" SLAC-PUB-2360
July 1979
(N)

CENTRALIZED CONTROL UPDATE ALGORITHMS FOR DISTRIBUTED DATABASES

’

Hector Garcia-Molina

Computer Science Deparimsnt

Stanford University
and '

Stanford Linear Accelerator Center

Stanford, California 94305

ABSTRACT

The problem of updating replicated data in a distributed database will be
discussed. Sewvseral centralized control algerithms that solve the problem
will be presanted. They range From & totally centralized algorithm to one

which only centralizes the control of the data. The performance of these

algorithms 15 compared for completely duplicated databases in a no failure.
update only environment. The algorithms are studied through simulations

as well as by an analytic technique based on a queuvsing model.

i. INTRCDUCTION.

In a distributed database, data may be replicatesd at several nodes of the

system. One of the reasons for veplicating data is to improve its

(Presented at the lst International Conference on Distributed Computing Systems,
October 1-5, 1979, Huntsville, Alabama).

% Work supported in part by the Department of Energy under contract number DE-AC03-76SF00515,
Advanced Research Projects Agency of the Department of Defense under contract MDA903-77-C-
0322, and Biotechnology Research Program of the National Institute of Health under Grant
NIH PR-00785.

availability. Another reason is fo distribute the load by allowing

transdctions to rve=ad the data at different sites. The price that must be

paid for the incre=ased avaeilability and the option of concurrent reads

at different nodes is an increased cost for processing updates. Updating

am Tt mamtad et et dada T o mv AT P I
TTapgirlidez LUPglLES Ul 9] vl LD iU e RAPpDEitoLVE Ltgdd Upud

hif}

o

ing & single copy ofF

of

the data because in the replicated case updatas must be performed on all
copies. Furthermare, it is harder to coordinate conflicting updates whan
there are multiple copies to be modified than i% is to coordinate the updates

when there is a single copy to be updated.

In this paper, we will not study the tradeoffs involved in replicating
data. We will assume that the decision to vreplicate a subset of the data has

been made. That is, it is eithey impervrative that the data be availables even

in the {face of failures, ov it is expected that the number of updates to the

data will be considerably smaller than the number of rteads on the data. Once

we decide to replicate the particular subset of the data, we need to design
an algorithm for performing the updates. Thié algorithm must make sure that
all uvpdates are performed on all copies of the data in the system. The
algorithm must also guarantée the tonsistency of the data Eg]. Many such
algérithms have been suggaested, and in this paper we would like to present
some of these algorithms and compavre their pevformance. We will concentrate

on a particular type of algorithm the centralized control algorithms. These

algorithms are fairTly simple and, surprisingly, perform rather well, as we

will see shortly.

Hector CGarcia—Molina PAGE 3

2. THE MODEL.

In order to stuvdy the update algotithms and théir performance, we cthoose
a very simple model for the distributed databasa and the updates. Since ws
ar=s interested in updates %o a particular subset of replicated data, we will
visw our “system" only as the replicatad dats ahd the nodes whare it is
located. That is, in our "systema", all nodes will have a'complete copy of

the database. We will assume that all ftransactions that are processed in the

system are update transactions.

We will view the database simply as a collection of namad items. Each

item "i" -has associated with it a set of values; each of thess valuss is

stored at a different node in the system. We represent the value of item "i"®
a% node x by &L, x1. The values for a given item should be the same (i.e..,
dLi,x3 should equal dfi,yl for all nodes =z, y?l. Howevey, due to the updating.

activity., the values may be temporarily different.
In our system, an update transaction A consists of thres steps:

(1) Update transaction A requests valuess for items il, i2, in.

These values are vead at any node in the system. That is, we read dLil,x1,

dfi2, x1, ..., dLin:xY at some node x.

(2) Using the values obtained:, A performs some computations and comes up

with a set of new values foar & subset of the items read il i3, .+ im,

where m is less than or equal fto n.

