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Introduction
Description of the asymptotics of strong interactions by means of the Pomeranchuk singu-
larity (Pomeron-P) involves ideas both on processes of a diffractive type and inelastic processes
giving the main contribution to total cross sections. As is well known starting with the work of
Amati, Stanghellini, and ]E‘ubini1 Pomeron-exchange, with the use of Feynman diagrams, may be

described by a set of ladder-type diagrams =%

(1)

-
A characteristic feature of inelastic processes at asymptotic energies, described by the

above diagrams, is a uniform distribution of produced particles (in the sense of inclusive cross
sections) in rapidity (except the region of longitudinal momenta close to the momenta of colliding
particles) that leads to the logarithmic increase in the multiplicity of produced particles, n = at,
where £ = ln(s/mamb)A

The second important feature of such diagrams is that in each individual event the uniform
density appears only after averaging in fact a non-uniform distribution over ranges of rapidity
larger than the characteristic scale )\0 ~ a‘1 ~1, determined by a ladder step. The probability of
fluctuations with the scale much larger than )‘0 decreases exponentially.

It was understood that these properties do not require a description of the interaction
literally by means of ladder diagrams, but may be caused by a more general phenomenon, by the
absence of large transferred momenta at all stages of interaction.

As is well known, in addition to Pomeron exchange, the processes of exchange of several
Pomerons, corresponding to branch points in the plane of complex angular momentum, give a
considerable contribution to the interaction at high energy.

It is very interesting to determine what changes of the properties of inelastic processes are
caused by taking into account multiple-Pomeron exchange. In this paper we shall try to analyze
this problem. The Reggeon-diagram technique2 was used to describe multiple -Pomeron exchange.
The contribution to the total cross section of interaction corresponding to Pomeron exchange may

be given by a number of diagrams of the form

Oiot - -+ -+ +oee (2)
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We shall show that even when multiple -Pomeron exchange and interactions of Pomerons are
taken into account, we may preserve the first of the described properties of inelastic processes,
i.e., the spectrum homogeneity (in the sense of inclusive cross sections) and n ~£. However,
the scale of averaging at which the uniform density is reached and the probability of fluctuations
(in each individual event) are found to be quite different. This difference from the ladder situation
at £ ~ @ is caused only by Pomeron interactions. A uniform density appears only after averaging
over a rapidity range 2 yNE where y is determined by the triple-Pomeron vertex. The probability of
fluctuations with the dimensions (in the space of rapidity) X >y NE decreases as yzgl)»z.

The distribution of large fluctuations is characterized by the following simple property:
fluctuations of the dimensions \ are, on the average, at a distance of -leyz >> \, from one
another in rapidity. It is interesting to note that for these large fluctuations the density of
particles is either zero or double the mean der:sity and the latter is encountered twice as often
as the former.

On the whole the situation reminds one of the behavior of matter at the point of a second-
order phase transition, when there are large fluctuations of the system in which various volumes
of the matter are in different phase states.

The main content of the work is summarized in the following paragraphs. Our analysis
proceeds from the representation of the total cross section as the sum of contributions of Reggeon
diagrams and assuming that Reggeon exchange corresponds to a uniform density in rapidity (in
the sense of the inclusive cross section) with the mean number of particles n = af.

If Pomeron interactions are not taken into account the contribution of multiple -Pomeron
exchange leads to the following phenomena. Corrections of the order 1/¢, 1/ gz, . . . for partial
cross sections %n appear in the main region n ~ af. New processes are generated with the num-

bers of produced particles multiples of . Then the distribution over the number of particles has

* &%
6 / 62z
/ <
A ( 3>)
ay Zay 1; a3

3ay

the form3

6.

where the cross section Oy~ 1/§k -1 Note that from the point of view of similarity with the gas

the appearance of oscillations is associated with the finite dimensions of the system

4,5

models
(the boundary effect). It turns out that corrections to the partial cross sections arT and the values
of these cross sections GkrT , k # 1, are related in such a way that they cancel each other when
the inclusive cross section is calculated. Let us explain by taking the example of two Pomeron
exchange. Such an exchange leads to generation of new processes with the cross sections qu'

o and to a negative correction o"l_ caused by screening

-390~



J* 5
K ey / 2%
! [ (4
\ ‘l \
\\ 7 \\
j —
6 N\ oay ax /| L
AN
where “qe = ~gt = 202!{’ Then the correction for the inclusive cross section in the central region
is
3 6301_ 330- —
- n 2n
& |~ 3 + 2
p

= 0. (5)
3
op ap

Thus when Reggeon interactions are not taken into account the invariant inclusive cross section

3 330'

f,(n.£,p)) =(2m”~ 2p; — (6)
ap

(where n = 1n P, is the rapidity of the observed particle in the central region) does not depend on

n and §, up to corrections of order 1/s.

When Reggeon interactions are taken into account, smoothing of the distribution % takesplace

o3 2a3

+ +—>n
. 403
The amplitude of oscillations in the distribution % is determined by constants of the Reggeon

Say

. . 3
interactions.

