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In the field of high-energy nuclear physics, ultrarelativistic heavy-ion collisions serve as a

one-of-a-kind laboratory for investigating the extreme properties of matter. These collisions

involve massive nuclei, such as lead or gold, colliding with energies in the trillions of electron

volts per nucleon range. These collisions produce an environment where the strong force,

as described by quantum chromodynamics (QCD), is the dominant force. In particular,

the collisions generate a state of matter known as the quark-gluon plasma (QGP), which is

characterized by a state of quarks and gluons that is not confined inside hadrons such as

protons and neutrons. The QGP is an intriguing state of matter that provides insights into

the behavior of dense astrophysical objects and the early universe. It is produced when the

energy density of the collision reaches a critical threshold, resulting in the transition from

the confined to the unconfined state of quarks and gluons. The QGP is a hot and dense

system, with temperatures on the order of trillions of Kelvin and densities several orders of

magnitude greater than the density of atomic nuclei in ordinary matter.

In the initial phases of a heavy-ion collision, the system is far from thermal equilib-

rium and possesses a highly anisotropic pressure. The pressure anisotropy results from the

longitudinal expansion being more rapid than the transverse expansion. The dynamics of

the system cannot be adequately described by ideal hydrodynamics, which assumes local



isotropic thermal equilibrium at all times. To account for the pressure anisotropy and non-

equilibrium nature of the QGP, a framework known as anisotropic hydrodynamics has been

developed. Anisotropic hydrodynamics (aHydro) is a useful tool for describing the evolution

of the QGP, especially during the early non-equilibrium evolution of the QGP. It goes be-

yond the ideal hydrodynamic limit by incorporating dissipative transport coefficients, such as

shear viscosity, which are essential for accurately modeling the system’s dynamics. aHydro

accounts for the anisotropic character of the pressure tensor and permits a more accurate

description of the evolution of the QGP.

In addition, the introduction of the quasiparticle formulation of anisotropic hydrody-

namics (aHydroQP) is a recent development in the field. This formulation integrates the

concept of quasiparticles and extends the aHydro framework to a full 3+1D framework with

a realistic equation of state. Quasiparticles are effective degrees of freedom that arise in the

QGP as a result of strong interactions. The aHydroQP method provides a more exhaustive

description of the QGP’s behavior, enabling a phenomenological analysis of heavy-ion col-

lision data at various energies. Significant emphasis has been placed on conformal theories

in hydrodynamics, where the equations of motion exhibit scale invariance. In conformal

systems, the existence and properties of hydrodynamic attractors have been the subject of

extensive investigation. These attractor solutions are insensitive to the initial conditions of

the system and describe the approach of the system towards thermal equilibrium. Under-

standing the behavior of conformal systems has yielded significant insights into the dynamics

of non-equilibrium relativistic systems. However, the study of hydrodynamic attractors in

non-conformal kinetic theories remains an open question. Non-conformal systems possess

additional scales, thereby destroying the scale invariance of conformal theories. Exploring

the behavior of non-conformal systems is crucial for gaining a comprehensive understanding

of dynamics in far-from-equilibrium situations that are more phenomenologically realistic.



In this dissertation, the primary objective is to increase our knowledge of the non-

equilibrium dynamics of the QGP in ultrarelativistic heavy-ion collisions. Because of that,

we intend to develop an improved ansatz for the distribution function in anisotropic hydro-

dynamics, aiming specifically for a more precise representation of moments with l = 0. Due

to the inadequacy of the early assumption of ideal hydrodynamics and local isotropic ther-

mal equilibrium in capturing the complex dynamics of the QGP, the canonical formulation

of aHydro provided adequate descriptions of moments with nonzero longitudinal momentum

(l > 0). However, it failed to describe moments with l = 0 accurately. This inadequacy was

attributed to the limitations of a single ellipsoidal form in representing the two-component

nature of exact solutions to the Boltzmann equation in the relaxation time approximation.

To address this limitation, a revised ansatz is proposed that incorporates an explicit

separation of free-streaming and equilibrating contributions in the distribution function.

This study demonstrates that this improved ansatz yields much better agreement with exact

results available in the literature for the evolution of moments, especially those that do

not contain power of the longitudinal momentum. By obtaining more precise dynamical

equations and extracting the non-equilibrium attractor associated with this enhanced ansatz,

a more accurate representation of the non-equilibrium dynamics of the QGP is obtained. As

result, this research has the potential to enhance our understanding of the behavior of the

QGP and enhance the theoretical frameworks used to investigate ultrarelativistic heavy-ion

collisions. By refining the description of non-equilibrium dynamics, it contributes to the

development of more precise models and a deeper understanding of the QGP’s complex

phenomena.

Moreover, experiments conducted at the Relativistic Heavy Ion Collider (RHIC) and

the Large Hadron Collider (LHC) are designed to recreate conditions comparable to those

in the early universe and during astrophysical mergers. Under these conditions of high



temperatures and net baryon densities, nuclear matter undergoes a phase transition from

quarks and gluons confined within hadrons to the deconfined QGP state. Calculations based

on lattice quantum chromodynamics (LQCD) have determined the temperature at which

this deconfinement transition occurs, yielding important insights into the QCD equation of

state. For modeling the spatiotemporal dynamics of the QGP in ultrarelativistic heavy-ion

collisions, relativistic viscous hydrodynamics has proven to be an indispensable instrument.

For a more accurate description, it became apparent that dissipative transport coef-

ficients, such as shear viscosity, must be included. This resulted in the development of

second-order viscous hydrodynamics, which effectively incorporated dissipative effects and

allowed for constraints on the shear viscosity to entropy density ratio. However, the ap-

plication of second-order viscous hydrodynamics to the early phases of the collision, where

the system is far from equilibrium and exhibits significant pressure anisotropy along the

beam-line direction was problematic. Early on, it was difficult for fixed-order truncations of

viscous hydrodynamics to accurately represent the large viscous corrections.

To address these issues, aHydro was used, employing a distribution function that assured

probability positivity and non-negativity. The original formulation was centered on boost-

invariant conformal Bjorken expansion, but subsequent work has expanded it to incorporate

more realistic characteristics associated with heavy-ion collisions. This part of the research

endeavor has dual objectives. The first objective of the project is to demonstrate that

aHydro automatically includes an infinite series of terms when expanded as a power series

in the inverse shear Reynolds number, thereby providing an infinite order resummation of

viscous contributions to all orders. The second focus of the research is aHydroQP in a full

3+1D framework, which surpasses traditional approaches and allows for phenomenological

applications to heavy-ion collision experiments at RHIC and LHC energies. By refining

the theoretical frameworks used in ultrarelativistic heavy-ion collision studies, this research



seeks to describe various bulk observables of the QGP using anisotropic hydrodynamics

and compare the results with experimental data at different collision energies. This will

contribute to a more thorough characterization of the QGP and provide valuable insights

into the physics at play.

Understanding the success of aHydro has led researchers to consider the topic of dynam-

ical hydrodynamic attractors. Extensive research has been conducted on the existence of

hydrodynamic attractors in conformal theories but less so in non-conformal theories. Im-

portant insights into the behavior of relativistic systems have been gleaned from studies of

conformal systems. However, the existence of hydrodynamic attractors in non-conformal

kinetic theories remains unanswered. This raises the intriguing issue of whether or not hy-

drodynamic attractor theories extend beyond conformal theories. Exploring the behavior of

non-conformal systems is crucial for gaining a comprehensive understanding of dynamics in

situations far from equilibrium that are phenomenologically relevant. In addition, the influ-

ence of a realistic mass- and temperature-dependent relaxation time on the behavior of an

attractor has not been studied in detail. Understanding the interaction between relaxation

dynamics and the emergence of attractor solutions can cast light on the evolution of non-

conformal systems at the macroscopic level. In addition, we plan to investigate the impact

of initial conditions on the time-dependent evolution of integral moments of the one-particle

distribution function. We aim to investigate how the initial momentum-space anisotropy

and initialization time influence the emergence and persistence of hydrodynamic attractors.

Our findings indicate the existence of an attractor for the scaled longitudinal pressure, but

not for the shear and bulk viscous corrections separately. Additionally, our results provide

evidence for both early- and late-time attractors for all moments of the one-particle distri-

bution function containing greater than one power of the longitudinal momentum squared.

By answering these questions, we aim to shed light on the behavior of non-conformal kinetic



theories, reveal the role of relaxation dynamics, and examine the sensitivity of the system to

initial conditions. This research contributes not only to the fundamental understanding of

far-from-equilibrium dynamics, but also to the description of relativistic systems in diverse

physical contexts.
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Chapter 1

Introduction

In the early moments of the universe, after the Big Bang, a quark-gluon plasma (QGP)

was formed, consisting of weakly-interacting quarks, the building blocks of matter, and

gluons, the carriers of the strong force. This mixture was dominated by high-speed particles

in an incredibly hot and dense soup. To recreate these conditions, powerful accelerators

collide heavy ions, such as gold or lead resulting in a tiny but extremely hot fireball in

which everything melts into a QGP. This plasma cools rapidly, and the individual quarks

and gluons reform into ordinary hadronic matter that flies away, leaving behind debris that

contains particles such as pions, kaons, protons, and neutrons, as well as antiprotons and

antineutrons, etc. The momentum distribution and energy of this debris can reveal much

about the plasma, which behaves almost like a perfect fluid with little viscosity.

To observe QGP on Earth, high-energy particle collisions are required. These collisions

take place at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory

or the Large Hadron Collider (LHC) at CERN in Switzerland, where fast-moving lead or

gold nuclei collide at high speeds, creating a short-lived plasma that can be studied. The

properties of the QGP can also be explored through theory, using quantum chromodynamics

(QCD) to describe the interactions between quarks and gluons. However, due to the vast

number of variables involved, solving these complex interactions requires advanced parallel

computing resources.

For many years, experimental physicists have been attempting to create QGP and finally

reported success about two decades ago. During this time, theorists have also been developing

the equations that govern this state of matter and have worked alongside experimentalists
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to better understand it.

In this introduction, we delve into the basics of the Standard Model, which describes the

interactions between the fundamental building blocks of matter that are governed by four

fundamental forces. We start by providing a succinct overview of Quantum Chromodynamics

(QCD), the underlying theory of strong interactions. Next, we take a closer look at the

structure of hadrons, made up of quarks and gluons, with a special emphasis on confinement

and phase transitions. We then proceed to define the quark-gluon plasma (QGP) and explore

the circumstances under which hadrons can disintegrate into deconfined quarks and gluons.

To better understand the properties of QGP, we explain high-energy heavy-ion collisions,

which provide a unique opportunity to study this state of matter in a laboratory setting. We

also examine the most promising experimental signatures of the QGP produced in nucleus-

nucleus collisions. Finally, we conclude by considering the future of quark-gluon plasma

research and what we can expect from future accelerators.

1.1 The Standard Model

Since the 1930s, the theories and discoveries of thousands of physicists have led to an

amazing understanding of the basic structure of matter: everything in the universe is made of

a small number of basic building blocks called fundamental particles, which are controlled by

four fundamental forces. The Standard Model of particle physics is the best way to explain

how these particles and three of the forces relate to each other [20–25]. Since it was created

in the early 1970s, it has been able to explain almost all experimental results and make

accurate predictions concerning a wide range of phenomena. The Standard Model has been

proven to be an excellent theory of physics over time and through many experiments [26–28].
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1.1.1 Matter particles

The Standard Model of particle physics provides a framework for understanding the

interactions of the fundamental constituents of matter. In this model, quarks and leptons

are the two main categories of elementary particles that make up everything in the universe.

There are six types of particles in each category, arranged into three generations. The

first generation, which is made up of the lightest and most stable particles, includes the

“up” and “down” quarks and the “electron” and “electron neutrino.” The second and third

generations are composed of heavier and less stable particles, but they can still contribute to

the stability of matter in various ways. For example, the heavier particles can quickly decay

into lighter and more stable particles, and the resulting particles can be a part of stable

matter. Additionally, the heavier particles can participate in the formation of composite

particles such as hadrons, which are made up of quarks and gluons, and can be stable.

Quarks come in three “colors” and can only combine in such a way as to result in colorless

objects, such as hadrons. Leptons, on the other hand, can be electrically charged or neutral,

and they have varying amounts of mass. For example, the “electron,” “muon,” and “tau” are

charged and have significant mass, while the corresponding neutrinos are electrically neutral

and have very little mass.

1.1.2 Forces and carrier particles

The four fundamental forces operating in the universe are the strong force, weak force,

electromagnetic force, and gravitational force. These forces each have unique strengths and

operate within different ranges. Gravity is the weakest of the four forces, but it has an

infinite range. The electromagnetic force is stronger than gravity and has an essentially

infinite range as well. The strong and weak forces only operate over short distances and are

dominant only at the level of subatomic particles. The strong force is the strongest of the

four fundamental forces.
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Figure 1: The Standard Model in Heavy Ion Collisions illustrates the fundamental building
blocks of the universe. Source: CERN.

The interaction between matter particles and the forces they experience is facilitated by

the exchange of bosons, also known as force-carrier particles, which means matter particles

can exchange specific amounts of energy. The strong force is carried by the gluon, the

electromagnetic force by the photon, and the weak force by the W and Z bosons. The

hypothetical1 boson carrying the force of gravity is called the graviton, but it has not yet

been discovered.

The Standard Model of particle physics includes the electromagnetic, strong, and weak

forces, as well as their respective bosons. It explains the interactions between the force

carriers (boson) and matter particles (fermions). However, gravity is not included in the

1The graviton is described as “hypothetical” because it has not been experimentally observed or detected.
In physics and scientific research, a “hypothetical” particle or entity is one that has been predicted or
proposed by theoretical models and equations but has not yet been explicitly observed or confirmed by
experimental evidence.
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Standard Model as it has been difficult to incorporate within the framework due to the

mathematical incompatibility between the general theory of relativity and quantum theory,

which describe macro and micro phenomena, respectively [29–33]. Nevertheless, the influence

of gravity on particles is typically so small that it can be ignored in the context of particle

physics. The gravitational effect only becomes significant when matter is in bulk, such as

planets or large objects like the human body.

1.2 Quantum chromodynamics

Quantum chromodynamics (QCD) is a fundamental theory of particle physics that ex-

plains the strong nuclear force. It describes the interaction between quarks and gluons,

which are the building blocks of matter. The strong force holds quarks together to form pro-

tons and neutrons and keeps these particles bound within the atomic nucleus. As a result,

strongly interacting matter can exist in a variety of phases, including a nuclear liquid phase,

a hadronic gas phase, and the quark-gluon plasma phase [34–37]. In this way, QCD plays a

crucial role in understanding the properties and behavior of matter in the universe.

1.2.1 The Lagrangian of QCD

The QCD Lagrangian is a mathematical equation that describes the interactions between

quarks and gluons. It consists of a combination of terms that describe the different types of

interactions between quarks and gluons. It includes terms that describe the kinetic energy

of quarks and gluons, as well as terms that describe the interactions between quarks and

gluons via the exchange of gluons. The QCD Lagrangian also includes a term known as the

“color charge” term, which describes the fact that quarks come in three different “colors”

(red, green, and blue) that are related to the strong force. This term is important because

it allows quarks and gluons to interact with one another via the exchange of gluons, which

carry the strong force between them. The complex phenomenology of the strong interaction
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Figure 2: Illustration of a quark-gluon, 3- and 4-gluon vertices vertex in QCD [1].

is represented in an apparently straightforward Lagrangian [36,38–40]. The QCD Lagrangian

is

LQCD =

Nf∑
f

q̄cf (iγ
µDµ −mf )q

c
f −

1

4
Ga
µνG

µν
a , (1.1)

• LQCD: This is the symbol for the Lagrangian density which is a mathematical function

that describes the dynamics of quarks and gluons. It consists of two main terms: the

quark term and the gluon term.

•
∑Nf

f : This indicates a sum over all flavors f , where Nf is the number of quark flavors.

In this Lagrangian, there are Nf different quark fields, each with its own mass mf .

• q̄cf : This is the conjugate of the quark field q. The subscript c = 1, . . . , Nc with Nc = 3

being a color index, which indicates that quarks come in three different colors (red,

green, and blue). The subscript f is the quark/anti-quarks flavor index, which distin-

guishes between different types of quarks where f = up, down, strange, charm, bottom, top.

• γµ: This is a Dirac matrix that expresses the vector nature of the strong interaction

with the matrix encoding the spin properties of the quark field. The symbol µ is a

Lorentz four vector index.

• Dµ: This is the covariant derivative of the quark field, which describes how the quark

field changes as it moves through space-time. The covariant derivative acting on the
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quark fields is

Dµ = ∂µ − igsAaµ
λa

2
, (1.2)

where gs the strong coupling (related to αs by g2
s = 4παs; we return to the strong

coupling in more detail below), Aaµ is the gluon fields which is a vector field labeled by

an adjoint color index a = 1, . . . , 8. The octet of gluon fields can be used to construct

a matrix valued field Aµ = Aaµ
λa

2
, where λa is a set of traceless, Hermitian, 3 × 3

matrices. Additionally, local gauge invariance, which is a fundamental symmetry in

gauge theories, is preserved by the covariant derivative in the QCD Lagrangian.

• mf : This is the mass of the quark. The mass of a quark determines its behavior, and is

one of the parameters that must be specified in order to fully describe the quark field.

• Ga
µνG

µν
a : This represents the gluon term. It describes the gluon self-interactions and

the energy of the gluon field. It is proportional to the square of the field strength

tensor. The factor of −1
4

is sets the magnitude of the gluon term and is specified

uniquely at the Lagrangian level.

• Ga
µν : This is the field strength tensor for the gluon field. It is defined by the equation

Ga
µν = ± 1

igs
[Dµ, Dν ] = ∂µA

a
ν − ∂νAaµ + gsf

abcAbµA
c
ν , (1.3)

and fabc = 4iTr([λa, λb]λc) is a set of numbers called the SU(3) structure constants.

The gluon field is the field that mediates the strong force between quarks. The field

strength tensor describes the strength and direction of the gluon field at a given point

in space-time. The superscript a is an index that distinguishes between different types

of gluons. Since gluons consist of all possible combinations of color and anti-color

charge which possess a total color charge there are eight of them (in general, N2
c − 1)
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1.2.2 Confinement and Asymptotic Freedom in QCD

The two central features of QCD are confinement and asymptotic freedom, which play

a crucial role in understanding the behavior of the strong force.

• Confinement in QCD is a fundamental property that characterizes quark and gluon

behavior at low energies or long distances. It refers to the property that quarks and

gluons are permanently confined inside hadrons at low energy or large distances and

cannot be isolated as individual particles [41, 42]. Instead, as quarks are separated,

the energy in the system rises, which causes new quark-antiquark pairs or gluon pairs

to spontaneously form out of the vacuum. These newly formed quarks and gluons are

immediately joined to create new hadrons, ensuring their confinement within color-

neutral bound states.

• Asymptotic Freedom is the property of QCD which states that the interaction

between quarks and gluons becomes weaker at high energies or short distances. This

means that as the energy of a quark-gluon system increases, the particles are free to

move more independently, whereas at lower energies they are more strongly bound.

This property was first predicted by theorists (particularly by David Gross, Frank

Wilczek, and David Politzer) in the 1970s and has since been experimentally confirmed,

leading to its acceptance as a key aspect of the theory of QCD [43,44], which resulted

that David Gross, Frank Wilczek, and David Politzer were awarded the Nobel Prize

in Physics in 2004 for their contributions to the understanding of the strong force and

Asymptotic Freedom.

1.2.3 The coupling constant in QCD

In QCD, the coupling constant, also known as the strong coupling constant, is a funda-

mental dimensionless parameter that describes the strength of the strong interaction between
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Figure 3: (Left) The average value of αs(M
2
Z) and its uncertainty for seven sub-fields [2].

(Top) Summary of measurements of αs as a function of the energy scale Q where depending
on the energy scale, the strength of the strong force can be either weak or strong [2]. (Bottom)
the running coupling constant is divided into two regions perturbative and non-perturbative,
each with its own characteristics [3].

quarks and gluons as a function of energy. Therefore, it determines the behavior of the par-

ticles at different energy scales. The strong interaction is responsible for binding quarks

together to form protons and neutrons, and these, in turn, make up the atomic nucleus. The

value of the coupling constant determines the range of the strong force and the rate at which

energy is exchanged between strongly interacting particles.

This parameter is denoted by the symbol αs and is related to the QCD scale parameter,

denoted by ΛQCD. The coupling constant in QCD at the momentum scale Q is approximately

αs(Q
2) =

g2

4π
=

αs(Λ
2)

1 + αs(Λ2)
4π

(11− 2Nf
3

) ln Q2

Λ2

(1.4)

where Nf is the number of flavors and Λ ≈ 100 MeV is the QCD scale parameter. The value

of αs is proportional to the strength of the interaction and it decreases with increasing energy.

The scale parameter Λ sets the momentum below which the theory becomes confining.
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The running coupling constant in QCD has a divergence at a scale known as ΛQCD
2,

which is the characteristic energy scale of the strong interaction. At this scale, the value

of the coupling constant becomes large, signaling the breakdown of perturbative methods.

The fact αs becomes large at low momentum is a key feature of QCD and is related to the

confinement of quarks and gluons, meaning that they cannot exist as free particles at low

energies. Instead, they must be bound together in hadrons, such as protons and neutrons.

The value of the running coupling constant αs changes over the mass range of typical particles

(the energy scale), and it can be described in terms of two regions: perturbative and non-

perturbative as illustrated in Fig. 3 at the bottom. Depending on the energy scale, the

strength of the strong force can be either weak or strong.

In the perturbative region, where the energy scale is much higher than the confinement

scale ΛQCD, the behavior of αs can be described by perturbative QCD (pQCD) calculations,

which are based on the expansion of the QCD Lagrangian in powers of the coupling constant.

In this region, αs is small and the strong force can be treated as a weak perturbation which

reflects the asymptotic freedom. This means that at high energies, quarks and gluons interact

weakly and can be treated as nearly free particles. In this region, the interactions can be

treated as a series of small corrections to the free particle motion. In the non-perturbative

region, where the energy scale is close to or lower than ΛQCD, the behavior of αs cannot be

described by perturbative calculations and must be studied using non-perturbative methods

such as lattice QCD simulations or effective field theories. In this region, αs is large and the

strong force results in significant interactions between quarks and gluons and to confinement

of quarks and gluons inside hadrons.

Eq. (1.4) shows that the coupling constant is small when Q2 � Λ2
QCD. Therefore the

interactions with a large momentum transfer can be treated in the perturbative way. The

2It is worth noting that ΛQCD is a scale parameter in QCD that separates the perturbative and non-
perturbative regions. It is not a physical mass, but rather a parameter that determines the energy scale at
which the transition from perturbative to non-perturbative behavior occurs.
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Figure 4: The QCD phase diagram illustrates the phases of strongly interacting matter, such
as quarks and gluons, at different temperatures and densities [4].

value of αs is known, and it is estimated to be around 0.12 at high energies (Q = mass of

the Z boson)and around 0.5 at low energies as shown in figure 3 at the top. It is determined

experimentally through a variety of means, including deep-inelastic scattering experiments,

lattice QCD simulations, and studies of hadronic spectra. In Fig. 3 on the left we provide

an overview of recent measurements of αs(M
2
Z) from several sub-fields and experiments.

1.2.4 QCD phase transition and its diagram

The Quantum Chromodynamics phase diagram is a graphical representation that uses

the temperature T and baryon chemical potential µB as coordinates to depict the different

phases of strongly interacting matter, such as quarks and gluons, as predicted by the theory of

QCD. The baryon chemical potential in this context is a measure of the imbalance between

quarks and anti-quarks, i.e., the relative abundance of matter vs antimatter. The phase

diagram is particularly important in the study of nuclear matter, which is composed of

protons and neutrons which themselves are made up of quarks and gluons.

The QCD phase diagram is roughly divided into three regions: the hadronic phase, the
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quark-gluon plasma phase (QGP), and the color superconducting phase as shown in figure

4.

• The quark-gluon plasma phase is the region where quarks and gluons are no longer

confined inside hadrons and can move approximately freely (the particles are highly

energetic) because the strong force, which is responsible for the confinement of quarks

and gluons within hadrons is effectively screened.3 This phase is characterized by high

temperatures and/or densities. It was studied at Brookhaven National Laboratory’s

Relativistic Heavy Ion Collider (RHIC) and CERN’s Large Hadron Collider (LHC). It

is thought that this phase of matter may have existed in the early universe, for a few

microseconds after the Big Bang, when it was hot enough for quarks and gluons to be

weakly-interacting independently. In this phase the quarks and gluons are deconfined

and chiral symmetry is restored [45].

• The hadronic phase is characterized by low temperatures and densities, and it corre-

sponds to the vacuum state of QCD. In this region the matter is composed of strongly

interacting protons and neutrons, which are made up of quarks and gluons, which

are confined inside hadrons because of the strong coupling at low energies. In other

words, the strong force becomes less screened. In this phase, the system undergoes a

second-order phase transition, in which the confinement of quarks and gluons within

hadrons is observed. This phase transition is also associated with the restoration of

chiral symmetry, which is broken in the hadronic phase due to the formation of a con-

densate of quark-antiquark pairs. The hadronic phase is characterized by the presence

of bound states of quarks and gluons, such as protons, neutrons, and mesons, which are

3In this context, “screened” refers to the reduction in the strength of the strong force at short distances
due to the presence of other charges in the system. The screening of the strong force in the plasma phase
is due to the presence of free color-charged particles in the plasma, which can interact with the gluons that
carry the strong force. This interaction can cause the gluons to “dress” or acquire an effective mass, which
reduces the strength of the strong force at short distances.

12



analogous to the matter that comprises the macroscopic world we observe in everyday

life.

• The color superconducting phase occurs at extremely high densities and low temper-

atures. It is believed that quarks and gluons may bind together into a more tightly

bound state. In this phase, quarks are expected to form pairs and behave like a fluid,

resulting in unusual properties such as the ability to conduct color currents without

resistance.

Moreover, the phase diagram consists of several key components, including a crossover transi-

tion, a first-order phase transition, a critical point, and a line of first-order phase transitions.

• At intermediate temperatures and chemical potentials, the system exhibits a crossover

behavior (yellow strip) in figure 4, where there is a smooth, continuous transition

between the hadronic phase and the QGP phase without the need for a discontinu-

ous phase transition. In a crossover transition, the properties of the system change

smoothly as the temperature or density is increased or decreased.

• On the other hand, a first-order phase transition is a transition between two phases

that is marked by a discontinuous change in properties of the system (abruptly), such

as the energy density and the pressure, and there is a clear boundary between the two

phases.

• The critical point in the QCD phase diagram separates the regions where the transition

between QGP and hadronic matter is smooth (crossover transition) and abrupt (first-

order phase transition) depending on the temperature and density. At high densities

before one gets the critical point, the transition is characterized by a sharp change

because the properties of the system, such as the energy density and the pressure

change rapidly. However, at the critical point the transition becomes a second-order
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phase transition, where thermodynamic quantities are continuous but their derivatives

may be discontinuous. The critical point has not been experimentally found yet, but

it is a subject of active research.

In conclusion, the QCD phase diagram is a complex and active area of research, as scientists

are still trying to understand the properties and behavior of quarks and gluons at different

temperatures and densities, and to locate the critical point and understand the properties

of the QCD vacuum. It is important to note that the QCD phase diagram is still not fully

understood, and many aspects of it remain a subject of active research.

1.3 High energy and heavy ion collision

The field of physics that studies ultra-relativistic heavy-ion collisions brings together

the principles of high-energy particle physics and nuclear physics. The term “heavy-ions”

refers to heavy atomic nuclei, while the term “ultra-relativistic energy” indicates an energy

regime where kinetic energy is a large multiple of the rest energy [46, 47]. In high-energy

particle physics, interactions between single particles (such as leptons, quarks, and hadrons)

are derived from first principles, while in nuclear physics, interactions are modeled through

effective models for more complex objects like nuclei. In the field of ultra-relativistic heavy-

ion collisions, the goal is to understand the properties of hot and dense nuclear and hadronic

matter in terms of fundamental interactions. This includes searching for new phases of

hadronic matter, identifying phase transitions, and reconstructing the phase diagram of

strongly interacting matter over a wide range of thermodynamic parameters such as tem-

perature, baryon chemical potential, and isospin chemical potential. Relativistic heavy-ion

experiments began to create a droplet of Quark-Gluon Plasma (QGP) through high-energy

collisions of ions. Initially, experiments with lighter ions did not show significant differences

from proton-proton collisions, but heavier ions later revealed new flow patterns. Currently,
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the world’s leading experimental facilities for this field are the Relativistic Heavy Ion Col-

lider (RHIC) at Brookhaven National Laboratory and the Large Hadron Collider (LHC)

at CERN. Gold and lead ions are typically used in these experiments, with gold being the

heaviest monoisotopic element. The process of these experiments involves heating the in-

tended element, vaporizing it, and accelerating it to ultrarelativistic speeds through multiple

stages. While RHIC was previously the dominant apparatus for QGP discoveries, the LHC

now has the highest collision energy. Currently, RHIC is focused on beam energy scans and

is planned to be transformed into an electron-ion collider to better understand the 3D wave

functions of hadrons and nuclei, as well as to better understand the role of gluons in the

building blocks of matter.

1.3.1 Stages of a heavy ion collision and theoretical tools

Relativistic collisions of heavy ions provide one of the few opportunities to investigate

nuclear matter in extreme laboratory settings. The center-of-mass collision energy per nu-

cleon pair
√
s and the shape of the colliding nuclei are the defining characteristics heavy-ion

collisions. Once the center-of-mass energy is more than the rest mass of the nuclei, or if
√
s/2

is greater than the nucleon mass, the collisions are considered relativistic. This indicates that

the nuclei move at a significant fraction of the speed of light c. Therefore, this implies that

the typical nucleons Lorentz contraction factor γ of the collision might be approximated as

γ =
mγc2

mc2
=
Etotal

mp

'
√
s

2 GeV
, (1.5)

where this equation shows the Lorentz factor that quantifies the relativistic effects expe-

rienced by the nucleons during the collision with mp is the rest mass of a proton mp =

938.6 MeV ' 1 GeV with 1 GeV = 109 eV being the unit of energy used in high-energy

physics. In modern experiments, collision energies are in the TeV range, which means that
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Figure 5: The stages of a heavy ion collision [5].

γ � 1. This means that nucleons move at speeds very close to the speed of light, and that

kinetic energy, not rest mass energy, is the main source of energy when they collide with one

other. Moreover, high Lorentz contraction factors mean that the shape of nuclei appears

different in the center-of-mass frame compared to their shape at rest. A picture that is often

used to explain this is that a nucleus moving at relativistic speed looks more like a “pancake”

than a roughly spherical object due to relativistic length contraction

1. The initial stage denoted by the notation τ < 0 (before the collision). For Au+Au

collisions at RHIC, the two beams of Lorentz-contracted gold nuclei were accelerated in

opposite directions in the RHIC ring and brought to collide (on the light-cone defined

by positions z = ± t) once they reached their target energies which correspond to a

speed greater than 99.9% of the speed of light. The collision takes place at t = z = 0,

and any remnants of the nuclei that do not take part in the collision process leave the

collision region on the forward and backward light-cones. Interacting matter will lead

to energy deposition in the center of the collision region, close to z ' 0. Initially, this

deposited energy will be far from equilibrium, and this early stage can be characterized

by a dense ensemble of gluons walls known as the Color Glass Condensate (CGC) at

sufficiently high collision energies, which could conceivably be reached at RHIC [48].
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Therefore, early after the collision the evolution in the directions transverse to the

initial beam direction (the “transverse plane”) can be assumed to be static, and the

dynamics is dominated by the longitudinal expansion of the system. Being interested

in the bulk dynamics of the matter created in a relativistic heavy-ion collision as well

as the primary theoretical methods used to explain or simulate these events, one can

divide the evolution into four stages in proper time τ =
√
t2 − z2, shown schematically

in figure 5.

2. Pre-equilibrium stage and thermalization: The energetic collision of the two heavy

nuclei excites the QCD vacuum and forms a dense pre-equilibrium matter composed

of quarks, anti-quarks, and gluons. This stage is followed by thermalization. The pre-

equilibrium bulk matter requires around 1 fm/c ' 10−23 seconds for it to attain local

thermalization and create the quark-gluon plasma.

3. QGP expansion and hadronization: The QGP rapidly expands and cools due to thermal

pressure gradients. When it reaches the critical temperature Tc (which is around 155

MeV), it hadronizes and transforms into hadronic matter, which is made up of a

combination of stable and unstable hadrons and hadron resonances. Throughout the

QGP expansion period, hadronization occurs continuously at the edge of the QGP

fireball. It takes roughly 10 fm/c for the QGP fireball to spread and entirely convert

to hadronic matter in central Au+Au collisions at RHIC.

4. Hadronic expansion and decoupling: The hadronic matter continues to expand until it

becomes highly diluted. Once the local effective temperature of the system drops below

a certain limit (T ∼ 150−180 MeV), partons become confined within colorless hadrons

in a process known as hadronization, which occurs at τ ∼ 10 fm/c. The system then

transforms into an interacting hot hadron gas for several fm/c. At τ ∼ 20 fm/c, the

hadrons undergo chemical freezeout, where they stop interacting strongly and colliding
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inelastically, but the particle number remains conserved. This is followed by kinetic

freezeout, where the hadrons stop having any kind of collisions, and their momenta

remain constant. Finally, the hadrons move freely (free streaming) on straight lines

until they reach the detector, marking the end of the hadronic decoupling process. The

entire process, from the growth of the hadronic matter until the hadrons fly freely to

the detector without undergoing any further collisions, takes another 5 − 10 fm/c for

it to completely freeze out.

In the field of ultra-relativistic heavy-ion collisions, scientists study what happens when

heavy atomic nuclei collide with each other at very high energies. This creates a large

number of particles, much more than the number of particles that existed before the collision

(exceeding the number of initial nucleons by a factor of 10-100). To study these collisions,

scientists use different methods such as mathematical modeling and computer simulations.

When analyzing the effects of ultra-relativistic heavy-ion collisions, scientists often make

predictions based on thermodynamic (related to heat and temperature) or statistical (related

to probability) considerations. However, the systems of particles produced in these collisions

are not stationary and change over time, so a more dynamic approach is necessary. This is

where transport theories come in. These theories are used to describe processes that are not

in equilibrium. The matter produced in these collisions has a short lifespan, so there is a

growing interest in using these theories to understand what is happening.

In addition, researchers use microscopic Monte-Carlo simulations to make predictions.

These simulations are based on models of low energy hadron-hadron collisions and are used

as an extrapolation, or prediction, of what may happen in these types of collisions. Further-

more, there is also research being done to understand the effects of these collisions on the

behavior of particles and how they interact with each other. This involves using theories

from quantum physics, such as quantum field theory in and out of equilibrium. By using
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these methods, scientists hope to get a better understanding of the properties of the matter

created in these collisions and how it behaves. Overall, the field of ultra-relativistic heavy-ion

collisions is interdisciplinary and requires a combination of different approaches, including

thermodynamics, statistical methods, hydrodynamics, kinetic theory, field theory at finite

temperature and density, non-equilibrium field theory, and Monte-Carlo simulations to fully

understand the effects and properties of these collisions.

1.3.2 Quark-gluon plasma

The Quark-Gluon Plasma (QGP) is a state of matter that is hot, dense, and has strong

interactions. Unlike the normal hadronic state, where the partons (quarks and gluons)

are confined in colorless hadrons held together by the strong force, in QGP, the partons

are deconfined and free to move around [49]. This is due to the large population of color

charge carriers, leading to long-range color charge conductivity. To better understand the

properties of QGP, let’s consider a thought experiment. At low temperatures, the system

is composed of a gas of colorless hadrons, which are the eigenstates, or ground states, of

the QCD Hamiltonian at zero temperature. However, as the temperature increases and

the hadron interactions become more intense, the hadronic states no longer provide an

adequate description of the medium. At temperatures around 155 MeV and above, the

system transforms into QGP, where the degrees of freedom are the quarks and gluons.

There are two ways to generate the Quark-Gluon Plasma (QGP), a state of matter that

consists of free-moving quarks and gluons:

1. At extremely high densities: By squeezing a large number of baryons into a small

space, their wave functions start to overlap and they eventually dissolve into a system

of degenerate quark matter. This occurs at a critical baryon density, ρc, which is

typically several times the nuclear saturation density (ρ0 = 0.16 fm−3). This type of

matter can be found in compact stars such as white dwarfs, neutron stars, and quark
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stars. If the density at the center of neutron stars reaches 5 -10 ρ0, the neutrons could

potentially melt into cold quark matter.

2. At extremely high temperatures: QGP can be generated by heating up the QCD

vacuum without the need for nuclear matter. At low temperatures, hadrons are ther-

mally excited from the vacuum. But at higher temperatures, the interactions between

the hadrons become so intense that they overlap and eventually transform into quark

and gluon degrees of freedom at a critical temperature (T & 150 MeV). The only way

to generate QGP in the laboratory is through Ultra-Relativistic Heavy Ion Collisions

(URHICs), which rely on this mechanism. Furthermore, Friedman’s solution of Ein-

stein’s equation suggests that the universe experienced an expansion from a singularity

at time zero, which has been confirmed by the red shift of distant galaxies observed

through Hubble’s law. By extrapolating these observed properties of the universe back-

wards in time, it is believed that the universe became hotter and denser and crossed

the QCD phase transition (T ∼ 155 MeV) about ∼ 10−5 seconds after its inception.

This phase transition was preceded by the electroweak phase transition at ∼ 200 GeV.

It has been shown that QGP’s behavior can be described by hydrodynamic equations

with a small specific shear viscosity, making it similar to a liquid with low shear viscosity,

based on its flow properties [50–53]. However, the QGP is a complex system that may exhibit

either weak or strong coupling, depending on the scale being considered. Short wavelength

modes, such as thermodynamic functions, are dominated by asymptotic freedom, resulting

in a weakly-coupled system of quarks and gluons at high temperatures (T � ΛQCD). On the

other hand, long wavelength modes, such as static magnetic color fields, are strongly coupled,

even in the limit T � ΛQCD. Despite its strongly-coupled character, the non-perturbative

sector of the QGP does not significantly contribute to its thermodynamic properties.
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1.3.3 The evidence for the existence of QGP at RHIC

The existence of the QGP has been confirmed at RHIC through a combination of exper-

imental observations and theoretical predictions. Experimentally, evidence for the QGP at

RHIC includes:

1. Suppression of high transverse momentum hadrons: RHIC and LHC experi-

ments have observed a significant suppression of high transverse momentum hadrons,

which is consistent with the idea that these hadrons are losing energy as they traverse

the hot, dense QGP [54–56].

2. Elliptic flow: The RHIC and LHC experiments have also observed a large elliptic flow,

which is a measure of the anisotropy in the momentum distribution of particles. This

observation can be explained by the hydrodynamic expansion of the QGP, in which the

pressure gradients cause the matter to flow and distribute momentum anisotropically

[57–59].

3. Jet quenching: The RHIC and LHC experiments have observed a strong suppression

of high-energy jets, which are collimated beams of particles produced in high-energy

collisions. This suppression can be explained by the energy loss of the jets as they

traverse the hot, dense QGP [60].

4. Strangeness enhancement: RHIC and LHC experiments have also observed an

enhancement of strange hadrons, which can be explained by the creation of a hot,

dense environment in which strange quarks can be produced more efficiently.

Theoretically, the evidence for the QGP at RHIC is also supported by numerical simulations

of heavy-ion collisions that incorporate the principles of quantum chromodynamics (QCD),

the theory of the strong interaction. These simulations have been able to reproduce many
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of the experimental observations, such as the suppression of high-energy hadrons and the

elliptic flow, and provide further support for the creating of a QGP at RHIC and LHC.

1.4 The overview and outline of my dissertation

In my PhD dissertation, I explored the study of the Quark-Gluon Plasma (QGP) cre-

ated in heavy-ion collisions using a non-equilibrium hydrodynamics framework, called the

anisotropic hydrodynamics (aHydro) framework. I aimed to improve the elementary aHydro

framework to enable the study of QGP phenomenology. Throughout the study, I utilized

two primary methods to evaluate the aHydro framework: exact solutions to the Boltzmann

equation and experimental data. The exact solutions of the Boltzmann equation, obtained

for specific symmetrical cases, were frequently used as a reference for comparisons between

the aHydro framework and other frameworks. The experimental data from ultrarelativistic

heavy-ion collisions was also used to verify the phenomenological predictions of the aHydro

model.

Therefore, in Chapter 2, I introduce the fluid dynamic and the system of kinetic equations

and investigate their moments, which leads to the establishment of Landau matching con-

ditions related to energy-momentum conservation. In Chapter 3 of this dissertation, I delve

into a comprehensive exploration of the Glauber model, that enables us to gain insights

into the spatial arrangement of nucleons in colliding nuclei which is consider as a crucial

factor in understanding the initial stages of heavy-ion collisions. Also, the Bjorken model

which guides our understanding of the early moments of high-energy nuclear interactions

and shedding light on the parton distribution functions and the energy density of the quark-

gluon plasma formed in such collisions. In Chapter 4, an improved form for the anisotropic

hydrodynamics distribution function is introduced and demonstrated to better reproduce

exact results from literature. The non-equilibrium attractor associated with this improved
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form is also extracted. In Chapter 5, the existence of early and late time attractors in non-

conformal kinetic theories is explored by computing the time-evolution of moments of the

one-particle distribution function. I extend previous attractor studies by using a mass- and

temperature-dependent relaxation time that is realistic and varying the initial momentum-

space anisotropy and initialization time. In Chapter 6, the motivation for using relativistic

anisotropic hydrodynamics to study ultrarelativistic heavy-ion collisions is presented and

highlights the main ingredients of the 3+1D quasiparticle anisotropic hydrodynamics model,

including the underlying symmetry assumptions. I also present phenomenological compar-

isons with experimental data, which show that anisotropic hydrodynamics can describe many

bulk observables of the quark-gluon plasma. Finally, in Chapter 7, I conclude and summa-

rizes the key results of the dissertation and provides an outlook for future research.
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Background of Theory
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Chapter 2

Fluid Dynamics and Kinetic Theory in Heavy Ion Collisions

2.1 Hydrodynamics

Hydrodynamics, also known as fluid dynamics, is a theoretical framework that describes

the behavior of fluids which is a continuous system on large distance scales. In fluid dynam-

ical descriptions individual particles are not explicitly considered and instead one makes use

of macroscopic variables. This discipline endeavors to understand the fundamental nature of

matter and energy transfer by deciphering the complex patterns and behaviors that emerge

in fluid motion. In the context of heavy ion collisions, fluid dynamics plays a crucial role in

elucidating the complex dynamics of the quark-gluon plasma (QGP) and hadronic matter

created in the collisions, over spatial scales orders of magnitude smaller than those of conven-

tional matter. The transformation of the kinetic energy of colliding ions into thermal energy

and the rapid expansion of the QGP produce conditions resembling those of the universe

just microseconds after the Big Bang. These conditions deviate greatly from our everyday

experiences and from conventional physics, making their study especially difficult.

Hydrodynamics offers an efficient method for describing the collective behavior of quarks

and gluons in this medium that arise during plasma expansion and cooling. One of fluid

dynamics primary benefits is its simplicity and generality. By focusing on a few macro-

scopic variables that characterize the state of the fluid such as energy density, pressure,

temperature, and flow velocity, fluid dynamics simplifies the complex behavior of the sys-

tem. The thermodynamic properties (such as the equation of state that relates pressure,

energy density, and temperature) and transport coefficients (such as viscosity and thermal

conductivity) contain all the microscopic information. On macroscopic scales (large distances
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and long times), the intricate microscopic behavior is no longer detectable. Most microscopic

variables (such as the positions and velocities of individual particles) exhibit rapid spatial

and temporal variation. These rapid fluctuations result in negligible changes to average val-

ues, which have no appreciable impact on the macroscopic dynamics. These variables that

change slowly over time and space are often associated with conserved quantities (like total

energy or momentum), which play a significant role in the macroscopic dynamics. Therefore,

using hydrodynamics enables a simpler and more computationally tractable description of

the evolution of the system.

Generally, a fluid is a continuous system and each small volume element in this system is

called fluid element. It is traditionally assumed that each fluid element needs to be sufficiently

large on a microscopic scale to be close to thermodynamic equilibrium. This is considering

as the basic principle of fluid dynamics where the system evolves while remaining close to

local thermodynamic equilibrium. Even as the system expands and evolves, it is presumed

that the interactions between particles are sufficient to maintain local equilibrium, thereby

permitting the application of fluid dynamics equations. This is where fluid dynamics steps

in as a powerful theoretical framework for understanding the matter in heavy ion collisions.

Likewise, each fluid element must be sufficiently small on a macroscopic scale to preserve

the continuum approximation. Consider fluid dynamics in a heavy-ion collision for the

QGP as an illustration where the system has very differing length scales. The component

particles (quarks, gluons, etc.) interact with one another over extremely small distances when

observed at the microscopic level. However, when you zoom out to the macroscopic level,

fluid dynamics—which concentrates on the typical characteristics of huge volumes—describes

the behavior of the entire system.

As a result, hydrodynamics provides a link between the microscopic interactions of quarks
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and gluons and the macroscopic observables that can be measured in experiments. By mod-

eling the QGP as a relativistic fluid with strong interactions and analyzing the evolution of it

with hydrodynamic equations, scientists are able to make predictions about the distribution

of particles, their momenta, and other observables that can be compared to experimental

data collected at particle colliders such as the Large Hadron Collider (LHC) at CERN or

the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory.

In the following sections, we will delve further into this basic kind of fluid and its hydrody-

namical framework, examine the subtleties of the effects of viscosity in heavy-ion collisions,

and learn how the interaction between theoretical knowledge and actual experiments has

aided in our understanding of the novel properties of the QGP and how it evolves over time.

This investigation will help us understand the very first moments of the universe and pro-

vide new information concerning how matter behaves in the most extreme situations we can

envisage.

2.2 From perfect-fluid hydrodynamics to the viscous hydrodynamics framework

As heavy ion collisions occur, the initially created state of the QGP undergoes a rapid

hydrodynamic expansion, which is the flow of matter from regions of high energy density

to regions of lower energy density. This expansion causes the matter to cool down and

eventually transforms the QGP into hadronic matter. Because the QGP is a relativistic

fluid that behaves as a nearly perfect fluid with low viscosity, we will discuss two primary

categories of fluids: ideal and viscous.

2.3 Relativistic perfect-fluid hydrodynamics

Ideal fluids are a simplified model that depict the frictionless and adhesion-free behavior

of fluids. In a relativistic perfect fluid, particles move without encountering any internal

resistance. This simplified perspective is beneficial for comprehending fundamental fluid
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dynamics and can shed light on fluid motion under specific conditions. The relativistic ideal

hydrodynamic equations serve as the foundation for characterizing the evolution of the QGP

during its early expansion phases. These equations presume that the fluid is in thermal

equilibrium at the local level, i.e., all fluid elements must be exactly in thermodynamic

equilibrium within each local fluid cell but not necessarily in global thermal equilibrium

[61, 62]. The condition of a fluid governed by relativistic principles can be fully defined by

the densities and flow of conserved quantities, which include the energy-momentum tensor,

denoted T µν , and the four-current associated with particle number (net particles minus anti-

particles), denoted Nµ.

2.3.1 Derive the energy-momentum tensor

To establish a comprehensive description of these quantities for an ideal fluid, it is neces-

sary to first determine the energy-momentum tensor, T µνLRF in the fluid local rest frame (LRF)

where in this frame the fluid is not in motion uµ = (1,0), so the energy-momentum tensor,

particle four-current, and entropy four-current should exhibit the distinct characteristics of a

system in static equilibrium. The definition of the energy- momentum tensor is a mathemat-

ical object that describes the distribution of energy and momentum in a physical system with

certain transformation properties under coordinate transformations. Therefore, the energy-

momentum tensor is the four-momentum component in the µ direction per three-dimensional

surface area perpendicular to the ν direction. Thus T µν has dimensions of energy per vol-

ume. Thus we have differential four-momentum components ∆p = (∆E,∆px,∆py,∆pz)

associated with differential space-time four-vector ∆x = (∆t,∆x,∆y,∆z). For µ = ν = 0,

one obtains

T 00
R =

∆E

∆x∆y∆z
=

∆E

∆V
= ε , (2.1)
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and for µ = ν = 1 (the x coordinate), one obtains

T xxR =
∆px

∆t∆y∆z
=

∆fx
∆A

= P . (2.2)

Here, ∆px
∆t

= ∆fx is the force in the x direction acting on a surface of area ∆A = ∆y∆z with

a normal vector perpendicular to the force and the force exerted per area is the pressure P .

Observing an ideal fluid from its LRF reveals the following properties: there is no energy

transfer (T i0LRF = 0), the force per unit surface element is the same in all directions (the

pressure is isotropic T ijLRF = δijP ), and there is no net flow of particles or entropy ( ~N = 0

and ~S = 0). Thus, in the fluid rest frame, an ideal fluid has

T µνLRF =



ε 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P


. (2.3)

Now, we can generalize to the moving frame by using a Lorentz transformation when we

consider these quantities from the viewpoint of the LRF. These components are linked to

fluid velocity (uµ) and the metric tensor (gµν). The possible forms of these quantities can be

inferred from particular conditions, such as the symmetry of the energy-momentum tensor

and the consistent transformation properties under Lorentz transformations. The following

can be used to determine the most general form for the energy-momentum tensor of an ideal

relativistic fluid (denoted T µν(0)) that meets these requirements and using the hydrodynamic

degrees of freedom, namely two Lorentz scalars (ε, p):

T µν(0) = ε (c0g
µν + c1u

µuν) + P (c2g
µν + c3u

µuν) . (2.4)
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In the LRF, one requires the T 00
(0) component to represent the energy density ε of the fluid.

Similarly, in this frame, the momentum density should be vanishing T 0i
(0) = 0, and the

space-like components should be proportional to the pressure, T ij(0) = P δij. Imposing these

conditions onto the general form (2.4) leads to the equations

(c0 + c1)ε+ (c2 + c3)P = ε, −c0ε− c2P = P, (2.5)

which imply c0 = 0, c1 = 1, c2 = −1, c3 = 1. Therefore, the energy-momentum tensor of an

ideal relativistic fluid becomes

T µν(0) = (ε+ P ) uµuν − P gµν . (2.6)

To simplify this equation, we introduce a projection operator ∆µν = gµν −uµuν that focuses

on the space-like part of a tensor in the LRF. For any metric gµν , the ∆µν operator is

orthogonal to the fluid four velocity, meaning ∆µνu
ν = ∆µνu

µ = 0. Moreover, it obeys

∆µν∆
ν
ρ = ∆µρ, and ∆µ

µ = 3. With this operator, we can rewrite Eq. (6.22) as

T µν(0) = εuµuν − P∆µν . (2.7)

In Minkowski space-time, a Lorentz transformation to the LRF leads to uµLRF = (1,0),

which means ∆µν
LRF = diag(0,−1,−1,−1). This explicit representation highlights ∆’s focus

on space-like properties. Similarly, uµ can be understood as a time-like projection operator.

Now, to describe the behavior of an ideal fluid, we keep track of energy, momentum, and

particle number. These conservation principles are expressed through equations involving

the flow of these quantities. When a system has no net conserved charges (vanishing chem-

ical potential), the ideal hydrodynamic evolution of the system can be described by local
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conservation of energy and momentum, which is expressed by the equation

∂µT
µν
(0) = 0 . (2.8)

These equations use the mathematical tool ∂µ to compute how objects change through time

and space, and this equation means that the total energy and momentum in the system

are conserved, and any changes in one part of the system must be compensated by changes

in other parts of the system. Additionally, it fully consistent with the Lorentz invariance

principles, which describe how objects appear to move when viewed from various moving

frames.

For practical calculations, we use the projection operator ∆µν and the fluid’s four velocity

uµ. This makes it easier to divide the direction of change into components that are either

parallel (uν∂µT
µν
(0)) to the fluid’s velocity or perpendicular (∆α

ν∂µT
µν
(0)) to it. For the first

projection the co-moving time-like components of Eq. (2.8), one finds

uν∂µT
µν
(0) = uν∂µ[εuµuν − P∆µν ] ,

= uν [(∂µε)u
µuν + ε(∂µu

µ)uν + εuµ(∂µu
ν)− (∂µP )∆µν − P (∂µ∆µν)] ,

= uν(∂µε)u
µuν + uνε(∂µu

µ)uν + uνεu
µ(∂µu

ν)− uν(∂µP )∆µν − uνP (∂µ∆µν) ,

= uµ(∂µε) + ε (∂µu
µ) + ε uνu

µ(∂µu
ν)− P uν(∂µ∆µν) ,

= uµ(∂µε) + ε (∂µu
µ)− P uν(∂µ∆µν) ,

= uµ(∂µε) + ε (∂µu
µ)− P uν [∂µ(gµν − uµuν)] ,

= uµ(∂µε) + ε (∂µu
µ) + P uν∂µ(uµuν) ,

= uµ(∂µε) + ε (∂µu
µ) + P [uνu

ν(∂µu
µ) + uµuν(∂µu

ν)] ,

= (ε+ P )∂µu
µ + uµ∂µε = 0 , (2.9)
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where the identity uνu
ν = 1 and uν∂µu

ν = 1
2
∂µ(uνu

ν) = 1
2
∂µ1 = 0 are used. For the other

projection the co-moving space-like components of Eq. (2.8) one obtains

∆α
ν∂µT

µν
(0) = ∆α

ν (∂µε)u
µuν + ∆α

ν ε(∂µu
µ)uν + ∆α

ν εu
µ(∂µu

ν)−∆α
ν (∂µP )∆µν −∆α

νP (∂µ∆µν) ,

= ε uµ∆α
ν∂µu

ν −∆µα(∂µP ) + ∆α
νP∂µ(uµuν) ,

= ε uµ∆α
ν∂µu

ν −∆µα(∂µP ) + P [uν∆α
ν (∂µu

µ) + uµ∆α
ν (∂µu

ν)] ,

= ε uµ∆α
ν∂µu

ν −∆µα(∂µP ) + P uµ∆α
ν∂µu

ν ,

= (ε+ P )uµ∂µu
α −∆µα∂µP = 0 . (2.10)

where in the first line ∆α
νu

ν = 0, and ∆α
ν∆µν = ∆µα. Now, by introducing

D ≡ uµ∂µ, ∇α = ∆µα∂µ, θ ≡ ∂µu
µ, (2.11)

for the projection of derivatives parallel and perpendicular to uµ, equations (2.9), and (2.10)

can be written as

Dε+ (ε+ p)θ = 0 , (2.12)

(ε+ p)Duα −∇αp = 0 . (2.13)

These are the fundamental equations for an ideal relativistic fluid. Note that there are

four quantities used to characterize an ideal fluid: energy density (ε), pressure (P ), particle

number density (n), and fluid velocity (uµ). These quantities represent six distinct fluid

properties such as uµ has three independent components. However, only five equations result

from analyzing how these quantities change over time (conservation laws). This leaves our

understanding of the fluid’s behavior incomplete. To solve this, we employ a state equation

(P = P (n, ε)). This equation connects the pressure to other thermodynamic properties,
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“closing” the equations. The presence of this equation is ensured by the assumption that

the fluid is in local thermal equilibrium. With this equation of state, the equations of ideal

fluid dynamics become a complete framework for describing the behavior of fluids in a variety

of situations.

2.4 Relativistic viscous-fluid hydrodynamics

When a fluid is not in ideal local thermodynamic equilibrium, it is subject to dissipative

effects that result in irreversible thermodynamic processes during its motion. Due to the

nature of dissipative processes, no fluid can maintain precise local thermodynamic equilib-

rium throughout its entire dynamics. This implies that some elements of the fluid may not

be in equilibrium with the rest of the fluid, and that they must interchange heat with their

surroundings in order to achieve equilibrium. In addition, the movement of fluid elements

and the friction between them can also result in energy loss. To accurately describe the

behavior of a relativistic fluid, these features must all be taken into account. This kind of

fluid is called a viscous fluid, and possesses a degree of “stickiness,” or viscosity. In heavy-ion

collisions, the viscosity becomes crucial for understanding how the created matter evolves.

Therefore, with accounting for viscosity, we have to consider additional term called viscous

corrections that add to the ideal term.

The viscous corrections play a significant role in describing the collective behavior of

the system. It can be expressed in terms of moments of the one-particle distribution func-

tion, which allows for a more convenient way of describing the collective behavior of the

system and can be used to extract information about the properties of the fluid. Here, the

energy-momentum tensor, T µν , describes the macroscopic state of the system. It can be ex-

pressed in terms of a single-particle phase-space distribution function and decomposed into
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hydrodynamic degrees of freedom as following

T µν = T µν(0) + T µν(1) = T µν(0) + Πµν , (2.14)

T µν =

∫
dP pµpνf(x, p) = εuµuν − P∆µν + Πµν

= εuµuν − (P + Π)∆µν + πµν , (2.15)

with
∫
dP is the integration measure and Πµν = πµν + Π∆µν . In this equation, the ten-

sor decomposition includes the energy density ε, thermodynamic pressure P , bulk viscous

pressure Π, and shear stress tensor πµν . These quantities describe how the system behaves

under different conditions, such as changes in temperature or pressure. Moreover, Πµν is

the viscous stress tensor, and decomposes in two parts: a traceless part πµν and a part with

non-vanishing trace ∆µνΠ.

• The traceless part (πµν) corresponds to the shear stress tensor, which captures the

departures from ideal fluid dynamics due to small anisotropic deviations from local

thermal equilibrium. In other words, shear viscosity is comparable to the friction

that occurs when fluid layers with various velocities move against one another. Shear

viscosity functions as a brake, slowing the differences in motion between various parts

of the fluid. This effect is crucial because it facilitates a more uniform flux of matter,

allowing it to evolve collectively. This part of the stress tensor is symmetric πµν = πνµ,

and πµµ = 0. As a result, the traceless part of the stress tensor captures the anisotropic

pressure-like effects due to the deviations from equilibrium.

• The non-vanishing trace (∆µνΠ) is called the bulk pressure that contributes to

the pressure of the system. It is responsible for the behavior of the system in cases

of uniform expansion or contraction that means it is linked to how the fluid’s volume
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changes when it gets isotropically squished or stretched. To see this, consider a fluid

element that is expanding or contracting uniformly in all directions, with no net flow of

matter. In this case, the stress tensor must be isotropic, meaning that it is proportional

to the metric tensor: ∆µνΠ = −Pgµν . When it comes to heavy-ion collisions, as

matter expands, the pressure and temperature undergo rapid fluctuations. The bulk

viscosity influences the expansion rate, potentially delaying or speeding it up. This

influences the evolution of matter and the production of particles as the system cools.

The bulk pressure can be related to the thermodynamic pressure of the fluid, but it

is not necessarily equal to it, especially in non-equilibrium situations. In general, it

depends on the gradients of the fluid velocity, temperature, and other thermodynamic

variables, and it can be determined from the equations of motion of the fluid, such as

the Navier-Stokes equation for a viscous fluid.

Taking the proper projections of the conservation equations of the energy momentum

tensor yields the fundamental equations of viscous fluid dynamics that describe how the

energy-momentum tensor changes and evolves due to the presence of viscosity in a fluid

uν∂µT
µν = Dε+ (ε+ P )∂µu

µ + uν∂µΠµν = 0 , (2.16)

∆α
ν∂µT

µν = (ε+ P )Duα −∇αP + ∆α
ν∂µΠµν = 0 . (2.17)

The first equation represents energy and momentum conservation in the direction of fluid

movement. It states that the sum of the variations in the fluid’s energy (ε), the energy and

pressure terms (ε + p) associated with its expansion or compression (∂µu
µ), and the contri-

bution from the bulk pressure tensor (Πµν) must equal zero. The third term in Eq. (2.16) is

simplified using uν∂µΠµν = ∂µ (uνΠ
µν)−Πµν∂(µuν), and by using the identity ∂µ = uµD+∇µ
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that connects the partial derivative to the convective derivative D, the equation can be fur-

ther simplified as well by using the fact that in the Landau frame, uµΠµν = 0 with

A(µBν) =
1

2
(AµBν + AνBµ) .

Furthermore, the second equation focuses on the energy and momentum conservation in

directions orthogonal to the fluid flow. Consequently, the essential equations for viscous

fluid dynamics in relativistic theory are

Dε+ (ε+ p)∂µu
µ − Πµν∇(µuν) = 0 ,

(ε+ p)Duα −∇αp+ ∆α
ν∂µΠµν = 0 . (2.18)

Now, to derive the expressions for the viscous stress tensor Πµν , we start by using the

basic equilibrium thermodynamic relations for a system without conserved charges (or zero

chemical potential)

ε+ p = Ts, Tds = dε . (2.19)

We know that, in equilibrium, the entropy of the system remains constant or increases. In

contrast, out of equilibrium, the entropy of the system will always tend to increase. It means

that the second law of thermodynamics can be rewritten in the form

∂µs
µ ≥ 0 , (2.20)

where the entropy 4-current sµ in equilibrium is given by sµ = suµ. The thermodynamic
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Figure 1: Illustration of viscosity components in relativistic hydrodynamics: ζ (bulk viscos-
ity) resists expansion, while η (shear viscosity) opposes flow gradients.

relations (2.19) allow to rewrite the second law as

∂µs
µ = ∂µ(suµ) = (uµD +∇µ)(suµ)

= uµD(suµ) +∇µ(suµ) = Ds+ s∂µu
µ

= D[(ε+ p)/T ] + [(ε+ p)/T ]∂µu
µ

=
1

T
Dε+

ε+ p

T
∂µu

µ

=
1

T
[Dε+ (ε+ p)∂µu

µ]

=
1

T
Πµν∇(µuν) ≥ 0 , (2.21)

Because Πµν = πµν + ∆µνΠ has a traceless part and a remainder with non-vanishing trace,

we introduce a notation for the traceless part of ∇(µuν),

∇<µuν> ≡ 2∇(µuν) −
2

3
∆µν∇αu

α , (2.22)

Therefore, Eq. (2.21) becomes

∂µs
µ =

1

2T
πµν∇<µuν> +

1

T
Π∇αu

α ≥ 0 . (2.23)

The ultimate goal is to ensure that the inequality that is representing the second law is

satisfied. This is achieved by defining specific quantities (πµν ,Π, η, and ζ) that guarantee the
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inequality holds and by imposing constraints that these quantities are non-negative. Here,

ζ is the bulk viscosity, which measures the resistance to expansion, and η is shear viscosity,

which measures the resistance to flow gradients for the traceless part of the derivative of the

4-velocity (see Fig. 1). This notation allows for a more compact representation of certain

terms.

πµν = η∇<µuν> , Π = ζ∇αu
α , η ≥ 0 , ζ ≥ 0 , (2.24)

because then ∂µs
µ is a positive sum of squares.

In the next sections, we will dive deeper into the models and simulations used to study

these viscous effects, and we will explore how experimental data and theoretical predictions

come together to provide a clearer picture of the behavior of matter in these extraordinary

conditions.

2.5 Hydrodynamic modeling and experimental insights in high-energy heavy

ion collisions

During heavy-ion collisions, the particles begin to behave like a fluid very rapidly. This

indicates that they undergo a process known as “hydrodynamization”. Once “hydrody-

namized”, the particles begin to exhibit “collective behavior.” Hydrodynamics enables us to

comprehend how these particles interact and move collectively which provides insight into

the properties of the QGP.

In section (1.3.1), we introduced how the journey of the intensely hot and dense matter

created in heavy-ion collisions unfolds in distinct stages. To comprehend these stages, so-

phisticated hydrodynamic models that simulate the evolution of matter are required. These

models are analogous to virtual laboratories, allowing us to investigate conditions that are

almost impossible to reproduce in reality. To capture the effects of viscosity and other fac-

tors, researchers use specialized relativistic viscous hydrodynamics equations that take into
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account how matter flows and how it reacts to pressure gradients and viscosities. Then, in

order to perform these simulations, we must provide initial conditions – essentially, the initial

state of the matter immediately following the collision. After that, they use the equation of

state to describe the relationship between pressure, energy, and temperature in the evolving

matter. Next, to solve these equations, it is necessary to conduct numerical simulations

using sophisticated numerical methods. These simulations allow us to observe the evolution

of matter over time. Nonetheless, they present obstacles, such as coping with the complex

geometry of the collision region and modeling the effects of viscosity accurately.

Extracting hydrodynamic information from the experimental data acquired from heavy-

ion collisions enables scientists to unravel the mysteries surrounding these energetic events.

For example, the elliptic flow pattern observed in the particle emission is caused by the

almond-shaped overlap region created when nuclei collide. Scientists can establish a rela-

tionship between the observed elliptic flow and the viscosity of the created matter using

hydrodynamic simulations and they find that lower viscosity enables particles to behave

collectively, resulting in an elliptic flow pattern. Also, the types and energies of emitted

particles provide vital information regarding the conditions and stages of the evolution of

matter. By analyzing the spectra of emitted particles, scientists can determine the temper-

ature at which particles “freeze out” – that is, cease interacting and are no longer affected

by strong multi-particle interactions. This temperature provides insight into the transition

between the QGP and hadronic matter.

Comparing experimental data with hydrodynamic simulations helps validate the models

and adjust their parameters. When the simulated patterns of particle emission and other

observables closely match experimental data, it indicates that the hydrodynamic model ac-

curately captures crucial aspects of the collision’s dynamics. However, there are limitations,

including the models’ simplified assumptions and sensitivity to initial conditions. Scientists
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can obtain insight into the properties of the matter formed in heavy-ion collisions through

this comparison. This includes parameters such as the QGP’s initial temperature viscosity,

and its equation of state. Moreover, discrepancies between experimental results and simu-

lations can indicate gaps in our current understanding, steering future research and model

refinement.

After looking at how complicated relativistic viscous hydrodynamics is and how impor-

tant it is to understanding how matter behaves in extreme conditions, we now turn our

attention to the interesting field of anisotropic hydrodynamics. Even though relativistic vis-

cous hydrodynamics has been helpful, the development of anisotropic hydrodynamics gives

us a new way to look at systems with large differences in momentum in different directions.

2.6 Anisotropic hydrodynamics

Anisotropic hydrodynamics is a non-perturbative reorganization of relativistic hydrody-

namics intended to explain the large momentum-space anisotropies observed in ultrarelativis-

tic heavy-ion collisions [6]. These collisions generate substantial imbalances or anisotropies

in momentum space, which undermine the traditional hydrodynamic assumption of isotropic

(nearly) thermodynamic equilibrium. Anisotropic hydrodynamics permits the study of fluids

in situations far from isotropic equilibrium by taking the anisotropic character of the system

into consideration. Also, it extends the regime of hydrodynamic treatments, allowing for a

more precise description of fluid behavior under extreme conditions with significant momen-

tum distribution imbalances, such as those encountered in heavy-ion collisions. Traditional

viscous hydrodynamics dynamical equations are derived using a linearization approach that

assumes an isotropic equilibrium distribution function as the first or leading-order approx-

imation [63–96]. This method considers small departures from equilibrium and derives the

equations of motion by linearizing the hydrodynamic equations around equilibrium. Lin-

ear response theory may now describe viscous effects like shear viscosity. This linearized
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technique is limited in systems with severe deviations from isotropic equilibrium, such as

ultrarelativistic heavy-ion collisions. Because of that hydrodynamics is a better framework

for non-linear dynamics and large momentum-space anisotropies [95, 97–112].

In ultrarelativistic heavy-ion collisions (URHICs), the longitudinal pressure is signifi-

cantly lower than the transverse pressure in the center of the fireball. The ratio is less than

or equal to 0.3. This value shows substantial pressure anisotropies in URHIC quark-gluon

plasma (QGP) shortly after the initial nuclear impact. Therefore, the momentum-space dis-

tribution of particles in the QGP is extremely anisotropic, with more pressure along trans-

verse directions than longitudinal directions. In addition, the momentum-space anisotropy

increases as one advances away from the center toward colder plasma areas. Such significant

pressure anisotropy is indicative of significant viscous corrections to the presumed starting

point of ideal hydrodynamics. Furthermore, when traditional linearized viscous hydrody-

namic treatments are applied to QGP in heavy-ion collisions, certain regions of phase space

can arise in which the one-particle distribution function becomes negative. Existence of neg-

ative values in the distribution function is problematic because it violates the distribution

function’s probabilistic interpretation and, therefore, physical consistency. In hydrodynamic

modeling, physically valid distribution functions are essential for accurately describing the

behavior of the system.

In order to study relativistic hydrodynamics in heavy-ion collisions, it is crucial to resolve

this issue and discover new methods. Anisotropic hydrodynamics (aHydro) [95, 97–112],

among other related methods, offers a promising approach to overcome this challenge and

maintain a physically valid distribution function in the analysis of heavy-ion collisions. In this

framework, the particles of the system can have significantly different momenta in different

directions. This anisotropy can be described mathematically using a tensor called Ξµν , which

quantifies how much momentum space is distorted from isotropy (where the momentum
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distribution is the same in all directions). Therefore, the central idea is the distribution

function, which describes the statistical distribution of particles in a system in terms of

their position (x) and momentum (p), can be separated into a distorted isotropic part (fiso)

and a non-elliptical anisotropic correction part (δf̃). The distorted isotropic part accounts

for elliptical non-uniformity and anisotropy in momentum space. Mathematically, one can

express the one-particle distribution function in the form

f(x, p) = fiso

(√
pµΞµν(x)pν

Λ(x)
,
µ(x)

Λ(x)

)
︸ ︷︷ ︸

faniso(x,p)

+ δf̃(x, p) , (2.25)

where Λ is a temperature-like scale that can be related to the system’s true temperature in

the isotropic equilibrium limit, and µ(x) is the chemical potential. To gauge the degree of

momentum-space anisotropy one uses Ξµν which is a second-rank tensor

Ξµν = uµuν + ξµν −∆µνΦ , (2.26)

where uµ is the four-velocity associated with the local rest frame, ξµν is a symmetric and

traceless tensor, and Φ is the bulk degree of freedom. In this version, it is assumed that the

momentum-space anisotropy in the system can be described using an ellipsoidal deformation

shape. In the case that there is a rotational symmetry the ellipsoidal deformation becomes

spheroidal. In this latter case the momentum distribution has a different width in the

x and y directions different from that in the z direction (T xx = T yy 6= T zz) and this is

characterized by a single parameter, denoted as ξ(x). This parameter varies in the range

−1 < ξ <∞, with the cases ξ < 0, ξ = 0, and 0 < ξ corresponding to the prolate, isotropic,

and oblate momentum distribution, respectively, (see Fig. 2). In the more general case

where the momentum-space anisotropy is ellipsoidal, meaning that all three components of
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Figure 2: The different range of ξ for the spheroidal anisotropic distribution function [6].

the momentum tensor (T xx 6= T yy 6= T zz) are different in the LRF. This is a more complex

form of anisotropy compared to the simpler spheroidal form.

As mentioned, the results of microscopic calculations indicate that the transverse pressure

of the systems produced initially in heavy-ion collisions is significantly greater than the

longitudinal pressure [113–119], one can conclude that the initial distributions are most

likely oblate.

Overall, anisotropic hydrodynamics seeks to develop a theoretical framework capable of

accurately describing the behavior of this QGP in its initial phases following the collision.

This period is essential for comprehending the formation and properties of the QGP and un-

derstanding the behavior of matter near the region’s edges because it can differ significantly

from the behavior of matter in the region’s center particularly in the transverse (side-to-side)

direction. Moreover, it aims to handle situations in which shear viscosity varies with temper-

ature and may be relatively high. In certain extreme conditions, such as those encountered

in heavy-ion collisions, traditional hydrodynamics assumptions (such as low shear viscosity

and near equilibrium evolution) may not hold.

43



2.7 Exploring kinetic and hydrodynamic attractors in extreme matter dynamics

An attractor in a dynamical system is a specific solution that the system approaches as

time passes, beginning from a variety of initial conditions within its basin of attraction 1. In

other words, the system will eventually resolve on this particular solution regardless of the

initial conditions within a certain range. The behavior of the attractor is determined by the

interplay between two factors:

• Expansion rate: This causes the system to become locally anisotropic, favoring the

elongation or stretching of the system in particular directions in the momentum space.

• Isotropizing interaction rate: This counteracts the expansion and tends to make the

system isotropic, which means that its properties tend to be the same in all directions

in the momentum space.

Attractors have recently gained attention in the context of ultra-relativistic heavy-ion col-

lisions. These attractor solutions are essential for comprehending the transition to fluid-

dynamic behavior and showing non-thermal fixed-point behavior in systems that are far

from equilibrium. They help scientists in determining the extent to which various collisional

observations provide information about initial conditions or material properties.

In the field of heavy-ion collisions and the study of quark-gluon plasma (QGP), two

significant concepts, namely the kinetic attractor and the hydrodynamic attractor, provide

insights into the behavior of matter under extreme conditions. The kinetic attractor ad-

dresses the evolution of the particle distribution function over time. Due to extreme and

non-equilibrium conditions, the distribution function of particles deviates from equilibrium

during the initial phases of a collision. Nevertheless, as the system develops, the distribution

function tends to relax and approach an attractor solution. This attractor represents a state

1The region of state space from which a dynamic system tends to approach a particular attractor is known
as the “basin of attraction.” Depending on the behavior of the system, various initial conditions may result
in distinct or no attractors.
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in which the distribution function is almost completely independent of the initial conditions,

ultimately reflecting a universal behavior characteristic of the QGP. The kinetic attractor

sheds light on the transition of the distribution function to a state of local thermal equilib-

rium, thereby providing essential insights into the mechanisms driving thermalization and

equilibration within the QGP.

Concurrently, in the contexts of fluid dynamics and heavy-ion collisions, the hydrodynamic

attractor retains an important role. It refers to a particular set of equations or conditions to

which the macroscopic properties of a fluid system tend to converge as it approaches local

thermal equilibrium. At the beginning of a heavy-ion collision, the matter is far from equi-

librium and does not behave like a fluid. As the system evolves, it undergoes a transition to

fluid-like behavior, with well-defined properties such as temperature, pressure, and energy

density that are governed by fluid equations. The hydrodynamic attractor explains how

these macroscopic properties conform to hydrodynamic equations as the system approaches

thermal equilibrium. This concept is essential for understanding the emergence of fluid-like

behavior and the rapid thermalization of quark-gluon plasma.

2.8 Relativistic Kinetic Theory

The study of kinetic theory is an important building block for understanding how com-

plex systems behave in a wide range of scientific fields. From gases and plasma to condensed

matter and particle physics, kinetic theory is a powerful way to figure out the microscopic

dynamics behind macroscopic events. It helps us understand the traits and behaviors of

systems as a whole by looking at the statistical behavior of moving particles and how they

interact with each other. Relativistic kinetic theory is a theoretical framework that aims to

explain the behavior of particles and systems of particles moving at speeds close to the speed

of light using the principles of relativity, where the principles of classical mechanics begin

to break down. The significance of this theory is contingent on its capacity to represent the
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non-equilibrium relativistic (classical) dynamics of many-body systems, e.g. in Relativistic

Heavy Ion Collisions (RHIC). It provides the foundation for numerous models of nuclear

processes in various energy regimes. In addition, it serves as the basis for less microscopic

approaches, such as relativistic hydrodynamics.

The essential assumption in this theory is that the relevant particles’ mean free path

is large in comparison to their De Broglie wavelength, allowing one to disregard obvious

quantum mechanical effects. Moreover, this theory is dependent on the Boltzmann kinetic

equation, which can be difficult to manipulate due to its complex collision term. This term

is represented by a multidimensional integral and accounting for the interactions between

particles. In the past, solving the Boltzmann equation required intricate numerical simu-

lations that described the unconstrained motion and collisions of particles. To overcome

these technical obstacles, a simplified variant of the kinetic equation employing a simplified

form of the collision term is frequently employed. This approximation form is referred to as

the relaxation-time approximation (RTA) [120–123]. The following sections will provide a

comprehensive explanation of this strategy.

The main goal of this section is to explain in detail the theoretical structure and how

it can be used in real life. We will look at the basic ideas behind kinetic theory, such as

the Boltzmann equation and how it was made, as well as the statistical ideas that it is

based on. We will also look at transport processes, where kinetic theory is a key part of

understanding how heat, and momentum move through different materials. Also, presenting

at how kinetic theory uses approximations and simplifications, such as the relaxation time

approximation and the idea of effective kinetic theory. Even when direct microscopic models

are not possible, these tools let us work with complicated systems and get useful information

about how they work. In addition, we will introduce some of the fundamental macroscopic

quantities and their definitions within the kinetic theory.
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It is essential to note that later chapters in this dissertation rely on the RTA, as it permits

exact solutions to the kinetic equation. In addition, the dynamics under consideration are

restricted to boost-invariant systems [124,125], which is another important assumption that

facilitates the precise treatment of the system’s behavior.

2.9 Basic definitions of macroscopic quantities

Here, some of the fundamental macroscopic quantities and their definitions within the

kinetic theory are introduced.

