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The phase dynamics of small-amplitude synchrotron oscillations in the vicinity of the transition energy is
discussed with kinematical nonlinearities included. We introduce a synchrotron amplitude function
analogous to the betatron amplitude function and solve analytically the time evolution of bunch shapes,
where the kinematical nonlinearities result in unsymmetric bunch shapes. In addition, the above synchrotron
oscillation is singular at transition crossing because of the kinematical nonlinearity. From this simple fact,
we identify an inherent source of bunch diffusion. A method for estimating its size is presented. When this
theory is applied to the case of the Fermilab Main Ring, the predictions are in good agreement with
numerical simulations and are not inconsistent with experimental results.

§1. INTRODUCTION

The effect of nonlinear kinematic terms 1 - 4 is studied for energies below and above
transition energy. These nonlinear kinematic terms are stronger the narrower the
bunches. The momentum height of the bunch passes through a maximum at transition
and the kinematic terms therefore have a maximum at transition. They can distort the
particle orbits in different ways, and they may lead to longitudinal emittance blow-up.

In recent experiments 5 in the Fermilab Main Ring, bunch lengths were measured at
two energies, 14 GeV and 19.7 GeV, below and above transition, at an average
intensity of 2.6 x 1010 protons per bunch (total Main Ring intensity 2.8 x 1013 protons
per cycle). Values for the longitudinal emittance at the two energies have been derived
from these measurements. The results were 0.22 eV-sec at 14 GeV and 0.28 eV-sec at
19.7 GeV, indicating an emittance increase in the region of transition. Bunch lengths
were also measured at transition (17.6 GeV), where they become very narrow (about
2.5 nsec). Furthermore, in order to clarify the reasons which lead to this longitudinal
emittance blow-up at transition crossing, many extensive computer simulations have
been performed independently by several people, including the present author. The
simulation results, which strongly imply that the effects of the nonlinear kinematic term
are large, are surprisingly consistent with the measurements.

It is the purpose of this paper to calculate the effects of nonlinear kinematic terms in
the range around the transition energy and compare to results of computer simulations
and real machine studies.

This paper is divided in four main parts: In the first part (§2,3), we derive difference
equations for acceleration in an explicit form and transform them into a differential
form, which enables us to construct a Hamiltonian formulation for longitudinal
motion. Here we shall restrict ourselves to small-amplitude oscillations. In addition,

t Now at National Laboratory for High Energy Physics (KEK), Japan.
t Operated by Universities Research Association, Inc. under contract with the U.S. Dept. of Energy.
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only the lowest-order nonlinear kinematic term will be retained in this formulation. In
the second part (§4), introducing the notion of a synchrotron amplitude function, we
construct the "linear classical theory" of transition in a form analogous to betatron
oscillations, where the nonlinear kinematical term is neglected. In the third part (§5,6),
using perturbation theory, we calculate increments of the longitudinal emittance as
an effect of the nonlinear kinematic term on linear motion. We identify this effect as a
source of the unsymmetric bunch shape just at transition that has been recognized in
the computer simulations. In the fourth part (§7), from a general point of view with
respect to time-reversability, it will be shown that only such nonlinear kinematical
terms can give net effects over transition crossing. Finally, a theoretical formula for the
emittance blow-up ratio will be presented.

In the present discussions, effects of longitudinal space-charge forces and timing
error of the phase jump at transition 7 are not included, because the former is negligible,
at least for the present situation of the Fermilab Main Ring, and exact information
about the latter has not been obtained.

§2. DIFFERENCE AND DIFFERENTIAL EQUATIONS
FOR ACCELERATION

The theory of longitudinal phase motion, describing the energy and phase oscillations
that occur when a particle passes repeatedly through one or more accelerating
cavities situated at localized points around the accelerator ring, is well known. Since
the oscillations normally are at a relatively low frequency, it is often legitimate as well as
convenient to analyze them theoretically with differential equations derived by
spreading the accelerating field uniformly around the orbit. In reality, the energy
changes experienced by a particle are better represented by difference equations and
depend on the sine of the electrical phase angle q, at which the particle traverses the
cavity. The corresponding equations of motion are therefore both nonlinear and
discrete.

We consider here the case of synchrotron oscillations during acceleration. To obtain
the actual transformation, we consider a short rf cavity system operating at a harmonic
number h, an angular frequency corr(t) and a rfpeak voltage V(t). We assume that corr(t)
and V(t) are independently controlled during acceleration. The quantities denoted by
En and q,n are, respectively, the energy and the electrical phase angle with which a
particle enters the cavity at the time of transit. Then the nonlinear transformation may
be written in the form

En+1 = En + eV(n) sin q,n, (2-1 a)

(2-1 b)

(2-2)

rh n + 1 {corr(n + 1) rh n ( 1) 21t }
't' = corf(n) 't' + COrr n + .co(En+ 1) ,

where eV(n) sin q,n is the energy gain at the n-th transit and the revolution period is
described in the form

21t C (1 + rJ. zn+l) ( En+1
- E n+ 1

)__--:-- = 0 P zn+l = s

co(En+ 1 ) c[l - (moc2/En+l)2]1/2 - ~2(Esn+l)Esn+l '

where Co is the length of the closed orbit corresponding to the synchronous energy E,
c is the velocity of light, moc2 is the proton rest energy, Z is the momentum deviation
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from the synchronous momentum, and rtp is the momentum compaction factor. The
betatron acceleration can be neglected here. The synchronous particle is defined by the
equations

(2-3a)

(2-3b)

(2-3c)

(2-3d)

where

~(n) = eV(n) sin <Ps",

( ) _ h (E n) m(Esn) { . -1 ~(n) _ . -1 ~(n - 1) }
mrf n - m s + 2 SIn () sIn )1t eV n eV(n - 1 ~

Note that ~(n) is determined by the change in the external guide field B(t). Now the
momentum compaction factor rtp may be written in the form 3

(2-4)

where o((zn+ 1)3) is the Landau symbol. Expanding the right-hand side of Eq. (2-2)
with respect to zn + 1, we have the expression

where

21t C
C~(Es~+1/1 + ll(O)(n + 1)zn+ 1 + ll(l)(n + 1)(zn+ 1)2

+ 11(2)(n + 1)(zn+1)3 + "'J, (2-5)

(2-6c)

Co 21t 21th
cB(Esn+ 1) m(Esn+ 1) ~ mrf(n + 1)'

l1(O)(n + 1) = rt(O) - 1jy2(Es
n+1), (rt(O) = 1jYT2), (2-6a)

l1(O)(n + 1) 3B 2(E n+1) 3B2(En+1)
n(1)(n + 1) - rt(l) - + s "" rt(1) + s (26b)
'I - y2(Es

n+1) 2y 2(Es
n+1) - 2y2(Es

n+1) , -

2B 2(En+1) rt(l) l1(O)(n + 1)
n(2)(n + 1) - rt(2) s + + _
'I - - y2(E n+1) y2(Esn+1) y4(Es

n+1)

B2
(Es

n
+

1
) (3 (0) 5)

+ 2y2(Esn+ 1) rt - y2(Esn+ 1)

2B 2 (E n + 1
)

"" rt(2) _ s
- y2(Esn+ 1) .

We note that all particle simulations for a real acceleration mode stated in the
Introduction have been performed by following the difference equations (2-1a) and
(2-1 b). The pair E and <fl is recognized not to be canonical because of the time
dependence of the rf frequency. We are interested in small-amplitude oscillations
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around the synchronous point (<Psn, Esn) as a guiding center. Setting

we may write the difference equations for a small amplitude oscillation as

En+ 1 = En + eV(n)[sin <p n - sin <PsnJ

~ En + eV(n) COS <PsnXn
,

+ 1 {(Orf(n + 1) (2 h . - 1 1\(n. + 1) . - 1 ~ ( n.) )Xn = Xn + 1t + SIn - SIn --
corf(n) eV(n + 1) eV(n)

x [T](O)(n + l)£n+l + T](l)(n + l)(£n+l fJ },

where

(2-7a)

(2-7b)

(2-8a)

(2-8b)

(2-9a)

(2-9b)

To write down the difference equations in the form of exact differential ones we may use
a 8-function

. _ 2ne V(t) cos <Ps(t) 8 (')
E - ~(t) X 21t t ,

· __1_ dcorf(t) (21th + ~(t)~s(t)) [(O)( ) (1)() 2 ]
X - () d X + T( ) 11 t E + 11 t E ,(Orf t t s t

(2-10a)

(2-10b)

where ~(t) is the period of the synchronous particle and one iteration of the mapping.
Here t' = Q(t)t + to'; Q(t) = 21t/~(t) and the 8-function of period 21t is given by the
Fourier expansion

1 00

821t(t') = -2 (1 + 2 L cos nt').
1t n + 1

After neglecting rapidly oscillating terms in Eq. (2-10a), we have

. eV(t) cos <Ps(t)
E = ~(t) X,

. _ mrf (21th + ~(t)~s(t)) [(O)( ) (1)() 2J
X - X + T( ) 11 t E + 11 t E .

OJrf s t

(2-11 )

(2-12a)

(2-12b)
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§3. HAMILTONIAN FORMALISM

Under the assumption that the damping term in Eq. (2-12b) is negligible in the short
period of transition crossing, we can construct a Hamiltonian formalism for small­
amplitude oscillations. Neglecting the damping term, we find (X, €) to be a canonical
pair that yields the Hamiltonian

H( .) = (21th + ~(t)~s(t)) [! (O)() 2 !(1)() 3J _ eV(t) cos <Ps(t) 2 (3-1)
X, €, t ~(t) 2 11 t € + 3 11 t € 2~(t) X·

We shall assume that the synchronous phase angle <psjumps discontinuously at t = 0
in such a way that sin <Ps is constant and

sgn(cos <Ps) = - sgn(t).

