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We review our recent results on the creation from the vacuum of neutral fermions with
anomalous magnetic moments by a Sauter-like magnetic field. We construct in- and
out solutions of the Dirac-Pauli equation with this field and calculate with their help
pertinent quantities characterizing the vacuum instability, such as differential mean num-
bers and flux density of created pairs and and vacuum-to-vacuum transition amplitudes.
Special attention is paid to situations where the external field lies in two particular con-
figurations, varying either “gradually” or “sharply” along the inhomogeneity direction.
We also estimate critical magnetic field intensities, near which the phenomenon could be
observed.

Keywords: Dirac-Pauli equation; quantum electrodynamics; pair production; neutral
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1. Introduction

The violation of the vacuum stability stimulated by external electromagnetic fields
is commonly associated with the possibility of such backgrounds producing work
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on virtual pairs of particles and antiparticles. The most well-known examples are
electric-like fields, as they produce work on charged particles and are able to tear
apart electron/positron pairs from the vacuum if the field amplitudes approach the
so-called Schwinger critical value E. = m?c3/eh ~ 1.3 x 10'® V/ecm.! The phe-
nomenon has been a subject of intense investigation since the seminal works of
Klein,? Sauter,®* Heisenberg and Euler,” and Schwinger.! An extensive discus-
sion about the origin of the effect, theoretical foundations, and experimental as-
pects can be found in some reviews and monographs; see e.g.571%
therein.

Following the above interpretation, one may ask oneself about the possibility
that inhomogeneous macroscopic magnetic fields which produce a work on parti-
cles with a magnetic moment, may create pairs from the vacuum. The answer to
this question is affirmative, provided the particles are neutral and have an anoma-

and references

lous magnetic moment. Bearing in mind, first of all, very strong magnetic fields
observed in astrophysics, we can assume that this type of field is practically time-
independent and steplike, that is, their gradient has a well-defined sign. At present,
there exist two types of particles enjoying the properties mentioned above: the neu-
tron and the neutrino. According to experimental data, neutrons have a magnetic
moment py ~ —1.04187563(25) x 10~ 3up,'® where up is the Bohr magneton. As
for neutrinos, there is not a general consensus because of the different types of
neutrinos, mechanism under which neutrinos acquires magnetic moment, specific
models, etc. Presently, experimental constraints range from j,_ < 3.9 x 10~ 7up
(for the tau neutrino)!” until p,, < 2.9 x 107 up (for the electron neutrino).®
Moreover, stringent constraints obtained from astrophysical observations!'924
dicate that u, < (2.6 —4.5) x 10~2up while lower upper bounds, predicted by
effective theories above the electroweak scale, suggest that pu, < 107'4pup.?% It is
important to point out that for some theories beyond the Standard Model (SM),26
it was reported that the magnetic moment for the neutrinos lie within the range
(10’12 — 10*14) up. For a more extensive discussion concerning experimental as-

pects and theoretical predictions for neutrinos’ electromagnetic properties, see e.g.
27-31

in-

the reviews and references therein.

In this work, we review our recent results on the creation of neutral fermions
with anomalous magnetic moments from the vacuum by Sauter-like magnetic field.??
We follow the general formulation developed to describe the effect nonperturba-
tively, which is based on the canonical quantization of fermion fields with time-
independent inhomogeneous external fields.?3> 3% The system under consideration is
placed in the four-dimensional Minkowski spacetime, parameterized by coordinates
X = (Xt, u=0,i) = (t,r), X" =t, X! =r = (2,9,2), i = 1,2,3, with the
metric tensor 7, = diag (+1,—1,—1,—1). We also employ natural units, in which
h=1=c
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2. Solutions of Dirac-Pauli equation with Sauter-like
magnetic step

The Dirac-Pauli (DP) equation3® for a neutral spin 1/2 particle with the anoma-
lous magnetic moment pu, the mass m interacting with external electromagnetic
backgrounds A* = (AO, A) has the form:

