Eur. Phys. J. C (2022) 82:881
https://doi.org/10.1140/epjc/s10052-022-10815-x

THE EUROPEAN ()]
PHYSICAL JOURNAL C e

updates

Regular Article - Theoretical Physics

Rare top-quark decays ¢t — cg(g) in the aligned

two-Higgs-doublet model

Fang-Min Cai'%, Shuichiro Funatsu'", Xin-Qiang Li', Ya-Dong Yang>¢
! Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University, Wuhan 430079, Hubei,

China

2 School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, Henan, China

Received: 22 March 2022 / Accepted: 18 September 2022
© The Author(s) 2022

Abstract We update the Standard Model (SM) predic-
tions for the branching ratios of the rare top-quark decays
t — cg(g), and evaluate the maximum rates that can be
reached in the aligned as well as in the four conventional
two-Higgs-doublet models (2HDMs) with Z, symmetries.
Taking into account the relevant constraints on the model
parameters resulting from a global fit obtained at the 95.5%
confidence level, we find that the branching ratios of t — cg
and t — cgg decays can reach up to 3.36 x 10~ and
2.95 x 107 respectively, being therefore of the same order,
in the aligned 2HDM (A2HDM). This is obviously different
from the SM case, where the predicted branching ratio of
the three-body decay r — cgg is about two orders of mag-
nitude larger than that of the two-body decay t — cg. On
the other hand, compared with the SM predictions, no sig-
nificant enhancements are observed in the four conventional
2HDMs with Z, symmetries for the branching ratios of these
two decays. Nevertheless, the predicted branching ratios of
t — cg and t — cgg decays in the A2HDM are still out of
the expected sensitivities of the future high-luminosity Large
Hadron Collider and the Future Circular Collider in hadron-
hadron mode.
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1 Introduction

The top quark, as the heaviest elementary particle in the Stan-
dard Model (SM), can decay into other light quarks associ-
ated with gauge or scalar bosons. Among all the possible
decay modes, the flavour-changing neutral-current (FCNC)
decays of the top quark, which are absent at tree level and
suppressed at loop level by the Glashow—Iliopoulos—Maiani
(GIM) mechanism [1] in the SM, are very sensitive to con-
tributions from new physics (NP) [2-36]. For the two-body
FCNC top-quark decayst — gV andt — gh,withqg = c, u,
V = vy,Z,g, and h the SM Higgs, their branching ratios
are predicted to be of the orders of 10~!7 to 10~!? within
the SM, but could be enhanced by several orders of mag-
nitude in many NP scenarios (see, e.g., Refs. [35,36] and
references therein). Among the three-body loop-induced top-
quark decays t — ¢V V and t — ujuous with u; = u,c,
the decay t — cgg has the largest branching ratio, reaching
up to about 1.02 x 10~? within the SM [37-39]. Interest-
ingly, it is found that the branching ratio of the three-body
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decay t — cgg is about two orders of magnitude larger than
that of the two-body decay + — cg within the SM [39], a
phenomenon that will be dubbed ‘“higher-order dominance”
and has also been revealed in the bottom- and charm-quark
decays [40-46]. Although their SM rates are predicted to be
far below the detectable level of present and future colliders,
these rare FCNC top-quark decays have been widely stud-
ied in various NP models, and significant enhancements are
observed relative to the SM expectations; the most prominent
examples are the two-Higgs-doublet model (2HDM) [2-14]
and the supersymmetry [15-25], within which these rare top-
quark decays might be even detectable at the future colliders.
Especially, it is interesting to check if the “higher-order dom-
inance” phenomenon observed in t — cg(g) decays within
the SM [39] is still valid for a viable NP model.

Among the various NP scenarios, the 2HDM [47] pro-
vides a minimal extension of the SM scalar sector by adding
a second scalar doublet with hypercharge ¥ = 1/2, and can
naturally satisfy the electroweak precision tests, giving rise
at the same time to a very rich phenomenology [48,49]. In
a generic 2HDM, the non-diagonal couplings of the neu-
tral scalars to the SM fermions would unavoidably lead to
non-vanishing tree-level FCNC interactions. To avoid these
unwanted tree-level FCNC couplings, an ad-hoc discrete 2,
symmetry is often imposed on the Yukawa sector of the model
[50]. Depending on the Z, charge assignments to the scalars
and fermions, this results in four types of 2HDMs (types
I, II, X, Y) [48,49] under the hypothesis of natural flavour
conservation [50]. In the aligned 2HDM (A2HDM) [51], on
the other hand, the absence of tree-level FCNC interactions
is automatically guaranteed by assuming the alignment in
flavour space of the two Yukawa matrices for each type of
the right-handed fermions. Interestingly, the A2HDM can
recover, as particular cases, all the known specific implemen-
tations of the conventional 2HDMs based on Z> symmetries.
The model is also featured by possible new sources of CP
violation beyond that of the Cabibbo—Kobayashi—-Maskawa
(CKM) quark-mixing matrix [52,53]. Thus, the AZHDM has
been widely studied from the various theoretical points of
view [54-59], as well as for its phenomenologies in the low-
energy flavour physics [60-75], the electric dipole moments
of the leptons, the neutron and various atoms [76—79], the
anomalous magnetic moment of the muon [80-85], and the
high-energy collider physics [12,86—101]. Recently, assum-
ing that there are no new sources of CP violation beyond the
CKM quark-mixing matrix, and taking into account the most
constraining processes and observables mentioned above,
together with the theoretical requirements of perturbativity
and positivity of the scalar potential, a detailed global fit has
been performed to the A2ZHDM [75].

In this paper, we shall perform a detailed study of the
rare top-quark decay ¢+ — cgg and its comparison with
the two-body decay t+ — cg in the A2ZHDM as well as in
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the four conventional 2HDMs with Z; symmetries. Taking
into account the relevant constraints on the model parameters
from a global fit obtained at the 95.5% confidence level (CL)
[75], we find that the branching ratios of t — cgandt — cgg
decays can reach up to 3.36 x 1072 and 2.95 x 102 respec-
tively, being therefore of the same order, in the AZHDM. This
is obviously different from the SM case, where the predicted
branching ratio of t — cgg is about two orders of magnitude
larger than that of t — cg [39]. On the other hand, compared
with the SM predictions, no significant enhancements are
observed in the four conventional 2HDMs with Z, symme-
tries for the branching ratios of these two decays. Searches
for the decay + — cg have been performed at the Large
Hadron Collider (LHC), with the upper limit on its branch-
ing ratio being of (9(10_4) [102,103], which is still much
higher than the model predictions. These rare FCNC decays
will also be studied at the future experiments, such as the
high-luminosity LHC (HL-LHC) [104—-108] and the Future
Circular Collider (FCC) [109-112]. For example, the 95%-
CL limit on the branching ratio of ¢ — cg at the 100-TeV
FCC in hadron-hadron mode (FCC-hh) with an integrated
luminosity of 10 ab™! is estimated to be of O(10~7-10~%)
[113,114], which is at least one order of magnitude higher
than the maximum value predicted in the A2HDM. As a
consequence, the predicted branching ratios of t+ — cg and
t — cgg decays in the A2HDM are still out of the expected
sensitivities of the future HL-LHC and FCC-hh.

This paper is organized as follows. In Sect. 2, we recapit-
ulate the A2HDM, focusing only on the scalar and Yukawa
sectors that are most relevant to us. In Sect. 3, we present our
calculation of the decay rates of t — cg(g) decays, with the
resulting R functions present in the t — cgg decay supple-
mented in Appendix A. Our numerical results are then given
in Sect. 4, where we show the maximum branching ratios of
t — cg(g) decays that can be reached in the A2ZHDM, and
give also a simple analysis of these two decays in the four
conventional 2HDMs with Z, symmetries. Our conclusion
is finally made in Sect. 5.

2 Aligned two-Higgs-doublet model

Asasimple extension of the SM, the 2HDM is invariant under
the SM gauge group and includes, besides the SM matter and
gauge fields, two complex scalar SU (2);, doublets,

o ¢+
=e'% “ . 2.1
fa=e \/LE(Ua‘i‘pa"i‘lna) ’ @D
with the weak hypercharge Y = 1/2. Here we have assumed
that the vacuum of the theory respects the electromagnetic
gauge symmetry, which guarantees the vacuum expectation
values (vevs) of the two scalar fields ¢, to be aligned in the
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SU(2)1 space. After performing further a global SU(2),,
transformation to put the non-zero vevs only in the lower
(neutral) components of ¢,, which guarantees the vacuum to
be neutral and not charge-breaking, we can bring the vevs
of the two scalar fields to the forms given by (OlqbaT (x)]0) =
(0, vgeit / ﬁ), where v; and v; are real and non-negative
[115,116]. However, as one global phase can always be
rotated away through an appropriate U (1)y transformation,
we can, without loss of generality, fix 7 = 0 and leave the
relative phase 0 = 6, — 01 [51,115,116].

Performing further a global SU (2) transformation in the
scalar space (¢1, ¢2), we can rotate the original scalar basis
to the so-called Higgs basis [116-119],

[oR} __(cosB sinf 3
—®, ) = \sinB —cosp e ¢, )’

where the rotation angle S is defined by the ratio of the

absolute values of the two neutral scalar field vevs, tan § =
Igg:zgigil = 5—? and, by convention, its value is limited to
the first quadrant due to v, vo > 0. In fact, both tan g and
the relative phase 6 are basis-dependent, and we can remove
them entirely by transforming from a generic basis (¢1, ¢2)
to the Higgs basis (@1, ®;) [116-119]. The true significance
of tan B8 emerges only in specialized versions of the 2HDM,
such as the four conventional 2HDMs with Z, symmetries,
where tan § is promoted to a physical parameter. In this case,
we can remove the relative phase 6 by making a phase rota-
tion ¢» — e ?¢, such that the two neutral scalar vevs
are real and the CP invariance is not spontaneously bro-
ken [116-119]. In the Higgs basis, only the scalar doublet

@, gets a non-zero vev, (O|<I>1T (x)10) = (O, v/ﬁ), with

V= 1/v% + U% = 1/v/V/2GF ~ 246.22 GeV, and plays the
role of the SM Higgs doublet. The two scalar doublets in the
Higgs basis can now be parametrized, respectively, as [51]

2.2)

G+
@) = LW+ +i6" |

H+
b, = L (S +iS3) | (2.3)
75 (52 i83)

where G* and G denote the electroweak Goldstone fields,
and the remaining five physical degrees of freedom are given
by the two charged fields H¥(x) and the three neutral ones
<p?(x) = {h(x), H(x), A(x)} = R;;S;, where R is the
orthogonal matrix needed for diagonalizing the mass terms in
the scalar potential [92]. Generally, none of these three neu-
tral scalars can have a definite CP quantum number. Here, for
simplicity, we shall assume a CP-conserving Higgs sector, as
will be detailed in the next two subsections.

2.1 Scalar sector

In the Higgs basis, the most general scalar potential allowed
by the electroweak gauge symmetry SU (2);, ® U(1)y takes
the form [116-118]:

V= (@]@1) + 2 (@102) + 13 (0]2)
+ 15 (0)e1)]
o 2 " 2
+ 1 (@]01) + 2 (o))
)(o102) + (s (o)

+ [(x5 o, + 26 ®[D) + 47 cb;cbz)

+ 23 (@]

x (@]@2) + he]. 2.4)
Due to Hermiticity of the scalar potential, the parameters 41 2
and A2 34 are real, while p3 and As ¢ 7 could be generally
complex. The minimization condition of the scalar potential
imposes the relations

2 1 2

M1 = —AL V", u3=—§/\6v . (2.5

Inserting Eq. (2.3) into Eq. (2.4) and imposing the mini-

mization condition given by Eq. (2.5), we can get the charged-
Higgs mass

2 1 2
Mmy+ = K2+ 5)»3 v, (2.6)
while the masses of the three neutral scalars can be obtained
after diagonalizing the mass-squared matrix M of the three
neutral-scalar fields S; 2 3 by the orthogonal matrix R, i.e.,
diag (m%l, m%l, mi) =R MRT [92]. In the CP-conserving
limit of the scalar potential, the parameters A5 ¢ 7 are all real
and the three neutral scalars i, H, and A are therefore CP
eigenstates. In this case, the CP-odd scalar A corresponds to
the field S3, while the two CP-even scalars & and H are the
orthogonal combinations of S and S>:

hyY cosa sina S1
(H) - <—sin&cos&> (Sz>’ 27
where the mixing angle & is determined by
2 2 2
- my — 2A1v V)6
tana = = . 2.8
vZAg 20102 — m? 2:8)

Note that one can always restrict ¢ within the range 0 <
a < 7 by performing a phase redefinition of the two CP-
even fields S; and S;. In addition, the masses of & and H
satisfy the relation m%i sin? & + mi cos? & = 2xv? [93],
which, together with our convention m;, < mpy, implies that

@ Springer
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201 v — m%l < (0and m% — 2A1v2 < 0. Then, from Eq. (2.8),
one can see that the sign of tan & is uniquely determined by

that of the parameter A¢, since the vev v = v% + v% is,
by definition, always positive. As the Higgs basis of a CP-
conserving 2HDM is defined up to a global rephasing of
the second scalar doublet ®» — ¢®,, we can use this
freedom to change the sign of L¢ [120]. Here, without loss
of generality, we shall use the rephasing &, — —®; to fix
A6 < 0 so that tan@ > 0, which, together with 0 < & < w,
results in our final choice 0 < & < 7/2. The masses of the
three neutral scalars are finally given, respectively, by

2 1 2 1

A
m3 = m?. + v (f—%), (2.9)
with
2 2 Ay
X =mj.+v 2/\2+7—)\5 , (2.10)
_ 2 2 2 442
A_\/[mA—l—Zv (hs —AD)]" +4v* 2. 2.11)

Here the convention mj;, < mpy has been chosen, and the SM
limit is recovered when & = 0.

2.2 Yukawa sector

The Yukawa Lagrangian of a 2HDM in the Higgs basis can
be written as [49,51]

N
== [Q/L(M;,cbl + Y do)d),

+ O} (M, P + Y, Pr)uy
+ Ly (M @1 + Y[ @)l | +he.

»CY, weak = —

(2.12)

Here, Q) and L are the left-handed quark and lep-
ton doublets, while u'y, dy, ¢, denote the right-handed
fermion singlets, all being given in the weak-interaction
basis; ®,(x) = i 0, @7 (x), with o, the Pauli matrix, are the
charge-conjugated fields with hypercharge ¥ = —1/2; M }
(f = u,d, £) denote the non-diagonal matrices that encode
both the fermion masses and the Yukawa couplings of the
scalar doublet & to fermions, while Y} characterize only
the Yukawa couplings of the second doublet &, to fermions.

In general, the two matrices M } andY ]’c associated with the
same type of right-handed fermion 'y, d, or £, in Eq. (2.12)
cannot be simultaneously diagonalized in flavour space. As a
consequence, in the fermion mass-eigenstate basis with diag-

onal mass matrices My = U Lf TM}-U I’; , the corresponding

Yukawa matrices Yy = U 1{ i Y}- U IJ; remain still non-diagonal

@ Springer

Table 1 The one-to-one correspondence between the different choices
of the alignment parameters ¢ s and the four conventional 2HDMs based
on discrete Z; symmetries

Model Sd Su Se
Type I cot 8 cotf8 cotf
Type II —tan B cotf8 —tan B
Type X cotf8 cotf —tan B
Type Y —tan f8 cot B cot B

and hence give rise to non-vanishing tree-level FCNC interac-
tions. These unwanted tree-level FCNC couplings can, how-
ever, be eliminated by requiring that the two matrices M ’f and
Y} are aligned in flavour space [51]. This results in the fol-
lowing alignment relations between the mass and the Yukawa
matrices [51]:

Yoo =6aeMae, Yi=c) M, (2.13)

where ¢ are arbitrary complex parameters and could intro-
duce new sources of CP violation beyond that of the CKM
quark-mixing matrix. They are also scalar-basis independent
and satisfy universality among the three different generations
[51].

In terms of the fermion mass eigenstates, fr.r =
U [ TR f] g» and making use of the alignment conditions
Spe’ciﬁed by Eq. (2.13), we can finally rewrite the Yukawa
Lagrangian of the A2ZHDM as [51]

G- _ ~
Ly mass = —ZT[dLMddR + MRM,IML +£LMZ£R]

s i ~ _
_ (1 + f) {uLMuuR +drMydg +£LM/Z€R}

1 i i
— (2 4isy) {dLYddR aRYiug + szR}

V2 } A B
- TG+[ML VermMadr — ur M, Vermdr, + VLMMR}

V2 ) )
- TH+{§d it VekmMadR — ¢y iig M Vermdr,

+o ELMMR} +he, (2.14)

where Vexm = UZT UZ is the usual CKM matrix [52,53], and
the diagonal fermion mass matrices are now given, respec-
tively, by

M, = diag (m,, m.,m;), My = diag (mgy, mg, mp) ,
M, = diag (mg, my, m,) . (2.15)
For the rare FCNC decays + — cg(g) considered here,
besides the SM part, only the interactions of the charged
scalars H* with the quarks are involved, which means that
only the alignment parameters ¢, 4 and the charged-Higgs
mass m g+ will be involved throughout this work.
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As shown in Table 1, the four conventional 2HDMs
[48,49] based on discrete Z, symmetries can be easily recov-
ered from the A2ZHDM by choosing particular values of the
alignment parameters ¢ y. As the parameter ¢y is notinvolved
in the rare decays t — cg(g), we are actually left with only
two cases, type-I (type-X) 2HDM with ¢; = ¢, = cot 3,
and type-II (type-Y) 2HDM with ¢; = —1/¢, = —tan 8.
Numerical results of the branching ratios of t — cg(g)
decays in these two specific cases as well as their compar-
isons with the SM predictions and the results obtained in the
A2HDM will also be discussed in Sect. 4.

3 Calculation of the decay rates
3.1 General remarks

The rare top-quark decays t — ¢gg(g), with ¢ = u, ¢, occur
firstly at one-loop level within the SM. As such, the decay
rates of these processes are not only suppressed by the loop
factor, but also receive a strong CKM and GIM suppression
relative to the dominant tree-level decay t — bW™ [2,27,
39]. Due to the additional charged-Higgs contributions at the
loop level, however, these decay rates could be enhanced in
the A2HDM as well as in the conventional 2HDMs with Z,
symmetries [2,3,7]. Here we shall focus on the decays into
a charm instead of an up quark, because the decay rates of
t — ug(g) are further suppressed by the ratio |V, / Vep|* ~
0.0087 compared to that of # — cg(g), both within the SM
as well as in the 2HDM s considered.

Within the SM, due to the hierarchy of the CKM matrix
elements, |Vip| > |Vial, | Visl, the total width of the top quark
is dominated by the tree-level two-body decay t — bW,
and we can, therefore, take the approximation Iy () =~
I'(t — bW™). Keeping only the dominant next-to-leading-
order (NLO) QCD correction [121-123] while neglect-
ing the W-boson width effect [121], the NLO electroweak
[124,125], as well as the next-to-next-to-leading-order QCD
correction [126—130], all being only of a few percentages of
the Born term [127], we can write the partial decay width of
the channel t — bW as [123,125]

Tt — bWT) =Tt — bW™) {1 4 Eres
2 2 2
" 2(1 ﬂW)EZﬂW 1§(ﬁw 2) In(1 — £2,)
Bw (3 —28y)
— 482
—M In 83, + 2Li2(B%) — 2Lia (1 — B3)
3282

4 2p2
_OBw — 3By —8 8_712”, G.1)

2B2,(3 —2B%)

where Cr = 4/3 is the colour factor, and oy = gf /(4m)
denotes the strong coupling constant. The parameter Sy =

1= m%v/mtz, with my and m; the W-boson and the top-

quark mass respectively, is the velocity of W™ in the top-
quark rest frame, and the dilogarithm function is defined by
Lir(x) = — fox In(1 —1¢)/t dt. The leading-order (LO) decay
width Tg(r — bW™T) in Eq. (3.1) is given by [124]

GF|Vip > A(my, my, mw)
8w/2m3}

X [(m? — mlz,)2 + (mt2 + mi)m%, — 2’"%{/]’

Lot > bWT) =

3.2)

where G r is the Fermi constant, m the bottom-quark mass,
and A(x, v, 2) = (x% — y% — z%)? — 4y?z? the usual triangle
(or Kéllén) function for a two-body decay.

To a very good approximation, Iy () >~ I'(t — bW™)
holds also in the A2ZHDM as well as in the four conventional
2HDMs with Z; symmetries, except when m g+ < m; —myp;
in this regime, the top quark can have an appreciable chance
to decay into the final state b H *, which must be taken into
account for the total top width. In this case, we shall have
Tot(t) ~ T'(t > bWT) + Tt — bH™), with the LO
partial width of the decay t — bH™ in the A2HDM given
by [12]

GF|Vip|?

A’(mt7 mp, mHi)
8n\/§m,3
<[ (2 +m} = m3s) (milsaP + mPisal)

—4mim? Re(sas)) ]

I'(t— bH") =

(3.3)

As we are primarily interested in checking if the “higher-
order dominance” phenomenon observed in t — cg(g)
decays within the SM [39] is still valid for the A2HDM
and the four conventional 2HDMs with Z, symmetries, the
charged-Higgs mass m g+ will be assumed to be larger than
the top-quark mass m,, and the decay mode t — bH™ is
therefore kinematically forbidden. Thus, the branching ratios
of t — cg(g) decays can be defined as

[ — cg(g)

@t — bW’ 3-4)

Bt — cg(g)) =

In the next two subsections, we shall detail the calcula-
tion of the decay rates I'(tr — cg(g)) in the A2HDM. To
this end, we shall follow the following procedure: Firstly, we
implement the A2HDM into the Mathematica-based package
FeynRules [131,132] to generate the model file together
with a complete set of Feynman rules, which is then fed

@ Springer
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into the package FeynArts [133,134] to generate the one-
loop Feynman diagrams and the corresponding amplitudes
for the t — cg(g) decays. Then, we resort to the packages
FormCalc [135,136] and LoopTools [135] to manipu-
late the decay amplitudes and evaluate numerically the scalar
and tensor one-loop Feynman integrals. Meanwhile, some
partial cross-checks have been done by using the package
FeynCalc [137-139]. Finally, we can obtain the decay
rates from the amplitudes squared by performing the phase
space integration. Throughout this work, we carry out the
one-loop calculation in D = 4 — 2¢ space-time dimensions
using the dimensional regularization scheme [140-143] for
the ultraviolet divergence in loop integrals, and make the
GIM mechanism manifest by dropping the terms independent
of the internal down-type quark masses. For the collinear and
infrared singularities present in the t — cgg decay, we take a
non-zero charm-quark mass to avoid the collinear divergence
generated when one of the gluons in the final state travels par-
allelly to the charm quark, and introduce phase-space cuts to
eliminate the collinear (generated when the two gluons travel
parallelly to each other) and infrared (generated when one of
the gluons is soft) divergences [39,42].1

As the two gluons are both on-shell and hence transversely
polarized, care must be taken regarding the gluon polariza-
tion sums when squaring the amplitude of t — cgg decay.
One can maintain their transversality either by introducing
contributions from the ghost fields while using the simple
polarization sums [21, 3912

D ehtka)en(ks)

polarizations

- >

polarizations

EZ(k4)€v(k4) = —8uv, (3.5)

or via the explicit construction [40,42]

> enka)enks)

polarizations

polarizations
k3uk4v + k4ﬂk3v
k3 - k4

€, (ka)ey (ka)

=—8w + 3.6)

1" A more precise approach to obtain a finite result requires both per-
forming a complete NLO QCD calculation of the virtually corrected
decay width I'(r — cg) and achieving a dimensionally regularized ver-
sion of the decay width I (f — cgg) in which both infrared and collinear
singularities become manifest [45]. The finiteness of the decay rate is
then guaranteed by the Kinoshita—Lee—Nauenberg theorem [144, 145].

2 Throughout this work, the colour indices in the gluon polarization
vectors will be suppressed.

@ Springer

which are now simultaneously transverse with respect to
the two gluon momenta k3 and k4. Here, €, (k3) and €, (k4)
denote the polarization vectors of the final-state gluons with
momenta k3 and k4 respectively, while g, is the metric ten-
sor in Minkowski space, with the Greek indices running over
0, 1, 2, 3. In this paper, we shall follow the second method. In
practice, however, one needs only keep one of the two gluon
polarization sums as in Eq. (3.6) while replacing the other
one by —g,. [40]. Conveniently, the package FormCalc
provides already a function PolarizationSum to achieve such
a task.

In our calculation, we shall use the 't Hooft-Feynman
gauge and take the external top and charm quarks to be on-
shell. However, the gauge independence of our final results
has been checked by performing additionally all the calcu-
lations in the unitary gauge. Due to the smallness of the
down- and strange-quark masses m, s and the unitarity of
the CKM matrix >, _; ¢ , Vi Veq = 0, the decay rates turn
out to be only sensitive to the bottom-quark mass mj, [27,35].
For these internal quark masses, the most adequate choice is
the MS running mass evaluated at a typical scale of O(m;)
[27,35], and such a prescription will be followed by us. The
external top- and charm-quark masses are, on the other hand,
taken as the on-shell pole masses. For the sake of simplic-
ity for our presentation, however, we shall set the charm-
quark mass m, to zero and keep only the contributions from
the internal bottom quark to these decays, while taking into
account all these effects in our numerical analyses presented
in Sect. 4.

3.2 Two-body decay t — cg

Let us firstly calculate the decay rate of the two-body decay
t — cg in the A2HDM. The one-loop Feynman diagrams
responsible for this decay in the 't Hooft-Feynman gauge
are shown in Fig. 1, where the first three ones correspond to
the vertex diagrams while the remaining ones to the flavour-
changing (t — c) fermion self-energy diagrams. During the
calculation of these Feynman diagrams, we have kept all
the external and internal quark masses non-vanishing [2, 12].
Especially for the flavour-changing fermion self-energy dia-
grams, we have followed the treatment proposed in Ref.
[146]: it is most straightforward to avoid the issue of coun-
terterms [41,42] altogether by simply calculating these dia-
grams, because the internal top (charm) quark line is off-
shell and hence does not contribute to the one-particle pole
of the charm (top) quark and needs not be truncated. Fur-
thermore, due to the fact that the flavour-changing fermion
self-energies are part of the non-truncated Green’s function,
one must include their contributions with a factor of 1 rather
than a factor of 1/2, as the latter applies only in the standard
flavour-conserving case.
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Fig. 1 One-loop Feynman diagrams contributing to the t — cg decay in the 't Hooft-Feynman gauge, with d; = {d, s, b}, in the A2ZHDM. The
first 1-3 diagrams are the vertex diagrams, and the rest 4-9 are the ¢+ — ¢ fermion self-energy diagrams

The resulting transition amplitude for the two-body decay
t — cg can be written as’

GF a *
Aiseg = 4\/_7712 8T q:dzs . VigVeq

y [Rgzn(e*(,g) ~k1) Gi(ka, 0) Prtj(ky, my)

+RY" € (k2. 0) Pr g (k3) 1 (v m) | (3.7)
where g = +/4ma; is the strong coupling constant, TS
the generators of the SU (3) gauge group with the indexes
a=1,...,8andi, j =1,2,3,and Pg,; = (1 & y5)/2 the
chirality projectors. Here, €j; (k3) is the polarization vector
of the gluon, while k1, k7, and k3 = k1 — k> are the momenta
of the top, the charm, and the gluon, respectively. The two
form factors RY’]Z) in Eq. (3.7) are the sums of the contribution
from each of the nine diagrams shown in Fig. 1. They can be
expressed in terms of the masses of the external and inter-
nal quarks and bosons, and contain the D-dimensional loop
integrals resulting from dimensional regularization. Specific
to the internal bottom-quark contribution, we have explicitly

b
R = 2mt[2m%vclz(0, m?,0,m3, my, my,)

