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Abstract We explore the symmetry reduced form of a non-perturbative solution
to the constraints of quantum gravity corresponding to quantum de Sitter space.
The system has a remarkably precise analogy with the non-relativistic formulation
of a particle falling in a constant gravitational field that we exploit in our analy-
sis. We find that the solution reduces to de Sitter space in the semi-classical limit,
but the uniquely quantum features of the solution have peculiar property. Namely,
the unambiguous quantum structures are neither of Planck scale nor of cosmo-
logical scale. Instead, we find a periodicity in the volume of the universe whose
period, using the observed value of the cosmological constant, is on the order of
the volume of the proton.
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1 Three roads to quantum gravity phenomenology

In contrast to popular lore, quantum effects are manifest at all length scales. The
quantum regime is not restricted to the microscopic, but it is generically asso-
ciated with extremes, e.g. high energy, low temperature, high density, etc. This
association is in part historical: had a given effect been discovered prior to the
development of quantum mechanics, it would likely be called classical. This is
evidenced by the occasional unambiguous quantum process that is categorized as
a classical phenomenon, such as the theory of electrical conductivity whose un-
derlying mechanism is purely quantum mechanical yet the associated Ohm’s law
is as classical as they come. It would be a happy occurrence if such were the case
in quantum gravity—that a familiar, seemingly classical phenomenon necessarily
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had its roots in quantum gravity. In this paper we address a slightly more modest
proposal with this goal in mind. In particular we draw attention to the emergence
of intermediate length scale structures from canonical quantum gravity via a par-
ticular solution to the non-perturbative quantum constraints.

To categorize our proposal, it will be useful to distinguish three broad classes
of quantum gravity phenomenology: the microscopic, the macroscopic, and the
mesoscopic. Most discussions of quantum gravity phenomena focus on the Planck

scale set by {p; = \/(3—? ~ 1073%m. Due to the incredibly small size of the Planck

scale, direct observation of such quantum gravity effects is not likely any time
soon so realistic phenomenology must appeal to other length scales. Somewhat
paradoxically, recurrent themes suggest that quantum gravity effects might be
manifest at macroscopic, cosmological scales as in the dualities, brane world
scenarios, and possible large extra dimensions of String Theory, or the quantum
gravity inspired explanations for the smallness of the cosmological constant [[1]].
This paper, however, concerns the possibility of an intermediate mesoscopic scale
emerging from quantum gravity. Although we will stop short of a full analysis of
possible mesoscopic physics with quantum gravitational roots, we will see very
clearly structures of mesoscopic scale emerging out of quantum de Sitter space.
We will exploit a remarkably precise analogy between a non-relativistic particle
in free-fall and the Kodama state, which is a candidate solution to the constraints
of non-perturbative quantum gravity corresponding to de Sitter space. The latter
will inherit many of the interesting quantum features of the former.

2 Particle in free-fall

Let us start with a brief review of the quantum mechanical description of a particle
in free-fall in a constant gravitational field underscoring the aspects of the solution
that will carry over to quantum de Sitter space (for an excellent pedagogical dis-
cussion including experimental consequences, see [2]]). In light of the weakness of
the gravitational force (even at the surface of the earth when acting on subatomic
particles) it may come as a surprise to many that a particle in free-fall could ex-
hibit observable quantum effects at all. In reality, the unique quantum features of
the distribution are considerably larger than one might generically expect.
The Schrodinger equation for a particle of mass m in free-fall is

n? d*y

This is a familiar differential equation whose unique bounded solution is given by

the Airy function
y \1/3
l[/(Z) = NAi ((m) (Z _ZO)) (2)

where ./ is a normalization constant, zo = E/mg is the peak of the classical
. . 2 .
trajectory, A, = % is the Compton wavelength, and A, = LE is a length scale

set by the macroscopic gravitational field. In the momentum representation, the
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Fig.1 The undulatory quantum probability density is shown superimposed on the classical prob-
ability density. We clearly see a close agreement between the two that is a consequence of the
WKB nature of the state. The “fringes” of the quantum state are evident in the oscillatory be-
havior of the wavefuntion

wavefunction is pure phase, and it is both an exact solution and a zeroeth order
WKB state. In this sense, the quantum state is as classical as they come, and one
should expect a close agreement between the classical and quantum probability
distributions. The classical probability density at a point in phase space is propor-
tional to the amount of time spent in a small neighborhood of the point, which

we can Write, Pelass(2) ~ Lerossings ‘2(%” = \/ﬁ, summing over the number of
2

times the particle enters the small region. The asymptotic expansion of the Airy
function reveals the characteristic exponential decay of the quantum probability
distribution outside the classically forbidden region, and the 1/+/7p — z behavior
within the classically allowed region away from the turning point. The classical
and quantum probability distributions are shown superimposed in Fig.[Twhere the
classical-quantum correspondence is immediately evident.

The uniquely quantum structures of the wavefunction come from a peculiar
feature of the quantum wavefunction: whereas the classical trajectory and the clas-
sical structure of the quantum wavefunction is independent of the mass (a conse-
quence of the classical equivalence principle), the oscillatory behavior of the wave
function does depend on the mass. These quantum structures are scaled by length
parameter (A21,) 1/3_ Although A. is typically very small for subatomic particles,
Ag is very large and the combination results in quantum structures that are large
enough to be observable. The phase gives rise to “fringes” resulting from the os-
cillatory behavior of the quantum probability distribution and the exponentially
damped tail in the classically forbidden region. For a neutron near the surface
of the Earth, this yields a width for the first fringe of approximately (A22,)'/? ~
1079m, which is close to the
resolving power of the naked eye! For smaller mass particles the fringe width
can be much larger. For example, taking the mass limit on the electron neutrino
my, S 2 eV, the largest fringe size is on the order of one meter or more. The pe-
culiar balance between a very small and a very large quantity that gives rise to the
intermediate quantum scale will carry over to our cosmological model.

3 Quantum de sitter space and the Kodama state

The Kodama state and its various generalizations have been argued to be non-
perturbative solutions to the quantum operator analogues of the equations defining
de Sitter space [3; 4; 155 16]. Just as with the particle in free-fall, the state can be
viewed as an exact state and a zeroeth order WKB state. The simplest route to
the construction is to begin with the Einstein—Cartan action with a cosmological
constant, and for generality we will add a non-minimal parity violating term often
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referred to as the Holst modification or Immirzi termE]
1 A 1
S:k/*ee<R—6ee>—BeeR 3)
M

de Sitter space is defined by the condition R = %ee (the Immirzi parameter has
no effect at the classical level). Inserting this into the action and setting the three-
torsion to zero (a second class constraint that emerges in the detailed constraint
algebra) we arrive at the Kodama state in the connection representation

B [A] = N — Pexp Alkil.ﬁS/Y[A}—FZ(l—i—ﬁz)A/\Rr @
4

where the implied trace is now in the adjoint representation of SU(2) we have
absorbed all terms that depend only on the classical configuration E into an overall
phase factor. The author has argued that the above defines an auxiliary Hilbert
space of states labelled by a particular configuration of the three-curvature Ry [E],
and the unique diffeomorphism and gauge invariant state corresponding to R =0
is the quantum version of de Sitter space in the flat R? slicing.

We are primarily interested in the symmetry reduced version of the state. For
simplicity we consider the Kodama state in the limit that 8 — co. As we will see the
relevant quantum structures we will find are well above the Planck scale, and the
Immirzi parameter typically affects physics at the Planck scale, thus we are jus-
tified in taking this limit. Furthermore, preliminary investigations to be reported
in a follow up paper suggest these structures are unaffected by the introduction of
the Immirzi parameter.

Beginning with the Freidman—Robertson—Walker ansatz for the metricE]

2 2,2, 2 dr? 2 712

ds"=—-Ndt"+a" | ——5 +rdQ" |, (®)]

1—xr
the action reduces to:
S—% dt(a d+taa —l—Ka—ga
R

—i/dt I'chN,F(szrnf& ) (6)
" 876 a a 3H

where, L3 is a fiducial volume of the cell over which the action is evaluated, and we
have defined u = Lzaz, k= La, and n = L*«. The last variable, n, is positive, zero,

! In the first line we have used the index free Clifford notation, which is generally easier to
work with for simple calculation. In this notation, the spin connection is valued in the Clifford

bi-vector algebra, ® = %7/[1}/]] !, the tetrad is valued in the vector elements of the Clifford
algebra, e = %y[e’ , and the dual is x = —iys = Y*y'¥*73. Explicit wedge products have been
dropped and the trace over the Clifford matrices is assumed in the action.