The inclusive cross section of the process P, + P, P + {X} in the central region
contains logarithmic corrections in energy

2 1 %2
= —_—+ = 8
fi ctotw(pl)1+n +n ) (8)
1 2
where ny = ln(pa + p)z, ny = ln(pb + p)z and the constants c, are related to the value of the
triple-Pomeron vertex. If all total cross sections are equal asymptotically = then fi will be
universal within the accuracy 1/ n and at the same time c 4 =Cy
ny and n, has the form

The correlation function of two particles produced in the central region with the rapidities

3Y2

_ 2 2
P2 P M Pay) Y Py ) ST iRy )

(9
The last section is devoted to studies of fluctuations in individual events.

In particular,
it is shown that the distribution over the number of fluctuations, the dimensions of which are
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larger than \ where X >> \ o is a Poisson distribution with the mean number of fluctuations
—_— 2,2
m)~ gy N\ (10)

1. Absorptive Parts of Reggeon Diagrams in the s-Channel Classification of Inelastic Processes

Let us discuss first the structure of absorptive parts corresponding to the vacuum pole. It
is known that the vacuum pole leads to a uniform spectrum of secondary particles of the ty'pe
¢(Plz)d3p /po, where the function y(p lz) should be assumed to decrease rapidly in p-L2 for the self
consistency of the whole scheme. Hence, the absorptive part of the pole may be shown as a gen-
eralized ladder, as indicatedbelow, without specifying the character of the exchange in amplitudes

AZ-n‘

(abs)S[A(po”(s.t)] =(abs)

(11)

3 Jemn IAZon |2=§]dﬁ.

The simplest example of such amplitudes are multiperipheral ones, 7 but in general the real amplitudes

AZ-n may be determined by many-particle exchange as well. The important thing is that states

with large 4-momenta squared must be suppressed on virtual lines. In such a case intermediate

states produced by the operation (abs)sA(pOI) will be approximately ordered by longitudinal

momenta; only this fact reflects the chosen image of A2—~n in the form of a multiperipheral chain.
Having taken this picture of absorptive parts for the pole, let us consider what absorptive

parts of two Reggeon cuts will not be small when s—»©. The simplest diagram with nonvanishing

third spectral functions has the form

2
We see that when (abs)SA( ) is calculated, the dashed line corresponding to the diagram section

may be drawn in different ways:



(13)

The different cuttings (for instance, 11, lz, 13 above) correspond, in fact, to nonequivalent inelas-
tic processes, and for most of them [ for instance, for !3 in (13)] the absorptive parts will not be
expressed by quantities typical of Reggeon diagrams.

Let us determine what types of absorptive part are not small when £=Ins—-®., We assert
that the only cuttings of the diagram that are important are those in which the cutting line dividing
the diagram into two parts does not leave the internal part of a Reggeon(as, for instance, the line
L in (13)]. Qualitatively this may be explained in the following way. A cutting of the type 13,

which violates the stated criterion, leads to the following diagram for many particle amplitudes

f

(14)

1A

n
2
We see that in the "left-hand" amplitude q2 -MPe P> M , because the internal part of a Reggeon

has sense only when n1>> 1. Since we assume that large q2 must be suppressed on all virtual
lines, such absorptive parts will be asymptotically small. Asfor the regioriof small ny» it con~
tributes only to renormalization of the vertex entering the absorptive part. It is easy to see that
the described property of absorptive parts is common to all Reggeon diagrams. Cuts leaving the
internal part of a Reggeon always lead to a "hanging multipheral chain' with a large mass and

hence to large qi2 on the lines in the region of the peripheral chain attachment.

“Note that just the contributions of cuts with small n, are important in cancelling the main asymp-
totic terms in planar diagrams.
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Thus, the two-Reggeon diagram asymptotically has absorptive parts only of three types

|
i ]

(a) (b) (c)

determined by the number of cut Reggeons. Therefore, asymptotically the total absorptive part
of the contribution of two Reggeon diagrams [2 ImA(z)] is given by a sum of only three absorption
parts corresponding to the cuts in (15).

(2) _ o (2), o (2), - (2)
2 ImA SF) HF TAF, (16)

Similarly for the diagram

(17)

with v Reggeons there will be v +1 types of absorptive parts not small asymptotically

)

Fv) = ! g (18)

rl

ZImA(v)=Z FM("), (19)
£

corresponding to simultaneous cutting of the p (0 =0, 1, 2, ... ) Reggeons marked with crosses.
This property of absorptive parts is easily generalized for diagrams with arbitrary Reggeon
interactions. We see that for each Reggeon diagram for Az_.2 there are only several types of

absorptive parts not small asymptotically. For instance, for the diagram

(20)
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these parts will be )
‘ ) ]

i '
l/ " l'l (20"

Let us now discuss what processes correspond to absorptive parts of Reggeon diagrams. In
the simplest case of diagram (15a) the absorptive part corresponds to the process of production of
a small number of particles with momenta close to those of incident particles, i.e., to quasi~
elastic processes. The absorptive part of diagram (15b) corresponds to processes giving the main
contributions to the cross section, to the same processes as the ones described by the absorptive
part of the pole term with mean multiplicity equal to a§. Thus (15b) is a correction to the ampli-
tudes of these main processes caused by screening. The absorptive part of diagram (15c) corre-
sponds to processes with the mean density of particles per rapidity interval twice as large as that
for processes corresponding to the pole term. These three absorptive parts lead to processes with
the cross sections oqe' crr'_‘ 2 Oom discussed in the introduction.

