
A PYTHON POISSON SOLVER FOR 3D SPACE CHARGE

COMPUTATIONS IN STRUCTURES WITH ARBITRARY SHAPED

BOUNDARIES

G. Pöplau∗, C. Potratz, Compaec e. G., Rostock, Germany

Abstract

Numerical techniques in the field of particle accelerators

are mainly driven by the design of next-generation acceler-

ators: The need for higher simulation complexity and the

necessity for more and more specialized algorithms arises

from the ever increasing need to include a broader range

of physical effects and geometrical details in a computer

simulation. This, on the other hand requires fast and reliable

simulation tools for a limited user base. Therefore, new ap-

proaches in simulation software development are necessary

to provide useful tools that are well-suited for the task at

hand and that can be easily maintained and adapted by a

small user community. We show how Python can be used to

solve numerical problems arising from particle accelerator

design efficiently. As model problem, the computation of

space charge effects of a bunch in RFQs including the vane

geometry was chosen and a suited solver was implemented

in Python.

INTRODUCTION

Precise and efficient 3D space charge simulations are an

important problem in accelerator design. Hereby, the re-

quirement to include the shape of the accelerating structure

comes more and more into focus. Representative problems

are for instance the simulation of electron or ion cloud insta-

bilities or the computation of the field of a bunch within an

RFQ structure. On the other hand there are only a few track-

ing codes, that consider the true shape of the structure in

space charge calculations, for example MOEVE PIC Track-

ing [1,2] and OPAL [3]. Within the tracking Code MOEVE

PIC Tracking, which was developed for the simulation of

electron and ion cloud effects, a Poisson solver for beam

pipes with elliptical cross-section was implemented.

In this paper we present a new approach for a Poisson

solver applicable in structures with arbitrary shaped bound-

aries and present a first implementation in Python. Hereby,

we take advantage of Python’s capability for fast algorithm

development and testing. In a subsequent step, a fast C-

implementation is automatically derived by a just-in-time

Compiler (JIT) [4].

For the numerical studies of the algorithm we present

the problem of the space charge computation for a bunch in

an 4-vane RFQ. Since this still is an open problem in the

simulation effort e. g. of the Front End Test Stand (FETS)

we have chosen the beam parameters of the H−-ion beam of

this facility [5]. The performance results are compared to a

more simple shaped beam pipe with circular cross-section.

∗ poeplau@compaec.de

 







Figure 1: Schematic view of the transversal discretization of

the region around the vane tips of an 4-vane RFQ. Close to

metallic surfaces the 7-point-stencil, which discretizes the

Laplacian, is modified using horizontal/vertical distances

between grid point and surface.

PYTHON POISSON SOLVER

The Python Poisson solver is based on the widely used

particle mesh method [6]. Hereby, the Poisson equation is

solved for the electrostatic potential ϕ of the bunch:

−∆ϕ =

̺

ε0

in Ω ⊂ R3,

ϕ = 0 on ∂Ω ,
(1)

where ̺ denotes the space charge density, ε0 the vacuum per-

mittivity andΩ the computational domain, which is bounded

by the walls of the structure and the setting of the compu-

tational bounding box. Dirichlet boundary conditions are

assumed for the boundary of the structure ∂Ω, i. e. the walls

of the structure are supposed to be of a perfectly conducting

material (PEC). On all other boundary parts of the compu-

tational domain the potential is set to zero, for instance in

longitudinal direction.

In our approach the Poisson equation (1) is discretized

by second order finite differences. This discretization leads

locally to the following equation for the potential ϕi, j,k at

MOPME013 Proceedings of IPAC2014, Dresden, Germany

ISBN 978-3-95450-132-8

406C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques

Figure 2: Potential of the same bunch in the center of a

circular beam pipe (top), in the center of the vane tips of a

4-vane like RFQ (mid) and slightly off axis (bottom).

the point (i, j, k):

h̃y, j h̃z,k

(

1
hx, i−1

+ 1
hx, i

)

ϕi, j,k

+ h̃x, i h̃z,k

(

1
hy, j−1

+ 1
hy, j

)

ϕi, j,k

+ h̃x, i h̃y, j

(

1
hz,k−1

+ 1
hz,k

)

ϕi, j,k

+ h̃y, j h̃z,k

(

−
1

hx, i−1
ϕi−1, j,k −

1
hx, i
ϕi+1, j,k

)

+ h̃x, i h̃z,k

(

−
1

hy, j−1
ϕi, j−1,k −

1
hy, i
ϕi, j+1,k

)

+ h̃x, i h̃y, j

(

−
1

hz,k−1
ϕi, j,k−1 −

1
hz,k
ϕi, j,k+1

)

= h̃x, i h̃y, j h̃z,k ̺i, j,k/ε0 ,

where hx, i−1, hx, i , hy, j−1,hy, j , hz,k−1, hz,k are the step

sizes related to point (i, j, k). For the transversal plane this

is shown in Figure 1. The so-called dual step size h̃x, i is

defined as h̃x, i = (hx, i−1 + hx, i)/2; the dual step sizes in y-

and z- direction are computed analogously. This difference

equation is only computed, if a grid point is located inside

the vacuum space. Points in close proximities to the PEC

surfaces require a special treatment. If a point is located next

to the conducting surface (e.g. the surface of a vane), the

corresponding step size is reduced to weight the boundary

effect at the surface properly. An example of this treatment

is presented in Figure 1. In the update equation for the point

(i, j, k) the step size hx, i is reduced.