— (m} —2m}) C2(0. m?, 0. m3, m3. m3y)
2 20 2 2 2

_mb[CO(Oa mt,O, mb, mb,mW)

— C12(0, m}, 0, mj, mj, my,)

+ Xau (CO(O, mg, 0, mj, mj, mys)

+C2(0, m?, 0, m3, m, m%{i)>

— Xaa C12(0, m}, 0, my, mj, qui)]}, (3.8)

3 When the charm-quark mass is kept, there are two more form factors
in Eq. (3.7), with the associated Dirac strings obtained by replacing Pg
with Pz. Applying the on-shell conditions and the Gordon identities,
we can also recast Eq. (3.7) into the standard dipole structure form [3],
as will be discussed in Sect. 4.

and

b
Ré ) = m%V{Zm?[Cl(O, m?,0,m3, my, my)

2 2 2 2 2
—mj, Co(0, my, 0, my, my, my,)

— C»(0, m,2, 0, mi, m%, m%v)] + 2B (m,z, mi, m%v)
—4Co0(0, mtz, 0, mi, mi, m%v)}

+ mi de[(m%{i — mlz,)Co(O, m,z, 0, mlz,, mi, mi,i)
—2C00(0, mtz, 0, mi, mi, m%_li)

+ Bl(mtz, mlz,, m%i)]

= (i — m2m} — 2y ) o0, m?, 0, m3, m3. my)

2 2 2 2 2 2
+mh{m,[C1(O,mZ,O,mb,mb,mw)

+ de Cl (0’ ml‘25 07 m1279 mia mi]i)
+ Xau Co(0,m7, 0, mj, mj, m7,.)]
— Xau[Bo(0, my, my,2) + Bo(my, mj, my2)]

— Bo(0, m2, m%) 4+ Bo(m?, m?, m3,)
+ Bl(mtz,mgz,,m%v)

—2Co0(0, m?, 0, m}, m3, w3

+ [ Kaa + D +2m3 | Bo©. . m). (39)

Here, following the standard procedure and notation of Refs.
[147-150], we have reduced the vector and tensor integrals
via the Passarino—Veltman method [150] to the scalar one-
loop integrals B; and Cj j,,, which can be further decomposed
into the basic scalar functions Ag, Bg, and Cp. However,
as the package FormCalc does not require such a further
reduction, we have expressed our results in terms of B; and
Cj.1m instead of the more basic ones to save CPU time. This
is especially preferable for the three-body decay + — cgg,
in which the more complicated four-point one-loop integrals
Dy im.imn Will be involved. In addition, we have introduced

@ Springer
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the symbols X, = ¢4 g;,, with ¢, q' = d, u, to represent
the possible combinations of the alignment parameters in the
A2HDM, and the SM result [2,27] is reproduced by setting
X4q = 0. It should be noted that, although the individual
contribution from each internal quark d; € {d, s, b} is sepa-
rately divergent, the total amplitude is of course ultraviolet
finite after summing over all the three internal quark flavours
and taking into account the unitarity of the CKM matrix,
Zq:d,sb V V‘I =0.

With the transmon amplitude at hand, it is straightforward
to calculate the decay rate I'(r — cg), with the result given
in the top-quark rest frame and in the limit m,. = O by

Almg, me, 0)
16nm?

« Y 53X 3T Heal

polarlzanons colours spins

't — cg) =

(3.10)

For our later numerical analyses, however, we always take
into account the finite charm-quark mass effect.

3.3 Three-body decay t — cgg

In the A2HDM, the three-body decay t+ — cgg receives
contributions from the one-loop Feynman diagrams shown
in Fig. 2, where d; = {d, s, b} and the 't Hooft-Feynman
gauge is adopted. The transition amplitude of the decay can
be written as

_ vertex box self
Arscge= ) [ @ TAG TAG ]
g=d,s,b

(3.11)

where Ag;‘ex At(’;’;‘, and Aself represent the contributions
from the vertex, the box, and the self-energy diagrams,
respectively. Specific again to the internal bottom-quark con-
tribution and in the limit m, = 0, these separate terms can

be written in a compact form as

vertex __ GF s V;l; VCb
® V2w tas3t RiRy
+ s 3RV€I‘[6X) + T l12 §23 Rl (R2 Rvertex + tRXertex)

| Tuti2t Ro(RiRY™

+ (Tu = T.)sas t RiR2RE™ | (3.12)

GFog V;,Vcb

APOX — [m FIRY™ + FiaR2™
® \/Eﬂtlz 523t R1 Ry t( !
+ 2F3RE + 2 F14RY™)
(F3RbOX + F4RbOX + FSRbOX _ F16R}830X) ]’
(3.13)
GragsViV,
.Aizl)fz F%s Vip Teb I:Tdtlzl‘RQ(RlRielf
V21 tast RiR,

+ 523 mbRself 4 Rgelf)

@ Springer

+ T, 12523 R (R RS + t my R + RS

+ (Td —T, )S23 t R]RQRSCH ] (3.14)

Here the kinematics of the process is specified in the paren-
theses of the initial- and final-state particles as 7(k;) —
c(k2) + g(k3) 4+ g(k4). For convenience, we have also intro-
duced in Eqgs. (3.12)—(3.14) two products of the colour gen-
erators, Ty = (T“Tb)ij and T, = (TbT“)ij, as well as
the (generalized) Mandelstam variables t = (k; — k3)2,
112 = (k1 —k2)?, and 523 = (ko +k3)%.* In addition, the inde-
pendent fermion chains involved are defined, respectively, by

Fl = Ei(k21 0) PR t](kl’ ml‘)?
F = ci(ka,0) Pptj(ky, my),
F3 = ¢i(ka, 0) Pr¢*(k3) tj(k1, m;),

Fy = ¢i(kp,0) Pr g™ (kg)tj(ky,m;),

Fs = ci(k2,0) Pg k3 tj(ky, m;),

Fg = ci(kz, 0) Pr g* (k3) tj(k1, m,),

F7 = ¢i(kp, 0) Pr ¢*(kg) tj(ky, m;),

Fg = ci(ka,0) P k3tj(ky1, my),

Fo = ¢i(kz, 0) Pr g" (k3) " (k) t; (k1, my),
Fio = ¢;(k2,0) PL ¢"(k3) k3 tj (ky, my),

F11 = ¢i(k2,0) Py ¢ (ka) k3t (k1, my),

Fio = ¢i(ky, 0) Pr g™ (k3) ¢ (kg) tj(ky, m;),
Fi3 = ¢i(ka, 0) Pr g™ (k3) f3 tj (k1. my),

Fig = Ci(k2,0) PR ¢*(ka) k3 tj(k1, m;),

Fi5 = Ci(k2,0) Py ¢*(k3) " (ka) k3 tj (k1, m;),
Fi6 = ¢i(k2, 0) Pg ¢* (k3) ¢™ (ka) k3 tj(ky, m;).

(3.15)

For the R functions present in Eqgs. (3.12)—(3.14), we have
Ry =533 — m,2 and R =1t — mtz, while the explicit expres-
sions of all the remaining ones are collected in Appendix A.

In the top-quark rest frame, the differential decay rate of
t — cgg can be written as

ki 1
dF(t — ng) 2m (1_[/ (27[)3 2E ) )48(4)

x (ki —kz—k3—k4)

x> Z Z [Armcee |

polanzatlons colours spins

, (3.16)

4 It should be noted that we can also organize Eqgs. (3.12)—(3.14) accord-
ing to whether the two on-shell final-state gluons are in a colour-
symmetric ({7'¢, T’} orina colour-antisymmetric ([7¢, ) configu-
ration [42,45]. Although taking the same symbol, the Mandelstam vari-
able ¢ can be clearly distinguished from the top-quark spinor through
the context.
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d di
c c < c
t y ﬁ; tawt
t g t g
29 g 30 g

Fig. 2 One-loop Feynman diagrams contributing to the t — cgg decay in the 't Hooft-Feynman gauge, with d; = {d, s, b}, in the AZHDM. The
first 1-15 diagrams are the vertex diagrams, the diagrams 16-21 are the box diagrams, and the rest 2245 are the  — ¢ fermion self-energy diagrams
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where E; = k? represents the energy of the (i-1)-th final-state
particle in the top-quark rest frame, and the last factor 1/2
accounts for the statistical factor due to the two gluons in the
final state. In this frame, we have 122 + 1?3 + l?4 = 0, and thus
the three final-state momentum vectors lie in a plane. Then,
the three-body phase space in Eq. (3.16) can be integrated
over the orientation of this plane by using the momentum
delta functions and the azimuthal symmetry. In this way, we
are left with only two non-trivial integration variables, which
can be chosen as the energy of the charm quark (kg ) and the
energy of one of the gluons (say kg), and the decay width of
t — cgg can be finally written as

1
6473 m Z

polarizations

1 1 1
x g Z EZ/dkg/dkg X EyAt%cgg‘z. (3.17)

colours  spins

I'(t — cgg) =

Because of the infrared and collinear divergences men-
tioned in Sect. 3.1, which are also evident from Eqs. (3.12)-
(3.14) and appear at the vertices and along the boundary lines
of the Dalitz plot in the (k9, kg) space respectively, we have
to impose proper cuts on both kg and kg when performing the
integration of Eq. (3.17) over these two variables. Following
the treatment of Refs. [39,42], we shall use the kinematic
constraints

t = (ki — k3)> = m? —2m/kd > C - 2m?,
tn = (ki —kp)* = m? —2m,k) > C - 2m?,
523 = (ko + k3)? = (k1 — kag)?

= —m? +2m, (k9 + k9) > C - 2m2, (3.18)

along with the fact that k9 . > k9 . |

ranges of the two variables:

to get the integration

K e[5 —K+om.Zha-20).

0 m;
kS [2Cm,, - 2C)] , (3.19)
where C is the cutoff parameter, and its value must be
taken within the range of jet energy resolution of a detector.
Note that, when a non-zero charm-quark mass is considered,

Eq. (3.19) must be modified as

2 2
ny 0 mg; My m
Kel|l=L-k+cC —< fa-2c ,
2 [2 e )+2m,]
2
nmy m
K el|2Cm,, =L(1 —2C) — —<|. 3.20
36[ m; 2( ) zmt} (3.20)

5 To ensure that the divergent point at kg + kg = m; /2 resulting from
s23 = 0 in Egs. (3.12)—(3.14) is also excluded, our choice is slightly
different from that of Ref. [39]. Recall that m. = 0 is assumed here.

@ Springer

Here, for simplicity, we shall take C >~ 0.01 as the default
value (i.e., requiring the energy of each decay product to be
larger than 2.0 GeV in the top-quark rest frame), while vary-
ing C within the range [0.001, 0.05] to study its numerical
impacts on the branching ratio of t — cgg decay. Note that
the choice C = 0.01 is already large enough to reach the jet
energy resolution sensitivity of the HL-LHC [108] and FCC
[109-112] facilities.

4 Numerical results and discussions
4.1 Input parameters

The relevant input parameters needed for evaluating the
branching ratios of ¢t — cg(g) decays are listed in Table 2.
For the QCD and electroweak parameters as well as the
quark masses, their values are taken from the PARTICLE
DATA GROUP [151]. Here, for the external on-shell quarks,
we take their pole masses as input, and evolve the internal
quark masses from their respective initial scales to the scale
Wy = m‘,’Ole characteristic for the top-quark decay, using the
two-loop renormalization group equations for the MS run-
ning quark masses.® The MS coupling constant e is given
at the Z-boson mass scale with the top quark decoupled (i.e.,
with ny = 5 active quark flavours). To obtain its values at
the scale j, and also at other scales when evolving the MS
running quark masses, we use the two-loop running of o
by taking into account the decoupling effect when crossing
a flavour threshold [154, 155]. For convenience, we compile
also in Table 2 the derived values of the MS running param-
eters evaluated at the scale p;, = ml,oole following the above
prescription.

Concerning the needed entries of the CKM matrix, we
adopt the Wolfenstein parametrization [152], generalized to
include the higher-order terms of A = |V,,| [153]. To be
consistent with the study of NP, the four Wolfenstein param-
eters A, A, p = p(1 —1%/2), and 7 = n(1 — A%/2) should
be fitted to the tree-level observables as well as the ratio of
the mass differences between the neutral B-meson eigen-
states, AM;/A M, which are all expected to have only a
minimal sensitivity to the charged-Higgs contributions [60].
To this end, we shall use as input the central values of the
fitting results obtained in Ref. [75]. For any further details,
the readers are referred to Ref. [75].

As pointed out already in Sect. 2, only the parameters ¢,,
G4, and my=+ are involved for the rare decays t — cg(g) in
the A2HDM. Let us now fix the allowed ranges of these

6 Note that the down- and strange-quark running masses rg y are
quoted in the MS scheme at a scale 4 = 2 GeV, while the bottom-
quark running mass m, is evaluated at a scale equal to its mass, i.e.,
1y ().
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Table 2 Summary of the input

parameters used throughout this QCD and electroweak parameters [151]

work. For convenience, the Gr[107> GeV~2] mw [GeV] mz[GeV] a§5) (mz)

derived values of the MS

running parameters evaluated at 1 663787 80.379 91.1876 0.1179

the scale pu;, = m? °¢ are also

given. In the Wolfenstein (6) ( pole)

parametrization [152] of the s UMy

CKM matrix, the four

independent Wolfenstein 0.1076

arameters can be chosen as A,

i’ 5=p(l— A2/2), and Quark masses [GeV] [151]

i =n(—x%/2)[153] mPe mb pole iy () g (2 GeV) i4(2GeV)
172.5 4.78 1.67 4.18 0.093 0.00467

n_u,(mf(’le) n_1s (mfole) }’;ld (m;)ole)
2.60 0.048 0.00241

CKM parameters [75]
A p n
0.2256 0.829 0.182 0.360

model parameters. For simplicity, we shall entertain our-
selves with the CP-conserving limit and assume that the
observed 125 GeV Higgs is the lightest CP-even scalar of
the model, which corresponds exactly to the light scenario
considered in Ref. [75]. For the two alignment parameters
Su.d» we choose the ranges

lsul €0, 1.5], lsal € [0, 501, 4.1

as constrained mostly by the precision flavour physics, such
asZ — bb, B — Xsy,aswell as Bgd — E?,d and KO — KO
mixings [60—64]. It is especially interesting to note that, for
large values of |g, 4|, important correlated constraints on
Gy and ¢4 can be derived from the weak radiative decay
B — Xy, with the region ¢;¢, < 0 almost excluded by the
current data on the branching ratio of B — Xy [60]. The
ranges in Eq. (4.1) are also roughly consistent with the pertur-
bativity requirement, |v/2 Su.amy.a/v] S 1. For the charged-
Higgs mass, we focus only on the case with m g+ varied
within the ranges mpy+ € [200, 600] GeV for the t — cg
and mpy= € [200,400] GeV for the r — cgg decay. Here
the lower limit is chosen to be larger than the top-quark mass
such that the decay mode t+ — bH™ is kinematically for-
bidden, while the upper limit is motivated by the observa-
tion that the maximum branching ratio of t — cg(g) for
mpy= 2 600 (400) GeV approaches already the correspond-
ing SM prediction, as will be demonstrated in the next sub-
section.” Recently, a detailed global fit has been performed to

7 Direct constraints on the charged-Higgs mass can also be obtained
from collider searches for the production and decay of on-shell charged-

the A2HDM by considering a CP-conserving scalar poten-
tial and real alignment parameters, and including the most
constraining flavour observables, electroweak precision mea-
surements, and the available data on Higgs signal strengths
and collider searches for heavy scalars, together with the the-
oretical requirements of perturbativity and positivity of the
scalar potential [75]. We shall use the relevant constraints on
the alignment parameters ¢, 4 resulting from such a global
fit obtained at the 95.5% CL (cf. the brown region in the left
plot of Fig. 9) in Ref. [75]; for further details, the readers are
also referred to Ref. [75].

42 B(t — cg(g)) in the A2HDM

Firstly, with the input parameters collected in Table 2, we
give for reference the partial width of the dominant tree-level
t — bW decay,

't — bWt) =1.35(1.47)GeV, (4.2)

at the NLO (LO) in QCD, which is found to be well con-
sistent with the current data on the top-quark total width,
Tl (1) = 1.427012 GeV [151]. This in turn implies that the
extra contribution from the partial width T'(t — bH™) in
the mg+ < m; —my case should be small, supporting there-
fore our choice of the lower limit of the charged-Higgs mass,

Footnote 7 continued

Higgs bosons [156-160]; see, e.g., Refs. [161,162] for recent reviews.
Our choices of the model parameters comply with these direct con-
straints.
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mp+ > 200 GeV, as required to forbid the decay t — bH™
kinematically. Otherwise, for mpy+ < 150 GeV, the align-
ment parameter ¢y is constrained to be small by the direct
charged-Higgs searches at the LHC via the decay t — bH ™"
[157,159], implying a very strong suppression on the decay
ratesof t — ¢V (V =y, Z) and r — ch processes [12].

To display the dependence of the branching ratios of  —
cg and t — cgg decays on the alignment parameters ¢, 4,
we fix the charged-Higgs mass to three benchmark values,
mpyg+ = 200, 300, and 500 (400) GeV. In this way, we obtain
numerically

BATIDM (4 5 o) =450 x 102

[1 246 x 1075 ¢4 +7.19 x 1075 6463 +0.261 ¢332
—130x 1072 ¢lg, +1.63 x 1074 ¢4 +4.91 x 1070 2
+0.848 cyg, — 2.12 x 1072 &2 ] form y= = 200 GeV,

[1 +1.96 x 1077 ¢4 +2.88 x 1070 4¢3 +3.48 x 1072 ¢332

x — 149 x 1073 ¢lg, + 1.60 x 107° ¢4 +2.92 x 1070 &2
40310 cycu — 6.63 x 1073 gj], form = = 300 GeV,

[1 +3.42x 107 ¢* +1.49 x 1077 g463 +4.64 x 1073 g3¢2

u
—173x 1074 ¢3g, + 1.61 x 1070 ¢4 +5.41 x 1077 &2
$0.113 cycu — 2.11 x 1073 gj], form = = 500 GeV,

(4.3)

for the two-body decay r — cg, and

BAMPM (¢ s cg) = 8.31 x 10710
[1 F631x 107 ¢* +2.47 x 1077 ¢463 +1.06 x 107° g2¢2
— 467 x 1075 ¢3c, +5.67x 1077 ¢4 — 1.19 x 1070 &2
+2.72x 1073 ¢4 — 9.63 x 107° gj], form =+ = 200GeV,
[1 +4.99 x 1078 ¢+ 1.40 x 1078 ¢4¢3 +1.35 x 1074 22
x —520x10%¢3g, +547x 108 ¢} —3.11 x 1077 &2
+1.02 x 1073 g4¢4 — 3.00 x 1075 &7 ] formpy+ = 300GeV,
[1 F132x 107864 4317 x 1070 6463 +4.12 x 1075 6262
— 149 x 1078 c3c, +1.45x 1078 ¢f — 1.52 x 1077 &2

+578 x 1074 cycu — 1.54 x 1075 gﬂ, form s = 400 GeV,
“4.4)

for the three-body decay t — cgg. Here, the SM results are
obtained by taking the limits ¢, 4 — 0 and read

BM(@t — cg) =4.50 x 1072,
BM(t — cgg) = 8.31 x 10710,

4.5)
(4.6)

It is found that our SM predictions are generally consis-
tent with that made in Refs. [14,27] for the two-body decay
t — cg, as well as in Ref. [39] for the three-body decay
t — cgg. Especially, the branching ratio of the three-body
decay t — cgg is predicted to be about two orders of magni-
tude larger than that of the two-body decay t — cg, which is

@ Springer

a clear demonstration of the “higher-order dominance” phe-
nomenon observed already in Ref. [39]. It should be noted
that the branching ratio of t — cgg depends on the cutoff
parameter C, and the results given by Eqs. (4.4) and (4.6)
are obtained with the default value C = 0.01. The cutoff
dependence of this branching ratio within the SM is shown
in Table 3 for six different values of C, together with the
comparison with that obtained in Ref. [39]. It can be seen
that, although being increased by about 7% compared to that
obtained in Ref. [39] for the same choice of C,3 our updated
results depend only slightly on the cutoff parameter C, with
the variation being only about two times when C varies within
the range [0.001, 0.05]. From Egs. (4.3) and (4.4), one can
also see that the branching ratios of t — cg(g) decays display
a different dependence on the alignment parameters ¢, 4:
Firstly, due to the much smaller coefficients, together with the
allowed ranges of ¢, and ¢4 specified by Eq. (4.1), the terms
proportional to g;‘ , Gd §3’ and guz can be safely neglected.
Secondly, for moderate values of |gy| and large values of
|6ul, the branching ratios will be dominated by the product
G4y and, to a less extent, also by gj guz. Finally, the signifi-
cance of ¢4 occurs only when |¢;| and | g, | take much larger
and smaller values, respectively.

Picking up randomly the values of the alignment parame-
ters ¢4 within the brown region (corresponding to the global
fit obtained at the 95.5% CL) shown by the left plot of Fig-
ure 9 in Ref. [75], we show in Figs. 3 and 4 the branch-
ing ratios B(r — cg) and B(t — cgg) as a function of
Gy (left) and ¢4 (right), for three benchmark values of the
charged-Higgs mass, m g+ = 200, 300, and 500 (400) GeV,
represented by the orange (top), brown (middle), and dark
green (purple) (bottom) scatter plots, respectively. It can be
seen that the maximum branching ratios of both t — cg and
t — cgg decays are reached in the limits |¢,| — 0 and
|ca| — 48, which correspond to the minimum |, | and max-
imum |¢gy4| allowed by the combined constraints from the
most constraining observables and the theoretical require-
ments [75]. Furthermore, almost irrespective of the values of
the charged-Higgs mass, the maxima of the branching ratios
are always reached with the same set of alignment parame-
ters, (¢u, cq) =~ (—0.047, —48), when m g+ varies within the
ranges [200, 600] GeV for the + — cg and [200, 400] GeV
for the r — cgg decay. Numerically, we obtain

3.36 x 1072, formy+ = 200GeV,
2.84 x 10710, formy+ = 300GeV,
1.82 x 10711, formpy= = 500GeV,
4.7

BAZHDM

max

(t > cg) =

8 Note that the MS running masses of both the top and charm quarks as
well as the « scheme for the electroweak parameters were used in Ref.
[39], while we take the pole masses for the external on-shell quarks as
input and adopt the G  scheme for the electroweak parameters [125].
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Table 3 The cutoff dependence of the branching ratio of t — cgg
decay within the SM, as well as the comparison with that obtained in
Ref. [39]. Note that the MS running masses of both the top and charm

quarks as well as the @ scheme for the electroweak parameters were
used in Ref. [39]

c 0.001 0.003 0.005 0.01 0.03 0.05
BM(t — cgg)[10710] 10.7 9.80 9.33 8.31 6.06 4.68 This work
BM(t — cgg)[10710] 10.2 9.04 8.76 7.78 - - Reference [39]

mg+ = 200 GeV

B s = 300 GeV

B - = 500 GeV

3.4x107°

2.4 %1077

1.4 x107°

0.4 x107°

3.0x10710

2.1x10710

MU & Aee ©

1.2x10710

B(t — cg)

3.0x 107!

1.9x1071

1.3 x1071

0.7 x107!!

0.1 x107!!

-1.5 -1.0 -0.5 0.0 0.5 1.0

Su

Fig. 3 The branching ratio B(+ — cg) as a function of the alignment
parameters ¢, (left) and g, (right), for three benchmark values of the
charged-Higgs mass, m g+ = 200, 300, and 500 GeV, represented by
the orange (top), brown (middle), and dark green (bottom) scatter plots,
respectively. Here we have used the relevant constraints on the align-

and
2.95x 1079, formpy+ = 200GeV,
BaHDM ;s cgg) = 19.94 x 10710, formpy+ = 300 GeV,

8.60 x 10710, formpy+ = 400 GeV.
(4.8)

It can be seen that, with the 95.5%-CL constraints on the
alignment parameters from the global fit taken into account

1.5 -40 =20 0 20 40

Sd

ment parameters ¢, 4 from a global fit obtained at the 95.5% CL in Ref.
[75]. The thickness of the shaded regions reflects the corresponding
allowed range for ¢, () for a given value of ¢,(4), as can be read from
the brown region of the left plot of Figure 9 in Ref. [75]

[75], the maximum branching ratios of t — cg andt — cgg
decays are both reached at my+ = 200GeV and given by
3.36 x 1072 and 2.95 x 10~ respectively, being therefore
of the same order, in the A2HDM. This is obviously differ-
ent from the SM case, where the predicted branching ratio
of t — cgg is about two orders of magnitude larger than
that of t — cg (cf. Egs. (4.5) and (4.6)) [39]. For conve-
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B vy = 300 GeV

Bl - = 400 GeV
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Fig. 4 The branching ratio B(t — cgg) as a function of the align-
ment parameters ¢, (left) and ¢4 (right), for three benchmark values of
the charged-Higgs mass, m g+ = 200, 300, and 400 GeV, represented

nience, we show in Fig. 5 the dependence of the maximum
branching ratios of r — cg (left) and r — cgg (right) on
the charged-Higgs mass m g+, with the alignment parame-
ters fixed at (¢, ¢7) =~ (—0.047, —48).2 One can see that the
maximum branching ratios of t — cg and t — cgg decays
decrease sharply as the charged-Higgs mass m g+ increases,
and approach the corresponding SM predictions for m g+ 2
600 GeV and m g+ > 400 GeV, respectively.!” In addition,

9 Here the plots are obtained by firstly calculating the maximum branch-
ing ratios of t — cg and t — cgg decays with different values of m g+
and the same set of alignment parameters (g, ¢4) =~ (—0.047, —48),
and then constructing an interpolation of the maximum branching ratios
as a function of m y+.

10 Numerically, we find that the maximum branching ratios of r — cg
and t — cgg decays in the A2ZHDM are given by 6.63 x 10712 for
my+ = 600GeV and 8.60 x 10710 for my= = 400GeV respec-
tively, which indeed approach the corresponding SM predictions given
by Egs. (4.5) and (4.6).
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Sd

by the orange (top), brown (middle), and purple (bottom) scatter plots,
respectively. The other captions are the same as in Fig. 3

the maximum branching ratio Br“;‘é}:lDM(t — cg(g)) will

change only slightly when m g+ = 600 (400) GeV. These
observations motivate our choice of the upper limits for the
charged-Higgs mass mentioned before. On the other hand,
although being enhanced by about three orders of magni-
tude relative to the SM prediction, the maximum branching
ratio of t — cg decay that can be reached in the A2HDM,
BAMDM (¢ cg) = 3.36 x 1077, is still at least one order
of magnitude lower than the projected 95%-CL limits at the
future colliders, which are estimated to be 3.21 x 107 at
the HL-LHC with 3-ab™! luminosity data [107,108], and of
O(1077-10~%) at the 100-TeV FCC-hh with an integrated
luminosity of 10 ab=! [113,114], respectively. As a con-
sequence, the predicted branching ratios of ¢t — cg and
t — cgg decays in the A2HDM are still out of the expected
sensitivities of the future HL-LHC and FCC-hh.
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Fig. 5 The dependence of the maximum branching ratios of + — cg (left) and + — cgg (right) on the charged-Higgs mass m y+, with the
alignment parameters fixed at (¢, ¢4) =~ (—0.047, —48). The horizontal dash-dotted lines represent the SM predictions given by Eqgs. (4.5) and

(4.6), respectively

4.3 B(t — cg(g)) in the conventional 2HDMs with 2,
symmetries

Let us now discuss the branching ratios of t — cg and
t — cgg decays in the four conventional 2HDMs with Z;
symmetries, the Yukawa types of which have been given
explicitly in Table 1. As only the charged-Higgs interac-
tions with the quark sector are involved, we are actually
left with only two different cases, type-I (type-X) 2HDM
with ¢4 = ¢, = 1/tan B, and type-II (type-Y) 2HDM with
¢4 = —1/c, = —tanpB. Here, to predict the branching
ratios of t — cg and t — cgg decays, we need only the
knowledge of the charged-Higgs mass m g+ and the parame-
ter tan B, both of which receive severe constraints from many
flavour processes and theoretical considerations [161-164].
For convenience, we show in Fig. 6 the dependence of the two
branching ratios B(t — cg) (left) and B(r — cgg) (right)
on tan B, for three different choices of m g+, in the four con-
ventional 2HDMs with Z; symmetries. It should be noted
that the branching ratios of t — cg and t — cgg decays are
calculated in these four models by varying tan 8 = [0.1, 60],
while the ranges where the resulting branching ratios are not
significantly enhanced compared with the corresponding SM
predictions are not shown in Fig. 6. It can be seen that the sen-
sitivity of the two branching ratios to m g+ occurs at low and
high tan 8 for the type-I (type-X) and the type-II (type-Y)
2HDM respectively, and such a sensitivity becomes, how-
ever, less significant for larger m gy=.

