎, 𝑏 − 1]| = area𝒯(𝑎 → 𝑏) + 1. It remains to check that a
similar equality for the arcs 1 → 𝑛, (𝑛 − 1) → 𝑛 and their reverses, which are trivial.

Case II. Suppose the triangle deleted from 𝒯 is black, so 𝑘′ = 𝑘 − 1. Then area𝒯(1 →
(𝑛−1)) is equal to area𝒯(1 → 𝑛)−1. The assumption on parities implies that 𝐼1∩[1, 𝑛−
1] and 𝐼1 ∩ [1, 𝑛 − 2] are different sizes, so 𝑛 − 1 ∈ 𝐼1. This means that 𝑛 − 1 appears
to the left of 𝑛 − 2 in 𝑤, and 𝑣 has one fewer left descent than 𝑤. So Δ𝑣 ⊂ Δ𝑘′,𝑛−1 as
desired.
The vertices of Δ𝑣 are 𝑒𝐽1 , . . . , 𝑒𝐽𝑛−1 , where

𝐽𝑎 = {𝐼𝑎 ⧵ {𝑛} if 𝑛 ∈ 𝐼𝑎,
𝐼𝑎 ⧵ {𝑛 − 1} if 𝑛 − 1 ∈ 𝐼𝑎, 𝑛 ∉ 𝐼𝑎.

Let 𝑎 → 𝑏 be an arc of 𝒯′. Again, the cyclic interval [𝑎, 𝑏 − 1] either contains both
𝑛 − 1 and 𝑛, or contains neither. If [𝑎, 𝑏 − 1] contains neither, then clearly |𝐽𝑎 ∩ [𝑎, 𝑏 −
1]′| = |𝐼𝑎 ∩ [𝑎, 𝑏 − 1]|; in this case, area𝒯′(𝑎 → 𝑏) = area𝒯(𝑎 → 𝑏) as well. If [𝑎, 𝑏 − 1]
contains both, then |𝐽𝑎 ∩ [𝑎, 𝑏 − 1]′| = |𝐼𝑎 ∩ [𝑎, 𝑏 − 1]| − 1 and area𝒯′(𝑎 → 𝑏) =
area𝒯(𝑎 → 𝑏) − 1. So again, 𝒯′ and Δ𝑣 satisfy the assumptions of the proposition. As
in Case I, we can conclude that for all arcs 𝑎 → 𝑏 of 𝒯 where 𝑎, 𝑏 are not 𝑛, we have
|𝐼𝑎 ∩ [𝑎, 𝑏 − 1]| = area𝒯(𝑎 → 𝑏) + 1. The equalities for the arcs 1 → 𝑛, (𝑛 − 1) → 𝑛,
and their reverses are clear. □

Remark 11.4. Proposition 11.1 motivates the intuition that the𝑤-simplex Δ𝑤 ⊂ Δ𝑘+1,𝑛
and the 𝑤-chamber Δ̂𝑤(𝑍) ⊂ 𝒜𝑛,𝑘,2(𝑍) are ‘T-dual’ to each other. In Proposition 11.36
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we will show that any 𝑤-simplex is the intersection of 𝑛 distinguished positroid poly-
topes {Γ𝜋}, and the corresponding 𝑤-chamber is the intersection of the 𝑛 T-dual
Grasstopes {𝑍𝜋̂}.

To prove the correspondence between positroid tilings, we also need the following
crucial result, whose proof we delay to the following subsection.

Theorem 11.5 (𝑤-Chambers are realizable). For each 𝑤 ∈ 𝐷𝑘+1,𝑛, there exists some
𝑍 ∈ Mat>0𝑛,𝑘+2 such that the amplituhedron 𝑤-chamber Δ̂𝑤(𝑍) in𝒜𝑛,𝑘,2(𝑍) is nonempty.

We can now show the main result of this section.

Theorem 11.6 (Tilings of Δ𝑘+1,𝑛 and 𝒜𝑛,𝑘,2 are T-dual). The collection 𝒞 = {Γ𝜋} is
a positroid tiling of Δ𝑘+1,𝑛 if and only if for all 𝑍 ∈ Mat>0𝑛,𝑘+2, the collection of T-dual
Grasstopes ̂𝒞 = {𝑍𝜋̂} is a positroid tiling of𝒜𝑛,𝑘,2(𝑍).

Proof. (⟹): Suppose 𝒞 is a positroid tiling of Δ𝑘+1,𝑛 and choose 𝑍 ∈ Mat>0𝑛,𝑘+2. We
already know that 𝑍𝜋̂ is a positroid tile from Corollary 9.1.
We first show that the Grasstopes in ̂𝒞 are dense in the amplituhedron. Consider a

nonempty amplituhedron 𝑤-chamber Δ̂𝑤(𝑍). Since 𝒞 is a positroid tiling, there exists
a tree positroid polytope Γ𝜋 ∈ 𝒞 which contains Δ𝑤. By Proposition 11.1, Δ̂∘𝑤(𝑍) ⊂ 𝑍∘𝜋̂,
where the latter is by definition in ̂𝒞. So we have

⋃
𝑤
Δ̂∘𝑤(𝑍) ⊆ ⋃̂

𝒞
𝑍∘𝜋̂ ⊆ 𝒜𝑛,𝑘,2(𝑍).

By Theorem 10.10, the closure of the left-most set is equal to the right, so the closure
of the middle set is 𝒜𝑛,𝑘,2(𝑍), as desired.
Now, suppose for the sake of contradiction that two distinct 𝑍∘𝜋̂, 𝑍∘𝜇̂ ∈ ̂𝒞 are not dis-

joint. They are open, so their intersection is open, and thus their intersection contains
a point in Δ̂∘𝑤(𝑍) for some 𝑤. Lemma 10.9 implies that in fact the entire 𝑤-simplex
Δ̂∘𝑤(𝑍) is contained in their intersection. But then by Proposition 11.1, Δ𝑤 is contained
in Γ𝜋 ∩ Γ𝜇, a contradiction.
(⟸): Suppose that for all 𝑍 ∈ Mat>0𝑛,𝑘+2, ̂𝒞 is a positroid tiling of 𝒜𝑛,𝑘,2(𝑍). By

Theorem 11.5, for all 𝑤 ∈ 𝐷𝑘+1,𝑛, we can choose 𝑍 so that Δ̂𝑤(𝑍) is nonempty. In par-
ticular, Δ̂∘𝑤(𝑍) must intersect one of the positroid tiles 𝑍∘𝜋̂ and thus by Lemma 10.9,
Δ̂𝑤(𝑍) ⊂ 𝑍𝜋̂. Because ̂𝒞 is a positroid tiling, Δ̂𝑤(𝑍) is not contained in any other
positroid tile in ̂𝒞. Using Proposition 11.1, we see that every 𝑤-simplex is contained
in precisely one positroid polytope in 𝒞, and thus 𝒞 is a positroid tiling of Δ𝑘+1,𝑛. □

In [KWZ20], they conjectured there are (𝑛−2𝑘 ) Grasstopes in a positroid tiling of
𝒜𝑛,𝑘,2. As noted in [ŁPW20], this is also the number of positroid polytopes in a regu-
lar positroid tiling of Δ𝑘+1,𝑛 [SW21], which are those arising from the tropical positive
Grassmannian Trop+ Gr𝑘+1,𝑛 [ŁPW20]. A positroid tiling of 𝒜𝑛,𝑘,2 is regular if it is
T-dual to a regular positroid tiling of Δ𝑘+1,𝑛. By Theorem 11.6, we have:

Corollary 11.7. There are (𝑛−2𝑘 ) Grasstopes in any regular positroid tiling of𝒜𝑛,𝑘,2(𝑍).

Remark 11.8. [ŁPW20] showed that all BCFW tilings of 𝒜𝑛,𝑘,2(𝑍) contain (𝑛−2𝑘 )
Grasstopes; there are BCFW tilings which are not regular and regular tilings which
are not BCFW.
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11.2. The 𝒢-amplituhedron, the hypercube and the total amplituhedron. In
this subsection, we embed 𝒜𝑛,𝑘,2(𝑍) into a full-dimensional subset of Gr2,𝑛—the ‘𝒢-
amplituhedron’ 𝒢𝑛,𝑘,2—which does not depend on 𝑍. We use sign chambers in the 𝒢-
amplituhedron to prove that all𝑤-chambers of𝒜𝑛,𝑘,2(𝑍) are realizable (Theorem 11.5).
We also draw another parallel between the hypersimplex and the amplituhedron. In
Remark 7.2 we saw that the union of the (projected) hypersimplices Δ̃𝑘+1,𝑛 is the hy-
percube�𝑛−1. Analogously, we take the union of 𝒢-amplituhedra varying over all 𝑘 to
obtain the total amplituhedron 𝒢(2)𝑛 , which is the amplituhedron-analogue of �𝑛−1.
Definition 11.9 is intended to be a 𝑍-independent version of the amplituhedron,

inspired by Corollary 5.3.