2.9.1 Distribution function

In the kinetic theory, the fundamental quantity is the one-particle distribution function

f(x, p) = f(t,x,p) which is a mathematical function that describes the phase space density

of the particles by providing the number of particles ∆N in the phase-space volume ∆V =

∆3x∆3p located at a certain momentum and in a particular region of space and time t

f(t,x,p) ∝ ∆N

∆3x∆3p
, (2.27)

where the distribution function depends on the temperature, density, and velocity of the gas

as well as the mass and charge of the particles that make up the gas. Using a one-particle

distribution function f(x, p) in the kinetic theory is an important concept to study the ther-

modynamic properties of gases and establishes a relationship between macroscopic (flow,

velocity, density, temperature, etc.) and microscopic (particle mass, momentum, energy,

position) properties and used to describe the transport properties of gases, such as the vis-

cosity. Therefore, the primary objective of transport equation is to derive the time evolution

equation for the one-particle distribution function f(t,x,p) , which can be associated with
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the number of on-shell particles2 per unit phase space.

2.9.2 Boltzmann equation

The Boltzmann equation is a fundamental equation in kinetic theory that describes the

statistical behavior of particles within a gas or a fluid, including the Quark-Gluon Plasma

(QGP) in the context of heavy ion collisions. Mathematically, it is expressed as:

∂f

∂t
+ ~v · ∇xf + ~F · ∇pf = C[f ] (2.28)

Here, f(~x, ~p, t) represents the one-particle distribution function, which depends on position

(~x), momentum (~p), and time (t). The left-hand side of the equation describes how the

distribution function changes the phase space. The first term, ∂f
∂t

, accounts for the change

in f with respect to time. The second term, ~v · ∇xf , represents advection, where ~v is the

particle’s velocity, and ∇x is the gradient operator with respect to position. The third

term, ~F · ∇pf , accounts for the effect of external forces (~F ) on the distribution function,

where ∇p is the gradient operator with respect to momentum. Finally, the right-hand side

(C[f ]) represents the collision term, which encodes interactions among particles, including

scattering processes. The Boltzmann equation is a powerful tool for describing the evolution

of particle distributions in various physical systems, from classical gases to quantum fluids

like the QGP, providing insights into equilibration, transport phenomena, and the emergence

of macroscopic properties from microscopic interactions.

2The mass-shell condition, represented by E2 = p2c2 + m2c4, links a particle’s energy, momentum, and
mass in accordance with classical physics. On-shell particles satisfy this condition precisely and behave as
expected in experiments. However, virtual particles, briefly borrowing energy from the quantum vacuum,
and the uncertainty principle, affecting precise measurements, introduce deviations from this ideal. These
deviations are essential aspects of particle physics, enriching our understanding of the quantum world.
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2.9.3 Particle current

Having knowledge of f(x, p) permits the calculation of numerous crucial macroscopic

quantities. In particular, the particle density that is a measure of the number of particles

in a particular region of space and is usually expressed in units of particles per unit volume

and their three-current which is a vector field that describes the flow of particles in space.

They can be expressed in terms of the distribution function:

n(x) =

∫
dP p0 f(x, p) =

∫
d3p

(2π)3
f(x, p) , (2.29)

~j(x) =

∫
dP ~p f(x, p) =

∫
d3p

(2π)3

~p

p0
f(x, p) . (2.30)

The two equations above can be combined in the covariant form as the four-vector field

Nµ(x) = (n(x),~j(x)) =

∫
dP pµ f(x, p) . (2.31)

The term “particle current” refers to the flow or flux of particles across a surface with unit

area that is perpendicular to the flux. In this context, the symbol Nµ represents the density

of the particle current. If particles possess conserved charges such as the baryon number b or

the electric charge e, then the four-currents Bµ = bNµ and Jµ = eNµ represent the baryon

and electric current densities, respectively. The four-current is a vector field that describes

the flow of particles in space and is given by the equation Jµ = (ρ, j1, j2, j3), where ρ is

the particle density and j1, j2, and j3 are the components of the current density, which is a

vector that describes the flow of particles in space.
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2.9.4 Energy-momentum tensor

Another macroscopic quantity describing matter is the energy-momentum tensor, which

is the second moment of f(x, p),

T µν =

∫
dP pµ pν f(x, p) . (2.32)

There are only two components: rest mass and kinetic energy. The physical interpretation

of the components of T µν is as follows:

Energy density −→ T 00 =

∫
dP (p0)2 f(x, p) , (2.33)

Energy flow −→ T 0i =

∫
dP p0pi f(x, p) , (2.34)

Momentum density −→ T i0 =

∫
dP pip0 f(x, p) , (2.35)

Pressure tensor (momentum flow) −→ T ij =

∫
dP pi pj f(x, p) . (2.36)

Integration measure

Due to the on-shell condition, p2 = pµpµ = m2, only three momentum variables, say, px,

py and pz are treated as independent which for the momentum covariant integration measure

implies

∫
dP (. . . ) =

∫
d4p

(2π)4
2πδ

(
pµpµ −m2

)
2Θ(p0)(. . . )

=
1

(2π)3

∫ ∞
−∞

dp3

∫ ∞
−∞

dp2

∫ ∞
−∞

dp1

∫ ∞
−∞

dp0 2δ
(
pµpµ −m2

)
Θ(p0)(. . . )

=
1

(2π)3

∫ ∞
−∞

d3~p

∫ ∞
−∞

dp0 2
1

2|E|
[δ (p0 − E) + δ (p0 + E)] Θ(p0)(. . . )

=

∫
d3~p

(2π)3

1

E
(. . . ) . (2.37)
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Using δ[g(x)] =
∑

i
δ(x−xi)
|g′(xi)| where xi is the root of g(x) in the second line, one can cast the

δ-function in the form

δ
(
pµpµ −m2

)
= δ

(
p2

0 − ~p 2 −m2
)

= δ
(
p2

0 − E2
)

=
1

2|E|
[δ (p0 − E) + δ (p0 + E)] ,

where pµpµ = p2
0 − ~p 2, and E =

√
~p 2 +m2. Then to obtain the last result, we use the

property
∫∞
−∞ f(x)δ(x− xi)dx = f(xi) and Θ which is the Heaviside step function

Θ(p0) =


1, for p0 ≥ 0

0, for p0 < 0.

Here, the δ-function imposing the condition of only counting on-shell particles and the

step-function restricts the sum to positive energy states. Finally, we note that the integration

measure
∫
dP is manifestly Lorentz invariant as can be seen from Eq. (2.37).

2.9.5 Relativistic equilibrium distributions

The Maxwell-Boltzmann distribution is a fundamental concept in statistical physics that

describes the distribution of particles in thermal equilibrium. It describes the probability of

finding a particle with a specific momentum and energy in a thermal system. The distribution

depends on the temperature and chemical potential of the system. In addition to this classical

distribution, heavy-ion collisions may involve particles that obey quantum statistics, such

as fermions (e.g., protons and neutrons) and bosons (e.g., pions and kaons). In these cases,

the Fermi-Dirac and Bose-Einstein distributions are used to characterize the momentum

distributions of fermions and bosons, respectively, in these instances. These distributions

reflect the Pauli exclusion principle for fermions and Bose-Einstein statistics for bosons.

feq(x, p) =
1

exp(u·p
T
− µ

T
) + a

, (2.38)
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where the equilibrium distribution function with a = 0, 1, and −1 corresponding to classical,

Fermi-Dirac, and Bose-Einstein statistics, respectively,

2.10 Relaxation time approximation

In this dissertation, we analyze the relativistic Boltzmann kinetic equations for conformal

and non-conformal system with phase-space distribution functions f(x, p) [105,106,111,126],

pµ ∂
µ f(x, p) = C[f(x, p)] . (2.39)

The left-hand side of Eq. (2.39) describes free motion of particles often referred to as “free-

streaming terms.” This part represents how particles move without interactions, while the

right-hand side contains the collision terms C[f(x, p)], which accounts for interactions among

particles in the system. In this work, the latter are included in the relaxation time approxi-

mation (RTA), which is a common simpification in kinetic theory [120–122], namely, we use

the form

C[f(x, p)] =
p · u
τeq

(feq − f) , (2.40)

where we introduce the notation with “dot” for scalar product, p · u = pµu
µ = gµνp

µuν

that essentially measures how much of the particle momentum is aligned with the fluid four

velocity. Here τeq is the relaxation time and the four-vector uµ(x) is the hydrodynamic flow

of matter. The form of the collision term in Eq. (2.40) has simple physical interpretation:

it is assumed that the effect of the collisions on the actual distribution function f(x, p) is to

restore the distribution function to its local equilibrium feq(x, p) value and the rate at which

this process occurs is governed by the value of the relaxation time [127].
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Part II

Initial conditions
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Chapter 3

Glauber Model and Bjorken Model

3.1 Glauber Model

In an ultra-relativistic collision, the result of colliding two heavy nuclei, such as lead

and gold, produces the highest multiplicities of outgoing particles of all subatomic systems

known in the laboratory. Even when two nuclei hit directly, tens or hundreds of thousands

of particles are produced. This creates extremely complicated event compared to simple

proton-proton collisions. Because of the complexity of those collisions, it is reasonable to

ask how many incident nucleons are involved in a particular interaction and how the nuclei

overlap. Despite the fact that this problem appears insurmountable due to the femtoscopic

length scales involved, which preclude direct observation of the impact parameter (b) or

the number of participating nucleons (Npart) or binary nucleon-nucleon collisions (Ncoll),

theoretical techniques have been developed to allow these quantities to be estimated from

experimental data. These methods are commonly known as “Glauber Models” which take

into account the multiple scattering of nucleons in nuclear targets [128–132].

Glauber models are phenomenological approaches designed to determine these values for

femtosecond many-body systems. The Glauber model was developed by Roy Glauber (2005

Nobel Laureate in Physics) to solve the problem of high energy scattering with composite

particles. It gives a quantitative representation of the geometrical configuration of nuclei

during collisions. Its concept depends on the mean free path with some assumption that the

cross-section of the baryon-baryon interaction remains constant throughout the passage of a

baryon from one nucleus to another and that the nuclei travel in a straight line trajectories
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along the collision direction. Given the Glauber model, one can simulate the initial condi-

tions of a heavy-ion collision by tracing back each collision. One can then extract results

that determine the number of participants Npart, and the number of binary nucleon-nucleon

collisions Ncoll, which have to be extracted approximately from experimental data using the-

oretical approaches that assume a given nuclear density distribution with fixed energy for

a given impact parameter. This is because the femtometer scales on which these collisions

occur prevent direct observation. Moreover, both Npart and Ncoll, along with the impact

parameter b, can describe the “centrality” of the collision.

Two basic approaches to studying the Glauber model exist: the optical technique and

the Monte Carlo approach. In the Glauber Model, to calculate the geometric parameters

and to be able to compare the geometric results of this semi-classical model with the actual

experimental data, one must use experimental data given as model inputs. The two most

important inputs are the nuclear density profile of the colliding nuclei extracted from low-

energy electron scattering experiments, which provides information about how the nucleon

density varies as a function of radial distance from the nucleus center and the energy de-

pendence of the inelastic nucleon-nucleon cross-section, which characterizes the probability

of nucleon-nucleon interactions as a function of collision energy.

3.1.1 Nuclear charge density

A nucleus is composed of protons and neutrons whose density distributions are np(r) and

nn(r), respectively. By integration over space, one can obtain the nucleus’s atomic number

(Z) and neutron number (N). The two density configurations are not equal when the neutron

number is greater than the atomic number, especially for large-mass nuclei. Generally,

because the protons and neutrons cannot be distinguished in high-energy collisions, one can

integrate the nuclear one-body density function n(r)d3r to obtain the average number of
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nucleons within a small volume d3r as the following

∫
n(r)d3r = A , (3.1)

where A is the number of nucleons (mass number) of the nucleus. Inside the nucleus, the

nuclear charge density is similar to a hard-sphere, but not quite. The hard-sphere model is

considered a step function characterized by constant density within the nuclear radius but

everywhere outside the nuclear radius range, the density goes to zero, which means that no

nucleons exist outside its radius.

nsphere(r) =


n0 r < R

0 r ≥ R

, (3.2)

where nsphere indicates the distribution given by the hard sphere model. However, the nucleus

is more accurately treated as a diffuse object instead of a sphere-shaped object with well-

defined boundaries. In the Glauber Model, the density is no longer fixed at a specific value;

that is, the radius of the nucleus is no longer represented as distinct or defined. Also, an

indefinitely long thin tail extends beyond the mean radius rather than a densely packed

nucleus in the middle. This kind of density distribution inside the nucleus is commonly

described with the Wood-Saxon nucleon density, allowing us to understand the model better.

A Fermi distribution which describes the gradual change from a high density at the center to

a lower density as one moves away from the center (radially outward), usually parameterizes

this distribution with two parameters, and it governs the density of nucleons as a function

of distance from the center of the nucleus.

nws(r) =
n0

1 + exp[ r−R
d

]
, (3.3)
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Figure 1: The density distribution for Pb208 where the black solid line represents the density
distribution given by the Wood-Saxon nucleon density, and the red-dashed line is representing
the distribution given by the hard sphere model.

where nws indicates the distribution given by the Wood-Saxon nucleon density, n0 is the

nuclear density at the center that is determined by using Eq. (3.1) and is fixed by this

normalization condition, d is the skin depth “thickness”, which identifies how sharp the

edge of the nucleus is, and R is the nuclear radius. For spherical nuclei, such as Pb, the

distribution is taken to be uniform in azimuthal and polar angles. Moreover, for a large

number of nuclei the parameters can be approximated as

R = 1.12A1/3 − 0.86A−1/3 and d = 0.54 fm . (3.4)

In Figure 1, the density distribution of Pb208 is plotted by assuming a Woods-Saxon

distribution and using the values R = 6.49 fm and, d = 0.54 fm where the black solid

line represents the density distribution given by the Wood-Saxon nucleon density, and the

red-dashed line is representing the distribution given by the hard sphere model. The main

feature of Fermi distribution is the density decreases rapidly near the surface.

3.1.2 Inelastic nucleons-nucleons cross section

The Glauber model assumes that nucleon collisions are inelastic and the colliding par-

ticles (nucleons) undergo significant interactions, leading to changes in their internal states,

and that each collision’s average number of charged particles is constant. In addition, because
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each collision results in a slight energy loss and change in momentum, the same cross-section

(a measure of the effective area for interactions) may be used for many collisions. When con-

sidering a single proton-proton collision, this cross-section is considered the same and is not

affected by the nuclear environment. The model also includes the option to use protons and

neutrons interchangeably. In reality, protons and neutrons have slightly different properties,

but for simplicity, the Glauber model treats them as equivalent when calculating cross-

sections. Moreover, because the cross section is dominated by low-momentum processes,

perturbative quantum chromodynamics (valid for transverse momentum pT ≥ 1 GeV/c)

cannot be used to compute it [131, 133]. As a result, the observed inelastic nucleon-nucleon

cross-section σNNinel is utilized as an input for Glauber computations.

3.2 Optical Glauber Model

In the Optical Glauber model limit, the interaction of two colliding nuclei is treated as

a wave phenomenon. The overall phase shift of the incoming wave is taken as a sum over

all possible two nucleon phase shifts and the imaginary part of the phase shifts is related

to the nucleon – nucleon scattering cross–section through a principle known as the optical

theorem. This optical approximation assumes that when the energies are high enough, the

nucleons have enough momentum to flow through each other without being deflected. This

is a simplification that becomes more accurate at higher collision energies. In addition, to

simplify the description of the collision dynamics it is assumed the nucleons move in the

nucleus independently. Moreover, the size of the nucleus is much larger than the extent of

the nucleon–nucleon force. In the calculation regarding this model, one has to assume that

the nucleus consists of a smooth matter density that follows the Fermi distribution in the

radial direction ( instead of thinking about individual protons and neutrons scattered around

in a chaotic manner, they imagine the nucleus as a smoothly spread-out cloud of matter)

and this distribution is taken to be uniform in azimuthal and polar angles. Because of the
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possibility for considering the independent linear trajectories of the constituent nucleons,

one can develop simple analytic expressions for the nucleus-nucleus interaction cross-section

and for the number of interacting nucleons and the number of nucleon-nucleon collisions in

terms of the basic nucleon-nucleon cross section [128].

A collision between two nuclei is referred to as an event and the line connecting centers of

colliding nuclei in a plane parallel to beam direction gives an impact vector (~b). Therefore, the

impact parameter (b) refers to the length of the impact vector. According to the magnitude

of the impact parameter, one can determine the degree of centrality for the event. The two

primary types of events are central, in which the nucleons collide directly (small impact

parameters), and peripheral, in which the actual collision between the two objects does not

involve their central regions but occurs when the outer parts of the objects come into contact

(large impact parameters). As shown in Figure 2, two heavy ions, target A and projectile

B, collide at relativistic speeds with impact parameters as indicated diagrammatically in

the setup of the analytical equations. As present in the figure, two flux tubes placed at a

distance ~s from the center of target nucleus and a displacement ~s − ~b from the center of

projectile. When the two objects collide, the tubes overlap, and that is what scientists are

looking for to identify the particles produced during the collision [134].

3.3 Monte Carlo Glauber Model

The Glauber model randomly distributes nucleons within the nucleus on an event-by-

event basis1 and determines collision characteristics by averaging over many events resulting

in the optical (smooth) limit [135–138]. In a Monte Carlo simulation, one can imagine a

system of the collision of two nuclei and define rules or models for how different components

of the system interact. Instead of solving complex mathematical equations analytically, one

1The term “event” in this context refers to a single instance of a nuclear collision. In each event, a specific
configuration of nucleons is generated based on the random distribution.
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Figure 2: Schematic representation of the Optical Glauber model geometry, with transverse
(a) and longitudinal (b) views [7].

can use random sampling to explore a wide range of possible scenarios. The simulation

performs these random samplings or experiments repeatedly. Each time, it generates a set

of random conditions (e.g., the initial positions and velocities of nucleons in the nuclei) based

on probability distributions and rules that are defined. By repeating these simulations many

times, one can collect data on how the system behaves under various conditions. Then

by using statistical methods, one can estimate the average behavior or properties of the

system based on the results of these simulated experiments. Therefore, there are two steps

to perform the Monte Carlo Glauber model calculation. First, determine the position of the

nucleon in each nucleus stochastically. Second, one assumes that when the two nuclei collide,

the nucleons travel in a straight line along the beam axis.

3.3.1 Position of Nuclei

According to a probability density function, the position of each nucleon in the nucleus is

determined where the probability distribution is typically taken to be uniform in azimuthal

and polar angles. Therefore, by multiplying the Woods-Saxon function by the distance from

the center of the nucleus squared (r2), one can obtain the radial probability function nws(r)r
2
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Figure 3: Radial probability function for a Pb nucleus (R=6.49 fm and d = 0.54 fm by
assuming Woods-Saxon distribution.

as represented in Figure 3. The resulting equation is then used to randomly distribute the

nucleons in a three-dimensional spherical coordinate system that will be accelerated towards

each other in any given run of the model. Then, one need to convert the coordinates for each

of the 416 nucleons in Pb + Pb from spherical to Cartesian to plot them on x-y coordinates

as shown in Figure 4.

Figure 4: Positions of nucleons in a lead (Pb) nucleus, sampled at random from the Woods-
Saxon distribution as part of a Monte Carlo Glauber procedure.
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3.3.2 Collision Process

In this step, all of the constituents of one nucleus are shifted by the impact parameter

that selected randomly from the following distribution up to bmax ' 20 fm > 2R [7]

dN

db
∝ b , (3.5)

where N is the number of events and b is the impact parameter. The probability of a specific

impact parameter following a linear trend where hitting the center of the target area is

proportional to

dσ

db
= 2πb . (3.6)

The probability of approaching a peripheral collision (large b) is much higher than a central

collision (b = 0). This model assumes that the offset is in the positive x-direction for sim-

plicity; however, the impact parameter vector might point in any direction due to spherical

system symmetry [139]. Moreover, to have a binary collision between two nucleons, the

distance D between them (nucleons) must satisfy the following condition

D ≤
√
σNNinel
π

, (3.7)

where σNNinel is the total inelastic nucleon-nucleon cross-section. Every nucleon that experi-

ences at least one binary collision is called a participant nucleons Npart. Each nucleon that

does not satisfy this condition will pass through the interaction region without colliding or

interacting and are subsequently labeled as spectator nucleons. For each event, the total

number of binary collisions Ncoll is defined as the number of nucleons that interact only once

and it is calculated by the sum of individual number of collisions and the total number of par-

ticipating nucleons Npart. Also, it is assumed that the nucleons follow a straight path along
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Figure 5: A simplistic picture of two nucleus (A and B) that shown the impact parameter (b)
that separating the two nuclei, binary collisions Ncoll, participating nucleons, Npart, spectator

nucleons, and the transverse distance D ≤
√

σNNinel
π

.

the beam axis where the longitudinal coordinate does not play a role in the calculation.2

Figure 5 illustrates these geometric quantities.

3.4 Results and Discussion

A simple Glauber multi-scattering eikonal model assumes that the colliding nucleus

constituents have straight-line trajectories, which is the standard procedure for determining

the transverse overlap area and other derived quantities in a generic nucleus-nucleus collision

(A-B) separated by impact parameter b. Here, we will present the main formulas of the model

that are used in our calculations.
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Figure 6: The nuclear thickness function, TA(b), for a Lead nucleus by using the Woods-
Saxon parameterization.

3.4.1 Thickness and overlap functions

The primary quantity of a Glauber approach is the nuclear thickness function of the

nucleus A . This function gives the number in the nucleus A per unit area along the direction

z separated from the center of the nucleus A by an impact parameter b and is defined as

TA(b) =

∫
nA(b, z)dz , (3.8)

where nA is the nucleus A density. Note that TA(b) has units of inverse area and depends

only on b. Thus, the maximum thickness at the center of the nucleus is 2n0RA while at

the edge, b ∼ RA , the nucleus has zero thickness. We normalize by integrating over the

transverse spatial coordinate d2 b = 2π b db giving

∫
d2b TA(b) = A , (3.9)

2The x- and z-axes are used throughout this section to represent the reaction plane, which is determined
by the impact parameter and the beam direction, and the x- and y-axes are used to represent the transverse
plane.
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independent of the parameterization of the nuclear density distribution since n0 can be fixed

from the normalization condition.

Figure 6 shows contour plot of the nuclear thickness function, TA(b) calculated with the

2-parameter Woods-Saxon density distribution for Pb208 with
√
sNN = 5023 GeV, d=0.54

and σNN = 67 mb. Here, the highest thickness level is in the middle of the nucleus and

decreases with increasing the radius of the nucleus. The most important result about the

density for peripheral collisions where, although the impact parameter is large, the tails of

the two distributions still overlap. As we will see, the tails are important for accounting

for fluctuations in the number of participant nucleons and the number of nucleon-nucleon

collisions.

When two nuclei collide, the nucleons in nucleus A’s transverse distance s collide with

the nucleons in nucleus B’s transverse distance b−s, as seen in Fig. 2. When nucleus A is at

location (bA, zA) and nucleus B is at position (bB, zB), we may compute the probability of

a nucleon-nucleon collision at impact parameter b. There are three components to find the

probability PAB(b). First, the probability of finding a nucleon from nucleus A in the volume

element d2bA dzA where this probability is ∝ nA(bA,zA)
A

d2bA dzA. Because of
∫
n(r)d3r = A,

the probability is normalized and the integration over the nuclear volume gives unity. The

second component is the probability of finding a nucleon from nucleus B in the volume

element d2bB dzB and is given by a similar expression but follows for the projectile nucleon.

The last is the probability of an inelastic nucleon-nucleon collision at impact parameter b.

The simplest inelastic nucleon-nucleon collision probability is a delta function times the NN

inelastic cross section, σinel δ(b− bA − bB). Therefore,

dPAB(b) =
nA(bA, zA)

A
d2bA dzA

nB(bB, zB)

B
d2bB dzBσinel δ(b− bA − bB) . (3.10)

The total probability as a function of b is the integral over the volume elements of both
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nuclei, normalized per AB,

PAB(b) =
σinelTAB(b)

AB
(3.11)

=
σinel
AB

∫
d2bA dzAd

2bB dzB nA(bA, zA)nB(bB, zB) δ(b− bA − bB) (3.12)

=
σinel
AB

∫
d2s dzA dzB nA(s, zA)nB(|b− s|, zB) , (3.13)

where we have integrated over bB using the delta function and identified bA with s. By

replacing
∫
nA(s, zA)dzA with TA(s) and

∫
nB(|b−s|, zB)dzB with TB(|b−s|), then dropping

the common factors of AB, we have the nuclear overlap function of nuclei A and B colliding

at impact parameter b, TAB(b),

TAB(b) =

∫
TA(s)TB(|b− s|)d2s , (3.14)

where the product TA(s)TB(b − s) d2s gives the joint probability per unit area of nucleons

being located in the respective overlapping target and projectile flux tubes of differential area

d2s. Note that TAB(b), like the nuclear profile function, TA(b), has dimensions of inverse

area, fm−2. The integral of TAB(b) over all impact parameters is a number equal to the

product of the nuclear mass numbers

∫
d2b TAB(b) = AB . (3.15)

As shown in Fig. 7, where Lead nuclei are used to test the predictions of model. Greater

impact parameter collisions have a smaller overlap zone and are referred to as peripheral

collisions when the impact parameter is larger in a geometrical image. As the impact pa-

rameter values decrease, so does the number of nucleons involved and the number of binary

collisions and as the result of the bigger overlap zone. Note that TAB(b) is purely a function
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Figure 7: The nuclear overlap integral as a function of impact parameter b for Pb+Pb
collisions.

of geometry, it is independent of the collision energy.

3.4.2 Number of binary nucleon-nucleon collisions

For a given nucleon-nucleon cross section σinel, one can define the number of binary

collisions or the number of inelastic nucleon-nucleon collisions in a A+B collision at impact

parameter b by the product σinel TAB(b) with

Ncoll(b) = AB σinel TAB(b) , (3.16)

where the number of collisions is dimensionless because the units of TAB(b) is fm−2 and σNN is

fm2. From this last expression one can see that the nuclear overlap function, TAB(b) = Ncoll(b)
σNN

.

Note that Ncoll(b) does depend on energy since the inelastic cross section grows with
√
sNN .
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3.4.3 Number of participating nucleons

The number of nucleons in the target and projectile nuclei that interact in a collision at

impact parameter b is called the number of participants is given by

Npart(b) = A

∫
TA(s)(1− [1−TB(s−b)σinel]

B)d2s+B

∫
TB(s−b)(1− [1−TA(s)σinel]

A)d2s .

(3.17)

3.4.4 Eccentricity

Because heavy ions are extended objects and the impact parameter vector b is one

of the most critical parameters that dictates the overall shape of the collision region, the

system generated in a head-on collision differs from that created in a peripheral impact. In

the collision, it will create a pressure differential from the dense core to the border of the

system. For central heavy-ion collisions, this pressure gradient is radially symmetric and all

particles produced in the system will give a radially outward boost that affects the transverse

momentum spectra of particles. The impact parameter of the collision greatly influences the

geometry of the interaction zone in non-central collisions. Just after the collision of the

two nuclei in a heavy-ion reaction with non-zero impact parameter, the initial high-density

volume has the shape of their overlap region. The overlap zone has an almond-like shape in

the transverse plane. This region is elongated along an axis perpendicular to the reaction

plane—that is, the plane defined by the beam direction and the line between the centers of

the two nuclei as they collide. The momentum anisotropy of the generated particles results

from the spatial anisotropy about the xy plane (the reaction plane).

The deviation of that shape from a circular shape can be described by the eccentricity ε

under the assumption that the position of all participating nucleons is known. In other words,

the eccentricity quantifies the initial spatial anisotropy (i.e. the shape and orientation) that

ultimately results in the anisotropic final momentum distribution for emitted particles that
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Figure 8: Top: the eccentricity of a A-B collision at impact parameter b = 0. Bottom: the
eccentricity of a A-B collision at impact parameter b = 8 fm.

is observed in elliptic flow. The eccentricity of a A-B collision at impact parameter b can

be obtained from the asymmetry ratio between the x and y “semi-axis” dimensions of the

overlap zone, weighted by the number of nucleon-nucleon collisions at b. If the quarks and

gluons occupying the initial asymmetric volume are indeed interacting collectively, pressure

gradients during the subsequent expansion will result in an anisotropic distribution of the

final particles with respect to the reaction plane. The eccentricity is defined as

εn =

√
〈rn cosnφ〉2 + 〈rn sinnφ〉2

〈rn〉
. (3.18)

This may be calculated in two ways. In the optical limit, the averages are calculated with

a fixed impact parameter and weighted by the local participant or binary collision density.

The Monte Carlo method basically involves calculating the moments of the participants

themselves.
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In Fig. 8, one can see very different limiting behavior at very large and small impact

parameter. For a central collision as b = 0 in the optical limit, εn also goes to zero as the

system becomes radially symmetric. In the event-by-event MC Glauber model, one can see

that there is very small eccentricity but non zero in all of n due to fluctuations. In addition,

one can find the relation between the average eccentricity that is averaged over an ensemble

of sampled collisions N=1000, by calculating ε2 for each of these events and collecting them

to get a probability distribution function for ε2. As a result, one can see that it is peaked

around 0.05 but it is non zero so on average a central heavy ion collision has a very small ε2

which will seed even elliptic flow in a head on collision. By looking instead to non-central

collision b = 8 fm, there is a very large second order eccentricity coefficient with peak at

0.3. Although there are fluctuations, they have on average a quantifiably larger spatially

eccentricity in this centrality class than in the central collision.

Centrality Class

After defining these quantities, one can show that the “centrality class” in the Glauber

model can be used for categorizing collision occurrences into different degrees of centrality.

Knowing the distribution of inelastic cross-sections as a function of the impact parameter

dσNN
d2b

, the portion of centrality (ci) in the optical Glauber model is

ci =
1

σAAtot

∫ bi,max

bi,min

d2b[1− exp(−TAB(b)σnn)] . (3.19)

This means, for each centrality class, the impact parameter intervals [0,b(ci)] are fixed.

Therefore, the average impact parameter in each class is

b̄i =
1

σAAci

∫ bi,max

bi,min

d2b b[1− exp(−TAB(b)σnn)] . (3.20)
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Figure 9: The impact parameter (b = 4.5) for Pb-Pb collisions at
√
sNN = 5023 GeV.

Also, the average number of participants in each class is

N̄part
i =

1

σAAci

∫ bi,max

bi,min

d2b nAApart[1− exp(−TAB(b)σnn)] . (3.21)

The approach is similar for the Monte Carlo Glauber, except that the number of participants

or binary collisions is utilized instead of the impact parameter.

Fig. 9 illustrates how the Woods-Saxon parameterization affects the result. The cross-

section grows linearly with the value of the impact parameter (b) up to roughly twice the

nuclear radius (R), at which point any nucleon-nucleon collisions start to decrease. When

b ≈ 2R, the cross-section slowly tails off to zero instead of sharply dropping off to zero.

However, because the nuclei are not hard spheres but rather a bit more diffuse, as seen by

the nucleon distribution map in Fig. 1, it is not a dramatic drop-off.

The optical limit of the Glauber Model has one problem related to the accurate results.

Within optical approach, one treats the nucleons as a continuous fluid. In other words, the

nucleons are fixed in space for every nucleus and eliminates all randomness. As a result, this

model presents a slightly inaccurate portrayal of the nucleus. Because of this, one needs to a

Monte Carlo Glauber Model that resolves this problem. An illustration of a Glauber Monte
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Figure 10: The impact parameter (b = 4.5) for Pb-Pb collisions at
√
sNN = 5023 GeV.

Carlo event for a Pb+Pb collision at
√
sNN = 5023 GeV is shown in Figure 11 with impact

parameter of b = 0 fm (right) and b = 8 fm (left) viewed in the transverse plane. The darker

green and darker blue circles are the participating nucleons, the lighter colored circles are

spectator nucleons. This simulation is considered at the first moments of the collision. The

average number of participating nucleons and binary nucleon-nucleon collisions and other

quantities are then determined by simulating many nucleus-nucleus collisions as shown in

Figure 12.
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Figure 11: Typical Monte Carlo Event for Pb+Pb collisions at
√
sNN = 5023 GeV with im-

pact parameter of b = 0 fm (right) and b = 8 fm (left). Darker circles represent participating
nucleons, and lighter circles show spectator nucleons.

In this histogram, the probability distribution for the number of participants where in
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the head on collision that almost all of the nucleons are going to collide. Therefore, the

number of participants will be basically two times in this case 416 for Pb208. However, that

is not very probable what is more probable is that roughly 408 of them collided. So even

for a fixed impact parameter the number of participants fluctuate and change from event to

event and hence even the multiplicity will fluctuate. Whereas if one consider an off central

collision, it is between 120 and 200. By averaging over this distribution function, one get

the average number of participants 〈Npart〉 .

Centrality Class Impact parameter 〈b〉 Npartcmin cmax bmin bmax

0 0 0 0 0 406.923
0 0.05 1.499×10−8 3.48489 2.32326 376.44

0.05 0.1 3.48489 4.92838 4.24791 317.635
0.1 0.2 4.92838 6.96978 6.00746 245.143
0.2 0.3 6.96978 8.5362 7.77937 169.72
0.3 0.4 8.5362 9.85676 9.21228 113.231
0.4 0.5 9.85676 11.0202 10.4493 71.3126
0.5 0.6 11.0202 12.072 11.5541 41.3331
0.6 0.7 12.072 13.0393 12.5619 21.4075
0.7 0.8 13.0393 13.94 13.4945 9.69161
0.8 0.9 13.94 14.8437 14.3815 3.8046
0.9 1 14.8437 20. 15.6555 0.967611

Table 1: The relation between centrality class and impact parameter ,the average impact
parameter, and Npart corresponding to each class.

In Table 1 in Pb-Pb collisions at
√
sNN = 5023 GeV, we list the minimum centrality

(cmin), and the maximum centrality (cmax) for each centrality class. We also show the

corresponding minimum and maximum impact parameter in that class (bmin, bmax). In

simulations, usually one takes the average impact parameter 〈b〉 corresponding to each class.

In order to compare the result of the distribution between the optical limit and Monte Carlo

simulations, we performed for Pb–Pb collision within the center of mass energy equal to 5023

GeV and σNNinel = 67 mb.
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Figure 12: Probability distribution for the number of participants nucleons with number of
sample = 1000 for Pb-Pb collisions at

√
sNN = 5023 GeV and impact parameter b = 0 fm

(right) and b = 8 fm (left).

3.5 Conclusion

In summary, although the Glauber model is somewhat straightforward, it is able to ex-

plain a wide range of effects observed in high-energy heavy-ion collisions by strictly consid-

ering geometric factors. The Glauber model provides a numerical account of the geometrical

arrangement of the nuclei during a collision. It models the collision between two atomic

nuclei as a sequence of individual collisions between the nucleons that make up each nucleus.

Both the nuclear density profile and the inelastic nucleon-nucleon cross-section are provided

as inputs to the model, allowing for a direct comparison of the geometric findings to actual

experimental data. We assume that the static cross-section is independent of nuclear envi-

ronment and is the same as for nucleon-nucleon collision. There is only this one non-trivial

reliance of the model on the beam energy. By using the impact parameter and center-of-mass

energy from the Glauber model, we can calculate the total number of nucleons involved and

the total number of binary collisions. Both an optical and a Monte Carlo version of the

Glauber model are available. The optical Glauber model treats the nucleus like a uniform

distribution of matter, while the Monte Carlo variant randomly inserts nucleons into the
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nucleus in accordance with the density profile of the nucleus. The number of binary colli-

sions and involved nucleons is derived analytically for the Optical Glauber model and tallied

for the Monte Carlo version. We define centrality classes and then map the Glauber model

to them in order to better grasp its relevance with respect to the generation of charged

particles. The reaction volume immediately following a non-central collision has an ellipti-

cal profile. The short side of the ellipse has a higher pressure gradient than the long side.

Particles that are created as a result of this initial spatial anisotropy will have momentum

anisotropy, which is defined by eccentricity. We discover that the experimentally observed

value of the momentum anisotropy, v2, increases with increasing eccentricity. Anisotropy in

momentum space is established as a result of the anisotropy of the collision geometry, and

eccentricity may be calculated using this straightforward geometric model. Overall, although

the Glauber model is somewhat straightforward, it is able to explain a wide range of effects

observed in high energy heavy ion collisions by strictly considering geometric factors.

75



3.6 Bjorken model

In this model, it is assumed that the collision axis is the longitudinal z-axis, and the

nuclei are assumed to be homogeneous and have an infinite transverse extent. This indicates

that the properties of colliding nuclei are independent of the orthogonal coordinates x and

y. It is considered that collision-produced matter is invariant with respect to z-axis boosts.

Boosts in this context refer to Lorentz transformations that account for relative z-axis mo-

tion. In heavy ion collisions with high energy, the two nuclei pass through each other and

the partons are barely stopped. This assumption is the basis for much of the interpretation

of high-energy events, and a vast quantity of evidence supports it. For a period of time that

is short in comparison to the nucleus’ transverse dimension, the transverse expansion can

be disregarded. Because the nuclear constituents pass through one another, the longitudinal

momentum is significantly greater than the transverse momentum. The space-time coordi-

nates and the typical z momentum have a strong identity due to this scale gap. For example

a particle with typical momentum pz and energy E one can relate its position in space-time

to its longitudinal momentum and find the velocity of matter along the z-axis as follows

vz =
pz
E
' z

t
, (3.22)

where vz represents the velocity of the particle in the z direction, pz is its longitudinal

momentum, z is the spatial coordinate in the z direction, and t is time. To analyze this

kinematics effectively, one should deal with proper time τ and space-time rapidity3 ηs that

define as

τ ≡
√
t2 − z2, ηs ≡

1

2
log

(
t+ z

t− z

)
.

Particles with rapidity y are predominately located at space-time rapidity under specific

3Here ηs denotes the space time rapidity, ηpseudo denotes the pseudo-rapidity, and η denotes the shear
viscosity.
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Figure 13: The green solid line represent the constant of rapidity ηs and the red solid curves
indicate the constant of the proper time τ .

conditions specifically at the proper time τ (see fig. 13). Mathematically, to relate how fast

a particle is moving y to where it is located in space and time ηs one can use this equation

y ≡ 1

2
log

pz + E

E − pz
' 1

2
log

t+ z

t− z
≡ ηs . (3.23)

In addition, Bjorken’s simplifying assumption is that the energy density is uniform in space-

time rapidity at a specific proper time. This assumption facilitates the analysis of particle

behavior in high-energy nuclear collisions by implying that the relationship between space-

time rapidity and positions remains constant as matter evolves over time, i.e.