Similarly when cutting more complicated diagrams, absorptive parts appear corresponding
either to corrections to the main processes, or processes in which at some rapidity interval there
are no particles and in other intervals the particle density is a multiple of that in processes of the
main type.

:I‘his result may be shown graphically in the following way. If we take an amplitude for the

production of a given number of particles n >> 1in the form of a combination of diagrams it is

{(B-T- 3 -
AT T )

4+ e - - .. +
3B SENE
4 e
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clear that, as functions of the kinematic variables of the particles, the amplitudes corresponding
to diagrams of the classes A, B, ...do not overlap. Therefore, in calculation of the cross section,
amplitudes corresponding to different classes do not interfere and the result may be shown sym-

bolically in the form
?A?A*Jr?B?B* Foe (22)

2. Relations Between Absorptive Parts of Reggeon Diagrams

It turns out that in a number of cases, the "not small" absorptive parts of a Reggeon diagram
may be expressed in terms of the contribution of the Reggeon diagram itself, so that the only
difference between them is some combinatory coefficient. (In particular, this holds for all absorp-
tive parts of diagrams without interactions between Reggeons.) In other cases, new "cut" vertices
of interactions between Reggeons will also enter the expression for the abéorptive part.

Let us consider diagrams in (17). Their contributions to AZ»Z may be written in the form

of an integral over two-dimensional transverse momenta of Reggeons

V)(S,QZ)=stv [(18,) (iB,). ... (i3 )IN do , (23)
where
2
. v v 4%
1 (2) i
a = s%fq- x.) —1i
v o Z ; UZ(Z«)Z

is the Reggeon phase space, NV(-t:i, cees -‘:v) are real vertices of Reggeon emission,d (g, :2) are
complex Green functions of Reggeons. When a simple pole of positive signature corresponds to a
Reggeon then

. 2
-a'ng+a(0) o4 ¢ imelk )2

BlexD)-e (24)

2
sin —-'m(x )
The quantities in (24) N R cD are real, and since we are going to be interested only in absorptive

parts of A( vl in s, it is convement to write expression (23) in a symbolic form
s s . )
[-i(id) (in).... (1ﬁv)]. (23")

We omit the quantities N here, since they are not changed by calculation of the absorptive parts
of A(v) (see the Appendlx).
Calculation of the absorptive parts of the amplitude A(V) is, in fact, of a combinatory char-

acter. Let us demonstrate the combinatorics, taking as an example the two-Reggeon cuts, where

AP =(-168,) (D)1 (25)

(2)

The quantity F'o of (15) and (16) equals the absorptive part in the case when the cut line goes

between Reggeons; evidently there exist two possibilities:
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Correspondingly we get from (25)
(2)_[,. R * : : *7.
Fo )= [1D)) 13,)"] + [(B,) (18,)"]- 2 [ReD, ReD, +1mb, 1mb, ]. (26)

(2)

The absorptive parts F,~' correspond to "cutting'' of one of the Reggeons; we have four possibilities

/ \
1% 32 4+ 2 1+
ad \ /

Fim = [(-i&'bi) (ibz)*] + [(ibz) (-i6t>1)] + [(ibi) (-16132)]+ [(-isbz) (iDi)*]

We get from (25)

(27)

- -8 [Imﬂ‘ ImDZ] ,
where 58 =2iIm® is a discontinuity of the amplitude & over the right hand cut. At a simultaneous
cutting of two Reggeons we have only one possibility

i 2
-
[}
We find from (25)
F2(2)=[(-i531)(-ivSDz)]=4[Imbi'Im'DZ]. (28)
Adding (26), (27), and (28) we have
(2) (2) (2) _ .
Fo o +F, " aF, =2 [Rebi Red,-Im®, - ImP, ] . (29)

This evidently coincides with the value for 2 ImA(z), which is found directly from (25). Relation
(29) shows that the sum Fo(z) +F1(Z) +F2(2) really "saturates'' the quantity 2 mA?). Such a resuit
is not trivially evident, since Feynman diagrams show (see the previous section) that A(Z) could
also have other types of absorptive parts. Our argument that these other absorptive parts are

asymptotically small was based on the fact that for these large qi2 would be on virtual lines. But,
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2
in fact, just such suppression of large qi leads to a factorized structure of the integrand in (23),

for which relation (16) holds exactly.

