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THE m = 2 AMPLITUHEDRON AND THE HYPERSIMPLEX: SIGNS,
CLUSTERS, TILINGS, EULERIAN NUMBERS

MATTEO PARISI, MELISSA SHERMAN-BENNETT, AND LAUREN K. WILLIAMS

ABSTRACT. The hypersimplex Ay, , is the image of the positive Grassmannian
Grigl’n under the moment map. It is a polytope of dimension n—1 in R". Meanwhile,
the amplituhedron A, i »(Z) is the projection of the positive Grassmannian Griﬁl into

the Grassmannian Gry i, under a map Z induced by a positive matrix Z € Matzgﬁ_z.
Introduced in the context of scattering amplitudes, it is not a polytope, and has full di-
mension 2k inside Gry x.,. Nevertheless, there seem to be remarkable connections be-
tween these two objects via T-duality, as conjectured by Lukowski, Parisi, and Williams
[Int. Math. Res. Not. (2023)]. In this paper we use ideas from oriented matroid the-
ory, total positivity, and the geometry of the hypersimplex and positroid polytopes to
obtain a deeper understanding of the amplituhedron. We show that the inequalities
cutting out positroid polytopes—images of positroid cells of Grf?_l,n under the moment
map—translate into sign conditions characterizing the T-dual Grasstopes—images of
positroid cells of Grfgl under Z. Moreover, we subdivide the amplituhedron into cham-
bers, just as the hypersimplex can be subdivided into simplices, with both chambers
and simplices enumerated by the Eulerian numbers. We use these properties to prove
the main conjecture of Lukowski, Parisi, and Williams [Int. Math. Res. Not. (2023)]:
a collection of positroid polytopes is a tiling of the hypersimplex if and only if the col-
lection of T-dual Grasstopes is a tiling of the amplituhedron A,, i ,(Z) for all Z. More-
over, we prove Arkani-Hamed-Thomas-Trnka’s conjectural sign-flip characterization
of Ay k2, and Lukowski-Parisi-Spradlin-Volovich’s conjectures on m = 2 cluster ad-
Jjacency and on positroid tiles for Ay, i , (images of 2k-dimensional positroid cells which
map injectively into Ay, i ,). Finally, we introduce new cluster structures in the ampli-
tuhedron.
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10. Eulerian numbers: w-Simplices in Ay, , and w-chambersin A, j ,
11. T-duality and positroid tilings B78
12. Schrdder numbers: Separable permutations and positroid tiles B9l
Appendix A. Combinatorics of the totally nonnegative Grassmannian

1. INTRODUCTION

1.1. Context. This article concerns the interaction between algebraic combinatorics
and high energy physics, particularly scattering amplitudes. In a quantum field theory,
scattering amplitudes are the probability amplitudes for fundamental particles to in-
teract in a scattering process. They are central to understanding both salient features
of the physical theory and experimental data from particle colliders. In a seminal work
[AHT14], physicists Arkani-Hamed and Trnka introduced the amplituhedron A, i ,,
which is a subset of the real Grassmannian Gry x ., of k-planes in RK+™_ The ‘volume’
of the m = 4 amplituhedron encodes the scattering amplitudes of maximally super-
symmetric Yang-Mills (N" = 4 SYM), a close cousin of the theory of strong interactions
of quarks and gluons. The m = 2 amplituhedron is also connected to scattering ampli-
tudes (at the subleading order in perturbation theory) and to correlation functions in
N = 4 SYM theory [KL20,CHCM23]. A novel way to compute N = 4 SYM scattering
amplitudes is by ‘tiling’ A, y ,,—that is, decomposing the amplituhedron into smaller
‘tiles’—and summing the ‘volumes’ of the tiles.

While its motivation comes from physics, the amplituhedron A,, i , is mathemati-
cally very rich: it interpolates between cyclic polytopes (when k = 1) on the one hand,
and the positive Grassmannian (when k = n — m) on the other. Cyclic polytopes and
their triangulations have been extensively studied in polyhedral geometry going back
to Carathéodory [Carl11] (see also [Ram97]). Meanwhile, the positive Grassmannian is
a prototypical example of the “positive part’ of a cluster variety [Pos06,Sco06, FZ02]. In
this paper we focus on the m = 2 amplituhedron A,  ,, exploring both its ‘tilings’ (the
appropriate generalization of triangulations) and its connection to cluster algebras. In
particular, we prove that tilings of the amplituhedron A, j , are in bijection with tilings
of the hypersimplex Ay, , by positroid polytopes; this result together with [EPW2(]
suggests that the positive tropical Grassmannian [SWO05] plays the role of ‘secondary
polytope’ in governing the tilings of A,, ; ,. Our result also connects the amplituhedron
to a beautiful body of work on matroid subdivisions of the hypersimplex that dates back
to Gel'fand-Goresky-MacPherson-Serganova [GGMS87], see also [Laf03, Spe0§]. In a
different direction, we associate a cluster algebra [FZ02] to each tile for A, x ,, and
show that the tile can be viewed as the positive part of a cluster variety. This proves the
cluster adjacency conjecture for A, j , and provides a novel connection between the
amplituhedron, total positivity, and cluster algebras.

1.2. Results. The positive GrassmannianQ Griﬂl is the subset of the real Grassman-

nian Gry , where all Pliicker coordinates are nonnegative [Pos06d, Rie98, Lus94]. This
is a remarkable space with connections to cluster algebras, integrable systems, and

IMore formally, the totally nonnegative Grassmannian.
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high energy physics [FZ02, Sco0d, KW14, AHBC*16], and it has a beautiful CW de-
composition into positroid cells S, which are indexed by various combinatorial objects
including decorated permutations 7 [Pos06].

There are several interesting maps which one can apply to the positive Grassman-
nian Gri,on and its cells. The first map is the moment map u, initially studied by
Gel'fand-Goresky-MacPherson-Serganova [GGMS87] in the context of the Grassman-
nian and its torus orbits, who showed that the image of the Grassmannian is the hy-
persimplex Ay , C R", a polytope of dimension n — 1. When one restricts u to Gri’on,
the image is still the hypersimplex [TW13].

The second map is the amplituhedron map, introduced by Arkani-Hamed and Trnka
[AHT14] in the context of scattering amplitudes in N' = 4 SYM. In particular, any
n x (k + m) matrix Z with maximal minors positive induces a map Z from Gri,on to the
Grassmannian Gry yp,, Whose image has full dimension km and is called the ampli-
tuhedron Ay, . m(Z).

Given any surjective map ¢ : Grfﬁl — X where dimX = d, it is natural to try to
decompose X using images of positroid cells under ¢. This leads to Definition [.1.2

Definition 1.1. Let ¢ : Gri’on — X be a continuous surjective map where dimX =
d. A positroid tiling of X (with respect to ¢) is a collection {¢(S,)} of images of d-
dimensional positroid cells such that

+ ¢ is injective on each S, from the collection

« pairs of distinct images ¢(S,) and ¢(S,+) are disjoint

« Up(Sz) =X.

When ¢ is the moment map, the (closures of the) images of the positroid cells S,; are
the positroid polytopes T, [TW15], so a positroid tiling of the hypersimplex is a decom-
position into positroid polytopes. When ¢ is the amplituhedron map Z, the (closures
of the) images of the positroid cells S, are Grasstopes Z,, which were first studied in
[AHT14] as the building blocks of conjectural tilings of the amplituhedron. Note that
neither the amplituhedron nor the Grasstopes are polytopes.

At first glance, the (n — 1)-dimensional hypersimplex Ay 4, , C R" doesn’t seem to
have any relation to the 2k-dimensional amplituhedron A, y »(Z) C Gry j4,. Never-
theless, the recent paper [EPW2(] showed that there are surprising parallels between
them. In particular, they showed that T-duality gives a bijection between loopless cells
S, of Grigl,n and coloopless cells S; of Gri’on, and conjectured that T-duality gives a
bijection between positroid tilings {I’;} of the hypersimplex Ay, ,, and positroid tilings
{Z#} of the amplituhedron A, j »(Z). [EPW20] proved this conjecture for infinitely
many tilings—specifically, the positroid tilings of A},  »(Z) obtained from a BCFW-like
recurrence [BH19].

In this paper we use twistor coordinates and the geometry of the hypersimplex and
positroid polytopes to obtain a deeper understanding of the amplituhedron. We prove
the conjecture of Lukowski-Parisi-Spradlin-Volovich [EPSV19] classifying positroid

2There are many reasonable variations of Definition [Z]. One might want to relax the injectivity assump-
tion, or to impose further restrictions on how boundaries of the images of cells should overlap. Note that in
the literature, positroid tilings are sometimes called (positroid) triangulations. We avoid this terminology in
order to avoid confusion with the notion of e.g. polytopal triangulations.
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tiles, full-dimensional images of positroid cells which map injectively into the ampli-
tuhedron A, ;. ,(Z). We then give a new characterization of them in terms of the signs
of their twistor coordinates. We use this result to prove a conjecture of Arkani-Hamed-
Thomas-Trnka that A, y ,(Z) can be characterized using sign flips of twistor coordi-
nates. And we prove two results relating the amplituhedron to cluster algebras. First,
we prove the cluster adjacency conjecture [EPSV19] for A, ;. »(Z), which says that the
Pliicker coordinates labeling facets of a given positroid tile consist of pairwise compat-
ible cluster variables. We also state and prove a generalization of this conjecture by
showing that twistor coordinates of a positroid tile associated to Pliicker coordinates
compatible with the ones labeling its facets have constant sign. Second, we associate a
cluster variety to each positroid tile in A}, i ,(Z) C Gry x2, and show that the positroid
tile is the totally positive part of that cluster variety. We then have the novel phenom-
enon that the 2k-dimensional amplituhedron A, ;. ,(Z) can be decomposed into (";2)
2k-dimensional positroid tiles, each of which is the totally positive part of a cluster
variety. (Moreover, there are many such decompositions.)

Additionally, we draw striking parallels between Ay, , and A,y »(Z), some of
which are illustrated in [Table 1. We find that the inequalities describing positroid
polytopes translate into sign conditions on twistor coordinates characterizing the cor-
responding Grasstopes. And we show that the sign patterns on twistor coordinates
naturally subdivide the amplituhedron into chambers. We prove that the ones which
are realizable are exactly enumerated by the Eulerian numbers Ey ,,_, just as the hy-
persimplex can be subdivided into simplices enumerated by Ey ,,_;. We use these prop-
erties to prove the main conjecture of [EPW20]: a collection of positroid polytopes is a
positroid tiling of Ay 4 , if and only if the collection of T-dual Grasstopes is a positroid
tiling of A, y »(Z) for all Z.
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1.3. Connections to physics. Let us now explain how the various geometric objects
in our story are related to scattering amplitudes. In the last fifteen years, it was grad-
ually realized that the Grassmannian, and in particular, the positive Grassmannian,
can be used to encode most of the physical properties of scattering amplitudes in pla-
nar N = 4 super Yang-Mills [AHCCKI(, BMS10, AHBC*16]. Building on these de-
velopments and on Hodges’ idea that the amplitude should be the ‘volume’ of some
‘polytope’ [Hod13], Arkani-Hamed and Trnka defined the amplituhedron A, i ,,(Z)
[AHT14].

The object most relevant to physics is the m = 4 amplituhedron A, y 4(Z): in this
case, the amplituhedron can be tiled by ‘BCFW cells’ [EZLT21], which implies that
the amplituhedron recovers the Britto-Cachazo-Feng-Witten recurrence [BCFWO03] for
computing scattering amplitudes. Meanwhile, the m = 2 amplituhedron governs the
geometry of planar ' = 4 SYM amplitudes at the subleading order in perturbation
theory (‘one-loop’) of some sectors of the theory, specifically the MHV’ and ‘NMHV’
sector [KL20]. It also encodes scattering amplitudes for a Gaussian model on a super-
line [CHCM23], and it is related to correlation functions of determinant operators in
N =4SYM.

Scattering amplitudes in planar V' = 4 SYM enjoy a remarkable duality called ‘Am-
plitude/Wilson loop duality’ [[AR08], which was shown to arise from a more funda-
mental duality in String Theory called ‘T-duality’ [BMO08]. The geometric counterpart
of this fact is a conjectural duality between collections of 4k-dimensional ‘BCFW’ cells
of Gri,on which give positroid tilings of the m = 4 amplituhedron A, x 4(Z), and cor-
responding collections of (2n — 4)-dimensional cells of Gr,f?rz,n which give positroid
tilings of the momentum amplituhedron M, j » [DFLP19, EPW20]. This duality was
evocatively called T-duality in [EPW20] and conjectured to generalize for any (even)
m. The present paper explores T-duality for m = 2, showing that questions about the
m = 2 amplituhedron can be reduced to questions about the hypersimplex.

One recent trend in physics is the connection between analytic properties of scatter-
ing amplitudes and cluster algebras [FZ02]; these connections have led to both compu-
tational and theoretical advances [GGS*14, DFG18, DFG19, EPSV19, GP20, MSSV20,
HL21]. In this paper, we use twistor coordinates to prove (and generalize) the conjec-
ture of Lukowski-Parisi-Spradlin-Volovich [EPSV19] about m = 2 cluster adjacency
and probe new cluster structures in the amplituhedron.

Our result that Eulerian numbers count sign chambers of the m = 2 amplituhedron
is intriguing because Eulerian numbers have also come up in the context of scattering
equations [CHY13]. Scattering equations connect the singularity structure of scatter-
ing amplitudes of n-particles to that of the boundaries of the moduli space of Riemann
spheres with n punctures. For N' = 4 SYM, the number of solutions of the ‘N*MHV’
sector of the theory is exactly the Eulerian number Ej ,,_; [SV09, CHY13]. Moreover,
[CMZ17] provided an explicit bijection between such solutions and permutations on
[n— 3] with k descents. Finally, in the case of certain scalar quantum field theories, the
authors of [CEGM19] formulated a generalization of scattering equations. By studying
‘arrays of Feynman diagrams’, they made connections to the positive tropical Grass-
mannian, and, by results of [EPW20], to the hypersimplex. It would be fascinating to
explore possible relations between (generalized) scattering equations, simplices of the
hypersimplex, and chambers of the amplituhedron.
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We note that some of the ideas used in this paper can be applied to amplituhedra
for other m, and to the momentum amplituhedron; we will pursue this in a separate
work.

1.4. Structure of the paper. The structure of this paper is as follows. In we
give background on the positive Grassmannian and the amplituhedron. In
we define twistor coordinates for the amplituhedron, and define the sign stratification
of A, k.m(Z), which is analogous to the oriented matroid stratification of the Grass-
mannian. In we study positroid tiles of A, x ,(Z): we prove a conjecture of
Lukowski-Parisi-Spradlin-Volovich characterizing tiles in terms of bicolored subdivi-
sions of a polygon, and we give an inequality description of tiles in terms of signs of
twistor coordinates. In we prove Arkani-Hamed-Thomas-Trnka’s conjec-
tural description of A, x ,(Z) in terms of sign flips of twistor coordinates. In
we introduce a generalization of the m = 2 cluster adjacency conjecture of [EPSV19]
and define a cluster variety for each positroid tile. In we give background
on the hypersimplex, T-duality, and positroid tilings of the hypersimplex. In Section §,
we describe T-duality as a map on decorated permutations and plabic graphs. In
we discuss the close parallel between the inequality descriptions and facets of
positroid tiles in Ay, , and the T-dual positroid tiles in A, j ,(Z). We also prove (a gen-
eralization of) the m = 2 cluster adjacency conjecture. In we show how the
subdivision of Ay, , into w-simplices corresponds to the decomposition of A, x »(Z)
into w-chambers, where in both cases w ranges over a set of permutations enumerated
by the Eulerian number. In we use this correspondence to prove the main
conjecture of [EPW20] about positroid tilings. We also present algorithms to find tilings
of Agy1,, and A, i »(Z) based on w-simplices and w-chambers, and we show some ex-
amples. We also explain other combinatorial manifestations of this correspondence.
In we prove that positroid tiles are enumerated by a refinement of Schréder
numbers via a bijection with separable permutations. gives background

on the combinatorics of the positroid cell decomposition of Gri,on.

2. THE POSITIVE GRASSMANNIAN AND THE AMPLITUHEDRON

2.1. The Grassmannian and positive Grassmannian. The (real) Grassmannian
Gry ,, is the space of all k-dimensional subspaces of R", for 0 < k < n. An element
of Gry, can be viewed as a k X n matrix of rank k, modulo left multiplication by in-
vertible k X k matrices. That is, two k X n matrices of rank k represent the same point
in Gry , if and only if they can be obtained from each other by invertible row opera-
tions. For C a full-rank k X n matrix, we will often abuse notation and write C € Gry,,
identifying C with its rowspan.

Let [n] denote {1,...,n}, and ([Z]) the set of all k-element subsets of [n]. We embed
Gry,, into projective space P(AKR™) in the usual way. That is, choose V € Gry , and
any representative matrix C with rows Cy, ..., Ci,. We map V to the equivalence class of
C} A -+ A Cy in P(A¥R™). This equivalence class depends only on V, not on the choice
of C.

The embedding V' — C; A --- A Cy gives a natural choice of coordinates for the
Grassmannian. Let {e;, ..., e,} be the standard basis of R”, and for I = {i; <i, < --- <
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i} C ([Z]), let By == e;; A -+ Aej, . Writing Cy A -+ A Cy in terms of the Ey, we obtain

2.1) CiA-ACc= D, pr(V)Er € AKRM),

1e()
where p;(V) is the maximal minor of C located in column set I. The p;(V) are the
Pliicker coordinates of V, and are independent of C (up to simultaneous rescaling by a

constant).
We will also use the notation (Cy, ..., Cy) for C; A --+ A Cy.

Definition 2.2 ([Pos06, Section 3]). We say that C € Gry, is totally nonnegative if
p;(C) > 0foralll € ([Z]), and totally positive if p;(C) > 0 forall I € ([Z]). The set of all
totally nonnegative C € Gry, is the totally nonnegative Grassmannian Gri,on, and the
set of all totally positive C is the totally positive Grassmannian Gr;ﬁl. For M C ([Z]),
the positroid cell S, is the set of C € Grig1 such that p;(C) > 0 forallT € M, and
p;(C) =0forallJ ([Z]) \ M. We call M a positroid if S, is nonempty. We let Q(k, n)
denote the poset on the cells of Gri,on defined by S,; < S, if and only iff 5, C Soer-

Remark 2.3. The positive and nonnegative part of a flag variety G/P was first intro-
duced by Lusztig [Lus94] (who gave a Lie-theoretic definition of (G/P). and defined
(G/P)sq = (G/P)s), and proved to have a cell decomposition by Rietsch [Rie9§]. Post-
nikov [Pos06] subsequently defined the nonnegative part of the Grassmannian as in
Definition 2.2, and independently gave the above decomposition into cells. From the
beginning it was believed by experts that Postnikov’s definition of Grfﬁl should agree
with Lusztig’s (in the case G/P is the Grassmannian); this was first proved by Rietsch
[Rig], and reproved in [TW13, Corollary 1.2], where the authors additionally proved
that the two cell decompositions coincide. Two subsequent proofs that the two defini-
tions of Grion coincide were given in [Lam16b, Lus19].

There are many ways to index the positroid cells of Grf’on [Pos06], including dec-
orated permutations 7, affine permutations f, and plabic graphs G. We will refer to
the corresponding positroid cells using the notation S, S¢, Sg. For background, see
Appendix Al.

2.2. The amplituhedron. Building on [AHBC*16], Arkani-Hamed and Trnka
[AHT14] introduced a new mathematical object called the (tree) amplituhedron, which
is the image of the totally nonnegative Grassmannian under a particular map. In what
follows, we let Matzg, denote the set of n X p matrices whose maximal minors are pos-
itive.

Definition 2.4. Choose positive integers k < n and m such that k + m < n, and let
Ze Matzsﬁm. Then Z induces a map Z : Grion — Gy j+m defined by

Z((ers-.orcx)) = (Z(c1)s .., Z(c))-

Equivalently, if C is a matrix representing an element of Griﬁl, then Z(C) is defined
to be the element of Gry ., represented by the matrix CZ. The (tree) amplituhedron

Ap.ie.m(Z) is defined to be the image Z(Grfgl) inside Gry k4.

3Here, and in what follows, we use closure in the Hausdorff topology.
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The fact that Z has positive maximal minors ensures that Z is well-defined [[AHT14].
See [Kar17, Theorem 4.2] for a necessary and sufficient condition (in terms of sign-
variation) for a matrix Z to give rise to a well-defined map Z. The amplituhedron
A k,m(Z) has full dimension km inside Gry j4 -

In special cases the amplituhedron recovers familiar objects. If Z is a square matrix,
i.e. k+m = n, then A,y ,,(Z) is isomorphic to the totally nonnegative Grassmannian.
Ifk = 1, Ap1,m(Z2) is a cyclic polytope in projective space P™ [Stu88]. If m = 1, then
A k1(Z) can be identified with the complex of bounded faces of a cyclic hyperplane
arrangement [KW19].

We will consider the restriction of the Z-map to positroid cells in Grfﬁl.

Definition 2.5. Fixk, n, mwithk+m < nandchooseZ € MatZSCJr m- Given a positroid

cell S, of Grigl, we let Z3 = Z(S,) and Z, = Z(S,) = Z(S,), and we refer to Z2 and
Z, as open Grasstopes and Grasstopes, respectively. We call Z,. and Z;, a positroid tile
and an open positroid tile for Ay, . ,,(2) if dim(S;) = km and Z is injective on S.

Definition 2.6. Let Z, be a Grasstope of A, y ,,(Z). We say that Z,, is a facet of Z,, if it
is maximal by inclusion among the Grasstopes satisfying the following three properties:

« the cell S,/ is contained in E
» Z,s is contained in the boundary 67,
» Z, has codimension 1 in Z,.

Remark 2.7. By [Lam16b, Proposition 15.2], Z(S,) = Z(S,).

If k = 1and m = 2, the amplituhedron A,,; ,(Z) is a convex n-gon in P?. The
positroid tiles are exactly the triangles on vertices of the polygon.

Images of positroid cells under the map Z have been studied since the introduction
of the amplituhedron. In particular, Arkani-Hamed and Trnka [AHT14] conjectured
that the images of certain BCFW collections of 4k-dimensional cells in Gri,on give a
positroid tiling of the amplituhedron A, y 4(Z). Positroid tiles were called generalized
triangles in [EPSV19]. The terminology of Grassmann polytopes to describe images of
positroid cells in the amplituhedron was used in [Lam16H]. For brevity, we prefer the
term Grasstopes.

Remark 2.8. While the definition of the amplituhedron A, y ,(Z) depends on a choice
of Z € MatZ’Oker, it is believed that many of its combinatorial properties do not de-

pend on this choice. For example, whether or not Z(S,) is a positroid tile should be
independent of the choice of Z; we will see that this is true in in the case
that m = 2. It is also believed that whether or not a collection of cells in Gri,on gives a
positroid tiling of A, i ,,,(Z) should be independent of Z.

Remark 2.9. We note that matrices whose maximal minors are positive (or nonnega-
tive) have a twisted cyclic symmetry. If Z € Matzg, with n > p hasrows Z1,2,,...,Z,,
and if we let Z; denote (—1)P~1Z;, then the matrix with rows Z,, ..., Z,, Z; also lies in
Matzg,. Similarly for the matrix with rows Zs, ..., Z,, 21, 2,, etc.

4We will use the ‘hat’ notation " also in the context of T-duality with a different meaning. It will be always
clear from context which one we mean.
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2.3. Previous work on the m = 2 amplituhedron. The original paper [AHT14]
gave a conjectural positroid tiling {Z;} of A, x ,(Z). [KWZ20] proved that the above
collection consists of positroid tiles, that is, Z is injective on the corresponding positroid
cells. A BCFW-style recursion for positroid tilings of A}, x ,(Z) was also conjectured in
[KWZ20]; the fact that this recursion indeed produces positroid tilings was proved in
[BH19]. A conjectural classification of m = 2 positroid tiles was given in [EPSV19].

Meanwhile, [AHTT18] gave a conjectural alternative description of A, x »(Z) in
terms of sign flips of twistor coordinates; they gave a proof sketch of one direction of
the conjecture, and an independent proof of the same direction was given in [KW19].
In a different direction, [Euk19] gave a conjectural description of the boundaries of the
m = 2 amplituhedron. Finally, [EPW20] discovered a link between the m = 2 ampli-
tuhedron and the hypersimplex via T-duality and the tropical positive Grassmannian,
which inspired the present paper.

3. THE SIGN STRATIFICATION OF THE AMPLITUHEDRON

In this section we introduce twistor coordinates for the amplituhedron A, x ,,,(2),
and we use them to define the sign stratification of the amplituhedron. We also intro-
duce terminology for sign variation and sign flips. We will subsequently use twistor
coordinates to prove a sign flip description of A, x , in Theorem 5.1, to characterize
positroid tiles, and to describe Grasstopes.

The definitions and results in this section hold for any positive m. The subsequent
sections of the paper are mostly concerned with m = 2. However, many of our tech-
niques can be applied to other m, in particular m = 4; we plan to investigate this in a
separate paper.

Twistor coordinates were first considered in [AHT14], and subsequently used in
[AHTT18] to give a conjectural ’sign flip’ description of the amplituhedron. In the case
m = 1, [KW19, Corollary 3.19] studied the sign stratification and proved a sign flip
description of A, . 1(2).

3.1. Twistor coordinates for A, ; ,,.

Definition 3.1. Fix positive k < n and m such that k + m < n. Choose Z € Matigﬁm
and denote its rows by Zi,...,Z, € R¥*™  Given a matrix Y with rows yy,...,yx
representing an element of Gry k., and iy, ..., 1, a sequence of elements of [n], we
let
<YZi1Zi2 "'Zim> = <y1, ’yk’Zil’ ’Zim>

denote the determinant of the (k + m) X (k + m) matrix whose rows are yy, ..., i, Zj,
s Zi . We call(YZ, Z;, ... Z; ) a twistor coordinate. We abbreviate (YZ, Z;, ... Z;, )
by writing (Yi,i, ...1,,), when Z is understood.

Note that the twistor coordinates are a subset of the Pliicker coordinates of the
(k + m) x (k + n) matrix whose columns are yy,...,Yk,Z1,.--,Zy. There is also an
interpretation of the twistor coordinates as Pliicker coordinates in Gr,, ,, as we ex-
plain in Proposition 3.3. In the context of scattering amplitudes of n particles in SYM
theory, Gry, , is the space of momentum twistors® for m = 4, which is why we call

SMomentum twistors, introduced by Hodges in [Hod13], are points z;, ..., z, in P3 encoding the kine-
matic data of scattering particles. Due to dual conformal symmetry of scattering amplitudes in SYM theory,
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the coordinates from twistor coordinates. Remarkable connections be-
tween scattering amplitudes and the cluster algebra associated to the Grassmannian
Gr,,, were discovered in these coordinates [GGS*14].

The fact that the twistor coordinates uniquely determine points of the amplituhe-
dron can be deduced from some results of [KW19].

Definition 3.2 ([KW19, Definition 3.8]). Given W € Grigm’n, we define the B-
amplituhedron

Briem(W) = {VEAW |V € Grio} C Grp(W),

where V+ € Gr,,_y , denotes the orthogonal complement of V in R” and Gr,,,(W) C
Gryy, , denotes the subset of Gry, ,, of elements X € Gr,, , with X C W.

Proposition 3.3 ([KW19, Lemma 3.10, Proposition 3.12]). Fixk,n,mand Z as in
andletW € Grigm,n be the column span of Z. Then the map

Iz Grp(W) = Gry kams
X Z(XY) ={Z(x) | x € X'} = rowspan(X*2Z) == Y

is an isomorphism. Here X* € GIp_m,n denotes the orthogonal complement of X in R".
Moreover, for X € Gr,,,(W), Y = fz(X),and I = {i; < --- < i} C [n], we have

(3.4) pI(X) = <YZi1 . ‘Zim>
(where we view Pliicker and twistor coordinates as coordinates on points in projective
space).

Finally, f7 : Bpkm(W) = Ay j.m(Z) is a homeomorphism sending VN W +— Z(V).

From (B.4) we see that Y € Gry y, is uniquely determined by its twistor coordi-
nates.

Remark 3.5. As an alternative to we can consider the injective map ¢,
Yz GI‘k,k+m - Grm,n’
Yo YiZT = 2,
where Y+ is any matrix representing the orthogonal complement of Y. Then it’s not

hard to see that for I = {i; < -+ < iy} C [n], pi(2) = (YZ;, ...Z; ) (viewing both
Pliicker and twistor coordinates as coordinates on points in projective space).

The following expansion formula (B.7) will be useful in our proofs on positroid tiles.

Lemma 3.6. Use the notation of Definition 3.1. If we writeY € GryyymasY = CZ
with C € Gry j4,, we can write the twistor coordinates in the form

(3.7) (CZ,Zi,....2;,) = > PI(CKZy s Zy Ziys e Ziy)-
{r<--<jite(l)

Proof. Identifying the k X (k + m) matrix CZ with the corresponding element (CZ) of
AK(Ck+™), we have

(CZ) = > pr(CXZj,s..  Zjy)-
{r<-<iire(R)

these are defined up to a PGL, transformation on P3. Therefore, momentum twistors can be embedded in
Granl (C*)"~1 and scattering amplitudes are functions of Pliicker coordinates in Gry . See [GGS*T14].
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This implies the result. O

We will give a description of positroid tiles in A, x , using signs of twistor coor-
dinates. One ingredient in our proofs is the following easy sufficient condition for a
twistor coordinate to have constant sign on a Grasstope, which follows directly from

B.D.

Lemma 3.8. Fix positive k < n and m such that k + m < n. Let Sy, be a cell of Grion.

FixZ € MatZ,Oker and as usual let Zy, ..., Z, denote the row vectors of Z. Choose an
m-element subset 1 <i; <iy < - <ip, <n
« If(Zj,,.... 2}, Ziy» - Zy,,) 2 O foreachJ = {j; < - < ji} € M, then
(CZ,2;,,...,Z;,) > 0 foreach C € Sy.
o Ifin addition (Z;,,...,Zj ,Z; ..., Z;,) > 0 forsomeJ = {j; < -+ < ji} €M
then(CZ,Z;,...,Z;, ) > 0 foreach C € Sy.
3.2. The sign stratification of A, ,,. Since Y € Gry i, is uniquely determined
by its twistor coordinates, it makes sense to stratify A, y ,(Z) C Gry x4, by the signs
of the twistor coordinates. This was done in [KW19] in the case that m = 1. More-
over, this sign stratification is closely related to the oriented matroid stratification on
the Grassmannian, which partitions elements of the real Grassmannian into strata
based on the signs of the Pliicker coordinates. By Proposition 3.3, the twistor coor-
dinates of Y € A,y ,,(Z) are Pliicker coordinates on the corresponding element of
the B-amplituhedron [KW19] or amplituhedron in momentum twistor space [AHTT18],
so this sign stratification reduces to the oriented matroid stratification in momentum
twistor space.

Definition 3.9 (Amplituhedron chambers). Fix positive k < nand m such thatk+m <

n. Leto = (0;,. ., € {0,+,—}(rrrlt) be a nonzero sign vector, considered® modulo
multiplication by +1. Set

2)={Y € Apym(2) | sign{YZ;, ... Z; ) =0y i}

o
n,k,m

We call Ay ,,(Z) an (amplituhedron) sign stratum. Clearly
An,k,m(z) = Uaﬂo (Z)

n,k,m

Ifo € {+, —}(rrrlt), we call A%, . (Z) an open (amplituhedron) chamber.!

n,k,m

For m = 1, all strata are nonempty [KW19, Definition 5.2], but this is not true for
m > 1. Moreover, whether or not AJ ;. (Z) is empty depends on Z, see Section 11I.

n,k,m

g

o k.m) is realizable for

Definition 3.10. We say that a sign vector o (or sign stratum A

An je,m if Ap 1 (Z) is nonempty for some Z.

3.3. Sign variation and sign flips. Signs and sign flips will be important to our de-
scription of the amplituhedron, so we introduce some useful terminology here.

Definition 3.11. Givenv € R", let var(v) be the number of times v changes sign when
we read the components from left to right and ignore any zeros. If v € {0, +, —}"*, we
define var(v) in the obvious way.

6Pliicker and twistor coordinates are defined only up to multiplication by a common scalar.
7We borrow the word “chamber” from the theory of hyperplane arrangements.
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For example, if v := (4,—1,0,—2) € R* then var(v) = 1.

Definition 3.12. Ifv € R", or v € {+, —, 0}"*, we say that v has a sign flip in position
iif v;, v;4q # 0 and they have different signs, where indices are considered modulo n.
We define

Flip(v) = Flip(vy,...,v,) = {i | v has a sign flip in position i} C [n].

Remark 3.13. We caution the reader that | Flip(v)| may not equal var(v). For exam-
ple, the sequence (+,0,—,0,+,+,—) € {+,—,0}” has sign flips in positions {6, 7}, but
var(+,0,—,0,+,+,—) is 3.

4. POSITROID TILES OF An,k,z

Recall that a positroid tile of A,y ,(Z) is the full-dimensional image of a positroid
cell on which Z is injective. In this section, we will obtain a detailed description of the
positroid tiles of A, ;. ,(Z). The main results of this section are the following:

o In we classify the positroid tiles of A,, x ,(Z), describing them as
the Grasstopes Z&7) obtained from the 2k-dimensional positroid cells Se@)
associated to bicolored subdivisions of polygons, proving a conjecture of
[EPSV1Y]. This implies that whether or not Z(S,) is a positroid tile is inde-
pendent of the choice of Z.

« In we characterize each (open) positroid tile Z, ) 88 the subset
of Gry x4+, Where certain twistor coordinates have a fixed sign; this shows that
each positroid tile is a union of (closures of ) amplituhedron chambers.

« In we solve a kind of “inverse problem” for positroid tiles: given
anelementY € Gry y,, which lies in an open positroid tile Z, () Ve explicitly

construct an element C € Gry , whose image in A, ;,(Z)isY,ie. CZ =Y;

the entries of C are in fact twistor coordinates.

We note that the techniques that we use in this section can be extended to give a cell
decomposition of A,, i ,(Z). This will be explored in a separate paper.

1 2
9
3
8
4
7
. 5

FIGURE 1. Two equivalent bicolored triangulations J; and J; of type
(5,9), and the corresponding bicolored subdivision J°; = 7, of type
(5,9)

Definition 4.1 (Bicolored triangulations and subdivisions). Let P, be a convex n-gon
with vertices labeled from 1 to n in clockwise order. A bicolored triangulation of type
(k,n)is a triangulation of P,, where k triangles are colored black and the rest are colored
white. Two bicolored triangulations are equivalent if the union of the black triangles
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of one is equal to the union of the black triangles of the other. We represent the equiv-
alence class of a bicolored triangulation J by erasing the diagonals that separate pairs
of triangles of the same color. The resulting object 7 is a subdivision of P, into white
and black polygons, and is called a bicolored subdivision of type (k, n). See Figure 1.

Note that in a bicolored subdivision, as defined above, no two polygons of the same
color share an edge. Bicolored triangulations of type (k, n) were called k nonintersecting
triangles in a convex n-gon in [EPSV19]. We will see later (cf. Remark 8.11]) that bicol-
ored triangulations and subdivisions are special cases of the plabic tilings of [OPS15].

Given J a bicolored triangulation of type (k, n), we build a corresponding bipartite
graph G(7) as in [Figure 2, then use the recipe from [[heorem A.7 and Remark A.§ to
construct all points of the 2k-dimensional cell S of Grf,on.

Definition 4.2. Given J a bicolored triangulation of type (k, n), we build a labeled
bipartite graph G(7") by placing black boundary vertices labeled By, B,, ..., B, in clock-
wise order at the n vertices of the n-gon, and placing a trivalent white vertex in the
middle of each black triangle, connecting it to the three vertices of the triangle. We la-
bel the k white vertices by Wy, ..., W ; we will usually label them in the order specified

by Remark 4.5.

FIGURE 2. The planar bipartite graph G(7;) together with its edge-weighting

Remark 4.3. We can think of G(7) as a plabic graph (see [Definition A.J) if we enclose
it in a slightly larger disk and add n edges connecting each B; to the boundary of the
disk. We will often abuse terminology and refer to G(J) as a plabic graph. Note that

G(7) does not depend on the triangulation of the white polygons of 7.

Lemma 4.4. If two bicolored triangulations J; and J, are equivalent, then the plabic
graphs G(77) and G(J5) are move-equivalent (see Definition A.3). In other words, these
two plabic graphs represent the same cell of Griﬁl.

Proof. The fact that J; and J; are equivalent means that we can get from J7 to J; by
flipping diagonals inside the black and white polygons of 7;. A flip inside a white
polygon does not change the plabic graph, while a flip inside a black polygon cor-
responds to performing a square move on the plabic graph. So G(77) and G(J3) are
move-equivalent. O
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In light of Lemma 4.4, we let S ¢ (7 denote the cell specified by any triangulation of

TJ.

Remark 4.5. We identify each black triangle T in a bicolored triangulation J with its
three vertices a < b < c listed in increasing order. We list the k black triangles

(Tl,...,Tk) = ({al < bl < cl},...,{ak < bk < Ck})
in lexicographically increasing order, and label the white vertex inside of T; by W';.

For example, we list the five black triangles of the bicolored triangulation J; from

Figure 1 in the order
{1<7<8L{1<8<9},{2<3<4,,{2<4<7L{4<6<T7}).

We label the white vertices of G(77) in so as to reflect this ordering on black
triangles.

Definition 4.6 (Statistics of bicolored triangulations). Given a bicolored triangulation
T of type (k,n) and a pair of vertices h, j of P,,, we say that the arc h — j is:

« compatible with J" if the arc does not cross any arcs of the underlying bicolored
subdivision 7, i.e. it either bounds a polygon of 7 or it lies entirely inside a
black or white polygon;

« ablack arc of 7 if it bounds a black triangle of T

« facet-defining if it bounds a black polygon of 7 on its left.

In particular, each black arc of 7 is compatible with J°.

When h — j is compatible with J°, we let area(h — j) = area,(h — j) denote
the number of black triangles to the left of & — j in any triangulation of 7~ which uses
h - j.

For example, the arcs 1 — 8,1 — 7 and 2 — 6 are compatible with the bicolored
triangulation J° from [Figure 2, and we have area(l1 — 8) = 4, area(1 — 7) = 3,
area(2 — 6) = 2. However, the arcs 2 — 8 and 3 — 8 are not compatible with J".

We can easily write down representative matrices for points in S¢ using the the-
ory of Kasteleyn matrices. Note that matrices with the same pattern of zero/nonzero
entries appeared in [EPSV19] (though the authors did not prove there).

Proposition 4.7. Let J be a bicolored triangulation of type (k, n). We let
({ay < by <cq}heofag < bg <cd)

denote the list of k black triangles of I, written in lexicographically increasing order, as
in Remark 4.3. Choose a set of edge-weights for the graph G(J"), which we write as

(C(,,B, J/) = ((abﬁl’ YI)’ (OCZ’ﬁZ’ 7/2)7'-- 7(ak7ﬁk7 J/k)) € (R>0)3k’

with a;, B,y denoting the weights on the edges from W ; to By, By, and B, respectively.
Let My (a, B,y) = (M) be the k X n matrix with precisely 3 nonzero entries in each
row:

(4.8) Mi,ai =aqj, Mi,b,- — (_l)area(aiabi)ﬁi’ Mi,ci — (_Darea(ai—>bi)+area(bi—>ci)yi.

Then the cell Sy is the image of the map (Roo)?k — Grf’on sending (a, f,y) +
M (at, B, 7).
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Note that M+(a, 5, ¥) has rows and columns indexed by the white and black vertices
of G(7). The ij-entry is nonzero if and only if there is an edge e in G(J") between W ;
and Bj, and in that case is (up to a sign) equal to the weight of e.

Remark 4.9. Clearly the image of the map («, 8,7) = Ms(a, 8,y) is unchanged if we
rescale each row of the matrix so that the leftmost nonzero entry is 1, i.e. set each
a; = 1. This map is then a homeomorphism from (R.,)?* to the positroid cell Sé(r)-

Proof of Proposition 4.7. This follows from [Theorem A.7 and Remark A.8. For com-

pleteness, we sketch why the choice of signs of entries is correct. For a black triangle
T, ={a < b < c}of T, define

= (_1)#{j<i:ai:aj}’ €ip = Eig - (_1)area(ai—>bi)’ €ic = Eig" (_1)area(ai—>ci)+1‘

€i,a
Let (dy,...,d) be a tuple of distinct vertices of black triangles of 7 such that d; € T;.
The sign of the permutation o such that dy(;) < ... < dgk,) is the product €, g, - € g, -
Then:
piMDE; = Y Mg, Mg (eq,---reqy = D, (e14,Mra,) " (Exa,Mia,)Er.
(d1se - -dy) (d1se - -dy)
where the sum is over the collections defined above satisfying {d;, ..., d;} = I. A suf-

ficient condition for p;(M) > 0 is that sgn M; 4, = ¢; 4, Up to rescaling the row i of M
by €; q,, this is true, as area(a; — ¢;) = area(a; — b;) + area(b; — ¢;) + 1. O

Example 4.10. For example, the matrix M, corresponding to the bicolored triangu-

lation J; from is

@, 0 0 0 0 0 —B -y O
@ 0 0 0 0 0 0 B 7
(4.11) 0 a3 B3 72 0 0 0 0 o0].
0 ay 0 =B, 0 0 y 0 O
0 0 0 a 0 Bs 75 0 O

says that if we let the parameters ((¢t;, 81, 71)s - - - » (&5, B85, ¥5)) range over
all elements of (R, )", the matrices (.11]) will sweep out all points of the cell Séer)-

Remark 4.12. The matrices constructed in may have nonpositive max-
imal minors rather than nonnegative maximal minors. To obtain a matrix which has
nonnegative maximal minors, multiply row j by (—1)*</:@=a;},

Lemma 4.13. Let T = {T,..., Ty} be a bicolored triangulation of type (k,n). Then
Pp # 0 on the positroid cell S¢ .y if and only if there is a bijection ¢ : I = {iy,...,ix} —
{ny,..., T} with i a vertex of ¢(i) for all i.

Proof. It suffices to show that the Pliicker coordinate Py is nonzero on S¢ - if and only
if there is a bijection ¢ : I = {i1,..., i} = {T},..., Ty} with i a vertex of ¢(I) for all i.
By [Theorem A.7, p; # 0 on Sg, if and only if there is a matching M of G(7) such
that 9M = I. Note that any matching M of G(J") consists of k edges, obtained by pairing
each white vertex W' ; with one of its three incident black vertices {Baj »Bp;» B, }. The k
black vertices {B;,, ... ,Bik} obtained in this way must be distinct (since M is a match-
ing), so we get a bijection between I := {ij,..., i} and the black triangles Ty,..., Tj.
Moreover M = I. O
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(J

Now, we turn to the open Grasstopes Z G

and their properties.

Theorem 4.14 (Definite signs of twistor coordinates). Let J be a bicolored triangula-
tion of type (k,n) and let Y := CZ € Gry k., where C is a matrix representing a point of
the cell S¢ (7. Choose h < j such that the chord h — j is compatible with J". Then

(4.15)  sgn(YZ,Z;) = (—1)3at=D) or equivalently, (—1)3¢3=iXYZ,Z;) > 0.
In other words, we have that

(4.16) Zg( ) C{Y € Gry k42 | (B.13) holds for all arcs h — j compatible with T }.
Proof. We start by choosing a bicolored triangulation J; such that 7, = 7, and such
that the chord h — j is one of the diagonals of J;. By Lemma 4.4, the choice of 7;
does not affect the corresponding positroid cell. By Cemma 3.8, it suffices to verify
(BI3) foreach Y :=(Z;,...,Z; ) indexed by {i; < -+ < i} = I such that p; # 0on
the cell S¢ (. And by Lemma 4.13, p; # 0 on Sg( if and only if there is a bijection
¢ I={iy,....ii} = {1y, ..., Tj} with i a vertex of ¢(i) for all i.

Towards this end, choose I = {i; < --- < i} such that p; # 0 on the cell S¢ (. We
need to calculate sgn(Zil, s Zips Zn, Zj>.

Ifhelorjel, (Zil,...,Zik,Zh,Zj) = 0. So without loss of generality, we can as-
sume that h and j are not elements of I. Recall that maximal minors of Z are positive:
this means that for any ordered sequence ¢; < --- < €y, wehavesgn(Z, , ..., Z,, ) =
1. To determine sgn(Zil,...,Zik,Zh,Zj), we need to know how many swaps are re-
quired to put the sequence (iy, ..., i, i, j) in order. Any i, which is greater than both h
and j needs to get swapped past both of them, which has no effect on the sign of the de-
terminant. Any i, which is less than both h and j does not need to get swapped past ei-
ther. Each i, such that h < i, < jneeds to get swapped past h (but not j). Therefore the
parity of the number of swaps required to put the sequence (iy, .. . , i, h, j) in order is the
same as the parity of #{i, € I : h </, < j}. It follows that sgn(Z; , ..., Z; ,Zp, Z;) =
(—1)#lic€l:h<ie<]} Finally, the existence of the bijection ¢ means that #{i, € I : h <
i, < j}is the number of black triangles of J; which are to the left of h — j.

To complete the proof, we must show that there is some I € ([Z]) containing neither
h nor j such that p; is nonzero. Equivalently, we must find a matching of G(77) which
does not have h or j in its boundary. We do so by induction on the number of black
triangles of 7;. Clearly there is such a matching if G(77) has a single black triangle. If
h — jis contained in a white polygon of J7, we cut along h — j to obtain two smaller
bicolored triangulations 75 and 75. By induction, we can find matchings of G(7;) and
G(73) avoiding h and j; their union gives the desired matching of G(J;). Otherwise,
h — j is the boundary of a black triangle T, of J7. Let c be the third vertex of this
triangle. Cut J; along h — j, j - c and ¢ — h to obtain bicolored triangulations of
smaller polygons. The G plabic graphs of these bicolored triangulations have match-
ings avoiding h, j, ¢ by induction, since each smaller polygon contains exactly two of
these vertices. The union of these matchings, together with the edge from B, to W,
gives the desired matching of J;. O

The following result solves a kind of ’inverse problem:” given Y &€ ZE( 7y We can

construct a particular matrix representative C*"(Y) of Gry ,, whose image in A,  »(Z)
isY.
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Definition 4.17 (Twistor coordinate matrix). LetY € Gry ., and let 7 be a bicolored
triangulation of type (k, n) with black triangles T, ..., Tj labeled as in Remark 4.5. The
twistor coordinate matrix of Y is the k X n matrix C2¥(Y) = (Ci,j) with precisely 3
nonzero entries in each row:

(4.18) Ciq; = (Ybic;), Cip, = —(Yaicy), Cie =(Ya;by).
(Recall that e.g. (Yb;c;) is short-hand for (YZ, Z,).)

Theorem 4.19 (Inverse problem). Let I be a bicolored triangulation of type (k, n) with
black triangles Ty, ..., Ty labeled as in Remark 4.3. LetY € Zary e Y = Z(V) for
someV € S¢(ry. Then 'V is the row span of the twistor coordinate matrix C’ := C(Y).

In other words, if we let Y' = C'Z, then there is a global scalar A (a polynomial in
(Yab)’s) such that

(Y'ij)y = XYij) foralli, j.

Example 4.20. Let J; be the bicolored triangulation from [Figure 2. Theorem 4.19 says
thatif V' € Sgryand Y := Z(V) is the image of V in A, ; ,(Z), then V is the row span
of the following matrix:

(YZ7Zg) O 0 0 0 0  —YZiZg) (YZ1Z7) O
(YZsZg) O 0 R 0 —(YZ1Zo) (YZ,Zs)
0 (YZ3Z4) ~(YZyZ4) (YZ3Z3) O 0O 0 0 0
0 (YZyZ) 0  —~(YZZ7)0 0 (YZ,24) 0 0
0 0 0 (YZ6Z7) 0 ~(YZ4Z7) (YZ4Zg) 0 0
Proof. Choose a weight vector (a, 8, 7) so that the matrix C := M,(a, 3, y) from
represents V.

Consider a black triangle {a < b < c} of 7. Let W be the white vertex of G(7") in
the middle of this triangle and let the edges from W to B,, By, and B,, respectively, be
denoted e, ep, and e... Say the weights of these edges are «, 3, and y, respectively.

Choose J € (k[f]l) which does not contain a, b, or c. Then
(4.21) épju{a}(c) = %p]u{b}(c) = lPJu{c}(C)-

14

Indeed, each Pliicker coordinate is a sum of weights of matchings. Any matching M,
contributing to pjye;(C) must include an edge covering the white vertex W. Since
b,c & J U {a}, this edge must be e,. Now, M}, := M, \ {e,} U {ep} is a valid matching
because M, does not include any edges covering B;,. Moreover, the boundary of M, is
J U {b}. This is easily seen to be a bijection between matchings with boundary J uU {a}
and matchings with boundary J U {b}. It is also easy to see that wt(M,)/a = wt(Mp)/f,
so the first equality above holds. The second equality is similar.

Now, we consider the twistor coordinate

(Ybey= D) pi(CNZiysZiys o Ziyr Zn Zo)
1(y)
which is nonzero by [Theorem 4.14.

Notice that the terms in this sum indexed by I containing b or c are zero. Further,
for I n{b,c} = @, pr(C) is zero if I does not contain a. So we can rewrite (Ybc) as

1
(4.22) (Ybo)=a- ) apjua(C)<Zh,Zj2,...,Za,...ij_l,Zb,Zc>,

se(i):
{a,b,c}nJ =0
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where Z ipseesLasees L i, are ordered so the indices are increasing.
Similarly, we can write
1
(4.23) (Yaoy=B- D, % inlONZ}» 2y Zps - Zjy s Za Ze),
re({™):
{a,b,cinT =0
1
(4.24) (Yaby=y- > = pruelCXZ;» 2y Zes - Zjy_ > Zar Z).
e(iM)
{a,b,cinJ =0

Consider a nonzero term in (F.22), which is indexed by J such that pj ,(C) is non-
zero. The corresponding term in (f.23) is also nonzero. Because of the first equality in
(F27)), these two terms differ only by the sign (—1)°, where

(Z:\Zi s Zay 2

10 Ljyo jk_l’Zb’ZC> = (—1)S<Zj1,Zj2,.,.,Zb,...Z

ey Zar Ze)-
In other words, s = |[Jn[a+1,b—1]|+1=|JUa)n[a+1,b—1]] + 1. Because
J U a is the boundary of some matching, the size of (J U a) N [a + 1,b — 1] is exactly
area(a — b), and in particular does not depend on J.

Similarly, consider the term of (F.24) indexed by J. The sign difference between this

term and the corresponding one in (F.23) is (—1)°, where
(Z1 s Ziseees Ziys oo Zjy_ s Zan Ze) = (DXZ;,, 2

Jar o Jre-17 J12 g2

Zer 2

Jk-1°

ZasZp)-

It is not hard to see that s = area(b — ¢) + 1.
Altogether, we have

<Yb(.‘> =a-Q,
(Yac) = (—1)areala=b+1g. o,
(Yab) = (—1)2rea(a=b)+area(b-c),, .

where Q is a nonzero scalar. Notice that up to the factor of Q, these three twistor coor-
dinates recover the entries of C corresponding to the edges e,, e, and e.. This means
that the matrix C’ with nonzero entries

C;’aj = <YbJCJ>, ]{’bj = —(Yajcj>, C},Cj = <Yajbj>
isrelated to M (@, B, y) by rescaling rows, and so also represents the subspace V.  [J

Using [Theorem 4.19, we can show that Z is injective on Sg(.-, and moreover prove
that Z is not injective on any other 2k-dimensional positroid cells. This will prove
the conjectural characterization of positroid tiles from [EPSV19]. We note that the
injectivity of Z on S, was also proved rather indirectly in [EPW2(, Proposition 6.4]
using results of [BH19].

Theorem 4.25 (Characterization of positroid tiles). Fixk < nand Z € MatZ,OkH.
Then Z is injective on the 2k-dimensional cell Sy if and only if Sy = SG(?) for some
bicolored subdivision T of type (k, n). That is, the positroid tiles for Apk2(Z) are exactly
the Grasstopes Z Ty where T is a bicolored subdivision of type (k, n).

Corollary 4.26. Whether or not Z(S) is a positroid tile is independent of Z.
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Proof of Theorem 4.23. This proof uses some facts from Section § We first show that

all cells Se ) are positroid tiles. The cell Se © Grfg,[ is 2k-dimensional because

it is T-dual to an (n — 1)-dimensional cell in Grigl’n (see Remark 8.13) and T-duality
preserves codimension (see Proposition 8.1). Say V,V’ € Sg(, are represented by
matrices C,C’, and suppose Y := CZ, Y’ := C'Z represent the same subspace. Then by
V and V' are represented by the twistor coordinate matrices N and N’
of Y and Y’, respectively. But the twistor coordinates of Y and Y’ are the same up to a
global scalar,so V = V".

Now, suppose a 2k-dimensional cell S, is not equal to S for any T. We will
show Z is not injective on Sy.

First, suppose M has a coloop c; that is, p; is identically 0 on S, forall I € ([Z]) that
do not contain c. Then the twistor coordinate (Ycj) is identically zero on Zj3, for all j.
Indeed, in the sum

(Yep= 3, pi(CXZ; ... 2 Z2Z)),
<)
p1(C) is zero for ¢ & I and (Z;, ... Z;, Z.Z;) is zero for ¢ € I. In particular, Z3 is con-
tained in the hypersurface {Y € Gry 4, : (Yc(c + 1)) = 0}, and so has dimension at
most 2k — 1. So Z is not injective on S;.

Now, if M does not have a coloop, then S, is T-dual to an (n — 1)-dimensional cell
S, of Grfgl’n by Proposition 8.1. Because Sy is not of the form S¢(.), a plabic graph G
with trip permutation 7 is not a tree and so has at least one internal face. Since G has
n faces total, G is not connected.

