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Introduction 

Description of the asymptotics of strong interactions by means of the Pomeranchuk singu­

larity (Pomeron-P) involves ideas both on processes of a diffractive type and inelastic processes 

giving the main contribution to total cross sections. As is well known starting with the work of 
f

Amati, Stanghellini, and Fubini Pomeron-exchange, with the use of Feynman diagrams. may be 

described by a set of ladder-type diagrams 

(1 ) 

A characteristic feature of inelastic processes at asymptotic energies. described by the 

above diagrams. is a uniform distribution of produced particles (in the sense of inclusive craBS 

sections) in rapidity (except the region of longitudinal momenta close to the momenta of colliding 

particles) that leads to the logarithmic increase in the multiplicity of produced particles, ii:::: a~, 

where ~ = In(s/ma~)' 

The second important feature of such diagrams is that in each individual event the uniform 

density appears only after averaging in fact a non -uniform distribution over ranges of rapidity 

larger than the characteristic scale ~O - a -1 - 1, determined by a ladder step. The probability of 

fiuctuations with the scale much larger than ~O decreases exponentially. 

It was understood that these properties do not require a description of the interaction 

literally by means of ladder diagrams, but may be caused by a more general phenomenon, by the 

absence of large transferred momenta at all stages of interaction. 

As is well known, in addition to Potneron exchange, the processes of exchange of several 

Pomerons. corresponding to branch points in the plane of complex angular momentum, give a 

considerable contribution to the interaction at high energy. 

It is very interesting to determine what changes of the properties of inelastic processes are 

caused by taking into account multiple-Pomeron exchange. In this paper we shall try to analyze 
2

this problem. The Reggeon-diagram techniQue was used to describe multiple-Pomeron exchange. 

The contribution to the total cross section of interaction corresponding to Pomeron exchange may 

be given by a number of diagrams of the form 

cr (2)
tot 
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We shall show that even when multiple-Pomeron exchange and interactions of Pomerons are 

taken into account. we may preserve the first of the described properties of inelastic processes, 

i. e .• the spectrum homogeneity (in the sense of inclusive cross sections) and ii' "'~. However, 

the scale of averaging at which the uniform density is reached and the probability of fluctuations 

(in each individual event) are found to be quite different. This difference from the ladder situation 

at ~ - 1XI is caused only by Pomeron interactions. A uniform density appears only after averaging 

over a rapidity range ~ V ~ where V is determined by the triple -Pomeron vertex. The probability of 

fluctuations with the dimensions (in the space of rapidity) X. >" ~ decreases as "Z;AZ. 

The distribution of large fluctuations is characterized by the following simple property: 

fluctuations of the dimensions X. are, on the average, at a distance 0 f - \ ZIVZ > > "'. from one 

another in rapidity. It is interesting to note that for these large fluctuations the density of 

particles is either zero or double the mean deJaity and the latter is encountered twice as often 

as the former. 

On the whole the situation reminds one of the behavior of matter at the point of a second­

order phase transition, when there are large fluctuations of the system in which various volumes 

of the matter are in different phase states. 

The main content of the work is summarized in the following paragraphs. Q1r analysis 

proceeds from the representation of the total cross section as the sum of contributions of Reggeon 

diagrams and assuming that Reggeon exchange corresponds to a uniform density in rapidity (in 

the sense of the inclusive cross section) with the mean number of particles it ~ a;. 

If Pomeron interactions are not taken into account the contribution of multiple -Pomeron 

exchange leads to the follOWing phenomena. Corrections of the order t I;. t I; Z, .•. for partial 

cross sections an appear in the main re~on n - a~. New processes are generated with the num­

bers of produced particles multiples of n. Then the distribution over the number of particles has 
3

the form

6'.. 0;­

1 
ft
 

?2.ti'
 

(3.)r(
A ~ 

2Q.~"''' 3-':J 44.~ "' 
1where the cross section O'kn - t Itk - . Note that from the point of view of similarity with the gas 

models4,5 the appearance of oscillations is associated with the finite dimensions of the system 

(the boundary effect). It turns out that corrections to the partial cross sections an and the values 

of these cross sections O'kil ~ k :1= 1 ~ are related in such a way that they cancel each other when 

the inclusive cross section is calculated. Let us explain by taking the example of two Pomeron 

exchange. Such an exchange leads to generation of new processes with the cross sections 0"qe' 

O'zn and to a negative correction O'~ caused by screening 
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(4) 

where 4aqe = -a:r Then the correction for the inclusive cross section in the central region= 2aZIr 
is 

3 3

o(a
3~ ) '" a"~ + 2a"~n = o. (5) 

ap 8p 8p 

Thus when Reggeon interactions are not taken into account the invariant inclusive cross section 

3
3 a O' 

ft(T)·;,p!) = (21T) 2PO-3 (6) 
8p 

(where T) ~ In Po is the rapidity of the observed particle in the central region) does not depend on 

T) and ~, up to corrections of order 11 s . 

When Reggeon interactions are taken into account, smoothing of the distribution 0'n takes place 

6'", 

(7) 

-+-~--+----+-_................~--.tI.~.....a.."'=--r-=-----t-""n,
 

0..1 .2AJ Sa] ~") 
The amplitude of oscillations in the distribution an is determined by constants of the Reggeon 

3
interactions. The inclusive cross section of the process Pa + Ph - P + {X} in the central region 

contains logarithmic corrections in energy 

1f. =0' ~(p 2)[1 + c + C 
z ], (8) 

1 tot 1 Y1 Tl
1 Z 

where TJ =In(Pa + p)Z, T)Z =In{Pb + p)2 and the constants c
i 

are related to the value of the
1 

triple-Pomeron vertex. If all total cross sections are equal asymptotiCally6 then f 1 will be 

universal within the accuracy t IT'l and at the same time c =c Z.
i t 

The correlation function of two particles produced in the central region with the rapidities 

T) 1 and T) 2 has the form 

The last section is devoted to studies of fluctuations in individual events. In particular, 

it is shown that the distribution over the number of fluctuations ~ the dimensions of which are 

-391­



larger than X. where X. > > X. ' is a Poisson distribution with the mean number of fluctuations
O 

(10) 

1. Absorptive Parts of Reggeon Diagrams in the s -Channel Classification of Inelastic Processes 

Let us discuss first the structure of absorptive parts corresponding to the vacuum pole. It 

is known that the vacuum pole leads to a uniform spectrum of secondary particles of the tyPe 

~("I2.)d3p/po' where the function ~(P12) should be assumed to decrease rapidly in P
Z 

for the self 
I 

consistency of the whole scheme. Hence, the absorptive part of the pole may be shown as a gen­

eralized ladder, as indicatedbelow • without specifying the character of the exchange in amplitudes 

A _ · 
Z n 

(t t) 

The simplest example of such amplitudes are multiperipheral ones. 7 but in general the real amplitudes 

A may be determined by many-particle exchange as well. The important thing is that statesZ_ 
n 

with large 4-momenta squared must be suppressed on virtual lines. In such a case intermediate 

states produced by the operation (aba) A(pol) will be approximately ordered by longitudinal
s 

m.omenta; only this fact reflects the chosen image of A in the form of a multiperipheral chain.2_ 
n 

Having taken this picture of absorptive parts for the pole .. let us consider what absorptive 

parts of two Reggeon cuts will not be small when s'" m. The simplest diagram with nonvanishing 

third spectral fWlctions has the form 

(1Z) 

We see that when (abS)sA{2) is calculated.. the dashed line corresponding to the diagram section 

may be drawn in different ways: 



( 13) 

The different cuttings (for instance, 1 ~, 1 above) correspond, in fact, to nonequivalent inelas­1, 
3 

tic processes, and for most of them [for instance. for 1 in (13)] the absorptive parts will not be
3 

expressed by quantities typical of Reggeon diagrams. 

Let us determine what types of absorptive part are not small when;' =Ins - We assertCD. 

that the only cuttings of the diagram that are important are those in which the cutting line dividing 

the diagram into two parts does not leave the internal part of a Reggeon [as, for instance, the line 

1 in (1. 3)]. Qualitatively this may be explained in the following way. A cutting of the type 13'2 
which violates the stated criterion, leads to the following diagram for many particle amplitudes 

I 
I 
I 
I 

I 
I (14) 
J 

I 
I 

@ 
n2 2

We see that in the "left-hand" amplitude q2 _M e 1. » M • because the internal part of a Reggeon 

has sense only when 111> > 1. Since we assume that large q2 must be suppressed on all virtual 

lines, such absorptive parts will be asymptotically small. As for the regio~of small 1'}t' it con­

tributes only to renormalization of the vertex entering the absorptive part. "T' It is easy to see that 

the described property of absorptive parts is common to all Reggeon diagrams. Cuts leaving the 

internal part of a Reggeon always lead to a "hanging multipheral chain" with a large mass and 
2

hence to large qi on the lines in the region of the peripheral chain attachment. 

....Note that just the contributions of cuts with small 111 are important in cancelling the main asymp­
totic terms in planar diagrams. 7 
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Thus, the two-Reggeon diagram asymptotically has absorptive parts only of three types, 
(is) 

(a) (b) (e) 

determined by the number of cut Reggeons. Therefore, asymptotically the total absorptive part 

of the contribution of two Reggeon diagrams [2 Im.A(2)] is given by a swn of only three absorption 

parts corresponding to the cuts in (i5). 

2 ImA(2) = F (2) +F (2) +F (2) ( 16)o 1 2· 

Similarly for the diagram 

( 17) 

with v Reggeons there will be v + 1 types of absorptive parts not small asymptotically 

( 18) 

2ImA(V)=k F(v} (19)
fJ. ' 

J.I.= 

corresponding to simultaneous cutting of the IJ. (fJ. = 0, 1, 2, ..• ) Reggeons marked with crosses. 

This property of absorptive parts is easily generalized for diagrams with arbitrary Reggeon 

interactions. We see that for each Reggeon diagram. for A there are only several types of2_ 
2 

absorptive parts not small asymptotically. For instance, for the diagram 

(20) 
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these parts will be 

" f I I I (20') 

iiI,, I 

Let us now discuss what processes correspond to absorptive parts of Reggeon diagrams. In 

the simplest case of diagram (tSa) the absorptive part corresponds to the process of production of 

a small number of particles with momenta close to those of incident particles, i. e., to quasi­

elastic processes. The absorptive part of diagram (i5b) corresponds to processes giving the main 

contributions to the cross section~ to the same processes as the ones described by the absorptive 

part of the pole term with mean multiplicity equal to~. Thus (iSb) is a correction to the ampli­

tudes of these main processes caused by screening. The absorptive part of diagram (i5c) corre­

sponds to processes with the mean density of particles per rapidity interval twice as large as that 

for processes corresponding to the pole term. These three absorptive parts lead to processes with 

the cross sections C1 , C1~ ~ C1 - discussed in the introduction. qe n 2n 
Similarly when cutting more complicated diagrams~ absorptive parts appear corresponding 

either to corrections to the main processes, or processes in which at some rapidity interval there 

are no particles and in other intervals the particle density is a multiple of that in processes of the 

main type. 

This result may be shown graphically in the following way. If we take an amplitude for the 

production of a given number of particles n > > 1 in the form of a combination of diagrams it is 

...{]+I+ ~ + ) +
 

+ {J:+JC+ ... )~ 
A

+
 

;- {]} + lU + ... 
(2i)lc+ 

of -t 

-t {J+! + .... }+ 

-t L ••• 
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clear that. as functions of the kinematic variables of the particles. the amplitudes corresponding 

to diagrams of the classes A. B, •.. do not overlap. Therefore, in calculation of the cross section, 

amplitudes corresponding to different classes do not interfere and the result may be shown sym­

bolically in the form 

(22) 

2. Relations Between Absorptive Parts of Reggeon Diagrams 

It turns out that in a number of cases. the "not small ll absorptive parts of a Reggeon diagram 

may be expressed in terms of the contribution of the Reggeon diagram itself, so that the only 

difference between them is some combinatory coefficient. (In particular. this holds for all absorp­

tive parts of diagrams without interactions between Reggeons.) In other cases, new "cut" vertices 

of interactions between Reggeons will also enter the expression for the absorptive part. 

Let us consider diagrams in (t 7). Their contributions to A _ may be written in the form
2 a

2
of an integral over two-dimensional transverse momenta of Reggeons

iA(v)(S,Q2): SfN [(iiJ .. ) (i~l)".' (i2) )]N dO , (23) 
v ~ v v v 

where 

_ v V dlK 
i<ll :...!... 6(2) (Q-)K ) rr­

v v! ~ i t 2(211')2 

- - ~ -2is the Reggeon phase space, NV(K , ...• K ) are real vertices of Reggeon emission.~ (;. K ) aret V 

complex Green functions of Reggeons. When a simple pole of positive signature corresponds to a 

Reggeon then 

2 
-' 2. e (0) -1 -itra(K )/2

~(s,1(2. ):e at< '=0+0' e 2 (24) 

sin Tfa~K ) 

The quantities in (24) N ' dn are real. and since we are going to be interested only in absorptive
v v 

parts of A(v) in s~ it is convenient to write expression (23) in a symbolic form 

(23') 

We omit the quantities N here. since they are not changed by calculation of the absorptive parts 

of A(v) (see the AppendW. 

Calculation of the absorptive parts of the am.plitude A(v) is. in fact. of a combinatory char­

acter. Let us demonstrate the combinatorics, taking as an example the two-Reggeon cuts. where 

(2.S) 

2
The quantity F o( ) of (t 5) and (i 6) equals the absorptive part in the case when the cut line goe s 

between Reggeons; evidently there exist two possibilities: 
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1 2 1 

Correspondingly we get from (Z5) 

(Z6) 

The absorptive parts F (Z) correspond to Ilcutting" of one of the Reggeons; we have four possibilities1

I 

+ !E
\ 

We get from (Z5) 

Ft(Z) = [(-i6"b ) Utiz)*J+ [(il>z) (-iOP )] + [(ib ) (-i6P )]+ [(-i6b ) (i~1tJt f i z 2
(Z7) 

:: - 8 [ Im~1 rmtJ2 ] • 

where Ell;) = 2ilm1) is a discontinuity of the amplitude tJ over the right hand cut. At a simultaneous 

cutting of two Reggeons we have only one possibility 

1. 2 

We find from (25) 

(28) 

Adding (26), (Z7). and (Z8) we have 

(29) 

This evidently coincides with the value for 2 ImA(Z). which is found directly from (25). Relation 

(29) shows that the sum F 0(2) + F 1(2) + F (2) really "saturates" the quantity 2 lmA(2). Such a result
Z

is not trivially evident. since FeYnman diagrams show (see the previous section) that A{Z) could 

also have other types of absorptive parts. Our argument that these other absorptive parts are 

asymptotically small was based on the fact that for these large q.2 would be on virtual lines. But. 
1 
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in fact, just such suppression of large q.2 leads to a factorized structure of the integrand in (23),
1 

for which relation (f 6) holds exactly. 