Definition 11.9 (The 𝒢-amplituhedron). Fix 𝑘 < 𝑛 and let
𝒢∘𝑛,𝑘,2 ≔ {𝑧 ∈ Gr2,𝑛 | 𝑝𝑖,𝑖+1(𝑧) > 0 for 1 ≤ 𝑖 ≤ 𝑛 − 1, and 𝑝𝑛,1̂(𝑧) > 0,

and var((𝑝12(𝑧), 𝑝13(𝑧), . . . 𝑝1𝑛(𝑧)) = 𝑘}.

The closure 𝒢𝑛,𝑘,2 ≔ 𝒢∘𝑛,𝑘,2 in Gr2,𝑛 is the 𝒢-amplituhedron.

Remark 11.10. Following the sign-flip descriptions from [AHTT18, KW19], one can
generalize most of the definitions in this section for any 𝑚. We leave this to future
work.

Comparing with Corollary 5.3 we have:

Proposition 11.11. Fix 𝑘 < 𝑛, and𝑊 ∈ Gr>0𝑘+2,𝑛. Then

𝒢∘𝑛,𝑘,2(𝑊)={𝑧∈𝒢∘𝑛,𝑘,2 | 𝑧 ⊂ 𝑊}=𝒢∘𝑛,𝑘,2 ∩Gr2(𝑊) and ℬ𝑛,𝑘,2(𝑊)=𝒢∘𝑛,𝑘,2 ∩ Gr2(𝑊).

Remark 11.12. Note that 𝒢𝑛,𝑘,2 is full-dimensional in Gr2,𝑛, i.e. it has dimension 2(𝑛−
2), whereas 𝒢∘𝑛,𝑘,2(𝑊) and ℬ𝑛,𝑘,2(𝑊) are full-dimensional in Gr2(𝑊), i.e. have dimen-
sion 2𝑘.

Motivated by the decomposition of 𝒜𝑛,𝑘,2(𝑍) into 𝑤-chambers, we analogously de-
fine 𝑤-chambers for 𝒢𝑛,𝑘,2.

Definition 11.13. Let 𝑤 ∈ 𝐷𝑘+1,𝑛 and let 𝐼𝑎 ≔ cDesL (𝑤(𝑎−1)). Then the open 𝒢-
amplituhedron 𝑤-chamber Δ̂∘𝑤(𝒢) consists of 𝑧 ∈ 𝒢𝑛,𝑘,2 with all nonzero Plücker coor-
dinates such that for 𝑎 = 1, . . . , 𝑛,

Flip(𝑝𝑎1̂(𝑧), 𝑝𝑎2̂(𝑧), . . . , 𝑝𝑎𝑎−1(𝑧), 𝑝𝑎𝑎(𝑧), 𝑝𝑎𝑎+1(𝑧), . . . , 𝑝𝑎𝑛(𝑧)) = 𝐼𝑎 ⧵ {𝑎}.
Equivalently, Δ∘𝑤(𝒢) consists of 𝑧 ∈ Gr2,𝑛 such that
(11.14)
sgn 𝑝𝑎𝑗(𝑧)=(−1)|𝐼𝑎∩[𝑎,𝑗−1]|−1 for 𝑗 > 𝑎 and sgn 𝑝𝑎 ̂𝑗(𝑧)=(−1)|𝐼𝑎∩[𝑎,𝑗−1]|−1 for 𝑗 < 𝑎.

The closed 𝒢-amplituhedron 𝑤-chamber is the closure Δ̂𝑤(𝒢) ≔ Δ̂∘𝑤(𝒢). Abusing nota-
tion, wewill often omit ‘closed’when referring to closed𝒢-amplituhedron𝑤-chambers.

The situation for𝒢-amplituhedron𝑤-chambers is quite straightforward. Wewill see
that the second part of (11.14) follows from the first part, so each Δ̂∘𝑤(𝒢) is an oriented
matroid stratum, whose underlying matroid is the rank 2 uniform matroid on [𝑛].

Proposition 11.15. Let 𝑤 ∈ 𝐷𝑘+1,𝑛. Then Δ̂∘𝑤(𝒢) is nonempty and is contractible.
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Proof. Consider 𝑛 vectors 𝑣1, 𝑣2, . . . , 𝑣𝑛 in ℝ2 so that the matrix

[𝑣1 𝑣𝑤1+1 𝑣𝑤2+1 . . . 𝑣𝑤𝑛−1+1]
has all maximal minors positive. In particular, drawing the vectors in the plane and
going counterclockwise, we see 𝑣1, 𝑣𝑤1+1, 𝑣𝑤2+1, . . . , 𝑣𝑤𝑛−1+1 in that order.
Now, set 𝑧1 ≔ 𝑣1 and 𝑧𝑏 ≔ (−1)|𝐼1∩[1,𝑏−1]|−1𝑣𝑏 for 𝑏 ≥ 2. We claim that

𝑧 = [𝑧1 𝑧2 𝑧3 . . . 𝑧𝑛]

represents a point in Δ̂∘𝑤(𝒢).
Clearly 𝑝1𝑏(𝑧) has the correct sign. Consider 1 ≠ 𝑎 < 𝑗. Wewill assume det[𝑣𝑎𝑣𝑗] >

0; the other case is similar. Note that 𝑝𝑎𝑗(𝑧) has sign (−1)|𝐼1∩[𝑎,𝑗−1]|; we would like
to show that this is equal to (−1)|𝐼𝑎∩[𝑎,𝑗−1]|−1. Because det[𝑣𝑎𝑣𝑗] > 0, 𝑎 − 1 occurs
before 𝑗 − 1 in 𝑤, written in one-line notation. Recall from Remark 10.6 that 𝐼𝑤𝑖+1 =
𝐼𝑤𝑖−1+1 ⧵ {𝑤𝑖}∪ {𝑤𝑖+1}. That is, 𝐼𝑎 can be obtained from 𝐼1 by removing𝑤1 and adding
𝑤1 + 1, then removing 𝑤2 and adding 𝑤2 + 1, and so on until one removes 𝑤𝑞 = 𝑎− 1
and adds 𝑎. Note that for 𝑐 = 𝑤1, . . . , 𝑤𝑞−1, the numbers 𝑐 and 𝑐 + 1 are either both in
[𝑎, 𝑗 − 1] or both not in [𝑎, 𝑗 − 1], so |𝐼1 ∩ [𝑎, 𝑗 − 1]| = |𝐼𝑐+1 ∩ [𝑎, 𝑗 − 1]|. Removing
𝑎− 1 from 𝐼𝑤𝑞−1+1 and adding 𝑎 increases the size of the intersection with [𝑎, 𝑗 − 1] by
one, so |𝐼1 ∩ [𝑎, 𝑗 − 1]| = |𝐼𝑎 ∩ [𝑎, 𝑗 − 1]| − 1. This shows 𝑝𝑎𝑗(𝑧) has the correct sign for
𝑎 < 𝑗; a similar argument shows that for 𝑎 > 𝑗, 𝑝𝑎 ̂𝑗(𝑧) has the desired sign so long as
𝑝𝑗𝑎(𝑧) does.
So Δ̂∘𝑤(𝒢) is an orientedmatroid stratum for a rank 2 orientedmatroid. By [BLVS+99,

Corollary 8.2.3], all rank 2 oriented matroid strata are contractible. □

Example 11.16. Let 𝑤 = (2, 6, 1, 4, 5, 3, 7) ∈ 𝐷𝑘+1,𝑛 with 𝑘 = 3 and 𝑛 = 7. We have
𝐼1 = {1, 2, 4, 6}. Following the proof of Proposition 11.15, we can choose

(𝑣1, 𝑣𝑤1+1, 𝑣𝑤2+1, 𝑣𝑤3+1, 𝑣𝑤4+1, 𝑣𝑤5+1, 𝑣𝑤6+1) = (𝑣1, 𝑣3, 𝑣7, 𝑣2, 𝑣5, 𝑣6, 𝑣4)

= (1 1 1 1 1 1 1
1 2 3 4 5 6 7) .

We then get

𝑧 = (1 1 −1 −1 1 1 −1
1 4 −2 −7 5 6 −3) .

One can check that 𝑧 lies in Δ̂∘𝑤(𝒢). Also note that both row vectors 𝑧(1) and 𝑧(2) of 𝑧
have var(𝑧(1)) = var(𝑧(2)) = 𝑘 by construction.

Remark 11.17. The𝑤-chambers of the 𝒢-amplituhedron do not depend on 𝑍. Roughly
speaking, the amplituhedron 𝑤-chambers are linear slices of 𝒢-amplituhedron 𝑤-
chambers. More precisely, for 𝑍 ∈ Mat>0𝑛,𝑘+2 with column span 𝑊 ∈ Gr>0𝑘+2,𝑛, we
have

𝑓𝑍(Δ̂∘𝑤(𝒢) ∩ Gr2(𝑊)) = Δ̂∘𝑤(𝑍),
where 𝑓𝑍 is the homeomorphism from Proposition 3.3.

