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Abstract

Strong gravitational lensed quasars (QSOs) have emerged as powerful and novel cosmic probes as they can deliver
crucial cosmological information, such as a measurement of the Hubble constant, independent of other probes.
Although the upcoming LSST survey is expected to discover 103–104 lensed QSOs, a large fraction will remain
unresolved due to seeing. The stochastic nature of the quasar intrinsic flux makes it challenging to identify lensed
quasars and measure the time delays using unresolved light-curve data only. In this regard, Bag et al. introduced a
data-driven technique based on the minimization of the fluctuation in the reconstructed image light curves. In this
article, we delve deeper into the mathematical foundation of this approach. We show that the lensing signal in the
fluctuation curve is dominated by the autocorrelation function (ACF) of the derivative of the joint light curve. This
explains why the fluctuation curve enables the detection of the lensed QSOs only using the joint light curve,
without making assumptions about QSO flux variability, nor requiring any additional information. We show that
the ACF of the derivative of the joint light curve is more reliable than the ACF of the joint light curve itself because
intrinsic quasar flux variability shows significant autocorrelation up to a few hundred days (as they follow a red
power spectrum). In addition, we show that the minimization of fluctuation approach provides even better precision
and recall as compared to the ACF of the derivative of the joint light curve when the data have significant
observational noise.

Unified Astronomy Thesaurus concepts: Quasars (1319); Strong gravitational lensing (1643); Astrostatistics
techniques (1886)

1. Introduction

Strong gravitational lensed systems have emerged as a
powerful and novel cosmic probe (see, e.g., Treu &
Marshall 2016 for a review). They can deliver cosmological
information independent of other probes such as the Type Ia
supernovae (SNe), Baryon Acoustic Osculations (BAO), and
Cosmic Microwave Background (CMB). Time-delay measure-
ments, together with accurate lens modeling, allow us to
directly estimate the present epoch value of the cosmic
expansion rate, i.e., the Hubble constant (H0) (Refsdal 1964;
Refsdal & Bondi 1964; Saha et al. 2006; Oguri 2007; Bonvin
et al. 2017; Birrer et al. 2020; Wong et al. 2020; Birrer &
Treu 2021). Therefore, “time-delay cosmography” can play a
crucial role in elucidating the ongoing H0 tension between the
local measurements (Abdalla et al. 2022; Riess et al. 2022) and
early-universe probes like the CMB (Aghanim et al. 2020).
Other applications of strong lensing in cosmology and
astrophysics are summarized in the review by Treu (2010).

For time-delay measurements, one needs time-variable
sources, such as quasars (QSOs) and supernovae (SNe).
Lensed SNe (Oguri 2019; Liao et al. 2022; Suyu et al. 2023)
are extremely rare as only four with multiple images have been
discovered so far (Kelly et al. 2015; Goobar et al. 2017, 2022;
Rodney et al. 2021). In comparison, lensed QSOs are more
abundant and thus remain to be the primary source for the time-
delay cosmography (however, lensed SNe could be at the

forefront of time-delay cosmography in the next decade (Suyu
et al. 2020)). Although hundreds of lensed QSOs are known
(Lemon et al. 2023), only a few have been used for cosmology.
For example, using only six “good-quality” lensed QSOs the
H0LiCOW team (Suyu et al. 2017) measured the Hubble
constant with 2.4% uncertainty (Wong et al. 2020), under
standard assumptions about the mass density profile of the
deflector, and a seventh brings the precision to 2% (Millon
et al. 2020; Shajib et al. 2020). However, if one drops the
assumptions and adopts density profiles that are maximally
degenerate with H0 through the mass sheet degeneracy, the
uncertainty increases to 9% (Birrer et al. 2020), highlighting
the need for substantially larger samples. While the uncertainty
can also be reduced by additional information per lens
(especially stellar kinematics), a powerful way of improving
the H0 precision is to increase the sample volume
significantly (Sonnenfeld 2021). For example, observations of
hundreds of lensed systems will deliver sub-percent uncertainty
and accuracy, regardless of any assumption on their mass
density profile (Jee et al. 2016; Birrer & Treu 2021).
The angular separation of images are typically of the order

∼1″–2″ for galaxy-scale lenses (Narayan & Bartelmann 1996;
Treu 2010). Therefore, one is required to first resolve the
images by using either a sufficiently high-resolution (ground-
based or space) telescope or through spectroscopy. Then the
individual light curves need to be monitored at sufficient
resolution for several years in order to measure the time delays
(e.g., Tewes et al. 2013; Liao et al. 2015; Millon et al. 2020).
This can be difficult as these observations are expensive. On
the other hand, unresolved light curves may be available “for
free” from synoptic surveys. For example, we expect a lot of
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lensed QSOs to be partially resolved or completely unresolved
in the wide-field surveys, such as by the Zwicky Transient
Facility (ZTF) (Bellm et al. 2019) and Legacy Survey of Space
and Time (LSST) (LSST Science Collaboration et al.
2009, 2017), because their angular resolution is limited by
seeing. In such cases, we can observe the joint light curve of
the unresolved system that is a blend of the individual light
curves. A robust method of detecting lensed QSOs through
unresolved light curves can take advantage of the more
abundant smaller telescopes. Thus, the importance of this
approach cannot be overstated for boosting the sample size of
the observed lensed systems.4

There are multiple other advantages in working with
unresolved systems. Since there is no need for resolving the
images a priori, this approach can be applied to the light-curve
data from ongoing time domain surveys such as ZTF (Bellm
et al. 2019), Pan-STARRS1 (Chambers et al. 2016). This will
become more crucial when the upcoming Vera Rubin
Observatory starts the LSST (LSST Science Collaboration
et al. 2009, 2017). This approach also evades any degeneracy
between a binary QSO pair and a doubly lensed QSO that
creates confusion in lens detection using the resolved
photometry (Mortlock et al. 1999; Peng et al. 1999).

Recently, multiple different techniques have been proposed
to identify the lensed systems and to measure their time delays
using the joint light curves (Shu et al. 2021; Springer &
Ofek 2021a, 2021b; Biggio et al. 2022). The primary challenge
in detecting the lensed cases using the joint light curves is that
the intrinsic QSO light curves are highly stochastic and show a
vast diversity in the flux variability. Therefore, any assumption

on the flux variability can lead to biased results with low
precision and high false-positive detection rate when the real
light curves are not well described by the assumption.
Therefore, it is extremely important to be model agnostic for
achieving higher recall and precision as well as for reliable
unbiased results.

In Paper I (Bag et al. 2022), we introduced a novel data-
driven method that can detect the lensed QSOs and
simultaneously measures the time delays only using the joint
light curves, most importantly neither assuming anything about
the quasar flux variability nor using any additional information.
The technique is based on the empirical observation that the
reconstructed image light curves corresponding to incorrect
time delays exhibit more fluctuation than the ones recon-
structed using the correct time delay. Although Bag et al.
(2022) demonstrates that this approach is successful in the
presence of significant noise (e.g., ZTF-like noise) and on
existing data quality, it lacks a formal explanation as to how the
minimization of the fluctuation works. This article looks deeper
into the mathematical formalism of this approach. We attempt
to understand the mathematical reasoning behind the empirical
observations that laid the foundation of this approach. A clear

insight into the mechanism should allow us to explore the
strengths and possible limitations of this approach.
The paper is organized as follows. Section 2 recapitulates the

method introduced by Bag et al. (2022). In Section 3, we
provide a detailed mathematical explanation for the method’s
ability to detect lensed systems. We show that the lensing
signal in the fluctuation curve is dominated by the autocorrela-
tion function (ACF) of the derivative of the joint light curve.
Section 4 explains why the ACF of the derivative of the joint
light curve performs better in identifying lensed systems than
the ACF of the joint light curve itself. Finally, in Section 5, we
compare the performance of ACF of the derivative of the joint
light curves against the full fluctuation curves. We conclude
our findings in Section 6.