In a similar way the absorptive parts F (v) are obtained corresponding to cutting of fJ. 
1J. 

Reggeons in contribution (23). First we consider the case when .... I- O. Then due to cutting of IJ. 

Reggeons a factor 

appears from (23) and ea~h uncut Reggeon may be situated both to the right and to the left of the 

line of cutting; this gives a factor 

If [liPyl+(it>/]= n(-2 Im#:'y)' 

V=fJ.+i Y=fJ.+i 

Hence 

F~vl= L n(-1)v-I1(2ImtJ l, (30)p
{fJ.} ~=1 

where summation is made over all possible sets of cut Reggeons. Since 

s[a (O)-i-aIK 2]
1m#-. =::!:e f3 {3""(3 , 

all the terms in (30) are the same. Since .... Reggeons may be extracted from v Reggeons in C .... = 
v 

v! /JL! (v - .... )! ways, we finally get (/-1/0): 

F (v) =( _i)v-IJ. C .... Tr (2 Iml) ). ( 31) 
.... v r I (3 

(3=1 

. f F (v) b . . fThe expression or 0 may e written In the orm 

where the last two terms take into account the fact that all Reggeons cannot be at one side of the 

cut line. Finally we have 

(32) 

As before, we get from (3i) and (32) 

( 33) 
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which coincides with 21m A(v) from (23). Note that the relations 

(34) 

L
v

....(.... -1) •.• - m + 1) F 
....
(y)( s. t) = 0(IJ. (34') 

....=m 

follow from (31); they are found to be very important in calculations of corrections for inclusive 

cross sections. 

Generalization to arbitrary Regge diagrams is self evident. The contribution of each diagram. 

may be written as an integral of the type (23) of the product Oft>i and vertex functions. Here the 

integration is performed over the values of energy variables of different Reggeons. Evidently 

it is always possible to isolate the "complex" part of the integrand in the form (23'). Further. 

absorptive parts are found in a way similar to that used in the absence of interaction of Reggeons. 

But there is one important distinction. The cut line passes through a number of vertices of inter­

actions between Reggeons and we must know what happens to these vertices at their "cutting". 

The vertices N are not changed by cutting for any diagrams in the perturbation theory.
v 

That means firstly the exact vertices N~. in which interactions between Reggeons are taken into 

account. also are not changed by cutting and secondly r i-v vertices of the transition of one 

Reggeon into v Reggeons are not changed by cutting 

A

, 2. .,. 'II 

All the other vertices r . VA. \1.2 ~ 2 
vt-vz ... 

generally speaking are changed by cutting. This can be seen both from the consideration of 

Feynman diagrams for r v -v and also from the following observations. Let us take the simplest 
t 2 

diagrams for r 2-2 in the Reggeon perturbation theory (the constant r is small). 

x~ X+~+N+\A+x+\y(
 (35) 

1 "t 3 4t 3 4- J it ~ it it 3 1 ~ 

(a) (b) (c) (d) (e) tf) 
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We see that if all Reggeons are cut [or at least (1-2) or (3-4)1 then all the diagrams (a) - (f) con­

tribute to the cut r 2-Z . But~ if the cut, for instance~ passes between Reggeons~ then only the 

diagrams (a) and (b) contribute; the contributions of the other ones will be asymptotically small. 

Hence~ the ratio between values of cut vertices will depend on the value of r. 

Thus~ in the general case, to calculate absorptive parts of arbitrary Reggeon diagrams» it 

is also necessary to know the values of the cut vertices. 

3. Inclusive Cross Sections 

It is convenient to describe inclusive processes P +Pb - P +{XL P +Pb - Pf +'Z + {xl. etc. a a 
by means of invariant inclusive cross sections 

For any particle of momentum. p we choose as kinematic variables, P 2. T)~ = In(p +P)Z, 1) = 
1.1. a Z 

In(P +p)2, where Yl + T}Z ~~, and limit ourselves to consideration of the central region, where
b f 

1)f" TJ - (0. Here the main.. energy-independent contribution to ff appears from the diagram:8, 9
Z 

9-...t. -.,.......-..~-t-. ,
 
'l, 
~ 

i 
(36) 

1lt. 
fl.. ..--1!a.-----. ~- r~ ~ 

'h. 
and has the form 

(37) 

The meaning of the quantities in (37) is clear from (36). Diagram (36) for if is obtained from the 

Reggeon diagram for forward elastic scattering. The absorptive part is taken from it and a particle 

with the momentum p is "isolated" from the Reggeon; as a result a new vertex ~ (PI2) appears in the 

diagram. A similar procedure leads to more complicated Reggeon diagrams for ft. Namely. we 

take one. of the asymptotically surviving absorptive parts of the diagram for A _ and join the ver­
Z 2 

tex ~(PIZ) to one of the "cut" lines. Since in a given Reggeon diagram the other lines may be both 

cut and not cut, it is also necessary to sum up all contributions obtained in this way over all these 

possibilities. Thus we come to the Reggeon diagram (38) for it in which IJ. of the v Reggeon 

lines are cut. In fact. we consider the general case, since the vertices themselves can contain 

arbitrary Reggeon diagrams. To obtain the contribution of (38) to ff' it is necessary to perform 
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(38) 

the following operation, 

(39) 

with the Green functions of Reggeons and in addition make the substitution 

(40) 

Since such a substitution can be carried out for each cut line, an additional factor IJ. appears in the 

contribution. Then, taking into account ( 3f) we obtain the expression for the contribution of ( 38) 

to ff: 

<f/,11 =<-1)v-I1 · I1C: f dnv'N v { [2ImP1·"'~nrmJ)1J}· 
(4f) 

'(2 Imt,)2) (2 ImP3)... [(2 Imt>2)] N • 
v 

Here it is assumed that the vertex N is not changed by cutting. Hence, we obtain the relation 
v 

(42) 

similar to (34), from which it follows that diagram (38) in general do not contribute to ff. Only 

the contribution of diagram (36) with the exact Green functions and vertices* is left (it wUl be con­

sidered in the next section). If we imagine that Reggeons do not interact one with the other, then 

f is given by relation (37) and corrections to f that vanish as powers of f ITl are absent. The
i t i 

first nonvanishing corrections for (37) are obtained by taking into account nonvacuum trajectories 

in diagram (36); at the same time there are logarithmic corrections in total cross sections due to 

diagram (17). But. in fact, the interaction between Reggeons is not zero. This leads to additional 

fO
*We remark here that due to(42) eikonal models with "input lt trajectory a(O» 1 appear to be incon­
siste~t. Be~~Y8e of the described compensation only the pole term was left in ff' i. e. _ {f(pI- fl, S)
-~(pl)sa(O in the central region. Furthermore, in the sum rule related to energy conserva­
tion 

-if 2 /1}2 1'}-; (2 )O'tot d PI dn e f t PI _ 11, ; S f. 

TIt 

we choose the upper limit fl2 == C; in such a way that 1> C> 2 - a(O). Then on the one hand, we do 
not leave the central region and on the other we come to a violation of the sum rule if a(O) - f > O. 



[beyond (36) and (38)] contributions to ff' which correspond to the situation when the "observed" 

particle is "emitted" from the vertex of interaction of Reggeons. Strch a mechanism of particle 

production gives, for instance, from the diagram for Az_ the following diagrams for it:z 
~ : 

, ..., 

The contributions of these diagrams to i{ are small ("'" f/ntZTJ'l' {/fl-t TJz.z)o 

Z. Z. 2 
Let us consider now what diagrams will be important for double inclusive cross sections 

f Z (Pi' PZ)· The arguments of f2 are ni =In(Pa +Pt ) , TJz. =In(Pi +PZ) • TJ3 =In(PZ +Pb) , TJt +TJZ +713 
~~. Pi! and PZ ° When alllli are large, the main contribution to lz appear from the diagrams

i 

(43) 

and has the form: 

(44) 

Let us find now what diagrams will lead to corrections for (44). Let us consider the diagrams for 

fZ' similar to (38) 

N:., 
p.. ---::»--......_----~ 

Ny 

where. just as in (38), it is necessary to sum over the number of cut Reggeons. Using relations 

(34) and (34') it is easy to see that the contributions of all these diagrams (with exact N ) are can­
v 

celled like (42), except for the· two Pomeron contribution. 

';'~~I
 (45) 

I\. tL 

P" r", 



There are also diagrams for f where Reggeons interact "betweenII particles "i II and liZ Itz 

(46) 

Since the vertices r -l.4z forv V ~ Z are generally changed by cutting the diagrams
Vt t , z 

(46) all contribute to fz, except for the cancelled diagrams 

Similarly to the case of f , small contributions are also left when the "observed II particles "f"t 
and liZ II are produced at the point of interaction of Reggeons: 

4. Main Corrections to Inclusive Cross Sections in the Central Region 

As was shown in the previous section, the dominant contribution to f as n
i

, nZ - CD and thet 
main corrections to it are determined by diagram (36) with exact vertices g and exact vacuum 

Green functions~. Having the aim to find the main corrections for ff (en) of the order 1.. tnt' we 

can limit ourselves to terms linear in g and quadratic in Z,) in the triple - Pomeron vertex r (we re­
1

call that r =0 when k =0 °). Hence it suffices to find the total contribution to f from the diagrams
i1 t 

'A­
f i'I 
~ 'II 

tt ~ (47) 
~z

i ~t t ~1 

rJ \ 

~ 
.. ~I 

~1. 

(b)$~ M. 
(c) (d) (e) 
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The contributions of the diagrams (b - e) to ff have the form 

(48) 

where 2: 
1 

(49) 

2
At small k

1 

Therefore at large ~ we get from (49) 

, .... f Ni~ _ f ~2 
V (~) - -2:-32f' ~(;)--3-f6I' (49')
L i ; na L ; 'fI'a 

Further, the expressions (48) for Ib)_t e ) must be renormalized, corresponding to subtraction 

of polynomial p~ts in l1 from them. Such renormalization is unarnbigolls. Adding the subtracted
i 

terms to the contribution of the pole diagram, we get the renormalized pole term, 

Renormalization of the integrals in (48) is best carried out by means of the identities 

(50) 
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, 
Taking into account the behavior of L (~) and L (g) at g - CD we note that the last in~egrals in (50) 

already do not contain polynomial parts. Thus the renormalized expressions for ill will take the 

form, 

(51) 

1d) ==g 
a 

Adding the se contributions we get 

(52) 

(53) 

With the same degree of accuracy as before, i. e. ~ omitting all terms of higher order in ifni' 

expressions (53) may still be simplified. This follows from the fact that in the regime of constant 

total cross sections a number of additional conditions should be used for the vertices of interaction 

of vacuum Reggeons. Firstly, at vanishing Pomeron momentum all vertices of diffraction associa­
2 

tion must vanish. Therefore N takes the eikonal form, N =gi' and
i i 

ci :: 3i.rra' (gi -~).
 

6

Further it was shown that under the same assumptions all gi(O) are equal: gi (0) = O'tot(CD L inde­

pendent of the types of colliding hadrons. In this case, all the c are the same
i 

(54) 

and f takes a form symmetric in 71 :1 i 

Evidently, if will have a maximum at 71 =712 = S/2 if c < 0 and a minimum if c> O. In the variables1 

~=111 +11 y= (11 - n )/2, we have2 , 1 2

-405 ­



(56) 

Let us only note that the sign of c cannot be determined from theoretical considerations at present. 

It is interesting to compare the main asymptotic corrections for f1. with the corrections of 

the order f I~ for a ' which are determined by the diagrams:tot 

Renormalizing their contributions similarly to (51), we get: 

(57) 

Let us consider now the main corrections for the double inclusive era ss section £z and con­

fine ourselves to the region 111, 1}3 >> IlZ >> 1 ., i. e., we look for the main corrections in t /n .
l 

It is easy to see that contributions to lz -1/nZ may appear only from the diagrams 

t

t. 'I~ 
PI t V. Pa t 

rl. rt. 
~ 
~ 
1 

r2, fa 

"-1.­

1 
(58) 

'$ 
~ 

(a) (b) 

The contribution of diagram (a) at large 7')2 is easily calculated and has the form 

(59) 

The contribution of diagram (b) is determined by similar integrals, with the result, 
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Then from (44) and (59) we get the expression for the two-particle correlation function. 

(60) 

It is interesting to note that the sign of Pz at YJ » t is quite definite (positive).
Z 

5. Fluctuations of Distribution of Density of Produced Particles 

At ~_co the average number of particles produced in an interaction is great (ii~ a~). Hence 

the final state of an individual event may be described by means of the density of the produced 

particles v (YJ) in rapidity space. Then the total number of particles. 

~ 

n(~) = f dn v(n). (61) 
1 

will fluctuate from event to event. As was discussed in the introduction. "switching" of the 

Pomeron cuts leads to a very nontrivial structure [of the form (7)] for the distribution of the 

quantity n(~). We now try to determine how often different types of functions v(n) are encountered* 

and what physical mechanism is responsible for such fluctuations. 

Averaged over many events. the quantity v( Y) is expressed by means of the inclusive cross 

section. 

(62) 

Each cut Pomeron II ~i long II contains on the average a ;i particles. Therefore the mean 
1

distance between particles is - a- . Evidently the density v( 1') has meaning only after averaging 

over a distance long in comparison with a -1; such an averaging will be understood in what follows. 

There are two mechanisms leading to a deviation of the function v(Y/) from the asymptotic 

mean value V"['ij1 =a. The first is the near correlation in a Pomeron, leading to fluctuations with a 

period of the order of some units of a -1 . Such a correlation is related to nonvacuum Reggeons. ** 
As was already noted, we shall assume that an averaging is made over such fluctuations. The 

second mechanism is related to Pomeron branch points; it leads to long-range fluctuations of v(n) 

with the periods up to~. These :t1uctuations will now be considered. 

What type of functions v( 11) can be "encountered It? In section f we saw that all inelastic pro­

cesses related to the absorptive parts of Reggeon diagrams may be divided into topologically non­

equivalent classes. It is seen at once that a certain function v(n) corresponds to each of these 

classes. 

*Correctly defined probabilities of encOlUltering different v( n) are given by the variations of some 
functional W [v(n)] • which in its turn may be expressed in terms of all higher inclusive cross 
sections. However. here we shall not dwell upon this problem and will make only the "qualita­
tive" considerations given in the text of the paper. 

**These fluctuations of v(Y/) related to nonvacuum. Reggeons are of Poisson character (see. for 
instance1Z) and decrease exponentially with an increase of Y/. 
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All these functions are of a step type and take integer values at each point (if we measure 1) in the 

units of a -t, the integers being equal to the number of cut Reggeons "at a given T}. U* For instance, 

(63) 

(63') 

Yl'l) 

+ .. ·1 
The functions v(1) shown above corr~spond to the absorptive parts of Reggeon diagrams with bare 

Pomerons. Actually, only by cutting a bare Pomeron (with a finite radius of correlation in the 

ladder) do we get contributions to v(T}) independent of T} in the range ~t < ,.., < ~z' where ~z -;1 is 

the energy invariant of the cut Pomeron. 

However, we must have a(O) < f 11 for a bare Pomeron. ** Therefore the probability of 

finding a homogeneous configuration (63) disappears as a power in s. This also applies to any con­

figuration with a fixed position of all steps. Therefore the most important problem is the finding 

the mean number of different inhomogeneities in the function v(T}) corresponding to predominant 

events. 

Let us explain the suggested method by taking the example of the simplest inhomogeneity of 

v(T}), i. e., a gap, as shown. in (63'). It is convenient to introduce i (x.., 1), ~), the inclusive cross
1 

section for production of the gaps of length)" and rapidity::::: T}. The contribution of the diagram. 

(63') for the fixed 11 and 1}Z with bare trajectories gives the cross section for production of gaps1 
with the boundaries Y1 and T}Z in the background of a uniform distribution. Let us also considerf 
other diagrams with bare Pomerons, which correspond to the functions v(r}), which have a gap on 

*The system we consider haa the properties of a one-dimensional gas in the volume~. A number 
of properties of this " Feynman gas" were discussed in literature (see Refs. 4 and 5). The non­
exponential drop with the distance YJ of the correlation function P shows that the case of constant z
total cross sections corresponds to the "Feynman gas" being at the critical point. From this 
point of view, the step function v('1) corresponds to the fact that at the critical point the system 
is divided by fluctuations into regions which are in different "phase tl states. It means that there 
are "phases ll with different densities v:; 0, f~ 2, .. for the "FeYf:lman ~asll. And if the Pomerania 
a(O) < f then the long-range fluctuations of v(r}) are damped as I"'t-"'z,-texp{-[f -a,CO)] 1"'1 -'121}. 

**Here, "bare" means homogeneous distributions in 1), with all screening taking into account. 
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the interval (T}1' fJZ) while outside this region they take arbitrary values. [An example of such 

diagrams is given in (63~ ')]. It is natural to identify the total contribution of all such diagrams 

with bare Pomerons at fixed 711 • 7}Z with ft(~i.7}i' ;). But, on the other hand, the sum of these 

diagrams may be reexpressed as the sum of Reggeon diagram.s with the exact, renormalized ver­

tices and Green functions of Pomerons, for which a(O) = L Then we shall have 

(64)
+ ...+ 

For>.. > > 1 only the first diagrams predominate in this series. Hence 

(65)fiP... 'l. ;)"g [- ~(~)] g" l~. 
L f61Ta'>.. 

where we have used expression (49') for L (>..), and an extra (-1) appears due to cutting ofL (X-) 

"between" Reggeons. Diagrams (64) for ft may be naturally compared to the diagram (36) for f1. 

We see that (abs) L (}..)plays the role of the vert~x 4J in the diagram (36). Because of such a 

similarity in the structures for the diagrams for f1 and ft , the conclusions of the previous sections 

concerning f1 are naturally transferred to f1. 

Further, the function £1 which is an inclusive cross section must satisfy the normalizing 

relation 

(66) 

where <m(X,»d>.. is the mean multiplicity of gaps in v(YJ) with the dimensions (~, ~ +dX,). Substitut­

ing (6S) into (66) we find 

(67) 

This relation is interesting firstly because it gives an explicit form of <m(x'» at large ~ and 

secondly it gives a new s-channel meaning for the self-energy partL (X,). 

Evidently. the above considerations are at once transferred to other forms of inhomogeneities 

of the function v(71). Diagrams (64). but with both cut Reggeons in L (X,) 

t ))(1l.) 

f~
'. 

).. (68) 
~ ... JL.... 

-r-~---_......L---+----...........---:~ "'L
 
fl, ',-+~ ~ 



also give an inclusive cross section for mesa* production [v( JJ) :: 2 in the range YJ ~ JJ + x,]. Using
1 1 

(26) and (28) we get immediately 

(69)<m(x'»mesa = 2<m(x'»gap' 

Similarly, the absorptive parts of more complex diagrams for L ('A.) give the inclusive cross 

sections for production of the analogous inhomogeneities of v(1). 

