MOPMEO013

Proceedings of IPAC2014, Dresden, Germany

A PYTHON POISSON SOLVER FOR 3D SPACE CHARGE
COMPUTATIONS IN STRUCTURES WITH ARBITRARY SHAPED
BOUNDARIES

G. Poplau*, C. Potratz, Compaec e. G., Rostock, Germany

Abstract

Numerical techniques in the field of particle accelerators
are mainly driven by the design of next-generation acceler-
ators: The need for higher simulation complexity and the
necessity for more and more specialized algorithms arises
from the ever increasing need to include a broader range
of physical effects and geometrical details in a computer
simulation. This, on the other hand requires fast and reliable
simulation tools for a limited user base. Therefore, new ap-
proaches in simulation software development are necessary
to provide useful tools that are well-suited for the task at
hand and that can be easily maintained and adapted by a
small user community. We show how Python can be used to
solve numerical problems arising from particle accelerator
design efficiently. As model problem, the computation of
space charge effects of a bunch in RFQs including the vane
geometry was chosen and a suited solver was implemented
in Python.

INTRODUCTION

Precise and efficient 3D space charge simulations are an
important problem in accelerator design. Hereby, the re-
quirement to include the shape of the accelerating structure
comes more and more into focus. Representative problems
are for instance the simulation of electron or ion cloud insta-
bilities or the computation of the field of a bunch within an
RFQ structure. On the other hand there are only a few track-
ing codes, that consider the true shape of the structure in
space charge calculations, for example MOEVE PIC Track-
ing [1,2] and OPAL [3]. Within the tracking Code MOEVE
PIC Tracking, which was developed for the simulation of
electron and ion cloud effects, a Poisson solver for beam
pipes with elliptical cross-section was implemented.

In this paper we present a new approach for a Poisson
solver applicable in structures with arbitrary shaped bound-
aries and present a first implementation in Python. Hereby,
we take advantage of Python’s capability for fast algorithm
development and testing. In a subsequent step, a fast C-
implementation is automatically derived by a just-in-time
Compiler (JIT) [4].

For the numerical studies of the algorithm we present
the problem of the space charge computation for a bunch in
an 4-vane RFQ. Since this still is an open problem in the
simulation effort e. g. of the Front End Test Stand (FETS)
we have chosen the beam parameters of the H™ -ion beam of
this facility [S]. The performance results are compared to a
more simple shaped beam pipe with circular cross-section.

* poeplau@compaec.de
ISBN 978-3-95450-132-8
406

/

Figure 1: Schematic view of the transversal discretization of
the region around the vane tips of an 4-vane RFQ. Close to
metallic surfaces the 7-point-stencil, which discretizes the
Laplacian, is modified using horizontal/vertical distances
between grid point and surface.

PYTHON POISSON SOLVER

The Python Poisson solver is based on the widely used
particle mesh method [6]. Hereby, the Poisson equation is
solved for the electrostatic potential ¢ of the bunch:

Ao = £ inQcr},
&0)]
¢ = 0 onoQ,

where o denotes the space charge density, & the vacuum per-
mittivity and Q the computational domain, which is bounded
by the walls of the structure and the setting of the compu-
tational bounding box. Dirichlet boundary conditions are
assumed for the boundary of the structure dQ, i. e. the walls
of the structure are supposed to be of a perfectly conducting
material (PEC). On all other boundary parts of the compu-
tational domain the potential is set to zero, for instance in
longitudinal direction.

In our approach the Poisson equation (1) is discretized
by second order finite differences. This discretization leads
locally to the following equation for the potential ¢; ; i at

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques

Proceedings of IPAC2014, Dresden, Germany

—100
—150
—200
>
—250
—-300
—-350
—400
—450

010 -0.005 0. 000 0.005 0.010

-120

—160

’ 200
—240

: -280
-320

-0.010 ~360

010 -0.005 O. 000 0.005 0.010

-0. 0100

0.010

0.005
~120
0.000 —160
~200
~240

~0.005
280
~320

~0.019

0. 000 0.005 0.010

010 -0.005

Figure 2: Potential of the same bunch in the center of a
circular beam pipe (top), in the center of the vane tips of a
4-vane like RFQ (mid) and slightly off axis (bottom).

the point (7, j, k):

7 1 1
hy’jhzk<hx,i—l + xl)sol‘]k
7 1 1
+ hx,thz,k (hy,jfl + hy.j) Pi.j.k
7 7 1 1
hx,ihy,; (hz_,k—l hiz.)GDI,J,k
7 7 1 1
hy jhex (- =¢ionjk - —X,,.tpm,j,k)
7 7 1
+ hyihgk (—h” o Pk T g Pk
7 7 1
hx,i]:ly,j~(_ e To oy Pisj-k— | k‘pzjk+l>
= hy, lhyth kOi,j, k/€o

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques

MOPMEO013

where hy;_1, hx i, by j—1,hy j, hz k-1, hz ko are the step
sizes related to point (i, j, k). For the transversal plane this
is shown in Figure 1. The so-called dual step size Ex’,- is
defined as ﬁx,i = (hy,i—1 + hy,i)/2; the dual step sizes in y-
and z- direction are computed analogously. This difference
equation is only computed, if a grid point is located inside
the vacuum space. Points in close proximities to the PEC
surfaces require a special treatment. If a point is located next
to the conducting surface (e.g. the surface of a vane), the
corresponding step size is reduced to weight the boundary
effect at the surface properly. An example of this treatment
is presented in Figure 1. In the update equation for the point
(i,J, k) the step size hy ; is reduced.