2. Reconstructing the Underlying Light Curves and
Fluctuations in Them

The joint light curve of an unresolved lensed QSO having NI

images is the sum of the image light curves,

( ) ( ) ( )F t a t T , 1
j

N

j j
1

I

å= -
=



where the individual image light curves can be described by a
common function ( )t but with different magnifications (aj)
and time delays (Tj). To break the degeneracy among the
images, we choose the ordering such that a a aN1 2 I  
without loss of generality. For simplicity, let us first consider
double systems (two images) with

Here, f (t) is the light curve of the brighter image, which we
take as a reference. The other (fainter) image’s light curve is
then given by ( )f t t m - D , where 1m  and tD correspond to
the magnification ratio and time delay, respectively, with
respect to the reference (brighter) image. Note that tD can be
positive or negative; a positive (negative) tD implies that the
fainter image arrives later (earlier) in time than the brighter
image.
It is difficult to model the quasar flux variability due to its

highly stochastic nature. Instead, one can reconstruct the light
curve of the brighter image following Bag et al. (2022) (see
also Geiger & Schneider 1996) as

( ) ( ) ( )
( ) ( ) ( )
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from the joint light curve F(t), given Δtand μ< 1 which need
not be equal to the true underlying values. In this article, we
denote the true magnification ratio and time delay by { }t, m D
to avoid confusion with the free parameters of the

( ) ( ) ( ) ( ) ( ) ( )F t f t f t t f t a t T a a t T T, where , and . 21 1 2 1 2 1/m m= + - D = - = D = -^ ^ ^ ^

4 Although this work focuses on the unresolved lensed QSOs, similar
exercises for the unresolved lensed supernovae have been pursued in the
literature (Bag et al. 2021; Denissenya et al. 2022; Denissenya & Linder 2022).
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reconstruction, {μ, Δt}, which are the same as {μtry, Δttry} in
Paper I (Bag et al. 2022).

Note that the higher order terms in Equation (4) require F(t)
outside its observed range. Since the quasar flux cannot be
predicted, we assume that F(t) remains flat outside its observed
range. As discussed in Geiger & Schneider (1996) and Bag
et al. (2022), this convention has a negligible effect on the
reconstruction except near either of the boundaries (depending
upon the sign of Δt).

We emphasize that, by restricting ourselves to μ< 1, which
ensures the convergence of the sum in Equation (4), we are
essentially reconstructing the light curve of the brighter image
without any loss of generality. Moreover, for any choice of
{μ< 1, Δt}, Equation (4) gives a unique solution for the
brightest image light curve; the corresponding fainter image
light curve would be μfrec(t−Δt; μ, Δt). Only when m m=
and t tD = D , however, Equation (4) recovers the true image
light curve, frec(t)= f (t). Still, the equation F(t)= frec(t; μ,
Δt)+ μfrec(t−Δt; μ, Δt) is exactly satisfied for any choice of
{μ< 1, Δt} by construction. This demonstrates the mathema-
tical degeneracy present in this lensed detection problem as
discussed in Geiger & Schneider (1996) and Bag et al. (2022);
without any prior assumptions on f (t), any choice of {μ, Δt}
can yield a (unique) lensing solution to the joint light curve
F(t).

In Paper I (Bag et al. 2022), we introduce a completely data-
driven technique to break the degeneracy in the time delay by
minimizing the fluctuation in reconstructed image light curves. To
quantify the amount of fluctuation in a reconstructed image light
curve frec(t; μ, Δt), Bag et al. (2022) uses the simple metric,

( ) [ ( ) ( )] ( )t f t t f t t; ; , ; , . 5
i

N

i i
0

1

rec 1 rec
2

D

åm m mD º D - D
=

-

+

Fixing the trial magnification ratio (μ) to an arbitrary value
(less than unity), one reconstructs the brighter image light curve
for a number of Δt and finally looks for minima in the
fluctuation curve, ò(Δt).

Figure 1 demonstrates how one can detect the unresolved
lensed QSOs through the fluctuation curves by considering an
example of a double (two-image) system that is simulated using
the damped-random-walk (DRW) process in perfect conditions
(marginal observational noise and 1 day of cadence). The true
magnification ratio and time delay are set to 0.86m = and

t 22.0D = days. The three panels show ò(Δ t) for different
(arbitrary) choices of μ. We make the following observations
from Figure 1.

1. The fluctuation curve ò(Δt) is highly symmetric with
respect to Δt= 0.

2. There exists a global minimum at Δt= 0; the amount of
fluctuations in the reconstructed light curve is minimized
when we assume that the system is not lensed. This is a

generic feature of all fluctuation curves irrespective of the
system being lensed or not, and hence can be ignored5.

3. Strikingly, when t tD = D (shown by the dashed vertical
lines in each panel), we observe a pair of prominent
secondary minima that correctly identify the system as
lensed and simultaneously estimate the time delay accu-
rately. On the other hand, if the system is unlensed (i.e.,

0m = or t 0D = ) we do not find any prominent secondary
minimum in ò(Δt) as demonstrated in Bag et al. (2022).

4. All of the observations above are somewhat insensitive to
the choice of μ. Therefore, the true magnification ratio
cannot be estimated in this approach. Nevertheless, one can
accurately measure the time delays from the location of the
pair of secondary minima in the fluctuation curves.

In the next section, we provide the mathematical reasoning
behind all the above empirical observations.

3. Why Is Fluctuation Minimized for Correct Time Delay?

Substituting Equation (4) into Equation (5), one gets
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For convenience, let us define the difference in the
successive observed joint flux as a separate time series,

( ) ( ) ( ) ( )H t F t F t . 8i i i1º -+

Using Equation (8), one can simplify Equation (7) to
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Further expanding the squared term, we get
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Thus we can express ò(Δt) as a power series in μ,
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5 While trying to detect the lensed QSOs through the minimal fluctuation, as
proposed by Bag et al. (2022), this unlensed solution always remains to be a
feasible lensing solution to the unresolved problem in the absence of any
assumption on the flux variability.
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where
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and so on. Therefore, the fluctuation curve can be written in the
following closed form,
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where the floor function ⌊n/2⌋ returns the highest integer equal
to or below n/2. Since μ< 1, the contribution from the higher
order terms gets suppressed rapidly.

Let us now take a closer look at the difference series H(t)
(defined in Equation (8)), which can be recast as

( )( ) [ ( ) ( )] [ ( ) ( )] 17H t f t f t f t t f t t ,i i i i i1 1  m= - + - D - - D+ +

( ) ( ) ( )h t h t t , 18i i m= + - D

where

( ) ( ) ( ) ( )h t f t f t 19i i i1º -+

can be regarded as another time series. For uniformly sampled
data, H(t) and h(t) are proportional to the derivative of F(t) and f (t),
respectively. In this article, we refer to H(t) and h(t) as the
derivatives of F(t) and f (t), respectively. However, for nonuni-
formly sampled data, the former two are just difference series and
the mathematical arguments remain intact. From Equation (18),
note that H(t) follows a similar lensing equation as F(t) in
Equation (2) but with h(t) as the underlying time series.

The QSO intrinsic light curve, f (t), follows a stochastic process
that is “wide-sense stationary”; the mean and covariance proper-
ties remain constant over time. It is easy to check that the time
series F(t), h(t), and H(t) are also wide-sense stationary. For a
generic wide-sense stationary time series X(t),
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X t X t t
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, 20t
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t tfunction of only, 22
c c t c c t

c c

1 2 2 1

2 1
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for any shift in time much smaller than the observed time range
(t t t t, ,c c c range1 2  ). Therefore,

( ) ( ) ( ) ( )H t F t F t 0 23t i t i t1á ñ = á ñ - á ñ »+

since we assume that the statistical properties of the joint light
curve remain invariant under translations, i.e., 〈F(ti+1)〉t≈
〈F(ti)〉t.
Now that we have assembled all the necessary tools, we

proceed to explain the characteristics of the fluctuation curve
that are described in Section 2 and illustrated in Figure 1.

1. First, notice that Equation (10) is invariant under
Δt→−Δt as long as |Δt|= trange, since H(t) also
follows Equations (20)–(22). This explains the symmetry
in the ò(Δt) curve with respect to Δt= 0.