(v)
jn
Reggeons in contribution (23). First we consider the case when p # 0. Then due to cutting of p

In a similar way the absorptive parts F are obtained corresponding to cutting of p

Reggeons a factor

s
(-ish )=T'|;(2hn1) )

appears from (23) and each uncut Reggeon may be situated both to the right and to the left of the

line of cutting; this gives a factor
*
i +(i = -2 .
I | [(‘pv) (b ) ] | | (-21mb,)
y=pt+ y=p+1

Hence

(v)_ _qvok
F- Z TT( 0" (2 my), (30

{n}p=t

where summation is made over all possible sets of cut Reggeons. Since

Impp - ieé[aﬂm) 1 -Q.sz] '

all the terms in (30) are the same. Since p Reggeons may be extracted from v Reggeons in C ko
v

v!i/p!(v-p)! ways, we finally get (n#0):

FW_(cqy Rk I l (2 Im®
18 v
p=1

o) (31)

v)

The expression for FO

may be written in the form

(v)_ ; 4 412 ; _ i ¥
F -T‘[[(mﬁ)m%)] ﬁ(lbﬁ) ]’Tump) .
B=1 Bg=1

p=1
where the last two terms take into account the fact that all Reggeons cannot be at one side of the

cut line. Finally we have

v
(v) _ v . .
Foll=(-1) I l (ZImep)+ZIm -i l I (19'3) . (32)
B=1 B=1

As before, we get from (31) and (32)

v v
2 5 2m | o] aby). (33)
w=o * B=1
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(v}

which coincides with 2Im A'"’ from (23). Note that the relations

v A\ 4 v

ZuF“”(s,t)= 0T @ mby) Z(‘“u"c"w’ 4
0 =1 g v

p=1 p=1
v .
z pla-1). .. (u-m+i)F’f")(s.t)=0 (34")
p=m

follow from (31); they are found to be very important in calculations of corrections for inclusive
cross sections.

Generalization to arbitrary Regge diagrams is self evident. The contribution of each diagram
may be written as an integral of the type (23) of the product of I)i and vertex functions. Here the
integration is performed over the values of energy variables of different Reggeons. Evidently
it is always poasible to isolate the ''complex' part of the integrand in the form (23'). Further,
absorptive parts are found in a way similar to that used in the absence of interaction of Reggeons.
But there is one important distinction. The cut line passes through a number of vertices of inter-
actions between Reggeons and we must know what happens to these vertices at their "cutting".

The vertices Nv are not changed by cutting for any diagrams in the perturbation theory.
That means firstly the exact vertices Nv', in which interactions between Reggeons are taken into
account, also are not changed by cutting and secondly T 1o vertices of the transition of one

Reggeon into v Reggeons are not changed by cutting

All the other vertices T sV, vy 22
(7T 1 2

generally speaking are changed by cutting. This can be seen both from the consideration of
Feynman diagrams for I‘Vi_.v2 and also from the following observations. Let us take the simplest
diagrams for I‘Z_’2 in the Reggeon perturbation theory (the constant r is small).

[ S TP ST S P 2 3 2 A 2

t 35

= + + + + + (35)

z 2

3 4 3 4 3 4 13 4 3 4 4 3 4 3
(a) (b) (c) (d) (e) 1)
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We see that if all Reggeons are cut [or at least (1-2) or (3-4)] then all the diagrams (2) - (f) con-

tribute to the cut T" But, if the cut, for instance, passes between Reggeons, then only the

22"
diagrams (a) and (b) contribute; the contributions of the other ones will be asymptotically small.
Hence, the ratio between values of cut vertices will depend on the value of r.

Thus, in the general case, to calculate absorptive parts of arbitrary Reggeon diagrams, it

is also necessary to know the values of the cut vertices.

3. Inclusive Cross Sections

It is convenient to describe inclusive processes pa+pb—— p+{X}, pa+pb--p1 +Pp, +{X}, etc.

by means of invariant inclusive cross sections

_ 3 3o
f,(p) =(2m) Zpo —3
ap

6 666
1,(py, Py) =(2m) "4p, oD, o 33 |’ etc.
Py P,
For any partlcle of momentum p we choose as kinematic variables, pl s My = ln(p +p) s M, =

ln(pb+p) , where ny +r72 £, and limit ourselves to consideration of the central region, where

Ny, My~ Here the main, energy-independent contribution to f1 appears from the diagram: 8.9
%
t. Lot
k!
p —<-—P T (36)
W&) 3 a2
- S
PL —_— 5 h }
4
and has the form
2 2
5 (o5 =) ~e 0% (p7) gy (37)

The meaning of the quantities in (37) is clear from (36). Diagram (36) for f, is obtained from the
Reggeon diagram for forward elastic scattering. The absorptive part is taken from it and a particle
with the momentum p is "isolated" from the Reggeon; as a result a new vertex ¥ (plz) appears in the
diagram. A similar procedure leads to more complicated Reggeon diagrams for f, 1 Namely, we

take one of the asymptotically surviving absorptive parts of the diagram for A and join the ver-

22

"cut" lines. Since in a given Reggeon diagram the other lines may be both

tex ¢ plz)to one of the
cut and not cut, it is also necessary to sum up all contributions obtained in this way over all these
possibilities. Thus we come to the Reggeon diagram (38) for f1 in which p of the v Reggeon
lines are cut. In fact, we consider the general case, since the vertices themselves can contain

arbitrary Reggeon diagrams. To obtain the contribution of (38) to ft' it is necessary to perform
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(38)

the following operation,

(abs)S[-i(ipi)(ipz)....(ibv)] (39)
with the Green functions of Reggeons and in addition make the substitution
2
Imd ~ (Imd) - ¢ (pl )(Imb). (40)

Since such a substitution can be carried out for each cut line, an additional factor p appears in the
contribution. Then, taking into account (31) we obtain the expression for the contribution of (38)

to f1:
v

() ’F”'”v-“"‘c.,u/dﬂv'Nv{ [ 212, "“(plz)k"bd} .

