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We review our recent results on the creation from the vacuum of neutral fermions with

anomalous magnetic moments by a Sauter-like magnetic field. We construct in- and
out solutions of the Dirac-Pauli equation with this field and calculate with their help

pertinent quantities characterizing the vacuum instability, such as differential mean num-

bers and flux density of created pairs and and vacuum-to-vacuum transition amplitudes.
Special attention is paid to situations where the external field lies in two particular con-

figurations, varying either “gradually” or “sharply” along the inhomogeneity direction.

We also estimate critical magnetic field intensities, near which the phenomenon could be
observed.

Keywords: Dirac-Pauli equation; quantum electrodynamics; pair production; neutral

fermions with anomalous magnetic moment

1. Introduction

The violation of the vacuum stability stimulated by external electromagnetic fields

is commonly associated with the possibility of such backgrounds producing work
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on virtual pairs of particles and antiparticles. The most well-known examples are

electric-like fields, as they produce work on charged particles and are able to tear

apart electron/positron pairs from the vacuum if the field amplitudes approach the

so-called Schwinger critical value Ec = m2c3/e} ≈ 1.3 × 1016 V/cm.1 The phe-

nomenon has been a subject of intense investigation since the seminal works of

Klein,2 Sauter,3,4 Heisenberg and Euler,5 and Schwinger.1 An extensive discus-

sion about the origin of the effect, theoretical foundations, and experimental as-

pects can be found in some reviews and monographs; see e.g.6–15 and references

therein.

Following the above interpretation, one may ask oneself about the possibility

that inhomogeneous macroscopic magnetic fields which produce a work on parti-

cles with a magnetic moment, may create pairs from the vacuum. The answer to

this question is affirmative, provided the particles are neutral and have an anoma-

lous magnetic moment. Bearing in mind, first of all, very strong magnetic fields

observed in astrophysics, we can assume that this type of field is practically time-

independent and steplike, that is, their gradient has a well-defined sign. At present,

there exist two types of particles enjoying the properties mentioned above: the neu-

tron and the neutrino. According to experimental data, neutrons have a magnetic

moment µN ≈ −1.04187563(25) × 10−3µB,16 where µB is the Bohr magneton. As

for neutrinos, there is not a general consensus because of the different types of

neutrinos, mechanism under which neutrinos acquires magnetic moment, specific

models, etc. Presently, experimental constraints range from µντ < 3.9 × 10−7µB

(for the tau neutrino)17 until µνe < 2.9 × 10−11µB (for the electron neutrino).18

Moreover, stringent constraints obtained from astrophysical observations19–24 in-

dicate that µν < (2.6− 4.5) × 10−12µB while lower upper bounds, predicted by

effective theories above the electroweak scale, suggest that µν < 10−14µB.25 It is

important to point out that for some theories beyond the Standard Model (SM),26

it was reported that the magnetic moment for the neutrinos lie within the range(
10−12 − 10−14

)
µB. For a more extensive discussion concerning experimental as-

pects and theoretical predictions for neutrinos’ electromagnetic properties, see e.g.

the reviews27–31 and references therein.

In this work, we review our recent results on the creation of neutral fermions

with anomalous magnetic moments from the vacuum by Sauter-like magnetic field.32

We follow the general formulation developed to describe the effect nonperturba-

tively, which is based on the canonical quantization of fermion fields with time-

independent inhomogeneous external fields.33–35 The system under consideration is

placed in the four-dimensional Minkowski spacetime, parameterized by coordinates

X = (Xµ , µ = 0, i) = (t, r), X0 = t, Xi = r = (x, y, z), i = 1, 2, 3, with the

metric tensor ηµν = diag (+1,−1,−1,−1). We also employ natural units, in which

} = 1 = c.
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2. Solutions of Dirac-Pauli equation with Sauter-like

magnetic step

The Dirac-Pauli (DP) equation36 for a neutral spin 1/2 particle with the anoma-

lous magnetic moment µ, the mass m interacting with external electromagnetic

backgrounds Aµ =
(
A0,A

)
has the form:(

iγµ∂µ −m−
1

2
µσµνFµν

)
ψ (X) = 0 ,

σµν =
i

2
[γµ, γν ]− , Fµν = ∂µAν − ∂νAµ . (1)