Let G be a plabic graph with trip permutation 7, and say [i, j — 1], [j,[] are the
boundary vertex sets of two connected components of G. There is a single boundary
face f which isadjacenttoi—1,i, j—1and j. In the plabic graph G for S, (constructed
in [Proposition 8.8), notice that i and j are adjacent to the same black vertex, b(f). After
adding bivalent white vertices to G so that every boundary vertex is adjacent to a white
vertex, it is clear that all matchings of G have either i or j in the boundary. This means
that if I contains neither i nor j, then p; is identically zero on S,,. Just as in the coloop
case, (Yij) is identically zero on Zj,, because all terms of

Z pi(CXZ;, ... Z;, Z;Z;)
re(%)
vanish for C € S;. So Zj, is contained in a hypersurface and hence dim Z3; < 2k —
1. (I

Remark 4.27. As conjectured in [EPSV19], the number of positroid tiles for A, x , is
sequence A175124 in the OEIS [S7]], a refinement of the large Schroder numbers (see

Section 12).

Refining (B.16), we will now give an explicit description of each open positroid tile as
a subset of Gry j., where certain twistor coordinates have a definite sign. In fact, since
there are generally multiple bicolored triangulations represented by of one bicolored
subdivision 7, gives multiple descriptions of each open positroid tile -
one for each bicolored triangulation represented by 7.
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Theorem 4.28 (Sign characterization of positroid tiles). Fixk < n,m = 2, and Z €
Matzgﬁz. Let T be a bicolored triangulation of type (k, n). Then we have

Zé(y):{YEGrk,kn | sgn(Yij)=(—1)2r¢a(=0) for all black arcsi — j of T with i < j}.
Moreover, if Y € Zé(f), then C' := C}W(Y) (cf. Definition 4.17) lies in the positroid cell

Se(ry and Y and C'Z represent the same element of Gry j4.»-

In the proof of Theorem 4.28, we use the notation N;(A) := #{a € A : a < i} and
N; j(A):=#{a€ A ! i<a< j}. Wewill need the following lemmas.

Lemma 4.29. LetS € (k[ﬂ), and define wS € R" as

WS = (DN Zg\ i) ifi €S,
o lo else .

Then w* is in the left kernel of Z.

Proof. We have that

n
@HT-Z =Y Ziwf =Y (wDNOZ (Zs\i) = D ey svinZi (Zs\iip)-
ieS

i=1 ieS

From the rightmost expression, one can see that the jth coordinate of w® - Z is the
determinant of the submatrix of Z using rows S and columns 1, ..., j, j, ..., k+2, written
using Laplace expansion along column j. Therefore it is zero. O

Proposition 4.30. LetY € Gry ., and let I be a bicolored triangulation of type (k, n).
Let C = CY(Y) be the twistor coordinate matrix of Y and let Y' := C¥VZ. Then

rowspan(Y’) C rowspan(Y).

Proof. We start by writing Y = CZ, where C is a full-rank k X n matrix (we can always
do this because the linear map Z : R" — RK*2 is surjective).

Let Cy, ..., Cy be the rows of the matrix C. We will replace each row C; with a linear
combination of the rows of C and a linear combination of elements of ker(Z) to obtain
a new matrix C’; by construction, the rowspan of C’Z is contained in the rowspan of
CZ. We will show that this new matrix C’ is equal to C¥.

Specifically, let T; = {a < b < c} be a black triangle in . The ith row C; of C’ is

k
(4.31) Cl = Z 2iCi+ D, pswS, where
J=1 Se(i1h)
Aj= ) (1)IHNaDNeD o (CXZrupp,ep)

I&(%)
and pg = (~D)Na& Mo po (1 4(0),
where C; denotes the matrix obtained from C by removing row j, and we make the

convention that p4\g(C) = 0 if B is not contained in A, and (Z, ) = 0 if A intersects
B.
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Step 1. We first show that (Ybc) = Cj,. By (A.31), we have

k
(4.32) Cia= D 4iCia+ D, pswi.
= sl
Let us expand (Ybc) as:
(4.33) (Ybey = Y (=)Mo pr(CHZyyp,c)-
7e(%)

Call the terms in this sum with a € J “type A” and the other terms “type B.”
When a € J, we can compute p;(C) by Laplace expansion around column a:

k
ps(C) = D (=1)IH1+NaDpy1(C)) Cla
j=1
Inserting this into the type A terms and summing over J, we obtain the first term in
the right hand side of (£32).
For the type B terms, we can change the summation index in (£.33) from J to S =
JuU{a, b, c}, obtaining:

D (=D)NocSN@bED po b g (O Zsyay)-

Se(h)

Since a < b < ¢, we have Ny, (S \ {a,b,c}) = N, (S). This gives the second term in
the right hand side of ({.37). Hence, summing the terms of type A and type B we get
exactly Cj,.

Step 2. We will show that (Yac) = —Cj,.
Let us consider the first term (‘type A’) in the right hand side of (£.3T). We observe
that:

k
D (=DHHND pr (CHCy = pr(Ca) = (=1)Nab D p sy (C),
j=1
where C%~? is the matrix C with column a substituted with column b. Noting that
Ngp(J) + Np(J) = Ny .(J) as terms with b € J do not contribute, type A reads:

D0 (DN pr iy (CZrup,e)-
7e()
Finally, we change summation index into J' = J \ {a} U {b} and use N, .(J') = N, .(J" \
{b}u{a}) +1,asb eJ and a < b < ¢, to obtain:

(4.34) - > DN (O Zpyae
J! e([Z]) -belJ’

Let us consider the second term (‘type B’) in the right hand side of (#.31)). Using
Np(S) = Ng(S) = Ny p(S) —1and N, p(S) + Np o(S) = Ny o(S)—1,as a,b € S, type B
reads:

Do (=D)Nae® pe i b (O Zsyy)-

Se(i3h)
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Finally, we perform the change of summation index intoJ = S \ {a, b, ¢} and note that
Ngo(S) =N, (Ju{a,b,c}) =N, .(J)+1,asb ¢ Jand a < b < c. We obtain:

(4.35) - D (DN p(C)Zyyae)-
Te(!M): ber

Hence adding together (£.34) and (£.33) we immediately get —(Yac) = Cj,.
Step 3. Showing that (Yab) = Cj, is similar to the previous case.

Step 4. We will show that C;, = 0 for ¢ ¢ {a, b, c}.
Let us consider the first term (‘type A’) in the right hand side of (£.3T). We observe
that:
k

D (=1)I*FHNaD p 1 (C)Cj = pr(CO77) = (1)Nae @D py (O,
j=1

where N, ,(J) is defined as N, ,(J) if a < ¢ and N, ,(J) if ¢ < a. Then type A reads:

> (—=1)NoeD+Nae () Prauie O Zruib,cp-
76
By changing the summation index intoJ’ = J \ {a} U {¢} and noting that N}, .(J' \ {¢} U
{a}) =N, (' \{¢}) and N, ,(J" \ {¢} U {a}) = N, ,(J'), we obtain:

(4.36) > (D)o NNl p 1 (CHZprpyutabye)-
e

The Type B term can be rewritten as:

- (=)o NaeS) po ) f(CHZsviep)

Se(iis)

using (—1)Na(+Ne@®) = (_1)Nae@®+1 Indeed, Ny(S) — Ny(S) = Npo(S) + 1if € < a
and Ny(S) — Ny(S) = N, (S) + 1if € > a, since ¢,a € S. Finally, we perform the
change of variables J' = S\ {a, b, c} and note that Ny .(J' U {a,b,c}) = N}, .(J') and
N,(J'u{a,b,c}) =N, ,(J’ u{b,c}),as a < b < c, obtaining:

(4.37) — Y (C)Noel DNl Vb D b (C)(Zyn poyutab.e))

refi)
In order to complete the proof, we need to show that the sum of type A in (§.36) with
type B in (§.37) is zero. Therefore it is enough to show that:

(4.38) (=1)Nb,cUN+Na 0.} — (_1)Nb,e T \ED+Nae (")

recalling that the only terms contributing have ¢ € J' and a,b,c ¢ J'. If ¢ < b,
then N, ,(J’ U {b,c}) = N,,(J') and Ny, .(J' \ {€}) = Ny (J'). If b < ¢ < ¢, then
N, (0" u{b,c}) = Ny ,(J') +1and Ny, ((J' \ {¢}) = Np(J') — 1. Finally, if £ > c then
N, (J'u{b,c}) = Ny o(J') +2and Ny, ((J' \ {¢}) = N} (J'). Therefore ({:38) holds for
all three cases and the proof that C;, = 0 when ¢ & {a, b, c} is complete. O

Proof of Theorem 4.28. By (K.1), we just need to show the inclusion

“ry 2 {¥ € Gy | (BI3) holds for all black chords b — j of 7}
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We will do this using the twistor coordinate matrix C' := CYV(Y) for Y in the right-hand
set. First, we show that C’ € S (.. The nonzero entries of C’ correspond to the edges
of C?(j~ ). By Theorem A.7 and Remark A.§, whether or not C’ represents an element
of S¢(ry is just a question of whether or not the nonzero entries have the correct signs.
By assumption, the nonzero entries of C' have the same signs as the nonzero entries of
the matrix C” from [Cheorem 4.19. Since the matrix C” represents an element of Sy,
so does C'.

Now, let Y’ := C'Z. By Proposition 4.30, rowspan Y’ C rowspan Y. Because C' is an
element of Grigl, in fact Y’ has rank k, so the two rowspans are equal. Thus, Y = C'Z,
which shows Y € Z&.( ) ]

Remark 4.39. In the previous proof, the only place that we used the fact that the twistor
coordinates (Yhj) associated to black arcs had particular signs was in showing that the
matrix C’ that we constructed has maximal minors all nonnegative (or all nonpositive).
We will use this observation in Section 6.2, when we show that each positroid tile is the
totally positive part of a cluster variety.

Corollary 4.40. Let J be a bicolored triangulation of type (k,n). The map sending the
k x n matrix M = My (a, 3, y) from (.8) representing a point of Sy = (Ro0)?* to

Y =MZe€ Z};(f) is a bijection from Sy = (Ro0)** to Zg(f), and we have

Mip, _(Yae) and Mic,  (Ya;b)

4.41 = =
(4-41) M o, (Ybjcy) Miq,  (Ybicy)

for all black triangles {a;, b;, c;} of T. In particular, the 2k ratios of twistor coordinates
{(Yaici> (Ya;b;)
(Ybic;)’ (Ybjci)

} are algebraically independent.

Proof. Injectivity follows from [Theorem 4.25. Surjectivity follows from [[Theorem 4.2§.
Finally, (£.41) follows from Proposition 4.7 and [Theorem 4.19. [l

5. THE EQUIVALENCE OF THE TWO DEFINITIONS OF THE AMPLITUHEDRON

In this section we will give an alternative description of the amplituhedron A,, x ,(Z)
in terms of sign flips of twistor coordinates; this description was conjectured by Arkani-
Hamed-Thomas-Trnka [AHTT1S, (5.6)]. In [[AHTTI1S, Section 5.4], they sketched an
argument that all elements of A, y ,,(Z) satisfy the sign flip description; a proof using
a different argument was independently given in [KW19, Corollary 3.21]. However,
the opposite inclusion remained open. We will complete the proof for m = 2 using the
results of the previous section. Finally, we will translate the sign-flip characterization
of A, k. »(Z) into a sign-flip characterization of the B-amplituhedron B,, ; ,(W).

Recall the definition of Z; from Remark 2.9.

Theorem 5.1 (Sign-flip characterization of A, y ;). Fixk <nandZ € Matzgﬁz. Let
Fo12(Z) ={Y € Gricyesr | (YZiZ;1) > 0for1 <i<n—1, and(YZ,Z;) > 0,
and Var(<Y21Z2>, <YZ123>, e (Ylen» = k}

Then Ay 12(Z) = F y 2(2).

n

Proof. Let Ay ,(Z) :=Z(Gri31). By Remark 2.3 and Remark 2.7, A, i ,(Z) = A}, . ,(2).
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We first show that Ay, , C 77 ,(Z). Suppose that C € Griﬁl and let Y = CZ.

Choose 1 < i < n—1, and consider any J = {j; < -+ < ji} € ( ”]) Since Z has
maximal minors positive, the sign of (Z;,, ..., Zj,, Z;, Z; ;) is determined by the parity
of the number of swaps needed to put the sequence {j, ..., jk, i, i + 1} into increasing
order. Clearly this number is even, so (Z; , ..., Z;j,,Z;, Z;;1) 2 0 (with equality if J n
{i,i+1} # ¥). Therefore by Cemma 3.8, (YZ;Z; ;) > 0. The argument that (YZ,Z;) > 0
is similar, using the fact that the matrix with rows Z,, ..., Z,, Z; has maximal minors
positive. To see that Y satisfies the sign variation condition, see the proof sketch in

[AHTT1IS, Section 5.4] or [KW19, Corollary 3.21]. This implies that Ay , , C %7 »(2)

and hence Ay, C F) 2(Z)
For the other dlrectlon we will show that %7, ,(Z) C Ay ,(Z). Suppose Y €
Fk2(Z). We want to show that we can write rowspanY = rowspan CZ for some
C € Gro,.

Since (YZ,Z,) > 0, and var({YZ,2,),{YZ,Z3),...{YZ,Z,)) = k, we can find a se-
quence 1 = iy < ij < -+ < ix < n— 1such that sgn(YZ,Z;,,1) = (—1)° for all ¢;
choose the lexicographically minimal such sequence. Let J be the bicolored triangu-
lation of type (k, n) whose k black triangles have vertices {1,i,,i, + 1} for1 < ¢ < k.
By Proposition 4.3, if we let Ct¥ = Ct¥(Y) be the twistor coordinate matrix of Y, and

=CVzZ, then rowspan(Y’) C rowspan(Y). To complete the proof, we need to show
that C¥V e Grk,n, and Y’ has full rank.

Using (as in the proof of Theorem 4.2§), CV(Y) is a Kasteleyn matrix
associated to the bipartite graph obtained from G(J), as in [Figure 2. (Some of the
twistor coordinates (YZ;Z;) of Y may vanish, in which case we just erase some of the
edges of the bipartite graph.) If none of the twistor coordinates vanish,
implies that all nonzero minors of C;¥(Y) have the same sign. Erasing some of the
edges of the bipartite graph preserves this property. We now claim that CtV has full-
rank. To see this, note that if we let I := {ij, ..., i}, then p;(C¥) # 0. ThlS is because

when we restrict to columns iy, ..., iy, the only nonzero entry in column i, (for1 < ¢ <
k) is the entry (YZ,Z;, ) in row ¢, which has sign (—1)°. Therefore C}*¥ € Grfﬁ,, o)
Y’ = CtWZ has full rank. O

Corollary 5.2. Fixk < n,m =2,andZ € MatZSHZ. Forany awith1 < a < n, we

define

?n",’,iz(Z) ={Y € Gry 42 |(YZiZi11)>0for1<i<n-1, and (YZ,Z,) > 0, and
var((YZqZas1)s - AYZoZ ) (Y Zo 21, ... (Y ZyZ_1)) = k.

We have A, . »(Z) = nkZ(Z) kz(Z)

Proof. The proof is nearly the same as the one for Theorem 5.1. To adapt it, in the sec-
ond paragraph of that proof, we choose the sequence i, < i; < --- < i < n—1based on
examining the signs of the sequence ((YZ,Zy 1) .- {YZaZ)s (Y Z0Z1)s .. AY ZqZq_1)).
We then use the bicolored triangulation whose k black triangles have vertices {a, i, i, +
1}for1 < ¢ <k. O

By combining [Proposition 3.3 with Theorem 5.7 (or Corollary 5.2), we can obtain a
sign-flip characterization of the B-amplituhedron B,, ; ,(W) (see [Definition 3.2).
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Corollary 5.3. Fixk < nand W € Gryy, ,. Let
G2 (W) :={X € Gry;(W) | pji41(X) > 0for1 <i <n-—1, and p, ;(X) >0,
and var((p12(X), p13(X), ... p1n(X)) = k},
where fori < j, pj;;(X) = (—l)kpl-j(X). Then By, ;. 2(W) = Gy, 1 o(W).
The set G,, ;. ,(W) should agree with the set G from [KW19, Prop 3.20] when m = 2.

6. CLUSTER ALGEBRAS AND THE AMPLITUHEDRON

In this section, we discuss two aspects of how amplituhedra and their positroid tiles
are related to cluster algebras [FZ02]. We assume the reader has some familiarity with
the basics of cluster algebras and cluster varieties, as in [FWZ16, GHK135].

In Section 6.1], we will discuss the cluster adjacency conjecture, which says that facets
of a positroid tile for A, x ,, should be naturally associated to a collection of compatible
cluster variables in Gr,, ,,. We will prove this conjecture for m = 2 in [Theorem 9.12.

In Bection 6.7, we will prove a related but more geometric statement, which illus-
trates a new phenomenon in the setting of amplituhedra: we will associate a cluster
variety to each positroid tile of A,, ;. ,(Z) C Gry j,, and we will show that the positroid
tile is the totally positive part of that cluster variety. We then have the strange phenom-
enon that the amplituhedron A, j ,(Z) can be subdivided into (”;2) 2k-dimensional
positroid tiles, each of which is the totally positive part of a cluster variety. (In contrast,
most other geometric objects with a cluster structure have a unique top-dimensional
stratum which is the totally positive part of a cluster variety.)

6.1. Cluster adjacency. In 2013, Golden-Goncharov-Spradlin-Vergu-Volovich
[GGS™*14] established that singularities of scattering amplitudes of planar V' = 4 SYM
at loop level can be described using cluster algebras. In particular, a large class of loop
amplitudes can be expressed in terms of multiple polylogarithms whose branch points
are encoded in the so-called symbol alphabet. Remarkably, elements of this alphabet
were observed to be X-cluster variables for Gr, ,,. This enabled the powerful program
of cluster bootstrap which pushed both the computation and the understanding of the
mathematical structure of scattering amplitudes beyond the frontiers, see [CHDD*2(]
for arecent review. In 2017 Drummond-Foster-Giirdogan [DFG18] enhanced the con-
nection with cluster algebras by observing phenomena they called cluster adjacencies,
related to compatibility of cluster variables. Shortly thereafter, they conjectured that
the terms in tree-level N = 4 SYM amplitudes coming from the BCFW recursions are
rational functions whose poles correspond to compatible cluster variables of the clus-
ter algebra associated to Gr, , [DFG19]. In [MSSV19], this conjecture was extended to
all (rational) Yangian invariants, i.e. the ‘building blocks’ of tree-level amplitudes and
leading singularities of planar V' = 4 SYM.

These conjectures can be reformulated in terms of the geometry of the amplituhe-
dron A, . ,»,(Z) and the facets of its positroid tiles. This version of cluster adjacency for
the m = 2 amplituhedron was studied in [EPSV19], and for the m = 4 amplituhedron
in [GP20], where the authors made connections with leading and Landau singularities.

For each positroid tile Zg( 5 0f Ay, 1 2(2), the corresponding Yangian invariant is a
rational functionf in the twistor coordinates. A defining property of this function is

8Within the framework of positive geometries, this is the canonical function of Zeer) [AHBL17].



THE m = 2 AMPLITUHEDRON AND THE HYPERSIMPLEX 355

that it has a simple pole at (Yij) = 0 if and only if there is a facet of Z - lying on the
hypersurface {(Yij) = 0}. Let us consider the collection {(Yij)}s(,) of twistor coordi-
nates corresponding to such poles, and identify it via with a collection
of Pliicker coordinates {p;j(X)}¢ (. in the Grassmannian Gr; ,(C) (with Y the row span
of X1Z). These Pliicker coordinates are cluster variables of the type A,,_5 cluster alge-
bra associated to Gr, ,(C) [FZ03]. In this cluster algebra, p,; and p.q are compatible
cluster variables if the arcs a — b and ¢ — d in the polygon P, do not cross. The m = 2
cluster adjacency conjecture of Lukowski-Parisi-Spradlin—Volovich [EPSV19] says that
the cluster variables of Gr, ,(C) associated to the facets of a positroid tile of A,, y , are
compatible. We generalize this conjecture as follows.

Conjecture 6.1. Let Z¢ ) be a positroid tile of Ay, 1 5(Z). Each facet lies on a hypersur-
face(Yij) = 0, and the collection of Pliicker coordinates {p;j}ss) corresponding to facets
is a collection of compatible cluster variables for Gr, ,,(C).

Moreover, if py is compatible with {p;j}¢(r), then (Yhl) has a fixed sign on Z

Z?(T)'

We will prove [Conjecture 6.1 in Theorem 9.12.

We now generalize Conjecture p.]] for other m. The relevant cluster algebra is the
homogeneous coordinate ring of Gr,, ,,(C) [Sco06]. Each cluster variable is a polyno-
mial Q(py) in the ( ;‘1 ) Pliicker coordinates. Each facet of a positroid tile Z; of A,, i
lies on a hypersurface defined by the vanishing of some (often nonlinear) polynomial
Q(YZ;)) in the (::1) twistor coordinates, where we write (YZ;) for (YZ;, ... Z; ).

Conjecture 6.2 (Cluster adjacency for A, i ). Let Z, be a positroid tile of the ampli-
tuhedron Ay, x ,(Z) and let

Facet(Z,;) := {Q(p;y) | a facet of Z,, lies on the hypersurface Q{YZr)) = 0},

where Q is a polynomial in the (;‘1) Pliicker coordinates. Then

(1) Each Q € Facet(Z,) is a cluster variable for Gr,, ,,(C).

(2) Facet(Z,) consists of compatible cluster variables.

(3) If Q is a cluster variable compatible with Facet(Z,), the polynomial Q((YZ;)) in
twistor coordinates has a fixed sign on Zj,.

Positroid tiles for m = 4 are not yet characterized.2 In general, the polynomials
appearing in the sets Facet(Z,) are unknown. Moreover, for n > 8, there is no classi-
fication of the cluster variables of Gr, ;. Also note that Part (1) of isin
a similar spirit to [Lam16b, Conjecture 19.8].

6.2. Positroid tiles are totally positive parts of cluster varieties. In this subsec-
tion, we build a cluster variety V= in Gry y,(C) for each positroid tile Zgc7) Of Ank,2-

Each bicolored triangulation represented by 7 gives a seed torus of V7. We will show
that the positroid tile Z°G & is exactly the totally positive part of V.

Fix a bicolored subdivision 7~ of type (k, n), with black polygons B, ..., E.. For each
black polygon P;, fix an arc h; — j; with h; < j; in the boundary of P;. We call this
the distinguished boundary arc of P;. We will build V- by defining seeds in the field of
rational functions on Gry_j,(C).

9Conjecturally they are images of positroid cells with intersection number one [GP20], which correspond
to ‘rational’ Yangian invariants [MSSVIg].
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FIGURE 3. In orange, a bicolored triangulation J°. In black, the seed
2. The distinguished boundary arcs are 2 — 3 and 8 — 9.

Definition 6.3 (Cluster variables). Let a — b with a < b be an arc which is contained
in a black polygon P; and is not the distinguished boundary arc h; — j;. We define
(_1)area(a—>b)<Yab>
Xab = T —.
(=Darealhi=i(Yh j;)

This is a rational function on Gry j4,(C) and is regular away from the hypersurface
{(Yh;j;) = 0}

Definition 6.4 (Seeds). Let 7 be a bicolored triangulation represented by 7. The
quiver Q is obtained as follows:

« Place a frozen vertex on each boundary arc of B, ..., B. and a mutable vertex on
every other black arc of 7.

« Ifarcsa — b, b — ¢, ¢ — a form a triangle, put arrows between the corre-
sponding vertices, going clockwise around the triangle. Then delete the frozen
vertex on the distinguished boundary arc (and all arrows involving this vertex)
and arrows connecting two frozen vertices.

We label the vertex of Q; on arc a — b of J” with the function x,;. The collection
of vertex labels is the (extended) cluster x,-. The pair (Q, X,) is the seed Z..

Note that there are no frozen variables corresponding to the distinguished bound-
ary arcs, and the cluster x,; has size 2k. Note also that X, does not depend on the
triangulation of the white polygons of 7. See for an example.

Now we show that each seed gives a seed torus in Gry ;4,(C).

Proposition 6.5. Let J be a bicolored triangulation represented by 7. Consider the
Zariski-open subset

Vy =Y € Grj 142(C) : I]  (vab)#o0¢.
a—Db black arc of T

This is birational to an algebraic torus of dimension 2k, with field of rational functions
C(x.), the field of rational functions in the cluster X.r.

Proof. The main idea is that Corollary 4.40—which gave a bijection between

Zc

6 = {Y € Gry g42(R) : forallarcsi — jof 7" withi < j, (—1)areali=i(yij) > 0}
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and (R, ,)**—extends directly to give a birational morphism from V; to (C*)**. When
we let the edge weights «;, §8;, ¥; (used to define matrix M in (B.§)) range over all non-
zero complex numbers, the set of k X n matrices we get sweeps out the open Deodhar
stratum@ D, as opposed to the positroid cell S¢(r)- Thatis, the stratum D, C Gry ,(C)
consists of subspaces represented by the matrices M,(a, 8, y) of (B.8), where (a, 3,7)
vary over (C*)3 rather than (R, ).

Let us define the map

Vr = (C*),

To see that the map is surjective onto a Zariski-open subset of (C*)?¥, consider some
2k-tuple of nonzero complex numbers q.-. Define a weight vector (a, 3, y) for G(J),
where for a triangle {a;, b;, ¢;}, the weights are

A = qbyc;» Bi= Qa;c;> Vi = Qa;b;-
(As usual, if a - b is a distinguished boundary arc, we take q,;, = 1.) Let C :=
M(a, B, 7).

The matrix C lies in the Deodhar stratum D, and so has full rank. Let Y := CZ. Con-
sider an arc a — b of 7 which is in a black polygon P. From the proof of Theorem 4.19,
we have

(Yab) = (=1)2rea(@=bqq,, - Op,
where Qp is a polynomial with positive coefficients in the g;;’s and the minors of Z,
and depends only on the polygon P. Qp is generically nonzero, in which case it is easy
to check that x,,(Y) = q,p. Moreover, in this case, Y is a full-rank matrix, since it has
at least one nonzero twistor coordinate.

Now, suppose q lies in the open subset O of (C*)?K where the polynomials Qp are
nonzero for all polygons P. Then Y, as defined above, lies in V; and maps to q..

The map is injective on the preimage of O. Indeed, pick Y,Y’ € vV, which map
to q- € O. Consider the twistor coordinate matrices C := C¥¥(Y) and C’ := CXV(Y").
works equally well for matrices with complex entries, so the rowspans
of CZ and C’'Z are contained in Y and Y’, respectively. On the other hand, the rows
of C and C’ can both be rescaled to obtain the matrix M.-(«, 3, y) defined above, so the
rowspans of CZ and C'Z are the same. Finally, because of the assumption q, € O, the
matrix CZ has some nonzero twistor coordinate and so in particular is full rank. This
shows the rowspan of CZ isequal to Y and to Y. O

Next, we verify that the seeds given by different bicolored triangulations are related
by mutation.