The update equation can be translated directly to Python
(the code is shown as a direct translation of the update equa-
tion, no additional optimizations were performed to keep
the example instructive):

Listing 1: Simple exemplary parts of straight forward imple-
mentation of the SSOR algorithm without optimizations.

. def iteration_ssor (...):

3 for k in range(1,p):

4 for j in range(1,m):

5 for i in range(l,n):

s if pipel[i.,j,k] == 1:

7 hx_dual = (hx[i-1,j.k] +)/2
8 ...

9 axl = hy_dualxhz_dual/(hx[i,j,k])
10

1 Uli,j,k] (Fli,j,k] + Ugs)

The direct translation consists of multiple nested loops that
update single field entries based on certain conditions. Un-
fortunately, the native Python implementation is too slow for
practical usage. On an up to date PC (Intel Core 15-3210M,
2.5 GHz), a single iteration on a [64]° grid requires more
than 7 s CPU time (one core). To speed up the execution,
the just-in-time compiler Numba [4] was used. Simply by
adding two lines of code, the Numba infrastructure can be
used to generate automatically an optimized C implementa-
tion of the above function:

Listing 2: Using Numba to automatically build an C imple-
mentation

1 # Import numba module

> from numba import autojit

3 # Use decorator to instruct numba
« # to create a compiled function

s @autojit

¢ def iteration_

7

ssor (...):

The decorator autojit instructs the just-in-time compiler to
analyze the function during the first call. A C replacement
function is generated and compiled in the background. All
subsequent function calls to that function are replaced with
calls to the compiled C function. In the case of the sim-
ple SSOR implementation the JIT-compiler generated an

ISBN 978-3-95450-132-8
407

MOPMEO013

optimized function that reduced the execution time for one
iteration on the [64]° grid used here from 7 s CPU time
to 30 ms CPU time which is comparable to a native C im-
plementation without the need to actually write low level
code.

Using the JIT-compiler, two iterative Poisson solvers
were implemented in Python: Symmetric Successive Over
Relaxation with relaxation factor w (SSOR(w)) and pre-
conditioned conjugate gradients with Jacobi precondition
(PCG-Jacobi). For more details of discretization and solvers
see [1,7] and citations therein.

102

relative residual

SSOR(1.85), Circle
- - PCG-Jacobi, Circle

10”}| — SSOR(1.85), RFQ
-- PCG-Jacobi, RFQ
10°
0 20 40 60 80 100

number of iterations

3.5 - :
— SSOR(1.85), Circle
3.0l| -- PCG-Jacobi, Circle
— SSOR(1.85), RFQ
2.51| -- PCG-Jacobi, RFQ A
- D
() 3
ﬂE.J 2.0 Rers
=] . I/‘A""
=15 / e
= \"n(" '
1.0 ” +.“"'N
05 5
ad I’:"
0.0 - - - -
0 20 40 60 80 100

number of iterations

Figure 3: Convergence and performance of both Poisson
solvers in both cross-sections.

NUMERICAL RESULTS

The new Python Poisson Solver was investigated with a
bunch within differently shaped structures: a circular beam
pipe and the region of the vanes tips of a 4-vane like RFQ
structure. The model bunch is a uniformly charged ellipsoid
with the parameters of the H™-bunch of FETS, i. e. the
current was taken with C = 60 mA, the transverse radius
with » = 2 mm and the pulse length with 2 ms.

Figure 3 compares the performance of the two solvers
applied for the two different domains. It turns out that the
SSOR solver with relaxation parameter w = 1.85 shows a
better performance than PCG-Jacobi.

Figure 2 demonstrates the influence of the structure on
the potential shape of the same bunch for a circular beam
pipe, the region of the vane tips of a 4-vane like RFQ and a

ISBN 978-3-95450-132-8
408

Proceedings of IPAC2014, Dresden, Germany

bunch in the same region but with a shift of 1.5 mm in both
x- and y- direction. The electric field within this structure
is represented in Figure 4.

Figure 4: Electric field of a bunch in a beam pipe in the
vicinity of the vane tips of a 4-vane like RFQ with a shift in
both x- and y-direction of 1.5 mm.

CONCLUSIONS

In this paper we presented a new Poisson solver for
3D space charge computations in structures with arbitrary
shaped boundaries. The solver is implemented in Python
which makes further adoptions quiet easy. To overcome the
severe performance problems of a native implementation, a
JIT-compiler was used to generate optimized C code for the
computational intensive parts of the code. Thus the easy to
write, read and maintain properties of the Python program-
ming language can effectively be used to write performant
numerical software that solves real world problems.

REFERENCES

[1] A. Markovik. Simulation of the Interaction of Positively
Charged Beams and Electron Clouds. PhD thesis, Rostock
University, 2013.

[2] G. Poplau, A. Meseck, and U. van Rienen. Simulation of
the interaction of an electron beam with ionized residual gas.
Proceedings of IPAC 2011, 2250-2252, 2011.

[3] A. Adelmann, P. Arbenz, and Y. Ineichen. A fast parallel
poisson solver on irregular domains applied to beam dynamics
simulations. J. Comput. Phys., 229(12):4554-4566, 2010.

[4] Numba, Version 0.13. http://numba.pydata.org, 2014.

[5] A.Letchford et al. Current status of the RAL Front End Test
Stand (FETS) project. Proceedings of LINAC 2012, 846-848,
2012.

[6] R.W.Hockney and J.W. Eastwood. Computer Simulation Using
Particles. Institut of Physics Publishing, Bristol, 1992.

[7] G.Poplau, U. van Rienen, S.B. van der Geer, and M.J. de Loos.
Multigrid algorithms for the fast calculation of space-charge
effects in accelerator design. /EEE Transactions on Magnetics,
40(2):714-717, 2004.

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques

