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Abstract Following Einstein’s definition of Lagrangian density and gravitational
field energy density (Einstein in Ann Phys Lpz 49:806, 1916, Einstein in Phys
Z 19:115, 1918, Pauli in Theory of Relativity, B.I. Publications, Mumbai, 1963),
Tolman derived a general formula for the total matter plus gravitational field en-
ergy (Pp) of an arbitrary system (Tolman in Phys Rev 35:875, 1930, Tolman in
Relativity, Thermodynamics & Cosmology, Clarendon Press, Oxford, 1962, Xulu
in hep-th/0308070, 2003). For a static isolated system, in quasi-Cartesian coordi-
nates, this formula leads to the well known result Py = [/—g(T) — T}! — T} —
T33)d3x, where g is the determinant of the metric tensor and T,/ is the energy mo-
mentum tensor of the matter. Though in the literature, this is known as “Tolman
Mass”, it must be realized that this is essentially “Einstein Mass” because the un-
derlying pseudo-tensor here is due to Einstein. In fact, Landau-Lifshitz obtained
the same expression for the “inertial mass” of a static isolated system without
using any pseudo-tensor at all and which points to physical significance and cor-
rectness of Einstein Mass (Landau, Lifshitz in The Classical Theory of Fields,
Pergamon Press, Oxford, 1962)! For the first time we apply this general formula
to find an expression for Py for the Friedmann—Robertson—Walker (FRW) metric
by using the same quasi-Cartesian basis. As we analyze this new result, it tran-
spires that, physically, a spatially flat model having no cosmological constant is
preferred. Eventually, it is seen that conservation of Fy is honoured only in the
static limit.
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1 Introduction

Einstein was the first relativist to point out that in curved spacetime matter energy
momentum itself is not conserved [} 2;[3]]. On the other hand, what is conserved is
the joint energy momentum of matter and the gravitational field produced by mat-
ter itself. This is somewhat like the fact that for a system of interacting charges
(matter), it is the sum of the matter energy momentum and the electromagnetic
field energy momentum produced by the charges themselves which is conserved.
However, in the presence of gravitation, because of curved spacetime what is even-
tually conserved is a sort of geometry weighted energy momentum density which
is now called “Energy Momentum Complex” (EMC) [65 [8]]:

06!
dxb

=0 (1)
The Einstein EMC is given by [3; 165 45 5]

0r = \/—g(T? +15) )

Here 7 is the gravitation field energy momentum (pseudo) tensor constructed
from metric tensor g, and dg,,/dx‘. The “energy complex” derived from Ein-
stein EMC obviously is

00 = v—g(19 +13) 3)

where the subscript O referees to time coordinate.

The Einstein pseudotensor is often referred to as the “canonical” pseudoten-
sor because it is derived by using the general formula for the energy momentum
of a classical field with a Lagrangian density and field variables which could be
tensors of any rank. In the given case, the field variables are the components of
gap- Obviously, because of its the nontensor nature, the local energy density of the
field does not have a covariant significance. Indeed, this formulation of the con-
servation law got criticized because, in spherical coordinates, empty Minkowski
spacetime would appear to possess finite energy density. Einstein tried to answer
such criticism in two ways [9]]:

(i) He showed that though tfj is not a true tensor, the total energy momentum
P, = / 00d°x (4)

nevertheless behaves as a free vector (i.e., a vector not defined at a particu-
lar spacetime point) under linear transformations for an asymptotically flat
spacetime (AFST).

(ii) He also pointed out that, one must evaluate 2 and 62 in quasi-Cartesian co-
ordinates. When this prescription is followed, an empty Minkowski space-
time indeed yields nil value for both these quantities (however see later dis-
cussion).
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Since then, all the authors have recognized the fact that for a meaningful phys-
ical answer, the Einstein pseudo tensor must be evaluated in quasi-Cartesian co-
ordinates [6} [8]. A case in point would the question of energy momentum flux
associated with cylindrical gravitational waves (GW), probably the only known
exact solution of GW. For instance, initially Rosen computed the energy momen-
tum flux for this problem using 82 (Einstein) in symmetry adapted cylindrical polar
coordinates and found nil flux [[10]]. This led him to conclude that GWs may not
be carrying any energy momentum flux and hence, in a sense, pseudo or fictitious
quantity. But following the suggestion of S. Virbhadra, when Rosen and Virbharda
[[L1]] recomputed the energy flux using quasi-Cartesian coordinates, they found fi-
nite value of flux.

Though Tolman too acknowledged the fact that there is an ambiguity in the
localization of gravitational energy momentum, he [4] claimed that

“It can be shown, nevertheless, that the equations have the necessary funda-
mental property of being true in all sets of coordinates, and a completely satisfac-
tory justification of the formulation was finally given by Einstein in 1918 [9].”

In the context of the criticism of the energy momentum conservation Eq.
which does not involve true tensors, Tolman [4] went on adding that

“It should be remarked, however, that the appropriate criterion for the funda-
mental significance of equations should not be that they are written in tensorial
form but that they are written in covariant form so as to be true in all sets of
coordinates. All tensor equations are indeed covariant equations, but this does not
exclude the possibility of covariant equations, such as the above (i.e., Eq.[I)), which
are not tensorial. To assume the contrary would be the fallacy of the Dormouse in
Alice in Wonderland, who said: “I breathe when I sleep” is the same as “I sleep
when I breathe.”

However, the fact remains that even if Eq. may look covariant, Eq. is
certainly not so.

It may be also worthwhile to repeat the well known fact that, since energy
momentum conservation after all appears as a divergence, the choice of the pseudo
tensor or EMC is by no means unique. In general, the EMC may have a form [§]]

0; (general) = (—g)"* (T +1}) (5)

where n is a positive integer. An interested reader may look into the forms of
some well known pseudo-tensors in the literature [|6; 8]. This freedom of choos-
ing various EMCs could be something like the gauge freedom in choosing vector
potentials in electrodynamics. In particular, the Mgller pseudotensor, by construc-
tion, is a true tensor and thus yields a coordinate independent covariant description
[12]. However, this is also the only pseudo-tensor which contains 2nd derivatives
of 8ab-

In general, in view of the non-covariant nature of the pseudo-tensor based
energy-momentum localization, the coordinate independent quasilocal approach
may be
conceptually more important [13]. In this approach, quasilocal energy momen-
tum is obtained from an appropriate Hamiltonian. However, by no means, this
approach solves the ambiguity with respect to the assignment of gravitational en-
ergy momentum because there could be infinite choices of Hamiltonian boundary
conditions. Further, Chang and Nester pointed out that the quasilocal approach
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is intrinsically linked to the pseudotensor approach because each pseudotensor
seems to be associated with a legitimate Hamiltonian boundary condition [[14].
Thus the importance of the pseudotensor approach may not be undermined on
the plea that it does not offer a covariant description. As to the criticism, that, all
pseudo tensor densities should vanish if evaluated in Riemannian normal coordi-
nates where first derivatives of g,;, = 0, one may appreciate that such a vanishing
could be a necessary consequence of principle of equivalence on which general
relativity is based. In particular, as pointed out by Xulu [6] and as to be pointed
out by us later, Einstein pseudo tensor, when evaluated in quasi-Cartesian coordi-
nates, may indeed yield a good physical description.
The field part in the Einstein EMC is given by [3; 6} 4 5]

1 JdL
b _

V—8la = Jor (8}? [L+2v—gA] - 8g§”g£q> (6)
where A is the cosmological constant. Note that Tolman did include A in this
context; for instance see Eq. (87.11) of Ref. [3]. Here the Lagrangian density is
given by

L= =g (LhL% ~ LT ) ™
in terms of the Christoffel symbols
1
L= Egad (Ocgap + b8ed — Qugbe) ®
Note, here, d, denotes differentiation with the coordinate x*. Also, the symbol
JL 1., 1.
9gP a2+§551?$+§51§1;f1 €))
c

Recall that the Egs. and (2) look similar to flat spacetime electromagnetic
counterpart [6} (55 [7]:

[ 4] =0 (10)

where T (m) is due energy momentum tensor of matter (i.e., charge) and #;/(f) is
the same for the electromagnetic field. If we would define

Po= [ VR ) (11

where 0 denotes time coordinate and the integration spans entire 3-space. Tolman
[4; 5] showed that for a finite system with a boundary in AFST

dP,
dt
Thus, following Einstein and Tolman, atleast for isolated objects lying in AFST,

it seems natural to define P, as the energy-momentum 4-vector of the system even
though P, is not a true covariant vector [[1; [2; 35165 145 |5]]. Let us now call

= Flux of (T9% 4 14%) (12)

By= / 00’ (13)



Einstein energy of FRW metric 5

as the total “so-called” Einstein energy of the system. We use this adjective be-
cause Py still depends on coordinates.

As pointed out by one anonymous referee, in the presence of a A, one would
not have an AFST, and, in a strict sense, the above notion of “flux” and asso-
ciated energy momentum conservation will break down. However, by definition
“universe” is the ultimate “isolated” object from which there cannot be any out-
ward flux. Then, we may indeed expect energy momentum of the universe to be
conserved by definition. Further since the FRW metric does admit a time like (con-
formal) Killing vector [15;16], we may expect properly defined total energy to be
conserved.

Few years after Tolman’s seminal work in 1930 [4], von Freud [18] showed
that Einstein EMC could be expressed as the divergence of an appropriate super-
potential:

1
0y = —H;" 14
b l6m e 14)
where a comma denotes partial differentiation and the super-potential is given by
1
Hy = ——g [—g (gb”g“’ —g””gbq)] (15)
b —g5P p

One may further note that in terms of this superpotential, Einstein energy com-
plex is given by

1

00 = e Hoe (16)
In this superpotential formalism, however, the physically important quantity
T? does not appear explicitly. In contrast, as we would see, 82, when evaluated
directly would contain Tab through the Ricci tensor RZ. In the following we review
this formalism and point out that atleast for a static system, the result obtained by
this generic formalism matches with one which does not invoke pseudo potential
at all [[7). Finally, we will use this Tolman ansatz to find an expression for P
for the FRW universe directly by retaining the physically important Tab term. It
may be however be stressed that, the Tolman ansatz does not involve any new
pseudotensor. On the other hand, it is an ansatz to find Py directly by using Einstein
pseudotensor. Therefore, though, in the literature, the resultant Py is often referred
to as the “Tolman Mass”, we would insist for the term “Einstein Energy” for the

same.

2 Einstein—-Tolman formula

Let us recall the Einstein equation

1
R)— ERgZ%—AgZ = (17)

where

R=8% (Ty + T} + T7 +T3) +4A (18)
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is the Ricci scalar. By combining the Einstein equation and the expression for tfj
(Eq. [6), Tolman showed that (see Eq. 89.1) [5], one can write the Einstein EMC
as

1 1 1 dL
6, (Einstein) = 3 V—8R;+ Ton 0,/ —gR— Fgf,’q ) ng

1
— 8L (19
+ 167 ¢ (19)

where L is related to vacuum Einstein Lagrangian density Lg = 1/—gR, in the
following way [65 45 [S]]:

JdL
L=0, (g“b b) —V—¢R (20)
dg¢
By inserting this expression for L, we finally obtain

1 1 JdL 1 JdL
b(Rinctein) — b b b
60, (Einstein) g gR, 6 ght FPK + 6 0, 0 <g“ 8g§b> (21)

It should be noted that although A does not explicitly appear in the foregoing
relation, it remains hidden within the RZ term. Thus we obtain

1 1 JdL 1 dL
0(Bincfain) — 0 b
6, (Einstein) = —%\/—gRO — ﬁgg PP + ﬁac (gaa agga) (22)
Since,
R)=4n(T} + T} +T{ —TY) + A (23)
we may split 68 into 3 terms:
80 =A+B+C (24)
where
1 A —/—g
A:z\/Tg<T00—T11—T22—T33—M) :( S R8>, (25)
1 JdL dL JdL
B=—10(g® +0 <“” )+a <“”>} 26
167 |: 1 (g ag‘l‘h> 21 8 8g‘2’b 31 8 ag‘gb ( )
and
1 aL
C=—g"%9 . 27
16n° % <ag3b> @7

Since no assumption or precondition has been imposed for the derivation of
the above formula, it is valid for arbitrary system, whether it has a boundary or
not, whether it is static or not and whether it is spherical or not. Note the physical
and geometrical significance of A in view of the presence of 7 and R8 in it.

Thus for any arbitrary system, spherical or non-spherical, static or non-static,
having boundary or no-boundary, one may express (see Eq. (Z3)) of [4]] and Eq. [92.2]
of [5]):

Py = / 00d’x = /(A +B+C)d’x (28)

where the integration spans over entire 3-space.
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2.1 Finite system with a boundary

First application of this formula was made by Tolman [4; |5] himself for finding
the mass-energy of a static finite system resting in an AFST. Far away from the
body, the metric is expected to assume the form of an exterior Schwarzschild one:

¢ =e*=1-2M/R (29)

where M is an integration constant and R is the circumference coordinate (not
to be confused with Ricci scalar). Eventually, at very large R, in quasi-Catersian
coordinates, one should be able to approximate

ds® = (1 —2M/R)dt* — (1+2M/R)(dx* + dy* +dz?) (30)

In this AFST, derivation of Kepler’s 3rd law shows that, the integration con-
stant M is the gravitational mass of the object provided spacetime is AF. It is clear
that the basic requirement for an AFST is not fulfilled if A # 0 because then one
would have [3]]

¢ =e*=1-2M/R—AR*/3 31)

Accordingly, in this context, Tolman dropped the A term (see p. 230) [S] and used
(quasi) Cartesian coordinates with x! = x,x*> =y and x> = z. Then he showed that
the if the volume integration over B would be converted into a surface integral at
spatial infinity, one would obtain

[ Basdyaz=3p, (32)
so that
P = /A dxdydz + %Po + /Cdxdydz (33)
By transposing and then multiplying by 2, one would obtain
R =2 / Adxdydz+2 / Cdxdydz (34)

Further, if the system is static, one has C = 0. In such a case one would obtain

Py = / V=_g(IY —T} =17 - T5) d*x (35)

even if the system is not spherically symmetric. Interestingly, for an AFST, Landau
and Lifshitz [[7] (p. 348, Eq. [100.19]) obtained exactly the same relation for the
total matter plus field of a static system without invoking any pseudo tensor at
all. This shows the physical correctness of the Einstein EMC provided one would
evaluate it in quasi-Cartesian coordinates.

One can see from such exercises by Tolman [4} 5] and Landau and Lifshitz [7]]
that for static case, in the absence of A, one may distinctly split Py into a matter
contribution

Py(Matter) = /\/ng00d3x, (36)
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and a pure field contribution

Py(field) = / V—gdd*x = / V=g (-T' -1} - T}) d°x (37)

where the integrations now effectively span only the region occupied by the matter.
This happens because, in the absence of A, by definition, T” = 0 exterior to the
body. Further, if the matter is represented by a perfect fluid, we will have

T = (p+ p)u‘up — pd; (38)

where u“ is the matter 4-velocity and p is the isotropic (matter) pressure. In the
comoving frame, one obtains

u*=48§ (39)
and the non-vanishing components of 7' are (G = c = 1)
Ty =p: T'=T;=T) =—p (40)

Accordingly, in the comoving frame one has

Py(Matter) = / V—gpdx (41)
and
Py(field) = / d3x = / V—g3pd’x (42)

Much later, Herrera et al. [[18;[19]] used Tolman’s formula for finding the active
gravitational mass of a spherically symmetrical collapsing fluid in AFST. This
was probably the maiden application of Tolman’s generic prescription for a non-
static system having a boundary. On the other hand, we will invoke this formalism
to find the energy of a non-static system not having any boundary at all.

2.2 Inclusion of A for isolated objects?

If the A term would be shifted to the right hand side of Einstein equation it follows
that, in the comoving frame, one may replace p and p by their respective effective
values:

pe=p+A/8m;  p.=p—A/8T (43)

Then one might think that, in such a case, the definition of the Einstein mass
for a static isolated system would be modified into

Py= / V8(Pe+3pe)dx (44)

But it may not be so because of the following reasons. As seen by the exterior met-
ric, when A is present, in a strict sense, the spacetime ceases to be asymptotically
flat. Since, now, there would be no strict Kepler’s 3rd law, one cannot identify the
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integration constant M with Schwarzschild mass. However it might still be possi-
ble to define “mass” by using more advanced and specific ideas which is beyond
the scope of this discussion [13]].

Nevertheless, it may be noted that the spacetime appears to acquire, strange
and rather unphysical properties. Because it would be seen that while gg initially
monotonically increases with R, it would start decreasing subsequently. And at
R = R, defined by the roots of the following equation

2M R
A
R. 3

goo=1— =0, (45)

one would have a singular situation with goo = 0! And following this, goo would
reverse its sign to approach —eo!! Since the gravitational red/blue shift of the pho-
tons emitted by the body depends on the value of the goo(R) at the point of obser-
vation, one would see strange and abnormal red/blue shifts. At this juncture, one
would argue that, for sufficiently, large R, the metric of the isolated object must
merge with cosmological metric, which under, the assumption of homogeneous
and isotropy does not admit any gravitational red/blue shift. But the fact remains
that, any mass determination might get swamped by a cosmological vacuum con-
tribution

Py(vacuum) ~ / V—g(—A/4m)d*x (46)

which would diverge if the spatial section would be of infinite extent. Irrespec-
tive of the precise boundary condition, the foregoing equation indicates that, a
completely vacuum universe should posses a net negative energy density because
of the negative contribution due to p, = —A /87! We would seek a more precise
answer to this question later.

3 Negative self-gravitational energy

If the metric determinant of the spatial section is —h, one can write
g =goo(—h) 47)

and accordingly, following Landau-Lifshitz derivation of M for an isolated static
system, we may write

Py=M = / V2w(p +3p)dV (48)
where
dV =—hd’x (49)

is proper 3-volume element. In modern terminology, Pp = M is the ADM mass
measured by a faraway inertial observer S*. Thus the comoving (local) Active
Gravitational Mass Density (AGMD)
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pe=p+3p (50)

indeed appears to increase due to the “weight” of pressure, It is however important
to note that this pressure contribution is actually due to the field energy contribu-
tion (when computed in quasi-Cartesian coordinates): 3p = tg and the field energy
density is positive as long as p is positive. This is similar to the fact that while
electrostatic interaction energy can be positive or negative depending on the sign
of the electric charges, the field energy density E* /8 is always positive [7]]. Since
gravitational waves carry positive energy [20; 2151225 23]], in general, we expect tg
to be positive.

So the question which might arise is that then how one obtains negative self-
gravitational energy? Note that the distant inertial observer S, however, sees an
effective total mass density

Pe = +/goo(p +3p) < pg (51)

because goo < 1. And it is the difference between p, and p;° which gives rise to
negative self-gravitational energy when viewed globally [24]. This question may
be probed by noting that in the zeroth order post Newtonian limit, the Newtonian
gravitational potential is obtained from

(52)

Nl <

1
Y= 5(800— 1)~

Since the potential y is negative, its coupling to the rest of the matter gives rise
to global negative self-gravitational energy. Further, it has been explicitly been
shown by Tolman (pp. 248-250) [5]], that

Ponz/pd”f/—l—/%pl//d“//:/pd"i/—3/pd"i/:/(p—3p)d"// (53)

Thus, in this limit

Eg~— / 3pd ¥ (54)
and due to global gravitational coupling, the effective AGMD seen by S*:

p;’zp—3p<p (55)

Hence one has negative self-gravitational energy only when ggo < 1 and in
general goo = goo(R). In such a case, as light propagates through a medium having
negative self-gravitational energy, one would see gravitational redshift. But, in
case, one would fix goo = 1, i.e., synchronize all clocks in a rather Newtonian
fashion, one would not have any global self-gravitational energy. In such a case,
neither would one see any gravitational red-shift quite like the Newtonian case. All
red-shifts then must be due to kinematical/Doppler origin. Cosmological redshifts,
in the paradigm of the FRW model, are indeed believed to be of purely kinematical
origin because there is no gravitational redshift for ggo = 1 = fixed.

For later requirement, let us ponder, is it possible that Py — 0 ever? As hinted
by Eq. (@8), in principle, it is possible in the singular limit goo — 0. Only in such
a case, in view of Eqs. (53) and (55)), one may conceive that positive energy of
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matter/radiation/heat gets nullified by the negative self-gravitational energy even
though field energy density tg remains positive. Note, the field energy tg defined
locally via Eq. (6) must not be confused with self-gravitational energy E,. For
the latter there is no proper local definition. Thus even if such a vanishing of P
would take place, p and p would still retain their original sign and there cannot
be any cancellation of matter energy with field energy. In contrast, (negative) self-
gravitational energy is essentially a global concept and cannot be defined at a
spacetime point. Further, it is mediated by goo = goo(R) < 1. And when goo = 1,
one should have E, = 0 and then there would be no question of cancellation of
matter energy. Thus, in the absence of a variable goy < 1, an occurrence of Py =0
should signify p = 0.

4 FRW metric in cartesian coordinates

The isotropic form of the FRW metric is [S]] (p. 338):
$2(1)
(1+kr?/4)2

where k can assume values of 0,41, or —1. This form can easily be written in
terms of Cartesian coordinates:

ds — di? — [dr? + r*(d6” + sin” 0d¢?)] (56)

S%(t
dSZ = dtz — (IHCS’Z)/A‘-)Z(CLXZ +dy2 +dZ2) (57)
where
rr=xt 4y +7 (58)
Thus,
S2
811 =802 =83=——3; goo =1 (59
fz
and
1 _ 22 3377f72. 00 _ 4 60
g - g - g - S2 s g - ( )
where
f(r)=1+kr?/4 (61)

At the beginning, let us mention that greek letters would represent x, y, z and in this
section, repetition of a greek letter in any expression will not imply any summation.
Then it may be noted that

uf = %kxa 62)

while
dof =0 (63)
Because of the symmetry we also have
kxS

o 4

dagpp = Pa =
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4.1 Useful Christoffel symbols

In this quasi Cartesian basis, one may verify that since ggp = 1, the non-vanishing
connection coefficients are

lia=2¢"4="5 (65)
where
288
q:aog”:T (66)
Next,
-1 SS
lia=—54a="5 ©7)
Further,
1 kx®
r%—=——-—— 68
(0104 2 f ( )
Also,
1 1 kx
3=r3=—z¢""p=-= 69
12=13 28 =5 7 (69)
All other connection coefficients vanish.
5 Direct computation of P for FRW universe
Let us first compute the B-term:
5.1 Evaluation of B
From Eq. (9), it is seen that
JL 1 1 kx
g = hitaliat o= —Hi+ L =I3+i="7 (70
1
On the other hand, we have
JL | oL 1 oL
dg P dgP TV oY
Then one finds that
JL JL oL oL oL kx  —kx
g” ab 11( 11 n T 33>+ oozg”*: 2f (72)
dgf dg dgi dg dg) f )
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In general, we can write

w OL —kx*f
i 73

By differentiating the foregoing equation, we obtain,

dL —k 1
du, <g“b Qgg,b) =5 (f—i— 2kxa2) (74)

By adding the three components of the foregoing equations and also by recall-
ing Eq. (26), we obtain

— —k 1 2

Now plugging in the value of f from Eq. in this equation, we finally find

B _—k_ (3 + ikr2> (76)

Further since the spatial curvature of the spacetime is

K=5 (77

we may also write B as

_-k 5.2
B= Ton <3+4kr ) (78)

5.2 Evaluation of C

From Eq. @I), one can see that when a = b, one has

JL
o = ~I2+1¢  (nosum over ‘a’) (79)
80

from which one obtains

i =TI = 36 =33 )
and
Similarly
oL JL  -S§ 82)

aggz - 8g(3)3 - f2
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Further note that

oL § $?
»(5p) (%) v
and
oL s§+8* § $?
11
T C ) R S &
Similarly,
oL oL § §?
2 _ 33 _
() =2 (55) =5+ 9
Since g!' = g2 = ¢, from Eq. , we can write
1 JaL JdL
C=— || = ) +3¢" 0 =t 86
o [ () 252 () ®

By using Eqgs. (83H83) in the foregoing equaion we find that eventually C gets
simplified as

c=—"2 (87)

S 4w
g7 3P (83)
where
A
Px = (pe +3pe) = (P =+ 3P> - T (89)

ar

Equation (88)) shows that, even for the FRW case for which neither AFST nor any
other boundary condition has been assumed, p, appears to be the AGMD. Then

by using Egs. (23)), and (88), we can reexpress

C —_0
2 8

(90)

Clearly, C has a distinct physical and geometrical meaning in terms of p, and Rg.
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6 Final form of Einstein energy complex
Since for the metric (57)),

S3
A
and the FRW metric is actually a comoving metric, from Eqs. (23) and (23)), we
obtain

Vog= 1)

s? 1 8 (R} (S
A= — = =Px—7 = —0 —= 2
o= 305 (52) () 02
By using Eq. (88), we may also write

3 _ 3
)

Clearly, one would have A = O for a static case. It is seen that like the static case,
for this dynamic case too A has a clean physical and geometrical meaning in terms
of p, and R8. The additional factor S3 /f 3 is the ratio of the proper volume element
to the coordinate volume element and which becomes unity for k£ = 0 in the static
case. In view of this assumed dynamic metric, eventually, A behaves unlike the
case of an isolated object in an asymptotically flat space time where in the static
case [Ad’x = Py/2 [415].

After combining all the contributions, the final form of Einstein energy com-
plex Py for the FRW metric, when evaluated directly, becomes

—k 5 38 s3
)= —= (3+2k” |+ —=(1-=
0 16n52<+4r>+8ﬂ:5( f3>

—k 5 2 P p*S3
= (3420 ) -2 B2 94
16ns2<+4r> PRNE ©4)

In particular, note that, when k = 0 and f = 1, one has

o= 3(1-8)=2p.(1-5) 95)

Due to spherical symmetry, we may take the coordinate volume element to be
dV = 4xr’dr so that the form of Einstein energy of the FRW metric becomes

Py = / 4mr*6Qdr (96)
By inspecting, the metric (56), it becomes clear that the range of r = 0,00 for
k=0,1 while r = 0,2 for k = —1. Further, the proper volume element is
S3
d¥ = —=dV o7

f3
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Now using Egs. (94H97) we may simplify Py as

_ ko S, 2 Py
Py = ]6”S2/ <3+4kr >dV+ =V =V) (98)

Here the term p. 7" looks like some sort of effective proper energy content. The
1st term of the right hand side of the foregoing equaion shows the contribution due
to curvature of the spatial section alone while the 2nd term denotes contribution
due to spacetime curvature in general. In particular, the 2nd term implies a con-
tribution with respect to a flat spacetime having no energy. Thus Einstein energy
has a nice physical and geometrical interpretation even in this dynamic case. Such
a physical and geometrical interpretation of the energy of the FRW metric may
not have been revealed before. In a trivial case of a flat spacetime with kK = 0 and
¥ =V, obviously Py = 0.

7 Analysis of this general formula
7.1 Position dependence of net energy density

The first apparently anomalous thing about the Einstein energy complex (94) is
that, it is position dependent unless k = 0. One may try to explain away this posi-
tion dependence by telling that “gravitational field energy is not localizable due to
principle of equivalence”. But all that this latter statement means is that at a given
spacetime point, the value of t8 would vary as one would employ different coordi-
nate systems and in Riemann normal coordinate system, one would have t(()) =0.
It is in this sense that, one may not demand conservation of energy momentum in
a covariant way. But once we have decided to work in a given coordinate system,
which in this case is the quasi-Caresian coordinate system, and not to compare the
values of tg obtained in various coordinate systems, we have already compromised
for such non-covariance. Such non-covariance however does not at all imply that a
quantity which is expected to be spatially uniform can turn non-uniform. It is true
that one speaks of non-localization of position of an electron/photon in quantum
mechanics because of inherent wave-particle duality. But we are not treading into
any quantum mechanics here. Hence we do not expect 6(()) to have any inherent
spatial spread. Consequently, in a supposed isotropic and homogeneous universe,
one should not expect any position dependence of 98 irrespective of its the precise
physical significance.

Further, the Einstein pseudo-tensor need not be blamed for such an occurrence
which seems to defy the assumption of homogeneity and isotropy. The real reason
for such unexpected position dependence is the position dependence of the metric
coefficients gq. This position dependence vanishes only for £ = 0 when 6(()) too
becomes position independent. The situation here could be something like the
following: If one would consider a spherically symmetric finite fluid of constant
p, the pressure still would show position dependence. This position dependence
of p can be eliminated by either (i) pushing the boundary to oo, or (ii) by setting
p = 0 by hand, or (iii) by pursuing the spatially flat Newtonian limit p — 0. This
would be clear as we would discuss below the case of a supposed static universe.
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7.2 Static universe

In the static case, the expression for Einstein energy complex becomes
—k 5
0 == ~kr?
0 = Tens2 (3 + i ) (99)

It is known that, by means of the following coordinate transformation

r

R — 100
" k24 (100)
the metric (56) would transform as
ds* = dt* — §? [1k2 +7(d6?* + sin’ 6d¢2)} (101)
— k7
For simplification, we now drop bar from 7 to rewrite the above equation as
2 2 o dr 20102 1 winl 2
ds*=dt”—S ] k2+r(d6 +sin” 0d¢~) (102)
—kr

If we recall that the static interior Schwarzschild solution for a constant density
may be expressed as [} [25]]

dr?
1 —kr?

ds* = e"dt* — §? [ +r*(d6? +sin? 6d¢2)] (103)

where k = 41 corresponds to an effective p, > 0,k = 0 corresponds to p, = 0 and
k = —1 corresponds to p, < 0, it might appear that, the FRW metric is similar to
a special interior Schwarzschild solution where, somehow, one has

eV =1 (104)

In fact, for exploring a static FRW universe, Tolman indeed arrived at Eq.
by starting from Schwarzschild interior solution (I03) (see pp. 333-337) [3]]. He
found that the condition for having ¢” = 1 is either

Pe+3p.=0 (105)
or
Pe+pe=0 (106)

Essentially, Tolman probed the condition for " to become position independent.
On the other hand, we have probed the question from a broader perspective where
all physically meaningful quantities such as the invariant/scalar acceleration ex-
perienced by an interior fluid element [25]]

a=+/—aja 107)

where

a =uVu (108)
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is the 4-acceleration, and radial pressure gradient p’ should indeed be position
independent. We found the following relations which, in general, suggest position
dependence of a and p':

a kSr
= 109
pe+3pe vV 1 7]{7‘2 ( )
and
/
k
P Sr (110)

(Pe+Pe)(Pe+3pe)  1—kr?

In a homogeneous and isotropic universe, the left hand side of the two foregoing
equations must be independent of r. But the inspection of the right hand side
of the same equations tell that, it could be so when k = 0. For static universe,
occurrence of k = 0 corresponds to p, = 0. It was independently shown that in case
one would assume k = 1, the condition that a and p’ would not blow up at r = 1
demands that both Eqs. (T05) and (T06) are satisfied [25]]. This again leads to p, =
0. Under weak energy condition, this would mean that a static unverse should have
A =0 as well as mean matter density p = 0. Incidentally, occurrence of a mean
p = 0 need not imply absence of matter in cosmological models. For example,
one has mean zero matter density in an infinitely hierarchial fractal universe [26]].
But for isotropy and homogeneous, case, a mean p = 0 may occur only when
matter patches of the universe are separated by infinite distances from one another
[27; 28]). In any case it appears that in order that 6(()) is position independent as
per the assumption of isotropy and homogeneity, only the X = 0 FRW model is
physically admissible. Note this argument is irrespective of the question whether
Py is conserved or not.

8 Empty universe with a positive A

As is known, for an empty universe FRW solution becomes de-Sitter solution
ds® = dr* — §*(dx* + dy* + dz?) (111)
having k = 0 and
§ = (112)

where

H=+/A/3 (113)

Since p = p =0, in this case, Einstein energy complex becomes
6 = —=(1-5°% (114)
Using the fact that now

(115)
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we obtain

A
6 =—(1-5° 116
o Sn( ) (116)
But except for the instant of + = 0, one would have S > 1 and accordingly,
98 < 0. Then, one finds

A (=]
Py = /4nr298dr: -8 /rzdr:A(—oo) (117)

Again occurrence of a negative 68 and Py may be related to the fact Active Gravi-
tational Mass Density of pure vacuum p, + 3 p, is always negative for a positive A.
However, from the concept of positivity of mass-energy, occurrence of a negative
Py (and that too —oo) is unphysical, and this would again demand that A = 0!

Further, even if one would accept the apparent result that Py = —oo, it may be
noted that there is latent temporal dependence of Py if A # 0:

ARy d6) [, A 4

Such an occurrence would again suggest that A = 0 if we would expect P to be
conserved.

There could be yet another reason for which one would expect A = 0 in the
context of de-Sitter solutions. With suitable coordinate transformations, the met-
ric, can be transformed into a static form (see p. 346) [S]:

ds* = (1—-R*/S*)dT? — (1 —R*/S*)"'dR* — R*(d6” +sin”> 0d¢>) (119)

In fact, de-Sitter originally obtained his solution in the foregoing form. As such,
there is nothing anomalous in the fact that a non-static metric may look static after
a coordinate transformation which involves time. But such form changes should
not induce physical changes. Note in the foregoing metric, the radial coordinate R
is the circumference coordinate which is a scalar and directly related to luminosity
distances. Since now gop = goo(R), one would expect that moving photons would
experience gravitational redshift. But as per the FRW metric, there should not
be any gravitational red-shift! Such a physical contradiction can be removed by
realizing that A = 0 and de-Sitter metric is actually flat Minkowski metric.

9 Time dependence of Einstein energy

We have already discussed the issue of time-dependence of 98 and Py for k=0
model in the context of de Sitter case. For more specific discussion, let us first
note that for k = 1, f = 1+ r% /4 we will have

@ o 2
V4 Jt/fBr dr =4nS (1+r2/4)3dr n-S”, (120)
0 0
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where ¥ is proper 3-volume. On the other hand, the coordinate volume is
V =0 (121)
Also,

I :4ﬂ/r2[3+(5/4)r2]dr:oo (122)
0

On the other hand, for k = —1,f = 1 —r*/4 and

2 2
7—47'6/53r2dr—47c53/r2 dr = S0 = (123)
a £ O(1—r2/4>3 S
32
V= / amrdr =" (124)
and
sz/4arr —(5/4)rY]dr=0 (125)
Then we find that
P0—0+8—§(1—S 00) = —p, (1 —8%); k=0, (126)
Py =0+ o <(321/3 = §0) = p. (S0 = 167/3); k=—1  (127)
and
P0=—°° 35(«» 2m2S%) = —— —p(eo— %), k=+1 (128)
2 8nS s2

In case, one would consider, S = finite for the k = 1 case, one would obtain
Py=—c0—p,(e0);  k=+1; S=finite (129)

In this case, Py could be +oo or —eo depending on the sign and value of p..
On the other hand, if § = oo for the above case, one may have

Ph=0 (130)

Since, from symmetry conditions, it has been argued that one should have, Py =0
for a closed universe [7;129], we find that, the supposed closed case should actually
be an open case with § = co. In general, Py would be time dependent if p, would
be so. For k = —1 case too, Py could be either e or —oo unless p, = 0. Same is
true for the simplest k = 0 case. We have found that for an isolated static object
in an AFST, Py yields a result (in quasi-Cartesian coordinates) which is actually
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obtainable without invoking pseudotensor at all. Thus, if we would consider that
Py is a physically meaningful quantity irrespective of the question whether it is
conserved or not and it cannot fluctuate wildly between +co and —ee (even for a
supposed closed geometry), we should adopt

§/S=0; p.,=0; S=fixed (131)

There may be a simple mathematical reason as to why one should have S = fixed.
It is known that, if indeed S = S(¢), the spacetime may be extrapolated back to a
geometrical point. But what could be the proper 3-volume of a point: ¥ (point) =?
Since this is expected to be ¥ = 0, a time dependent open FRW model is imme-
diately ruled out because in the latter case, ¥ = ! And of course, if we would
demand that Py is conserved, the foregoing constaints would be naturally imposed
on the FRW model.

10 Discussions

For the first time, we obtained an expression for the Einstein energy complex 98
for the FRW metric in a direct fashion i.e., without resorting to any superpotential.
This direct treatment, which explicitly involved 7” yielded a direct interpretation
of Py in terms of spacetime curvature and AGMD. The non-covariant nature of 98
was handled by working it out in the quasi-Cartesian coordinates and by making
no demand that its value would be same in other coordinate systems. Irrespective
of the precise physical interpretation of 6?, for an assumed homogeneous and
isotropic spacetime, one would expect it to be coordinate independent because
no wave-particle like duality is involved here. We pointed out that such position
dependence actually appears from the coordinate dependence of g (for k # 0).
For a model static universe, physical observables like “acceleration due to gravity”
a and pressure gradient too would have similar latent coordinate dependence for
k # 0. Thus, we find that though mathematically, constant curvature homogeneous
and isotropic spacetime could be of 3 variety, physically, only the flat k = O case
is admissible.

By considering the empty de-Sitter model, we found that 98 , while coordinate
independent, is negative. Further Py = —oo unless A = 0. Also, we noted that,
while in one version of de-Sitter metric, one may see gravitational red-shift, in an-
other version, there would be no such gravitational redshift. From all such consid-
erations, we got strong hint that Einstein was right in rejecting A. Such a rejection
need not be inconsistent with the observations because there are some analysis
which claims that the observations of distant Type Ia supernovae are actually in
agreement with A = 0 picture [30; [31]].

We found that for a supposed static universe, in order that, Py is non-negative
and non-infinite for the closed k = +1 case, one should have S = 0. Such a value
of S actually is tantamount to k = 0 case because in both the cases curvature K =
k/S? = 0. This again suggests that A = 0. Let us highlight a simple point which
might have been overlooked previously. In the Rimennian normal coordinates,
where d.g., = 0, one expects all components of t},’ to vanish. However as seen
from equation and as earlier noted by Tolman, in this local Lorentz frame (see
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Eq. (87.15)) 5]

A
b b
t, = 37 (132)
would not vanish unless A = 0. Thus a finite A seems to be inconsistent with the
principle of equivalence. )

We found that 68 contains a dynamic S/S term;

6 = 6)(S,5) (133)

In one sense, this was a welcome feature because otherwise a likely
65 = 64 (S) (134)

alone would yield the same 6(()) for both a static as well as dynamic metric and it
might appear that motion has no contribution to the total energy. However, it turns
out that occurrence of this S/ term creates problem for the conservation of Py.
In such a case, Py may vary from +oo to —oo. It follows then that, in order for P
to be a physically significant quantity, one should restrict p, = 0 and S = fixed.
Incidentally, there are claims that both the distant Type Ia supernovae and Gamma
Ray Burst observations may be consistent with a static universe [32}|33]]. In fact,
it might be possible to conceive of static yet continually evolving universe where
the patches of matter are infinitely separated from one another [27; 28]].

However, some of the suggestions we got by studying this Einstein energy
complex for FRW universe may be seen to be at variance with the patch of the uni-
verse observed now and attendant popular interpretations. But let us pose the ques-
tion whether the observed universe really isotropic and homogeneous at scales say
~ 100 Mpc? Well, Sloan Digital Sky Survey shows that there are structures of ex-
tent ~ 500 Mpc (Sloan Great Wall). Further Wilkinson Microwave Anisotropy
Probe (WMAP) has found “void” of the extent of 280 Mpc [27; 28; 134]. Thus
the observed universe need not be really described by the idealized FRW met-
ric, and one need not be unduly perturbed over the suggestions gleaned from this
study. However, if one would insist that the observed universe, in any case, must
be described by FRW metric, then one might adopt two views:

(i) Einstein’s cannonical pseudo tensor does not provide a physically meaning-
fully answer to energy momentum conservation. Such a statement would
however overlook the fact that when evaluated in quasi-Cartesian coordi-
nates, Einstein EMC does indeed find energy momentum flux for cylindrical
gravitational waves [[L1]. Further, for an isolated static object in AFST, the
expression for Py derived from Einstein EMC indeed matches with the same
derived by Landau Lifshitz without using any pseudo tensor at all.

(i) One might also adopt the view that energy conservation is invalid in the cos-
mological context. Such a view might degenerate into free violational of en-
ergy conservation principle in astrophysics. For instance, in such a case, one
might see huge eruption of energy or in some cases, sudden disappearance
of energy. Eruption of energy is indeed seen in astrophysics in the form of
supernovae and gamma ray burst and astrophysicists try to understand them
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using physics which, in the background, honour, energy momentum conser-
vation. And as far as sudden loss or vanishing of energy is considered, no
such event has been recorded. In the absence of an energy conservation prin-
ciple, motion of cosmic matter too could be unexpected and unpredictable.

Thus, if we would not abandon this principle of energy conservation, there
may be examples, how mathematically allowed dynamic motion can be forbidden
in GR. For instance, mathematically, one can always formulate equations describ-
ing contraction/expansion of clouds without any heat/radiation transfer. However,
an energy conservation principle which involves global gravitational energy dic-
tates that there is no contraction or expansion of self-gravitating objects without
heat/radiation transport[24 [35]. This principle however may be avoided by as-
suming that pressure of the fluid p = 0, in which case thermodynamics ceases
to work. But a strict p = 0 equation of state is possible only where p = O—thus
such strict p = 0 solutions would correspond to a fluid mass energy Py = 0 and
the mathematical collapse would be devoid of any physical reality. The symmetry
of the FRW metric precludes any heat/radiation flow and this might be forbidding
motions even though mathematically the metric suggests motion.

In fact, much earlier to such studies, while studying the simplified problem
of the adiabatic collapse/expansion of an uniform density sphere, Taub found that
there would not be any collapse/expansion if the fluid would have an EOS [36].
Later Mansouri studied this problem with greater clarity in a paper entitled On
the non-existence of time dependent fluid spheres in general relativity obeying
an equation of state [37]. And the basic reason which forbade such motion was
principle of energy conservation. Thus many general possibilities which may be
initially suggested by mathematical equations, may not eventually be allowed by
rigourous physics.

Let us ponder that, in general, GR does not allow global synchronization of
clocks in presence of gravity when clocks are expected to slow down. In the ab-
sence of gravity too, special relativity does not allow global synchronization of
clocks if motion is present. But in the FRW model, one expects to have a New-
tonian like global time despite the presence of gravity and motion! Does Einstein
energy tell that such a global time is actually possible only when the model would
degenerate into a Newtonian one in the p — 0 limit?

An honest introspection may show that, probably, there were already strong
hints that FRW metric, despite its apparent general nature, might be inherently,
Newtonian with a mean p — 0. This is so because, long back, it was shown by
Milne [38] and McCrea and Milne [39] that the key results of the Friedmann
model can be exactly obtained by using pure Newtonian gravity. Nobody has ever
explained why it is so! In particular, let us consider the Newtonian equation of
motion of a test particle (not acted upon by any pressure gradient or other forces)
of mass m lying on the surface of a uniform density sphere of mass M:

GMm

F= @

(135)

Since

4
M=""p5 (136)
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and
F=mS (137)
one obtains
S 4nG
St 138
3 3 (138)

Since in Newtonian gravity, p ~ p/c?> < p, the 3p term does not appear in the
definition of M. But if one is keen, one can introduce p here by an appeal to
special relativity [40]. One might also push A within p. In any case, one can see
that the FRW evolution Eq. (88) is nothing but the Newtonian evolution equation!
In particular, the 47/3 factor in Egs. (88), and may be signalling an
inherent k = 0 geometry. But, we know that GR reduces to exact Newtonian limit
only when p — 0. So let us ponder whether Einstein energy of the FRW model is
eventually explaining the mystery—why the key equations of the FRW model are
obtainable from purely Newtonian physics?

But as already mentioned, the reader is free to focus only on the derivation
and competition of the new expression for 0(? and ignore the entire analyses and
the consequent hints which accrued from it. In any case, observed patch of the
universe filled with “walls” “filaments” and “voids” may not be described by the
most ideal FRW metric.
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