Proposition 6.6. Let 7 be a bicolored triangulation represented by Tandleta — b
correspond to a mutable vertex of 2. Let T’ be related to J by flipping the arc a — b.
Then £, and s are related by mutation at xg,.

The seeds which can be obtained from X, by an arbitrary sequence of mutations are
exactly the seeds X where J"' is represented by T.

In light of Proposition 6.6, we can make Definition .7.

10parameterizations of Deodhar strata in flag varieties are given in [MRO4]; in the Grassmannian, these
can be equivalently parameterized using weighted networks, as shown in [TW13].
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Definition 6.7. Let J be a bicolored triangulation and 7 the corresponding bicolored
subdivision. We let A(J") denote the cluster algebra A(Q, X.).

Proof of Proposition 6.6. On the level of quivers, the first statement follows immedi-
ately from the well-known combinatorics of type A cluster algebras.

Say the arc a — b is in triangles {a < u < b}and {a < b < v}inJ,s0a — bis
flipped to u — v (the argument is analogous if instead v < a). We need to check that,
in the field of rational functions on Gry ;4,(C), we have

XabXyy = XquXpv + XqvXub

(where xy, j, is defined to be 1). This follows easily from the 3-term Pliicker relations
for the corresponding twistor coordinates.

The second statement follows from the fact that triangulations are flip-connected.

O

Together, Proposition 6.3 and [Proposition 6.4 tell us that the union of the seed tori
is a cluster variety in Gry y4,(C).

Theorem 6.8. Let T be a bicolored subdivision of type (k, n). Then
ve= vy
T

is a cluster variety in Gry ;4,(C), where the union is over bicolored triangulations repre-

sented by T. We call V7 the amplituhedron (cluster) varietyl of Ze(ry-
Moreover, the positive part

17;0 ={Y € V7 ! xq(Y) > 0 for all cluster variables x,p}

(]

is equal to the positroid tile Z

Gy
Proof. The first assertion follows from the definition of cluster variety and Proposi-
tions .5 and ..
For the second statement, note that by [Theorem 4.2§, points of Z°, — are in the

G(7)
positive part V}O. To see the opposite inclusion, take a point Y in the positive part and
choose a bicolored triangulation J represented by T. Let C := C™¥(Y) be the twistor
coordinate matrix of Y.

If row i of C corresponds to a triangle in J° lying in polygon P;, rescale row i by
(=1)2reathi=Ji) /(Y h; j;). Call the resulting matrix C’. Because x;, > Oforallarcsa — b
of 7, the entry (Yab) of C has been rescaled to a real number with sign (—1)2re2(@—b)_
By the same argument as the last paragraph of [Cheorem 4.28, C’ (and thus C) represents
an element of S¢(. This, together with [Proposition 4.30, implies that Y € Z &’ O

Theorem 6.9. The cluster algebra A(T) equals the upper cluster algebra A(T). If the
bicolored subdivision I has black polygons B, ..., E., where P; has n; vertices, then A(J)
is a finite type cluster algebra of Cartan-Killing type A,,, _5 X -+ X Ap,__».

Proof. The quiver we are associating to each bicolored triangulation is a disjoint union
quiver associated to a triangulated n;-gon, or equivalently to C[Gr, ,,_,]. Notice that

This is closely related to the amplituhedron variety defined in [CLam16d].
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for each one of these quivers, the corresponding exchange matrix has full Z-rank (the
argument is very similar to the one in [FWZ17, Proof of Theorem 5.3.2]).

Itis well known that the quiver associated to a triangulated r-gon has Cartan-Killing
type A,_, [FZ02]. This implies that AT) = A(Qr,Xs) has type Ay _; X -+ XA, 5.

Because our quiver is just a disjoint union of type A quivers (one from each P;), our
cluster algebra has an acyclic seed. Moreover, since the exchange matrix corresponding
to each of these type A quivers is full rank, A (") also has a full Z-rank exchange matrix.

Using [BFZ03, Proposition 1.8 and Remark 1.22], the fact that A(7) has an acyclic
seed and also has a full rank exchange matrix implies that the upper cluster algebra
A(T) equals the cluster algebra A(?). O

Remark 6.10. Given what we’ve proved, one can make an argument as in the proof of
[BFZ03, Theorem 2.10] that A(J") is the coordinate ring of the amplituhedron variety
V7 and also the closely related variety

Vz =1{Y € Gry j42(C) | (Yij) # 0 for h — j a boundary arc of a black polygon of 7}.

7. BACKGROUND ON THE HYPERSIMPLEX, T-DUALITY, AND POSITROID TILINGS

In [EPW20], a surprising parallel was found between the amplituhedron map Z on
Grion and the moment map u on Grigl,n. A correspondence called T-duality was used
to relate Grasstopes in the amplituhedron A, y , to positroid polytopes in the hypersim-
plex Ay1,,- In the second part of this paper, we further explore this relationship and
prove some of the conjectures of [EPW2(]. We present relevant background here.=2

7.1. The hypersimplex A, , and positroid polytopes. Throughout, for x € R"
and I C [n], we use the notation x; := 3, _; X;.

Definition 7.1 (The hypersimplex). Lete; := ). e; € R", where {ey,...,e,} is the
standard basis of R". The (k + 1, n)-hypersimplex Ay, , is the convex hull of the points

e; where I runs over (k[ﬂ)

Remark 7.2. The hypersimplex Ay, , is obtained by intersecting the unit hypercube
0, with the hyperplane x,,; = k+1. Alternatively, under the projection P : (xy,..., Xy)
= (X1,...,Xp_1); Agy1,, is linearly equivalent to

Apprn ={(x1,, Xp-1) [0 < x; S Lk < xppqp Sk + 1} C R
That is, A, ,, is the slice of 67, _; between the hyperplanes X[p—1)] = kand xj,_q) =
k+1.

The torus T = (C*)" acts on Gry, , by scaling the columns of a matrix representa-
tive A. (This is really an (n — 1)-dimensional torus since the Grassmannian is a projec-
tive variety.) We let TA denote the orbit of A under the action of T, and TA its closure.

The moment map from the Grassmannian Gry; , to R" is defined as follows.

Definition 7.3 (The moment map). Let A be a (k + 1) X n matrix representing a point
of Gry,1,,- The moment map u : Gryy , — R”"is defined by

Zle(m) |pr(A)e;
M S TP

12We use ‘k + 1’ instead of ‘k’ here in order to match conventions of later sections.

[n]
k+1
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It is well known that the image of the Grassmannian Gry,, , under the moment
map is the hypersimplex Ay ., ,. If one restricts the moment map to Grigl,n then the
image is again the hypersimplex Ay, ; , [TW15, Proposition 7.10].

In general, it follows from classical work of Atiyah [Ati82] and Guillemin-Sternberg
[GS82] that the image u(TA) is a convex polytope, whose vertices are the images of the
torus-fixed points, i.e. the vertices are the points e; such that p;(A) # 0 and p;(A) =0
for J # I. This motivates the notion of matroid polytope. Recall that any full rank (k +
1) X n matrix A gives rise to a matroid M(A) = ([n], B), where B = {I € (k[i]l) | pr(A) #
0}.

Definition 7.4. Given a matroid M = ([n], B), the (basis) matroid polytope T}, of M
is the convex hull of the indicator vectors of the bases of M:

I := convex{eg : B € B} C R".
Matroid polytopes also have a straightforward description in terms of inequalities.

Proposition 7.5 ([Wel76]). Let M = ([n], B) be any matroid of rank k + 1, and let
e o 2 — 7., be its rank function. Then the matroid polytope Ty, can be described as
Oy ={x€R": Xy =k+1, x4 <1ry(A) forall A C [n]},
Oy={x€R":: xpp=k+1, x4 2k+1-ry([n]\A) forall A C [n]}.
Here, we are interested in positroid polytopes, that is, matroid polytopes I’,; where

M is a positroid. They arise as u(TA) where A is a totally nonnegative matrix. Of more
interest to us, they can also be obtained as moment map images of positroid cells.

Proposition 7.6 ([TW13, Proposition 7.10]). Let M be the positroid associated to the
positroid cell S,.. Then Ty = u(S,) = u(Sy).

We will be particularly interested in the cells on which the moment map is injective.

Definition 7.7 (Positroid polytopes). Given a positroid cell S,, of Grigl,n, we let [; =
u(Sy)andTI,; = /,L(Tﬂ), and we refer to I'* and I; as open positroid polytopes and positroid
polytopes, respectively. We call I; a positroid tile for Ay , if dim(S;) = n— 1, and u
is injective on S.
Theorem 7.8 (Characterization of positroid tiles of Ay, , [EPW20, Propositions 3.15,
3.16]). Consider a positroid cell S C Griil’n, with G a reduced plabic graph. Then
the moment map is injective on Sg if and only if G is a forest. When G is a forest, j is
moreover a stratification-preserving homeomorphism from S¢ to the polytope Ty C R™
We have dim S g = dim I'; = n — ¢, where c is the number of connected components of G.
In particular, given an (n — 1)-dimensional cell Sg C Grigl,n, I is a positroid tile for
Api1nifandonly if Gis a tree.

7.2. T-duality and positroid tilings. Recall the definition of positroid tiling from
Definition 1.1|. Specializing to A, x »(Z), we get the following.
Definition 7.9 (Positroid tilings of A, ;. ,). Let C = {Z} be a collection of Grasstopes,
with {S,} positroid cells of Gr%ﬁl. We say that C is a positroid tiling of A, x »(Z) if:
« each Grasstope Z,, is a positroid tile (i.e. Z is injective on S, and dim Z,, = 2k);
« pairs of distinct open Grasstopes Z; and Z;, in the collection are disjoint;
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s UpZy = An,k,Z(Z)-

Remark 7.10. Alternatively, one could define a positroid tiling as coming from a col-
lection {S,;} of cells such that {Z,} is a positroid tiling (as above) for all choices of Z.
We use here since some objects we define will be sensitive to the choice
of Z.

In the case of the hypersimplex, a positroid tiling is as follows.

Definition 7.11 (Positroid tilings of Ay, ,). Let € = {I};} be a collection of positroid
polytopes, with {S,;} positroid cells of Grigl,n. We say that € is a positroid tiling of
Ak+1,n if:

« each I}; is a positroid tile (u is injective on S, and dim S,; = n — 1);

« pairs of distinct open positroid polytopes I; and I, in the collection are dis-

joint;

Ul = Ak+1,n-
Remark 7.12. “Positroid tiling” differs slightly from “positroid triangulation” in
[EPW20].

By [Theorem 7.8, the positroid tiles of Ay, ,, are the positroid polytopes I'l; where G
is a plabic tree. And by Theorem 4.25, the positroid tiles of A}, x ,(Z) are the Grasstopes
Z ey for I a bicolored subdivision of type (k, n). In [EPW20], it was conjectured that
positroid tiles and the two notions of positroid tiling are related by a very simple corre-
spondence, called T-duality.

Definition 7.13 (T-duality on decorated permutations). Let 7 = a;a,...a, be aloop-
less decorated permutation (written in one-line notation). The T-dual decorated per-
mutation is # : i » 7(i — 1), so that # = a,a,0a,...a,_;. Any fixed points in 7 are
declared to be loops.

Remark 7.14. This map was previously defined in [KWZ20, Definition 4.5] and was
studied in [EPW2(Q], where it was used to draw parallels between the hypersimplex
Ag41,n and the m = 2 amplituhedron A, ; »(Z). The T-duality map was also studied
in [BCTJ22] in relation to quotients of positroids, and in [Gal21], in relation to critical
varieties and the Ising model. The map 7 — # is an m = 2 version of a map that
appeared in [AHBC™16] for the case m = 4.

Lemma 7.15 ([EPW20, Lemma 5.2]). The T-duality map &= +— # is a bijection from
loopless decorated permutations of type (k + 1, n) to coloopless decorated permutations of
type (k,n). That is, the map S, — Sy is a bijection from the set of loopless cells in Grigl,n
to the set of coloopless cells in Grion.

The philosophy of [EPW2(] is that if the moment map behaves well on S, then
the Z-map behaves well on S;. For example, if the image of S, is a positroid tile for
Aj.41.1, then the image of S is a positroid tile for A, j ,(Z) [EPW20, Proposition 6.6.].
Moreover, there is a main conjecture involving positroid tilings:

Conjecture 7.16 ([EPW20, Conjecture 6.9]). A collection {T};} of positroid polytopes in
Aj.11.5 8ives a positroid tiling of A , if and only if for all Z € MatZ,OkJrz, the collection
{Z} of Grasstopes gives a positroid tiling of Ay, . »(Z).

In Section 8.2, we will prove a number of additional results on T-duality, upgrading
it to a map on plabic graphs. We will also prove Conjecture 7.16 in [Theorem 11.6.
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8. T-DUALITY ON DECORATED PERMUTATIONS AND PLABIC GRAPHS

In this section we prove that T-duality is a poset isomorphism and can be extended
to a map on plabic graphs and plabic tilings.

We refer the reader to for the definition of decorated permutations, their
affinizations, loops, coloops, etc., as well as details on plabic graphs and trips.

8.1. T-duality as a poset isomorphism. Here we show that the bijection from
is a poset isomorphism. Abusing notation, in this subsection we use 7, v
to denote bounded affine permutations rather than decorated permutations.

Proposition 8.1 (T-duality as a poset isomorphism). T-duality is a codimension-
preserving poset isomorphism between loopless cells of Gr,ffl’n and coloopless cells of

Gri,on. That is, for 7, v loopless decorated permutations of type (k + 1,n), S, C § if
and only if S; C S4. Furthermore, codim S,, = codim Sj.

Proof. We will work with the poset Bound (k, n) of bounded affine permutations with
respect to the Bruhat order [KLS13], which is dual to the poset Q(k,n) (see
fion 2.2). In Bound(k,n), # » v if 7 = 7 o v for some transposition 7 and inv(z) =
inv(v) + 1.

Let6 : Z —» Zbe the map i — i — 1. For loopless 7 € Bound(k + 1, n), the T-dual
of 7 is # = 7 o 8. Fix loopless ,v € Bound (k + 1, n). Note that 7 and 7 o § have the
same length. Further, 7o =70vo0§ = t0 9. So 7 » vifand only if # > P.

To extend this beyond cover relations, notice that if v € Bound(k + 1, n) has v(i) = i
or v(i) = i + n, then for all 7 € Bound(k + 1, n) with 7 > v, we have 7(i) = v(i). In
matroidal terms, if the positroid M, has a loop (resp. coloop) at i, then so does M, for
all M, Cc M,,.

Now, 7 > v if and only if there exists a maximal chain 7 > m; > --- > 7, > ».
Since 7 is loopless, the observation in the previous paragraph shows that 7; is loopless
fori=1,...,r. Since T-duality and its inverse preserve cover relations, we have such a
chain if and only if we have the chain # > #; » --- » #, > ¥ in Bound(k, n), which is
equivalent to 7 > 7.

The codimension statement follows from the fact that the codimension of S, in S,
is the length of any maximal chain from 7 to v in Bound (k, n). O

T-duality can also be defined for arbitrary even m, as in [EPW20, Equation 5.13],
and is also of interest for understanding the m = 4 amplituhedron. As is clear from
[EPW20, Equation 5.13], the T-duality map for even m is a composition of the “m = 2”
T-duality map m/2 times. also gives us information about this compo-

sition.
Definition 8.2. Let L Griﬁl be the set of cells S, C Grf’?,l such that (i) > i + r for

all i. Analogously, let us define CL™" Gri,(:l to be the set of cells S, C Gri,(:l such that
V(i) < i+ n—rforalli. Each is ordered by inclusion on the closures of cells.

Remark 8.3. The composition of T-duality r times is a well-defined map from L” Grig rn
to CL™" Grigl. Indeed, if 7z(i) > i + r, then applying T-duality s times gives a loopless
bounded affine permutation for s = 1,...,r—1. Moreover, it is easy to see that applying
T-duality r times to such a 7 gives a bounded affine permutation v with v(i) < i+n—r.
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Remark 8.4. The bounded affine permutations labeling cells in L Grion (crr Grf’on)
can be equivalently described in terms of the sets S(—a, b) defined in [GL20, Section
2].

From Proposition B.J we immediately have the following:

Proposition 8.5. The composition of T-duality r times gives a poset isomorphism between
r Grfgr,n and CL™" Gri’on.

8.2. T-duality as a map on plabic graphs. T-duality extends to an operation on par-
ticular plabic graphs.

Definition 8.6. A reduced plabic graph is called black-trivalent (resp. white-trivalent)
if all of its interior black (resp. white) vertices are trivalent.

Note that in particular, black-trivalent (white-trivalent) graphs have no black (white)
lollipops, so their trip permutations are loopless (coloopless).

Starting from a black-trivalent graph G with trip permutation 7, we now give an
explicit construction of a white-trivalent graph G with trip permutation #. This con-
struction streamlines the bijection of [GPW19, Proposition 7.15] and [Gal21, Proposi-
tion 8.3], and phrases the bijection entirely in terms of plabic graphs, rather than plabic
and zonotopal tilings.

Definition 8.7 (T-duality on plabic graphs). Let G be a reduced black-trivalent plabic
graph. The T-dual of G, denoted G, is the graph obtained as follows:

(1) In each face f of G, place a black vertex B(f).

(2) “On top of” each black vertex b of G, place a white vertex w(b);

(3) For each black vertex b of G in face f, put an edge é connecting w(b) and b(f);

(4) Pution the boundary of G between vertices i — 1 and i and draw an edge from
i to b(f), where f is the adjacent boundary face.

FIGURE 4. In black: A plabic graph G of type (4, 8) with trip permu-
tation (2,4,7,1,8,5,3,6). In blue: The T-dual plabic graph G of type
(3, 8) with trip permutation (6,2,4,7,1,8, 5, 3), which is built using
Definition 8.7.



364 M. PARISI, M. SHERMAN-BENNETT, AND L. K. WILLIAMS

Proposition 8.8. Let G be a reduced black-trivalent plabic graph with trip permutation
7. Then G is a reduced white-trivalent plabic graph with trip permutation #.

Proof. First observe that since G is black-trivalent, G is white-trivalent (see Figure 3).

FIGURE 5. Black trivalent vertices of G correspond to white trivalent
vertices of G

We now show that if G has the tripy : i — 7(i), then G has the trip§ : i + 1 — 7?(1\)

Say y starts at i. Let v be the first black vertex y meets. By the rules of the road, there
is one edge e attached to v at the left of y (as G is black-trivalent). Note that vertex v is
in the boundary face f containing boundary vertices i and i + 1. This is because before
meeting v, y meets only white vertices, and by the rules of the road there are no edges
involving these vertices lying to the left of 7. So w(v) is also connected to b(f). And by
definition, i + 1 is connected to b( f). Note that at the vertex b( f), if we start at the edge
toi+ 1and go counterclockwise, we see the edge to t(v). This means y starts at i+1,
goes to b(f), then to (v) (see [Figure ). Now, let g be the face of G which contains e
and the edge of y following v. Clearly b(g) is connected to w(v). At the vertex w(v), if
we start at the edge to b(f) and go clockwise, we see the edge to b(g). This means that
y goes from w(v) to b(g).

FIGURE 6. Black edges and vertices are in G; blue are G. In orange,
the tripy : i — 7(i) in G. The trip 7 follows the solid blue edges.

Now, let v’ be the next black vertex y meets. Again, the edges involving any white
vertices on y between v, v’ must lie to the right of y, and there is exactly one edge e’ at
v’ to the left of y. So the face g also contains v’. Let h be the face of G which contains
e’ and the edge of y following v'. Then 7 goes from b(g) to w(v") to b(h) (see Figure §).
Continuing in this way, we see that if y passes through a black vertex v, then § passes
through 1(v) and then goes to b(f), where f is the face to the left of y containing v
and the edge of y following v. If v is the last black vertex on y, then f is the boundary
face touching (i) — 1 and 7(i). Note that at the vertex b(f), if we start at the edge to
w(v) and go counterclockwise, we see the edge to 7(0). So y will turn maximally right
at b(f) to go to 7?(7)

If y meets no black vertices, there are no edges of G at the left of y. This means
7(i) = i + 1. The boundary face f between i and 7(i) contains only white vertices, so
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there will be a loop in G at boundary vertex i+1. Clearly #(i+ 1) = i+ 1 = n(i) as
desired.

To show that G is reduced, it suffices to show G has dim(S;) + 1 faces [FWZ21,
Corollary 7.4.26 and Corollary 7.10.5]. Note that does not depend on
the white vertices of G, so we may assume that G is bipartite and has a white vertex
adjacent to every boundary vertex. With this assumption, it is not hard to see that the
faces of G are in bijection with white vertices of G.

Let B, W, F, E denote the number of white vertices, black vertices, faces (excluding
the infinite face), and edges (excluding edges between two boundary vertices) of G. Say
that G is of type (k + 1, n). Since T-duality preserves codimension, we have

dim(S;) = dim(S,;) —n+ 2k + 1.

As G is reduced, F = dim(S,;) + 1. So to show W = dim(S,) + 1, it suffices to show
that W = F — n + 2k + 1. This follows immediately from

E=3B+n, F=1-(W+B)+E, W-B=k+1.

The first equation holds because every edge between two internal vertices contains a
unique black vertex, and all black vertices are trivalent. The second equation follows
from Euler’s formula for planar graphs. The third holds because G is type (k+1,n). O

Remark 8.9. It is straightforward to check that exchanging the roles of black and white
vertices in gives a map from white-trivalent plabic graphs to black-
trivalent graphs. This shows that T-duality is a bijection between black-trivalent graphs
of type (k + 1, n) and white trivalent graphs of type (k, n) (where we consider both sets
of graphs up to edge contraction and bivalent vertex addition/removal).

The map G — G can also be phrased in terms of plabic tilings™ [OPS13], which are
dual to plabic graphs. Our notion of plabic tiling is slightly looser than that in [OPS15].

Definition 8.10 (Plabic tilings). Let G be any connected reduced plabic graph with n
boundary vertices, and let P,, be a convex n-gon, whose vertices are labeled from 1 to n
in clockwise order. The plabic tiling 7(G) dual to G is a tiling of P,, by colored polygons
(bigons allowed) such that: (i) it is the planar dual of G; (ii) each black (white) vertex
of G is dual to a black (white) polygon in J(G); (iii) vertex i of P, is dual to the face
of G touching boundary vertices i — 1 and i. We consider two plabic tilings 7°(G) and
T'(G') equivalent if G and G' are move-equivalent.

Conversely, if J is a plabic tiling, the dual plabic graph G(J) is obtained from J°
by placing a black vertex in each black polygon, a white vertex in each white polygon,
and connecting two vertices whenever they correspond to two polygons which share
an edge.

Figure 7 shows three move-equivalent plabic graphs and the corresponding plabic
tilings.

Remark 8.11. A bicolored subdivision or triangulation J” of type (k, n) is a plabic tiling
whose dual plabic graph G(J) is a tree plabic graph of type (k + 1, n). All tree plabic
graphs of type (k + 1, n) arise in this way.

13We caution the reader that plabic tilings and positroid tilings are very different objects, despite having
aword in common.
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FIGURE 7. Three equivalent plabic tilings 7 (in orange), and the cor-
responding dual plabic graphs G(J7) (in black). The center plabic
tiling is dual to a black-trivalent plabic graph.

The construction of G from G of can also be phrased in terms of
plabic tilings as follows. (This is equivalent to the construction in the proof of [Gal21,
Proposition 8.3], though the description there uses horizontal sections of fine zonotopal
tilings.) Figure g illustrates the following construction.

Proposition 8.12 (T-duality and plabic graphs). Let G be a connected reduced black-
trivalent plabic graph and let 7 = J(G) be the dual plabic tiling. Then the T-dual plabic
graph G = G(7) is obtained as follows:

(1) Place a black vertex at each vertex of each black triangle in T

(2) Place a white vertex in the middle of each black triangle of T~ and connect it to the
vertices of the triangle.

(3) Add an edge of G from boundary vertex i on the disc to the black vertex on bound-
ary vertexiof J.

2 3 2 3
°
1 1 4
8 5 5
8
6 g
7 = 6

FIGURE 8. Left: In orange, the plabic tiling J dual to the black-
trivalent graph in the center of [Figure 7. In blue, the result of op-
erations (1), (2) of Proposition 8.12. Right: the graph G(J).

Remark 8.13. The construction G(J°) from generalizes the construc-
tion from (viewing a bicolored triangulation as a special case of a plabic

tiling). So shows that the plabic graph G(J7) from is
T-dual to the plabic tree G(J").
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9. T-DUALITY, POSITROID TILES AND CLUSTER ADJACENCY

In this section, we show T-duality gives a bijection between positroid tiles of A ,
and positroid tiles for A,  ,(Z) (Corollary 9.1)). We then investigate parallels between
the inequalities cutting out positroid polytopes I}, and the T-dual Grasstopes Z; for
positroid tiles, both pieces of data are encoded by the same bicolored subdivision (The]
prem 9.2). We establish a similar parallel for facets of positroid tiles (Theorem 9.10),
and use this to prove the m = 2 cluster adjacency conjecture of [EPSV19] in
fem 9.12.

9.1. T-duality, inequalities and signs. In this subsection, we will see how bicolored
triangulations encode positroid tiles of both Ag; , and A, ;. »(2).

Theorem 4.23 and Theorem 7.§ characterize positroid tiles of A, ;. »(Z) and A, , in
terms of bicolored subdivisions and tree plabic graphs, respectively. These results with
imply that positroid tiles of A, x »(Z) and A, , are in bijection, and that
both can be read off easily from bicolored subdivisions of type (k, n) (see [Figure 9).

Corollary 9.1. A positroid polytope I; is a positroid tile of Ay 1 , if and only if the T-dual
Grasstope Z is a positroid tile of Ay, i »(Z). We read I; and Z off of the same bicolored
subdivision T~ as follows:

« Choose any triangulation J of T.

« Welet G := G(J) be the dual plabic tree, as in Definition 8.10.

« Welet G := G(T) be the graph from (equivalently, in
Fion 8.12).

FIGURE9. In the top row: A bicolored subdivision of type (5, 9) 7.1In
the bottom row: A bicolored triangulation J” obtained by triangulat-
ing 7, with the dual graph G(7) to its left, and the T-dual graph G(J")
to its right.

From a bicolored subdivision 7, we can obtain inequality descriptions of the

positroid tile Tg(7y C Ag41,, and the T-dual positroid tile Zg(f) C Ap2(2).
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Given two positive numbers a, b € [n], the cyclic interval [a, b] is defined to be

[a.b] = {a,a+1,...,b—1,b} ifa < b,
" lHa,a+1,...,n1,...,b} otherwise.
Theorem 9.2 (Inequalities and signs via T-duality). Let T be a bicolored subdivision

and let h — j be a compatible arc, with h < j. Let G(J") denote the tree plabic graph dual
to T, and G(J) the T-dual. Then:

(1) area(h — j)+1> xp, j_1) > area(h —» j) forx € ISy
(2) sgn(Yhj) = (=1)arear=)  fory e Zsry
The inequalities given by the arcs of any triangulation J' of T cut out IZr and Zg( 7y

Example 9.3. Consider the bicolored subdivision 7 in [Figure 9. We have

5> X7 >4, 4> X6 > 3, 3> X5 > 2, for x € F(";(T),
(Y18) > 0, (Y17) < 0, (Y26) > 0, forY e ZE(T).

To prove [Theorem 9.2, we need a few results on positroid polytopes I;.

Lemma 9.4. Let G be a bipartite plabic graph and let J be the dual plabic tiling. Let
W(G) and B(G) denote the set of white and black vertices of G, respectively. Then

[W(G)| — |B(G)| + |{bdry vt of G adjacent to a black vt}| = area(J") — punc(J) + 1,

where area(J") is the number of black triangles in any triangulation of 7 and punc(J")
is the number of internal vertices of T

Proof. Let E denote the edges of G involving at least one internal vertex. Each black
vertex of G is dual to a black polygon of 7~ with deg(v) many sides, so we have
area(7) = », (deg(v)—2)= Y deg(v)—2[B(G)|
veB(G) veB(G)
= |E(G)| — |{bdry vt adjacent to a white vt}| — 2|B(G)|,

where the last equality follows from the fact that every edge of G contains a unique
black vertex, except edges between a boundary vertex and a white vertex. The claim
follows from this formula together with Euler’s formula for planar graphs. O

Proposition 9.5. Let J be a bicolored subdivision and G(J") the dual bipartite tree plabic
graph. For all arcs h — j compatible with T, points of Iy satisfy

area(h — j) +1 > xp, j_1) > area(h — ).

Proof. Let G be the graph obtained from G(J°) by adding bivalent white vertices so
that every boundary vertex is adjacent to a white vertex. Note that G is bipartite and
represents the same positroid M as G(J"). In particular, the boundaries of matchings of
G give the bases of M. Let W(G) and B(G) denote the sets of white and black vertices
of G, respectively.

Note that if j = h + 1, the inequality is clear.

We first deal with the case where h — jis aninternal arc of 7. Let e be the edge of G
which isdual to h — j, and say the vertices of e are a white vertex w and black vertex b.
If we remove the edge e, G \ e has two connected components, G¥ containing w and Gb
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containing b. Notice that both connected components are again bipartite plabic trees.
Let I¥ and I® denote the boundary vertices of G¥ and GP, respectively. Because vertex
i of 7 lies between boundary vertices i — 1,i of G, {I*, 1°} = {[h, j — 1],[j, h — 1]}.
Now, we would like to compute the ranks of I,,,, I. That is, for a matching M of G,
we need to compute the maximum size of M N I¥ and oM N IP.
Let M be a matching of G. If M does not contain e, then M restricts to a matching of
GY and GP. It is easy to see that

6M N I%| =[W(GY)| — [B(GY)),
0M N I°| =|W(GP)| — |B(GP).

If M does contain e, then choose a path P from boundary to boundary which uses e
and alternates between edges in M and edges not in M. Such a path can be constructed
greedily because G is a tree. Orient P so it sees first w and then b. The edges of P in M
are exactly the ones oriented from a white vertex to a black vertex. The first edge of P
touches a boundary vertex in I and is oriented to a white vertex, so is not in M. The
last edge of P touches a boundary vertex in I? and is in M. Define a new matching N
of Gby N := (M \ P) U (P \ M). The boundary N contains one more element of I
than M, and one fewer element of I”. The matching N does not contain e, so using
the previous computation, we see that

|oM N I¥| =|W(GY)| — |B(GY)| — 1,
|0M N I°| =|W(GP)| — |B(G)| + 1.

We conclude that rank (I¥) = |W(G¥)|—|B(G¥)| and rank (I?) = |W(G?)|—|B(G?)|+1.
From and the fact that the rank of M is |[W(G)|—|B(G)| = |[W(GY)|—
|B(G®)| + |[W(GP)| — |B(GY))|, we see that the points of T, satisfy

IW(G*)| = [B(G*)| = 1 <xpw < [W(G®)| = [B(G*)],
IW(GP)| = [B(G?)| <xp < [W(G”)| = |B(G”)| +1.

All that remains is to rewrite the right hand sides of these inequalities in terms of
area. Cut J” along the arc h — j, to get two smaller bicolored subdivisions 7% and 7
containing the polygons dual to w and b, respectively. Notice that the graph G(I%)
dual to J% can be obtained from G¥ by adding a boundary vertex adjacent to w. Sim-
ilarly, G(77P) is obtained from G® by adding a boundary vertex adjacent to b. So, using

Lemma 9.4,
[W(G*Y)| — |B(G?)| = area(T™) + 1,
|[W(GP)| — |B(G?)| + 1 = area(7?) + 1.

Now, choose v € {b,w} so that I’ = [h, j — 1]. Since T is exactly the part of I to
the left of h — j, the proposition now follows.

We now consider the case where h — j is not an arc of 7. In this case, let 7’ be
the plabic tiling obtained from J by adding the arc h — j. Let G be the tree plabic
graph dual to J”, which we make bipartite by adding an appropriately colored bivalent
vertex v to the edge dual to h — j. We also add bivalent white vertices to G to make all
boundary vertices adjacent to a white vertex. Let e and f denote the edges containing
v, and say e is to the left of A — j. Similar to the first case, removing edges e, f and
vertex v from G gives a graph with two connected components G¢, G/ which contain
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vertices adjacent to e and f, respectively. Notice that the boundary vertices I® of G¢ are
exactly [h, j — 1]. The rest of the argument is very similar to the first case. ]

Recall that an arc h — j of a bicolored subdivision is facet-defining if it bounds a
black polygon on its left.

Proposition 9.6. Let J be a bicolored subdivision, and let G be the dual plabic tree of
type (k + 1,n). Then I is cut out of R" by the equality x;,,; = k + 1 and the following
inequalities, each of which defines a facet:

(1) x; > 0 foria boundary vertex adjacent to a white vertex

(2) xpn,j—1) = area(h — j) for h — j a facet-defining arc of T

Proof. Recall from that the moment map u is a stratification-preserving
homeomorphism on the closure of S5. So the facets of I; are exactly the positroid
polytopes I's;» where S is a positroid cell contained in %with codimension 1. From
[Pos06, Corollary 18.10], each such cell is indexed by a reduced plabic graph G’ ob-
tained from G by removing a single edge (if the edge removed is between a boundary
vertex and an internal vertex v, we also add a lollipop which is the opposite color of v).

Because G isatree, G’ = G \ e is reduced for all edges e. If e is between a boundary
vertex i and a white vertex, then G’ has a black lollipop at i. Thus Sg/ has a loop at i,
and I is contained in the hyperplane x; = 0. Clearly I;; lies on the positive side of
this hyperplane, which explains the facet inequalities of type 1.

If e is an edge between a boundary vertex i and a black vertex, then e is dual to the
arc (i + 1) — i of 7, which is a facet-defining arc. Then G’ has a white lollipop at i, so
I is contained in the hyperplane x; = 1. Since we also have xj,,; = k + 1, Iz is also
contained in the hyperplane x[;1;;_1; = k = area(i + 1 — i).

Now, consider the case when e is an edge between two internal vertices of G. The
edge eisdual tothearch — jof 7, which bounds a black polygon on the left. The proof

of shows that I/ is contained in the hyperplane x;, j_;) = area(h — j).

This covers all edges of G, so we have described all facets. The directions of the facet

inequalities follow immediately from [Proposition 9.5. O
We can now prove [[heorem 9.2.

Proof of Theorem 9.2. (1) follows from and (2) follows from

[heorem 4.14. The statement about inequalities cutting out Z°G( ) and I3 ) follows
from [Theorem 4.28, Proposition 9.4 and the fact that x;,,) = area(h — j) + area(j —
h) + 1. O

We next generalize by providing inequalities for full-dimensional
positroid polytopes and Grasstopes from statistics of plabic tilings. We first general-

ize the definition of compatible arcs from Definition 4.6.

Definition 9.7 (Statistics of plabic tilings). Let J” be a plabic tiling in a convex n-gon
P, and h, j a pair of vertices of P,,. We say that the arc h — j is compatible with T
if the arc either bounds or lies entirely inside a single polygon of 7. When h — j is
compatible with 7, we let area(h — j) = area,(h — j) denote the number of black
triangles to the left of h — j in any triangulation of J°. We call the internal vertices of J°
punctures. We also let punc(h — j) = punc,.(h — j) denote the number of punctures
of J to the left of the arc 1 — j. Note that black bigons do not contribute to the area.
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For example, the tiling J" in has two punctures, and 1 — 3,1 — 5,5 > 7
are compatible arcs. We have area(1 — 3) = 0, area(1 — 5) = 2, area(5 —» 7) = 1,
punc(l - 3) = punc(5 — 7) =0, punc(l —» 5) = 1.

Theorem 9.8. Let J be a plabic tiling and let h — j be a compatible arc, with h < j.
Let G(7") denote the plabic graph dual to T, and G(J) the T-dual. Then:

(1) area(h — j) —punc(h — j)+1 > Xxppj_1; > area(h — j) — punc(h —

J)forx e o

(2) sgn(Yhjy = (—1)areath=j-puncth~)) for y Zé(f).
&)
only on T. Any arc compatible with any tiling equivalent to J~ gives inequalities for
I and Z};(T) via [Theorem 9.8.

Proof. The proof of (1) proceeds similarly as in [Proposition 9.3, where we compute the
rank of [h, j — 1]. The arc h — j is dual to an edge e of G(J") (or a graph which differs
from G(J°) only by uncontracting an edge and adding a bivalent vertex). Removing
e gives two connected components, the boundary vertices of which are [k, j — 1] and
[j,h — 1]. Again, any matching of G(J") will either use e or differ from a matching
using e by a “swivel” (see [MS17, Appendix B]) along one of the two boundary faces
containing e (which changes the boundary’s intersection with [k, j — 1] by precisely 1)
followed by swivels at faces contained in one of the connected components (which do
not change the boundary’s intersection with [k, j — 1]). In this way we compute the
rank of [k, j—1]and [j, h—1]. One must apply to obtain the ranks in terms
of area and punc.

The proof of (2) proceeds similarly as in Theorem 4.14. Any almost-perfect matching
M of G(7") which does not have h or j in dM will have |oM N[h +1, j —1]| = area(h —
j) —punc(h — j). Indeed, there are exactly area(h — j) internal white vertices to
the left of h — j, which must be covered by an edge of M, and exactly punc(h — j)
many internal black vertices, which also must be covered. This leaves area(h — j) —
punc(h — j) edges of M which cover a boundary vertex. g

Note that compatible arcs depend on the tiling J°, while oo and depend

Example 9.9. For the plabic tiling J” in [Figure 7, [Theorem 9.§ tells us that

1> X[1,2] >0, 2> X[1,4] >1, 2> X[s5,6] > 1, for x € FG(T);
(Y13) > 0, (Y15) <0, (Y57) <0, forY € Z ).

9.2. T-duality, facets and cluster adjacency. From a bicolored subdivision J°, we

can also read off the facets of both I';(r) and Zg - (see Definition 2.6).

Theorem 9.10 (Facets via T-duality). Let J be a bicolored triangulation and let h — j
be a facet-defining arc of T. Let G := G(J") be the plabic tree dual to I and let G’ be the
plabic forest obtained from G by deleting the edge dual to h — j. Let G and G’ denote
their T-duals.

(1) The positroid polytope I is a facet of Tg, and lies on the hyperplane
Xp,j—1) = area(h — j).
(2) The Grasstope Zy, is a facet of Z, and lies on the hypersurface
(Yhj)=o0.
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Moreover, if we let h — j range over the facet-defining arcs of I which are not on the
boundary of P,,, we obtain all facets of T and Z in the interior of Ay, , and Ay, ¢ 2(2).

Proof. (1) follows immediately from and its proof.

For (2), we first show that Zy, is contained in the hypersurface {(Yhj) = 0}. The
arc h — jisin a unique triangle T, of J7; say its third vertex is i. Using [Proposition 8.8,
it is not hard to see that G’ is obtained from G by deleting the edge e from B; to W,.
This means that every almost perfect matching of G’ must use either the edge from By,
to W, or the edge from B; to W}, so h or j is in the boundary. From Lemma 3.6, we
immediately conclude that (Yhj) is identically zero on Z;, and thus on Zg,.

Now, we show that Z is injective on Zg,, by showing holds for Zg,
and then applying the first paragraph in the proof of Theorem 4.23. Consider Y € Z,
let C := CY(Y) be the twistor coordinate matrix of Y and let Y’ := CZ. We would
like to show that C € S and that rowspan Y’ = rowspan Y; by Proposition 4.30, it
suffices to show the former. Note that the Kasteleyn matrix K’ for G’ is obtained from
the Kasteleyn matrix K for G by setting the parameter in row r and column i to 0. So
we only need to show that for all arcs a — b of 7" with {a, b} # {h, j}, (Y’ab) is nonzero.

Pick such an arc a — b of 7. It suffices to show that there is a matching of G which
does not use e and does not have a or b in its boundary. We will argue by induction on
the number of black triangles of 7. The base case, with 1 triangle, is clear by inspection.
The arc a — b bounds some black triangle T; of 77, with third vertex c. Cut J along
thearcsa — b, b — cand ¢ — a to obtain bicolored triangulations J;, 75, 73 of smaller
polygons (one of which may be empty), which each contain a single edge of T;. One will
have h — j as a facet-defining arc. By induction, G(J;) has an almost-perfect matching
M; whose boundary avoids the appropriate vertices of T; and does not use the edge e.
Take the union of these matchings, together with the edge f from W; to B.. This gives
a matching of G whose boundary avoids a, b. Note that since {a, b} # {h, j}, the edge f
is different from e, so this matching does not use e.

Now we check that Z, is a facet of Z5. We first show that the hypersurface H :=
{(Yhj) = 0} intersects Zs only on the boundary of Z 4, which shows Z, is contained
in the boundary as well. Recall that the open positroid tile Z, is dense in Z and more-

over, (—1)2r¢a(h=i)(Yhj) is positive on Z;, (Cheorem 4.14). This implies that
(=1)2reath=i)(yhj)is positive on the interior of Zs. Indeed, if the hypersurface H inter-
sected the interior of Zs, one could find an open set in the interior where
(—1)2realh~J)(Yhj) is negative. (This is because (Yhj) is linear in the Pliicker coor-
dinates, so (Yhj) takes both positive and negative values on any open set in Gry y.,

containing a point of H). But such a set cannot be in Z,.

Now we verify that Z has the correct codimension. From the proof of
fion 9.6, S is codimension 1 in % Since T-duality is a rank-preserving poset isomor-
phism, we also have that S, is contained in S_G, and has codimension 1; that is, S/
has dimension 2k — 1. Because Z is injective on S/, Zg, and Z, also have dimension
2k — 1.

To see the last statement of the proposition, note that any codimension 1 cell Si; C
S_G with a coloop q will have Zp; contained in the hypersurface {{Yq(q + 1)) = 0}. So
the facets Zy; avoiding the amplituhedron boundaries must come from coloopless cells
Sg. These coloopless cells are T-dual to loopless codimension 1 cells contained in Sg.
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As h — jvaries over all facet-defining arcs of 77, S 5+ varies over all such loopless cells,
by Proposition 9.6. So the facets Zp avoiding the amplituhedron boundary are of the
form Z 4, for some arc h — j. From the proof above, we see that Z, is not contained
in an amplituhedron boundary precisely when h — jis not a boundary arcof 7. [

Example 9.11. Consider the bicolored subdivision J” in [Figure 1. The facet-defining
arcs not on the boundary of Py are 1 - 7,2 — 7 and 4 — 6, with area(1 — 7) =
area(2 —» 7) = 3, area(4 — 6) = 0. The corresponding internal facets lie on the
following hyperplanes:

X[1,6] = 3 X[2,6] = 3, X[a,5] = 0, for Tg(ry.

One facet-defining arc at the boundary of Py is 2 — 3, with area(2 — 3) = 0. This gives
an external facet lying on (Y23) = 0 for Z(-) and x, = 0 for I5(5).

We can now prove [Conjecture 6.1, which extends the m = 2 cluster adjacency con-
Jjecture of Lukowski-Parisi-Spradlin-Volovich [EPSV19].

Theorem 9.12 (Cluster adjacency for Ay, ). Let Ze(ry be a positroid tile of Ay i 2(2).
Set Facet(Zg () = {pij | thereis a facet of Z¢ s on the hypersurface (Yij) = 0}. Then:

(1) Facet(Zg,)) consists of compatible cluster variables for Gry .

(2) If ppe is compatible with Facet(Zg()), then (Yh¢€) has a fixed sign on Zé(f).
Proof. The first part follows directly from Theorem as Zg .y hasafaceton {(Yij) =
0} if and only if i — j is a facet defining arc in J°, and the facet-defining arcs do not
cross. The second part follows from Theorem P.2. (|

Using Theorems P.2 and P.10, we can translate the cluster adjacency theorem for
the m = 2 amplituhedron into a cluster adjacency theorem for the hypersimplex.

Theorem 9.13 (Cluster adjacency for Ay ). Let Iy be a positroid tile of Ayq -
Set Facet(Tg(ry) = 1{pij | thereis a facet of Tg(ry on the hyperplane xj; j_1) = aj j},

where a; ; are some nonnegative integers. Then:

(1) Facet(Iz(s)) consists of compatible cluster variables for Gr, ;.
(2) If ppe is compatible with Facet(Ig(r), then Xjj 1) > area(h — €) in LGy

10. EULERIAN NUMBERS: w-SIMPLICES IN Ak+l,n AND w-CHAMBERS IN -’qn,k,2

In this section we study the amplituhedron chambers of A, y ,(Z). Because positroid
tiles in A, x ,(Z) are defined by sign conditions, the decomposition of A, x ,(Z) into
chambers refines every positroid tiling. Separately, the hypersimplex Ay, ,, has a well-
known decomposition into simplices which refines every positroid tiling. Both decom-
positions have chambers/maximal simplices which are naturally indexed by permuta-
tions of n — 1 with k descents. We use this correspondence in to establish
results on tilings.

We begin by reviewing the decomposition of the hypersimplex Ay, ,. It is well
known that the volume of the hypersimplex Ay, ; , is the Eulerian number Ej ,_,
[Sta12], which counts the permutations on n — 1 letters with k descents. A triangu-
lation of Ay, ; , into unit simplices indexed by such permutations was first discovered
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by Stanley [Sta77]. Sturmfels [Stu96] later gave an a priori different triangulation of
Ag41,n- Lam and Postnikov [LPO7] then gave two other triangulations, and showed
that all four triangulations coincide. After defining some permutation statistics, we
will define this triangulation.

Definition 10.1. Let w € S,. We call a letter i > 2 in w a left descent (or a left descent
top) if i occurs to the left of i — 1 in w. In other words, w=!(i) < w=(i — 1). And we say
thati € [n] in w is a cyclic left descent if either i > 2 is a left descent of w or if i = 1 and
1 occurs to the left of n in w, that is, w™(1) < w™!(n). We let cDes; (w) denote the set
of cyclic left descents of w, and Des;, (w) the set of left descents. We frequently refer to
cyclic left descents as simply cyclic descents.

Remark 10.2. Left and right descents and descent sets are discussed extensively in
[BB03, Chapter 1]. Left descents are sometimes called recoils in the literature.

Let Dy41,, be the set of permutations w € S, with k + 1 cyclic descents and w;, = n.
Note that [Dy 14| = Ext1,n-1-

Definition 10.3 (w-Simplices). For w € Dy ,, let w(® denote the cyclic rotation of
w ending at a. We define

I, = I(w) := cDesy, (w D).

The w-simplex Ay, C Ay p, is the simplex with vertices ey, ..., ey, .

Example 10.4. Let w = 324156 in one-line notation. Then w has cyclic descents
{1,2,3} = L. The rotation of w ending at 1 is 563241, which has cyclic descents I, =
{2, 3, 5}. The rotation of w ending at 2 is 415632, which has cyclic descents I3 = {1, 3,4}.

Notice that r is always in I, and r — 1 is never in I,.
The following triangulation of the hypersimplex first appeared in [Sta77], though
the description there was slightly different.

Proposition 10.5 ([Sta77]). The w-simplices {A,, : W € Dy, ,} are the maximal sim-
plices of a triangulation of the hypersimplex Ay ., ,,. Moreover, projecting {A,, : w € S, }
into R"~! (see Remark 7.3), we obtain the maximal simplices in a triangulation of the
hypercube 63,,_, which refines the subdivision of the hypercube into hypersimplices.

Remark 10.6. The w-simplex A, as defined above agrees with the simplex denoted Ay

in [LPO7, Section 2.4]. In particular, the directed circuit the authors use to define Aw)

is given by e;, — Clyisn = Clyyp = o 7 €, — ey,. Another way to say this is
.

le’+1 is equal to (Iwi_1+1 \ {wl}) Y {wl + 1}

1+1

It follows from the results of [LP07] that every full-dimensional positroid polytope
also has a triangulation into w-simplices. Indeed, the triangulation of Ay, , given by
w-simplices is the simultaneous refinement of all positroid subdivisions of Ay ,.

We now turn to the amplituhedron side. We define some special chambers in
An.k2(Z) whose sign vectors are obtained from cyclic descents of permutations. We
later will show that these are precisely the realizable sign chambers (Theorem 10.10,
[heorem 11.5).

Recall that for v € R", Flip(v) records where coordinates of v change sign (Defini]

fion 3.12).
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Definition 10.7 (w-Chambers). Letw € Dy, , and let the verticesof A, beey,, ..., ey, ,
as in Definition [0.3. Then the open amplituhedron w-chamber A%,(Z) := Ank2(2)
consists of Y € Ay, ;. »(Z) such that (Yij) # Ofori # jandfora =1,...,n,

Flip((Yal),(Ya2),...,(Yaa —1),(Yaa),(Yaa +1),...,(Yan)) = I, \ {a}.
Equivalently, A}, ,(Z) consists of Y € Gry j, such that
sgn(Yaj) = (=1)lenl@j=lI=1 " for j > q,
sgn(Yaj) = (=1)lanlej-lI=1 for j < a.

The closed amplituhedron w-chamber is the closure A, (Z) = A k2(Z). Abusing no-
tation, we will often refer to closed amplituhedron w-chambers as simply w-chambers.

Remark 10.8. One might hope that the structure of A, (Z) does not depend on the
choice of Z € MatZ’OkH. However, even the property that A,,(Z) is nonempty depends
on Z. More precisely, while we know that each A,,(Z) is nonempty for some choice of

Z (Theorem 11.3), it may be empty for other choices of Z (see Section 11.3).

Because the positroid tiles of A, x ,(Z) can be described entirely in terms of signs of
twistor coordinates and the signs of twistor coordinates in A,,(Z) are constant, we have
Lemma [[0.9. It is the analogue of the fact that for a tree positroid polytope I}, either
AynTy=0@orA, CL,.

Lemma 10.9. Let Z;, be a positroid tile for Ay, i ,(Z) and let A,(Z) be a nonempty w-
chamber. Then either A,(Z)NZs =B or A,(Z) C Z,.

Despite the subtleties regarding the nonemptiness of A, (Z), the closed w-chambers
always cover A, i »(Z), in direct analogy to w-simplices in Ay ,.

Theorem 10.10 (A, i , is the union of w-chambers). Fixk < nand Z € MatZ,OkH.
Then
A2 @)= | Bu(@).

WEDjey1,n

To prove [Theorem 10.10, we use a characterization of the simplices A,, given by
Sturmfels [Stu96], involving sorted collections. We follow the presentation of [LP07,
Section 2.2].

Definition 10.11. Let (Jy,...,J;) be a tuple of distinct elements of (k[ﬂ) where we
write Jy = {js1 < js2 < -+ < Jsk+1)}- We call (Jy, ..., J;) a sorted collection if ji; < jo; <

< Jn £ Jiz £ Jo2 £ £ jiyksr)- I (Jh,J2) is a sorted collection, we call them a
sorted pair.

The w-simplices of Ay, , are exactly the simplices with vertices ey,,...,e; for
(J1,-..,J,,) asorted collection. To see if a collection is sorted, one need only check pairs
of elements.

Lemma 10.12. Given {J,...,J;} C (k[ﬂ), suppose that for all a # b, either (J;,Jp) or

(Jp,Jy) is a sorted pair. Then Ji,...,J; can be ordered to give a sorted collection.

Proof. First, notice that if (J,,Jp) is a sorted pair and (Jp, J.) is a sorted pair, then (J,, J,)
is a sorted pair. Indeed, if a # b, then there exists i such that j,; < jp; < Jjei- It



376 M. PARISI, M. SHERMAN-BENNETT, AND L. K. WILLIAMS

follows that (J;, J;) is not a sorted pair, so (J,,J;) must be. So on {J;, ..., J;}, the property
of being a sorted pair is reflexive, antisymmetric, and transitive, which means it is a
partial order. We’ve assumed every pair is comparable, so we have a total order. The
result follows. O

Proof of Theorem 10.10. Let Y € A, i, be a point whose twistor coordinates are all
nonzero. We will show that Y lies in A,(Z) for some w. The points with nonzero
twistor coordinates form a dense subset of A,, . , (their complement, a union of hyper-
surfaces, has codimension 1), so this will show the desired equality.

Set L, := Flip((Yai),(Ya2),...,(Yaa—1),(Yaa),(Yaa+1),...,(Yan)).

By Corollary 5.2, we have |L,| = k. Choose a < b. We will show that I, := L, U{a} and
I, == Ly, U {b} are distinct and, for some ordering, form a sorted pair. We temporarily
abuse notation by omitting the Y’s and hats from our notation; if a > i, we write (ai)
for (Yai).

Certain 3-term Pliicker relations constrain sign flips, as noted in [AHTT18, Section
5]. For j € [a — 2] U [b + 1, n], we have the relation

(10.13) (Jj+1Xab)=(ajXbj+1)—(bjXaj+1)
and for j € [a + 1,b — 2] we have
(10.14) (Jj+1xba)=(bjXaj+1)—(ajxbj+1)

Because sgn(j j+ 1) = + for all j, the sign of the left hand sides of Equations (10.13)
and does not depend on j. This means that if sgn{(a b) = +, then for j €
[a—=2]u[b+1,n]

sgn{a j) sgn(aj+1) o ¢
(10.15) (sgn(b j) sgn(bj+ 1>> ? (6 _5)

for any 6, ¢ € {+, —}. Similarly, if sgn{(a b) = —, then for j € [a — 2] U [b + 1, n]

sgn(a j) sgn{aj+1) § —e
(1010 (non semo o) (e 3)
If sgn(b a) = + (respectively, —), then for j € [a + 1,b — 1], the sign pattern in Equa]
(respectively, Equation (10.15)) never occurs.

Suppose j is a value where the sign pattern in is forbidden. If there
is a sign flip after (a j) and not after (b j), then sgn(a j) = sgn(b j); if there is a sign flip
after (b j) and not after (a j), then sgn(a j) # sgn(b j). When the sign pattern in
is forbidden, there are analogous statements with conclusions swapped.
This means that for any interval I C [n] where one of the patterns is forbidden, |L, N 1|
and |L,, N I| differ by at most one and either (L, NI, L, NI) or (L, N1, L, NI)is sorted.™

Which one of (L, N I,Ly, N I)and (Lp, NI, L, N 1) is sorted gives us additional infor-
mation.