The update equation can be translated directly to Python

(the code is shown as a direct translation of the update equa-

tion, no additional optimizations were performed to keep

the example instructive):

Listing 1: Simple exemplary parts of straight forward imple-

mentation of the SSOR algorithm without optimizations.

1 def i t e r a t i o n _ s s o r (. . .) :

2 . . .

3 f o r k in r ange (1 , p) :

4 f o r j in r ange (1 ,m) :

5 f o r i in r ange (1 , n) :

6 i f p i p e [i , j , k] == 1 :

7 hx_dua l = (hx [i −1 , j , k] + . . .) / 2

8 . . .

9 ax1 = hy_dual ∗ hz_dual / (hx [i , j , k])

10

11 U[i , j , k] = (F [i , j , k] + Ugs)

The direct translation consists of multiple nested loops that

update single field entries based on certain conditions. Un-

fortunately, the native Python implementation is too slow for

practical usage. On an up to date PC (Intel Core I5-3210M,

2.5 GHz), a single iteration on a [64]3 grid requires more

than 7 s CPU time (one core). To speed up the execution,

the just-in-time compiler Numba [4] was used. Simply by

adding two lines of code, the Numba infrastructure can be

used to generate automatically an optimized C implementa-

tion of the above function:

Listing 2: Using Numba to automatically build an C imple-

mentation

1 # Impor t numba module

2 from numba import a u t o j i t

3 # Use d e c o r a t o r t o i n s t r u c t numba

4 # t o c r e a t e a comp i l ed f u n c t i o n

5 @ a u t o j i t

6 def i t e r a t i o n _ s s o r (. . .) :

7 . . .

The decorator autojit instructs the just-in-time compiler to

analyze the function during the first call. A C replacement

function is generated and compiled in the background. All

subsequent function calls to that function are replaced with

calls to the compiled C function. In the case of the sim-

ple SSOR implementation the JIT-compiler generated an

Proceedings of IPAC2014, Dresden, Germany MOPME013

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques

ISBN 978-3-95450-132-8

407 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

optimized function that reduced the execution time for one

iteration on the [64]3 grid used here from 7 s CPU time

to 30 ms CPU time which is comparable to a native C im-

plementation without the need to actually write low level

code.

Using the JIT-compiler, two iterative Poisson solvers

were implemented in Python: Symmetric Successive Over

Relaxation with relaxation factor ω (SSOR(ω)) and pre-

conditioned conjugate gradients with Jacobi precondition

(PCG-Jacobi). For more details of discretization and solvers

see [1, 7] and citations therein.

Figure 3: Convergence and performance of both Poisson

solvers in both cross-sections.

NUMERICAL RESULTS

The new Python Poisson Solver was investigated with a

bunch within differently shaped structures: a circular beam

pipe and the region of the vanes tips of a 4-vane like RFQ

structure. The model bunch is a uniformly charged ellipsoid

with the parameters of the H−-bunch of FETS, i. e. the

current was taken with C = 60 mA, the transverse radius

with r = 2 mm and the pulse length with 2 ms.

Figure 3 compares the performance of the two solvers

applied for the two different domains. It turns out that the

SSOR solver with relaxation parameter ω = 1.85 shows a

better performance than PCG-Jacobi.

Figure 2 demonstrates the influence of the structure on

the potential shape of the same bunch for a circular beam

pipe, the region of the vane tips of a 4-vane like RFQ and a

bunch in the same region but with a shift of 1.5 mm in both

x- and y- direction. The electric field within this structure

is represented in Figure 4.

Figure 4: Electric field of a bunch in a beam pipe in the

vicinity of the vane tips of a 4-vane like RFQ with a shift in

both x- and y-direction of 1.5 mm.

CONCLUSIONS

In this paper we presented a new Poisson solver for

3D space charge computations in structures with arbitrary

shaped boundaries. The solver is implemented in Python

which makes further adoptions quiet easy. To overcome the

severe performance problems of a native implementation, a

JIT-compiler was used to generate optimized C code for the

computational intensive parts of the code. Thus the easy to

write, read and maintain properties of the Python program-

ming language can effectively be used to write performant

numerical software that solves real world problems.

REFERENCES

[1] A. Markoviḱ. Simulation of the Interaction of Positively

Charged Beams and Electron Clouds. PhD thesis, Rostock

University, 2013.

[2] G. Pöplau, A. Meseck, and U. van Rienen. Simulation of

the interaction of an electron beam with ionized residual gas.

Proceedings of IPAC 2011, 2250–2252, 2011.

[3] A. Adelmann, P. Arbenz, and Y. Ineichen. A fast parallel

poisson solver on irregular domains applied to beam dynamics

simulations. J. Comput. Phys., 229(12):4554–4566, 2010.

[4] Numba, Version 0.13. http://numba.pydata.org, 2014.

[5] A.Letchford et al. Current status of the RAL Front End Test

Stand (FETS) project. Proceedings of LINAC 2012, 846–848,

2012.

[6] R.W. Hockney and J.W. Eastwood. Computer Simulation Using

Particles. Institut of Physics Publishing, Bristol, 1992.

[7] G. Pöplau, U. van Rienen, S.B. van der Geer, and M.J. de Loos.

Multigrid algorithms for the fast calculation of space-charge

effects in accelerator design. IEEE Transactions on Magnetics,

40(2):714–717, 2004.

MOPME013 Proceedings of IPAC2014, Dresden, Germany

ISBN 978-3-95450-132-8

408C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques

