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Abstract
The geometrical arrangement of a set of quantum states can be completely characterized using
relational information only. This information is encoded in the pairwise state overlaps, as well as in
Bargmann invariants of higher degree written as traces of products of density matrices. We
describe how to measure Bargmann invariants using suitable generalizations of the SWAP test. This
allows for a complete and robust characterization of the projective-unitary invariant properties of
any set of pure or mixed states. As applications, we describe basis-independent tests for linear
independence, coherence, and imaginarity. We also show that Bargmann invariants can be used to
characterize multi-photon indistinguishability.

1. Introduction

The relative geometrical arrangement of a set of quantum states determines properties such as the Hilbert
space dimension they span, or whether they can be simultaneously diagonalized. These properties are
physically meaningful, being independent of gauge choices for the global phase of each state’s wave-function,
and invariant under application of the same unitary transformation on all quantum states in the set. More
generally, we use the terms relational or Projective-Unitary (PU) invariants to refer to properties of tuples of
quantum states that are invariant under application of the same unitary transformation to each state in the
tuple. The simplest example of a relational invariant is the two-state overlap∆12 = tr(ρ1ρ2), which for pure
states reduces to∆12 = |⟨ψ1|ψ2⟩|2, with a clear operational physical interpretation.

One way to fully characterize relational information in a tuple of (generally mixed) quantum states,
S = (ρi)

N
i=1, is to perform individual tomographic reconstruction of each state. This is both experimentally

costly and unnecessary, providing much more information than strictly needed. A more economical
approach is to directly measure a set of invariant properties of a tuple of quantum states. We call such a set
complete if it allows us to decide whether two tuples of quantum states S = (ρi)

N
i=1,S ′ = (σi)

N
i=1 are unitarily

equivalent, in the sense that there exists a unitary operator U taking states from S onto their counterparts in
S ′: σi = UρiU†. In the above, we identified the relational properties of quantum states with equivalence
classes (orbits) of the unitary group acting on tuples of quantum states. This approach follows the spirit of
the Erlangen program in Geometry [1] (i.e. studying geometry via the lens of group actions and their
invariants) and is justified by the fact that unitary channels constitute the most general invertible operations
allowed in quantum theory. Note that the same paradigm motivated the usage of invariant polynomials in
the context of classification of entanglement classes subject to local unitary transformations [2].

Here we introduce quantum circuits we call cycle tests, which enable the direct measurement of complete
sets of Bargmann invariants for both mixed and pure quantum states. We review previous mathematical
literature identifying complete sets of invariants for different scenarios. For the case of pure states, we show
all necessary invariants can be incorporated in a single Gram matrix Gij =

〈
ψi |ψj

〉
, with suitable gauge
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choices so that all parameters in G are PU-invariants measurable by our proposed circuits. This operational
approach to measuring and using Bargmann invariants results in applications such as multi-photon
indistinguishability certification, and basis-independent tests of linear independence, imaginarity, and
coherence.

We start by reviewing the definition of Bargmann invariants. Consider a tuple ofm pure quantum states
(understood as rank one normalized projectors)Ψ = (ψ1,ψ2, . . .ψm), where we used the shorthand
ψj =

∣∣ψj

〉〈
ψj

∣∣. We later consider the generalization to mixed states. The Bargmann invariant of this tuple of
states is defined as [3, 4]:

∆12···m = ⟨ψ1|ψ2⟩⟨ψ2|ψ3⟩ · · · ⟨ψm|ψ1⟩ . (1)

We say that this invariant has degree m. Due to the suitable arrangement of bras and kets, the above
expression is a well-defined PU-invariant function of states inΨ. Note that, form= 2, this invariant reduces
to the overlap∆12 = |⟨ψ1|ψ2⟩|2. Bargmann invariants have been studied in the context of characterization of
photonic indistinguishability [5–7] and geometric phases [8, 9]. The Kirkwood–Dirac quasi-probability
representation [10–12] is also defined in terms of these invariants. The phase of∆12···m is precisely the
Pancharatnam geometric phase [13] acquired by a wavefunction |ψ1⟩ subjected to a sequence of projective
measurements onto states ψm, . . . ,ψ2,ψ1. Equivalently, it is the Berry phase acquired by a cyclic trajectory
along the shortest (geodesic) cyclic path visiting those states [14]—for a review of these ideas, see [9].
Bargmann invariants are also known as multivariate traces [15], and have been studied in mathematical
invariant theory [16]. Some of the more recent applications involve the description of error mitigation
techniques [17], scalar spin chirality [18], weak values [19], and out-of-time-ordered correlators [20].

2. Results

2.1. Measuring Bargmann invariants
Let us now describe a quantum circuit family that measures any Bargmann invariant∆12···m. We call these
circuits cycle tests, and they are generalizations of the well-known SWAP test [21, 22] used to measure the
two-state overlap∆12 (see figure 1(a). The key gate in the cycle test circuit of figure 1(b) is a controlled cycle
permutation, which implements the cyclic permutation (12 · · ·m) of the input states when the control qubit
is in state |1⟩, and identity otherwise. It is easy to check that the final measurement of the auxiliary qubit
gives an estimate of ℜ(∆12···m). The circuit of figure 1(b) was proposed in [23] as a way to measure
non-linear functionals of a single density matrix. Here, we use it with different inputs to estimate ℜ(∆12···m),
and propose a modification with an added phase gate P= diag(1, i), to enable the measurement of
ℑ(∆12···m) (see figure 1(b). Note that the cycle test reduces to the SWAP test form= 2 states. Overlaps can

also be evaluated as a particular case of degree-3 invariants, as∆iij =∆ij =
∣∣〈ψi |ψj

〉∣∣2 — lower-degree
invariants can always be recovered from higher-degree invariants with repeated indices. The cycle test circuit
can be implemented in linear depth using nearest-neighbor gates only, or in a depth that scales like O(logm)
if we assume all-to-all qubit connectivity, as we describe in the Methods section. After completion of our
work, circuits were proposed to measure Bargmann invariants in constant depth [15], or exploring trade-offs
between number of auxiliary qubits and depth [17].

An early proposal of a circuit similar to the SWAP and cycle tests in figure 1 appeared in the DQC1 model
of quantum computation [24], but using a generic controlled unitary, and an input of maximally mixed
states. Circuits of the form of figure 1(b) but with a generic controlled unitary U are often called Hadamard
tests [25]—our cycle test circuit can be understood as a Hadamard test of the cyclic permutation operator,
featuring a generic product state input.

2.2. Complete characterization of relational information between states
The following Theorem gives a complete characterization of PU-invariant properties of a collection of N
pure sates in terms of Bargmann invariants.

Theorem 1 (Characterization of relational properties of pure states). LetΨ = (ψi)
N
i=1 be a tuple of pure

quantum states. Then, the PU-equivalence class ofΨ is uniquely specified by values of at most (N− 1)2

Bargmann invariants. The invariants are of degree m⩽ N and their choice depends onΨ.

The above Theorem follows from results obtained by Chien and Waldron in [4]. In what follows we
present a simplified and shortened proof. Our strategy is based on encoding complete PU-invariants in a
single Gram matrix in a way that depends on orthogonality relations of states inΨ. This allows us to upper
bound the number of necessary invariants by (N− 1)2. An early result along these lines was obtained in [26],
which proposes an explicit canonical form for the Gram matrix for the case of no null overlaps.
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Figure 1. Circuits for measuring projective-unitary invariants of a tuple of states. (a) SWAP test to measure the two-state overlap
∆12 = |⟨ψ1|ψ2⟩|2. The probability of outcome 0 is p(0) = (1+∆12)/2. (b) Cycle test to measure them-state invariant∆12···m.
If the white square is the identity, we have p(0) = (1+ℜ(∆12···m))/2. If the white square is the P= diag(1, i) gate, we have
p(0) = (1+ℑ(∆12···m))/2. The controlled gate implements the cyclic permutation (123 · · ·m) of the inputs if the control is in
state |1⟩, and does nothing otherwise.

Proof. We start with the connection between PU equivalence of two tuples of pure states Ψ = (ψi)
N
i=1,

Φ = (ϕi)
N
i=1 and unitary equivalence between the associated tuples of wave-functions. Namely,Ψ is PU equi-

valent to Φ if and only if it is possible to find representing wave functions A= (|ψi⟩)Ni=1, B = (|ϕi⟩)Ni=1 that
are unitarily equivalent. That is, there exists an unitary operator U such that |ϕi⟩= U|ψi⟩, for i = 1, . . . ,N.
The problem of unitary equivalence of tuples of vectors is equivalent to equality of the corresponding Gram
matrices i.e. GA

ij =
〈
ψi|ψj

〉
=
〈
ϕi|ϕj

〉
= GB

ij (this follows e.g. from the uniqueness the Cholesky decomposi-
tion of G [27]). The phase of individual wave functions |ψi⟩ is an unphysical, gauge degree of freedom, and
therefore the Gram matrix of a collection of pure states Ψ is uniquely defined only up to conjugation via a
diagonal unitary matrix. Assume now that for every tuple of quantum statesΨ = (ψi)

N
i=1 we have a construc-

tion (presented in the next paragraph) of a valid Gram matrix G̃Ψ whose entries can be expressed solely in
terms of PU-invariants of states fromΨ. It then follows from the above considerations thatΨ is PU equivalent
to Φ if and only if G̃Ψ = G̃Φ.

The construction of G̃Ψ proceeds as follows. We first introduce the frame graph ΓΨ as an (undirected)
graph whose vertices are labeled by i = 1, . . . ,N with edges connecting i and j if and only if tr(ψiψj) ̸= 0.
Without loss of generality we assume that ΓΨ is connected [28] i.e. that every pair of vertices in ΓΨ can be
connected via a path in ΓΨ. We can now choose a subgraph of ΓΨ, denoted by T Ψ, which is connected and
contains the same vertices as ΓΨ, but no cycles. This is known as a spanning tree of ΓΨ, and there exists at
least one spanning tree for any connected graph [29]—see figure 2 for an illustration. We now choose vector
representatives |ψi⟩ of states inΨ in such a way that, for {i, j} an edge in T Ψ,

〈
ψi|ψj

〉
=
∣∣〈ψi|ψj

〉∣∣. Every other
inner product

〈
ψi|ψj

〉
will be either 0, or its phase will be fixed as follows. We first find a path from j to i

within T Ψ. Since T Ψ is a spanning tree, such a path is guaranteed to exist and to be unique. Suppose this
path has k vertices (α1 = j,α2, . . . ,αk−1,αk = i). Consider now the k-cycle that would be formed by adding
the vertex j at the end of this path (note that vertices i and j are connected by an edge in ΓΨ) and denote
it by Cij. By construction, every edge in Cij except for {i, j} is in T Ψ, and therefore all the inner products〈
ψαl |ψαl+1

〉
for l ∈ {1,2, . . .k− 1} have been chosen as positive. Hence, if we denote the degree-k Bargmann

invariant associated to Cij as∆(Cij) := ∆α1α2...αk−1αk we can write

∆
(
Cij

)
=
〈
ψi|ψj

〉 k−1∏
l=1

〈
ψαl |ψαl+1

〉
. (2)

Therefore, we can fix the phase of every nonzero inner product that is not in T Ψ as
〈
ψi|ψj

〉
=

∆(Cij)/
∏k−1

l=1

〈
ψαl |ψαl+1

〉
. The above construction is reminiscent of the procedure of gauge fixing used in
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Figure 2. Frame graph for the example described in the text. Edges in black correspond to the choice of spanning tree, in this
case a star graph.

the studies of magnetic fields and quantum statistics on graphs [30, 31]. Thus, all matrix elements of the so-
constructed Grammatrix G̃Ψ

ij =
〈
ψi|ψj

〉
are expressed via Bargmann invariants of degree at mostN. The total

number of invariants required to construct G̃Ψ in this way is upper-bounded by (N− 1)2, as we first meas-
ureN(N− 1)/2 degree-2 invariants to obtain the frame graph, and then at most (N− 1)(N/2− 1) additional
invariants to fix the phases of the non-null elements of G̃Ψ corresponding to edges {i, j} /∈ ΓΨ.

Crucially, we cannot characterize the relational properties of even single-qubit states without using
Bargmann invariants of degreem> 2. As an example, take two triples of single-qubit states
Ψ = (|X+⟩⟨X+| , |Y+⟩⟨Y+| , |Z+⟩⟨Z+|), Φ = (|X+⟩⟨X+| , |Y−⟩⟨Y−| , |Z+⟩⟨Z+|), where |P±⟩⟨P±| are
projectors on Pauli eigenvectors with±1 eigenvalues. All overlaps within each tuple have the same value
∆ij = 1/2. Therefore, the tuples only differ in that∆Ψ

123 = 1+i
4 ̸= 1−i

4 =∆Φ
123.

Let us now consider an application of theorem 1 to a N = 9 state tuple (ψi)i=1...9. The first step is to
construct the frame graph. This is done by measuring all N(N− 1)/2= 36 overlaps

∣∣〈ψi |ψj

〉∣∣. Suppose the
frame graph is the one represented in figure 2(recall that missing edges correspond to null overlaps). One
choice of spanning tree is a star graph, where vertex 1 is connected to every other. We can fix the phases so
that all inner products ⟨ψ1|ψi ⟩> 0. Finally, we consider all cycles that can be built by adding edges from the
original frame graph to the spanning tree (in figure 2, these correspond to gray edges). In each such cycle,
there is only one new edge whose phase has yet to be fixed; in this example only 3-cycles appear. We then
measure the degree-3 Bargmann invariants∆1i j for all distinct pairs {i, j}, and attribute its phase to edge
{i, j}. There are 28 of these for this example size, though in figure 2 only 10 of them are nonzero. This
procedure leads to the Gram matrix:

G̃Ψ
ij =


√
∆ii = |⟨ψi |ψi ⟩|= 1 for i = j√
∆1j =

∣∣〈ψ1|ψj

〉∣∣ , for i = 1,
∆ij1√

|∆1j||∆1i|
for j > i.

(3)

The gauge choices involved in defining the Gram matrix G̃Ψ make all its entries measurable using the cycle
test circuits, and capable of fully characterizing the relational information among states inΨ.

The choice of spanning tree is not unique. In the above example, we could have chosen instead e.g. a
simple path starting in vertex 1 and visiting all vertices sequentially up to vertex 9. Building the Gram matrix
G̃Ψ using this path requires the same number of invariants, but they are more experimentally involved to
measure, as some will have degree> 3. An interesting open question is to find alternative characterization
procedures for general scenarios that minimize the experimental effort required.

2.3. Robustness, sample complexity, andmixed states
Any implementation of cycle tests will have to deal with experimental imperfections and, at at best,
mixed-state approximations of the ideal pure states. In [32] we give an argument that, as long as the prepared
density matrices have high purity, then the Bargmann invariants measured will be close to the Bargmann
invariants of the target pure states (understood to be the projector onto the eigenvector corresponding to the
largest eigenvalue of a density matrix). In [32] we also show that if Bargmann invariants evaluated for two
tuples of pure statesΨ = (ψi)

N
i=1, Φ = (ϕi)

N
i=1 differ from each other only slightly, then states comprising

them can be approximately transformed onto each other. Specifically, we show that there exists a unitary
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transformation U that approximately transformsΨ onto Φ in the sense that (under mild assumptions
specified in [32])

1

N

N∑
i=1

(
1−Tr

(
UψiU

†ϕi
))

⩽ CΨ

N
∥G̃Ψ − G̃Φ∥22 , (4)

where CΨ is a constant (depending onΨ), G̃Ψ, G̃Φ are Gram matrices from the proof of Theorem 1, and
∥X∥2 =

√
Tr(X2) is the Hilbert–Schmidt norm. This shows that Bargmann invariants offer a robust

characterization of relational properties of tuples of pure states. Inequality (4) also serves to analyse the
expected estimation errors due to a finite number of cycle test runs. Specifically, from Hoeffding’s inequality
it follows that estimation of a single Bargmann invariant to accuracy ϵ with probability greater than 1− δ
requiresΘ(1/ϵ2) log(1/δ) experimental cycle test shots. It follows that srel =Θ(N2 log(N/δ)/ϵ2) experiments
suffice to estimate all necessary Bargmann invariants up to accuracy ϵ with high probability. For comparison,
the sampling cost of standard tomographic reconstruction of N pure states up to accuracy ϵ in trace norm
equals stom =Θ(Nd log(N/δ)/ϵ2)) [33]. Our procedure is much more economical, as the sampling
complexity depends solely on number of states N, and not on the dimension d of the Hilbert space—in
principle our scheme, contrary to usual tomography, can be realized even in infinite-dimensional spaces.
Furthermore, under reasonable assumptions estimation of all necessary Bargmann invariants up to accuracy
ϵ allows to approximately characterize relational information inΨ [34].

Identifying complete sets of PU-invariants for mixed states is a much more challenging problem. If we use
mixed states ρi (i = 1,2, . . . ,m) as inputs to the cycle test circuits of figure 1, the output gives an operational
meaning to mixed-state Bargmann invariants:∆12...m = Tr(ρ1ρ2 . . .ρm). Mixed-state invariants of this form
are also known as multivariate traces [15], with proposed applications in quantum error mitigation [17]. In
[32] we show that for a tuple of N mixed states S = (ρi)

N
i=1 in dimension d, Bargmann invariants of degree

m⩽ d2 form a complete set of invariants characterizing PU invariant properties of S . Moreover, the number
of independent invariants can be chosen to be Nd2 + 1. These results follow from known results from
invariant theory [16, 35, 36], which we (partially) reprove with the help of Schur–Weyl duality.

2.4. Applications
Testing for linear independence.Whether a set of states is linearly independent (LI) is clearly a
unitary-invariant property. LI states can be probabilistically cloned, and can be unambiguously
discriminated. Recognizing linear dependence of a set of states enables us to find a more compact description
of the set; in machine learning, this corresponds to a procedure for dimensionality reduction. Using a
complete set of Bargmann invariants, we can compute the hypervolume generated by the set of states to
determine whether they are LI. For the case ofm non-orthogonal vectors, we can use the Gram matrix
encoding of the complete set of invariants we have described to write the linear independence condition
simply as: det(G)> 0. In [32] we calculate det(G) explicitly as a function of the invariants for the cases of 3
and 4 non-orthogonal states.

Basis-independent imaginarity witnesses.Measuring Bargmann invariants of degree 3 and above can serve
as a basis-independent witness that the input quantum states have complex-valued amplitudes. The simple
reason is that if ℑ(∆12...m) ̸= 0 some of the density matrices at the input must necessarily have
complex-valued entries, independently of the basis chosen. As an example, it is easy to check that the 3 Pauli
operator eigenstates |A⟩= |0⟩, |B⟩= 1√

2
(|0⟩+ |1⟩), |C⟩= 1√

2
(|0⟩+ i|1⟩) achieves the maximum value of

ℑ(∆ABC) = 1/4 for this 3-state scenario. In [32] we describe a tuple of n single-qubit states that are vertices
of a regular spherical n-gon on the Bloch sphere, for which ℑ(∆)→ 1 as n→∞.

Experimental tests have been recently proposed to discriminate whether complex amplitudes (or
‘imaginarity’) are an essential feature of quantum theory [37, 38]. The application of our proposal as an
imaginarity witness differs from that of [37] in that it is not device-independent, despite being
basis-independent.

Basis-independent coherence witnesses. If them states ρi are simultaneously diagonalizable in a single
reference basis, the degree-m Bargmann invariant∆12...m = Tr(

∏
i ρi) is simply the probability that

independent measurements of the reference basis on all states give the same outcome [39]. Hence, for
diagonal states these invariants must be real and in the range∆12···m ∈ [0,1]. Measuring ℑ(∆12...m) ̸= 0, or
real values outside of the allowed range for diagonal states, serves as a basis-independent witness of
coherence, generalizing the overlap-based witnesses of [39]; an alternative approach to quantify
basis-independent coherence has been recently proposed in [40]. Note that witnesses of imaginarity, as
discussed in the previous section, are also witnesses of coherence, as complex-valued entries of a density
matrix must be off-diagonal. In [32] we look at the simplest scenarios where coherence can be witnessed by
Bargmann invariant measurements when we have sets with either 2 or 3 states.