We shall measure t from this instant. Now we introduce a scale change of the
independent variable t by

(3-2).(t) = t[-eV(t);.~~ ~s(t)J dt.

Note that the new independent variable "C has the dimension of energy. With the
above origin for the time t, "C is always positive at all t, namely,

t ~ 0- (approaching transition), then "C ~ 0+,

o+ ~ t (leaving transition), then 0+ ~ "C.

Such a scale change yields the new Hamiltonian

(21th + 7:(t)~ (t)) [1 - 1 - J 1H'(X, €; "C) = - s 't's - 11(O)(t)€2 + - 11(1)(t)€3 + - X2.
eV(t) cos <Ps(t) 2 3 2

(3-3)

For later convenience, we change the canonical variables to

X = p,

€ = -x.

(3-4a)

(3-4b)

Thus we obtain the Hamiltonian in the simple form

(3-5)

where

(3-6b)
(21th + ~(t)<Ps(t) )flW(t)

eV(t) cos <Pit)

A
O
(.) = _ (21th + T.(t)4>s(t))~(t) = _ (21th + T.(t) 4>s(t)) [Ci

lO
) - l/rs2(t)J (3-6a)

eV(t) cos <Ps(t) Bs2(t)Es(t)e V(t) cos <Ps(t) ,

(21th + T.(t)4>s(t){Ci
l
!) + %ffiJ

[Bs2(t)Es(t)]2 eV(t) cos <Ps(t)



206 KEN TAKAYAMA

The form of Eq. (3-5) reminds us of the betatron oscillations in a transport line with a
nonlinear component. In analogy to perturbed betatron oscillations, we separate the
right-hand side of Eq. (3-5) into unperturbed and perturbing terms

(3-7a)

(3-7b)

In the next section, we shall discuss the phase dynamics in the vicinity of transition
by studying the above linear Hamiltonian K(O).

§4. LINEAR MOTION

We consider the linear system described by

(4-1)

We make the assumption that the peak rf voltage and the synchronous phase angle are
constant near transition. At the transition energy, the quantity

vanishes. Then in the vicinity of this energy this quantity can be approximated by the
first term in a Tayler series expansion of Eq. (3-6a) for deviations of Yfrom YT' We can
therefore write

(4-2)

Further, the quantity Ys(t) - YT can be written in terms of

Ys(t) - YT = yst

eVsin <Ps
2 't

moc ~

sin <Ps(O)

Substitution of Eq. (4-3) into Eq. (4-2) yields

(4-3)

(4-4)
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Here all quantities are evaluated at transition. For the sake of later simplicity we set

k2 = 41th sin <ps

Bs2Es2YT2eVcos2 <Ps·

We point out that the system represented by Eq. (4-1) has an exact dynamical
invariant, the Courant-Snyder invariant8

,9

(4-5)

where S('t) satisfies the auxiliary differential equation

(4-6)

When Ao('t) is constant, the invariant I is identical to the action variable of the systeITI, if
we take the initial condition

S( + (0) = I/JAo(oo), S(+oo) = o. (4-7)

In the following, S(L) will be called a synchrotron amplitude function. For a time­
varying function AO(L), from Eq. (4-5), we know that an infinite sequence of phase points
that have a certain constant value of I at an arbitrary time behaves as a deformable
moving ellipse in the phase space (x, p; L) after that time. The form of such a ellipse,
called an "invariant curve" in the following, is uniquely determined by the auxiliary
differential equation (4-6) alone. We consider the invariant curve described in terms of

(4-8)

with constant 10 . The quantity I is equal to the value of the action variable of the infinite
set of phase points that comprise the invariant curve, as mentioned above.

We may characterize the ellipse by two parameters ~, 8, which are functions of S(L)
and S(L)

~(L)=~,

o(t) = 21 [1 + 5'2(t)/4] .
o S(L)

(4-9a)

(4-9b)

They are the maximum extent of the ellipse in x and p, respectively. If we assume that
all parameters change adiabatically after L = L 1, we can choose the approximate
initial conditions

(4-10)

At L = 't 1, the ellipse begins to move, following the time-evolution of S(L) which is
determined by Eq. (4-6). If we know the values of S(L), S(L) at L = 0, which is the
transition time, we can evaluate exactly the maximum upper or lower height from the
synchronous energy ~(o) and the half phase spread 8(0).
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For the present Ao('r), we know the general solution of Eq. (4-6) can be written in
terms of Bessel functions (see Appendix A),

where a and b are arbitrary coefficients that must be determined by the initial
conditions (4-10), and

After mathematical manipulation (see Appendix B), we have the coefficients

where

_ 2 3/2
Z 1 - 3" kr;l .

(4-12a)

(4-12b)

(4-13)

The coefficients a and b have been uniquely determined by the initial conditions and we
now know the exact time-evolution of the invariant curve. In particular, we are
interested in the invariant curve justat transition; it represents a bunch envelope. From
Eq. (4-11) we obtain the values of S(r;) and S(r;) at r; = 0 (see Appendix C)

S(O) = ~ (IYGr2/3 r2(~j3)'

S(O) = 2
3
1t [- fi + (ab - :2Y/2}

(4-14a)

(4-14b)

Introduction of Eqs. (4-14a), (4-14b) into Eqs. (4-4a), (4-4b) leads to analytical
expressions for the maximum upper or lower height from the synchronous energy and
the half spread around the synchronous phase at transition, that is,

~(O) = ~(r;l)JS(O)/S(r;l)'

0(0) = 0(1: 1 ) [1 + S~)2J S(1: 1 )jS(0).

(4-15a)

(4-15b)
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We consider the case with the initial conditions at t 1 = + 00 where the linear t­
dependence of Ao(t) still holds to good approximation. In such a region, the Bessel and
Neumann functions become sinusoidal with equal amplitude and quadrature phase
relationship, namely,

J1/3 (Z1) = J2/Ttz 1 cos (Z1 - 5Tt/12),

N1/3 (Z1) = J2/Ttz 1 sin (Z1 - 5Tt/12).

Also

J - 2/3 (z1) = J2/Ttz1 cos' (z1 + Tt/12)

= - J2/rcz 1 sin (Z1 - 5rc/12).

Substitution of Eq. (4-16) into Eqs. (4-12a) and (4-12b) yields

a = b = 3/rc.

From Eq. (4-17), we can obtain a universal relationship between ~ and 8

[
5'(0)2J1/2

~(0)8(0) = ~(t1)8(t1) 1 + -4-

2
= J3 ~('td8('tl)·

(4-16)

(4-17)

(4-18)

Equation (4-18) is equivalent to the result obtained by Hereward. 11

Predictions of the linear theory are not discussed in detail here. Nevertheless they are
in very good agreement with numerical simulations. These simulations have been
performed following the exact mapping equations (2-1a) and (2-1b) where nonlinear
kinematical terms are not included in order to verify the validity of the linear theory. In
addition, the linear theory discussed here which provides exact time evolution of bunch
shapes can re-establish the well-known story 8 associated with transition crossing.

§5. NONLINEAR MOTION

The nonlinear kinematic term has been distinguished as a perturbing term in Eq. (3-7b).
It gives unignorable effects to the linear oscillation only during a very short period
when a particle crosses the transition energy. In order to assess its quantitative effects, it
is convenient to use the action-angle formalism.

Under the linear canonical transformation

Q = p-1 X ,

P = -(Jx + pp,

where p{t) = JSW satisfies the auxiliary equation

(5-1)

(5-2)
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the Hamiltonian (3-5) reduces to
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If a change of independent variable

8(t) = ft p-2(t) dt + 90'
t2

is made, the Hamiltonian (5-3) becomes

Furthermore, introduction of the action-angle variables (\f!, J)

Q = J2i sin '1J,
p = J21 cos \f!,

yields the Hamiltonian

From Eq. (5-7), we derive the canonical equations

(5-3)

(5-4)

(5-5)

(5-6)

(5-7)

(5-8a)

(5-8b)

If the perturbing term in Eq. (5-8a) is much smaller than the unperturbed term, that is,
small compared with unity, we obtain to first order

i
8(t)

J(8(t)) ~ J(8(oo)) + [2J(8(oo))]3/2 p5{t)A1{t) sin 2 8(t) cos 8{t) d8. (5-9)
0(00)

Using relation (5-4), we find a more convenient integral expression

where the lower limit of the integration will be determined by the following
considerations.
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We note that the instantaneous period of phase oscillations is the same as the
synchrotron-amplitude function 8('r) because the oscillation frequency is described by

. 1
v == 0/(8) == -.

8(t)
(5-11)

From Eq. (5-8b), the typical modulation period of the perturbing term is 8(t)/2.
Generally, the value of 8(t 1 )/2 is much smaller than t 1 . This fact means that the effects
of the perturbing term are averaged out, at least, at the early stage of non-adiabatic
motion (0 « t ~ t 1). So it is reasonable for us to take S(0)/2 as the typical lower
limit t 2 when the perturbation begins to retain net effects. Fortunately, in many
real situations, t 2 is sufficiently small so as to satisfy the condition

2
z(t ) == - k'T" 3/2 « 1

2 3 "2 . (5-12)

The relation (5-12) enables us to describe p(t) or 8(t) by elementary functions. In order
to do this, it is necessary to know the Bessel function for small value of z. In Ref. 14 we
observe that

1 (Z)I/3
J 1/3(Z) = r(4/3) 2 '

1 [cos Tt/3 (Z)I/3 1 (z) -1/3J
N1/3(Z) = sin re/3 r(4/3) 2 - r(2/3) "2 .

Considering Eqs. (5-13a) and (5-13b), we obtain to first order with respect to t

where

4a
q == 3r(4j3)r(2j3)'

4a (k) -2/
3

4 ( 9 ) 1/
2

1
r = 3r2(2/3) 3 + J3 ab - re 2 . r(2/3)r(4/3) .

Further substitution of the above result (5-14) into (5-4) yields

8(t) == IT 1/S(t') dt' + 80
!2

(5-13a)

(5-13b)

(5-14)

(5-15a)

(5-15b)
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On the other hand, A1(t) can be expanded with respect to Ys - YT and to first order

') () - _ 21th[Cln + 3~s2/2J [ 4tan<psJ
/\"1 t - 4 2 2 4 1 + 2 t,

~s (moc ) eV cos <PsYT moc YT
(5-17)

where Cln (== <x(1) /<X(O») is the nonlinear lattice parameter. Using Eqs. (5-14) and (5-17),
we write the perturbing integration in Eq. (5-10) in terms of

Here we set

where

Using the identity

4 tan <Ps 3q
gl = moc2 YT - 2r'

sinz 8(1:) cos 8(1:) = ~ [cos 8(1:) - cos 38(1:)],

(5-19)

(5-20)

with together (5-19), (5-20), we have

!1J ~ ~ [2J(1: Z)]3/Z A1(O)S3/Z(O)r(1 + 91 1:) {cos [9Z log C1:
z

+ 93) + eo]
- cos 3 [9Z log C1:

z
+ 93) + eo]} d1:. (5-21)

We are interested in the value of AJ at t = O. This value is evaluated in the following
way.
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The integration to be performed is

213

1= l: dT (1 +gIT){COS[gZIOg(;Z +g3)+eO]

- cos 3 [gZIOg CT
z

+ g3) + eo]}. (5-22)

A change of the integration variable to

W = gZIOg(gT
Z

+ g3) + eo,
leads to

where

WI = gzlog G: + g3) + eo = 80 ,

Wz = gz log g3 + eo = gz log [g3! G: + g3) ] + 80 ,

(5-24a)

(5-24b)

The integration of Eq. (5-23) is trivial. We obtain

I = e-Ootgjo - glgZg3){ ; leW/92(~ cos W + sin w) I
W

2

\ l/g2 + 1 g2 W2

- j; 9Iew/92(~COS3w + 3 sin 3w)I
W

2}
1 g2 + g2 W2

+ glg2e-iio/92{ ; le2W/92(~COS W+ sin W)I
W

2

4/g2 + 1 g2 Wt

- ; Ie2w/92 (~ cos 3w + 3 sin 3W) IW2}). (5-25)
4/g2 + 9 g2 Wt

Some of the intermediate steps in the calculation are explained in Appendix D. The
final results are

g2g3(1 - glg2g3) { . C\ C\ (1/2 1)]' 8I = 1 2 [ - sIn ~ + g2 cos ~ - g2 g2 + sIn 0
+ g2

+ [cos e + gz sin e - (lj2gz + 1)] cos 80 } - gZg3i
1

-9gl ;Zg3)
+ g2

X {[ - sin 38 + 3g2 cos 38 - 3g2(1/2g2 + 1)] sin 380
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+ [COS 38 + 3g2 sin 38 - (1/2g2 + 1)] cos 300 }

2 2

+ ~lg2 g32 {[-2 sin 0 + g2 cos 0 - g2(1/2g2 + If] sin eo
+ g2

+ [2 cos 8 + g2 sin 8 - 2(1j2g2 + 1)2] cos Oo}
2 2

- :lg29
g3

2 {[ - 2 sin 30 + 3g2 cos 30 - 3g2(1/2g2 + 1)2] sin 3(}0
+ g2

+ [2 cos 38 + 3g2 sin 38 - 2(1j2g2 + 1)2] cos 300 }, (5-26)

(5-27)

The value of I is dependent of the initial phase 00 . If the maximum and minimum
values of I are denoted by I max ( > 0) and I min ( < 0), we can write the positive and negative
changes of the action variable in terms of

(5-28)

where the suffix symbols of the left-hand side do not always correspond to those of the
right-hand side because of the negative sign of Al (0). We define the emittance-increase
parameter, which is independent of the initial emittance (the initial value of the action
variable) of a particle, by

(5-29)

It is assumed that there are no net effects of the perturbing term up to 't = 't2 and we
can take the value of J('t 1 ) as J(t 2 ). Then

Thus incoherent changes of the action variable give an unsymmetric ellipse in the phase
space. In particular, we can obtain expressions for the maximum upper and lower
height from the synchronous energy and the maximum and minimum excursion from
the synchronous phase as

~(O)max = {2J(t I)S(O)[1 + K ± J2J(t I)]} 1/2
min

8(0) 8( ) S(t 1) [1 + K !2fr:::\(t)] 1/2
~i: = tIS(0) ± vi k, oJ \ L 1 ) .

(5-31a)

(5-31b)

where the value of 8(0)/S(t1) has already been derived in the previous section.
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The theoretical considerations are applied to an example that corresponds to the
nominal acceleration mode in Fermilab Main Ring. 12 For this example, several
parameters of rf acceleration are listed in Table I.

TABLE I

Acceleration Parameters of the Fermilab Main Ring

Harmonic number
RF Voltage
Synchronous phase
Transition gamma
Transition energy
Nonlinear lattice parameter

We choose 't 1 as

h = 1113
eV = -2 MV
<Ps t'.; 235.87°
'YT = 18.8
E = 17.639 GeV
rt(l)/rt(O) = 0.14 (Ref. 14)

't 1 = cos <Ps(O)[Es(O) - Es('t 1)]

= 559.9428 MeV (6-1)

where Es('t 1 ) is enough far from transition. Using the parameters in the table and the
value for 't l' we get

Then

2 3/2
Zl = "3 k't 1 = 3.6120

From a table of Bessel functions,14 we read

(6-3)

Substitution of these values for zl' J1/3(Z 1), N 1/3(Z1), and J - 2/3(Z1) into Eqs. (4-12a) and
(4-12b) gives

a = 0.4056 + 0.3296 + 0.1877 = 0.9229

b = 0.5451 + 0.443 = 0.9881.
(6.5)

From Eqs. (6-2) and (6-5) we get the value of the synchrotron amplitude function at
transition

4(1t)2(k)-2/3 a
8(0) =:3 3" :3 r 2 (2/3) = 277.503 MeV (6-6)
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Here, we use

r(I/3) = 2.6801,

KEN TAKAYAMA

r(2/3) = 1.3550, r(4/3) = 0.89338 15 .

The value of the coefficient A1(0) is

The 5(0) above leads to the value of the typical boundary

T2 = 5(0)/2 = 138.7515 MeV

The parameters 91' 92 in the integration of Eq. (5-18) are

92 = - 0.8279/a = - 0.8971

3 r(2/3) (k)2/3 _3
gl = 3.6118 X 10- 4

- "2 r(4j3) "3 = -5.66 x 10 .

Then

(6-8)

(6-9)

(6-10)

Substituting these values for 91,92,93' e into Eq. (5-26), we obtain the integral I in
the form

I = (- 39.1614) sin 80 + (-72.9502) cos 80

+ (71.9840) sin 380 + (- 5.2259) cos 380 ,

Thus

(6.11 )

From Eq. (6-12), we have

Imax = 96, Imin = -174. (6-12)

K + = 1/2 x 0.9577 x 10- 7 x 4622.7619 x 179 = 3.85 x 10- 2

K_ = -1/2 x 0.9577 x 10- 7 x 4722.7619 x 96 = -2.1241 x 10- 2
. (6-13)

Finally, substituting these values for S(O), S(T 1) into Eq. (5-31a), we get

~(O)max = ~(T1) x 1.6386 x [1.0 + 3.7871 x 10- 3~(t I)J 1/2

~(O)min = ~(Tl) X 1.6386 x [1.0 - 2.0894 x 10-3~(Tl)JI/2.

(6-14)
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FIGURE 1 Maximum and minimum momentum deviation at transition.

For several initial emittances which still allow a linear approximation, results
obtained from Eq. (6-14) are plotted in Fig. 1. In the same figure, numerical-simulation
results are also given. We see quite good agreement.

§7. EMITTANCE BLOWUP AT TRANSITION

When a particle crosses the transition energy, the electric phase of rf is abruptly
changed externally to 1t - <Ps. Such a manipulation yields time-reversal of the phase
motion for the dynamical system described by

1 22H(x, p; 1:) == 2 [p + Ao(1:)X ], (7-1)



218 KEN TAKAYAMA

because the change of sign of the cosine function in

't(t) = ft _ [e V(t) cos <PS(t)] dt
o ~(t)

will lead to time-reversing while the sign of Ao('t),

(7-2)

(7-3)

still remains unchanged due to sign changes of the denominator and numerator. This
holds even if all higher-order terms with respect to phase are included. Consequently,
emittance blowup during transition crossing cannot in principle be explained by
synchrotron-oscillation theory, which restricts itself to ordinary pendulum oscillations
with adiabatically changing coefficients.

On the other hand, the coefficient of the nonlinear kinematic term,

Ie T __ 21th[1Y(1) + 3~/(t)j2y/(t)J

1( ) - [~.(t)E.(t)J2eV(t) cos <1>5 (t)'
(7-4)

changes its sign after the phase jump. The dynamical system including such a term is
therefore no longer time reversible. In other words, synchrotron oscillations accom­
panied with kinematic nonlinearity are singular at transition. Just after passing
transition, a bunch suddenly meets an unmatched bucket. This leads to actual
emittance blowup. The magnitude of the blowup is proportional to the amount of
emittance distortion due to the nonlinear kinematic term. Thus we may write the final
emittance blowup ratio during transition crossing as

(7-5)

where J('t 1) is the emittance or the value of the action variable far below transition. The
final blowup ratio R is plotted as a function of the initial emittance for the normal
acceleration mode (h = 1113) in Fig. 2. Results of measurements are also given in the
figure. The small overestimate seen may imply that the exact nonlinear lattice param­
eter is somewhat smaller than the value used in the present calculations.

§8. CONCLUSION

A linear classical theory of transition, which is equivalent to the usual one of matrix
form, 11,16 has been developed by introducing the synchrotron amplitude function. As a
natural extension of this linear theory, a general method which relies on perturbation
techniques to assess effects of the lowest order nonlinear kinematic term is presented.
When these theories are applied to the case of the Fermilab Main Ring, they agree very
well with results of computer simulations and real measurements. This emphasizes the
importance of the higher-order chromaticity control, which can be done by adjusting
the nth and 2nth Fourier components of the sextupole magnetic fields (n horizontal
betatron tune). 3 If A1('t) is reduced by such higher-order chromaticity control, the
emittance blowup discussed here will be improved.
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FIGURE 2 Blowup ratio R as a function of the initial emittance.

The present analytical approach can be also used to derive explicit expressions for
emittance increments resulting from other nonlinear forces which become significant,
in particular, in the vicinity of transition.
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APPENDIX A

GeneralSolution of Auxiliary Equation

When xl('r) and x2('t) are linearly independent solutions of the time-dependent linear
equation

x + Ao('t)X == 0, (A-I)

we can write a general solution of its modified nonlinear auxiliary equation (or
envelope equation)

P+ Ao('r)p = ~,
p

where p('t) is the square-root function of S('t), in terms of Xl ('t) and x 2 ('t) as

p('t) == (CIXI
2 + C2X22 + C3XIX2)1/2.

(A-2)

(A-3)

Squaring both sides of (A-3) and differentiating with respect to the independent
variable 't, we have

2p2 + 2pp == 2CIXl2 + 2CIXIX1 + 2C2 X2
2 + 2C2 X 2 X2

+ C3XIX2 + C3XIX2 + 2C3XIX2 . (A-4)

From (A-I) and (A-2), Eq. (A-4) reduces to an equation including first time derivatives
alone. Further, using (A-3), we obtain

(2C1XI-XI + 2C2X2.X2 + C3.X 1X2 + C3X1-X2)2 2
LHS == 2 2 ) + C 2 C 2 C2(C 1 X 1 + C 2 X 2 + C 3 X 1 X 2 1 X I + 2 X 2 + 3 X 1 X 2

- 2A(T)(C1X1
2 + C 2 X 2

2 + C 3 X 1 X 2 ),

RHS == 2C1X1
2 + 2C2X2

2 + 2C3 X1 X2 - 2A(T)(C1X12 + C2X 2
2 + C3 X 1X 2)·

Equating both sides and eliminating terms, we find

(A-5)
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From (A-5), the arbitrary constant C 1 , C2 , and C3 are not independent. Namely, C3 is
determined from C1 and C2 as

(A-6)

where W is the Wronskian X 1 X2 - XIX2, which is a constant. Consequently, we can
write the general solution of Eq. (4-6) as

(A-7)

For the present case

(A-8)

(A-9a)

the independent solutions of the linear equation can be written in terms of Bessel and
Neumann functions of order 1/3,

x (1) = 11/2 N (~ k1 3/2 )1 1/3 3 '

X (1) = 1112 J (~ k1 3/2 )2 1/3 3 .

Thus the general solution becomes

S(1) = 1[aN2 (~k13/2) + bJ 2 (~k13/2)1/3 3 1/3 3

-2) b- 1 (~3/2) (2 3/2)Ja W 2 N1/3 3 k1 J1/3 }k1 ,

with

This is in agreement with the result obtained by Lewis. 10

APPENDIX B

Particular Solution of the Auxiliary Equation (4-6)

Since the initial conditions are

S(1 1.) = 1/k1 1 112 ,

5'(1 1 ) = 0,

(A-9b)

(A-10)

(B-1a)

(B-1 b)
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we have immediately two algebraic equations for a and b

(B-2a)

(B-2b)

where v is 1/3, the prime denotes derivatives with respect to z, and all Bessel functions
are to be given their values at Zl = Z(1'l). From (B-2a), we have

(
9 )1/2

ab -­
n2

Substitution of (B-3) into (B-2b) yields

aNv
2 + bJv

2
- 6/n 2

Z 1

2 JvNv
(B-3)

Using the formula

3(Jv'Nv + JvNv') 2
n 2 z

1
J

v
N

v
- n 2 z 1

2 •
(B-4)

we have

(B-5)

(B-6)

If we substitute (B-6) into (B-3), square both sides, and compare corresponding terms,
we obtain

(B-7)

Further, from a recursion equation for Bessel functions

(B-8)

and the relation (B-5), we find

(B-9)

Introduction of (B-9) into (B-7) leads to

(B-IO)
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6(Z1 Jv-1 Nv + lin)
nz 1 Nv

2 (B-1l)

APPENDIX C

Evaluation of 8(0) and 8(0)

We set

8(0) = ~~(~)\[aNi/3(Z(t)) + bJi/3(Z(t)) - 2(ab - :2Y/2 J1/3(Z(t))N1/3(Z(t))]

(C-1)

where z(t) is ~ kt 3
/
2

• Using the formula

N1/3(Z) = sin ire/ 3 [cos ~. J1/3(Z) - J-1/3(Z)l
S(O) becomes

( )
2 { [ ]

n. a 2 2 2"3 ~~ t "3 J 1/3 - 4J1/3 J - 1/3 + 4J - 1/3 + bJ 1/3

2 ( 9 )1/2 }- .j3 ab - re 2 (Ji/3 - 211/3 1- 1/3 ) ·

(C-2)

(C-3)

If we retain only the lowest-order term of the series expansion of the Bessel functions,
we have

(C-4a)

(C-4b)

(C-5)

Substituting (C-4a) and (C-4b) into (C-3) and taking its limit at t = 0, we obtain

8(0) = ~ (jYGr2/3 r2(~/3)'

5(0) can also be evaluated in a similar way. We set

S(O) = ~~ (~)
2
{[aNi/3 + bJi/3 - 2 (ab - :2 ) 1/2 J1/3N1/3]

+ 2tz [ aN1/3N~/3 + bJ1/3J'l/3 - (ab - :2Y/\ J'l/3 N1/3 + J1/3N'l/3)]},

(C-6)
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where dots denote derivatives with respect to 1, primes denote derivatives with respect
to z, and all Bessel functions are functions of Z(1). Using formulas (B-9), (C-2), and the
recursion relation (B-8), we have

(C-7a)

(C-7b)

(C-8a)

(C-8b)

J'l/3 Nl/3 + J1/3 N'l/3 = fi(L 2/3 - ;ZJ1/3 ) (J1/3 - 2J- 1/3 ) + ~Z' (C-7c)

Retaining only the lowest-order term of the series expansion for J2/3 (z(1)) and
J _2/3 (z('r)), we have

J2/3(z('t)) = GY/3r(;j3) ,

(

k)-2 /3 1- 1

J - 2/3(Z('t)) = 3 r(lj3)'

From 12 = k1 3/2 , the limiting values of the component terms at 1 = 0 in (C-6) become

(

k)1/ 3 - 2/3 13/2 + 1/2-1

~~~ 'tiJ1/3 J - 2/3 = ~~ k 3 r(4j3)r(lj3) = 0,

(

k)1 /3 + 2/3 13/2 + 112 + 1

~~~ 'tiJ1/3 J2/3 = ~~ k 3 r(4j3)r(5j3) = 0,

(

k)-1 /6-2 /3 3/2-1/2-1 3

~~ 'tiLl/3J-2/3 = ~~ k 3 ;(2j3)r(lj3) = r(2j3)r(lj3)'

(

k) -1/3 + 213 1 3/2 -1/2 + 1

~~~ 'tiL 113 J2/3 = ~~ k 3 r(2j3)r(5j3) = 0,

3 (k)1 /3 + 1/3 11/2 + 112

~~~ 'tiJl/3Jl/3 = ~~"2 3 r(4j3)r(4j3) = 0.

Substitution of (C-9) into (C-6) yields

(C-9)
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Thus, \ve have

. 2n [ a ( 9 )1/2J
8(0) = 3 - j3 + ab - n Z •

Here we use the relation

r(2/3)r(1/3) = ~.

APPENDIX D

Calculation of Perturbing Integration

One of the four parts in the perturbation integration,

is calculated as follows:

225

(C-ll)

(D-l)

I = g2(l - g1g2 g3) e -OO/g2[eW2 /g2 (cos W + g sin W )
A 1 + g22 2 2 2

- eW1/g2(cos WI + g2 sin WI)]

= g2(1 - glg2g3) [elOgg3(cos W + g sin W )
1 + g22 2 2 2

- elogg3«I/Zg2)+ 1)(COS WI + g2 sin WI)]

gz(l - glgZg3) { [I (1 e )
= 1 + g/ g3 cos gz og ((1/2g z) + 1) + 0

+ gZg3 Sin [gZIOgC(I/2g:) + 1) + 80 )J -g3C~z + I}COS80 + gzSin80 )}

gzg3(1 - glgZg3) {[ . ( 1 )J.
= 1 + gz z - SIll e + gz cos e - gz 2g

z
+ 1 SIll 80

+ [cose + gzsine - (2~z + I)J cos 80 }' (D-2)

VvThere

1
e = gz log 1/2gz + l'

The other three parts can be calculated in a similar way.