For the type-II 2HDM, the branching ratio of the weak
radiative decay B — X,y plays a significant role in set-
ting a lower bound on the charged-Higgs mass m g+, with
the latest updated results given by my+ = 800 GeV at 95%
CL [165] and my= 2 790 (1510) GeV at 20 (lo) [166].
These bounds are nearly tan S-independent for tan 8 > 2

and show a strong dependence on tan § only for tan 8 < 2
[167]. Quite recently, a comprehensive study of the allowed
parameter space of the type-II 2HDM has been performed by
combining the most recent flavour, collider, and electroweak
precision observables with theoretical constraints, with the
best fit point lying around my+ >~ 2TeV and tan 8 ~ 4
[166]. The experimental lower bound on m y+ from direct
collider searches is, however, only my+ 2 160 GeV [157],
and hence well below the indirect constraints from flavour
physics. With these bounds taken into account, it is then found
that the branching ratios of both t — cg and t — cgg
decays remain almost identical with the corresponding SM
predictions, as given by Eqgs. (4.5) and (4.6) respectively. The
same conclusion can also be applied to the type-Y 2HDM,
because its Yukawa type shares the same coupling pattern for
the quarks as of the type-II 2HDM [162]. In fact, for these
two types of 2HDMs, we have ¢; = —1/¢, = —tan 8 and
hence ¢;5, = —1, while the region ¢4¢, < 0 is almost
excluded by the current data on the branching ratio of the
weak radiative decay B —> Xy [60]. This also implies that
significant enhancements of the branching ratios of t — cg
andt — cgg decaysrelative to the SM predictions are impos-
sible in these two types of 2HDMs.

For the type-I (type-X) 2HDM, on the other hand, a
95%-CL lower limit on mpy= from the branching ratio of
B — X,y can be derived for low tan 8 only [167]. As an
illustration, a bound tan 8 < 2.5 can be set when the robust
lower charged-Higgs mass limit my+ = 80 GeV from the
combined charged-Higgs searches at LEP [156] is consid-
ered. A detailed analysis of the phenomenological status of
the charged-Higgs sector in the conventional 2HDMs with
Z, symmetries has been performed by combing all the con-
straints from direct collider searches for charged and neutral
Higgs bosons, as well as the most relevant constraints from
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Fig. 6 The branching ratios of t — cg (left) and t — cgg (right)
as a function of the parameter tan 8 = [0.1, 60], for three differ-
ent choices of the charged-Higgs mass m y+, in the four conventional
2HDMs with 2, symmetries. The horizontal dash-dotted lines repre-
sent the SM predictions. We show only the ranges of tan 8 where the
resulting branching ratios display significant enhancements compared

flavour physics [162]. Using the combined flavour constraints
at 95% CL obtained there, we extract the values tan § >~ 1.8
formy+ = 200GeV, tan 8 >~ 1.5 formy+ = 300 GeV, and
tan 8 >~ 1.2 for my+ = 500 GeV [162]. With these typical
values taken as inputs, the corresponding branching ratios of
t — cg and t — cgg decays are given in Table 4. It can be
seen that, in these two types of 2HDMs, the branching ratio
of t — cg decay is predicted to be of the same order as in
the SM (cf. Eq. (4.5)), while the branching ratio of t — cgg
decay remains almost identical with the SM expectation (cf.
Eq. (4.6)).

In fact, at low tan 3, the flavour constraints are similar
among all the four conventional 2HDMs with Z; symmetries,
because the contributions in this case are now dominated by
the universal charged-Higgs couplings to the up-type quarks

@ Springer
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with the corresponding SM predictions. Note that the charged-Higgs
mass m g+ in type-II (type-Y) 2HDM is already bounded to be larger
than 600 GeV [165-167], while the parameter tan § in type-I (type-X)
2HDM is constrained to be larger than one [162], both of which imply
that no significant enhancements of the branching ratios are possible in
these conventional 2HDMs

(cf. Table 1). Then, it is found that values of tan 8 < 1 are
ruled out for all values of my+ < 650GeV, irrespective
of the Yukawa types considered [162]. As a summary, we
can therefore conclude that, compared with the SM predic-
tions, no significant enhancements are observed in the four
conventional 2HDMs with Z, symmetries for the branching
ratios of both t — cg and t — cgg decays, once the flavour
constraints on the model parameters are taken into account.

4.4 Further discussions and comments

Let us now explain why the “higher-order dominance” phe-
nomenon is more obvious within the SM than in the AZHDM
as well as the four conventional 2HDMs with Z, symmetries.
Naively, one would expect that the rate of the two-body decay
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Table 4 The branching ratios of t — cg and t — cgg decays in the type-I (type-X) 2HDM, with three sets of input parameters of (m g+, tan )

extracted from Ref. [162]

(mp+ [GeV], tan B) (200, 1.8)
BYPeIX (1 5 ¢cg) 5.75 x 10712
Bl (1 5 cgg) 8.32 x 10710

(300, 1.5) (500, 1.2)
5.13 x 10712 4.85 x 10712
8.31 x 10710 8.31 x 10710

t — cg is larger than that of the three-body decay r — cgg,
due to the coupling-constant and phase-space suppression of
the latter. This is, however, not true within the SM; instead,
we find that the predicted branching ratio of t — cgg is
about two orders of magnitude larger than that of t — cg
(cf. Egs. (4.5) and (4.6)) [39]. To understand such a “higher-
order dominance” phenomenon, one should firstly note that
both the t — cg and t — cgg decays are dominated by
the one-loop effective vertex Vzl; g% which can be generically
written as [3]

Vit = (v = k%) (FEPL+ Ff PR

+i0"k, (FszCPL + FsztPR) : 4.9)

as required by Lorentz and gauge invariance. Here we have
suppressed both the colour labels and a sum over the inter-
nal quark flavours together with the CKM matrix elements.
The form factors F IL R and F2L ‘R are a function of the gluon
virtuality k2, and are called the monopolar (or charge radius)
and the dipolar (or dipole moment) form factors, respec-
tively. Note that when k> — 0, i.e., when the gluon goes
on-shell, the F 1L 'R contributions vanish. Therefore, the two-
body decay r — cg is entirely determined by the dipole
structure, while both the dipole and the monopole structure
contribute to the three-body decay + — cgg. It also turns
out that the contribution from the monopolar form factors
can be considerably larger than from the dipolar ones within
the SM [39-42]. This explains the “higher-order dominance”
phenomenon observed within the SM. For the A2ZHDM, how-
ever, the charged-Higgs enhancements are mostly through
the dipolar form factors, and hence show up only through
a greatly enhanced branching ratio of the two-body decay
t — cg. This helps us to understand why the branching
ratios of t — cg and t — cgg decays are predicted to be
of the same order in the A2HDM. For the four conventional
2HDMs with Z> symmetries, on the other hand, after taking
into account the relevant flavour constraints on the model
parameters, significant enhancements are no longer allowed
for the branching ratios of both r — cg andt — cgg decays.

Finally, we would like to make a brief comment on the
observability of + — cgg decay. Note that this process can
generally be treated in twofold way: One can either treat it
inclusively with # — cg or consider it as a separate channel
[21]. The former means that the process t — cgg can be

considered as a QCD correction to the t — cg decay by
assuring that two of the three final-state jets are collinear so
that only two can be resolved by the detector. The latter is
especially promising if the branching ratio of r — cgg is
considerably larger than that of ¥ — cg, as observed within
the SM [39]. However, to detect t — cgg before t — cg,
one must avoid collinearity by applying certain cuts. To this
end, the cutoff parameter C introduced in the phase space
plays an essential role in distinguishing the t — cgg from
the t — cg decay. Here, C must be taken in the range of jet-
energy resolution of the detector, and a better jet resolution
will be definitely welcome.

5 Conclusion

In this paper, we have firstly updated the SM predictions for
the branching ratios of both t — cg and t — cgg decays,
with the results given respectively by BSM(t — c¢g) =
4.50 x 107! and BM(r — cgg) = 8.31 x 107!, finding
that the latter is about two orders of magnitude larger than
the former, which is a clear demonstration of the “higher-
order dominance” phenomenon observed in Ref. [39]. This
is due to the fact that the contribution from the monopolar
form factors can be considerably larger than from the dipolar
ones within the SM [39—42]. Note that the branching ratio
of the three-body decay t — cgg is obtained with the cutoff
parameter C = 0.01.

To check if such a “higher-order dominance” phenomenon
is also applied in the A2ZHDM as well as in the four conven-
tional 2HDMs with Z> symmetries, we have also evaluated
the maximum branching ratios of t+ — ¢g and t — cgg
decays that can be reached in these different models. After
taking into account the relevant constraints on the model
parameters resulting from a global fit obtained at the 95.5%
CL [75], we find that the branching ratios of t — cg
and t — cgg decays can reach up to 3.36 x 10~ and
2.95 x 1077 respectively, being therefore of the same order,
in the A2HDM. This is obviously different from the SM
case, and can be understood by the fact that the charged-
Higgs enhancements are mostly through the dipolar form
factors, and hence show up only through a greatly enhanced
branching ratio of the two-body decay ¢+ — cg. On the
other hand, compared with the SM predictions, significant
enhancements are no longer possible in the four conventional
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2HDMs with Z, symmetries for the branching ratios of these
two decays, once the flavour constraints on the model param-
eters [162,166] are properly taken into account.

Nevertheless, the predicted branching ratios of t — cg
and t — cgg decays in the A2HDM are still out of the
expected sensitivities of the future HL-LHC and FCC-hh. To
have an opportunity to detect t — cgg before t — cg, we
have to improve the jet resolution of the future detector. Note
that, due to the imaginary components of the loop functions,
the CKM matrix elements, as well as the complex alignment
parameters ¢, 4 in the A2ZHDM, it would also be interesting
to investigate the CP asymmetries in these rare top-quark
decays [14,27].
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Appendix A: The R functions relevant for ¢ — cgg decay

In this appendix, we give the explicit expressions of the
remaining R functions presentin Egs. (3.12)—(3.14). For con-
venience, the scalar products involved are defined in the same
way as in Ref. [39], with

SP1 = €*(k3) - €*(ks),
SP4 = €*(ky) - k1,

SP2 = €*(k3) - k1,
SP5 = €*(ks) - ko.

SP3 = €*(k3) - ko,
(A1)
For the vertex part (cf. Eq. (3.12)), we have
R} = —(SP1 Fs — Fi)(m3y (1 — 2(BS (m3)
—2Cg (my) = 523C5” (my)))
—mmA(C ) + € mly) + XaaCP (m2,1)
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R;enex —

+Xau CF (m22)) + BS (m3y)
+XaaBY (m2y) — 2(CS) m3y) + XaaCly) (m%:))))
+my (s23(SP1 Fy — Fi2)
x @m3, €5 (my) — m(C§ m}y) + 5 (my)
+XgaCY (22 + X €S (my1)))
+2SP4(2SP3 F) — Fi3)(m3(CS) (m3y) + 25 (m%y)

+C) () + Xaa(C) (%) + CF (m%y4)
+C5 (m20)) + Xau (€S %)
+CVm2,0)) + 2m3, C5) (my)
+(m} +2m3)CH (%))
+F3(—=(m7 (SPACSY (i) — SPS X CS” (m3;2))
+SP4(BSY (m3y) — 2C5) (m¥y)))
+(SP4 — SPS)(m}(C” (mYy) + Xau C§ (m3y2))
+(BS (m%,) = 2C) (m%,2))Xaa))m3 + (SP4
—SPS)m%, + (BS) (m%y) — 2C5) (m%))(SP5m}
—2(SP4 — SPS)m%V) +cPm?)
X (SP5mam? — 2s23(SP4 + SP5)m%,)
—SP4((2523CY) (m%,2)
+m2CE (2 1)) Xaam? + 2523C3 (m3y) (m} + 2m%))))
+SP3 Fy((4(CS) (m%))
+C&) ()X aa) — 2((CS my) + €5 (m¥y)

CS %) Xaa + €5 (m% ) Xaym? + BS (my)
+B (m2 ) Xaa)m;
H(—4BS (m3y) + 8CS) (m3y) + 4553CF) (m3y) + 2)my),
(A2)

(2(523(SP4 — SP5)C? (m%) F3 + SP3 Fy)m3,
~(SP1 Fs — Fig)((—2Bg” (m3)
+4CE) (mEy) + 253C (m3y) + Dm3y, — mE(CSP (my)
+C§P ) Xa)m? + BS (my)
+B(§3><m%,i>xdd -2 mly)

CSD m%)Xaa))) + (SP4 — SP5) Fs
X (— B( V(20X gam} + 2(CE (m3y)
+C5 2 Xaa) — mHCE mdy) + CF %) Xaw))m?
+(4CiP m¥y) + m?, — B () (m} +2m3))
—SP3 Fy(4(BS (m3,) — 2C) (m¥y)ym3y
2= m}y) + €5 my ) Xau)m?

B‘”( 2) + BY %) Xaa — 2(Cig) (m3y)

Co) m2)Xaa)m;
+523(CP (%) Xaam}, + C15 (m3y) (m3 +2m%))))
+my (—Fia((1 = 2(BS (m3)
208 (m3y) — 523C57 (m¥y))ymYy — mi(BS (m3)
+B§Y (%)X aa — 2(C5) (my) + Cog) (%)X aa)
+523(CS7 (m3y) + C§7 ()X au))
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R:\;/enex —

—SP3 Fia(2(C (m}y) + €3 (m%0)Xaa)
—2(CP m}y) + € (m3y)
HCF M%) + € () Xau))md + 4(CP5 (my)
+C (my))my)
+F1(—((s23SP1 — 2SP3(SP4 — SP5))C” (m%)
—2(SPI(C) (my) + C8D m%2)Xaa)
+SP3(SP4 — SP5)C (m3,:)Xau))m}
+2C57 (m3y) (523SP1m?,
+SP3(SP4 — SP5)(m? — 2m%,))
+SP1(—(B§” (%) Xaa + 553§ () Xau)my
+ACK (mYy) + Dm3y — BE ) (m} +2m3))
—2SP3(SP4 — SP3)((C2) (m3,4) X4
—CP m% ) Xa)my + C3 (my)(m3 +2m3))), (A.3)
—((2(SP4 — SP5)1C (m3,) F3 — 2SP2 Fy)m3,
—SP1 Fs((—2B" (m%)
+4C5) (mYy) +20CY (m%y) + Dm?,
—m2(m2(C m3y) + P my)
+c<5><mi,i)xdd + P m% ) Xaw)
B (m},) + B (m%2)Xaa — 2(CS) (m3y)
(5><mHi>de))> — Fi6((1 = 2(B§" (m})
—2053) (m¥y) — 1€ (m3y))ymly
—m2(m2(C m3y) + P m¥y)
+CP () Xaa + C§ (M%) Xau)
B (m3)) + B (m%2)Xaa — 2(CS) (m3y)
+c3{;> (m%)X4a)))
+(SP4 — SP5) F3 (=B (m2,2)X gam}
+mp2(CE mYy) + Cf) (%) Xaa)
—m}(CS m3y) + € mFy) + €5 (m%y)Xaa
+C8 (%)X au))
+4cl) m¥y) + Dm?y, — BSY 3y} + 2m3y))
+SP2 Fy(—(2m3(CS (m3y)
+C5 m}y) + € m%y2)Xaa
+C§5><mHi>Xdu>

vertex
R 4

+4CS) (myymyym?
+amiy (B§Y (miy) = 20 (my)
+2((=C iy + B () + (B i)
—(523 + 12)C) (%)) Xaa — 2(Cy (m3y)

+C5) (2 Xaa)ml + C3 (m3y) (em?
—2(s23 + t12)m3y))) + m; (—SP2 Fi4(2m3(C (m3y)
+C5) m¥y) + €5 myy)
HCH m%e) + € (%)) Xaa

+C8 (%)X du

+C5 (m%0) Xaa + Xau))

+4(CY mym? + (€1 (my)
+C5 my)m¥)) + Fia(my (=28 m3)
+4CS) M3y + 1) — my (B (my)
+B§V (m%y2)Xaa — 2(C) (my)

+C (m2)Xaa) + (523 + 12)(C§ (my)
+C(5)(mw)

+C5 (m2,0)Xaa

+C8 (m2,)Xau))) — Fi(m}((s23SP1 + 112SP1
+SP2(2SP5 — 2SP4))C (m%y)
—(4SP2(SP4 — SP5) + SP11)CYY (m3)

—SP1(=CY (m3ym? +2C5) (m%y)

+QCE) m22) +1C5 (m2))Xaa)
—2SP2(SP4CY) (m3))
+(SP4 — SP5)CS) (m2,:)Xaa)
—(2SP2(SP4 — SP5) + SP11)CY” (m2,:)Xau
+C5 (m%2) (SPIm? X aa
—2SP2(SP4 — SP5)(Xaa + Xau)))
+28P2((C) (m%y)
+C5) (m},)(SPSm} — 2(SP4 — SPS)m7,)
—m2(SP4C\Y (m3)
+(SP4 — SPS)CY) (m%,2)Xaa))
—SPI(—mb(C(S)(mHi)Xdumz

B (m%,:)Xaa)

+(4C00) (m}y) + m3y, — BSY (m3y)(m} +2m3)))),

(A4)

= Fi6((=2B" (m%y) + 4C{) m%)

+20C$Y (%)) + Dm?y — m3 (€SP (mly)
“)(m,,i)Xdu)m, + B (m)
B (m20)Xaa — 2(CSy (my)
“” o (m%:)Xaa)))
+SP1 Fs(m3, (1 — 2(BS" (m%)
~1C5Pm})))
m,,(<c<‘”< m3) + C§P (%)X gu)m?
BV (my) + B (%) Xua
—2<c<4>< m3y) + Co) (m%)Xaa))
+m; (((s23SP1 4+ t12SP1 4 4SP2 SP5) F
(523 + 112) Fia — 2SP5 F13)(C§P (m3)
+ci? (mili)xdu)mi 4+ 2SP5(2SP2 Fy
—F13)(—m3(C\Y (%) Xaa — C5P %) Xau)
—Cf3 (m) ]+ 2m3y)
+C3P m3y) (mE — 2m3,))) + SP2 Fy(m (4(Cl) (m3)
+C5) M%) Xaa)
=20 m%) + CP (m% )X g )m?

— 23 ()
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vertex
R 5

+B{" (%) + BSY %)X aa))
+(=4BY (my) +8Cy) (m3y) + 41C5Y ) + 2m3y)
—F3(—(SP4(B(4) (m3)
—2C8) (m3) + (SP4 — SPS)((C” (m}y)
+C m% ) Xawym? + (BSY (%)
—2C4) (M%) Xaa))m,
+(SP4 — SP5 + 2(SP4 + SP5):C" (m3,))m3,
+(BSY (m3y) — 2C8) (%)) (SPSm} — 2(SP4 — SPS)m%)
—SP54CSY (myym?m?,
+2(523 + 12)(C{3 (M%) Xgam}
+C\3 (b))} +2m ). (A.5)

= Xaam}2Cg) (m%:)

x (2(SP4 — SP5) F3 + 2(SP3 — SP2) F4 — 2SP1 F
+SP1 Fim;)
+C (m2, ) (m3 — m%,.)(2(SP4 — SP5) F
+2(SP3 — SP2)Fy — ZSPI Fs
+SP1 Fimy) +m,(C\S (m%.) Fi (SP1m? — 4SP3 SP4
+4SP2SP5 — SP1(2f + 112))
+C\ O (m2,.)m; (2(SPS5 — SP4) F;
+2(SP2 — SP3)F}
+SPL(2Fs — Fim,))))
+m, (Fi (SP1m? — 4SP3 SP4
+4SP2SP5 — SP1(21 4 112))(C\S (m}y) — C5° (m))
+m; 2C? (m3,)((SP2 — SP3) Fy
+SP1(F5 — Fim,)) + C\% (m},)(2(SP5 — SP4) F;
+2(SP2 — SP3) Fy + SP1(2Fs5 — Fim,)))
+(=SP1QRCY (m%) + CY (m%y2)) Fym?
+2C57 (m2,.)((SP5 — SPA) F3
+(SP2 — SP3) Fy + SP1 Fs)m, + (4SP3 SP4
—4SP2SP5 + 2SP17 + SP1112)(CY” (m%2)
C3 (m3y) Fi) Xaw)m3,
+28P1m} (=C\ O (m3y) + D m3)
1200 m ) Fi — 4(C0 (m3y) — €\ (m¥y)))
x((SP5 — SP4) F3 + (SP2 — SP3) Fy + SP1 Fs)m?
+Fim,(SP1CSY (m}y)m? + SP1
—2(4SP3 SP4 — 4SP2 SP5 + 2SPl1¢
+SP1112)C\S (m3y) + (—4m?SP1 + 45,3 SP1
—8SP3 SP4 + 8SP2SP5)CS" (m3,))
—2((SP4 — SP5)F3 + (SP3 — SP2) Fy
—SP1 Fs5)(=CS (m3ym} + 2612C (my) — 1))m3,
+C0 (m3y) (—2m}(SP2
—SP3)F4 + SP1 Fs) + F|(SP1m3 + 4SP3 SP4
—4SP2 SP5 + 2SP11 + SP1typ)m m3
+2(2(SP2 — SP3) Fy + SP1(2Fs — Fym))m',
+2(SP4 — SP3) F3(m}, — m2m3
—2m%)) + (2(SP4 — SP5)F; + 2(SP3

@ Springer

—SP2)Fy — 2SP1 Fs + SP1 Fim,)
X (2CQ) (m¥y)(m? + 2m3y)
—BY (m)((Xaa + DHm? +2m3)). (A.6)

For the box part (cf. Egs. (3.13)), we obtain

R = m?(2(SP3(SP4 — SP5)Ty DS (m%,)

+(2SP2 SP5 — SP3(SP4 + SP5))T, DY (m%,)
—SP1T; D) (m%)) + ((SP4 — SP5)
X (T4(2(SP2 — SP3)(D'Y) (m%,4)
+2D5) (m%,4))
—2SP3D\} (m%,2))+4(SP2—SP3) (T, DS5) (m?,)
+T. D5y (m%4)))
—4(SP3 SP4 + SP2 SP5) T, DSy, (m2,..) — (4SP2
—6SP3)SPST, D3 (m2,4)
—SP3(T;(4(SP4 — SP5) D'} (m2,.)
—8SP5DSY;(m2,.) + 6(SP4 — SP5) DS} (m2,.))
HF2SPAT, (2D (m2, 1) + DYy m3,.))

DS (m?,1))) + 4SP3 SP5(T; D3y, (m?,.)
+TeD§?3<mHi>) + (T DS (m%2)
+T, D) (m%,.)) (6(SP2 — SP3)(SP4 — SP5)
—SP1m?) 4 T,((SP2 — SP3)(4SP4D\3) (m%,.)
+2(SP4 — SP5)(4D3) (m,1)

+D? (m2,.)))—4SP5((2SP2—3SP3) D3} (m?,+)
+(SP2 — SP3)(D'?,(m%,4)
+D§l3(mHi) + Dg)(mHi))
—SP3D\3y(m%,.) + (SP2 — 2SP3) DY) (m%,1))
—SP11(D (m%:) + D3 (m)

—Di?(mﬂi) — D (m%1))

D) (m2,.)(6(SP2 — SP3)
x(SP4 — SP5) — SP1m?))Xyq
—(4(SP1(Ty DYy (m?2)
+T,DS) (m%,1) + (SP2 SP3)
X (SP4 — SP5)(Ty(D\y (m?2) + D53 (m%.))
+To(DYY (%) + DY) (%))
—4(SP3 SP4 + SP2 SP5) Ty DS (m?,1)
—2T,((2SP2 SP5 — SP3(SP4
+SP5)) DS (m%,.) + (SP2 — SP3)(SP4 + SP5)

x D (m?,.) + 2SP5((SP2 — SP3)D\? (m2,+)
+(SP2 — 28P3) D3 (m2,.)))
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—(4SP2 — 6SP3)SPST, D{” (m2,4)
+SP1(s23Ta(Dy (m%2) — DY (m%2)
+DSV(m%)) + 1 T.(DP (my2)

~DP (m%.) + D (m2,.)))
—SP3(T4(2(SP4 — SPS)(D{" (m?,+)
+2D\) (m?%,.)) — 8SP5DSY (m?,.)
+2(SP4 — 35P5) DS (m?,.))

+SPAT, (4D (m?,.) — 2D (m3,.)))
+4SP3 SP5(T; DS} (m%,+)

+T,DS; (m2,2)) + (T4 DS (m%,2)
+T, DS (m%,.)) (2(SP2 — SP3)(SP4 — 3SP5)
—SP1Im})Xau) — (Ta D53 (m3y)

+7,D3) (m3%))(SPIm?(m} + 2m3,)
—2(SP2 — SP3)(SP4 — SP5)(m3 + 6m3%,))
—SP5(2T, DS3) (m3%,)(SP3m?

+2(4SP2 — 58P3)m%,) — 4(SP3(Ty Diy; (m%,)
+T, DGy (m%))(m} + 2m3,) + SP2T, DY
(my) (my — 2myy))

+SP3(4(Ty DSy (m3)+T, D3 (m?)) (m} — 2m3,)
+T.DY (m3,) (6m} — 4m3,)))
+T,((2(SP2 — SP3)(SP4 + SP5) D\* (m},)
+4SP2SP4D'T, (m3,))m} — 8(SP3 SP4
—SP2(SP4 — SP5)) D\2) (m3,)(m3 + 2m3)
+4(SP2 — SP3) D (m3,) (SP5m3

+(SP4 — SPS)m3,) — 4SP4D'?) (m%,)

X (SP3m3 — 2(SP2 — SP3)m3,)

— D2 (m},)(SPIm?(m} + 2m3,) — 2

x (SP2 — SP3)(SP4 — SP5)(m3 + 6m%,))
—4((SP3 SP4 — SP2(SP4 — SP5))

x D) (m3y)(m} + 2m%)

+SP5(4(SP2 — SP3) D\ (m%,)m?,

+((SP2 — SP3)(D3, (m3,) + D3, (m%)))

+2SP2D\3,(m3,) — SP3D3y (m%)

+SP2DS) (m%) (m} + 2m%))))

+SP3(T,(2SP4(D3) (m3,) — DY
(m3y)) (my — 2m3,)

—(4SPA(D 3} (m?)

+D$) (m3y)) — 4SP5(2D'3, (m%)

2 2
3D (my) + D33 (my)

+2D3(m3))) (m} + 2m3,))

—T4(4(SP4 — 2SP5) D) (m3,) (m3 + 2m3,)
+2D5) (%) ((SP4 + SPS)m?

+2(35P4 — 55P5)m?,) — 2DS" (m?,) ((SP4
—3SP5)mj — 2(SP4 — SP5)m3,)

—(SP4 — SP5)(2D\} (m%,)(m2 — 2m%,)
—4D\Dy(m%) (m} + 2m%)))
—(SPImp(T4CS" (m3) + T.CV (m3)

+(Ty + T)CSY (m}) — T4 (2D (m?2)
+4D{y (M%) + D (m%) (m — m%,2))

~T, (4D, (m22) + Dy (m%2))

H(DP (m%y2) + DY (my0)) (mf — m%)))
~T, D" (m2,.)(2(SP2 — SP3)

X (SP4 — SPS)m} + SP1(mj — mj(m%,. +m?))))
Xda — Ta(s23SP1(D}" (m?2)

+DB (m32) — DSY ()X aam}
+(SP2—SP3)(SP4—SP5)(2D\} (m%,) (m} — 2m3,)
—4(DY,(m%) + DS (m)) (m} + 2m3,))
—4SP2 SP5(DSY) (m%,)(m} — 2m%,)

— DDy m3)(m} + 2m%y)) — DSV (m¥)

x (4(SP2 — SP3)(SP5m} + (SP4 — SP5)m3,)
+SP1(m} — 2mYy, + (m3 + 4m>)m3,)))
—SP1(=((Ty + T.)C{" (m})

~T;D§" (m%0)(m} — m22) + T.DS” (m2)
x(—m% + mili + mtz))Xdumi

HT,CVmd) + (Ty + T (md))

x(m} +2m3y) — C" (m3)(Tom} — 2Tym’3y,)
—Ty(ADS) (m3y) — 612D (m3y)

+2D§" (m%))(m} — m3,))m?,

+4D) () (m} + 2m3y)) — To(—(A(DS) (m3y)
Dy (miy))

=D (miy) (=m} + miy +mp)ym}

+8D) (i iy + 4D (i) (mj + 2m3y)
+DP () (m} + mym? —2mty) + D (m3)
x(m?, + (m,2 + m%,v)mi — Zmév))

+523T, DY (m3)ym%y, + Ta(DS" (m%y ym?
+2(D{" (m3y) + 3D (my))miy

+(D\Y () — DS () (m} + 2m3y)
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box
R 2

+D§" (m%)(m} — 2m3)))

+1(6Ty DS (m3y)m3y+T. (DS (m3y)—D® (m3))

+D}7 (m3y) + D3 (miy))mj
+2D3 (m3)mYy, + (DG (m3)
—D@(m}y) — DR m3))(m} +2m%)))),

— m2((SP4 — SP5)(Ty D" (m?,+)

~T. Dy (m) X aum?
+(((SP4 — SPS)T; D) (m%,2)
+T,((3SP4 — SP5)D'3) (m2,.)
—2SP5D3 (m%,4))
+SP4T, D" (m2,.)
+T,((4SP4 — 2SP5) DY) (m%,.1)
—SP5D (m%,4))
—2SP5(Ty (DY (m3,2) + DY (m?,1))
+TeD23 (m72)))m; + (SPA(T; — T,)
—SP5(3Ty — T.))C\" (m3)
—(SP5(Ty — T,) — SPA(Ty + T,))C\P (m3)
—2(SP5T; — SP4T,)CS" (m})
+T,(2(3SP4 4 SP5)D{3) (m,.)
—4(SP4 — 2SP5) D¢} (m%,4))
—T4(2(SP4 — 5SP5) DY) (m?,+)
+4(SP4 — SP5)(Dy; (m%,+)

+Diop (<)) — 4SPS Dy (m )
+((SP4 — 35P5) D" (m?,2)
+(SP4 — SP3) D (mF,2)) (m — m.)
+T,(((SP4 — SPS) D (m?%1)
—(SP4 + SPS)D (m3,.)) (m} — m2)
+SPADSY () (—2m} + 2m2,. + m?))
+SPST (2D (%) (m, — m?.)
+D5" () 2m} — 2m7y. — 3m?))Xaa)
+2m%, ((SP4 — SPS5)112T; DS (m3,)
+T,D (m%,)(2SP5m} + (SP4 — SP5)m?))
+C" m3)(m3((SP4 — 3SP5) Ty
+(SP5 — SP4)T,) — 2(SP5(Ty — T.)
—SPAQ3T, — T,))m3,)
—CS(m})(m}(2SPST,; — 2SP4T,)
—4(SPAT; — SP5T,)m3,)
+C " (m3)((SP4 — SP5)T,(m} + 2m3,)
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+(SP4 + SP5)T, (m3 — 2m%,))

+SPS(4Q2T. D) (m3y) + TaDSys

(m%))(m3 + 2m3,)

+27, D" (%) (m]}

—(m} — m2ym%y)) — T42D{y) (%) ((SP4
—5SP5)m} + 2(3SP4 — SP5)m3,)

+(SP4 — SP5)(m} + 2m3,) (4(Dy); (m%))
+Doh (m3y)

+D\" () (m} — m}y)) — DSV (m3,) (4SP4ms,
+2(SP4 + SP5)(3(s23 + 1)

+112)m¥, + mi(SP5(2m3 — 3m?) — 2(2SP4
+SPS)m%,)) + Dy (m%,)((SP4

—3SP5)m} — ((SP4 — SP5)m? — (5SP4
+SP5)m3,)m? — 2(3SP4 — SP5)m,))
~T,(2D” (m%,)(2SP5m3, + (SP4
+SPS)112)m3, + 4SPADS) (m3,) (m? + 2m3%,)
—2D{3 (m%) (3P4 + SP5)m} — 2(SP4
+SPS)m?,) — (SP4 — SP5)D{? (m%,) (m}
—(m2 —my)m} —2mY,) + DY (m%)

x (2SP4m} — ((SP4 — SP5)m?

+2(SP4 + 2SP5)m?¥, )m3 — 2m3,

x (—3(SP4 — SP5)m? — 2SP5m%, + (2SP4
—2SP5)112)) + DY (my)

(4(SP4 — SPS)(s23 + t)m3y, + (SP4
+SP5)(2m,

+my(my — 3my))) +m;

x (—=2SP5(T, DY (m3y) (m}, + 2m3,)

+T, DSy (my) (m}, — 2m3,))

+T,(((SP4 — SP5)D'Y (m3,)

—2SP5DS) (m3,)) (m} — 2m3,)

+SP4(DS" (m3ym3 — 2DV (m3,)m?%,))

+T,(D3 (m3%,)((3SP4 — SPS)m} — 2(SP4
+SPS)m%,) — 2(SP5D\3 (m% )m}

— D) (m%,)((2SP4 — SPS)m} — 2SP5m%,))))
+523(T,(4(SP4 — SP5)(D'\? (m3,)
—DS)(m?%,)) — 4(SP4 — 2SP5) D) (m?,)
+4SP5(D'D (m3,) + DE (m3y)my
—4(SP5Ty DY (m3)m} + SPAT, D) (m3,)m%,)
+SPS(4T, DY (m3,)ym?%,
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R

box
3

~TyD\Y (m%)3m3 — 2m%))
+T4(((SP4 — SP5) D\ (m%,)
+2(SP4 — 2SP5) D) (m%,4)
+(SP4 — 3SP5)(D{" (m%,+) + DY (m%2))
+2(SP4 — SPS) (DS (m%,.) + DY (m?,1)
+D5Y) (m22)) X gam}

+(SP4 — SP5)D\} (m%,)
x(m} +2m%) + D{" (m%,) ((SP4 — 3SPS)m}
+2(3SP4 — SPS)m%,) 4 2D5Y (m?)
x ((SP4 — SPS)mj — 2SP4m7,)
+SP42D'Y (m3,)(m} + 2m3%))
+D\Y (m3,)(m? — 2m%,)) + 2((SP4 — SP5)
x D) (m%)m} + DSV (m?)
X ((SP4 — SP5)m} — 2(SP4 + SP5)m%,))))
+1(Ty(4(SP4 — SP5)(D\Y (m3)

+D3Y (m3y)) — 4sP52DS" (m3,)

+D0 (m2,)))m2, + T,(—(2(SP4 — SPS)
x(D(Z)( m3y) + D2 (m%))
—((SP4 4 SP5)D\Y (m?,4)
+2SP5DY) (m2,.)
—(SP4 — SP5)(D\® (m?,2)

D (m%2) + 2(DY (m%+)

Dé? (M=) + DR (m ) Xaa)my
+(—(SP4 — SP5)D'® (m%,) + (SP4
+SP5)D'? (m3,) — SPAD\Y (m3,)
+SP5D\? (m3,) — 2(SP4 — SP5) D
(my)) (mj, —
+SP5(4(D(2) (m3)

DZ (m3y))m}, +2D3 (mly)
(mb —2m3)))). (A.8)

2m3y,)

— —m}((4T4((SP2 — SP3) D{() (m?,2)

—SP3DYy; (m%2)) + SP3AT, DY) (m?+)
—2T, (D (m3ys) + DY (m)

+DP (m3 ) (mf — m%y.))
+T,((8SP2 — 4SP3)D(2) (m%,2)

+4((SP2 — SP3)D
+(SP2 — 2SP3) D2 (m?,2))
+2SP3(DSY (2, )m%. + CSP md)

01 (mHi)

+C " (m2))) — 2(SP3T, DY (m?,.)m};
+SP2(Ty DY) (m3)4) — T DY) (m3y.))m?
+(SP3Ty + SP2T,)CS" (m?)
+(SP2T, — SP3T,)CS" (m?)
+Ty DS (m%)

x (SP2m?,+ + SP3m?))
+2((SP3T; D" (m?,4)
+SP2T, DY (m%2)) (m}, — m?)
+SP2(Ty DV (m2,ym? + T, D3
x (e )m;))Xag — 2m; ((SP2
—SP3)(T; D" (m22) + To(D (m?2)
+DP (m2,2) + DY (m%2)))

—SP3(7y D" (m%,.) + T.DY
X (M%) Xau) — 4m, (SP3Ty DS (m3,)m3,
+(s23 + D)(SP2T, D (m%,) — SP3Ty DS} (m%))))
+2C5P (m3)((SP2T; — SP3T,)m},
—2(SP3Ty — SP2T,)m},) 4+ SP3(4Q2T. D3, (m%,)
+ Ty Dy (m%)) (m? +2m%)
121, D (m%,) (mf — (m? + m3)ym3
+2m?m%)) +m? 2T, DS (m3,) (SP2m},
+52(SP2 — 2SP3)m3,) — 2(2(SP2
+SP3) T, DY (m3,)ym%, + SP2T, D) (m3,) (m}
—2m%)) — T.2CV (m3)(SP3m} — 2SP2m3,)
+SP22D'3) (m3,) (m} — 2m% ym?
+4DS) (my) (m} + 2m3,))
+4((SP2 — SP3) D) (m%) (m3 + 2m3%))
+D (m%,)((2SP2 — SP3)m}, — 4SP3m3,))
—DP (m3,)(2SP3m} + 2(m?(SP2
—SP3) — (2SP2 + SP3)m?3,)m? + 4SP2m?,)
— D (m},)(2SP3m} + (2(SP2
—SP3)m? — 2(2SP2 + SP3)m3,)m;
—4m3, ((SP2 + SP3)t15 + SP2(—2m? — m3,)))
—(SP2 — SP3)2C{" (m?)
X (m} +2m3) — 2DSP (%)) (m}, — (m? — m%y)m}
—2miy))) + Tq(4(SP2 — SP3)r12(D{Y (m3))

+D) m3))m3y, 4+ 2CP (m3)(SP3m?
—2SP2m%,) — DYy (m%,) (4SP3m?
—8(SP2 + SP3)m%,) — 4(SP3112D\Y) (m3,)m?,
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+(SP2 — SP3) D{), (m%,) (m + 2m%,)) +D8Y (m%2)) + T.(DY) (m2,2)
~2(SP3D5" (m) (m? — 2m3yym}; +D5) (%)) + SPL(Ty — T.)(CY (m})
+D§" (m%)(m} — m%,)(SP3m} — 2SP2m?%,)) —cVmd))

— D" (m3,) (4SP3m3, (—m} —2Ty(D{g) (m%,2)
+miy +my) + SP2Q2mj, — 2(my + miy ymj —2D{g) (%)) + 2To(Dyg (m32)
2
+4(s23 + Hmyy))) —2D{g, (%)) — (TyD§ (%)
(1)
—1(4T4((SP2 — SP3) D) (m%)) @) (), 2
SP3(dD(1)(m ) + DSV o} v;»m _TED?z)(mHi) T )
2 2 2
o ((25P3DV(V2)( )_ Sl‘j;D@)v(V : +T. Dy (mya))(my, — myL))
(z’?w miy —T4((SP4 — SP5)(4SP3D\ s (m2,1)
—(SP2 — SP3) D) (m},))m? —4(sP2 — SPRDM 2 )
@) @)
+(SP3D! SP2 — 2SP3) D!
ESPZ sgﬁz)@(( ) S +D{3(m};.)) + 4(SP3 SP4
—(SP2 — mj M, 2
o o H* oo +SP2SP5) DY, (m2,1)
)(’”H*) Dy (i) + Doy () DS (m?.)(SP1m?
+D33 (30 Xaamj, — ((SP2 +4SP3 SP4 — 4SP2SP5) — D) (m2,1)
@ @
—SP3)Dy” (mjy) + SP2DY3 () x (—SP1m2 + 4SP3 SP5 + SP2(4SP4
@)
X (mj, +2miy) + D3 (my) (SP3mj + 2SP2m3y ) —8SP5))) + T, ((SP2 — SP3)(4SP5D'%, (m%,2)
_p®
Dy (mw)((spfz) SP3)m} —4(SP4 — SP5)(D'2) (m2,.)
—ZSS;’;mw) ersllzz o +D(3 () = D (my )
x( o mbz— miy) ) x (—SP1m? + (4SP2 — 8SP3)SP4 + 4SP3 SP5)
—D, (mZW)((SPZ — SP3)my — 2(SP2 . +D§2) (mili)(_splmtz 4 4SP3 SP4
+SP3)m2,))) + s23(4(SP2 — SP3)T,m?, _4SP2 SPS)) X gy
@ @ b
x (DY (miy) I)D (mw))m _T,(4(SP2 — SP3)(SP4 — SP5)
+SP3Q2Ty(Dy (miy) + D33 (myy))m, x (DY, (m%y) + DOy (m3)) (m} +2m3)
—4T,m?%,2DP (m) + D(z) m3))) —4DS) (m3,)(SP2 SP5m?
—2T,((SP2 — SP3)(D3y (m3,) +2(SP3 SP4 — SP2 SP5)m3,)
+(DS” (m%.) + DY) (m%,1) +D) (m%) ((—=SP1m?
“)(mHi))X da)my — D\Y (m%,) (SP3m? +4SP3 SP5 + SP2(4SP4
2 2 2
+2(SP2 — 28P3)m3,) + SP2(DSV (m3)) —8SP3))mj, + 2my, (—SPlm;
D3 (i)~ 2miy) +211228;585P3)SDP(‘1‘) 2 )(SP1(m2 + 2m2, )ym?
_D(”(mw)(smm}, — 2SP2m%)) N ) + 5D (mW)z( - 2miym;
0 0 +4(SP3 SP4 — SP2 SP5) (m?
~SP3((Dy () + Dy (my) 2 4(SP3SP4T, D)
(1) { ) - mw))) —4( d (mW)
Y (m%,0)Xaamj, + D) &)
+SP1t12T. D, (mw)mw
(mw>(mb —4m3)))). (A.9) o
b 0 +(SP3 SP4 — SP2 SP5)(T, D2 (m3)
Ry = —(4(2SP3 SPST,; D% (m?,4)

