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Introduzione

I processi di diffusione rappresentano un potente mezzo sperimentale per studiare
le proprietà sia delle particelle incidenti che del sistema bersaglio. In questa tesi ci
occuperemo della diffusione di leptoni

(
elettroni (e) e neutrini (ν)

)
da sistemi adro-

nici
(
nucleoni (N) e nuclei (N )

)
. Mentre le proprietà degli elettroni sono ben note,

non altrettante note sono le proprietà del neutrino. Pertanto, mentre i processi di
diffusione eN e eN sono esclusivamente rivolti allo studio della struttura adronica,
la diffusione νN e νN è finalizzata, come vedremo, allo studio delle proprietà sia
del neutrino che degli adroni.
L’elemento chiave per la comprensione della struttura e della dinamica della mate-
ria adronica è rappresentato dalla determinazione della sua risposta ad una sonda
esterna.
Le sonde leptoniche presentano il notevole vantaggio che, nella maggioranza dei casi,
la sezione d’urto leptone-adrone fattorizza in una parte, in genere nota, che descri-
ve l’interazione elettromagnetica con l’adrone, ed un’altra, detta appunto funzione
di risposta, che descrive la struttura adronica, che è generalmente la grandezza in
esame.
Le sonde leptoniche hanno inoltre il vantaggio che esse interagiscono con l’adrone
senza perturbarne fortemente la struttura, pertanto sono preferibili alle sonde adro-
niche, che sono caratterizzate da sezioni d’urto maggiori, ma presentano lo svantag-
gio di disturbare fortemente la struttura del bersaglio nucleare.
I processi di diffusione leptone-adrone possono essere classificati in base alle diverse
possibilità di determinare gli stati finali prodotti. Nel seguito indicheremo con l un
leptone, con A, B, C ecc. dei nuclei in precisi stati energetici e con X un generico
stato adronico non identificato. Indicando tra parentesi le particelle rivelate, con
A l’adrone bersaglio e con X gli stati adronici non rivelati, si ottiene la seguente
classificazione:

- Processo inclusivo A(l, l′)X: si rivela soltanto il leptone diffuso l′.

- Processo semi-inclusivo A(l, l′ h)X: si rivela sia il leptone diffuso l′, che un
generico adrone h prodotto nel processo di diffusione.

- Processo esclusivo: tutti gli stati finali sono noti. La diffusione A(e, e′h)B e
la diffusione elastica A(l, l′)A sono esempi di processi esclusivi.
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Il potere risolutivo con cui la sonda può indagare la struttura adronica è legato alla
lunghezza d’onda di De Broglie 1 λ dalla relazione [1]

λ =
1

|~q|
dove ~q è il tri-impulso trasferito dal bosone virtuale scambiato nell’interazione.
Da questa espressione risulta evidente la necessità di aumentare il valore di q ≡ |~q|
al fine di ottenere una maggiore risoluzione spaziale e quindi una panoramica più
ampia della struttura adronica. Ciò può essere fatto semplicemente richiedendo una
considerevole perdita di energia della particella incidente.
I processi di diffusione inclusiva possono essere suddivisi in varie regioni, contraddi-
stinte dai diversi valori del quadrato del quadri-impulso trasferito Q2 e della variabile
di Bjorken x = Q2/2Mν, che misura pertanto l’anelasticità del processo.
Considerando un generico nucleo A di massa MA, avremo tre principali regioni:

- regione elastica (Q2 = 2MAν, x = A): l’interazione avviene con le distribuzioni
di carica e di magnetizzazione del nucleo nel suo complesso;

- regione quasi elastica (Q2 ' 2MAν, x = 1): l’interazione avviene elasticamente
con i nucleoni del nucleo visti come quasi-liberi;

- regione profondamente anelastica (DIS2) (Q2 ¿ 2MAν, x < 1): l’interazione
avviene con i costituenti del nucleone legato.

Considerando un generico nucleone N di massa M , invece, avremo le seguenti regioni
principali:

- regione elastica (Q2 = 2Mν, x = 1): l’interazione avviene con le distribuzioni
di carica e di magnetizzazione del nucleone nel suo complesso;

- regione anelastica (Q2 < 2Mν, 0 < x < 1): l’interazione eccita gli stati del
nucleone;

- regione profondamente anelastica (Q2 ¿ 2Mν, x = 0): l’interazione avviene
con i partoni del nucleone, ovvero con i quark.

L’accuratezza con cui la sonda riesce ad indagare la struttura adronica impone
l’applicazione di metodi di approssimazione differenti. A distanze internucleoniche
dell’ordine di qualche Fermi è sufficiente l’applicazione del modello a shell. I nuclei
sono infatti descritti realisticamente dall’approssimazione di campo medio, in accor-
do alla quale i partoni dei nuclei sono nucleoni che si muovono indipendentemente
l’uno dall’altro con un momento medio p̄ ' 0.2 GeV , corrispondente a (v̄/c ' 0.03),
ed in accordo, quindi, con una descrizione non relativistica. Portando la scala delle
distanze fino all’ordine del raggio del nucleone (' 0.8 fm ), è necessario abbando-
nare la descrizione di campo medio, in quanto devono essere presi in considerazione
effetti quali le correlazioni nucleone-nucleone, le possibili eccitazioni del nucleone nel

1 Nelle formule presentate in questa tesi si è adottata la convenzione ~ = c = 1.
2Dall’inglese Deep Inelastic Scattering
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mezzo, e la struttura a quark del nucleone.
I primi esperimenti di diffusione profondamente anelastica sul nucleone hanno messo
in evidenza, per la prima volta, che la struttura interna del nucleone è composta
da particelle puntiformi, i partoni. Questa scoperta ha portato alla formulazione
del Modello Standard, in cui i partoni sono particelle di spin 1/2 dette quark e le
interazioni tra adroni sono spiegate attraverso le interazioni tra i rispettivi quark
costituenti. Questo modello risultò molto soddisfacente nel descrivere i primi esperi-
menti DIS ma, all’aumentare delle energie in gioco e con la scoperta del gluone quale
mediatore delle interazioni forti, si dovette ricorrere a sostanziali modifiche, intro-
ducendo la Cromo-Dinamica-Quantistica (QCD), una teoria di gauge non abeliana
in cui i gluoni sono i quanti dell’interazione, contraddistinti dal fatto che possono
interagire anche tra loro stessi.
La QCD riesce a descrivere la fenomenologia delle interazioni forti solo per distanze
inferiori alle dimensioni di un nucleone (' 0.8 fm), quando l’interazione forte dimi-
nuisce ed un quark può considerarsi quasi-libero, rientrando nel cosidetto regime di
libertà asintotica. In questo contesto la costante di accoppiamento αs(Q

2) permette
uno sviluppo perturbativo della QCD, cos̀ı da ottenere risultati confrontabili, per
precisione, con quelli della Elettro-Dinamica-Quantistica (QED).
Le sonde leptoniche ad alte energie rappresentano un potente mezzo per indagare i
dettagli della struttura nucleare legati all’interazione forte.
La grande attenzione rivolta ai processi ad alte energie su nuclei bersagli in ambito
teorico, è motivata dal fatto che una rapida collisione nucleare costringe il proiettile
ad interagire con tutta la materia adronica in un periodo di tempo estremamente
breve e ciò permette di comprendere la cinematica delle reazioni elementari ad alte
energie, per piccole distanze e per tempi immediatamente successivi all’urto. La
scala temporale relativa ai processi adronici è dell’ordine di 10−23 s, equivalente al
tempo necessario alla luce per attraversare un adrone, mentre quella relativa ai pro-
cessi di diffusione su nuclei varia in base alla velocità del proiettile ed alle dimensioni
del nucleo lungo la direzione del moto del proiettile.
I bersagli nucleari possono quindi essere considerati come ”rivelatori” dell’evoluzio-
ne spazio-temporale dei processi adronici, non rivelabili negli esperimenti che usano
come bersagli il singolo nucleone.
In questo lavoro di tesi si è considerata la diffusione di elettroni e neutrini, alla luce
del fatto che le informazioni ottenute attraverso le interazioni deboli e l’interazione
elettromagnetica sono spesso complementari tra loro. In particolar modo l’intera-
zione debole (V −A) sonda le proprietà della QCD, prestando particolare attenzione
alla struttura assiale del nucleone, difficilmente rivelabile attraverso la diffusione di
elettroni o fotoni.
Il neutrino è la più elusiva delle particelle nucleari e le prove della sua esistenza sono
per la maggior parte alquanto indirette. I neutrini sono i membri neutri della fami-
glia dei leptoni e furono postulati da Pauli nel 1930, per rendere conto dell’energia e
del momento angolare mancanti nel decadimento β. La conferma della loro esistenza
necessita di altri 23 anni ed è da attribuire all’esperimento di Cowan e Reines, con
il quale si mostrarono proprietà del neutrino al di là di quelle richieste dalle leggi di
conservazione, ma implicite nella teoria di Fermi.
Nel Modello Standard, i neutrini sono considerati particelle stabili, prive di massa