1
(z’v“@u —m— 2/10“”}7'#,,) P (X)=0,

1

2

otv

VA B = 0uAy — 0,A,. (1)
Here ¢ (X) is a bispinor, y* = (7°,~) are Dirac matrices, and y is the algebraic
value of the anomalous magnetic moment (e.g., p = — |un| for a neutron). In what
follows we consider external electromagnetic fields of a specific type, corresponding
to a time-independent magnetic field oriented along the positive direction of the z-
axis, inhomogeneous along the y-direction, B (r) = (0,0, B, (y)), and homogeneous
at remote distances, B, (£o00) = const. Moreover, it is assumed that its gradient is
always positive 0y B (y) > 0, Vy € (—00, +00), meaning that B, (+o0) > B, (—o0)
and that the field is genuinely a step (or steplike, in short). To study neutral fermion
pair production by steplike magnetic fields, we consider that the magnetic field
inhomogeneity is given by the analytic function

B. (y) = ¢oB'tanh (y/0) , B'>0, 0>0, (2)

which meets the conditions discussed above and allows solving the DP equation
exactly. The amplitude B’ and the length scale ¢ describe, respectively, the “slope”
of the field with respect to the y-axis and how “rectilinear” it is in the neighborhood
of the z-axis. Thus, the larger B’ and p, the more “steep” and the more “rectilin-
ear” the pattern of (2) near the z-axis. Because the field (2) resembles a step-like
“potential” for charged particles and its gradient has a Sauter profile,* we call the
field (2) Sauter-like magnetic step. For illustrative purposes, we present the field (2)
and its gradient for some values of ¢ and B’ in Fig. 1.

In the Schrodinger form, the DP equation (1) reads®2 3337

0 (X) = BV (X) . H =" (%, + Z.IL) . (3)

Here ¥, = iy'4? and

Hz = 7?‘—z - H,UBZ (y) ; 7Arz = Zz (7f)l_ + m) 3 (4)

is an integral-of-motion spin operator, [ﬁz,ﬁ} = 0. The subscript “L” la-

bels quantities perpendicular to the field, e.g. p1 = (Pz,Py) and I denotes the
4 x 4 identity matrix. Since the operators pg, P, and p, are compatible with
the Hamiltonian (and also with f[z), the DP spinor admits the general form
U (X) = exp (—ipot + ipyx + ip,z) ¥y, (y), where ¥, (y) depends exclusively on y
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Fig. 1. Sauter-like magnetic steps (2) (pictures on the left) and its gradient (pictures on the
right). In the upper panel, Bj = 2 x B} while in the lower panel, g1 = 2 X 2.

and is solution of the eigenvalue equation:

Mty (X) = e PPt T 0, (y) , Tathy (y) = swipn (y) , s = £1,
L =7, —IuB: (y) , 72 =% (v'po +9%Dy +m) , pg=w’+p7. (5)
Due to the structure of the external field (2), there is an additional integral-of-
motion spin operator
~1/2

R=HII! []H (ﬁzﬂzl)ﬁ , (6)

which is compatible with the Hamiltonian [R, H } = 0 and with all previous oper-
ators, [1;1 f[z} = [RJ%] = {R,;ﬁm} = [R,]ﬁz] = 0. In particular, the operator
(6) implies that U (y) is a solution of the eigenvaiue equation

Ripy (X) = =P 02 Ry () Ribu () = st (y)

R=17" (2. + 2297) S S (7)

VI+p2jw?

As a result, the complete set of commuting operators is Py, p., f[z, R and the
corresponding quantum numbers are n = (p,, pz,w, S).
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The set of equations (5) and (7) are simultaneously satisfied choosing v, (y) in
the form

Yo (y) = (T4 sR) [ +T(uB: (y) + 50)] ony () v, (8)
where U(X) belongs to a set of four constant spinors, satisfying the eigenvalue equa-
tions

iyt = Yol | 4042000 = 00 oy = 41, k=41, (9)
and the orthonormality conditions v(, )T (X) = 0y/y 0w’ As for the scalar functions
©n (y), they are solutions of the second-order ordinary differential equation:

d? 2 .
{—dy2 — [sw + pB: (y)]” + 75 + iuxBL (y)} Ynx (y) =0, w3 =m®+p;. (10)

The potential energy of a neutral fermion interacting with the field is Us (y) =
sU (y), where U (y) = —uB., (y). To facilitate subsequent discussions, it is conve-
nient to select a fixed sign for particle magnetic moment. From now on, we choose a
fermion with a negative magnetic moment as the main particle, u = — |u|. Because
the field (2) increases monotonically with y, the maximum potential energy that
may be experienced by the fermion is determined by the magnitude of the “step” U

U=Ur— UL =20|u/B >0, (11)

which is the difference between the asymptotic values Ug = U (+00) = |u| 0B/,
Uy, = U(—) = —|p| 0B’ and is positive, by definition®. At remote distances—
where the field can be considered homogeneous and no longer accelerates particles—
the term proportional to x in Eq. (10) is absent. Therefore, solutions of Eq. (10)
have well-defined “left” ¢, (y) and “right” S, , (y) asymptotic forms:

¢ () = Nexp (iC|p"|y) , (=sgn(p"), y— —o0,
“Pnn () = Nexp (iC[p"y) , ¢=sgn(p), y— +oo. (12)

Here, ¢\, SN are normalization constants, |p

momenta at remote regions

[P/ = lsm (L/R)P — 72, (L/R) = w — sUsym (13)

and 7, (L/R) are their transverse kinetic energies at remote areas. Correspond-
ingly, asymptotically-“left” (¢, (X) = exp(—ipot + ipsx +ip.2) ¢¥n (y) and
asymptotically-“right” ¢, (X) = exp (—ipot + ip,x +ip.2) v, (y) sets of DP
spinors are solutions of the eigenvalue equations

Dy (wn =¢ ’pL| Cwn ) km ¢W¥n ( ) = S8Ts (L) (wn (X) y Y — —00,
Dy 47/)n = |pR’ Cq/}n ) hlim Cd)n (X) = sms (R) Ci/’n (X), y— +oo,
(14)

aThe labels “L” and “R” mean “asymptotic left region y — —oo0” and “asymptotic right region
y — 400", respectively.
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where iLli“‘ = I, — I|u| B, (y) is the one-particle transverse kinetic energy
operator.

Substituting the field (2) into Eq. (10) and performing a simultaneous change
of variables

Prx (1) =€ (1= F(€) . €(y) = 3 [1 +tanh (y/)] (15)

we may convert Eq. (10) to the form of the differential equation for the Gauss
Hypergeometric Function®®

EA=f +le—(a+b+1)¢]f —abf =0, (16)

provided the parameters p, o, a, b, and c are:

X |
a=50=x) =75 U+~ |").
2 .
b=5 Mt + 5 U+ = "))
c=1—io|p"|, p:—%9|pL » 0=%9’pr- (17)

Among the 24 Hypergeometric functions satisfying Eq. (16),3® we select those
that tend to unity when y — Foo. Solutions meeting this property are proportional
to Hypergeometric functions of type F (a/,b’;¢’;€) and F (a”,b";¢";1 — &). For ex-
ample, a possible set of exact solutions to Eq. (10) behaving asymptotically like
Egs. (12) is

i L R
P (4) = N exp (i€ [p"| ) [1 + exp (2y/0)) AP N2 ey
i L R
CPnn (y) = Nexp (i [pR] y) [1 + exp (—2y/0)) X HHID2 € ) 13
where
—u(§) = F(a,bc¢), qul@)=Fla+l-cbt+l-c2-¢f),
Tu(€) =F(a,b;a+b+1—cl1—&), Tu(@) =F(c—a,c—bc+1—a—b1-¢).
(19)
With the aid of these solutions, we may finally introduce the sets of DP spinors
(P (X) = e Wot=Per=p=2) (14 s R) {7, + T sw — || B: ()]} conx () 007,
S (X) = 7! PotmPer=P2) (g sR) {7 + L [sw — |l Bz ()]} “pnx (9) 0¥, (20)
provided the quantum numbers n obey the conditions
[sms (L/R)]® > n2. (21)

These inequalities ensure the nontriviality of DP spinors with real asymptotic mo-
menta p" and p® in remote areas, fulfilling Eqs. (14).