LetP:=L,N[a—2],Q:=LynN[a—2]. Suppose P # Q, and consider the smallest
Jj so that there is a sign flip after exactly one of (a j) and (b j). Clearly, (P, Q) is sorted
if and only if there is a sign flip after (a j) and not after (b j). If the latter occurs, then
sgn(ab) = + and sgn{a 1) = sgn(b 1), or sgn(ab) = — and sgn(a 1) # sgn(b 1); in short,

14We extend the definition of sorted in the obvious way to sets whose sizes differ by at most one. In
particular, if (I, J) are sorted, we must have |I| > |J|.
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sgn(a b) - sgn{a 1) = sgn(b 1). Analogously, if (Q, P) is sorted, then sgn{a b) - sgn{a 1) #
sgn(b 1).

LetT:=L,Nn[a+1,b—2]and U = Ly n[a + 1,b — 2], and suppose T # U. By
essentially identical reasoning as in the previous paragraph, if (T, U) is sorted, then
sgn(b a) - sgn{a a + 1) # sgn(b a + 1). Since {(a a + 1) > 0 by assumption, the latter
condition implies we have a sign flip between (b a) and (b a + 1), so a € L. Similar
reasoning gives that if (U, T) is sorted, then a & L.

LetV:=L,Nn[b+1,n]and W := L,n[b+ 1, n] and suppose that V # W. Repeating
the arguments of the previous paragraphs gives that if (V, W) is sorted, then b ¢ L,
and if (W, V) is sorted, then b € L.

Now, there are two cases: |L, N [b,n]| and |L, N [b, n]| have the same parity or they
have opposite parity. They are similar, so we will assume we are in the first case, and
leave the second to the reader.

Suppose |L, N[b, n]| and |L, N[b, n]| have the same parity. Note that (—1)Linli+1.j—1ll
is sgn(i j), and, since b & Ly, L, N [b,n] and L, N [b + 1, n] are equal. So

sgn(b n) = (=1)Lanib:nl
= (=1)Lanla+1.b-1lI(_1)lLanla+1n]|
= Sgn<a b> . Sgn<a 1)

and thus (P, Q) is sorted. We will show that (I, I)) is sorted and I, # Ij,.
If b € L,, then |V| and |W| have different parity. In particular, V and W are not
equal, so (W, V) is sorted and |[W| = |V| + 1. The two sets interweave like

W SV SWy S0 S SWyp SV S Wiy

Since V =1,n[b+1,n] and W = I, n[b+1, n], we also have that I, and I, are distinct.
Note that I, n [b,n] = W U {b}and I, n [b,n] = V U {b} and we have
b<b<w; fv; fw; vy < LWy KU S Wiy,
so (I, N [b,n], I, N [b,n]) form a sorted pair. If b ¢ L,, then |V| and |W| have the same
parity. The pair (V, W) is sorted, and I, N [b,n] = V, while I, n [b,n] = W U {b}. So
(I, N [b,n],I, N [b, n]) are a sorted pair in this case as well, since we have
b<vyfw; v, fwy < < LWy
Note that b is in I, but not in I, so we also have that I, and I}, are distinct in this case.
Now we turn to the sets T and U. Because sgn{a b) = (—1)* sgn(b a), we have
(=1)Lanlab=1ll = (—1)k(—1)Lbnlb.a—1]|
- (_1)\Lbn[1,n]|+|Lbn[b,a—1]|
= (—1)Evnlab=1],
Note that |T| < |[Lyn[a,b—1]] < 1+ |T|,since a & L,. If a € Ly, then (T,U)
is sorted and |L, N [a,b —1]| = 1 + |U|, since b — 1 & Lp. If T and U have the same
cardinality, then |L, N [a,b — 1]| must be equal to 1 + |T| in order to have the same

parity as 1 + |U|. Thus b — 1 € L,. This means that (I, N [a, n], I, N [a, n]) is a sorted
pair, as we have

a<a<fh<uy < <tjLu<b-1<b<--<v Lw,.
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If |T| = |U| + 1, we conclude by similar reasoning that b — 1 ¢ L, and again (I, N
[a,n],I, N [a,n]) is a sorted pair, as we have

a<a<tpSup < <tjSujStgy <b< - <vSwy

Ifa & Ly, then (U, T) is sorted and L, N [a,b — 1] = U, since a and b — 1 are not in
L. A parity argument as in the last paragraph shows that if |U| = |T|,thenb—1 & L;
if |U| = |T| + 1, then b—1 € L,. Either way, (I, N [a, n],I, N [a, n]) is a sorted pair; we
see

in the first case and
a<u; <t < SU St Sugy <b—-1<b<--<v Sw,

in the second.

Finally, we deal with P and Q. Recall that (P, Q) are sorted. Since |L, N [b, n]| and
|Lp N [b, n]| have the same parity and |L, N[a, b—1]| and |L, N[a, b —1]| have the same
parity, |[L, N [1,a — 1]| and |L, N [1, a — 1]| have the same parity. Since a — 1 & L,
we have that P = L, N [1,a — 1]. On the other hand |Q| < |Lp n[1l,a—1]| £ |Q| + 1.
If [P| = |Q|, then for parity reasons Q = L, N [1l,a — 1] and thusa — 1 & L;. So
(I,n[1,a—1],I, n[1,a — 1]) are a sorted pair, as we have

VISSIS“'SViSSi.

Similarly, if |[P| = |Q| + 1,thena—1 € Ly and (I, n[1,a —1],I, N [1,a — 1]) again are
a sorted pair, since we have

n<$<--<rj<s;<rj;1<a—1

Since (I, N [1,a — 1],I, N [1,a — 1]) is a sorted pair ending in an element of I, and
(I, n[a,n], Iy N [a,n]) is a sorted pair, it follows that (I, I,) is a sorted pair. |

Using [Theorem 10.10, we can conclude that positroid tiles are unions of ampli-
tuhedron w-chambers, just as tree positroid polytopes are unions of hypersimplex w-
simplices. More precisely, we have Corollary [[0.17, which we sharpen further in

sition 11.1.

Corollary 10.17 (Positroid tiles are unions of w-chambers). Let Z, be a positroid tile
for Ay, x 2(Z). Then
Z= |J Au@.

A Aw(2):
AW(ZINZ7#0

11. T-DUALITY AND POSITROID TILINGS

In this section we show one of our main results: we prove that a collection {I};} of
positroid polytopes is a positroid tiling of Ay, , if and only ifforall Z € MatZ,OkJrz, the
collection of T-dual Grasstopes {Z} is a positroid tiling of A}, \ ,(Z). Along the way we
show that realizable amplituhedron chambers are exactly counted by Eulerian num-
bers. We also explore the phenomena that w-chambers can be empty, and define the G-
amplituhedron - a Z-independent analogue of the amplituhedron in Gr, ,,. Finally, we

introduce the total amplituhedron 9512) C Gr,,, which is the amplituhedron-analogue
of the hypercube, and discuss positroid tilings based on descents/sign-flips.
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11.1. Positroid tilings of Ay, , and A, ,. Recall that w-simplices in Ay, , are
indexed by Dy ; ,. One main tool is the following.

Proposition 11.1. Fixk < nand Z € Mat;,} ,,. Supposew € Dy, , and that A ,(Z) #
@. For any tree positroid polytope Ty, Ay, C T ifand only if A (Z) C Z.

Proof. Fix a bicolored triangulation J so that G(J) is a plabic tree with trip permuta-
tion 77 and G(J") has trip permutation . From [[heorem 9.2, Z;; consists of Y € Gry 4,
such that for all arcs a — b of I
sgn(Yab) = (—1)2€a(@=b) ifq < p,
sgn(Yab) = (—1)2rea@=b) ifg > p
and I; consists of the points x € R" satisfying
area(a — b) < x[qp_1) < area(a — b) +1

for all arcs a — b of 7. (In fact, to cut out Z3, it suffices to consider arcs with a < b.)
Suppose Ay, C I;. Then the vertices ey, ..., ey, of A, satisfy the defining inequali-
ties of I;. In particular, for each arc a — b of T,

area(a - b) <|I, Nn[a,b—1]| < area(a - b) + 1.
By Remark 10.6, there is another vertex e;_of A, satisfying I, = I, \ {a} U{a — 1}.

This vertex also satisfies the defining inequalities of [};. Moreover, |I, N [a,b — 1]]is 1
smaller than |I, N [a, b — 1]|, so we must have

I, n[a,b—1]| = area(a — b) + 1.

Consider Y € A%, (Z). By definition, for a < b, sgn(Yab) = (—1)/fanle-b=1lI-1 By the
above computation, sgn(Yab) = (—1)2r¢2(a=b) for every arc a — b, so we have shown
A3, (Z) C Z;,. Taking closures gives the desired containment.

Now, suppose A,,(Z) C Z,. This means that for all arcs @ — b of 7, area(a — b)+1
is the same parity as |I, N [a, b — 1]|. We will show that for all g,

area(a — b) <|I;N[a,b—1]| <area(a — b) + 1.

From the alcove description of w-simplices in [LP07, Section 2.3], there is some d
so that A, lies between the hyperplanes {x[4 ;1] = d — 1} and {X{q 1] = d}. As noted
above, there is a vertex e; of A, satisfying I, = I, \{a}U{a—1}. Since |[I,n[a,b—1]| =
|I; n[a,b—1]| — 1, we conclude that d is |I, N [a, b — 1]|. Thus, it suffices to show that
(11.2) area(a > b)+1=|I,n[a,b—1]|.

This is proved in Lemma [[1.3. |

Lemma 11.3. Let J be a bicolored triangulation of type (k, n) and let Ay, C A1, bea
w-simplex with vertices ey, ..., ey, . Suppose for all arcs a — b of T,

area(a > b)+1=|I,n[a,b—1]] (mod 2).
Then area(a - b)+ 1 =|I,n[a,b—1]|forallarcsa — b of T.

Proof. We use induction on n. The base cases are n = 3 and k = 0, 1, which are clear.
Without loss of generality, we may assume that J° contains the arc 1 — (n — 1).

Indeed, J contains some arc (r + 1) — (¥ — 1). We can rotate J” by r to obtain a new

triangulation with an arc 1 — (n — 1). We can also apply the corresponding cyclic
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shift e; — e;_, to Ay, to obtain a new simplex A,. The vertex er, of A, is mapped to
vertex ey of Ay, where J,_, = {i —r : i € I,}. If the proposition is true for the new
triangulation and A,,, it is easy to see (by shifting back) that it is true for 7" and A,,,.

Let 7 be the bicolored triangulation of type (k’,n — 1) obtained by chopping the
triangle with vertices 1,n — 1, n off of 7. Note that k' = k if this triangle is white, and
k' = k — 1 otherwise. Let v € S,,_; be the permutation obtained from w by deleting
w, = n and moving n — 1 to the end.

Casel. Suppose the triangle deleted from J iswhite, sok’ = k. Then area,(1 — (n—1))
is equal to area,(1 — n), so the assumption on parities means that I; N [1,n — 1] has
the same size asI; N[1,n—2]. Thatis,n—1 ¢ I;, which means that n— 1 appears to the
right of n — 2 in w. Deleting w,, and moving n — 1 to the end results in a permutation
with the same number of cyclic descents as w, meaning that A, C Ays ;.

The vertices of A, are e Tysee €I, where
|l ifn ¢ I,
Tl \{njun-1} ifnel,.

For the moment, we will denote cyclic intervals in [n — 1] by [a, b]'.

Let a — bbe an arc of 7. Because b # n, [a, b — 1] either contains both n — 1 and
n, or neither. SoJ, N [a,b — 1]" and I, N [a,b — 1] have the same cardinality. Also,
area,(a — b) is equal to area,(a — b), so 7’ and A, (Z) satisfy the assumptions of the
proposition. By induction, we can conclude that |J, N [a,b—1]'| = area,(a - b) + 1.
In light of the equalities in this paragraph, this means that for all arcs a — b of 7" where
a, b are not n, we have |I, N [a,b — 1]| = area,(a — b) + 1. It remains to check thata
similar equality for the arcs 1 — n, (n — 1) — n and their reverses, which are trivial.

Case I1. Suppose the triangle deleted from J is black, so k' = k — 1. Then area,(1 -
(n—1))isequal to area,;(1 — n)—1. The assumption on parities implies that I; N[1,n—
1] and I; n [1,n — 2] are different sizes, so n — 1 € I;. This means that n — 1 appears
to the left of n — 2 in w, and v has one fewer left descent than w. So A, C Ays ,_; as
desired.

The vertices of A, are e Tysee €I, where

N a \ {n} ifn eI,
Tl \n-1} ifn-1el,n¢l,

Let a — b be an arc of 7. Again, the cyclic interval [a, b — 1] either contains both
n — 1 and n, or contains neither. If [a, b — 1] contains neither, then clearly |J, N [a, b —
1]'| = I, n[a, b — 1]|; in this case, area,+(a — b) = area,(a — b) as well. If [a,b — 1]
contains both, then |J, n [a,b — 1]'| = |I[; N [a,b — 1]| — 1 and areas(a — b) =
area,(a — b) — 1. So again, 7’ and A, satisfy the assumptions of the proposition. As
in Case [l, we can conclude that for all arcs a — b of 7 where a, b are not n, we have
|I; N [a,b —1]| = area,(a — b) + 1. The equalities for the arcs 1 - n,(n—1) — n,
and their reverses are clear. O

Remark 11.4. motivates the intuition that the w-simplex A, C Agyq
and the w-chamber A,(2) C Ay, i ,(Z) are ‘T-dual’ to each other. In [Proposition 11.3§
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we will show that any w-simplex is the intersection of n distinguished positroid poly-
topes {I;}, and the corresponding w-chamber is the intersection of the n T-dual
Grasstopes {Z;}.

To prove the correspondence between positroid tilings, we also need the following
crucial result, whose proof we delay to the following subsection.

Theorem 11.5 (w-Chambers are realizable). For each w € Dy ,, there exists some
Z e MatZSHZ such that the amplituhedron w-chamber A, (Z) in A, i ,(Z) is nonempty.

‘We can now show the main result of this section.

Theorem 11.6 (Tilings of Ay, , and A, i, are T-dual). The collection C = {I.;} is
a positroid tiling of Ay, if and only if for all Z € MatZ,O,H_Z, the collection of T-dual
Grasstopes C = {Z} is a positroid tiling of Ay . 2(Z).

Proof. (=>): Suppose C is a positroid tiling of Ay, ,, and choose Z € MatZSHZ. We
already know that Z is a positroid tile from [Corollary 9.1l.

We first show that the Grasstopes in € are dense in the amplituhedron. Consider a
nonempty amplituhedron w-chamber A,(Z). Since € is a positroid tiling, there exists

a tree positroid polytope I}; € € which contains A,,. By [Proposition 11.1), A3, (Z) C Z3,
where the latter is by definition in €. So we have

Udu@ c Uz ¢ Ania).
w é

By [Theorem 10.10, the closure of the left-most set is equal to the right, so the closure
of the middle set is A}, ;. ,(Z), as desired.

Now, suppose for the sake of contradiction that two distinct Z%, Z, € € are not dis-
joint. They are open, so their intersection is open, and thus their intersection contains
a point in A2, (Z) for some w. implies that in fact the entire w-simplex
A:,(Z) is contained in their intersection. But then by [Proposition 11.1,, A,, is contained
inl;Nn[,a contradiction.

(«=): Suppose that for all Z € Matzng, € is a positroid tiling of A,k ,(Z). By
Theorem 11.3, for all w € Dy ,, we can choose Z so that A, (Z) is nonempty. In par-
ticular, A3,(Z) must intersect one of the positroid tiles Z3 and thus by Cemma 10.9,
Ay(Z) C Z;. Because C is a positroid tiling, A,,(Z) is not contained in any other
positroid tile in €. Using [Proposition 11.1,, we see that every w-simplex is contained
in precisely one positroid polytope in C, and thus € is a positroid tiling of Ay, ,. O

In [KWZ20], they conjectured there are (";2) Grasstopes in a positroid tiling of
Ay k- As noted in [EPW20], this is also the number of positroid polytopes in a regu-
lar positroid tiling of A , [SW21], which are those arising from the tropical positive
Grassmannian Trop™ Gry41,n [EPW20]. A positroid tiling of A, i , is regular if it is
T-dual to a regular positroid tiling of Ay, ,. By Theorem [[1.4, we have:

Corollary 11.7. There are (";2) Grasstopes in any regular positroid tiling of Ay, i »(Z).

Remark 11.8. [EPW20] showed that all BCFW tilings of A,y ,(Z) contain (";2)
Grasstopes; there are BCFW tilings which are not regular and regular tilings which
are not BCFW.
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11.2. The G-amplituhedron, the hypercube and the total amplituhedron. In
this subsection, we embed A, y ,(Z) into a full-dimensional subset of Gr, ,—the ‘G-
amplituhedron’ G, ; ,—which does not depend on Z. We use sign chambers in the G-
amplituhedron to prove that all w-chambers of A}, ;. ,(Z) are realizable (Theorem 11.5).
We also draw another parallel between the hypersimplex and the amplituhedron. In

we saw that the union of the (projected) hypersimplices Ay, , is the hy-
percube &7, _;. Analogously, we take the union of G-amplituhedra varying over all k to

obtain the total amplituhedron 922), which is the amplituhedron-analogue of 07, _;.
Definition is intended to be a Z-independent version of the amplituhedron,

inspired by Corollary 5.3.
Definition 11.9 (The G-amplituhedron). Fix k < n and let
Gnko =12 € Gryy | piip1(2) >0for1 <i<n-—1, and p, i(z) > 0,
and var((p12(2), p13(2), ... p1a(2)) = k}.
The closure G, k5 = % in Gr, j, is the G-amplituhedron.

Remark 11.10. Following the sign-flip descriptions from [[AHTT18, KW19], one can
generalize most of the definitions in this section for any m. We leave this to future
work.

Comparing with we have:

Proposition 11.11. Fixk < n, and W € Gryy, . Then
gz,k,z(W)={Z€ 9;,}(,2 | z C W}: 9;,]{,2 N Grz(W) al’ld ﬁn’k’z(W): 9:1’1(’2 N Grz(W)

Remark 11.12. Note that G,, ;. , is full-dimensional in Gr, ;, i.e. it has dimension 2(n —
2), whereas G;, , ,(W) and B,, ; ,(W) are full-dimensional in Gr,(W), i.e. have dimen-
sion 2k.

Motivated by the decomposition of A,, i ,(Z) into w-chambers, we analogously de-
fine w-chambers for G, i ».

Definition 11.13. Let w € Dyy, and let I, := cDesy, (w@D). Then the open G-
amplituhedron w-chamber A,(G) consists of z € G k.2 With all nonzero Pliicker coor-
dinates such thatfora =1,...,n,

Flip(p,i(2), Pa3(2), ..., Paa/_\l(z), Paa(2) Paa+1(2)s -+ > Pan(2)) = I \ {a}.

Equivalently, A7,(9) consists of z € Gr, ,, such that
(11.14)
sgn paj(z)=(—DanlaJ=UI" for j > a and  sgn p,j(z)=(-Da"l@/"UI" for j < a.

The closed G-amplituhedron w-chamber is the closure A, (G) = A3,(G). Abusing nota-
tion, we will often omit ‘closed’ when referring to closed G-amplituhedron w-chambers.

The situation for G-amplituhedron w-chambers is quite straightforward. We will see
that the second part of ([[1.14) follows from the first part, so each A2,(G) is an oriented
matroid stratum, whose underlying matroid is the rank 2 uniform matroid on [n].

Proposition 11.15. Let w € Dy . Then A3,(9) is nonempty and is contractible.
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Proof. Consider n vectors vy, U,,..., 0, in R? so that the matrix

[Ul Vwi+1 Vwy+1 - an_1+1]

has all maximal minors positive. In particular, drawing the vectors in the plane and
going counterclockwise, we see vy, Vw, +15 Vwy 415 -+ Vi, 41 100 that order.
Now, set z; := vy and zj, == (=1)1NLb=1I=1y, for b > 2. We claim that

z=zy zy z3y ... zy|

represents a point in AZ,(G).

Clearly p;5(2) has the correct sign. Consider 1 # a < j. We will assume det[v,v;] >
0; the other case is similar. Note that p,;(z) has sign (=1)117%J=1; we would like
to show that this is equal to (—1)al@/=1I=1 " Because det[v,v;] > 0, a — 1 occurs
before j — 1 in w, written in one-line notation. Recall from that I, 1, =
Iy, 41 \{wi}U{w; + 1}. Thatis, I, can be obtained from I, by removing w, and adding
w; + 1, then removing w, and adding w, + 1, and so on until one removes w, = a — 1
and adds a. Note that for ¢ = wy,..., Wq-1 the numbers ¢ and ¢ + 1 are either both in
[a,j — 1] or both not in [a, j — 1], so |I; N [a, j — 1]| = [I.41 N [a,j — 1]|. Removing
a—1from Ty 41 and adding a increases the size of the intersection with [a, j — 1] by
one, so |} N[a, j —1]| = I, N [a, j — 1]| — 1. This shows p,;(z) has the correct sign for
a < j; a similar argument shows that for a > j, p,;(z) has the desired sign so long as
Pja(z) does.

So A3,(G)is an oriented matroid stratum for a rank 2 oriented matroid. By [BLVS*99,
Corollary 8.2.3], all rank 2 oriented matroid strata are contractible. O

Example 11.16. Letw = (2,6,1,4,5,3,7) € D41, with k = 3 and n = 7. We have
I, = {1,2,4,6}. Following the proof of Proposition 11.13, we can choose

(U1, Vw415 Vi 415 Vwg 415 Vwg 41> Vws 415 Vwg 1) = (U1, U3, U7, U2, Us, Vg, Ug)
(11 1.1 1 11
“\1 2 3 4 5 6 7)

Z_11—1—111—1
“\1 4 -2 -7 5 6 =3J°

We then get

One can check that z lies in A%,(G). Also note that both row vectors z(") and z® of z
have var(z(V) = var(z®) = k by construction.

Remark 11.17. The w-chambers of the G-amplituhedron do not depend on Z. Roughly
speaking, the amplituhedron w-chambers are linear slices of G-amplituhedron w-
chambers. More precisely, for Z € Mat;,$,, with column span W € Gryy,,, We
have

f2(8%(9) N Gry(W)) = Ay (2),
where f; is the homeomorphism from [Proposition 3.3.
Our next goal is to use Proposition 11.13 and the connection with the B-

amplituhedron from Proposition 11.11] to deduce on realizability of w-
chambers. We start by proving Lemma [1.18.
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Lemma 11.18. Given a 2 X n matrix z as constructed in the proof of [Proposition 11.13
we can construct a (k+2)Xn matrix A’ representing a point W € Grigz’n which contains
rowspan(z) as a subspace.

Proof. Let zV = (zgl),...,zﬁ,l)) and z® = (z§2),...,z£f)) denote the rows of z. By
construction, var(z(M) = var(z®) = k and moreover we can partition [#] into disjoint
consecutive intervals Hy Ul --- LI Hyq such that the entries of z®M and z? in positions
H; are positive if i is odd and negative if i is even.

By [Kar17, Lemma 4.1], since var(z(?)) = k, we can construct a (k + 1) X n matrix A
with maximal minors nonnegative whose row sum is z(?). More explicitly, we define
the ith row of A to be the vector (a;3, ..., a;) such that a;; = z§2) for j € Hyand a;; =0
for j ¢ H;. Therefore the nonvanishing Pliicker coordinates of A are precisely the
pp(A) such that B = {b; < b, < -+- < by, 1} with b; € H;.

Let A’ be the matrix obtained from A by adding z(V as a new top (0th) row. We will
label the rows of A’ from 0 to k + 1. The nonvanishing Pliicker coordinates of A" are
precisely the pp/(A") where B" = {b; < by < -+ < by} U {bj} with b; € H; and both
b;, bj lie in H;.

Now we can compute the Pliicker coordinates of A’ in terms of Pliicker coordinates
of z and minors of A. Let B' = {b; < b, < -+ < bi;1} U {b}} as above. Then we have

pp/(A) = (_l)j_lAOj,bjb} (A Apiernj B\, b3 (A)
i 2
= py @[] 2
i#]
where Ag (A’) denotes the minor of A’ on rows R and columns C. Now it follows from
the construction of z that since both b s b} liein H i, we have Db, b, (z) > 0. Additionally,

we have that the sign of ], 4 zgzi) is (—1)/*1. Therefore pg/(A’) is positive, as desired.

O
Example 11.19. We illustrate the proof of using our running example
from Example 11.14. We have

Z_11—1—111—1
“\1 4 -2 -7 5 6 =-3)°

SO
1 4 0 0 00 0 11 -1 -111 1
00 —2 —7 0 0 0 1 4 O 0 0 0 O
A= andA'=|0 0 -2 =7 0 0 O
0 0 O 0 56 0
0 0 O 0 0 0 -3 0.0 0 0 56 0
0 0 O 0 0 0 -3

Both matrices have maximal minors nonnegative. If B = {2, 3,5,6,7}then2 € H;,3 €
H,,5,6 € H;,7 € H, and we have

pp(A) = A03,56(14')A124,237(Al) = pse(2) - (4 (=2) - (=3)).
Proof of Theorem 11.3. By [Proposition 3.3, we know that B, ; ,(W) is homeomorphic

to Ay 2(Z), where W € Grigz,n is the column span of Z. Moreover the Pliicker coor-
dinates of the former agree with the twistor coordinates of the latter. [Proposition 11.13
gives an explicit construction of a 2 X n matrix z representing a point in A%,(), and by
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Proposition T1.11 we have B, (W) = Gy, ; , N Gry(W), so to prove the theorem, we
just need to realize z as a two-dimensional subspace contained in some (k + 2)-plane
W € Gryaan-

By Cemma 11.1§, we can realize z as a two-dimensional subspace contained in a
(k+2)-plane W € Grigm. (Here W = rowspan(A’).) We want to now slightly deform
A’ to make it totally positive.

We claim that A’ € Grigz,n is the limit of a sequence of points {4,} € Grigz,n where
rowspan (A;) contains a 2-plane z(t) which lies in the same sign-chamber as z. To see

this, we use the fact that Gri?rz,n = Grigz,n (see Remark 2.3). We can therefore write A’
as the limit of a sequence of matrices of the form A’ + (¢;(¢)) € Grigz,n, where (¢;;(1))
is a (k + 2) X n matrix, and each ¢;;(¢) is a function of ¢ with small absolute value and
€;j(t) > 0ast — 0.

We denote the rows of A" + (¢;;(£)) by r;(¢) for 0 <i <k + 1. Let z0(t) 1= ry(1), let
Z3(t) 1= 1 (t) + r(t) + -+ + 141 (t), and let z(t) be the matrix with rows z()(¢) and
zQ) ().