ε(τ0, ηs) ' ε(τ0) . (3.24)

With this simplification, the relationship between the properties of particles and their ra-

pidities remains independent of ηs as the fluid evolves over time. This makes it much easier

to study the behavior of particles at various rapidities without reanalyzing everything for
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each value of rapidity. Therefore, this model has

ε(t, x) = ε(τ), uµ(t, x) = (u0, ux, uy, uz) = (cosh(ηs), 0, 0, sinh(ηs)). (3.25)

In addition to uµ we introduce three additional four-vectors (xµ, yµ and zµ) defined by the

equations

xµ = (0, 1, 0, 0), (3.26)

yµ = (0, 0, 1, 0), (3.27)

zµ = (z/τ, 0, 0, t/τ) = (sinh(ηs), 0, 0, cosh(ηs)). (3.28)

The four-vectors xµ, yµ and zµ are space-like and orthogonal to uµ

x · x = y · y = z · z = −1, (3.29)

x · u = y · u = z · u = 0, (3.30)

x · y = y · z = z · x = 0. (3.31)

We note that at each spacetime point x the four-vectors uµ, xµ, yµ, and zµ form a vector

basis.

Although the matter is described in a four-dimensional Minkowski spacetime, to conve-

niently describe this system, the coordinates are modified from the four-dimensional Minkowski

spacetime to Milne coordinates. This choice of a mathematical coordinate system makes the

matter appears as if it is not moving at all (static), but the space-time itself is expanding

in one particular direction (longitudinally along the z-axis). Moreover, this transformation

is non-linear. It has a new metric described by gµν that describes how spacetime is struc-

tured in Milne coordinates. Specifically, it indicates that time (the τ component) is treated
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differently from space (the spatial components), and the space-time is expanding but flat 4.

Therefore, instead of t and z, the analysis employs proper time (τ) and space-time rapidity

(ηs) one obtains

xµ = (τ, x⊥, ηs), gµν = diag(1,−1,−1,−τ 2), (uτ , ux, uy, uηs) = (1, 0, 0, 0) . (3.32)

Substituting the boost invariant ansatz Eq. (3.25) into the conservation laws yields the

following equation that describes the evolution of energy density in the ideal hydrodynamic

limit

∂τ ε = −ε+ P

τ
, (3.33)

and one can find the solution for energy density by using an equation of state that relates

the pressure (P ) to the energy density (ε). For a relativistic gas in three spatial dimensions,

P = c2
sε, where c2

s represents the squared speed of sound, one finds

ε(τ)

ε(τ0)
=
(τ0

τ

)1+c2s
, (3.34)

where this equation has solution in the equilibrium case for massless ideal of gas equation of

state with c2
s = 1

3
(ε = 3P ∝ T 4)

T (τ) = T (τ0)
(τ0

τ

) 1
3
, (3.35)

where τ0 is an integration constant.

4In special relativity, spacetime is considered “flat” when it follows the rules of Euclidean geometry, where
straight lines remain straight, and the shortest distance between two points is a straight line. In contrast,
in general relativity, spacetime is curved by the presence of mass and energy. This curvature leads to the
bending of paths that objects follow, which we perceive as gravity.
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Chapter 4

An improved anisotropic hydrodynamics ansatz

4.1 Introduction

In the very early universe (a few microseconds after the Big Bang), the quark-gluon

plasma (QGP) is believed to have existed where the energy density can reach values over ten

times higher than those of ordinary nuclei. It was speculated theoretically that one can reach

these extreme conditions by colliding two heavy nuclei with ultrarelativistic energies. In this

collision, the temperatures can be over a million times hotter than the core of the sun, and a

fraction of the kinetic energies of the two colliding nuclei is transformed to heating the QCD

vacuum within an extremely small volume. Because of the appearance of modern accelerator

facilities, ultrarelativistic heavy-ion collisions (URHICs) are able to provide an opportunity

to systematically create and study different phases of the bulk nuclear matter. In heavy-

ion collision experiments at Relativistic Heavy-Ion Collider (RHIC) located at Brookhaven

National Laboratory, USA, and Large Hadron Collider (LHC) at European Organization for

Nuclear Research (CERN), Geneva, the new state of matter (the QGP) is widely believed

created. Results obtained at RHIC energies and recently at LHC energies strongly suggested

the formation of a quark-gluon plasma (QGP) which may be close to (local) thermodynamic

equilibrium, albeit in a tiny volume (∼ 100 − 1000 fm3). After the QGP is generated, it is

expected to expand, cool, and then hadronize in the final stage of its evolution, with a QGP

lifetime on the order of 10 fm/c in central collisions [140–142].

Heavy-ion collisions such as those at RHIC and LHC provide a primary tool to study the

thermodynamic and transport properties of the QGP. Of remarkable importance is knowl-

edge of time evolution of the rapidly expanding QGP that is produced in these URHICs.
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For this purpose, one can use a basic theoretical approach called relativistic hydrodynamics

to describe the QGP. The reader can see chapter (2) for more details. The resulting models

describe the collective behavior of the soft hadrons with pT . 2 GeV quite well. In early stud-

ies, it was found that the QGP created at RHIC energies was well described by models which

assume ideal hydrodynamic behavior from very early times τ . 1 fm/c [64,65,143]. Strictly

speaking, one can apply ideal hydrodynamics if the system is in perfect isotropic local ther-

mal equilibrium. Based on these early studies, it was expected that the QGP would isotropize

on a timescale τ ∼ 0.5 fm/c. In practice, however, when one includes viscous corrections

to the hydrodynamical models [66–80, 82–96, 144] one observes that at times τ . 2 fm/c

there can still be sizable differences between the transverse pressure, PT , and longitudinal

pressure, PL which is associated with the existence of a non-equilibrium hydrodynamic at-

tractor [145–182]. In addition, as one moves closer to the transverse/longitudinal edges of the

QGP, the size of the pressure anisotropies increases at all times [6,183,184]. Faced with this,

researchers suggested to find another method to formulate hydrodynamics in a momentum-

space anisotropic QGP. Recently, there have been theoretical and phenomenological studies

that try to better account for large deviations from isotropy by relaxing the assumption

that the QGP is close to local isotropic thermal equilibrium. To address this issue, they

introduced a framework called anisotropic hydrodynamics (aHydro) in order to describe the

non-equilibrium dynamics of relativistic systems, without breaking important physics con-

straints such as the positivity of the one-particle distribution function [97,98,109,185–187].

In a prior paper [165], comparisons between three hydrodynamic models and exact solu-

tions of the RTA Boltzmann equation [188–190] were presented. It was found that linearized

viscous hydrodynamics performed more poorly than the canonical formulation of aHydro in

reproducing the exact attractor for all moments. However, although the canonical aHydro

formulation [97,98] did a reasonable job in describing moments with l > 0, Ref. [165] found
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that it did not provide a good approximation for moments with l = 0. The failure of the

canonical formulation was postulated to be due to the fact that the exact solutions to the

RTA Boltzmann equation have an explicit two-component nature and cannot be accurately

described by a single ellipsoidal form. As a result, it would be interesting to implement aHy-

dro with a two-component ansatz for the distribution function to see if a better description

of moments with l = 0 can be achieved. Additionally, it would be interesting to see if this

also results in a quantitative improvement for higher-order moments.

In this chapter, we report on our progress in obtaining improved dynamical equations for

anisotropic hydrodynamics through the use of an improved ansatz for the form of the under-

lying aHydro distribution function which explicitly includes a free streaming contribution.

We demonstrate that with this improvement one can better reproduce exact results available

in the literature for the evolution of moments of the distribution function, in particular, for

moments which contain no powers of the longitudinal momentum in their definition (l = 0

moments). Using the resulting dynamical equations, we extract the non-equilibrium attrac-

tor associated with our improved aHydro ansatz and demonstrate that the improvement also

allows one to better reproduce the exact dynamical attractor obtained using kinetic theory

in the relaxation time approximation, particularly at early rescaled times and for l = 0

moments. We will focus our attention in this first work on a conformal system undergo-

ing boost-invariant and transversally homogeneous Bjorken expansion, however, the method

introduced herein is easily extended to full 3+1d.

The chapter is organized as follows. In Sec. (4.2) we present the basic setup and assump-

tions used for the system and introduce the original aHydro distribution function and our

improved aHydro distribution function ansatz. We then use the first and second moments

of the Boltzmann equation to obtain equations of motion for the dynamical parameters ap-

pearing in both versions. We do this explicitly for a system undergoing boost-invariant 0+1d
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Bjorken expansion. Using the resulting dynamical equations we obtain the time evolution of

all moments of these distribution functions. In Sec. (4.3), we present our numerical results

and discuss. In Sec. (4.4) we present our conclusions and an outlook for the future.

4.2 Setup

For the original and modified anisotropic hydrodynamics work, we assume a system

of massless particles that is undergoing boost invariant longitudinal expansion (vz = z/t)

and expands only along the beam-line axis. We ignore the effects of transverse dynamics.

Accordingly, one can assume a homogeneous distribution in the transverse directions and

set vx,y = 0. By taking these assumptions into account, only proper-time derivatives remain,

and the dynamics reduces to 0+1d dimensional evolution [124].

4.2.1 The distribution function

fRS(x, p) = feq

(√
p2 + ξ(x)p2

z

Λ(x)
,
µ(x)

Λ(x)

)
(Old aHydro) (4.1)

f(p, τ) = f0(ξFS,Λ0)D(τ, τ0) + fRS(ξ,Λ)[1−D(τ, τ0)] (New aHydro) (4.2)

The old anisotropic hydrodynamics approach (old aHydro) allows for an intrinsic

momentum-space anisotropy, which is characterized by a single parameter ξ. It is used to

model the distribution of particles in the system in the local rest frame (LRF) as shown in

Eq. (4.1). This distribution function is characterized by two parameters, the local anisotropy

parameter ξ, and the local scale parameter Λ, which is related to the temperature of the

system. Whereas it reduces to the temperature in the isotropic limit when ξ(x) → 0. The

symbol µ(x) indicates the local chemical potential. In what follows, we will additionally

assume zero chemical potential, µ = 0.
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In the new anisotropic hydrodynamics approach (new aHydro), the particles

are described by an improved distribution function that takes into account both the free-

streaming and equilibrating contributions. The free-streaming term accounts for the motion

of particles without any interactions or collisions between them since the interactions between

particles will modify the initial conditions. Therefore, it represents the initial conditions of

the system and contributes to the distribution function. This term is important for under-

standing how the system evolves over time, as it provides information about the behavior

of particles before interactions occur. In contrast, the other term characterizes the particle

interactions that lead to the establishment of thermal equilibrium. This term represents

the effects of collisions and interactions that modify the free-streaming term’s initial condi-

tions. By incorporating the equilibrating term, the distribution function incorporates system

changes caused by interactions and provides a more precise description of particle dynamics.

This formulation permits a complete description of the system, taking into consideration

both the initial free-streaming and the subsequent evolution caused by particle interactions.

In this ansatz, f0 is the initial particle distribution with ξFS obtains from ∂τξ = 2
τ
(1 + ξ)

with the initial condtion τ = τ0 → ξ = ξ0

ξFS = (1 + ξ0)
τ 2

τ 2
0

− 1 , (4.3)

where ξFS is the momentum-space anisotropy in the free-streaming term, and ξ0 is the initial

momentum-space anisotropy, τ0 is the initial proper time, and Λ0 is the initial momentum

scale. The new aHydro approach is more accurate than the old aHydro approach, especially

at early times when the system is far from equilibrium. In the new aHydro, taking the limit

D → 0 will reduces this ansatz to the original ansatz “old aHydro” used in aHydro [97,98].

In the results section, we will compare to this limit and refer to it as “old aHydro” and refer

to the new ansatz Eq. (4.2) as “new aHydro”. We note that the form of the new ansatz is
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similar in spirit to an approach advocated recently by McNelis and Heinz, with the second

term being related to way they termed the hydrodynamic generator [191].

In both forms, the fRS indicates the anisotropic Romatschke-Strickland form [192,193]

fRS(ξ,Λ) = feq

(√
p2 + ξp2

z

Λ

)
. (4.4)

The thermal equilibrium distribution function has functional form

feq =

[
exp

(
pµuµ(x)− µ(x)

T

)
+ a

]−1

(4.5)

with a = 0, 1, and −1 corresponding to Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein

statistics, respectively. Here we will assume that feq is given by a Boltzmann distribution.

Note that, the free-streaming distribution function f0 is also of RS form but with ξ = ξFS

and Λ = Λ0, i.e.

f0(ξFS,Λ0) = fRS(ξFS,Λ0) . (4.6)

Here we use the label ‘0’ to emphasize that this contribution is constrained by the initial

condition for the distribution function. Additionally, −1 < ξ < ∞ is a parameter that

indicates the strength and type of momentum-space anisotropy. By stretching (−1 < ξ < 0)

or squeezing (ξ > 0) the underlying isotropic distribution function feq along one direction in

momentum-space, one can obtain an anisotropic distribution function.

4.2.2 The damping function

In Eq. (4.2) we have also introduced the damping function D(τ, τ0)

D(τ, τ0) = exp

[
−

τ∫
τ0

dτ ′′

τeq(τ ′′)

]
, (4.7)

85



that quantifies the balance between the initial conditions (free-streaming term) and the inter-

actions that lead to thermal equilibrium (equilibrating term) as a function of proper time τ .

It allows the distribution function f to smoothly transition from its initial state to an equi-

librium state over time, making the new aHydro formulation more suitable for capturing the

time evolution of the system from its non-equilibrium state to a state of thermal equilibrium.

For finite τeq, the damping function D(τ, τ0) satisfies limτ→τ0 D(τ, τ0) = 1. This suggests that

at early times, the distribution function f is dominated by the free-streaming term f0, which

represents the initial conditions of the system prior to the occurrence of significant interac-

tions and the distribution function Eq. (4.2) reduces to the initial distribution function f0.

This indicates that the distribution function initially stores information regarding the initial

momentum-space anisotropy. In contrast, as τ approaches infinity (limτ→∞D(τ, τ0) = 0), the

dynamical Romatschke-Strickland (RS) term dominates the distribution function f . This

is because the system experiences significant interactions and approaches thermal equilib-

rium at late times. The equilibrating term dominates the distribution function because it

represents the effects of collisions and interactions that modify the initial free-streaming con-

ditions, resulting in an approach to thermal equilibrium. We note for future use that the

damping function satisfies

∂D(τ, τ0)

∂τ
= −D(τ, τ0)

τeq(τ)
. (4.8)

4.2.3 General moments of the distribution functions

In general, one can compute a large set of moments of the one-particle distribution

function by using the form

Mnl[f ] =

∫
dP (p · u)n(p · z)2lf(p) , (4.9)
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with the Lorentz-invariant integration measure as we calculate in Eq. (2.37)

∫
dP =

∫
d3p

(2π)3

1

E
. (4.10)

where pµ is the particle four-momentum, uµ is the time-like fluid four-velocity and zµ is a

space-like vector orthogonal to uµ. In the LRF of the system, one has uµLRF = (1, 0, 0, 0) and

zµLRF = (0, 0, 0, 1).

General moments of the old distribution function form

Using the old form, the necessary moments of the distribution function can be calculated

analytically. Moreover, the moment in the LRF can be decomposed into a function that

depends only on ξ and another function that depends only on the scale Λ as follow,

Mnl
old[f ] =

∫
dP (p · u)n(p · z)2lfeq

(√
p2 + ξp2

z

Λ

)
,

=

∫
d3p

(2π)3
(p2
T + p2

z)
n−1
2 p2l

z feq

(√
p2
T + (1 + ξ) p2

z

Λ

)

=
Λn+2l+2

(2π)3(1 + ξ)l+
1
2

∫
d3p̂

(
p̂2
T +

1

1 + ξ
p̂2
z

)n−1
2

p̂2l
z feq(|p|)

=
Λn+2l+2

(2π)2

∫ ∞
0

dp p2l+n+1feq(|p|)︸ ︷︷ ︸
Γ(2l+n+2)

α2l+1

∫ π

0

sin θ cos2l θ (α2 cos2 θ + sin2 θ)
n−1
2 dθ︸ ︷︷ ︸

Hnl(α)

.

(4.11)

Here, in the second line in order to evaluate the integral, we use p · u = E, p · z = −pz,

E =
√
p2
T + p2

z, and using the old aHydro distribution function Eq. (4.1). In third line, we

have made a change of variables to p̂T ≡ pT/Λ, and p̂z ≡
√

1 + ξ pz/Λ. In the fourth line, we

transform the variable to spherical coordinates by using: p̂x = p sin θ cosφ, p̂y = p sin θ sinφ,

p̂z = p cos θ, and α = 1√
1+ξ

. Now, working in Hnl

(
α = 1√

1+ξ

)
by using the identity sin2 θ =
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1 − cos2 θ, changing the variable to u = cos θ with du = sin θdθ and using the symmetry of

the integral 2
∫ 1

0
du u one obtains the final expression for the integral in terms of a function

of u. In practice, one finds

Hnl

(
α =

1√
1+ξ

)
= α2l+1

∫ π

0

sin θ cos2l θ (α2 cos2 θ + sin2 θ)
n−1
2 dθ

= 2α2l+1

∫ 1

0

u2l
[
1 + (α2 − 1)u2

]n−1
2 du

=
2α2l+1

2l + 1
2F1

(
l +

1

2
,
1− n

2
;
3

2
+ l; 1− α2

)
(4.12)

where 2F1 is a hypergeometric function, so the final result for the general moment for the

old ansatz is

Mnl
old(τ) =

Λ2l+n+2 Γ(2l + n+ 2)

(2π)2
Hnl

(
1√
1+ξ

)
=

2Λ2l+n+2 Γ(2l + n+ 2)

(2π)2 (2l + 1) (
√

1+ξ)2l+1 2F1

(
l +

1

2
,
1− n

2
;
3

2
+ l;

ξ

1+ξ

)
(4.13)

For the case n = 2 and l = 0 the function H20 appearing in Eq. (4.13) may be expressed

in terms of the function R20 defined in Refs. [97,100,103], namely

H20 (α) = 2R20

(
1

α2
− 1

)
, (4.14)

where R20(ξ) = 1
2

[
(1 + ξ)−1 + arctan

(√
ξ
)
/
√
ξ
]
. We provide additional information regard-

ing the H and R functions in the appendix (D).
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Bulk variables for the old form

Here, in this case the bulk variables, i.e the number density, the energy density, and the

components of the pressure, are:

n =M10
old =

∫
dP (p · u)f(p) =

1√
1 + ξ

neq(Λ) =
1

π2
√

1 + ξ
Λ3 (4.15)

ε =M20
old =

∫
dP (p · u)2f(p) = Rε(ξ)εeq(Λ) =

3

π2
Λ4Rε(ξ) (4.16)

PL =M01
old =

∫
dP (p · z)2f(p) = RL(ξ)Peq(Λ) =

1

π2
Λ4RL(ξ) (4.17)

PT = RT (ξ)Peq(Λ) =
1

π2
Λ4RT (ξ) (4.18)

with

Rε(ξ) =
1

2

[
1

1 + ξ
+

arctan
√
ξ√

ξ

]
,

RT (ξ) =
3

2ξ

[
1 + (ξ2 − 1)Rε(ξ)

ξ + 1

]
,

RL(ξ) =
3

ξ

[
(ξ + 1)Rε(ξ)− 1

ξ + 1

]
, (4.19)

which satisfy 3Rε = 2RT + RL due to the conformality of the system. Note that certain

moments map to familiar hydrodynamics variables, e.g. taking n = 1 and l = 0, one obtains

the number density n , taking n = 2 and l = 0, one can evaluate the energy density ε, and

taking n = 0 and l = 1, one obtains the longitudinal pressure PL. Moreover, for a conformal

system, one can use ε = 2PT + PL to determine the transverse pressure and by using the

mass shell condition one obtains p2l
T = [(p · u)2 − (p · z)2]l.

General moments of the new distribution function form

Using the new form, one finds that all moments of the distribution function can be

decomposed into two terms by following the same steps as in old aHydro:
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• First term (Free streaming term) in Eq. (4.2):

Mnl
0 =

∫
dP (p.u)n(p.z)2l f0

=

∫
d3p

(2π)3E
En p2l

z feq

(√
p2
T + (1 + ξFS)p2

z

Λ0

)

=
1

(2π)3

∫
d3p (p2

T + p2
z)

n−1
2 p2l

z feq


√√√√√ p2

T

Λ2
0︸︷︷︸

p̂T

+
p2
z

α2
0Λ2

0︸ ︷︷ ︸
p̂z

 , with α0 =
1√

1+ξFS

=
Λ2l+n+2

0

(2π)2

∫ ∞
0

dp̂ p̂2l+n+1 feq(p̂)︸ ︷︷ ︸
=Γ(2l+n+2)

α2l+1
0

∫ π

0

dθ sin θ cos2l θ
(
α2

0 cos2 θ + sin2 θ
)n−1

2︸ ︷︷ ︸
Hnl(α0)

so the final result is

Mnl
0 =

Λ2l+n+2
0

(2π)2
Γ(2l + n+ 2)Hnl(α0)

=
2Λ2l+n+2

0

(2π)2(2l + 1)
Γ(2l + n+ 2)α2l+1

0 2F1

(
l +

1

2
,
1− n

2
;
3

2
+ l; 1− α2

0

)
. (4.20)

• Second term (Evolution term)in Eq. (4.2):

We can obtain the result from the free streaming result, by noting that f0 becomes fRS

under the subsutituions:

Mnl
0 → Mnl

RS

Λ0 → Λ

ξFS → ξ

α0 =
1√

1+ξFS

→ α =
1√
1+ξ
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therefore, the general moment for this term will be

Mnl
RS =

Λ2l+n+2

(2π)2
Γ(2l + n+ 2)Hnl(α)

=
2Λ2l+n+2

(2π)2(2l + 1)
Γ(2l + n+ 2)α2l+1

2F1

(
l +

1

2
,
1− n

2
;
3

2
+ l; 1− α2

)
. (4.21)

• Putting the pieces of Eqs. (4.20) and (4.21) together:

By taking a general moment of Eq. (4.2), one finds

Mnl
new(τ) =Mnl

0 [f0(ξFS,Λ0)]D(τ, τ0) +Mnl
RS[fRS(ξ,Λ)][1−D(τ, τ0)]. (4.22)

Using the result obtained above Eqs. (4.20) and (4.21), one can write the general

moment for the new anstaz as

Mnl
new(τ) =

Γ(2l + n+ 2)

(2π)2

{
Λ2l+n+2

0 Hnl(α0)D(τ, τ0) + Λ2l+n+2 Hnl(α)[1−D(τ, τ0)]
}

(4.23)

Bulk variables for the new form

Here, one finds that all moments of the distribution function can be decomposed into

two terms, and the bulk variables; e.g. the number density

n =M10
new =

∫
dP (p · u)f(p) =M10[f0]D(τ, τ0) +M10[fRS][1−D(τ, τ0)]

=
1

π2

[
α0 Λ3

0D(τ, τ0) + αΛ3 [1−D(τ, τ0)]
]
, (4.24)
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the energy density

ε =M20
new =

∫
dP (p · u)2f(p) =M20[f0]D(τ, τ0) +M20[fRS][1−D(τ, τ0)]

=
3

2π2

[
Λ4

0Hε(α0)D(τ, τ0) + Λ4Hε(α)[1−D(τ, τ0)]
]
, (4.25)

the longitudinal pressure

PL =M01
new =

∫
dP (p · z)2f(p) =M01[f0]D(τ, τ0) +M01[fRS][1−D(τ, τ0)]

=
3

2π2

[
Λ4

0HL((α0)D(τ, τ0) + Λ4HL(α)[1−D(τ, τ0)]
]
, (4.26)

the transverse pressure because the system is conformal, one can use ε = 2PT + PL

PT = PT,0(ξFS,Λ0)D(τ, τ0) + PT,RS(ξ,Λ)[1−D(τ, τ0)]

=
3

(2π)2

{
Λ4

0 [Hε(α0)−HL(α0)]D(τ, τ0) + Λ4 [Hε(α)−HL(α)] [1−D(τ, τ0)]
}

(4.27)

where the left hand sides in Eqs. (4.25), (4.26), and (4.27) are the non-equilibrium energy

density, longitudinal pressure, and transverse pressure, respectively.

Since both the free-streaming and equilibrating contributions are of RS form, we can

compute the moments for both of these contributions using [165]

Mnl
aHydro(τ) =

Λ2l+n+2Γ(2l + n+ 2)

(2π)2
Hnl

(
1√

1 + ξ

)
, (4.28)

with

Hnl(y) =
2y2l+1

2l + 1
2F1(

1

2
+ l,

1− n
2

;
3

2
+ l; 1− y2) . (4.29)

where y = 1/
√

1 + ξ.

In practice, we will scale these moments by their equilibrium limitMnl
eq(T (τ)), which one
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can follow the same steps as Mnl[f ] by assuming that the underlying isotropic distribution

function is a Boltzmann distribution function, and the moment in this limit is

Mnl
eq(T (τ)) =

2T 2l+n+2Γ(2l + n+ 2)

(2π)2(2l + 1)
. (4.30)

and for more details about the steps the reader can see the appendix (E). Using the improved

aHydro ansatz Eq. (4.2) one obtains

Mnl
[f ] =

Mnl[f0]D(τ, τ0) +Mnl[fRS][1−D(τ, τ0)]

Mnl
eq(τ)

, (4.31)

where we have introduce the scaled moments

Mnl
(τ) =

Mnl(τ)

Mnl
eq(τ)

. (4.32)

Note that one has Mnl

aHydro(τ)=1 if the system is in equilibrium.

4.2.4 Moments of Boltzmann equation

Low-order moments of the Boltzmann equation can be used to study the evolution of a

system’s bulk characteristics. The evolution equations for tensors of various ranks can be

obtained by computing the moments of the Boltzmann equation; the first moment provides

the evolution equation for the energy-momentum tensor, while the second moment describes

the evolution of a rank three tensor.

Our starting point is the Boltzmann equation for massless particles

pµ∂µf = C[f ] , (4.33)

where the collisional kernel is taken to be the relaxation-time approximation (RTA) collisional
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kernel

C[f ] = − p · u
τeq(T )

[f − feq(T )] , (4.34)

and uµ is the four-velocity associated with the local rest frame. The form of the collisional

kernel has a simple physical interpretation: when the particles collide and interact with

one another, their momenta and energies tend to be redistributed. The actual distribution

function tends to approximate the equilibrium distribution function as a result of this re-

distribution process. Herein we will focus our attention on a system that is transversally

homogenous and subject to boost-invariant Bjoken flow (0+1d). The equilibrium time (τeq)

in RTA that determines the rate at which this process of approaching equilibrium takes

place must be proportional to the inverse of the local temperature to maintain conformal

invariance and is expressed as [194,195]

τeq(T ) =
5η̄

T
, (4.35)

where η̄ = η/s is the ratio of shear viscosity η to entropy density s. The 1/T factor ensures the

system equilibrates faster at higher temperatures and slower at lower temperatures, preserv-

ing the physics of the system during expansion and consistent with changes in temperature

and system expansion.

First moment

The first moment of the left-hand side of the Boltzmann equation defines the divergence

of the energy-momentum tensor that reduces to ∂µT
µν ; however, in the relaxation time

approximation the first moment of the collisional kernel the right hand side results in a con-

straint that must be satisfied in order to conserve energy and momentum, i.e.
∫
dP pµC[f ] =

0. This constraint is referred to as the matching condition which we will talk about it later

and allows one to compute the local effective temperature of the system. In RTA, it results
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in the following constraint equation

εeq(T (τ)) = ε(ξ(τ),Λ(τ)) , (4.36)

where the equilibrium energy density εeq only depends on the effective temperature T . As a

result of this constraint, computing the first moment gives

∂µT
µν = 0 . (4.37)

Expanding this equation out in terms of the non-vanishing components of the energy-

momentum tensor, for a 0+1d system, one obtains an evolution equation that can be written

compactly as

∂τε = −ε+ PL
τ

. (4.38)

See the appendix (E.1.1) for more details about obtaining the last equation.

The 0+1d equation of motion for old aHydro case

The derivative of the energy density for the old case is given by

∂τε =
3

π2
[ R′ε(ξ) ξ̇ Λ4 + 4 Λ3 ∂τΛ Rε(ξ)] (4.39)

Here, the prime in R′ε denote the partial derivative with respect to the argument ξ. Plugging

Eqs. (4.16), (4.17), and (4.39) into (4.38) one finds:

R′ε(ξ)
Rε(ξ)

∂τξ +
4

Λ
∂τΛ = −1

τ
− RL(ξ)

3 τRε(ξ)
. (4.40)
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The 0+1d equation of motion for new aHydro case

The derivative of the energy density for the new case is given by

∂τε =
3

π2

{[
4 Λ3 ∂τΛRε(ξ) + Λ4R′ε(ξ) ξ̇

]
[1−D(τ, τ0)]

}
+

3

π2

{[
Λ4

0R′ε(ξFS) ˙ξFS −
1

τeq

Λ4
0Rε(ξFS) +

1

τeq

Λ4Rε(ξ)

]
D(τ, τ0)

}
(4.41)

One can obtain the equation of motion for new aHydro by plugging Eqs. (4.25), (4.26)

and (4.41) into (4.38):

[1−D(τ, τ0)]

[
Λ̂4R′(ξ)ξ̇ + 4Λ̂3R(ξ)

˙̂
Λ +
R(ξ)Λ̂4

τ

(
1 +

1

3

RL(ξ)

R(ξ)

)]
+

D(τ, τ0)

[
R′(ξFS)ξ̇FS −

(
1

τeq

− 1

τ

)
R(ξFS) +

1

3τ
RL(ξFS) +

Λ̂4R(ξ)

τeq

]
= 0 , (4.42)

with Λ̂ = Λ/Λ0.

Matching condition

The temperature T (τ) is determined by the Landau matching condition, which requires

that the energy density calculated from the distribution function f is equal to the energy

density obtained from the equilibrium distribution feq. If the system is close to thermal

equilibrium, T can be considered the true temperature of the system, but in non-equilibrium

systems, T should be considered an effective temperature related to the non-equilibrium

energy density of the system. At any time, we define the local effective temperature T of

the fluid using the canonical matching condition which results from the vanishing of the

right-hand-side of the first moment of the Boltzmann equation as following

T = R1/4
eff Λ0 (4.43)
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where Reff for both cases is

Reff ≡ Rε(ξ)Λ̂
4 (Old aHydro) (4.44)

Reff ≡ D(τ, τ0)Rε(ξFS) + [1−D(τ, τ0)]Rε(ξ)Λ̂
4 (New aHydro) (4.45)

Second moment

To close the system of equations, we use the zz projection of the second-moment of the

Boltzmann equation minus 1/3 of the sum of xx, yy, and zz projections.1 Therefore, the

isotropic pressure contribution is effectively removed, leaving only the anisotropic pressure

term, and this procedure will give us the second moment equations. For the second moment

equation of motion, we will perform a similar manipulation by starting from the relaxation-

time approximation (RTA) Boltzmann equation

pµ∂µf = − p · u
τeq(T )

[f − feq(T )] . (4.46)

We then encounter a rank three tensor which is defined as Iµνλ[f ] ≡ Ndof

∫
dP pµpνpλ f ,

where Ndof is the number of degrees of freedom. One obtains the following equation of

motion from the second moment of the RTA Boltzmann equation [196]

∂µI
µνλ =

1

τeq

(uµI
µνλ
eq − uµIµνλ) , (4.47)

with Iµνλeq ≡ Iµνλ[feq] = 4Ndof

π2 T 5. Note that Iµνλ is symmetric with respect to interchanges

of µ, ν, and λ and traceless in any pair of indices (massless particles/conformal invariance).

Defining Ii = uµXν
i X

λ
i Iµνλ and I0 = uµuνuλIµνλ where uµ is the rest frame four-velocity

and Xµ
i with i ∈ {1, 2, 3} are space-like basis vectors that are orthogonal to uµ,2 in an

1For example, for a rank-two tensor Mνλ the zz projection corresponds to zνzλM
νλ.

2The three spacelike basis vectors can also be written as Xµ
1 = xµ, Xµ

2 = yµ, and Xµ
3 = zµ, for

compactness.
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isotropic system one finds Ix = Iy = Iz = I0 with

I0(Λ) =
4Ndof

π2
Λ5 . (4.48)

Using the old aHydro form (Eq. (4.1) with D → 0) one finds

Iu = Su(ξ)I0(Λ) ,

Ix = Iy = ST (ξ)I0(Λ) ,

Iz = SL(ξ)I0(Λ) , (4.49)

However, using the new aHydro form Eq. (4.2) one finds

Iu = Su(ξFS) I0(Λ0)D(τ, τ0) + Su(ξ)I0(Λ)[1−D(τ, τ0)] ,

Ix = Iy = ST (ξFS)I0(Λ0)D(τ, τ0) + ST (ξ)I0(Λ)[1−D(τ, τ0)] ,

Iz = SL(ξFS)I0(Λ0)D(τ, τ0) + SL(ξ)I0(Λ)[1−D(τ, τ0)] , (4.50)

with

Su(ξ) =
3 + 2ξ

(1 + ξ)3/2
,

ST (ξ) =
1√

1 + ξ
,

SL(ξ) =
1

(1 + ξ)3/2
, (4.51)

which satisfy 2ST + SL = Su due to the conformality of the system.

The i = {x, y, z} equations result from

DIi + Ii(θ − 2θi) =
1

τeq

(Ieq − Ii) , (4.52)
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with the co-moving derivative D = uµ∂µ, the expansion scalar θ = ∂µu
µ , and θi ≡ −uµDiX

µ
i ,

where Xµ
i are space-like basis vectors that are orthogonal to uµ. For the case of 0+1d Bjorken

expansion one has D = ∂τ , θ = ∂µu
µ = 1/τ , θx = θy = 0 and θz = −1/τ . For more details

concerning the basis vectors used see appendix (E.1.2). Based on this, one has

∂τIi +
3

τ
Ii =

1

τeq

(Ieq − Ii) . (4.53)

with

∂τIx,y =

[
Λ5

0 S ′T (ξFS) ˙ξFS −
Λ5

0

τeq

ST (ξFS) +
Λ5

τeq

ST (ξ)

]
D(τ, τ0) +[

5Λ4 ∂τΛST (ξ) + Λ5 S ′T (ξ) ξ̇
]

[1−D(τ, τ0)] (4.54)

∂τIz =

[
Λ5

0 S ′L(ξFS) ˙ξFS −
Λ5

0

τeq

SL(ξFS) +
Λ5

τeq

SL(ξ)

]
D(τ, τ0) +[

5Λ4 ∂τΛSL(ξ) + Λ5 S ′L(ξ) ξ̇
]

[1−D(τ, τ0)] (4.55)

New aHydro:

The first two equations (xx and yy projections) both give

[1−D(τ, τ0)]

[
1

τ
+
S ′T (ξ)

ST (ξ)
ξ̇ +

5
˙̂
Λ

Λ̂

]
+D(τ, τ0)

[
1

τeq

+
S ′T (ξFS)

Λ̂5ST (ξ)
ξ̇FS +

(
1

τ
− 1

τeq

)
ST (ξFS)

Λ̂5ST (ξ)

]

=
1

τeq

[
T 5

Λ5
0Λ̂5ST (ξ)

−D(τ, τ0)
ST (ξFS)

Λ̂5ST (ξ)
− [1−D(τ, τ0)]

]
. (4.56)
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The third equation (zz projection) gives

[1−D(τ, τ0)]

[
3

τ
+
S ′L(ξ)

SL(ξ)
ξ̇ +

5
˙̂
Λ

Λ̂

]
+D(τ, τ0)

[
1

τeq

+
S ′L(ξFS)

Λ̂5SL(ξ)
ξ̇FS +

(
3

τ
− 1

τeq

)
SL(ξFS)

Λ̂5SL(ξ)

]

=
1

τeq

[
T 5

Λ5
0Λ̂5SL(ξ)

−D(τ, τ0)
SL(ξFS)

Λ̂5SL(ξ)
− [1−D(τ, τ0)]

]
. (4.57)

Taking the zz projection minus one-third of the sum of the xx, yy, and zz projections gives

[1−D(τ, τ0)]

(
1

1 + ξ
ξ̇ − 2

τ

)
+
ξ
√

1 + ξ

τeq

T̂ 5

Λ̂5
= 0 , (4.58)

with T̂ = T/Λ0. We note that all of the free streaming contributions vanish. Solving for ξ̇

using Eq. (4.58) we obtain

ξ̇ = (1 + ξ)

(
2

τ
− ξ
√

1 + ξ

τeq

T̂ 5

Λ̂5

1

1−D(τ, τ0)

)
. (4.59)

As mentioned previously, in the limit τ → τ0, one has D = 1 and hence the second term

on the right-hand-side of Eq. (4.59) will diverge at τ = τ0 unless either ξ = 0 or ξ = −1.

The latter condition makes the entire right hand side vanish and hence does not allow for

dynamical evolution of ξ. For this reason we will use limτ→τ0 ξ(τ) = 0.

Old aHydro (D = 0)

One can recompute the second-moment equation with D = 0 to see if it agrees with results

available in the literature. In this case on finds that the zz projection gives

(logSL)′ξ̇ + 5∂τ log Λ +
3

τ
=

1

τeq

[
R5/4

SL
− 1

]
, (4.60)
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and the xx and yy projections both give

(logST )′ξ̇ + 5∂τ log Λ +
1

τ
=

1

τeq

[
R5/4

ST
− 1

]
, (4.61)

where, in both cases, we used T = R1/4(ξ)Λ.

Finally, with D = 0, taking the zz projection minus one-third of the sum of the xx, yy,

and zz projections gives in the relaxation time approximation, the second evolution equation

1

1 + ξ
ξ̇ − 2

τ
+
R5/4(ξ)

τeq

ξ
√

1 + ξ = 0 . (4.62)

One can verify explicitly that Eq. (4.58) reduces to this in the limit D → 0.

4.3 Numerical solution of the dynamical equations and the anisotropic attractor

In this section we present some representative numerical solutions using different initial

conditions along with the attractor solution to which they flow. For this purpose, we solve

the first and second differential equations corresponding to Eq. (4.42) and (4.58) for the

evolution of ξ(τ) and Λ(τ). However to evolve these equations we need to know the damping

function. Herein, we solve the integral equation by using an iterative method. In the first

iteration, we assume that the temperature evolution contained within the integral defining

D(τ, τ0) is given by ideal hydrodynamics, i.e. Tguess(τ) = T0(τ0/τ)1/3. We then solve the

dynamical equations (4.42) and (4.58). From this we obtain the approximate dependence

of the effective temperature T on proper time using Eq. (4.43). The resulting effective

temperature T (τ) is then used to load the damping function for the next iteration. We

repeat this process until the effective temperature and longitudinal pressure converge to a

part in 108. In practice, this can be achieved with only five iterations. Once converged,

the solutions for ξ(τ) and Λ(τ) can be used to compute the full distribution function using
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Figure 1: Visualization of the one-particle distribution function at a given moment in proper
time. A bimodal structure can be seen, with the two contributions corresponding to a highly
squeezed free-streaming component (inner ellipsoid) and a less anisotropic equilibrating con-
tribution (outer ellipsoid).