+(SP3 SP4 + (SP2 — 2SP3)SP5)T, D\) (m%,4)
+SP3SPS(T; DY (m%,.) — T,DF (m%,0)

+Tu DRy (m%ys) — T.D{3s(m2))

+(4SP3 SP4 — 4SP2 SP5)(T4(DSy (m?;+)
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+Tu DS (my) + To DS () (m, — 2m3)
+SP5(SP3(Ty D\, (m%,) — T,D\2, (m%))
x(m} +2m?%) — T,DG (m%,)(SP3m}
—2(2SP2 — SP3)my,))) + 4((mj + 2m3,)

X (SP3 SP5T, D\3) (m3,) + (SP3 SP4
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+SP2SPS)T,; D'}, (m3)))

+SP3((SP5T, D3, (m%)

+T,((SP4 — SP5) D\ (m?%)

—2SP5D\}) (m%,)) — (SP4

—2SP5)T, D3, (m3))(m} + 2m%))

—T,D\} (m%,)(SP5m} — 2(2SP4

—SP5)m?%,))) — T.(4((SP3 SP4 — SP2(SP4

—SP5))(D{Ty(my) + D5 (m3y)

+SP5((SP2 — SP3)D\} (m3,)

+SP2DC)L (m2))) (m3 + 2m?,)

— DY) (m%,)((—~SP1m? + (4SP2 — 8SP3)SP4

+4SP3 SP5)m; + 2(—SP1m?

+4SP3 SP5 + SP2(4SP4 — 8SP5))m3,)

+D (m%,)(4(SP3 SP4

—SP2SP5)(m32 — 2m3,) — SP1m?(m? + 6m%,))

+SP1(—(D\P (m2,2) — DP (m,2)
+DD(m2 ) Xaam + 4D (mE)ym3,

+(D{Y (mFy) — D mFy)) (m} + 2m3)

—D{ (m3y) (m} — 2m3,)))

+SP1(2(s23 + (T DS (m%))

~T.DY (m})ymy — s23(4To (DY (m3y))

2 1 1
+D m%)ymy, + Ta(D\" (m%.) — DY (m%,0)

+D m%,0)) Xaam?

+(DV(m3) — DY) m3) + DY) (m%))
(mp +2m3,))))

—SP1((Ty Dy (m3;)

2
_TeD(() )(m%.]:t))mlz,xdumtz

+(Ty = THCS () — T,V (m2))(m3 + 2m%))

—Ty((m3 +2m%) 2D (m%,) — 4D, (m%y)
D (m¥)(m2 —m3))

+D80 (m3)) (mt — (m? — m2)m2 — 2m,))
+T.((CY md) + 2D mFy)
—4D, (m3))(m? + 2m%) + DR (m2)
x(mb — (m, - mW)mb - me)

2
—D{ )(m%v)(mg + m%,v(mi — Zm%,v

+4(s23 +1))))), (A.10)
RY™ = m ((—(Ty D" (m%+)

~T. D5 (m%2))m? + Ty Dy

2 2 2
X (miys)(my, —mys)

+T, DY (%) (—m} +m2. +m?))
xXagum}, + (T4 DS} (m3y)
~T.Dy (miy)m}
+(Ty — T)CY (mp)) (mf — 2m3))
+T.((C" m}) — €1V (m}))m}
(2)(mW)( mh + mW +m )mb

+2C}”(mb)mw — (DY) (m3)m?
+4DG) (m3y)) (m}, — 2m3y)
+D§2)(m%v)(m;4, —3m¥ymy + Zm%‘,)
+DP (m2) (m} + (m? = 3m3)ym} + 2m))
~Ty(=2D" (m3) (m3 — m%))m?,
+2D8) (m3y) (m} — 2m3y)
+D" (m3) (m}f — m3,(3m3 — 2(m?,
+4(s23 + 1) + 112))) + ((Ty DSy (m%2)
—T,D) (m%,))m? + T,C§" (m})
~1,C\"m}) + (T — T)CS" (m)
+23Ta (D} (miys)
+D}; () = Dy ()
+T,((DYY (m3y2) + DY (m.))
x(m} —m%s) — t(D\} (m%1) + D3 (m%2)
—Df?(m,,i)— DS (m%,.)))m}
—(T;2DS) (m%2) + DV (m2,0)(m3 — m3,2))
+T,(DY) (m)ym?
+4D) (m%2)))my — Ty DS (m?.)
x(mb — mb(mHi
+m2))Xaq — C (m2)(Ty — T,)
deumb + 2Tdmw)
—523QT. DY (m3,)m3,
+Ty(—(D" (m3y) + (D (%) — DV
x(m2,) 4+ DS (m2,.) Xau)m?
+2(D{" (m¥y) — 3D (m3)ym?,
—(D{Y (m%) — DS (my)

+DSP m3)) (m3 — 2m%))))
+1(6Ty D" (3 )m3,
+T,(—(DS? (m3) — D (m3)
+DY (%) + D (m?y)
+(DF (m%2) — DY (m%2)
+DP (m%,)) Xau)m?
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+2D77 (miy)my — (D} ()
—D (m}) — D) m3)(m} —2m3))). (A1)

RE™ = miy (—SPS(Xau (Ta(Dy (miy+)

+D5 (%)) + To(DF (m%2) + DS (m%:))
+14D" (%) + T.DS (%)) + Xau
X (SP4 — SP5)(Ty(D\" (m%,2) + DS (m?,1))
+T,D5 (m%2))
—Xaa((SP4 — SPS)(T4(D{y (m32)
+D5V (m%2) + DS) (m%1))
+T,(DS (m%2) + DY) (m21)))
—SP5(Ty DSy (m%2) + T.DS; (m%2))
+T,((SP4 — SP5)D\3 (m3,4)
—SP5D{3 (m32))
+T,((SP4 — SP5) D'V (m?,)
—SP4D{; (m3,)))
+(m}, — 2m3) (SP5(Ty(DSY (m3y) — DS (m3))
+T.(DS) (m3y) + DS} (m3y)
D (m3))) + T.(SP5(D) (m%)
@ Ymd)
—SP4(D(2) (m%) + D) (m3))))
+7,D'Y) (m3,)(SP5m3
+2m%, (SP4 — SP5))
+(SP4 — SP5)(2m3, (T4 DS (m3,)
+T, DY (m3y)—Ta(mi—2m3,) DS (). (A.12)

RE = m2(SP3(Xau (T (D" (m?,4)

+D5" (m22)) + T.(DS (%)

+D{? (mi,i»)
_de(TdD 23 (mHi)
+T. DY) (m%2)))
+SP3(Ty D" (m%) + T.DSP (%))
+(SP2 — SP3)(X4a(Ty D) (m?%,+)
+T.(D3) (m7y2) + DY (%)

DY) (m%2))

—Xdu<TdD2”(mHi>
+T.D{? (%) + T.DS” (m?:)))
+74(Xaa((SP2 — SP3) D) (m?%,+)
—SP3D\} (m%2) + (SP2 — SP3) D§" (m?,.))
+SP2D\Y (m%,)) — T.(SP2 — SP3)D\® (m%,))
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+(m} — 2m3,) (SP3(—Ty (D} (m3)
+D5Y (m}) + Ty D" (m3y) — T.(DY (m3y)
+D3) (m}y) + DY) (m3)))
+T,D (m3)) + SP2T, (D2 (m3)
+D$) (m})))) — TaD\Y (m3,) (SP3m?
+2m%, (SP2 — SP3)) — (SP2 — SP3)
x 2m3y (T, DY) (m3y) + T.DS (m3))
—Ty(m} — 2m3y) DY) (m3)), (A.13)
myXaa(—((Tq + T)(CS" (m3)
—CVm3)) — (m} — m%)(Ty Dy (m3y2)
~T;D{" (m%2) + T.D§” (m%2)
~T,D{" (m2,2)) — 6(Ty DYy (m%2)
+T, D8 (m%,2)) + m2(—(Ty DY) (m3,2)
—14DS" (m%y.) + T,D(3) (my)
~T.DY (m%2)))) — (m} — 2m3y)
X ((Tq + To)(CY (m}) — C{P (m3))
—6(Ty DY) (m3y) + T.DG) (m3)))
—myXgum?(Ty Dy (m?.)
+T,DF (m22))
+(=m}m? + 3m¥y) + m} + 2m) (T DY (m3)
+T,DS (m%))
—Ty(=3mim3y, +m} + 2mi) D (m3,)
+sp3(4Tom, DY (m))
~Ty(m3Xaa(D} (m%2)
—D{)(m%:) + Diy (m?%1))
+(m} — 2m3y) (D} (m%y)
—D\Vm}) + DY m3))))
+m2((m2 = 2m%) (T DY (m%) — T,D (m3)
+T. D13 (miy) — T DY (myy))
+2Tym3, DS (my))
—m2, 2112 Ty D" (m%))
—2T,(s23 + 1) D (m§y)
1T, (mjXaa (DY (mye)
—DF (m2,.) + D3 (m2,1)
+(m} — 6m3)D\P (m}y) — (m} — 2m%)
x (D} (m}y) — D3 (m))
~T. D (i) iy (=3mj, + 2m3y
+4(s23 + 1)) +my). (A.14)
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Finally, for the self-energy part (cf. Egs. (3.14)), we get

Rielf = —((SP4 — SP5)F; + 2SP3 Fy
—SP1 Fs + Fi)(BS” (m3y) + B (m}))
+BP (m%,)Xaa

+B§D my ) Xam} + 2B m¥y) + Dmy,).  (A.15)
R!T = ((SP4 — SP5)F3 + 2SP3 Fy — SP1 Fs

+Fi6+ (SPLFi — Fio)m,)(B" (m%)

+BS" (m%2)Xau), (A.16)

R!T = ((SP4 — SP5)F3 — 2SP2 Fy

—SP1 F5 — Fig + (SP1 Fy + Fi)m) (B (m%)

+B2 ) + B )X + B my)Xaom}

+2BP (m}y) + hm?), (A17)
Rielf = —((SP4 — SP5)F; — 2SP2 F,4

—SP1 Fs — Fie)(BS" (myy) + B (m30)Xau),
R¥ = —(2(SP4 — SPS)F3 — 2((SP2 — SP3) Fy

+SP1 F5) + SP1 Fim) (2B

x(m¥y) + Dmdy —m3(BSY %) — B (m3y)

_Bl(z) (m%v)

—B{® (m%2)Xaa

+(BS" (m%2)

—BP (m%)Xau)).
R = —(t + 112) ((SP4 — SP5) F3

+2SP3 Fy — SP1 Fs + Fig) (B (m%)

+BS (%)X 4 )m? — 523((SP4 — SP5) F

+2SP3 Fy — SP1 Fs + Fig

+(SPLF — Fiym)(BY () + B (m})

+B}” (%)X 4

+B§" 3y Xawm} + QB () + mdy),
R = m2m?((SP4 — SP5)F3 — 2SP2 Fy

—SP1 Fs — Fig + (SP1 Fi + Fi2)m;)

x(B§" (m3y) + B m2) X au)

+1(((SP4 — SP5) F3 — 2SP2 Fy — SP1 F5 — Fig)

x (B (m?%2)Xqqm} +m?,

(A.18)

(A.19)

(A.20)

+B{Y (m})(m} + 2m3))
~(SP1 Fy + Fio)mjm, (BS" (m3,)

+BSY (%)X an). (A21)

Here the scalar functions Bék), C/(Sk), and Dka) are defined,
respectively, as

BV (m?) = By (0, m3, m?),
BP (m?) = Bo(m}, mj, m*),
B (m?) = Ba(s23. mj, m?),
B (m?) = By(t, m3, m?),

B (m?) = By (112, m3, m?), (A.22)
Cym?) = Cp(0. 0. 112, m3. m3, m?),

Cy(m?) = Cp(0. 523, 0, m}, m}. m?),

C;;)(mz) = Cg(0, 523, m,z, mi, m%, mz),

Cy(m?) = Cp(0.,0,m}, mj. m?),

Cy(m*) = Cp(0. 1, m?. m}. m}, m?),

Cy (m?) = Cp(tip. m7. 0, m3, m, m%), (A23)

1 2 2 2 2 2 2
D)(\ )(m ) = D)\.(O’ 07 m[703 t129S237mb3 mbsmbvm )1

D (m?) = Dy(0,0,m?,0, 112, 1, m}, my, m}, m?), (A.24)
where

a=0,1,

B =0,00,1,12,2,22,

A =0,00,001, 002,003, 1, 11, 112, 113, 12, 122, 123,
13,133, 2,22,222,223,23,233, 3, 33.

These functions can be further decomposed into the basic
scalar one-loop integrals Ag, By, Cp, and Dy; see Refs. [147—
150] for details.
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