HMaertor Garcia—Molina PAGE 4

(2) "The neuw values produced are stored a3t all nodes in the system. That

is, we do " dfik,x1 := new values for item ik " Ffor all nodes x and all items

ik in 1l, 12, ..., im

Motice that updates initially specify their read set. Except for this
restriction, oqr-update model is a general one. A%t the end of this paper we

will briefly comment on the effect of this restriction.

Finally, in t%this paper we will assuhé that no failures occur in the
system. This is a strong statemant, but we make it in order to simplify the
presentation and the analysis of the algorithms. Howaver, the results uwe
obtain here can be extended to the case where fallures occur. Due Yo space
limitations, we will be unable to give the details for this here. We will

anly make a few comments at several points in the paper as to how failures

can aftect the performance oFf the algorithms, and we will refer the reader to

{31 for a complete presentation.

3. THE COMPLETE CENTRALIZATION ALGORITHM {(CCa&).

The first updéte algarithm that we will pressnt is a complets
centralization algorithm, CCA talso called a primary copy algorithm L[11).

The basic idea of this solution is to select a “"central®™ node whers all

ypdate transactions are totally executed. The central node then broadcasts
the new update values produced by the transactions to all other nodes. &

sequence number 1s attached to each "perform update" message (i.e., the

Hector Garcia—-Molins PAGE 5

~message with the new values) so0 that the values are stored at each site in
the same order that they ware produced by the central node. This algorithm

provides consistency bscause all update transactions are serialized by the

central node.

We now give a brief outline of the CCA algorithm:

(1) Update transaction A arrives at node x from a user.
(2) Node x forwards transaction A to the central node.

(3) When the central nods receives an updafe transaction A, it places i%
in a gueue. Transactions from this gqueue are executed one at a time at the
central node. That is, the values vequested by A are read from the local
database, the computations are carried ovi, and the new values are storad in
the leccal datahase. (Update ftramsactians can be ezecuted.in parallel at%t the
centrél node as long as a local concurrency control guarantees_that'thel
effect on the database is as if transactions were performed one at a time.}

L sequence numbar is assigned to transaction A. This number represents the

order, with respect to other transactions, in which A was executed.

(4) “Perform update" messages are sent out by the central node to all
other nodes giving them th= new values that must be stored at each site. The

sequence number of A is appended to these messages.

Hector CGarcia—Molina PAGCE &6

{5} - When s nod

w

y receives a3 “perform update" message, it waits unbtil it

o

v

s5 processed all "perform update” messages from tTansactions with lower

w

n
1]
o

venca numbers. Then node Yy stores the new valuss intoc its local database,

as indlcated by the message.

There are tuo putential disadvantages with thié algorithm. The first
problem is that.if the central node crashes, then no more update.transactions
can be processed. Howevar, this is not really a problem because the completg
centralization algorithm (as wall as the other algorithms we will present)
can be made vesiliant. The main idea is to have a protocol for electing a
new central site when the old central node crashes. The new central nods can
collect all the state from the active nodes, and based oﬁ‘this, it can
complete any unfinished update transactions and start proceséing new ones.
The techniqUes for making the CCA algerithm crash resistant avre given in 031,

When we study the performance of the CCA algorithm, we will use the simple

algorithm given aboves but as we have stated, the results can ba extended to

the tesilient version.

Another potential problem with the CCA algorithm is that all update
transactions must be processed at 8 single nade. This creates a bottieneck
which can significantly degrade performance. This paper will show when the

bottleneck occurs and hpw serious & problem it is.

Hector Garcia—PMolina ‘ PAGE 7

4. THE PERFORMANCE MDODEL.

In order to study the performance of the CCA and other algorithms, we use
a simple performance model which represents the principal characteristics of
a distributed database system. .Thg performance model is described in C71.
Have we will only give a brief outline of the model and its parameters.

ODur performance evaluation of the update algorithms does not only count
the number of messages transmitted in order to process an update transaﬁtionﬁ
Our model also takes inte account the I0D and CPU pfocessing time required by
the transactions, as well as the queuveing delays invelved in waiting for the
10 and CPU resources. In addition to this: the perFormancé evaluation also

considers the extra delays and processing loads caused by update transactions

that conflict.
The main parameters of the performance model are:

(1> The mean interarrival time of update transactions at each node. Ar.
The arrival of transactions at each node is a Poisson process.