5
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Characterization of photonic indistinguishability. Bargmann invariants have helped describe experiments
using single photons in linear optics [8]. Each photon in anm-photon experiment is described by a state over
its internal degrees of freedom—such as polarization and orbital angular momentum [41]. Suppose we apply
some linear-optical transformation to these photons that is insensitive to their internal degrees of freedom,
and measure output occupation numbers. The outcome statistics will not depend on exactly which internal
state a particular photons is in, but it will depend on the relational information, such as imperfect overlaps,
which bring about partial distinguishability. In other words, the output probabilities of such an experiment
can only depend on the linear-optical transformation and on the Bargmann invariants of the set of states.
This can be seen in several recent experimental and theoretical works concerning genuine 3- and 4-photon
indistinguishability [5–7, 39, 42].

In [39], it was shown how measurements of some overlaps among a set ofm states can result in nontrivial
lower bounds for all overlaps. Bargmann invariants of higher degree can be useful in the same way, as by
definition |∆12...m|2 is a lower bound to overlaps of all neighboring states in the associated cycle. This
suggests improved designs for photonic measurements of Bargmann invariants may help in the
characterization of multi-photon sources.

3. Discussion

We reviewed how Bargmann invariants encode the projective-unitary invariant properties of a set of states.
For the case of pure states, we have shown how to represent the complete information in a Gram matrix of
inner products, written in terms of invariant quantities only, representing relational information about the
states in the set. We have proposed a way of measuring real and imaginary parts of arbitrary Bargmann
invariants using cycle tests, a natural generalization of the SWAP test. We discussed several applications:
coherence and imaginarity witnesses, testing for linear independence, and characterization of multi-photon
indistinguishability. Open problems include finding efficient NISQ methods for measuring and using
Bargmann invariants in algorithmic applications, studying possible applications to self-testing in a
semi-device independent context [43, 44], and developing further the resource theories of imaginarity and
coherence based on Bargmann invariants, whose first steps we have described.

4. Methods

4.1. Efficient constructions for cycle test circuits
The main ingredient of the cycle test is a controlled permutation gate which applies a cyclic permutation
when the control qubit is in the |1⟩ state (and does nothing otherwise). We now describe two efficient ways of
implementing this controlled cycle permutation. For simplicity, we consider first how to decompose a cyclic
permutation in terms of pairwise permutations (i.e. transpositions), without accounting for the control
qubit, to which we return at the end of this section.

Let us denote Ck = (1,2,3, . . . ,k) as the cyclic permutation on k elements, and (i, k) as a permutation of
two elements (or transposition) i and k. A well-known decomposition of a cyclic permutation in terms of
transpositions is given by

(1,2,3, . . . ,k) = (1,2)(2,3) . . .(k− 1,k) . (5)

This decomposition uses only adjacent transpositions, which is equivalent to swapping only
nearest-neighbor qubits at a time. It leads to a circuit as exemplified in figure 3. This circuit uses the optimal
number of (k− 1) nearest-neighbor transpositions and has depth (k− 1). That (k− 1) is the optimal
number follows from the need to move the first element to the last position, which requires exactly (k− 1)
nearest-neighbor transpositions.

It is possible to give an alternative decomposition that has much smaller depth, at the cost of using
longer-range transpositions. To see it, consider first the following Lemma:

Lemma 1. Consider the following two disjoint cycles (1,2, . . .k) and (k+ 1,k+ 2, . . . ,n). We have the following
decomposition:

Cn (1, . . . ,n) = (1,k+ 1)(1,2, . . .k)(k+ 1,k+ 2, . . . ,n) . (6)

The proof of this Lemma is straightforward, it simply requires checking the images of numbers 1,k,k+ 1,
and n under the sequence of permutations, as all other numbers get trivially mapped to the correct places.

A very efficient decomposition of Cm can now be obtained by applying lemma 1 repeatedly. Suppose, for
simplicity, thatm is a power of 2. Then we can first decompose Cm into two cycles acting onm/2 elements
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Figure 3. Decomposition of a 16-qubit cyclic permutation in terms of nearest-neighbor SWAP gates.

Figure 4. Decomposition of a 16-qubit cyclic permutation in terms of SWAP gates. This circuit is much more parallelized
compared to that of figure 3, although the trade-off is the requirement of long-range swaps.

followed by one transposition, i.e. Cm = (1,m/2+ 1)(1,2, . . . ,m/2)(m/2+ 1,m/2+ 2 . . .m). We then break
each cycle of sizem/2 again in two cycles, acting each onm/4 elements. This divide-and-conquer algorithm
is iterated until all that is left are transpositions. It is easy to see that this procedure terminates after O(logm)
steps, and hence that the final circuit has depth O(logm) as well. An example of this form= 16 is shown in
figure 4.