Evidently. for large x., inhomogeneities of the gap type and of the mesas with v =2 predominate, 

since f for more complex fluctuations contains a higher power of X, in the denominator. ** Hencei 
below we limit ourselves to consideration of those simplest inhomogeneities of v(n). The quantity 

(70) 

gives the mean multiplicity of gaps (mesas) with dimensions larger than x,. We have from (67) 

( 71.) 

Hence we find that the mean distance between neighboring gaps with dimensions - X, will be of the 

order, 

232~al X, > > X, at X. > > t. (72) 

t3 

Thus we see that gaps form a "rarified gas" for which the mean value of the correlation function 
2

is P2 _1/).. < < 1. It therefore follows that the probabilities w to find m gaps or mesas with 
m 

dimensions larger than ).. > > 1 in the system are distributed according to the Poisson law with the 

mean number m(x'): 

e-m ()..) --m 
w = --mr- [m()..») (73)

m 

For 'A. - x. =J3 ~~ /32rra ' the quantity m('A. ) -1. This means that the gap (mesa) spectrum is 
max max

concentrated in the region 

(74) 

When).. > > }..max the quantity m('A.) < < f has the meaning of the probability of finding ~ gap (mesa) 

with dimension ~).. in an individual event. 

Our considerations show that v(YJ), on the average, must have (with the weight -1) the 

following structure: there is about one gap (and two mesas) with dimensions - x'max =Y ~ ; of the 

order of four gaps (and doubled number of mesas) with dimensions - "A. /2, etc. down to values of 
max

X. of the order of the correlation length. 

*Mesa is Spanish for table or plateau. In the American southwest. geological formations called 
mesas, closely similar in shape to the rectangular enhancements in v(n) shown above. are a 
familiar sight to the traveler. -Ed. 

**We are not going to consider here the problem of the "fine structure" of the mesas. The dimen­
sions of such inhomogeneities will be < ,J>"/32.Trat • In such a easel for "observation" of the in­
homo eneities of v( 1) with dimensions- ~ ).., it is necessary to average v( YJ ) over the intervals 
~ ~ ).. 321Tat • 
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Thus we see that the structure of the actual function v( ll) is very inhomogeneous* and will 

only weakly resemble v( 7}):::: constant, characterizing a simple multiperipheral chain. 

In conclusion we indicate what phenomena may be expected in individual many-particle events, 

at nonasymptotic~. When S is such that x'max =Y ~~ "'0' where "'0 is the correlation length re­

lated to nonvacuum Reggeons (X -1-2), most of the events will be generated with homogeneouso
v(n). But when" ,ff becomes greater than }..O' a ~ap or a mesa with dimensions larger than the 

correlation length will be encountered in individual events (with the weight =1). With further in­

crease of; a second inhomogeneity may appear, etc. 

The described behavior of v(ll) resembles that discussed for many years (mainly in the 

literature devoted to cosmic ray physics): observation of considerable inhomogeneities in individual 

many-particle events whose explanation was given (in the same literature) in terms of a fire-ball 

hypothesis. However, our considerations show that large inhomogeneities of v(n) perhaps may be 

also explained without new physical ideas. 

Finally, we should like to thank L. N. Lipatov and K. A. Ter-Martirosyan for interesting 

discussions. 
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Appendix 

We give here simple arguments showing that N is not changed by different cuttings. 
v 

The vertex N appears in calculation of the asymptotics of Feynman diagrams
v 

*Some conclusions of this section are similar to results available in the paper of K. A. Ter­
Martirosyan presented at the conference, paper # 932. 
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~c 

tiX~ X~l
 
(Ai) 

tIR 

(AZ) 

where 

2 2 - 2 Z
Z. =p. -m +iE, Zl' =k -m +i£,

1 1 

J are complex momenta of Reggeons and R is the amplitude of the process
i 

(A3) 

In (A2), integration over a ;;i is carried out with the Feynman i€ )~e. and over f3 with finite
i
, 

limits 0\ > 0). It is also important (see Ref. if) that the factors B 1 do not lead to new singulari­
i 

ties in ai~ (;i' 

The main observation for us is that the amplitude R is integrated over the a -variables of all 

lines (Pi' k ) completely symrre trically, independent of whether given lines are connected to one
i 

Reggeon or to different ones. 

Let us consider the absorptive parts of the diagram (Ai) when J.1 of the v Reggeons are cut. 

J.'.t are on the left-hand side of the line of cutting and the other fJ.Z on the right hand, 

Then the cut vertex N takes the form 
v 

(A4) 
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where (abs)W R ~s the absorptive part of R in the variable W =ys corresponding to the following 

regrouping of lines 

(AS) 

But the vertex N itself may be written in the same form (A4). Thus, we can always multiply the 
v 

right-hand side of (A2) by 

+coJ dy6 [y -(a+a )]
L 

-co 

and then deform the contour of integration over y around the right-hand cut of the amplitude R. 

Then we come to expression (A4) for N • 
v 
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