2. The first term in Equation (10) or (11), ò0, is constant
(independent of Δt) and hence can be ignored. The next
leading order term ò1(Δt) is proportional to the correla-
tion coefficient between H(t) and H(t−Δt) defined as
(also known as the autocorrelation function (ACF), see
Equation (A1))

Figure 1. The fluctuation curves for an example of a double system simulated (in perfect condition with negligible observation noise) using damped-random-walk
(DRW) process with time delay t 22.0D = days and the magnification ratio 0.86m = . The amount of fluctuation (ò calculated from Equation (5)) in the reconstructed
image light curves is plotted against the trial Δt. The three panels correspond to three arbitrary choices of trial magnification ratio: μ = 0.3, 0.5, 0.7. The dashed
vertical lines in each plot mark the true time delay, t tD = D , where we find prominent pairs of secondary minima that can be used to detect the lensed system and
measure the time delay. This figure is qualitatively similar to Figure 2 of Bag et al. (2022).

( )
[ ( ) ( ) ][ ( ) ( ) ]

[ ( ) ( ) ] · [ ( ) ( ) ]
( ) ( ) ( )H t

H t H t H t t H t t
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1
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i
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2 2 0å
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where one can identify that 〈H(t)〉t≈ 〈H(t−Δt)〉t≈ 0
and the denominator simply reduces to ( )H ti i

2
0å =  .

Therefore, Equation (10) can be approximated as

( ) [ ( )] ( ) ( )t H t1 2 ACF ; . 250
2m mD » - D +  

3. The autocorrelation function, ACF(H; Δt), is maximized
to unity at Δt= 0. This in turn minimizes the ò1(Δt) term
that dominates theΔt dependence of the fluctuation curve
in Equation (11) at the leading order in μ.6 Therefore, one
always observes a global minimum in the ò(Δt) curve at
Δt= 0 irrespective of the system being lensed or
not: ( ) ( )0 20 0

2m m» - +    . In fact, it is easy to
calculate the exact value ( ) ( )0 10

2m= +  as given in
Appendix B.1.

4. When the system is lensed, ACF(H; Δt) is also maximized
locally at t tD = D as the correlation function picks up
excess power due to the matching of two sets of the same
intrinsic features that are separated by the true time delay in
the joint light curve (see Appendix A for detailed
derivations). Thus the fluctuation curve, ò(Δt), shows a pair
of secondary minima at t tD = D following Equation (25).
When h(t) is pure white noise, (H tACF ; D =

) ( )t 1 2  m mD » + as evident from Equation (A6) for
long observation ranges, the exact height of the secondary
minima in ò(Δt) is calculated in Appendix B.2 under this
approximation. On the other hand, when the system is
unlensed ( 0m = ), we get no such secondary minima.
Therefore, by detecting this pair of secondary minima, which
are the dominant part of the lensing features in the fluctuation
curve, one can identify the system as lensed. Simultaneously,
the location of this minima pair allows us to estimate the time
delay of the system.

5. As the òi terms in Equation (11), which contain the Δt
variable, are independent of the choice of μ, the locations
of the lensing features (local minima and maxima due to
lensing) in the fluctuation curve ò(Δt) is very much
insensitive to μ. (However, note that, for a higher value of
μ, higher order terms in Equation (11) also contribute,

which makes the curve fluctuate more as evident from the
three panels of Figure 1.) Therefore, we cannot determine
the true magnification ratio in this approach, although the
time delay can be recovered accurately.7

Figure 2 demonstrates the above arguments for the same
example considered in Figure 1. The top-left panel shows the joint
light curve (in perfect conditions with negligible noise and one
day of cadence) of the doubly lensed system simulated using the
damped-random-walk (DRW) template with t 22.0D = days and

0.86m = . The derivative of the joint light curve,H(t), is shown in
the bottom-left panel. The top-right panel displays the auto-
correlation function of H(t) where we can clearly find the pair of
secondary maxima at t t 22.0D = D =  days. Finally, we
compare the full fluctuation curve (ò(Δt)) with its main
contributing term (linear in μ) stemming from ACF(H; Δt) for
an arbitrary trial μ= 0.3. We notice that the features in the
fluctuation curve are dominated by the ACF(H; Δt), which is also
responsible for the secondary minima in ò(Δ t)appearing at

t tD = D . The system is therefore identified as lensed. Note that
the autocorrelation of the joint light curve itself, i.e., ACF(F; Δt),
does not show the lensing peaks in this case; hence it is not
reliable for lens detection as explained in Section 4 in more detail.

3.1. Contribution from the Higher Order Terms

For an arbitrarily long time series (trange→∞), one can keep
substituting

( ) ( ) ( ) · ( )H t t H t t n t H n tACF ; , 27
i

N

c c 0

D

å + + - D » D 

for any n ignoring the boundary effect. Here tc is any constant
shift in time and ò0 is given by (12). Therefore,
Equations (13)–(16) can be simplified as

( ) [ ( )]
( ) [ ( ) ]
( ) [ ( ) ( )]
( ) [ ( ) ( ) ]

( )

t H t
t H t
t H t H t
t H t H t

2ACF ; ,
2ACF ; 2 1 ,

2ACF ; 3 2ACF ; ,
2ACF ; 4 2ACF ; 2 1 ,

28

1 0

2 0

3 0

4 0

D = - D
D = D +
D = - D + D
D = D + D +

¼

 
 
 
 

Note that ACF(H; nΔt) exhibits a pair of peaks at
t t nD = D . Thus we get pairs of local minima (maxima) in

the fluctuation curve at ± tD /n for each odd (even) n from
Equation (11). We refer to these features as the lensing signal in
the fluctuation curve. Remarkably, from each odd term, we get a
pair of minima at t tD = D which, despite being suppressed by
a factor of μn, enhances our target pair of secondary minima and
increases its detectability. On the other hand, we find local maxima
in the fluctuation curve at t t t2, 4, D = D D ¼ from the even
terms. Therefore, as more and more terms contribute to the ò(Δt)
curve, we get slight enhancement in the lensing minima (as
compared to the lensing peaks in ACF(H; Δt)) but at the expense
of more extrema that increase the overall oscillations in the
fluctuation curve. Note that, for a finite time series, we still expect
similar higher order features in the fluctuation curve up to the
order ∣ ∣n t trange D .

( ) ( ) [ ( ) ( ( ) ) ( )]
( ) [ ( ) ( ( ) ) ( ) ]

( )t
H n t H n t H t n

H n t H n t H t n
1 2ACF ; 2ACF ; 2 2ACF ; if is odd.

1 2ACF ; 2ACF ; 2 2ACF ; 2 1 if is even.
29n

n

n
0

0
D =

- D + - D +¼+ D
- D + - D +¼+ D +
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


⎧
⎨⎩

6 This could also be obtained from the inequality,

( ) ( ) ( ) ( )

( ) ( ) ( )

t H t H t t H t

H t t H t

2

2 2 26
i

i i
i

i

i
i

i
i

1
2

2 2
0

å å

å å

D = - - D -

- - D » - = -





following the fact that 2xy � x2 + y2. The equality holds when
H(ti) = H(ti − Δt) for all i requiring Δt = 0 unless H(t) is a constant function.
Therefore, ò1(Δt) is minimized at Δt = 0. Note that this argument does not
require 〈H(t)〉t ≈ 0.
7 In an ideal condition where this is uncorrelated in time, the observation
range is long, data have negligible noise, etc., one can in principle determine
the magnification ratio from the height of the secondary minima at tD using
Equation (B5) (or from the height of the secondary peaks at ( )H tACF ; D ).
This will not be reliable for the realistic QSO light curves with unknown
correlation and especially in the presence of significant observational noise.
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3.2. Quad Systems

It is possible to generalize the image reconstruction,
Equation (4), for more than two image systems. However, for a
generic system with NI images, ACF(H;Δt) exhibits NI(NI− 1)/2
pairs of secondary maxima, one for each relative time delay
|Ti− Tj| (i≠ j). Note that, if the time delays between two pairs of
images are too close to each other, or more explicitly, if the
difference between two time delays is smaller than the observation
cadence or the smoothing timescale (used to deal with noisy data),
then the two corresponding peaks will merge into one in ACF(H;
Δt). For example, ACF (H; Δt) for a quad system (four images
blended together in reality) can show up to six pairs of secondary
maxima at the time delays Δt=± Δti,j≠i given that Δti,j≠i are
well separated from each other. As ACF(H; Δt) dominates the
lensing signal in the fluctuation curve, the latter also shows the
same number of secondary minima pairs in this case even if one
assumes only two images in the reconstruction analysis, i.e.,
following Equation (4) with two images only. Thus, one can
identify the quad systems using the method presented in Paper I
(Bag et al. 2022) by detecting multiple (up to six) pairs of minima
in the ò(Δt) curve.

