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Abstract

Among a number of fundamental issues, the origin of inertial mass remains
one of the major open problems in particle physics. Furthermore, topological
effects related to non perturbative field configurations are poorly understood in
those gauge theories of direct relevance to our physical universe. Motivated by
such issues, this Thesis provides a deeper understanding for the appearance of
topological effects in abelian gauge field theories, also in relation to the existence
of a mass gap for the gauge interactions. These effects are not accounted
for when proceeding through gauge fixings as is customary in the literature.
The original Topological-Physical factorisation put forth in this work enables to
properly identify in topologically massive gauge theories (TMGT) a topological
sector which appears under formal limits within the Lagrangian formulation. Our
factorisation then allows for a straightforward quantisation of TMGT, accounting
for all the topological features inherent to such dynamics. Moreover dual actions
are constructed while preserving the gauge symmetry also in the pr[...]
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Preamble

A harmonic world

From the day Human beings were standing up, they have never ceased seeking their
origins. This ultimate search motivates Human beings to reach towards an under-
standing of the mysteries of Nature and this quest takes on many forms. Harmony of
sounds gave birth to music, that of colors to painting, that of body to theatre and dance,
that of language to eloquence. In the antique world these realms of human creativity
were then all considered on a par with the birth of scientific method. Pythagore de
Samos for instance tried to describe the orbits of celestialbodies in terms of musical
harmony. What distinguishes physics as being an exact science is the powerful mathe-
matical formulation of its models and the test of these models through the experimen-
tal method. With the emergence of modern science the search of musical harmony
as a fundamental paradigm to describe physical phenomena became a chimera. Nev-
ertheless periodic phenomena like pendulum motion or acoustic waves are described
by a very common quadratic frequency term, or quadratic “mass” term. Hence a vo-
cabulary which is very reminiscent of harmony ; words like “harmonic oscillator”
and frequency are to remain in mathematics and physics even though the physical
concepts they evoke turn out to be very different. In particular within the context of
particle physics, the harmonic oscillator, through Fourier modes decomposition, is a
basic building block towards the identification of the physical spectrum of quantum
field theories and their interactions.
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2 Preamble

The concept of field was first introduced by Michael Faraday in[1, 2] in a very intu-
itive way in order to explain the electric and magnetic couplings to point charges and
electric currents: “The point (...) was, whether it was not possible that the vibrations
which in a certain theory are assumed to account for radiation and radiant phenomena
may not occur in the lines of force which connect particles, and consequently masses
of matter together ; a notion which, as far as it is admitted, will dispense with the
ether (...)”. Faraday reasoned by deduction in terms of mental pictures with a constant
appeal to the experimental research he pursued himself. Maxwell managed to justify
Faraday’s intuition mathematically speaking by introducing the notion of electromag-
netic field of which the dynamics is described by what is knownin our contemporary
view as the Maxwell equations [3].

As of today models of particle physics are constructed from quantum gauge field theo-
ries. This implies that to each spacetime event there corresponds a quantum harmonic
oscillator. These harmonic oscillators are all coupled to one another in a manner
consistent with the required Lorentz covariance. A particle then is defined as a rela-
tivistic propagating energy-momentumeigen-quantum of that field. The introduction
of gauge symmetry in (quantum) field theories enables to explain (perturbatively) the
local interactions of particles. Indeed the realisation ofsymmetries requires the ex-
istence of gauge bosons, which mediate the interactions from one spacetime event to
another. However global effects related to topological considerations on the one hand,
and non perturbative field configurations on the other hand, are poorly understood in
those gauge theories of direct relevance to our physical universe.

The context of our research work

Topological aspects are playing a central role in many physical phenomena and the-
oretical models : topological defects and phase transitions, Aharonov-Bohm effect,
fractional statistics, models with compactified extra space dimensions, topological
(quantum) field theories, etc. Indeed these physical effects may not be described
locally and refer thus to global aspects. These global aspects are for instance the
homology of the underlying manifold on which the theory is defined, the homotopy
of the compact submanifold defining holonomies or global boundary conditions, and
likewise in the spaces of field configurations. Hence global variables (or modes of
zero momentum) are “topological invariants” associated tocohomology groups while
physical configurations are sometimes classified accordingto a “topological number”
like the winding number, related to homotopy groups. However although (quantum)
gauge field theories are well understood locally, difficulties may arise as soon as global
aspects, related to low energy configurations, are taken into account. A way of eluding
this issue is by taking the lead from some theories of condensed physics which are in
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some cases non relativistic limits of (gauge) field theoriesat very low energy, where
the sector of global variables resides. Often our research used such techniques as a
laboratory test for dealing with topological aspects of gauge field theories. However,
in the case of interacting theories, the covariant extension of condensed matter the-
ories to field theories is non trivial since then dynamical modes become mixed with
global modes.

A better control of their global sector could enable one to gain more insight into some
of the current open issues related to gauge field theories. A typical example of such
issues is confinement and chiral symmetry breaking in quantum chromodynamics de-
scribing the strong interactions among quarks and gluons. Within this context, this
quantum gauge field theory is well described at high energy through usual perturba-
tion schemes in the coupling constant. However phenomenological evidence concurs
with the expectation that in such a theory, quarks and gluonsare confined into mas-
sive colourless bound states. Unfortunately there does notexist a definitive under-
standing of the actual dynamics responsible for this feature. The problem that arises
in Yang-Mills theories at low energy is that the coupling constant becomes large and
perturbative methods no longer apply. Hence the observed physical field configura-
tions of colourless hadrons are by essence non perturbativesince they reside in the
strong coupling sector of the theory. Even in the case of pureYang-Mills theory, a
rigorous mathematical proof that glueball states of bound gluons develop a mass gap
remains yet to be established. Many techniques have been putforward and developed
in order address this type of issues. A non exhaustive list includes for instance

• Lattice gauge theory
Lattice simulations have shown that Yang-Mills models exhibit confinement.
However these techniques do not offer a genuine understanding of the underly-
ing dynamics (see [4] for a recent review).

• Effective field theories
Let us mention for example the dual superconducting model ofchromoelectric
strings introduced by ’t Hooft. This technique consists in introducing a projec-
tion onto the Cartan subalgebra of the gauge group, this sector being expected to
be the main culprit for confinement at low energy. This kind ofprojection tech-
niques has known developments of interest through the Cho-Faddeev-Niemi
decomposition (see [5, 6] and references therein). Notice the profound connec-
tion of abelian projection with other methods like field correlators or compact
QED (see [7] for a review). Let us also mention the recent introduction of the
spin-charge decomposition in [8, 9].



4 Preamble

• Duality properties of gauge field theories and string theory
A recent avenue of investigations through Seiberg-Witten duality and holo-
graphic QCD, for example.

Whatever their category, all these techniques seem to show that topological aspects
play a crucial part in the understanding of the mechanism of confinement. Since con-
finement arises at low energy where global modes become dominant, a complete un-
derstanding of that mechanism may require first to tame all the global topological
effects involved in the ground state and next to be able to bridge the gap between local
and global aspects as soon as dynamical effects are taken into account.

For example, physical states of the pure Yang-Mills theory in the confining phase are
glueballs described by non perturbative field configurations. The original fields in-
volved in the definition of any gauge theory do not generate physical configurations
since these fields are not gauge invariant degrees of freedom. As a matter of fact,
several approaches to isolate genuine physical degrees of freedom are available. The
gauge fixing procedure effectively removes redundant gaugevariant degrees of free-
dom. However such gauge fixing usually suffers Gribov problems, except in some
exceptional cases. Another approach consists in constructing a factorised dual formu-
lation. Indeed, following a convenient redefinition of the fields gauge variant degrees
of freedom are decoupled from the physical ones. Although locally trivial, the sector
of gauge variant variables may be sensitive to global effects. Therefore, important
topological content may be lost when a gauge fixing procedureis applied, especially
within the context of order in condensed matter physics or confining states in QCD.
The purpose of our research is to show how these non trivial topological effects may
arise and have direct consequences on the physical spectrum.

For the sake of simplicity we have chosen first to illustrate these notions within the
simplest case of theories generating a mass gap where topological effects are of prime
importance: the so-called topologically massive gauge theories. These abelian gauge
theories describe the dynamics of ap-form andd−p form in a spacetime of dimension
d+1 coupled through a topological “BF ”term. This term generates a mass for the
physical degrees of freedom without breaking the abelian gauge invariances.
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This work

This Thesis describes the original research I have pursued these last four years, some
of which having already been partially published, see [10, 11]. Briefly speaking, this
Thesis actually consists in two original issues addressed in careful detail:

• How to properly define the formal limits in the coupling constants of gauge
fields theories through which topological sectors appear ?

• What is the influence of this topological sector on the physical spectrum of the
theory ?

Furthermore in Science, every answer implies new questions. In particular we formu-
late in this Thesis two novel unexpected results of our research

• The most famous mass generation mechanisms preserving the abelian gauge
symmetry are related through an intricate network of dualities, modulo the pres-
ence of topological terms generating possible topologicaleffects.

• Our analysis could open a new avenue towards the construction of generalised
topological defects in any dimension.

Our concluding remarks will summarise how the answers to thefirst two questions led
to our new propositions.





CHAPTER 1

Aspects of abelian gauge field theories

The present introductory Chapter is dedicated to a general overview of abelian gauge
field theories which focusses onto some issues which are addressed in this Thesis.
The simplest example of all such theories, the Maxwell theory, is first extended to
gauge fields of any tensorial rank. Another simple extensionmay also be obtained
by transmuting the coupling constant into a real dynamical scalar field. The Euler-
Lagrange equations of motion then describe electromagnetic fields propagating in a
medium. Finally the most famous examples of local mass generation mechanisms
preserving the abelian gauge symmetry are recalled.

Any gauge field theory possesses spurious degrees of freedomarising from the con-
struction principle of gauge invariance. In abelian gauge field theories, the pure
gauge degrees of freedom are the longitudinal ones which maybe isolated through
Hodge decomposition. The non explicitly covariant Hamiltonian formulation – which
requires a complete analysis of constraints in the case of gauge theories – enables to
select those among the physical degrees of freedom which areactually propagating.
The first order Lagrangian formulation provides the link between the Hamiltonian and
Lagrangian formulations and offers the great advantage of directly involving physical
degrees of freedom. The study of the formal limits of the firstorder actions of abelian
gauge theories is the first step of the programme developed inthis Thesis of which one
of the main purposes is the identification of topological sectors in gauge field theories.

*
* *
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8 Chapter 1. Aspects of abelian gauge field theories

1.1 Maxwell theory

1.1.1 Usual Maxwell theory for the photon field

The familiar Maxwell Lagrangian density describing the dynamics of the photon field
is a gauge theory defined in terms of the fundamental gauge connectionAµ(x),

Ld+1
M = − 1

4 e2
Fµν Fµν − Aµ Jµ , (1.1)

where the Greek indexµ = 0, 1 . . . d refers to the Minkowski spacetime of dimen-
sion (d+1) endowed with metricηµν ≡ diag(1,−1, . . . ,−1). Indeed, for the sake
of simplicity, the choice of the underlying spacetime manifold is restricted to a flat
connected manifold but possibly not homotopically trivial. This Lagrangian density is
expressed in terms of the field strength curvature

Fµν = ∂µAν − ∂νAµ ,

where∂µ is the derivative with respect to the vector coordinatexµ while the matter
currentJµ(x) is conserved :∂µJµ = 0. This latter continuity condition which directly
results from the Maxwell equations,

ηνσ ηµρ ∂ρFµν = e2 Jσ ,

is in fact related the invariance of the theory under the abelianU(1) gauge transforma-
tions. If we considerJµ(x) as the current associated to dynamical matter fields which
couple to the gauge field, this conservation law is an expression of Noether’s theorem.

As a matter of fact, abelian gauge transformations are defined as smooth maps

U : M → U(1) : (t, ~x) → U(t, ~x) = eiα(t,~x) ,

where the parameterα(x) of the transformation depends on spacetime coordinates.
The transformationU(t, ~x) acts on the connectionAµ(x) and its associated field
strength curvatureFµν(x) in the usual way:

A′
µ = U Aµ U−1 + i U ∂µU−1 , F ′

µν = UFµνU−1 . (1.2)

In the case of a non simply connected space(time) manifold, single-valuedness of the
transformationsU(t, ~x) implies thatα(t, ~x) may be decomposed into a periodic and a
non periodic part1. Hence, this general notation covers all the possible gaugetransfor-
mations including the ones which are not connected to the identity transformation and
thus are associated to winding numbers around the non trivial homology cycles of the

1In the case ofM=R × T d, whereT d is the torus of dimensiond, see the discussion in [12].
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space(time) manifold, also referred to as “large gauge transformations”. This group of
transformations is also called the “modular group” since itis defined as the quotient
of the group of gauge transformations by the subgroup of transformations homotopic
to the identity. As far as these latter “small gauge transformations” are concerned, any
transformation of this type may be reached through successive infinitesimal transfor-
mations of the form

A′
µ = Aµ + ∂µα .

Hence the Maxwell Lagrangian density is manifestly invariant under small gauge
transformations since∂µJµ = 0 andF ′

µν = 0.

Given these gauge transformations, a physical variable is avariable defined without
gauge ambiguity, namely a gauge invariant variable. Hence the space of physical
field configurations of any gauge theory is defined as the quotient of the space of
field configurations by the full gauge group, namely the spaceof gauge orbits relating
fields configurations equivalent up to gauge transformations. There exist thus in any
gauge field theory physical degrees of freedom and spurious gauge degrees of freedom
redundant in the description of the system. For what concerns the Maxwell theory,
such a splitting applies to the gauge fieldAµ(x) through the Hodge decomposition
into longitudinal and transverse parts,

Aµ = AL
µ + AT

µ = ∂µθ + ηρσ ∂ρξµσ . (1.3)

When a homotopically non trivial manifold is considered2, a harmonic term must
be added in order to account for global degrees of freedom associated to the period
(winding number) of the field along non homologically trivial circles on the spacetime
manifold. The longitudinal part ofAµ(x) possesses a single degree of freedom while
the remaining degrees of freedom reside in the transverse part. The longitudinal part
carries all the gauge variant character of the gauge fieldAµ(x) since it transforms
under the abelianU(1) gauge transformation according to

θ′ = θ + α .

This spurious degree of freedom is referred to as being “puregauge”. The remaining
gauge invariant transverse degrees of freedom are the genuine physical ones. This de-
composition already shows that the longitudinal part of 2-form fieldsBµν(x) consists
of d degrees of freedom. The conservation law for the current implies thatJµ(x) is a
transverse vector field, hence the gauge invariant content of this field.

Finally, when the time coordinate is privileged, propagating degrees of freedom reduce
to the (d−1) polarisation states of the photon field described in terms of the electric
and magnetic fields. These propagating physical fields are described in section 1.3
within the context of the non explicitly covariant Hamiltonian formulation.

2It has been also assumed that the periodicity properties ofAµ(x) on the spacetime manifold are trivial.
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1.1.2 p-form Maxwell theory in any dimension

Notations

The differential form formalism is introduced in order to keep to compact notations
while introducing a straightforward generalisation of theprevious concepts to fields
of any tensorial rank defined on any connected spacetime manifold M of dimension
(d+1). Let ω(x) belong toΩp(M), namely, the set of real-valuedp-forms onM

ωp =
1

p!
ηµ1···µp

dxµ1 ∧ . . . ∧ dxµp ,

where Greek indices,µ, ν = 0, 1, . . . , d, denote the coordinate indices of the space-
time manifoldM. The Hodge operator∗ mapsp-forms to (d−p+ 1)-forms provided
thatM is endowed with a Lorentzian metric structure (of mostly negative signature)
and is defined as

∗ωp =

√
h

p! (d −p+1)!
ǫµ1···µpν1···νd−p+1

hµ1ρ1 . . . hµpρp ωρ1···ρp
dxν1∧. . .∧dxνd−p+1 ,

whereh is the absolute value of determinant of the metrichµν while ǫµ1···µpν1···νd−p+1

is the totally antisymmetric Levi-Civita symbol such thatǫ0···d = 1. This pseudo-
tensor obeys the following contraction rule:

ǫµ1···µpν1···νd−p+1
ǫµ1···µpρ1···ρd−p+1 = p! δρ1

[ν1
. . . δ

ρd−p+1

νd−p+1]
,

and is related to the totally antisymmetric tensorε throughεµ1···µd+1 =
√

h ǫµ1···µd+1
.

The real-valued inner product onΩp(M) × Ωp(M) is defined as

(ωp, ηp) =

∫

M
ωp ∧ ∗ηp (1.4)

=
1

p!

∫

M

√
h ωµ1···µp

ην1···νp
hµ1ν1 . . . hµpνp dd+1x .

from the definition of the wedge product∧ and Hodge operator. The exterior deriva-
tive operator maps ap-form ωp to a (p+1)-formdωp.

d : Ωp(M) → Ωp+1(M) : ωp → 1

p!
∂µ1ωµ2···µp+1dxµ1 ∧ . . . ∧ dxµp+1 .

From this definition, the following operators are constructed

d† : Ωp(M) → Ωp−1(M) : ωp → −σp (d−p) ∗ d ∗ ωp ,

△ : Ωp(M) → Ωp(M) : ωp → (dd† + d†d)ωp ,

where we have definedσ = (−1), and correspond to the coderivative and Laplacian
operators, respectively.
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The generalised formulation

The p-form Maxwell theory is obtained through the substitution of the electromag-
netic fieldAµ(x) in the usual formulation of the Maxwell theory by ap-form field of
spacetime componentsAµ1···µp

(x), a connection for a source of elementary extended
objects of dimension (p−1), see [13, 14]. Hence, given a real valuedp-form field A

in Ωp(M), this generalised Maxwell action is of the form

SMax[A] =
σp

2 e2
(F, F ) − (A, J) . (1.5)

Given a choice of units such thatc = 1, the physical dimensions ofAµ1...µp
(x) are

L−p, whereas the coupling constante2 is of physical dimensionE−1 Ld−4. According
to our conventions, the components of the field strength tensor F =dA read

Fµ1···µp+1 =
1

p!
∂[µ1

Aµ2···µp+1] , (1.6)

where square brackets on indices denote total antisymmetrisation.

Unfortunately, it is no longer possible to express abelian gauge transformations forp-
form gauge fields like in (1.2) in terms of univalued scalar phase factors. In that case
such a generalisation is possible if each spacetime event isassociated to a coordina-
tised manifoldxµ(σ̃), with σ̃≡(σ1, . . . , σp−1), embedded in the spacetime manifold.
Hence the 1-form connectionAc[x(σ̃)] is defined on the principal bundle of extended
objects of dimension (p−1) spanned byxµ(σ̃). The local character ofAc[x(σ̃)] re-
quires that this connection is related to thep-form fieldA(x) in (1.5) through

Ac[x(σ̃)] dτ =
1

p!

∫

x(σ̃)

Aµ1···µp
dxµ1 ∧ . . . ∧ dxµp ,

where the integral covers the manifoldxµ(σ̃). HenceAc[x(σ̃)] transforms like any
(abelian) connection3 according to

(Ac)′ = i g dg−1 , with g = exp

(

−i

∫

x(σ̃)

α

)

, (1.7)

whered is the appropriate exterior derivative defined on the principal bundle whereas
α is a (p−1)-form. It may be then proved that abelian gauge transformations act on
thep-form fieldA(x) according to

A′ = A + α̃ . (1.8)

3It is worth to note however that this generalisation is compatible with spacetime locality only if the
gauge group isU(1), see [15].
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Often in the literature, thep-form α̃(x) is required to be exact, namelỹα=dα. How-
ever, if we relax now this condition and considerα̃(x) as being a closed form (dα̃=0),
the cohomology structure of the spacetime manifold offers an elegant generalisation
of the concepts of small and large gauge transformations forp-form gauge fields.

In the case of a homologically trivial manifold, any closed form is also exact. In the
case of a homologically non trivial manifold, according to the Hodge theorem any
closed formα̃(x) may uniquely be decomposed (for a given metric structure) into the
sum of an exact and a harmonic form4, see [16] for a review. The exact part ofα̃

defines small gauge transformations whereas the modular group is the quotient of the
full gauge group by the subgroup of small gauge transformations, namely essentially
the set of large gauge transformations. These transformations cannot be built from a
succession of infinitesimal transformations. They correspond to the cohomologically5

non trivial, namely the harmonic components ofα̃(x).

The spacetime components of thep-form currentJ(x) may be equally written in terms
of a pseudo-tensor or a tensor with covariant Lorentz indices. These two notations are
related through

Jµ1...µp
=

σp

√
h

hµ1ν1 . . . hµpνp
Jν1···νp .

The invariance of the action (1.5) under the gauge transformation defined in (1.8)
requires the conservation of this current

∗d ∗ J = 0 ⇔ ∂µ1J
µ1···µp = 0 .

This condition also follows from the equation of motion

∗d ∗ F = σp e2 J , (1.9)

which is the generalisation to gauge fields of any tensorial rank of the Maxwell equa-
tions. Here we consider the current in its generic form and donot associate it neither to
the history of any extended charged object nor to dynamical matter fields of extended
objects. In such specific cases, the equations of motion should be conveniently com-
pleted. Nevertheless, the Maxwell equation (1.9) is alwaysrecovered if we assume a
minimal coupling to thep-form gauge field.

Finally, everyp-form field defined on the spacetime manifold of dimension(d + 1)

accounts forCd+1
p degrees of freedom at any given space point, with

Cd+1
p =

(d + 1)!

p! (d − p + 1)!
.

4A p-form ωp is said harmonic if△ωp = 0.
5Thepth de Rham cohomology group, denotedHp(Σ, R), characterises the topology of the manifold

and is associated to global variables of non zero periods around homology cycles.
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Moreover by virtue of the Hodge theorem [16], anyp-form field A(x) may uniquely
be decomposed into the sum of an exact, a co-exact and a harmonic form with respect
to the inner product specified in (1.4),

A = Ae + Ac + Ah . (1.10)

Hence such a decomposition amounts to a split of the fields into a longitudinal part, a
transverse part and a “global” part. Starting from the 1-form gauge field, an iterative
process enables to count for eachp-form field,p=1, . . . d, the number of “pure gauge”
longitudinal degrees of freedom

Np
L =

p−1
∑

i=0

σp−i+1 (d + 1)!

i! (d − i + 1)!
= Cd

p−1 ,

and likewise the number of physical transverse degrees of freedomNp
T =Cd

p . We will
consider later the global degrees of freedom sensitive to large gauge transformations
on homotopically non trivial manifolds.

1.2 Gauge invariant mass generation mechanisms

Often observable massive vector fields arise in diverse phenomena, for example in
particle and condensed matter physics. However it is also well-known that the pres-
ence of a “direct” mass term like the Proca term spoils gauge invariance of field theo-
ries, and consequently, their renormalisability in a quantum context. The compromise
found between these two antinomic requirements is the spontaneous breaking of the
local symmetry where the action is invariant under a given gauge symmetry but this
symmetry is hidden to the observer since not manifest in the physical spectrum. The
secret of this mechanism relies on the presence of complex scalar field(s) of which the
condensation in the non vanishing vacuum expectation value, renders the gauge fields
massive. The Brout-Englert-Higgs (BEH) mechanism was firstdeveloped within the
context of condensed matter physics when a physical system undergoes a phase tran-
sition. Indeed, phase transitions are often associated with spontaneous symmetry
breaking, for example in the BCS theory of superconductivity where condensation
of Cooper pairs arises below the critical temperature.

Furthermore, the BEH mechanism provides masses for the weakly interacting gauge
vector bosons in the Standard Model, while remaining consistent with the renormal-
isability and unitarity constraints. However, the predicted Higgs boson has yet to be
discovered. Within this context, the quest for alternativemass generation mechanisms
is quite fascinating. The two other mass generation mechanisms which compete with
the BEH mechanism in the sense that they are local and preserve the gauge symmetry
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are the Stueckelberg and the topological mass generation mechanisms. However these
theories do not offer presently a serious alternative to theelectroweak model since they
do not admit a satisfying non abelian generalisation (in thesense of the Occam’s razor
and renormalisability) while their coupling to fermions remains mysterious.

1.2.1 Brout-Englert-Higgs mechanism

The basic concepts of the celebrated BEH mechanism are presently reviewed within
the context of the Maxwell-Higgs model. A more advanced analysis may be found in
[17] or any other book dedicated to gauge field theories. The Maxwell-Higgs model
is a model of scalar electrodynamics of which the Lagrangiandensity reads

LAH = − 1

4 e2
FµνFµν + |Dµφ|2 − V

(
2 |φ|2

)
. (1.11)

The scalar field couples to the gauge connection through the covariant derivative,

Dµφ = ∂µφ − i Aµ φ ,

which by construction makes the Maxwell-Higgs model invariant under the abelian
gauge symmetry

A′
µ = Aµ + ∂µα , φ′ = eiα φ , D′

µφ′ = eiα Dµφ . (1.12)

This way of coupling aU(1) complex scalar field to a gauge field is called the “mini-
mal coupling”. The then associated current reads

Jµ = i (φ∗ Dµφ − φ (Dµφ)∗) , (1.13)

and is conserved by virtue of Noether’s theorem.

The usual self-interacting quartic potential for the scalar field in the Maxwell-Higgs
model reads

V
(
2 |φ|2

)
= µ̃2 |φ|2 + λ |φ|4 ,

where µ̃2 < 0 and λ > 0 in order to recover the familiar “Mexican hat-shaped”
potential. Therefore the complex scalar fieldφ(x) possesses a non vanishing vacuum
expectation value (vev) given by

〈φ〉 =
v√
2

, v =

√

−µ̃2

λ
. (1.14)

Any complex scalar field may be factorised into a physical part and a pure gauge part
which correspond, respectively, to the modulus and the phase in the polar parametri-
sation. Let us then parametriseφ(x) in terms of two real scalar fields, a physical field
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̺(x) and a gauge fieldθ(x) which transforms asθ′ = θ +α under the abelian gauge
transformation introduced in (1.12). The perturbation of the physical degree of free-
dom carried by̺ (x) will be not considered in the vicinity of the metastable vacuum
atφ(x) = 0 but around any particular configuration minimising the energy,

φ(x) =
1√
2

̺(x) eiθ(x) =
1√
2

(˜̺(x) + v) eiθ(x) , (1.15)

hence the introduction of the physical Higgs field˜̺(x) with 〈 ˜̺〉=0 whereas〈̺〉=v.

According to this representation, the Lagrangian density (1.11) takes now the form

L = − 1

4 e2
Fµν Fµν +

1

2
|∂µ ˜̺− i ( ˜̺+ v) (Aµ − ∂µθ)|2−V

(
(˜̺+ v)2

)
, (1.16)

while the gauge invariant current reads

Jµ = ̺2 (∂µθ − Aµ) . (1.17)

At this stage, what corresponds to the massless Goldstone bosonθ(x) in the sponta-
neous breaking of global symmetries may be gauged away, as suggested by the form
of the conserved current (1.17). Hence under this “unitary gauge” choice, the BEH
mechanism of spontaneous breaking of a local symmetry implies that the phase of the
complex scalar field is absorbed as a single longitudinal degree of freedom for the
gauge fieldAµ(x), making the latter field massive. A glance at the above Lagrangian
density reveals that the gauge field then acquires a massmA = e2 v2 while the scalar
Higgs field ˜̺(x) is a physical mode of massm̺ = −µ2.

The BEH mechanism, presently introduced in a textbook manner, will be dealt with
in a slightly different way in Section 1.4 in terms of the physical propagating elec-
tromagnetic fields. The difficulties, which inevitably arise when such techniques of
isolating physical variables are used, will be emphasised as a first introduction to the
kind of issues which will be tackled in this Thesis.

1.2.2 Stueckelberg mechanism

In the Maxwell-Higgs model, the London limit is the limit in which the mass of the
Higgs field becomes infinite while the mass of the gauge boson remains finite. As
a matter of fact, within this limit the dynamics of the Higgs field is in some sense
frozen to its vacuum expectation value. Hence, in terms of the parameters of the usual
quadratic “Mexican hat-shaped” potential, the London limit reads

λ → ∞ , µ2 → ∞ , such thatv =

√

−µ̃2

λ
be finite.
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Applying now this limit to the Lagrangian density (1.16),

L1-Stu = − 1

4 e2
Fµν Fµν +

v2

2
(Aµ − ∂µθ)

2
,

the action resulting from the decoupling of the massive Higgs field is nothing other
than the Stueckelberg action for a 1-form gauge field (see [18] and references therein).
Within this limit, the gauge invariant currentJµ(x) in (1.17) which may be then asso-
ciated to the Stueckelberg mass term is interpreted as the transverse part of the gauge
field Aµ(x) whereas̃θµ =∂µθ(x) is associated to its longitudinal part.

In contradistinction to the Maxwell-Higgs model, the Stueckelberg action may be
readily extended to anyp-form fieldA(x) in Ωp(M)

Sp-Stu[A, θ] =
σp

2 e2
(F, F ) − σp v2

2

(

A − θ̃
)2

.

In the above action,̃θ(x) is a closedp-form of which the transformation under the
abelian gauge symmetry

θ̃′ = θ̃ + α

compensates for that of thep-form gauge fieldA(x) defined in (1.8) is order to pre-
serve the gauge invariance of the mass term. In the present Chapter, we do not allow
θ̃(x) andA(x) to possess a harmonic component, henceθ̃ = dθ. Thus thep-form
α̃ = dα only parametrises small gauge transformations. Notice that a more general
action for the Stueckelberg mechanism will be introduced inChapter 4 in terms of
a real arbitrary parameterξ. Very interesting aspects like Stueckelberg extensions of
the Standard Model through a mass term for the photon or for the Z ′ boson (see for
example [18, 19]) are outside the scope of this Thesis.

1.2.3 Topological mass generation

Topological field theories

Topological field theories (TFT, see [20] for a review) have played an important role
in a wide range of fields in mathematics and physics ever sincethey were first con-
structed by A. S. Schwarz [21, 22] and E. Witten [23]. These theories actually possess
so large a gauge freedom that their physical, namely their gauge invariant observ-
ables solely depend on the topology (more precisely, the diffeomorphism equivalence
class) of the underlying manifold. Another related featureof TFT is the absence of
propagating physical degrees of freedom. Upon quantisation, these specific proper-
ties survive, possibly modulo some global aspects related to quantum anomalies. As



1.2. Gauge invariant mass generation mechanisms 17

a consequence, topological quantum field theories (TQFT) often have a finite dimen-
sional Hilbert space and are quite generally solvable, eventhough their formulation
requires an infinite number of degrees of freedom. There exists a famous classification
scheme for TQFT, according to whether they are of the Schwarzor Witten type [20].

As a class of great interest, TFT of the Schwarz type have a classical action which is
explicitly independent of any metric structure on the underlying manifold and does not
reduce to a surface term. The present Subsection focuses on all such theories defined
by a sequence of abelianBF theories for manifoldsM of any dimension(d+1)

[21, 22, 24, 25]. Given ap-form field A(x) in Ωp(M) and a(d−p)-form field B(x)

in Ωd−p(M), the general TFT action of interest is of the form

SB∧F [A, B] = κ

∫

M
(1 − ξ)F ∧ B − σp ξ A ∧ H, (1.18)

the constantκ being some real normalisation parameter of which the properties are
specified throughout the discussion hereafter. This actionis invariant under two inde-
pendent classes of finite abelian gauge transformations acting separately in either the
A- or B-sector,

A′ = A + α, B′ = B + β, (1.19)

whereα andβ are closedp- and(d−p)-forms onM, respectively. The derived quan-
tities F = dA andH = dB are the gauge invariant field strengths associated toA(x)

andB(x). The arbitrary real variableξ we have introduced in order to parametrise
any possible surface term is physically irrelevant for an appropriate choice of bound-
ary conditions onM. Given the definition of the wedge product, the integrand in
(1.18) is a (d+1)-form, the integration of which overM does not require a metric.

Hence the Lagrangian density forBF theories reads, for example in 3+1 dimensions,

L4
BF = ξ

κ

6
ǫµνρσ Aµ Hνρσ + (1 − ξ)

κ

4
ǫµνρσFµν Bρσ , (1.20)

in terms of two fieldsAµ(x) andBµν(x) on which gauge transformations (1.19) act
according to

A′
µ = Aµ + ∂µΛ(α), B′

µν = Bµν + ∂[µ Λ̃
(β)
ν] .

Let us recall that this notation does not cover possible large gauge transformations.

In the particular situation when the number of space dimensionsd is even and such
thatd = 2p with p itself being odd, in addition to theBF theories defined by (1.18)
there exist TFT of the Schwarz type involving only the singlep-form field A(x) with
the following action6,

SA∧F [A] = κ

∫

M
A ∧ F. (1.21)

6If p is even withd = 2p, this action reduces to a surface term.
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These theories are said to be of theAF type throughout this Thesis. They include the
well-known (abelian) Chern-Simons theory in 2+1 dimensions [21, 22, 26] of which
the Lagrangian density reads

LCS =
1

2
κ ǫµνρ ∂µAν Aρ , (1.22)

in terms of the spacetime componentsAµ(x) of the 1-form fieldA(x).

This sequence of TFT of the Schwarz type formulated in any dimension, and re-
lated to one another through dimensional reduction [27], possesses some fascinating
properties. First, the space of gauge inequivalent classical solutions is isomorphic to
Hp(M) × Hd−p(M), Hp(M) being thepth cohomology group of the manifoldM.
Second, the types of topological terms contributing to these actions define generalisa-
tions to arbitrary dimensions of ordinary two-dimensionalanyons. Namely, non local
holonomy effects give rise to exotic statistics for the extended objects which may be
coupled to the higher order tensor fields [28, 29, 30]. Third,these types of quan-
tum field theories display profound connections between mathematics and physics for
what concerns topological properties related, say, to the motion group, the Ray-Singer
torsion and link theory. These connections appear within the canonical quantisation7

of these systems [31, 32].

Action for topologically massive gauge theories

Analogies between theoretical particle physics and condensed matter may again be
fruitful. For example, Chern-Simons terms account for fermionic collective phenom-
ena, such as in the quantum Hall effect. Generally speaking the statistical transmu-
tation of extended objects in higher dimensions may rely on topological couplings of
theBF type. From a relativistic point of view, (quantum) field theories in any space-
time dimension are a general framework of potential relevance to high energy physics
as well as mathematical investigations for their own sake. Within this context such
topologicalBF terms define couplings between two independent tensor fieldswhose
dynamics is characterised by the action

STMGT[A, B] =

∫

M

1

2 e2
σp F ∧ ∗F +

1

2 g2
σd−p H ∧ ∗H

+κ

∫

M
(1 − ξ)F ∧ B − σp ξ A ∧ H , (1.23)

provided the spacetime manifoldM is endowed now with a Lorentzian metric struc-
ture allowing for the introduction of the Hodge∗ operator. The parameterse andg are

7WhenM=R×Σ, the physical Hilbert space is the set of square integrable functions onHp(Σ) [24].
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arbitrary real constants corresponding to coupling constants when matter fields cou-
pled toA andB are introduced. Without loss of generality for the present analysis,
these parameters are assumed to be strictly positive. In 3+1dimensions, one recovers
the famous Cremmer-Scherk action [33, 34, 35] and in 2+1 dimensions, the doubled
Chern-Simons theory [36]. Given the total action (1.23) written out in component
form, the Cremmer-Scherk Lagrangian density thus reads

L4
TMG = − 1

4 e2
Fµν Fµν +

1

12 g2
Hµνρ Hµνρ (1.24)

+ κ ǫµνρσ

(
ξ

6
Aµ Hνρσ +

1 − ξ

4
Fµν Bρσ

)

.

It is well known that the topological terms generate a mass gap,

MBF = ~ µ = ~ κ e g ,

for the dynamical tensor fields without breaking gauge invariance. Unfortunately,
the topological mass generation mechanism of theBF -type is not generalisable to a
renormalisable non abelian gauge theory, unless further fields are introduced (see [37]
and references therein).

In the particular circumstance thatd = 2p with p odd, a topological term of theAF

type (1.21) generates also a mass gap,

MAF = ~ µ = ~ κ e2 ,

even though the action involves a singlep-form fieldA,

STMGT[A] =

∫

M

−1

2e2
F ∧ ∗F +

κ

2
A ∧ F. (1.25)

In 2+1 dimensions, this action defines the famous Maxwell-Chern-Simons theory [38,
39, 40] of which the Lagrangian density is of the form

LMCS = − 1

4 e2
Fµν Fµν +

1

4
κ ǫµνρ Fµν Aρ , (1.26)

when expressed in terms of the spacetime components of the 1-form field. As a matter
of fact, nothing forbids to add this topological term to the Maxwell theory since this
term preserves invariance under abelian gauge transformations8 and does not require
the introduction of extra degrees of freedom. The Chern-Simons term breaks the
invariance under time reversal(x0, ~x ) → (−x0, ~x ) and parity in 2+1 dimensions,
(x0, x1, x2) → (x0,−x1, x2) as is the case for the topologicalθ-term in Maxwell or
Yang-Mills theories in3+1 dimensions. But contrary to theθ-term, the Chern-Simons
term is not a pure derivative and generates a “topological” mass for the gauge field.

8At least for what concerns small gauge transformations. Considering the invariance under large gauge
transformations implies further restriction forκ as will be discussed hereafter.
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1.3 Hamiltonian formulation and propagating variables

We have expressed so far gauge field theories within the Lagrangian formulation
which is explicitly Lorentz covariant. Let us single out nowthe time coordinate in
order to highlight the dynamical evolution of the system throughout time. The dy-
namical system may be thus expressed in terms of the non explicitly Lorentz covariant
Hamiltonian operator which generates time translations and is therefore associated to
the (conserved) energy. The Hamiltonian formulation thus enables to identify among
physical variables those which are actual propagating dynamical variables. In order to
define this formulation, the spacetime manifoldM is now taken to have the topology
of M=R×Σ, whereΣ is a compact orientabled-dimensional Riemannian space man-
ifold without boundary. Adopting then synchronous coordinates onM, the spacetime
metric takes the form

ds2 = dt2 − h̃ij dxi dxj , (1.27)

whereh̃ij(~x ) is the positive definite Riemannian metric onΣ. Here Latin indices,
i = 1, . . . , d, label the space directions inΣ while 0 denotes the time component inR.

The Hamiltonian formulation is defined in terms of a canonical HamiltonianH0 given
by the Legendre transformation of its associated Lagrangian and dependent on phase
space variables. This phase space is endowed with a geometric symplectic structure.
The built-in gauge invariance of the Lagrangian of any gaugefield theory implies that
the configuration space within the Lagrangian formulation is not in one-to-one cor-
respondence with the phase space within the Hamiltonian one9, hence the existence
of constraints. Therefore gauge field theories require a careful treatment which is
known as the “analysis of constraints” in order to identify their Hamiltonian formula-
tion [41, 42]. This algorithm will be discussed presently ina particular case.

1.3.1 Maxwell-Chern-Simons theory by way of example

The Maxwell-Chern-Simons theory (1.26) introduced in the previous Section as a
particular case of topological mass generation mechanism is chosen to illustrate by
way of example the algorithm of analysis of constraints in gauge field theories. This
natural extension of the Maxwell theory is not chosen in a haphazard way. The great
advantage in considering such an extension is that the pure Maxwell theory may be
recovered in each step of the Hamiltonian analysis of constraints by simply setting
κ = 0. Moreover, the Hamiltonian formulation of the MCS theory will be useful in
Chapter 2 in order to introduce to our factorisation of degrees of freedom.

9Or equivalently, the Hessian matrix of the Lagrangian describing singular systems has zero modes.



1.3. Hamiltonian formulation and propagating variables 21

Phase space and symplectic structure

The Lagrangian formulation of the MCS theory consists in theLagrangian density
(1.26) defined in terms of the configuration space variablesAµ(t, ~x ) and their gen-
eralised velocities∂0Aµ(t, ~x ). These latter variables will be henceforth denoted as
Ȧµ(t, ~x ), where a dot stands for differentiation with respect to the time coordinate.
The phase space of the associated Hamiltonian formulation is spanned by the field
variablesAµ(t, ~x ) and their conjugate momentaPµ(t, ~x ) and is endowed with a sym-
plectic structure which is related to the following canonical Poisson bracket algebra

{
Ai(t, ~x ) , P j(t, ~y)

}
= δj

i δ2(~x − ~y ) , (1.28)
{
A0(t, ~x ) , P 0(t, ~y)

}
= δ2(~x − ~y ) .

These Poisson brackets are to be evaluated at equal time. According to the definition
of the Legendre transformation, the conjugate momenta are defined as functions of
configuration space variables through the following relations

P i(t, ~x ) =
δLMCS

[

A, Ȧ
]

δȦi(t, ~x )
=

1

e2
δij F0j(t, ~x ) +

κ

2
ǫij Aj(t, ~x ) , (1.29)

P 0(t, ~x ) =
δLMCS

[

A, Ȧ
]

δȦ0(t, ~x )
= 0 . (1.30)

In the case of the Maxwell-Chern-Simons theory it appears clearly through the defini-
tion of the time component of the conjugate momentum (1.30) that not all conjugate
momentaP 0(t, ~x ) andP i(t, ~x ) are locally independent as functions of the config-
uration space variableṡA0(t, ~x ) and Ȧi(t, ~x ), implying the existence of a primary
constraintP 0 ≈ 0 like in the pure Maxwell theory.

Hamiltonian and constraints

Having defined the phase space along with its symplectic structure, the dynamics of
the system is generated through the Poisson brackets from the primary Hamiltonian.
This primary Hamiltonian consists in the extension of the canonical Hamiltonian, re-
sulting from the Legendre transformation, where the primary constraints have been
included through their associated Lagrange multipliers. However the primary con-
straints are required to be preserved under time evolution and thus their total time
derivative must weakly vanish. In the case of the MCS theory this condition generates
a secondary constraint,

Ṗ 0 =
{
P 0, H

}
≈ 0 ⇒ ϕ = ∂iP

i +
κ

2
ǫij ∂iAj ≈ 0 , (1.31)
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which is nothing other than the specific Gauss Law associatedto the MCS theory. The
time consistency condition of this last constraint is trivially satisfied, halting here the
constraints algorithm.

The primary and secondary constraints for the MCS theory define a complete set of
independent first-class constraints since their Poisson brackets are weakly vanishing
and since they are linearly independent. From their definition, it may be easily shown
that first-class constraints generate small gauge transformations. In the case of the
MCS theory, given any linear combination of the first class-constraint, for example,

ζα(t) =

∫

Σ

d2xα(t, ~x)ϕ(t, ~x) ,

the infinitesimal action of such a combinationζα(t) on the phase space degrees of
freedomAi(t, ~x ) andP i(t, ~x ),

δαAi = −{Ai(t, ~x ), ζα(t)} = ∂iα ,

δαP i = −
{
P i(t, ~x ), ζα(t)

}
=

κ

2
ǫij ∂jα , (1.32)

corresponds to those gauge transformations in (1.2) which are connected to the identity
transformation.

This discussion has showed that the Legendre transformation, which relates the La-
grangian formulation of gauge theories to their Hamiltonian formulation, is well de-
fined modulo a complete analysis of constraints. For furtherdetails, see [41, 42, 43].
For what concerns the MCS theory, its total Hamiltonian density reads

H =
e2

2

(

P i − κ

2
ǫij Aj

)2

+
1

4 e2
(Fij)

2 (1.33)

− uP 0 + (u′ − A0) ∂i

(

P i +
κ

2
ǫij Aj

)

+ ∂i(A0 P i) ,

where the last term is a total divergence. The Lagrange multipliersu andu′ are ar-
bitrary functions of time and phase space variables. The Hamiltonian density for the
pure Maxwell theory is obtained by settingκ=0 without any other redefinition.

1.3.2 Propagating variables

Fundamental Hamiltonian formulation of MCS theory

The non explicitly covariant first order action in field theories is defined as an action
of which the associated Lagrangian density is linear in timederivative of the fields.
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Any gauge field theory described in this Thesis may be formulated as a non explicitly
covariant first order action, which is obtained by defining the Lagrangian density as
the Legendre transformation of the total Hamiltonian density, thus including all the
first class constraints. In the case of the MCS theory this action S[A, P ; u, u′] reads

S =

∫

dt d2x

{

Ȧ0 P 0 + ∂0Ai P i − e2

2

(

P i − κ

2
ǫij Aj

)2

− 1

4 e2
(Fij)

2

+u P 0 − (u′ − A0) ∂i

(

P i +
κ

2
ǫij Aj

)

− ∂i(A0 P i)
}

(1.34)

The constraintϕ(t, ~x ) ≈ 0 generates the physically relevant small gauge transforma-
tions, see (1.31). However, we did not comment about the second constraintP 0 ≈ 0.
Actually, this constraint generates symmetries related tothe presence of Lagrange
multipliers treated as dynamical degrees of freedom and therefore is without real phys-
ical significance. The presence of such a constraint is a signthat some physical vari-
ables within the Lagrangian formulation are non propagating, namely decouple from
the system within the Hamiltonian formulation where time isprivileged. Then an el-
egant reduction process of these physically irrelevant degrees of freedom has been
introduced in [41] in terms of the removal of “layers” in order to move toward the
innermost core of the “nested” structure of Hamiltonian formulations.

In the first order formulation of the MCS theory defined in (1.34), the Hamiltonian
nested structure appears clearly. Indeed, this expressiondoes not yet refer to a fun-
damental Hamiltonian described with the minimum of physically relevant degrees of
freedom. Actually, the phase space variableA0(t, ~x ) and its conjugate momentum
P 0(t, ~x ) may be removed from the first order action through the simple redefinition
ũ′ = A0−u′ and by settingu = Ȧ0. Provided that we keep in mind thatA0(t) is
understood as a Lagrange multiplier, we may defineũ′ = A0. This extra layer being
removed, the first order action is of the form

S =

∫

dt d2x
{
∂0Ai P i −HMCS

}
. (1.35)

The fundamental Hamiltonian density for the MCS theory reads up to a surface term

HMCS =
e2

2

(

P i − κ

2
ǫij Aj

)2

+
1

4 e2
(Fij)

2
+ A0 ∂i

(

P i +
κ

2
ǫij Aj

)

+ ST.

HereA0(t) is no longer a degree of freedom of the system but rather playsthe role of
a Lagrange multiplier enforcing Gauss’ law.

The great advantage offered by the fundamental first order formulation is the explicit
introduction of the conjugate momenta within the Lagrangian formulation. These
conjugate momenta are related to the variables of the (extended) configuration space
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through second-class constraints, without affecting the gauge symmetries, thus the
first-class constraints, of the theory. Within the first order formulation of the MCS
theory (1.35), for instance, the gauge invariant combination

1

e2
Ei

el = P i − κ

2
ǫij Aj , (1.36)

turns out to be an auxiliary field reducible through Gaussianintegration. Within the
Hamiltonian formulation, any “Gaussian variable” is readily reducible like a second-
class constraint, which is solved as a strict equality, provided Dirac brackets are intro-
duced for the remaining degrees of freedom. The second-class constraint reads

P i − κ

2
ǫij Aj =

1

e2
F0i ,

and the physical variablesEi
el(t, ~x ) are thus readily identified to be the electric field.

Furthermore, the original relation between the configuration space and phase space
variables, see (1.29), is recovered. In other words, there exists a one-to-one correspon-
dence between non explicitly covariant first order actions and Hamiltonian structures,
provided that the Lagrange multipliers associated to the first-class constraints are not
considered as dynamical degrees of freedom.

Propagating variables in theories of the Maxwell-type

The non explicitly covariant first order action for the pure Maxwell theory is simply
obtained by settingκ=0 without any other redefinition,

S =

∫

dt d2x

{
1

e2
Ȧi Ei

el −HM

}

. (1.37)

The fundamental Hamiltonian density reads in terms of the electric vector field

HM =
1

2 e2
(Ei

el)
2 +

1

4 e2
(Fij)

2 − A0

e2
∂iE

i
el + ST,

with the formulation of the canonical Poisson Brackets and gauge invariance remain-
ing unaltered. Notice that the number of spacetime dimensions does not appear ex-
plicitly in the above expression which remains the same whatever this number. In 3+1
dimensions, from the three physical degrees of freedom within the Lagrangian formu-
lation, there remain only two actual propagating degrees offreedom. In the Maxwell
theory they correspond to the polarisation states of the massless photon field.

The Maxwell-Chern-Simons and pure Maxwell theories share acommon formulation
of their canonical Hamiltonian in terms of the electric field. However the presence
of the Chern-Simons topological term modifies Gauss’ Law as well as the symplectic
structure of the theory since the electric field components no longer commutes. Hence
this CS term generates a mass gap of topological origin.
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1.4 Physical formulation of gauge field theories

1.4.1 First order actions and Maxwell theories

Maxwell theory in 3+1 dimensions

A manifest realisation of the gauge invariance principle implies that the original fields
used to define any gauge theory do not generate physical configurations since these
fields are not gauge invariant degrees of freedom. In fact a decomposition into pure
gauge longitudinal and physical transverse degrees of freedom is feasible within the
Lagrangian formulation, see (1.3), but manifest spatial locality is lost when we pro-
ceed to such a change of variables,

AT
µ =

(

ηµν − ∂µ∂ν

∂2

)

ηνρ Aρ , AL
µ =

∂µ∂ν

∂2
ηνρ Aρ .

The other way to isolate physical degrees of freedom is to fix the gauge, for instance,
the covariant Lorentz gauge∂µAµ =0. The purpose of this gauge fixing procedure in
Maxwell theory is to remove the longitudinal part carrying the symmetry of the gauge
connection. Within the Hamiltonian formulation, it is possible to decompose the clas-
sical phase space into a non propagating temporal part, a pure gauge longitudinal part
and a physical transverse part. However, this decomposition suffers the same prob-
lem of locality as its covariant counterpart. Hence the introduction of the temporal
and Coulomb gauges, respectivelyA0 = 0 and∂iAi = 0, in order to isolate the two
transverse propagating degrees of freedom of the photon. However such gauge fixings
usually suffer Gribov problems. Furthermore as will be highlighted in this Thesis, a
careless gauge fixing procedure often implies that topological content is lost, as shown
by the counter-examples to the Fradkin-Vilkovisky theorem[44].

However, without resorting to any gauge fixing procedure, physical variables are al-
ready manifest within the first order Lagrangian formulation. The explicitly covariant
first order Lagrangian formulation for the Maxwell theory in3+1 dimensions simply
results from the Lorentz covariant extension of the first order action defined in (1.37),

Lf.o.
Max = −e2

4
Eµν Eµν +

1

2
ǫµνρσ ∂µAν Eρσ − Aµ Jµ , (1.38)

where a conserved source currentJµ(x) of matter fields has been added. By covari-
ant extension is meant the extension of the electric field to atensor with spacetime
covariant indicesEµν(x). This expression may be also obtained from the original
Lagrangian formulation (1.1) after the introduction of theGaussian auxiliary field
Eµν(x).
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Two Euler-Lagrange equations may be extracted from the above first order formula-
tion. The first relates the gauge invariant fieldEµν(x) to the current

ǫµνρσ ∂νEρσ = 2 Jµ , (1.39)

while the second corresponds to the equation relating the physical variableEµν(x) to
the original gauge fieldAµ(x) through Gaussian integration

Eαβ =
1

e2
ηαµ ηβν ǫµνρσ ∂ρAσ . (1.40)

Within the Hamiltonian formulation this latter equation may be divided into two
second-class constraints when space and time indices are split. The first represents
the relation between the variablesAi(x) and their conjugate momenta

Eij =
1

e2
δik δjl ǫklm Fom ⇒ Ei

el =
e2

2
ǫijk Eij

which are, as already seen, related to the electric vector field. The second second-
class constraint relates the field strength tensorFij(x) to the thus physical vector field
Bi

mg(x)

E0i = − 1

2 e2
δij ǫjkl Fkl =

1

e2
δij Bj

mg

which is known to be the magnetic field. The well-known Maxwell equations,

~∇ · ~Eel = e2 J0 , ~∇× ~Eel = −∂t
~Bmg ,

~∇ · ~Bmg = 0 , ~∇× ~Bmg − ∂t
~Eel = e2 ~J ,

are recovered if the above correspondences are applied to the equations of motion
(1.39) and (1.40).

Usually any abelian theory of the Maxwell-type is expressedin terms of the gauge
connectionAµ(x). This formulation highlights the elegant connection between the
dynamical connection on an abelian fiber bundle from the mathematical point of view
and the physical interpretation in terms of the mediation ofthe electromagnetic force.
However, we will prefer within the context of this Thesis to consider the first order
Lagrangian formulation which is fundamental from a dynamical perspective since it
involves directly the physical propagating variables, in the present case the electro-
magnetic fields. Unfortunately, even within the first order formulation of the pure
Maxwell theory, it is impossible to isolate the physical propagating fieldEµν from the
gauge fieldAµ(x) through a local and linear change of variables. The role of this latter
field is to generate dynamics for the former through the equations of motion as well
as to introduce minimal local couplings to matter fields. At the level of the Maxwell
equations, it further implies Faraday’s law of induction and the absence of magnetic
monopoles.
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Maxwell theory for p-form gauge fields

The present discussion of the familiar Maxwell theory in 3+1dimensions readily gen-
eralises top-form Maxwell theories defined in any dimension. Adopting synchronous
coordinates onM=R×Σ, see (1.27), the number of propagating degrees of freedom
of a masslessp-form field A(x) equals the number of transverse degrees of freedom
of a form defined onΩp(Σ), that isCd−1

p . These propagating degrees of freedom are
explicitly involved within the covariant Lagrangian first order formulation of (1.5),

Sf.o.
Max = σp+1 e2

2
(E, E) +

∫

M
F ∧ E − (A, J) , (1.41)

obtained after the introduction of the Gaussian auxiliary (d−p)-form fieldE(x). The
equations of motion derived from this first order formulation read

E =
σp

e2
∗(d+1) dA , ∗dE = J , (1.42)

and may be identified as the Maxwell equations expressed in terms of the generalised
electric and magnetic fields when space and time Lorentz indices are distinguished.

Usually thep-form electric fieldEel(x) is expressed in terms of its pseudo-tensorial
contravariant space components,

Eel =
1

p!

1√
h

E
i1···ip

el h̃i1j1 . . . h̃ipjp
dxj1 ∧ . . . ∧ dxjp ,

and likewise for the (d−p−1)-form magnetic field of space componentsB
i1···id−p−1
mg (x).

Then, knowing the relation between the electromagnetic vector fields and the 1-form
gauge field which generates these physical fields, the generalisation to anyp-form
gauge field is straightforward:

E
i1···ip

el =
√

h h̃i1j1 . . . h̃ipjp F0i1···ip
,

B
i1···id−p−1
mg = σd σp (d−p)

(p + 1)!
ǫi1···id−p−1j1···jp+1 Fj1···jp+1 .

This definition enables one to formulate the canonical Hamiltonian of the Maxwell
theory forp-form fields as the sum of the squares of the electric and magnetic fields,
where the electric field is proportional to the conjugate momentum of the phase space
variableAi1···ip

(x).

Finally, the physical (d−p)-form field E(t, ~x ) may be separated into its temporal
componentdt∧E0(t, ~x ) with E0(t, ~x ) being a(d−p−1)-form onΣ, and its remaining
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components̃E(t, ~x ) restricted toΩd−p(Σ),

E0(t, ~x ) =
1

(d − p − 1)!
E0i1···id−p−1

(t, ~x ) dxi1 ∧ . . . ∧ dxid−p−1 ,

Ẽ(t, ~x ) =
1

p!
Ei1···id−p

(t, ~x ) dxi1 ∧ . . . ∧ dxid−p . (1.43)

Hence within the Hamiltonian formulation, the first equation of (1.42) may be inter-
preted as two second-class constraints which relateE0(t, ~x ) to the magnetic field,

Bmg = e2 E0 ,

on the one hand, while the variablẽE(t, ~x ) and the electric field must be Hodge dual,

Eel = e2 σp (d−p) ∗(d−p) Ẽ , (1.44)

on the other hand. Furthermore this latter relation establishes the link between the
configuration space variables of the Lagrangian first order formulation and the conju-
gate momenta within the Hamiltonian formulation, to which the electric field is equal
up to a multiplicative constant.

1.4.2 Dielectric Maxwell theories

A natural extension of the Maxwell theory in3+1 dimensions, of which the La-
grangian density is defined in (1.1), may be obtained by transmuting the coupling
constant1/e2 into a real-valued function of spacetimeε(x). The resulting Lagrangian
density then reads

LDMax = −1

4
ε(x)Fµν Fµν − Aµ Jµ , (1.45)

and is often called by misuse of language10 the “dielectric Maxwell theory”. Whatever
its origin, we assume that the conserved currentJµ(x) should not explicitly depend
on the functionε(x). This function is considered as a new (possibly dynamical) scalar
field and describes the properties of the medium in which the electromagnetic field
propagates. However the present formulation is not the mostgeneral. Indeed the
functionε(x) should be replaced by a symmetric matrixεµν(x) contracting the field
strength tensor in the kinetic term of (1.45). This symmetric tensor accounts for the
anisotropy of the medium of which the response differs whether submitted to electric
or magnetic fields. For the sake of simplicity, we will consider here a scalar field
ε(x), implying that the response of the isotropic medium to the propagating electric

10This function equally characterises the polarisability orthe magnetisation of the medium.
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field is of the same magnitude as the magnetisation of this medium resulting from the
magnetic field. This rude hypothesis is justified in Chapter 5where soliton solutions
describing an electric field embedded in a dielectric mediumare constructed within an
ansatzsetting the magnetic field to zero.

The first order Lagrangian formulation of the “dielectric” Maxwell theory in3+1 di-
mensions,

Lf.o.
Max = −1

4

1

ε(x)
Eµν Eµν +

1

2
ǫµνρσ ∂µAν Eρσ − Aµ Jµ ,

is constructed in such a way that the scalar fieldε(x) only couples to the physical
electromagnetic fieldEµν(x). Hence this model shares in common with the pure
Maxwell theory the equation (1.39) relating the electromagnetic field to the current,
but differs from it through the physical meaning of this electromagnetic field

Eαβ =
1

2
ε(x) ηαµ ηβν ǫµνρσ Fρσ .

Under the above assumption that the currentJµ(x) is independent ofε(x), as befits
such Maxwell theories in a medium, this equation relates a field constructed from the
Faraday tensor to a free current four-vector. Considering now the time component
of this equation, the relation between the electric displacement~Del(x) and the free
charge densityρf(x) embedded in a dielectric medium is recovered

~∇ · ~Del = ρf , where we defineDi
el =

1

2
ǫijkEjk and ρf = J0 ,

whereas if the space components are taken into account, a link between the magnetis-
ing vector field~Hmg(x) and a free current density~J(x) is obtained

~∇× ~Hmg − ∂t
~Del = ~J , where we defineHi

mg = δij E0j .

The formulation of the Maxwell equations in terms of the freecharge and current is
thus recovered.

Let us now establish how to recover the Maxwell equations in terms of the total charge
and current. The measured electric field~Eel(x) is generated both by the net free charge
densityρf(x) and by the structural (or bounded) charge densityρs(x) associated to the
response of the dielectric medium. Likewise the total magnetic vector field ~Bmg(x)

is generated by the total current density~JT(x). This total current includes the contri-
butions of the usual conduction current, referred to as the free current density~J(x),
the bounded current associated to the magnetisation of the medium, and the current
related to bounded charges. Given the familiar relations between the electric displace-
ment and the electric vector field

~Del = ε ~Eel ,
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and defining the relation between the magnetisation and magnetic vector fields as

~Hmg = ε ~Bmg ,

the Maxwell equations read

~∇ · ~Eel =
ρT

ε0
, ~∇× ~Eel = −∂t

~Bmg ,

~∇ · ~Bmg = 0 , ~∇× ~Bmg − ∂t
~Eel = ~JT .

The scalar fieldε(x) is assumed to possess a vacuum expectation value denotedε0

which is associated to the permittivity and permeability inthe vacuum. The expres-
sions for the bounded charge and current densities obviously follow from the above
definitions and equations.

Finally the present analysis of the Maxwell theory in a medium is readily generalisable
to tensor gauge fields of any rank wathever the number of spacetime dimensions.
For example, the Maxwell theory for a2-form gauge field propagating in a medium
described by a functionε(x) in 3+1 dimensions reads

L2-Max =
1

12
ε(x)Hµνρ Hµνρ +

1

2
Bµν Kµν , (1.46)

where the conserved currentKµν does not explicitly depend on the functionε(x).

1.4.3 Physical formulation of the Maxwell-Higgs model

In this Subsection a rather unfamiliar perspective on the Maxwell-Higgs model in
terms of its physical first order formulation will be introduced and some troubles re-
lated to gauge fixing procedures will be brought to the fore. Let us first start with the
first order Lagrangian formulation of the Maxwell-Higgs model,

Lf.o.
AH = −e2

4
Eµν Eµν +

1

2
ǫµνρσ ∂µAν Eρσ +

1

2
|∂µ̺ − i ̺ (Aµ − ∂µθ)|2−V (̺2) ,

(1.47)

originally built from the Lagrangian density (1.16) resulting from the polar parametri-
sation of the complex scalar field, see (1.15). Within the context of abelian gauge
field theories, there exist plenty of ways to define actions interms of gauge invariant
quantities. The most common of course remains the gauge fixing procedure. Indeed,
for gauge field theories like abelian Higgs or Stueckelberg theories, a tempting pos-
sibility is to express the Lagrangian density in terms of thegauge invariant current
Jµ(x). The conservation law for this current,∂µJµ = 0, in such theories acts like a
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Lorentz gauge fixing procedure but in this case this “on shell” constraint results from
Noether’s theorem. Therefore the change of variables (1.15) and

Aµ − ∂µθ =
1

̺2
Jµ = η Gµ ,

introduced in [45, 46] for example11, seems at first sight to be equivalent to the fixing
of the unitary gauge. However the identification of the argument of the complex scalar
field as longitudinal part of the gauge field arises only at thelevel of the equations of
motion. Within the unitary gauge, this identification is first required independently of
whether the equations of motion are satisfied or not.

Hence under such a reparametrisation, the first order Lagrangian formulation of the
Maxwell-Higgs model now reads

L4
MHP = −e2

4
Eµν Eµν +

η

2
ǫµνρσ∂µGν Eρσ +

η2

2
̺2 Gµ Gµ + L̺

+
1

4
ǫµνρσΣµν Eρσ , (1.48)

whereΣµν is related to the scalar fieldθ(x) through

Σµν = ∂[µ ∂ν]θ .

The Lagrangian densityL̺(̺, ∂µ̺),

L̺ =
1

2
∂µ̺ ∂µ̺ − 1

2
µ̃2 ̺2 +

1

4
λ̺4 , (1.49)

describes the dynamics for the self-interacting scalar field ̺(x). We define the first
line of (1.48) as the physical formulation of the Maxwell-Higgs model which only
involves the electromagnetic fieldEµν(x) and the current generating this field.

However contrary to what happens under the choice of the unitary gauge, it is crucial
to keep the term in the second line of (1.48), since otherwise, important topological
content would be lost. Indeed the univalued phase in the polar decomposition of the
complex scalar fieldφ(x) does not forbid the fieldθ(x) to possess a non periodic part
at infinity, associated to a non zero winding number. In that case, topological con-
siderations then require thatφ(x) vanishes on some spacetime submanifold, where
its phase is undefined. Therefore the unitary gauge fixing procedure becomes patho-
logical while the introduced parametrisation of the field isproblematic since bound-
ary conditions must be specified already at the level of the Lagrangian formulation.
Indeed in the physical formulation (1.48),Σµν(x) is interpreted as the current of a
vortex string of which the worldsheet coincides with the subset in spacetime of zeros
of ̺(x). Models for effective magnetic strings based on this observation were built in
[47, 48, 49], see also [46]. In Chapter 5 we will shed new lighton this issue.

11We have introduced the normalisation parameterη of physical dimensionE L for later convenience.
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1.5 Topological sector of gauge field theories

1.5.1 Formal limit of the Maxwell-Chern-Simons theory

In contradistinction to the usual formulation of the Maxwell theory we proceeded to a
rescaling of the gauge field by the coupling constante, so that this coupling constant
now multiplies the kinetic term for the gauge field, see (1.1). This rescaling, already
known within the context of the scale anomaly in QCD, enablesto make the covariant
derivative independent of the coupling constant whenever dynamical matter fields,
whether of fermionic (QED) or bosonic character (scalar QED) are introduced. This
rescaling further implies that the coupling constant multiplies the squared term in the
physical electromagnetic field within the first order Lagrangian formulation of gauge
field theories like the Maxwell theory, see (1.38) and (1.41), the Maxwell-Higgs model
(1.47) and the Maxwell-Chern-Simons theory,

L2+1
master =

e2

2
Eµ Eµ +

1

4
ǫµνρ Fµν (2 Eρ + κ Aρ) , (1.50)

through an inverse coupling compared to that of the originalformulation. The study
of the asymptotic formal limit in the parametere within the first order formulation of
abelian gauge field theories may be considered as a first step towards a more ambitious
project whose basic ideas were suggested in a heuristic way in [50]. In that paper such
limits have been studied within the context of theories of the Yang-Mills type for non
abelian semi-simple Lie groups in 1+1, 2+1 and 3+1 dimensions.

Usually the problem of confinement is tackled by isolating a non perturbative sector
of physical field configurations. However such a procedure requires a careful treat-
ment of topological effects which may be lost when one proceeds to gauge fixing
procedures, as highlighted in Section 1.4. Furthermore current works based on lat-
tice simulations, effective and dual field theories approaches show that the dynamics
responsible for confinement may possibly be dominated by topological effects, gen-
erated by a topological sector of configuration space. In [50] such topological sector
candidates appear in an heuristic way through formal limitsin the gauge coupling
constant in non abelian gauge field theories. Notice that abelian gauge field theories
already exhibit such characteristics. For example the naive limit of an infinite cou-
pling constante → ∞ in the usual Lagrangian the MCS theory (1.26) leads to a pure
topological field theory (TFT) of theAF -type, see (1.21), while a TFT of theBF type
is recovered in the limite → 0 within the first order Lagrangian formulation (1.50).

In this Thesis, we have managed to isolate properly this topological sector and to show
in which sense it generates topological effects in abelian topological mass generation
mechanisms. In fact working with abelian gauge theories is not unrealistic since lattice
simulations, studies at lower dimensions and effective models seem to show that the
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physical sector at low energy resides in the Cartan subalgebra of the non abelian gauge
group. Furthermore, topologically massive gauge theoriesgenerate a mass gap of
topological origin. Therefore the systematic consideration of topological effects for
this type of theories, often neglected in the literature, could provide crucial insights
towards the study of confinement in non abelian gauge field theories.

1.5.2 Our solution: a dual projection method

The main difficulty which arises in such a programme is to givemeaning to the formal
limits introduced in [50]. The analysis of the limite → 0 did not reach significant
results. Within the pure Maxwell theory it has been shown in [12] that the limite → ∞
is ill-defined in the physical spectrum of the theory. Our approach to deal with this
type of issue is totally different and only applies to theories generating a mass gap,
that is in this case TMGT. Considering in Chapters 2 and 3 a dual projection method
and a generalisation of the Lowest Landau level projection,we will properly define
the formal limit mentioned above, at the classical as well asat the quantum level.

The notion of duality (for a review, see [51]) has played a vital role in a large range of
fields in theoretical physics as distinct as statistical mechanics, confinement in Yang-
Mills theories or the quest for a fundamental quantum unification of all particles and
interactions. Duality relies on the existence of two equivalent descriptions of a model
using different fields and turns out to be especially interesting when an explicit re-
lation between the fields is established since it typically exchanges strong and weak
coupling regimes. It may then allow for perturbative calculations in the variables of
the dual theory. In this Thesis another interesting featurewhich may arise from duali-
sation processes is introduced. Indeed, upon a convenient redefinition of fields, gauge
variant degrees of freedom are decoupled from the physical ones and thus the dual
formulation is factorised. There exists quite a number of examples of gauge theories
where this kind of technique has been developed and which is sometimes referred to
as “dual projections” [52, 53]. The difficulty then relates to the fairly rare existence
of such a reparametrisation being local, linear and conserving the number of degrees
of freedom. That is not the case for the Maxwell theory, for example, as recalled in
Section 1.4. However, we will show for the first time that the dual factorisation is
possible for TMGT whether of theBF or theAF type in any dimension.

Then more realistic theories are obtained by extending our analysis to non abelian
gauge groups and by coupling to matter fields. In such cases, the action resulting from
our reparametrisation turns out to be split into two sectorspartially decoupled. This
may offer perspectives in the development of new approximation schemes from the
non perturbative topological sector. Finally, Chapters 4 and 5 of this Thesis will be
dedicated to other unexpected consequences of our factorisation, when topologically
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massive gauge theories interact with real scalar fields through dielectric couplings. In
fact, we will properly establish in Chapter 4 that all the local gauge invariant mass gen-
eration mechanisms introduced in Section 1.2, including the celebrated BEH mech-
anism, are related through an intricate network of dualities, taking into account in
Chapter 5 the presence of topological terms generating topological effects.



CHAPTER 2

Factorisation of topologically massive gauge theories

The original fields involved in the definition of any gauge theory do not generate phys-
ical configurations since these fields are not gauge invariant. Hence two approaches
to isolate genuine physical degrees of freedom are available. The first involves some
gauge fixing procedure which usually suffer Gribov problems. The second consists
in constructing a factorised dual formulation. Indeed, following a convenient re-
definition of the fields, gauge variant degrees of freedom aredecoupled from the
physical ones. The main difficulty arising for this program is the fairly rare exis-
tence of such reparametrisations which at the same time are local and conserve the
number of degrees of freedom. Moreover field redefinitions within the covariant La-
grangian formulation are not necessarily associated to equivalent canonical transfor-
mations within the corresponding Hamiltonian formulationwhile preserving at each
step gauge invariance. However, topologically massive gauge theories do not en-
counter such restrictions. Through a local and linear field redefinition within the first
order Lagrangian formulation, or the associated canonicaltransformation within the
Hamiltonian one, the dual action possesses the same gauge symmetry structure as the
original theory and is decoupled into a propagating sector of massive physical vari-
ables and a sector with gauge variant variables defining a topological field theory.
These results hence provide a complete understanding of a novel general structure
for topologically massive gauge theories, referred to as “Topological-Physical” (TP)
factorisation, which involves both the Lagrangian and Hamiltonian formulations.

*
* *

35
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2.1 Hamiltonian formalism and TP Factorisation

This Chapter discusses a new salient property of the abelianTMGT of theBF type
(1.23) orAF type (1.25) valid whatever the number of space dimensionsd and the
tensorial rank of the fields: the Topological-Physical (TP)factorisation of their degrees
of freedom. This new result, presented in one of our paper [10], was first achieved
within the Hamiltonian formulation through a canonical transformation of classical
phase space leading to two independent and decoupled sectors1. The first of these
sectors, namely the “physical” one, consists of gauge invariant variables which are
canonically conjugate and describes massive propagating physical degrees of freedom.
The second sector, namely the “topological” one, consists of canonically conjugate
gauge variant variables which are decoupled from the total Hamiltonian and, hence,
are non dynamical. This sector is equivalent to a pure TFT of theBF or AF type.
This factorisation enables the identification of a mass generating mechanism for any
p-form or, by Hodge dualisation, any (d− p)-form. These two possible “pictures” are
constructed without introducing any gauge fixing conditionor second-class constraint
whatsoever as has heretofore always been the case in the literature.

2.1.1 The case of the Maxwell-Chern-Simons theory

The famous Maxwell-Chern-Simons (MCS) theory defined in (1.26) represents a typ-
ical example of topologically massive gauge theories of theAF type which is defined
in 2+1 dimensions. For pedagogical reasons, our factorisation will be first introduced
within the Hamiltonian formulation of the MCS theory in the plane, which is the
simplest case of the topological mass generation mechanismwhere our factorisation
applies. Next the general case of topologically massive gauge theories of theBF type
defined on spacetime manifolds of any dimension will be addressed.

The total first-class Hamiltonian density (1.33) for the Maxwell-Chern-Simons the-
ory has already been obtained in Section 1.3 through an exhaustive analysis of con-
straints. However the kinematic variables which span the phase space (1.28) of the
MCS theory are not physical since the gauge fieldAi(t, ~x ) and its conjugate momen-
tumP i(t, ~x ) are not invariant under theU(1) abelian gauge transformation. However
instead of proceeding to a gauge fixation procedure or solving the first-class constraint,
the physical Hamiltonian for the MCS theory may be obtained through a novel local
field redefinition which preserves canonical commutation relations.

1In other words, the Poisson brackets of variables belongingto the two distinct sectors vanish identically.
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Let us first consider the new field variable

2Ai = Ai −
2

κ
ǫij P j . (2.1)

This choice is made in such a way that Gauss’ law in (1.33) be expressed in terms of
this variable only :

κA0 ǫij ∂iAj ≈ 0 . (2.2)

The field components of the new variablesAi(t, ~x ) form a pair of canonically conju-
gate variables of which the Poisson bracket reads

{A1(t, ~x ) , A2(t, ~y )} =
1

κ
δ2(~x − ~y ) , (2.3)

The abelian gauge transformation defined in its local form in(1.32) acts on these
variables according to

A′
i = Ai + ∂iα . (2.4)

A second new field variableEi(t, ~x ) may be defined as

Ei = P i − κ

2
ǫij Aj , (2.5)

and turns out to be complementary to the first one introduced above. When considered
in combination with the equations of motion, this variable is proportional to the elec-
tric field Ei

el(t, ~x ), see (1.36), of which the Poisson bracket of its field components no
longer vanishes,

{
E1(t, ~x ) , E2(t, ~y )

}
= −κ δ2(~x − ~y ) , (2.6)

in contradistinction to the pure (massless) Maxwell theory.

This canonical transformation defines a new parametrisation of phase space which is
then decoupled into two independent and orthogonal sectors. By orthogonal is meant
the fact that their Poisson brackets are mutually vanishing:

{
Ai(t, ~x ) , Ej(t, ~y )

}
= 0 ,

and by independent the fact that these two sectors do not speak to one another at
the level of the Hamiltonian density, provided that the Lagrange multipliers in the
associated first order formulation are redefined in an appropriate way, namely

u = Ȧ0 , (u′ − A0) = −A0 −
1

e2 κ2
∂i

(

Ei − κ

2
ǫij Aj

)

. (2.7)

where a dot stands for differentiation with respect to the time coordinate,t∈R.
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Hence the fundamental Hamiltonian density of the Hamiltonian nested structures for
this gauge invariant dynamics [41] reads within its factorised formulation

H =
e2

2

(
Ei
)2

+
1

2

1

e2 κ2

(
∂iE

i
)2 − κA0 ǫij ∂iAj + ST. (2.8)

Obviously,A0 is a Lagrange multiplier enforcing the first-class constraint which gen-
erates the small gauge transformations (2.4).

When restricted to the physical subspace for which this constraint is satisfied, the
above gauge invariant Hamiltonian reduces to a functional depending only on the dy-
namical physical sector which solely consists of the pseudo-vector fieldEi(t, ~x ). This
sector, which is invariant under parity, describes the dynamics of a single propagating
massive “field degree of freedom” in 2+1 dimensions.

The second sector which consists of the variableAi(t, ~x ) whose components form
a pair of canonically conjugate variables actually shares the same symplectic struc-
ture, (2.3), Gauss law constraint, (2.2) and gauge transformation, (2.4), as the phase
space description of the pure Chern-Simons theory. Hence this “Chern-Simons sector”
accounts for the parity violating Chern-Simons theory embedded into the Maxwell-
Chern-Simons theory. The Chern-Simons theory a being topological field theory, its
Hamiltonian density vanishes identically. In the same way,as we will see in Chapter 3,
this “CS sector” may imply, depending on the topology of the underlying space man-
ifold, a degeneracy in the energy spectrum, hence its close relation with the Landau
problem in quantum mechanics.

2.1.2 The case of TMGT ofBF type in any dimension

Hamiltonian formulation

Because of the built-in gauge invariances of these systems,the analysis of the con-
straints [41, 42] of topologically massive gauge theories is required in order to identify
their Hamiltonian formulation. Given the total action (1.23) written out in component
form the associated Lagrangian density reads,

Ld+1
TMGT =

√
h

2 e2

σp

(p + 1)!
Fµ1···µp+1 Fµ1···µp+1

+

√
h

2 g2

σd−p

(d − p + 1)!
Hν1···νd−p+1

Hν1···νd−p+1

+ κ
(1 − ξ)

(1 + p)! (d − p)!
ǫµ1···µp+1ν1···νd−p Fµ1···µp+1 Bν1···νd−p

− κ
ξ σp

p! (d − p + 1)!
ǫµ1···µpν1···νd−p+1 Aµ1···µp

Hν1···νd−p+1
, (2.9)
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where our conventions introduced in Section 1.1 apply again. The above expression,
with the single parameterκ multiplying each of the topologicalB∧F andA∧H terms
while ξ parametrises a possible surface term, does not entail any loss of generality.
Had two independent parametersκ andλ multiplying each of the topological terms
been introduced, only their sum,(κ + λ), would have been physically relevant, the
other combination corresponding in fact to a pure surface term.

Adopting synchronous coordinates onM = R × Σ, see (1.27), the configuration
space variableA(t, ~x ) may be separated into its temporal componentdt ∧ A0(t, ~x )

with A0(t, ~x ) belonging toΩp−1(Σ), and its components̃A(t, ~x ) restricted toΩp(Σ),

A0(t, ~x ) =
1

(p − 1)!
A0i1···ip−1(t, ~x ) dxi1 ∧ . . . ∧ dxip−1 , (2.10)

Ã(t, ~x ) =
1

p!
Ai1···ip

(t, ~x ) dxi1 ∧ . . . ∧ dxip .

A similar decomposition applies to the(d−p)-form B(t, ~x ). The actual phase space
variables are then the spatial componentsÃ andB̃ along with their conjugate momenta
P̃ andQ̃ defined to be the following differential forms onΣ,

P̃ =
1

p!

1√
h

h̃i1j1 . . . h̃ipjp
P i1···ip dxj1 ∧ . . . ∧ dxjp ,

Q̃ =
1

(d − p)!

1√
h

h̃i1j1 . . . h̃id−pjd−p
Qi1···id−p dxj1 ∧ . . . ∧ dxjd−p , (2.11)

of which the pseudo-tensorial space components areP i1···ip andQi1···id−p . Expressed
in terms of the configuration space variables, these latter quantities are given as

P i1···ip =

√
h

e2
F0j1···jp

h̃i1j1 . . . h̃ipjp + κ
(1 − ξ)

(d − p)!
ǫi1···ipj1···jd−p Bj1···jd−p

,

Qi1···id−p =

√
h

g2
H0j1···jd−p

h̃i1j1 . . . h̃id−pjd−p

− κ
ξ

p!
σp(d−p) ǫi1···id−pj1···jpAj1···jp

, (2.12)

while the canonical brackets,

{
Ai1···ip

(t, ~x ), P j1···jp(t, ~y )
}

= δj1
[i1

. . . δ
jp

ip] δ
(d)(~x − ~y ) ,

{
Bi1···id−p

(t, ~x ), Qj1···jd−p(t, ~y )
}

= δj1
[i1

. . . δ
jd−p

id−p] δ
(d)(~x − ~y ) , (2.13)

characterise the symplectic structure of Poisson brackets. A priori, phase space also
includes the canonically conjugate variablesA0 andP 0, andB0 andQ0.
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The Legendre transform of the Lagrangian (2.9) leads to the total gauge invariant
Hamiltonian,

H =
e2

2

(

∗P̃ − κ (1 − ξ) B̃
)2

+
1

2 e2

(

dÃ
)2

+
(
u, P 0

)

+
g2

2

(

∗Q̃ + κ ξ σp(d−p)Ã
)2

+
1

2 g2

(

dB̃
)2

+
(
v, Q0

)
+ (surface term)

+

∫

Σ

σp (u′ + A0) ∧ d
(

∗P̃ + κ ξ B̃
)

+

∫

Σ

σd−p(v′ + B0) ∧ d
(

∗Q̃ − κ (1 − ξ)σp(d−p) Ã
)

. (2.14)

In this expression as well as throughout hereafter, the Hodge∗ operation is now con-
sidered only on the space manifoldΣ endowed with the Riemannian metrich̃ij . In
(2.14) the inner product onΩk(Σ) × Ωk(Σ) is constructed as

(ωk)2 = (ωk, ωk) with (ωk, ηk) =

∫

Σ

ωk ∧ ∗ηk. (2.15)

The quantitiesu′ andv′ are Lagrange multipliers for the two first-class constraints
associated to the two abelian gauge symmetries whileu andv are those for the first-
class constraintsP 0 = 0 andQ0 = 0 arising because the fieldsA0 andB0 are auxil-
iary degrees of freedom of which the time derivatives do not contribute to the action.
Upon reduction to the basic layer of the Hamiltonian nested structure [41],P 0 andQ0

decouple from the system whereasA0 andB0 play the role of Lagrange multipliers
enforcing the two Gauss laws. These constraints generate those gauge transformations
in (1.19) which are continuously connected to the identity transformation, namely the
small gauge symmetries, one generated by the fieldsP̃ andB̃ and the other bỹA and
Q̃, respectively. Note that given Hodge duality, the phase space variables are associ-
ated to isomorphic spaces,Ωp(Σ) ≡ Ωd−p(Σ). Hence at any given spacetime point,
phase space has dimension4Cp

d .

Topological-Physical (TP) factorisation

The above results are well-known. However the fields used to construct the theory
do not necessarily create physical states since these are not gauge invariant variables.
Therefore, let us now introduce the new Physical-Topological factorisation of the clas-
sical theory, by also requiring that these field redefinitions are canonical and preserve
canonical commutation relations. First consider the quantities

A = − 1

κ
σp(d−p) ∗ Q̃ + (1 − ξ) Ã, B =

1

κ
∗ P̃ + ξ B̃, (2.16)
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defined on the dual setsΩp(Σ) andΩd−p(Σ). This choice is made in such a way that
the two Gauss laws are expressed in term of these variables only, as is the case for a
topologicalBF theory,

κ σp(d−p) dA = 0, σp κ dB = 0. (2.17)

As a matter of fact, these variables are canonically conjugate,

{
Ai1···ip

(t, ~x ),Bj1···jd−p
(t, ~y )

}
=

1

κ
ǫi1···ipj1···jd−p

δ(d)(~x − ~y ). (2.18)

The two finite gauge transformations in (1.19) act on these new variables according to
the relations,

A′ = A + α, B′ = B + β. (2.19)

At a given spacetime point, these canonically conjugate variables carry2Cp
d degrees

of freedom. The remaining2Cp
d degrees of freedom are associated to the following

pair of gauge invariant variables,

G = Q̃ + κ ξ ∗ Ã, E = P̃ − κ (1 − ξ)σp(d−p) ∗ B̃. (2.20)

Their pseudo-tensor Lorentz components are defined as in (2.11) while they possess
the following non vanishing canonical Poisson brackets,

{
Ei1···ip(t, ~x ), Gj1···jd−p(t, ~y )

}
= −κ ǫi1···ipj1···jd−p δ(d)(~x − ~y ). (2.21)

When considered in combination with the equations of motion, these variables are
proportional to the non commutative electric fields associated, respectively, to the field
strength tensors ofA andB. Consequently, we have achieved a coherent reparametri-
sation of phase space which, in fact, factorises the system into two orthogonal sectors,
namely sectors of which mutual Poisson brackets vanish identically,

{
Ai1···ip

(t, ~x ), Ej1···jp(t, ~y )
}

= 0,
{
Ai1···ip

(t, ~x ), Gj1···jd−p(t, ~y )
}

= 0,
{
Bi1···id−p

(t, ~x ), Ej1···jp(t, ~y )
}

= 0,
{
Bi1···id−p

(t, ~x ), Gj1···jd−p(t, ~y )
}

= 0.

Finally in order to obtain the factorised formulation of thefundamental Hamiltonian,
the Lagrange multipliers in (2.14) may be redefined in a convenient way as

u = Ȧ0, A0 = A0 + u′ +
σ(p−1)(d−p)

2 g2 κ2
∗ d (κB − 2 ∗ E) , (2.22)

v = Ḃ0, B0 = B0 + v′ +
σp

2 e2 κ2
∗ d
(

κA + (1)p(d−p) 2 ∗ G
)

.
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Consequently the basic total first-class Hamiltonian of thesystem reads,

H [E, G,A,B] =
e2

2
(E)

2
+

1

2 κ2 g2

(
d†E

)2
+

g2

2
(G)

2
+

1

2 e2 κ2

(
d†G

)2

+ κ

∫

Σ

σp A0 ∧ dB − σ(p+1)(d−p) B0 ∧ dA . (2.23)

Obviously,A0 andB0 are Lagrange multipliers enforcing the first-class constraints
which generate the small gauge transformations in (2.19),

G(1) = dA , G(2) = dB. (2.24)

When restricted to the physical subspace for which these constraints are satisfied,
the above gauge invariant Hamiltonian reduces to a functional depending only on the
dynamical physical sector, given by the expression in the first line of (2.23).

The topological sector

This reparametrisation of phase space have indeed achievedthe announced factorisa-
tion. A first sector is comprised of the variables constructed in (2.16), which decouple
from the physical Hamiltonian and are therefore non propagating degrees of freedom.
Furthermore, the canonically conjugate variablesA andB actually share the same
Poisson brackets, Gauss law constraints and gauge transformations as the phase space
description of a pureBF topological field theory constructed only from the topo-
logical terms in the action (2.9). Hence this “topological field theory (TFT) sector”
accounts for theBF theory embedded into the topologically massive gauge theory.

The physical sector

Physical and non physical degrees of freedom are mixed in theoriginal phase space.
Our redefinition of fields deals with the original degrees of freedom in such a way
that within the Hamiltonian formalism, non propagating (and gauge variant) degrees
of freedom are decoupled from the dynamical sector. This latter sector describes only
physical degrees of freedom, namely the gauge invariant canonically conjugate elec-
tric fields (up to a multiplicative constant), which diagonalise the physical Hamiltonian
(2.23) in such a way that they acquire a mass through a mixing of the original vari-
ables (2.20). However the Poisson bracket structure remains unaffected since these
field redefinitions define merely a canonical transformation. Hence within the phys-
ical sector, the Hamiltonian formulation of a Proca theory is recovered which offers
then two equivalent interpretations or “pictures”.
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On account of Hodge duality betweenΩp(Σ) andΩd−p(Σ), one readily identifies in
the dynamical sector the Hamiltonian of a massivep-form field of massm=~µ,

H [C, E,A,B] =
µ2

2
(C)

2
+

1

2
(dC)

2
+

1

2
(E)

2
+

1

2 µ2
(dE)

2
+ HTFT[A,B].

In comparison with (2.23) the following identifications have been applied,

µ = |κ e g| , E → E

e
, ∗G = e κ σp(d−p) C,

whereC is ap-form field of which the Lorentz components are covariant in the manner
of (2.10). Physical phase space is then endowed with the elementary Poisson brackets

{
Ci1···ip

(t, ~x ), Ej1···jp(t, ~y )
}

= δj1
[i1

. . . δ
jp

ip] δ
(d)(~x − ~y ) .

Alternatively one may also obtain the Hamiltonian of a massive (d−p)-form field of
massm=~µ,

H [C, G,A,B] =
µ2

2
(C)2 +

1

2
(dC)2 +

1

2
(G)2 +

1

2 µ2
(dG)2 + HTFT[A,B],

in which, in comparison with (2.23), the following identifications have been applied,

G → G

g
, ∗E = −g κ C.

In this case,C is a (d−p)-form field with covariant Lorentz components and

{
Ci1···id−p

(t, ~x ), Gj1···jd−p(t, ~y )
}

= δj1
[i1

. . . δ
jd−p

id−p] δ
(d)(~x − ~y ) ,

are the elementary Poisson brackets for these physical phase space variables.

To conclude this discussion of the factorised Hamiltonian formulation of these TMGT,
let us emphasize once more that no gauge fixing procedure whatsoever was applied,
in contradistinction to all discussions available until now in the literature, leading
to an identification of the physical content of these theories. Through the present
approach, the TFT content of TMGT is made manifest in a transparent and simple
manner, with in addition a decoupling of the actual physicaland dynamical sector
of the system from its purely topological one, the latter carrying only topological
information characteristic of the topology of the underlying spacetime manifold.
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2.2 Covariant extension

This Section presents results of one of our papers [11] whereit has been shown that
in 2+1 dimensions the canonical transformation introducedin the previous Section
within the Hamiltonian formulation is complementary to a dual projection for the La-
grangian first order formulation of the Maxwell-Chern-Simons theory [52, 53]. In the
same way, the covariant extension of the factorisation identified within their Hamilto-
nian formulation leads to a dual projection for topologically massive gauge theories
in any dimension and for all tensorial ranks, which has not been considered previ-
ously. The covariant extension proceeds then by extending the relations (2.16) and
(2.20) between the phase space fields to a covariant reparametrisation of their associ-
ated spacetime components within the Lagrangian first orderformulation, introduced
in Section 1.4 (keeping in mind the relation (2.12) between the conjugate momenta
and the time derivative of the original gauge fields).

Contrary to what is sometimes tacitly taken for granted in the literature, the correspon-
dence between a change of variables within the Lagrangian first order formulation and
its associated canonical transformation within the Hamiltonian formulation is far from
being obvious. Actually, the covariant extension of canonical transformations is trivial
in the infrared limit, namely when only the global sector of zero momentum modes
is retained. In that case, any covariant factorisation or soldering technique is associ-
ated to a corresponding canonical transformation within the Hamiltonian formulation.
However this feature does not necessarily survive for field theories. As an example,
the soldering that fuses self-dual and anti-self-dual Lagrangians into the Maxwell-
Chern-Simons-Proca theory cannot be associated to a canonical transformation within
the Hamiltonian formulation [54], although it is the case inthe infrared limit [55, 56].
However gauge field theories like TMGT do not encounter such restrictions.

2.2.1 The case of the Maxwell-Chern-Simons theory

The reduction of a “master” Lagrangian [57] accounts for thecommon origin of both
the Maxwell-Chern-Simons (MCS) and “self-dual” Lagrangians [58]. The master La-
grangian is the first order form of the MCS Lagrangian after the introduction of gauge
invariant auxiliary fieldsfµ, readily reducible through Gaussian integration,

L2+1
master =

1

2
e2 fµ fµ +

1

4
ǫµνρ Fµν (2 fρ + κ Aρ) . (2.25)

However, to a certain extent the reduction of the master Lagrangian as introduced
in [57] is analogous to a procedure of gauge fixing. Indeed thereduction of gauge vari-
ant variables within the Lagrangian formulation is analogous to the resolution of the
associated first-class “Gauss” constraint within the Hamiltonian formulation (1.31).
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In contradistinction to the master Lagrangian method [57],the dual factorised theory
is constructed through a local and linear field redefinition,hence of which the path
integral Jacobian is field independent, leading to a redefinition of the master action
Smaster[A, f ] → SSD[E,A], namely

Eµ (Aµ, fµ) = fµ, Aµ (Aµ, fµ) =
1

κ
fµ + Aµ. (2.26)

This transformation resulting from the Lorentz covariant extension of the phase space
canonical transformation (2.1) and (2.5) is equivalent to that used in [52, 53] and so
the dual projection technique is recovered. Note that this field redefinition is well
defined provided only the topological mass parameterκ is non vanishing,κ 6=0. Upon
reduction through Gaussian integration, the gauge invariant variablesEµ are found to
correspond to the electric and magnetic field components,

Ei ≡
1

e2
ǫij Ej

el, E0 ≡ 1

e2
Bmg.

Consequently, a coherent reparametrisation of configuration space is achieved. In fact,
it factorises the action into two decoupled contributions,

L2+1
fact = LSD (Eµ, ∂µEν) + LCS (Aµ, ∂µAν) + ST.

In deriving this expression a total surface term “ST” mixingthe two types of field
variables has been ignored, since it does not contribute forany appropriate choice of
boundary conditions. It may, however, play a role when the quantum field theory is
defined on a manifold with boundaries.

The physical self-dual partLSD consists of Proca and topological mass terms,

LSD =
1

2
e2 Eµ Eµ − 1

2κ
ǫµνρ ∂µEν Eρ.

This part describes a single propagating spin one free excitation of massm = ~ κ e2

and violates parity. The Legendre transformation along with the reduction of second-
class constraints inherent to such singular systems give back the physical part of the
factorised Hamiltonian density (2.8). This is also the casefor the topological sector,
showing the closed structure formed by our TP factorisationbetween the Hamiltonian
and Lagrangian formulations.

The second partLCS consists of gauge variant variables defining a purely topological
Chern-Simons theory,

LCS =
1

2
κ ǫµνρ ∂µAν Aρ. (2.27)

This last part, already expected within the path integral quantisation approach [59],
is absent from the dual Lagrangian when the master action method [57] is used in



46 Chapter 2. Factorisation of topologically massive gauge theories

which case all the topological content inherited from the original Chern-Simons term
is lost. In particular, non trivial topological features become manifest in the presence
of external sources, or when the space manifoldΣ has non trivial topology. It is also
noteworthy to mention that in the infrared limit dual projection techniques bring to the
fore the existence of theZ2 quantum anomaly of topological origin [56, 60].

As far as the local part is concerned, the fact that the pure Chern-Simons theory de-
scribes gauge fields of flat connection implies, in combination with (2.26), that

κ ǫµνρ ∂µAν = κ ǫµνρ ∂µAν + ǫµνρ ∂µfν ≈ 0.

One recovers of course the condition for the reduction of themaster action in [57],
but in the present approach this condition is required as a weak constraint preserving
the gauge symmetry content between the dual formulations. The present factorisation
may be generalised to TMGT of theAF type in any dimension, see (1.25).

2.2.2 The case of TMGT ofBF type in any dimension

The equivalence between gauge non-invariant first order mass generating theories for
anyp-form and topologically massive gauge theories (TMGT) of theAF or BF type
has so far been shown in diverse dimensions through the Hamiltonian embedding
due to Batalin, Fradkin and Tyutin (BFT), either partial [61, 62] or complete [63,
64], through the covariant gauge embedding method [65, 66] within the Lagrangian
formulation, through the master action [67], etc. All methods developed so far share a
common characteristic, namely that in fact the dual action does not possess the same
gauge symmetry content as the original formulation. Hence at the quantum level the
equivalence between the two dual formulations applies onlyfor pure theories defined
on space manifolds of trivial topology.

The TP factorisation approach readily applies to topological mass generation in any
dimension and for all tensorial ranks, whatever the topology of the space manifold.
In order to construct the dual factorised action of TMGT of theBF type, the original
action (1.23) must be written in its first order form after theintroduction of gauge
invariant auxiliary(d−p)- andp-form fieldsf andh, respectively,

Smaster =
e2

2
(f)2 +

g2

2
(h)2 +

∫

M
F ∧ f + H ∧ h

+ κ

∫

M
(1 − ξ)F ∧ B − σp ξ A ∧ H . (2.28)

The convenient notation(ωk)2 = −σk (ωk, ωk) is defined from the inner product
(1.4). A simple local and linear transformation in the master action (2.28), of field
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independent path integral Jacobian and inducing the redefinition
Smaster[A, B, f, h] → Sfact[E, G,A,B], namely,

E = f, A = A − 1

κ
σp(d−p) h,

G = h, B = B +
1

κ
f, (2.29)

enables the factorisation of the theory into two decoupled sectors,

Sfact[E, G,A,B] = Sdyn[E, G] + SBF [A,B] +

∫

M
ST . (2.30)

Once again this transformation is well defined provided the topological couplingκ
does not vanish. This transformation is nothing other than the Lorentz covariant ex-
tension, in combination with the expressions for conjugatemomenta, of the canonical
transformation (2.16) and (2.20) in the phase space of the original TMGT within their
Hamiltonian formulation (2.14). The total divergences, referred to as “ST” and mixing
the variablesA andB with E andG, respectively, are again parametrised byξ.

The first contributionSdyn[E, G] consisting of dynamical physical variables reads

Sdyn =
e2

2
(E)

2
+

g2

2
(G)

2
+

1

κ

∫

M
σd−p ξ E ∧ dG− (1− ξ) dE ∧G . (2.31)

The gauge independent “self-dual" action generalised to any dimension of [66, 67]
is recovered. The constantξ we have introduced in (1.23) appears explicitly in the
factorised Lagrangian density (2.30), in contradistinction to its associated Hamiltonian
density (2.23). This means that the factorised Langrangiandensity leads to the same
factorised Hamiltonian formulation through Lengendre transformation and analysis of
constraints, independently of the parameterξ. However, the interpretation in terms of
one particular picture depends on the value ofξ. Then the first order formulation of
the Proca action for ap- or a(d−p)-form field is readily identified. Indeed, by setting
ξ=1 and integrating out the then Gaussian auxiliary(d−p)-form fieldE, one derives
the action of ap-form fieldG of massm=~µ,

Sdyn[G] =
g2

2
(G)2 +

g2

2

σd

µ2
(dG)2 ,

with µ=κ e g. Alternatively one may also obtain the action of a(d−p)-form field E

of massm=~µ, by fixing ξ=0 and eliminating the Gaussianp-form fieldG,

Sdyn[E] =
e2

2
(E)

2
+

e2

2

σd

µ2
(dE)

2
.

Finally some works [68] have fixed the value of our constantξ to 1
2 for the action of

TMGT of theBF type (1.23) in 2+1 dimensions, modulo surface terms. One of the
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convincing arguments is that upon settingξ = 1
2 , this action may be obtained through

the dimensional reduction ofUe(1) × Ug(1) Maxwell theory in 3+1 dimensions with
a gauge field and a pseudo-gauge field2.

The second contributionSBF [A,B] to the dual factorised action (2.30) involves gauge
variant variables transforming as follows under the abelian gauge symmetries (1.19),

A′ = A + α, B′ = B + β, (2.32)

and defines in fact once again a pure topological field theory of theBF type,

SBF = κ

∫

M
(1 − ξ)F ∧ B − σp ξ A ∧H,

whereF = dA andH = dB. This decoupled TFT sector thus insures that the gauge
structure of the original theory is preserved through dual factorisation. Moreover, as
in the MCS case, the presence of this topological term, so farhardly evoked in the
literature for very particular types of TMGT [70], has very intriguing consequences.
Indeed non trivial topological effects arise from this topological term when TMGT are
defined on topologically non trivial manifolds or are coupled to matter fields.

2.3 Conclusion and schematic overview

2.3.1 TP factorisation : a general and completed structure

This covariant generalisation emphasizes the universal character of the Topological-
Physical factorisation, whatever the formulation of the theory, hence leading to the
following general and completed structure.

Lagrangian
of TMGT (1.23)

Legendre transform

⇐⇒
Constraints analysis

Hamiltonian
of TMGT (2.14)

m Auxiliary fields

Master
Lagrangian

m Canonical

transformation

m Factorisation

Factorised
Lagrangian (2.30)

Legendre transform

⇐⇒
Constraints analysis

Factorised
Hamiltonian (2.23)

2Notice however the relative sign between the kinetic terms for the photon and the pseudo-photon [69].
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At first sight the introduction of the first order form of the action (1.23) and thus
the extension of the configuration space by auxiliary Gaussian fields seems artificial.
As a matter of fact, to express directly the fields of the original Lagrangian formu-
lation of TMGT as explicit functions of those of its dual formulation (2.30) turns
out to be impossible because the two formulations do not possess the same numbers
of degrees of freedom. Although the two formulations describe the same physics,
there are extra auxiliary degrees of freedom in the dual formulation. Therefore, a
convenient Lagrangian must be chosen among those leading tothe same constrained
Hamiltonian [41]. The convenient formulation is the first order one (2.28) for which
the comparison with the dual formulation is readily achieved from the local and linear
transformation (2.29). This transformation simply redistributes the degrees of free-
dom, conserving the number of auxiliary fields and maintaining the gauge symmetry
structure of the theory. In section 2.1 where the Topological-Physical factorisation
was achieved within the Hamiltonian formulation, all second-class constraints are be-
ing reduced using Dirac brackets. Therefore, the two phase spaces possess already
the same number of degrees of freedom at any given spacetime point and dualisation
is directly achieved. The first order Lagrangian formulation of TMGT makes mani-
fest the relation between the covariant field redefinitions and the associated canonical
transformations within the Hamiltonian formulation.

2.3.2 Conclusion

The main new result of this Chapter is the identification of the Physical-Topological
(PT) factorisation of abelian topologically massive gaugetheories (TMGT) in any di-
mension, into a manifestly gauge invariant and dynamical sector and a gauge variant
purely topological sector of theBF or AF type. Our novel approach considers the
most general action for abelian TMGT in any dimension and foranyp-form fields, in-
cluding the two possible types of topological terms relatedthrough an integration by
parts. The possibility of the factorisation is intimately related to the fact that TMGT
generate a mass gap. Indeed within the Hamiltonian formulation this mass gap in-
volves the non trivial dynamical global (or “zero-mode”) sector (which carries the
structure of harmonic oscillators). It turns out that the same change of variables fac-
torises also the local sector. It was then possible in Section 2.1 to factorise phase space
through a canonical transformation, see (2.16) and (2.20),which is obviously local,
using the mass gap parameterµ.

In Section 2.2 this change of variables has been extended in amanifestly Lorentz co-
variant way by considering the first order form of the original Lagrangian of TMGT. In
comparison to other methods developed so far in the literature, the technique consist-
ing in constructing the dual action for TMGT by a local and linear redefinition of the
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fields is, firstly, much more direct and, secondly, preservesthe entire gauge symmetry
content of the original action, while at each step maintaining manifest Lorentz covari-
ance. In this sense, this type of dual projection method enables to isolate the physical
content of the theory in a gauge invariant way, the entire gauge variant contributions
residing only in the second sector of the action which reduces to a pure topological
field theory. The relevance of our conclusions for general TMGT is confirmed by
some partial results already achieved for particular typesof TMGT within the path
integral framework [59, 70].

The appearance of the topological sector, which insures that the gauge symmetry con-
tent is maintained, has dramatic consequences. First, thistopological term could be
of prime importance for theories where thep-form fields are connections coupled to
extended objects carrying the associated relevant charges. Second, as described in
Chapter 3 within the context of canonical quantisation, this term controls the degener-
acy of the physical spectrum of the original TMGT through topological invariants of
the space manifold when it is of non trivial topology. Our TP factorisation will then
lead to a generalisation of the lowest Landau level projection of the Landau problem,
which makes sense even at the classical level.



CHAPTER 3

A new perspective on the lowest Landau level projection

The Landau model and its quantum Hall limit is known to be an idealisation for a
physical realisation of the simplest example of non commutative geometry. This ac-
tual physical model decribes charged electrons moving in the plane in the presence of
an external uniform magnetic field transverse to that plane.The limit of strong mag-
netic field is the famous Landau projection onto the fundamental quantum state which
implies the non commutativity of the space coordinates. TheMaxwell-Chern-Simons
theory may be seen as the gauge field theoretic realisation ofthis mechanism since the
Landau problem is recovered in the long wavelentgh limit of this theory [55, 56]. Fur-
thermore the Landau projection onto the ground state of the MCS theory boils down
to a projection onto a pure topological Chern-Simons theory.

The clue to our new TP factorisation introduced in Chapter 2 relies on the identifi-
cation of a topological field theory embedded in the full topologically massive gauge
theory, not manifest within the original Hamiltonian formulation. Actually, the TFT
sector with its reduced phase space appears already at the classical level, indepen-
dently of any projection onto the ground state. Furthermorethe TP factorisation al-
lows for a straightforward quantisation of these systems and the identification of their
spectrum of physical states, accounting also for all the topological features inherent
to such dynamics. This Chapter not only offers a novel picture of the lowest Landau
level projection through our new TP factorisation already valid at the classical level,
but also generalises it to TMGT of theBF type in any dimension.

*
* *

51
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3.1 Lowest Landau level projection at the classical level

3.1.1 Hodge decomposition : local and global sectors

The space manifoldΣ having been assumed to be orientable and compact, let us now
consider the consequences of its cohomology group structure, especially in the case
when the latter could be non trivial. Throughout the discussion it is implicitly as-
sumed that thep- and(d − p)-form fieldsA andB are globally defined differentiable
forms inΩp(M) andΩd−p(M). When parametrising the theory in terms of the PT
factorised variables, the latter assumption of a topological character concerns only
the TFT sector. The variables of the dynamical sector are already globally defined
whatever the topological properties of the original variables. By virtue of the Hodge
theorem [16], the phase space variables of the TFT sector, thus globally defined onΣ,
may uniquely be decomposed for each time slice into the sum ofan exact, a co-exact
and a harmonic form, see (1.10), with respect to the inner product specified in (2.15).
A likewise decomposition applies to the dynamical sector.

The local sector

Such a decomposition amounts to a split of the fields into a longitudinal part (subscript
L), a transverse part (subscriptT ) and a “global” part, using the derivative operatord

and the coderivative operatord† introduced in Section 1.1. The transverse and longi-
tudinal parts are associated to idempotent orthogonal projection operators,

ΠT
(p) =

1

△⊥
(p)

d†
(p+1)d(p), ΠL

(p) =
1

△⊥
(p)

d(p−1)d
†
(p),

ΠT
(p) : Ωp(Σ) → (Z†

⊥)p(Σ), ΠL
(p) : Ωp(Σ) → Zp

⊥(Σ), (3.1)

where△⊥
(p) is the Laplacian operator acting on the spaceΩp

⊥(Σ) of p-forms from

which the kernel ker△(p) of the Laplacian△(p) has been subtracted, while(Z†
⊥)p

(resp. Zp
⊥) is the space of co-closed (resp. closed)p-forms non cohomologous to

zero. One therefore has the following properties,

(−1)p(d−p) ΠT
(p) = ∗ΠL

(d−p)∗, ΠT
(p) + ΠL

(p) = Id⊥
(p),

where∗ is the Hodge operator onΣ and Id⊥(p) the identity operator onΩp
⊥(Σ).

In order that the longitudinal and transverse components possess the same physical
dimensions as the original fields, the Hodge decomposition of fields may be expressed
in terms of a convenient normalisation,

√

△⊥A = dAL + d†AT ,
√

△⊥B = dBL + d†BT . (3.2)
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Let us then define a new set of variables in the TFT sector, using the projection oper-
ators (3.1),

ϕ = ΠT
(p−1) AL, ∗Qϑ = ΠL

(p+1)AT ,

ϑ = ΠT
(d−p−1)BL, ∗Pϕ = ΠL

(d−p+1)BT , (3.3)

where the components of∗Pϕ and∗Qϑ are pseudo-tensors defined in a manner anal-
ogous to the conjugate momenta in (2.11). In terms of these new variables the non
vanishing Poisson brackets are

{
ϕi1···ip−1(t, ~x ), P j1···jp−1

ϕ (t, ~y )
}

=
1

κ

(
ΠT
)j1···jp−1

i1···ip−1
δ(d)(~x − ~y ),

{

ϑi1···id−p−1
(t, ~x ), Q

j1···jd−p−1

ϑ (t, ~y )
}

= − 1

κ

(
ΠT
)j1···jd−p−1

i1···id−p−1
δ(d)(~x − ~y ).

In conclusion, in the TFT sector, rather than working in terms of the phase space
variablesA andB one may parametrise these degrees of freedom in terms of the
“longitudinal” fieldsϕ andϑ as well as their conjugate momenta, namely the “trans-
verse" fieldsPϕ andQϑ, to which the harmonic componentsAh andBh must still
be adjoined. The same procedure may be applied to the variables of the dynamical
sector. The Hamiltonian (2.23) then decomposes into a transverse, a longitudinal and
a harmonic contribution from these latter variables only.

The global sector

A natural consequence of the Hodge decomposition is the isomorphism between the
pth de Rham cohomology group,Hp(Σ, R), and the space of harmonicp-forms,
ker△(p). This means that each equivalence class ofHp(Σ, R) has an unique har-
monicp-form representative identified through the inner product (2.15). It is possible
to choose a basis forker△(p) in such a way that the harmonic component of anyp-
form is expressed in a topological invariant way. This may beachieved by defining a
topological invariant isomorphism between the componentsof an equivalence class of
thepth (singular) homology groupHp(Σ, R) and the components of a form inker△(p)

(thep-homology group is the set of equivalence classes ofp-cycles differing by ap-
boundary). Thus, instead of constructing the basis from theHodge decomposition
inner product (2.15), one uses the bilinear, non degenerateand topological invariant
inner productΛ defined by

Λ : Hp(Σ) × Hp(Σ) → R : Λ ([Γ] , [ω]) =

∫

Γ

ω, (3.4)
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making explicit the Poincaré duality between homology and cohomology groups [16].
Given the Hodge theorem, this inner product naturally induces a topological invariant
inner product between the equivalent classes ofHp(Σ) and the elements ofker△(p).
Therefore, if one introduces generators of the free abelianpart of thepth singular

homology group of rankNp,
{

Σγ
(p)

}Np

γ=1
, a convenient dual basis{Xγ} of ker△(p)

may be chosen such that

Λ
([

Σα
(p)

]

, Xβ
)

= δαβ .

Using the duality (3.4), the harmonic componentAh of thep-form variableA is thus
decomposed according to

Ah =

Np∑

γ=1

Λ
([

Σγ
(p)

]

, Ah

)

Xγ .

These components ofAh in the basis{Xγ} are topological invariants because they
express the periods ofA over the cycle generators ofHp(Σ). This is thus nothing
other than the classical Wilson loop argument over these generators,

aγ =

∮

Σγ

(p)

Ah . (3.5)

In other words, the variablesaγ(t) specify the complete set of remaining “global”
degrees of freedom in the TFT sector for the fieldA,

Ah(t, ~x ) =

Np∑

γ=1

aγ(t)Xγ(~x ).

In a likewise manner, the harmonic component of the (d−p)-form variableB may be
decomposed according to

Bh =

Np∑

γ=1

Λ
([

Σγ
(d−p)

]

, Bh

)

Y γ ,

where{Y γ} is the dual basis of the cycle generators inHd−p(Σ),
{

Σγ
(d−p)

}Np

γ=1
.

Hence, the components of harmonic (d−p)-forms are expressed as

bγ =

∮

Σγ

(d−p)

Bh, (3.6)
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leading to a similar decomposition of the global degrees of freedom for the fieldB,

Bh(t, ~x ) =

Np∑

γ=1

bγ(t)Y γ(~x ).

The Poisson brackets between the above global variables aretopological invariants,

{

aγ , bγ′

}

=
1

κ
Iγγ′

, (3.7)

namely the signed intersection matrix of which each entry isthe sum of the signed
intersections of the generators ofHp(Σ) andHd−p(Σ),

Iγγ′

= I
[

Σγ
(p), Σ

γ′

(d−p)

]

. (3.8)

Within our approach, we recover the results of [71, 31, 32] in2+1, 3+1 andd+1
dimensions, respectively, for pure topological field theories of theAF andBF types.

3.1.2 Large and small gauge transformations

Only the TFT sector is not gauge invariant. Its phase space variables transform exactly
like in a pureBF theory, see (2.19). Let us recall that in (2.19),α andβ are, respec-
tively, closedp- and(d−p)-forms onΣ and their respective exact parts define small
gauge transformations, generated by the two Gauss law first-class constraints (2.17).
Given the Hodge decompositions in the TFT sector (3.2) and (3.3), these constraints,
which require that the phase space variablesA andB of the TFT sector be closed
forms, reduce to

G(1) =
√

△⊥ ∗ Qϑ, G(2) =
√

△⊥ ∗ Pϕ. (3.9)

Small gauge transformations act only on the exact part of theTFT sector fields by
translating them, namely in terms of the longitudinal(p−1)- and(d−p−1)-form fields
defined in (3.3),

ϕ′ = ϕ + αL, ϑ′ = ϑ + βL,

whereαL andβL are, respectively, the longitudinal(p−1)- and (d−p−1)-forms
defining the exact components of the gauge transformation formsα andβ through a
construction similar to that in (3.3). The harmonic components ofα andβ define the
associated large gauge transformations.
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Small gauge transformations

The physical classical phase space in the TFT sector is the set of all field configurations
A andB obeying the first-class constraints setting to zero their transverse degrees of
freedom, see (3.9), and identified modulo the action of all gauge transformations,
whether small or large. Since under small transformations the longitudinal modesϕ
andϑ are gauge equivalent to the trivial configuration of vanishing longitudinal fields,
like in any pureBF TFT the physical phase space of the TFT sector, so far for what
concerns small gauge symmetries, is thus finite dimensionaland isomorphic to the
ensemble of harmonic forms defined modulo exact forms,

P = Hp(Σ, R) ⊕ Hd−p(Σ, R), (3.10)

whereHp(Σ, R) is thepth de Rham cohomology group. Let us recall that according
to Poincaré duality,Hp(Σ) is isomorphic toHd−p(Σ). Hence, whether one considers
functionals of harmonicp-forms or(d− p)-forms is of no consequence. The finite di-
mension of this group is given by the corresponding Betti numberNp (for example in
the case of the torus,Σ = Td, Np = Cp

d ). The physical phase space of the TFT sector
is thus spanned by the global degrees of freedomaγ(t) andbγ(t), which are indeed
obviously invariant under all small gauge transformations. However, this phase space
is subjected to further restrictions still, stemming from large gauge transformations.

Large gauge transformations

In a manner similar to the above characterisation of the physical phase space in the
TFT sector, the modular group is the quotient of the full gauge group by the sub-
group of small gauge transformations generated by the first-class constraints, namely
essentially the set of large gauge transformations. Hence large gauge transformations
correspond to the cohomologically non trivial, namely the harmonic components of
α andβ. However the strict invariance of the global phase space variablesaγ and
bγ under large gauge transformations will be not required. Rather, having in mind
abelian gauge symmetries forp-forms fields defined in terms of the univalued expo-
nential (1.7), the global physical observables to be required to remain invariant under
large gauge transformations are the holonomy or Wilson loopoperators of the TFT
sector around compact orientable submanifoldsΣp andΣd−p in Σ. The only non triv-
ial Wilson loops are those around homotopically non trivialcycles, namely elements

[Γp] of Hp(Σ, Z) which may be decomposed in the basis
{

Σγ
(p)

}Np

γ=1
. Consequently,

given the basis ofker△(p) constructed from (3.4) one has the following set of global
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Wilson loop observables

W [Γ(p)] = exp




i

Np∑

γ=1

σγ

∮

Σγ

(p)

A




 = exp



i

Np∑

γ=1

σγ aγ



 ,

W [Γ(d−p)] = exp




i

Np∑

γ=1

σ̃γ

∮

Σγ

(d−p)

B




 = exp



i

Np∑

γ=1

σ̃γ bγ



 ,

whereσγ , σ̃γ are arbitrary integers. Large gauge transformations associated to closed
formsα andβ act on the global variablesaγ andbγ according to

a′γ = aγ + αγ , b′γ = bγ + βγ , (3.11)

whereαγ andβγ are given by

αγ =

∮

Σγ

(p)

α, βγ =

∮

Σγ

(d−p)

β.

Although the Wilson loops are constructed on the free abelian pth homology group
Hp(Σ, Z), the cohomology group including the large gauge transformation parameters
is dual to the singular homology groupHp(Σ, R). Hence, the only allowed large gauge
transformations correspond to components of the harmonic content of the formsα and
β which are discrete and quantised,

αγ =

∮

Σγ

(p)

α = 2π ℓγ
(p), βγ =

∮

Σγ

(d−p)

β = 2π ℓγ
(d−p). (3.12)

Hereℓγ
(p) andℓγ

(d−p) are integers which characterise the winding numbers of the large
gauge transformations, namely the periods of these transformations around the ho-
mology cycle generators. The requirement of gauge invariance of all Wilson loops
hence constrains the parameters of large gauge transformations to belong to the dual
of the free abelian homology group. As a consequence, finallythe physical classi-
cal phase space in the TFT sector is the quotient of the de Rhamcohomology group
Hp(Σ, R)⊕Hd−p(Σ, R) by the additive lattice group defined by the transformations,

a′γ = aγ + 2π ℓγ
(p), b′γ = bγ + 2π ℓγ

(d−p),

namely a finite dimensional compact space having the topology of a torus of dimen-
sion2Np.
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3.1.3 Classical TP Factorisation and Landau projection

To venture so deeply into topological aspects is essential within the context of our TP
factorisation of topologically massive gauge theories. Indeed we have extended the
analysis usually developed for pure topological field theories to dynamical topolog-
ical mass generation theories. As a result the topological sector consists in a finite
dimensional phase space (3.10) of global variables as is thecase for any pureAF or
BF topological field theory. This phase space endowed with a symplectic structure
is further restricted into a compact torus by the action of large gauge transforma-
tions. The isolation of the TFT sector is very reminiscent ofa Landau projection onto
the quantum ground state of topologically massive gauge theories (TMGT), already
known for the Maxwell-Chern-Simons theory (1.33) which is the gauge field theoretic
extension of the Landau problem [55, 56]. But now the TFT sector is made manifest
already at the classical level through a simple reparametrisation of phase space.

Likewise the dynamical sector may also be split into local and global sectors following
the same process, which is a novel approach within this context1. Hence, in contradis-
tinction to what is sometimes advocated in the literature, the dynamical sector contains
also global variables belonging to a symplectic vector space isomorphic to (3.10) and
which are therefore topological invariants. Of course thisglobal dynamical subsector
may not be referred to as being topological since any dynamical sector of the Hamil-
tonian necessarily requires the introduction of a metric structure. Therefore, not only
our analysis enables to distinguish the topological and dynamical sectors but also to
split these sectors into subsectors of local and global variables, leading to the structure
in Fig.3.1 valid for all types of TMGT in any dimension.

Figure 3.1:Classical factorisation of TMGT within the Hamiltonian formulation, in-
cluding the local and global subsectors.

1Actually, what is usually called “global sector” is the sector of modes of zero momentum resulting
from a metric dependent spectral decomposition of the phasespace variables, for a given space manifold
Σ. Therefore, these “0-modes” are not topological invariant. However in our present approach in terms of
the topological invariant inner product (3.4), a global sector of topological invariant phase space variables
is isolated without specifying any metric structure.
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3.2 Hilbert space factorisation in canonical quantisation

The BRST formalism offers a powerful and elegant quantisation procedure for TMGT
but requires the introduction of ghosts. In some respects, this formalism has also been
used for the definition and characterisation of topologicalquantum field theories [20].
In a related manner, the path integral quantisation of thesetheories also brings to the
fore the characterisation of topological invariants through concepts of quantum field
theory. For example, the two-point correlation function ofBF (andAF ) theories
provides a quantum field theoretic realisation of the linking number of two surfaces of
dimensionsp and(d−p) embedded inM and its path integral representation through
the Ray-Singer analytic torsion of the underlying manifold. Notwithstanding these
achievements, this Chapter will not rely on such methods which necessarily require
some gauge fixing procedure. Rather, ordinary Dirac canonical quantisation methods
will be implemented to unravel the physical content of TMGT.First, this quantisation
procedure is best adapted to a condensed matter interpretation. It also enables to deal
with large gauge transformations on homologically non trivial manifolds. Second, the
new TP factorisation identified within the Hamiltonian formulation independently of
any gauge fixing procedure makes canonical quantisation especially attractive.

3.2.1 Dynamical and topological sectors

Canonical quantisation readily proceeds from the correspondence principle. Accord-
ing to this principle, classical Poisson brackets are mapped onto equal time quantum
commutation relations for the classical variables which are promoted to linear self-
adjoint operators acting on the Hilbert space of quantum states in the Schrödinger
picture at the reference timet = t0,

[

Âi1···ip
(t0, ~x ), B̂j1···jd−p

(t0, ~y )
]

=
i ~

κ
ǫi1···ipj1···jd−p

δ(d)(~x − ~y ),

[

Êi1···ip(t0, ~x ), Ĝj1···jd−p(t0, ~y )
]

= − i ~

κ
ǫi1···ipj1···jd−p δ(d)(~x − ~y ).

A possible representation of the associated Hilbert space is in terms of functionals
Ψ[A, E] with their canonical hermitian inner product defined in terms of the field
degrees of freedomA(~x ) andE(~x ).

It should be clear that the PT factorisation identified at theclassical level extends to
the quantum system. The full Hilbert space of the system factorises into the tensor
product of two separate and independent Hilbert spaces, each of which is the repre-
sentation space of the operator algebra of either the gauge invariant dynamical sector
or the TFT sector. As a consequence of the complete decoupling of these two sectors,
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one of which contributes to the physical Hamiltonian only, the other to the first-class
constraint operators only, a basis of the space of quantum states may be constructed in
terms of a likewise factorisation of wave functionals. Symbolically one has

Ψ[A, E] = Φ[E] Ψ[A].

The componentΦ[E] associated to the dynamical sector is manifestly gauge invariant
and is the only one which contributes to the energy spectrum.The physical Hilbert
subspace associated to the TFT sector,HΨ, consists of those wave functionalsΨP [A]

which are invariant under small gauge transformations, namely which belong to the
kernel of the first-class constraint operators generating these transformations. Further-
more the physical wave functional carries a projective representation of the group of
large gauge transformations (LGT) [32] or may be required tobe invariant under these
transformations from a more restrictive perspective.

When the space manifoldΣ is topologically trivial, for instance in the case of the
hyperplane, quantisation of TMGT does not offer much interestper sebesides the free
dynamics of the dynamical sector, since the TFT sector then possesses a single gauge
invariant quantum state. However in the presence of external sources, or when the
space manifoldΣ does have non trivial topology, new and interesting features arise.
In the latter situation, to be addressed hereafter, the finite though multi-dimensional
gauge invariant content of the TFT sector,ΨP [A], does not contribute to the energy
spectrum. As demonstrated later, the resulting degeneracyof the energy eigenstates of
the complete system depends on topological invariants ofΣ. Since the physical wave
functionalΨP [A] in the topological sector coincides with that of a pure topological
quantum field theory, one recovers the results of R. J. Szabo [32] who solved within
the Schrödinger picture the pure topologicalBF theory in any dimension.

3.2.2 Local and global subsectors

At the classical level, phase space has been separated into two decoupled sectors:
the TFT and the dynamical sectors. According to the Hodge decomposition theorem
(1.10), each of the corresponding fields may in turn be decomposed into three fur-
ther subsectors in terms of their longitudinal, transverseand global components. The
Gauss law constraints in conjunction with invariance undersmall gauge transforma-
tions reduce the TFT sector to its global variables only, characterised by the vector
spaceP of the de Rham cohomology group in (3.10), which is to be restricted further
into a compact torus by the lattice action of the appropriatediscrete large gauge trans-
formations. Likewise in the dynamical sector, the global degrees of freedom of phase
space are also purely topological and are again isomorphic to the2Np-dimensional
symplectic vector spaceP in (3.10). In each case, these spaces are spanned by the
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global variables defined as in (3.5) and (3.6), namely(aγ , bγ) and(Eγ , Gγ), respec-
tively. It is intuitive to introduce for these even dimensional vector spaces a complex
structure parametrised by aNp×Np complex symmetric matrix,τ = ℜ(τ)+i ρ, such
that (−τ) takes its values in the Siegel upper half-space2. Such a complex structure
introduced over the phase space of global degrees of freedomenables the definition
of a holomorphic phase space polarisation, hence quantisation of these sectors. The
same decomposition in terms of longitudinal, transverse and global degrees of free-
dom applies at the quantum level. Through the correspondence principle, these three
subsectors of quantum operators obey the Heisenberg algebra, whether for the TFT or
the dynamical sector.

3.3 The topological sector

3.3.1 Hilbert space and holomorphic polarisation

For what concerns the local operators, one has

h

ϕ̂i1···ip−1(t0, ~x ), P̂
j1···jp−1
ϕ (t0, ~y )

i

=
i ~

κ

“

ΠT
”j1···jp−1

i1···ip−1

δ(~x − ~y ), (3.13)

h

ϑ̂i1···id−p−1(t0, ~x ), Q̂
j1···jd−p−1

ϑ (t0, ~y )
i

= −
i~

κ

“

ΠT
”j1···jd−p−1

i1···id−p−1

δ(~x − ~y ),

while for the global operators,
[

âγ(t0), b̂
γ′

(t0)
]

= i
~

κ
Iγγ′

.

Introducing now the holomorphic combinations of the latteroperators3,

ĉγ =

√
κ

2 ~

Np∑

δ=1

(

Iγδ âδ + τγδ b̂δ
)

, (3.14)

ĉ†γ =

√
κ

2 ~

Np∑

δ=1

(

Iγδ âδ + τγδ b̂δ
)

,

whereIγδ is the inverse of the intersection matrix,

Np∑

δ=1

Iγδ Iδγ′

= δγ′

γ ,

2Namely the set ofNp × Np complex symmetric matrix whose imaginary part is positive definite.
3It is implicitly assumed here that the parameterκ is strictly positive. Ifκ is negative, the roles of the

operatorŝaγ andb̂γ are simply exchanged in the discussion hereafter.
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one finds the Fock type algebra
[

ĉγ , ĉ†γ′

]

= ℑ(τ)γγ′ = ργγ′ , (3.15)

all other possible commutators vanishing identically. Note that this result implies
that the inner product in this sector of Hilbert space is to bedefined in terms of the
imaginary part(ρ−1)γγ′

, in a manner totally independent from the Riemannian met-
ric structure of the compact space submanifoldΣ. A priori, physical observables in
pure topological quantum field theories ought neverthelessto be independent from any
extraneousad hocstructure introduced through the quantisation process such as the
present complex structure.

Gauss law constraints and large gauge transformations are to be considered in the wave
functional representation of Hilbert space. The latter is spanned by the direct prod-
uct of basis vectors for the representation spaces of the algebras (3.13) and (3.15).
These consist of functionalsΨ[ϕ, ϑ, c] of the infinite dimensional space of field con-
figurations in the TFT sector. Accordingly, the inner product of such states is defined
by

〈Ψ1 |Ψ2〉 =

∫

[Dϕ] [Dϑ]

[
∏

γ

dcγ

]

(det ρ)−1/2 Ψ∗
1[ϕ, ϑ, c] Ψ2[ϕ, ϑ, c],

which requires the specification of a functional integration measure. This measure is
taken to be the gaussian measure for fluctuations in the corresponding fields, which is
induced by the Riemannian metric onΣ for fluctuations inϕ andϑ,

δϕ2 =

∫

Σ

d~x hi1k1(~x ) . . . hip−1kp−1(~x ) δϕi1···ip−1(~x ) δϕk1···kp−1(~x ) ,

δϑ2 =

∫

Σ

d~x hj1l1(~x ) . . . hjd−p−1ld−p−1(~x ) δϑj1···jd−p−1
(~x ) δϑl1···ld−p−1

(~x ) ,

or else by the complex structureτ in the global sector,

δc2 =

Np∑

γ,γ′=1

(ρ−1)γγ′

δcγ δcγ′ . (3.16)

In contradistinction to an ordinary pure topological quantum field theory, such a space
metric is readily available within the context of TMGT, being necessary for the speci-
fication of the dynamical fields. Independently from the complex structure introduced
in the global sector, independence of the physical Hilbert space measure in the(ϕ, ϑ)

sector on the metric onΣ will be established hereafter. Consequently the canonical
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commutation relations (3.13) and (3.15) in the TFT sector are represented by the fol-
lowing functional operators acting on the Hilbert space wave functionals. On the one
hand those refering to the local operatorsϕ̂ andϑ̂,

ϕ̂i1···ip−1(~x ) ≡ ϕi1···ip−1(~x ) , ϑ̂i1···id−p−1
(~x ) ≡ ϑi1···id−p−1

(~x ) ,

and their conjugate momenta,

P̂ i1···ip−1
ϕ (~x ) ≡ − i ~

κ

(
ΠT
)i1···ip−1

j1···jp−1

δ

δϕj1···jp−1(~x )
,

Q̂
i1···id−p−1

ϑ (~x ) ≡ i ~

κ

(
ΠT
)i1···id−p−1

j1···jd−p−1

δ

δϑj1···jd−p−1
(~x )

,

and on the other hand those constructed from the global sector (3.15),

ĉγ ≡ cγ , ĉ†γ ≡ −
Np∑

γ′=1

ργγ′

∂

∂cγ′

. (3.17)

3.3.2 Gauss law constraints

The physical Hilbert space is invariant under all gauge transformations. A first restric-
tion arises by requiring the physical quantum states to be invariant under small gauge
transformations generated by the first-class constraints.This set is the kernel of the
Gauss law constraint operators (2.24) which remain defined as in the classical theory
since no operator ordering ambiguity is encountered,

Ĝ(1)
∣
∣ΨP

〉
= 0 ⇒ δ

δϑi1···id−p−1
(~x )

ΨP [ϕ, ϑ, c] = 0,

Ĝ(2)
∣
∣ΨP

〉
= 0 ⇒ δ

δϕi1···ip−1(~x )
ΨP [ϕ, ϑ, c] = 0.

Hence physical quantum states necessarily consist of wave functionals which are to-
tally independent of the longitudinal variables (ϕ, ϑ). When restricted to such states
and properly renormalised, the inner product integration measure is constructed from
the definition (3.16) of the gaussian metric on the space of fluctuations in the global
coordinates,

〈Ψ1 |Ψ2〉 =

∫
∏

γ

dcγ (det ρ)
−1/2

Ψ∗
1(c)Ψ2(c).

This measure on the physical Hilbert space is thus indeed independent of the Rie-
mannian metric onΣ, and involves only thead hoccomplex structureτ introduced
towards the quantisation of the global TFT sector.
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3.3.3 LGT and global variables

Construction of the operator generating LGT

The structure of the physical Hilbert spaceHΨ dramatically depends on the way one
deals with LGT. Given the holomorphic parametrisation (3.14), under the lattice action
of LGT of periods(ℓγ

(p), ℓ
γ
(d−p)) ≡ (ℓ(p), ℓ(d−p)) as defined in (3.12) the new global

operators should transform as,

c′γ = cγ +

√

2 π2 κ

~

Np∑

γ′=1

(

Iγγ′ ℓγ′

(p) + τγγ′ ℓγ′

(d−p)

)

,

c′γ
†

= c†γ +

√

2 π2 κ

~

Np∑

γ′=1

(

Iγγ′ ℓγ′

(p) + τγγ′ ℓγ′

(d−p)

)

. (3.18)

Using the following Baker-Campbell-Hausdorff (BCH) formula for any two operators
Â andB̂ commuting with their own commutator,

eÂ B̂ e−Â = B̂ +
[

Â, B̂
]

, eÂ+B̂ = e−
1
2 [Â,B̂] eÂ eB̂, (3.19)

it may be seen that the quantum operatorÛLGT

(

ℓ(p), ℓ(d−p)

)

generating the large

gauge transformations of periodsℓ(p) andℓ(d−p) is

ÛLGT = Cℓ

(

ℓ(p), ℓ(d−p)

) Np∏

γ,γ′,ǫ

exp

{

2 π

√
κ

2 ~
(ρ−1)γγ′

(3.20)

×
[(

Iγǫ ℓǫ
(p) + τγǫ ℓǫ

(d−p)

)

ĉγ′ −
(

Iγǫ ℓǫ
(p) + τγǫ ℓǫ

(d−p)

)

ĉ†γ′

]}

.

The 1-cocycleCℓ

(

ℓ(p), ℓ(d−p)

)

will be determined presently. This operator (3.20)

defines the action of LGT on the Hilbert space in the global TFTsector,

ÛLGT Ψ (cγ) =

Np∏

γ,γ′,δ,ǫ

eπ2 κ
~ [Iγδ ℓδ

(p)+τγδ ℓδ
(d−p)] (ρ

−1)γγ′

[Iγ′ǫ ℓǫ
(p)+τγ′ǫ ℓǫ

(d−p)]

×
Np∏

γ,γ′,δ

eπ
√

2κ
~ [Iγδ ℓδ

(p)+τγδ ℓδ
(d−p)] (ρ

−1)γγ′

cγ′ (3.21)

×Cℓ Ψ



cγ + π

√

2κ

~

Np∑

γ′=1

[

Iγγ′ ℓγ′

(p) + τγγ′ ℓγ′

(d−p)

]



 ,
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where the BCH formula (3.19) has been used. However, a U(1)×U(1) 2-cocycle
ω2(k; ℓ) appears in the composition law of this quantum representation,

Û
“

k(p) + ℓ(p), k(d−p) + ℓ(d−p)

”

= e
−2iπω2(k;ℓ) Ck+ℓ

Ck Cℓ

Û
“

k(p), k(d−p)

”

Û
“

ℓ(p), ℓ(d−p)

”

,

ω2

“

k(p), k(d−p); ℓ(p), ℓ(d−p)

”

= −
π κ

~

Np
X

γ,γ′=1

Iγγ′

h

ℓ
γ

(d−p) k
γ′

(p) − k
γ

(d−p) ℓ
γ′

(p)

i

.

The 1-cocycleC
(

ℓ(p), ℓ(d−p)

)

appearing in (3.20) may be determined by requir-

ing that the abelian group composition law for LGT is recovered. This implies that
ω2(k; ℓ) is a coboundary,

ω2(k; ℓ) = C1

(

k(p) + ℓ(p), k(d−p) + ℓ(d−p)

)

−C1

(

k(p), k(d−p)

)

− C1

(

ℓ(p), ℓ(d−p)

)

(modZ),

Cℓ ≡ C
(

ℓ(p), ℓ(d−p)

)

= e2 i π C1(ℓ(p),ℓ(d−p)).

A careful analysis, analogous to the one in [72], finds that the unique solution to this
coboundary condition is

κ =
~

2π
I k, C

(

ℓ(p), ℓ(d−p)

)

=

Np∏

γ,γ′=1

ei π k I ℓγ

(d−p)
Iγγ′ ℓγ′

(p) , (3.22)

wherek ∈ Z and4 I = det
(

Iγγ′

)

∈ N. It is noteworthy to recall that althoughIγγ′ is

a rational valued matrix,I Iγγ′ is integer valued. Note also the quantisation condition
arising for the coefficientκ multiplying the topological terms in the original action of
TMGT.

Characterisation of the physical Hilbert space

If k is rational, namely ifk = k1/k2 with k1, k2 strictly positive natural numbers,
invariance of physical states under LGT cannot be achieved.However in this case
the LGT group has a finite dimensional projective representation which may be con-
structed by finding a normal subgroup generated by the LGT operators. As demon-
strated in [32], the TFT part of the physical wave functions carries a projective repre-

4Recall thatκ, hencek is assumed to be strictly positive in the present discussion, while the situation
for a negativeκ or k is obtained through the exchange of the sectorsaγ andbγ .
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sentation of the group of LGT while the above discussion establishes that the dimen-
sion of the physical Hilbert space5 is

dim
(

Hk1,k2

Ψ

)

=

Np∏

δ=1

k1 k2 I Min(Iδδ′ ) .

Any state of a given irreducible representation gives the same matrix element for a
physical observable. The characterisation of Hilbert space changes qualitatively for
integer or rational values ofk, but the theory remains well-defined.

If we takek to be an integer, see (3.22), wave functions of the physical Hilbert space
may be classified in terms of irreducible representations ofthe group of LGT (3.21),

Ψ



η1; cγ +
√

π I k

Np∑

γ′

[

Iγγ′ kγ′

(p) + τγγ′ kγ′

(d−p)

]



 (3.23)

=

Np∏

γ,γ′

δ,ǫ

exp

{−πIk

2

[

Iγδk
δ
(p) + τγδk

δ
(d−p)

]

(ρ−1)γγ′

[

Iγ′ǫk
ǫ
(p) + τγ′ǫk

ǫ
(d−p)

]}

×
Np∏

γ,γ′,δ

exp
{

−
√

πI k
[

Iγδ kδ
(p) + τγδ kδ

(d−p)

]

(ρ−1)γγ′

cγ′

}

×
Np∏

γ,γ′

exp
{

2 i π η1(k(p), k(d−p)) − i π k I kγ
(d−p) Iγγ′ kγ′

(p)

}

Ψ (η1; cγ) ,

where the 1-cocycleη1

(

k(p), k(d−p)

)

characterises the irreducible representation.

Since for an abelian group each of its irreducible representations is one-dimensional,
physical states corresponding to a given irreducible representation are singlet under
LGT.

As is well-known, functions obeying such a double periodicity condition are noth-
ing other than the generalised Riemann theta functions defined in any dimension on
the complexNp-torus [32], with the compact reduced phase space resultingfrom the
requirement of invariance under LGT,

Ψrδ

(
aδ

bδ

)

(cγ) =

Np∏

γ,γ′=1

(

e−
1
2 cγ (ρ−1)γγ′

cγ′

)

(3.24)

Θ

[
∑Np

δ′=1
Iδ′δ

I k (aδ′ + rδ′ )

bδ

](√

I k

π
cγ

∣
∣
∣
∣
∣
− I k τ

)

,

5Notice that we obtain a slightly different result from that of Ref. [32].
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where

rδ ∈ [0, k I Min(Iδδ′ ) − 1] ⊂ N .

Each physical subspace, characterised by the 1-cocycle

η
(ab)
1 (k(p), k(d−p)) = aγ kγ

(p) + bγ kγ
(d−p) , where aγ , bγ ∈ [0, 1[⊂ R ,

is invariant under a particular irreducible representation of LGT. The TFT component
of each physical Hilbert space is of dimension

dim
(
Hk

Ψ

)
=

Np∏

δ=1

k I Min(Iδδ′ ) .

In general, the choice of physical Hilbert space which is invariant under all LGT is the
representation space withη1(k(p), k(d−p)) ∈ Z, namely corresponding toaγ , bγ = 0.

3.4 The dynamical sector : Hamiltonian diagonalisation

Based on Hodge’s theorem, (1.10) and (3.2) define the decomposition of the dynam-
ical sector into three decoupled subsectors of canonicallyconjugate variables: the
global harmonic sector and the local(EL, PE) and (GL, QG) sectors. In turn the
classical Hamiltonian (2.23) decomposes into three separate contributions, one for
each subsector. When quantising the system in each subsector, the total quantum
Hamiltonian follows from the classical one without any operator ordering ambiguity,

Ĥ[Ê, Ĝ] = Ĥh[Êh, Ĝh] + Ĥ1[ÊL, P̂E ] + Ĥ2[ĜL, Q̂E ].

The physical spectrum is thus identified by diagonalising each of these contributions
separately.

3.4.1 Global degrees of freedom

The choice of normalisation used previously in the harmonicsector relies on the
Poincaré duality between the basis elements[Xγ ] and[Y γ ] of the relevant cohomol-
ogy groups and their associated homology generatorsΣγ

(p) andΣγ
(d−p), respectively,

see (3.4). This choice is of a purely topological character.However in the dynamical
sector, there is a remaining freedom as far as the normalisation of the choice of the har-
monic representative of the cohomology group is concerned,depending on the metric
structure, and thus fixing the basis elementsXγ of ker△(p) andY γ of ker△(d−p).
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This choice involves the inner product in (2.15) on which theHodge decomposition
relies. Hence one sets

∫

Σ

Xγ ∧ ∗Xγ′ =
e

g
Ωγγ′ ,

∫

Σ

Yγ ∧ ∗Yγ′ =
g

e
Ω̃γγ′, (3.25)

whereΩγγ′ andΩ̃γγ′ areNp×Np real symmetric matrices. Given this normalisation,
the global part of the metric dependent quantum Hamiltonianoperator constructed
from (2.23) is expressed as

Ĥh[Êγ , Ĝγ′

] =
1

2
e g

Np∑

γ,γ′=1

[

Êγ Êγ′

Ωγγ′ + ĜγĜγ′

Ω̃γγ′

]

, (3.26)

while the non vanishing commutation relations between the global phase space oper-
ators read

[

Êγ , Ĝγ′

]

= −i ~ κ Iγγ′

. (3.27)

As in the TFT sector, see (3.14), the following holomorphic polarisation of the global
dynamical sector is used,

dγ =
1√
2~ κ

Np∑

α=1

(

Iγα Êα − υγα Ĝα
)

,

d†γ =
1√
2~ κ

Np∑

α=1

(

Iγα Êα − υγα Ĝα
)

,

whereυ = ℜ(υ) + i σ is theNp × Np complex symmetric matrix characterising the
complex structure introduced in the global dynamical phasespace sector, of which the
imaginary part determines the non vanishing commutation relations of the Fock like
algebra

[

dγ , d†γ′

]

= σγγ′ . (3.28)

In order to readily diagonalise the Hamiltonian in the global sector which is of the har-
monic oscillator form, it is convenient to make the following choice for the complex
structure matrixv as well as for the normalisation quantities specified in (3.25),

ℜ(υ) = 0, σγγ′ = Ω̃γγ′ = δγγ′, Ωγγ′ =

Np∑

α,β=1

Iαγ Iβγ′ δαβ , (3.29)
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whereδγγ′

is theNp ×Np Kronecker symbol. With these choices, the contribution of
the global variables to the Hamiltonian is indeed diagonal,

Hg =
1

2
~ µ Np + ~ µ

Np∑

γ,γ′=1

d†γ dγ′ δγγ′

, µ = e g κ.

One recognizes the Hamiltonian of a collection ofNp independent harmonic oscilla-
tors of angular frequency6 µ, which turns out to be the mass gap of the quantum field
theory. The operatorsdγ andd†γ are, respectively, annihilation and creation operators
obeying the Fock algebra (3.28) now withσγγ′ = δγγ′. The energy spectrum in the
global dynamical sector of the system is readily identified.The normalised fundamen-
tal state is the kernel of all annihilation operators,

dα |0〉 = 0, εh
(0) =

1

2
Np ~ µ, 〈0|0〉 = 1,

whereεh
(0) is the vacuum energy. Excited states,|nγ〉, are obtained through the action

of the Np creation operatorsd†γ on the fundamental state. This leads to the energy
eigenvalue for any of these states,

|nγ〉 =

Np∏

γ=1

1
√

nγ !

(
d†γ
)nγ |0〉, ε(nγ) = εh

(0) + ~ µ

Np∑

γ=1

nγ , (3.30)

{nγ}Np

γ=1 being the eigenvalues of each of the number operatorsd†γdγ , hence positive
integers.

3.4.2 Local degrees of freedom on the torus

The canonical treatment of the global degrees of freedom in both the TFT and dynam-
ical sectors does not require the explicit specification of the space manifoldΣ with its
topology and Riemannian metric, yet allowing the general discussion of the previous
Sections. However, in order to identify the full spectrum ofdynamical physical states,
the space manifoldΣ including its geometry has now to be completely specified. The
explicit choice to be made for the purpose of the present discussion is that of thed-
dimensional Euclidean torus,Σ = Td, enabling Fourier mode analysis of the then
infinite discrete, thus countable set of degrees of freedom,and diagonalisation of the
harmonic oscillator structure of the Hamiltonian.

6Recall that under the assumptions of the analysis, this combination of parameters is indeed positive.



70 Chapter 3. A new perspective on the lowest Landau level projection

Notations

This particular choice of thed-torus is motivated by the fact that this manifold is
the simplest flat yet non simply connected manifold. This topological space may be
defined in an equivalent way as the product

Td = S1 ⊗ · · · ⊗ S1

︸ ︷︷ ︸

d

,

or as a quotient spaceT d = R2/ ∼. The first definition highlights the structure of
the first homology (homotopy group) ofTd while the second definition relies on any
choice of lattice vectors specifying the geometry of thed-torus.

The lattice vectors are to be denoted~ea, a=1, . . . , d. This basis of which the associ-
ated metric is denotedgab generates the lattice

Λ ≡
{

~ℓ = ℓi~ei|ℓi = ℓa ei
a, ℓ

a ∈ Z

}

,

where an orthonormal basis of vectors~ei is introduced as a linear combination of
vectors of the original basis~ea, and conversely

~ea = ei
a ~ei , gab = ei

a δij ej
b .

Then the elementary cell of volumeV =
√

det(g) is defined as

C(Λ) ≡
{
~x = xi~ei|xi = xa ei

a, xa ∈ [0, 1]
}

.

The dual basesei andea of these lattice vectors~ei and~ea are respectively defined as

ea(~eb) = δa
b , ei(~ej) = δi

j .

Then the relation between the dual bases is expressed in terms of the coefficients̃ea
i ,

ea = ẽa
i ei , ẽa

i ei
b = δa

b .

Given these definitions, the dual lattice is generated by 1-form basis vectors such that

Λ̃ =
{
k = kie

i|ki = kaẽa
i , ka ∈ [0, 1]

}
,

wherek are discrete vectors of which the components are measured inunits ofL−1.
Their norm is expressed asω(k) =

√

ki kj δij =
√

ka ka gab.

Therefore the equivalence relation∼ defining thed-Torus reads

~x ∼ ~y ⇔ ~x = ~y + ~ℓ , ~ℓ = ℓi~ei ∈ Λ ,

where the representative of each equivalence class is chosen to belong toC(Λ).
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Fourier mode expansion

Accordingly, the variablesE andG of the dynamical sector are periodic around the
torusp- and(d − p)-cycles, respectively. Their Fourier mode expansions read

E
i1...ip

⊥ (~x ) = δi1j1 . . . δipjp

∑

k 6=0

d−1∑

α1=1
...

αp−1=1

ε
α1···αp

j1··· jp
(k)Eα1···αp(k) e2 i π k(~x ) ,

whereEα1···αp(k) is a complex valued antisymmetric tensor. Note that the zeromodes
of the fields are not included in these expressions, as emphasized by the subscript⊥.
In fact, these zero modes are the global degrees of freedom which have already been
dealt with in the previous Section. The real valued tensorsε

α1···αp

i1···ip
(k) define a basis

of orthonormalised polarisation tensors for eachk 6= 0. In our conventions, these
tensors are constructed from a orthonormalised basis of polarisation vectorsεα

i (k) for
a vector field such that

εα
i (k) εβ

j (k) δij = δαβ , (3.31)

whereδαβ is the Kronecker symbol in polarisation space. This basis ischosen in such
a way that, for eachk 6= 0, the dual lattice vectorεd(k) is longitudinal whereas the
vectorsεα(k) are transverse forα = 1, · · · , d − 1. Finally, it is convenient to choose
for the longitudinal vector

εd(k) =
k

ω(k)
, k 6= 0.

Given the recursion relation induced by the Hodge decomposition theorem, the general
polarisation tensor of anyp-tensor field may be expressed as

ε
α1···αp

i1···ip
(k) =

1

p!
εα1

[i1
(k) . . . ε

αp

ip](k),

which may likewise be decomposed into transverse and longitudinal components,

Longitudinal :
{

ε
α1···αp−1 d
i1··· ip−1 ip

(k)
}d−1

α1,...,αp−1=1
;

Transverse :
{

ε
α1···αp

i1···ip
(k)
}d−1

α1,...,αp=1
. (3.32)

Given any mode, theCp
d degrees of freedom of a phase space field then separate into

Cp−1
d−1 longitudinal andCp

d−1 transverse degrees of freedom. These notations having
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been specified, and using the decompositions defined in (3.2), the relevant quantum
operatorsÊi1···ip

⊥ (~x ) andĜ
ip···id−p

⊥ (~x ) are Fourier expanded as

Ê
i1···ip

⊥ =
X

k 6=0

8

>

>

>

<

>

>

>

:

δ
i1j1 . . . δ

ipjp p

d−1
X

α1=1
...

αp−1=1

ε
α1···αp−1 d

j1··· jp−1 jp
(k) Ê

α1···αp−1

L (k)

+ κ
ǫi1···ip j1···jd−p

(d − p − 1)!

d−1
X

α1=1
...

αd−p−1

ε
α1···αd−p−1 d

j1··· jd−p
(k) Q̂

α1···αd−p−1

G (k)

9

>

>

>

>

=

>

>

>

>

;

e2 i π k(~x )
,

Ĝ
ip···id−p

⊥ =
X

k 6=0

8

>

>

>

>

<

>

>

>

>

:

δ
i1j1 ...δ

id−pjd−p(d − p)

d−1
X

α1=1
...

αd−p−1

ε
α1···αd−p−1 d

j1··· jd−p
(k) Ĝ

α1···αd−p−1

L (k)

+
κ

(p − 1)!
ǫ
j1···jp i1···id−p

d−1
X

α1=1
...

αp−1

ε
α1···αp−1 d

j1··· jp−1 jp
(k) P̂

α1···αp−1

E (k)

9

>

>

>

=

>

>

>

;

e2 i π k(~x )
.

The self-adjoint property of the operatorÊi1···ip(~x ) translates into the following rela-
tions between the associated mode operators and their adjoint,

d−1
X

α1=1
...

αp−1=1

ε
α1···αp−1 d

j1··· jp−1 jp
(k) Ê

α1···αp−1

L (k) =
d−1
X

α1=1
...

αp−1=1

ε
α1···αp−1 d

j1··· jp−1 jp
(−k) Ê

† α1···αp−1

L (−k),

d−1
X

α1=1
...

αd−p−1

ε
α1..αd−p−1 d

i1··· id−p
(k) Q̂

α1..αd−p−1

G (k) =
d−1
X

α1=1
...

αd−p−1

ε
α1..αd−p−1 d

i1··· id−p
(−k) Q̂

† α1..αd−p−1

G (−k).

Similar relations apply for the modes of the self-adjoint operatorĜip···id−p(~x ).

Consequently, this decomposition of the non zero modes of the field operators in the
dynamical sector leads to two decoupled subsectors, each ofwhich is comprised of
a countable set of mode operators withk 6= 0. In the first subsector one has the
operatorsÊL(k) andP̂E(k) with the following non vanishing commutation relations,

[

Ê
† α1···αp−1

L (k), P̂
β1···βp−1

E (k′)
]

= i
~

V
δα1[β1 . . . δαp−1 βp−1]δkk′ , (3.33)
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while in the second subsector the operatorsĜL(k) andQ̂G(k) possess the commutator
algebra,

[

Ĝ
† α1···αd−p−1

L (k), Q̂
β1···βd−p−1

G (k′)
]

= i
~

V
δα1[β1 . . . δαd−p−1 βd−p−1]δkk′ . (3.34)

Diagonalisation of the Hamiltonian

This Fourier mode decomposition reduces the problem of diagonalising the Hamilto-
nian to a simple exercise in decoupled quantum oscillators,with

Ĥ1[ÊL, P̂E ] =
V

2

κ2 g2

(p − 1)!

∑

k 6=0

(

P̂
α1···αp−1

E (k)
)2

(3.35)

+
V

2

1

(p − 1)!

1

κ2 g2

∑

k 6=0

ω̃2(k)
(

Ê
α1···αp−1

L (k)
)2

,

Ĥ2[ĜL, Q̂E] =
V

2

κ2 e2

(d − p − 1)!

∑

k 6=0

(

Q̂
α1···αd−p−1

G (k)
)2

(3.36)

+
V

2

1

(d − p − 1)!

1

κ2 e2

∑

k 6=0

ω̃2(k)
(

Ĝ
α1···αd−p−1

L (k)
)2

.

In these expressions the following notation is being used,

(

Ê
α1···αp−1

L (k)
)2

=

d−1∑

α1,...,αp−1=1
β1,...,βp−1=1

Ê
α1···αp−1

L (k) Ê
† β1···βp−1

L (k) δα1β1 . . . δαp−1βp−1 .

The operators (3.35) and (3.36) are nothing other than the Hamiltonians of a collec-
tion of Cp−1

d−1 andCp
d−1 independent harmonic oscillators, respectively, all of angular

frequency

ω̃(k) =
√

4 π2 ω2(k) + µ2, µ = e g κ.

The physical spectrum may easily be constructed by introducing annihilation and cre-
ation operators associated to the algebras (3.33) and (3.34). The annihilation operators
are defined by

aα1···αp−1(k) =
1

κ g

√

V ω̃(k)

2 ~

(

Ê
α1···αp−1

L (k) + i
g2 κ2

ω̃(k)
P̂

α1···αp−1

E (k)

)

,

bα1···αd−p−1(k) =
1

κ e

√

V ω̃(k)

2 ~

(

Ĝ
α1···αd−p−1

L (k) + i
κ2 e2

ω̃(k)
Q̂

α1···αd−p−1

G (k)

)

,
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whereas the creation operatorsa† α1···αp−1(k) andb† α1···αd−p−1(k) are merely the
adjoint operators ofaα1···αp−1(k) andbα1···αd−p−1(k), respectively. One then estab-
lishes the Fock algebras,

[
aα1···αp−1(k), a† β1···βp−1(k′)

]
= δα1 [β1 . . . δαp−1 βp−1] δkk′ , (3.37)

[
bα1···αd−p−1(k), b† β1···βd−p−1(k′)

]
= δα1 [β1 . . . δαd−p−1 βd−p−1] δkk′ ,

whereas (3.35) and (3.36) then reduce to the simple expressions,

Ĥ1[a, a
†] = ~

X

k 6=0

ω̃(k)

0

@

1

2
C

p−1
d−1 +

d−1
X

α1<···<αp−1

a
† α1···αp−1(k) a

α1···αp−1(k)

1

A ,

Ĥ2[b, b
†] = ~

X

k 6=0

ω̃(k)

0

@

1

2
C

p
d−1 +

d−1
X

α1<···<αd−p−1

b
† α1···αd−p−1(k) b

α1···αd−p−1(k)

1

A .

The Fock space representation is based on the normalised Fock vacuum|0〉, 〈0|0〉 = 1,
which is the kernel of all annihilation operators

aα1···αp−1(k) |0〉 = 0, bα1···αd−p−1(k) |0〉 = 0 ,

where the divergent total vacuum energyε1+2
(0) associated to this fondamental quantum

state reads

ε1+2
(0) =

1

2
~ Cp

d

∑

k 6=0

ω̃(k) .

Excited states are obtained through the action onto the Fockvacuum of allCp
d =

Cp−1
d−1 + Cp

d−1 creation operators, see (3.37). This leads to states|nγ(k)〉 with energy
eigenvalues

ε(nγ(k)) = ε1+2
(0) + ~

∑

k 6=0

Cp
d∑

γ=1

nγ(k) ω̃(k), (3.38)

where{nγ(k)}
Cd

p

γ=1 are positive integers corresponding to number operator eigenvalues.
A shorthand notation is used in (3.38) with the indexγ labelling theCp

d possible com-
binations of a set ofp distinct integers in the range[1, d], {α1, . . . , αi, . . . , αp}d

αi=1,
which will be referred to asΓp

d.
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3.5 Spectrum and projection onto the TFT sector

3.5.1 Physical spectrum on the torus

Combining all the results of the previous Sections for what concerns the diagonalisa-
tion of the physical TMGT Hamiltonian on the spatiald-torusΣ = Td, the complete
energy spectrum of states is given as

ε(nγ(k)) = ε(0) + ~

∑

k∈Zd

∑

γ

nγ(k) ω̃(k) , (3.39)

which is the sum of the contributions (3.30) and (3.38), see Fig.3.2. Note that on the
d-torus, thepth Betti number,Np, equalsCp

d . The components of the vectork of the

dual lattice may take any integer values since it is implicitin (3.39) that{nγ(0)}Cp

d

γ=1 =

{nγ}Np

γ=1. However, the indexγ has a different meaning whetherk 6= 0 or k = 0. In
the first case it refers to a value in the setΓp

d and denotes one of the possibleCp
d

polarisations, while in the second case it is a (co)homologyindex,γ = 1, · · · , Cp
d .

The total vacuum energyε(0) in (3.39) is divergent,

ε(0) =
1

2
~ Cp

d

∑

k∈Zd

ω̃(k) ,

and must be subtracted from the energy spectrum.

The positive integer valued functionsnγ(k) count, for eachk 6= 0, the number of
massive quanta of ap- or (d − p)-tensor field of momentum2π~ k, of polarisation
(3.32), namely

Transverse : εγ
i1···ip

(k), γ ∈ Γp
d−1 ;

Longitudinal : εγ d
i1···ip

(k), γ ∈ Γp−1
d−1 , (3.40)

and of rest mass7

M = ~ µ = ~ κ e g. (3.41)

There are also the contributions of the global quanta of thep- and(d−p)-tensor fields,

where{nγ(0)}Cp
d

γ=1 count the numbers of excitations along the homology cycle gen-

eratorsΣγ
(p) andΣγ

(d−p). In the particular case whenp = 1, the integers{nγ(k)}d
γ=1

count, for eachk 6= 0, the number of massive photons of momentum2π~ k, of rest
massM and of polarisation

Transverse :{εγ
i (k)}d−1

γ=1 , Longitudinal :εd
i (k) .

7A quantity indeed positive under the assumptions made.
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Figure 3.2: Factorisation of Hilbert space for TMGT and the contribution of each
sector to the energy spectrum. The physical Hilbert space ofthe TFT sector is defined
modulo the action of SGT and according to the way we deal with LGT.

Depending on how one deals with large gauge transformationsin the TFT sector,
each energy state is either infinitely degenerate for a real valuedk, see (3.22), or
(
∏Np

δ=1 k1 k2 I Min(Iδδ′ )) times degenerate ifk is a rational number of the formk =

k1/k2. If k is an integer, each energy state is (
∏Np

δ=1 k I Min(Iδδ′ )) times degenerate
and the mass gap is then quantised,

M =
~

2

2π
I k e g .

In the Maxwell-Chern-Simons (MCS) case in2+1 dimensions (1.26), we recover in
the global sector a quantum mechanical system corresponding to the Landau problem
of condensed matter physics on the 2-torus.

3.5.2 Projection onto the topological field theory sector

As introduced in Section 1.5, the naive limits of infinite coupling constants,e → ∞
andg → ∞, in the classical Lagrangian of topologically massive gauge theories, see
(1.26) and (1.23), must lead to a pure topological field theory (TFT) of theAF or BF

type. However, as pointed out by several authors (see for example [71, 56]), a paradox
seems to arise at the quantum level (as well as within the classical Hamiltonian for-
mulation) when the pure Chern-Simons (CS) theory is viewed as the limite → ∞ of
the Maxwell-Chern-Simons (MCS) theory. The Hilbert space of the CS theory is con-
structed from the algebra of the non commuting configurationspace operators which
are in fact canonically conjugate phase space operators. Asfar as the MCS theory is
concerned, its Hilbert space is constructed from the Heisenberg algebras of twice as
many phase space operators. This problem is generic whenever a pure quantum TFT
(TQFT) is considered as the limit of its associated TMGT because two distinct Hilbert
spaces are being compared. Actually, due to the second-class constraints appearing in
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the Hamiltonian analysis of a TFT which is already in Hamiltonian form, non vanish-
ing commutation relations apply to the configuration space operators. Furthermore,
the Gauss law constraints of pure TFT are not the limit of the Gauss law constraints of
TMGT. The former operators tend to restrict too drasticallythe physical Hilbert space
in comparison to the limit of the TMGT physical Hilbert space.

This problem of an ill-defined limit is usually handled by projecting from the Hilbert
space of the TMGT onto its degenerate ground state. This projection acts in a manner
similar to second-class constraints which then lead to a reduced phase space and non
vanishing configuration space commutation relations determined from the associated
Dirac brackets. The global sector of the MCS theory is analogous to the classical Lan-
dau problem of a charged point particle of massm moving in a two dimensional sur-
face in the presence of an uniform external magnetic fieldB perpendicular to that sur-
face. The mass gap (3.41) then corresponds to the cyclotron frequencyωc [55, 56, 73].
The spectrum of the quantised model is organised into Landaulevels (with a degen-
eracy dependent on the homology structure of the underlyingmanifold), of which the
energy separationωc is proportional to the ratioB/m. The limit B → ∞ or m → 0

effectively projects onto the lowest Landau level (LLL) in which one obtains a non
commuting algebra for the space coordinates. By analogy, projection onto the ground
state reduces the phase space of the MCS theory (1.33) to the canonically conjugate
configuration space operators of a pure CS theory. In the global sector, the projection
from a TMGT, (2.14), onto a pure TQFT offers in some sense a generalisation of the
LLL projection in any dimension. The mass gap (3.41) of the TMGT becoming in-
finite for coupling constants running to infinity, all excited states decouple from the
physical spectrum, leaving over only the degenerate groundstates. Projection onto
these ground states restricts the Hilbert space to that of a TQFT.

Interestingly, the PT factorisation established in Chapter 2 enables the usual projec-
tion from TMGT to TQFT to be defined in a natural way. Already inthe classical
Hamiltonian formulation phase space is separated into two decoupled sectors, the
first being dynamical and manifestly gauge invariant, and the second being equiva-
lent to a pure TFT with identical Gauss law constraints and commutation relations.
The present approach does not require any gauge fixing procedure whatsoever. Actu-
ally the non commuting sector of a CS theory or, more generally, the reduced phase
space of a TQFT appears no longer after the projection onto the ground state at the
quantum level (or after the introduction of Dirac brackets)but is manifest already at
the classical Hamiltonian level. By lettinge or g grow infinite, the mass gap (3.41)
becomes infinite, hence dynamical massive excitations decouple whereas the TFT sec-
tor, which is independent of the coupling constants, remains unaffected. In this limit,
the system looses any dynamics, the latter being intimatelyrelated to the Riemannian
metric structure of the spacetime manifold, while all that is then left is a wave function
depending on global variables only, namely the quantum states of a TQFT.
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3.6 Discussion

Duality relations are especially interesting when an explicit relation between fields
of the two descriptions is established since it typically exchanges strong and weak
coupling regimes. In chapter 2 and 3 another feature which may arise from some
dualisation processes has been addressed, namely the isolation of a dynamical sector
of physical variables. Applied for the first time in our papers [10, 11] to topologically
massive gauge theories (TMGT) in any dimension and irrespective of whether the
Lagrangian or Hamiltonian formulation is being used, this duality transformation is
referred to as TP factorisation and sheds new light onto the concept of Lowest Landau
Level projection.

As a matter of fact, it was already established in [74] that itis possible to identify
among the phase space variables of a TMGT combinations corresponding to those
of a TFT. Indeed in a particular case of an underlying manifold with boundary, edge
states may be understood in terms of a TFT, already at the classical level. Neverthe-
less, this paper did not realise the powerful gauge fixing free factorisation leading to a
dual theory decoupled into two sectors as described in Chapters 2 and 3. Incidentally,
it should be of interest to analyse how this new approach may shed new light onto
this paper, in a manner akin to that in which it properly defines the projection onto a
topological field theory through the limitse, g → ∞. In the present approach, the TFT
sector is actually made manifest already at the classical level (see Fig.3.1), indepen-
dently of any projection onto the quantum ground state, or onto physical edge states in
the case of a manifold with boundary. This TFT sector accounts for the degeneracy of
the physical spectrum depending only on topological invariants. The energy spectrum
includes two types of contributions, as illustrated in Fig.3.2. The first one originates
from a sector of global variables where a metric structure isintroduced but not explic-
itly specified in order to diagonalise the Hamiltonian. The second one originates from
a sector of dynamical variables where the spacetime manifold endowed with its metric
structure must be specified in order to diagonalise the Hamiltonian through a spectral
decomposition.

The formalism of TMGT defined by the actions (1.25) or (1.23) offers a possible de-
scription of some phenomena such as effective superconductivity [75, 74], Josephson
arrays [76] for compact gauge groups, confinement by flux tube[77, 78], etc. In this
case, the TP factorisation stands for a generalisation of the Landau projection which
enables to isolate the essential topological content. Thenthe denomination “topolog-
ical sector” has to be understood not only in terms of topological couplings, but in a
more general context as being the sector where all non trivial topological effects arise.
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Dual formulation of abelian Higgs models

The TP factorisation technique introduced in Chapter 2 consists in constructing a
dual formulation of TMGT which is factorised into a dynamical sector of massive
physical variables and a gauge dependent sector defining a topological field theory.
This technique enables one to establish that the Maxwell-Higgs model in the symmetry
breaking phase shares a common physical sector with a particular form of TMGT of
the BF -type coupled to a real scalar “Higgs” field in a specific way. This duality
relation may be extended to the usual formulation of the abelian Higgs action in terms
of a complex scalar field. Nevertheless, it then turns out to be impossible to maintain at
the same time the gauge content of gauge theories and locality. Our dual factorisation
techniques also apply to TMGT of theAF type and novel duality relations then arise.
The general case of TMGT in any dimension is next addressed for specific couplings
to scalar fields constructed in such a way that our TP factorisation be not broken.

Furthermore, following a similar approach, this Chapter introduces a generalisation
of the already known duality between TMGT of theBF -type and Stueckelberg theo-
ries, based on the “London limit” of the dualities mentionedabove. Hence a struc-
ture of dual equivalences between mass generation mechanisms, namely the Higgs,
the Stueckelberg and the topological mass generation mechanisms, is easily obtained,
provided that the scalar Higgs field does not vanish. In fact any zero of the Higgs field
on some subset of space which is of zero measure is associatedto the existence of a
topological defect localised on this subset, as will be discussed in Chapters 5 and 6.

*
* *
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4.1 The dual Maxwell-Higgs model in 3+1 dimensions

4.1.1 The dielectric Cremmer-Scherk action: two pictures

The dielectric Cremmer-Scherk Lagrangian density

As is to be discussed presently, a dual formulation of the Maxwell-Higgs model in3+1

dimensions in the symmetry breaking phase may be obtained from the topologically
massive Cremmer-Scherk action (1.24) by transmuting the scale factorg into a real
dynamical scalar field̺(x). The resulting Lagrangian density then reads

L4
TMG̺ = − 1

4 e2
Fµν Fµν +

1

12 η2

1

̺2
Hµνρ Hµνρ + L̺ (4.1)

+ κ ǫµνρσ

(
ξ

6
Aµ Hνρσ +

1 − ξ

4
Fµν Bρσ

)

.

The field̺(x) thus interacts with the tensor fieldBµν(x) through a dielectric cou-
pling. Such types of Lagrangian densities in 3+1 dimensionswill therefore be called
“dielectric Cremmer-Scherk theories". In the present Chapter it will be assumed that
the field̺(x) does not vanish anywhere on the spacetime manifold. This assumption
will be relaxed later on but at this stage it ensures that the action remains finite for a
field strengthHµνρ(x) which is well defined everywhere on the spacetime manifold.
As is established in Chapters 5 and 6, zeros of the scalar fieldare intimately related
to the existence of topological defects. As usual,L̺ is the Lagrangian density for a
massive real scalar field:

L̺ (̺, ∂µ̺) =
1

2
∂µ̺ ∂µ̺ − V

(
̺2
)

, (4.2)

where there is no need to specify the self-interaction potential V
(
̺2
)

at this stage.

The arbitrary real variableξ ∈ [0, 1] we have introduced is physically irrelevant for
an appropriate choice of boundary conditions since it parametrises any possible sur-
face term. This implies for instance that the equations of motion are independent of
ξ. Nevertheless this does not mean that the introduction of this parameter is useless.
We have already proved in Section 2.2.2 without having recourse to any gauge fixing
choice whatsoever thatξ parametrises a classification of the generalised Proca the-
ories. These theories account for the physical sector of pure topologically massive
gauge theories as made manifest through our TP factorisation techniques. Another
reason for introducing the parameterξ is to offer an elegant interpretation of the dielec-
tric Cremmer-Scherk theory (4.1) in terms of thep-form fieldA(x) or the(d−p)-form
field B(x) whetherξ=1 or ξ=0, respectively. In fact the two possible interpretations
already apply within the original non factorised formulation of the theory.
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The “B-field picture” : ξ = 0

Let us first consider the Lagrangian density (4.1) withξ =0, and isolate the contribu-
tions involving the gauge fieldBµν(x),

Lξ=0
TMG̺ = − 1

4 e2
Fµν Fµν + L̺ + LB

TMG̺ .

We then have:

LB
TMG̺ =

1

12 η2

1

̺2
Hµνρ Hµνρ +

1

4
κ ǫµνρσ Fµν Bρσ .

In comparison with the “dielectric” Maxwell theories introduced in Section 1.1, the
part where the fieldBµν(x) is involved describes the dynamics of a2-form gauge field
embedded in a medium described by a suitable dielectric function ε(x), see (1.46).
Hence the scalar field̺(x) plays the role of this dielectric function:

ε =
1

η2 ̺2
,

where we recall that it is assumed in the present Chapter that̺(x) does not vanish
anywhere on the spacetime manifold.

If the associated2-form conserved currentKµν(x) is written1 as

Kµν = κ e2 ηµα ηνβ Eαβ , (4.3)

the source for the electromagnetic field associated toBµν(x) reads

Eαβ =
1

e2
ηαµ ηβν ǫµνρσ ∂ρAσ, ηµα∂µEαβ = 0 . (4.4)

The fact that this current involves the dynamical gauge fieldAµ(x) does not imply
any particular consequence in the present discussion. Thisjust characterises the un-
derlying dielectric model described by the dielectric Cremmer-Scherk theory (4.1).
However it is of prime importance that the currentEµν(x) does not explicitly depend
on the scalar field̺(x) as befits any dielectric theory of the form (1.46).

The choiceξ=0 is naturally related to a realisation of the dielectric Cremmer-Scherk
theory as a dielectric theory for the2-form field Bµν(x) or, more generally, to an
interpretation of the underlying physical system in terms of the electromagnetic field
constructed fromBµν(x). For this reason we will henceforth refer to this case as the
“B-field picture”.

1This choice for the normalisation of the current involvingκ and the scale factore2 is made for later
convenience.
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The “A-field picture” : ξ = 1

Let us next consider the Lagrangian density (4.1) withξ=1, and isolate the contribu-
tions involving the gauge fieldAµ(x),

Lξ=1
TMG̺ =

1

12 η2

1

̺2
Hµνρ Hµνρ + L̺ + LA

TMG̺ . (4.5)

Now we obtain:

LA
TMG̺ = − 1

4 e2
Fµν Fµν +

1

6
κ ǫµνρσ Aµ Hνρσ .

In comparison with the Maxwell theories introduced in Section 1.1, the part where
the fieldAµ(x) is involved describes the dynamics of a1-form gauge field, where the
conserved currentJµ(x), written for later convenience as

Jµ = κ η2 ̺2 ηµα Gα, (4.6)

reads, according to (1.1) and (4.5),

η2 ̺2 Gα =
1

2
ηαµ ǫµνρσ ∂ν Bρσ , ηµα∂µ(η2 ̺2 Gα) = 0 , (4.7)

and thus generates the electromagnetic field associated toAµ(x).

As is to be discussed presently, the Lagrangian density (4.5) offers a dual formula-
tion of the Maxwell-Higgs model in3+1 dimensions. Hence within this context,
the scalar field̺ (x) plays the role of the Higgs field. In fact, the Lagrangian density
(4.5) was already obtained previously by K. Lee [79] througha path integral formula-
tion but has so far never been analysed in detail except in theLondon limit or within
the context of effective vortex-string theories. Our approach highlights the necessary
careful treatment of the gauge content of such theories by means of a local and linear
reparametrisation of the first-order Lagrangian formulation. Indeed we are going to
prove that the Lagrangian density (4.5) is not dual to theU(1) abelian Higgs model
but rather more specifically to the first order formulation ofthe latter in terms of phys-
ical variables (1.48). Again the equivalence is established modulo a topologicalBF

term. The other great advantage of this new approach is to display clearly the possi-
bility of constructing new topological defect solutions for this dual formulation and to
give some clues towards that goal. The caseξ=1 naturally relates to an interpretation
of the underlying physical system in terms of the electromagnetic field constructed
from a1-form gauge field. For this reason we will henceforth refer tothis case as the
“A-field picture”.
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4.1.2 Factorisation and duality within the Lagrangian formulation

Physical and topological sectors

This duality identification first proceeds from the definition of the first order La-
grangian formulation associated to (4.1), hence the introduction of the Gaussian aux-
iliary fieldsEµν(x) andGµ(x) :

Lm
TMG̺ = −e2

4
Eµν Eµν +

1

2
ǫµνρσ ∂µAν Eρσ

+
η2

2
̺2 Gµ Gµ +

1

2
ǫµνρσ ∂µBνρ Gσ

+ κ ǫµνρσ

(
ξ

6
Aµ Hνρσ +

1 − ξ

4
Fµν Bρσ

)

+ L̺ . (4.8)

When considered in combination with the equations of motiondefining the Gaussian
integration, these physical variablesEµν(x) andGµ(x) correspond to the currents
introduced in (4.4) and (4.7) within theB-field andA-field pictures, respectively.

The Topological-Physical factorisation is not really affected by the presence of the
dielectric coupling. Indeed under the same parametrisation as the one introduced for
the free TMGT in Section 2.2, that is

Aµ = Aµ − 1

κ
Gµ , Bµν = Bµν +

1

κ
Eµν , (4.9)

the dual action is again factorised into a dynamical sector of physical variables and a
topological sector of gauge variant variables, modulo a total surface term, “ST”,

Sfac [E, G,A,B, ̺] = SMHP [E, G, ̺] + S4
BF [A,B] +

∫

M
ST . (4.10)

Similarly to the free case, the surface term is ignored whilethe topological sector,

L4
BF = ξ

κ

6
ǫµνρσ Aµ Hνρσ + (1 − ξ)

κ

4
ǫµνρσFµν Bρσ ,

is as usual a pureBF topological field theory.

In fact only the physical sector significantly changes sinceit now inherits the dynam-
ical scalar field̺ (x) to which the physical fieldGµ(x) couples:

LMHP = −e2

4
Eµν Eµν +

η2

2
̺2 Gµ Gµ + L̺ (4.11)

+
1

2 κ
ǫµνρσ (ξ ∂µGν Eρσ − (1 − ξ) ∂µEνρ Gσ) .
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Figure 4.1: Duality relation between the physical sector of TMDGT (4.1)and the
generalised first order formulation of dielectric Proca theories obtained through TP
factorisation techniques. The dual Maxwell-Higgs model isrecovered through a gauge
embedding procedure in a very specific case. In blue: our contribution.

This new Lagrangian density may be considered as the most general formulation for
dielectric Proca theories, for which the first order formulations known so far in the
literature are recovered upon settingξ=0 or ξ=1. In particular for the latter value of
ξ, namely within theA-field picture, we have already encountered such a Lagrangian
density in Section 1.2. It is nothing other than the first order Lagrangian formulation
of the Maxwell-Higgs model expressed in terms of physical variables, see (1.48), with
η = 1/κ. In this sense,̺(x) plays the role of the Higgs field provided thatL̺ defined
in (4.2) be the Lagrangian density for the decoupled part of the Higgs field (1.49),
namely the kinetic term of the scalar field together with the symmetry breaking quartic
potential. This potential may be thus chosen to be of the form

V
(
̺2
)

=
µ̃2

2
̺2 +

λ

4
̺4 , (4.12)

whereµ̃2 <0 andλ>0, in order to recover the usual “Mexican hat-shaped” potential.
Therefore the Higgs field possesses a non vanishing vacuum expectation value,

〈̺〉 = v =

√

−µ̃2

λ
6= 0 . (4.13)

In contradistinction to discussions available until now inthe literature, see for exam-
ple [79], we have precisely established to which Lagrangianthe dielectric Cremmer-
Scherk theory (4.1) is dual, that is the first order physical formulation of the Maxwell-
Higgs model along with a topologicalBF term, as illustrated in Fig.4.1. Moreover
this duality is constructed from a linear and local redefinition of the first order formu-
lation of the dynamics.
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Restoration of theU(1) broken symmetry

At this stage, the usual formulation of the Maxwell-Higgs Lagrangian (1.11) is thus
recovered through the inverse procedure to that which leadsto the physical formula-
tion, discussed in Section 1.4. This procedure requires a non trivial extension of the
gauge content. The gauge invariant variableGµ(x) is associated to the Hodge dual of
the field strength ofBµν(x) through Gaussian integration, see (4.7), in the first order
formulation (4.8). After the transformation (4.9),Gµ(x) obeys the following equation
of motion associated to the physical sector of the factorised Lagrangian (4.11),

η2 ̺2 Gα = −ηαµ
1

2 κ
ǫµνρσ ∂ν Eρσ .

A conservation law naturally arises from this latter equation: ∂µ
(
̺2 Gµ

)
= 0 (on

shell). In this sense the variableJµ ⋉ ̺2 Gµ is interpreted as a current to which a
gauge connection couples within theA-field picture, see (4.6). This current may be
that of the complex scalar field of which the Higgs field̺(x) is the radial part in the
polar parametrisation, following the example of (1.17) which results from (1.13).

However, in order to proceed to a consistent reparametrisation of the field configura-
tion space, the connection may not be the originalAµ(x) connection as often advo-
cated in the literature (see for example [35, 80]). First, this latter choice would lead
to an inconsistent counting of the degrees of freedom as far as the transformations
(4.9) are concerned, although it remains consistent with the equations of motion2 (at
least as long as couplings to fermions are not considered). Second, an extension of the
gauge content of the system is required in order to restore the U(1) symmetry under
which the complex scalar field transforms. This extension issimilar in spirit to gauge
embedding or other related dualisation [81] procedures. Thus a new gauge connection
Ãµ(x) is introduced, which allows to redefine the gauge invariant variableGµ(x) as

κ η2 Gµ = − 1

̺2
Jµ = κ2 η2

(

Ãµ − ∂µθ
)

, (4.14)

where the transformation of the variableθ(x) under the newU(1) gauge symmetry
compensates for that of the connectionÃµ(x) in order to preserve the gauge invariance
of Jµ(x),

Ã′
µ = Ãµ + ∂µα̃, θ′ = θ + α̃ . (4.15)

Here the local notation for the gauge transformation is usedbecause global vari-
ables have no influence in this specific case on account of the restrictive assumptions
made in this Chapter (topologically trivial manifold and nowhere vanishing scalar field
̺(x)).

2The equations of motion relate the transverse part of the gauge fieldAµ(x) to the physical fieldGµ(x).
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Given the redefinition of the physical fieldGµ(x) in (4.14) the Lagrangian density of
the Maxwell-Higgs model is recovered from the physical sector (4.11) upon setting
ξ=1,

L4
AH̺θ = − 1

4 e2
F̃µν F̃µν +

1

2

∣
∣
∣∂µ̺ − i κ η ̺

(

Ãµ − ∂µθ
)∣
∣
∣

2

− V (̺2) .

Therefore, the total gauge embedded action dual to (4.1) through TP-factorisation is
decoupled into theU(1) Maxwell-Higgs action and a pure topologicalBF action,

S
[

Ã,A,B, ̺, θ
]

= SAH

[

Ã, ̺, θ
]

+ STFT [A,B] +

∫

M
ST .

This action turns out to be invariant under three independent classes of finite abelian
gauge transformations acting separately in either theA-, theB-, the (Ã,θ)-sector. This
latter restored transformation allows to define a complex scalar field of which the polar
parametrisation follows in terms of the two real scalar fields̺(x) andθ(x):

φ(x) =
1√
2

̺(x) eiκη θ(x) . (4.16)

Thus the usual formulation of the Maxwell-Higgs Lagrangiandensity before symme-
try breaking is recovered fromSAH:

LAH = − 1

4 e2
F̃µν F̃µν +

∣
∣
∣D̃µφ

∣
∣
∣

2

− V
(
2 |φ|2

)
. (4.17)

In this Lagrangian density, the covariant derivative,

D̃µφ = ∂µφ − i κ η Ãµ φ , (4.18)

is defined from the connectioñA of which the field strength tensor reads

F̃µν = ∂µÃν − ∂νÃµ ,

as usual.

This conclude the discussion about the local dual formulation of the Maxwell-Higgs
model in 3+1 dimensions. It will be shown in Section 4.2 that the structure of dualities
in Fig.4.1, hence the dual formulation of the Maxwell-Higgsmodel is extensible to
any dimension, notwithstanding the non renormalisable character of the scalar field
quadratic potential,

V
[
2 |φ|2

]
= µ̃2 |φ|2 + λ |φ|4 , (4.19)

in more than four spacetime dimensions.
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4.1.3 Duality within the Hamiltonian formulation

The Hamiltonian analysis of constraints applied to the Lagrangian formulation of the
dielectric Cremmer-Scherk (DCS) theory in (4.1) shows thatthe simple transmutation
of the scale factorg into the dynamical scalar field̺(x) readily leads to the Hamilto-
nian formulation of this DCS theory from the uncoupled Hamiltonian (2.14),

H4
TMG̺ =

e2

2

(

P i − (1 − ξ)
κ

2
ǫijk Bjk

)2

+
1

4 e2
(Fij)

2

+
η2

4
̺2
(
Qij + ξ κ ǫijk Ak

)2
+

1

12 η2

1

̺2
(Hijk)2 + H̺

− (u′ + A0) ∂i

(

P i + ξ
κ

2
ǫijk Bjk

)

+ u P 0

+ (v′i + B0i) ∂j

(
Qij − (1 − ξ)κ ǫijk Ak

)
+ v0i Q0i

+ ∂i

(
A0 P i + B0j Qij

)
, (4.20)

where the last term is a pure surface term characteristic of the analysis of constraints
for such gauge theories. Again the symplectic structure of Poisson brackets is speci-
fied by the canonical brackets between phase space variablesdefined in (2.13), adapted
to this specific number of dimensions. This Hamiltonian density shares the same
gauge structure and thus the same first-class constraints asthat of the pure Cremmer-
Scherk theory. The only difference resides in the presence of the dynamical dielectric
scalar field̺ (x) along with its conjugate momentumπ(x) such that

{̺(t, ~x ) , π(t, ~y )} = δ2(~x − ~y ) . (4.21)

To this new set of phase space variables is associated the Hamiltonian densityH̺,

H̺ =
1

2
π2 +

1

2
(∂i̺)2 + V

(
̺2
)

, (4.22)

which is decoupled from the gauge fields and their conjugate momenta.

In the same way as within the Lagrangian formulation, the presence of the dielec-
tric coupling does not affect our factorisation techniques. Therefore, under the same
canonical transformations, (2.16) and (2.20), and redefinition of Lagrange multipliers,
(2.22), as in the uncoupled case, the factorised fundamental Hamiltonian reads

Hfac
TMG̺ =

e2

2

(
Ei
)2

+
1

2 η2κ2

(
∂iE

i

̺

)2

+
η2

4

(
̺ Gij

)2
+

1

2 e2κ2

(
∂jG

ij
)2

+ H̺ +
κ

2
A0 ǫijk ∂iBjk − κB0i ǫijk ∂jAk + ST. (4.23)

This factorised density is explicitly independent ofξ. This means that on account of
Hodge duality, one readily identifies in the physical sectorthe formulation for either
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theA- or theB-field picture. In particular, when considered in combination with the
equations of motions (2.12) and our TP canonical transformations (2.20), the physical
variableGij(x) reads

Gij = Qij + κ ǫijk Ak ,

and therefore, on the ground of the analysis of Section 1.4, may be interpreted as the
electric displacement tensorDB

el (x) associated to the original fieldBµν(x),

(
DB

el

)ij
=

1

η2 ̺2
δik δjl H0kl = Gij , within theB-field picture. (4.24)

Likewise the variableEi(x) is proportional to the electric vector field~EA
el (x),

(
EA

el

)i
= δij F0j = e2 Ei , within theA-field picture, (4.25)

associated to the field strength tensor of the original variableAi(x).

The equations for Gaussian integration, see as a reminder (1.40) and (1.44), make
manifest the Hodge duality between the space components of the physical fields within
the first order Lagrangian formulation (4.8),Eij andGi, and the phase space variables
of the physical sector within the Hamiltonian formulation (4.23),Ei andGij ,

Ei =
1

2
ǫijk Ejk , Gij = ǫijk Gk . (4.26)

In terms of these latter variables, the dynamical part of thefactorised Hamiltonian
formulation (4.23) reads within theB-field picture

HB
dyn =

η2

4

[

̺
(
DB

el

)ij
]2

+
1

2 e2κ2

[

∂j

(
DB

el

)ij
]2

+
e2

4
(Eij)

2 +
1

12 η2 κ2

(
1

̺
∂[i E jk]

)2

+ H̺ , (4.27)

with the following non-vanishing Poisson brackets betweenthe phase space variables
{(

DB
el

)ij
(t, ~x ), Ekl(t, ~y )

}

= κ δk
[i δl

j] δ
(3)(~x − ~y ) .

Similarly, the dynamical part of (4.23) reads within theA-field picture

HA
dyn =

1

2 e2

(

~EA
el

)2

+
1

2 η2 κ2

(
~∇ ~EA

el

̺

)2

+
η2

2
(̺ Gi)

2
+

1

4 e2κ2

(
∂[i G j]

)2
+ H̺ ,

with the following non-vanishing Poisson brackets betweenthe phase space variables
{(

EA
el

)i
(t, ~x ), Gj(t, ~y )

}

= κ e2 δi
j δ(3)(~x − ~y ) .

The present analysis is readily generalised to any number ofspacetime dimensions.
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4.2 Abelian Higgs models in any dimension

4.2.1 The dual Chern-Simons-Higgs theory in 2+1 dimensions

Throughout this Chapter we are constructing dual equivalences from topologically
massive gauge theories of theBF -type with specific dielectric couplings. A query
which naturally comes to mind is to wonder what happens in thecase of topological
mass generation theories of theAF -type, (1.25), with a dielectric coupling between
the scalar field and the singlep-form gauge fieldA(x). Surprisingly the construction
of this kind of dual equivalence has never been considered until now. In this Subsec-
tion, we address duality relations specifically in 2+1 dimensions, but the equivalences
may be extended whatever the even number of space dimensions, provided that this
number be such thatd = 2p with p odd.

Let us first consider the Maxwell-Chern-Simons theory (1.26) of which the gauge field
Aµ(x) couples dielectrically to a dynamical scalar field̺(x),

LMCS̺ = − 1

4 η2

1

̺2
Fµν Fµν +

κ

4
ǫµνρ Fµν Aρ + L̺ . (4.28)

As a reminder, in this expressionL̺ (̺, ∂µ̺) is the non coupled Lagrangian density
for a self-interacting dynamical scalar field (4.2). We are going to establish by means
of a field transformation that the above Lagrangian density shares a common first order
physical formulation with the Chern-Simons-Higgs (CSH) theory. This latter theory
is a particular type of an abelian Higgs model in 2+1 dimensions where the gauge field
is governed by a Chern-Simons Lagrangian instead of the usual Maxwell Lagrangian
(see [73] and references therein).

Let us start as usual from the first order formulation of (4.28),

Lmaster
MCS̺ =

1

2
η2 ̺2 Eµ Eµ +

1

2
ǫµνρ Fµν Eρ +

κ

4
ǫµνρ Fµν Aρ + L̺ ,

obtained after the introduction of the Gaussian auxiliary fieldEµ(x). Under the same
local and linear transformation of the fields as in the pure Maxwell-Chern-Simons
case, see (2.26), the above first order Lagrangian density isfactorised, modulo a sur-
face term ST, into a sectorLdyn of physical variables and a topological sectorLCS

consisting of a pure Chern-Simons theory (2.27) where the entire original gauge sym-
metry content resides:

Lfac
MCS̺ = Ldyn (Eµ, ∂µEν , ̺, ∂µ̺) + LCS (Aµ, ∂µAν) + ST.

This physical sector having been made manifest through our TP factorisation proce-
dure turns out to be also the first order physical formulationof the Chern-Simons-
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Higgs theory which reads

Ldyn =
1

2
η2 ̺2 Eµ Eµ +

1

2 κ
ǫµνρ ∂µEν Eρ + L̺ .

Hence the announced dual equivalence is thus established.

In comparison to duality relations established for the Maxwell-Higgs model, a further
step may be taken in order to recover the usual formulation ofthe Chern-Simons-
Higgs Lagrangian. This implies the restoration of the broken U(1) symmetry in the
physical sector, with its cortege of subtleties related to the gauge embedding proce-
dures. Indeed, the physical variableGµ(x) may be written again as theU(1) current
of a complex scalar field, see (4.14) and (4.15). Hence the physical sector turns into a
U(1) gauge (embedded) theory and reads

LCSH̺θ =
1

2
κ2 η2 ̺2

(

Ãµ − ∂µθ
)2

+
κ

2
ǫµνρ ∂µÃν Ãρ + L̺ .

Once the gauge symmetry is restored, theU(1) gauge variant complex scalar field
φ(x) is readily constructed in its polar parametrisation in terms of the Higgs field
̺(x) and the gauge variant fieldθ(x), see (4.16). Then the Chern-Simons-Higgs La-
grangian before symmetry breaking is recovered:

LCSH =
κ

2
ǫµνρ ∂µÃν Ãρ +

∣
∣
∣D̃µφ

∣
∣
∣

2

− V
(
2 |φ|2

)
,

whereD̃µ denotes the usual covariant derivative (4.18) with the connectionÃµ(x).

As usual in abelian Higgs models a Bogomol’nyi self-dual structure exists for soliton
solutions, but within this model this type of structure arises from a specific sixth order
potential for the scalar field:

V
(
2|φ|2

)
= λ |φ|2

(
|φ|2 − v2

)2
.

This potential possesses two degenerate vacua at|φ| = v and |φ| = 0 but only the
former breaks theU(1) gauge symmetry. The main interest of this covariant model
resides in its unusual soliton solutions of two distinguished types emerging from this
sixth-order potential at the self-dual point and carrying both magnetic flux and electric
charge. The first type, referred to as “topological soliton solution” [82, 83] interpolates
from the origin, where the Higgs scalar field vanishes, to thecircle at infinity where
the Higgs field takes its non zero vacuum expectation value|φ|=v. The second type,
the so-called “non topological soliton solution” [84], is characterised by a Higgs field
keeping its zero expectation value on the circle at infinity.However the study of these
soliton solutions in the dual formulation and their possible generalisations is beyond
the scope of this work and thus will not be addressed here.
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4.2.2 The most general network of dualities in any dimension

The unbroken TP factorisation

The dual formulation of the Maxwell-Higgs model in 3+1 dimensions (4.1) pertains
to a very specific form of topological mass generation for the1-form gauge field
A(x) with a dielectric coupling between a real scalar field and thecomplementary
(d−1)-form field B(x). Otherwise a general formulation of the action of topologi-
cally massive dielectric gauge theories with couplings to dynamical real scalar fields,
STMG̺̟[A, B, ̟, ̺], may be written as

Sd+1
TMG̺̟ =

∫

M

σp

2

1

e2(̟)
F ∧ ∗F +

σd−p

2

1

g2(̺)
H ∧ ∗H

+ SBF [A, B] + S̟ [̟] + S̺ [̺] , (4.29)

where the scalar fields̟(x) and̺(x) couple through the dielectric functionse (̟(x))

andg (̺(x)) to the kinetic terms of thep-form A(x) and the(d−p)-form B(x), re-
spectively. The usual topological couplingSBF [A, B] appears in the action (4.29),

SBF [A, B] = κ

∫

M
(1 − ξ)F ∧ B − σp ξ A ∧ H . (4.30)

In fact, this action is the most general construction of topologically massive gauge
fields coupled to real scalar fields of which the decoupled part is minimal

S̺ [̺] =

∫

M

1

2
d̺ ∧ ∗d̺ − ∗V

(
̺2
)

,

and which at the same time preserves our factorisation into decoupled physical and
topological sectors. There is no need at this stage to specify the potentials for the two
scalar fields,̃V

(
̟2
)

andV
(
̺2
)
.

Despite the presence of dielectric scalar fields in the topological mass generation
model (4.29), the dual factorised formulation is obtained in the same way as within
the non coupled case, see Section 2.2, and thus first proceedsthrough the extension
of the field content of the theory. Indeed the covariant first order formulation of the
action (4.29) reads

Smaster
TMG̺̟ =

1

2
(e(̟)E)

2
+

1

2
(g(̺)G)

2
+

∫

M
F ∧ E + H ∧ G

+ SBF [A, B] + S̟ [̟] + S̺ [̺] ,

after the introduction of the auxiliary(d−p)- andp-form fieldsE(x) andG(x). Then
through a reparametrisation similar to that of the non coupled case,

A = A +
1

κ
σp(d−p) G , B = B − 1

κ
E ,
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the action is factorised into a pure topological field theoryof theBF -type,SBF [A,B],
and a dynamical sectorSdyn of the form

Sdyn =
1

2
(e(̟)E)

2
+

1

2
(g(̺)G)

2
+ S̟ [̟] + S̺ [̺] (4.31)

+
1

κ

∫

M
σd−p ξ E ∧ dG − (1 − ξ) dE ∧ G +

∫

M
ST ,

modulo a surface term, irrelevant for an appropriate choiceof boundary conditions on
M. Hence a similar structure to that of Fig.4.1 in 3+1 dimension is obtained whatever
the number of spacetime dimensions from the generalised action in (4.29).

The TP factorisation within the Hamiltonian formulation oftopologically massive di-
electric gauge theories may be cast in the same mould as its Lagrangian counterpart
since the canonical transformation leading to the factorised fundamental Hamiltonian
remains the same as in the non coupled case. Therefore all thediscussion pursued in
the particular case of the dielectric Cremmer-Scherk theory in Section 4.1 is readily
extended to the general case in any dimension, from the Lagrangian density (4.29).
Hence within theA-field picture, the scalar field̟ (x) acts like of a dielectric field
while the scalar field̺ (x) plays the role of a “Higgs” field associated to generalised
London equations for ap-form. Likewise, within theB-field picture, the scalar field
̺(x) acts like a dielectric field while the scalar field̟(x) plays the role of a “Higgs”
field associated to generalised London equations for a (d−p)-form.

Recovering the Maxwell-Higgs models

Finally, the range of dual formulations for Maxwell-Higgs models in any dimension
reduces actually to very particular cases of topologicallymassive dielectric gauge the-
ories subjected to the following restrictions:

• One of the two gauge fields is an1-form field. Let us chooseA to be this field.

• The dielectric functione (̺(x)) reduces to a constante.

• The dielectric functiong (̺(x)) has the simple form :g(̺) = η ̺ .

The following action results from these assumptions,

SMH =

∫

M

σp

2e2
F ∧ ∗F +

σd−p

2 η2

1

̺2
H ∧ ∗H + SB∧F [A, B] + S̺ [̺] , (4.32)

from which the Maxwell-Higgs model (4.17) is recovered through our TP factorisation
techniques and some gauge embedding procedure in the physical sector.
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TheU(1) symmetry breaking in this range of Maxwell-Higgs models in any dimen-
sion is dictated by the complex scalar fieldφ(x) in (4.16) possessing a non vanishing
expectation value in the vacuum. Otherwise, ifp 6= 1, it is not possible to reconstruct
a complex scalar field from the polar parametrisation (4.16), since the currentJ(x)

introduced in (4.14) is then no longer a 1-form.

4.2.3 The London limit and the dual Stueckelberg models

The “London limit” for TMDGT

In the Maxwell-Higgs model, the London limit is the limit in which the mass of the
Higgs field becomes infinite while the mass of the gauge field remains finite, as is
seen in Section 1.2. Likewise an equivalent limit may be readily identified for the
topologically massive dielectric gauge theories (TMDGT) defined in (4.29), within
the context of the duality relations displayed in Fig.4.1. However, as there is no need
to specify explicitly the shape of the self-interacting scalar potentials, by “London
limit” we shall refer to any asymptotic limit or relation between the diverse coupling
constants which leads to the “freezing” of the scalar fields to their vacuum expectation
values. In this sense, the action for pure topologically massive gauge theories (1.23)
is recovered through the London limit,

e (ζ ̟) → e (ζ 〈̟〉) ≡ e , g (η ̺) → g (η 〈̺〉) ≡ g ,

of the action (4.29) for TMDGT.

Equivalence between TMGT and Stueckelberg theories revisited

We have already seen in Section 1.2 that the Stueckelberg theory for a 1-form gauge
field is recovered from the London limit of the Maxwell-Higgsmodel. This latter
model shares a common physical sector with the Cremmer-Scherk theory as made
manifest through our TP factorisation. In the same way one may expect that gener-
alised Stueckelberg theories be obtained from the London limit of the physical sector
of TMDGT, modulo a suitable gauge embedding procedure. In fact, several dualisa-
tion techniques have been used until now in order to establish the dual equivalence
between topologically massive gauge theories and Stueckelberg theories. As far as
gauge embedding procedures are concerned, this duality relation is considered as an
intermediate step in order to establish the duality relation between theories of the
Proca-type and TMGT. This type of methods, developed whether within the Hamilto-
nian [64] or the Lagrangian [66] formulation, are characterised by an intricate maze
of successive gauge fixing and unfixing procedures. There also exist other techniques
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which establish such duality relations through a master Lagrangian approach, see [81].
In this latter case however the gauge fixing procedures are hidden behind the succes-
sive integrations of the equations of motion and thus no special care has been taken
with regards to the treatment of the gauge symmetry content of these theories.

In contradistinction with the above-mentioned proceduresof dualisation, our method
offers several advantages and consists of two steps. First we have already established
in Chapter 2, through our TP factorisation, the duality relation between pure TMGT
of theBF -type (1.23) and a generalised first order formulation of Proca theories3,

Sdyn =
e2

2
(E)

2
+

g2

2
(G)

2
+

1

κ

∫

M
σd−p ξ E ∧ dG− (1− ξ) dE ∧G , (4.33)

parametrised by the constantξ we have introduced, see Section 2.2. The two theories
are dual modulo a topologicalBF term in which all the gauge content resides. This
procedure is free of gauge fixing and consistent for what concerns the counting of the
numbers of degrees of freedom.

Second it is only at this stage that gauge embedding procedures apply in order to make
manifest the duality between the Proca theories obtained inthe physical sector and the
Stueckelberg theories. Hence according to our procedure, the Proca theories are now
an intermediate step in establishing the duality relation.We have briefly introduced
this type of generic procedure consisting in the extension of the gauge content in
Section 4.1. Indeed, knowing thatdG = 0 anddE = 0 and following the example of
(4.14), these two gauge invariantp and(d−p)-form fields may be written as

G = σp(d−p) κ
(

Ã − θ
)

, (4.34)

E = −κ
(

B̃ − χ
)

, (4.35)

whereθ(x) is a closedp-form whileχ(x) is a closed(d−p)-form. Under the assump-
tions we have made which do not allow for the presence of topological effects,θ(x)

andχ(x) are also exact4. In this case, the gauge embedding procedure is thus well-
defined. The transformations of the fieldsθ(x) andχ(x) under the gauge symmetries,

θ′ = θ + α̃ , χ′ = χ + β̃ ,

compensates for that of the two independent classes of finiteabelian gauge transfor-
mations acting separately in either theÃ- or B̃-sector,

Ã′ = Ã + α̃ , (4.36)

B̃′ = B̃ + β̃ , (4.37)
3Namely the non gauge invariant “self-dual” action of [65, 67] generalised to any dimension.
4Indeed, we have assumed a topologically trivial spacetime manifold and non vanishing scalar fields.

These assumptions do not allowθ(x) andχ(x) to have a global component, see [48, 79] in 3+1 dimensions.



4.2. Abelian Higgs models in any dimension 95

Figure 4.2:Duality relation between TMGT (1.23) and a generalised formulation of
the Stueckelberg theories (4.40) obtained through TP factorisation and gauge embed-
ding techniques. The usual formulation of the Stueckelbergmechanism for ap-form
field (4.38) and a(d−p)-form field (4.39) is recovered through Gaussian integration
for specific values ofξ. In blue: our contribution.

in order to preserve the gauge invariance ofG(x) andE(x). We have used the same
notation as in (1.19), wherẽα(x) and β̃(x) are two exactp- and(d−p)-forms, re-
spectively. In this sense the physical variableG(x) may be considered as the gauge
invariant transverse part of the gauge field variableÃ(x) while θ(x) is associated to
its longitudinal part. A likewise identification applies for the(d−p)-form fieldB(x).

The parametrised dual formulation of Stueckelberg theories

It is worthwile to note that the dual gauge embedded Stueckelberg theory constructed
from the physical sector of the factorised TMGT depends dramatically on the value of
our parameterξ. Let us first consider the two extreme valuesξ =0 andξ =1, starting
from the factorised Lagrangian density (4.33). Indeed, by settingξ=1, integrating out
the then Gaussian auxiliary(d−p)-form field E(x) and extending the gauge content
of the theory at the level of thep-form field G(x) through the transformation (4.34),
one derives within theA-field picture the Stueckelberg action of ap-form field Ã(x),

Sdyn =
σp

2 e2

∫

M
F̃ ∧ ∗F̃ +

µ2

2 e2

(

Ã − θ
)2

, (4.38)

whereF̃ = dÃ andµ = κ e g. Alternatively one may also obtain within theB-field
picture the Stueckelberg action of a(d−p)-form field by fixingξ =0, eliminating the
Gaussianp-form fieldG(x) and applying the gauge embedding transformation (4.35),

Sdyn =
σd−p

2 g2

∫

M
H̃ ∧ ∗H̃ +

µ2

2 g2

(

B̃ − χ
)2

, (4.39)
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whereH̃ =dB̃. These two actions above are invariant under one abelian gauge sym-
metry only, of which the associated transformation reads asin (4.36) or (4.37) whether
one considers the transformation acting on thep-form field A(x) in (4.38) or on the
(d−p)-form fieldB(x) in (4.39), respectively.

Finally a generalised formulation of the Stueckelberg theory may be obtained starting
from the first order formulation of the Proca theory and applying the gauge embedding
procedure to the two gauge invariant fieldsG(x) andE(x), see (4.35) and (4.34),

Sdyn =
e2

2
κ2
(

B̃ − χ
)2

+
g2

2
κ2
(

Ã − θ
)2

+ κ

∫

M
σd−p (1 − ξ) Ã ∧ dB̃ − ξ dÃ ∧ B̃ . (4.40)

Our parameterξ, which was originally introduced in order to parametrise the possible
surface terms, is thus not irrelevant since it determines towhich (gauge embedded)
Stueckelberg theory the topologically massive gauge theories are dual5, as illustrated
in Fig.4.2. Contrary to (4.38) and (4.39), this generalisedformulation of the abelian
Stueckelberg theory possesses two independent classes of finite abelian gauge trans-
formations acting separately in either theÃ- or theB̃-sector, see (4.36) and (4.37).

4.3 Conclusion and schematic overview

In 3+1 dimensions, a real scalar field freely propagates like a2-tensor field since the
exterior derivative of a0-form is Hodge dual to that of a2-form. In a more general
context, this equivalence holds in(d+1) spacetime dimensions between a real scalar
field and a(d−1)-tensor field. This explains why the (d−1)-tensor field in topo-
logical mass generation mechanisms is often considered as playing the same role as
the argument of the phase of the complex scalar field in the Maxwell-Higgs model.
Indeed these fields generate a longitudinal part to the 1-form gauge field and so make
it massive. However, again in3+1 dimensions the exterior derivative of the2-form
field may not be directly replaced by a real scalar field. In fact this assumption made
until now in the literature causes some troubles because thetotal number of degrees of
freedom, including the pure gauge ones, of a2-form field does not match with those
of the scalar field. In the same way some gauge symmetry content is lost since gauge
transformations acting on the2-form field do not correspond to those acting on the ar-
gument of the complex scalar field. Actually these pure gaugedegrees of freedom are
of prime importance as soon as topological effects appear. Furthermore this procedure

5The analysis as developed so far in the literature considered the duality relations between TMGT and
the different types of Stueckelberg theories as distinct cases [80, 81].
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is non generalisable to any topologically massive (dielectric) gauge theory forp-form
fields, withp>1.

Our approach is completely different. We consider the(d−p)-form field as a current
for the p-form field and conversely, thep-form field as current for the(d−p)-form
field. According to our terminology, the first case corresponds to theA-field picture
while the second case is associated to theB-field picture. In this sense, this procedure
is close in spirit to gauge embedding procedures. We have already obtained in Chap-
ter 2 the dual equivalence between topologically massive gauge theories (TMGT) and
a generalised first order formulation of Proca theories. Theextension of the gauge
symmetry content enabled us to obtain in this Chapter a novelintricate network of
dualities between the most common (local) mechanisms generating a mass gap in
abelian gauge field theories, as illustrated in Fig.4.3. Namely, a dual equivalence be-
tween the Maxwell-Higgs model, (4.32), and topologically massive dielectric gauge
theories (TMDGT), (4.29), in the particular casep = 1. This duality relation extends
in the London limit between the pure TMGT (1.23) and a generalised formulation of
Stueckelberg theories (4.40), where extreme care has been taken with the gauge sym-
metry content. Indeed we have also established that all these equivalences are true
modulo a topologicalBF term and, as usual, a specific type of gauge embedding pro-
cedure. Although they share the same local formulation in terms of physical fields, the
gauge symmetry content of these mass generation mechanismsdiffers dramatically. It
implies that these theories share a common dynamics but are globally distinct as soon
as non trivial topological effects appear.

We think that the correct procedure is to avoid to establish duality relations between
gauge theories at any price and to give up in this case the gauge embedding procedures.
We may perfectly admit that two theories are locally dual in their physical sector of
dynamical variables but are not dual if we consider their entire gauge symmetry con-
tent. In this sense, TMDGT offer the great advantage that thetopological sector of
gauge variant variables is isolated from the physical sector through our TP factori-
sation, independently of any gauge fixing procedure. Such a decoupled topological
sector does not arise in the Maxwell-Higgs model which possesses one type only of
abelian gauge invariance. Furthermore, this topological term was until now swamped
by a mass of successive procedures of gauge embeddings and/or gauge fixings char-
acteristic of the dualisation techniques previously introduced in the literature. This
topologicalBF term, which seems to be a simple spectator term when constructing
duality relations between mass generation mechanisms, turns out to play a pivotal role
as soon as topological effects are taken into account, as will be discussed in Chapters
5 and 6.
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Figure 4.3:Network of (local) duality relations between mass generation mechanisms
in abelian gauge field theories. Gaussian integrations of auxiliary fields are not men-
tioned. In blue: our contributions.

The duality network established in this Chapter holds for pure abelian gauge field the-
ories. The understanding of the fate of these dualities whencouplings to fermions are
introduced is certainly of interest but is beyond the scope of this Thesis. Another case
of study may be the dual formulation of the Maxwell-Higgs model on topologically
non trivial manifolds or manifolds with boundaries, as is the case in superconductiv-
ity. Again the topologicalBF term will generate non trivial topological effects in
these cases. Let us conclude this Chapter by noticing that there exists an alternative
non local formulation of the Maxwell-Higgs model, see [48, 49], where a topological
BF term is involved in the construction of the Lagrangian. Although this formulation
is less usual in the literature it offers the advantage to have the same gauge symme-
try structure as the dielectric Cremmer-Scherk (DCS) theory. In fact we have proved
elsewhere [85] that this non local formulation is totally equivalent to the local DCS
theory, even in the presence of topological defect solutions.



CHAPTER 5

Magnetic vortices and (di)electric monopoles in the plane

The network of dualities in Fig.4.3 has a local character andonly holds for a scalar
field ̺(x) nowhere vanishing on the spacetime manifold. However if we relax this
assumption, global aspects ought to be taken into account. Hence to any subman-
ifold of zero measure of zeros in̺(x) is there associated a topological defect. In
particular for TMDGT in2+1 dimensions introduced in the present Chapter, we have
managed to construct novel magnetic vortex-type topological defects analogous to the
Nielsen-Olesen vortices arising in the Maxwell-Higgs model. Likewise, these topolog-
ical defects may be seen within a physically equivalent picture as electric monopoles
distributed within a dielectric medium. This type of topological defects in gauge field
theories, never considered until now, makes the search for soliton solutions in topo-
logical mass generation models of prime interest.

Our TP factorisation enables one to isolate the physical part, in this case common
with that of the Maxwell-Higgs model, from the topological part, including global
boundary conditions specific to the topological defect solution while conserving the
gauge content of the original theory. In fact the topological part was up to now always
missing in the dualisation processes of the Maxwell-Higgs model due to gauge fixings
characteristic of such procedures. Perhaps this is the reason why our new topological
defect solutions have so far never been considered. Starting from scratch, the pro-
cedure leading to the construction of topological defects will be described in detail
while at the same time highlighting the analogies with the Maxwell-Higgs model.

*
* *
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5.1 A topologically massive dielectric theory in the plane

We have established in Chapter 4 that the dielectric Cremmer-Scherk theory (4.1)
shares, within theA-field picture, a dynamical sector of physical variables common
with that of the Maxwell-Higgs theory. In the same way, one may naturally expect
such a local duality relation in2+1 dimensions between the Maxwell-Higgs model and
a topologically massive dielectric gauge theory specific tothat number of spacetime
dimensions of the form

L3
TMG̺ = − 1

4 e2
Fµν Fµν − 1

4 η2

1

̺2
Hµν Hµν + L̺

+
κ

2
ǫµνρ (ξ Aµ Hνρ + (1 − ξ)Fµν Bρ) . (5.1)

As usual,L̺(̺, ∂µ̺) is the decoupled Lagrangian density for the self-interacting
scalar field̺(x) defined in (4.2). Unfortunately, a factorisation process analogous
to that which leads to the double Maxwell-Chern-Simons theory [36, 75] in the free
case is no longer feasible due to this specific coupling to thescalar field. However,
under the assumptions1 made in Chapter 4, it is still possible to isolate the dynamical
sector from the topological one since our TP factorisation technique is applicable, as
for any topologically massive dielectric gauge theory of the general form (4.29).

In this Section, we relax one of these restrictions in allowing the scalar field̺ (x) in
the Lagrangian density (5.1) to possess zeros on some spacetime events and analyse
the implications of such an assumption. A brief glance at this Lagrangian density al-
ready suggests that something has to happen when the scalar field ̺(x) vanishes on
a subset of the spacetime manifold, namely that the kinetic term for the gauge field
Bµ(x) should then cancel accordingly in order to keep the energy functional finite. As
a matter of fact we prove in Section 5.3 that corresponding toany submanifold of zeros
in ̺(x) there is associated a topological defect, of which the characteristic topologi-
cal invariant is intimately related to the orders of these zeros. A natural query which
comes to mind is the validity of our TP factorisation when such topologically non triv-
ial soliton solutions arise. The answer may be obtained withthe help of the equations
of motion which offer the hints towards the convenient parametrisation which takes
into account the possible existence of such topological effects.

5.1.1 Equations of motion and physical variables

The action (5.1) may be written in its covariant first order form after the introduction
of the auxiliary fieldsGµ(x) andEµ(x) so that physical variables are already manifest

1Indeed, we have assumed a topologically trivial spacetime manifold and non vanishing scalar fields.
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in the Euler-Lagrange equations of motion :

Lm
TMG̺ =

η2

2
̺2 Gµ Gµ +

1

2
ǫµνρ Hµν Gρ +

e2

2
Eµ Eµ +

1

2
ǫµνρ Fµν Eρ

+
κ

2
ǫµνρ (ξ Aµ Hνρ + (1 − ξ)Fµν Bρ) + L̺ . (5.2)

This is in general the first step in establishing duality relations through our TP fac-
torisation technique within the Lagrangian formulation. The equations obtained from
the variation ofGµ(x) andEµ(x) relate these physical variables to their gauge variant
counterparts,Bµ(x) andAµ(x) respectively, through the Gaussian integration:

2 η2 ̺2 ηρµ Gµ = −ǫρµν Hµν , (5.3)

2 e2 ηρµ Eµ = −ǫρµν Fµν .

It is on this ground that the field strentgh tensorFµν(x) has been interpreted in Section
4.1 as a current for the dynamical gauge fieldBµ(x) within theB-field picture and
conversely within theA-field picture, see (4.3) and (4.6) in 3+1 dimensions. The
equations resulting from the variation ofBµ(x) andAµ(x) are pure divergences:

ǫρµν ∂µ (Gν + κ Aν) = 0 , (5.4)

ǫρµν ∂µ (Eν + κ Bν) = 0 ,

and correspond to the Gauss laws associated to each of these gauge fields. Finally, the
equation describing the dynamics of the scalar field̺(x) reads

2̺ = η2 ̺ Gµ Gµ − µ̃2 ̺ − λ̺3 , (5.5)

where2 denotes the spacetime d’Alembertian,2 ≡ ηµν ∂µ∂ν .

5.1.2 The dynamical sector and local variables

These equations of motion may be expressed in terms of physical fields alone from
(5.3) and (5.4), independently of the gauge fieldsAµ(x) andBµ(x),

κ η2 ̺2 ηρµ Gµ = ǫρµν ∂µEν , (5.6)

κ e2 ηρµ Eµ = ǫρµν ∂µGν .

As a matter of fact, one of the possible Lagrangian densitieswhich directly gives
in return the equations of motion (5.5) and (5.6) expressed in terms of the physical
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variablesEµ(x), Gµ(x) and̺(x) is precisely the dynamical part,

L3
dyn =

e2

2
Eµ Eµ +

η2

2
̺2 Gµ Gµ + L̺

− 1

κ
ǫµνρ (ξ ∂µGν Eρ − (1 − ξ) ∂µEν Gρ) , (5.7)

of the dual Lagrangian density resulting from our TP factorisation. This correspon-
dence established locally remains globally true. It will beshown hereafter that the
dynamical sector is in fact not affected by the possible existence of a subset of space-
time where the scalar field̺(x) vanishes, or in other words, by the presence of the
non trivial topological content associated to topologicaldefect solutions.

The set of first order equations (5.6) may be locally reorganised into a set of partially
decoupled second order equations related by the scalar field̺(x) only:

ηνρ ∂ν (∂µEρ − ∂ρEµ) = ηνρ ∂ν ln
̺2

v2
(∂µEρ − ∂ρEµ) + 2 µ2 ̺2

v2
Eµ

ηνρ ∂ν (∂µGρ − ∂ρGµ) = 2 µ2 ̺2

v2
Gµ , (5.8)

to which the equation (5.5) must be added in order to have a complete set of local
equations of motion. Let us recall thatv = 〈̺〉 refers to the vacuum expectation
value of the scalar field which will be assumed to be non vanishing2. Hence from the
different available coupling constants and parameters we have also defined

µ = κ e η v , (5.9)

which is associated to the mass gap generated in this type of TMDGT according to
the above equations. In fact, the second of the equations (5.8) is associated within
theA-field picture to the Lagrangian density resulting from (5.7) whereξ = 1, after
the integration of the then Gaussian auxiliary fieldEµ(x). Alternatively one may also
obtain the first of the equations (5.8) from (5.7) by settingξ = 0, namely working
within theB-field picture, and eliminating the Gaussian fieldGµ(x). Notice that the
Gaussian integration of local variables does not alter the topological (global) content.

At least locally, the topological part of the TP factorised Lagrangian density is de-
coupled from the physical part and corresponds to a pure topological field theory of
theBF type. Indeed, it is worthy to recall here that the correspondence between the
transverse part ofAµ(x) and the physical variableGµ(x), and likewise forBµ(x)

andEµ(x), is required as a first-class constraint resulting from the local equations of
motion in the topological sector. However it is natural to wonder whether our factori-
sation survives in the presence of non trivial topological effects.

2This condition has to be required in order to construct topological defect solutions.
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5.1.3 The topological sector and global variables

The set of equations (5.5) and (5.6) is only locally valid andso does not encode impor-
tant topological information. As we shall see later, any topological defect associated to
a given worldlineΓ on which the scalar field̺(x) vanishes in the spacetime of dimen-
sion three, defines a connection on the manifoldR

3 \Γ which has the same homotopy
asS1×R. On this homotopically non trivial manifold, closed forms like the curvature
F = dA are not necessarily exact. Hence, Gauss’ laws (5.4) may alsobe integrated
on a two dimensional surfaceS in the spacetime manifold withC as a boundary. But
rather than requiring strict equality of the harmonic components ofFµν and∂[µ Gν],
a weaker relation between complex phases resulting from theexponentiation of (5.4)
will be introduced. Using Stokes’ theorem, this reads

exp

(

i Ω

∮

C
(κ Aµ + Gµ)

)

= 1 . (5.10)

A priori, the new constantΩ of which the physical dimensions must beE−1 L−1 may
be equal to any linear combination of the available constants η and1/κ. Within the
context of the Maxwell-Higgs model, obtained after the restoration of the brokenU(1)

symmetry, (5.10) is very reminiscent of compact abelian gauge symmetries defined in
terms of uni-valued pure imaginary exponential phase factors. Therefore, given the
polar formulation of the complexU(1) scalar field in (4.16) and the definition of the
associated current, one should fixΩ = η. However without any reference to a sym-
metry breaking mechanism as should be the case for the construction of topological
defect solutions of TMDGT, the value ofΩ will be fixed later through the study of the
behaviour of the fields close to zeros of̺(x).

At this stage, a new physical variable may be introduced, namely the flux associated
to the gauge fieldAµ(x) through the set of all compact surfaces in spacetime

Φ[C] =

∫

S
Fµν dxµ ∧ dxν , C = ∂S .

Thus the above relation (5.10) reduces to an equality between holonomies while the
physical interpretation of the fluxΦ[C] depends on the contour. For example, in the
static case for a given inertial frame, this Lorentz invariant quantity measures either
the total magnetic flux through a purely spacelike contour orthe electrostatic potential
difference between two spacetime events of which space coordinates are fixed. By
virtue of Stokes’ theorem, the flux reads

Φ [C] =

∮

C
Aµ duµ .

Consequently, (5.10) takes the form

Ω κ Φ [C] = 2 π L [C] − Ω

∮

C
Gµ duµ , (5.11)
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whereL [C] is an integer-valued functional the dependence of which on the contourC
has yet to be specified.

The fact that the global equation (5.11) is not expressed in terms of the gauge invariant
field Gµ(x) alone is to be related to the fact that the holonomy of this physical variable
does not provide a coherent description of the global degrees of freedom of the sys-
tem. Without wishing to launch into the analysis which will be developed throughout
the next Sections, let us briefly comment this fact. In (5.11)the holonomy ofAµ(x)

around the set of non contractible loops has also been introduced, namely the flux
Φ[C] through the surfaceS = ∂C including zeros of the scalar field. Along with the
holonomy ofGµ(x), this flux is also considered as a physical variable because it is
defined on the space of field configurations in an unique way. However neither the
former nor the latter are coherent global physical variables onR

3 \ Γ since they are
not topological invariant. In fact, the actual global physical variable is their difference
for every contourC, namely the integer-valued functionalL [C] introduced in (5.11)
and which will be referred to henceforth as “vorticity”. Hence the knowledge ofL [C]

for all possible closed contours in spacetime encodes all the information about the
topological structure for a given field configuration, namely the position and the de-
generacy of each topological defect core, and its dynamics throughout the spacetime
of dimension three.

Finally, likewise definitions apply to the other vector gauge field Bµ(x) and the as-
sociated flux and vorticity are referred to asΦ̃ [C] andL̃ [C]. However it will be seen
that the physical variableEµ(x) is not affected by the existence of events in space-
time where the scalar field̺(x) vanishes. Moreover the most general formulation of
TMDGT introduced in (4.29) considers the dielectric coupling between the kinetic
term of the vector gauge fieldAµ(x) and a scalar field̟ (x). In the present situation,
since this function̟ (x) keeps its non vanishing vacuum expectation value throughout
spacetime, the vorticitỹL[C] is identically zero whatever the contourC in spacetime.

5.1.4 The Topological-Physical factorisation

As seen in Section 1.2 a local formulation of the Maxwell-Higgs model in terms of
physical variables is pathological as soon as non trivial topological effects associated
to topological defect solutions are present. Indeed in thiscase, global boundary con-
ditions accounting for the singular phase of the complex scalar field must be explicitly
specified in the Lagrangian density (see for example [79, 45,46]). As far as TMDGT
are concerned the Lagrangian or Hamiltonian density may again be split into a dy-
namical part of physical variables and a topological part where the gauge symmetry
content resides through a local and linear reparametrisation, without specifying any



5.1. A topologically massive dielectric theory in the plane 105

global boundary condition. However our TP factorisation isin this case no longer
complete since the two sectors are only partially decoupled.

As already stated before, the TMDGT introduced in (5.1) and defined in 2+1 dimen-
sions is recovered from the general formulation (4.29) by freezing the scalar field̟ to
its vacuum expectation value. Hence no topological contentis lost when introducing
the decoupled gauge variant variableBµ given by

Bµ =
1

κ
Eµ + Bµ ,

since it will be shown hereafter that the fluxes ofBµ(x) and ofEµ(x) are identically
zero in that case. Then, the equations of motion set the transverse part ofBµ(x) to zero
while its longitudinal part is pure gauge. Moreover the fieldBµ(x) does not include
any singular part giving rise to a non trivial flux.

Indeed within the factorised formulation of TMDGT introduced in Chapter 4, the
decoupled term describing a pure topological field theory implies that on topologically
trivial manifolds, the gauge fields have neither local nor global parts when solving the
classical equations of motion. However this kind of topological term is sensitive to
topological effects which are associated, for example, to topological defect solutions.
In fact the physical variableGµ(x) inherits a singular global component from the
local behaviour of the scalar field̺(x) close to its zeros, making the local and global
degrees of freedom to mix and become interdependent. Therefore, the sumκ Aµ+Gµ

may not be associated to a new variable which decouples totally from the system in
the topological sector. Hence the factorised action does not consist in two independent
sectors,

S3
fac[E, G, A,B, ̺] = Sdyn[E, G, ̺] + Stop[A, G,B] +

∫

M
ST ,

but is again split into a dynamical part and a topological part, modulo a total diver-
gence. The factorised Lagrangian density,

L3
fac =

e2

2
Eµ Eµ +

η2

2
̺2 Gµ Gµ + L̺ (̺, ∂µ̺) (5.12)

− 1

κ
ǫµνρ (ξ ∂µGν Eρ − (1 − ξ) ∂µEν Gρ) + ST

+ (1 − ξ) εµνρ ∂µ (κ Aν + Gν) Bρ + ξ εµνρ (κ Aµ + Gµ) ∂νBρ ,

then gives in return the same partially decoupled (and totally decoupled locally) equa-
tions of motion in terms of physical variables as those we obtained in the beginning
of this Chapter: (5.5), (5.6) and (5.11). The dynamical partconsisting in the two first
lines of (5.12) is not affected by the presence of topological content associated, for ex-
ample, to topological defect solutions. However such topological effects dramatically
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modify the formulation of the topological sector. Hence therole of the topological
terms in the third line is to implement the global equation (5.11). The global part of
the fields of singular origin then comes to the fore through the study of vorticity.

5.2 Two equivalent types of topological defects

5.2.1 Ansatzfor static field configurations

We are presently interested in the emergence of classical soliton solutions from equa-
tions of motion (5.5), (5.6) and (5.11). Henceforth we shallthus restrict our analysis to
time independent field configurations making the action stationary. These static field
configurations obey two sets of partially decoupled first order equations for a given
spacelike sheet. On the one hand the equations relatingG0(x) andEi(x):

ǫij ∂iEj = κ η2 ̺2 G0 ,

ǫij ∂jG0 = −κ e2 δij Ej ,

on the other hand the equations relatingE0(x) andGi(x):

ǫij ∂jE0 = −κ η2 ̺2 δij Gj ,

ǫij ∂iGj = κ e2 E0 .

These two sets of equations are coupled through the dynamicsof the scalar field̺ (x):

∂i∂
i̺ = −η2 (G0)

2 ̺ + η2 (Gi)
2 ̺ + µ̃2̺ + λ̺3 .

Finally, the global equation (5.11) renders complete the set of equations of motion.
According to the context, these equations may describe two equivalent types of soliton
solutions, whether interpreted within theA- or theB-field picture.

In order to make the set of equations simpler, it is useful at this stage to introduce
a furtheransatzin addition to time independence of the fields. This means that the
ensemble of solutions is restricted to a subset possessing given symmetries and prop-
erties. Let us recall that in our case, theansätzeare not associated to some gauge fixing
since topological defect solutions are constructed withinthe physical sector. Rather
the possibleansätzeare related to the presence of electric or magnetic charges or flux
associated to topological defects. A first naive assumptionwould be to setGi = 0.
However, a brief look at the behaviour of the fieldG0(x) close to the vortex location
readily leads to the conclusion that this physical variableis either equal to zero or a
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pure imaginary number. Obviously this latter case makes no sense. Theansatzwhich
will be introduced here isG0 = 0. The local equations of motion under this extra
ansatzthen reduce to

ǫij ∂jE0 = −κ η2 ̺2 δij Gj

ǫij ∂iGj = κ e2 E0

∂i∂
i̺ = η2 (Gi)

2 ̺ + µ̃2̺ + λ̺3 . (5.13)

Notice that the case where no extraansatzis introduced, namelyGi 6= 0 andG0 6= 0,
will not be addressed here. If solutions exist, they should correspond to a kind of dyon
solution within theB-field picture with the magnitude of the magnetic field bounded
by that of the electric field.

Finally the local equations of motion must be completed by the global one which reads
under theansatzjust introduced:

Ω κ Φ [C] = 2 π L [C] − Ω

∮

C
Gi dli , (5.14)

where the ensemble of possible contours is restricted to spacelike ones. This last
global equation accounts for the non trivial topological content characteristic of the
soliton solutions. Before constructing these topologicaldefect solutions and exploring
insights that this novel avenue offers, we will presently give the physical meaning of
each of theA- andB-field pictures.

5.2.2 A-field picture: Covariant description of superconductivity

Within theA-field picture, namely forξ =1, the partially factorised Lagrangian den-
sity (5.12) is of the form

L3
fac =

e2

2
Eµ Eµ +

η2

2
̺2 Gµ Gµ − 1

κ
ǫµνρ∂µGν Eρ + L̺ (̺, ∂µ̺)

+
1

κ
εµνρ (κ Aµ + Gµ) ∂νBρ + ST . (5.15)

As already stated in Section 4.1 the dynamical part of the factorised formulation which
consists in the first line of (5.15) is very reminiscent of thefirst order physical formu-
lation of the Maxwell-Higgs model. The extra topological term in the second line of
(5.15) points out that the scalar field is liable to have zeroson the spacetime manifold.
This term is only sensitive to global effects associated to topological defect solutions.
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The local dynamical sector

By analogy with the case of the dielectric Cremmer-Scherk theory analysed in Section
4.1, the dynamical sector of the Hamiltonian density associated to (5.15) reads

Hdyn =
e2

2

(
Ei
)2

+
1

2 κ2η2

(
∂iE

i

̺

)2

(5.16)

+
η2

2

(
̺ Gi

)2
+

1

2 κ2e2

(
∂iG

i
)2

+ H̺ ,

where as a reminderH̺(̺, ∂i̺, π, ∂iπ) defined in (4.22) denotes the uncoupled part
of the real scalar field̺(x) along with its associated conjugate momentumπ(x), see
(4.21). Of course the usual non vanishing Poisson brackets between the other physical
variables of the phase space are recovered and take the form

{
Ei(t, ~x ), Gj(t, ~y )

}
= −κ ǫij δ2(~x − ~y ) .

This Hamiltonian density will later on become useful through the analysis of the (fi-
nite) classical energy of topological defects. An analysissimilar to that of Section 4.1
in 3+1 dimensions implies two different interpretations for this Hamiltonian formula-
tion either in terms of theA-field or theB-field picture.

The physical variableE0(x) within theA-field picture may be interpreted as the mag-
netic scalar fieldBA

mg(x), modulo a multiplicative constant, whileEi(x) is related to

the electric vector field~EA
el (x):

BA
mg = e2 E0 ,

(
EA

el

)i
= e2 ǫij Ej . (5.17)

The ansatzG = 0 previously introduced sets this electric field to zero and thus the
classical solutions within theA-field picture are purely magnetic. The other physical
phase space variableGi(x) is Hodge dual its counterpartsGi(x), introduced within
the Lagrangian first order formulation,

Gi = ǫij Gj .

In factGi(x) may associated to the currentJ i(x) in the Maxwell-Higgs model intro-
duced in Chapter 4 (see (4.6) and (4.14), in3+1 dimensions). Hence we have :

J i = κ η2 ̺2 δij Gj , (5.18)

and the first of the equations (5.13) which now takes the form

~∇BA
mg =

κ η

e2
∗ ~J , (5.19)
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implies that this current generates the magnetic fieldBA
mg(x).

Hence, applying now theansatzfor static field configurations, one recovers within the
dynamical sector the energy functionalεA

dyn(x),

εA
dyn =

η2

2
(̺ Gi)

2
+

1

4 e2κ2

(
∂[i G j]

)2
+ H̺ , (5.20)

which corresponds to the classical energy in superconductivity in the local physical
sector. Likewise, applying these correspondences to the set of equations (5.13), the
usual Maxwell equation for the magnetic scalar field in the plane, (5.19), is recovered
along with the equations specific to Landau-Ginzburg superconductivity:

BA
mg = − 1

κ η
~∇×

~J

ρ2
,

∇2̺ =
| ~J |2
̺3

+ λ̺ (̺2 − v2) . (5.21)

The first of these equations is the famous local second Londonequation describing the
Meissner effect in superconductors, see for example [86, 45].

The topological sector

The dynamical part of the Hamiltonian is not affected by presence of topological con-
tent associated to topological defect solutions. Such topological effects are actually
associated with the topological sector which consists in the second line of (5.15) or
equivalently reads within the Hamiltonian formulation

HA
top = B0 ǫij ∂i

(

Aj −
1

κ
Gj

)

. (5.22)

The topological sector generates the global equation

Ω κ Φ [C] = 2 π L [C] − Ω

∮

C
Gi dli ,

which may also be identified as the global London equation of the effective theory
of superconductivity, see [45]. The relation (5.4) betweenthe magnetic field and its
associated gauge fieldAi(x) does not appear in the factorised formulation (5.15).
Thus referring to the global variableΦ[C] as the flux is at first a misuse of language
which turns out afterwards to be coherent with the global London equation and the
second equation of (5.13). A similar thought process applies within theB-field picture
for the free electric charge.
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Dual description of covariant superconductivity

The specific TMDGT in 2+1 dimensions, of which the Lagrangiandensity reads

L3
TMG̺ = − 1

4 e2
Fµν Fµν − 1

4 η2

1

̺2
Hµν Hµν +

κ

2
ǫµνρ Aµ Hνρ + L̺ , (5.23)

and the Maxwell-Higgs model share a common first order physical formulation and
thus a common set of local equations of motion. Moreover theyboth possess a global
London equation characteristic of vortex solutions of quantised magnetic fluxΦ [C].
Hence, the Lagrangian density (5.23) admits dual magnetic vortices within theA-field
picture but the topological origin of the classical quantisation of the flux turns out to be
rather different from that of the Maxwell-Higgs model. In the same way, the TMDGT
defined in (5.23) offers a dual covariant formulation of the Landau-Ginzburg theory
of superconductivity in the superconducting phase. The great difference is that within
this dual formulation the formation of vortices is not related to any symmetry breaking
mechanism. This dual description along with the notion of topological order has been
described earlier in the London limit only and in the compactcase [74, 76, 75]. It is
established for the first time in this Chapter that the equations of motion associated
to the Lagrangian density (5.1) admits topological defect solutions of the vortex-type
within theA-field picture.

5.2.3 B-field picture: (di)electric “monopoles”

Let us turn now to the newB-field picture of which the associated (factorised) La-
grangian density,

LB
fac =

e2

2
Eµ Eµ +

η2

2
̺2 Gµ Gµ +

1

κ
ǫµνρ ∂µEν GρL̺

+ εµνρ ∂µ (κ Aν + Gν) Bρ + ST , (5.24)

describes the dynamics of electromagnetic fields propagating in a medium of which
the absolute permittivityε(x) is given by the real scalar field̺(x):

ε(x) =
1

η2 ̺2(x)
,

as already stated in Chapter 4. The dielectric vacuum constant ε0, obviously related
to 〈̺〉, and the relative permittivityεR(x),

ε0 =
1

η2 〈̺〉2
=

1

η2 v2
, εR(x) =

ε(x)

ε0
,
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are then defined from this absolute permittivity.

At this stage, an analysis similar to that of Section 4.1 in 3+1 dimensions implies that
the physical variableGi(x) may be associated with the electric field~EB

el (x),

(
EB

el

)i
=

1

ε(x)
ǫij Gj ,

while theansatzG0 =0 sets the magnetic field to zero and thus the classical solutions
within the B-field picture are purely electric. The measured electric field ~EB

el (x)

is generated both by the net free charge density3 ρf(x) and by the structural charge
densityρs(x) associated to the response of the dielectric medium. By virtue of this
very definition, the usual Maxwell static equations for the electric field in a dielectric
medium are recovered from (5.13) and read

~∇× ~EB
el = 0 , ~∇ · ~EB

el =
1

ε0
(ρf + ρs) =

1

ε0
ρT .

According to the equation of motions (5.13), the total charge densityρT reads

ρT = ~∇εR × ~G + εR κ e2 E0 .

If we assume that the scalar field̺(x) is everywhere frozen to its vacuum expectation
value, it may already be observed in this equation that the other physical variable
E0(x) has a very natural interpretation within theB-field picture in terms of the free
charge density in the vacuum

ρf = κ e2 E0 .

The integration of this latter relation on any surfaceS in the plane bounded byC,

Qf [C] =

∫

S
κ e2 E0dx2 = κ Φ[C] ,

provides a link between the magnetic flux of the vortex solution through the surfaceS
within theA-field picture and the free electric charge enclosed byC of the (di)electric
defect solution within theB-field picture.

Having in mind the discussion about the interpretation of the Hamiltonian density
(4.27) within theB-field picture in Section 4.1, it is also useful to introduce the electric
displacement~DB

el (x) which is Hodge dual to the physical variableGi(x)

(
DB

el

)i
= ǫij Gj . (5.25)

3Do not confuse the scalar field̺(x) with the free, structural and total charge densities, denoted by
ρf(x), ρs(x) andρT(x), respectively.
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Hence, applying now theansatzfor static field configurations, one recovers within the
dynamical sector the energy functionalεB

dyn(x),

εB
dyn =

η2

2

(

̺ ~DB
el

)2

+
1

2 e2κ2

(

~∇ ~DB
el

)2

+ H̺ , (5.26)

in terms of the electric displacement~DB
el (x) which is associated to the free charge

ρf(x) density through the dielectric Maxwell equation:

~∇ · ~DB
el = ρf .

The well-known relation :~DB
el (x) = ε(x) ~EB

el (x) is then recovered. Finally, apart
from the usual static Maxwell equations, two other local relations may be written in
terms of the electric displacement and the free charge density,

µ ~DB
el = εR

~∇ρf , ∇2̺ = η2 | ~DB
el |2 ̺ + λ̺ (̺2 − v2) ,

which are specific to our model describing electric defects.

The topological sector consists in the second line of (5.15)or equivalently reads within
the Hamiltonian formulation

HB
top = − 1

κ
B0

(

~∇ ~DB
el (x) − κ ǫij ∂iAj

)

.

This sector generates the global equation

Ω Qf [C] = 2π L[C] − Ω

∫

C
ǫij

(
DB

el

)i
dxj , (5.27)

taking into account the relevant topological aspects of field configurations. These
aspects are related to new topological defect solutions describing the electric field as-
sociated to a chargeQf [C], of which the classical quantisation is of topological origin,
embedded in a dielectric medium. This kind of topological defects will henceforth be
referred to as “dielectric monopoles”.

5.3 Construction of topological defect solutions

The different steps leading to the construction of topological defect solutions in the
model of topological mass generation defined in (5.1) will beaddressed in this Sec-
tion. Within theA-field picture, our vortex solutions are dual to those which have been
put forward by Nielsen and Olesen [47] in analogy with the Ginzburg-Landau theory
of superconductivity of which the Maxwell-Higgs model is the covariant extension.
What is also new and even more intriguing is the existence of an equivalent formula-
tion of these topological defects in terms of electric monopoles in a dielectric medium
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within the B-field picture. Our dual vortex solutions within theA-field picture are
characterised by a different origin of the magnetic flux quantisation in comparison to
the Maxwell-Higgs model. The identification of topologicalcontent of the field con-
figurations turns out to be original accordingly. This quantised flux is related to the
quantised free charge of the (di)electric monopole defectswithin theB-field picture.

The presence of the dielectric coupling in the Lagrangian density (5.1) gives credence
to the intuition that some non trivial effects arise each time the real scalar field̺(x)

vanishes on the space plane. These local effects are alreadyunraveled through a brief
analysis of the behaviour of the physical fields close to zeros of the Higgs field. More-
over, an analysis of the asymptotic behaviour of the physical fields also shows how
these local effects have direct influence on the topologicalstructure of the theory.

5.3.1 Physical fields close to a single topological defect

We first allow the scalar field̺ (x) to vanish at some discrete points in the plane.
These points are defined to be the positions of the (possibly degenerate) topological
defects. For the sake of simplicity, we will concentrate ourattention on the particular
case of topological defects whose positions all coincide with the origin. Physical field
configurations corresponding to such topological defects possess a rotational symme-
try on the plane. Consequently, convenient coordinates used to express the physical
variables are the polar ones (r, ϕ),

x = r cosϕ , y = r sinϕ , (5.28)

wherer =
√

x2 + y2 is the radius whileϕ is the polar angle,ϕ ∈ [0, 2π[. On account
of the polar symmetryansatz, all the physical variables are required to depend only
on the radial coordinate:G(r), E(r), ̺(r). Then the scalar field̺(r) may be written
as a series expansion in powers ofr of the form:

̺(r) =
∞∑

n=1

χ(n) rn ,

on the assumption of real analyticity.

Equations of motion under the polar symmetryansatz

Let us now establish how the set of equations of motion (5.13)and (5.14) transforms
under the polar symmetryansatz. The covariant space components of any 1-form
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A = Ai(~x) dxi restricted onΩ1(R2) transform under polar coordinates as

r Ax = r cosϕAr − sin ϕAϕ ,

r Ay = r sin ϕAr + cosϕAϕ ,

while the inverse relation reads

Aϕ = r cosϕAy − r sin ϕAx ,

Ar = cosϕAx + sin ϕAy .

Then the first two local equations of (5.13) relateE0(r) andGϕ(r):

κ η2 ̺2(r)Gϕ = r ∂rE0 , (5.29)

∂rGϕ = r κ e2 E0 , (5.30)

while the radial componentGr(r) vanishes identically. The third local equation of
(5.13) now writes

1

r
∂r (r ∂r̺(r)) =

η2

r2
̺(r)G2

ϕ + µ̃2 ̺(r) + λ̺3(r) , (5.31)

and determines the radial profile of̺(r).

Finally, these local equations must be completed through the global equation,

2 π

Ω
L [C] = κ Φ [C] +

∫ 2π

0

Gϕ dϕ , (5.32)

whereC is any possible choice of circular contour centered around the origin. The
assumption that the functionalΦ[C] vanishes identically for any contour shrunk to a
point, even though this point may be the location of a topological defect,

lim
S→0

∮

∂S
Aϕ dϕ = lim

S→0
Φ [∂S] = 0 , (5.33)

is also considered as a boundary condition. This extra condition bears a relation to the
global equation (5.32), making a link between local and global aspects. It ensures that
the magnetic field within theA-field picture (5.14) or the free charge density within
theB-field picture (5.27) is not singular at the location of topological defects.
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Behaviour of the fields close to the origin

The analysis of the behaviour of the fields close to the originleads to the following
conclusions.

• A finite number of the first consecutive expansion coefficients of the scalar field
̺(r) may all be set to zero. The index of the first non vanishing coefficientχ(N)

is called the order of the zero of̺(r), denoted byN , N ≥1.

• The physical variables possess a fixed parity required in order to have a consis-
tent power series expansion close to the origin. Among them,Gϕ(r) andE0(r)

are even while the parity of̺(r) depends on the orderN , namely even (resp.
odd) if N is even (resp. odd). The power series expansion for̺(r),

̺(r) = rN
∞∑

n=0

χ(2n) r2n , (5.34)

is written again so as to reproduce the correct behavior of the field at the origin
and to take into account the parity properties.

• The power series expansion of the physical variableGϕ(r) includes a coefficient
of zero order which depends on the orderN .

η Gϕ = ±N± 2

N

(

(N + 1)
χ(2)

χ(0)
− µ̃2

4

)

r2+O(r2N+2), for r → 0 . (5.35)

The physical variableGi(r) is thus ill-defined at the origin where the topologi-
cal defect is localised. As far as theB-field picture is concerned, only the radial
component of the measured electric vector field~EB

el (r) survives under the polar
symmetryansatzand behaves as

(
EB

el

)r
= η2 ̺2

r
Gϕ → ±η N χ2

(0) r2N−1 + O(r2N+1) , for r → 0 ,

while the associated electric displacement~DB
el (r) is singular at the origin,

(
DB

el

)r → ±1

η

N

r
+ O(r) , for r → 0 , (5.36)

where theB-electric monopole is located.

• The physical variableE0 is regular close to the origin and may also be expanded
in even powers ofr, with the zero order coefficient of the form

κ e2 η E0 = ± 1

N

(

4 (N + 1)
χ(2)

χ(0)
− µ̃2

)

+O(r2) , for r → 0 . (5.37)

The magnetic field associated to the vortices within theA-field picture or the
free charge density associated to the monopole defects within theB-field picture
are thus well defined at the origin.
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5.3.2 Vorticity

A careful analysis of the definition of vorticity in the topological sector of the La-
grangian density (5.1) enables us to get a precise idea of theorigin of its topological
invariant character. In what follows, we will work mainly within theA-field picture
in order to highlight the analogies and differences with thealready known vortex so-
lutions in the Maxwell-Higgs model. Within this picture, the existence of our new
type of topological defects is not related to any symmetry breaking whatsoever, but
rather is in direct relation with the fact that the scalar field vanishes at some points in
the plane. Of course all of the following discussion remainsvalid within theB-field
picture for the quantisation of the free electric charge.

The case of a single topological defect

It will again be assumed in what follows that the scalar field̺(r) possesses a single
zero of orderN in the plane, placed at the origin. The global equation,

∫

S

d(κ A + G) =
2π

Ω
L[C] , (5.38)

implies that the differentiald(κ A+ G) is a closed form which is not exact. This rela-
tion remains true in a small neighbourhoodaround the originand implies the following
relation between the orderN and the vorticityL[C]

lim
S→(0,0)

L [C] =
Ω

η
N , C = ∂S , (5.39)

according to the boundary condition (5.33) and the behaviour of Gϕ(r) close to the
origin (5.35). This relation established for an infinitely small neighbourhood around
the origin may be extended to any contourC enclosing the origin, by virtue of the
topological invariance ofL [C] to be discussed presently.

In fact, the zero of orderN of the scalar field endows the physical variableGi(x) with
a singular part at the origin, while the magnetic flux is well defined. Therefore, the
“non exact” part ofd(κ A+G) has a singular character in the plane since

ǫij ∂i(κ Ai + Gi) = 2π
N

η
δ2(~x) .

Then, by virtue of Stokes’ theorem,
∫

S

d(κ A + G) =

∮

C=∂S

(κ A + G) ,

wheneverd(κA+G) is singular at the origin, this is equivalent to the statement that the
holonomy of(κA+G) is defined on the manifoldR2 \ {(0, 0)}, henceforth denoted
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R
2
0. This topologically non trivial manifold has the same homotopy as the circleS1.

Consequently, any contour in the plane surrounding the origin is a 1-cycle defined
modulo a 1-boundary, thus belonging to the first homology groupH1(R

2
0, Z).

The global equation (5.38) selects in fact the global harmonic parts ofA(x) andG(x)

which are thus equal modulo a global form, the vorticityL[C]. Hence, although the
holonomies of(κ Ai) andGi are not actual global variables, the global equation im-
plies that their sum must necessarily be topological invariant. The functionalL[C] is
thus constant for the set of homotopically equivalent contours, namely the (non con-
tractible) loops surrounding the origin. Indeed, choosingsuch two contoursC andC̃
and evaluating their dual cohomology group with respects toeq. (5.38):

∮

C
(κ A + G) −

∮

C̃
(κ A + G) =

2 π

η
(L [C] − L[C̃) ,

a difference between vorticities is obtained. Clearly the difference between the two
contours belonging to the same equivalence class ofH1(R̃0,Z) is a pure boundary
and thusL[C]−L[C̃]=0. Following Poincaré duality, equivalent arguments lead tothe
invariance of the magnetic fluxΦ[C] under small gauge transformationsA′ = A + α

for any contourC, see [45],

Φ′[C] − Φ[C] =

∮

C̃
α = 0 ,

since under these transformationsα is an exact form.

The topological invariance of vorticity implies that the global equation reads
∮

C
(κ A + G) =

2 π

Ω
L [C] , η L[C] = Ω N , (5.40)

for all contoursC in R
2
0 enclosing the origin. The procedure just described is very rem-

iniscent of that which leads to the explanation of the Arahonov-Bohm effect. Actually
we will see later thatAi(x) andGi(x) interchange their global part when interpolat-
ing from contours shrunk to zero to contours at the infinity, sinceGi(x) tends to zero
for large radius. Thus the (classical) Arahonov-Bohm effect is asymptotically recov-
ered. However, in contradistinction to what happens in the Arahonov-Bohm effect, the
quantisation of the (asymptotic) magnetic flux already arises at the classical level and
is related to the orderN , according to (5.40). One may further enforceΩ=η in order
thatL [C] be integer-valued. However we introduce hereafter a new interpretation of
the vorticity, specific to TMDGT, which implies the integer-valued character ofL[C]

in a very elegant way.

The global equation (5.40) states that on any curve inH1(R
2
0, Z), the harmonic parts

of (κ A) andG belong to the same gauge orbit under the modular group of transfor-
mations of non zero winding number on this contour. Requiring the weaker equality
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of the Wilson loop as in Section 3.1, see (3.12), the vorticity takes integer values
only and is related to the winding number around the non contractible loops. Hence
L[C] = N is a topological invariant belonging to the lattice groupH1(R0, Z). How-
ever, acting on the harmonic part of singular origin, these “large gauge transforma-
tions” are themselves singular and field configurations associated to topological defect
solutions break the invariance under these LGT. Two topological defect field configu-
rations differing by their vorticity are topologically distinct4. In fact, the only allowed
gauge transformations are regular and single-valued throughout spacetime, namely the
“small” gauge transformation of zero winding number for a given contourC. Rather
the “singular” large gauge transformations classify different fields configurations ac-
cording to the integer-valued vorticity functional for anyloopC.

Multi-topological defects solutions

By virtue of the topological invariance of the vorticity, the relation (5.40) is true for
all contoursC such that the surface delimited by this contour does not encounter an
other zero of the scalar field. It is obviously always true within the simple case of a
single topological defect at the origin. We will now generalise this case in allowing the
scalar field̺ (x) to vanish on a discrete set of pointszk = (xk, yk). The requirement
of a finite energy functional, of which the physical part is ofthe form (5.20) within the
A-field picture, generates the following condition at the topological defect location:

̺2 (Gi)
2 < ∞ , for z → zk .

Consequently the condition of finite energy field configurations does not forbid the
physical variableGi to possess a1/|z − zk| singularity at the set of points{zk}.
Actually that is indeed the case as shown previously (5.35) through the analysis in
polar coordinates of the behaviour of the fields close to the origin, where the single
topological defect had been placed.

This conclusion may readily be extended to field configurations with topological de-
fects located at the set of pointszk in the plane. The topologically non trivial manifold
on which the global London equation (5.38) is defined then reduces toR2\{zk}. Con-
sequentlyL[C] is non zero when the contour shrinks to a pointzk where the singular
harmonic part of the global London equation (5.38) is only carried by the physical
variableGi(x), following the boundary condition (5.33). The value ofL[C] is then
equal to the order at this point, which will be referred to asNk. By virtue of the
topological invariance of the vorticity,L[C] does not change for two different contours
which can be deformed to each other. However, when the surface S bounded byC

4This explains why the dynamical and topological sectors of (5.1) are no longer completely decoupled
through our TP factorisation.
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encounters another point where the field̺(x) possesses another zero of orderN ′, and
thus another point wheredG is singular, the vorticity increases by the valueN ′. The
functionalL[C] depending on the contourC is subsequently piece-wise constant and
equals the net multiplicity of zeros inside this contour

L[C] =

K[C]
∑

k=1

Nk .

In this equation,K[C] denotes the number of pointszk inside the contourC. In other
words the vorticityL[C] is the sum of the contributions of a collectionK[C] topologi-
cal defects surrounded byC along with their respective degeneracyNk. Two topolog-
ical defect configurations which cannot be deformed into each other are topologically
distinct. Singular large gauge transformations classify these topologically distinct vor-
tex solutions according to the associated lattice group,

H1(R2 \ {zk} , Z) = Z ,

to which the vorticity belongs.

For a single topological defect solution localised at the origin, field configurations of
different vorticities are topologically distinct. Once the solution consists in more than
one topological defect, their relative positions and respective degeneracies ought to
be also taken into account. All this information is encoded in the vorticity functional
L[C]. In fact, it may be proved that the knowledge of vorticityL[C] for any contour
C characterises the field configuration associated to a given topological defect in an
unique way. Further, the piece-wise constant character of this functionalL[C] implies
that the space of multi-topological defect solutions is2L dimensional, with

L = lim
S→R2

L[∂S] ,

for space manifolds without boundary.

Finally, the last important point of this Section is the general character of our analysis
of the topological content specific to TMDGT. Often we have not specified purposely
the number of space dimensions, or even the rank of the physical variables. Actually
our approach of the vorticity is generic for any topologicalmass generation model
with a specific dielectric coupling to a scalar field whateverthe number of spacetime
dimensions and the tensorial rank of thep-form fields, see (4.29). Hence although
our approach of vorticity may seem heavier than that of the Maxwell-Higgs model, its
range of application might possibly be far more general.
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5.3.3 Asymptotic behaviour of the physical fields

As has been shown in the previous Subsections, the message carried by the global
equation (5.32) generated from the topological sector is that there exist topological
defect solutions for which physical observables constructed from physical variables
possess non trivial topological content. In contradistinction to the case of pure TMGT,
discussed in Chapters 2 and 3, the global “0-modes” and local “k-modes” do not fac-
torise in our interacting model. Hence topologically massive dielectric gauge theories
may no longer be completely decoupled into dynamical and topological sectors. Even
in the London limit, despite the fact that the non interacting case (pure TMGT) is
recovered in the physical sector, a non trivial topologicalcontent subsists again.

The asymptotic London limit

One way to reach the London limit is to consider the asymptotic behaviour of the fields
at infinity, requiring at a same time the (local) energy functional, introduced in (5.20)
within the A-field picture, to remain finite. Under the commonly made assumption
that the scalar field̺(r) reaches its vacuum expectation value rapidly whenr →∞,
the asymptotic values of the physical variables have to obey:

lim
r→∞

(̺

r

)2

(Gϕ)2 = 0 , lim
r→∞

̺2 (E0)
2

= 0 ,

according to (5.20) and (5.30). The following boundary conditions are thus obtained:

ρ → v , Gϕ = k + O(1/r) , E0 = O(1/r) , for r → ∞ , (5.41)

and are compatible with (5.29) provided thatk =0. In fact it may be easily seen that
the scalar field̺ (r) approaches its asymptotic value as

̺(r) → v + O
(

e−
√

2 |µ̃| r
)

, for r → ∞ , (5.42)

see for example [47, 87]. The characteristic decay rate(
√

2 |µ̃|)−1 is the inverse of the
mass of the field̺(r) in the theoretical particle physics interpretation or the coherence
length5 in the condensed matter physics one.

As ̺→v rapidly enough at large radius, local equations (5.29) and (5.30) read under
this London limit

∂r (r ∂rE0) = r µ2 E0 ,

r ∂r

(
1

r
∂rGϕ

)

= µ2 Gϕ , for r → ∞ ,

5Modulo a normalisation factor
√

2, see (4.16).
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whereµ is defined in (5.9), and are then exactly solvable. Equation (5.31) is redundant
with the asymptotic boundary conditions (5.41) sinceλ v2 = −µ̃2 for the quadratic
potential (4.12). In fact, a free theory is recovered at large distances and corresponds
to the physical part6 of TMGT, see (2.31), to which a topological sector must be added
in order to reproduce the global equation (5.32). The above couple of equations reads
as follows in a more appealing decoupled form upon settingGϕ =r G̃ϕ :

∂2
rE0 +

1

r
∂rE0 = µ2 E0 , (5.43)

∂2
r G̃ϕ +

1

r
∂rG̃ϕ =

(

µ2 +
1

r2

)

G̃ϕ , for r → ∞ .

The well known solutions to these second order equations arethe modified Bessel
functions7 In(x) andKn(x), where in the present situationn ∈ Z. These types of
Bessel functions are real-valued and do not manifest a periodic behaviour, as expected
for the physical fields considered. If the physical variables E0(r) and Gϕ(r) are
assumed to vanish asymptotically (5.41), then

G∞
ϕ (r) = r G̃∞

ϕ (r) = cel r K1(µ r) ,

and E∞
0 (r) = cmg K0(µ r) ,

are the only acceptable local solutions to the asymptotic equations of motion (5.43).

Considering this asymptotic behaviour, the surface term “ST” which arises when fac-
torising the Lagrangian (or the Hamiltonian) density through our TP factorisation tech-
nique, see (5.12), vanishes at the boundary of the plane

∫

S2

εij ∂i

(

(Aj +
1

κ
Gi)E0

)

d2x =

∮

∞

(

Aϕ +
1

κ
Gϕ

)

E0 = 0 ,

and so does not contribute to the action. Finally, before leaving the analysis of the
asymptotic behaviour for the physical variables, it is of prime importance to consider
global boundary conditions not yet taken into account sincethe set of equations (5.43)
is only locally defined. These global boundary conditions fixthe remaining integration
constantscmg andcel.

Physical fields within theA-field picture

TheA-field picture where topological defects of vortex type arise is first considered.
As already stated, the asymptotic boundary conditions (5.41) do not allow the closed

6Or equivalently the associated Proca theory or gauge fixed Stueckelberg theory, see Fig.4.3.
7Also known as Bessel functions of pure imaginary argument.
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form dG to possess a global (or “non exact”) part of singular character at large radius.
This is to be related to the fact that the conserved current (5.18) vanishes at infinity
while the magnetic flux through the plane reads

Φ∞ = lim
S→R2

∫

S

(BA
mg) dx2 = 2π

L

η κ
, lim

S→R2
L[∂S] = L .

By virtue of topological invariance of vorticity, the global equation (5.32) implies that
the magnetic field inherits asymptotically the singular part of dG at the origin.

Within theA-field picture, the limit̺ →v corresponds to the asymptotic London limit
of fluxon strings [47] since vortex cores are considered as being infinitely thin at large
distance. Let us consider now the magnetic fieldB∞

mg(r) in this London limit which
is obviously related toE∞

0 (r), see (5.17). Hence the integration of this latter physical
field over the plane,

L = cmg η κ e2

∫ ∞

0

r K0(µ r) = cmg
η κ e2

µ2
=

cmg

η κ v2
,

fixes the value of the constantcmg to

cmg = η κ v2 L .

This integration constant can only take discrete values depending on the vorticityL.

Going back to vortices of finite core, the magnetic fieldBA
mg(r) shares with its coun-

terpartB∞
mg(r) in the London limit the same asymptotic behaviour which thusreads

(BA
mg) =

L

η κ

√

π µ3

2 r
e−µ r

[

1 + O
(

1

r

)]

, for r → ∞ . (5.44)

The behaviour of the magnetic field for vortices in the Maxwell-Higgs formulation is
recovered, where(1/µ) is the penetration depth.

Physical fields within theB-field picture

As far as theB-field picture is concerned, under the approximation of an infinitely thin
dielectric monopole core at large distance, the electric displacement~DB

el (r) defined in
(5.25) reads

(
DB

el

)r ̺=v−→
(
DB

∞
)r

=
1

r
G∞

ϕ = cel K1(µ r) . (5.45)

This approximation at large radius is analogous to the London limit within theA-field
picture since it is again assumed that the field̺(r) reaches its vacuum expectation
value very rapidly, see (5.42).
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Considering now this London limit̺ = v throughout the plane, the electric displace-
ment behaves at the origin as

(
DB

∞
)r → cel

µ

1

r
for r → 0 .

This limit in combination with the behaviour of the physicalvariableGϕ(r) close to
the origin (5.35) implies that the constantcel can only take discrete values

cel =
µ

η
L .

The relation (5.45) implies that the electric displacement~DB
∞(r) falls exponentially

to zero at large radius. Therefore, the total free electric chargeQf carried by the
monopole at infinity, given by the global equation (5.27), reads

Q∞
f =

L

η
,

fixing again the valuecmg. Hence within theB-field picture, vorticity measures the
free electric charge in units of one quantum of charge of the dielectric monopole.

As already stated within theA-field picture, the London limit̺ = v provides a very
good asymptotic approximation to our model. In this limit, the “measured” electric
field ~EB

∞(r) propagates in the vacuum and is therefore proportional to the electric
displacement,~EB

∞ = η2v2 ~DB
∞. Therefore, within theB-field picture, the “measured”

electric field~EB
el (r) which takes into account the response of the dielectric medium to

the free electric chargeQf behaves at large distance as:

(EB
el )

r = L η v2

√
π µ

2 r
e−µ r

[

1 + O
(

1

r

)]

, for r → ∞ , (5.46)

and decreases exponentially at infinity with (1/µ) as characteristic decay length.

5.3.4 Numerical solutions: two types of topological defects

Properties of the solutions

In this Subsection the solutions to the set of local equations (5.29), (5.30) and (5.31),
completed through the global boundary conditions (5.32) and (5.33), will be pre-
sented. These solutions were obtained through numerical simulation in collabora-
tion with Térence Delsate and, as a reminder, account for a single topological defect
localised at the origin and possibly degenerate. Introducing the radial coordinateu
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normalised to the length scaleµ, that isu =µ r, and redefining the physical fields as
variables without physical dimension:

G = η Gϕ , ˜̺ =
̺

v
, µ E =

e

v
E0 , λ̃ =

|µ̃|
µ

,

the ensuing system of equations reads:

∂2
uG − 1

u
∂uG − ˜̺2 G = 0 ,

∂2
u ˜̺+

1

u
∂u ˜̺− 1

u2
G2 ˜̺+ λ̃ ˜̺(1 − ˜̺2) = 0 ,

∂uG − u E = 0 . (5.47)

These equations depend on two parameters|µ̃| andµ of which only the ratiõλ is phys-
ically relevant. This set of coupled differential equations is subjected to the following
asymptotic boundary conditions

lim
u→∞

˜̺(u) = 1 , lim
u→∞

G(u) = 0 , lim
u→∞

E(u) = 0 , (5.48)

according to our discussion of the asymptotic London limit while the physical vari-
ables take the following values at the origin

˜̺(0) = 0 , G(0) = L , L ∈ Z , (5.49)

in agreement with the behaviour of the physical fields close to the origin.

The numerical resolution of these coupled differential equations is far from being triv-
ial. Indeed, on the one hand, these equations are non linear and on the other hand a
part of the above boundary conditions is delocalised on the boundary of the plane at
infinity. Hence, the first coefficients of the expansion in power ofu at the origin must
be adjusted in order to meet the required boundary conditions at infinity. The FOR-
TRAN subroutine “COLSYS” has been used in order to tackle this kind of difficulties
arising in the numerical integration of the set of equations(5.47) for the ensemble
of boundary conditions (5.48) and (5.49). As seen hereafter, these solutions are lo-
calised (particle-like) topological defects in the sense that the physical fields approach
their asymptotic vacuum values exponentially. This is confirmed through our study of
the asymptotic behaviour of the physical variablesBA

mg(r) andEB
el (r), see (5.44) and

(5.46) respectively, which have a characteristic decay length equal to one while the
decay length of̺̃ (u) is (2 λ̃)−

1
2 , see (5.42).

Considering the global boundary conditions (5.32), the asymptotic vorticityL has dif-
ferent meaning whether one considers theA-field or theB-field picture. Actually,L is
the total quantised magnetic flux (in unit of flux) through theplane of the vortex field
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configuration. Within theB-field picture, vorticity around each monopole location is
associated to the quantised free electric charge carried bythis monopole. As far as
the free energy is concerned, vorticity is related to the topological sector, see (5.22),
generating the global equation (5.32) and thus not decoupled from the physical sector.
This implies that topological effects are no longer associated to the simple degener-
acy of the energy spectrum8 but really affect it. Hence two topological defects with
different topological invariant, that is different vorticity, have different energy.

B-field picture: (di)electric monopoles

As already stated, the set of coupled equations (5.47) alongwith the global equation
(5.32) describes new topological defect solutions within the B-field picture. These
(di)electric monopoles account for a free chargeQf [C], of which the classical quanti-
sation is of topological origin, embedded in a dielectric medium. Usually the electric
displacement~DB

el (r) is used to describe free electric fields in a dielectric medium.
However, the behaviour of this physical variable close to the origin is pathological,
see (5.36). The electric displacement is associated to the free charge densityρf(r)

through the Maxwell equation (5.27). However, strictly speaking, ~DB
el (r) is not gen-

erated byρf(r) since~∇× ~DB
el 6= 0. Indeed although the free charge density is finite at

the defect location, see (5.37), the electric displacementis singular. This fact is already
made manifest through the global equation (5.27). The radial free charge distribution
ρf(u), expressed in terms of the dimensionless variableE(u),

ρf =
µ2

η
E ,

is plotted in Fig.5.1, Fig.5.2 and Fig. 5.3.

As usual for this type of topological defect solutions, the value of the scalar field̺̃(u),
presented in Fig.5.1, is bounded by its vacuum expectation value: ˜̺(u) < 1, in order
that the physical fields reach their vacuum value at infinity.Within the context of
superconductivity, the value of this scalar field interpolates between the completely
disordered state (̺̃(u) = 0) at the vortex location and the completely ordered state
( ˜̺(u) = 1) at infinity, where the Meissner effect is maximal. Likewisewithin theB-
field picture, the scalar field̺̃(u) effectively acts like a dynamical dielectric medium,
of relative permittivityεR = 1/ ˜̺, which counterbalances the free electric field in the
vacuum sincẽ̺ (r) < 1. The contribution of the dielectric medium is maximal and
even singular at the electric defect location. According to(5.34), this singularity in
1/r2 compensates for that in1/r of the electric displacement, see (5.36), with the

8As was the case for pure TMGT defined on non simply connected manifolds, see Chapter 3.
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Figure 5.1: Dielectric monopole of one quantum of free electric charge at infinity
within theB-field picture at the Bogomol’nyi point̃λ = 1/2. This figure represents
the rescaled electric field,Eel = (1/µ2 η v2)(EB

el )
u, and free charge density,E =

(η/µ2) ρf , along with the inverse relative permittivitỹ̺=(1/εR) as functions ofu.

result that the total “measured” electric field~EB
el (r) given by ε(x) ~EB

el (x)=~DB
el (x)

be zero at the origin. In the non zero coherence length case, the measurable electric
field is screened by the permittivity and hence protected from a bare singularity. On
the contrary at large radius, the total electric field propagates in the vacuum as the
influence of the dielectric medium becomes insignificant. This total electric field is
related to the variable without dimensionG(u),

1

µ2 η v2
(EB

el )
u =

˜̺2

u
G .

Fig.5.1, Fig.5.2 and Fig.5.3 present the results of numerical investigations for this
radial field which is well defined all over the plane.

A-field picture: Dual magnetic vortices

Let us now concentrate our attention on the dual formulationwithin theA-field picture
of the Nielsen-Olesen vortex solutions of quantised magnetic flux L (in unit of flux).
The magnetic fieldBA

mg(u) associated to a vortex solution localised at the origin is
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Figure 5.2: Dielectric monopole solutions of one quantum of free electric charge
at infinity within theB-field picture forλ̃ = 1, 1/2, 0.1. This figure represents the
rescaled electric field,Eel = (1/µ2 η v2)(EB

el )
u and the rescaled free charge density,

E=(η/µ2) ρf , as functions of the normalised radiusu

Figure 5.3: Dielectric monopole solutions of two quantum of free electric charge
at infinity within theB-field picture forλ̃ = 1, 1/2, 0.1. This figure represents the
rescaled electric field,Eel = (1/µ2 η v2)(EB

el )
u and the rescaled free charge density,

E=(η/µ2) ρf , as functions of the normalised radiusu.
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Figure 5.4:Dual vortex solution of one quantum of magnetic flux at infinity within
the A-field picture at the Bogomol’nyi “self-dual” point̃λ = 1/2. This figure rep-
resents the rescaled magnetic field,E = (µ2/κ η)BA

mg, the rescaled current density
(e/µ v)Jϕ and the renormalised Higgs field̺̃as functions ofu.

related to the dimensionless variableE(u) according to

µ2

κ η
BA

mg = E .

This transverse magnetic field, represented in Fig.5.4, is generated through the usual
Maxwell equation,

e2 ~∇BA
mg = κ η ∗ ~J,

by the azimuthal componentJϕ(u) of the current density which reads in term of the
dimensionless variableG(u)

e

µ v
Jϕ = ˜̺2 G .

Fig.5.4 presents the results of numerical investigations for this azimuthal field well
defined all over the plane and for the normalised Higgs field˜̺(u). Here we do not
describe in detail the vortex solutions we obtained since they are already well-known
in the literature through the study of the effective model oftype II superconductivity
(see [87] and references therein). We prefer to dwell on analogies and differences
between vortices in the Maxwell-Higgs model and their present dual formulation.
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Figure 5.5:Duality relation between vortex solutions in our dielectric model of topo-
logical mass generation within theA-field picture introduced in (5.1) and vortex solu-
tions of the Maxwell-Higgs model in2+1 dimensions. The two vortex solutions share a
common local sector of physical variables but the origin of the classical quantisation
of the magnetic flux, of topological character, is different.

As already stated our TMDGT in2+1 dimensions (5.23) within theA-field picture and
the Maxwell-Higgs model share a common physical sector of dynamical variables but
they differ through their topological content. Hence thesetheories admit both vortices
as static solutions but the origin of the classical quantisation of the magnetic flux is
different, see Fig.5.5. The vorticity defined in our dielectric model of topological mass
generation and the vorticity associated to boundary conditions on the complexU(1)

scalar field in the Maxwell-Higgs model, see Section 1.4, arerelated through

Maxwell-Higgs TMGT

2π L[C] =
∫ 2π

0 ∂ϕθ dϕ = η κ Φ [C] + η
∮

C G

Non univalued Global part
complex phase onR2 \ {zk}

Topological defect configurations which cannot be deformedinto each other are topo-
logically distinct. Hence singular large gauge transformations classify our dual vortex
solutions according to the first cohomology group,H1(R\{zk}, Z). Vorticity, associ-
ated to the number and degeneracy of topological defects, isrelated to the parameters
of this lattice group and may only take integer values accordingly. Recalling that for
non pathological manifolds, the first homology groupH1(M, Z) is isomorphic to the
first homotopy group,π1(M), modulo the commutator subgroup, enforces the com-
parison with the boundary conditions in the Maxwell-Higgs model. However our dual
approach remains noticeably different. In contradistinction with the usual vortices, the
construction of our dual vortices proceeds first from the analysis of the behaviour of
the physical variables close to the position of vortices. Then the consequences of this
local behaviour on the topological structure of the solutions are addressed.
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5.4 Conclusion

Let us conclude this Chapter by some comments about the extreme care which has to
be taken in dealing with global effects. Two “pure” theoriessharing a common formu-
lation in terms of physical variables through some dualisation procedures but differing
by their gauge symmetry content are equivalent if they are defined on topologically
trivial manifolds. As far as topologically massive dielectric gauge theories (TMDGT)
are concerned a further restriction applies: the scalar field does not vanish anywhere
on the spacetime manifold since then global effects, associated to topological defect
solutions, arise. Otherwise, the process which consists inestablishing the dual equiv-
alence between the topologically massive action (5.23) within theA-field picture and
the Maxwell-Higgs model does not apply unless global boundary conditions are de-
fined (see for example [45]). Up to now the occurrence of theseglobal boundary
conditions was considered in the literature only within thestudy of some effective
limit in the Nielsen-Olesen vortex solutions which leads tothe formulation of Nambu
strings [47, 79]. In the context of our work, this problem is adirect consequence of
the formulation of the Maxwell-Higgs model as a first order theory described by local
physical variables, see Section 1.4.

The gauge embedding procedure relying on the Fradkin-Vilkovisky theorem enables
to establish duality relations between the most common massgeneration mechanisms
which possess different gauge symmetry structures, see Fig.4.3. However such dual
equivalences no longer hold as soon as topological defect solutions arise. Indeed, con-
sidering for instance the Maxwell-Higgs model and the TMDGTwithin the A-field
picture defined in2+1 dimensions, these theories are locally equivalent but the topo-
logical origin of the quantisation of the magnetic flux is totally different, see Fig.5.5.
As far as the Maxwell-Higgs model is concerned, the classical quantisation of the flux
comes from non trivial boundary conditions for theU(1) complex scalar field which
is required to reach its vev at infinity. It is therefore intimately related to the sym-
metry breaking potential. Turning now to the case of the TMDGT defined in (5.1),
we have proved in this Chapter that the topological content of topological defect solu-
tions resides in the topological sector which maintains twotypes of gauge invariances.
Therefore it makes no sense to relate the formation of these topological defects to any
symmetry breaking mechanism. Usually in the literature, the topological sector was
until now swamped by a mesh of successive procedures of gaugeembeddings and/or
gauge fixings characteristic of the dualisation methods. This is probably the reason
why our topological defect solutions have not been discovered until now. In fact, the
formation of these topological defects perfectly illustrates the restricted validity of the
gauge embedding procedures relying on the Fradkin-Vilkovisky theorem (see [44] and
references therein).