These are not the only decompositions of the cycle permutation in terms of transpositions, but they
represent two extreme regimes. In the first, we have only nearest-neighbor SWAP gates, but the depth of the
circuit is large. In the second, the depth is logarithmic, but longer-range gates are required. Which is the most
efficient depends on the constraints of the particular architecture being used—the latter has the benefit of
mitigating accumulation of errors in the circuit, but in particular architectures long-range gates might not be
an option.

Let us now return to the issue of decomposing a controlled cycle permutation. At first glance, neither
decomposition we described has the promised properties. The circuit in figure 3 is no longer composed only
of nearest-neighboring controlled-SWAP (or Fredkin) gates, since the first qubit must control the swapping
of states that are distant to it. At the same time, the circuit of figure 4 does not have logarithmic depth since
every gate in the circuit must be controlled by the same control qubit, which presumably means that all gates
must be done sequentially. Nonetheless, both circuits can be adapted to restore the desired properties, as
follows.

In figure 5 we show how the controlled version of circuit in figure 3 can be implemented using only gates
(SWAP and Fredkin) that act on neighboring qubits.

To obtain a controlled version of figure 4 that has depth O(logm), as in the original, we need to include
more ancilla qubits to parallelize the control operation. Instead of controlling the permutations with a single
1√
2
(|0⟩+ |1⟩), we need to build anm/2-qubit GHZ state 1√

2
(|0⟩⊗m/2 + |1⟩⊗m/2), such that each qubit in this

7
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Figure 5. An adaptation of the circuit of figure 3 that obtains a controlled cycle permutation with SWAP and Fredkin gates acting
only on neighboring state. The first qubit is swapped along the 1D chain as each Fredkin gate is applied. The star at the output
indicates where the control qubit is effectively left at the end of the circuit.

state can control a different SWAP gate in parallel. The whole construction still has logarithmic depth due to
the follow Lemma (also cf figure 2 in [45]):

Lemma 2 ([45]). The m-qubit GHZ state:

1√
2

(
|0⟩⊗m + |1⟩⊗m

)
(7)

can be generated by a circuit that acts on the |0⟩⊗m state, is composed only of a single Hadamard and a sequence
of CNOT gates, and has depth O(logm).

Proof. We initialize m qubits in the |0⟩⊗m state, and apply a Hadamard gate to the first one. Our goal is now
to apply a sequence of CNOT gates that will flip every qubit conditioned on the first qubit being |1⟩ and does
nothing otherwise. This can be done as follows. In the first round, we apply a CNOT gate from qubit 1 to
qubit 2. In the second round, we apply two CNOTs, from qubits 1 and 2 to qubits 3 and 4, respectively. We
repeat this procedure by reusing previously flipped qubits as controls for the next layer. The number of qubits
flipped in this manner doubles with each layer. Hence, it follows that this will generate anm-qubit GHZ state
in O(logm) layers of two-qubit gates.

For the controlled version of figure 4 to work properly when using the GHZ state as the ancilla, we need
to perform the operation described in the proof of lemma 2 in reverse at the end of the cycle test protocol.
This is required to disentangle the ancillas with the control qubit, such that interference can occur properly at
the last H gate in figure 1 (in the main text). In any case, it follows that the entire controlled-cycle protocol
works in depth O(logm).

Very recently, independent work has proposed cycle test circuits with constant depth [15], and circuits
which allow trade-offs between number of auxiliary qubits and depth [17].

Data availability statements

The authors declare that the data supporting the findings of this study are available within the paper and in
the Supplementary Information files.

No new data were created or analysed in this study.

Acknowledgments

We thank Adam Sawicki for his comments regarding the role of Schur-Weyl duality for the problem of PU
equivalence of mixed states. M O acknowledges support by the Foundation for Polish Science through the
TEAM-NET project (Contract No. POIR.04.04.00-00-17C1/18-00). D J B acknowledges support from
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