(2) The average number of items tead by an update %transaction, Bs. The
number of items rveferenced by a transaction is exponentially distributed with
mean Bs. All items are equallg likely to be rveferenced by a transaction.

PQut of the itemd tvead, a tTandom Fréction will be modified,.

(31} The number of items in the database, M.

Hacfor Garcia-Molina PAGE 8

(4} The number of nodes, N.

{(5) The ne2twork transmission time, T. e assume that the time it tak

any message Tto go from one node Yo any other node is a constant T.

ct
o>
i

correct operation of the algorithms does not depend on this fact.)

(&} The CPO time naeded to set or check a lock (or to check a

timestampl, CE. This parameter is only used in the algorithms that use locks

or timestamps.

{7) The CPU computes time, Cu. After an update transaction reads tha
values it neads, it will use z times Cu seconds of CPU time in order %o

produce the .new values for tha update.

(8 The IO time nesded to set or check a lock (or +o réad or write a

timestampl, It fgain, this parameter is only used in the aslgorithms that

use locks or timestamps.

(P2} The I0 time nesded to vead or write one item value +from a

database, Iu.

5. THE PERFORMANCE RESULTS FOR THE CCA ALGORITHM.

The performance of the CCA algorithm was studied using the performance
model we have described. The resulis we present were obtained using a new
iterative technique based on queveing theory [3]. The results were also

verified through detailed simulations.

as

(Howaver.,

Z

T
6]
]
<t
[»]

>
]
1
-1
M
Al]
1
s
e}
ol
I
3
]
.
>
¢
M
o

:

The main measure we use for performance evaluation is the average
response time of update transactions. R. We define the rTesponse time of a

transaction as the difference between the finish time and the time when the

transaction arrived at its originating node. We consider the transaction to
be finished when %the originating node has finished all work on the
transaction.

Curve "CCA" of Figure 1 shows the averagz response tima of update
transactions with the CCA algorithm, as a function of the transaction
interarrival time Ar, for a set of representafive param=ter values. DNotice
that as aAr decreases, the arrival rate of fransactions and the load

incrw

1]

ases. In this curve we observe a sharp knee which occurs when the

central node is swamped by Tequests to process transactions.

In order to provide a point of comparison, in Figure 1 we also show the
performance of another well know update algorithm This is the distributed

voting algorithm (due to Thomas [81). The average response time of update

transactions with this algorithm is given by curve "DVA" in Figure 1. This
algerithm does not have a ceantral node which aets as a bottléneck, but
surbrisinglg:»its per%ormance'is not a§ good as that o# the CCA algorithm.
The main reasons for this relatively poor performance of the distributed
voting algorithm are that (a) transactions must visit a majority of nodes
(instead 9F one) before being executsd, and (b) the CPU and IO loads praduced
by a voting opevation at s node are censiderable, while in the CCAH algoritha
thete is no I0 and very little CPU load caused by the‘ser*alization of

updates,

Hector CGarcia—lMolina PAGE 10

Although 1t is not shown in Figure 1, both algorithms saturate at sbouk

the same interarrival time. Hhen the loads become very high, %the analysis
is not very accurate and the simulations are very 2xpensive to run.

Fortunatzly, we are not very interested in this region becausa both

algorithms perform so poorly there. For all cases which are not close to
the saturation point, the CCA algorithm parforms better than the distributed

voting algorithm,

The rvesults of Figure 1 are for the particulér set oF'paramétef values
shown in the figure. Extensive tests have been run fo study the effect of
tha parameters on the average rvesponse time. HWe have. found that the CCA
algorithm performs better in most cases of interest. The actual difference
in average rvesponse time befween thz two slgorithms can be reduced or
increaséd by waryging sﬁme parameters, but the basic relationship remains
vnchanged. For a two arv threa node system and Ffor a small value aof the It
parameter (i.e., the IO time to read or write a timestamp), the perFormanée
of the two algorithes is very similar. As the number of nodes N::the
transmission time T, of It increases, %the difference in average response fime

increases and the CCA algorithm becomes more attractive. MNotice that the

results of Figure 1 are for an IO beound situation. However:. the results ars

similar for a CPU bound case.

Hector Garcia—Molina PAGE 11
&, A CENTRALIZED LOCKING SOLUTION.

Since the CCA algorithm performs so well, we will now investigate other
centralized approaches in order to try to improve the performance +further.
If we look at the CCA algorithm, we tvealize that the central node is the

first to saturate. I¥ we can somehow veduce the load at the central node,

the knee of the average response time curve should occur at a higher arrival

rate of updates, and the update algorithm will be able to process more

transactions.

In the CCA algorithm, the central node is performing ftwo distinct
functions: (2} the central node is reading the data and performing the
computations for all update transactions, and (b} fhe central node provides
the necessary concurrency centrol for the transactions (i.e.: it serializes
the transactions). In the algorithm we will propose now, the centralized’
locking algorithm (CLA), we will move function (a) to the other nodes in
order tq veduce the load at the central node. ‘Function (b)Y, which is

naturally performed at the central node, will remain therea,

"In the CLA algorithm. the central node will provide concurrency control
by managing locks for the items in the database. Before an update
transaction is executed. it will Tequest locks Ffor the items it veferences.
When the locks are granted. the transaction will be able tolproceed knowing

that no other update transaction will interfere.

In the CLA algorithm, an update transaction that arrives at node x is

processed as fTollows:

Hector Garcia—Molina PAG

m
-~
8]

13 HNode x vequests from the central node locks for all the items

referanced by the transaction.

23

The central node checks all of the requested locks. If all can

be granted, than a "grant" message i3 sent back %o node x. If some

items are already locked, then the request is gueued. There is a

guaye for each item and a rvequest only waits in one fgueue at a time. To
prevent deadlocks, all transactions request locks for thair items in the same

predefinesd order.

3} OCnce node x gets all of the veguested locks, it can proceed

with the ftransaction. The items are vzad from the local database, and

the update values are computled. A "parform update" message is sen% to all

other nodes informing them of the update. Mode x updates the values

stored in its local database.

4} When the other nodes veceive "perform update" messages, thay
perform the indicated update on their copy of the database. When the

central node receives the "perform update" message, it also releases the

locks of the involved items. Reguests that wers waiting on those items
are notified and can continue their locking process at the central

node.

To prevent timing problems (e2.g.,. "perform update” messages arriving out

of order at a node), the central node gives sequsnce numbers to all

transactions 1t grants locks to. Nodes must temember the seguence number of
q

the latest update message they have processed and they must delay processing

“pevrform update" messages that are out of order.
p

Hector Garcia-Molina PAGE 13

7. SEGUENCE RNUMBERS PRODUCE UNMECESSARY DELAYS.

The centralized locking algorithm as stated abave‘mag produceA
unnecessary delays in update transactiocns due toc the sequence number

restriction. An example is the best way to illustrate this problem.

Suppose thaé a large update transaction (i.e., one invelving many items)
artTives at node 1, A lock reguest is sent to the central node. at the
cantral node, the locks are granted and the transaction is assigned a
seguence number, say number 10, Tha grant message is sent to node 1 where
the transaction is executed (aséuming thét naede 1 has pfocessed all uvpdates
with seguence numbers less than 10;. Exectvuting transéction 10 consiéts of
reading all items in its read set anq doing some computations with the values

read. Since we assumed that this fransaction referenced many items.

executing the transaction at node 1 will take & long time.

Suppose that while ftransaction 10 is being executed at node 1,

another
transaction arrives at node 2. Node 2 sends a lock request to the central
node. Let us assume that this new transaction has no items in common with

transaction 10 or any other transactions which are still in progress. Then

the central node can grant the requested locks and assigns sequence number 11

to this ¢ransaction. A grant message is then sent to node 2 indicating

that it can procesd with fransaction 11. But node 2 will not be able to

execute the ftransaction because it has not seen transaciion 10 yet {i.e..

Hector Garcia-—-Molina ' PAGE 14

because of the sequence number rule}. Howevar, we Xnow that transactions 10
and 11 hsve no items in common and that they could be performed concurrently.

Unfortunately, node 2 does not know this fact.

A5 far as node 2 knows, the following sequence might have occurred: The
rlocks of transaction 10 were granted, the update performed at all nodes
except node 2 and the locks released at the central node. The -“perform
vpdate” message to node 2 (step 4 in the CLA algorithm) has beég delayed and

is on its way. Then ftransaction 11 arrived. It conflicts with transaction

10, but since the locks of transaction 10 have besen released, transaction 11
£an proceed.' Thus transaction 11 has obtained its locks but it cannat be

éer?ormed at node 2 until node 2 has performed update 10.

Going back to our original situvation, if we uant.nade 2 to be able to
procead with transaction 11 while fransaction 10 is being executed at node
1, we must give node 2 additional information that permits it to distinguish
the current cass from the hypothetical case whers transactions 10 and 11
conflict. This additional information is available at the cent%al node.
There are several ways in which the central node can give node 2 this
information. In this paper we will discuss tmo~mégs in which this can ba
done. The algorithm that uses the first mathod (called the WCLA algorithﬁ)
will be presented in section 8, while the algorithm that uses the second

alternative (called the MILA algorithm) is given in section 9. (NMote: The

WCLA algorithm is the “"centralized locking algovithm" of [71.)

Hegtor Garcia—Molins PAGE 19

8. THE CENTRALIZED LOCKINMG ALGORITHM WITH “"WAIT FOR"™ LISTS (WCLA).

In the WCLA algorithm: the central node keeps track of the last update
transaction that referenced each item in the database. In other words., the

centrai node keeps a table, LAST(i), where LAST(i) is the sequence number of

the last update transaction that locked item i. Then, when an update
transaction A obtains its locks, the central node constructs a “wait for"
list for transaction A. This list, which we will call wait—for(A), includes
tha sesquence number of all update transactions that & must wait for before
being executed. Wait—Ffor(A) is simply the list of the LAST(i) entries for
all items 1 vreferenced by A. The wait—for(A) list is appended to tﬁe grant
message to A‘s originating node z. . Before node x executes transaction A, it
must wéit until all "perform deate" messages for transactions in wait—for(a)
have been processed locally. Notice that node x will only waift for
transactions whose_resulting vélués are absolutely necessary for executing A,
In our example, update transaction 11 will not be delayed by tran%acfion 10
because Htransaction 10 did not'conflict with transaction 11 and hence is not

in the wait for list of transaction 11. Wait—for(A) must also be appended to

all “perfTorm vpdate" messages for A so that the neuw update'values produced

by & can be stored at all nodes in the proper sequence and without

ynnacessary delays.
There are two potential overhead sources in the WCLA algorithm. One is
the processing that is needed before an update can be performed. That is,

before performing an update, & node must check that all "perform update”

messages for transactions in the walt for list of the update have bhesen seen.

Hector Garcia—Molina PAGE 14

To do this, nodes ne=ed to have a list of the sequence numbhers af all

previously processed “"perform update" massages. This list may be very long,

but there are many ways %o compact it Thus: we expect this list to £it in
main memory at each node, and the CPU time needed to check the wait for list

against this list of performed updates should be relatively small.

A mare saripgus soutrce of overhead is the construction of the wait for

lizts at the ceniral node. This node must keep a sequence number (i.e..

LAST(i)) for each item in the database, and in most cases this information
will not fit in main memory. Thus, in order to read or modify this

information, the central node must use the IO device. This is undesirable

because we are trying to raduce the processing loads at the critical central

node.

Figure 1 shows the average response time of thé WCLA algorithm for three
different values of the It parameter. The It parameter is the I0 time needed
to set or check a lock, and in thé WCLA algorithm this value should include
the I0 time needed to rvead and modify the LAST(i) values. Since tha LAST(L)
information will quallg be in the 10 device. the value of It will vusually
be greater than zero. Hence, the louwer cur?e (It = 0} should be considered

only as a lower bound for the WCLA algorithm.

As can be seen in Figure 1, it is possible for the WCLA algorithm to
perform worse than the simple CCA algovithm. This octurs when the locking
overhead becomes largery than the data reading load which has been moved out

of the central node. By using caches, the value of It may be reduced, thus

making the WCLA algorithm more attractive.

Hector Garcia—-Molina | PACE 17
2. THE CENTRALIZED LOCKING ALGDRITEM HITH HOLE LISTS (MCLA).

In this section we presenﬁ an alternative to the WCLA algorithm which
does not have the IO overhsad at the central node associated with wait for

lists. The idea again is to send additional sequencing information with the

grant messages, but we choose information which is more easily accessible at

the central node.

Let us vuse the term "hole list" for tﬁe list of update transactionsiin
progress (i.a., locks grantad but not released) 5t the central node. (We use
the term hole list because each entry in thé list-is a hole or a missing
entry in the list of transactions that have released their locks.) When tha
locks of an update transaction ars granted, the transaction‘s séquence number
is added to the hole list. Nﬁen an update veleases its locks at the~céntra1

node, its seguence number is rTemoved +rom the hole list.

NMow consider the rvelationship between an update transaction A which ﬁas
Just obtained all ifts locks-at the central node and the hole list existing at
that instant. ‘iF_update transaction B is in the hole list, tﬁen A aﬁ& B can
not have veferenced common items (else A could net have gotten its lﬁckszg
Therefore, A doés not have %o wéit for B. In other words, the hola list
existing at the instant yhen A pbtains its locks is a “do not wait for™ list
bacause it contains the sequence number of transactions that can be executed
in parallel with A. If we append the hole list to the grant message to A’s

originating node x:, then itransaction A can be esxecuted at node x even if

tector Garcia-Molina PAGE 18

node x has not performed the updates in the hole list. In our example,

seguence number 10 wsuld ba in transaction 11's hole lis%, so transaction 11

will not be delayed.

Notice that there may be other vpdate transactions which are not in ths

hole list%t but do not conflict with A either. For example, a transaction C

which does not conflict with A, but released its locks before A got ifts lecks
is in this category. We then see that the hole list is a partial “do hot_'

~wait for" list. If we compare the hole list for an update transaction A with

a complefe 1list of all the fransactions that do not conflict with A&, we find

that the hole list contains the more recent entries in the complede listh.

Howevatr, the older transactions in the complete list have probably already

been processed at all nodes and are therefors not capable of prdducing delays

like the one illustrated in section 7. So the hole list will probably be
éneugh to eliminate almost all unnecessary delaus, As

5 a matter of fact, i€’
the transmission delays are uniform (a3 we assumed in osur modell, the use of

a hole list will eliminate all unnecessary delays. This is true because in
this case all the "perform update" messages for transactions not in A‘s hole

list will arvive at A’s originating nods bsfore the grant message arrives at

that node.

0

In summary, hole lists are uss=d as Ffollows. When an update transaction A

obtains its locks at the central node, a ssqusnce numbsr S(AY and a copy of

the hole list H{A) are appended to the grant méssage for A. Transaction A

will be executed at &’s originating node only when 3ll transactions with

lower sequence number than S{A)Y but not in H(A) have been seen locally. The

Hector Garcia—-Molina PAGE 19

se@uence~number S5(A) and the hole list H(A} are also appended %o all
“perform update” messages so that the values produced by A can be stored at
all nodes in the proper sequence, That is, before a node y stores the values

produced by A&, 1t must have stored zall values for updates with lower seqUence

number than S(&) bBut not in H{A).

-

The advantage of the MCLA algorithm over the WCLA algorithm is that the
hole list can be kept in main memory and isg éasg to update. Thus, %the IO

ovavhead for locking in the MCLA algorvithm is almost zero. {In most cases.

the lock table can also be kept in main memory a5 a hash table.) Thsa
disadvantage of the MCLA algorithm is that it does not s2liminate all

unnecessary delays [41. But for a system where communication delays have a

small variance, the hole 1ist mechanism will esliminate almost all unnecessary

delays.

In our performance modal, communication delays ars constant, so'the MCLA
algovrithm performs very well. The average rvesponse time for the MCLA'

algorithm is given in Figure 1, (The curve is the same as the one for the

WCLA algorithm with If = 0.) In a system where communication delays have a

large variability, the performance of the MCLA algofithm will éurelg

deteriorate. Howaver, %the response time of Lransactions in all algorithms

will be affected, and which algorithm performs betfer will depend on the btype

of the communication delays.

Hector Gavcia-Molina PAGE =20

10, THE MCLA ALGORITHM WITH LIMITED HOLE LIST COPIES.

In the MCLA (as well as in the WCLA) algorithm we assumed that liskts of
arbitrary size could be transmitted in messagas. Invmang systems this may

not bes possible because there 1is a bound on the number of seguence numbers
that can be included in a message. In £41 we have studied in da2tail a MCLA
algoerithm with tﬁis.limitation. We call this algqrithm the MCLA-h algorithm
where h is the maximum size of a hole list copy that can be sent in a
mossage. In the MCLA—-h algorithm, we still assume that the hols list at the

central node can be of arbitrary size. In this section we will bfieFlg

mention some of the results obtained in [4]7.

There are two basic alternatives for dealing with limited hole list

copies. One is to truncate the hble list copy for an update transaction &
so that it fits in the allotted number of slots in the message. The second
alternative is t§ have the central node delay sending the grant message for
A until the haols 1list copy shrinks in size. Motice fthat after wme copy the
hole list into H(A), the copy will shrink in size as transactions release

their locks. When H(A) becomes small enough, we can actually send out the

acrant message together with H{A).

Which strategy performs better depends on how well the central node can

predict what transactions will release their locks first. I® the central

npde can predict what transactions will finish first or if h is zero, then

it is best to truncate. Dtherwise 1t is best to delay at ths central node

Hector Garcia—-Malina PAGE 21

until the hole list copy shrinks in size. In either case, the mazximum
difference in average rvesponss time of ftransactions betwesn the ftwo
strate

glies is about T seconds (where T is the time to send one message).

It turns out that a relatively small value of h is sufficient in order to

nobtain geod pevformance with the MCLA-h algorithm.” For exampler, in Figure 2

we give the average vesponse time of ftransactions when the delay at the
central node strategy is wused, for several values of h.

{These are

simulation results.)

Motice that a value of h of 4 or 5 is enough f£o make the performance
almost eguivalant to the performance of the FCLA-infinity algorithm (which wa

studied in section 93). Of coursa, at vérg high loads there will be a

%N

ifFa

-3

enceg between the MCLA—-S and the MCLA-infinity algorithms. But we are
not wery interested in this case because both algorithms are so claose to

saturation.

11, CONCLUSIONG.

In this paper we have presented tws new centralized update algorithms for
replicated data (the WCLA and the MCLA algorithms). We studied the
performance of these and other algorithms and discovered that the MCLA (or
the MCLA—h with small h) algorithm has tThe smallest average vesponse time in

many cases of interest.

Hector Garcia—Molina ' : FACE 22

The performance results presenited in this paper were obtained for
algorithms that were not crash resistant. However, it is possible to make
all the algorithms resilient [£31, and the cost in terms of performance Fdr
doing this is Toughly the same. for all algorithms (including the distributed
voting algorithm). That is, the average response time of transactiaons in
the resilient algorithms during no failure periods will be increased by abaout
the samz factor for all algoerithms (because of a two pbase commit protocal
which is always necessary to guarantes that updates are not lost [51).
Tharefore: the comparisons we have made here are still valid for the
resilient algorithms. {We do not consider the per?ofmance of the update
algorithms during actusl failures becauée we expect these failures to be

i

tare, and we expect that the perFormanc?'during the failure peviocds will not

ot

affect the average rvesponse time of transactions significantly.)

We also assumad that update transactions spetified initialiy the items
they referenced, so that it was possible for a transactidn to request locks
as a first step. In [6Y we study several meodifications to the MCLA algorithm
which allow us to process transactions that do not initially specify the

items they need. These modified centralized algorithms still seem attractive

as compared to the other distributed algorithms.

12, ACKNOWLEDGMENTS.

Saveral useful suggestions and ideas were provided by Clarence Ellis,

34

b

mez El-Masvi, Jonathan King, DBruce Lindsay, Toshimi Minoura, Daniel Ries.

Gio Wiaederhold, and others.

Hector Garcia-Molina

i
b
1.
1
[
0
haod
)
m
5

This work was partially supported by the Advanced Research Projects

agency of the Depariment of Defense under contract MDAZ03Z-77-C—-0322, by

the

SLLAC Computation Research Grsoup of the Stanford Linesar Accelerator

Center under Départment of En=vgy contract DE-ACO03-76SF00515, and by the

Bintechnology Reseafch'Program of the National Institute of Health under

grant NIH RR-00785.

13,

£43

REFERENCES.

P. Alsberg and J. Day, "& Principle for Resilient Sharing of Distributed
Resources”, 2nd International Conference on Software Engineering, San

Francisco, Califaornia. 1976

%. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger, "The NMotions
of Conzistency and Predicate Locks in a Database System"”, Communications

of the AGCH, WVnl. 1%, No. 11, Naovember 1976.

H. Garcia-Molina, "Performance Comparison of Update Algorithms for
Distributed Databases, Parts 1-3":. Technical Nete 143, DRigital Systems
Laboratory, Departments of Electrical Engineering and Computer

Science,

Stanford University, June 1278,

H. Garcia-Molina, “Performance Comparison of Update Algorithms for

Distributed Databases., Part II", Technical Note 144, Digital Systems

Laboratory, Departments of Electrical Engineering and Computer Science,

Stanford University, December 1978.

Hector Garcia-Molina PAGE 24
[5] H. Garcia—-Mpolina:, "Crash Recovery in the Centralized Locking Algorithm",

Movember 1978, %to appear as a Technical MNote.

{63 H. €Garcia—Molina, "Partitioned Data, Multiple Controllers and
Transactions with an Initially Unspecified Base Set",-Februa?gv1979,
to éppear as a Technical Mote.

£713 H. Garcia—Molins, "Performance Comparison of Two Update Algorithms for
Bistributed Databases”, Proc. 317d Berkeley Workshop on Distributed Data
Management and Computer Networks, San Francisco, August 1978,

[23l R. Thomas, "A Bolution to the Update Problem for PMultiple Copy Databases

Which Uses Distributed Contrvol®, Report 3340, Bolt Beranek and Newman

Inc., July 1976,

R
average
response
time (sec)

WCLA P //
It=0.01 s /
7/
s
-
_ -
0.57 —
____________ W\ WCLA, MCLA
It=0.0 s
N=6, M=1000,
T=0.1 s, Bs=5,
Iu=0.025 s,
It=0.01 s in DVA,
Ct, Cu small.
60] ; : t -} : -
5 4 3 2 1 0
Ar

interarrival time (sec)

FIGURE 1

R
average A.
response
time (sec)

3.0 N=6, M=1000,

T=0.1 s, Bs=5, :
Lu=It=0.025 s, =0
Cu, Ct small.

{
MCLA-h algorithm, :
2.5+ . delay at central node !
strategy, simulation : : ' |
/

results.

2.0+

1.5+

0.57

-
e

—tn

\

t
4 3

: Ar
interarrival time (sec

o
W

14 13 12 11 10 9 8 7

FIGURE 2