Here ψ (X) is a bispinor, γµ =
(
γ0,γ

)
are Dirac matrices, and µ is the algebraic

value of the anomalous magnetic moment (e.g., µ = − |µN | for a neutron). In what

follows we consider external electromagnetic fields of a specific type, corresponding

to a time-independent magnetic field oriented along the positive direction of the z-

axis, inhomogeneous along the y-direction, B (r) = (0, 0, Bz (y)), and homogeneous

at remote distances, Bz (±∞) = const. Moreover, it is assumed that its gradient is

always positive ∂yB (y) ≥ 0, ∀ y ∈ (−∞,+∞), meaning that Bz (+∞) > Bz (−∞)

and that the field is genuinely a step (or steplike, in short). To study neutral fermion

pair production by steplike magnetic fields, we consider that the magnetic field

inhomogeneity is given by the analytic function

Bz (y) = %B′ tanh (y/%) , B′ > 0 , % > 0 , (2)

which meets the conditions discussed above and allows solving the DP equation

exactly. The amplitude B′ and the length scale % describe, respectively, the “slope”

of the field with respect to the y-axis and how “rectilinear” it is in the neighborhood

of the z-axis. Thus, the larger B′ and %, the more “steep” and the more “rectilin-

ear” the pattern of (2) near the z-axis. Because the field (2) resembles a step-like

“potential” for charged particles and its gradient has a Sauter profile,4 we call the

field (2) Sauter-like magnetic step. For illustrative purposes, we present the field (2)

and its gradient for some values of % and B′ in Fig. 1.

In the Schrödinger form, the DP equation (1) reads32,33,37

i∂tψ (X) = Ĥψ (X) , Ĥ = γ0
(
γ3p̂z + ΣzΠ̂z

)
. (3)

Here Σz = iγ1γ2 and

Π̂z = π̂z − IµBz (y) , π̂z = Σz (γp̂⊥ +m) , (4)

is an integral-of-motion spin operator,
[
Π̂z, Ĥ

]
−

= 0. The subscript “⊥” la-

bels quantities perpendicular to the field, e.g. p̂⊥ = (p̂x, p̂y) and I denotes the

4 × 4 identity matrix. Since the operators p̂0, p̂x, and p̂z are compatible with

the Hamiltonian (and also with Π̂z), the DP spinor admits the general form

ψn (X) = exp (−ip0t+ ipxx+ ipzz)ψn (y), where ψn (y) depends exclusively on y
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Fig. 1. Sauter-like magnetic steps (2) (pictures on the left) and its gradient (pictures on the

right). In the upper panel, B′
1 = 2×B′

2 while in the lower panel, %1 = 2× %2.

and is solution of the eigenvalue equation:

Π̂zψn (X) = e−ip0t+ipxx+ipzzΠzψn (y) , Πzψn (y) = sωψn (y) , s = ±1 ,

Πz = π̂z − IµBz (y) , π̂z = Σz
(
γ1px + γ2p̂y +m

)
, p2

0 = ω2 + p2
z . (5)

Due to the structure of the external field (2), there is an additional integral-of-

motion spin operator

R̂ = ĤΠ̂−1
z

[
I +

(
p̂zΠ̂

−1
z

)2
]−1/2

, (6)

which is compatible with the Hamiltonian
[
R̂, Ĥ

]
−

= 0 and with all previous oper-

ators,
[
R̂, Π̂z

]
−

=
[
R̂, p̂0

]
−

=
[
R̂, p̂x

]
−

=
[
R̂, p̂z

]
−

= 0. In particular, the operator

(6) implies that ψn (y) is a solution of the eigenvalue equation

R̂ψn (X) = e−ip0t+ipxx+ipzzRψn (y) , Rψn (y) = sψn (y) ,

R = Υγ0
(

Σz +
spz
ω
γ3
)
, Υ =

1√
1 + p2

z/ω
2
. (7)

As a result, the complete set of commuting operators is p̂x, p̂z, Π̂z, R̂ and the

corresponding quantum numbers are n = (px, pz, ω, s).
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The set of equations (5) and (7) are simultaneously satisfied choosing ψn (y) in

the form

ψn (y) = (I + sR) [π̂z + I (µBz (y) + sω)]ϕn,χ (y) υ(χ)
κ , (8)

where υ
(χ)
κ belongs to a set of four constant spinors, satisfying the eigenvalue equa-

tions

iγ1υ(χ)
κ = χυ(χ)

κ , γ0γ2υ(χ)
κ = κυ(χ)

κ , χ = ±1 , κ = ±1 , (9)

and the orthonormality conditions υ
(χ′)†
κ′ υ

(χ)
κ = δχ′χδκ′κ. As for the scalar functions

ϕn,χ (y), they are solutions of the second-order ordinary differential equation:{
− d2

dy2
− [sω + µBz (y)]

2
+ π2

x + iµχB′z (y)

}
ϕn,χ (y) = 0 , π2

x = m2 + p2
x . (10)

The potential energy of a neutral fermion interacting with the field is Us (y) =

sU (y), where U (y) = −µBz (y). To facilitate subsequent discussions, it is conve-

nient to select a fixed sign for particle magnetic moment. From now on, we choose a

fermion with a negative magnetic moment as the main particle, µ = − |µ|. Because

the field (2) increases monotonically with y, the maximum potential energy that

may be experienced by the fermion is determined by the magnitude of the “step” U

U ≡ UR − UL = 2% |µ|B′ > 0 , (11)

which is the difference between the asymptotic values UR = U (+∞) = |µ| %B′,
UL = U (−∞) = − |µ| %B′ and is positive, by definitiona. At remote distances–

where the field can be considered homogeneous and no longer accelerates particles–

the term proportional to χ in Eq. (10) is absent. Therefore, solutions of Eq. (10)

have well-defined “left” ζϕn,χ (y) and “right” ζϕn,χ (y) asymptotic forms:

ζϕn,χ (y) = ζN exp
(
iζ
∣∣pL
∣∣ y) , ζ = sgn

(
pL
)
, y → −∞ ,

ζϕn,χ (y) = ζN exp
(
iζ
∣∣pR
∣∣ y) , ζ = sgn

(
pR
)
, y → +∞ . (12)

Here, ζN , ζN are normalization constants,
∣∣pL/R

∣∣ are y-components of fermions

momenta at remote regions∣∣∣pL/R
∣∣∣ =

√
[sπs (L/R)]

2 − π2
x , πs (L/R) = ω − sUL/R , (13)

and πs (L/R) are their transverse kinetic energies at remote areas. Correspond-

ingly, asymptotically-“left” ζψn (X) = exp (−ip0t+ ipxx+ ipzz) ζψn (y) and

asymptotically-“right” ζψn (X) = exp (−ip0t+ ipxx+ ipzz)
ζψn (y) sets of DP

spinors are solutions of the eigenvalue equations

p̂y ζψn (X) = ζ
∣∣pL
∣∣
ζψn (X) , ĥkin

⊥ ζψn (X) = sπs (L) ζψn (X) , y → −∞ ,

p̂y
ζψn (X) = ζ

∣∣pR
∣∣ ζψn (X) , ĥkin

⊥
ζψn (X) = sπs (R) ζψn (X) , y → +∞ ,

(14)

aThe labels “L” and “R” mean “asymptotic left region y → −∞” and “asymptotic right region

y → +∞”, respectively.
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where ĥkin
⊥ = Π̂z − I |µ|Bz (y) is the one-particle transverse kinetic energy

operator.

Substituting the field (2) into Eq. (10) and performing a simultaneous change

of variables

ϕn,χ (y) = ξρ (1− ξ)σ f (ξ) , ξ (y) =
1

2
[1 + tanh (y/%)] , (15)

we may convert Eq. (10) to the form of the differential equation for the Gauss

Hypergeometric Function38

ξ (1− ξ) f ′′ + [c− (a+ b+ 1) ξ] f ′ − abf = 0 , (16)

provided the parameters ρ, σ, a, b, and c are:

a =
1

2
(1− χ)− i%

2

(
U +

∣∣pL
∣∣− ∣∣pR

∣∣) ,
b =

1

2
(1 + χ) +

i%

2

(
U +

∣∣pR
∣∣− ∣∣pL

∣∣) ,
c = 1− i%

∣∣pL
∣∣ , ρ = − i

2
%
∣∣pL
∣∣ , σ =

i

2
%
∣∣pR
∣∣ . (17)

Among the 24 Hypergeometric functions satisfying Eq. (16),38 we select those

that tend to unity when y → ∓∞. Solutions meeting this property are proportional

to Hypergeometric functions of type F (a′, b′; c′; ξ) and F (a′′, b′′; c′′; 1− ξ). For ex-

ample, a possible set of exact solutions to Eq. (10) behaving asymptotically like

Eqs. (12) is

ζϕn,χ (y) = ζN exp
(
iζ
∣∣pL
∣∣ y) [1 + exp (2y/%)]

−i%(ζ|pL|+|pR|)/2
ζu (ξ) ,

ζϕn,χ (y) = ζN exp
(
iζ
∣∣pR
∣∣ y) [1 + exp (−2y/%)]

i%(|pL|+ζ|pR|)/2 ζu (ξ) , (18)

where

−u (ξ) = F (a, b; c; ξ) , +u (ξ) = F (a+ 1− c, b+ 1− c; 2− c; ξ) ,
−u (ξ) = F (a, b; a+ b+ 1− c; 1− ξ) , +u (ξ) = F (c− a, c− b; c+ 1− a− b; 1− ξ) .

(19)

With the aid of these solutions, we may finally introduce the sets of DP spinors

ζψn (X) = e−i(p0t−pxx−pzz) (I + sR) {π̂z + I [sω − |µ|Bz (y)]} ζϕn,χ (y) υ(χ)
κ ,

ζψn (X) = e−i(p0t−pxx−pzz) (I + sR) {π̂z + I [sω − |µ|Bz (y)]} ζϕn,χ (y) υ(χ)
κ , (20)

provided the quantum numbers n obey the conditions

[sπs (L/R)]
2
> π2

x . (21)

These inequalities ensure the nontriviality of DP spinors with real asymptotic mo-

menta pL and pR in remote areas, fulfilling Eqs. (14).

To calculate the normalization constants ζN , ζN , we use the inner product on

the timelike surface y = const.,

(ψ,ψ′)y =

∫
dtdxdzψ† (X) γ0γ2ψ′ (X) , (22)
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after imposing specific normalization conditionsb. We assume that all processes take

place within a macroscopically large space-time box, of volume TVy, Vy = LxLz, and

impose periodic boundary conditions upon DP spinors in the variables t, x, z at the

boundaries. Thus, the integrals in (22) are calculated from (−T/2,−Lx/2,−Lz/2)

to (+T/2,+Lx/2,+Lz/2) and the limits (T, Lx, Lz) → ∞ are taken at the end of

calculations. Under these conditions, the inner product is y-independent and we

may impose the following normalization conditions:

( ζ′ψn′ , ζψn)y = ζηLδn′nδζ′ζ ,
(
ζ′ψn′ , ζψn

)
y

= ζηRδn′nδζ′ζ , (23)

where ηL/R = sgn [πs (L/R)]. It should be noted that the time independence of the

magnetic field under consideration is an idealization. Physically, it is meaningful to

believe that the field inhomogeneity was switched on sufficiently fast before instant

tin. By this time, it had time to spread to the whole area under consideration and

then acted as a constant field during a large time T . It is supposed that one can

ignore effects of its switching on and off. This is a kind of regularization, which

could, under certain conditions, be replaced by periodic boundary conditions in t,

see Refs.34,35 for details. Evaluating the inner product (22) for each DP spinor (20)

and imposing the normalization conditions (23), we obtain

| ζN| =
[TVyΥ (1− sκχΥ)]

−1/2

2
√
|pL| |πs (L)− sχζ |pL||

,
∣∣ ζN ∣∣ =

[TVyΥ (1− sκχΥ)]
−1/2

2
√
|pR| |πs (R)− sχζ |pR||

. (24)

Considering that the “left” and “right” sets of DP spinors (20) are orthonormal

and complete (with respect to the inner product (22)), we may decompose one set

into another with the help of some g-coefficients

ηL
ζψn (X) = g

(
+|ζ
)

+ψn (X)− g
(
−|ζ
)
−ψn (X) ,

ηR ζψn (X) = g
(

+|ζ
)

+ψn (X)− g
(−|ζ) −ψn (X) , (25)

which, by definition, are inner products between different sets of DP spinors(
ζψn,

ζ′ψn′

)
y

= δnn′g
(
ζ |ζ

′
)

= δnn′g
(
ζ′ |ζ
)∗

, (26)

and play an important role in the quantization of DP spinors with steplike magnetic

fields. These coefficients link different sets of creation and annihilation operators and

contains all the necessary information about vacuum instability, as shall be seen

below. Substituting the identities (25) into normalization conditions (23) supply us

with two important identities∑
ζ′′=±

ζ ′′g
(
ζ′ |ζ′′

)
g
(
ζ′′ |ζ

)
= ζηLηRδζ′ζ =

∑
ζ′′=±

ζ ′′g
(
ζ′ |ζ

′′
)
g
(
ζ′′ |ζ

)
, (27)

from which we may derive a number of identities, for example |g (+|−)|2 = |g (−|+)|2,

|g (+|+)|2 = |g (−|−)|2, and |g (+|+)|2 − |g (+|−)|2 = ηLηR.

bNote that for ψ′ = ψ, the inner product (22) divided by T coincides with the definition of the

current density accross the y-const. hyperplane.
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3. Pair production

Besides providing conditions for the existence of solutions (20), the inequalities

(21) imposes certain limitations on the quantum numbers. For critical Sauter-like

magnetic steps, whose step magnitudes (11) meet the condition

U > Uc = 2m, (28)

the whole manifold of quantum numbers divides into five sub-ranges, Ωk , k =

1, ..., 5. Neutral fermion pair production takes place only in a well-defined bounded

set of quantum numbers32–34

Ω3 = {n : UL + πx ≤ sω ≤ UR − πx , πxz ≤ U/2} , πxz =
√
π2
x + p2

z , (29)

which is conventionally called Klein zone, Ω3. In this subrange, sπs (L) ≥ πx and

sπs (R) ≤ −πx, which means that sηL = +1 and sηR = −1. As a result, there exist

two linearly-independent “left” ζψn3
(X) and “right” ζψn3

(X) sets of DP spinors

with quantum numbers within the Klein zone n3 = n ∈ Ω3.

To quantize the DP field operators using sets of solutions in this subrange,

we need to classify them as particle or antiparticle states and as incoming waves

(waves traveling toward the “step”) or outgoing waves (waves traveling outward

the “step”) in remote areas. The correct classification demands a careful study of

the inner product on y- and t-constant hyperplanes because important quantities

to the scattering problem are expressed as surface integrals on such hyperplanes.

After a detailed study of these quantities, which was presented in Refs.34,35 for

charged particles and in33 for neutral fermions, “in”-solutions (incoming waves)

and “out”-solutions (outgoing waves) are

in-solutions: −ψn3 (X) , −ψn3 (X) , out-solutions: +ψn3 (X) , +ψn3 (X) . (30)

The above sets of solutions are complete and orthogonal with respect to the inner

product on t-constant hyperplane

(ψn, ψ
′
n′) =

∫
Vy

dxdz

∫ K(R)

−K(L)

dyψ†n (X)ψ′n′ (X) , (31)

in which the lower/upper cutoffs K(L/R) are macroscopic but finite parameters of

the volume regularization that are situated far beyond the region of a large gradient

∂yBz (y); see Ref.34,35 for details. In particular, the inner product (31) between “in”

and “out” sets of DP spinors have the form

( ζψn, ζψn′) =
(
ζψn,

ζψn′
)

=Mnδnn′ ,
(
ζψn,

ζψn′
)

= 0 , n, n′ ∈ Ω3 . (32)

where Mn = 2 |g (+|−)|2 t(L/R)/T , t(L/R) = K(L/R)
∣∣πs (L/R) /pL/R

∣∣. Because there

are two linearly independent sets of spinors (30), the quantization is performed

using two distinct “in” and “out” sets of annihilation & creation operators

in-set: −bn3 (in) , −b
†
n3

(in) , −an3 (in) , −a†n3
(in) ,

out-set: +bn3
(out) , +b

†
n3

(out) , +an3
(out) , +a†n3

(out) , (33)
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which, in turn, obey the following anticommutation relations[ −an′
3

(in) , −a†n3
(in)

]
+

=
[
−bn′

3
(in) , −b

†
n3

(in)
]
+

= δn′
3n3

,[
+an′

3
(out) , +a†n3

(out)
]
+

=
[

+bn′
3

(out) , +b
†
n3

(out)
]
+

= δn′
3n3

, (34)

and whose annihilation operators (33) annihilate the corresponding vacuum states

−bn3
(in) |0, in〉 = −an3

(in) |0, in〉 = 0, +bn3
(out) |0, out〉 = +an3

(out) |0, out〉 = 0.

(35)

Finally, the quantized DP field operator in the Klein zone reads

Ψ̂ (X) =
∑
n∈Ω3

M−1/2
n

[ −an (in) −ψn (X) + −b
†
n (in) −ψn (X)

]
,

=
∑
n∈Ω3

M−1/2
n

[
+an (out) +ψn (X) + +b

†
n (out) +ψn (X)

]
. (36)

Using orthogonality relations between DP spinors (23), (32) and the relations

given by Eqs. (25), one may establish a linear relation between the “in”-set of cre-

ation/annihilation operators in terms of the “out”-set and vice-versa. For example,

two (out of four) canonical transformations have the following form

−b
†
n (in) = −g

(
+|−

)−1 +an (out) + g
(

+|−
)−1

g
(
−|−

)
+b
†
n (out) ,

+an (out) = −g
(
−|+

)−1
−b
†
n (in) + g

(−|+)−1
g
(

+|+
) −an (in) . (37)

With the aid of the canonical transformations (37), we may finally define vacuum in-

stability quantities, such as the differential mean numbers of “out” particles created

from the “in” vacuum,

N cr
n =

〈
0, in

∣∣ +a†n (out) +an (out)
∣∣ in, 0〉 =

∣∣g (−|+)∣∣−2
, n ∈ Ω3 , (38)

and the flux density of particles created with a given s,

ncr
s =

1

VyT

∑
n∈Ω3

N cr
n =

1

(2π)
3

∫
dpz

∫
dpx

∫
dp0N

cr
n . (39)

The total flux density of particles created with both spin polarizations is ncr =

ncr
+1 + ncr

−1 and the vacuum-vacuum transition probability reads:

Pv = |〈0, out|0, in〉|2 = exp

[∑
s=±1

∑
n∈Ω3

ln (1−N cr
n )

]
. (40)

It should be noted that if the total number of created particles N cr = VyTn
cr is

small, one may neglect higher-order terms in Eq. (40) to conclude that Pv ≈ 1−N cr.

With the aid of this relation, we may link the total number of neutral fermions

created from the vacuum with the imaginary part of an effective action Seff provided

it satisfies the Schwinger relation Pv = exp (−2ImSeff), and it is small, so that

Pv ≈ 1− 2ImSeff . Therefore,

ImSeff ≈ VyTncr/2 . (41)
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From these equations, we observe that all the information about pair creation by

the external field is enclosed in g (−|+). To obtain this coefficient, we may use an ap-

propriate Kummer relation38 that connects three Gauss Hypergeometric functions

appearing in one of the relations given by Eq. (25). After obtaining this coefficient

and calculating its absolute square |g (−|+)|−2
, we finally obtain the differential

mean numbers of pairs created from the vacuum:

N cr
n =

sinh
(
π%
∣∣pR
∣∣) sinh

(
π%
∣∣pL
∣∣)

sinh [π% (U + |pL| − |pR|) /2] sinh [π% (U + |pR| − |pL|) /2]
. (42)

Note that N cr
n are positive-definite because the difference

∣∣∣∣pL
∣∣− ∣∣pR

∣∣∣∣ bounded

in this subrange; 0 ≤
∣∣∣∣pL

∣∣− ∣∣pR
∣∣∣∣ ≤ √U (U− 2πx). The above expression gives

the exact distribution of neutral fermions created from the vacuum by the field

(2). When summed over the quantum numbers, it provides exact expressions for

the flux density of the created particles (39) and the vacuum-vacuum transition

probability (40). Lastly, it is noteworthy to discuss some peculiarities associated

with the choice of the quantum number s and its impact on the quantization (36).

As pointed out in Sec. 2, there are two species of neutral fermions, one with s =

+1 and another with s = −1. In the latter case, the classification differs from

the one given by Eq (30), namely +ψn3
(X) , +ψn3

(X) are “in”-solutions while

−ψn3 (X) , −ψn3 (X) are “out”-solutions. Although this classification changes the

quantization (36), it does not change the mean numbers (38). This means that

the flux density of particles created with s = −1 equals the one with s = +1,

ncr
+1 = ncr

−1. Therefore, summations over s in Eqs. (39), (40) just produce an extra

factor of 2 in final expressions and that is why it is enough selecting s fixed to

perform specific calculations; hereafter, we select s = +1 for convenience. In what

follows, we analyze vacuum instability quantities when the field lies in two special

configurations, varying either “gradually” or “sharply” along the inhomogeneity

direction.

3.1. “Gradually”-varying field configuration

This field configuration corresponds to the case where the amplitude B′ is suffi-

ciently large and the field inhomogeneity stretches over a relatively wide region of

the space, such that the condition√
%U/2� max

(
1,

m√
|µ|B′

)
, (43)

is satisfied. Accordingly, the arguments of the hyperbolic functions in (42) are large,

meaning that the mean numbers of pairs created acquires the following approximate

form,

N cr
n ≈ e−πτ , τ = %

(
U−

∣∣pR
∣∣− ∣∣pL

∣∣) . (44)

The above distribution is exponentially small for large values of ω and px. Its most

significant contribution comes from a finite range of values of quantum numbers
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such that the conditions min
(
π2

+1 (L) , π2
+1 (R)

)
� π2

x remains valid. In this case, τ

admits the following approximation

τ =
(U/2)

2

(U/2)
2 − ω2

λ+O
(
π4
x/ |π+1 (R)|3

)
+O

(
π4
x/ |π+1 (L)|3

)
. (45)

Now, we can estimate the flux density of pairs created ncr for a magnetic step

evolving gradually along the y-direction according to (43). To this end, it is conve-

nient to transform the original integral over p0 into an integral over ω through the

relation between p0, ω, and pz discussed before, p2
0 = ω2 + p2

z. Performing such a

change of variables, the flux density of the particles created by the external field in

the configuration (43) has the form

ncr ≈ 4

(2π)
3

∫ pmax
z

0

dpz

∫ pmax
x

−pmax
x

dpx

∫ ω2
max

0

dω2 e−πτ√
ω2 + p2

z

,

pmax
z =

√
(U/2)

2 −m2 , pmax
x =

√
(U/2)

2 −m2 − p2
z , ωmax = U/2− πx . (46)

The multiplicative factor 4 comes from the summation over s and from the fact

that the integrand is symmetric in pz. To obtain an analytical expression to N cr,

we formally extend the integration limits of the last two integrals to infinity. This

procedure amounts to incorporating exponentially small contributions to ncr since

the differential mean numbers are exponentially small at large px and ω. In this

case, we may technically interchange the order of the last two integrals in (46) and

use the approximation given by Eq. (45) to discover that the flux density of the

created particles is approximately given by

ncr ≈ m

(2π)
3U

2
√
b′e−πb

′
Ib′ , Ib′ =

∫ ∞
0

du

(u+ 1)
5/2

ln

(√
1 + u+

√
1 + 2u√

u

)
e−πb

′u ,

(47)

where b′ = m2/ |µ|B′ and U = 2% |µ|B′. At last, one may use the identity

ln (1−N cr
n ) = −

∑∞
l=1 (N cr

n )
l
/l and perform integrations similar to the ones dis-

cussed before to discover that the vacuum-vacuum transition probability admits the

final form

Pv = exp (−βVyTncr) , β =

∞∑
l=0

εl+1

(l + 1)
3/2

exp (−lπb′) , εl =
Ib′l
Ib′

, (48)

with ncr given by Eq. (47).

It is noteworthy mentioning that relation (40)–which is well-known for strong-

field QED with external electromagnetic fields–holds for the case under considera-

tion as well. However, a direct similarity of total quantities for both cases is absent.

We see that the flux density of created neutral fermion pairs and the quantity lnP−1
v

are quadratic in the magnitude of the step. This is a consequence of the fact that

the number of states with all possible ω and pz excited by the magnetic-field inho-

mogeneity is quadratic in the increment of the kinetic momentum. This is also the
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reason why the flux density of created pairs and lnP−1
v per unit of the length are

not uniform.

3.2. “Sharply”-varying field configuration

A second configuration of interest is when the field (2) “sharply” steeps near the

origin. Such a configuration is specified by the conditions:

1�
√
%U/2 &

m√
|µ|B′

. (49)

The first inequality indicates that the gradient ∂yBz (y) sharply peaks about the

origin, while the second implicates that the Klein zone is relatively small. This

configuration is particularly important due to a close analogy to charged pair pro-

duction by the Klein step, see Ref.39 for the review. For electric fields whose spatial

inhomogeneity meets conditions equivalent to (49), it was demonstrated that the

imaginary part of the QED effective action features properties similar to those of

continuous phase transitions.40,41 Recently,42 we have demonstrated for the inverse-

square electric field that this peculiarity also follows from the behavior of total

quantities when the Klein zone is relatively small. Because of the condition (49),

not only the parameter %U/2 is small but all parameters involving the quantum

numbers px, pz, and ω are small as well on account of the inequalities (29). As a

result, the arguments of the hyperbolic functions in (42) are small, which means

that we may expand the hyperbolic functions in ascending powers and truncate the

corresponding series to first-order to demonstrate that the mean numbers admit the

approximate form:

N cr
n ≈

4
∣∣pR
∣∣ ∣∣pL

∣∣
U2 − (|pL| − |pR|)2 . (50)

To implement the conditions (49), we conveniently introduce the Keldysh pa-

rameter γ = 2m/U and observe that it obeys the condition 1− γ2 � 1 on account

of (49). Next, we perform the change of variables

ω

m
=

1

2

(
1− γ2

)
(1− v) ,

p2
x

m2
=
(
1− γ2

)
r , (51)

and expand the asymptotic momenta
∣∣pL/R

∣∣ in ascending powers of 1 − γ2

to learn that
∣∣pR
∣∣ /m =

(
1− γ2

)1/2√
v − r + O

((
1− γ2

)3/2)
,
∣∣pL
∣∣ /m =(

1− γ2
)1/2√

2− v − r + O
((

1− γ2
)3/2)

. Substituting these approximations into

(50) we obtain

N cr
n =

(
1− γ2

)√
(1− r)2 − (1− v)

2
+O

((
1− γ2

)2)
. (52)

We now wish to estimate the total number of pairs created from the vacuum by

a sharply varying external field. In this case, it is convenient to first integrate over

pz, which is allowed as long as we swap the integration limits indicated in (46), i.e.
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pmax
z =

√
(U/2)

2 −m2 − p2
x and pmax

x =

√
(U/2)

2 −m2. Calculating the integral

and performing the change of variables proposed in (51), we expand the result in

power series of 1− γ2 to find∫ pmax
z

0

dpz√
ω2 + p2

z

= −1

2
ln
(
1− γ2

)
+ 2 ln 2 + ln

√
1− r − ln

√
(1− v)

2
+O

(
1− γ2

)
.

(53)

The most significant contribution to total quantities in this regime comes from the

logarithm ln
(
1− γ2

)
, as 1 − γ2 � 1. Neglecting higher-order terms in 1 − γ2, the

flux density of the particles created is approximately given by

ncr ≈
(
1− γ2

)7/2 ∣∣ln (1− γ2
)∣∣m3

(2π)
3

∫ rmax

0

dr√
r

∫ vmax

vmin

dv (1− v)

√
(1− r)2 − (1− v)

2
,

(54)

where vmin ≈ r and vmax ≈ rmax ≈ 1. After straightforward integrations, the flux

density of the particles created from the vacuum by a sharply varying Sauter-like

magnetic step takes the approximate form

ncr ≈ 4

105π3
m3
(
1− γ2

)7/2 ∣∣ln (1− γ2
)∣∣ . (55)

Due to the smallness of the coefficient
(
1− γ2

)7/2
, the total number of neutral

fermions pairs created from the vacuum is also small N cr = VyTn
cr, which means

that the vacuum-vacuum transition probability is approximately given by Pv ≈
1 −N cr. We may use this result to link the flux density of pairs created (55) with

the imaginary part of the effective action, given by the approximation (41).

4. Concluding remarks

Here we review our recent results on the creation of neutral fermion pairs with

anomalous magnetic moments from the vacuum by Sauter-like magnetic field.32 We

show that the problem is technically analogous to the problem of charged-particle

creation by an electric step, for which the nonperturbative formulation of strong-

field QED exists.34,35 To employ this formulation, we first find exact solutions of the

DP equation with Sauter-like magnetic field with well-defined spin polarization and

calculated all quantities characterizing the effect, in particular when the field lies

in two specific configurations. When the field varies “gradually” along the inhomo-

geneity direction, we found that the flux density of created neutral fermion pairs is

quadratic in the magnitude of the step U. This feature is particularly different from

the case of charged pair production by electric steps, in which the the flux density

features a linear dependence on the magnitude of the electric step. The quadratic

dependence for neutral fermions derives from the non-cartesian geometry of the pa-

rameter space formed by the quantum numbers, and it is inherent to the dynamics

of neutral fermions with anomalous magnetic moments in inhomogeneous magnetic
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fields. This also explains why the flux density of created pairs per unit of the length

are not uniform. In particular, it means that the Schwinger method of the effective

action works for the case under consideration only after a suitable parameterization.

The second feature worth discussing is the behavior of total quantities when the

field “sharply” varies. It is exactly the form of the Klein effect.39 If we compare

the flux density of neutral fermion pairs created with the total number of electron-

positron pairs created from the vacuum by inhomogeneous electric fields (given, for

example, by Eq. (88) with d = 4 in42), we observe two major differences: the first

is the presence of a logarithmic coefficient
∣∣ln (1− γ2

)∣∣, that can be traced back to

the integration over pz (53) and therefore does not depend on the external field. To

our knowledge, this term has no precedents in QED (although a logarithmic coef-

ficient of this type may appear in scalar QED). The second, and more important,

is the value of the scaling (or critical) exponent seen in (55). In contrast to QED

in 3 + 1 dimensions, in which N cr ∼
(
1− γ2

)3
,40–42 the total number of neutral

fermions pairs created from the vacuum features a larger exponent, 7/2. Aside from

minor numerical differences, this means that the total number (55) has an extra

term
√

1− γ2
∣∣ln (1− γ2

)∣∣, which is always less than unity in the range of values to

γ within the interval 0 ≤ γ < 1. Formally, this indicates that backreaction effects

caused by neutral fermions produced by sharply-evolving inhomogeneous magnetic

fields may be significantly smaller compared to QED under equivalent conditions.

The mechanism here described raises the question about the critical magnetic

field intensity, near which the phenomenon could be observed. It is possible to

estimate such a value based on fermion’s mass and its magnetic moment. Since

maxBz (y) = Bz (+∞) = %B′ ≡ Bmax, the nontriviality of the Klein zone (29)

yields the following condition

U = 2 |µ| %B′ > 2m⇒ Bmax > Bcr , Bcr ≡
m

|µ|
≈ 1.73× 108 ×

( m

1 eV

)(µB

|µ|

)
G ,

(56)

where µB = e/2me ≈ 5.8×10−9 eV/G is the Bohr magneton.16 For neutrons, whose

mass and magnetic moment are mN ≈ 939.6× 106 eV, µN ≈ −1.042× 10−3µB, the

critical magnetic field (56) is Bcr ≈ 1.56 × 1020 G. More optimistic values can be

estimated for neutrinos because of their light masses and small magnetic moments.

For example, considering recent constraints for neutrinos effective magnetic mo-

ment µν ≈ 2.9×10−11µB
18 and mass mν ≈ 10−1 eV,30 we find Bcr ≈ 5.97×1017 G.

Evidently, this value changes considering different values to neutrinos’ magnetic mo-

ment and mass. Taking, for instance, the experimental estimate to the tau-neutrino

magnetic moment µτ ≈ 3.9 × 10−7µB
17 and assuming its mass mντ ≈ 10−1 eV we

obtain a value to Bcr near QED critical field BQED = m2/e ≈ 4.4× 1013 G, namely

Bcr ≈ 4.44× 1013 G. On the other hand, assuming the lower bound found in Ref.25

µν ≈ 10−14µB and the same mass mν ≈ 10−1 eV we obtain a value to Bcr orders

of magnitude larger than BQED, Bcr ≈ 1.73 × 1021 G. The critical magnetic field

surprisingly increases if one considers the magnetic moment predicted by the SM,
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µν ≈ 3.2× 10−19µB × (mν/1 eV).27,30 Substituting this value into (56) and consid-

ering mν ≈ 1 eV we find Bcr ≈ 5.41× 1026 G. Based on these estimates, we believe

that neutral fermion pair production may occur in astrophysical enviroments, in

particular during a supernova explosion or in the vicinity of magnetars, whose typ-

ical order of magnetic field intensities range from 1016 − 1018 G (or up to 1020 G),

as reported in Refs.43–46.
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