Our next goal is to use Proposition 11.15 and the connection with the ℬ-
amplituhedron from Proposition 11.11 to deduce Theorem 11.5 on realizability of 𝑤-
chambers. We start by proving Lemma 11.18.
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Lemma 11.18. Given a 2 × 𝑛matrix 𝑧 as constructed in the proof of Proposition 11.15,
we can construct a (𝑘+2)×𝑛matrix𝐴′ representing a point𝑊 ∈ Gr≥0𝑘+2,𝑛 which contains
rowspan(𝑧) as a subspace.

Proof. Let 𝑧(1) = (𝑧(1)1 , . . . , 𝑧(1)𝑛 ) and 𝑧(2) = (𝑧(2)1 , . . . , 𝑧(2)𝑛 ) denote the rows of 𝑧. By
construction, var(𝑧(1)) = var(𝑧(2)) = 𝑘 and moreover we can partition [𝑛] into disjoint
consecutive intervals 𝐻1 ⊔⋯ ⊔ 𝐻𝑘+1 such that the entries of 𝑧(1) and 𝑧(2) in positions
𝐻𝑖 are positive if 𝑖 is odd and negative if 𝑖 is even.
By [Kar17, Lemma 4.1], since var(𝑧(2)) = 𝑘, we can construct a (𝑘+ 1) × 𝑛matrix 𝐴

with maximal minors nonnegative whose row sum is 𝑧(2). More explicitly, we define
the 𝑖th row of 𝐴 to be the vector (𝑎𝑖1, . . . , 𝑎𝑖2) such that 𝑎𝑖𝑗 = 𝑧(2)𝑗 for 𝑗 ∈ 𝐻𝑖 and 𝑎𝑖𝑗 = 0
for 𝑗 ∉ 𝐻𝑖. Therefore the nonvanishing Plücker coordinates of 𝐴 are precisely the
𝑝𝐵(𝐴) such that 𝐵 = {𝑏1 < 𝑏2 < ⋯ < 𝑏𝑘+1} with 𝑏𝑖 ∈ 𝐻𝑖.
Let 𝐴′ be the matrix obtained from 𝐴 by adding 𝑧(1) as a new top (0th) row. We will

label the rows of 𝐴′ from 0 to 𝑘 + 1. The nonvanishing Plücker coordinates of 𝐴′ are
precisely the 𝑝𝐵′(𝐴′) where 𝐵′ = {𝑏1 < 𝑏2 < ⋯ < 𝑏𝑘+1} ∪ {𝑏′𝑗} with 𝑏𝑖 ∈ 𝐻𝑖 and both
𝑏𝑗 , 𝑏′𝑗 lie in 𝐻𝑗 .
Now we can compute the Plücker coordinates of 𝐴′ in terms of Plücker coordinates

of 𝑧 and minors of 𝐴. Let 𝐵′ = {𝑏1 < 𝑏2 < ⋯ < 𝑏𝑘+1} ∪ {𝑏′𝑗} as above. Then we have
𝑝𝐵′(𝐴′) = (−1)𝑗−1Δ0𝑗,𝑏𝑗𝑏′𝑗 (𝐴

′) ⋅ Δ[𝑘+1]⧵𝑗,𝐵′⧵{𝑏𝑗 ,𝑏′𝑗 }(𝐴
′)

= (−1)𝑗−1𝑝𝑏𝑗𝑏′𝑗 (𝑧)∏
𝑖≠𝑗

𝑧(2)𝑏𝑖 ,

whereΔ𝑅,𝐶(𝐴′) denotes theminor of𝐴′ on rows 𝑅 and columns𝐶. Now it follows from
the construction of 𝑧 that since both 𝑏𝑗 , 𝑏′𝑗 lie in𝐻𝑗 , we have 𝑝𝑏𝑗𝑏′𝑗 (𝑧) > 0. Additionally,
we have that the sign of∏𝑖≠𝑗 𝑧

(2)
𝑏𝑖 is (−1)

𝑗+1. Therefore 𝑝𝐵′(𝐴′) is positive, as desired.
□

Example 11.19. We illustrate the proof of Lemma 11.18 using our running example
from Example 11.16. We have

𝑧 = (1 1 −1 −1 1 1 −1
1 4 −2 −7 5 6 −3) ,

so

𝐴 =
⎛
⎜
⎜
⎝

1 4 0 0 0 0 0
0 0 −2 −7 0 0 0
0 0 0 0 5 6 0
0 0 0 0 0 0 −3

⎞
⎟
⎟
⎠

and 𝐴′ =
⎛
⎜
⎜
⎜
⎝

1 1 −1 −1 1 1 1
1 4 0 0 0 0 0
0 0 −2 −7 0 0 0
0 0 0 0 5 6 0
0 0 0 0 0 0 −3

⎞
⎟
⎟
⎟
⎠

.

Bothmatrices havemaximal minors nonnegative. If 𝐵′ = {2, 3, 5, 6, 7} then 2 ∈ 𝐻1, 3 ∈
𝐻2, 5, 6 ∈ 𝐻3, 7 ∈ 𝐻4 and we have

𝑝𝐵′(𝐴′) = Δ03,56(𝐴′)Δ124,237(𝐴′) = 𝑝56(𝑧) ⋅ (4 ⋅ (−2) ⋅ (−3)).
Proof of Theorem 11.5. By Proposition 3.3, we know that ℬ𝑛,𝑘,2(𝑊) is homeomorphic
to 𝒜𝑛,𝑘,2(𝑍), where𝑊 ∈ Gr>0𝑘+2,𝑛 is the column span of 𝑍. Moreover the Plücker coor-
dinates of the former agree with the twistor coordinates of the latter. Proposition 11.15
gives an explicit construction of a 2 × 𝑛matrix 𝑧 representing a point in Δ̂∘𝑤(𝒢), and by
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Proposition 11.11 we have ℬ𝑛,𝑘,2(𝑊) = 𝒢∘𝑛,𝑘,2 ∩ Gr2(𝑊), so to prove the theorem, we
just need to realize 𝑧 as a two-dimensional subspace contained in some (𝑘 + 2)-plane
𝑊 ∈ Gr>0𝑘+2,𝑛.
By Lemma 11.18, we can realize 𝑧 as a two-dimensional subspace contained in a

(𝑘+2)-plane𝑊 ∈ Gr≥0𝑘+2,𝑛. (Here𝑊 = rowspan(𝐴′).) We want to now slightly deform
𝐴′ to make it totally positive.
We claim that𝐴′ ∈ Gr≥0𝑘+2,𝑛 is the limit of a sequence of points { ̃𝐴𝑡} ∈ Gr>0𝑘+2,𝑛 where

rowspan( ̃𝐴𝑡) contains a 2-plane 𝑧(𝑡) which lies in the same sign-chamber as 𝑧. To see
this, we use the fact thatGr≥0𝑘+2,𝑛 = Gr>0𝑘+2,𝑛 (see Remark 2.3). We can therefore write𝐴′
as the limit of a sequence of matrices of the form 𝐴′ + (𝜖𝑖𝑗(𝑡)) ∈ Gr>0𝑘+2,𝑛, where (𝜖𝑖𝑗(𝑡))
is a (𝑘 + 2) × 𝑛matrix, and each 𝜖𝑖𝑗(𝑡) is a function of 𝑡 with small absolute value and
𝜖𝑖𝑗(𝑡) → 0 as 𝑡 → 0.
We denote the rows of 𝐴′ + (𝜖𝑖𝑗(𝑡)) by 𝑟𝑖(𝑡) for 0 ≤ 𝑖 ≤ 𝑘 + 1. Let 𝑧(1)(𝑡) ∶= 𝑟0(𝑡), let

𝑧(2)(𝑡) ∶= 𝑟1(𝑡) + 𝑟2(𝑡) + ⋯ + 𝑟𝑘+1(𝑡), and let 𝑧(𝑡) be the matrix with rows 𝑧(1)(𝑡) and
𝑧(2)(𝑡).
Then when 𝑡 = 0, we have 𝑧 = 𝑧(𝑡). Moreover for small 𝑡, the Plücker coordinates

of 𝑧(𝑡) have the same signs as the Plücker coordinates of 𝑧, so 𝑧(𝑡) lies in the same
𝑤-chamber Δ̂∘𝑤(𝒢) as 𝑧. But now by construction, rowspan(𝑧(𝑡)) lies in the positive
(𝑘+2)-plane𝑊 = rowspan(𝐴′+(𝜖𝑖𝑗(𝑡))). This completes the proof of the theorem. □

Recall the definition of realizable amplituhedron chamber from Definition 3.10.

Corollary 11.20 (Amplituhedron chambers and Eulerian numbers). The realizable
amplituhedron chambers𝒜𝜍

𝑛,𝑘,2 are exactly the 𝑤-chambers Δ̂∘𝑤 where 𝑤 ∈ 𝐷𝑘+1,𝑛.

Proof. Theorem 11.5 shows that each 𝑤-chamber is realizable. Theorem 10.10 shows
that no other sign chambers are realizable. □

We now turn to the 𝒢-amplituhedron. The proof of Theorem 10.10 implies the fol-
lowing.

Theorem 11.21. Fix 𝑘 < 𝑛, then
𝒢𝑛,𝑘,2 = ⋃

𝑤∈𝐷𝑘+1,𝑛

Δ̂𝑤(𝒢).

Using the sign characterization of a positroid tile 𝑍𝒯 of 𝒜𝑛,𝑘,2(𝑍) (Theorem 4.28),
one can define a positroid tile 𝒢𝒯 in 𝒢𝑛,𝑘,2 as (the closure of) the region in Gr2,𝑛 whose
Plücker coordinates satisfy the same sign conditions as the twistor coordinates of 𝑍𝒯 .
Analogously to Corollary 10.17, 𝒢𝒯 is a union of 𝒢-amplituhedron𝑤-chambers. More-
over, 𝑍𝒯 is a linear slice of 𝒢𝒯 (analogously to Remark 11.17). We say a positroid tiling
of 𝒢𝑛,𝑘,2 is a collection of positroid tiles which cover 𝒢𝑛,𝑘,2 and have disjoint interiors.
Since all 𝒢-amplituhedron 𝑤-chambers are nonempty, the analogue of Theorem 11.6
holds for the 𝒢-amplituhedron (without any dependence on 𝑍): T-duality gives a bijec-
tion between positroid tilings of Δ𝑘+1,𝑛 and positroid tilings of 𝒢𝑛,𝑘,2.

Definition 11.22 (Total amplituhedron). The total amplituhedron 𝒢(2)𝑛 is

𝒢(2)𝑛 ≔
𝑛−2

⋃
𝑘=0

𝒢𝑛,𝑘,2.
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Note that 𝒢(2)𝑛 has top dimension 2(𝑛 − 2) in Gr2,𝑛, and it does not depend on 𝑍.
Recall that the hypercube�𝑛−1 ⊂ ℝ𝑛−1 can be decomposed into (𝑛−1)! 𝑤-simplices

in a way which is compatible with its slicing into (projected) hypersimplices Δ̃1,𝑛, Δ̃2,𝑛,
. . . , Δ̃𝑛−1,𝑛. Each Δ̃𝑘+1,𝑛 is a union of exactly 𝐸𝑘,𝑛−1 simplices, where 𝐸𝑘,𝑛−1 is the
Eulerian number.
Analogously, by Theorem11.21, the total amplituhedron𝒢(2)𝑛 ⊂ Gr2,𝑛 can be decom-

posed into (𝑛 − 1)! 𝑤-chambers in a way which is compatible with its decomposition
into the 𝒢-amplituhedra 𝒢𝑛,0,2, 𝒢𝑛,1,2, . . . , 𝒢𝑛,𝑛−2,2. Each 𝒢𝑛,𝑘,2 is a union of exactly
𝐸𝑘,𝑛−1 𝑤-chambers. This is the ‘𝑚 = 2’ equivalent of encoding all helicity sectors at
once for tree-level scattering amplitudes of𝒩 = 4 SYM for𝑚 = 4. A related space was
discussed in the context of the ℬ-amplituhedron [KW19, Section 3.4].

11.3. Empty 𝑤-chambers and tilings of 𝒜𝑛,𝑘,2. In this section we provide
algorithms to find all positroid tilings of the hypersimplex and the amplituhedron us-
ing𝑤-simplices and𝑤-chambers. As mentioned in Remark 10.8, Δ̂𝑤(𝑍)may be empty
for some choices of 𝑍 ∈ Mat>0𝑛,𝑘+2. We take a closer look at this phenomenon and give
some examples.

Remark 11.23. It is a priori possible for an amplituhedron𝒜𝑛,𝑘,2(𝑍) to have a positroid
tiling ̂𝒞 which is not T-dual to a hypersimplex positroid tiling. However, Theorem 11.6
tells us that the collection of Grasstopes ̂𝒞 will fail to be a tiling for some other ampli-
tuhedron𝒜𝑛,𝑘,2(𝑍′). We have not found any instances of such “sporadic” tilings.
Proposition 11.24 (Algorithm for positroid tilings of Δ𝑘+1,𝑛). In order to find all
positroid tilings of Δ𝑘+1,𝑛 proceed as follows. Call two positroid tiles Γ𝜋1 and Γ𝜋2 com-
patible if they do not contain any common 𝑤-simplex.
Step 1. Define a graph 𝒢 whose vertices are positroid tiles of Δ𝑘+1,𝑛 and edges connect

compatible positroid tiles.
Step 2. Compute the set 𝐶𝑙(𝒢) of all maximal cliques of 𝒢;
Step 3. For each clique 𝒞 ∈ 𝐶𝑙(𝒢), compute the list ℒ𝒞 of all 𝑤-simplices contained in

any positroid tile Γ𝜋 ∈ 𝐶;
Step 4. If ℒ𝒞 consists of all 𝑤-simplices of Δ𝑘+1,𝑛, then 𝒞 is a positroid tiling of Δ𝑘+1,𝑛.

Otherwise it is not.

Proposition 11.25 (Algorithm for positroid tilings of 𝒜𝑛,𝑘,2). In order to find all
positroid tilings of𝒜𝑛,𝑘,2(𝑍) proceed as follows. Let ℰ𝑍 be the list of all𝑤-simplices Δ𝑤 in
Δ𝑘+1,𝑛 such that Δ̂𝑤(𝑍) = ∅. Call two positroid tiles 𝑍𝜋̂1 , 𝑍𝜋̂2 compatible if and only if
Γ𝜋1 ∩ Γ𝜋2 is empty or is the union of 𝑤-simplices which are in ℰ𝑍 .
Step 1. Make a graph ̂𝒢 whose vertices are positroid tiles of 𝒜𝑛,𝑘,2(𝑍) and edges connect

compatible positroid tiles;
Step 2. Compute the set 𝐶𝑙( ̂𝒢) of all maximal cliques of ̂𝒢;
Step 3. For each clique ̂𝒞 ∈ 𝐶𝑙( ̂𝒢), consider the collection 𝒞 of T-dual positroid tiles

in Δ𝑘+1,𝑛. Compute the list ℒ𝒞 of all 𝑤-simplices in Δ𝑘+1,𝑛 contained in any
positroid tile Γ𝜋 ∈ 𝒞;

Step 4. If the (possibly empty) complement ofℒ𝒞 is contained in ℰ𝑍 , then ̂𝒞 is a positroid
tiling of𝒜𝑛,𝑘,2(𝑍). Otherwise it is not.

Remark 11.26. If we would like to find a positroid tiling ̂𝒞 of the amplituhedron
𝒜𝑛,𝑘,2(𝑍)which is not a positroid tiling of Δ𝑘+1,𝑛, then after Step 3 we need check that
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either: (i) the complement of ℒ𝒞 is nonempty and contained in ℰ𝑍 ; or (ii) ℒ𝒞 is the set
of all𝑤-simplices of Δ𝑘+1,𝑛 and there is a pair of positroid tiles Γ𝜋1 , Γ𝜋2 in 𝒞 which both
contain a 𝑤-simplex in ℰ𝑍 .
Below, we report some results on empty 𝑤-chambers in the cases 𝑘 = 1, 2.

𝑘 = 1 case. The amplituhedron 𝒜𝑛,1,2(𝑍) is just an 𝑛-gon 𝐏𝑛(𝑍) in ℙ2 with vertices
𝑍1, . . . , 𝑍𝑛 going clockwise. Let 𝑖 → 𝑗 be a side or a diagonal of 𝐏𝑛(𝑍), with 𝑖 < 𝑗. The
twistor coordinate ⟨𝑌𝑖𝑗⟩ is positive, negative or zero if 𝑌 lies to the right, left, or on the
diagonal 𝑖 → 𝑗 respectively. Then the nonempty𝑤-chambers Δ̂𝑤(𝑍) are the connected
components of the complement of all diagonals of 𝐏𝑛(𝑍) (see Figure 10). If no three
diagonals of 𝐏𝑛(𝑍) intersect at a point in the interior, it is well known the number of
connected components is given by:

𝑁𝑛 =
4
∑
𝑟=2

(𝑛 − 1
𝑟 ) = (𝑛4) + (𝑛 − 1

2 ).

The number of empty 𝑤-chambers in this case is shown in Table 2.
If three diagonals of 𝐏𝑛(𝑍) intersect at a point in its interior, then the number of

empty 𝑤-chambers is larger (as the number of regions realized is smaller).

Table 2. Empty 𝑤-chambers vs. Eulerian numbers for 𝑘 = 1

𝑛 3 4 5 6 7 8 9
𝑁𝑛 1 4 11 25 50 91 154

𝐸1,𝑛−1 1 4 11 26 57 120 247
# Empty Δ̂𝑤 0 0 0 1 7 29 93

Example 11.27. Consider 𝒜6,1,2(𝑍), which is a hexagon. Let us consider the permu-
tations 𝑤(+) = 145236 and 𝑤(−) = 341256. Points in Δ̂𝑤(+)(𝑍) and Δ̂𝑤(−)(𝑍) have all
twistor coordinates with the same sign, except for {⟨𝑌14⟩, ⟨𝑌25⟩, ⟨𝑌36⟩}, whose signs
are {+ − +} and {− + −}, respectively. Let 𝑍∗ be the intersection of the diagonals (1, 4)
and (2, 5). Then Δ̂𝑤(+)(𝑍) (respectively, Δ̂𝑤(−)(𝑍)) is nonempty if and only if 𝑍∗ is to the
right (respectively, left) of the diagonal 3 → 6. This happens when
(11.28) ⟨𝑍1, 𝑍2, 𝑍5⟩⟨𝑍4, 𝑍3, 𝑍6⟩ − ⟨𝑍1, 𝑍3, 𝑍6⟩⟨𝑍4, 𝑍2, 𝑍5⟩
is positive (respectively, negative), see Figure 10. So for any choice of 𝑍, either Δ̂𝑤(+)(𝑍)
= ∅ or Δ̂𝑤(−)(𝑍) = ∅, and both are empty if (11.28) vanishes.
If a collection of Grasstopes covers𝒜𝑛,𝑘,2(𝑍), the T-dual positroid polytopesmay not

cover Δ𝑘+1,𝑛.
Example 11.29. Let 𝑍0 be the point in 𝐺𝑟>03,6 invariant under cyclic symmetry, so
𝒜6,1,2(𝑍0) is a regular hexagon in ℙ2. Consider the positroid tiles 𝑍𝜋̂1 , . . . , 𝑍𝜋̂6 below.
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Figure 10. From left to right: For ⟨𝑍∗, 𝑍3, 𝑍6⟩ > 0, Δ̂𝑤(+) is nonempty
(in black) but Δ̂𝑤(−) is empty; if ⟨𝑍∗, 𝑍3, 𝑍6⟩ = 0 then Δ̂𝑤(+) and Δ̂𝑤(−)

are both empty; for ⟨𝑍∗, 𝑍3, 𝑍6⟩ < 0 then Δ̂𝑤(+) is empty but Δ̂𝑤(−) is
not (shown in black)

Clearly, they do cover 𝒜6,1,2(𝑍0) (and overlap). However, Δ𝑤(+) is not contained in
Γ𝜋1 ∪⋯ ∪ Γ𝜋6 ⊂ Δ2,6. Therefore the T-dual positroid tiles do not cover Δ2,6.

Despite the presence of empty 𝑤-chambers, for any 𝑍 inMat>0𝑘+2,𝑛, positroid tilings
of Δ2,𝑛 and 𝒜𝑛,1,2(𝑍) are still in bijection:
Proposition 11.30. A collection of tree positroid polytopes {Γ𝜋} is a positroid tiling ofΔ2,𝑛
if and only if {𝑍𝜋̂} is a positroid tiling of𝒜𝑛,1,2(𝑍). All such tilings are regular.
Proof. The forward direction comes from Theorem 11.6. The other direction comes
from the fact that 𝒜𝑛,1,2(𝑍) is just an 𝑛-gon. Its positroid tilings are in bijection with
the regular positroid tilings ofΔ2,𝑛 described in [ŁPW20, Proposition 10.7] (of ‘Catalan’
type). □
𝑘 = 2 case. We used Mathematica and the package ‘positroid’ [Bou12].
For 𝑛 = 6, there are choices of𝑍 such that all𝑤-chambers of𝒜6,2,2(𝑍) are nonempty.
For𝑛 = 7 and some choices of𝑍, there are empty𝑤-chambers Δ̂𝑤 forwhichΔ𝑤 is the

intersection of just 2positroid tiles ofΔ3,7. This implies that in general the compatibility
graph 𝒢 of positroid tiles of Δ𝑘+1,𝑛 differs from the one ̂𝒢 of positroid tiles of 𝒜𝑛,𝑘,2(𝑍)
(cf. Proposition 11.25). For example, if 𝑤 = 1645237, then Δ𝑤 = Γ𝜋1 ∩ Γ𝜋2 , with
𝜋1 = 2371645 and 𝜋2 = 6745231. The positroid polytopes {Γ𝜋1 , Γ𝜋2 } are not compatible
in Δ3,7, but there are choices of 𝑍 = 𝑍∗ for which the T-dual Grasstopes {𝑍𝜋1 , 𝑍𝜋2 } are
compatible in 𝒜7,2,2(𝑍∗), as 𝑍𝜋1 ∩ 𝑍𝜋2 = Δ̂𝑤 = ∅. Nevertheless, the 3073 positroid
tilings of 𝒜7,2,2(𝑍∗) are still in bijection with the 3073 positroid tilings of Δ3,7.
For 𝑛 = 8, we checked only a few choices of 𝑍, but found that there are more than

100 𝑤-chambers which can be empty depending on 𝑍. As in the 𝑛 = 7 case, the com-
patibility graph of Δ3,8 differs from that of𝒜8,2,2(𝑍). Nevertheless, for all such choices
of 𝑍, the 6443460 positroid tilings of𝒜8,2,2(𝑍) are in bijection with the positroid tilings
of Δ3,8.
11.4. Descent and sign-flip tilings. Recall that permutations and their cyclic de-
scents were used to define both the 𝑤-simplices in Δ𝑘+1,𝑛 and the 𝑤-chambers in
𝒜𝑛,𝑘,2(𝑍). In the same spirit, by refining the set of permutations based on the posi-
tions of the descents, we will obtain a distinguished positroid tiling of Δ𝑘+1,𝑛 and a
distinguished positroid tiling of 𝒜𝑛,𝑘,2(𝑍). These tilings are T-dual to each other.
Recall that

Δ𝑘+1,𝑛 = ⋃
𝑤∈𝐷𝑘+1,𝑛

Δ𝑤.
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Since 1 is always a cyclic descent of 𝑤 ∈ 𝐷𝑘+1,𝑛, we have that 𝐷𝑘+1,𝑛 is the set of
permutations𝑤 ∈ 𝑆𝑛 with 𝑘 left descents and𝑤(𝑛) = 𝑛. The Eulerian numbers have a
very natural refinement by descent set DesL (𝑤). If 𝑤 ∈ 𝑆𝑛 has 𝑤(𝑛) = 𝑛, then neither
1 nor 𝑛 is a left descent of 𝑤, so we have

𝐸𝑘,𝑛−1 = ∑
𝐼∈([2,𝑛−1]𝑘 )

#{𝑤 ∈ 𝑆𝑛 ∶ 𝑤(𝑛) = 𝑛,DesL (𝑤) = 𝐼}.

This inspires the following decomposition of Δ𝑘+1,𝑛. For 𝐼 ∈ ([2,𝑛−1]𝑘 ), let

Γ𝐼 ≔ ⋃
𝑤∈𝐷𝑘+1,𝑛
DesL (𝑤)=𝐼

Δ𝑤.

Clearly, the collection of Γ𝐼 cover the hypersimplex and their interiors are pairwise
disjoint. There are also (𝑛−2𝑘 ) of them, which is exactly the number of full-dimensional
positroid polytopes in a regular positroid tiling of Δ𝑘+1,𝑛 [SW21]. We will show that
each Γ𝐼 is in fact a positroid polytope, and that {Γ𝐼} is a (regular) positroid tiling of
Δ𝑘+1,𝑛. We will refer to it as the descent tiling.
On the other hand, given the sign-flip characterization of the amplituhedron from

Theorem 5.1, it is natural to subdivide 𝒜𝑛,𝑘,2(𝑍) into regions based on where the se-
quence (⟨𝑌1𝑎⟩)𝑛𝑎=1 has sign flips. That is, for each 𝐼 ∈ ([2,𝑛−1]𝑘 ), we define15

𝑍∘𝐼 ≔ {𝑌 ∈ 𝒜𝑛,𝑘,2(𝑍) | Flip(⟨𝑌11⟩, ⟨𝑌12⟩, ⟨𝑌13⟩, . . . , ⟨𝑌1𝑛⟩) = 𝐼}
and define 𝑍𝐼 to be the closure of 𝑍∘𝐼 .
[AHTT18, Section 7] conjectured that {𝑍𝐼} is a positroid tiling of 𝒜𝑛,𝑘,2(𝑍). The

authors referred to {𝑍𝐼} as a sign-flip (or kermit)16 tiling. In this section we prove this
conjecture. Moreover we show that sign-flip tilings of 𝒜𝑛,𝑘,2(𝑍) and descent tilings of
the hypersimplex Δ𝑘+1,𝑛 are T-dual to each other and also regular.
Definition 11.31 (Bicolored triangulations of kermit type). Let 𝐼 = {𝑖1, . . . , 𝑖𝑘} ∈
([2,𝑛−1]𝑘 ) and let 𝒯𝐼 be the bicolored triangulation whose black triangles have vertices
{1, 𝑖ℓ, 𝑖ℓ + 1} for ℓ = 1, . . . 𝑘. We say 𝒯𝐼 is kermit type and denote the plabic graph ̂𝐺(𝒯𝐼)
by 𝐾𝐼 . We also denote the plabic graph 𝐺(𝒯𝐼) by 𝐶𝐼 , and call it a caterpillar tree.

Figure 11. In orange, the bicolored triangulation 𝒯𝐼 of kermit-type
for 𝐼 = {2, 3, 5, 6, 8}. In black, the dual caterpillar tree 𝐶𝐼 .

15Because of our conventions regarding sign flips, 𝑍𝐼 would be empty if 1, 𝑛 ∈ 𝐼.
16For 𝑘 = 2, 𝒜𝑛,2,2(𝑍) provides the integrand for the 1-loop 𝑛-point scattering amplitude in 𝒩 = 4

SYM. The name ‘kermit’ comes from the resemblance of the pictorial expansion of such amplitude (e.g. see
[AHBC+11, pg. 18]) with the Muppet character ‘Kermit the Frog’.
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Proposition 11.32 (Descent and sign-flips tilings are T-dual). Let 𝐼 run over ([2,𝑛−1]𝑘 ).
The collections {Γ𝐼} and {𝑍𝐼} are T-dual regular positroid tilings of Δ𝑘+1,𝑛 and𝒜𝑛,𝑘,2(𝑍).
Furthermore, Γ𝐼 = Γ𝐶𝐼 and 𝑍𝐼 = 𝑍𝐾𝐼 where 𝐶𝐼 and 𝐾𝐼 are as in Definition 11.31.
Proof. By the sign description of 𝑍∘𝐾𝐼 in Theorem 4.28, it is straightforward that 𝑍𝐼 =
𝑍𝐾𝐼 . Moreover, using Definition 10.7 and Corollary 10.17, we have

(11.33) 𝑍𝐾𝐼 = ⋃
𝑤∶DesL (𝑤)=𝐼

Δ̂𝑤(𝑍).

Using Proposition 9.6, it is not hard to check that the positroid polytope Γ𝐶𝐼 satisfies

(11.34) Γ𝐶𝐼 = ⋃
𝑤∶DesL (𝑤)=𝐼

Δ𝑤.

But this is exactly Γ𝐼 .
Finally, it is easy to check that {Γ𝐶𝐼 }𝐼∈([2,𝑛−1]𝑘 ) is a positroid tiling of Δ𝑘+1,𝑛 of the sort

appearing in [ŁPW20, Proposition 10.7] (‘Catalan type’), hence is a regular positroid
tiling. It follows that {𝑍𝐾𝐼 }𝐼∈([2,𝑛−1]𝑘 ) is the T-dual regular positroid tiling. □

Remark 11.35. Sign-flip tilings of 𝒜𝑛,𝑘,2(𝑍) and descent tilings of Δ𝑘+1,𝑛 are of BFCW
type (in particular, of ‘Catalan type’, see [ŁPW20, Proposition 10.7]).
We end this section by describing each𝑤-simplex (resp. 𝑤-chamber) as an intersec-

tion of cyclically shifted caterpillar positroid polytopes (resp. kermit Grasstopes). For
𝐼 ⊂ [𝑛] and 𝑎 ∈ [𝑛], let 𝐼(𝑎) denote the cyclic shift of 𝐼 such that 1 ↦ 𝑎. Similarly, for
𝐺 a plabic graph, let 𝐺(𝑎) denote the cyclic shift of 𝐺 such that 1 ↦ 𝑎.
Proposition 11.36. Let Δ𝑤, Δ̂𝑤(𝑍) be a 𝑤-simplex and a 𝑤-chamber in Δ𝑘+1,𝑛 and
𝒜𝑛,𝑘,2(𝑍) respectively. Let 𝐼1, . . . , 𝐼𝑛 give the vertices of Δ𝑤, and let 𝐽𝑎 ≔ (𝐼𝑎 ⧵ {𝑎})(2−𝑎).
Then:

Δ𝑤 = ⋂
𝑎∈[𝑛]

Γ𝐶(𝑎)
𝐽𝑎

and Δ̂𝑤(𝑍) = ⋂
𝑎∈[𝑛]

𝑍𝐾(𝑎)
𝐽𝑎
.

Proof. First, 𝐶(𝑎)
𝐽𝑎 is dual to a kermit-type bicolored triangulation whose black triangles

all use vertex 𝑎.
To see the statement about Δ𝑤, note that another way to phrase (11.34) is that Γ𝐶𝐼 is

the union of all 𝑤-simplices with 1st vertex given by 𝐼 ∪ {1}. Using the cyclic shift on
the hypersimplex, it is not hard to see that Γ𝐶(𝑎)

𝐽𝑎
is the union of all𝑤-simplices with 𝑎th

vertex given by 𝐼𝑎. So taking the intersection gives exactly the 𝑤-simplex with vertices
𝑒𝐼1 , . . . , 𝑒𝐼𝑎 .
The statement about Δ̂𝑤(𝑍) follows from a similar argument, using (11.33) and the

cyclic shift on Gr𝑘,𝑛. □
Example 11.37. Let us consider 𝑤 = 324156 from Example 10.4. We have:
𝐼1={1, 2, 3}, 𝐼2={2, 3, 5}, 𝐼3={1, 3, 4}, 𝐼4={1, 2, 4}, 𝐼5={1, 3, 5}, 𝐼6={2, 3, 6};
𝐽1={2, 3}, 𝐽2={2, 4}, 𝐽3={2, 5}, 𝐽4={4, 5}, 𝐽5={3, 5}, 𝐽6={3, 4}.

Then Δ𝑤 is the intersection of Γ𝐶(1)
𝐽1
, . . . , Γ𝐶(6)

𝐽6
and Δ̂𝑤 is the intersection of 𝑍𝐾(1)

𝐽1
, . . . ,

𝑍𝐾(6)
𝐽6
. The cyclically rotated kermit-type bicolored triangulations𝒯(1)

𝐽1 , . . . , 𝒯(6)
𝐽6 are dis-

played below.
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Notice that 𝒯(1)
𝐽1 is equivalent to 𝒯(4)

𝐽4 .

12. Schröder numbers: Separable permutations and positroid tiles

Recall from Corollary 9.1 that positroid tiles for both𝒜𝑛,𝑘,2(𝑍) and Δ𝑘+1,𝑛 are in bi-
jection with bicolored subdivisions of type (𝑘, 𝑛) and tree positroids in
Gr≥0𝑘+1,𝑛. [ŁPSV19] provided experimental evidence that the number𝑅𝑘,𝑛−2 of positroid
tiles for 𝒜𝑛,𝑘,2 is given by [S+, A175124], a refinement of the large Schröder numbers
(see Table 3). In this section we prove this statement by giving a bijection between tree
positroids in Gr≥0𝑘+1,𝑛 and separable permutations on [𝑛 − 1] with 𝑘 descents (enumer-
ated by 𝑅𝑘,𝑛−2).

Definition 12.1. A permutation 𝑤 = 𝑤1 . . . 𝑤𝑛 (in one-line notation) is separable if it
is 3142- and 2413-avoiding, i.e. there are not four indices 𝑖1 < 𝑖2 < 𝑖3 < 𝑖4 such that
𝑤𝑖3 < 𝑤𝑖1 < 𝑤𝑖4 < 𝑤𝑖2 or 𝑤𝑖2 < 𝑤𝑖4 < 𝑤𝑖1 < 𝑤𝑖3 .

Table 3. Large Schröder numbers 𝑅𝑛−2 and their refinement 𝑅𝑘,𝑛−2
which count the number of bicolored subdivisions of type (𝑘, 𝑛)

𝑛
𝑘 0 1 2 3 4 5 𝑅𝑛−2

2 1 1
3 1 1 2
4 1 4 1 6
5 1 10 10 1 22
6 1 20 48 20 1 90
7 1 35 161 161 35 1 394

Definition 12.2. Let 𝜋 and 𝜈 be permutations on [𝑘] and [𝑙], respectively. The direct
sum 𝜋⊕ 𝜈 and the skew sum 𝜋⊖ 𝜈 of 𝜋 and 𝜈 are permutations on [𝑘 + 𝑙] defined by:

(𝜋⊕𝜈)𝑖 = {𝜋𝑖, 𝑖 ∈ [1, 𝑘]
𝜈𝑖−𝑘 + 𝑘, 𝑖 ∈ [𝑘 + 1, 𝑘 + 𝑙]

, (𝜋⊖𝜈)𝑖 = {𝜋𝑖 + 𝑙, 𝑖 ∈ [1, 𝑘]
𝜈𝑖−𝑘, 𝑖 ∈ [𝑘 + 1, 𝑘 + 𝑙]

.

For example, 123 ⊕ 21 = 12354 and 123 ⊖ 21 = 34521.

Proposition 12.3 ([Kit11]). Apermutation is separable if and only if𝑤 can be built from
the permutation 1 by repeatedly applying⊕ and⊖.

For example, the permutation 𝑤 = 231654 can be written as

((1 ⊕ 1) ⊖ 1) ⊕ ((1 ⊖ 1) ⊖ 1) = (12 ⊖ 1) ⊕ (21 ⊖ 1) = 231 ⊕ 321 = 231654.
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Proposition 12.4. Let 𝛽 be the map sending a permutation 𝑤 = 𝑤1 . . . 𝑤𝑛−1 in one-
line notation to the permutation 𝛽(𝑤) = (𝑤1, . . . , 𝑤𝑛−1, 𝑛) in cycle notation. Then 𝛽 is a
bijection between separable permutations on [𝑛−1]with 𝑘 descents and trip permutations
of tree positroids in Gr≥0𝑘+1,𝑛.

Proof. We use strong induction on 𝑛; the base case 𝑛 = 2 is trivial. It is enough to show
that 𝛽 is well-defined and surjective. Suppose that 𝑤 ∈ 𝑆𝑛−1 is separable. Then either
𝑤 = 𝑢⊕𝑣 or𝑤 = 𝑢⊖𝑣, for some 𝑢 ∈ 𝑆ℓ−1, 𝑣 ∈ 𝑆𝑟−1 separable, with ℓ−1+𝑟−1 = 𝑛−1.
By the induction hypothesis, 𝛽(𝑢) ∈ 𝑆ℓ and 𝛽(𝑣) ∈ 𝑆𝑟 are the trip permutations of
tree plabic graphs 𝑆 and 𝑇. We now “glue” together 𝑆 and 𝑇 in order to obtain a tree
plabic graph with boundary vertices {1, 2, . . . , 𝑛} with trip permutation 𝛽(𝑤) ∈ 𝑆𝑛 (see
Figure 12).
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Figure 12. How to glue 𝑆, 𝑇 together when 𝑤 = 𝑢⊕ 𝑣 (on the left)
and when 𝑤 = 𝑢⊖ 𝑣 (on the right)

It is straightforward to check that the trip permutation of the resulting tree is 𝛽(𝑤).
This shows that 𝛽 is well-defined.
For surjectivity, consider a trivalent tree plabic graph 𝐺 on [𝑛]. Let 𝑣 be the internal

vertex adjacent to the boundary vertex 𝑛. Then deleting 𝑣 gives two trees: 𝑆 on [ℓ] and
𝑇 on [ℓ + 1, 𝑛 − 1]. Let 𝜋 be the trip permutation of 𝑆. Subtract ℓ from the boundary
labels of 𝑇 to get a tree 𝑇 ′ on [1, 𝑛−ℓ−1] and let 𝜈 be its trip permutation. Then define
𝑤 to be either 𝛽−1(𝜋)⊕𝛽−1(𝜈) or 𝛽−1(𝜋)⊖𝛽−1(𝜈), based onwhether 𝑣 is white or black.
By the argument used above to show well-definedness, 𝛽(𝑤) is the trip permutation of
𝐺. □

Remark 12.5. If 𝑆 and 𝑇 are tree plabic graphs, the positroids associated to 𝑆 ⊕ 𝑇 and
𝑆 ⊖ 𝑇 are the parallel-connection and series-connection of the matroids associated to
𝑆, 𝑇.

The large Schröder number 𝑅𝑛−2 counts separable permutations on [𝑛−1] [Wes95]
and 𝑅𝑘,𝑛−2 counts separable permutations on [𝑛−1]with 𝑘 descents [FLZ18, Theorem
1.1].

Corollary 12.6. Positroid tiles of Δ𝑘+1 and𝒜𝑛,𝑘,2(𝑍) are in bijection with separable per-
mutations on [𝑛−1]with 𝑘 descents. They are enumerated by𝑅𝑘,𝑛−2 from [S+, A175124].
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Appendix A. Combinatorics of the totally nonnegative Grassmannian

In [Pos06], Postnikov defined several families of combinatorial objects which are in
bijection with cells of the positive Grassmannian, including decorated permutations,
and equivalence classes of reduced plabic graphs. He also used these objects to give
concrete descriptions of the cells. Here we review some of this technology.

Definition A.1. A decorated permutation on [𝑛] is a bijection 𝜋 ∶ [𝑛] → [𝑛] whose
fixed points are each colored either black (loop) or white (coloop). We denote a black
fixed point 𝑖 by 𝜋(𝑖) = 𝑖, and a white fixed point 𝑖 by 𝜋(𝑖) = 𝑖. An anti-exceedance of the
decorated permutation 𝜋 is an element 𝑖 ∈ [𝑛] such that either 𝜋−1(𝑖) > 𝑖 or 𝜋(𝑖) = 𝑖.
We say that a decorated permutation on [𝑛] is of type (𝑘, 𝑛) if it has 𝑘 anti-exceedances.

For example,𝜋 = (3, 2, 5, 1, 6, 8, 7, 4)has a loop in position 2, and a coloop in position
7. It has three anti-exceedances 1, 4, 7.
Decorated permutations can be equivalently thought of as affine permutations

[KLS13]. An affine permutation on [𝑛] is a bijection 𝜋 ∶ ℤ → ℤ such that 𝜋(𝑖 + 𝑛) =
𝜋(𝑖) + 𝑛 and 𝑖 ≤ 𝜋(𝑖) ≤ 𝑖 + 𝑛, for all 𝑖 ∈ ℤ. It is additionally (𝑘, 𝑛)-bounded if
∑𝑛

𝑖=1(𝜋(𝑖) − 𝑖) = 𝑘𝑛.
There is a bijection between decorated permutations of type (𝑘, 𝑛) and (𝑘, 𝑛)-

bounded affine permutations. Given a decorated permutation 𝜋𝑑 we can define an
affine permutation 𝜋𝑎 by the following procedure: if 𝜋𝑑(𝑖) > 𝑖, then define 𝜋𝑎(𝑖) ≔
𝜋𝑑(𝑖); if 𝜋𝑑(𝑖) < 𝑖, then define 𝜋𝑎(𝑖) ≔ 𝜋𝑑(𝑖)+𝑛; if 𝜋𝑑(𝑖) is a loop then define 𝜋𝑎(𝑖) ≔ 𝑖;
if 𝜋𝑑(𝑖) is a coloop then define 𝜋𝑎(𝑖) ≔ 𝑖 + 𝑛. For example, under this map, the
decorated permutation 𝜋𝑑 = (3, 2, 5, 1, 6, 8, 7, 4) in the previous example gives rise to
𝜋𝑎 = (3, 2, 5, 9, 6, 8, 15, 12).
Given a 𝑘 × 𝑛 matrix 𝐶 = (𝑐1, . . . , 𝑐𝑛) written as a list of its columns, we asso-

ciate a decorated permutation 𝜋 as follows. Given 𝑖, 𝑗 ∈ [𝑛], let 𝑟[𝑖, 𝑗] denote the
rank of ⟨𝑐𝑖, 𝑐𝑖+1, . . . , 𝑐𝑗⟩, where we list the columns in cyclic order, going from 𝑐𝑛 to
𝑐1 if 𝑖 > 𝑗. We set 𝜋(𝑖) ≔ 𝑗 to be the label of the first column 𝑗 such that 𝑐𝑖 ∈
span{𝑐𝑖+1, 𝑐𝑖+2, . . . , 𝑐𝑗}. If 𝑐𝑖 is the all-zero vector, we decorate 𝑖 as loop, and if 𝑐𝑖 is
not in the span of the other column vectors, we decorate 𝑖 as coloop.
The map 𝐶 ↦ 𝜋 extends to a map on positroid cells. Moreover, Postnikov showed

that the positroids for𝐺𝑟≥0𝑘,𝑛 are in bijectionwith decorated permutations of [𝑛]with ex-
actly 𝑘 anti-exceedances (equivalently, by (𝑘, 𝑛)-bounded affine permutations) [Pos06,
Section 16]. Onemay read off the dimension of the cell 𝑆𝜋 from the affine permutation
𝜋 as follows. Let inv(𝜋) be the number of pairs (𝑖, 𝑗) such that 𝑖 ∈ [𝑛], 𝑗 ∈ ℤ, 𝑖 < 𝑗, and
𝜋(𝑖) > 𝜋(𝑗). Then the dimension of 𝑆𝜋 equals 𝑘(𝑛 − 𝑘) − inv(𝜋).
DefinitionA.2. A planar bicolored graph (or “plabic graph”) is a planar graph𝐺 prop-
erly embedded into a closed disk, such that each internal vertex is colored black or
white; each internal vertex is connected by a path to some boundary vertex; there are
(uncolored) vertices lying on the boundary of the disk labeled 1, . . . , 𝑛 for some positive
𝑛; and each of the boundary vertices is incident to a single edge. See Figure 13 for an
example.