To calculate the normalization constants ¢A, CN, we use the inner product on
the timelike surface y = const.,

(,9), = / dtdedzpt (X) 202 (X) | (22)



The Sixteenth Marcel Grossmann Meeting Downloaded from www.worl dscientific.com

by GERMAN ELECTRON SYNCHROTRON @ HAMBURG on 01/30/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

4296

after imposing specific normalization conditions®. We assume that all processes take
place within a macroscopically large space-time box, of volume T'V,, V;, = L, L., and
impose periodic boundary conditions upon DP spinors in the variables ¢, x, z at the
boundaries. Thus, the integrals in (22) are calculated from (—7/2,—L,/2,—L./2)
to (+7/2,+L./2,4+L,/2) and the limits (T, L,, L,) — oo are taken at the end of
calculations. Under these conditions, the inner product is y-independent and we
may impose the following normalization conditions:

( (/¢n’7 Cwn)y = CnLén/7L6C’C7 ( C,?ﬂn/, Cwn)y = Cann’n(SC’Ca (23)

where 7, /g = sgn [, (L/R)]. It should be noted that the time independence of the
magnetic field under consideration is an idealization. Physically, it is meaningful to
believe that the field inhomogeneity was switched on sufficiently fast before instant
tin. By this time, it had time to spread to the whole area under consideration and
then acted as a constant field during a large time 7. It is supposed that one can
ignore effects of its switching on and off. This is a kind of regularization, which
could, under certain conditions, be replaced by periodic boundary conditions in ¢,
see Refs.343% for details. Evaluating the inner product (22) for each DP spinor (20)
and imposing the normalization conditions (23), we obtain

oM [TV, Y (1 — sy X))~/ N = [TV, (1 — sey )]~/
T 2 T (L) — sxC phl] 2/[p%] [7s (R) — sxC [pR]|

Considering that the “left” and “right” sets of DP spinors (20) are orthonormal
and complete (with respect to the inner product (22)), we may decompose one set

(24)

into another with the help of some g-coefficients

L “Un (X) =g (+1°) +9n (X) —g (L) —¥n (X)),

R Cwn(X):g(+|C) +%/1n(X)*9(7|<) 7¢n(X) ) (25)

which, by definition, are inner products between different sets of DP spinors
n»y ¢ n’ = 5nn/ ¢ = 5nn’ ¢ * ) 26
(com o) = buwg (o) = bug (“1c) (26)

and play an important role in the quantization of DP spinors with steplike magnetic
fields. These coefficients link different sets of creation and annihilation operators and
contains all the necessary information about vacuum instability, as shall be seen
below. Substituting the identities (25) into normalization conditions (23) supply us
with two important identities

Z ¢"g (CI|<”) 9 (¢r|°) = Cnunrdere = Z ¢"g (<'|<”) g9 (C”k) . (27)

=+ =+

from which we may derive a number of identities, for example |g (+|_)|2 =g (,|+)|27
2 2 2 —\2
lg (1) =g (A1), and |g (+[ )" = g (+17)I" = nwnw.

PNote that for ¢’ = 1, the inner product (22) divided by T coincides with the definition of the
current density accross the y-const. hyperplane.
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3. Pair production

Besides providing conditions for the existence of solutions (20), the inequalities
(21) imposes certain limitations on the quantum numbers. For critical Sauter-like
magnetic steps, whose step magnitudes (11) meet the condition

U>U,=2m, (28)

the whole manifold of quantum numbers divides into five sub-ranges, Q, k =
1,...,5. Neutral fermion pair production takes place only in a well-defined bounded

set of quantum numbers32-34

Qy={n:UL+m <sw<Ur—my, Tz <U/2}, 7 =+/724p2, (29)

which is conventionally called Klein zone, 3. In this subrange, sms (L) > 7, and
sms (R) < —my, which means that sn;, = +1 and spg = —1. As a result, there exist
two linearly-independent “left” (1, (X) and “right” ¢, (X) sets of DP spinors
with quantum numbers within the Klein zone n3 = n € Q3.

To quantize the DP field operators using sets of solutions in this subrange,
we need to classify them as particle or antiparticle states and as incoming waves
(waves traveling toward the “step”) or outgoing waves (waves traveling outward
the “step”) in remote areas. The correct classification demands a careful study of
the inner product on y- and t-constant hyperplanes because important quantities
to the scattering problem are expressed as surface integrals on such hyperplanes.
After a detailed study of these quantities, which was presented in Refs.33% for
charged particles and in®3 for neutral fermions, “in”-solutions (incoming waves)
and “out”-solutions (outgoing waves) are

in-solutions: _t,, (X), “tn, (X), out-solutions: 4, (X), Teb,, (X) . (30)

The above sets of solutions are complete and orthogonal with respect to the inner
product on t-constant hyperplane

K®)
.
() = | o [ v 0, (31)

in which the lower/upper cutoffs K (/%) are macroscopic but finite parameters of
the volume regularization that are situated far beyond the region of a large gradient
9y B (y); see Ref.3%:35 for details. In particular, the inner product (31) between “in
and “out” sets of DP spinors have the form

( C"/’na Cwn’) = ( C’(/}nv C’(/}n’) = Mpdnn y ( vau Cwn’) =0, n,n/ € Q3. (32)
where M, = 2|g (+|)* t®™/®) /T, /R = K&/R) |7 (L/R) /p™/R|. Because there

are two linearly independent sets of spinors (30), the quantization is performed
using two distinct “in” and “out” sets of annihilation & creation operators
in-set: _by,, (in) , _bLS (in) , ~ap, (in) , _ail (in) ,

out-set: ;b (out) , +bIL3 (out) , Tan, (out) , Tal , (out) , (33)
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which, in turn, obey the following anticommutation relations

[~y (), ~al, ()], = [ ~bug (), b, ()], = bugos

[ +ang (out), +aIL3 (OUt)]+ = [ +bn§ (out), +bIL3 (OUt)}J’_ = éngng 5 (34)
and whose annihilation operators (33) annihilate the corresponding vacuum states

_by, (in) |0,in) = “a,, (in) |0,in) = 0, 4 by, (out) |0, out) = Ta,, (out) |0, out) = 0.

(35)
Finally, the quantized DP field operator in the Klein zone reads
X)= Y MM [ Ta, (in) "¢ (X)+ b (in) g (X)],
nes
= Z M;1/2 [ Tay, (out) T, (X) + +bjz (out) 41y, (X)] . (36)
nes

Using orthogonality relations between DP spinors (23), (32) and the relations
given by Egs. (25), one may establish a linear relation between the
ation/annihilation operators in terms of the “out”-set and wice-versa. For example,
two (out of four) canonical transformations have the following form

b (i) = —g (F12) " Fan out) +9 (+17) g (-[7) 4], (out) |
Fay (out) = —g (—[*) 7" bl (i) + g (1) g (Fl+) “an (). (37)

With the aid of the canonical transformations (37), we may finally define vacuum in-
stability quantities, such as the differential mean numbers of “out” particles created
from the “in” vacuum,

N ={0,in| *al (out) *a, (out)|in,0) = |g (_|+)|_2 ; n€Qs, (38)

in”-set of cre-

and the flux density of particles created with a given s,

1 1
n=—0 S NS=——_ [dp. dx/d N 39
VT (%)3/ p/p Po (39)

nes

The total flux density of particles created with both spin polarizations is n® =
ngy +n; and the vacuum-vacuum transition probability reads:

P, = [(0,0ut|0,in)|* = exp [Z > In(1-N) ] : (40)
s=+1neQs

It should be noted that if the total number of created particles N = V, Tn® is
small, one may neglect higher-order terms in Eq. (40) to conclude that P, ~ 1—N°".
With the aid of this relation, we may link the total number of neutral fermions
created from the vacuum with the imaginary part of an effective action Seg provided
it satisfies the Schwinger relation P, = exp (—2ImSeg), and it is small, so that
P, =1 — 2ImS.g. Therefore,

ImSeq = V,Tn /2. (41)
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From these equations, we observe that all the information about pair creation by
the external field is enclosed in g (_|). To obtain this coefficient, we may use an ap-
propriate Kummer relation3® that connects three Gauss Hypergeometric functions
appearing in one of the relations given by Eq. (25). After obtaining this coefficient
and calculating its absolute square |g (,\+)|72, we finally obtain the differential
mean numbers of pairs created from the vacuum:

Ner— sinh (7rg |pR|) sinh (7rg |pLD (42)

" sinh[mo (U + |p%| — |p®|) /2] sinh [mo (U + [p®| — |p¥]) /2]

Note that N;° are positive-definite because the difference ||pL’ — |pR|| bounded
in this subrange; 0 < ||pL| — |pR|| < /U(U — 27,). The above expression gives
the exact distribution of neutral fermions created from the vacuum by the field
(2). When summed over the quantum numbers, it provides exact expressions for
the flux density of the created particles (39) and the vacuum-vacuum transition
probability (40). Lastly, it is noteworthy to discuss some peculiarities associated
with the choice of the quantum number s and its impact on the quantization (36).
As pointed out in Sec. 2, there are two species of neutral fermions, one with s =
+1 and another with s = —1. In the latter case, the classification differs from
the one given by Eq (30), namely 44y, (X), T, (X) are “in”-solutions while
—Pny (X)), “tn, (X) are “out”-solutions. Although this classification changes the
quantization (36), it does not change the mean numbers (38). This means that
the flux density of particles created with s = —1 equals the one with s = +1,
ng, = n;. Therefore, summations over s in Eqgs. (39), (40) just produce an extra
factor of 2 in final expressions and that is why it is enough selecting s fixed to
perform specific calculations; hereafter, we select s = +1 for convenience. In what

follows, we analyze vacuum instability quantities when the field lies in two special
configurations, varying either “gradually” or “sharply” along the inhomogeneity
direction.

3.1. “Gradually”-varying field configuration

This field configuration corresponds to the case where the amplitude B’ is suffi-
ciently large and the field inhomogeneity stretches over a relatively wide region of
the space, such that the condition

m
oU/2>» max [ 1, — | , (43)

( Vul B’

is satisfied. Accordingly, the arguments of the hyperbolic functions in (42) are large,

meaning that the mean numbers of pairs created acquires the following approximate

form,
NFme ™, 7=0(U—|p" —|p"]) . (44)

The above distribution is exponentially small for large values of w and p,. Its most
significant contribution comes from a finite range of values of quantum numbers
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such that the conditions min (72, (L), 72, (R)) > 72 remains valid. In this case, T
admits the following approximation

B /) S (7T4/|7r (R)|3) —|—O(7r4/|ﬂ' (L)|3) (45)
T (U/2)? - w? o/ 1 o/ T '

Now, we can estimate the flux density of pairs created n" for a magnetic step
evolving gradually along the y-direction according to (43). To this end, it is conve-
nient to transform the original integral over pg into an integral over w through the
relation between pg, w, and p, discussed before, p3 = w? + p?. Performing such a
change of variables, the flux density of the particles created by the external field in
the configuration (43) has the form

max

Ccr 4

P D Wiax , €777
nt~ —— dp / dp / dw* —,
(2m)’° / e o Vew? + 2
P = JU/2)7 —m2, g = (U2 - m2 =2, e = U2 -7, (46)

The multiplicative factor 4 comes from the summation over s and from the fact

that the integrand is symmetric in p,. To obtain an analytical expression to N,
we formally extend the integration limits of the last two integrals to infinity. This
procedure amounts to incorporating exponentially small contributions to n°" since
the differential mean numbers are exponentially small at large p, and w. In this
case, we may technically interchange the order of the last two integrals in (46) and
use the approximation given by Eq. (45) to discover that the flux density of the
created particles is approximately given by

/ > 1 1+2 /
L N Iy — / : du)5/2 I (\/ +u+ 1+ u) e~
0

" (2n)? ut1 Va
(47)

where ¥ = m?/|u| B’ and U = 2¢|u| B’. At last, one may use the identity
In(1-NZ) =->72, (Ne)! /I and perform integrations similar to the ones dis-
cussed before to discover that the vacuum-vacuum transition probability admits the
final form

0o T,
P, =exp (—pV,Tn"), B= 7@“3/2 exp (—Imb') , ¢ = Ibl , (48)
oy v

with n given by Eq. (47).

It is noteworthy mentioning that relation (40)—which is well-known for strong-
field QED with external electromagnetic fields—holds for the case under considera-
tion as well. However, a direct similarity of total quantities for both cases is absent.
We see that the flux density of created neutral fermion pairs and the quantity In P;!
are quadratic in the magnitude of the step. This is a consequence of the fact that
the number of states with all possible w and p, excited by the magnetic-field inho-
mogeneity is quadratic in the increment of the kinetic momentum. This is also the
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reason why the flux density of created pairs and In P;"! per unit of the length are
not uniform.

3.2. “Sharply”-varying field configuration

A second configuration of interest is when the field (2) “sharply” steeps near the
origin. Such a configuration is specified by the conditions:

13> /oU/2 2 —— . (49)

|ul BY

The first inequality indicates that the gradient 0,B. (y) sharply peaks about the
origin, while the second implicates that the Klein zone is relatively small. This
configuration is particularly important due to a close analogy to charged pair pro-
duction by the Klein step, see Ref.3? for the review. For electric fields whose spatial
inhomogeneity meets conditions equivalent to (49), it was demonstrated that the
imaginary part of the QED effective action features properties similar to those of
continuous phase transitions.?% 4! Recently,*? we have demonstrated for the inverse-
square electric field that this peculiarity also follows from the behavior of total
quantities when the Klein zone is relatively small. Because of the condition (49),
not only the parameter oU/2 is small but all parameters involving the quantum
numbers p,., p., and w are small as well on account of the inequalities (29). As a
result, the arguments of the hyperbolic functions in (42) are small, which means
that we may expand the hyperbolic functions in ascending powers and truncate the
corresponding series to first-order to demonstrate that the mean numbers admit the
approximate form:

o AP
tU = (] - pR))?

To implement the conditions (49), we conveniently introduce the Keldysh pa-

(50)

rameter v = 2m/U and observe that it obeys the condition 1 — 2 < 1 on account
of (49). Next, we perform the change of variables

w 2
“oloemnn. Bopoe 2

L/R|

and expand the asymptotic momenta ’p in ascending powers of 1 — 2

o team that R m = (1-+1)" V5T + 0((1-7)"), gt =
(1- ’72)1/2 V2—v—r+0 ((1 - 72)3/2). Substituting these approximations into
(50) we obtain

N = (1) - - o (1-2)) . (52)

We now wish to estimate the total number of pairs created from the vacuum by
a sharply varying external field. In this case, it is convenient to first integrate over
P, which is allowed as long as we swap the integration limits indicated in (46), i.e.




The Sixteenth Marcel Grossmann Meeting Downloaded from www.worl dscientific.com

by GERMAN ELECTRON SYNCHROTRON @ HAMBURG on 01/30/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

4302

prex = \/(U/2)2 —m?2 —p2 and p™*> = /(U/2)? — m2. Calculating the integral
and performing the change of variables proposed in (51), we expand the result in
power series of 1 —~2 to find

max

b= dp 1 2
= ——In(1-*) +2In2+InvV1I—7—In\/(1-2v)"+0 (1 —+2).
o JErp 2 (1=7%) (1=v)"+0(1-77)
(53)
The most significant contribution to total quantities in this regime comes from the

logarithm In (1 — 'yz), as 1 — 2 < 1. Neglecting higher-order terms in 1 — 42, the
flux density of the particles created is approximately given by

n (1- ) (|ln )| m? / o % Uax dv (1 —v) \/(1 —r)? —(1-v)?,

(54)

where vpin, & r and Upmax & Tmax ~ 1. After straightforward integrations, the flux
density of the particles created from the vacuum by a sharply varying Sauter-like
magnetic step takes the approximate form

n ~ ﬁmg (1- 72)7/2 [In(1-+%)] . (55)
Due to the smallness of the coefficient (1 — 72)7/27 the total number of neutral
fermions pairs created from the vacuum is also small N = V,Tn, which means
that the vacuum-vacuum transition probability is approximately given by P, =~
1 — N, We may use this result to link the flux density of pairs created (55) with
the imaginary part of the effective action, given by the approximation (41).

4. Concluding remarks

Here we review our recent results on the creation of neutral fermion pairs with
anomalous magnetic moments from the vacuum by Sauter-like magnetic field.3? We
show that the problem is technically analogous to the problem of charged-particle
creation by an electric step, for which the nonperturbative formulation of strong-
field QED exists.?4:3% To employ this formulation, we first find exact solutions of the
DP equation with Sauter-like magnetic field with well-defined spin polarization and
calculated all quantities characterizing the effect, in particular when the field lies
in two specific configurations. When the field varies “gradually” along the inhomo-
geneity direction, we found that the flux density of created neutral fermion pairs is
quadratic in the magnitude of the step U. This feature is particularly different from
the case of charged pair production by electric steps, in which the the flux density
features a linear dependence on the magnitude of the electric step. The quadratic
dependence for neutral fermions derives from the non-cartesian geometry of the pa-
rameter space formed by the quantum numbers, and it is inherent to the dynamics
of neutral fermions with anomalous magnetic moments in inhomogeneous magnetic
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fields. This also explains why the flux density of created pairs per unit of the length
are not uniform. In particular, it means that the Schwinger method of the effective
action works for the case under consideration only after a suitable parameterization.
The second feature worth discussing is the behavior of total quantities when the
field “sharply” varies. It is exactly the form of the Klein effect.?? If we compare
the flux density of neutral fermion pairs created with the total number of electron-
positron pairs created from the vacuum by inhomogeneous electric fields (given, for
example, by Eq. (88) with d = 4 in*?), we observe two major differences: the first
is the presence of a logarithmic coefficient |1n (1 — '72) f, that can be traced back to
the integration over p, (53) and therefore does not depend on the external field. To
our knowledge, this term has no precedents in QED (although a logarithmic coef-
ficient of this type may appear in scalar QED). The second, and more important,
is the value of the scaling (or critical) exponent seen in (55). In contrast to QED
in 3 + 1 dimensions, in which N ~ (1 — 72)3,40’42 the total number of neutral
fermions pairs created from the vacuum features a larger exponent, 7/2. Aside from
minor numerical differences, this means that the total number (55) has an extra
term /1 — 72 |1n (1 — 72) |, which is always less than unity in the range of values to
~ within the interval 0 < « < 1. Formally, this indicates that backreaction effects
caused by neutral fermions produced by sharply-evolving inhomogeneous magnetic
fields may be significantly smaller compared to QED under equivalent conditions.

The mechanism here described raises the question about the critical magnetic
field intensity, near which the phenomenon could be observed. It is possible to
estimate such a value based on fermion’s mass and its magnetic moment. Since
max B, (y) = B, (+00) = 9B’ = Bpax, the nontriviality of the Klein zone (29)
yields the following condition

U =2|u| 0B > 2m = Buax > Bers Ba = % ~1.73 x 10° x (ﬂ) <“B> G,
|l LeV/ \ |u|
(56)

where pup = e/2m, ~ 5.8 x 1072 eV /G is the Bohr magneton.'® For neutrons, whose
mass and magnetic moment are my ~ 939.6 x 10 eV, uy ~ —1.042 x 10~ 3ug, the
critical magnetic field (56) is Be, &~ 1.56 x 10?° G. More optimistic values can be
estimated for neutrinos because of their light masses and small magnetic moments.
For example, considering recent constraints for neutrinos effective magnetic mo-
ment g, ~ 2.9 x 10~ up® and mass m, ~ 10~ eV,3% we find B, ~ 5.97 x 10'7 G.
Evidently, this value changes considering different values to neutrinos’ magnetic mo-
ment and mass. Taking, for instance, the experimental estimate to the tau-neutrino
magnetic moment p, ~ 3.9 X 10*7/“317 and assuming its mass m,_ ~ 10~ eV we
obtain a value to By near QED critical field Bqrp = m?/e ~ 4.4 x 1013 G, namely
B ~ 4.44 x 10" G. On the other hand, assuming the lower bound found in Ref.?°
Ly = 10*14,uB and the same mass m, ~ 10~ ! eV we obtain a value to B, orders
of magnitude larger than Bqgp, Ber &~ 1.73 x 10*! G. The critical magnetic field
surprisingly increases if one considers the magnetic moment predicted by the SM,
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py & 3.2 x 107 ¥ g x (m,, /1eV).2":39 Substituting this value into (56) and consid-
ering m, ~ 1eV we find B, ~ 5.41 x 10?6 G. Based on these estimates, we believe
that neutral fermion pair production may occur in astrophysical enviroments, in
particular during a supernova explosion or in the vicinity of magnetars, whose typ-

ical order of magnetic field intensities range from 106 — 10® G (or up to 10%° G),

as reported in Refs.4346,
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