This has been illustrated in Figure 3 where we consider an
example of a quad unresolved lensed system simulated using
DRW process with time delays: t 11.0, 31.0, 68.0D = days with
respect to the first image (again in perfect condition). The top and
bottom panels show the autocorrelation function for the derivative,

ACF (H; Δt) and the fluctuation curve ò(Δt) (using two-image
analysis), respectively. In both panels, we find six pairs of
prominent extrema at Δt=± 11, ± 31, ± 68, ± 20, ± 57,
± 37 days. Therefore, one can detect the quad systems using both
approaches. In a blind analysis, if we detect one pair of secondary
minima in the ò(Δt) (or secondary maxima in ACF(H;Δt)) curve,
we can identify the system as a doubly lensed QSO. On the other
hand, if we find multiple such pairs (up to six), we can detect it as
a quad system since three-image systems do not exist in reality.
Thus, in this section, we explain the mathematical origin of

the characteristics of the fluctuation curves that play the pivotal
role in developing the method introduced in Paper I (Bag et al.
2022). However, we are left with two additional questions: (i)
why can one detect the lensed QSOs more reliably using ACF
(H; Δt) as compared to ACF(F; Δt), and (ii) what are the
advantages of using the fluctuation curve over the simpler ACF
(H; Δt) in detecting lensed QSOs? These questions are
addressed below in Sections 4 and 5, respectively.

4. ACF(F; Δt) versus ACF(H; Δt)

One can in principle reliably detect the lensed systems using
the autocorrelation function of the joint light curve, ACF(F;
Δt), if the intrinsic light curve f (t) is uncorrelated in time
(white noise) as explained in Appendix A. However, the QSO
light curves can have long timescale correlations that violate
Equation (A4). In this case, the existence of the lensing peaks

Figure 2. The top-left panel shows the joint light curve (in perfect condition with negligible observation noise) of the double system considered in Figure 1:
t 22.0D = days and 0.86m = . The difference series for this system, H(t) as defined in Equation (8) (which is simply the derivative of F(t) when it is sampled

uniformly), is shown in the bottom-left panel. Its autocorrelation function, ACF(H; Δt) shown in the top-right panel, exhibits a prominent and sharp pair of secondary
maxima at t tD = D through which one can easily detect the lensed system. Finally, the bottom-right panel compares the full fluctuation curve (ò(Δt), same as in the
left panel of Figure 1) using the trial μ = 0.3 with the contribution from the ACF(H; Δt) to it.
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in ACF(F; Δt) depends on the characteristics of the
autocorrelation function of the intrinsic light curve, ACF( f;
Δt). Even when Equation (A4) is not strictly valid, we can
expect excess power in ACF(F; Δt) at t tD = D from
Equation (A3) if ACF( f; Δt) decays reasonably sharply (from
its peak at Δt= 0), i.e., if f (t) and f (t± Δt) are uncorrelated
for ∣ ∣ ∣ ∣t tD D . In other words, one can detect the lensing
peaks in ACF(F; Δt) only if ACF( f; Δt)is narrowly peaked
around Δt= 0 even in the ideal condition with negligible
observation noise. This is discussed in Appendix A.1 in detail
(see Equation (A7) for the precise condition). Since F(t) and its
derivative H(t) follow the same lensing equation (compare
Equations (2) and (18)), the above criterion is also applicable to
ACF(h; Δt) in order to find the lensing peaks in ACF(H; Δt).

However, QSO flux variability typically shows temporal
correlation until a few hundred to even one thousand days
(Kelly et al. 2009; MacLeod et al. 2010). The expectation value
of the autocorrelation function of light curves generated using
damped-random-walk (DRW) process (Kelly et al. 2009;
MacLeod et al. 2010; Zu et al. 2013) decays exponentially,

( ) ( ∣ ∣ ) ( )f t tACF ; exp , 30E tá D ñ = - D

but not sharply, since the decay timescale, τ, is typically
( – )10 102 3 days. Here, 〈·〉E denotes an ensemble average over

all possible realizations of f (t) with the same stochastic
properties.

Therefore, it can be difficult to detect the secondary peaks in
ACF(F; Δt), and one can also have a significant number of false-
positive detections (Geiger & Schneider 1996; Shu et al. 2021).
This has been demonstrated in Figure 4 using numerical
simulations. Here we simulate 1000 realizations of the intrinsic
QSO light curves ( f (t)) using the DRW template. We fix the
correlation timescale to τ= 102.5≈ 316 days, which is consistent
with the findings of Kelly et al. (2009) and MacLeod et al. (2010)

(see also Dobler et al. (2015)) throughout the paper for our
illustration purpose. Then we construct the joint light curves (F(t))
separately for each realization following Equation (2) with

0.86m = and t 50D = days, kept the same across the
realizations. For simplicity, we consider the perfect condition
with marginal noise in the data. The solid curves in the top-left
panel show ACF( f; Δt) for five randomly selected samples,
whereas the dashed black curve and the shaded region represent
the ensemble average of ACF( f; Δt) and the 68% quantile,
respectively.8 It is evident that there exists significant correla-
tion in f (t) until a few hundred days as the ACF( f; Δt) curves
decay slowly with | Δt|. Also, notice that the 68% quantile
region of ACF( f; Δt) expands with | Δt|, thus some
realizations of ACF( f; Δt) can exhibit local maxima as in the
case for the red and purple curves in the top-left panel. Thus,
using ACF(F; Δt) one can get a substantial number of false
lensed detections in true unlensed cases because of these
maxima.
The ACF(F; Δt) for the same five realizations have been

shown in the bottom-left panel, the dashed vertical lines
represent the true time delay, Δt=± 50 days, for these
systems. Although for some realizations (purple curve), one
can find excess power in ACF (F; Δt) at t tD = D , for others
(the green, red, and blue curves), this is not true.
On the other hand, since DRW behaves like a random walk at

small timescales (t= τ), its derivative h(t) behaves like white
noise obeying Equation (A4) at this limit. This is evident from the
top-right panel of Figure 4 where we show ACF(h; Δt) for the
same five realizations with different colors. For all realizations, we
find that ACF(h; Δt) becomes very small for Δt≠ 0. In fact the
ensemble average, shown by the dashed black curve, follows
〈ACF(h; Δt)〉≈ δΔt,0. Hence, we get a prominent pair of
secondary maxima in ACF(H; Δt) at t tD = D for all the
realizations as evident from the bottom-right panel.
Last, let us consider time series with different correlation

timescales τ in Equation (30), even if they do not describe the
QSO light curves accurately. A smaller (larger) τ leads to a
narrower (broader) peak in 〈ACF( f; Δt)〉, which in turn
increases (decreases) the probability of ACF(F; Δt) showing
the lensing peaks, according to Appendix A.1. However, in
both limits, ACF(h; Δt) has a sharp peak at Δt= 0, so that one
can always find the lensing peaks in ACF(H; Δt).
This exercise using the DRW template thus demonstrates

that ACF(H; Δt) outperforms ACF(F; Δt) in terms of
detectability of the lensing peaks. However, this conclusion
is not restricted to DRW and unbound random-walk templates.
It stands valid for any “red-type” power spectrum, as argued
below in Section 4.1 and in Appendix C more explicitly.