Then when t = 0, we have z = z(t). Moreover for small ¢, the Pliicker coordinates
of z(t) have the same signs as the Pliicker coordinates of z, so z(¢) lies in the same
w-chamber A3, (9) as z. But now by construction, rowspan(z(t)) lies in the positive
(k+2)-plane W = rowspan (A’ +(¢;;(¢))). This completes the proof of the theorem. [

Recall the definition of realizable amplituhedron chamber from Definition 3.10.

Corollary 11.20 (Amplituhedron chambers and Eulerian numbers). The realizable
amplituhedron chambers Ag,k,z are exactly the w-chambers A3, where w € Dyiq .

Proof. shows that each w-chamber is realizable. shows

that no other sign chambers are realizable. O

We now turn to the G-amplituhedron. The proof of Theorem implies the fol-
lowing.

Theorem 11.21. Fixk < n, then
Gnkz= |J BAw(®.

WEDje41,n

Using the sign characterization of a positroid tile Z; of A, j ,(Z) (Theorem 4.29),
one can define a positroid tile G, in G, i , as (the closure of) the region in Gr, ,, whose
Pliicker coordinates satisfy the same sign conditions as the twistor coordinates of Z.
Analogously to [Corollary 10.17, G is a union of G-amplituhedron w-chambers. More-
over, Z; is a linear slice of G (analogously to Remark 11.17). We say a positroid tiling
of G, k2 is a collection of positroid tiles which cover G, i , and have disjoint interiors.
Since all G-amplituhedron w-chambers are nonempty, the analogue of
holds for the G-amplituhedron (without any dependence on Z): T-duality gives a bijec-
tion between positroid tilings of Ay, ,, and positroid tilings of G,  ».

Definition 11.22 (Total amplituhedron). The total amplituhedron 9512) is

n-2
512) = U gn,k,z-
k=0
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Note that 9;2) has top dimension 2(n — 2) in Gr, ,,, and it does not depend on Z.

Recall that the hypercube &3, _; C R"~! can be decomposed into (n—1)! w-simplices

in a way which is compatible with its slicing into (projected) hypersimplices A, ,,, A, ,,,
.y Ay_1 . Bach Ay, , is a union of exactly Ey ,_; simplices, where Ey ,_; is the
Eulerian number.

Analogously, by Theorem 11.21], the total amplituhedron P ¢ Gr, ,, can be decom-
posed into (n — 1)! w-chambers in a way which is compatible with its decomposition
into the G-amplituhedra G, 02, Gn1,25--+> Gnn—2,2- Each Gy, is a union of exactly
Ey n—1 w-chambers. This is the ‘m = 2’ equivalent of encoding all helicity sectors at
once for tree-level scattering amplitudes of N' = 4 SYM for m = 4. A related space was
discussed in the context of the B-amplituhedron [KW19, Section 3.4].

11.3. Empty w-chambers and tilings of A, ;,. In this section we provide
algorithms to find all positroid tilings of the hypersimplex and the amplituhedron us-
ing w-simplices and w-chambers. As mentioned in Remark 10.8, A,,(Z) may be empty
for some choices of Z € MatZ,Ok”. We take a closer look at this phenomenon and give
some examples.

Remark 11.23. 1tis a priori possible for an amplituhedron A,  ,(Z) to have a positroid
tiling € which is not T-dual to a hypersimplex positroid tiling. However,
tells us that the collection of Grasstopes € will fail to be a tiling for some other ampli-
tuhedron A,  ,(Z'). We have not found any instances of such “sporadic” tilings.

Proposition 11.24 (Algorithm for positroid tilings of Ay ,). In order to find all
positroid tilings of Ay, , proceed as follows. Call two positroid tiles T, and T, com-
patible if they do not contain any common w-simplex.

Step 1. Define a graph G whose vertices are positroid tiles of Ay, and edges connect
compatible positroid tiles.

Step 2. Compute the set CI(G) of all maximal cliques of G;

Step 3. For each clique C € CI(G), compute the list L of all w-simplices contained in
any positroid tile I; € C;

Step 4. If L consists of all w-simplices of Ay y,, then € is a positroid tiling of Ayiq p.
Otherwise it is not.

Proposition 11.25 (Algorithm for positroid tilings of A, ;). In order to find all

positroid tilings of A, x »(Z) proceed as follows. Let £ be the list of all w-simplices A, in

Agy1,n Such that Ay (Z) = @. Call two positroid tiles Z4,, Z, compatible if and only if

[z, NI, is empty or is the union of w-simplices which are in &.

Step 1. Make a graph G whose vertices are positroid tiles of An 12(Z) and edges connect
compatible positroid tiles;

Step 2. Compute the set C1(§) of all maximal cliques of G;

Step 3. For each clique ¢ € CI(G), consider the collection C of T-dual positroid tiles
in Agyq,,. Compute the list L of all w-simplices in Ay, j, contained in any
positroid tile I, € C;

Step 4. Ifthe (possibly empty) complement of L is contained in &, then € is a positroid
tiling of Ay, k. 2(Z). Otherwise it is not.

Remark 11.26. If we would like to find a positroid tiling € of the amplituhedron
A k2(Z) which is not a positroid tiling of Ay, ,, then after Step f we need check that
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either: (i) the complement of £ is nonempty and contained in Ez; or (ii) L is the set
of all w-simplices of Ay, ,, and there is a pair of positroid tiles I;; , I;, in € which both
contain a w-simplex in £.

Below, we report some results on empty w-chambers in the cases k = 1, 2.

k = 1 case. The amplituhedron A, ;,(Z) is just an n-gon P,(Z) in P? with vertices
Zy,...,Zy, going clockwise. Let i — j be a side or a diagonal of P,,(Z), with i < j. The
twistor coordinate (Yij) is positive, negative or zero if Y lies to the right, left, or on the
diagonal i — j respectively. Then the nonempty w-chambers A, (Z) are the connected
components of the complement of all diagonals of P,,(Z) (see Figure [[0). If no three
diagonals of P,,(Z) intersect at a point in the interior, it is well known the number of
connected components is given by:

& on-1 n n—1
Nn:rgz( r )=(4)+( 2 )
The number of empty w-chambers in this case is shown in [Table 2.

If three diagonals of P,(Z) intersect at a point in its interior, then the number of
empty w-chambers is larger (as the number of regions realized is smaller).

TABLE 2. Empty w-chambers vs. Eulerian numbers for k = 1

n[3(4[5]6]7] 8] 9
N, 1411|2550 91 | 154

Ern_q || 1] 4]|11]26]57120] 247
#EmptyA, |[0]0| 0 | 1| 7| 29 | 93

Example 11.27. Consider Ag; 5(Z), which is a hexagon. Let us consider the permu-
tations w*) = 145236 and w~) = 341256. Points in A +)(Z) and A ()(Z) have all
twistor coordinates with the same sign, except for {(Y14),(Y25),(Y36)}, whose signs
are {+ — +}and {— + —}, respectively. Let Z* be the intersection of the diagonals (1, 4)
and (2, 5). Then A +)(Z) (respectively, A )(Z)) is nonempty if and only if Z* is to the
right (respectively, left) of the diagonal 3 — 6. This happens when

(11.28) (21,22, Zs 24, 23, Z) — (21, 23, Z6 24, Z2, Zs)

is positive (respectively, negative), see Figure [[0. So for any choice of Z, either A ;) (2)
=@ or A (Z) = @, and both are empty if (IT:28) vanishes.

If a collection of Grasstopes covers A, i ,(Z), the T-dual positroid polytopes may not
cover Ayyqpn-

Example 11.29. Let Z, be the point in Grs 9 invariant under cyclic symmetry, so
Ag.12(Zy) is a regular hexagon in P2. Consider the positroid tiles Zp,s--s Ly, below.

2 3 2 3 2 3 2 3 2 3 2 3
1@4 104 1®4 ID4 1@4 104
6 5 6 5 6 5 6 5 6 5 6 5
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2 3

1 25 4

6 5

FIGURE 10. From left toright: For(Z*, Z3, Zs) > 0, A (+) is nonempty
(in black) but A ) is empty; if (Z*, Z3, Zs) = 0 then A ) and A )
are both empty; for (Z*,Z3,Zs) < 0 then A () is empty but A ) is
not (shown in black)

Clearly, they do cover Ajg ; ,(Zy) (and overlap). However, A () is not contained in
I, U-- UL, CA,g. Therefore the T-dual positroid tiles do not cover A, ¢.

Despite the presence of empty w-chambers, for any Z in Mati?fz,n, positroid tilings
of A, , and A, ; ,(Z) are still in bijection:

Proposition 11.30. A collection of tree positroid polytopes{I;;} is a positroid tiling of A, ,,
ifand only if {Z4} is a positroid tiling of A, 1 5,(Z). All such tilings are regular.

Proof. The forward direction comes from Theorem [[1.6. The other direction comes
from the fact that A, ; ,(Z) is just an n-gon. Its positroid tilings are in bijection with
the regular positroid tilings of A, ,, described in [EPW20, Proposition 10.7] (of ‘Catalan’
type). O

k = 2 case. We used Mathematica and the package ‘positroid’ [Boul2].

For n = 6, there are choices of Z such that all w-chambers of A , ,(Z) are nonempty.

For n = 7 and some choices of Z, there are empty w-chambers A, for which A, is the
intersection of just 2 positroid tiles of A; ;. This implies that in general the compatibility
graph G of positroid tiles of Ay, ; ,, differs from the one § of positroid tiles of Ani2(Z)
(cf. Proposition 11.23). For example, if w = 1645237, then A, = I, N I, with
71 = 2371645 and 7, = 6745231. The positroid polytopes {I};,, Iz, } are not compatible
in A3 7, but there are choices of Z = Z* for which the T-dual Grasstopes {Z,,,Z,,} are
compatible in A;,,(Z%), as Zy, N Z,, = A, = . Nevertheless, the 3073 positroid
tilings of A5, ,(Z*) are still in bijection with the 3073 positroid tilings of A; ;.

For n = 8, we checked only a few choices of Z, but found that there are more than
100 w-chambers which can be empty depending on Z. As in the n = 7 case, the com-
patibility graph of A g differs from that of Ag ; ,(Z). Nevertheless, for all such choices
of Z, the 6443460 positroid tilings of Ay , ,(Z) are in bijection with the positroid tilings
of Az g.

11.4. Descent and sign-flip tilings. Recall that permutations and their cyclic de-
scents were used to define both the w-simplices in Ay, , and the w-chambers in
Ank2(Z). In the same spirit, by refining the set of permutations based on the posi-
tions of the descents, we will obtain a distinguished positroid tiling of Ay, and a
distinguished positroid tiling of A}, x ,(Z). These tilings are T-dual to each other.
Recall that
Agy1n = U Ay

WEDjey1,n
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Since 1 is always a cyclic descent of w € Dy, ,, we have that Dy, , is the set of
permutations w € S, with k left descents and w(n) = n. The Eulerian numbers have a
very natural refinement by descent set Des (w). If w € S,, has w(n) = n, then neither
1 nor n is a left descent of w, so we have

Exn-1 = Z #{w e S, : wn) = n,Des (w) =1}
e

This inspires the following decomposition of Ag,; ,. ForI € ([2’”_1]), let

k
= J Aw

WEDy 1.0
Desy, (w)=I
Clearly, the collection of I} cover the hypersimplex and their interiors are pairwise
disjoint. There are also (”;2) of them, which is exactly the number of full-dimensional
positroid polytopes in a regular positroid tiling of Ay, , [SW21]. We will show that
each I is in fact a positroid polytope, and that {I7} is a (regular) positroid tiling of
Ag41,n- We will refer to it as the descent tiling.
On the other hand, given the sign-flip characterization of the amplituhedron from
Theorem 5.1}, it is natural to subdivide A, y ,(Z) into regions based on where the se-

quence ((Y1a))?_, has sign flips. That is, for each I € ([2”;(_1]), we defineld
Zp ={Y € Apx2(2) | Flip((Y11),(Y12),(Y13),...,(Y1n)) = I}
and define Z; to be the closure of Z;.
[AHTT1S8, Section 7] conjectured that {Z;} is a positroid tiling of A, ; ,(Z). The
authors referred to {Z;} as a sign-flip (or kermit)H tiling. In this section we prove this

conjecture. Moreover we show that sign-flip tilings of A, ;. ,(Z) and descent tilings of
the hypersimplex Ay ; , are T-dual to each other and also regular.

Definition 11.31 (Bicolored triangulations of kermit type). Let I = {i},...,ix} €
([2”;{_1]) and let J7 be the bicolored triangulation whose black triangles have vertices
{1,ip,i, + 1} for € = 1,... k. We say Jj is kermit type and denote the plabic graph G(J;)
by K;. We also denote the plabic graph G(J7) by Cy, and call it a caterpillar tree.

FIGURE 11. In orange, the bicolored triangulation J; of kermit-type
for I = {2,3,5,6,8}. In black, the dual caterpillar tree Cj.

15Because of our conventions regarding sign flips, Z; would be empty if 1,n € I.

For k = 2, Anp 2,2(Z) provides the integrand for the 1-loop n-point scattering amplitude in N = 4
SYM. The name ‘kermit’ comes from the resemblance of the pictorial expansion of such amplitude (e.g. see
[AHBC™ 11, pg. 18]) with the Muppet character ‘Kermit the Frog’.
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Proposition 11.32 (Descent and sign-flips tilings are T-dual). Let I run over ([2";;1] .
The collections {Iy} and {Z;} are T-dual regular positroid tilings of Ay.1 , and Ay, x »(Z).
Furthermore, It = I, and Z; = Zg, where Ct and K; are as in Definition 11.31,

Proof. By the sign description of Zg, in Theorem 4.2§, it is straightforward that Z; =
Zx,. Moreover, using and Corollary [[0.17, we have

(11.33) Zg, = U Ay(2).

I
w:Desy, (w)=I

Using Proposition 9.6, it is not hard to check that the positroid polytope I, satisfies

(11.34) I, = U Ayp.

w:Desy, (w)=I
But this is exactly Ij.
Finally, it is easy to check that {T¢, }, (1) is a positroid tiling of Ay, , of the sort
appearing in [EPW20, Proposition 10.7] (‘Catalan type’), hence is a regular positroid
tiling. It follows that {Zg }, () is the T-dual regular positroid tiling. O

Remark 11.35. Sign-flip tilings of A, j ,(Z) and descent tilings of Ay, ,, are of BECW
type (in particular, of ‘Catalan type’, see [EPW20, Proposition 10.7]).

We end this section by describing each w-simplex (resp. w-chamber) as an intersec-
tion of cyclically shifted caterpillar positroid polytopes (resp. kermit Grasstopes). For
I C [n] and a € [n], let I¥) denote the cyclic shift of I such that 1 — a. Similarly, for
G a plabic graph, let G(® denote the cyclic shift of G such that 1 — a.

Proposition 11.36. Let Ay, A,(Z) be a w-simplex and a w-chamber in Ay, , and
Apk2(Z) respectively. Let I, ..., I, give the vertices of Ay, and let J; == (I \ {a)-9),
Then:
T and AyZ Z -
=N @ w@) =) K@

aeln] ae(n]

Proof. First, C (a) is dual to a kermit-type bicolored triangulation whose black triangles
all use vertex a.

To see the statement about A, note that another way to phrase (11.34) is that I';, is
the union of all w-simplices with 1st vertex given by I U {1}. Using the cyclic shift on
the hypersimplex, it is not hard to see that I’ (a) is the union of all w-simplices with ath

vertex given by I,,. So taking the 1ntersect10n glves exactly the w-simplex with vertices

eII, ,eIa.
The statement about A ,(Z) follows from a similar argument, using (I1.33) and the
cyclic shift on Gry . O

Example 11.37. Let us consider w = 324156 from Example [[0.4. We have:
L={1,2,3}, L,={2,3,5}, I1={1,3,4}, I,={1,2,4}, I;={1,3,5}, I;={2,3,6};
J1:{2’ 3}’ J2:{2a 4}7 13:{27 5}’ J4:{4’ S}a J5:{3’ 5}’ J6:{374}

Then A, is the intersection of T (1), cees Fc(s) and A, is the intersection of Z K> o

Z (6) The cyclically rotated kermlt type bicolored triangulations 77, (1) - TJ(:) are dis-
played below.
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2 3 2 3 2 3 2 3 2 3 2 3
6 5 6 5 6 5 6 5 6 5 6 5

Notice that 5}(11) is equivalent to 5}24).

12. SCHRODER NUMBERS: SEPARABLE PERMUTATIONS AND POSITROID TILES

Recall from that positroid tiles for both A, x ,(Z) and Ay, , are in bi-
jection with bicolored subdivisions of type (k,n) and tree positroids in
Grigl,n. [EPSV19] provided experimental evidence that the number Ry ,,_, of positroid
tiles for A, i , is given by [S¥], A175124], a refinement of the large Schréder numbers
(see Table B). In this section we prove this statement by giving a bijection between tree
positroids in Grigl,n and separable permutations on [n — 1] with k descents (enumer-
ated by Ry ,—»).

Definition 12.1. A permutation w = w; ... w, (in one-line notation) is separable if it
is 3142- and 2413-avoiding, i.e. there are not four indices i; < i, < iz < i such that
wi3 < wil < wi4 < wiz or wiz < wi4 < wil < wiS.

TABLE 3. Large Schroder numbers R,,_, and their refinement Ry ,,_
which count the number of bicolored subdivisions of type (k, n)

) Fllol 1] 2] 3 ]4als R,_,
2 1 1
3 1|1

4 1141 6
5 1/10] 10 | 1 22
6 11204820 |1 90
7 1[35]161[161[35[1] 394

Definition 12.2. Let 7 and v be permutations on [k] and [[], respectively. The direct
sum 7 @ v and the skew sum 7 © v of 7 and v are permutations on [k + [] defined by:

7Ti+l, lE[l,k]
Vik, 1€[k+1,k+1]

_ )7 le[lak] _
(n®v); = Vig+k ielk+Lk+1] (wS&); =

For example, 123 @ 21 = 12354 and 123 © 21 = 34521.

Proposition 12.3 ([Kit11]). A permutation is separable if and only if w can be built from
the permutation 1 by repeatedly applying @ and ©.

For example, the permutation w = 231654 can be written as

(1eDed(1enel)=(1201)d (2161) = 231 @ 321 = 231654.



392 M. PARISI, M. SHERMAN-BENNETT, AND L. K. WILLIAMS

Proposition 12.4. Let 3 be the map sending a permutation w = w;...W,_; in one-
line notation to the permutation f(w) = (wy, ..., W,_1,n) in cycle notation. Then B isa
bijection between separable permutations on [n—1] with k descents and trip permutations
of tree positroids in Grigl,n.

Proof. We use strong induction on n; the base case n = 2 is trivial. It is enough to show
that 8 is well-defined and surjective. Suppose that w € S,,_; is separable. Then either
w=u@Pvorw = ubv, forsomeu € S,_;,v € S,_; separable, with#—1+r—1 = n—1.
By the induction hypothesis, f(u) € S, and 5(v) € S, are the trip permutations of
tree plabic graphs S and T. We now “glue” together S and T in order to obtain a tree
plabic graph with boundary vertices {1, 2, ..., n} with trip permutation f(w) € S, (see

Figure 12).

r4+0—1

FIGURE 12. How to glue S, T together when w = u @ v (on the left)
and when w = u © v (on the right)

It is straightforward to check that the trip permutation of the resulting tree is S(w).
This shows that (8 is well-defined.

For surjectivity, consider a trivalent tree plabic graph G on [n]. Let v be the internal
vertex adjacent to the boundary vertex n. Then deleting v gives two trees: S on [¢] and
T on [¢ + 1,n — 1]. Let 7 be the trip permutation of S. Subtract ¢ from the boundary
labels of T to geta tree T' on [1,n—¢ — 1] and let v be its trip permutation. Then define
w to be either B~ (m)BB~1(v) or B~1(r)© B~ (v), based on whether v is white or black.
By the argument used above to show well-definedness, S(w) is the trip permutation of
G. O

Remark 12.5. If S and T are tree plabic graphs, the positroids associated to S @ T and
S © T are the parallel-connection and series-connection of the matroids associated to
S, T.

The large Schréder number R,,_, counts separable permutations on [n— 1] [Wes93]
and Ry, counts separable permutations on [n—1] with k descents [FLZ18, Theorem
1.1].

Corollary 12.6. Positroid tiles of Ay, and Ay, i ,(Z) are in bijection with separable per-
mutations on [n—1] with k descents. They are enumerated by Ry ,_, from [S*, A175124].
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APPENDIX A. COMBINATORICS OF THE TOTALLY NONNEGATIVE GRASSMANNIAN

In [Pos06], Postnikov defined several families of combinatorial objects which are in
bijection with cells of the positive Grassmannian, including decorated permutations,
and equivalence classes of reduced plabic graphs. He also used these objects to give
concrete descriptions of the cells. Here we review some of this technology.

Definition A.1. A decorated permutation on [n] is a bijection 7 : [n] — [n] whose
fixed points are each colored either black (loop) or white (coloop). We denote a black
fixed point i by 7z(i) = i, and a white fixed point i by 7(i) = i. An anti-exceedance of the
decorated permutation 7 is an element i € [n] such that either 7~1(i) > i or z(i) = i.
We say that a decorated permutation on [#] is of type (k, n) if it has k anti-exceedances.

For example, 7 = (3,2,5,1,6, 8,7, 4) hasaloop in position 2, and a coloop in position
7. It has three anti-exceedances 1, 4, 7.

Decorated permutations can be equivalently thought of as affine permutations
[KLS13]. An affine permutation on [n] is a bijection 7 : Z — Z such that z(i + n) =
@) +nandi < 7w(i) < i+ n, forali € Z It is additionally (k,n)-bounded if
i () — i) = kn.

There is a bijection between decorated permutations of type (k,n) and (k,n)-
bounded affine permutations. Given a decorated permutation 7; we can define an
affine permutation 7, by the following procedure: if 74(i) > i, then define 7,(i) :=
m4(@); if my(i) < i, then define 7,(i) := 74(i) + n; if 74(i) is a loop then define 7, (i) = i;
if m4(i) is a coloop then define 7,(i) := i + n. For example, under this map, the
decorated permutation 74 = (3,2,5,1,6,8, 7, 4) in the previous example gives rise to
7, =(3,2,5,9,6,8,15,12).

Given a k X n matrix C = (cy,...,c,) written as a list of its columns, we asso-
ciate a decorated permutation 7 as follows. Given i,j € [n], let r[i, j] denote the
rank of {c;, i1, ...,¢;j), where we list the columns in cyclic order, going from ¢, to
c; ifi > j. We set w(i) := j to be the label of the first column j such that ¢; €
span{c;;1,Ciy2,---,¢j}. If ¢; is the all-zero vector, we decorate i as loop, and if ¢; is
not in the span of the other column vectors, we decorate i as coloop.

The map C — 7z extends to a map on positroid cells. Moreover, Postnikov showed
that the positroids for Gr,i% are in bijection with decorated permutations of [n] with ex-
actly k anti-exceedances (equivalently, by (k, n)-bounded affine permutations) [Pos06,
Section 16]. One may read off the dimension of the cell S,, from the affine permutation
7 as follows. Let inv(7r) be the number of pairs (i, j) such thati € [n], j € Z,i < j, and
(i) > 7(j). Then the dimension of S;; equals k(n — k) — inv (7).

Definition A.2. A planar bicolored graph (or “plabic graph”) is a planar graph G prop-
erly embedded into a closed disk, such that each internal vertex is colored black or
white; each internal vertex is connected by a path to some boundary vertex; there are
(uncolored) vertices lying on the boundary of the disk labeled 1, ..., n for some positive
n; and each of the boundary vertices is incident to a single edge. See Figure [[3 for an
example.

If the connected component of G attached to a boundary vertex i is a path ending
at a black (resp., white) leaf, we call this component a black (resp., white) lollipop. We
will require that our plabic graphs have no internal leaves except for lollipops.
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FIGURE 13. A plabic graph

There is a natural set of local transformations (moves) of plabic graphs:

(M1) Square move (or urban renewal). If a plabic graph has a square formed by four
trivalent vertices whose colors alternate, then we can switch the colors of these four
vertices.

(M2) Contracting/expanding a vertex. Two adjacent internal vertices of the same
color can be merged. This operation can also be reversed.

(M3) Middle vertex insertion/removal. We can remove/add degree 2 vertices.

See for depictions of these three moves.

- >< = — — —

FIGURE 14. Local moves (M1), (M2), (M3) on plabic graphs

Definition A.3. Two plabic graphs are called move-equivalent if they can be obtained
from each other by moves (M1)-(M3). The move-equivalence class of a given plabic
graph G is the set of all plabic graphs which are move-equivalent to G. A plabic graph
is called reduced if there is no graph in its move-equivalence in which two adjacent
vertices u and v are connected by more than one edge

Note that given a plabic graph G, we can always apply moves to G to obtain a new
graph G’ which is bipartite.

Definition A.4. Let G be a reduced plabic graph as above with boundary vertices
1,...,n. For each boundary vertex i € [n], we follow a path along the edges of G
starting at i, turning (maximally) right at every internal black vertex, and (maximally)
left at every internal white vertex. This path ends at some boundary vertex 7(i). By
[Pos06, Section 13], the fact that G is reduced implies that each fixed point of 7 is at-
tached to a lollipop; we color each fixed point by the color of its lollipop. In this way
we obtain the decorated permutation 75 = 7 of G. We say that G is of type (k, n), where
k is the number of anti-exceedances of 7.

The decorated permutation of the plabic graph G of ismg =(3,4,5,1,2),
which has k = 2 anti-exceedances.

Definition A.5. Let G be a bipartite plabic graph. Use move (M3) to ensure that each
boundary vertex is incident to a white vertex. An almost perfect matching M of a plabic
graph G is a subset M of edges such that each internal vertex is incident to exactly one
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edge in M (and each boundary vertex i is incident to either one or no edges in M). We
let M = {i | i is incident to an edge of M}.

We associate to each graph G as above a collection of subsets M(G) C [n] as follows.

Proposition A.6 ([PosO€, Proposition 11.7, Lemma 11.10]). Let G be a plabic graph

asin and let M(G) = {OM | M an almost perfect matching of G}. Then
M(G) is the set of bases of a positroid on [n]. Its rank is

#{white vertices of G} — #{black vertices of G},
which is the size of M for any almost perfect matching M of G.

Postnikov used plabic graphs to give parameterizations of cells of Grf,on. These pa-
rameterizations of cells can be recast as a variant of a theorem of Kasteleyn, as was
made explicit in [Spel6]. We follow the exposition there.

Theorem A.7 ([Spel€]). Let G be a bipartite graph with boundary embedded in a disk,
such that all of the boundary vertices are black. Suppose there are N + k white vertices
Wi, .... W Ny N internal black vertices By, ..., By, and n boundary vertices By 1, --.,
By 4> labeled in clockwise order. Let w : Edges(G) — R, be any weighting function;
if there is an edge between vertices i and j, we denote the weight on this edge by w;;. For
a perfect matching M, define w(M) = [],.,, w(e) and define M to be the indices of the
boundary vertices covered by an edge in M. For a subset I of {W ni1,-..» W n4n} define
D(G, I, w) = X 5pr—p WM).

Then there is a real k X n Kasteleyn matrix L such that for each k-element subset I of
0G, the determinant det L; of the k X k submatrix of L using the columns indexed by I is
detL; = D(G, I, w). In particular, all Pliicker coordinates of L are nonnegative.

The positroid cell S C Gry, associated to the plabic graph G is the set of all k-
planes in R" spanned by matrices L as in [Theorem A.7. If G is a tree, we call S a tree
positroid.

Remark A.8. The Kasteleyn matrix L is constructed as follows. First construct an (N +
k)x(N+n) matrix K, with rows indexed by white vertices and columns indexed by black
vertices, with K;; = +w, if there is an edge e between vertices i and j (otherwise K;; =
0). Then, assuming G has at least one perfect matching, we can apply row operations

I *
to transform K into a matrix of block form ( %N L)'
ACKNOWLEDGMENTS

The first author would like to thank Fatemeh Mohammadi, Leonid Monin, and Li-
onel Mason for useful discussions. The first and third authors would like to thank
Tomek Lukowski for the previous paper [EPW20] which inspired some of this work.
The authors would like to thank Pasha Galashin, Tomek Lukowski, and David Speyer
for helpful comments on the first draft of the paper, and an anonymous referee for
many useful comments. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the
views of the National Science Foundation.



396

[AHBC*11]

[AHBC*16]

[AHBL17]

[AHCCK10]
[AHT14]

[AHTT18]

[AROS]

[Ati82]
[BBO5]

[BCFWO05]

[BCTI22]

[BFZ05]

[BH19]
[BLVS+99]

[BMOS]

[BMS10]

[Bou12]
[Carl1]

[CEGM19]

[CHCM23]

[CHDD*20]

M. PARISI, M. SHERMAN-BENNETT, AND L. K. WILLIAMS

REFERENCES

N. Arkani-Hamed, J. Bourjaily, F. Cachazo, S. Caron-Huot, and J. Trnka, The all-loop integrand
for scattering amplitudes in planar N* = 4 SYM, J. High Energy Phys. 1 (2011), 041, 46, DOI
10.1007/JHEP01(2011)041. MR2792292

Nima Arkani-Hamed, Jacob Bourjaily, Freddy Cachazo, Alexander Goncharov, Alexander
Postnikov, and Jaroslav Trnka, Grassmannian geometry of scattering amplitudes, Cambridge
University Press, Cambridge, 2016, DOI 10.1017/CB09781316091548. MR3467729

Nima Arkani-Hamed, Yuntao Bai, and Thomas Lam, Positive geometries and canonical
forms, J. High Energy Phys. 11 (2017), 039, front matter+121, DOI 10.1007/jhep11(2017)039.
MR3747267

N. Arkani-Hamed, F. Cachazo, C. Cheung, and J. Kaplan, A duality for the S matrix, J. High
Energy Phys. 3 (2010), 020, 69, DOI 10.1007/JHEP03(2010)020. MR2653484

Nima Arkani-Hamed and Jaroslav Trnka, The amplituhedron, J. High Energy Phys. 10 (2014),
33.

Nima Arkani-Hamed, Hugh Thomas, and Jaroslav Trnka, Unwinding the amplituhedron in
binary, J. High Energy Phys. 1 (2018), 016, front matter+40, DOI 10.1007/jhep01(2018)016.
MR3764259

Luis F. Alday and Radu Roiban, Scattering amplitudes, Wilson loops and the string/gauge the-
ory correspondence, Phys. Rep. 468 (2008), no. 5, 153-211, DOI 10.1016/j.physrep.2008.08.002.
MR2475059

M. F. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982), no. 1,
1-15, DOI10.1112/blms/14.1.1. MR642416

Anders Bjorner and Francesco Brenti, Combinatorics of Coxeter groups, Graduate Texts in
Mathematics, vol. 231, Springer, New York, 2005. MR2133266

Ruth Britto, Freddy Cachazo, Bo Feng, and Edward Witten, Direct proof of the tree-level scatter-
ing amplitude recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005), no. 18, 181602,
4, DO0I10.1103/PhysRevLett.94.181602. MR2260976

Carolina Benedetti, Anastasia Chavez, and Daniel Tamayo Jiménez, Quotients of uniform
positroids, Electron. J. Combin. 29 (2022), no. 1, Paper No. 1.13, 20, DOI 10.37236/10056.
MR4395243

Arkady Berenstein, Sergey Fomin, and Andrei Zelevinsky, Cluster algebras. III. Upper bounds
and double Bruhat cells, Duke Math. J. 126 (2005), no. 1, 1-52, DOI 10.1215/S0012-7094-04-
12611-9. MR2110627

Huanchen Bao and Xuhua He, The m = 2 amplituhedron, Preprint, arXiv:1909.06015, 2019.
Anders Bjorner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and Giinter M. Ziegler, Ori-
ented matroids, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 46, Cambridge
University Press, Cambridge, 1999, DOI 10.1017/CB09780511586507. MR1744046

Nathan Berkovits and Juan Maldacena, Dual superconformal symmetry, and the ampli-
tude/Wilson loop connection, J. High Energy Phys. 9 (2008), 062, 44, DOI 10.1088/1126-
6708/2008/09/062. MR2447728

Mathew Bullimore, Lionel Mason, and David Skinner, Twistor-strings, Grassmannians and
leading singularities, J. High Energy Phys. 3 (2010), 070, 54, DOI 10.1007/JHEP03(2010)070.
MR265346(0

Jacob L. Bourjaily, Positroids, plabic graphs, and scattering amplitudes in mathematica,
Preprint, arXiv:1212.6974, 2012.

Constantin Carathéodory, Uber den variabilitatsberiech der fourier’schen konstanten von posi-
tiven harmonischen funktionen, Rend. Circ. Mat. Palermo 32 (1911), 193-217.

Freddy Cachazo, Nick Early, Alfredo Guevara, and Sebastian Mizera, Scattering equations:
from projective spaces to tropical Grassmannians, J. High Energy Phys. 6 (2019), 039, 32, DOI
10.1007/jhep06(2019)039. MR3982543

Simon Caron-Huot, Frank Coronado, and Beatrix Miihlmann, Determinants in self-dual N=4
SYM and twistor space, Preprint, 2023.

Simon Caron-Huot, Lance J. Dixon, James M. Drummond, Falko Dulat, Jack Foster, Omer
Giirdogan, Matt von Hippel, Andrew J. McLeod, and Georgios Papathanasiou, The Stein-
mann cluster bootstrap for N = 4 super Yang-Mills amplitudes, PoS, CORFU2019:003, 2020, DOI
10.22323/1.376.0003.


https://mathscinet.ams.org/mathscinet-getitem?mr=2792292
https://mathscinet.ams.org/mathscinet-getitem?mr=3467729
https://mathscinet.ams.org/mathscinet-getitem?mr=3747267
https://mathscinet.ams.org/mathscinet-getitem?mr=2653484
https://mathscinet.ams.org/mathscinet-getitem?mr=3764259
https://mathscinet.ams.org/mathscinet-getitem?mr=2475059
https://mathscinet.ams.org/mathscinet-getitem?mr=642416
https://mathscinet.ams.org/mathscinet-getitem?mr=2133266
https://mathscinet.ams.org/mathscinet-getitem?mr=2260976
https://mathscinet.ams.org/mathscinet-getitem?mr=4395243
https://mathscinet.ams.org/mathscinet-getitem?mr=2110627
https://arxiv.org/abs/1909.06015
https://mathscinet.ams.org/mathscinet-getitem?mr=1744046
https://mathscinet.ams.org/mathscinet-getitem?mr=2447728
https://mathscinet.ams.org/mathscinet-getitem?mr=2653460
https://arxiv.org/abs/1212.6974
https://mathscinet.ams.org/mathscinet-getitem?mr=3982543

[CHY13]

[CMZ17]

[DFG18]

[DFG19]
[DFEP19]
[EZLT21]
[FLZ18]
[FWZ16]
[FWZ17]
[FWZ21]
[FZ02]
[FZ03]
[Gal21]
[GGMS87]
[GGS*+14]
[GHK15]
[GL20]

[GP20]

[GPW19]

[GS82]
[HL21]
[Hod13]
[Kar17]

[Kit11]

[KL20]

[KLS13]

THE m = 2 AMPLITUHEDRON AND THE HYPERSIMPLEX 397

Freddy Cachazo, Song He, and Ellis Ye Yuan, Scattering in three dimensions from rational maps,
J. High Energy Phys. 10 (2013), 141.

Freddy Cachazo, Sebastian Mizera, and Guojun Zhang, Scattering equations: real solu-
tions and particles on a line, J. High Energy Phys. 3 (2017), 151, front matter+21, DOI
10.1007/JHEP03(2017)151. MR3650666

James Drummond, Jack Foster, and Omer Giirdogan, Cluster adjacency properties of scattering
amplitudes in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 120 (2018), no. 16,
161601.

James Drummond, Jack Foster, and Omer Giirdogan, Cluster adjacency beyond MHYV, J. High
Energy Phys. 3 (2019), 086, 43, DOI 10.1007/jhep03(2019)086. MR395118(

David Damgaard, Livia Ferro, Tomasz Lukowski, and Matteo Parisi, The momentum ampli-
tuhedron, J. High Energy Phys. 8 (2019), 042, 21, DOI 10.1007/jhep08(2019)042. MR4014511
Chaim Even-Zohar, Tsviqa Lakrec, and Ran Tessler, The amplituhedron BCFW triangulation,
arXiv:2112.02703, 2021.

Shishuo Fu, Zhicong Lin, and Jiang Zeng, On two unimodal descent polynomials, Discrete
Math. 341 (2018), no. 9, 2616-2626, DOI 10.1016/j.disc.2018.06.010. MR3828773

Sergey Fomin, Lauren Williams, and Andrei Zelevinsky, Introduction to cluster algebras, Chap-
ters 1-3, Preprint, arXiv:1608.05735, 2016.

Sergey Fomin, Lauren Williams, and Andrei Zelevinsky, Introduction to cluster algebras, Chap-
ters 4-5, Preprint, arXiv:1707.07190, 2017.

Sergey Fomin, Lauren Williams, and Andrei Zelevinsky, Introduction to cluster algebras, Chap-
ter 7, Preprint, arXiv:2106.02160, 2021.

Sergey Fomin and Andrei Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15
(2002), no. 2, 497-529, DOI 10.1090/S0894-0347-01-00385-X. MR1887642

Sergey Fomin and Andrei Zelevinsky, Cluster algebras. II. Finite type classification, Invent.
Math. 154 (2003), no. 1, 63-121, DOI 10.1007/500222-003-0302-y. MR2004457

Pavel Galashin, Critical varieties in the Grassmannian, 2021, Preprint, arXiv:2102.13339.

I. M. Gel'fand, R. M. Goresky, R. D. MacPherson, and V. V. Serganova, Combinatorial ge-
ometries, convex polyhedra, and Schubert cells, Adv. in Math. 63 (1987), no. 3, 301-316, DOI
10.1016/0001-8708(87)90059-4. MRB77789

John Golden, Alexander B. Goncharov, Marcus Spradlin, Cristian Vergu, and Anastasia
Volovich, Motivic amplitudes and cluster coordinates, J. High Energy Phys. 01 (2014), 91.
Mark Gross, Paul Hacking, and Sean Keel, Birational geometry of cluster algebras, Algebr.
Geom. 2 (2015), no. 2, 137-175, DOI 10.14231/AG-2015-007. MR3350154

Pavel Galashin and Thomas Lam, Parity duality for the amplituhedron, Compos. Math. 156
(2020), no. 11, 2207-2262, DOI 10.1112/S0010437X20007411. MR4190044

Omer Giirdogan and Matteo Parisi, Cluster patterns in Landau and leading singularities via the
amplituhedron, Ann. Inst. Henri Poincaré D 10 (2023), no. 2, 299-336, DO110.4171/aihpd/155.
MR#4581445

Pavel Galashin, Alexander Postnikov, and Lauren Williams, Higher secondary poly-
topes and regular plabic graphs, Adv. Math. 407 (2022), Paper No. 108549, 52, DOI
10.1016/j.aim.2022.108549. MR4452668

V. Guillemin and S. Sternberg, Convexity properties of the moment mapping, Invent. Math. 67
(1982), no. 3,491-513, DOI 10.1007/BF01398933. MR664117

Song He and Zhenjie Li, A note on letters of Yangian invariants, J. High Energy Phys. 2 (2021),
Paper No. 155, 14, DOI 10.1007/jhep02(2021)155. MR4259840

Andrew Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, J. High Energy
Phys. 5 (2013), 135, front matter+22, DOI 10.1007/JHEP05(2013)135. MR3080526

Steven N. Karp, Sign variation, the Grassmannian, and total positivity, J. Combin. Theory Ser.
A 145 (2017), 308-339, DOI 10.1016/j.jcta.2016.08.003. MR3551654

Sergey Kitaev, Patterns in permutations and words, Monographs in Theoretical Computer Sci-
ence. An EATCS Series, Springer, Heidelberg, 2011. With a foreword by Jeffrey B. Remmel,
DOI 10.1007/978-3-642-17333-2. MR3012380

Ryota Kojima and Cameron Langer, Sign flip triangulations of the amplituhedron, J. High En-
ergy Phys. 5 (2020), 121, 33, DOI 10.1007/jhep05(2020)121. MR4112322

Allen Knutson, Thomas Lam, and David E. Speyer, Positroid varieties: juggling and geometry,
Compos. Math. 149 (2013), no. 10, 1710-1752, DOI 10.1112/S0010437X13007240. MR3123307


https://mathscinet.ams.org/mathscinet-getitem?mr=3650666
https://mathscinet.ams.org/mathscinet-getitem?mr=3951180
https://mathscinet.ams.org/mathscinet-getitem?mr=4014511
https://arxiv.org/abs/2112.02703
https://mathscinet.ams.org/mathscinet-getitem?mr=3828773
https://arxiv.org/abs/1608.05735
https://arxiv.org/abs/1707.07190
https://arxiv.org/abs/2106.02160
https://mathscinet.ams.org/mathscinet-getitem?mr=1887642
https://mathscinet.ams.org/mathscinet-getitem?mr=2004457
https://arxiv.org/abs/2102.13339
https://mathscinet.ams.org/mathscinet-getitem?mr=877789
https://mathscinet.ams.org/mathscinet-getitem?mr=3350154
https://mathscinet.ams.org/mathscinet-getitem?mr=4190044
https://mathscinet.ams.org/mathscinet-getitem?mr=4581445
https://mathscinet.ams.org/mathscinet-getitem?mr=4452668
https://mathscinet.ams.org/mathscinet-getitem?mr=664117
https://mathscinet.ams.org/mathscinet-getitem?mr=4259840
https://mathscinet.ams.org/mathscinet-getitem?mr=3080526
https://mathscinet.ams.org/mathscinet-getitem?mr=3551654
https://mathscinet.ams.org/mathscinet-getitem?mr=3012380
https://mathscinet.ams.org/mathscinet-getitem?mr=4112322
https://mathscinet.ams.org/mathscinet-getitem?mr=3123307

398

[KW14]

[KW19]

[KWZ20]

[Lafo3]
[Lam16a]
[Lam16b]
[LP07]

[EPSV19]

[EPW20]

[Euk19]
[Lus94]
[Lus19]
[MRO04]
[MS17]

[MSSV19]

[MSSV20]

[OPS15]
[Pos06]
[Ram97]

[Rie]
[Rie98]

[S*]
[Sco06]

[Spe08]

[Spe16]

[Sta77]

M. PARISI, M. SHERMAN-BENNETT, AND L. K. WILLIAMS

Yuji Kodama and Lauren Williams, KP solitons and total positivity for the Grassmannian, In-
vent. Math. 198 (2014), no. 3, 637-699, DOI 10.1007/s00222-014-0506-3. MR3279534

Steven N. Karp and Lauren K. Williams, The m = 1 amplituhedron and cyclic hyperplane
arrangements, Int. Math. Res. Not. IMRN 5 (2019), 1401-1462, DOI 10.1093/imrn/rnx140.
MRB3920352

Steven N. Karp, Lauren K. Williams, and Yan X. Zhang, Decompositions of amplituhedra, Ann.
Inst. Henri Poincaré D 7 (2020), no. 3, 303-363, DOI 10.4171/AIHPD/87. With an appendix by
Karp, Williams, Zhang and Hugh Thomas. MR4152617

L. Lafforgue, Chirurgie des grassmanniennes (French), CRM Monograph Series, vol. 19, Amer-
ican Mathematical Society, Providence, RI, 2003, DOI 10.1090/crmm/019. MR1976905
Thomas Lam, Amplituhedron cells and Stanley symmetric functions, Comm. Math. Phys. 343
(2016), no. 3, 1025-1037, DOI 10.1007/s00220-016-2602-2. MR348855]

Thomas Lam, Totally nonnegative Grassmannian and Grassmann polytopes, Current develop-
ments in mathematics 2014, Int. Press, Somerville, MA, 2016, pp. 51-152. MR3468251
Thomas Lam and Alexander Postnikov, Alcoved polytopes. I, Discrete Comput. Geom. 38 (2007),
no. 3, 453-478, DOI 10.1007/500454-006-1294-3. MR2352704

Tomasz Lukowski, Matteo Parisi, Marcus Spradlin, and Anastasia Volovich, Cluster ad-
jacency for m = 2 Yangian invariants, J. High Energy Phys. 10 (2019), 158, 10, DOI
10.1007/jhep10(2019)158. MR4055845

Tomasz Eukowski, Matteo Parisi, and Lauren K. Williams, The positive tropical Grassman-
nian, the hypersimplex, and the m = 2 amplituhedron, Int. Math. Res. Not., 2023, DOI
10.1093/imrn/rnad010.

Tomasz Lukowski, On the boundaries of the m = 2 amplituhedron, Ann. Inst. Henri Poincaré
D 9 (2022), no. 3, 525-541, DOI 10.4171/aihpd/124. MR4526319

G. Lusztig, Total positivity in reductive groups, Lie theory and geometry, Progr. Math., vol. 123,
Birkhduser Boston, Boston, MA, 1994, pp. 531-568, DOI 10.1007/978-1-4612-0261-5_20.
MR1327548

G. Lusztig, On the totally positive Grassmannian, Preprint, arXiv:1905.09254, 2019.

R.J. Marsh and K. Rietsch, Parametrizations of flag varieties, Represent. Theory 8 (2004), 212-
242, DOI 10.1090/S1088-4165-04-00230-4. MR2058727

Greg Muller and David E. Speyer, The twist for positroid varieties, Proc. Lond. Math. Soc. (3)
115 (2017), no. 5, 1014-1071, DOI 10.1112/plms.12056. MRB3733558

Jorge Mago, Anders Schreiber, Marcus Spradlin, and Anastasia Volovich, Yangian invariants
and cluster adjacency in N° = 4 Yang-Mills, J. High Energy Phys. 10 (2019), 099, 12, DOI
10.1007/jhep10(2019)099. MR4055786

Jorge Mago, Anders Schreiber, Marcus Spradlin, and Anastasia Volovich, Symbol alphabets
from plabic graphs, J. High Energy Phys. 10 (2020), 128, 16, DOI 10.1007/jhep10(2020)128.
MR4203977

Suho Oh, Alexander Postnikov, and David E. Speyer, Weak separation and plabic graphs, Proc.
Lond. Math. Soc. (3) 110 (2015), no. 3, 721-754, DOI 10.1112/plms/pdu052. MR3342103
Alexander Postnikov, Total positivity, Grassmannians, and networks, Preprint, arXiv:0609764,
2006.

Jorg Rambau, Triangulations of cyclic polytopes and higher Bruhat orders, Mathematika 44
(1997), no. 1, 162-194, DOI 10.1112/S0025579300012055. MR1464385

K. Rietsch, Private communication, 2009.

Konstanze Christina Rietsch, Total positivity and real flag varieties, ProQuest LLC, Ann Arbor,
MI, 1998. Thesis (Ph.D.)-Massachusetts Institute of Technology. MR2716793

Neil JA Sloane et al, The Online Encyclopedia of Integer Sequences.

Joshua S. Scott, Grassmannians and cluster algebras, Proc. London Math. Soc. (3) 92 (2006),
no. 2, 345-380, DOI 10.1112/S0024611505015571. MR2205721

David E. Speyer, Tropical linear spaces, SIAM J. Discrete Math. 22 (2008), no. 4, 1527-1558,
DOI10.1137/080716219. MR2448909

David E. Speyer, Variations on a theme of Kasteleyn, with application to the totally nonnega-
tive Grassmannian, Electron. J. Combin. 23 (2016), no. 2, Paper 2.24, 7, DOI 10.37236/5871.
MR3512646

Richard Stanley. Eulerian partitions of a unit hypercube. In Martin Aigner, editor, Higher com-
binatorics: Proceedings of the NATO Advanced Study Institute held in Berlin, September 1-10,


https://mathscinet.ams.org/mathscinet-getitem?mr=3279534
https://mathscinet.ams.org/mathscinet-getitem?mr=3920352
https://mathscinet.ams.org/mathscinet-getitem?mr=4152617
https://mathscinet.ams.org/mathscinet-getitem?mr=1976905
https://mathscinet.ams.org/mathscinet-getitem?mr=3488551
https://mathscinet.ams.org/mathscinet-getitem?mr=3468251
https://mathscinet.ams.org/mathscinet-getitem?mr=2352704
https://mathscinet.ams.org/mathscinet-getitem?mr=4055845
https://mathscinet.ams.org/mathscinet-getitem?mr=4526319
https://mathscinet.ams.org/mathscinet-getitem?mr=1327548
https://arxiv.org/abs/1905.09254
https://mathscinet.ams.org/mathscinet-getitem?mr=2058727
https://mathscinet.ams.org/mathscinet-getitem?mr=3733558
https://mathscinet.ams.org/mathscinet-getitem?mr=4055786
https://mathscinet.ams.org/mathscinet-getitem?mr=4203977
https://mathscinet.ams.org/mathscinet-getitem?mr=3342103
https://arxiv.org/abs/0609764
https://mathscinet.ams.org/mathscinet-getitem?mr=1464385
https://mathscinet.ams.org/mathscinet-getitem?mr=2716793
https://mathscinet.ams.org/mathscinet-getitem?mr=2205721
https://mathscinet.ams.org/mathscinet-getitem?mr=2448909
https://mathscinet.ams.org/mathscinet-getitem?mr=3512646

THE m = 2 AMPLITUHEDRON AND THE HYPERSIMPLEX 399

1976, page 49. D. Reidel Publishing Co., Dordrecht-Boston, Mass., 1977. NATO Advanced Study
Institute Series. Ser. C: Mathematical and Physical Sciences, 31.

[Sta12] Richard P. Stanley, Enumerative combinatorics. Volume 1, 2nd ed., Cambridge Studies in Ad-
vanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 2012. MR2868112
[Stu88] Bernd Sturmfels, Totally positive matrices and cyclic polytopes, Proceedings of the Victoria

Conference on Combinatorial Matrix Analysis (Victoria, BC, 1987), Linear Algebra Appl. 107
(1988), 275-281, DOI 10.1016/0024-3795(88)90250-9. MR960150

[Stu9e] Bernd Sturmfels, Grobner bases and convex polytopes, University Lecture Series, vol. 8, Ameri-
can Mathematical Society, Providence, RI, 1996, DOI 10.1090/ulect/008. MR1363949

[Sv09] Marcus Spradlin and Anastasia Volovich, From twistor string theory to recursion relations, Phys.
Rev. D 80 (2009), no. 8, 085022, 5, DOI 10.1103/PhysRevD.80.085022. MR2607712

[SWo05] David Speyer and Lauren Williams, The tropical totally positive Grassmannian, J. Algebraic
Combin. 22 (2005), no. 2, 189-210, DOI 10.1007/s10801-005-2513-3. MR2164397

[SW21] David Speyer and Lauren K. Williams, The positive Dressian equals the positive tropical
Grassmannian, Trans. Amer. Math. Soc. Ser. B 8 (2021), 330-353, DOI 10.1090/btran/67.
MR4241765

[TW13] Kelli Talaska and Lauren Williams, Network parametrizations for the Grassmannian, Algebra
Number Theory 7 (2013), no. 9, 2275-2311, DOI 10.2140/ant.2013.7.2275. MR3152014

[TW15] E. Tsukerman and L. Williams, Bruhat interval polytopes, Adv. Math. 285 (2015), 766-810, DOI

10.1016/j.aim.2015.07.030. MR3406515

[Wel76] D. J. A. Welsh, Matroid theory, L. M. S. Monographs, No. 8, Academic Press [Harcourt Brace
Jovanovich, Publishers], London-New York, 1976. MR0427112

[Wes95] Julian West, Generating trees and the Catalan and Schroder numbers, Discrete Math. 146 (1995),
no. 1-3, 247-262, DOI 10.1016/0012-365X(94)00067-1. MR1360119

INSTITUTE FOR ADVANCED STUDY, SCHOOL OF NATURAL SCIENCES, 1 EINSTEIN DR, PRINCETON, NJ
08540; AND CENTER OF MATHEMATICAL SCIENCES AND APPLICATIONS, HARVARD UNIVERSITY, 20 GAR-
DEN ST, CAMBRIDGE, MA 02138

Email address: mparisi@cmsa.fas.harvard.edu

DEPARTMENT OF MATHEMATICS, MIT, 77 MASSACHUSETTS AVENUE, CAMBRIDGE MA 02139
Email address: msherben@mit .edu

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, 1 OXFORD STREET, CAMBRIDGE, MA 02138
Email address: williams@math.harvard.edu


https://mathscinet.ams.org/mathscinet-getitem?mr=2868112
https://mathscinet.ams.org/mathscinet-getitem?mr=960150
https://mathscinet.ams.org/mathscinet-getitem?mr=1363949
https://mathscinet.ams.org/mathscinet-getitem?mr=2607712
https://mathscinet.ams.org/mathscinet-getitem?mr=2164397
https://mathscinet.ams.org/mathscinet-getitem?mr=4241765
https://mathscinet.ams.org/mathscinet-getitem?mr=3152014
https://mathscinet.ams.org/mathscinet-getitem?mr=3406515
https://mathscinet.ams.org/mathscinet-getitem?mr=0427112
https://mathscinet.ams.org/mathscinet-getitem?mr=1360119

	1. Introduction
	2. The positive Grassmannian and the amplituhedron
	3. The sign stratification of the amplituhedron
	4. Positroid tiles of 𝒜_{𝓃,𝓀,2}
	5. The equivalence of the two definitions of the amplituhedron
	6. Cluster algebras and the amplituhedron
	7. Background on the hypersimplex, T-duality, and positroid tilings
	8. T-duality on decorated permutations and plabic graphs
	9. T-duality, positroid tiles and cluster adjacency
	10. Eulerian numbers: 𝑤-Simplices in Δ_{𝑘+1,𝑛} and 𝑤-chambers in Å_{𝑛,𝑘,2}
	11. T-duality and positroid tilings
	12. Schröder numbers: Separable permutations and positroid tiles
	Appendix A. Combinatorics of the totally nonnegative Grassmannian
	Acknowledgments
	References