Eq. (4.2) and all moments of the distribution function using Eq. (4.31).3

In Fig. 1 we present a contour plot of the one-particle distribution function at the proper

time at which the contribution from the free streaming part and equilibrating part contribute

equally.4 Generically, the exact solution for the one-particle distribution function contains

two independent components [165, 188–190]. The first component is an anisotropic part

which has been squeezed in the longitudinal direction and is exponentially damped at late

times. This contribution represents the subset particles that never had any interaction at

all. Statistically, there is always such a population of particles. As a function of time,

this contribution becomes compressed along the longitudinal direction in momentum space

resulting in PFS
L → 0 as the system evolves. This contribution comes from the first term in

3One can substantially reduce the number of iterations required by initializing instead with the canonical
aHydro evolution equations.

4This occurs when D(τ, τ0) = 1/2.
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Exact solution
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Figure 2: Scaled moments Mnl
obtained from the exact solution (solid red line) compared

with the new aHydro (blue dashed lines), and the old aHydro (green long dashed lines).
Horizontal axis is w = τT/5η. Panels show a grid in n and l.

Eq. (4.2), which corresponds to the free streaming contribution. Note that, because of the

damping function D(τ, τ0) in the first term in Eq. (4.2), the amplitude of this very narrow

ridge will decrease in time exponentially. The second visible component in Fig. 1 is an

isotropizing part which dominates at late times. This contribution comes from the second

term in Eq. (4.2).

In Fig. 2, we present the evolution of the scaled moments of the distribution function as

a function the scaled time

w =
τ

τeq

=
τT

5η
, (4.63)

and we compare to the exact RTA solution (red solid line) obtained in Refs. [165, 188, 189].
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Results from the new aHydro and old aHydro ansatze are shown as blue dashed and green

long dashed lines, respectively. In all cases shown, the new aHydro ansatz provides a better

approximation to the exact solution than the old aHydro ansatz. In addition, one observes

that both aHydro ansatze result in positive definite results for all moments despite having

large non-equilibrium deviations. Comparing the old and new ansatze, we see that the new

ansatz is able to reproduce the dynamics of low-order moments much better than the old

ansatz. This is particularly striking for moments with l = 0 for which we see that the new

aHydro ansatz is very close to the exact results for all n shown.5 We note, however, for

higher moments, e.g. M33
, we see that the new aHydro ansatz interpolates between the

exact solution at early times and the old aHydro result at lates times. As a result, one sees

larger deviations from the exact solution in these moments.

In order to provide more quantitative comparison of the two methods, in Fig. 3 we

present the relative errors of the old and new aHydro ansatze computed as the ratio of a

given approximation to the the exact result minus one. The relative errors for the new and

old schemes are shown as blue solid and red dashed lines, respectively. As one can see from

Fig. 3, the new aHydro has a smaller error in all moments and at virtually all times. The

one exception isM01
for which one observes a slight smaller error with the old ansatze in a

small time window. Returning to the general case, we see that, since the new scheme merges

onto the old scheme at late times, they have similar relative errors, however at early time

we see a dramatic reduction in the relative error using the new aHydro ansatz.

In Fig. 4, the new aHydro (blue dashed lines), and the old aHydro (green long dashed

lines) attractors are compared to the attractor obtained via exact solution of the RTA Boltz-

mann equation(red solid line). In all cases shown, the new aHydro ansatz agrees best with

the exact solution for the 0+1d conformal RTA attractor. Additionally, for all values of w,

we note that both aHydro attractors possess positive values for all moments. In the case

5We have checked that this holds true for larger n than shown in Fig. 2.
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Figure 3: Plots of the relative error between the new (solid blue line) and old (red dashed
lines) aHydro ansatz compared to the exact solution. Error is computed as approxima-
tion/exact -1.

of the new aHydro ansatz, firstly one sees that for l = 0 and l = 1 (first and second left

column, respectively of Fig. 4) this scheme has the best agreement at all times. As a result,

the new aHydro accurately describes the evolution of the modes with l = 0, and 1, which

are sensitive to the free-streaming part of the evolution. For l > 1 one sees that, as l and

n are increased, the new aHydro results differ more from the exact solutions in the region

w ∼ [10−5, 1]. The worst agreement is for the l = 3 moments (rightmost column of Fig. 4).

One finds that the new aHydro ansatz fails to accurately describe the evolution of the scaled

moments with l = 3 which are dominated by isotropizing contribution at late times. As a

consequence, the new aHydro does not provide reliable approximations for these moments

and the problem becomes more severe as one increases for l > 1. Turning to the old aHydro
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Figure 4: Scaled moments Mnl
obtained from the exact solution attractor (solid red line)

compared with the new aHydro (blue dashed lines), and the old aHydro (green long dashed
lines). Horizontal axis is w=τT/5η. Panels show a grid in n and l.

ansatz, for l = 1, one sees that, although the old aHydro ansatz does a reasonable job in

describing the l = 1 moments, as n and l are increased or decreased, the results become

significantly worse. Note that, even given the caveats mentioned above, comparing the old

and new aHydro ansatze, we see that the new approach dramatically improves agreement

with the exact RTA attractor and, in particular, can be used to fix the problem encountered

with moments with l = 0.
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4.4 Conclusions

In this chapter, our goal was to find an improved set of anisotropic hydrodynamic evolu-

tion equations that can more faithfully describe the non-equilibrium dynamics of the quark-

gluon plasma created in relativistic heavy ion collisions at RHIC and LHC. We introduced

a new version of anisotropic hydrodynamics that includes separate free-streaming and equi-

librating contributions which allows for a better description of exact solutions to the Boltz-

mann equation available in the literature. We computed explicit expressions for the first and

second moments of the one-particle distribution function in the new aHydro approach and

used these to obtain the new 0+1d conformal equations of motion given by Eqs. (4.42) and

(4.58). We presented comparisons of the numerical solution of the conformal 0+1d equations

of motion for both the old and new aHydro schemes with the exact RTA solution. Our results

demonstrated that the new aHydro form allows one to have a bimodal distribution function

similar to what is seen in the exact RTA solution for the one-particle distribution function.

We then computed the evolution of the scaled moments as a function of the scaled time, w,

and demonstrated that the new aHydro ansatz provides a better approximation to the exact

solution than the original aHydro ansatz. Finally, we determined the non-equilibrium attrac-

tor associated with the new aHydro scheme and demonstrated that it provides much better

agreement with the exact RTA attractor than the original aHydro scheme, in particular for

moments with l = 0. In the future, it would be interesting to apply the ansatz obtained

here to full 3+1d anisotropic hydrodynamics, including temperature-dependent masses for

the particles similar to ‘canonical’ quasiparticle aHydro [8, 185].
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Chapter 5

Far-from-equilibrium attractors for massive kinetic theory in the relaxation

time approximation

5.1 Introduction

One of the most important questions that has emerged in the last twenty years in the

area of far-from-equilibrium relativistic dynamics is to what extent can such dynamics be

described by relativistic viscous hydrodynamics. In this context, the construction of a set

of exact solutions to the relativistic Boltzmann equation in relaxation time approximation

(RTA), despite its relative simplicity, has proven to be very useful in assessing the quanti-

tative reliability of different dissipative hydrodynamical frameworks [156,188–190,199,200].

In addition, these exact solutions have helped to understand the emergence of a far-from-

equilibrium attractor in relativistic transport theory that matches smoothly onto viscous

hydrodynamics at late times but which extends to earlier times when conventional linearized

viscous hydrodynamics treatments break down [146,148–151,153–155,157,158,162–165,167,

168,172,175,181,201–213].

Although the majority of these references focused on conformal systems, some of these

works have considered whether or not attractors exist in non-conformal systems since in

this case more than one dimensionful scale appears in the problem [154, 156, 208–210, 214].

In this work we consider exact solutions of the RTA Boltzmann equation for a massive

gas using the exact solution obtained originally in Ref. [190]. We extend this solution to

allow computation of all moments, Mnl, of the one-particle distribution using the moments

introduced in Ref. [165]. We also extend prior works by making use of the self-consistently

determined temperature and mass dependent relaxation time, τeq(T,m), and considering

108



fixed specific shear viscosity. In Refs. [154,156,208–210,214] either a constant relaxation time

or conformal relaxation time proportional to the inverse temperature was used. Finally, we

systematically study both the forward and pull-back (early-time) attractors by varying both

the initial anisotropy and initialization time and computing a large set of integral moments

of the distribution function.

We will demonstrate that kinetic theory with an RTA collisional kernel possesses both

forward and pull-back attractor for moments containing greater than one integral power of

the longitudinal momentum squared (l ≥ 1). The existence of a forward attractor for such

moments is established by holding the initialization time and energy density fixed while vary-

ing the initial momentum-space anisotropy using a spheroidal form for the initial one-particle

distribution function. Secondly, we establish the existence of an early-time (pull-back) at-

tractor for such moments by holding the initial anisotropy and energy density fixed while

varying the initialization time. As we will demonstrate, this implies that there does not

exist an early time attractor for the pressure-scaled shear and bulk viscous corrections inde-

pendently, however, the difference of the two does possess an attractor, which is consistent

with there being an attractor in the scaled longitudinal pressure. Our findings are fully

compatible with and extend those reported in Refs. [208,214].

The structure of this chapter is as follows. In Sec. 5.2, we review basic thermodynamic

and dynamic relations for non-conformal massive gases and extend the exact solution of the

RTA Boltzmann equation obtained in Ref. [190] to all moments of the distribution function.

In Sec. 5.3 we collect analytic formula for the viscosity corrected distribution functions

and moments that are accurate to first order in hydrodynamic gradients using both the 14-

moment and Chapman-Enskog approximations. In Sec. 5.4, we present our numerical results

obtained from the exact solution of the RTA Boltzmann equation. In Sec. 5.6, we present

our conclusions and an outlook for the future.
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5.2 Setup

In this chapter we will make use of a previously obtained exact solution to the 0+1d RTA

Boltzmann equation for a massive gas with Boltzmann statistics. The non-conformal exact

solution was first presented in Ref. [190] and extended earlier conformal exact solutions in

a Bjorken expansion scenario [188, 189]. We will extend the original work of Ref. [190] to

include a relaxation time that self-consistently depends on both the temperature and mass

of the particle, whereas the original work considered a constant relaxation time or the limit

of low temperatures. Our solution also goes beyond the considerations of the recent work of

Refs. [154,208,210] where a conformal relaxation time was used.

5.2.1 Basis vectors

Herein, we will assume Bjorken flow, where the medium expands longitudinally and has

a boost-invariant velocity profile. The values of the four-velocity components uµ in Milne

coordinates for this flow are uτ = 1 and ux,y,ς = 0. When the system is boost invariant one

can identify the longitudinal boost by using the quantities τ and ς which are the longitudinal

proper-time and spatial rapidity, respectively. Here, the longitudinal proper-time is defined

as τ =
√
t2 − z2, which is a measure of the elapsed proper time for a particle that is moving

with a constant velocity and longitudinal spatial rapidity as ς = tanh−1(z/t) with

t = τ cosh ς ,

z = τ sinh ς . (5.1)
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To obtain the derivatives of Eq. (5.1) with respect to the variables t and z, as well as the

spatial rapidity ς, we can take the following partial derivatives

∂τ

∂t
=
t

τ
= cosh ς ,

∂τ

∂z
= −z

τ
= − sinh ς ,

∂ς

∂τ
= −sinh ς

τ
= − z

τ 2
,

∂ς

∂z
=

cosh ς

τ
=

t

τ 2
. (5.2)

Therefore,

∂

∂t
=
∂τ

∂t

∂

∂τ
+
∂ς

∂t

∂

∂ς
=
t

τ

∂

∂τ
− z

τ 2

∂

ς
= cosh ς

∂

∂τ
− sinh ς

τ

∂

∂ς
∂ς, (5.3)

and

∂

∂z
=
∂τ

∂z

∂

∂τ
+
∂ς

∂z

∂

∂ς
= −z

τ

∂

∂τ
+

cosh ς

τ

∂

∂ς
= − sinh ς

∂

∂τ
+

t

τ 2

∂

∂ς
. (5.4)

Moreover, the basis vectors in the Lab Frame (LF) in the boost-invariant for a transversally

homogenous system, where the transverse flow is absent, is summarized as

Uµ = (cosh ς, 0, 0, sinh ς) = (
t

τ
, 0, 0,

z

τ
) ,

Xµ = (0, cosφ, sinφ, 0) ,

Y µ = (0,− sinφ, cosφ, 0) ,

Zµ = (sinh ς, 0, 0, cosh ς) = (
z

τ
, 0, 0,

t

τ
). (5.5)

In the case of one-dimensional boost-invariant expansion (0+1d), all scalar quantities depend

only on the longitudinal proper time τ . To describe boost-invariant 0+1d dynamics, one can
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introduce a spacelike vector zµ, which is orthogonal to the fluid four-velocity uµ in all frames

and corresponds to the z-direction in the local rest frame of the matter [103, 215]. The

requirement of boost invariance implies that the one-particle distribution function f(x, p)

may depend only on three variables, τ , w, and ~pT [216,217], with the boost-invariant variable

w obtained as the following 1

p · z =
Ez − tpL

τ
= −w

τ
⇒ w = tpL − zE. (5.6)

Using w and ~pT one can define

τ p · u = Et− pLz =
√
w2 + (m2 + ~p 2

T ) τ 2 ≡ v . (5.7)

Also, by using these variables, one can derive the longitudinal momentum pL using equations

Eq. (5.6) and Eq. (5.7), which yields E = tpL−w
z

and E = v+pLz
t

, respectively. Substituting

these equations, one can solve for pL and write it in terms of w, v, t, and z. This yields

pL =
vz + wt

τ 2
. (5.8)

Similarly, one can express the energy E in terms of w and v by substituting pL into the

equation E = tpL−w
z

. After some algebraic manipulation and substitution, this gives

E =
tv + wz

τ 2
. (5.9)

In the next section, we will rewrite the RTA Boltzmann equation in relaxation time approx-

imation and the equilibrium distribution by using these boost-invariant variables.

1In Eq. (5.6), z is the spatial coordinate, which is not to be confused with the basis vector zµ.
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5.2.2 RTA Boltzmann equation

The relaxation time approximation (RTA) Boltzmann equation has been successfully

used to describe the dynamics of many physical systems, including the quark-gluon plasma

(QGP) produced in heavy-ion collisions, where the relaxation time can be related to the

transport coefficients of the medium. The numerical solution of the RTA Boltzmann equation

is a challenging task, and various techniques, such as the Monte Carlo methods and the

parton cascade model, have been developed to simulate its evolution in realistic systems.

In this chapter, all results presented herein follow from the RTA Boltzmann equation in

relaxation time approximation. We start from the general Boltzmann equation

pµ∂µf(x, p) = C[f(x, p)] , (5.10)

where f is the one-particle distribution function, pµ = (E, pT , pL) is the particle four-

momentum. Here by using the boost-invariant variable the left-hand-side will be

pµ∂µf =

(
E
∂

∂t
− pL

∂

∂z

)
f,

and by applying the result for ∂
∂t

Eq. (5.3) and ∂
∂z

Eq. (5.4) with ∂f
∂ς

= 0, we obtain:

pµ∂µf =

(
E cosh ς

∂

∂τ
− pL sinh ς

∂

∂τ

)
f =

1

τ
(Et− pLz)

∂

∂τ
f =

v

τ
∂τf (5.11)

Now, the right-hand-side is the collision kernel C[f ] that represents the effect of collisions

on the distribution function and in RTA includes the difference between the non-equilibrium

distribution function f and the equilibrium distribution function feq, which is a function

of the local temperature T and flow velocity uµ or the four-velocity of the local rest frame
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(LRF).

C[f ] =
p · u
τeq

(feq − f) =
1

τeq

(
E
t

τ
− pL

z

τ

)
(feq − f) =

v

ττeq

(feq − f) , (5.12)

with p ·u ≡ pµuµ = Et−pLz
τ

= v
τ
. Substituting the result of the left-hand-side and right-hand-

side in Eq. (5.10), we find

∂τf =
1

τeq

(feq − f) . (5.13)

The quantity τeq appearing above is the relaxation time, which will be precisely specified

below. For the equilibrium distribution, we will follow Ref. [190] and assume a Boltzmann

equilibrium distribution function

feq = exp
(
−p · u

T

)
. (5.14)

One can rewrite Eq. (5.14) by using the boost-invariant variables introduced in the previous

section to get

feq = exp
(
− v

Tτ

)
= exp

(√
w2 + (m2 + p 2

T ) τ 2

Tτ

)
. (5.15)

5.2.3 Thermodynamic variables

For a single-component massive gas obeying Boltzmann statistics, the equilibrium ther-

modynamic quantities are as follows where the general moment equations for feq = exp

(
−
√

p2+m2

T (τ)

)
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are presented in the Appendix E.2.1 for readers who are interested in understanding the de-

tails.

Neq =
T 3

2π2
m̂2K2 (m̂) ,

Seq =
T 3

2π2
m̂2
[
4K2 (m̂) + m̂K1 (m̂)

]
,

Eeq =
T 4

2π2
m̂2
[
3K2 (m̂) + m̂K1 (m̂)

]
,

Peq = nT =
T 4

2π2
m̂2K2 (m̂) , (5.16)

with m̂ ≡ m/T and Kn being modified Bessel functions of the second kind. Above Neq is the

number density, Seq is the entropy density, Eeq is the energy density, and Peq is the pressure.

These satisfy ε + P = Ts and, from the above relations, one can determine the speed of

sound squared, which has a direct connection to the QGP’s equation of state. It explains

how the pressure of the medium is affected by changes in energy density and how quickly

these changes spread across the medium. If the speed of sound squared is high, the medium

is rigid and modest pressure changes will not have a significant impact on its density. If it

is low, the medium is soft, and changes in pressure cause noticeable changes in density.

c2
s =

dP

dε
=

ε+ P

3ε+ (3 + m̂2)P
. (5.17)

5.2.4 Relaxation time for a massive gas

The relaxation time is a measure of how quickly a system returns to equilibrium after

being disturbed. In this section, the relaxation time of a gas with massive particles is dis-

cussed, and we show that the relaxation time depends on the particle mass and temperature

through a function γ(m̂), where m̂ is the ratio of the particle mass to the temperature. For
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a massive system, the shear viscosity η can be expressed as [8, 123,218]

η =
τeqP

15
κ(m̂) , (5.18)

with

κ(x) ≡ x3

[
3

x2

K3(x)

K2(x)
− 1

x
+
K1(x)

K2(x)
− π

2

1− xK0(x)L−1(x)− xK1(x)L0(x)

K2(x)

]
, (5.19)

and Ln(x) being modified Struve functions.

0 5 10 15 20
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m/T

γ

Figure 1: The non-conformal relaxation time modification factor γ Eq. (5.21) as a function
of m/T .

For fixed specific shear viscosity, η̄ ≡ η/s, which is a measure of the efficiency of the QGP

in transporting momentum and serves as a gauge of the QGP’s resistance to deformation

under shear force. The QGP would act like a thick fluid if the particular shear viscosity was

too high, and the system would take a very long time to reach thermal equilibrium. Using

ε+ P = Ts with Eq. (5.18) one obtains

τeq(T,m) =
5η̄

T
γ(m̂) , (5.20)
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with

γ(m̂) ≡ 3

κ(m̂)

(
1 +

ε

P

)
. (5.21)

Note that, in the massless limit, m→ 0, one has κ(m̂)→ 12, ε→ 3P , and γ → 1, giving the

usual conformal RTA relaxation time that is well understood and follows a simple formula

as following

τeq(T, 0) =
5η̄

T
. (5.22)

For small m̂, one has

γ(m̂) = 1 +
m̂2

12
− 13m̂4

288
+O

(
m̂5
)
, (5.23)

and in the large m̂ limit, one has

γ(m̂) =
m̂

5
+

7

10
+O

(
1

m̂

)
. (5.24)

In Fig. 1, we plot γ(m̂). As can be seen from this figure, γ(m̂) goes to unity in the massless

limit and grows linearly at large m/T , which shows that the relaxation time gets longer as

the particles get more massive. Consequently, the value of γ(m̂) increases in proportion to

the value of m̂, which corresponds either to fixed temperature and large mass or fixed mass

and small temperature. The fact that γ(m̂) ≥ 1 implies that a massive gas always relaxes

more slowly to equilibrium than a massless one in physical units, however, it is unclear a

priori how things will change as a function of the rescaled time τ ≡ τ/τeq. We note that

the strong enhancement of the relaxation time at low temperatures modifies the asymptotic

approach to equilibrium.

5.2.5 Exact solution for the distribution function and its solution

In this section, we discuss the exact solution to the RTA Boltzmann equation for the

distribution function of a fluid undergoing a 0+1D boost-invariant expansion. We will start
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by reviewing the derivation of this solution and then present the integral equation obeyed

by all moments of the distribution function. We will also generalize the results to the

full set of integral moments. These integral moments can be used to determine the bulk

properties of the expanding system, such as the energy density, pressure, and velocity fields.

The distribution function f(τ, w, pT ) and the initial distribution function f0(w, pT ) can be

determined by solving the forthcoming integral equation Eq. (5.26). The moment equations

provide a test of the numerical solution of the Boltzmann equation, since they can be used

to calculate the time evolution of the bulk properties of the system.

We will assume that the initial distribution function f0 can be expressed in spheroidally-

deformed form [192,193]

f0(w, pT ) = exp

[
−
√

(p · u)2 + ξ0(p · z)2

Λ0

]

= exp

[
−
√

(1 + ξ0)w2 + (m2 + p2
T )τ 2

0

Λ0τ0

]
, (5.25)

where ξ0 is the initial anisotropy parameter and Λ0 is the initial transverse momentum scale.

The reason why the initial distribution function is called spheroidally-deformed is because

it describes an ellipsoidal shape of the momentum distribution in the local rest frame of

the fluid. The distribution of momentum is not spherical; instead, it is anisotropic, and

the axis of the ellipsoid is in the same direction as the flow (the fluid velocity). To change

the deformation of the momentum distribution, one uses the anisotropy parameter ξ0 that

measures how much the momentum distribution is stretched or flattened, and it determines

the initial shape of the momentum distribution function. Varying this parameter can change

the initial deformation of the momentum distribution function, which in turn affects the

behavior of the QGP during its evolution. We consider a slight generalization of this initial

condition in Sec. (5.5).
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For −1 < ξ0 < 0, this corresponds to an initially prolate distribution in the local rest

frame and, conversely, for ξ0 > 0 this corresponds to an initially oblate distribution function.

For ξ0 = 0, one obtains an isotropic Boltzmann distribution function as the initial condition.

Moreover, the initial distribution function is chosen in its spheroidally-deformed version

because it is a straightforward and adaptable model that can be used to explain a wide

range of various initial conditions. Particularly, it can be used to analyze how the initial

anisotropies affect how the fluid changes over time as well as the function of different physical

factors, such as viscosity in the relaxation of the anisotropy. By adjusting the value of

the anisotropy parameter, you can study the change from an anisotropic to an isotropic

distribution and see how the final state depends on the conditions at the beginning.

The exact solution to Eq. (5.13) is given by [188–190,219–222]

f(τ, w, pT ) = D(τ, τ0)f0(w, pT ) +

∫ τ

τ0

dτ ′

τeq(τ ′)
D(τ, τ ′) feq(τ ′, w, pT ) , (5.26)

where f0(w, pT ) is the initial distribution function specified at τ = τ0 and the damping

function D is defined as

D(τ2, τ1) = exp

[
−
∫ τ2

τ1

dτ ′′

τeq(τ ′′)

]
. (5.27)

Note that taking the derivative Eq. (5.26), one can find the same result as Eq. (5.13) as

function of τ , w, and pT

∂f(τ, w, pT )

∂τ
= − 1

τeq

D(τ, τ0)f0(w, pT )− 1

τeq

∫ τ

τ0

dτ ′

τeq(τ ′)
D(τ, τ ′)feq(τ ′, w, pT )︸ ︷︷ ︸

=−τeqf(τ,w,pT )

+
1

τeq

D(0, 0)︸ ︷︷ ︸
=1

feq(τ ′)

∂f(τ, w, pT )

∂τ
=
feq − f
τeq

(5.28)

119



5.2.6 The integral equation obeyed by all moments

We will work with the following moments of the one-particle distribution function [165,

168]

Mnl[f ] ≡
∫
dP (p · u)n (p · z)2l f(τ, w, pT ) . (5.29)

with
∫
dP is the Lorentz-invariant momentum integration measure. To write

∫
dP by using

w, v, and pT variables, we need to take the derivative for Eq. (5.7) and Eq. (5.8)

dv

dw
=

1

2
(w2 +

(
m2 + ~p 2

T

)
τ 2)−

1
2 (2w) =

w√
w2 + (m2 + ~p 2

T ) τ 2
=
w

v
⇒ dv =

w

v
dw ,

and

τ 2dpL = tdw + zdv = tdw +
zw

v
dw = (tv + zw)︸ ︷︷ ︸

Eτ2

dw

v
⇒ dpL =

E

v
dw ,

applying this result in

dP =
d4p

(2π)4
2πδ

(
p2 −m2

)
2θ(p0) =

dpL
(2π)3p0

d2pT ,

we obtain

dP =
dw d2pT
(2π)3v

, (5.30)

where p0 = E. In principle, powers of p2
T could also appear in a general moment, however,

such moments can be expressed as a linear combination of the two-index moment appearing

above using p2 = m2 to write p2
T = (p ·u)2− (p · z)2−m2. Some specific cases ofMnl map to

familiar quantities, e.g., n = 1 and l = 0 maps to the number density n =M10, n = 2 and

l = 0 maps to the energy density, and n = 0 and l = 1 maps to the longitudinal pressure,

PL. The transverse pressure, PT , can be obtained by using p2
T = (p · u)2 − (p · z)2 − m2
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to obtain PT =M20 −M01 −m2M00. For a Boltzmann equilibrium distribution function,

these moments reduce to 2

Mnl
eq(T,m) ≡Mnl[feq] =

2T n+2l+2

(2π)2(2l + 1)

∫ ∞
0

dp̂ p̂n+2l+1

(
1 +

m̂2

p̂2

)(n−1)/2

e−
√
p̂2+m̂2

. (5.31)

We note that by changing variables to x ≡
√
p̂2 + m̂2 it is possible to perform this inte-

gral analytically in terms of generalized hypergeometric functions, however, the resulting

expression is not straightforward to evaluate for integer-valued n and l. For this reason, it

is typically easier to simply evaluate it numerically.

In what follows, we will present results for these general moments scaled by their equi-

librium values, i.e.,

Mnl ≡ M
nl

Mnl
eq

. (5.32)

which gives a measure of how far the system is from equilibrium. In the late-time limit

(the limit of non-interacting particles τ → ∞), if the system approaches equilibrium, then

Mnl → 1. In the general case, using the boost-invariant variables introduced earlier, one

finds that the general moments can be expressed as

Mnl[f ] =

∫
dw d2pT
(2π)3v

(v
τ

)n (w
τ

)2l

f(τ, w, pT ) ,

=
1

(2π)3 τn+2l

∫
dw d2pT v

n−1w2l f(τ, w, pT ) . (5.33)

Taking a general moment of Eq. (5.26) one obtains

Mnl(τ) = D(τ, τ0)Mnl
0 (τ) +

∫ τ

τ0

dτ ′

τeq(τ ′)
D(τ, τ ′)Mnl

eq(τ ′).

2For more details see the appendix (E.2).
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Evaluating the integrals necessary results in

Mnl =
D(τ, τ0)Λn+2l+2

0

(2π)2
H̃nl

(
τ0

τ
√

1 + ξ0

,
m

Λ0

)
+

1

(2π)2

∫ τ

τ0

dτ ′

τeq(τ ′)
D(τ, τ ′)T n+2l+2(τ ′) H̃nl

(
τ ′

τ
,
m

T (τ ′)

)
, (5.34)

where

H̃nl(y, z) =

∫ ∞
0

du un+2l+1e−
√
u2+z2 Hnl

(
y,
z

u

)
, (5.35)

with

Hnl(y, x) =
2 y2l+1(1 + x2)

n−1
2

2l + 1
2F1

(
l +

1

2
,
1− n

2
; l +

3

2
;

1− y2

1 + x2

)
, (5.36)

and 2F1 being a hypergeometric function. Finally, specializing to the case n = 2 and l = 0

and requiring conservation of energy ε(τ) = εeq(T ), also known as Landau matching, we

obtain the following integral equation

2T 4(τ) m̂2

[
3K2

(
m

T (τ)

)
+ m̂K1

(
m

T (τ)

)]
= D(τ, τ0)Λ4

0H̃
20

(
τ0

τ
√

1+ξ0

,
m

Λ0

)
+

∫ τ

τ0

dτ ′

τeq(τ ′)
D(τ, τ ′)T 4(τ ′)H̃20

(
τ ′

τ
,
m

T (τ ′)

)
. (5.37)

This is the integral equation obtained originally in Ref. [190] with the understanding that

H̃20 = H̃2 defined therein. The integral equation for the temperature of the system at a

particular time T (τ) can not be solved analytically. Therefore, an iterative method is used

to numerically approximate the solution. The iterative method involves starting with an

initial guess for T (τ), plugging it into the right hand side of the integral equation, and using

the resulting solution as the next guess. This process is repeated until the solution converges

to a desired level of accuracy. After that the solution can be used in Eq. (5.34) to compute

all moments.

122



5.2.7 Viscous corrections expressed in terms of moments

For comparisons to come, here we collect expressions for the viscous corrections written

in terms of the moments computed herein. We start by noting that the equilibrium pressure

can be expressed as

P = −1

3
∆µν

∫
dP pµpν feq =

1

3

[
M20

eq −m2M00
eq

]
. (5.38)

Next, we note that the bulk viscous correction can be expressed as

Π = −1

3
∆µν

∫
dP pµpν (f − feq)

=
1

3

[
M20 −m2M00

]
− 1

3

[
M20

eq −m2M00
eq

]
= −1

3
m2
[
M00 −M00

eq

]
, (5.39)

where we have used ∆µν = gµν − uµuν and in going from the second the third lines we have

used Landau matching, which implies thatM20 =M20
eq. To characterize the size of the bulk

viscous correction relative to the equilibrium pressure, one can scale it by the equilibrium

pressure to obtain a dimensionless measure of the bulk viscous pressure, Π̃. The resulting

quantity is

Π̃ ≡ Π

P
= −

m2
(
M00 −M00

eq

)
M20

eq −m2M00
eq

. (5.40)

From this we see that Π̃ is proportional to the difference of the n = 0 and l = 0 moment from

its equilibrium value. We note that for the behavior of these quantities under time evolution,

ifM00 does not possess an attractor, meaning that its time evolution is sensitive to the initial

conditions, then this would imply that Π̃ does not possess an attractor. This implies that

the behavior (the time evolution) of the bulk viscous pressure would be highly dependent

on the specific conditions at the start of the evolution, and may not exhibit a well-defined
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long-term behavior. Next, to compute the shear correction, it is most straightforward to

start from

M01 = PL = P − π + Π , (5.41)

which results in

π̃ ≡ π

P
= 1−M 01 + Π̃ . (5.42)

or one can be expressed the shear stress tensor πµν as

πµν = ∆µν
αβ

∫
dP pαpβ (f − feq), (5.43)

where ∆µν
αβ ≡ 1

2
(∆µ

α∆ν
β + ∆µ

β∆ν
α) − 1

3
∆µν∆αβ is a traceless symmetric projection operator

orthogonal to uµ. We note that this implies that, if there exists an attractor for M 01, but

not for Π̃, then π̃ will also not possess an attractor.3 This means that the long-term behavior

of the system might be sensitive to the initial conditions, and does not approach a unique

attractor state.

5.3 Evaluation of the moments to first order in hydrodynamic gradients

In the context of hydrodynamics, the Grad’s 14-moment approximation [223] and the

Chapman-Enskog method [224] are two commonly used methods to determine the form of

the distribution function close to local thermodynamic equilibrium. Both methods involve

expanding f(x, p) around an equilibrium distribution function f0(x, p). The relativistic ver-

sion of Grad’s 14-moment approximation is a method to describe the behavior of a

fluid near equilibrium in a relativistic setting. The approximation assumes that the fluid is

not in exact thermal equilibrium but is slightly out of equilibrium due to small deviations

from the equilibrium state. To account for these small deviations, the approximation uses a

3This point was originally emphasized in refs. [208,214].
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Taylor-like series expansion in momenta truncated at quadratic order. This means that the

deviation from equilibrium is expressed as a sum of terms that are quadratic in the fluid’s

momenta, with coefficients that depend on the dissipative fluxes of the fluid. The question

of whether this series expansion is convergent is a valid one, as a power series without a

small expansion parameter may not necessarily converge. However, the justification for us-

ing such an ansatz lies in the assumption that the deviations from equilibrium are small, so

the higher-order terms in the series expansion are negligible. Additionally, the assumption

that the coefficients in the expansion are linear in the dissipative fluxes is based on the idea

that these fluxes are proportional to the deviation from equilibrium. This assumption is

motivated by the fact that in many physical systems, dissipative effects are proportional to

the deviation from equilibrium, so a linear relationship between the dissipative fluxes and

the deviation from equilibrium is reasonable.

However, the Chapman-Enskog method is a perturbative approach to solving the

Boltzmann transport equation, which describes the behavior of a dilute gas in terms of

the evolution of its distribution function. The method involves expanding the distribution

function as a power series in the Knudsen number, which is a dimensionless parameter that

characterizes the ratio of the mean free path of the gas molecules to a typical macroscopic

length scale of the system. The expansion is equivalent to making a gradient expansion

about the local equilibrium distribution function. The expansion involves assuming that the

distribution function can be written as a sum of terms that are each multiplied by a power of

the Knudsen number. The first term in this expansion corresponds to the local equilibrium

distribution function, while the higher-order terms correspond to deviations from equilibrium

due to the presence of gradients in the fluid variables.

The main differences between the relativistic version of Grad’s 14-moment approximation

and the Chapman-Enskog method are:
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• Expansion parameter: The 14-moment approximation expands the distribution func-

tion in terms of moments of the Boltzmann equation, while the Chapman-Enskog

method expands the distribution function in a power series in the Knudsen number.

The moments in the 14-moment approximation are not necessarily small, whereas the

Knudsen number is assumed to be small in the Chapman-Enskog method.

• Order of expansion: The 14-moment approximation expands the distribution function

up to 14th order in moments, while the Chapman-Enskog method expands the distribu-

tion function up to a desired order in the Knudsen number. The order of the expansion

in the 14-moment approximation is fixed, while in the Chapman-Enskog method, the

order of the expansion can be chosen based on the desired level of accuracy.

In this section we will present expressions for the shear and bulk viscosity corrected dis-

tribution functions and resulting integral moments obtained using both the 14-moment [81,

225,226] and Chapman-Enskog [96,224] approximations. In both cases, one can decompose

the linearly-corrected one-particle distribution function as

f = feq + δfshear + δfbulk . (5.44)

Therefore, to understand the relationship between kinetic theory out of equilibrium and

viscous hydrodynamics, one can consider small departures from equilibrium. In this case,

the distribution function can be expressed as a sum of an equilibrium part and a small

correction term, denoted by δf represents the deviation of the distribution function from

equilibrium.

f(pµ, xµ) = feq

(
pµuµ
T

)
[1 + δf(pµ, xµ)] , (5.45)

The equilibrium part is a function of the momentum pµ and the four-velocity uµ, given

by feq

(
pµuµ
T

)
, where T is the temperature, and the out-of-equilibrium correction to the
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distribution function δf(pµ, xµ)� 1. In the next two subsections we specify the 14-moment

and Chapman-Enskog forms for δfshear and δfbulk and evaluate the moments of each in order

to obtain the corresponding approximations at first order in gradients.

5.3.1 14-moment approximation

In the 14-moment approximation, the viscous corrections to the distribution function for

a single component massive gas obeying classical statistics can be written as [227–230]

δfshear = feq
pµpνπ

µν

2(ε+ P )T 2
, (5.46)

δfbulk = −feq
β

βΠ

[
m2

3 p · u
−
(1

3
− c2

s

)
p · u

]
Π , (5.47)

with β = 1/T and

βΠ =
5

3
β I

(1)
42 − (ε+ P )c2

s . (5.48)

The thermodynamic integral I
(1)
42 can be expressed as [96]

I
(1)
42 =

T 5m̂5

30π2

[
1

16

(
K5(m̂)− 7K3(m̂) + 22K1(m̂)

)
−Ki,1(m̂)

]
, (5.49)

with

Ki,1(m̂) =

∫ ∞
0

dθ

cosh θ
exp(−m̂ cosh θ) . (5.50)

For 0+1d boost-invariant Bjorken expansion as considered in this chapter, one can write the

shear tensor in terms of one independent component π ≡ −πzz, with the other two diagonal

components determined by symmetry and the tracelessness of πµν , giving πxx = πyy = π/2.

Note that in this case, all dynamical variables only depend on the longitudinal proper time

τ .
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Navier-Stokes shear-viscous correction

For the case of 0+1d boost-invariant Bjorken expansion one has

δfshear = feq
pµpνπ

µν

2(ε+ P )T 2
, (5.51)

pµpνπ
µν = pxpxπ

xx + pypyπ
yy + pzpzπ

zz = p2
x

π

2
+ p2

y

π

2
− p2

zπ =
π

2
(p2
x + p2

y − 2p2
z) ,

using

E2 = p2
x + p2

y + p2
z +m2 ,

then

p2
x + p2

y = E2 − p2
z −m2 ,

therefore,

pµpνπ
µν =

π

2
(E2 − p2

z −m2 − 2p2
z) =

π

2
(E2 − 3p2

z −m2) =
π

2
[(p · u)2 − 3(p · z)2 −m2] .

This gives

δfshear = feq
π[(p · u)2 − 3(p · z)2 −m2]

4(ε+ P )T 2
= feq

π[(p · u)2 − 3(p · z)2 −m2]

4ε(1 + P
ε
)T 2

,

δfshear,14−moment =
π̄

4(1 + P
ε
)T 2

[
(p · u)2 − 3(p · z)2 −m2

]
feq , (5.52)

where π̄ = π/ε. Computing the moments of δf 14-moment
shear one obtains

Mnl
shear,14−moment =

π̄

4(1 + P
ε
)T 2

[
Mn+2,l

eq − 3Mn,l+1
eq −m2Mn,l

eq

]
. (5.53)

128



The Navier-Stokes shear-viscous correction term in the equation for the energy-momentum

tensor is given by

πµν = ησµν ,

with

σµν = 2∇(µuν) − 2

3
∆µν∇γu

γ .

Using

∇(µuν) =
1

2
(∇µuν +∇νuµ) ,

one obtains

θ = ∇γu
γ =

1

τ
,

πµν = 2
1

2
η (∇µuν +∇νuµ)− 2

3τ
η∆µν ,

πxx = 2
1

2
η (∇xux +∇xux)− 2

3τ
η∆xx =

2

3τ
η = πyy ,

with ∆xx = ∆yy = −1, and ∇xux = ∇xux. From the tracelessness, one has we find that

πxx + πyy + πzz = 0 ,

then

πzz = −πxx − πyy = − 4

3τ
η .

As a result

πzz = −π = − 4

3τ
η .

Therefore, at first order in the gradient expansion, which corresponds to the Navier-

Stokes (NS) limit, one has

πNS(τ) =
4η

3τ
. (5.54)
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Using η̄ ≡ η/s, and ε+ P = Ts, one obtains

πNS(τ) =
4η

3τ
=

4η̄s

3τ
=

4η̄(ε+ P )

3τT
,

which, when written in terms of τ = τ/τeq becomes

πNS =
4η̄(ε+ P )

3ττeqT
,

or

π̄NS =
4η̄

3ττeqT
(1 +

P

ε
) .

Using η = τeqP

15
κ(m̂), η̄ ≡ η/s, and ε+ P = Ts

π̄NS =
4η

3τ̄ τeqTs

(
1 +

P

ε

)
=

4

3τ̄ τeq(P + ε)

(
1 +

P

ε

)
·τeqP

15
κ(m̂) =

4

45τ̄(P + ε)
(1+

P

ε
)·Pκ(m̂) .

Using γ(m̂) ≡ 3
κ(m̂)

(
1 + P

ε

)
one finds

π̄NS =
4

45τ̄(P + ε)

(
1 +

P

ε

)
· P · 3

γ(m̂)

(
1 +

ε

P

)
=

12

45τ̄

P

ε
· 1

γ(m̂)

(
1 +

ε

P

)
.

Therefore,

π̄NS =
4

15γ(m̂)τ

(
1 +

P

ε

)
, (5.55)

applying this result into Eq. (5.53), the general moment for the 14-moment approximation

in shear-viscous correction in the Navier-Stokes limit is

Mnl,NS
shear,14−moment =

1

15 τ T 2 γ(m̂)

[
Mn+2,l

eq − 3Mn,l+1
eq −m2Mn,l

eq

]
. (5.56)
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Navier-Stokes bulk-viscous correction

Taking the moments of Eq. (5.47), one obtains

Mnl
bulk,14−moment = − β

3βΠ

[
m2Mn−1,l

eq −
(
1− 3c2

s

)
Mn+1,l

eq

]
Π . (5.57)

To proceed, one can use the fact that Π = − τeq βΠ ∂µu
µ [96]. At first order, for boost-

invariant Bjorken flow, since ∂µu
µ = 1/τ , this reduces to

ΠNS = −βΠ/τ , (5.58)

giving

Mnl,NS
bulk,14−moment =

1

3 τ T

[
m2Mn−1,l

eq −
(
1− 3c2

s

)
Mn+1,l

eq

]
. (5.59)

Total Navier-Stokes viscous correction

Finally, by adding the shear and bulk corrections to the equilibrium result and scaling

by the equilibrium moments, we obtain the following expression for the scaled moments in

the Navier-Stokes limit within the 14-moment approximation

Mnl,NS
14−moment = 1 +

1

15 τ T 2 γ(m̂)

[
Mn+2,l

eq − 3Mn,l+1
eq −m2Mn,l

eq

]
+

1

3 τ T

[
m2Mn−1,l

eq − (1− 3c2
s)Mn+1,l

eq

]
Mn,l

eq

. (5.60)

5.3.2 Chapman-Enskog approximation

Navier-Stokes shear-viscous correction

In the Chapman-Enskog approximation one has the following shear viscous correction [96]

δfshear,CE =
βfeq

2(u · p)βπ
pµpνπµν . (5.61)
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Using

pµpνπ
µν =

π

2
[(p · u)2 − 3(p · z)2 −m2] ,

and

π̄NS =
4

15γ(m̂)τ

(
1 +

P

ε

)
,

one obtains

δfshear,CE =
βfeq

2(u · p)β I(1)
42

π

2
[(p · u)2 − 3(p · z)2 −m2] =

π̄

4 I
(1)
42

[(p · u)2 − 3(p · z)2 −m2]feq .

In the Navier-Stokes limit Eq. (5.54) one obtains,

δfshear,CE =
4

15γ(m̂)τ · 4 I(1)
42

(
1 +

P

ε

)
[(p · u)2 − 3(p · z)2 −m2]feq ,

giving

δfshear,CE =
(ε+ P )

15γ(m̂)τ I
(1)
42

[(p · u)− 3(p · u)−1(p · z)2 −m2(p · u)−1]feq ,

where βπ = β I
(1)
42 . Following a similar procedure as was used for the 14-moment approxima-

tion, ones find that, in the Navier-Stokes limit, the moments of the shear viscous correction

become

Mnl,NS
shear,CE =

ε+ P

15 τ γ(m̂) I
(1)
42

[
Mn+1,l

eq − 3Mn−1,l+1
eq −m2Mn−1,l

eq

]
, (5.62)

with I
(1)
42 given in Eq. (5.49) and γ(m̂) given in Eq. (5.21).

Navier-Stokes bulk-viscous correction

The bulk viscous correction in the Chapman-Enskog approximation can be written as [96]

δfbulk,CE = − βfeq

3(u · p)βΠ

[
m2 −

(
1− 3c2

s

)
(u · p)2

]
Π , (5.63)
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which is precisely the same form as the 14-moment approximation and hence the moments

reduce to Eq. (5.59).

Total Navier-Stokes viscous correction

Adding the shear and bulk corrections to the equilibrium result and scaling by the

equilibrium moments, we obtain the following expression for the scaled moments in the

Navier-Stokes limit within the Chapman-Enskog approximation

Mnl,NS
CE = 1 +

ε+ P

15 τ γ(m̂) I
(1)
42

[
Mn+1,l

eq − 3Mn−1,l+1
eq −m2Mn−1,l

eq

]
Mn,l

eq

+
1

3 τ T

[
m2Mn−1,l

eq − (1− 3c2
s)Mn+1,l

eq

]
Mn,l

eq

. (5.64)

5.4 Results

The integral equation (5.37) can be solved iteratively for T (τ) and, once converged to

the desired accuracy, this solution can be used in Eq. (5.34) to compute all moments. For

the iterative solution, we discretized T (τ) on a logarithmic grid in time with 4096 points. We

consider two cases: (a) holding the initial energy density, ε0, and initialization time, τ0, fixed,

while varying the initial momentum anisotropy, ξ0; and (b) holding the initial energy density,

ε0, and the initial momentum anisotropy, ξ0 fixed, while varying the initialization time, τ0.

These two scenarios allow us to assess whether or not forward and early-time (or pull-back)

attractors exist, respectively. In both cases, we hold the specific shear viscosity η̄ = η/s

fixed during the entire evolution. In both cases, the initial energy density used corresponds

to a massive gas at a temperature of T0 = 1 GeV and the final evolution time was held

fixed at τf = 100 fm/c. Additionally, in both cases we iterated the integral equation for 200

iterations, which allowed for convergence of the result to 8 digits at all proper times. For

case (a), we used τ0 = 0.1 fm/c and, for case (b), we used ξ0 = 0. We consider three constant

masses of m = 0.2 GeV, m = 1 GeV, and m = 5 GeV. We note that we have explicitly
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checked that the small mass limit our results converge to the conformal limit presented in

Ref. [165]. The RTA-MASSIVE-CUDA code used to generate all results can be obtained using

Ref. [231].
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Figure 2: Scaled momentsMnl as a function of rescaled time for the case m = 0.2 GeV. The
non-solid lines are specific initial conditions initialized at τ0 = 0.1 fm/c with T0 = 1 GeV and
α0 = 1/

√
1 + ξ0 ∈ {0.12, 0.25, 0.5, 1, 2}. The solid black lines correspond to the attractor

solution, the solid red lines are the first-order 14-moment predictions in Eq. (5.60), and the
solid green lines are the first-order Chapman-Enskog predictions in Eq. (5.64).

5.4.1 General moments

In Fig. 2 we present our first results for the scaled moments as a function of rescaled time

τ = τ/τeq, which correspond to varying the initial anisotropy while holding the initialization

time and initial temperature fixed using a constant mass of m = 0.2 GeV. The relaxation

time used depends on both the mass and temperature as detailed in Eq. (5.20). The non-

solid lines are specific initial conditions initialized at τ0 = 0.1 fm/c with T0 = 1 GeV and
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Figure 3: Scaled moments Mnl as a function of rescaled time for the case m = 0.2 GeV.
The non-solid lines are specific initial conditions initialized with T0 = 1 GeV and ξ0 = 0 at
τ0 ∈ {0.01, 0.02, 0.04} fm/c. Line styles are the same as in Fig. 2.

α0 = 1/
√

1 + ξ0 ∈ {0.12, 0.25, 0.5, 1, 2}. The solid black lines correspond to the attractor

solution, the solid red lines are the first-order 14-moment predictions in Eq. (5.60), and the

solid green lines are the first-order Chapman-Enskog predictions in Eq. (5.64). To obtain the

two first-order curves, we evaluated Eqs. (5.60) and (5.64) using the temperature evolution

obtained from the exact solution. The attractor lines (black solid line) were obtained by

initializing the system at τ0 = 0.01 fm/c with a high-degree of momentum anisotropy of

α0 = 1/
√

1 + ξ0 = 0.1, corresponding to ξ0 = 99. We note that in this figure and similar

panel figures that follow, the fact that the scaled moment M 20 is equal to one at all times

is due to energy conservation and any deviations from one allow us to gauge the suitability

of the discretization used and the convergence of the iterative solution.
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Figure 4: Scaled momentsMnl as a function of rescaled time for the case m = 1 GeV. Initial
conditions and line styles are the same as in Fig. 2.

As can be seen from Fig. 2, all moments collapse towards the first-order viscous hy-

drodynamics predictions at late times, with lower-order moments typically converging more

quickly than higher-order moments. For the case of moments with l = 0, the two first-order

schemes Chapman-Enskog and 14-moment coincide identically. For moments with l ≥ 1,

we find that, for m = 0.2 GeV, the first-order Chapman-Enskog approximation form for

the one-particle distribution function performs better than the 14-moment approximation,

particularly for high-order moments. That said, it is important to emphasize that both

fail at early times, with the time scale for breakdown of each scheme becoming larger for

higher-order moments. As demonstrated in Ref. [165], this continues to be the case if one

includes second-order viscous corrections, with only resummed dissipative schemes such as

anisotropic hydrodynamics [97,98,109,185,232,233] being able to more reliably describe the
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Figure 5: Scaled momentsMnl as a function of rescaled time for the case m = 1 GeV. Initial
conditions and line styles are the same as in Fig. 3.

early-time features of all scaled moments (see in particular the improved schemes introduced

in Refs. [214,232]).

Considering earlier times, in Fig. 2 we see that for all moments with l ≥ 1 there are

indications of a non-equilibrium attractor that extends to very early times. For the moments

with l = 0, however, we observe that, although the solutions tend towards the attractor, the

approach appears to be slower and there doesn’t seem to be a complete collapse of the

solutions as seen for l ≥ 1. Finally, we note that for higher-order moments, we see a very

rapid collapse to their respective attractors, indicating that the high-momentum region of

the one-particle distribution function quickly approaches a universal form. This is very

similar to what occurred in the conformal case [165, 232]. In those works it was noted
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Figure 6: Scaled momentsMnl as a function of rescaled time for the case m = 5 GeV. Initial
conditions and line styles are the same as in Fig. 2.

that the reason for the slow hydrodynamization of the l = 0 moments was due to a two-

component form of the exact one-particle distribution function, which includes free-streaming

and thermalizing components, with the former being highly squeezed along the pz axis but

eventually decreasing in amplitude to a point that it becomes negligible.

In order to better understand whether an early-time attractor exists in this case, in Fig. 3

we present the case of holding the initial anisotropy and temperature fixed while varying the

initialization time for, again, m = 0.2 GeV. In this figure, the non-solid lines are specific

initial conditions initialized with T0 = 1 GeV and ξ0 = 0 at τ0 ∈ {0.01, 0.02, 0.04} fm/c.

The other line styles are the same as in Fig. 2. As can be see from figure, there clearly

exists an early-time attractor for all moments with l ≥ 1. In the moments with l = 0 we

see a slower approach to the attractor solution, however, the three specific solutions shown
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Figure 7: Scaled momentsMnl as a function of rescaled time for the case m = 5 GeV. Initial
conditions and line styles are the same as in Fig. 3.

approach a semi-universal result at fairly early times in the evolution. For moments with

l ≥ 1 we observe that the rate of approach of all specific solutions to the attractor are the

same, being associated with the free-streaming period of the evolution.

Turning next to Figs. 4 and 5, we present the result of varying the initial anisotropy

and initialization times in the case that m = 1 GeV. As before, the initial temperature is

held fixed at T0 = 1 GeV meaning that, in this case, the temperature is always less than

or equal to the mass at all times. From these figures, we see again that there exists both

a forward attractor and a pull-back attractor for moments with l ≥ 1 and that moments

with l = 0 have a slower approach to their respective attractors. Despite this, the results

are still semi-universal after a short time. With respect to the first-order hydrodynamical

forms, we once again see that for higher-order moments, the Chapman-Enskog form provides
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Figure 8: Scaled shear viscous correction π/P from Eq. (5.42) as a function of rescaled time
τ/τeq. The top row shows the result of varying the initial anisotropy and the bottom row
shows the result of varying the initialization time. These correspond to the same initializa-
tions shown in Figs. 2 - 7. Columns from left to right show the cases of m = 0.2, 1, and
5 GeV, respectively. The non-solid curves are specific runs and the solid curve shows the
first-order Navier-Stokes prediction given in Eq. (5.54).

a more quantitatively reliable asymptotic result than the 14-moment approximation for the

higher-order moments, however, both first-order results break down at early times as was

seen previously.

Finally, in Figs. 6 and 7 we present the result of varying the initial anisotropy and

initialization times in the case that m = 5 GeV. Once again, the initial temperature is held

fixed at T0 = 1 GeV. For this case the temperature is always small compared to the mass

scale. From these figures, we see again that there exists both a forward attractor and a

pull-back attractor for l ≥ 1. Similar to the other cases, we find that moments with l = 0

do not seem to possess early-time attractors and, based on Fig. 7, we see that not even a

partial collapse of the different initialization times occurs until around τ/τeq ∼ 3. However,

we still see a rapid collapse to an attractor for all moments with l ≥ 1. In particular, we

call attention to the panel showing M 01, which is equal to the ratio of the longitudinal

pressure, PL, divided by the equilibrium longitudinal pressure, Peq,L = P . A similar collapse
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Figure 9: Scaled bulk viscous correction Π/P from Eq. (5.40) as a function of rescaled time
τ/τeq. The rows and columns are the same as in Fig. 8. The non-solid curves are specific
runs and the solid curve shows the first-order Navier-Stokes prediction given in Eq. (5.58).

of PL/P was reported in Refs. [208, 214], where a conformal relaxation time was employed

and a smaller mass of m = 0.2 GeV was considered. Here we have considered even larger

masses of 1 and 5 GeV and reached the same conclusion, namely that there is an attractor

for PL/P and we have extended this conclusion to include all moments with l ≥ 1.

5.4.2 Bulk and shear viscous corrections

We now turn to extractions of the shear and bulk viscous corrections from the general

moments using Eqs. (5.42) and (5.40), respectively. In Fig. 8, we present the scaled shear

viscous correction π/P as a function of rescaled time τ/τeq. The top row shows the result of

varying the initial anisotropy and the bottom row shows the result of varying the initialization

time. These correspond to the same initializations shown in Figs. 2 - 7. Columns from left to

right show the cases of m = 0.2, 1, and 5 GeV, respectively. The non-solid curves are specific

runs and the solid curve shows the first-order Navier-Stokes prediction given in Eq. (5.54).

As these figures demonstrate, as the mass is increased, there no longer exists an early time

collapse of the solutions to a unique attractor curve and the solutions only fully collapse

141



π /P Π/P

0.5 1 5 10 50

0.0

0.2

0.4

0.6

0.8

1.0

1.2

τ/τeq

π
/P
,Π

/P
m = 0.2 GeV

π /P Π/P

0.5 1 5 10 50

0.0

0.2

0.4

0.6

0.8

1.0

1.2

τ/τeq

π
/P
,Π

/P

m = 1 GeV

π /P Π/P

0.5 1 5 10 50

0.0

0.2

0.4

0.6

0.8

1.0

1.2

τ/τeq

π
/P
,Π

/P

m = 5 GeV

π /P Π/P

0.05 0.10 0.50 1 5 10

0.0

0.2

0.4

0.6

0.8

1.0

1.2

τ/τeq

π
/P
,Π

/P

m = 0.2 GeV

π /P Π/P

0.050.10 0.50 1 5 10 50

0.0

0.2

0.4

0.6

0.8

1.0

1.2

τ/τeq

π
/P
,Π

/P

m = 1 GeV

π /P Π/P

0.050.10 0.50 1 5 10 50

0.0

0.2

0.4

0.6

0.8

1.0

1.2

τ/τeq

π
/P
,Π

/P

m = 5 GeV

Figure 10: Scaled shear and bulk viscous corrections from Eqs. (5.42) and (5.40), respectively,
as a function of rescaled time τ/τeq. The black solid lines are the scaled shear correction.
and the red dashed lines are the scaled bulk correction. The rows and columns are the same
as in Fig. 8.

once one enters the region describable by first-order viscous hydrodynamics.

We turn next to Fig. 9 where we present the scaled bulk viscous correction Π/P Eq. (5.40)

as a function of rescaled time τ/τeq. The rows and columns are the same as in Fig. 8. The

non-solid curves are specific runs and the solid curve shows the first-order Navier-Stokes

prediction given in Eq. (5.58). As can be seen from the top row of this figure, only for the

smallest mass shown of 0.2 GeV do we see a semi-universal result at early times in the top

row and, for the largest mass of 5 GeV, we only see signs of a collapse to a semi-universal

curve just prior to the onset of the applicability of first-order hydrodynamics. The bottom

row of this figure shows that if one reduces the initialization time while holding the initial

temperature fixed, there is no early-time attractor and, on top of that, even the late time

Navier-Stokes result is not unique. This should be contrasted with Fig. 8 where one sees

that the late-time Navier-Stokes results for the non-conformal shear collapse to a single line.

Interestingly, as can be seen from the bottom row of Fig. 9, as the mass is increased, the
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late-time Navier-Stokes curves begin to collapse to a unique curve, however, there is no

indication of a unique early-time attractor.

In order to put the results for the scaled shear and scaled bulk corrections in a more easily

comparable form, in Fig. 10 we present both in the same panels so that the magnitude of the

non-universal behavior can be visualized. In this figure, the black solid lines are the scaled

shear correction. and the red dashed lines are the scaled bulk correction. The rows and

columns are the same as in Fig. 8. As the bottom right panel, in particular, demonstrates,

there is a non-trivial cancellation between the shear and the bulk corrections even when the

magnitude of the bulk correction is relatively large.

Finally, as was observed in Refs. [208, 214], a cancellation of the non-universal features

of the scaled shear and bulk corrections occurs, resulting in a universal attractor for the

scaled longitudinal pressure, PL/P = M 01
which can be clearly see in Figs. 2 - 7. Such a

cancellation occurs in all moments with l ≥ 1 as these figures demonstrate implying that

the high-momentum part of the distribution quickly approaches a universal form. This

observation is once again in accordance with the finding of Refs. [208, 214], where they

presented plots of the scaled-time evolution of the full one-particle distribution function.

5.5 Generalized initial condition

Starting from the general quantum statistical distribution function

f =
1

exp
(
E−µ
T

)
± 1

,

in the limit of low densities and high temperatures exp
(
E−µ
T

)
� 1, the distribution reduces

to the Maxwell-Boltzmann distribution. This is because at high temperatures, the thermal

energy of the particles is much greater than the energy spacing between the quantum states,

and the particles behave like classical particles. One can expand the exponential term in the
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denominator using the Taylor series expansion for small values of x = E−µ
T

, so we can write:

f ' 1

exp
(
E−µ
T

) = exp

[
−(E − µ)

T

]
= γ0 exp

(
−E
T

)
,

which is the Maxwell-Boltzmann distribution where γ0 = exp
(
µ
T

)
. We present results ob-

tained using the generalized spheroidal initial condition introduced in Ref. [214]

f0(w, pT ) =
1

γ0

exp

[
−
√

(p · u)2 + ξ0(p · z)2

Λ0

]
, (5.65)

where γ0 allows us to independently vary the initial shear and bulk corrections. Since there

are now three independent parameters to vary, we consider here varying all of them simulta-

neously, while holding the initial energy density fixed to that of an isotropic equilibrium gas

with m = 1 GeV and T0 = 1 GeV. In Figs. 11 and 12 we present the evolution of the scaled

moments and viscous corrections resulting from such a scan. As these figures demonstrate,

as with the spheroidal initial conditions used in the main body of the text, there does not

seem to be a pull-back attractor for moments with l = 0 nor the viscous corrections π and

Π, while both forward and pull-back attractors are still evident for all moments with l 6= 0.

5.6 Conclusions

In this paper we have confirmed and extended prior works that studied whether or not

attractors exist in non-conformal kinetic theory. We did this by making use of an exact

solution of the boost-invariant Boltzmann equation in relaxation time approximation. This

exact solution is expressed in terms of an integral equation that can be solved numerically

by the method of iteration and we derived an integral expression for general moments that

allowed us to obtain their time evolution after having solved for the time evolution of the

system’s temperature. Associated with this paper we have released the code used for our
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Figure 11: Scaled moments Mnl as a function of rescaled time for the case m = 1 GeV
obtained using the generalized spheroidal initial condition specified in Eq. (5.65) and varying
all parameters appearing therein, ξ0, γ0, and τ0.

studies as a publicly available package [231]. Using this method, we studied the time evo-

lution of a large set of integral moments of the one-particle distribution function, varying

both the initial momentum-space anisotropy and initialization time, while holding the initial

energy density fixed. We considered three different values of the mass and our main results

are presented in Figs. 2 - 7. From the time evolution of the general moments, we were able

to compute the exact time evolution of both the shear and bulk viscous corrections to the

one-particle distribution function and we presented these in Figs. 8 - 10, where we compared

them to their corresponding expressions at leading-order in the gradient expansion.

Our conclusions from this study are consistent with those found by the authors of

Refs. [208, 214], namely that there exists both late- and early-time attractors for the scaled

longitudinal pressure PL/P , while these do not exist separately for the shear and bulk viscous
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Figure 12: Scaled shear viscous correction π/P (left), bulk viscous correction Π/P (middle),
and both combined (right) as a function of rescaled time τ/τeq for m = 1 GeV and varying
all parameters appearing in Eq. (5.65), ξ0, γ0, and τ0, while holding the initial energy density
fixed to that of an isotropic equilibrium gas with T0 = 1 GeV.

corrections. In terms of the moments, this is manifested in the fact that moments with l = 0

for the n values considered herein (n ≤ 3), do not seem to possess an early-time attractor.

In order to assess the approach to the late-time hydrodynamic attractor, we derived expres-

sions for the viscosity-corrected one-particle distribution function to leading order in the

gradient expansion (Navier-Stokes limit) within both the 14-moment and Chapman-Enskog

approximations. We found that, for small masses, the first-order Chapman-Enskog form was

quantitatively more reliable at late times than the 14-moment approximation, particularly

for higher-order moments; however, for larger masses, the two approximations resulted in

quantitatively similar results when compared to the exact solutions. Finally, in order to

connect to standard viscous hydrodynamics corrections, we extracted the time evolution of

both the shear and bulk viscous corrections from the exact solution. One new observation

on this front is contained in Fig. 9, where it can be seen that the bulk viscous correction at

first-order in gradients does not collapse in the late-time, Navier-Stokes, limit.

As to the practical implications of our results we note that, in the conformal case

Ref. [158] demonstrated that even the l = 0 moments possessed a universal forward attrac-

tor and that this implied that there was an attractor for the full one-particle distribution

function. In the non-conformal case, the authors of Ref. [214] presented results for the full
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one-particle distribution function, finding that apart from slower convergence to the attrac-

tor at very low longitudinal momentum, it exhibited attractor behavior as well. Although

their study was restricted to a conformal relaxation time, our work indicates that the same

conclusion would be reached with a non-conformal relaxation time.

Finally, as to the implications for heavy-ion phenomenology, it has been shown that in

the conformal case the existence of a longitudinal pressure attractor can be used, e.g. to

constrain the initial energy density of the QGP [234] and electromagnetic emissions [235].

Since the arguments therein only rely on their being a longitudinal pressure attractor, it

seems that they would go through unchanged. Our results, at worst, indicate that may be

some additional uncertainty associated with such treatments if, in the future, they were to

rely on attractors existing also in the case l = 0. Because of this, the overarching idea to use

attractors in this manner would still be sound. This is due to the fact that, when considering

the forward attractor with phenomenologically relevant initialization times, e.g. 0.1 fm/c,

we still see a universal collapse to the forward attractor for all moments with l 6= 0 and a

semi-universal collapse for the moments with l = 0 (see e.g. Figs. 2). This semi-universality

would introduce a small degree of uncertainty in the conclusions compared to the conformal

case, but would not make this a useless exercise.

Looking to the future, it would be very interesting to see if the conclusions contained

herein can be extended to the case of a quasiparticle Boltzmann gas with temperature-

dependent masses. Such a picture underpins quasiparticle anisotropic hydrodynamics and

allows it to make use of a realistic non-conformal equation of state [8, 9, 11, 13, 186]. It will

also be interesting to see if these findings are modified if one includes the effect of dynamical

2+1D and 3+1D expansion [154] and thermal noise [236]. We leave these considerations to

future works.
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Chapter 6

Resummed Relativistic Dissipative Hydrodynamics

6.1 Introduction

Experiments at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National

Laboratory and the Large Hadron Collider (LHC) at CERN are probing the nature of hot

and dense matter by colliding heavy-ions at ultrarelativistic center of mass energies of up to

5 TeV per nucleon [141,237]. The goal of these experiments is to generate conditions similar

to those present in the early universe and during mergers of compact astrophysical objects

such as neutron stars [238]. These conditions correspond to high temperature (T & 150

MeV) and net baryon density (ρ & 2 − 3 ρsat), respectively. In both cases it is expected

that nuclear matter undergoes a phase transition from a state in which quarks and gluons

are confined inside hadrons to a deconfined state, called the quark-gluon plasma (QGP), in

which quarks and gluons are not bound inside of hadrons. At finite temperatures and zero

net baryon density it is possible to make use of lattice quantum chromodynamics (LQCD) to

determine the temperature at which the deconfinement transition occurs and the nature of

the transition. For realistic quark masses, continuum extrapolated lattice QCD calculations

find that the transition is a smooth crossover with a pseudocritical temperature Tpc ' 155

MeV [239,240]. Due to the fermionic sign problem it is not possible to perform calculations at

finite baryochemical potential µB, however, it is possible to make use of Taylor expansions

around µB = 0 or analytic continuations of imaginary chemical potential calculations to

determine quantities of interest such as various quark susceptibilities and the curvature of

the QCD phase transition line itself [133,241–250]. These measurements provide constraints

on the equation of state of QCD which can then be used in dynamical simulations of QGP
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evolution.

For modeling the spatiotemporal dynamics of the QGP created in ultrarelativistic heavy-

ion collisions, one of the main tools used is relativistic viscous hydrodynamics [142, 251,

252]. Early studies using relativistic hydrodynamics used the ideal limit [64, 65, 143] in

which all dissipative transport coefficients, such as the shear viscosity were assumed to be

zero, however, this was known to be an idealization because one expects, both on quantum

uncertainty and causality bounds, that the ratio of the shear viscosity to entropy density ratio

should have a lower bound. In order to incorporate such dissipative transport coefficients

in the dynamics it was necessary to develop a causal version of viscous hydrodynamics

called second-order viscous hydrodynamics [66–72,88,89,91–96]. Application of second-order

viscous hydrodynamics to QGP phenomenology quickly followed, with practitioners able to

extract estimates of the shear viscosity to entropy density ratio that were consistent with

the generation of a strongly-coupled QGP. Progress since then has included the development

of consistent second-order truncations of the relativistic dissipative hydrodynamics from

relativistic kinetic theory [88,89] and recently formulations of casual first-order formulations

which make use of different hydrodynamic frames [253,254].

One of the major issues faced by second-order formulations of dissipative relativistic

hydrodynamics is that, at very early times after the nuclear pass through, the system is

quite far from equilibrium, with the largest non-equilibrium deviations reflected in the fact

that, in the local rest frame (LRF), the system possesses a much smaller pressure along

the beam-line direction (longitudinal direction) than transverse to it, i.e. PL � PT . This

LRF pressure anisotropy emerges due to the rapid longitudinal expansion of the QGP and

has been shown to exist in both the weak- and strong-coupling limits, with the anisotropy

becoming more pronounced as the coupling is decreased. The implication of this is that

the viscous corrections, in particular the shear correction, are large at early times, calling
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into doubt the reliability of fixed-order truncations in the magnitude of the inverse Reynolds

number [255].

Another issue faced by fixed order truncations of viscous hydrodynamics is that, due

to the assumed polynomial from of the corrections to the one-particle distribution function,

there is the possibility that the viscous-corrected one-particle distribution function can be-

come negative, which violates the positivity of probabilities. In order to address both of

these issues, in anisotropic hydrodynamics (aHydro) one makes use of a form for the one-

particle distribution function that is, by construction, non-negative while also having kinetic

pressures which are non-negative. The original papers on aHydro focused on application to

systems undergoing boost-invariant conformal Bjorken expansion [97,98]. In Ref. [97] it was

demonstrated that one could obtain both the ideal hydrodynamics and free-streaming limits

in the aHydro framework and numerical solutions to the resulting coupled evolution equa-

tions demonstrated that both the one-particle distribution function and the kinetic pressures

remained positive at all times. Since then many works have extended these initial studies to

include more realistic features associated with heavy-ion collisions, ultimately allowing prac-

titioners to simulate the full three-dimensional non-conformal evolution of the QGP with a

lattice-based equation of state [8,13,102–104,108,109,112,162,186,197,198,215,230,256–264].

In this chapter we will summarize the progress made in recent years including phe-

nomenological applications. We will begin with a demonstration that the aHydro dynamical

equations resum an infinite series of terms when expanded as a power series in the in-

verse Reynolds number. We will then present a review of the underpinnings of the 3+1D

quasiparticle aHydro (aHydroQP) framework, which goes beyond traditional approaches by

resumming viscous contributions to all orders in the shear and bulk inverse Reynolds num-

bers. In this second part, we will focus on recent phenomenological applications of 3+1D

aHydroQP to AA collisions at RHIC and LHC energies.

150



The structure of this chapter is as follows. In Sec. 6.2 we discuss the case of con-

formal Bjorken expansion in order to demonstrate how anisotropic hydrodynamics resums

contributions to all orders in the inverse shear Reynolds number. In Sec. 6.3, we intro-

duce quasiparticle anisotropic hydrodynamics. In Sec. 6.4, we outline the construction of

the QCD equation in aHydroQP. In Sec. 6.5, evolution and freezeout are discussed in the

3+1D aHydroQP model. In Sec. 6.6, phenomenological comparisons to experimental data

are presented at various collision energies. Sec. 6.7 contains our conclusions and a summary

of ongoing projects.

6.2 Resummed dissipative hydrodynamics in the conformal Bjorken limit

Before presenting the full 3+1D formalism for non-conformal QCD plasmas, it is instruc-

tive to consider the 0+1D conformal limit in which the system undergoes Bjorken expansion.

As mentioned in chapter (4), the conformal Bjorken limit describes the expansion of a system

with conformal symmetry in 0+1 dimensions. The distribution function in this limit [192]

f(x, p) = feq

(√
p2 + ξp2

z

λ

)
, (6.1)

depends on a single anisotropy parameter ξ and a non-equilibrium momentum scale λ. The

evolution equations for ξ and λ can be derived from energy-momentum conservation and the

second moment of the Boltzmann equation. The evolution equation for ξ is given by [97]

R′(ξ)
R(ξ)

∂τξ +
4

λ
∂τλ =

1

τ

[
1

ξ(1 + ξ)R(ξ)
− 1

ξ
− 1

]
, (6.2)

which involves the derivative of the function R(ξ) = 1
2

[
1

1+ξ
+ arctan

√
ξ√

ξ

]
and the proper time

derivative of λ, and this equation describes the evolution of the scale λ with respect to proper

time. The second evolution equation that is following the Florkowski-Tinti prescription [109]
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is

1

1 + ξ
∂τξ −

2

τ
+
R5/4(ξ)

τeq

ξ
√

1 + ξ = 0 , (6.3)

which relates the proper time derivative of ξ to τ , R(ξ), and the relaxation time τeq. There-

fore, this equation accounts for dissipative effects in the system. These non-linear evolution

equations can be solved numerically, and they capture the transition between the ideal hy-

drodynamic limit and the free streaming limit.

6.2.1 Relation to second-order viscous hydrodynamics in the small anisotropy

limit

In order to make a connection to standard second-order viscous hydrodynamics, one can

rewrite

∂ε(τ)

∂τ
= −ε(τ) + PL(τ)

τ
, (6.4)

and (6.3) in terms of the single shear stress tensor component π ≡ πς ς required for conformal

Bjorken flow. Start with the energy conservation equation (6.4) and multiply both sides of

the equation by τ then divide both sides of the equation by ε. This manipulation allows us to

transform the equation into a logarithmic derivative form, where the time derivative of the

logarithm of energy density, ∂τ log ε, appears. Substitute π = Peq−PL, where π is the shear

stress tensor component required for conformal Bjorken flow, then simplifying further by

using the relation ε = 3Peq, which holds for conformal hydrodynamics. After that, we obtain

the equation that serves as a connection to standard second-order viscous hydrodynamics

by relating the time evolution of the logarithm of energy density to the shear stress tensor

component π as following

τ∂τ log ε = −4

3
+
π

ε
. (6.5)

To relate π and ξ one can start with this definition π = Peq−PL and divide by ε on both

sides. Then by using these relations ε = 3Peq, ε = R(ξ)εeq, and PL = RL(ξ)Peq to simplify
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and one obtains π, which is the ratio of shear stress to energy density.

π(ξ) ≡ π

ε
=

1

3

[
1− RL(ξ)

R(ξ)

]
(6.6)

with

RL(ξ) =
3

ξ

[
(ξ + 1)R(ξ)− 1

ξ + 1

]
. (6.7)

For conformal Bjorken flow, π is related to the shear inverse Reynolds number1 via

R−1
π ≡

√
πµνπµν
Peq

= 3

√
3

2
|π| . (6.8)

where the factor of 3
√

3
2

arises due to the specific scaling properties of conformal hydro-

dynamics. The shear inverse Reynolds number, R−1
π , shows how important the effects of

dissipation (shown by the shear stress tensor) are compared to the equilibrium pressure in

the QGP. Therefore, the number of R−1
π is used to describe the size of the shear stress and

measure how far from ideal hydrodynamics the situation is. A small value of R−1
π means

that the fluid is almost perfect and has weak dissipative effects, while a large value means

that the fluid is far from perfect and has strong dissipative effects. As a consequence of

Eq. (6.8), it is true that an expansion in π would match an expansion in R−1
π . Since R−1

π

is proportional to |π|, every series expansion in π may be represented as a series expansion

in R−1
π by substituting R−1

π /(3
√

3
2
) for π. The ability to convert findings or computations

expressed in terms of π to their equivalent form in terms of R−1
π and vice versa is made

possible by this relationship.

1The Reynolds number is a dimensionless variable used in fluid dynamics to describe a fluid’s flow char-
acteristics and it measures the dissipative strength of the system
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Changing variables to π in Eq. (6.3) and using Eq. (6.5), one obtains [158]

∂τπ

ε
+
π

ετ

(
4

3
− π

ε

)
−
[

2(1 + ξ)

τ
− H(ξ)

τeq

]
π′(ξ) = 0 , (6.9)

where ξ = ξ(π) is the inverse function from π to ξ, π′ ≡ dπ/dξ, andH(ξ) ≡ ξ(1+ξ)3/2R5/4(ξ).

When expressed in this form one sees that the aHydro second-moment equation resums an

infinite series in the inverse Reynolds number Eq. (6.8). This is because the last term on the

right hand side of Eq. (6.9) is a function that contains all orders in ξ and, hence, π.2

Using small-anisotropy expansions one obtains [158]

π′ =
8

45
− 26

21
π +

1061

392
π2 +O(π3) ,

(1 + ξ)π′ =
8

45
− 5

21
π − 38

49
π2 +O(Π

3
) ,

H =
45

8
π

[
1 +

405

56
π +O(π3)

]
,

Hπ′ = π +
15

56
π2 +O(π3). (6.10)

Plugging these expansions into Eq. (6.9) and keeping terms through second order in π gives

∂τπ −
4η

3τπτ
+

38

21

π

τ
− 36τπ

245η

π2

τ
= − π

τπ
− 15

56

π2

τπε
+O(π3) .

When truncated at linear order π, this evolution equation agrees exactly with previously

obtained second-order viscous hydrodynamics evolution equations in relaxation time approx-

imation [81, 88, 91, 92, 266]. This demonstrates that, in the limit of small momentum-space

anistropy, aHydro automatically reproduces the correct second-order viscous hydrodynamics

equations. Note that it is possible to obtain higher-order terms such as those contributing

at the order of the inverse Reynolds number squared as well, where these terms capture

2A similar construction can be made in the case of Gubser flow, see Sec. IIIC of Ref. [265].
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dissipative effects beyond the linear regime and account for a wider range of deviations from

ideal hydrodynamics. When applied to phenomenology, one does not expand Eqs. (6.3) or

(6.9) in π̄. However, when solving the aHydro dynamical equations, an infinite number

of orders in the inverse Reynolds number are automatically included. This is why aHydro

represents a resummed dissipative hydrodynamic theory. In practice, aHydro automatically

regulates the magnitude of π̄ such that unphysical behaviour of the kinetic pressures, e.g.,

PL < 0, simply cannot occur. In other words, in traditional dissipative hydrodynamics, one

approximates the behavior of a fluid system by expanding the equations of motion in terms

of small parameters that represent deviations from equilibrium. However, this approach

has limitations when the deviations from equilibrium are large. aHydro takes a different

approach. Instead of relying on a perturbative expansion and truncating the equations at

a certain order, aHydro solves the equations without explicit truncation. This means that

it includes an infinite number of terms in the equations, which allows for a more accurate

description of the system’s dynamics. By including an infinite number of terms, aHydro

effectively “resums” the contributions related to dissipative effects. This resummation takes

into account higher-order effects and provides a more comprehensive understanding of the

system’s behavior, especially in cases where the deviations from equilibrium are significant.

6.3 Quasiparticle anisotropic hydrodynamics

In order to faithfully model heavy-ion collisions one must obtain the evolution equations

for arbitrary 3+1D configurations and include the non-conformality of QCD consistent with

a realistic lattice-based equation of state. In order to do this in quasiparticle anisotropic

hydrodynamics we assume a system of massive relativistic quasiparticles with temperature-

dependent masses m(T ). The system is assumed to obey a relativistic Boltzmann equation

withm(T ) determined from lattice QCD (LQCD) computations of QCD thermodynamics. In

quasiparticle anisotropic hydrodynamics (aHydroQP), the Boltzmann equation is modified
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to take into account the temperature dependence of the mass of the quasiparticles. This

is because the mass is no longer a constant, but varies with temperature which affects

the behavior of the system. As a result, when the masses are temperature dependent,

the Boltzmann equation contains an additional force term on the left-hand side related to

gradients in the temperature, and hence gradients in m,

pµ∂µf +
1

2
∂im

2∂i(p)f = − p · u
τeq(T )

[f − feq(T )]︸ ︷︷ ︸
C[f ]

. (6.11)

Here, in the additional force term ∂i denotes a derivative with respect to spatial coordi-

nates, ∂i(p) ≡ −∂/∂pi denotes a derivative with respect to momentum coordinates, m is the

mass of the quasiparticle, and f is the one-particle distribution function. Also, we note that

this term 1
2
∂im

2∂i(p)f matches exactly the result obtained by deriving the Boltzmann equa-

tion using quantum field theoretical methods [133]. The right-hand side of the Boltzmann

equation is the collisional kernel C[f ], which we take to be given by the relaxation time ap-

proximation (RTA), where uµ is the four-velocity associated with the local rest frame (LRF)

of the matter and Latin indices such as i indicate spatial indices. The collisional kernel is

a functional of the one-particle distribution function f(x, p) which depends on space-time

coordinates x and momentum p. Moreover, this term represents the rate of change of the

one-particle distribution function due to collisions. This rate of change is given by the dif-

ference between the actual distribution function f and the equilibrium distribution function

feq, multiplied by an inverse relaxation time τeq. The relaxation time is a measure of how fast

the system approaches equilibrium, and it depends on the specific properties of the system,

such as the temperature and the density. For a gas of massive quasiparticles, the relaxation

time is given by [185]

τeq(T ) = η̄
ε+ P

I3,2(m̂eq)
. (6.12)
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Here, η̄ = η/s is the specfic shear viscosity that quantifies the resistance of the system to

shear flow, where η is the shear viscosity and s is the entropy density, ε is the energy density,

P is the pressure which is fixed by the equation of state, and the special functions appearing

are given by

I3,2(m̂eq) =
NdofT

5 m̂5
eq

30π2

[
1

16

(
K5(m̂eq)− 7K3(m̂eq) + 22K1(m̂eq)

)
−Ki,1(m̂eq)

]
, (6.13)

Ki,1(m̂eq) =
π

2

[
1− m̂eqK0(m̂eq)s−1(m̂eq)− m̂eqK1(m̂eq)s0(m̂eq)

]
, (6.14)

with m̂eq = m/T , Ndof is being the number of degrees of freedom (degeneracy), Kn are

the modified Bessel functions of the second kind, and sn are the modified Struve functions.

The effective temperature T (τ) is computed by requiring the non-equilibrium kinetic energy

densities calculated from f to be equal to the equilibrium kinetic energy density calculated

from the equilibrium distribution, feq(T,m). One should notice that in a hydrodynamic

model, it is usually assumed the temperature of the system is in equilibrium throughout its

evolution. But in real life, the temperature can change because of non-equilibrium effects

like the system’s dissipation and expansion. In quasiparticle anisotropic hydrodynamics, the

temperature is not thought to be in equilibrium. Instead, the temperature is allowed to

change based on how the quasiparticles in the system interact with each other. Also, as

the temperature changes, so does the mass of the quasiparticles. By taking into account

both how the mass changes with temperature and how the system is not in equilibrium, a

self-consistent solution for the temperature can be found that accurately describes how the

system changes over time.

In this chapter, we assume the distribution function is given by the leading-order aHydro
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form, parameterized by a diagonal anisotropy tensor as follows

f(x, p) = feq

(
1

λ

√
pµΞµνpν

)
−→
LRF

feq

(
1

λ

√∑
i

p2
i

α2
i

+m2

)
, (6.15)

where i ∈ {x, y, z}, Ξµν is the anisotropy tensor and the second equality holds in the local

rest frame (LRF), which is a local Lorentz frame where the fluid is at rest. Here, the one-

particle distribution function f is the local rest frame in momentum space. We start with

the general form of f given by Equation (6.15). This equation states that f is a function

of the square root of a symmetric tensor Ξµν(t,x) multiplied by the momentum vector

divided by a momentum scale λ(t,x). We then assume that the tensor Ξµν is diagonal in

the local rest frame. As indicated, in the LRF the argument of the distribution function

can be expressed in terms of three independent momentum-anisotropy parameters αi. Here

we will assume that feq is given by a Boltzmann distribution which depends on p · u and

the isotropic temperature T. Therefore, one can calculate the energy density and pressures

by integrating the distribution function Eq. (6.15) times pµpν using the Lorentz-invariant

integration measure
∫
dP =

∫
d3p

(2π)3
1
E

. Performing the same operation allows one to extract

all moments, and then one can create the requisite dynamical equations.

The first aHydroQP equation of motion is obtained from the first moment of the left-

hand side of the quasiparticle Boltzmann equation (6.11), which reduces to ∂µT
µν . In the

relaxation time approximation, however, the first moment of the collisional kernel on the

right hand side results in a constraint that must be satisfied in order to conserve energy and

momentum, i.e.
∫
dP pµC[f ] = 0. This constraint can be enforced by expressing the effective

temperature in terms of the microscopic parameters λ and ~α. As a consequence, computing

the first moment of the Boltzmann equation gives the energy-momentum conservation law

for the system

∂µT
µν = 0 , (6.16)
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Figure 1: (a) The temperature dependence of the quasiparticle mass scaled by the temper-
ature [8]. (b) Atypical spatial profile of the anisotropy parameter αz as a function of x at
τ = 1.25 fm/c [9].

where

T µν =

∫
d3p

(2π)3

1

E
pµpνf +Bgµν . (6.17)

Here, B(T ) represents the additional background contribution. For the second equation of

motion, we will perform a similar procedure using the second moment of the quasiparticle

Boltzmann equation

∂αI
ανλ − J (ν∂λ)m2 = −

∫
d3p

(2π)3

1

E
pνpλC[f ] , (6.18)

with Iµνλ ≡
∫

d3p
(2π)3

1
E
pµpνpλf and the particle four-current Jµ =

∫
d3p

(2π)3
1
E
pµf .
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6.4 The equation of state for aHydroQP

For a system of massive particles obeying Boltzmann statistics, the equilibrium energy

density, pressure, and entropy density are given by

εeq(T,m) = 4πÑT 4 m̂2
eq

[
3K2 (m̂eq) + m̂eqK1 (m̂eq)

]
, (6.19)

Peq(T,m) = 4πÑT 4 m̂2
eqK2 (m̂eq) , (6.20)

seq(T,m) = 4πÑT 3 m̂2
eq

[
4K2 (m̂eq) + m̂eqK1 (m̂eq)

]
. (6.21)

In the quasiparticle approach, one assumes the mass to be temperature dependent, i.e. m(T ).

This results in a change in the bulk variables Eqs. (6.21). However, one can not simply insert

m(T ) into the bulk variables since this will not be thermodynamically consistent. In the

case of an equilibrium Boltzmann gas, the number and entropy densities remain unchanged.

Therefore, the discrepancy arises because the entropy density can be obtained using two

different approaches: seq = (εeq + Peq)/T and seq = ∂Peq/∂T . Then, by basically inserting

a temperature-dependent mass m(T ), the two identities will not give the same result. To

address this inconsistency, an additional background contribution is introduced to the energy-

momentum tensor. This background field corrects the thermodynamic inconsistency arising

from the temperature dependence of the mass. The energy-momentum tensor is then defined

as

T µν = T µνkinetic + gµνB(T ) . (6.22)

By introducing the background field, thermodynamic consistency is restored, and the

modified energy-momentum tensor accounts for the effects of the temperature-dependent

mass. This background field plays a crucial role in ensuring the correct behavior of the system

and maintaining the thermodynamic relationships between the energy density, pressure,

and entropy density. Thus, in an equilibrium Boltzmann gas with quasiparticles, the bulk
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thermodynamic variables for the gas become

εeq(T,m) = εkinetic +Beq , (6.23)

Peq(T,m) = Pkinetic −Beq , (6.24)

seq(T,m) = skinetic . (6.25)

As a result of introducing the background field, the energy density and the pressure are

modified by +Beq and −Beq terms, respectively.

One can determine the value of the background contribution Beq by imposing a thermo-

dynamic identity. Specifically, by requiring the thermodynamic identity given by

Tseq = εeq + Peq = T
∂Peq

∂T
. (6.26)

However, we need to know in advance m(T ) to determine B(T ). The quasi mass m(T ) can

be determined using the following thermodynamic identity

εeq + Peq = Tseq = 4πÑT 4 m̂3
eqK3 (m̂eq) . (6.27)

As we can see, one can solve numerically for m(T ) once the equilibrium energy density and

pressure are determined using the lattice QCD parameterization. The resulting effective mass

scaled by T extracted from continuum extrapolated Wuppertal-Budapest lattice data [267]

is shown in Fig. 1 (left panel) [8]. At high temperatures (T ∼ 0.6 GeV) the scaled mass is

∼ T in agreement with the expected high-temperature behavior of QCD [268].
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6.5 Evolution and freezeout in aHydroQP

The evolution equations for uµ, λ, and αi are obtained from moments of the quasiparticle

Boltzmann equation. These can be expressed compactly by introducing a timelike vector

uµ which is normalized as uµuµ = 1 and three spacelike vectors Xµ
i which are individually

normalized as Xµ
i Xµ,i = −1. These vectors are mutually orthogonal and obey uµX

µ
i = 0

and Xµ,iX
µ
j = 0 for i 6= j [103,215]. The four equations resulting from the first moment are

Duε+ εθu +
∑
j

PjuµDjX
µ
j = 0 , (6.28)

DiPi + Piθi − εXµ,iDuu
µ + PiXµ,iDiX

µ
i −

∑
j

PjXµ,iDjX
µ
j = 0 , (6.29)

where i, j ∈ {x, y, z}, Du ≡ uµ∂µ, and Di ≡ Xµ
i ∂µ. The expansion scalars are θu = ∂µu

µ and

θi = ∂µX
µ
i . Explicit expressions for the basis vectors, derivative operators and expansion

scalars can be found in the appendix E.1.1 and Refs. [8,13,112,230]. The quantities ε and Pi

are the kinetic energy density and pressures obtained using the anisotropic hydrodynamics

ansatz for the one-particle distributions function corrected by the background contribution

B(T ) necessary to enforce thermodynamic consistency

ε = εkinetic(λ, ~α,m) +B(λ, ~α) , (6.30)

Pi = Pi,kinetic(λ, ~α,m)−B(λ, ~α) , (6.31)

The three equations resulting from the second moment of the Boltzmann equation are

DuIi + Ii(θu + 2uµDiX
µ
i ) =

1

τeq

[
Ieq(T,m)− Ii

]
, (6.32)

162



with [112]

Ii = αα2
i Ieq(λ,m) ,

Ieq(λ,m) = 4πÑλ5m̂3K3(m̂) , (6.33)

where m̂ = m/λ, α = αxαyαz and Ñ = Ndof/(2π)3, with Ndof being the number of degrees

of freedom present in the theory under consideration.

Equations (6.28), (6.29), and (6.32) provide seven partial differential equations for ~u, ~α,

and λ which we solve numerically. To determine the local effective temperature we make use

of Landau matching; requiring the equilibrium and non-equilibrium energy densities in the

LRF to be equal and solving for T . Herein, we assume the system to initially be isotropic in

momentum space αi(τ0) = 1, with zero transverse flow. However, the system evolves quite

fast away from isotropy τaniso . 1 fm. As an example, in Fig. 1-right panel we show the

spatial profile of the longitudinal anisotropy parameter at 40-50% centrality class where this

parameter characterizes the degree of anisotropy in the longitudinal direction of the evolving

system. As can be seen from this figure, αz differs from unity (with unity indicating isotropy)

especially in the dilute regions |x| > 5 fm. In these dilute regions, the system is less dense

compared to other regions. We note here that no regulation is required in aHydroQP to evolve

in these dilute regions. This suggests that the framework can manage the system evolution

in these low-density areas without the need for further modifications or special interventions.

This system of partial differential equations are evolved until the effective temperature in

the entire simulation volume falls below a given freeze-out temperature of TFO. From the

results, we extract a three-dimensional freeze-out hypersurface with a fixed energy density

(temperature). We assume in this step all hadronic species in a given cell on the freeze-out

hypersurface share the same fluid anisotropy tensor and scale parameter. We also assume

that all hadrons created are in chemical equilibrium. This means that it is assumed that the
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particle abundances at freeze-out follow the equilibrium distribution for the given temper-

ature and chemical potentials. This assumption simplifies the calculations by allowing the

use of aHydro-modified equilibrium distribution functions for the hadrons. To convert the

hydrodynamic quantities (velocity, anisotropy, and scale) into explicit ‘primordial’ hadronic

distribution functions on the freeze-out hypersurface, an extended Cooper-Frye prescription

is used. The Cooper-Frye prescription is a standard method to convert hydrodynamic quan-

tities into particle distributions at freeze-out. The extended version takes into account the

non-equilibrium effects and anisotropy of the fluid. By applying the extended Cooper-Frye

prescription [185], the hydrodynamic information (such as velocity, anisotropy, and scale)

is used to calculate the distribution functions of the produced hadrons on the freeze-out

hypersurface. These distribution functions provide information about the momentum dis-

tributions and other properties of the hadrons at freeze-out, which can be compared with

experimental measurements to study the dynamics of the system.

The values of the aHydroQP parameters on the freezeout hypersurface are passed to a

modified version of THERMINATOR 2 [269], which generates hadronic configurations using

Monte-Carlo sampling. After sampling the primordial hadrons, further hadronic decays are

taken into account using the built-in routines in THERMINATOR 2. The source code for

aHydroQP and our custom version of THERMINATOR 2 are both freely accessible [270].

The aHydroQP formalism was used at different collision energies, and it was found that the

observed differential spectra of identified hadrons, charged particle multiplicity, elliptic flow,

and Hanbury-Brown-Twiss radii could be reproduced. Finally, in Table 1 we list the fitting

parameters that we extracted and used in the comparisons.

collision energy T0 [MeV] η/s
200 GeV 455 0.179
2.76 TeV 600 0.159
5.02 TeV 630 0.159

Table 1: The key parameters used in the presented results.
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Figure 2: Left: Pion, kaon, and proton spectra compared to experimental data by the
PHENIX collaboration at 200 GeV for Au-Au collisions [10, 11]. Right: Pion, kaon, and
proton average transverse momentum as a function of centrality compared to data by the
ALICE collaboration at 2.76 TeV for Pb-Pb collisions [12,13]

6.6 Results and Discussion

In this section we present phenomenological comparisons of 3+1D aHydroQP model

to experimental data. For the sake of brevity, we present comparisons of a small set of

observables performed at various collision energies
√
sNN = 200 GeV, 2.76, and 5.02 TeV for

Au-Au and Pb-Pb collisions from the PHENIX, PHOBOS, STAR, and ALICE collaborations.

We first present comparisons of bulk observables between our model and experimental results.

In Fig. 2-left panel, we show the spectra of pions, kaons, and protons as a function of the

transverse momentum pT . The agreement shown between our model and the experimental

results is good up to quite large pT ∼ 2 GeV. In this figure, we show only one centrality class

0-5%, however one can see Ref. [11] for more comparisons up to 30-40% centrality class. It

suffices here to say that the agreement is quite good up to pT ∼ 1.5 GeV for high centrality

classes. Next, we present the centrality dependence of the average transverse momentum of

pions, kaons, and protons at 2.76 TeV for Pb-Pb collisions. Again, the agreement is very

good up to high centrality classes ∼ 50%. The spectra at this energy is not presented here,
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Figure 3: left: The kaon-to-pion ratio as a function of the transverse momentum. Right: The
centrality dependence of the kaon-to-pion ratio. In both panels, the predictions of aHydroQP
model are compared to experimental data from the ALICE collaboration in Pb-Pb collisions
at
√
sNN = 5.02 TeV. [9, 14].

however, it can be found in Ref. [13], where the agreement between aHydroQP model and

the data for different centrality classes is good.

Next, in the left panel of Fig. 3, the kaon-to-pion ratio (K+ +K−)/(π+ +π−) is presented

as a function of pT in the 0-5% centrality class. As can be seen from this figure, our model

was able to reproduce the ratios well up to fairly large pT ∼ 2.5 GeV. We also show, in

Fig. 3-right panel, the kaon-to-pion ratio as a function of centrality where our model again

describes the data quite well over a wide range of centrality classes. In Ref. [9], we showed the

kaon-to-pion ratio and also the proton-to-pion ratio for multiple different centrality classes

with a reasonable agreement to the data at 5.023 TeV for Pb-Pb collisions from ALICE

collaboration.

Next, we present comparisons of the anisotropic flow at 5.023 TeV for Pb-Pb collisions

from the ALICE collaboration. In Fig. 4-left panel, the identified elliptic flow coefficient

v2 is shown in the 30-40% centrality class. A similar agreement between this model and

experimental data is seen across different energies, see Refs. [9,11,13]. Moreover, the elliptic

flow for charged hadrons as a function of pT is shown in Fig. 4-right panel at 30-40% centrality
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Figure 4: Left: The elliptic flow coefficient (v2) as a function of the transverse momentum
[15]. Right: The pT dependence of v2 of all charged particles [16]. In both panels, aHydroQP
predictions are compared to experimental data from the ALICE collaboration in Pb-Pb
collisions at

√
sNN = 5.02 TeV in the 30-40% centrality class [9].

class. One can see that our model prediction agrees quite well with the data up to pT GeV.

Furthermore, we present, in Fig. 5-left panel, the charged particle multiplicity as a

function of the pseduorapidity where data are from the PHOBOS collaboration for Au+Au

collisions at
√
sNN=200 GeV. In this plot, the multiplicity is shown for different centrality

classes: 0-3%, 3-6%, 6-10%, 10-15%, 15-20%, and 20-25%. We find that our model does a

good job in reproducing the pseudorapidity dependence of the multiplicity in a wide range

of centrality classes. A similar agreement to the data using aHydroQP model is observed for

other systems at different energies [9, 13].

Finally, we present the aHydroQP predictions for HBT radii determined from pion cor-

relations. As an example, in Fig. 5-right panel, we show the Rout/Rside ratio as a function

of the mean transverse momentum of the pair π+π+ in the 5-10 % centrality class. As can

be seen from this figure, our model was able to describe the experimental data from the

STAR collaboration quite well especially for low kT up to ∼ 0.4 GeV. For more details, see

Ref. [19]. We note here that a similar agreement of the HBT radii and their ratios with data

is seen for 2.76 TeV Pb-Pb collisions [13].
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Figure 5: Left: Charged particle multiplicity as a function of pseudorapidity where data are
from the PHOBOS collaboration [11, 17]. Right: The Rout/Rside ratio as a function of the
pair mean transverse momentum (kT ) for π+π+ in the 5-10% centrality class where data are
from the STAR collaboration [18, 19]. In both panels, results are from Au-Au collisions at√
sNN=200 GeV.

6.7 Conclusions

In this chapter we presented a summary of recent progress in anisotropic hydrodynamics

and its application to heavy-ion phenomenology. We began with a demonstration in the

simple case of conformal Bjorken expansion that aHydro resums an infinite number of terms

in the inverse Reynolds number. This feature allows aHydro to better describe systems that

are far from equilibrium than traditional approaches. In AA collision large non-equilibrium

corrections occur during the initial stages of the QGP (τ < 1 fm/c) and at all times near the

cold edges of the plasma where the relaxation time grows large. In collisions of small systems

such as pA and pp one expects that, if a QGP is generated, it will be much more short-lived

than in central AA collisions due to larger transverse gradients and, as a consequence, it will

experience larger deviations from equilibrium during its evolution and freeze out.

Turning to AA phenomenology, we presented comparisons between the 3+1D aHydroQP

model and heavy-ion experimental data collected at RHIC and LHC. We list the extracted

initial central temperature and shear viscosity at 200 GeV, 2.76 TeV, and 5.02 TeV in Table
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1. At all three collision energies with these parameters, we were able to describe the identified

hadron spectra well, including the pT -dependence of the kaon to pion ratio. In addition, the

extracted integrated elliptic flow for charged particles and pT -dependence of the pion, proton,

and kaon elliptic flow were found to also be in good agreement with the data. Finally, we

also presented comparisons between aHydroQP model predictions and STAR data from the

ratio of ‘out’ and ‘side’ HBT radii, again finding good agreement with the data given current

experimental uncertainties.

Looking to the future, final work is underway to release a new computational pipeline

for 3+1D aHydroQP which includes fluctuating initial conditions of various types such as

Trento [271, 272] or IP-Glasma [273–275], a custom anisotropic hadronic freeze-out sampler

based on ISS [276], and full URQMD [277,278] or SMASH [279] hadronic afterburners that

include elastic as well as inelastic channels. Once complete, this will allow us to compute

higher-order flow coefficients using aHydroQP in AA, pA, and pp collisions.
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Chapter 7

Summary and outlook

This chapter provides a summary of the principal findings of the research, followed by

discussions and prospective directions for relevant research projects. The primary objective

of this research was to gain a deeper comprehension of the non-equilibrium dynamics of

the Quark-Gluon Plasma (QGP) generated in ultra-relativistic heavy-ion collisions. The

purpose of this study was to investigate the role of non-equilibrium effects at various phases

of dynamical evolution. In order to accomplish this, we employed the Romatschke-Strickland

anisotropic distribution function in both theoretical and phenomenological investigations.

This distribution function allowed us to analyze and quantify the observed anisotropic flow

phenomena in heavy-ion collisions. In order to provide an exhaustive and accurate evaluation

of the results, we also compared them to other formulations of viscous hydrodynamics.

In Sections 4.4, 5.6, and 6.7, where each chapter concludes with more in-depth analyses,

the findings are discussed in greater detail. These sections delve into the particular results of

the research, highlighting the significance of non-equilibrium effects and casting light on the

complex dynamics of the QGP system. It is suggested that the reader consult these sections

for a fuller understanding of the research findings. The research initiatives discussed in

this chapter provide avenues for future investigation. The non-equilibrium dynamics of the

QGP system remain a subject of interest and significance in the field. Additional aspects

of the system’s behavior, the effects of various initial conditions, and the interplay between

non-equilibrium dynamics and other phenomena could be the focus of future research.
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7.1 Summary

The main purpose of the work presented in Chapter 4 was to develop a more accurate set

of equations for the anisotropic hydrodynamic evolution in order to better characterize the

non-equilibrium dynamics of the quark-gluon plasma produced in relativistic heavy ion col-

lisions at RHIC and LHC. To improve the description of exact solutions to the Boltzmann

equation found in the literature, a novel version of anisotropic hydrodynamics was devel-

oped, which incorporates free-streaming and equilibrating contributions. Using the new

aHydro method, we computed explicit expressions for the first and second moments of the

one-particle distribution function and used these to derive new 0+1d conformal equations of

motion. The study also compared the exact RTA solution with the numerical solutions of the

conformal 0+1d equations of motion for both the old and new aHydro schemes. According to

the results, the new aHydro form can generate a bimodal distribution function comparable

to the exact RTA solution for the one-particle distribution function. In addition, the study

computed the evolution of the scaled moments as a function of the scaled time and we found

that the new aHydro ansatz provides a more accurate approximation to the exact solution

than the original aHydro ansatz. The study concluded by determining the non-equilibrium

attractor associated with the new aHydro scheme and concluding that it provides signifi-

cantly greater agreement with the exact RTA attractor than the original aHydro scheme,

especially for moments with l = 0. In the future, the study suggests that it would be fasci-

nating to apply the ansatz obtained here to full 3+1d anisotropic hydrodynamics, including

temperature-dependent masses for the particles similar to ‘canonical’ quasiparticle aHydro.

In Chapters 5, by examining an explicit solution of the boost-invariant Boltzmann equa-

tion within the relaxation time approximation, we sought to determine whether attractors
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exist in non-conformal kinetic theory. The time evolution of integral moments of the one-

particle distribution function was studied by numerically solving the integral equation asso-

ciated with the exact solution and taking into account a variety of initial momentum-space

anisotropies and initialization times, while keeping the initial energy density constant. The

occurrence of early and late attractors for the scaled longitudinal pressure, which indicates

the convergence towards a universal behavior, was the study’s key finding. These attractors

provide important insights into the dynamics of non-conformal systems and suggested that

the longitudinal pressure evolution may exhibit universal behavior that goes beyond the

specifics of the initial conditions. Separate attractors did not, however, appear for the shear

and bulk viscous corrections, suggesting that these variables have non-universal character-

istics. For the values of n considered, moments with l = 0, in particular, did not show an

early-time attractor.

Expressions for the first-order viscosity-corrected one-particle distribution function were

generated inside the 14-moment and Chapman-Enskog approximations to evaluate the ap-

proach to the late-time hydrodynamic attractor. The findings showed that the first-order

Chapman-Enskog form had greater quantitative agreement at late times, especially for

higher-order moments and small masses relative to the initial temperature. However, when

compared to the exact answers, the two approximation methods produced results that were

equivalent for larger masses. Notably, it was found in chapters 5 Fig. 9 that the bulk vis-

cous correction did not collapse to a single curve in the late-time, which corresponds to the

Navier-Stokes limit accurate at first-order in gradients. This finding emphasizes how criti-

cal it is to take into account higher-order gradients in order to appropriately describe the

behavior of the bulk viscous correction.

Finally, Chapter 6 provides a comprehensive overview of the most recent developments

in anisotropic hydrodynamics and their application to heavy-ion phenomenology. We began
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by demonstrating aHydro’s resummation capability in the context of conformal Bjorken

expansion, where it effectively includes an infinite number of terms in the inverse Reynolds

number. This unique characteristic of aHydro enables it to describe systems that are far

from equilibrium more accurately than conventional methods. Particularly, in heavy-ion

collisions, significant non-equilibrium effects arise during the early phases of quark-gluon

plasma (QGP) formation (at τ . 1 fm/c) and close to the plasma’s boundaries, where the

relaxation time is extended. Moreover, in smaller systems, such as pA and pp collisions, the

QGP’s shorter lifetime owing to larger transverse gradients results in even more pronounced

deviations from equilibrium during its evolution and freeze-out.

Shifting our attention to heavy-ion phenomenology, we provided extensive comparisons

between the 3+1D aHydroQP model and experimental data from RHIC and LHC. The

extracted initial central temperature and shear viscosity for collision energies of 200 GeV,2.76

TeV, and 5.02 TeV are shown in Table 1. Remarkably, the model reproduces the identified

hadron spectra, including the pT -dependence of the kaon-to-pion ratio, with these parameter

values. In addition, the extracted integrated elliptic flow for charged particles and the pT -

dependence of elliptic flow for pions, protons, and kaons were in outstanding agreement with

the experimental data. In addition, we presented comparisons between the aHydroQP model

predictions and STAR data on the ratio of ‘out’ and ‘side’ HBT (Hanbury Brown-Twiss)

radii, which showed good agreement within the experimental uncertainties.

7.2 Outlook

On the basis of these findings in Chapter 4, it would appear that the new version of

anisotropic hydrodynamics (aHydro) improves the description of the non-equilibrium dy-

namics of the quark-gluon plasma in heavy-ion collisions. Here are some recommendations

for future research in this area. Since the new aHydro method can reproduce a bimodal

173



distribution function similar to the exact RTA solution, it would be fascinating to investi-

gate the physical implications and consequences of this bimodal structure. Understanding

the fundamental mechanisms and their relationship to experimental observables could yield

valuable insights. Extensive comparisons with experimental information: Validate the new

aHydro method by comparing its predictions to heavy-ion collision experiments at RHIC and

LHC. This would entail analyzing various observables, such as particle spectra, anisotropic

flow coefficients, and correlations, as well as determining the accord between the new aHydro

predictions and the experimental measurements. Addition of more physical principles such

as examine the extension of the new aHydro framework to incorporate more realistic physics,

including additional dissipative effects, finite-size effects, and quantum statistics. By inves-

tigating the effect of these additional factors on the system’s evolution and the resulting

observables, the dynamics of the quark-gluon plasma can be better understood. Application

to various collision systems: Examine the applicability of the new aHydro method to sys-

tems besides heavy-ion collisions, such as proton-proton and proton-nucleus collisions. This

would enable for a more extensive examination of the method’s validity and its capacity to

describe various collision system types. While the study focused on 0+1d conformal equa-

tions of motion, extending the new aHydro formalism to higher dimensions (such as 1+1d,

2+1d, or even 3+1d) would be advantageous. This would allow for the examination of more

realistic scenarios and provide a deeper understanding of anisotropic hydrodynamics. The

aforementioned recommendations are intended to enhance our comprehension of the non-

equilibrium dynamics in heavy-ion collisions and further refine the new aHydro method. We

can continue to improve our modeling of the quark-gluon plasma and obtain insight into

the properties of the strongly interacting matter produced by these collisions by combining

theoretical developments with experimental investigations.
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Moreover, the discoveries obtained in Chapter 5 provide new opportunities for non-

conformal kinetic theory studies in the future. By examining various initial conditions,

system characteristics, and enhanced approximation techniques, the study of attractors in

non-conformal systems can be refined and expanded. Another potential area, illustrated

by the conformal instance, is to examine the implications of attractors for heavy-ion phe-

nomenology. For instance, it has been demonstrated that the initial energy density of the

quark-gluon plasma (QGP) and electromagnetic emissions can be constrained by the pres-

ence of a longitudinal pressure attractor. The general concept of using attractors in heavy-ion

phenomenology is still relevant, even though the study’s findings indicate that there may

be some additional uncertainty related to how attractors are treated in the l = 0 scenario.

The forward attractor nevertheless exhibits a collapse to a universal behavior when seen in

moments with l 6= 0 for phenomenologically relevant starting times. Contrary to the confor-

mal situation, the existence of a semi-universal collapse for moments with l = 0 introduces a

small degree of uncertainty. Future research can focus on addressing these uncertanities and

provide a more thorough explanation of the function of attractors in non-conformal kinetic

theory.

Finally, depending on the result that we obtain in Chapter 6, in preparation for the

future, we are currently developing a new computational infrastructure for 3+1D aHydroQP.

This pipeline incorporates fluctuating initial conditions based on models such as Trento or IP-

Glasma, a custom anisotropic hadronic freeze-out sampler inspired by the Integrated Surface

Sampler (ISS), and full URQMD or SMASH hadronic afterburners that include both elastic

and inelastic channels. This pipeline will allow us to compute higher-order flow coefficients

using aHydroQP in a variety of collision systems, including AA, pA, and pp collisions, once it

is completed. This effort represents a significant step toward a more complete comprehension

of the collective behavior of strongly interacting matter in various collision scenarios.
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Appendix A

Units

Natural units are a system of units used in physics, where physical quantities are ex-

pressed in terms of the fundamental constants of nature. The most common natural units in

use today are based on the speed of light, c, and the reduced Planck constant, ~, with c = 1

and ~ = 1. This means that instead of using standard units like meters and seconds, they

use the speed of light (c) and the reduced Planck constant (~) as the units for measuring ve-

locities and actions. For example, energy, momentum, temperature, and mass are measured

in units of GeV (or MeV) instead of Joules, while length and time are measured in units

of GeV−1 instead of meters and seconds. In high-energy physics, scientists use the natural

units to make their equations and calculations simpler. The advantage of using natural units

is that many physical equations become much simpler and more transparent. For example,

the expression for the energy of a particle with mass m and momentum p can be written as

E =
√
p2c2 +m2c4 =

√
p2 +m2 in natural units. This equation is much simpler and easier

to understand than the equivalent equation in standard units, where c and ~ are explicit.

To convert to SI units (stands for the International System of Units), we use

1 fm = 10−15 m ,

1 eV = 1.602× 10−19 J , (A.1)

where in SI units we have

h = 6.626070150(81)× 10−34 Js , (A.2)

c = 2.99792458× 108 m/s . (A.3)
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By setting ~ = c = 1 in natural units, we obtain the conversion relations that allow us to

easily convert from the energies and spatial/temporal lengths in natural units to SI units.

1 GeV−1 ≡ 0.197 fm ≡ 6.582× 10−25 s . (A.4)

Also, it is interesting to obtain an estimation of the temperature of the QGP in terms of

Kelvin. For a typical temperature of QGP, i.e. Tc ' 150 MeV, and to convert from MeV

to Kelvin (K), one needs to use the Boltzmann constant (kB), which relates temperature to

energy in the following way

E = kB T

with E is the energy in joules, Boltzmann constant kB = 1.38 × 10−23J/K, and T is the

temperature in Kelvin. It yields

Tc ' 1.74× 1012 K . (A.5)

Throughout the text we use natural units with c = ~ = kB = 1.
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Appendix B

Basic Notation

B.1 Coordinate system and local rest frame

It is practical to establish a unique coordinate system in particle and nuclear physics,

where the spatial z-axis is parallel to the accelerator beam. The 3-vector connecting the

centers of a beam particle and a target particle typically points in the opposite direction in

collisions that are not quite central (not head on). The impact vector b, is a two-dimensional

component of this vector that is orthogonal to the beam. The x direction is typically used

to indicate this vector’s direction. The so-called response plane of a specific collision [x, z] is

spanned by these two axes, x and z. Additionally, the local rest frame (LRF) of an object

is the frame of reference in which the object is at rest, even if it is actually moving through

spacetime. Therefore, in the LRF, we have

uµLRF = (1, 0, 0, 0),

xµLRF = (0, 1, 0, 0),

yµLRF = (0, 0, 1, 0),

zµLRF = (0, 0, 0, 1) . (B.1)
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B.2 Spacetime parametrization

In special relativity, spacetime is treated as a four-dimensional continuum, and the space-

time coordinates are represented as xµ, where µ takes on values from 0 to 3. These coordi-

nates are used to describe events in spacetime,

xµ = (x0, x1, x2, x3) = (t, x, y, z) . (B.2)

The invariant time that also called the longitudinal proper time τ is the invariant time (often

called the longitudinal proper time) is defined as the proper time experienced by an observer

moving along a trajectory in spacetime. It is calculated using the spacetime coordinates as

τ =
√
t2 − z2, (B.3)

The spacetime rapidity η is a parameter used in high-energy physics to describe the rapidity

of particles. It is defined as

η =
1

2
ln
t+ z

t− z
. (B.4)

Rapidity is a useful concept because it transforms linearly under Lorentz transformations

and is additive in particle collisions.

We further define the distance in the transverse plane r, which refers to the plane per-

pendicular to the longitudinal direction (usually along the z-axis). Moreover, the transverse

plane angle φ which defined as the angle between the vector from the origin to a point and

the positive x-axis

r =
√
x2 + y2, φ = tan−1

(y
x

)
. (B.5)

Moving to the scalar product of two four-vectors (or four-momenta) that is often used in
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relativity to calculate quantities like energy, momentum, and invariant mass its notation is

a · b = aµb
µ = gµνa

µbν , (B.6)

where aµ and bµ are components of four-vectors, and gµν is the metric tensor. The metric

tensor specifies the geometry of spacetime. In flat spacetime, such as in special relativity,

the metric tensor has a diagonal form

gµν =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


, (B.7)

where the spacetime intervals have a signature of gµν = (1,−1,−1,−1), and gµνgµν = 4 is a

property of this metric tensor.

B.3 Four-momentum parametrization

One of the key concepts in relativistic kinetic theory is the four-momentum of a particle

pµ, which is a vector quantity that combines the particle’s energy, mass, and momentum

into a single entity. The momentum of a particle depends on its energy as well as its mass

and velocity, and the four-momentum incorporates all of these factors and it is typically

parameterized as follows due to ultra-relativistic speeds along the z-axis in space-time: The

four-momentum of a particle is a measure of the particle’s mass and its motion. It is a

four-vector in spacetime, which means that it has three spatial components (representing

the particle’s momentum) and one temporal component (representing the particle’s energy).
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In classical mechanics, the four-momentum of a particle is given by the following equation:

pµ = (p0, p1, p2, p3) = (E, px, py, pz ≡ pL) , (B.8)

where E is the energy of the particle, px, py, and pz are the components of the particle’s

momentum. In this case, the energy and momentum of the particle are related by the

equation E =
√
~p 2 +m2, where m is the rest mass of the particle. Moreover, the transverse

mass and the transverse momentum are

mT =
√
m2 + p2

T ,

pT =
√
p2
x + p2

y .

Additionally, the longitudinal rapidity, and the azimuthal angle in the transverse plane are

y =
1

2
ln
Ep + pL
Ep − pL

,

φp = tan−1

(
py
px

)
.

The pseudorapidity is defined as following

η =
1

2
ln

(
|p|+ pz
|p| − pz

)
= − ln

[
tan(θ/2)

]
, (B.9)

where θ is the angle that particle makes with the longitudinal direction (beamline direction).

So, by measuring θ one can calculate η. Pseudorapidity ranges (−∞,∞) for the particle

along the beamline moving backward and forward, respectively. For the massless particles

one has η = y.
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B.4 Fluid velocity

In particle physics, the four-velocity of a particle uµ describes how a particle moves

through space-time and how is affected by external forces and it referred as a “time-like”

unit vector parallel to the world-line of the particles (if there are particles in the matter,

otherwise it is parallel to the energy flow). It is defined as uµ = (u0, u1, u2, u3), where u0 is

the time component of the four-velocity and u1, u2, and u3 are the space components. The

four-velocity is normalized such that uµuµ = c2 = 1, where c is the speed of light and uµ

is the four-velocity in contravariant form (obtained by lowering the index with the metric

tensor).
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Appendix C

Tensor decomposition

We close this chapter with a section discussing algebraic structures of tensors used in our

approach. Of special importance are the structures obtained for equilibrium and anisotropic

RS distributions. The basis vectors are represented by the four-vectors denoted as A, B, C

∈ [U,X, Y, Z]. These vectors are used to form a basis for representing tensors and vectors

in spacetime. Each vector corresponds to a specific direction in spacetime. These vectors

are chosen to be orthogonal to each other, and they form a complete set, meaning any four-

vector can be expressed as a linear combination of these basis vectors. The basis (B.1) is a

orthonormal one in the sense that

A ·B =



0 for A 6= B,

1 for A = B = U,

−1 for A = B 6= U.

(C.1)

In particular, one may express any four-vector by decomposing in the basis {A}. For example,

the particle number flux can be written as

Nµ(x) =
∑
A

nAA
µ, (C.2)

where the coefficients nA, due to Eqs. (C.1), are given by the projections

nA = AµN
µ(x)A2, (C.3)
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with A2 = A · A (note that A2 = −1 for space-like four-vectors of the basis (B.1)).

The tensorial basis for the rank-two tensors is constructed using tensor products of the

basis four-vectors {A⊗B}. Using Eq. (B.1) one may express the metric tensor as [103]

gµν = uµuν −
∑
A 6=U

AµAν . (C.4)

where this expression reflects the spacetime metric in a coordinate system aligned with

the observer’s four-velocity. The projector on the space orthogonal to the four-velocity,

∆µν ≡ gµν − UµUν , then takes the form

∆µν = −
∑
A 6=U

AµAν , (C.5)

and satisfies the conditions Uµ∆µν = 0, ∆µ
α∆αν = ∆µν , and ∆µ

µ = 3. In addition, the

decomposition of the energy-momentum tensor takes the form

T µν(x) =
∑
A,B

tABA
µBν , (C.6)

with the components of T µν(x) defined as

tAB = AµBνT
µν(x)A2B2. (C.7)

Similarly, one can construct the tensorial basis for the rank-three tensors allowing to decom-

pose Iµνλ tensor as follows

Iµνλ(x) =
∑
A,B,C

cABCA
µBνCλ, (C.8)
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where the coefficients cABC are defined through the expression

cABC = AµBνCλI
µνλ(x)A2B2C2. (C.9)

Next, by using

Nµ =

∫
dP pµf(x, p), (C.10)

T µν(x) =

∫
dP pµpνf(x, p), (C.11)

Iµνλ(x) =

∫
dP pµpνpλf(x, p). (C.12)

in Eqs. (C.3), (C.7) and (C.9) one gets

nA =

∫
dP pµAµA

2f(x, p), (C.13)

tAB =

∫
dP pµ pν AµBν A

2B2 f(x, p), (C.14)

cABC =

∫
dP pµ pν pλAµBν CλA

2B2C2f(x, p). (C.15)

In case of using equilibrium or anisotropic distribution function in Eqs. (C.13), (C.14) and

(C.15) one has

nA = 0 if A 6= U, (C.16)

tAB = 0 if A 6= B, (C.17)

where in the case of the equilibrium distribution function, the momentum-isotropic state
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Eqs. (C.2) and (C.6) will be as the following

Nµ
eq(x) = neq

U U
µ, (C.18)

T µνeq (x) = teq
UUU

µUν − teq
XXX

µXν − teq
Y Y Y

µY ν − teq
ZZ Z

µZν = EeqUµUν − Peq∆µν , (C.19)

Iµνλ(x) = ceq
UUUU

µUνUλ +
∑
A

ceq
UAA(UλAµAν + AλUµAν + AλAµUν). (C.20)

However, in the anisotropic distribution function, one obtains

Nµ
a (x) = na

UU
µ, (C.21)

T µνa (x) = taUUU
µUν − taXXXµXν − taY Y Y µY ν − taZZ ZµZν , (C.22)

= EaUµUν − Pa∆µν
T + Pa

LZ
µZν , (C.23)

Iλµνa = ca
UUU U

λUµUν

− ca
UTT

(
Uλ∆µν

T + Uµ∆λν
T + Uν∆λµ

T

)
+ ca

UZZ

(
UλZµZν + UµZλZν + UνZλZµ

)
, (C.24)

with

Ea = taUU , Pa
T = taXX = taY Y , Pa

L = taZZ , ca
UXX = ca

UY Y = ca
UTT . (C.25)

Here ∆µν
T = − (XµXν + Y µY ν) is the projection operator on the direction orthogonal to U

and Z.
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Appendix D

The H and R functions

The functions H, HL, and HT are defined by the integrals

H(y) = y

π∫
0

dθ sin θ

√
y2 cos2 θ + sin2 θ ,

HL(y) = y3

π∫
0

dθ
sin θ cos2 θ√

y2 cos2 θ + sin2 θ
,

HT (y) = y

π∫
0

dθ
sin3 θ√

y2 cos2 θ + sin2 θ
. (D.1)

There are simple relations connecting H, HL, and HT with the functions R, RL, and RT

defined in Ref. [97], namely

H
(

1√
1 + ξ

)
= 2R(ξ) ,

HL

(
1√

1 + ξ

)
=

2

3
RL(ξ) ,

HT

(
1√

1 + ξ

)
=

4

3
RT (ξ) . (D.2)

with

Rε(ξ) =
1

2

[
1

1 + ξ
+

arctan
√
ξ√

ξ

]
,

RT (ξ) =
3

2ξ

[
1 + (ξ2 − 1)Rε(ξ)

ξ + 1

]
,

RL(ξ) =
3

ξ

[
(ξ + 1)Rε(ξ)− 1

ξ + 1

]
. (D.3)
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Appendix E

Finding a general moment for a Boltzmann equilibrium distribution function

E.1 For conformal system m = 0

Mnl
eq(τ) =

∫
dP (p · u)n(p · z)2lfeq

(
−p.u
T

)
,

=

∫
d3p

(2π)3
E

n−1
2 p2l

z feq

(
−E
T

)
,

=

∫
d3p

(2π)3
(p2
T + p2

z)
n−1
2 p2l

z feq

(
−
√
p2
T

T 2
+
p2
z

T 2

)

Changing variables to p̂i ≡ pi
T

with i ∈ (x, y, z)

Mnl
eq(τ) =

T n+2l+2

(2π)3

∫
d3p̂ (p̂2

T + p̂2
z)

n−1
2 p̂2l

z feq (−|p̂|)

Next, transform to spherical coordinates:

p̂x = p sin θ cosφ ,

p̂y = p sin θ sinφ ,

p̂z = p cos θ ,

one obtains

Mnl
eq(τ) =

T n+2l+2

(2π)3

∫ ∞
0

dp pn+2l+1 feq (−|p̂|)︸ ︷︷ ︸
=Γ(2l+n+2)

∫ π

0

cos2l θ sin θ dθ

∫ 2π

0

dφ

Mnl
eq(τ) =

2T 2l+n+2Γ(2l + n+ 2)

(2π)2(2l + 1)
. (E.1)
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E.1.1 Computing the first moment for a 0+1d system

Computing the first moment gives

∂µT
µν = 0 . (E.2)

where
T µν = ε uµuν − P ∆µν , (E.3)

and the standard transverse projection operator, which is orthogonal to uµ, can be expressed

as the following

∆µν = gµν − uµuν = −
∑
i

Xµ
i X

ν
i . (E.4)

Therefore

T µν = ε uµuν +
∑
i

PiX
µ
i X

ν
i ,

∂µT
µν = uν uµ∂µ︸︷︷︸

D

ε+ uνε ∂µu
µ︸︷︷︸

θ

+ε uµ∂µ︸︷︷︸
D

uν +
∑
i

[Xν
i X

µ
i ∂µ︸ ︷︷ ︸
Di

Pi +Xν
i Pi ∂µX

µ
i︸ ︷︷ ︸

θi

+Pi X
µ
i ∂µ︸ ︷︷ ︸
Di

Xν
i ] ,

uν∂µT
µν = uνu

ν︸︷︷︸
1

Dε+ uνu
ν︸︷︷︸

1

ε θ + εDuνuν︸ ︷︷ ︸
0

+
∑
i

[uνX
ν
i︸ ︷︷ ︸

0

DiPi + uνX
ν
i︸ ︷︷ ︸

0

Pi θi + uνPiDiX
ν
i ] ,

uν∂µT
µν = Dε+ ε θ +

∑
i

uνPiDiX
ν
i = Dε+ ε θ +

∑
i

Pi θi (E.5)

with the co-moving derivative D ≡ uµ∂µ, the expansion scalar θ ≡ ∂µu
µ , and θi ≡ −uµDiX

µ
i ,

where Xµ
i are space-like basis vectors that are orthogonal to uµ. Moreover, by taking into

account the conservation of energy ∂µT
µν = 0, one finds

Dε+ ε θ +
∑
i

Pi θi = 0. (E.6)
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For the case of 0+1d Bjorken expansion one has D = ∂τ , θ = ∂µu
µ = 1/τ , θx = θy = 0

and θz = −1/τ . Therefore, by expanding this equation out in terms of the non-vanishing

components of the energy-momentum tensor, for a 0+1d system, one obtains the evolution

equation that can be written compactly as

∂τε = −ε+ PL
τ

. (E.7)

E.1.2 Computing the second moment for a 0+1d system

Iµνλ =

∫
dP pµpνpλf . (E.8)

Finding Iz

Iz =

∫
dP (p · u)(p · z)(p · z)f . (E.9)

By applying f = exp

(
−
√
p2T+(1+ξ(τ))p2z

Λ(τ)

)
, p · u = E, p · z = −pz, and dP = d3p

(2π)3E
, one finds

Iz =

∫
d3p

(2π)3E
E p2

z exp

(
−
√
p2
T + (1 + ξ(τ))p2

z

Λ(τ)

)
, (E.10)

=
1

(2π)3

∫
d3p p2

z exp

(
−
√
p2
T

Λ2
+

p2
z

α2Λ2

)
, (E.11)

where α = 1√
1+ξ

. Next, by changing variables to

p̂T =
pT
Λ
,

p̂z =
pz
αΛ

,
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one obtains

Iz =
α3Λ5

(2π)3

∫
d2p̂T dp̂z p̂

2
z exp

(
−
√
p̂2
T + p̂2

z

)
, (E.12)

then transforming to spherical coordinates

p̂x = p sin θ cosφ ,

p̂y = p sin θ sinφ ,

p̂z = p cos θ,

gives

∫
d2p̂T dp̂z =

∫ ∞
0

p2 dp

∫ π

0

sin θ dθ

∫ 2π

0

dφ = 2π

∫ ∞
0

p2 dp

∫ π

0

sin θ dθ ,

Iz =
α3Λ5

(2π)2

∫ ∞
0

p4dp exp(−|p|)︸ ︷︷ ︸
Γ(z)=

∫∞
0 t(z−1)e−tdt=24

∫ π

0

sin θ cos2 θdθ︸ ︷︷ ︸
2
3

, (E.13)

Iz =
α3

(2π)2
(24)(

2

3
)Λ5 = I0 SL(ξ) , (E.14)

where I0 = 4
(2π)2

Λ5.

Finding Ix :

Now to find Ix by doing the same steps:

Ix =

∫
dP (p · u)(p · x)(p · x)f , (E.15)
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with f = exp

(
−
√
p2T+(1+ξ(τ))p2z

Λ(τ)

)
, p · u = E, p · z = −pz, and dP = d3p

(2π)3E
, one finds

Ix =

∫
d3p

(2π)3E
E p2

x exp

(
−
√
p2
T + (1 + ξ(τ))p2

z

Λ(τ)

)
, (E.16)

=
1

(2π)3

∫
d3p p2

x exp

(
−
√
p2
T

Λ2
+

p2
z

α2Λ2

)
, (E.17)

where α = 1√
1+ξ

. Next, by changing variables to

p̂T =
pT
Λ
,

p̂z =
pz
αΛ

,

one obtains

Ix =
αΛ5

(2π)3

∫
d2p̂T dp̂z p̂

2
x exp

(
−
√
p̂2
T + p̂2

z

)
, (E.18)

then transforming to spherical coordinates

p̂x = p sin θ cosφ ,

p̂y = p sin θ sinφ ,

p̂z = p cos θ,

gives

∫
d2p̂T dp̂z =

∫ ∞
0

p2 dp

∫ π

0

sin θ dθ

∫ 2π

0

dφ = 2π

∫ ∞
0

p2 dp

∫ π

0

sin θ dθ ,
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Ix =
αΛ5

(2π)2

∫ ∞
0

p4dp exp(−|p|)︸ ︷︷ ︸
Γ(z)=

∫∞
0 t(z−1)e−tdt=24

∫ π

0

sin θ cos2 θdθ︸ ︷︷ ︸
2
3

, (E.19)

Ix =
α

(2π)2
(24)(

2

3
)Λ5 = I0 ST (ξ) = Iy (E.20)

E.2 For non conformal system m 6= 0

Start by using the classical Boltzmann statistics distribution function

feq = exp

(
−
√
p2
z + p2

T +m2

T (τ)

)
. (E.21)

Then, the general expression is

Mnl
eq =

∫
dP (p · u)n(p · z)2l feq(w, pT ) , (E.22)

and by using p · u = E , p · z = −pz, dP = d3p
(2π)3E

, and E =
√
p2
T + p2

z +m2

Mnl
eq =

∫
d3p

(2π)3E
En p2l

z exp

(
−
√
p2
T + p2

z +m2

T (τ)

)

=
1

(2π)3

∫
d3pEn−1 p2l

z exp

(
−
√
p2
T

T 2
+
p2
z

T 2
+
m2

T 2

)

=
1

(2π)3

∫
d3p (p2

T + p2
z +m2)

n−1
2 p2l

z exp

(
−
√
p2
T

T 2
+
p2
z

T 2
+
m2

T 2

)
.
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Changing variables to

p̂T =
pT
T
, dpT = T dp̂T ,

p̂z =
pz
T
, dpz = T dp̂z ,

m̂eq =
m

T
,

one obtains

Mnl
eq =

T 2l+n+2

(2π)3

∫
d2p̂T dp̂z (p̂2

T + p̂2
z + m̂2

eq)
n−1
2 p̂2l

z exp
(
−
√
p̂2
T + p̂2

z + m̂2
eq

)
.

Transforming to spherical coordinates one finds

√
p̂2
T + p̂2

z + m̂2
eq =

√
p̂2 + m̂2

eq ,∫
d2p̂Tdp̂z =

∫ ∞
0

p̂2dp̂

∫ π

0

sin θdθ

∫ 2π

0

dφ = 2π

∫ ∞
0

p̂2dp̂

∫ π

0

sin θdθ ,

p̂2
T + p̂2

z + m̂2
eq = p̂2 + m̂2

eq .

Therefore,

Mnl
eq =

T 2l+n+2

(2π)2

∫ ∞
0

dp̂ p̂2l+2 exp
(
−
√
p̂2 + m̂2

eq

) (
p̂2 + m̂2

eq

)n−1
2︸ ︷︷ ︸

F1

∫ π

0

dθ sin θ cos2l θ . (E.23)
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To find F1, we change variables as following

x ≡
√
p̂2 + m̂2

eq , ⇒ p̂ =
√
x2 − m̂2

eq ,

dx =
p̂dp̂√
p̂2 + m̂2

eq

=
p̂ dp̂

x
, ⇒ xdx = p̂dp̂ ,

p̂ = 0⇒ x = m̂eq ,

p̂ =∞⇒ x =∞ .

giving

Mnl
eq =

T 2l+n+2

(2π)2

∫ ∞
m̂eq

xdx (x2 − m̂2
eq)

2l+1
2 e−x (x)n−1

︸ ︷︷ ︸
F2

∫ π

0

dθ sin θ cos2l θ .

Now we compute the part F2 using the following form, which is a Bessel function

Kν(z) =

√
π

Γ(ν + 1
2
)

(z
2

)ν ∫ ∞
1

e−zx (x2 − 1)ν−
1
2dx . ν > −1

2
. (E.24)

When ν = 1

K1(z) =

√
π

Γ(3/2)︸ ︷︷ ︸
=
√
π
2

(z
2

)∫ ∞
1

e−zx (x2 − 1)
1
2dx = z

∫ ∞
1

e−zx (x2 − 1)
1
2dx ,

K1(z)

z
=

∫ ∞
1

e−zx (x2 − 1)
1
2dx (E.25)

Taking the derivative in Eq. (E.25) one obtains

dK1(z)

dz
= K ′1(z) =

∫ ∞
1

e−zx (x2 − 1)
1
2dx︸ ︷︷ ︸

=
K1(z)
z

−z
∫ ∞

1

x e−zx (x2 − 1)
1
2dx . (E.26)
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By using the identity:

K ′ν(z) = −1

2
Kν−1(z)− 1

2
Kν+1(z) , (E.27)

when ν = 1

K ′1(z) = −1

2
K0(z)− 1

2
K2(z) , (E.28)

we then substitute the results of Eq. (E.26) in Eq. (E.28), one obtains

−1

2
K0(z)− 1

2
K2(z) =

K1(z)

z
− z

∫ ∞
1

x e−zx (x2 − 1)
1
2dx . (E.29)

Then using the identity:

Kν+1(z) = Kν−1(z) +
2ν

z
Kν(z) , (E.30)

when ν = 1 one obtains

K2(z) = K0(z) +
2

z
K1(z)

⇒ K0(z) = K2(z)− 2

z
K1(z) .

Applying this result in Eq. (E.29), gives

1

z
K1(z)− 1

2
K2(z)− 1

2
K2(z) =

K1(z)

z
− z

∫ ∞
1

x e−zx (x2 − 1)
1
2dx

K2(z) = z

∫ ∞
1

x e−zx (x2 − 1)
1
2dx .

which results in

K2(z)

z
=

∫ ∞
1

xe−zx (x2 − 1)
1
2dx . (E.31)
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Using

x =
√
p̂2 + m̂2

eq = m̂eq

√√√√√ p̂2

m̂2
eq︸︷︷︸
κ2

+1 = m̂eq

√
κ2 + 1︸ ︷︷ ︸
y

, ⇒ x = m̂eq y ,

dx = m̂eq dy , ⇒ x dx = m̂2
eqy dy ,

x = m̂eq ⇒ y = 1 , x =∞⇒ y =∞ ,

Mnl
eq =

T 2l+n+2

(2π)2

∫ ∞
1

m̂2
eqy dy (m̂2

eqy
2 − m̂2

eq)
2l+1
2 e−m̂eq y (m̂eq y)n−1

∫ π

0

dθ sin θ cos2l θ ,

or

Mnl
eq =

(m̂eq T )2l+n+2

(2π)2

∫ ∞
1

yn (y2 − 1)
2l+1
2 e−m̂eq y dy

∫ π

0

dθ sin θ cos2l θ . (E.32)

E.2.1 Equilibrium thermodynamic functions

The general moment that I obtain in section 1.3 is:

Mnl
eq =

(m̂eq T )2l+n+2

(2π)2

∫ ∞
1

yn (y2 − 1)
2l+1
2 e−m̂eq y dy

∫ π

0

dθ sin θ cos2l θ . (E.33)

The equilibrium particle density

Using the general form Eq. (E.33) when n = 1 and l = 0 to find the equilibrium particle

density:

M10
eq =

m̂3
eq T

3

2π2

∫ ∞
1

y
√
y2 − 1 e−m̂eq y dy . (E.34)
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By comparing the integral in Eq. (E.34) with Eq. (E.31)), one finds :

M10
eq =

m̂3
eq T

3

2π2

K2(m̂eq)

m̂eq

,

Neq =
m̂2

eq T
3

2π2
K2(m̂eq) . (E.35)

The equilibrium energy density

Using the general form Eq. (E.33) when n = 2 and l = 0

M20
eq =

m̂4
eq T

4

2π2

∫ ∞
1

y2
√
y2 − 1 e−m̂eq y dy . (E.36)

To solve the integral
∫∞

1
y2
√
y2 − 1 e−m̂eq y dy we start by taking a derivative of Eq. (E.31)

dK2(z)

dz
= K ′2(z) =

∫ ∞
1

x e−zx (x2 − 1)
1
2dx︸ ︷︷ ︸

=
K2(z)
z

−z
∫ ∞

1

x2 e−zx (x2 − 1)
1
2dx . (E.37)

Then using the identity in Eq. (E.28) one obtains

K ′2(z) = −1

2
K1(z)− 1

2
K3(z) , (E.38)

after that, combining Eq. (E.37) and Eq. (E.38), one finds

−1

2
K1(z)− 1

2
K3(z) =

K2(z)

z
− z

∫ ∞
1

x2 e−zx (x2 − 1)
1
2dx . (E.39)
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then using the identity Eq. (E.30) when ν = 2 gives

K3(z) = K1(z) +
4

z
K2(z) . (E.40)

Applying this result in Eq. (E.39) gives

−1

2
K1(z)− 1

2
K1(z)− 2

z
K2(z) =

K2(z)

z
− z

∫ ∞
1

x2 e−zx (x2 − 1)
1
2dx

1

z
K1(z) +

3

z2
K2(z) =

∫ ∞
1

x2 e−zx (x2 − 1)
1
2dx . (E.41)

The form of the integral in Eq. (E.41) is the same as in Eq. (E.36) by considering z = m̂eq

and x = m̂eq y, so

M20
eq =

m̂4
eq T

4

2π2

[
1

m̂eq

K1(m̂eq) +
3

m̂2
eq

K2(m̂eq)

]
, (E.42)

Eeq =
m̂2

eq T
4

2π2
[3K2(m̂eq) + m̂eqK1(m̂eq)] . (E.43)

The equilibrium pressure

Using the general form Eq. (E.33) when n = 0 and l = 1

Peq =
(m̂eq T )4

(2π)2

∫ ∞
1

(y2 − 1)
3
2 e−m̂eq y dy

∫ π

0

dθ sin θ cos2 θ , (E.44)

Peq =
m̂4

eq T
4

6π2

∫ ∞
1

(y2 − 1)
3
2 e−m̂eq y dy . (E.45)

To solve the integral in Eq. (E.45), we use Eq. (E.24) when ν = 2 and z = m̂eq, and

x = y

K2(m̂eq) =

√
π

Γ(5
2
)

m̂2
eq

4

∫ ∞
1

e−m̂eqy (y2 − 1)
3
2dy , (E.46)
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or, equivalently, ∫ ∞
1

e−m̂eqy (y2 − 1)
3
2dy =

3

m̂2
eq

K2(m̂eq) . (E.47)

Therefore,

Peq =
m̂4

eq T
4

6π2

3

m̂2
eq

K2(m̂eq) =
m̂2

eq T
4

2π2
K2(m̂eq) . (E.48)

Peq = TNeq . (E.49)

The equilibrium entropy

The entropy can obtained as follows

Seq =
Eeq + Peq

T

=
1

T

m̂2
eq T

4

2π2
[3K2(m̂eq) + m̂eqK1(m̂eq)] +

m̂2
eq T

4

2π2
K2(m̂eq) , (E.50)

which upon simplification gives

Seq =
m̂2

eq T
3

2π2
[4K2(m̂eq) + m̂eqK1(m̂eq)] . (E.51)

200



References

[1] M. Strickland, Relativistic Quantum Field Theory, Volume 2. 2053-2571. Morgan &
Claypool Publishers, 2019. https://dx.doi.org/10.1088/2053-2571/ab3108.

[2] Particle Data Group Collaboration, R. L. Workman et al., “Review of Particle
Physics”, PTEP 2022 (2022) 083C01.

[3] A. Deur, S. J. Brodsky, and G. F. de Teramond, “Connecting the Hadron Mass Scale
to the Fundamental Mass Scale of Quantum Chromodynamics”, Phys. Lett. B 750
(2015) 528–532, arXiv:1409.5488 [hep-ph].

[4] NA60+ Collaboration, A. De Falco, “Prospects for the NA60+ experiment at the
CERN SPS”, EPJ Web Conf. 259 (2022) 09003, arXiv:2108.11300 [nucl-ex].

[5] F. Gelis, “The Early Stages of a High Energy Heavy Ion Collision”, J. Phys. Conf.
Ser. 381 (2012) 012021, arXiv:1110.1544 [hep-ph].

[6] M. Strickland, “Anisotropic hydrodynamics: Three lectures”, Acta Physica Polonica
B 45 no. 12, (2014) 2355. http://dx.doi.org/10.5506/APhysPolB.45.2355.

[7] M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg, “Glauber modeling in high
energy nuclear collisions”, Ann. Rev. Nucl. Part. Sci. 57 (2007) 205–243,
arXiv:nucl-ex/0701025.

[8] M. Alqahtani, M. Nopoush, and M. Strickland, “Quasiparticle equation of state for
anisotropic hydrodynamics”, Phys. Rev. C 92 no. 5, (2015) 054910,
arXiv:1509.02913 [hep-ph].

[9] M. Alqahtani and M. Strickland, “Bulk observables at 5.02 TeV using quasiparticle
anisotropic hydrodynamics”, Eur. Phys. J. C 81 no. 11, (2021) 1022,
arXiv:2008.07657 [nucl-th].

[10] PHENIX Collaboration, S. S. Adler et al., “Identified charged particle spectra and
yields in Au+Au collisions at S(NN)**1/2 = 200-GeV”, Phys. Rev. C 69 (2004)
034909, arXiv:nucl-ex/0307022.

[11] D. Almaalol, M. Alqahtani, and M. Strickland, “Anisotropic hydrodynamic modeling
of 200 GeV Au-Au collisions”, Phys. Rev. C 99 no. 4, (2019) 044902,
arXiv:1807.04337 [nucl-th].

[12] ALICE Collaboration, B. Abelev et al., “Centrality dependence of π, K, p
production in Pb-Pb collisions at

√
sNN = 2.76 TeV”, Phys. Rev. C 88 (2013)

044910, arXiv:1303.0737 [hep-ex].

201

http://dx.doi.org/10.1088/2053-2571/ab3108
https://dx.doi.org/10.1088/2053-2571/ab3108
http://dx.doi.org/10.1093/ptep/ptac097
http://dx.doi.org/10.1016/j.physletb.2015.09.063
http://dx.doi.org/10.1016/j.physletb.2015.09.063
http://arxiv.org/abs/1409.5488
http://dx.doi.org/10.1051/epjconf/202225909003
http://arxiv.org/abs/2108.11300
http://dx.doi.org/10.1088/1742-6596/381/1/012021
http://dx.doi.org/10.1088/1742-6596/381/1/012021
http://arxiv.org/abs/1110.1544
http://dx.doi.org/10.5506/aphyspolb.45.2355
http://dx.doi.org/10.5506/aphyspolb.45.2355
http://dx.doi.org/10.5506/APhysPolB.45.2355
http://dx.doi.org/10.1146/annurev.nucl.57.090506.123020
http://arxiv.org/abs/nucl-ex/0701025
http://dx.doi.org/10.1103/PhysRevC.92.054910
http://arxiv.org/abs/1509.02913
http://dx.doi.org/10.1140/epjc/s10052-021-09832-z
http://arxiv.org/abs/2008.07657
http://dx.doi.org/10.1103/PhysRevC.69.034909
http://dx.doi.org/10.1103/PhysRevC.69.034909
http://arxiv.org/abs/nucl-ex/0307022
http://dx.doi.org/10.1103/PhysRevC.99.044902
http://arxiv.org/abs/1807.04337
http://dx.doi.org/10.1103/PhysRevC.88.044910
http://dx.doi.org/10.1103/PhysRevC.88.044910
http://arxiv.org/abs/1303.0737


[13] M. Alqahtani, M. Nopoush, R. Ryblewski, and M. Strickland, “Anisotropic
hydrodynamic modeling of 2.76 TeV Pb-Pb collisions”, Phys. Rev. C 96 no. 4, (2017)
044910, arXiv:1705.10191 [nucl-th].

[14] ALICE Collaboration, S. Acharya et al., “Production of charged pions, kaons, and
(anti-)protons in Pb-Pb and inelastic pp collisions at

√
sNN = 5.02 TeV”, Phys. Rev.

C 101 no. 4, (2020) 044907, arXiv:1910.07678 [nucl-ex].

[15] ALICE Collaboration, S. Acharya et al., “Anisotropic flow of identified particles in
Pb-Pb collisions at

√
sNN = 5.02 TeV”, JHEP 09 (2018) 006, arXiv:1805.04390

[nucl-ex].

[16] ALICE Collaboration, J. Adam et al., “Anisotropic flow of charged particles in
Pb-Pb collisions at

√
sNN = 5.02 TeV”, Phys. Rev. Lett. 116 no. 13, (2016) 132302,

arXiv:1602.01119 [nucl-ex].

[17] PHOBOS Collaboration, B. Alver et al., “Phobos results on charged particle
multiplicity and pseudorapidity distributions in Au+Au, Cu+Cu, d+Au, and p+p
collisions at ultra-relativistic energies”, Phys. Rev. C 83 (2011) 024913,
arXiv:1011.1940 [nucl-ex].

[18] STAR Collaboration, J. Adams et al., “Pion interferometry in Au+Au collisions at
S(NN)**(1/2) = 200-GeV”, Phys. Rev. C 71 (2005) 044906,
arXiv:nucl-ex/0411036.

[19] M. Alqahtani and M. Strickland, “Pion interferometry at 200 GeV using anisotropic
hydrodynamics”, Phys. Rev. C 102 no. 6, (2020) 064902, arXiv:2007.04209
[nucl-th].

[20] S. Weinberg, “A model of leptons”, Phys. Rev. Lett. 19 (1967) 1264–1266.

[21] A. Salam, “Weak and electromagnetic interactions”, Nuclear Physics 22 (1968)
683–696.

[22] R. Brock, The Higgs Boson. CRC Press, 2015.

[23] S. L. Glashow, “Partial-symmetries of weak interactions”, Nuclear Physics 22 (1961)
579–588.

[24] D. J. Griffiths, Introduction to Quantum Mechanics. Cambridge University Press,
3rd ed., 2020.

[25] J. L. Alonso, C. Bouthelier-Madre, J. Clemente-Gallardo, and D. Mart́ınez-Crespo,
“A sufficient condition for confinement in qcd”, 2022.

[26] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory. CRC
Press, frontiers in physics, volume 85 ed., 2018.

[27] M. D. Schwartz, Quantum Field Theory and the Standard Model. Cambridge
University Press, 2014.

202

http://dx.doi.org/10.1103/PhysRevC.96.044910
http://dx.doi.org/10.1103/PhysRevC.96.044910
http://arxiv.org/abs/1705.10191
http://dx.doi.org/10.1103/PhysRevC.101.044907
http://dx.doi.org/10.1103/PhysRevC.101.044907
http://arxiv.org/abs/1910.07678
http://dx.doi.org/10.1007/JHEP09(2018)006
http://arxiv.org/abs/1805.04390
http://arxiv.org/abs/1805.04390
http://dx.doi.org/10.1103/PhysRevLett.116.132302
http://arxiv.org/abs/1602.01119
http://dx.doi.org/10.1103/PhysRevC.83.024913
http://arxiv.org/abs/1011.1940
http://dx.doi.org/10.1103/PhysRevC.71.044906
http://arxiv.org/abs/nucl-ex/0411036
http://dx.doi.org/10.1103/PhysRevC.102.064902
http://arxiv.org/abs/2007.04209
http://arxiv.org/abs/2007.04209
http://dx.doi.org/10.1103/PhysRevLett.19.1264
http://dx.doi.org/10.1016/0029-5582(61)90469-2
http://dx.doi.org/10.1016/0029-5582(61)90469-2
http://dx.doi.org/10.1016/0029-5582(61)90469-2
http://dx.doi.org/10.1016/0029-5582(61)90469-2


[28] C. P. Burgess, The Standard Model: A Primer. Cambridge University Press, 2007.

[29] D. J. Griffiths, Introduction to Elementary Particles. Wiley-VCH, 2008.

[30] P. W. Higgs, “Broken symmetries and the masses of gauge bosons”, Physical Review
Letters 13 no. 16, (1964) 508–509.

[31] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory.
Westview Press, 1995.

[32] A. Einstein, “The foundation of the general theory of relativity”, Annalen der Physik
354 no. 7, (1916) 769–822.

[33] S. Weinberg, The Quantum Theory of Fields, vol. 1. Cambridge University Press,
1995.

[34] D. J. Gross and F. Wilczek, “Ultraviolet behavior of non-abelian gauge theories”,
Physical Review Letters 30 no. 26, (1973) 1343–1346.

[35] H. D. Politzer, “Reliable perturbative results for strong interactions?”, Physical
Review Letters 30 no. 26, (1973) 1346–1349.

[36] F. Halzen and A. D. Martin, Quarks and Leptons: An Introductory Course in
Modern Particle Physics. Wiley, 1984.

[37] P. Braun-Munzinger, K. Redlich, and J. Stachel, “Particle production in heavy ion
collisions”, Quark-Gluon Plasma 3 (2003) 491–599.

[38] T.-P. Cheng and L.-F. Li, “Gauge theory of elementary particle physics”, Reviews of
Modern Physics 56 no. 3, (1984) 723–883.

[39] H. Fritzsch, “Color confinement in quantum chromodynamics”, Physical Review
Letters 31 no. 15, (1973) 1013–1016.

[40] G. Ecker, “Quantum chromodynamics”, in 2005 European School of High-Energy
Physics. 4, 2006. arXiv:hep-ph/0604165.

[41] S. Mandelstam, “Vortices and quark confinement in non-abelian gauge theories”,
Physical Review D 10 no. 8, (1974) 3145–3155.

[42] J. Greensite, “An introduction to the confinement problem”, Lectures on Quark
Confinement and the Hadron Spectrum (2011) 1–78.

[43] J. C. Collins, A. Duncan, and S. Joglekar, “Trace and conformal anomalies in gauge
theories”, Physical Review D 16 no. 2, (1974) 438–449.

[44] D. J. Gross and A. Neveu, “Dynamical symmetry breaking in asymptotically free
field theories”, Physical Review D 10 no. 12, (1974) 3235–3253.

[45] T. Bhattacharya et al., “QCD Phase Transition with Chiral Quarks and Physical
Quark Masses”, Phys. Rev. Lett. 113 no. 8, (2014) 082001, arXiv:1402.5175
[hep-lat].

203

http://arxiv.org/abs/hep-ph/0604165
http://dx.doi.org/10.1103/PhysRevLett.113.082001
http://arxiv.org/abs/1402.5175
http://arxiv.org/abs/1402.5175


[46] M. A. Lisa, S. Pratt, R. Soltz, and U. Wiedemann, “Femtoscopy in relativistic heavy
ion collisions: Two decades of progress”, Annual Review of Nuclear and Particle
Science 55 no. 1, (2005) 357–402,
https://doi.org/10.1146/annurev.nucl.55.090704.151533.
https://doi.org/10.1146/annurev.nucl.55.090704.151533.

[47] E. Shuryak, “Physics of Strongly coupled Quark-Gluon Plasma”, Prog. Part. Nucl.
Phys. 62 (2009) 48–101, arXiv:0807.3033 [hep-ph].

[48] F. Gelis, E. Iancu, J. Jalilian-Marian, and R. Venugopalan, “The Color Glass
Condensate”, Ann. Rev. Nucl. Part. Sci. 60 (2010) 463–489, arXiv:1002.0333
[hep-ph].
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[136] M. Deliyergiyev and M. Rybczyński, “Multiplicity fluctuations in the glauber monte
carlo approach”, Physical Review C (2019) .
https://api.semanticscholar.org/CorpusID:202540215.

[137] S. Bhattacharyya, “Investigation of centrality dependence of dynamical fluctuations
in narrow pseudo-rapidity interval on event-by-event basis”, International Journal of
Modern Physics E-nuclear Physics (2020) 2050083.
https://api.semanticscholar.org/CorpusID:229416427.

[138] R. L. Ray and M. Daugherity, “Applicability of monte carlo glauber models to
relativistic heavy-ion collision data”, Journal of Physics G 35 (2007) 125106.
https://api.semanticscholar.org/CorpusID:15921355.

[139] K. Olive, “Review of particle physics”, Chinese Physics C 38 no. 9, (Aug, 2014)
090001. https://dx.doi.org/10.1088/1674-1137/38/9/090001.

[140] T. Schörner-Sadenius, ed., The Large Hadron Collider: Harvest of Run 1. Springer,
Berlin, 2015.

[141] X.-N. Wang, ed., Quark-Gluon Plasma 5. World Scientific, New Jersey, 2016.

[142] P. Romatschke and U. Romatschke, Relativistic Fluid Dynamics In and Out of
Equilibrium. Cambridge Monographs on Mathematical Physics. Cambridge
University Press, 5, 2019. arXiv:1712.05815 [nucl-th].

210

https://api.semanticscholar.org/CorpusID:117349254
https://api.semanticscholar.org/CorpusID:59403206
https://api.semanticscholar.org/CorpusID:227228055
http://dx.null_doi.org/10.1103/PhysRevD.74.045022
http://dx.doi.org/10.1103/PhysRevD.101.054036
http://dx.doi.org/10.1103/PhysRevD.101.054036
http://arxiv.org/abs/2001.04256
https://api.semanticscholar.org/CorpusID:126188631
https://api.semanticscholar.org/CorpusID:202540215
https://api.semanticscholar.org/CorpusID:229416427
https://api.semanticscholar.org/CorpusID:15921355
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
https://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1007/978-3-319-15001-7
http://dx.doi.org/10.1142/9533
http://dx.doi.org/10.1017/9781108651998
http://dx.doi.org/10.1017/9781108651998
http://arxiv.org/abs/1712.05815


[143] P. Huovinen, P. Kolb, U. Heinz, P. Ruuskanen, and S. Voloshin, “Radial and elliptic
flow at rhic: further predictions”, Physics Letters B 503 no. 1-2, (Mar, 2001) 58–64.
http://dx.doi.org/10.1016/S0370-2693(01)00219-2.

[144] H. Song and U. W. Heinz, “Suppression of elliptic flow in a minimally viscous
quark-gluon plasma”, Phys. Lett. B 658 (2008) 279–283, arXiv:0709.0742
[nucl-th].

[145] P. M. Chesler and L. G. Yaffe, “Boost invariant flow, black hole formation, and
far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory”, Phys.
Rev. D 82 (2010) 026006, arXiv:0906.4426 [hep-th].

[146] M. P. Heller and M. Spalinski, “Hydrodynamics Beyond the Gradient Expansion:
Resurgence and Resummation”, Phys. Rev. Lett. 115 no. 7, (2015) 072501,
arXiv:1503.07514 [hep-th].

[147] P. M. Chesler, “How big are the smallest drops of quark-gluon plasma?”, JHEP 03
(2016) 146, arXiv:1601.01583 [hep-th].

[148] L. Keegan, A. Kurkela, P. Romatschke, W. van der Schee, and Y. Zhu, “Weak and
strong coupling equilibration in nonabelian gauge theories”, JHEP 04 (2016) 031,
arXiv:1512.05347 [hep-th].
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