-(zlmbz)(21m3>3)... [(ZImbz)] N .

(41)

Here it is assumed that the vertex Nv is not changed by cutting. Hence, we obtain the relation

v v,
z (g) =0 ,vz2 (42)
p=1

similar to (34), from which it follows that diagram (38) in general do not contribute to f1. Only
the contribution of diagram (36) with the exact Green functions and vertices” is left (it will be con-
sidered in the next section). If we imagine that Reggeons do not interact one with the other, then
t‘1 is given by relation (37) and corrections to f1 that vanish as powers of 1 /ni are absent. The
first nonvanishing corrections for (37) are obtained by taking into account nonvacuum trajectories
in diagram (36); at the same time there are logarithmic corrections in total cross sections due to

diagram (17). But, in fact, the interaction between Reggeons is not zero. This leads to additional

*We remark here that due to (42) eikonal raodels!® with "input" trajectory a(0)>1 appear to be incon-
sistent. Be?a]lxse of the described compensation only the pole term was left in f,, i.e., f (p<,n, £)
~ y(pp)s* (0}~
tion

in the central region. Furthermore, in the sum rule related to energy conserva-

-2 M n-t 2
%tot fd P n/ dne” 1 (pj. > 5)5 L.
1

we choose the upper limit n, = C¢ in such a way that 1> C>2 - «(0). Then on the one hand, we do
not leave the central region and on the other we come to a violation of the sum rule if a(0) -1 > 0.



[beyond (36) and (38)] contributions to f,, which correspond to the situation when the "observed"
particle is "emitted" from the vertex of interaction of Reggeons. Such a mechanism of particle

production gives, for instance, from the diagram for AZ_.z the following diagrams for f, i

T %

2 2
The contributions of these diagrams to fi are small (~1 /n1 Ny, 1 /"1"’2 ).
Let us consider now what diagrams will be important for double inclusive cross sections
2 _ 2 _ 2
f, (py, py)- The arguments of f, are n, =In(p_+p,)", n, =In(p, +p,)", n3=In(p, +p,)", n, +n, +ny
=g, Py and Py When all n; are large, the main contribution to fz appear from the diagrams

o —)E—’— [

A —d—e—p,

X (43)
&+1+&
FL""L—P;
and has the form:
t(p, . D mww)=g¢(p 2)¢(p z)g=o"f(p)f(p) (44)
2'T41° F21 0 a 41 21 b tot 1547 71'F27"

Let us find now what diagrams will lead to corrections for (44). Let us consider the diagrams for

fz, similar to (38)

L Ny ta P N;’ [

| \‘QB

Ph N f » ,' Pb

R

where, just as in (38), it is necessary to sum over the number of cut Reggeons. Using relations
(34) and (34') it is easy to see that the contributions of all these diagrams (with exact Nv) are can-

celled like (42), except for the two Pomeron contribution.

1 o
n Eb—z.‘;«— 8 (45)

s S S

b, >




There are also diagrams for f, where Reggeons interact "between" particles "1" and 2"

(46)

Since the vertices F"i"“z forv,, v, > 2 are generally changed by cutting the diagrams

(46) all contribute to fz. except for the cancelled diagrams
~—

0

Similarly to the case of f,, small contributions are also left when the "observed" particles "1"

and "2" are produced at the point of interaction of Reggeons:

s ) h h ¥ N
b, LS Y
* . b 3

4. Main Corrections to Inclusive Cross Sections in the Central Region

As was shown in the previous section, the dominant contribution to f 4 asn, n,~® and the
main corrections to it are determined by diagram (36) with exact vertices g and exact vacuum
Green functions® . Having the aim to find the main corrections for f{ (o) of the order 1 /171, we

can limit ourselves to terms linear in g and quadratic in ® in the triple-Pomeron vertex r (we re-

call that r =0 when ki s 010). Hence it suffices to find the total contribution to f, from the diagrams

(47)

(c) (d) (e)
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The contributions of the diagrams (b -e) to f1 have the form

t(b)= [ /nidgi zc (&1)] ve,.
1 a

£ =g v [ {"ngzz;‘éz’] ,

(48)

0o, [ [ w00 [ o,
1 1

£ - [[nzngZ(gz) fnz_ézdgz']gb.
1 1

1
wherez (§) and Z(g) are contributions of Reggeon loops:
i
2

2
%k 20"kt
Sy () o)
i 4(21)
2 2
dx —2a'k g
Z(g)=:/. L r(klz)e 1 r(klz).
Y27

(49)

2
At small kJ_

2 2 2
=28a" ~ .
l(kl ) Ba ki . Ni(kj.) Ni
Therefore at large £ we get from (49)
2

N
"y =L =L B '
D= 2T D 3T (49"

1

Further, the expressions (48) for f(b)—t‘e) must be renormalized, corresponding to subtraction
of polynomial parts in n from them. Such renormalization is unambigous. Adding the subtracted

terms to the contribution of the pole diagram, we get the renormalized pole term,

#(a) _
=g gy

Renormalization of the integrals in (48) is best carried out by means of the identities

["‘dg,z(gi) =[“’dgiz'(si)- /‘"dgiz"(gi).
e

(50)

[nldsiz(éi) /ni-g’dt;1 =jm(n1-§1)z 68, + fTag e, -np ey,
1 1 n,
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1
Taking into account the behavior of Z (£) and z (€) at £ ~= we note that the last integrals in (50)

already do not contain polynomial parts. Thus the renormalized expressions for ?(l) will take the

form,

g e,

. S Sl s
1

]
1 [ 0,3 6] e ()

)

° 2
19, [nf dey(8y '"1’2‘51)] vep =g,y (-32_5:0'1)—1) ey
1

- 2
e =g ¥ [ n/ dg, (g, - "Z)Z(gZ)] 8, = &Y (- 32155"""'2 ) o'
2

Adding these contributions we get

2 fa %
f1=ga¢(pl)gb(i+—3+— . (52)
St (N, -g.p). (53)
1

With the same degree of accuracy as before, i.e., omitting all terms of higher order in 1 /ni‘
expressions (53) may still be simplified. This follows from the fact that in the regime of constant
total cross sections a number of additional conditions should be used for the vertices of interaction
of vacuum Reggeons. Firstly, at vanishing Pomeron momentum all vertices of diffraction associa-

tion must vanish. Therefore Ni takes the eikonal form, Ni = giz, and

__B
€~ 2wt (gi -P).

2
Further it was showrl6 that under the same assumptions all gi(O) are equal: gi (0) = atot(m)‘ inde -~

pendent of the types of colliding hadrons. In this case, all the ¢; are the same

-.._B -
c.-c—m(m) B), (54)

1

and fi takes a form symmetric in ni:

2 1 1
e, nys n2)=otot¢(pl ) [1 +e n—1+n_2)] (55)

Evidently, f1 will have a maximum at ny=mn, =£/2 if c< 0 and a minimum if ¢> 0. In the variables

E=ngtn,, y= (0, - nz)/z. we have
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_ 2 4ci
0. 3. £) =0, (o} ) (1+——-§—€2 = )- (56)

Let us only note that the sign of ¢ cannot be determined from theoretical considerations at present.
It is interesting to compare the main asymptotic corrections for f1 with the corrections of
the order 1/¢ for %ot which are determined by the diagrams:

708

Renormalizing their contributions similarly to (51), we get:

. 1 1
Ttot(8) = Ogor(®) [1 JEZErN £, g P, g ] -

(57)
(g-B )2 32na'c2
= Tt [1 '321m'g]=°tot(°) ( Y ) .
. Bt
Let us consider now the main corrections for the double inclusive cross section fz and con-
fine ourselves to the region Ny, N3 >> n, >>1,, i.e., we look for the main corrections in 1 /nz.

It is easy to see that contributions to fz ~1/ n, may appear only from the diagrams

1
Yy
3 *f
", Ty (58)
P b
1
1‘5

(a) (b)
The contribution of diagram (a) at large n, is easily calculated and has the form

(@) 2 Ez fn{dg fns dé, 2
=g ¢(P ) ] — 3 "‘(P )g =
2 1 1 3 2
a 1 )] 4wa’ i 1 (’72 +§1+§z) 1)°b

a8feid) (s, ) ¥{oat o

The contribution of diagram (b) is determined by similar integrals, with the result,

(59)

(b)_ _1 _(a)
f.2 = 4f2 .
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Then from (44) and (59) we get the expression for the two-particle correlation function,

_GPy ) f{p ) £(Py) 4 52

P = \h(p 2)¢ (p 2) (60)
2 %ot %ot %ot ™2 32mat 11 21

It is interesting to note that the sign of p, at n, >>1 is quite definite (positive).

5. Fluctuations of Distribution of Density of Produced Particles

At £ ~o the average number of particles produced in an interaction is great (= at). Hence
the final state of an individual event may be described by means of the density of the produced
particles v (n) in rapidity space. Then the total number of particles,

£
n(g) = / dnv(n), (61)
1
will fluctuate from event to event. As was discussed in the introduction, "switching" of the

Pomeron cuts leads to a very nontrivial structure [of the form (7)) for the distribution of the

quantity n(§). We now try to determine how often different types of functions v(n) are encountered™

and what physical mechanism is responsible for such fluctuations.

Averaged over many events, the quantity v(n) is expressed by means of the inclusive cross

section,

4 r2
Wm=o i [ ap fy(p . n. 8. (€2)

Each cut Pomeron "gi long'; contains on the average a £, particles. Therefore the mean
distance between particles is ~a ~. Evidently the density v(n) has meaning only after averaging
over a distance long in comparison with a,_1 ; such an averaging will be understood in what follows.

There are two mechanisms leading to a deviation of the function v(n) from the asymptotic
mean value v(n)=a. The first is the near correlation in a Pomeron, leading to fluctuations with a
period of the order of some units of 3-1. Such a correlation is related to nonvacuum Reggeons. o
As was already noted, we shall assume that an averaging is made over such fluctuations. The

second mechanism is related to Pomeron branch points; it leads to long~range fluctuations of v(n)

with the periods up to £. These fluctuations will now be considered.

What type of functions v(n) can be "encountered'? In section 1 we saw that all inelastic pro-
cesses related to the absorptive parts of Reggeon diagrams may be divided into topologically non-
equivalent classes. It is seen at once that a certain function v(n) corresponds to each of these

classes.

*Correctly defined probabilities of encountering different v(n) are given by the variations of some
functional W [v(n)] , which in its turn may be expressed in terms of all higher inclusive cross
sections. However, here we shall not dwell upon this problem and will make only the ''qualita-
tive" considerations given in the text of the paper.

s
These fluctuations of v(n) related to nonvacuum Reggeons are of Poisson character (see, for
instance®“) and decrease exponentially with an increase of 7.
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All these functions are of a step type and take integer values at each point (if we measure n in the

units of a-i, the integers being equal to the number of cut Reggeons "at a given 1. "* For instance,

W
E N g M o 2 e
i
(63")
+ g_(- e N
§ t LI 1.

LU § S

oAt

I" 11.‘_ . (63'")
4
1 [l 3 ’L

",

The functions v(n) shown above correspond to the absorptive parts of Reggeon diagrams with bare

Pomerons. Actually, only by cutting a bare Pomeron (with a finite radius of correlation in the
ladder) do we get contributions to v(n) independent of n in the range gi <n< gz, where gz —gi is
the energy invariant of the cut Pomeron.

However, we must have «(0)< 1 1 for a bare Pomeron. ** Therefore the probability of
finding a homogeneous configuration (63) disappears as a power in s. This also applies to any con-
figuration with a fixed position of all steps. Therefore the most important problem is the finding
the mean number of different inhomogeneities in the function v{n) corresponding to predominant
events.

Let us explain the suggested method by taking the example of the simplest inhomogeneity of
v(n), i.e., a gap, as shown in (63'). It is convenient to introduce f1 (X, n, £), the inclusive cross
section for production of the gaps of length \ and rapidity=n. The contribution of the diagram
(63') for the fixed ny and n, with bare trajectories gives the cross section for production of gaps
with the boundaries n 1 and n, in the background of a uniform distribution. Let us also consider

other diagrams with bare Pomerons, which correspond to the functions v(n), which have a gap on

*The system we consider has the properties of a one~dimensional gas in the volume £. A number
of properties of this ""Feynman gas' were discussed in literature (see Refs. 4 and 5). The non-
exponential drop with the distance n of the correlation function p, shows that the case of constant
total cross sections corresponds to the ""Feynman gas' being at e critical point. From this
point of view, the step function v(n) corresponds to the fact that at the critical point the system
is divided by fluctuations into regions which are in different "phase' states. It means that there
are "phases' with different densities v =0, 1, 2,.. for the "Feynman gas". And if the Pomeron's
@(0) < 1 then the long-range fluctuations of v(n) are damped as '"1 -nﬁ'iexp {~[1-a(0)] '"i —nzl}.

%%
Here, "bare'' means homogeneous distributions in n, with all screening taking into account.

-408 -



the interval ("1‘ nz) while outside this region they take arbitrary values. [An example of such
diagrams is given in (63'')]. It is natural to identify the total contribution of all such diagrams
with bare Pomerons at fixed Ny, M, with fi()\1,n1, £). But, on the other hand, the sum of these
diagrams may be reexpressed as the sum of Reggeon diagrams with the exact, renormalized ver-

tices and Green functions of Pomerons, for which «(0)=1. Then we shall have

f
n 1
. } An R (64)
f,0nm, 8 = g:? +
PR } } -+

For \ >> 1 only the first diagrams predominate in this series. Hence

2 g3
Loum p=g[- Y] e=g 3 (65)
1éma'\

where we have used expression (49!) for z (\), and an extra (-1) appears due to cutting ofz )
"between' Reggeons. Diagrams (64) for fi may be naturally compared to the diagram (36) for f,.
We see that (abs) z (\) plays the role of the vertex y in the diagram (36). Because of such a
similarity in the structures for the diagrams for £ " and f 1 the conclusions of the previous sections
concerning f 4 are naturally transferred to f 1

Further, the function f, which is an inclusive cross section must satisfy the normalizing

1
relation

S0 n, 10 =0, <mOn)>, (66)

where <m(\)>d\ is the mean multiplicity of gaps in v(n) with the dimensions (\, X +d\). Substitut-
ing (65) into (66) we find

2
B . (67)
16wa'\

<m(N)> = £ [(abs)Z(X)] =t

This relation is interesting firstly because it gives an explicit form of <m(\)> at large X and
secondly it gives a new s-channel meaning for the self-energy part ) (\).
Evidently, the above considerations are at once transferred to other forms of inhomogeneities
of the function v(n). Diagrams (64), but with both cut Reggeons mz \)
¥ M) 4
11.

)
i. . (68)




also give an inclusive cross section for mesa* production[v(n)=2 in the range ng, Myt \]. Using

(26) and (28) we get immediately

<m(n) o=2< m(x)>gap. (69)

Similarly, the absorptive parts of more complex diagrams forz (\) give the inclusive cross
sections for production of the analogous inhomogeneities of v(n).