If the connected component of 𝐺 attached to a boundary vertex 𝑖 is a path ending
at a black (resp., white) leaf, we call this component a black (resp., white) lollipop. We
will require that our plabic graphs have no internal leaves except for lollipops.
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Figure 13. A plabic graph

There is a natural set of local transformations (moves) of plabic graphs:
(M1) Square move (or urban renewal). If a plabic graph has a square formed by four

trivalent vertices whose colors alternate, then we can switch the colors of these four
vertices.
(M2) Contracting/expanding a vertex. Two adjacent internal vertices of the same

color can be merged. This operation can also be reversed.
(M3)Middle vertex insertion/removal. We can remove/add degree 2 vertices.
See Figure 14 for depictions of these three moves.
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inv(π) be the number of pairs (i, j) such that i ∈ [n], j ∈ Z, i < j, and π(i) > π(j). Then
the dimension of Sπ equals k(n− k)− inv(π).

Definition A.2. A planar bicolored graph (or “plabic graph”) is a planar graph G properly
embedded into a closed disk, such that each internal vertex is colored black or white; each
internal vertex is connected by a path to some boundary vertex; there are (uncolored) vertices
lying on the boundary of the disk labeled 1, . . . , n for some positive n; and each of the
boundary vertices is incident to a single edge. See Figure 13 for an example.

1

2

34

5

Figure 13. A plabic graph
If the connected component of G attached to a boundary vertex i is a path ending at

a black (resp., white) leaf, we call this component a black (resp., white) lollipop. We will
require that our plabic graphs have no internal leaves except for lollipops.

There is a natural set of local transformations (moves) of plabic graphs:
(M1) Square move (or urban renewal). If a plabic graph has a square formed by four

trivalent vertices whose colors alternate, then we can switch the colors of these four vertices.
(M2) Contracting/expanding a vertex. Two adjacent internal vertices of the same color

can be merged. This operation can also be reversed.
(M3) Middle vertex insertion/removal. We can remove/add degree 2 vertices.
See Figure 14 for depictions of these three moves.

Figure 14. Local moves (M1), (M2), (M3) on plabic graphs.

Definition A.3. Two plabic graphs are called move-equivalent if they can be obtained from
each other by moves (M1)-(M3). The move-equivalence class of a given plabic graph G
is the set of all plabic graphs which are move-equivalent to G. A plabic graph is called
reduced if there is no graph in its move-equivalence in which two adjacent vertices u and v
are connected by more than one edge

Note that given a plabic graph G, we can always apply moves to G to obtain a new graph
G′ which is bipartite.

Definition A.4. Let G be a reduced plabic graph as above with boundary vertices 1, . . . , n.
For each boundary vertex i ∈ [n], we follow a path along the edges of G starting at i, turning
(maximally) right at every internal black vertex, and (maximally) left at every internal white

Figure 14. Local moves (M1), (M2), (M3) on plabic graphs

Definition A.3. Two plabic graphs are calledmove-equivalent if they can be obtained
from each other by moves (M1)-(M3). The move-equivalence class of a given plabic
graph 𝐺 is the set of all plabic graphs which are move-equivalent to 𝐺. A plabic graph
is called reduced if there is no graph in its move-equivalence in which two adjacent
vertices 𝑢 and 𝑣 are connected by more than one edge
Note that given a plabic graph 𝐺, we can always apply moves to 𝐺 to obtain a new

graph 𝐺′ which is bipartite.

Definition A.4. Let 𝐺 be a reduced plabic graph as above with boundary vertices
1, . . . , 𝑛. For each boundary vertex 𝑖 ∈ [𝑛], we follow a path along the edges of 𝐺
starting at 𝑖, turning (maximally) right at every internal black vertex, and (maximally)
left at every internal white vertex. This path ends at some boundary vertex 𝜋(𝑖). By
[Pos06, Section 13], the fact that 𝐺 is reduced implies that each fixed point of 𝜋 is at-
tached to a lollipop; we color each fixed point by the color of its lollipop. In this way
we obtain the decorated permutation 𝜋𝐺 = 𝜋 of𝐺. We say that𝐺 is of type (𝑘, 𝑛), where
𝑘 is the number of anti-exceedances of 𝜋𝐺 .
The decorated permutation of the plabic graph 𝐺 of Figure 13 is 𝜋𝐺 = (3, 4, 5, 1, 2),

which has 𝑘 = 2 anti-exceedances.
Definition A.5. Let 𝐺 be a bipartite plabic graph. Use move (M3) to ensure that each
boundary vertex is incident to a white vertex. An almost perfect matching𝑀 of a plabic
graph 𝐺 is a subset𝑀 of edges such that each internal vertex is incident to exactly one
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edge in𝑀 (and each boundary vertex 𝑖 is incident to either one or no edges in𝑀). We
let 𝜕𝑀 = {𝑖 | 𝑖 is incident to an edge of𝑀}.

We associate to each graph𝐺 as above a collection of subsetsℳ(𝐺) ⊂ [𝑛] as follows.

Proposition A.6 ([Pos06, Proposition 11.7, Lemma 11.10]). Let 𝐺 be a plabic graph
as in Definition A.5, and letℳ(𝐺) = {𝜕𝑀 | 𝑀 an almost perfect matching of 𝐺}. Then
ℳ(𝐺) is the set of bases of a positroid on [𝑛]. Its rank is

#{white vertices of 𝐺} − #{black vertices of 𝐺},

which is the size of 𝜕𝑀 for any almost perfect matching𝑀 of 𝐺.

Postnikov used plabic graphs to give parameterizations of cells of Gr≥0𝑘,𝑛. These pa-
rameterizations of cells can be recast as a variant of a theorem of Kasteleyn, as was
made explicit in [Spe16]. We follow the exposition there.

Theorem A.7 ([Spe16]). Let 𝐺 be a bipartite graph with boundary embedded in a disk,
such that all of the boundary vertices are black. Suppose there are 𝑁 + 𝑘 white vertices
𝑊1, . . . ,𝑊 𝑁+𝑘, 𝑁 internal black vertices 𝐵1, . . . , 𝐵𝑁 , and 𝑛 boundary vertices 𝐵𝑁+1, . . . ,
𝐵𝑁+𝑛, labeled in clockwise order. Let 𝑤 ∶ Edges(𝐺) → ℝ>0 be any weighting function;
if there is an edge between vertices 𝑖 and 𝑗, we denote the weight on this edge by 𝑤𝑖𝑗 . For
a perfect matching𝑀, define 𝑤(𝑀) = ∏𝑒∈𝑀 𝑤(𝑒) and define 𝜕𝑀 to be the indices of the
boundary vertices covered by an edge in𝑀. For a subset 𝐼 of {𝑊 𝑁+1, . . . ,𝑊 𝑁+𝑛}, define
𝔻(𝐺, 𝐼, 𝑤) = ∑𝜕𝑀=𝐼 𝑤(𝑀).
Then there is a real 𝑘 × 𝑛 Kasteleyn matrix 𝐿 such that for each 𝑘-element subset 𝐼 of

𝜕𝐺, the determinant det 𝐿𝐼 of the 𝑘 × 𝑘 submatrix of 𝐿 using the columns indexed by 𝐼 is
det 𝐿𝐼 = 𝔻(𝐺, 𝐼, 𝑤). In particular, all Plücker coordinates of 𝐿 are nonnegative.

The positroid cell 𝑆𝐺 ⊂ Gr𝑘,𝑛 associated to the plabic graph 𝐺 is the set of all 𝑘-
planes in ℝ𝑛 spanned by matrices 𝐿 as in Theorem A.7. If 𝐺 is a tree, we call 𝑆𝐺 a tree
positroid.

RemarkA.8. The Kasteleyn matrix 𝐿 is constructed as follows. First construct an (𝑁 +
𝑘)×(𝑁+𝑛)matrix𝐾, with rows indexed bywhite vertices and columns indexed by black
vertices, with 𝐾𝑖𝑗 = ±𝑤𝑒 if there is an edge 𝑒 between vertices 𝑖 and 𝑗 (otherwise 𝐾𝑖𝑗 =
0). Then, assuming 𝐺 has at least one perfect matching, we can apply row operations

to transform 𝐾 into a matrix of block form (Id𝑁 ⋆
0 𝐿).
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