5.4. Conclusion 131

Finally, the strong interdependence of the two equivalent pictures implies that all in-
sights gained through the study of magnetic vortices withintheA-field picture might
be applied to the new dielectric monopoles within theB-field picture. Among an ex-
haustive list, let us just mention the careful analytical analysis developed in order to
prove the existence and smoothness of finite energy vortex solutions (see [87] and ref-
erences therein), the quantum corrections around the classical non perturbative vortex
configurations, vortex dynamics and interactions [88], etc. In some sense this thought
process already applies in this Chapter. Conversely a complete and systematic analy-
sis of our novel dielectric monopoles picture might shed newlight on the properties
of the magnetic vortex solutions. Finally our work offers a new insight in the analysis
of solitons in abelian gauge field theories since our procedure could allow to con-
struct topological defect solutions in any dimension neverconsidered before. We will
hardly explore this avenue in Chapter 6 by addressing in3+1 dimensions a novel gen-
eralisation of vortices to 2-form gauge fields and their associated dielectric monopole
solutions for 1-form gauge fields.





CHAPTER 6

New horizons

Vortex solutions in abelian gauge theories have been restricted until now by the strin-
gent conditionp = 1, namely they have been associated with1-form gauge fields.
However the topological sector of TMDGT retains the same formulation whatever the
number of spacetime dimensions or the tensorial rank of the gauge fields. Therefore
our work offers new insights into the analysis of brane-typetopological defects in
abelian gauge field theories. We will hardly explore this newavenue in this Chapter
by addressing for the first time vortex-type topological defects generalised to 2-form
gauge fields in3+1 dimensions, within theB-field picture. In other respects, the
(di)electric “monopoles” obtained in Chapter 5 do not offermuch interest per se be-
sides the novel character of their construction. Indeed to the best of our knowledge,
there do not exist applications where electric fields polarise a dielectric medium in the
plane. However such (di)electric monopoles for1-form gauge fields admit a general-
isation in3+1 dimensions, namely a more realistic case, within theA-field picture.

Finally this Chapter also mentions a number of possible avenues for research leading
beyond this Thesis in cosmology, particle physics and condensed matter physics.

*
* *
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6.1 A zoo of topological defects ?

6.1.1 Dynamical and topological sectors

The construction of magnetic vortices within theA-field picture, and their equivalent
dielectric monopoles within theB-field picture, which was described in Chapter 5 for
a specific number of spacetime dimensions, is generalisableto any dimension for a
large range of TMDGT. Indeed the action for topologically massive dielectric gauge
theories in any dimension introduced in (4.29),

STMG̺̟ =

∫

M

σp

2

1

e2(̟)
F ∧ ∗F +

σd−p

2

1

g2(̺)
H ∧ ∗H

+ SBF [A, B] + S̟ [̟] + S̺ [̺] , (6.1)

should possibly admit generalised topological defects provided that at least one of
the two scalar fields,̺(x) or ̟(x), is allowed to vanish on a spacelike submanifold.
The worldsheet associated to the topological defect is defined as the trajectory of the
center of the core of these defects. It may also be defined as the submanifold where
a dielectric scalar field vanishes, by analogy with the (dual) Maxwell-Higgs model
where vortices are related to zeros of the Higgs field. Then a large range of extended
topological defect solutions may emerge from (6.1) with complementary physical in-
terpretations whether one works within theA- or theB-field picture.

As usual, our TP factorisation enables to isolate the physical and the topological sec-
tors of these novel topological defects of which the range ofsolutions should be re-
stricted by the stringent condition of finite energy. In contradistinction with the topo-
logically trivial case addressed in Section 4.2, the dual factorised action should be only
partially decoupled if one allows for possible topologicaldefect solutions and reads

Spar[A, B, E, G, ̺, ̟] = Sdyn[E, G, ̺, ̟] + Stop[A, B, E, G] ,

up to a physically irrelevant surface term for boundary conditions associated to topo-
logical defect configurations.

The physical sectorSdyn[E, G] does not involve any topological content associated to
topological defect solutions and therefore may be written again as in (4.31),

Sdyn =
ζ2

2
e2(̟) (E)

2
+

η2

2
g2(̺) (G)

2
+ S̟ [̟] + S̺ [̺]

+
1

κ

∫

M
σd−p ξ E ∧ dG − (1 − ξ) dE ∧ G .
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According to the usual properties of topological defects, the space of physically in-
equivalent field configurations is the moduli space, that is the space of classical soliton
solutions modulo gauge transformations (connected to identity). However in our ap-
proach, the topological defects are constructed from a sector of already gauge invari-
ant variables. So any soliton solution is physical per se andthe space of topologically
inequivalent solutions is defined in an one-to-one manner.

The second sectorStop[A, B, E, G] of the form

Stop =
1

κ

∫

M
(1 − ξ) d(κ A − σp(d−p) G) ∧ (κ B + E)

− σp ξ (κ A − σp(d−p) G) ∧ d(κ B + E) ,

is identified as being topological not only because the fieldsare topologically coupled
but also because this sector generates the generalised “London” equations in any di-
mension. By analogy with the Nielsen-Olesen vortex, solutions in 2+1 dimensions
the local form of these equations is trivial while their global form embraces all the
topological content which characterizes a given topological defect field configuration.
By virtue of Stokes’ theorem, these global equations are of the form

Ω

∮

Cp

κ A − σp(d−p) G = 2pπ L[Cp] , Ω̃

∮

Cd−p

κ B + E = 2d−pπ L̃[Cd−p] ,

whereCp andCd−p are boundaries of spacelike submanifolds of dimensionp+1 andd-
p+1 respectively, whilẽL[Cp] andL̃[Cd−p] are generalised vorticities. The fact that the
homotopy groupsΠp(R

d+1\Γ) andΠd−p(R
d+1\Γ̃) must be non trivial constrains the

dimension of the worldsheetsΓ andΓ̃ associated to each topological defect solution
of respective vorticityL andL̃.

6.1.2 Some comments about our terminology

Let us specify the terminology we use for abelian monopole and vortex solutions, in
order to avoid any confusion. A monopole will refer in our convention to a point
topological defect in space, hence a worldline in spacetime, carrying electric or mag-
netic charge. The generated electric vector field (resp. magnetic tensor field of rank
(d−2)) is radial in space and is associated to an1-form (resp. (d−2)-form) gauge
field. More generally, an electric pole associated top-form gauge field is a topological
defect of dimension (p−1) in the space manifold, whatever the number of spacetime
dimensions. We will use the terminology of electric “monopole of rankp” as usual, or
p-brane topological defect of the monopole type. For the samep-form gauge field in
a spacetime of dimensiond+1, the magnetic pole is also an extended defect of which
the associated worldsheet is of dimension (d−p−1).



136 Chapter 6. New horizons

A vortex will be defined as a topological defect of which the magnetic (resp. electric)
field is generated by a vector current defined on a spacelike two dimensional surface in
the spacetime manifold of dimensiond+1. This topological defect thus extents along
a (d−2)-dimensional surface, and so a worldsheet of dimensiond−1. The generated
magnetic (electric) field is transverse to the plane along which the planar current lies
and is associated to a 1-form ((d− 2)-form) gauge field. More generally, a magnetic
vortex associated top-form gauge field is a topological defect of dimension(d−p− 1)

in the space manifold of dimensiond. We will use the terminology ofp-vortex, or
(d− p− 1)-brane topological defect of vortex type. For the samep-form gauge field
in a spacetime of dimensionsd+1, the electric vortex is also an extended defect of
which the worldsheet is dual to that of the magnetic vortex. Finally, an instanton will
be defined as a defect of which the worldhistory reduces to a point.

In the specific case of TMDGT of which the action (6.1) involves a 1-form fieldA(x)

and its associated (d−1)-form fieldB(x), the following table is obtained:

Extension in Extension in Extension in
2 dim. space 3 dim. space d dim. space

Electric monopole point point point
Electric vortex line line

Magnetic vortex point line (d − 2)-hypersurface
Magnetic monopole Instanton point (d − 3)-hyperline

In particular, the electric monopoles are generated by point electric charges while the
magnetic vortices are generated by a current of point electric charges whatever the
number of spacetime dimensions.

6.1.3 Perspectives

One might expect the emergence of a zoo of brane-type topological defects from the
ready extension to any dimension and to forms of any rank of topologically massive
dielectric gauge theories, with a convenient form for the self-interacting scalar poten-
tials. If they exist, these brane-type defects have a different origin than those arising
in compact QED and their range should be limited by the stringent condition of a fi-
nite energy density. The coupling to gravity would also be aninteresting avenue to
explore in order to construct gravitational brane-type defects in theories with extra di-
mensions. Then the formation of these brane-type topological defects involves fields
which naturally arise in processes of dimensional reductions (and effective string the-
ories), namely a real scalar field (dilaton, radion,etc.) and real-valued tensor fields.



6.2. Monopoles and vortices in 3+1 dimensions 137

6.2 Monopoles and vortices in 3+1 dimensions

6.2.1 The situation in 3+1 dimensions

Let us consider the most general dielectric extension of theCremmer-Scherk theory,

L4
TMG̺̟ = −1

4

1

e2(̟)
Fµν Fµν +

1

12

1

g2(̺)
Hµνρ Hµνρ + L̟ + L̺

+ κ ǫµνρσ

(
ξ

6
Aµ Hνρσ +

1 − ξ

4
Fµν Bρσ

)

,

where the general action (6.1) is restricted to the specific casep=1 in 3+1 dimensions.
As usual,L̺(̺, ∂µ̺) andL̟(̟, ∂µ̟) are the decoupled Lagrangian densities for the
dynamical scalar fields̺(x) and̟(x) of respective potentialsV (̺2) andṼ (̟2) and
arbitrary dielectric functionsg2(̺) ande2(̟). Our TP factorisation obviously applies
and the resulting partially decoupled Lagrangian density reads

L4
fac = −1

4
e2(̟)Eµν Eµν +

1

2
g2(̺)Gµ Gµ + L̟ + L̺ (6.2)

+
1

2 κ
ǫµνρσ (ξ ∂µGν Eρσ − (1 − ξ) ∂µEνρ Gσ)

+ ξ
κ

2
ǫµνρσ

(

Aµ − 1

κ
Gµ

)

∂ν

(

Bρσ +
1

κ
Eρσ

)

+ (1 − ξ)
κ

2
ǫµνρσ∂µ

(

Aν − 1

κ
Gν

) (

Bρσ +
1

κ
Eρσ

)

+ ST,

taking into account the possible non trivial topological effects associated to zeros of
the scalar fields.

The local sector

The first two lines of the factorised Lagrangian density (6.2) account for the local
dynamical sector expressed in terms of the physical propagating variables. The local
Euler-Lagrange equations resulting from this sector read

κ g2(̺) ηµα Gα = −1

2
εµνρσ ∂νEρσ (6.3)

κ e2(̟) ηµα ηνβ Eαβ = εµνρσ ∂ρGσ

This local sector is not affected by the possible existence of a subset of spacetime
where the scalar fields̺(x) and/or̟(x) vanish. The dynamics of the scalar field
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̟(x) is described through the equation

2̟ = −1

2
e(̟) e′(̟)Eµν Eµν − Ṽ ′(̟2) , (6.4)

and likewise for the dynamics of the other scalar field̺(x). Notice that we have also
defined in the above equation

e′(̟) =
de(̟)

d̟
, Ṽ ′(̟2) =

dV (̟2)

d̟
.

A similar convention is used to express the derivative with respect of̺ (x).

The Global sector

As shown in the previous Section, the topological sector generates two global equa-
tions of motion, one relating the global part ofAµ(x) andGµ(x)

Ω

∮

C1

(κ Aµ − Gµ) duµ = 2π L[C1] (6.5)

in terms of the vorticityL[C1], and the other relating the global part ofBµν(x) and
Eµν(x)

Ω̃

2

∮

C2

(κ Bµν + Eµν) duµ ∧ duν = 4π L̃[C2] (6.6)

in terms of the vorticityL̃[C2]. As far as these two global equations are concerned,
let us assume now that the curve integrals are defined along spacelike contoursCq

of dimensionq = 1, 2 and that we focus on single topological defects at the origin.
Then the vorticity is a non trivial topological invariant ifthe spacetime manifold on
which the associated physical field of rankq is regular is of the same homotopy as
Sq×R

4−q−1. This condition of topological origin constrains the dimensional extension
of topological defects of vorticityL[C1] or L̃[C2], thus the dimension of the worldsheet
on which the scalar field̺(x) or̟(x) respectively vanishes. Hence topological defect
solutions obeying the first global equation (6.5) must be string-like since

Π1

(
R

4 \ Γ2

)
≡ Π1

(
S1 × R

2
)

= Z ,

whereR
4 \ Γ2 is the submanifold on whichGi(x) is regular andΓ2 is the associ-

ated worldsheet of dimension two. Likewise topological defect solutions obeying the
second global equation (6.6) must be point-like since

Π2

(

R
4 \ Γ̃1

)

≡ Π2

(
S2 × R

)
= Z ,

whereR
4 \ Γ1 is the submanifold on whichEij(x) is regular and̃Γ1 is the associated

worldline.
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Topological defects in 3+1 dimensions

As is well known, vortex (or monopole) field configurations sufficiently distant in
comparison to the size of their core may be thought as a set of interacting Newto-
nian particles. However, the question of the multi-solitonsolutions, their interaction
and dynamics will not be addressed at all. The purpose of the present Chapter will
be reduced to a preliminary classification of our novel solutions in 3+1 dimensions.
Within the context of this Thesis only dielectric monopolesand magnetic vortices will
be considered, as shown in the following table where the equivalence relation between
the two possible pictures is also indicated:

A-field picture ⇐⇒ B-field picture
̺(x) = 〈̺〉 , ∀x Electric monopole point Magnetic vortex

̟(x) = 〈̟〉 , ∀x Magnetic vortex line Electric monopole

We will assume that one of the two scalar fields is frozen to itsvacuum expectation
value. Of course other types of topological defect solutions might exist without this
assumption but will not be addressed. For the first time, a possible generalisation
of vortex solutions for 2-form fieldsBµν(x) will be considered under the spherical
symmetryansatz. These topological defects may be interpreted in an equivalent way
as electric monopoles embedded in a dielectric medium, of which the polarisability
function is related to the scalar field̟(x). Under the cylindrical symmetryansatz,
the usual vortex string solutions are also recovered, in a generalisation of those that
were constructed in the plane in Chapter 5.

6.2.2 Topological defects within spherical symmetry

Let us now consider in particular the point-like topological defect solutions satisfying
the global equation (6.6). For the sake of simplicity we willassume that the scalar
field ̺(x) is frozen to its vacuum expectation value. This allows us to denote

g(̺) ≡ g (〈̺〉) = g . (6.7)

Consequently the topological sector which generates the other global equation (6.5) is
trivial. Only one type of topological defects may be constructed from the Lagrangian
density (6.2) which now reduces to

L4
fac = −1

4
e2(̟)Eµν Eµν +

g2

2
Gµ Gµ + L̟ (6.8)

+
1

2 κ
ǫµνρσ (ξ ∂µGν Eρσ − (1 − ξ) ∂µEνρ Gσ)

+
ξ

2
ǫµνρσ Aµ ∂ν (κ Bρσ + Eρσ) +

1 − ξ

4
ǫµνρσFµν (κ Bρσ + Eρσ) .
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Static field configurations

We are presently interested in the existence of classical soliton solutions to the equa-
tions of motion (6.3), (6.4) and (6.6) under the further condition (6.7). These static
field configurations are thus solution to two sets of partially decoupled first order equa-
tions for a given spacelike sheet. The first set relatesG0(x) andEij(x)

κ e2(̟) δik δjl Eij = −ǫklm ∂mG0

κ g2 G0 = −1

2
ǫijk ∂iEjk ,

while the second set relatesE0i(x) andGi(x)

κ g2 Gi δij = ǫjkl ∂kE0l

κ e2(̟)E0i δij = −ǫjkl ∂kGl .

These two pairs of equations are coupled through the scalar field ̟(x) of which the
second order static equation reads

∇2̟ = e(̟) e′(̟)

(
1

2
(Eij)

2 − (E0i)
2

)

+ Ṽ ′(̟2) . (6.9)

Finally the global equation (6.6) accounts for the non trivial topological content char-
acteristic of the present soliton solutions.

Spherical symmetryansatz

For the sake of simplicity our analysis is restricted to topological defects all of whose
positions coincide with the origin. Hence convenient coordinates to describe our new
point-like topological defect solutions are the sphericalones since the associated phys-
ical field configurations possess the spherical symmetry. According to our conven-
tions, the spherical coordinates are defined as

x = r cosϕ sin ϑ ,

y = r sin ϕ sinϑ ,

z = r cosϑ ,

wherer =
√

x2 + y2 + z2 is the radius,ϕ is the azimuthal angle,ϕ ∈ [0, 2π[, while
ϑ is the polar angle,ϑ ∈ [0, π[. The covariant space components of any 1-form
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A = Ai(~x) dxi restricted onΩ1(R3) transform under spherical coordinates as

r Ax = r cosϕ sin ϑ Ar −
sin ϕ

sin ϑ
Aϕ + cosϕ cosϑ Aϑ ,

r Ay = r sin ϕ sin ϑ Ar +
cosϕ

sin ϑ
Aϕ + sin ϕ cosϑ Aϑ ,

r Az = r cosϑ Ar − sinϑ Aϑ ,

while any 2-formB = 1
2Bij(~x) dxi ∧ dxj restricted onΩ2(R3) transform as

r2 Byz = −r cosϕ cotϑ Brϕ − cosϕBϕϑ − r sin ϕBrϑ ,

r2 Bzx = −r sinϕ cotϑ Brϕ − sinϕBϕϑ + r cosϕBrϑ ,

r2 Bxy = r Brϕ − cotϑ Bϕϑ .

Finally, by analogy with the case in 2+1 dimensions developed in Chapter 5, the topo-
logical defect solutions possess two possible physical interpretations whether within
theA- or theB-field picture. Each of the two pictures requires specificansätzewhich
turn out to be equivalent on account of the equations of motion.

A-field picture: Dielectric monopoles

On the grounds of an analysis similar to that of Section 4.1, the Lagrangian density
(6.8) within theA-field picture (ξ = 1) is very reminiscent of a dielectric Maxwell
theory for the gauge fieldAµ(x), see Section 1.4. At this stage, it turns out to be
useful to introduce a furtheransatzwhich cancels the magnetic field

E0i = δij (HA
mg)

j = 0 ,

in order to restrict to purely electric topological defect solutions. These point-like so-
lutions describe a free electric charge densityρf(x) embedded in a dielectric medium
of dielectric functionε(x)=e−2(̟) to which is associated the dielectric displacement
~DA

el (x)

(DA
el )

i =
1

2
ǫijkEjk . (6.10)

On account of the spherical symmetryansatz, the electric displacement is required to
be radial and to only depend on the radial coordinate. Hence we require a kind of
hedgehogansatzfor this vector field

(DA
el)

i = D
xi

r
, where(DA

el)
r(r) = D(r) .
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Given the relation (6.10), this implies that the physical variableEij(x) is of the form

Eij dxi ∧ dxj =
1

2
sin ϑ Ẽ ∂[i ϕ∂ j]ϑ dxi ∧ dxj =

1

2
Eϕϑ dϕ ∧ dϑ .

where the variablẽE(r) only depends on the radius,

Eϕϑ(r, ϑ) = − sinϑ Ẽ(r) . (6.11)

Combining all the contributions of the aboveansätze, the static equations of motion
reduce to

r2 ∂rG0 = κ e2(̟) Ẽ , (6.12)

∂rẼ = κ g2 r2 G0 .

Therefore the time component ofGµ(x) must depend only on the radius, while its
space componentsGr, Gϕ andGϑ vanish identically. Similarly to the case in 2+1
dimensions, the variableG0(r) may be associated to the free charge density

̺f = κ g2 G0 .

Finally, the local equation (6.9) now writes

1

r2
∂r

(
r2 ∂r̟

)
= e(̟) e′(̟)

1

r4
Ẽ2 + Ṽ ′(̟2) , (6.13)

and determines the radial profile of̟(r).

These local equations must be completed through the global equation (6.6) which now
becomes

κ Ω̃ Φ̃[C2] − Ω̃

∫∫

Ẽ sin ϑ dϕdϑ = 4πL̃[C2] , (6.14)

for a spherical contourC2 centered around the origin. In the above equation we have
defined the flux,

Φ̃[C2] =

∮

C2

B , (6.15)

which is related to the free electric charge enclosed byC2,

Qf [C2] = κ Φ̃[C2] ,

of the dielectric monopole field configuration within theA-field picture.
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B-field picture: Magnetic 2-vortices

The physical sector of the Lagrangian density (6.8) within theB-field picture (ξ =0)
may be considered as the generalisation of the physical formulation of the Maxwell-
Higgs model, see (1.48), to 2-form gauge fields in 3+1 dimensions. The furtheransatz
introduced restricts topological defect solutions withinthe B-field picture to purely
magnetic ones, with the magnetic field depending only on the radius on account of the
spherical symmetryansatz,

Zero electric field : (EB
el )

ij = e2 ǫijk Gk = 0 ,

r-dependent magnetic field: BB
mg(r) = e2 G0(r) .

According to the equations of motion, thisansatzimplies that all the components of
Eµν(x) in spherical coordinates vanish identically, except forEϕϑ(r, ϑ) which must
be of the form (6.11).

The point-like topological defect solutions which obey theequations (6.12), (6.13) and
(6.14) may be considered as a generalisation to 2-form gaugefields of the Nielsen-
Olesen magnetic vortices. In particular (6.14) is seen to correspond to a generalisation
of the global London equation for the effective theory of type II superconductivity.
The magnetic field of a 2-form gauge field in 3+1 dimensions is ascalar in the same
way that the magnetic field for a 1-form gauge field is a scalar in 2+1 dimensions.
Therefore, in comparison with the case in 2+1 dimensions, the functionalΦ[C2] de-
fined in (6.15) may be interpreted as the transverse flux of themagnetic field through
the hypersurface of dimension three embedded in a space of dimension four.

6.2.3 Towards magnetic 2-vortex and dielectric monopoles

On the assumption that the scalar field̟(r) be an analytic function which vanishes at
the origin ofR3, ̟(r) may be written as a series expansion in powers ofr of the form

̟(r) = rN
∞∑

n=1

χ(n) rn .

Let us recall that the positive integerN is called the order of the zero of̟(r). The
assumption that the functionalΦ̃[C2] vanishes identically for any contour shrunk to a
point, even though this point may be the origin,

lim
C2→0

1

κ

∮

C2

Bϕϑ dϕdϑ = lim
C2→0

Φ [C2] = 0 ,
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is considered as a further global boundary condition. It ensures that the magnetic field
within theB-field picture or the free charge density within theA-field picture are not
singular at the location of topological defects.

On the grounds of the Hamiltonian density1 (4.23), one may readily infer the following
necessary condition for a finite energy functional

e2(̟) (Eij)
2 < ∞ , for x → 0 , (6.16)

which given the spherical symmetryansatzreduces to

e2(̟)
1

r4
Ẽ2 < ∞ , for r → 0 .

This condition constrains the first term of the expansion ofẼ(r) in powers ofr close
to the origin, according to the form of the dielectric function e(̟). However the
variableẼ(r) is also constrained by a condition of finiteness of the flux:

lim
r→0

Ω̃

∫∫

Ẽ sin ϑ dϕdϑ = −4πL̃ .

These two conditions put together imply that the power of̟(r) in the dielectric func-
tion e(̟) may depend on the orderN and must be at least of order four ifN =1. The
analysis of the behaviour of the fields close to the origin corroborates this conclusion.

Let us presently restrict our general discussion to the caseN = 1 and define the di-
electric functione(̟) to be of the form

e(̟) = ζ ̟2 , (6.17)

whereζ is a constant parameter of physical dimensionE− 3
2 L

1
2 . As far as the poten-

tial Ṽ (̟) is concerned one may of course consider the usual “Mexican hat-shaped”
quadratic potential defined in (4.12). However the form of the dielectric function has
direct influence on the formulation on the potential. Indeed, it may be proved that a
BPS limit exists for the energy functional with a dielectricfunction of the form (6.17)
for a sixth order potential. We hope to obtain in a close future numerical solutions
for these new topological defect solutions which already manifest regular behaviours
asymptotically and close to the origin. In the caseN =1 the existence of topological
defect solutions of one quantum of magnetic flux within theB-field picture or one
quantum of free electric charge within theA-field picture is expected.

1In this Hamiltonian density introduced in Chapter 4, the scalar field ̺(x) is dynamical while̟ (x) is
frozen to its vacuum expectation value.
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6.2.4 Perspectives

The abelian Higgs models offer a common formalism for diverse phenomena where
topological defects arise in different areas like condensed matter physics, particle
physics, cosmology, etc. In the same way the dual formulation of topological de-
fects might be added to the exhaustive list of synergies between very distinct fields in
physics through a common mathematical formulation. The Cremmer-Scherk theory
defined in (1.24) offers a possible description of effectivesuperconductivity [75, 74],
Josephson arrays [76] for compact gauge groups, confinementby flux tube [77, 78],
etc. The same theory was also used as a dual formulation of cosmic strings [79].
We have properly established that the formulation of all these theories as topological
mass generation mechanisms is not a happy coincidence. Although seemingly some-
what unrelated at first sight, these theories share in commonan original description
as Landau-Ginzburg models or their Lorentz covariant Maxwell-Higgs extensions,
admitting vortex solutions of quantised magnetic flux. Likewise, within theA-field
picture, the dielectric Cremmer-Scherk (DCS) theory defined in (4.1) admits topolog-
ical defects dual to these vortices. The formation of vortices within this formulation
is not associated to phase transitions nor to any local symmetry breaking. Within the
London limit the pure Cremmer-Scherk theory generates fluxon vortex strings with a
non trivial topological sector inherited from the associated dielectric theory.

As far as cosmic strings are concerned, the great advantage of the formulation in terms
of (DCS) theories is the presence of a real scalar field and an antisymmetric 2-tensor
field instead of the less natural complex scalar field of the Landau-Ginzburg model.
For what concerns the possible applications in condensed matter physics, nothing for-
bids to describe the formation of magnetic vortices in type II superconductors in terms
of our effective DCS theory. The interesting point here is the different origin of the
topological content in comparison with the compact Cremmer-Scherk (CCS) theory
introduced in [75, 76]. Within the DCS formulation, we have established that vortic-
ity is related to the global London equation generated by a topological sector of the
action. We recover the usual picture of the order in terms of condensation of Cooper
pairs. In the second formulation, the quantisation of the magnetic flux results from the
compact character of the gauge group and the order is referred to as being “topologi-
cal”. An analysis of the equivalence between the London limit of the DCS theory and
the compact CCS might offer new insight in condensed matter physics.

Within this context, the TP factorisation stands for a generalisation, already at the clas-
sical level, of the Landau projection which enables to isolate the essential topological
content of these models. The denomination “topological sector” has to be understood
not only in terms of topological couplings, but in a more general context as being
the sector where all non trivial topological effects arise.This topological sector then
corresponds to the topological “ground” state, leading to adeeper understanding of
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these models and opening an avenue towards new perturbativedevelopments around
classical non perturbative configurations.

Finally let us briefly mention the perspective offered by thesecond possible formula-
tion (6.8) of the DCS theory and its associated topological defect solutions. One might
expect applications of our dielectric monopole solutions of quantised free charge in
solid state physics. Within this context, the Lagrangian density (6.8) admits particle-
like topological defects describing a free electric chargescreened by surrounding pos-
itive charges. Then the resulting measured electric field decays exponentially. Like-
wise within theB-field picture, the possible construction of point-like topological de-
fect solutions, generalising to2-form gauge fields the Nielsen-Olesen vortices, might
be relevant in any model involving antisymmetric tensor fields.

6.3 Mass gap in non abelian gauge field theories

6.3.1 Confinement in QCD

For the sake of simplicity we have chosen first to illustrate our systematic search of
topological effects in gauge field theories within topologically massive (dielectric)
gauge theories. This choice was quite natural since these theories represent a simple
case of theories generating a mass gap where topological effects are of prime impor-
tance. Having acquired a deeper understanding of the originof topological effects, it
would be interesting to consider more realistic theories towards a description of con-
finement in Yang-Mills theories. Two extensions of our work then naturally come to
mind : the coupling to matter fields like fermions and the extension to non abelian
gauge theories. Further, through the network of dualities we have identified, our work
also bears some relations with effective theories of confinement.

New perturbation schemes

The standard perturbation techniques, so useful at high energy where QCD exhibits
the “property” of asymptotic freedom, are expressed in terms of unphysical and gauge
variant colored objects like quarks and gluons. However theobserved physical field
configurations at low energy are colourless objects. Furthermore, these latter field
configurations are by essence non perturbative since they reside in the strong coupling
sector of the theory. This requires to develop new perturbation schemes but now from
the real physical quantities which have to be identified.

Let us go back to our simple model of abelian topologically massive gauge theories
(TMGT). Generically the introduction of matter fields in TMGT spoils the decou-
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pling of the physical and topological sectors through our TPfactorisation approach.
Nevertheless the dual theory remains partially factorisedin the case, for example,
of minimal coupling with fields of fermionic character sincethe sector of physical
propagating variables communicates with the gauge variantsector only through the
dynamical matter fields, leading possibly to interesting approximation schemes. Such
approximation procedures would consist in two steps.

• First to solve the topological sector coupled to matter fields in the ground state,
taking into account the existence of topological effects like fractional statistics
associated to non local holonomy effects.

• Second “turning on” the dynamics of the interactions, namely considering per-
turbatively the coupling of the matter fields to the physicalsector.

Hence, such a procedure relies from the outset on a sector which is already gauge
invariant, thus physical, and not on the original gauge fielddegrees of freedom.

Promising results have been already achieved when TMGT are coupled to matter
fields. Indeed quite a number of new effective theories may beconstructed depending
on the way the matter fields are coupled either to the originalfields or to the topo-
logical sector in the dual formulation. We again obtain a network of dualities which
is more exhaustive than that analysed in the literature through gauge embedding pro-
cedures. Moreover in contradistinction with previous papers, all relevant topological
terms generating topological effects are now taken into account. The construction of
effective theories describing condensed matter effects makes these studies attractive.
This analysis may also bring further insights into bosonisation processes in more than
2+1 dimensions.

Pure Yang Mills theory

If the TP factorisation techniques are to turn out to be applicable to large classes of
gauge theories generating a mass gap, they may offer perspectives in the development
of new approximation schemes for non perturbative dynamics. In particular, it would
be of great interest to understand whether similar considerations could apply to pure
Yang-Mills theories in order to isolate the low energy physical configurations of gluon
bound states which reside in the zero-mode sector. As far as Yang-Mills theory is con-
cerned, the global and local variables are interdependent and this non trivial mixing
perhaps carries the secret of the dynamics of confinement. Hence, one might hope to
isolate a topological sector of global variables which would correspond to the ground
state of the theory, even though the self interaction of the gluon field spoils the decou-
pling of the physical and topological sectors through our TPfactorisation approach.
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Effective theories

In contradistinction to abelian theories of the Maxwell-type, the Lagrangian first or-
der formulation of Yang-Mills theories does not involve actual propagating physical
variables. Indeed the associated chromo-electromagneticfield belongs to the adjoint
representation of the non abelian gauge group and is therefore not a relevant physical
variable to describe the propagation of gluons. Furthermore, given Derrick’s theorem,
solitons are ruled out in Yang-Mills theory in 3+1 dimensions. However, a number of
techniques like lattice simulations seem to show that the low energy confining states
are controlled by topological defects of the monopole and vortex type.

A possible solution to this dilemma is to develop effective theories of QCD at low en-
ergy where it is assumed that the abelian sector dominates. For example an effective
dual superconductivity model, originally obtained through dual projection method,
may be reached through the Cho-Faddeev-Niemi parametrisation, see [5, 6] and refer-
ences therein. In this model, a chromoelectric vortex string of linear potential appears
between the quarks and antiquarks while magnetic monopolescondensates. On ac-
count of the preliminary results of this Chapter, a query which then naturally comes
to mind is whether the dielectric Cremmer-Scherk (DCS) theory which admits vortex
solutions may be of any relevance for a dual superconductingmodel. Does there exist
a decomposition alternative to that of Cho-Faddeev-Niemi or to the recent spin-charge
decomposition [8, 9] which reveals the presence of a DCS theory in the low energy
effective theory of QCD ? Moreover, the generalisation of the DCS theory should ad-
mit a larger range of topological defects than the Maxwell-Higgs model. Mixing then
topological defects of the vortex and the monopole types might lead in a long term
goal to an alternative effective description of confinement.

6.3.2 Alternative mechanisms for mass generation

It is also of interest to extend this approach to Yang-Mills-Chern-Simons theories
[38, 39, 40, 73] or to the nonabelian generalisation of the Cremmer-Scherk theory.
However in 3+1 dimensions there exist no direct non abelian generalisation to a local,
power counting renormalisable action while preserving thesame field content and the
same number of local symmetries as the abelian Cremmer-Scherk theory (1.24), see
[37] and references therein. Indeed such extensions require the introduction of extra
fields or to allow for non renormalisable couplings. Nevertheless it would be of great
interest to understand how to apply our TP factorisation in this context in order to
achieve a relevant generalisation to non abelian gauge symmetries of the Cremmer-
Scherk theory, and to solve some current problems related toquantisation.



Concluding remarks

Among a number of fundamental concepts, the understanding of the origin of mass
remains one of the major open problems in particle physics and cosmology. As a
matter of fact difficulties arise both at the theoretical as well as at the phenomeno-
logical level. Thus the dynamics responsible for the mass gap in Yang-Mills theories
is still under investigation while the predicted Higgs boson has yet to be discovered.
While not providing definitive answers, this Thesis has shednew light on these issues
through the Topological-Physical (TP) factorisation. Actually our original project
was to properly identify in the simple case of abelian topologically massive gauge
theories (TMGT), used as laboratories for mass gap generation, a topological sector
which appears under naive formal limits within the Lagrangian first order formulation
of such models.

*
* *
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Our solution: the TP factorisation

The basic principle of the Brout-Englert-Higgs mechanism is that the existence of
massive fluctuations of vector fields in a variety of physicalphenomena (such as in
particle and condensed matter physics) follows from the breaking of a gauge symme-
try. This breaking is triggered by the vacuum condensation of some scalar fields. This
approach is successfully put to use within the Standard Model in spite of the lack of
any direct experimental evidence for the existence of the Higgs boson until now. In
Chapters 2 and 3 it was shown that for what concerns TMGT, the factorised physical
massive degrees of freedom are simply decoupled through therearrangement of field
variables, without relying on any symmetry breaking nor anygauge fixing procedure.
This technique, which we refer to as the Topological-Physical factorisation, enables
us to answer the first question in the preamble:

How to properly define the formal limits in the coupling constants of gauge fields
theories through which topological sectors appear ?

The TP factorisation technique, which consists in a local canonical transformation
within the Hamiltonian formulation, was also extended in Chapter 2 in a manifestly
Lorentz covariant way by considering the first order Lagrangian formulation. The
possibility of factorisation is intimately related to the fact that TMGT generate a mass
gap. The technique allows the construction of dual actions while preserving the gauge
symmetry content. The entire gauge variant contributions resides only within the sec-
ond sector of the action which reduces to a pure topological field theory. Let us then
address the second issue raised in the preamble:

What is the influence of this topological sector on the physical spectrum ?

The appearance of this topological sector has very intriguing consequences when
TMGT are defined on topologically non trivial manifolds or are coupled to matter
fields, whether of a fermionic or a bosonic character, since non trivial topological ef-
fects then arise. As shown in Chapter 3 our classical factorisation readily allows for
a straightforward quantisation of TMGT and the identification of their spectrum of
physical states, accounting also for all the topological features inherent to such dy-
namics. In that case the topological “TFT” sector accounts for the degeneracy of the
physical spectrum depending only on topological invariants. The resulting factori-
sation of quantum states makes more natural the projection onto a topological field
theory, generalising the concept of projection onto the lowest Landau level within the
Landau problem. In the present approach, the TFT sector is actually made manifest
already at the classical level. We hardly touched upon the issue of the relevance of
our factorisation techniques when TMGT are coupled to matter fields. Let us only
point out within this context that the coupling to the higherorder tensor fields in the
topological sector should give rise to exotic statistics for extended objects [28, 29, 30].



151

The unexpected consequences

Generically the introduction of matter fields spoils the decoupling of the physical and
topological sectors through our factorisarion approach. Nevertheless this decoupling
survives at least for the local degrees of freedom when scalar dielectric couplings with
the gauge fields are introduced. Within this context,

the most famous mass generation mechanisms preserving the abelian gauge symmetry
are related through an intricate network of dualities, modulo the presence of topolog-
ical terms generating possible topological effects.

In particular in the dual formulation of the Maxwell-Higgs model, the topological
sector carries the topological content, related to vorticity, of the dual Nielsen-Olesen
vortices, as established in Chapter 5. Within a physically equivalent picture, these
topological defect solutions may also be interpreted as electric monopoles embedded
in a dielectric medium. Furthermore, the straightforward generalisation of topolog-
ically massive dielectric gauge theories to fields of any tensorial rank whatever the
number of spacetime dimensions suggests that

our analysis could open a new avenue towards the construction of generalised topo-
logical defects in any dimension.

The construction of such brane-type topological defects iscurrently under investiga-
tion. Promising results have already been achieved in Chapter 6 where the situation in
3+1 dimensions is partly addressed. This Chapter also mentions a number of possible
avenues for research leading beyond this Thesis.

This work has provided a deeper understanding for the appearance and the role of
topological effects in gauge field theories, although the discussion remained restricted
to abelian gauge groups. This Thesis has also established the crucial importance of a
systematic and careful consideration of topological effects which are often ignored in
the literature through gauge (un)fixings, for example, which do not pay due attention
to these issues. The long term goal is to gain a deeper understanding of the relevance of
topological sectors to the nonperturbative dynamics of gauge field theories, ultimately
such as Yang-Mills theories coupled fermionic matter fields.
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