Evidently, for large \, inhomogeneities of the gap type and of the mesas with v =2 predominate,
since ;1 for more complex fluctuations contains a higher power of \ in the denominator. ** Hence

below we limit ourselves to consideration of those simplest inhomogeneities of v(n). The quantity
m(x)=fd\'<m(x')> (70)
N

gives the mean multiplicity of gaps (mesas) with dimensions larger than \. We have from (67)

2
m\)=¢ g 7
32wa'\

(71)

Hence we find that the mean distance between neighboring gaps with dimensions ~\ will be of the

order,

1]
&’;"—xz»xatx»i. (72)

B
Thus we see that gaps form a ''rarified gas' for which the mean value of the correlation function
is 52 ~1 I)\Z << 1. It therefore follows that the probabilities Y to find m gaps or mesas with
dimensions larger than A >> 1 in the system are distributed according to the Poisson law with the

mean number m(\):

e—m()\) Ty n
Wm=T[In(X)] . {73)

For \ -)‘max= B NE /321" the quantity m(xmax) ~1. This means that the gap (mesa) spectrum is

concentrated in the region

XmaXEXZXO"'i. (74)

When A >> Xma.x the quantity m(\) << 1 has the meaning of the probability of finding one gap (mesa)

with dimension =\ in an individual event.

Our considerations show that v(n), on the average, must have (with the weight ~1) the
following structure: there is about one gap (and two mesas) with dimensions ~ )‘max =y ~/E ; of the
order of four gaps (and doubled number of mesas) with dimensions ~xmax/2. etc. down to values of

\ of the order of the correlation length.

*Mesa is Spanish for table or plateau. In the American southwest, geological formations called
mesas, closely similar in shape to the rectangular enhancements in v(n) shown above, are a
familiar sight to the traveler. -Ed.

#k
We are not going to consider here the problem of the "fine structure' of the mesas. The dimen-

sions of such inhomogeneities will be < N\/32ma'. In such a case, for "observation" of the in-
homogeneities of v(n) with dimensions 2\, it is necessary to average v(n) over the intervals
< B NN/327a'.
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Thus we see that the structure of the actual function v(n) is very inhomogeneous* and will
only weakly resemble v(n) = constant, characterizing a simple multiperipheral chain.
In conclusion we indicate what phenomena may be expected in individual many-particle events,

at nonasymptotic £. When £ is such that xmu =y \fE sxo, where \_ is the correlation length re-

lated to nonvacuum Reggeons (xo ~1-2), most of the events will be goenerated with homogeneous
v(n). But wheny 'JE becomes greater than xo, a gap or a mesa with dimensions larger than the
correlation length will be encountered in individual events (with the weight = 1). With further in-
crease of £ a second inhomogeneity may appear, etc.

The described behavior of v(n) resembles that discussed for many years (mainly in the
literature devoted to cosmic ray physics): observation of considerable inhomogeneities in individual
many-particle events whose explanation was given (in the same literature) in terms of a fire-ball
hypothesis. However, our considerations show that large inhomogeneities of v(n) perhaps may be
also explained without new physical ideas.

Finally, we should like to thank L. N. Lipatov and K. A. Ter-Martirosyan for interesting

discussions.
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Appendix
We give here simple arguments showing that Nv is not changed by different cuttings.
The vertex Nv appears in calculation of the asymptotics of Feynman diagrams

*Some conclusions of this section are similar to results available in the paper of K. A. Ter-
Martirosyan presented at the conference, paper #932.
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k;
- (A1)
and may be written in the form
- 2

+o v d(a.s)d(a,s) v vy _dp.d p. J.

i i ~ 1 il i
N = — 6 (a, +a) —— g.B. R, {A2)

voa 4oz, -7 [Z i 1]U 2 v

where
p,=ap, +B.p +p. . k =@p ' +Bp t+k L (pr) =[p ) =0
i” %Pp TPiPy TPy s KT APy TRPy TRy Py :
Zi=p12-m2+is, 2i=k2-m2+ie,

.Ii are complex momenta of Reggeons and R is the amplitude of the process

P_V

(A3)

" h r:. k‘ P-. L'

In (A2), integration over ., ;i is carried out with the Feynman ie rule, and over p with finite
limits (ﬂi> 0). It is also important (see Ref. 11) that the factors Bi 1 do not lead to new singulari-
ties in . Ei.

The main observation for us is that the amplitude R is integrated over the a -variables of all
lines (pi, ki) completely symme trically, independent of whether given lines are connected to one
Reggeon or to different ones.

Let us consider the absorptive parts of the diagram (A1) when p of the v Reggeons are cut,
1, are on the left-hand side of the line of cutting and the other 1, on the right hand.

Then the cut vertex Nv takes the form

1y 1)) o +o_y d(a.8)d(a,s)
N = [ aysly~(ata. )} - .
v 0/ L -':n/ T:T Zi . Zi
(A4)

2
v dg.d p. J,
- 6[ > (ai+51)] T:[ —ep | [(abs)wn],
-
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where (abs)WR is the absorptive part of R in the variable W =ys corresponding to the following

regrouping of lines

(A5)

But the vertex Nv itself may be written in the same form (A4). Thus, we can always multiply the
right-hand side of (A2) by
+©
f dyd[y-(e+ep)]

-

and then deform the contour of integration over y around the right-hand cut of the amplitude R.

Then we come to expression (A4) for Nv.
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