4.1. Connection to the Power Spectrum

Let us define the power spectrum, Pf(ω), of a time series as
the two-point correlation function in the Fourier space;

˜ ( ) ˜ ( ) ( ) ( ) ( )f f P , 31E fw w w d w wá ¢ ñ = - ¢*

where ˜ ( )f w is the Fourier transform of the time series f (t). We
assume that the Fourier modes are uncorrelated. To be precise,

Figure 3. The top panel shows the autocorrelation function of the derivative of
the joint light curve (H(t), defined in Equation (8)) for a quad system (four
images in reality). The bottom panel shows the fluctuation curve for the same
system, analyzed assuming just two images. The six dashed vertical lines on
either side of Δt = 0 in each panel represent the six relative time delays
between the four actual images.

8 Equation (30) is true only if the observation range is much larger than
correlation scale, i.e., trange ? τ (τ has been set to 102.5 days for these
simulations) so that ergodicity is observed. So the black dashed curve in the
top-left panel of Figure 4 coincides with Equation (30) for much longer
observation range.
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we assume that the QSO intrinsic light curve f (t) is “wide-sense
stationary” as its mean and covariance properties do not vary
over time (see (20)–(22)). Under these assumptions, the
Wiener–Khinchin theorem states that the (expected) autocorre-
lation function of f (t) is given by the Fourier transform of the
power spectrum (Einstein 1914; Wiener 1930; Khintch-
ine 1934). Therefore, one can determine the autocorrelation
function of a time series by studying its power spectrum. This
is especially useful since a derivative in the time domain
corresponds to a multiplication by iω in the Fourier domain,
and hence Ph(ω)= ω2Pf(ω).

The simplest example is when the underlying signal consists
purely of white noise fwhite(t) with the power spectrum given by

( )P constantf white
2

white
w s= = . Taking the Fourier transform

yields the expected value of the autocorrelation function ACF
( fwhite; Δt)∝ δ(Δt). Since this is sharply peaked around Δt= 0,
we can accurately retrieve the lensing peaks in the ACF(F; Δt)
curve. Further details for this white-noise scenario are discussed in
Appendix A.

For the damped-random-walk (DRW) templates often used
for describing the intrinsic QSO light curves, the power
spectrum takes the form

( ) ( ) ( )P 1 , 32f
2 2

DRW
w t t wµ +

which is the Fourier transform of Equation (30) up to a
normalization factor. Note that power spectra like ( )PfDRW

w that
decay with |ω| give rise to red noise and hence can be classified
as “red-type” power spectra. The decay timescale τ para-
meterizes how long it takes for the time series to forget the
fluctuations that happened in the past. Since ( )PfDRW

w »

constant for τ2ω2= 1, the DRW is mostly independent of its
past and behaves like white noise when τ is small.
To describe realistic quasar light curves, τ should typically

be of the order 102–103 days. The DRW then behaves more
similarly to an (undamped) Gaussian random walk with a
power spectrum Pf(ω)∼ ω−2 up to a timescale smaller than τ,
or ω2? 1/τ2. The Fourier transform of such a power spectrum
has a broad peak at zero unlike the sharp delta-function-like
peak of the white-noise one. Therefore, ACF(F; Δt) is less
reliable for finding lensed cases in this case.
Meanwhile, the derivative time series h(t) has a much flatter

power spectrum with Ph(ω)∝ ω2/(1+ τ2ω2). This is nearly
constant for large ω; h(t) behaves like white noise. Thus, ACF
(h; Δt) tends to be much narrower and is expected to decay
down quickly as compared to ACF( f; Δt). This is consistent
with our previous findings that ACF(H; Δt) is more reliable
than ACF(F; Δt) for detecting the lensed systems. Indeed, a
larger τ makes the Pf(ω) steeper (or redder) in Equation (32)
and leads to a flatter 〈ACF( f; Δt)〉 in Equation (30). This in
turn reduces the possibility of the lensing peaks appearing in
ACF(F; Δt) and thus enables ACF(H; Δt) to outperform ACF
(F; Δt) even to a greater extent. In fact, this is true for all red-
type power spectra (Pf(ω) decreases with increasing |ω|) as
illustrated in Appendix C. Since the lensing features in the
fluctuation curve ò(Δt) predominantly arise from ACF(H; Δt),
we expect similar performance from both of these approaches.

5. Fluctuation in Reconstruction versus Autocorrelation of
Derivative

Since the lensing signal in the fluctuation curve is dominated
by the autocorrelation of the derivative of the joint light curve
(H(t) defined in Equation (8)), it is interesting to test if ACF(H;

Figure 4. The top-left panel shows autocorrelation in the intrinsic QSO light curve, ACF( f; Δt), for five out of 1000 realizations (randomly chosen) simulated using the
DRW template. The expectation value (ensemble average) and 68% percentile are marked by the dashed black curve and the shaded region, respectively. The top-right
panel shows ACF(h;Δt) for the same five realizations along with the expected value (black dashed curve). The bottom two panels compare ACF(F;Δt) and ACF(H;Δt)
for the double systems constructed using these five realizations. The dashed vertical lines in the bottom two panels represent the true time delay:Δt = ± 50 days for these
systems. Since ACF(h; Δt) is typically much narrower than ACF( f;Δt), we expect to find the lensing peaks in ACF(H; Δt) more reliably than in ACF(F; Δt), as evident
from the comparison of the bottom two panels.
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Δt) can similarly be used to detect the lensed QSOs. Note that
ACF(H; Δt) would be less computationally expensive and has
a better physical interpretation.

Let us begin by comparing the lensing signals (the
prominence of the secondary maxima that can be used for
lensed detection) in ACF(H; Δt) and the fluctuation curve
(ò(Δt)) for the example presented in Figures 1 (left panel) and
2. We normalize both curves using the generic transformation,

( ) ( ) ( )( )
( )

X t X t
, 33X t

t

X ts
S º

D - á D ñ
D

D

D

where 〈X(Δt)〉Δt and σX(Δt) are the average and standard
deviation taken over Δtof a one-dimensional function X(Δt).
(Thus ΣX(Δt) simply measures X(Δt) in the units of its standard
deviation.) Figure 5 compares Σò(Δt) (with trial μ= 0.3) and
−ΣACF(H; Δt) for that example system (simulated using DRW
template with t 22.0D = days, 0.86m = and marginal
observation noise). As expected, both curves show a prominent
pair of secondary minima at t t 22.0D = D =  days
(marked by dashed vertical lines) deeper than Σ=− 2.
However, we still find that the secondary minima in the
Σò(Δt) are slightly deeper than that of the −ΣACF(H; Δt) curve.
This indicates that ò(Δt) contains a more enhanced lensing
signal than ACF(H; Δt) in this case.

Next, we test the approach based on ACF(H; Δt) on the
same validation and blind sets used in Bag et al. (2022)
(simulated using the DRW template). As usual, we first
consider the perfect conditions where the observational noise is
marginal compared to the time variation in the intrinsic QSO
light curves. Using the same selection criteria, ACF(H; Δt) can
detect 19 out of 20 true lensed cases correctly. Among the 20
unlensed cases, however, it gives one false-positive case while
identifying the rest of the 19 unlensed systems correctly. In
comparison, the minimization of the fluctuation (in the
reconstructed image light curves) approach produces 1 false-
negative case but zero false-positive cases for the same data

sets. We also notice that the signal in ΣACF(H; Δt) is slightly
diminished as compared to Σò(Δt).
When we consider uncertainty in the observed light-curve data,

the ACF(H; Δt) approach suffers more from the added noise than
the technique based on the fluctuation curve. We follow the same
prescription given in Bag et al. (2022) for both methods to handle
noisy data; we smooth the joint light curve for multiple smoothing
scales and combine the fluctuation curves obtained from each
smoothed light curve. For the same data sets with ZTF-like noise,
the ACF(H; Δt) approach detects only eight out of the 20 lensed
systems correctly. However, for two other lensed cases, it detects
the lensing nature based on peaks at completely wrong time
delays (hence these two should be counted as false positives).
Furthermore, it detects 15 out of 20 unlensed systems correctly
but gives the remaining five as false positives. Thus, in
combination, it produces a precision of 8/15 (slightly higher
than 50%) and a recall of 8/20. These numbers are significantly
inferior to that of the fluctuation curve method which produces a
precision of 12/13 and a recall of 12/20 on the same data sets
(Bag et al. 2022). The recall and precision values for these two
approaches have been summarized in Table 1. As before, we
again notice that the lensing signal in ΣACF(H; Δt) is typically
diminished as compared to Σò(Δt).
We also test ACF(H;Δt) on the COSMOGRAIL system SDSS

J1226-0006, which was used in Bag et al. (2022) as an example.
The time delay estimated using the resolved light curves by the
COSMOGRAIL team is 33.7± 2.7 days for this system (Millon
et al. 2020). Figure 6 compares the fluctuation curve (blue curve,
same as in Figure 21 of Bag et al. (2022)) and ACF(H; Δt)
(orange curve) after normalization. Like the fluctuation curve,
−ΣACF(H; Δt) shows a pair of prominent secondary minima
symmetrically placed around Δt= 0. Specifically, the secondary
minima in −ΣACF(H; Δt) occurs at Δt=− 28.9, 26.9 days with
the depths Σ=− 1.40 and −1.50, respectively, leading to the
final time-delay estimation of Δtest= 27.9 days. In comparison,
Σò(Δt) curve exhibits slightly overall deeper minima (Σ=− 1.35,
− 1.68) at Δt=− 28.7, 30.5 days that give rise to Δtest= 29.6
days (Bag et al. 2022) which is a better agreement with the
COSMOGRAIL results.
In conclusion, it is evident that the fluctuation curve

approach as introduced by Bag et al. (2022) performs better
than ACF(H; Δt) although the former method is dominated
by the latter. This is because the secondary minima (i.e., the
lensing signal) are more prominent in the fluctuation curves,
ò(Δt), than the secondary maxima in the corresponding ACF
(H; Δt) curves. This is due to the fact that, in ò(Δt) curves,
the secondary minima at t tD = D are further enhanced by
all the odd terms in Equation (11) as compared to ACF(H;
Δt) curves. Therefore, the minimization of fluctuation
approach can be more useful for marginal detection of the
unresolved lensed QSOs. However, ACF(H; Δt) can be very
useful and quick crosscheck as it is computationally
inexpensive.

6. Conclusion

Bag et al. (2022) introduces a data-driven technique for
detecting lensed QSOs and for measuring their time delays
only using the unresolved joint light-curve data by minimiz-
ing the fluctuations in the reconstructed image light curves. In
this article, we provide the proof as to how this method
works. We showed that the lensing signal in the simple
fluctuation estimator given by Equation (5) is dominated by

Figure 5. The fluctuation curve and ACF(H; Δt) are compared after being
normalized using Equation (33) for the same system as in Figure 1 (i.e.,
simulated with DRW template and with t 22.0D = days and 0.86m = ). We
find secondary extrema of similar strengths in both curves as the ACF(H; Δt)
dominates the lensing signal in the fluctuation curve. However, the latter still
has more lensing signal due to contributions from the higher order terms in
Equation (11) as illustrated by the two inset plots which zoom into the two
lensing/secondary minima.
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the autocorrelation of the derivative (difference series in
general for nonuniformly sampled data) of the joint light
curve. This observation explains all the characteristics of the
fluctuation curve that were used as the foundation of the
technique proposed by Bag et al. (2022). Above all, ACF(H;
Δt) is locally maximized at t tD = D and these lensing
peaks manifest themselves as the secondary minima in the
fluctuation curve, ò(Δt), which have been used to detect the
lensed cases in Bag et al. (2022). Other interesting results are
summarized below.

1. We also showed that ACF(H; Δt) is more reliable than the
autocorrelation function of the joint light curve itself ACF
(F; Δt), because the intrinsic flux variability of QSOs is
correlated in the time domain, or in other words, the power
spectra of the intrinsic quasar light curves are of the red
type. Nevertheless, even if Pf(w) is flat or of blue type, ACF
(H; Δt) can also find the lensed cases. Since the primary
contribution to the lensing signal in ò(Δt) comes from the
ACF(H; Δt), the minimization of the fluctuation approach
would be similarly successful in these scenarios.

2. However, the approach based on the fluctuation curve
provides better recall and precision over the ACF(H; Δt)
when one considers the significant amount of noise in the
joint light-curve data. This is due to the higher order
terms contributing in Equation (11) that further enhance
the pair of secondary minima in the ò(Δt) curve (as
compared to the lensing peaks in ACF(H; Δt)).

3. For a generic lensed system having NI images, ACF(H; Δt)
displays NI(NI− 1)/2 pairs of lensing local maxima.
Likewise, the fluctuation minimization method can be used
to detect multiple imaged lensed systems even if we assume

two images in the reconstruction analysis a priori. For
example, by detecting one pair of prominent secondary
minima in ò(Δt), one can identify a double system, whereas
if there exist multiple such lensing minima pairs (up to six),
the system must be a quad (having four images).

Although we choose time delays of the order of tens of days
as examples in this work for demonstration purposes, one can
in principle detect the lensing minima pair in the fluctuation
curve for any arbitrarily small time delay as long as it is
sufficiently larger than the observation cadence and the signal-
to-noise ratio is sufficiently high. However, in reality, the
cadence could vary from a few days to ( )10 days depending
upon the observation conditions or the observing strategy; this
puts a limitation on the sensitivity of the method as the time
delay needs to be larger than the cadence for the lensing
minima pair to emerge in the fluctuation curve.
The fact that the primary contribution to the lensing signal in

the fluctuation curves stems from ACF(H; Δt) also informs us
about some key benefits of the fluctuation minimization
approach. The fluctuation minimization approach should be
able to handle microlensing up to a certain limit as the
autocorrelation can withstand moderate microlensing effects.
We plan to comprehensively investigate the effect of micro-
lensing on the performance of this method in the follow up
work. Note that microlensing can significantly alter the time-
delay measurements from the resolved image light curves, up
to a few days (Tie & Kochanek 2018; Liao 2020). It would be
interesting to see how this affects the results of our method
based on the unresolved fluxes.
To discern another crucial advantage, recall that the selection

criteria for lens detection using the fluctuation curve are so far
based on only the pair of minima at t tD = D . The higher
order terms further put predictable features in the fluctuation
curve at certain values ofΔt, e.g., a pair of minima (maxima) at

t t nD = D for every odd (even) n. Although the higher
order features are suppressed by μ n, the first few of these
features can nevertheless be exploited to improve the selection
criteria, potentially using deep learning.
Finally, we emphasize that the enhancement of fluctuations

in the image light curves reconstructed using wrong time delays
is a fundamental characteristic of the fluctuation curve
approach. However, this article is restricted to the simple metric
Equation (5) for quantifying the fluctuations. The lensing signal
in this estimator ò(Δt) is found to be dominated simply by ACF
(H; Δt). Nevertheless, there might be a better metric for
quantifying the fluctuations in the reconstructions that delivers
better results in terms of recall and precision. This remains an
open question and is worth investigating further.

Table 1
We Compare the Results from the Two Approaches—ACF(H; Δt) vs. the Full Fluctuation Curve—in Terms of Recall (Completeness) and Precision (Purity) for the

Validation and Blind Sets Considered in Bag et al. (2022)

Data Sets from Recall Precision

ACF(H; Δt) Fluctuation curve ACF(H; Δt) Fluctuation curve
(Bag et al. 2022) (Bag et al. 2022) (Bag et al. 2022)

With marginal noise 95% 95% 95% 100%

With ZTF-like noise 40% 60% 53.33% 92.31%

Note. The results corresponding to marginal noise and ZTF-like noise in the data are presented in the top and bottom rows, respectively.