2 In our conventions, the coordinates carry dimensions of length so the scale factor a(7) is
unitless.
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or negative corresponding to a closed spherical, open flat, or open hyperbolic three
geometry respectively. From the form of the action, we identify the fundamental

Poisson bracket, {k, 1} = %, which carries over to the operator commutator

~ .. 87G
[k, 0] = =5 (N
Classically, there is only one solution to the Hamiltonian constraint (assuming the
three-metric is non-degenerate), and it is the defining condition of de Sitter space
in symmetry reduced variables:

A
= @®)

As previously, we insert this solution back into the action to arrive at the WKB
solution in the k-representation:

Wik = 25 — Pexp {8;(’% (;19 +kn>} . )

A similar form for the Kodama state was also obtained in the context of symmetry
reduced Plebanski theory in [7]. It can easily be verified that the above state is
simply the symmetry reduced form of (4)) in the limit that B — co. We note the
integer n in the symmetry reduced state plays the role of the curvature parameter
Rr.

The wavefunction is easier to interpret in the u-representation. The Fourier
transform of (9) is the bounded solution to the Airy differential equation yielding:

2/3
: 3 2
Y(u)=ANAi| - c=—5— - 10
(,LL) N Ai (87’[62”’0) (,LL nrO) (10)

where ry = \/% is the de Sitter radius. The semi-classical analysis of this state
follows closely with that of a particle in free-fall.

4 Semi-classical analysis of the state

To carry out the semi-classical analysis of the wavefunction we first need to iden-
tify a time variable. In fact, we have already implicitly chosen one. To see this,
recall that the symmetry reduced Kodama state is in the kernel of the quantum op-
erator version of the de Sitter condition . However, the Hamiltonian constraint
is Cy(N) =N /m(k*+n— %[J) If the Kodama state is to be in the kernel of the
Hamiltonian constraint, it is natural to choose a dynamical lapse, N = %, where
o is a constant so that the Hamiltonian operator is now precisely the operator cor-
responding to Classically this corresponds to a choice of a non-standard time

3 As always, subject to a particular (very natural) choice of operator ordering.
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variable where the
de Sitter solution now takes the form

k(1) =1t/ro
u(t) = 1> +nr.

(In

Thus, this choice for the lapse has effectively stretched the time variable such that
the de Sitter trajectory is parabolic as opposed to hyperbolic.

Now, given this trajectory, consider the classical probability distribution in the

u-representation. The classical probability density is Pejass (1) ~ 2 crossings m =
1

= which holds for y > nrg and pejass = 0 for p < nr3. The probability den-

sity blows up as we approach nr(z) from above because the effective “velocity”
goes to zero at this point. This is the analogue of the classical turning point of the
particle in free-fall, corresponding to the throat of de Sitter space in the n = +1
model where the universe reverses its contraction and begins to expand. Just as
with the particle in free-fall, we have a very close match between the classical and
quantum probability density, Pquanwum = |¥(1)|?. The asymptotic expansion of the

Airy function yields

4 A similar asymptotic expansion for a candidate de Sitter solution involving a cosine rather
than a sine was found using different methods long ago by Hawking [8]].
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22 1 o 32, @
[1>>nr(% Sin <471'Ghr() (‘u nro) + 4)

Pauant (1)
(L —nr})
(12)

1y 3/2
T exp( 27 (1 —170) )

(1 —nrg)

Pauant (— 1)

Again we see the characteristic exponential decay of the wavefunction outside
the classically forbidden region, and the purely quantum oscillatory feature of the
quantum probability density superimposed on the classical distribution inside the
classically allowed region.

4.1 A mesoscopic length scale

As with the particle in free-fall, the uniquely quantum structures depend on the
balance of a very small and a very large length scale. Just as the kinematics of the
particle in free-fall is classically independent of the mass, the de Sitter solution
is classically independent of Newton’s constant. However, the Kodama state does
depend on G = E;l, just as the quantum free-fall state does depend on m. Consider
the asymptotic expansion, (I2)), of the quantum probability distribution in the clas-
sically allowed region. We clearly see an oscillatory structure superimposed on the
classical probability distribution. For large u, the distribution is oscillatory with
respect to [.13/ 2 Recalling that the physical volume (in the closed model) 27> /.L3/ 2,
the quantum probability distribution has a periodicity in the volume given by:

AV =870, 1. (13)

Thus, the scale of the uniquely quantum features of the wavefunction are nei-
ther of Planck scale nor cosmological scale, but they reside in an intermediate,
mesoscopic scale. Using the observed value of the cosmological constant today,
A~ 107120/ 4[271 ~ 1079m~2, the periodicity in the volume is approximately:

AV ~ 10 %m? (14)
or converting this to a length scale:
(AV)'3 2 107 m = 10 X dproton (15)

where dproton 18 the diameter of the proton. Thus, just as with the case of the free-
fall quantum state, the balance of microscopic and macroscopic length scales con-
spire to produce a mesoscopic quantum scale. Since the scale of the pure quantum
structures of the Kodama state is on the length scale of the strong interaction, the
possibility remains that a signature of these structures may be seen in, for example
the relative abundance of matter in the early universe.
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Fig. 2 The smooth paraobolic curve is the classical trajectory and the oscillating curve is the
effective trajectory of the volume, V, plotted as a function of 7 on the vertical axis for the

values nr(z) =1 and (871: ;2 - )2/ 3 = 3. We clearly see a strong agreement between the classical
pl'0

and quantum trajectories. The quantum trajectory appears to evolve via a series of quasi-discrete
jumps with value AV = 871:4£12,l 70

To gain further insight into the nature of the quantum oscillations of the wave-
function, we construct an effective spacetime by identifying the quantum prob-
ability distribution as an effective probability in the WKB analysis. That is, we
identify:
|2 eff&}_g[ive /2 . ( 1 6)

(1)
This is to be viewed as an effective equations for deducing pt as a function of 7.
Rearranging terms we have [dT = % [ dU Peffective (1) SO that :

Peffective = ‘ v

T = iJV2/du (i (—a (u—nr3)))?

i— _m,2 2
e ((u—nr3>Ai[—a<u—nr5>P+A oy = nrg)] ):f(u)

o
(17)
where a = (ﬁ)z/ 3 The function f(u) is invertible, giving an effective trajec-
pl 0
tory for u as a function of time:

.uef‘fective(f) :f_1(|7|)- (18)

This trajectory is plotted in Fig. 2] with the classical trajectory superimposed.

The WKB analysis is not valid near the classical turning point so the peculiar
behavior of the effective scale factor at T = 0 can be discarded. The volume ap-
pears to evolve by a series of quasi-discrete jumps that cycle average to reproduce
the classical trajectory. It should be stressed that the quantum trajectory plotted in
Fig. 2] is only an effective trajectory—a proper treatment would require embed-
ding the symmetry reduced de Sitter space in a full Hilbert space, identifying an
internal time variable and plotting the expectation value of the volume in an appro-
priate state as a function of the internal time variable. This analysis is forthcoming
in a follow-up paper.

5 Concluding remarks

We have clearly seen a mesoscopic scale emerging from the non-perturbative de-
scription of quantum de Sitter space. Furthermore, the essential features followed
from a WKB analysis, and regardless of the details of the quantization procedure
one uses the WKB approximation should be valid in an appropriate regime. Thus,
regardless of the details of the quantum theory at the Planck scale, since the quan-
tum structures of interest are much larger we expect that they will remain. The
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numerical coincidence that these fluctuations are on the order of the scale set by
the strong interaction opens up the exciting possibility that this type of quantum
gravity effect might have consequences for the dynamics of the matter content of
the universe. It remains to be seen whether this scaling has observational conse-
quences.

Acknowledgments I would like to thank Abhay Ashtekar and especially Golam Hossain for
many stimulating discussions concerning this work. This research was supported in part by NSF
grant OISE0853116, NSF grant PHY0854743, The George A. and Margaret M. Downsbrough
Endowment and the Eberly research funds of Penn State.

References

1.

2.

Alexander, S.: A quantum gravitational relaxation of the cosmological con-
stant. Phys. Lett. B 629, 53-59 (2005). arXiv:hep-th/0503146

Scherer, S.: Bouncing neutrons in the gravitational field. Entry
posted to backreaction.blogspot.com. Retrieved March 29, 2008, from
http://backreaction.blogspot.com/2007/06/bouncing-neutrons-in- gravita-
tional.html, June 1 (2007)

. Smolin, L.: Quantum gravity with a positive cosmological constant.

arXiv:hep-th/0209079
Randono, A.: Generalizing the Kodama state. I. Construction. arXiv:gr-
qc/0611073

. Randono, A.: Generalizing the Kodama state. II. Properties and physical

interpretation. arXiv:gr-qc/0611074

Randono, A.: In search of quantum de Sitter space: generalizing
the Kodama state. PhD thesis, University of Texas at Austin, 2007.
arXiv:0709.2905

Noui, K., Perez, A., Vandersloot, K.: Cosmological plebanski theory.
arXiv:0712.4143

. Hawking, S.: The Big Bang and Black Holes. Advanced Series in Astro-

physics and Cosmology, vol. 8. World Scientific, Singapore (1993)