Figure 6. The normalized fluctuation curve (blue curve, from Bag et al. (2022))
and ACF(H; Δt) (shown by the orange curve) are compared for the
COSMOGRAIL system SDSS J1226-0006.
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As stressed in Bag et al. (2022), to estimate the error in the
time-delay measurements in this nonparametric approach, one
needs to statistically analyze a large number of unresolved
cases simulated in a variety of observational conditions; e.g.,
considering different flux variations, cadence distributions,
noise levels, many microlensing realizations, etc. This exercise
forms the focus of the follow up work.
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grant Nos. 12222302, 11973034 and Wuhan University talent
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Appendix A
Autocorrelation Function

The autocorrelation function of a generic time series x(t) is
defined as

For a wide-sense stationary (bounded and long) time series
〈x(t)〉t≈ 〈x(t− Δt)〉t which reduces the denominator to ND x

2s .
Let us define the joint time series X(t) following the lensing
equation (similar to F(t) in Equation (2) and H(t) in
Equation (18))

( ) ( ) ( ) ( )X t x t x t t , A2 m= + - D

where m and tD represent the (true) magnification ratio and
relative time delay as in Equations (2) and (18). Thus, {x(t), X(t)}
here are proxies for {f (t), F(t)} or their derivatives {h(t), H(t)}.
Using Equation (A1) it is easy to find thatwhere the denominator
is just a normalization constant (independent of Δt).

If the intrinsic time series x(t) is uncorrelated in time (white
noise), sufficiently long, and hence obeys

( ) ( )
( )
( )

( )

( )
x t x t t

x t t

x t t

x t
t

t

if 0,

if 0,

therefore, ACF ;
1 if 0,
0 for all 0,

A4
t

t

t

2

2
á - D ñ =

á ñ D =

á ñ D ¹

D =
D =
D ¹

⎧
⎨⎩

⎧
⎨⎩

the denominator of Equation (A3) reduces to unity (in the
generic cases with t 0D ¹ ) leading to

( ) ( )

[ ( ) ( )] ( )

X t x t

x t t x t t

ACF ; ACF ;
1

ACF ; ACF ; , A5

2




 

m
m

D = D +
+

´ D - D + D + D

and we can conclude the following.

1. When Δt= 0, Equation (A5) trivially reduces to unity as
only the first term contributes. Naturally, the autocorrela-
tion is always maximized at unity for no shift in
time (Δt= 0).

2. On the other hand, for Δt≠ 0 in general, Equation (A4)
ensures that all three terms in Equation (A5) reduce to
zero and ACF(X; Δt)≈ 0.

3. Interestingly, ACF(H; Δt) is locally maximized at
t tD = D . In the view of Equation (A4), when
t tD = D or t-D only the first or the second term in

the square bracket of Equation (A5) contributes, that
leads to

( ) ( )X t tACF ;
1

1

2
A6

2




 m
m

D = D »
+



for both cases. In fact, the set of intrinsic features in the
underlying time series x(t) appears twice in X(t),
separated by tD (and scaled by m, see Equation (A2)).
Since ACF(X; Δt) measures the correlation between two
copies of X(t) with one shifted by Δt in the time domain,
it gains an excess power when t tD = D due to
matching of the two sets of the same features (the± sign
accounts for the shift in either direction). Although this
argument applies to any generic x(t) with a substantial
amount of features, we emphasize that the above equation
is valid strictly when the x(t) is pure white noise
following Equation (A4).

4. For unlensed cases, when 0m = or t 0D = , this pair of
secondary maxima vanishes.

In summary, ACF(X; Δt) shows a pair of secondary maxima at
t tD = D (the lensing peaks) and remains zero at all other

Δt≠ 0 as long as the intrinsic time series, x(t), is white noise
(no temporal correlation) and satisfies Equation (A4). Note that
the whole analysis is applicable to both F(t) and H(t) with the
underlying functions f (t) and h(t), respectively.

( )( )
[ ( ) ( ) ][ ( ) ( ) ]
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+
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A.1. When to Expect Lensing Peaks in ACF(F; Δt) Even If f (t)
Is Not White Noise

Let us discuss the interesting case when Equation (A4) is
not strictly valid. This is important for quasars since the
intrinsic light curves, f (t), typically possess correlations up to
a timescale of a few hundred days (Kelly et al. 2009;
MacLeod et al. 2010). In such cases, the autocorrelation
function ACF( f; Δt) would show a broad peak at Δt= 0,
unlike a delta function. ACF( f; Δt)is still expected to be
symmetric around Δt= 0 and monotonically decaying with
| Δt| (the decay rate depends on the correlation timescale). For
instance, see the top-left panel of Figure 4 for typical
examples of ACF( f; Δt) where f (t) is generated from a
damped random walk (DRW) with a correlation scale of
∼300 days.

The lensing peaks in ACF(F; Δt) arise from the terms in the
square bracket in the numerator of Equation (A3) (after
replacing {x(t), X(t)} by {f (t), F(t)}). Thus, as | Δt| approaches
∣ ∣tD from the below, the lensing peaks could emerge only if the
change in the second term in the numerator of Equation (A3)
dominates over the change in the first term. For all practical
purposes (i.e., with the expected ACF( f; Δt) being symmetric
around Δt= 0 and monotonically decreasing with | Δt|), this
requirement boils down to the condition,

∣ ( )∣ ∣ ( )∣ ( )f t t f tACF ;
1

ACF ; 0 , A7
2




 m
m

¢ D ~ D <
+

¢ D ~

where ( )f tACF ;¢ D is the derivative of ACF( f; Δt) with
respect to Δt. The stronger the inequality is, the steeper (more
prominent) the lensing maxima pair in ACF(F; Δt) would be.
For our purpose, the above condition requires that ACF( f; Δt)
must have sufficiently narrow peak at Δt= 0 so that it
stabilizes at ∣ ∣ ∣ ∣t tD D by decaying down sufficiently fast. We
again emphasize that all the arguments made in this section
stand valid if we replace F(t) and f (t) by H(t) and h(t),
respectively. Note that, here, we assumed the best-case scenario
when the noise is negligible; the inclusion of observation noise
brings in additional complexities.

Appendix B
Exact Values of the Global and Secondary Minima in the

Fluctuation Curve

B.1. Global Minima in the Fluctuation Curve

For Δt= 0, Equation (3) reduces to ( ) ( )f t F trec
1

1
=

m+
which reduces Equation (5) to

( )
( )

[ ( ) ( )]
( )

( )

t F t F t0
1

1 1
.

B1
i

N

i i2 1
2 0

2

D

åm m
D = =

+
- =

+
+ 

Note that the above expression is valid even for the unlensed
cases.

One can get the same expression from Equation (11) as
follows,

( ) [ ]

[ ]
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( )
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.
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Here we identify that, for Δt= 0, all òn terms become
proportional to ò0, and the sum converges as μ< 1.

B.2. Secondary Minima When h(t) Is White Noise

If h(t) is pure white noise (or in other words, if it follows
Equation (A4)), we can analytically calculate the height of the
secondary minima. Following Equation (28), we get

( )

( )
[ ( ) ( )

( ) ]
B3

t t

H t H t

H t

1 2ACF ; 2ACF ;
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
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
m m m

m m m

D = D
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+ - D + - ¼




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3 5
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= + + + + ¼

- D + + + ¼



( ) ( )H t1 2 ACF ;

1
, B50 2

m
m

=
- D

-


where we use ( · )H n tACF ; 0D » for n≠ 0, ± 1. Note from

Equation (A6) that ( ) ( )H tACF ; 1 1 22  m mD » +  in
this limit. It is also easily seen that for unlensed cases, when
ACF(H; Δt≠ 0)= 0, ( ) ( )t 1 constant0

2mD = - =  for
any Δt≠ 0.
By comparing with Equation (B2), one can trivially show

that

( )
( )

( ( ))

( ( )) ( )
( )

t t

t
H t

H t

0

1

1
1 2 ACF ;

1 2 1 ACF ; ,
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2
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

m
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m

m m
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D =

=
+
-
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

and owing to ( )H tACF ; 1 2D  it is readily seen that

( ) ( )t t t0 D = < D = D  . Thus the central minimum
at Δt= 0 will always be deeper than the pair of lensing
minima.

Appendix C
ACF(H; Δt) Is More Reliable Than ACF(F; Δt) for Any

Red Power Spectrum

We have seen in Section 4 that the quasar intrinsic flux
variability generated from a random damped walk (DRW)
follows a red power spectrum given by Equation (32). We
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found that ACF(H; Δt) is more likely to exhibit the lensing
peaks as compared to ACF(F; Δt) in this case due to the
presence of temporal correlation in f (t) up to a few hundred
days realistically. Moreover, we discussed that a larger
correlation scale (τ) leads to a steeper (or redder) Pf(ω) in
Equation (32) and a flatter (expected) ACF( f; Δt)in
Equation (30), which enables ACF(H; Δt) to outperform
ACF(F; Δt) even more profoundly. In this appendix, we argue
that this is not restricted to just the DRW template; for any time
series with a red-type power spectrum, ACF(H; Δt) is more
reliable than ACF(F; Δt) for finding the lensed cases.

Recall that the expected autocorrelation function of a “wide-
sense stationary” time series is given by the Fourier transform
of the power spectrum. Since 〈ACF( f; Δt)〉E is symmetric
around its peak at Δt= 0, the power spectrum should also be
symmetric around ω= 0; Pf(ω) must be a function of |ω| only.
Recall further from Equations (A3) and (A7) that ACF(F; Δt)
can show the lensing peaks only if ACF( f; Δt) decays sharply
from its peak at Δt= 0 and plateaus by ∣ ∣ ∣ ∣t tD D . In other
words, the narrower the (central) peak in ACF( f; Δt), the better
the chance of finding the lensing peaks in ACF(F; Δt). The
same criterion applies to ACF(h; Δt) for the lensing peaks to
appear in ACF(H; Δt). However, for all practical purposes, a
redder (or steeper) power spectrum, Pf(ω), leads to a flatter
〈ACF( f; Δt)〉E which diminishes the probability of finding the
lensing peaks in ACF(F; Δt). A completely general proof of
this statement is challenging, so here we argue using some
concrete examples.

First, consider a Gaussian power spectrum:

( ) ( ) ( )P aexp 2 . C1f
2w wµ -

Its Fourier transform is then also Gaussian with
( ) [ ( )]f t t aACF ; exp 2E

2á D ñ µ -D . Thus, having a large a in
Equation (C1) gives a narrow Pf(ω) but a broad 〈ACF( f; Δt)〉E.

This argument can be made more general; when we scale a
function by t→ at, its Fourier transform gets inversely scaled,

[ ( )]
∣ ∣

( ) ( )g at
a

G aF.T
1

, C2/w=

where G(ω) is the Fourier transform of a generic function g(t).
Thus, if a scaling makes Pf(ω) steeper, 〈ACF( f; Δt)〉E would
be flatter and vice-versa. On the other hand, the derivative
series h(t) always has a bluer power spectrum than that of f (t)
as Ph(ω)= ω2Pf(ω). Thus ACF(h; Δt) falls sharper from its
peak at Δt= 0 as compared to ACF( f; Δt) resulting in more
prominent lensing peaks in ACF(H; Δt).
Let us consider another example of red-type power

spectrum,

( ) ( ∣ ∣) ( )P 1 , 0, C3f 0w w w gµ + >g-

which behaves like a power-law equation for ω? ω0 but
avoids blowing up at ω→ 0 by remaining stable at |ω|= ω0.
As the analytical solution for the Fourier transform of
Equation (C3) does not exist for a generic γ, we carry out a
numerical analysis. We set ω0= 10−6 day−1 so that Pf(ω)
behaves like |ω|−γ in the most part (except ω≈ 0). In the left
panel of Figure 7, we show three such power spectra with
γ= 1.8, 1.0, and 1/2 by the solid blue, orange, and green
curves, respectively. The power spectrum of the derivative,
Ph(ω)= ω2Pf(ω)≈ |ω|2−γ, is shown by the dashed curve with
respective color. The three panels on the right show examples
of the intrinsic light curves, f (t), generated from the power
spectra with the three values of γ in Equation (C3); the dashed
horizontal line in each right panel represents the mean of f (t). It
is evident that as Pf(ω) becomes redder with larger γ, f (t) shows
correlation until a longer timescale (i.e., two nearby points are

Figure 7. The left panel shows the power spectra (Pf(ω) in log scale) given by Equation (C3) for γ = 1.8, 1.0, and 1/2 by the blue, orange,and green solid curves,
respectively. Here we set ω0 = 10−6 so that the power spectra behave like |ω|−γ for the most part. The dashed curves represent the power spectra of the derivative:
Ph(ω) = ω2Pf(ω) ≈ |ω|2−γ. Each of the three panels on the right displays an example of the intrinsic flux f (t) (in linear scale and arbitrary unit) generated from these
power spectra. Note that observational noise is marginal here. The horizontal dashed line in each right panel represents the mean of the light curve.
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more likely to be either above or below the mean unless not
separated sufficiently in time).

Similar to the example illustrated in Figure 4 for the DRW
template, we now simulate 1000 realizations for the intrinsic
flux variability separately for each of these three power spectra;
the corresponding results are arranged in the three columns of
Figure 8. Then for each realization, we construct a double-
lensed system using Equation (2) with 0.86m = and

t 50.0D = days, again we consider the perfect condition with
marginal noise in the data for simplicity. The four rows in
Figure 8 show ACF( f; Δt), ACF(F; Δt), ACF(h; Δt), ACF(H;
Δt), respectively, from the top. Five random realizations have
been shown by the solid curves in each panel. The dashed black
curve and the shaded region in the first and third row (from the
top) panels represent the ensemble average and 68% quantile
around it. From the top-row panels, it is clearly evident that the
redder the power spectrum (i.e., with larger γ) is, the slower the
ACF( f; Δt) decays from unity and the broader the 68%
quantile is. Therefore, a redder power spectrum in turn reduces
the probability of detecting the lensing peaks in the ACF(F;Δt)
as shown in the second row (from the top) panels. Also,
statistically, we tend to get more false-positive cases, e.g., the
blue/red curve in the top-left panel.

On the other hand, for smaller γ (flatter power spectrum), ACF
( f; Δt) tends to decay faster that increases the possibility of

detecting lensed systems through ACF(F;Δt) (indeed, in the limit
γ→ 0, f (t) becomes white noise and ACF( f; Δt)∝ δ(0)).
Nevertheless, the peak prominence is still inferior to that of
ACF(H; Δt) (bottom panels). In contrast, for all the γs, ACF(h;
Δt) decays sharply from its peak at Δt= 0 as evident from the
dashed black curves in the third (from the top) row panels.9 Thus,
ACF(H; Δt) shows the sharp lensing peaks at t tD = D
(marked by the dashed vertical lines) for all the realizations and
for all the power spectra considered. Therefore, Figure 8 (along
with the Figure 4 for DRW process) demonstrates that for any
red-type power spectrum, ACF(H; Δt) is more reliable than
ACF(F; Δt) for finding the lensed systems and the advantage
of using ACF(H; Δt) over ACF(F; Δt) increases for a redder
power spectrum.10 Since the lensing signal in the ò(Δt) curve is
dominated by ACF (H; Δt), the fluctuation statistics
introduced in Bag et al. (2022) is also very successful in all
red power-spectra scenarios.

Figure 8. Comparing ACF( f; Δt), ACF(F; Δt), ACF(h; Δt) and ACF(H; Δt) for five random realizations out of 1000 for three red-type power-law spectra:
( ) ( ∣ ∣)P 1 0w w w= + g- with γ = 1.8 (left panels), 1 (middle panels), and 1/2 (right panels). Here, we set ω0 = 10−6 day−1 so that Pf(ω) behaves like a power law for

most part of it.

9 When γ = 2, Ph(ω) ≈ |ω|2−γ = constant and h(t) becomes white noise.
Hence, for γ < 2, h(t) possess (negative) correlation restricted to only the
adjacent point that explains the local minima in ACF(h; Δt) just next to Δt = 0
on either side. But, this does not affect the detection efficiency of ACF(H; Δt).
10 For completeness, let us discuss if the power spectrum is flat or blue (γ > 0)
although it does not describe QSO light curves well. In these cases, ACF(F; Δt)
shows sharp lensing peaks and so does ACF(H; Δt) since the correlation in h(t)
is limited to the neighboring point(s). Thus both perform well in these scenarios.
This is also illustrated in Appendix C of Bag et al. (2022)
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