3



e campi sinistrorsi. Recenti esperimenti, quali SNO [2] e SK [3], hanno tuttavia
convinto la comunità scientifica che i neutrini oscillano tra i loro differenti stati di
sapore, dimostrando quindi di possedere una massa non nulla e richiedendo in tal
modo la necessità di un’estensione del Modello Standard. La vera massa del neu-
trino rimane pertanto uno degli enigmi della fisica delle particelle elementari ancora
irrisolti. Sono numerosi gli interrogativi ancora senza risposta che si affollano attor-
no ai neutrini: qual è il valore assoluto della loro massa? Il neutrino è una particella
di Dirac o di Majorana? Il neutrino ha un momento magnetico? I neutrini sono
leptoni rappresentativi della violazione CP? Quale importanza ha questa particella
nell’asimmetria materia-antimateria dell’universo?
L’interesse per i neutrini va al di là dello studio delle proprietà intrinseche della
particella e si estende ad una varietà di problematiche di carattere astrofisico e di
fisica adronica. Tipici esempi in ambito astrofisico riguardano la comprensione della
produzione dell’energia solare e le nucleosintesi del neutrino. L’influenza dei neutrini
si estende anche a questioni cosmologiche, quali il ruolo degli stessi nell’asimmetria
materia-antimateria dell’universo.
In fisica adronica e nucleare, l’uso di sonde di neutrini è ancora scarsamente sfrutta-
to, in quanto, nonostante i neutrini siano ovunque, interagiscono molto debolmente
con la materia, e possono essere osservati soltanto rivelando le particelle seconda-
rie che intervengono nei processi di diffusione, rendendo gli esperimenti di difficile
realizzazione. A causa della bassa sezione d’urto νN , gli esperimenti con neutrini
vengono effettuati utilizzando quindi quantità di materia, cioè nuclei atomici. E’
pertanto necessario conoscere con accuratezza la sezione d’urto νN . Come abbiamo
già detto, formalmente questa dipende dalle funzioni di risposta νN e νN .
Per comprendere pienamente le proprietà dei neutrini sono necessari esperimenti
che implicano elevati standard di precisione, e ciò richiede una profonda conoscenza
teorica della sezione d’urto neutrino-nucleo. Per questo motivo attualmente vengono
studiati molto accuratamente gli effetti nucleari nei processi di diffusione neutrino-
nucleo, e già da diversi anni le comunità internazionali di fisica delle alte energie e di
fisica nucleare organizzano un workshop comune dedicato totalmente alle interazioni
neutrino-nucleo [4].
Il motivo è molto semplice: l’errore sui valori sperimentali delle oscillazioni dei neu-
trini attribuito alle incertezze di origine nucleare, è stato stimato essere del 20%
[5]. Poichè tali stime sono state effettuate con modelli molto primitivi del nucleo
(modello a Gas di Fermi) è evidente l’urgenza di determinarne l’attendibilità.
L’interazione di neutrini è mediata dai bosoni carichi W± o dal bosone neutro Z0 e
proprio per questa ragione lo studio della diffusione di neutrini fornisce informazioni
non accessibili a sonde leptoniche cariche, quali elettroni e muoni. Le interazioni
di neutrini vengono classificate come processi a correnti cariche (CC) o a correnti
neutre (NC)3 a seconda che il bosone scambiato sia W± o Z0. Nel primo caso, nel-
l’interazione νN viene emesso un leptone diverso dal neutrino, mentre nel secondo il
neutrino conserva la sua identità. L’esistenza e la natura delle correnti neutre gioca
un ruolo molto importante nello stabilire la validità del Modello Standard delle inte-
razioni elettrodeboli. Sfortunatamente gli studi sperimentali delle interazioni NC di

3Nel seguito della tesi ci riferiremo ai processi di diffusione carica con l’abbreviazione CC
(Charged Current), mentre ai processi di diffusione neutra con NC (Neutral Current).
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neutrini sono piuttosto ardui da concretizzare, in quanto le sezioni d’urto relative ai
processi NC sono ancora più piccole di quelle per i processi CC, ed inoltre il neutrino
diffuso non lascia segnale, cos̀ı che l’identificazione dell’evento dipende dalla rive-
lazione di uno o più adroni. Misure di processi NC quasi-elastici, con conseguente
produzione di pioni, sono state effettuate al Brookhaven National Laboratory [6],
all’Argonne National Laboratory [7] in USA, ed al CERN di Ginevra [8] usando ber-
sagli di deuterio o targhette più pesanti come il carbonio, l’alluminio o una mistura
di propano-freon.
Le interazioni NC neutrino-nucleo sono particolarmente rilevanti per indagare il con-
tributo del quark strano allo spin dei nucleoni. I processi CC, d’altra parte, non
dipendono dal fattore di forma strano, pertanto poichè un fattore di forma assiale
strano non nullo cambia la sezione d’urto quasi-elastica NC su protoni o neutroni,
il rapporto di queste due sezioni d’urto è sensibile allo spin strano. L’esperimento
FINeSSE [9] si propone di misurare il rapporto R(NC/CC).
Di seguito sono elencati alcuni dei numerosi esempi di diffusione di neutrini su
bersagli nucleari (per maggiori dettagli vedi [10]):

- rivelazione dei neutrini solari: questi esperimenti coinvolgono νe alle energie
più basse;

- segnali nei rivelatori KARMEN [11] e LSND [12]: le sorgenti coinvolgono neu-
trini ad alte enegie, provenienti ad esempio dal decadimento di pioni e muoni
a riposo, mentre il bersaglio è uno scintillatore liquido contenente nuclei di
idrogeno e 12C;

- rivelazione dei neutrini atmosferici: si tratta di processi ad energie piuttosto
elevate su nuclei di 16O;

- processi di nucleosintesi: i neutrini di tutti i sapori ad energie intermedie
interagiscono con nuclei instabili;

- rivelazione di νµ e ντ nelle supernovae: questi neutrini interagiscono solo per
mezzo di correnti neutre e possono essere rivelati eccitando nuclei 16O nei
rivelatori ad acqua di Čerenkov.

Come già ricordato, gli effetti nucleari nei processi di interazione νN sono stati
considerati per lungo tempo a partire da un ben noto lavoro nell’ambito del model-
lo a Gas di Fermi [13]. Tale semplice modello tuttavia si è dimostrato totalmente
inadatto ad interpretare i dati sperimentali di diffusione eN ad energie incidenti del-
l’elettrone dell’ordine del GeV . Le discrepanze tra dati sperimentali e calcoli teorici
vengono oggigiorno attribuite ad effetti non presenti nel modello a Gas di Fermi,
quali le code ad alto impulso delle distribuzioni di momento e l’energia di legame.
Negli ultimi anni sono stati fatti enormi progressi nella soluzione del problema di
molti corpi nucleare ed attualmente sono a disposizione funzioni d’onda che con-
tengono gli effetti delle correlazioni tra nucleoni e funzioni di particella singola rea-
listiche. Si conosce quindi con buona certezza la probabilità di trovare nel nucleo
un nucleone con impulso ~p ed energia di rimozione E, rappresentata dalla Funzione
Spettrale P (p, E) del nucleone.

5



Attualmente, quindi, ci si sta orientando nel trattare gli effetti nucleari nei processi
νN in termini di funzione spettrale e questo verrà anche discusso nella nostra tesi,
il cui scopo principale è presentare criticamente i calcoli esistenti dei processi eN e
νN effettuati usando la funzione spettrale e confrontarli con i risultati dei calcoli
preliminari, oggetto della tesi, effettuati con la funzione spettrale sviluppata nel-
l’ambito dell’attività del gruppo di Fisica Adronica di Perugia. Lo scopo ultimo è
quello di arrivare alla realizzazione di un programma di calcolo della sezione d’urto
νN da poter essere utilizzato nei programmi di simulazione Monte Carlo per gli
esperimenti con neutrini.
La tesi è strutturata come segue:

- nel primo capitolo si introducono le proprietà fondamentali del neutrino e degli
elettroni e si presenta una breve descrizione dell’interazione elettrodebole;

- nel secondo capitolo vengono derivate le sezioni d’urto elettrone-nucleone, di-
stinguendo tra i diversi processi di diffusione inclusiva elastica, anelastica e
profondamente anelastica;

- nel terzo capitolo vengono derivate le sezioni d’urto neutrino-nucleone, distin-
guendo tra i processi quasi-elastici da correnti cariche ed i processi elastici a
correnti neutre e vengono introdotti i fattori di forma assiale, pseudo-scalare
e strano;

- nel quarto capitolo vengono derivate le sezioni d’urto leptone-nucleo;

- nel quinto capitolo si presenta la teoria dell’approssimazione impulsiva, illu-
strando le motivazioni che portano a preferire una descrizione degli effetti
nucleari in termini di funzione spettrale piuttosto a quella basata sul modello
a Gas di Fermi;

- nel sesto capitolo si presentano i risultati di calcoli della sezione d’urto inclusiva
16O(e, e′)X, 16O(νµ, µ)X e 16O(νe, e)X, basati su diversi modelli della funzione
spettrale e si mostrano i risultati preliminari dei calcoli della sezione d’urto
sulla base dell’approccio presentato in [14].
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Capitolo 1

La funzione di risposta degli
adroni a sonde elettrodeboli:
formalismo generale

1.1 Il neutrino e le sue proprietà

Nel Modello Standard i neutrini sono fermioni neutri, sinistrorsi ed a massa nulla,
che non risentono dell’interazione forte ed interagiscono solo debolmente. Per esem-
pio [15, 16], i neutrini prodotti in un reattore nucleare con energia Eν ∼ 1 MeV
hanno una sezione d’urto σ ∼ 10−44 cm2, corrispondente ad una probabilità ∼ 10−18

di interagire in un rivelatore solido di spessore 1 m, o ad una probabilità ∼ 10−11

di interagire all’interno della Terra, percorrendo una traiettoria passante per il suo
centro. Un valore talmente esiguo della sezione d’urto richiede l’impiego di rivelatori
molto massivi per ottenere un tasso di eventi apprezzabile, ma nello stesso tempo
rappresenta un potente mezzo per sondare approfonditamente ogni forma di materia
senza lasciare traccia.
I neutrini sono particelle elusive e come tali possono essere osservate soltanto ri-
velando i prodotti della loro interazione con la materia. Per questo motivo negli
esperimenti di diffusione di neutrini vengono utilizzati nuclei pesanti come bersagli,
cos̀ı da ottenere un valore relativamente grande per la sezione d’urto.
Le informazioni derivanti dall’impiego di neutrini ed elettroni sono complementari,
basti infatti pensare ai fotoni solari, che vengono emessi dalla superficie con uno
spettro di corpo nero, mentre i neutrini, proveniendo dal centro del sole, forniscono
informazioni sulle reazioni di fusione che sono alla base della luminosità solare.

Famiglie di neutrini

I neutrini possono interagire, nei processi a correnti neutre, mediante il bosone neutro
Z0, che ne cambia il quadri-impulso mantenendone inalterata l’identità, oppure, nei
processi a correnti cariche, con lo scambio del bosone W±, che li trasforma in un
leptone carico. E’ proprio sulla base dei processi CC che si può introdurre il concetto
di sapore dei neutrini.
Il sapore di un neutrino è semplicemente il tipo, ovvero la massa, del leptone carico
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legato allo stesso vertice di corrente carica.
Nel Modello Standard, pertanto, neutrini ed anti-neutrini sono classificati in tre
famiglie di sapori, come riportato in tabella (1.1), contraddistinte per il diverso
leptone carico a cui fanno riferimento.

neutrini anti-neutrini leptoni
νe ν̄e e
νµ ν̄µ µ
ντ ν̄τ τ

Tabella 1.1: Classificazione di neutrini, anti-neutrini e leptoni nel Modello Standard

Sperimentalmente questa classificazione è confermata dal decadimento

Z0 −→ να + ν̄α (1.1)

dove α indica il sapore del neutrino.
L’ampiezza parziale del decadimento, calcolata nel Modello Standard è

Γνν̄ = 166.9 MeV (1.2)

da cui risulta che

Γinvisibile = NνΓνν̄ (1.3)

dove Nν è il numero dei sapori del neutrino con massa minore di quella del bosone
Z0.
L’ampiezza invisibile può essere ottenuta sperimentalmente, sottraendo i contributi
di tutti i canali visibili dalla misura dell’ampiezza totale

Γinvisibile = Γtot − Γvis = 498± 4.2 MeV (1.4)

pertanto il decadimento del bosone Z0 conferma che il numero dei sapori dei neutrini
è pari a

Nν =
Γinv

Γνν̄

= 2.994± 0.012 . (1.5)

Si ipotizza inoltre l’esistenza di neutrini sterili, ovvero creati attraverso il fenomeno
dell’oscillazione dei sapori, che non partecipano all’interazione debole e che pertanto
non sono rivelabili dal decadimento del bosone Z0. Questa ipotesi è supportata
dall’esperimento Liquid Scintillator Neutrino Detector [12], ma i risultati attuali
non sono stati ancora in grado di confermala o smentirla.

Elicità

Si consideri una particella con spin s ed impulso p.
Una proprietà che contraddistingue le particelle elementari è rappresentata dall’eli-
cità

λ =
s · p
|p| (1.6)
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ovvero dalla proiezione dello spin lungo la direzione del moto, che per i fermioni può
assumere i valori λ = ±1/2. In analogia con la luce polarizzata, stati con elicità
positiva o negativa sono indicati rispettivamente come destrorsi o sinistrorsi.
Nel 1950 si è scoperto che ν e ν̄ esistono soltanto nello stato sinistrorso e destror-
so rispettivamente, ma essendo l’elicità una quantità pseudo-scalare, applicando
l’operatore di parità si deve verificare che

P : λ −→ −λ (1.7)

e ciò si riflette nella violazione della parità nell’interazione debole.
E’ possibile che neutrini destrorsi ed anti-neutrini sinistrosi non esistano, ma in caso
contrario le loro proprietà si ipotizzano profondamente differenti da quelle di neutri-
ni e anti-neutrini osservabili. A differenza di quest’ultimi, infatti, dovrebbero essere
particelle molto pesanti, o che non partecipano all’interazione debole, oppure che
soddisfino entrambe queste proprietà.
Nel Modello Standard i leptoni ed i quark sono particelle di Dirac, ovvero distinte
dalle corrispondenti anti-particelle, ciascuna con due stati di elicità. In altre parole,
obbediscono all’equazione di Dirac e sono descritti da spinori complessi a 4 compo-
nenti.
Nel 1937, Majorana ipotizzò l’esistenza di una particella con elicità opposta rispet-
to alla sua anti-particella. La scoperta sperimentale dei soli neutrini sinistrorsi è
la motivazione alla base dell’ipotesi per cui ν e ν̄ possono essere considerati i due
differenti stati di spin della stessa particella di Majorana.

Oscillazioni di neutrini

I neutrini, prodotti o rivelati, hanno sempre un sapore ben definito, ma sperimental-
mente si è dimostrato che queste particelle possono oscillare fra i tre sapori, ovvero
migrare da una famiglia all’altra. Questo importante fenomeno smentisce l’ipotesi di
massa nulla del neutrino ed implica anche masse differenti per i tre tipi di neutrini.
L’origine del fenomeno di oscillazione risiede nel fatto che gli autostati di sapore del
neutrino

|νj > {j = e, µ, τ} (1.8)

sono differenti dagli autostati di massa del neutrino

|νi > {i = 1, 2, 3} (1.9)

e sono legati tra loro dalla relazione



|νe >
|νµ >
|ντ >


 = UPMNS



|ν1 >
|ν2 >
|ν3 >


 (1.10)

dove UPMNS è la matrice di Pontecorvo-Maki-Nakagawa-Sakata.
La matrice di mixing è l’equivalente della matrice di Cabibbo-Kobayachi-Maskawa
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(CKM) per il settore leptonico e si parametrizza come

UPMNS =




1 0 0
0 c23 s23

0 −s23 c23







c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13







c12 s12 0
−s12 c12 0

0 0 1


 =

=




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23

s12s23 − c12s13c23e
iδ −c12s23 − s12s13c23e

iδ c13s23


 (1.11)

con la notazione cjk = cos θjk, sjk = sin θjk, θ angolo di mixing.
L’ipotesi del fenomeno di oscillazione dei neutrini fu introdotto da Pontecorvo e si
può spiegare considerando, per semplicità, un sistema di due neutrini.
In questo caso la relazione (1.10) si scrive come

( |νe >
|νµ >

)
=

(
c s
−s c

)( |ν1 >
|ν2 >

)
. (1.12)

In t = 0 si ha un autostato debole puro |ν(0) >= |νµ >, mentre dopo un tempo t lo
stato del neutrino si scrive

|ν(t) >= −|ν1 > s e−iE1t + |ν2 > c e−iE2t (1.13)

con

Ei =
√

p2 + m2
i ' p +

m2
i

2p
' E +

m2
i

2p
i = 1, 2 (1.14)

e dove la differenza di fase delle due componenti si concretizza nell’evoluzione del
sapore del neutrino.
La probabilità di trovare νe è data da

P (νµ → νe; t) = | < νe|ν(t) > |2 =

= sin2 θ cos θ| − e−iE1t + e−iE2t|2 =

= sin2 2θ sin2
(∆m2t

4E

)
=

= sin2 2θ sin2
(∆m2L

4E

)
(1.15)

dove ∆m2 = m2
2 − m2

1, E = p e l’ultima uguaglianza è valida solo per particelle
ultra-relativistiche che percorrono la distanza L.
E’ importante sottolineare che nell’espressione precedente compare la differenza in
quadratura delle masse, pertanto misurare la probabilità di oscillazione di un neutri-
no, riportata in Figura 1.1, non fornisce il valore assoluto della massa del neutrino,
ma può soltanto confermare che almeno una delle due particelle ha massa diversa
da zero.
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Figura 1.1: Probabilità di oscillazione di un neutrino in funzione della distanza percorsa.
Adattato Ref. [17]

Massa limite dei neutrini

Il limite superiore più stringente per le masse dei neutrini è imposto dalla cosmologia
[18]: la teoria del Big Bang prevede l’esistenza di un rapporto fisso tra il numero
di neutrini ed il numero di fotoni nella radiazione cosmica di fondo. Se l’energia
totale dei tre tipi di neutrini avesse ecceduto una media di 50 eV per neutrino, la
massa nell’universo sarebbe stata molto maggiore di quella collassata. Questo limite
può essere superato assumendo che il neutrino sia instabile, ma quest’ipotesi non è
prevista nel Modello Standard.
Un vincolo maggiore proviene da un’accurata analisi dei dati cosmologici, quali il
red-shift, da cui risulta che la somma delle masse dei neutrini deve essere minore di
0.3 eV . Nel 1998 i risultati dell’esperimento SK [3] hanno confermato l’oscillazione
dei neutrini e hanno riportato ∆m2 < 0.05 eV . Pertanto, combinando i dati, il
neutrino più pesante deve essere di circa 0.05 eV , ma non maggiore di 0.3 eV .
Nel 2005 l’esperimento KamLAND [19] ha prodotto la miglior stima per la diffe-
renza in quadratura degli autostati di massa ν1 e ν2, pari a ∆m2

21 = 0.000079 eV 2,
mentre nel 2006 l’esperimento MINOS [20] ha fornito ∆m2

23 = 0.0031 eV 2, risultato
consistente con i dati risultanti dall’esperimento SK [3].
Come già ricordato, l’incertezza determinata dagli effetti nucleari negli esperimenti
di oscillazione è stimata essere del 20% [5].
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Sorgenti di neutrini

I neutrini sono particelle molto numerose ed altrettanto numerose sono le sorgenti
da cui hanno origine:

- Big-Bang: i neutrini reduci dall’evoluzione dell’universo hanno una densità di
circa 56 cm−3 per ogni sapore ed uno spettro di corpo nero con temperatura
Tν ' 1.947 K, corrispondente ad una energia cinetica Eν ' 5 · 10−4 eV .

- Stelle: numerosi sono i neutrini prodotti nei processi di fusione termonucleare

4p + 2e− −→4 He + 2νe + 26.73 MeV (1.16)

che avvengono nelle stelle ed in particolar modo nel sole. I neutrini prodotti in
questi processi sono caratterizzati da basse energie, al di sotto di 0.41 MeV ,
anche se una piccola componente raggiunge anche valori di 14 MeV .

- Terra: questi neutrini hanno origine dalla naturale radioattività terrestre e
vengono prodotti in numero di 6 · 106 al secondo per cm2.

- Raggi solari: quando un raggio cosmico penetra l’atmosfera, interagisce con
particelle secondarie come pioni e kaoni carichi, che decadendo generano i cos̀ı
detti neutrini atmosferici. Ne sono un esempio i decadimenti

π+ −→ µ+ + νµ µ+ −→ e+ + νe + ν̄µ . (1.17)

- Apparati sperimentali: sperimentalmente i neutrini possono essere prodotti
ad alte energie negli acceleratori di particelle, ed a basse energie nei reattori
nucleari. I primi, la cui energia si aggira intorno ai 100 GeV , sono generati
per studiare la struttura dei nucleoni e l’interazione debole. I secondi hanno
energie intorno ai 4 MeV e sono stati i primi ad essere rivelati e ad essere
usati per porre dei limiti alle oscillazioni dei neutrini.

1.1.1 Esperimenti

Alcuni degli attuali esperimenti sui neutrini sono:

- OPERA [21]: è un esperimento realizzato per la ricerca delle oscillazioni νµ-ντ

nell’atmosfera, e si basa sull’emulsione nucleare per la rivelazione del decadi-
mento τ prodotto nelle reazioni CC del ντ . L’esperimento prevede l’utilizzo
del fascio di neutrini CNGS1 [22], di energia Eν = 17 GeV , lanciato dal CERN
verso i laboratori del Gran Sasso.

- CHORUS [23]: questo esperimento è realizzato nei laboratori del CERN e si
prefigge di cercare le oscillazioni νµ-ντ attraverso la rilevazione della topologia
caratteristica del decadimento del leptone τ in ντ negli eventi CC, con un fascio
incidente di energia Eν = 27 GeV .

1Dall’inglese CERN Neutrinos to Gran Sasso
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- FINeSSE (Fermilab Intense Neutrino Scattering Experiment)[9]: consiste di
un rivelatore di 10 ton collocato a 100 metri dalla sorgente di neutrini Boo-
ster, presso il Fermilab [24] di Chicago, e di un fascio di neutrini di energia
Eν = 700 MeV . Questo esperimento potrebbe misurare definitivamente il con-
tributo del quark strano allo spin del nucleone. Inoltre, potrebbe investigare la
diffusione quasi-elastica neutrino-nucleone a correnti cariche, la diffusione ela-
stica NC, le reazioni CC e NC per la produzione di pioni e la diffusione elastica
neutrino-elettrone. Questo rivelatore dovrebbe fornire risultati complementari
al già esistente esperimento MiniBooNE [25], che si prefigge di misurare queste
tre sezioni d’urto.
Il ruolo giocato dai quark strani nelle proprietà del nucleone non è ancora com-
preso. La diffusione profondamente anelastica di neutrini su nucleoni indica
che una frazione consistente del momento del nucleone è trasportata dai quark
strani. In ogni caso, gli ultimi risultati di violazione della parità provenienti
dalla diffusione di elettroni nei laboratori del MIT/BATES (Boston, USA) [26]
e Jeffersonlab (Newport News, USA) [27] mostrano, sia pur con grandi incer-
tezze, che il contributo del quark strano al momento magnetico del nucleone
è consistente con zero.

- MINERνA (Main Injector Neutrino ExpeRiment ν −A) [28]: questo esperi-
mento utilizza il fascio di neutrini NuMI al Fermilab e si prefigge di misurare
le interazioni dei neutrini a basse energie sia per cercare le oscillazioni che per
studiare la dinamica forte dei nucleoni e dei nuclei propri di queste interazioni.

- Super-Kamiokande [3]: si tratta di un rivelatore ad acqua di Cerenkov per
particelle cosmiche, che si prefigge di determinare il rapporto tra i neutrini
atmosferici R = νµ/νe, il cui valore teorico è ∼ 2, con un fascio di neutrini
incidenti di Eν = 1.33 GeV .

Le sezioni d’urto quasi-elastiche νN , negli esperimenti mirati a rivelare il fenomeno
di oscillazione dei neutrini, sono note con un’incertezza stimata dell’ordine del 20%
[5]. Ciò non solo rende difficoltosa un’accurata analisi dei risultati sperimentali,
ma impedisce anche di rivelare e misurare ulteriori proprietà dell’interazione debole,
come la violazione CP. Si rende pertanto necessaria una conoscenza teorica della
sezione d’urto νN per i processi quasi-elastici, al fine di comprendere pienamente i
risultati sperimentali.
In questo lavoro di tesi ci occuperemo proprio di questo problema, fornendo una de-
scrizione teorica dei processi di diffusione eN e νN per energie incidenti da 0.5 GeV
a qualche GeV .

1.2 Elettroni e neutrini e funzioni di risposta

Elettroni e neutrini sono leptoni che interagiscono entrambi con gli adroni per mez-
zo dell’interazione elettrodebole [29, 30, 31], l’elettrone mediante lo scambio di un
fotone virtuale γ∗, il neutrino mediante lo scambio del bosone massivo Z0 (correnti
neutre) o dei bosoni W+ o W− (correnti cariche).
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Gli elettroni e gli altri leptoni carichi interagiscono principalmente scambiando fo-
toni con massa nulla, sebbene una piccola componente dell’ampiezza di probabilità
derivi dallo scambio di bosoni Z0. Questa componente porta ad una piccola vio-
lazione della parità che può essere sfruttata per verificare la validità del Modello
Standard.
Per estrarre informazioni sulla struttura dei nucleoni, quali le funzioni di distribu-
zione dei partoni, si possono combinare i risultati provenienti dagli esperimenti che
coinvolgono i quattro scambi bosonici (diffusione di un leptone carico, diffusione
carica e neutra di neutrini ed antineutrini).
Una differenza importante nella diffusione di questi due tipi di leptoni risiede nella
definizione dei propagatori, rispettivamente 1/Q2 per l’elettrone e 1/(Q2−M2

Z,W ) per
il neutrino. Ciò comporta molteplici implicazioni come il fatto che, per Q2 ¿ M2

Z,W ,
la sezione d’urto è molto maggiore per l’elettrone che non per il neutrino. Inoltre,
mentre la sezione d’urto totale associata alla diffusione di neutrini è finita per qual-
siasi energia della particella incidente, quella associata alla diffusione di elettroni
diverge per piccoli angoli di diffusione.

1.3 L’interazione elettrodebole

Nel Modello Standard l’interazione elettrodebole è descritta dalla Lagrangiana

Lint = − g

2
√

2
J CC

α W α − g

2 cos θW

J NC
α Zα − J EM

α Aα (1.18)

dove J CC
α e J NC

α rappresentano rispettivamente gli operatori di corrente debole
carica e neutra, mentre J EM

α è l’operatore di corrente elettromagnetica.

Figura 1.2: Termine leptonico della Lint, con l = e, µ, τ . Adattato dalla ref. [32]

L’eq. (1.18) è invariante rispetto alla simmetria locale SU(2)L ⊗ U(1)W , dove gli
indici2 W e L indicano che l’interazione debole ha luogo solo con le componenti
sinistrorse del campo.
Le correnti possono essere considerate come la somma di un contributo leptonico e
di uno adronico:

Jα = jα + Jα . (1.19)

2Dall’inglese weak e left
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Correnti leptoniche

Le correnti leptoniche cariche

jCC
α = ν̄γα(1− γ5)l (1.20)

sono mediate dai bosoni W± e cambiano un generico leptone carico l in un neutrino
e viceversa, lasciando inalterato il sapore della particella.
Le correnti leptoniche neutre

jNC
α =

1

2
ν̄γα(1− γ5)νl− 1

2
(1− 2 sin2 θW )l̄γα(1− γ5)l +sin2 θW l̄γα(1+ γ5)l (1.21)

sono mediate dal bosone Z0 e lasciano inalterata la natura della particella incidente.
La corrente elettromagnetica

jEM
α = l̄γαl (1.22)

è infine mediata dal fotone virtuale γ∗.

1.4 Correnti di quarks e correnti di adroni

Nell’ipotesi che i quarks siano particelle puntiformi di Dirac, è possibile esplicitare
le correnti adroniche attraverso le seguenti relazioni:

JEM
α = q̄Qγαq =

2

3
ūγαu− 1

3
(d̄γαd + s̄γαs) (1.23)

JNC
α = ūγα

[1

2
− 2

3
2 sin2 θW − 1

2
γ5

]
u− d̄γα

[1

2
− 2

3
2 sin2 θW − 1

2
γ5

]
d

− s̄γα

[1

2
− 2

3
2 sin2 θW − 1

2
γ5

]
s (1.24)

JCC
α =

{
ūγα(1− γ5)d cos θc W+

d̄γα(1− γ5)u cos θc W− (1.25)

dove θc è l’angolo di Cabibbo, con valore standard cos θc = 0.98, Q = I3 + Y/2 è la
carica, definita dalla terza componente dell’isospin I3 e dall’ipercarica Y, con

Q = diag
(

2
3
−1

3
−1

3

)
(1.26)

q =




u
d
s


 Tz =




+1/2
−1/2

0


 Y =




+1/3
−1/3
−2/3


 . (1.27)

Nell’espressione per la corrente debole carica Jα
CC , si è omesso il termine proporzio-

nale a sin θc ∼ 0.22.
In queste espressioni è inclusa un’implicita somma sul colore ed una regione di
validità legata alle basse energie della QCD.
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Corrente vettoriale

La simmetria locale di colore SU(3) non è l’unica simmetria per cui la QCD risul-
ta invariante. Non bisogna infatti tralasciare l’importanza delle simmetrie unitarie
globali e delle correnti conservate ad esse associate, che impongono vincoli sulle di-
namiche dei sistemi che interagiscono fortemente, sia che si tratti di quark, di gluoni
oppure di adroni.
Nell’ipotesi di simmetria di isospin (mu = md = ms), la Lagrangiana risulta inva-
riante per

q −→ exp
(
iθa λa

2

)
q (1.28)

ed alla simmetria globale di sapore SU(3) sono associate le correnti conservate di
Noether

V a
α = q̄γα

λa

2
q (1.29)

dove λa indica le matrici di Gell-Mann elencate in appendice, θa gli angoli di rota-
zione infinitesima ed a = 1, . . . , 8.
E’ importante notare che la simmetria è rotta per

∂αV a
α = iq̄

[
m,

λa

2

]
q . (1.30)

Nel termine di corrente elettromagnetico sono presenti queste combinazioni di cor-
renti di sapore, peranto si può riscrivere l’eq. (1.23) inserendo l’operatore di carica

Q =
Y

2
+ I3 (1.31)

e l’ipercarica

Y = B + S =
λ8√

3
= diag

(
1
3
, 1

3
−2

3

)
(1.32)

dove B è il numero barionico, S la stranezza e la terza componente dell’isospin

I3 =
λ3

2
. (1.33)

In questo modo la corrente elettromagnetica si scrive come

JEM
α =

1

2
JY

α + V 3
α (1.34)

con

V 3
α = q̄γα

λ3

2
q (1.35)

e

JY
α = q̄γα

λ8√
3
q (1.36)
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rispettivamente corrente isovettoriale e corrente isoscalare.
Anche il termine vettoriale della corrente carica può essere espresso come combina-
zione lineare delle correnti dei sapori:

V CC
α = ūγαd = q̄γα

λ1 + iλ2

2
q =

= q̄γα
λ+

2
q = V 1

α + iV 2
α . (1.37)

Per quanto riguarda il termine vettoriale della corrente neutra si ha:

V NC
α = (1− 2 sin2 θW )V 3

α − 2 sin2 θW
1

2
JY

α −
1

2
JS

α (1.38)

dove V 3
α e JY

α sono gli stessi di prima, mentre

JS
α = s̄γαs . (1.39)

Ciò dimostra che il termine isovettoriale della corrente elettromagnetica e quello
vettoriale delle correnti deboli non sono altro che diverse componenti della stessa
corrente vettoriale conservata3 SU(3)f .

Corrente assiale

Si consideri il limite in cui i quarks sono considerati a massa nulla.
In questo caso la QCD presenta una simmetria addizionale, nota come simmetria
chirale e la Lagrangiana risulta invariante per le trasformazioni

qL −→ exp
(
iθa

L

λa

2

)
qL e qR −→ exp

(
iθa

R

λa

2

)
qR (1.40)

dove qL e qR indicano rispettivamente i campi destrorsi e sinistrorsi dei quarks,
definiti come

qL =
1

2
(1− γ5)q qR =

1

2
(1 + γ5)q (1.41)

a cui sono associate le correnti di Noether

Ja,L
α = q̄Lγα

λa

2
qL e Ja,R

α = q̄Rγα
λa

2
qR . (1.42)

Dalla somma e dalla sottrazione di quest’ultime si ottengono la corrente vettoriale
(1.29)

V a
α = Ja

α = Ja,L
α + Ja,r

α = q̄γα
λa

2
q (1.43)

e la corrente assiale

Aa
α = Ja,R

α − Ja,L
α = q̄γαγ5

λa

2
q . (1.44)

3 Solitamente ci si riferisce alla conservazione della corrente vettoriale con l’abbreviazione CVC,
dall’inglese Conserved Vector Current.
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La simmetria chirale è esplicitamente rotta dal fatto che i quarks hanno una massa
diversa da zero, e la divergenza della corrente assiale diventa

∂αAa
α = iq̄

{
m,

λa

2

}
γ5q (1.45)

Nella rappresentazione di Gell-Mann soltanto le matrici γ3 e γ8 sono diagonali, per-
tanto sono le sole a conservare il sapore e per le quali si può riscrivere la corrente
elettromagnetica come

JEM
α = V 3

α + V S
α (1.46)

dove V 3
α è la corrente di spin isovettoriale, mentre

V S
α = q̄γα

λ8

2
√

3
q (1.47)

è la corrente iso-scalare.
Per quanto riguarda la corrente debole neutra, si può scrivere:

JNC
α = V NC

α + ANC
α (1.48)

con

V NC
α = (1− 2 sin2 θW )V 3

α − 2 sin2 θW V S
α − 1

2
s̄γαs (1.49)

e

ANC
α = A3

α +
1

2
AS

α (1.50)

dove

Aa
α = q̄γαγ5

λ3

2
q (1.51)

e

AS
α = s̄γαγ5s . (1.52)

In modo analogo la corrente carica debole si scrive come

JCC
α = V CC

α + ACC
α (1.53)

dove

V CC
α = q̄γα

λ±
2

q (1.54)

e

ACC
α = ūγαγ5d = q̄γαγ5

λ±
2

q = A1
α + iA2

α
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con la divergenza

∂αACC
α =

1

2
i(mu + md)ūγ5d (1.55)

da cui si evince che la corrente assiale debole si conserva nel limite in cui sia mu che
md tendono a zero.
Analogamente al caso vettoriale, si conclude che i termini assiali della corrente neu-
tra (A3

α) e della corrente carica (A1
α e A2

α) appartengono alla stessa corrente assiale
conservata4 SU(3)f .
In ogni caso stavolta non è possibile stabilire alcuna connessione con il caso elettro-
magnetico. E’ inoltre importante notare che le espressioni ricavate sono vincolate
soltanto dall’ipotesi di simmetria di isospin dell’interazione forte e risultano quindi
indipendenti dai dettagli della struttura adronica.

4In questo caso l’abbreviazione è PCAC, dall’inglese Partially Conserved Axial Current.
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Capitolo 2

Diffusione di elettroni da nucleoni

Per descrivere l’interazione leptone-nucleone, in questa tesi si ricorre all’ approssima-
zione di singolo fotone1, nella quale, separando la parte relativa al leptone da quella
relativa al nucleone, si considera un solo fotone come mediatore dell’interazione e si
trascurano lo scambio multiplo e tutte le correzioni radiative.
Con questa approssimazione, la sezione d’urto associata alla diffusione di un elet-
trone incidente e su un nucleone N si scrive [33] come

dσ =
M ·me

(Pi · k)
(2π)4δ(4)(Pi + k − k′ − Pf )

∣∣∣ < k′|ĵµ(0)|k >
1

Q2
< Pi|Ĵµ(0)|Pf >

∣∣∣
2 med

3k′

E ′(2π)3
dτf (2.1)

dove ĵµ(0) e Ĵµ(0) sono i quadri-operatori di corrente elettromagnetica rispettiva-
mente leptonico ed adronico, M(Ei, Pi) e me(E, k) le masse (energia totale, quadri-
impulso) del nucleone e dell’elettrone nello stato iniziale, k′ (Pf ) il quadri-impulso
dell’elettrone (nucleone) nello stato finale, Q2 = −q2 = −(k − k′)2 = ~q 2 − ν2 =

4EE ′ sin2(θ/2) > 0 il quadrato del quadri-impulso trasferito (con ~q = ~k − ~k′,
ν = E − E ′ e θ ≡ θc~k~k′

) e dτf il volume dello spazio delle fasi di tutte le parti-

celle nello stato finale, ad esclusione dell’elettrone diffuso.
La sezione d’urto (2.1) può essere riformulata in modo da risultare proporzionale alla
contrazione di due tensori, leptonico ed adronico. Quest’ultimo risulta particolar-
mente importante, in quanto nei processi di interazione leptone-adrone la struttura
del tensore leptonico è sempre lo stessa, mentre quella del tensore adronico, riflet-
tendo la struttura interna dell’adrone, cambia a seconda dell’adrone in esame e del
meccanismo di diffusione. A seguito della contrazione, come vedremo, la sezione
d’urto fattorizza in un termine elettromagnetico ed in un termine adronico, comple-
tamente descritto dalle funzioni di risposta.
In un processo di diffusione il numero di variabili cinematiche indipendenti n è fissato
dalla relazione

n = 3N − 10 (2.2)

dove N è il numero delle particelle che prendono parte all’interazione. In un processo
inclusivo e nella diffusione elastica n = 2, e di solito la scelta cade sugli scalari

1 OPEA, dall’inglese One Photon Exchange Approximation
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invarianti di Lorentz

Q2 lab
= −q2 = 4EE ′ sin2 θ

2
Pi · q
M

lab
= ν (2.3)

dove Pi ed M sono il quadri-impulso e la massa del nucleone bersaglio.
In questo contesto si definisce la massa invariante dello stato adronico finale

W 2 = (q + Pi)
2 = −Q2 + M2 + 2Mν (2.4)

in funzione della quale è possibile classificare i diversi processi di diffusione:

- diffusione elastica: W 2 = M2;

- diffusione anelastica: W 2 = M∗2 , dove M∗ indica la massa del nucleone
eccitato;

- diffusione profondamente anelastica: W 2 À M2.

Presentiamo di seguito una breve descrizione dei processi di diffusione appena elen-
cati.

2.1 Diffusione elastica N(e, e′)N e fattori di forma

del nucleone

Il diagramma in Figura 2.1, descrive il processo di diffusione esclusiva elastica

Figura 2.1: Diagramma OPEA della diffusione esclusiva elettrone-adrone. In questa figura
PA ≡ Pi e P ′A ≡ Pf

e + A −→ e′ + A (2.5)
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in cui vengono rivelati tutti gli stati finali.
In questo caso W 2 = M2, pertanto ν e Q2 non sono variabili indipendenti, ma legate
dalla relazione

ν =
Q2

2M
. (2.6)

Per calcolare la sezione d’urto è necessario determinare un’espressione per il ver-
tice nucleone-fotone, la cui struttura è fortemente vincolata dalle richieste base di
invarianza di Lorentz, invarianza di gauge, conservazione della parità ed invarianza
temporale e che si scrive [34, 35, 36, 37] come

Γµ = γµF1(Q
2) + i

κ

2M
F2(Q

2)σµνq
ν (2.7)

dove F1(Q
2) e F2(Q

2) sono i fattori di forma rispettivamente di Dirac e di Pauli, κ
è il momento magnetico anomalo del nucleone, che assume i valori

κp = 1.79 −→ protone (2.8)

κn = −1.91 −→ neutrone (2.9)

e σµν = 1
2
[γµ, γν ].

La sezione d’urto esclusiva elastica è nota come formula di Rosenbluth ed è definita
come

dσ

dΩ
=

( dσ

dΩ

)
Mott

E ′

E

[(
F 2

1 (Q2)+τκ2F 2
2 (Q2)

)
+2τ

(
F1(Q

2)+κF2(Q
2)

)2
tan2 θ

2

]
(2.10)

con τ = Q2

4M2
N

e E′
E

= {1 + 2 E
M

sin2 θ
2
}−1 fattore di rinculo.

L’identità di Gordon

ū(k′)γµu(k) = ū(k′)

[
(k + k′)µ

2M
+

iσµνq
ν

2M

]
u(k) (2.11)

permette di riscrivere il vertice adrone-fotone

Γµ = GM(Q2)γµ +
GE(Q2)−GM(Q2)

1− τ
· (k + k′)µ

2M
(2.12)

e la formula di Rosenbluth

dσ

dΩ
=

( dσ

dΩ

)
Mott

E ′

E

[G2
E(Q2) + τG2

M(Q2)

1 + τ
+ 2 tan2 θ

2
· τG2

M(Q2)
]

(2.13)

in funzione di GE(Q2) e GM(Q2), rispettivamente fattore di forma di Sachs elettro-
nico e magnetico, legati alle funzioni di struttura come segue:

GE = F1 + τκF2 GM = F1 + κF2 . (2.14)

La dipendenza dei fattori di forma da Q2 è osservabile sperimentalmente [1] e per-
mette di ricavare informazioni sulla distribuzione radiale di carica e sul momento
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magnetico dei nucleoni.
Particolarmente interessante è il caso Q2 → 0, limite in cui

GE(Q2 = 0) =
Q

e
GM(Q2 = 0) =

µ

µN

(2.15)

dove Q, µ e µN indicano rispettivamente la carica ed il momento magnetico del
nucleone ed il magnetone nucleare.
Si trovano i seguenti valori:

Gn
M(Q2 = 0) = −1.91 Gp

M(Q2 = 0) = 2.79

Gn
E(Q2 = 0) = 0 Gp

E(Q2 = 0) = 1 . (2.16)

Dalla definizione (2.14) si osserva che l’importanza dei fattori di forma cambia no-
tevolmente in base al valore di Q2 ed è pertanto possibile identificare le tre regioni
seguenti:

- Q2 ¿ 4M2: in questa regione GE domina la sezione d’urto e si può misurare
con precisione il raggio della carica elettrica

rE = (0.85± 0.02) fm;

- (0.02 ≤ Q2 ≤ 3) GeV 2: in questa regione GE e GM forniscono entrambe un
contributo importante;

- Q2 ≥ 3 GeV 2: in questa regione la sezione d’urto è dominata dal contributo
di GM e GE diventa trascurabile;

I fattori di forma GE(Q2) e GM(Q2) si estrapolano facilmente dai dati sperimentali
mediante un procedimento noto come Rosenbluth plot, che consiste nel graficare

σ2/σMott in funzione di tan2 θ
2

per valori fissati di ν e Q2, con σ2 =
(

d2σ
dΩdE′

)
sper

.

In questo caso l’intercetta fornisce (G2
E + τG2

M), mentre la pendenza della retta dà
G2

M , come si può vedere nell’esempio in Figura 2.2.
Bisogna sottolineare che questo metodo è proprio dell’approssimazione di scambio
di un solo fotone.
Sperimentalmente si è trovato che i fattori di forma tendono rapidamente a zero al
crescere di Q2 e si può dimostrare che questo comportamento è dovuto all’invarianza
relativistica che genera i due termini dei fattori di forma F1,F2.
In Figura 2.3 è riportato questo comportamento, descritto dall’approssimazione di
andamento di dipolo [38]:

Gdipolo(Q2) =
1

(1 + Q2

M2
V
)2

(2.17)

dove MV = 0.843 GeV
In questa approssimazione i fattori di Sachs si scrivono:

Gp
E(Q2) = Gdipolo(Q2) (2.18)

Gn
E(Q2) = 0 (2.19)

Gp
M(Q2) = µpG

dipolo(Q2) (2.20)

Gn
M(Q2) = µnG

dipolo(Q2) (2.21)
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Figura 2.2: σsper/σMott in funzione di tan2(θ/2) per Q2 = 2.5 GeV 2. Adattato dalla Ref. [1]

Figura 2.3: Fattori di forma di Sachs del neutrone e del protone in funzione di Q2. I valori
sperimentali sono stati divisi per i fattori indicati nel diagramma, implicando la sovrapposizione
dei punti e mostrando quindi l’andamento globale di tipo dipolare. Adattato alla Ref. [1]
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dove si nota che hanno tutti valore positivo, ad eccezione di Gn
M , in quanto µp =

2.792847 e µn = −1.913043.
La sezione d’urto (2.13) è scritta in funzione dei fattori di forma, pertanto tende a
rapidamente a zero al crescere di Q2, come 1/Q4.

2.2 Diffusione anelastica e profondamente anela-

stica

I processi di diffusione elastica evidenziano le deviazioni di un nucleone da una
particella puntiforme, ma per indagare la struttura interna dei nucleoni è necessario
passare ai processi di diffusione profondamente anelastica, in cui possono essere
eccitati i gradi di libertà interni dei nucleoni.
La sezione d’urto inclusiva nel sistema del laboratorio si ottiene sostituendo f ≡ X
e dτf = 1 nell’eq. (2.1), e si scrive come [33, 39]

dσ

dΩ′dE ′ =
4α2

Q4

E ′

E

1

2
LµνWN

µν (2.22)

con

α =
e2

4π
=

1

137
(2.23)

costante di struttura fine e dove, trascurando la massa dell’elettrone, il tensore
leptonico ed il tensore adronico nel sistema di riferimento dell’adrone a riposo sono

Lµν =
1

2

∑
σeσe′

[
ū(k′)γµu(k)

]†[
ū(k)γµu(k′)

]
=

=
1

2

∑
σeσe′

∣∣ < k′|ĵµ(0)|k >
∣∣2 (2.24)

e

WN
µν =

1

4π

∑
αN

∑
X

(2π)4δ(4)
(
Pi + q − PX

)

< αN , ~Pi = 0|ĴN
µ (0)|αX , ~PX >< αX , ~PX |ĴN

ν (0)|αN , ~Pi = 0 > (2.25)

dove
∑

αN
rappresenta la media sui numeri quantici dello stato iniziale del bersaglio,∑

X la somma su tutti gli stati discreti ed un integrale su quelli continui dello stato
finale non rivelato, mentre il tensore metrico è definito come

gµν = gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 .

Le proprietà delle matrici gamma permettono di riscrivere il tensore leptonico come

Lµν = kµk
′
ν + k′µkν − gµν(k · k′) . (2.26)
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L’equazione di continuità associata alla conservazione della corrente è verificata dalla
seguente uguaglianza

∂µĵ
µ

fi = qµ

[
ū(k′)γµu(k)

]
= 0 (2.27)

confermata dall’identità di Ward

qµLµν = qνLνµ = 0 (2.28)

da cui si evince facilmente la simmetria del tensore leptonico, ovvero il fatto che

Lµν = Lνµ . (2.29)

Il calcolo del tensore adronico risulta molto più complesso, in quanto presume la
conoscenza della struttura dell’adrone stesso; per questa ragione nella sua formu-
lazione si introducono le funzioni di struttura o funzioni di risposta WN

i ,misurabili
sperimentalmente, che descrivono la composizione interna dell’adrone, che in questo
caso è un nucleone.
Dalla conservazione dell’impulso si evince che per determinare il numero di queste
ultime, è necessario considerare i tre scalari invarianti di Lorentz Pi · q, q2 e P 2

i e
tutti i possibili tensori di rango due derivanti dalle loro combinazioni. Osservando
che

Wµν = Wνµ (2.30)

in perfetta analogia con il tensore leptonico, e che per l’invarianza di gauge

qµW
µν = qνW

µν = 0 , (2.31)

ed imponendo inoltre l’invarianza per inversione temporale e la conservazione della
parità, il numero delle funzioni di struttura per un processo inclusivo si riduce a 2.
Quest’ultime sono espresse in funzione delle due variabili indipendenti (2.3), per-
tanto il tensore adronico per il nucleone si scrive come

WN
µν = WN

1 (ν, Q2)
[
gµν − qµqν

q2

]
+

WN
2 (ν, Q2)

M2
P̃µ

i
P̃ν

i
(2.32)

con

P̃µ
i
= P i

µ +
qµ(P i · q)

Q2
.

Nel caso di diffusione elastica le funzioni di struttura sono note e si scrivono come

WN, el
2 (ν,Q2) =

G2
E(Q2) + τG2

M(Q2)

1 + τ
δ
(
ν − Q2

2M

)

WN, el
1 (ν,Q2) = τG2

M(Q2)δ
(
ν − Q2

2M

)
(2.33)

altrimenti è necessario assumere qualche modello per la corrente adronica per espli-
citare WN

i .
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Il calcolo della sezione d’urto differenziale richiede la contrazione dei tensori leptonico
ed adronico, e si scrive come

d2σ

dΩ′dE ′ = σMott

[
WN

2 (ν, Q2) + 2WN
1 (ν, Q2) tan2 θ

2

]
(2.34)

dove

σMott =

(
α cos θ

2

2E sin2 θ
2

)2

(2.35)

è la sezione d’urto di Mott, che descrive la diffusione su bersagli puntiformi.
L’eq. (2.34) può essere riformulata in funzione di ν e Q2 [39]:

d2σ

dQ2 dν
=

π

E E ′ σMott

[
WN

2 (ν, Q2) + 2WN
1 (ν, Q2) tan2 θ

2

]
. (2.36)

Le funzioni di struttura che compaiono nelle eqq. (2.34) e (2.36) si estrapolano
dai dati sperimentali ancora una volta attraverso il metodo del Rosenbluth plot,
in cui i valori di W1 e W2 sono espressi rispettivamente dal coefficiente angolare e
dall’intercetta. Introducendo RL e RT , componente longitudinale e trasversale delle
funzioni risposta, la sezione d’urto inclusiva si scrive come

dσ

dΩ′dE ′ = σMott{VLRL(ν,Q2) + VT RT (ν,Q2)} (2.37)

con

VL =
Q4

|~q| 4
VT =

Q2

2|~q| 2
+ tan2 θ

e

RL = − ~q 2

Q2
W1 +

~q 4

Q4
W2 RT = 2W1 . (2.38)

Ancora una volta è possibile risalire alle risposte longitudinale e trasversa mediante
il metodo del Rosenbluth plot.
Le Wi hanno le dimensioni fisiche di [energia]−1 e sono abitualmente sostituite con
le funzioni adimensionali [1]

MW1(Q
2, ν) = F1(ν, Q

2)

νW2(Q
2, ν) = F2(ν, Q

2) (2.39)

che si rivelano particolarmente importanti nello studio della diffusione profondamen-
te anelastica.
Come abbiamo visto, per valori della massa invariante di W 2 = M∗2 si parla di
diffusione inclusiva anelastica. Questo tipo di processi è contraddistinto da energie
tali da eccitare i gradi di libertà interni dei bersagli, rendendo quindi possibile un’a-
nalisi accurata della loro struttura interna. In Figura 2.4, è illustrata la dipendenza
della sezione d’urto dall’energia trasferita, dove, in aggiunta al picco elastico, si può
notare una serie di ulteriori picchi, corrispondenti all’eccitazione di specifici livelli
dello spettro discreto del bersaglio, che nel caso in esame è un protone. L’esisten-
za di questi picchi è fondamentale, in quanto dimostra che il protone è un sistema
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Figura 2.4: Sezione d’urto differenziale doppia per la diffusione di elettroni, con energia iniziale
E = 4.879 GeV , su idrogeno, disegnata in funzione dell’energia E′ degli elettroni diffusi rivelati a
θ = 10◦ e in funzione della massa invariante del sistema adronico non osservato, W . Adattato ref.
[1].

composito.
Per valori moderati dell’energia trasferita, si possono eccitare solo gli stati discre-
ti di eccitazione del nucleone (vedi fig. 2.4), per esempio lo stato ∆ nel processo
e + p → e + ∆ → e + p + π0.
Gli stati del continuo del nucleone possono invece essere eccitati solo per valori del-
l’energia trasferita molto elevati, (W 2 À M2), ed in questo caso nello stato finale
si possono creare tutti i possibili frammenti adronici. Si parla allora di diffusione
profondamente anelastica.
Nella regione profondamente anelastica è utile introdurre le variabili adimensionali
di Bjorken x, frazione dell’energia del leptone incidente portata dal fotone virtuale,
ed y, frazione dell’impulso totale del nucleone portata dal partone colpito:

x =
q2

2(P i · q)
lab
=

Q2

2Mν

y =
P i · q
P i · k

lab
=

ν

E
. (2.40)

Gli intervalli cinematici permessi per le due variabili sono:

0 < x ≤ 1

0 < y <
1

1 + xM/2E
< 1 . (2.41)

Si definisce inoltre il limite di Bjorken

Q2 −→∞ ν −→∞ x =
Q2

2Mν
fissato (2.42)
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Figura 2.5: Spettro di eccitazione per la diffusione profondamente anelastica elettrone-protone
in funzione della massa invariante W . Sono da notare le differenti scale dell’asse y. Le misure
sono state prese ad un angolo fissato θ = 4◦. L’intervallo di variabilità dei dati in Q2 cresce
all’aumentare dell’energia E del fascio incidente. Le risonanze, in particolare la prima (W = 1.232
GeV ), diventano sempre meno pronunciate, mentre il continuo (W ≥ 2.5 GeV ) decresce solo
lentamente.
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in cui è importante analizzare il comportamento asintotico delle Fi:

lim
Q2, ν→∞

MW1(Q
2, ν) −→ F1(x)

lim
Q2, ν→∞

νW2(Q
2, ν) −→ F2(x) . (2.43)

Si può notare infatti che nel limite di Bjorken le Fi perdono la loro dipendenza
da ν e Q2, diventando funzioni della sola variabile x. Questa proprietà è nota
come scaling di Bjorken, poichè le quantità sono indipendenti da Q2, che definisce

Figura 2.6: Andamento di F2 = νW2 in funzione di Q2 per x = 0.25. Adattato dalla Ref. [1]

la scala energetica dell’interazione, ed è riscontrabile nel grafico in Figura 2.6, che
rappresenta un risultato molto importante per la fisica delle particelle elementari,
in quanto implica che la diffusione avviene su costituenti puntiformi, denominati
partoni.
Dalla Figura 2.7 si può osservare che per 10−5 6 x 6 0.65, F2 risulta indipendente da
Q2, confermando la validità dello scaling, ma a valori molto bassi di x le correzioni
radiattive della QCD si impongono fortemente, portando ad una violazione di scala.
Pertanto, pur ritenendo sempre valido il fenomeno di scaling, bisogna porre dei limiti
inferiori al valore di x.
La funziona di struttura F1(x) è legata all’interazione magnetica e si annulla quando
la diffusione ha luogo su particelle con spin zero, mentre nel caso di particelle di Dirac
è legata alla F2(x) dalla relazione di Callan-Gross (Figura 2.8):

2xF1(x) = F2(x) . (2.44)

Nel regime non relativistico i fattori di forma corrispondono alle trasformate di
Fourier della densità di carica e di magnetizzazione dovute soltanto al momento
magnetico anomalo.
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Figura 2.7: Funzione di struttura F2 del protone in funzione di Q2 per vari valori di x. Deviazione
dal fenomeno di scala. Adattato dalla ref. [40]
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Figura 2.8: Rapporto tra le funzioni di struttura 2xF1(x) e F2(x).I dati sperimentali sono stati
raccolti a SLAC. Adattato dalla Ref. [1]
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Capitolo 3

Diffusione di neutrini da nucleoni

Si è già sottolineato che nel Modello Standard il neutrino è considerato una particella
con massa nulla e che i risultati sperimentali hanno smentito questa ipotesi. Tuttora
il valore assoluto della massa del neutrino rappresenta un’incognita, ma è comunque
trascurabile nel calcolo della sezione d’urto νN e νN , senza perdita di generalità.
Pertanto in questo lavoro di tesi si assumerà mν = 0.
Siano kα = (Eν , ~k) e k′α = (El, ~k′) il quadri-impulso rispettivamente del neutrino
incidente e del leptone diffuso che, a seconda del processo in esame, sarà un neutrino
(diffusione NC) o un altro leptone (diffusione CC). Siano inoltre M(Ei, Pi) la massa
(energia totale, quadri-impulso) del nucleone bersaglio e q = (Eq = Eν − El, ~q =
~k − ~k′)1 il quadri-impulso trasferito dal proiettile al bersaglio.
Analogamente alla diffusione di elettroni, nel sistema di riferimento del nucleone a
riposo si introduce la massa invariante

W 2 = (q + Pi)
2 = M2 −Q2 + 2EqM (3.1)

in funzione della quale è ancora una volta possibile distinguere tra i diversi processi
di diffusione:

- diffusione elastica: W 2 = M2;

- diffusione anelastica: W 2 = M∗ 2;

- diffusione DIS : W 2 À M2.

La cinematica del processo risulta completamente determinata dall’energia del neu-
trino Eν e dal quadrato del quadri-impulso trasferito Q2, una volta fissato il valore
di W 2.
Nell’ipotesi in cui il neutrino incidente abbia impulso parallelo all’asse z, il quadri-
impulso del neutrino incidente è

kα = (Eν , 0, 0, Eν) (3.2)

e l’impulso del leptone diffuso è

|~k′| =
√

E2
l −m2

l (3.3)

1Per evitare confusione tra il neutrino ν e l’energia trasferita ν = Eν −El, nel caso di diffusione
di neutrini si è preferito indicare l’energia trasferita con la notazione Eq.
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dove El = Eν − Eq.

L’angolo compreso tra ~k e ~k′ è dato da

cos θlab = −Q2 + m2
l − 2EνEl

2Eν |~k′|
(3.4)

mentre l’angolo φ è scelto arbitrariamente per un dato evento, e definisce il versore

~el = (sin θ cos φ, sin θ sin φ, cos θ) (3.5)

del leptone diffuso.
Per il quadri-impulso del leptone diffuso si ottiene

k′α = (El, |~k′|~el) (3.6)

e quindi il quadri-impulso del bosone mediatore si scrive

kα − k′α = (Eν − El, ~k − ~k′) . (3.7)

Pertanto conoscere Eν , Q2 e M 2
f implica l’immediata conoscenza di k,k′ e q.

Decomposizione della sezione d’urto

In perfetta analogia con la diffusione eN , l’interazione tra neutrini e nucleoni può
dare origine a processi elastici (W 2 = M2), anelastici (W 2 = M∗ 2) e profondamente
anelastici (W 2 À M2) [32], [41], [42].
Il termine elastico assume un significato diverso dalla diffusione di elettroni, infatti
nei processi CC il neutrino incidente si trasforma nel suo corrispondente leptone ca-
rico, mentre nelle reazioni NC il neutrino mantiene la sua identità. Questo fenomeno
è causato dal diverso bosone mediatore che partecipa all’interazione, Z0 con massa
MZ0 = 91.188 GeV e W± con MW± = 80.1 GeV rispettivamente per i processi NC
e CC.
La diffusione elastica è quindi caratterizzata dai seguenti processi:

ν(ν̄) + N −→ ν(ν̄) + N diffusione NC{
ν + N −→ l− + N ′

ν̄ + N −→ l+ + N ′ diffusione CC .

La sezione d’urto elastica per processi di diffusione neutrino-nucleone si scrive come

dσ

dQ2
∝ M2G2

F

8πE2
ν

. (3.8)

Una formulazione più accurata della diffusione elastica necessita la distinzione tra
processi CC ed NC.
Nella diffusione anelastica possiamo avere:

ν(ν̄) + N −→ ν(ν̄) + N∗ diffusione NC

ν + N −→ l + N∗ diffusione CC . (3.9)
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Nella regione anelastica l’energia del neutrino si aggira intorno ai 2 GeV.
Nei processi inclusivi profondamente anelastici possiamo avere:

ν(ν̄) + N −→ ν(ν̄) + X diffusione NC

ν(ν̄) + N −→ l∓ + X diffusione CC . (3.10)

Nei grafici in Figura 3.1 è rappresentato l’andamento della sezione d’urto in funzione
dell’energia del neutrino nelle regioni appena descritte.
Per valori delle energie intorno ai 1.5 GeV, le reazioni sono dominate dai processi
quasi-elastico e risonante.

3.1 Diffusione elastica da correnti cariche N(νµ, µ)N ′

Il tensore adronico è definito dalla corrente [32, 43]

JCC
α =< p(p′)|JCC

α (0)|n(p) > (3.11)

dove |n(p) > rappresenta un neutrone di momento p e < p(p′)| un protone di
momento p′. La trasformazione di un neutrone in un protone è definita dal passaggio
di un quark down in un quark up e questo spiega la presenza dell’angolo di Cabibbo
nell’espressione

JCC
α = cos θC(V CC

α − ACC
α ) (3.12)

con

V CC
α = ūp(p

′)
[
γαF V

1 (Q2) +
i

2M
σαβqβF V

2 (Q2) +
qα

M
F S(Q2)

]
un(p) (3.13)

−ACC
α = ūp(p

′)
[
γαγ5FA(Q2) +

i

2M
σαβqβγ5FT (Q2) +

qα

M
γ5FP (Q2)

]
un(p)(3.14)

dove FA, FT e FP indicano rispettivamente i fattori di forma assiale, tensoriale e
peseudo-scalare.
L’invarianza temporale implica che questi siano funzioni reali di Q2 e che

F S = 0 (3.15)

FT = 0 . (3.16)

La corrente adronica per reazioni CC può quindi essere scritta

JCC
α = cos θC ūp(p

′)
[
γαF V

1 +
i

2M
σαβqβF V

2 + γαγ5FA +
qα

M
γ5FP

]
un(p) (3.17)

da cui segue la derivazione della sezione d’urto

dσ

dQ2
=

M2G2
F cos2 θC

8πE2
ν

[
A(Q2)∓ (s− u)

M2
B(Q2) +

(s− u)2

M4
C(Q2)

]
(3.18)

37



Figura 3.1: Decomposizione della σtot in funzione di Eν relativa al processo inclusivo νµN −→
µ− + X. Adattato Ref. [32]
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dove

(s− u) = 4MEν −Q2 −m2
l (3.19)

τ =
Q2

4M2
(3.20)

A =
(m2

l + Q2)

M2
[(1 + τ)F 2

A − (1− τ)(F V
1 )2 + τ(1− τ)(F V

2 )2 + 4τF V
1 F V

2 +

− m2
l

4M2

(
(F V

1 + F V
2 )2 + (FA + 2FP )2 −

( Q2

M2
+ 4

)
F 2

P

)
] (3.21)

B =
Q2

M2
FA(F V

1 + F V
2 ) (3.22)

C =
1

4
(F 2

A + (F V
1 )2 + τ(F V

1 )2) (3.23)

con Q2 = −q2.
L’unica differenza tra la diffusione di neutrini ed antineutrini risiede nel segno da-
vanti al termine B, in quanto la simmetria di carica impone che i fattori di forma
siano gli stessi per entrambi i processi.
Nell’ipotesi di conservazione della corrente vettoriale, i fattori di forma F V

1,2 possono
essere correlati a quelli della diffusione di elettroni.

Il termine elettromagnetico della corrente adronica, per u =
(

up un

)T
risulta pari

a:

JEM
α = ūp(p

′)
[
γαF p

1 +
i

2M
σαβqβF p

2

]
up(p)+

+ūn(p′)
[
γαF n

1 +
i

2M
σαβqβF n

2

]
un(p) (3.24)

dove F p,n
1,2 sono i fattori di forma del nucleone di Dirac e Pauli.

Abbiamo già mostrato che il termine elettromagnetico della corrente adronica può
essere scomposta in un contributo iso-vettoriale ed in uno iso-scalare:

JEM
α = V 3

α +
1

2
JY

α (3.25)

dove

V 3
α = ūn(p′)

[
γαF v

1 +
i

2M
σαβqβF v

2

]τ3

2
un(p) (3.26)

1

2
JY

α = ūn(p′)
[
γαF s

1 +
i

2M
σαβqβF s

2

]1

2
un(p) (3.27)
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e quindi

F v,s
1,2 = F p

1,2 ∓ F n
1,2 . (3.28)

Riscrivendo la parte vettoriale della corrente carica in termini del doppietto di isospin
del nucleone si ottiene:

V CC
α = ū =

[
γαF V

1 +
i

2M
σαβqβF V

2

]τ+

2
u (3.29)

Per la conservazione della corrente vettoriale, le eqq. (3.26) e (3.29) sono componenti
dello stesso multipletto di isospin, perciò per i fattori di forma si ottiene che

F v
1,2 = F V

1,2 (3.30)

e di conseguenza anche la corrente vettoriale debole si conserva:

F V
1,2 = F p

1,2 − F n
1,2 (3.31)

dove F p,n
1,2 sono i fattori di forma di Dirac e Pauli per il nucleone.

Proseguendo l’analogia con la diffusione elettromagnetica, si introducono i fattori di
forma di Sachs, legati ai precedenti dalle relazioni:

Gp,n
M = F p,n

1 + F p,n
2 (3.32)

Gp,n
E = F p,n

1 − Q2

4M2
F p,n

2 (3.33)

da cui si ottiene [44]

F V
1 (Q2) =

GV
E(Q2) + Q2

4M2 G
V
M(Q2)

1 + τ
(3.34)

F V
2 (Q2) =

GV
M(Q2)−GV

E(Q2)

1 + τ
(3.35)

dove GM e GE rappresentano rispettivamente i fattori di forma magnetico ed elet-
trico del nucleone e

GV
E = Gp

E(Q2)−Gn
E(Q2)

GV
M = Gp

M(Q2)−Gn
M(Q2) . (3.36)

In Figura 3.2 è riportato l’andamento dei fattori di forma in funzione di Q2.
Il termine di corrente assiale può essere scritto come

ACC
α = ū

[
γαγ5FA +

qα

M
γ5FP

]τ+

2
u . (3.37)

Nel limite chirale la corrente assiale si conserva, pertanto il fattore di forma pseu-
doscalare si scrive come

FP (Q2) =
2M2

Q2 + m2
π

FA(Q2) (3.38)
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Figura 3.2: Fattori di forma CC correlati ai fattori di forma di Sachs dalle eq. (3.34) e (3.35)
nella parametrizzazione dei fattori di forma BBA-2003. Adattato Ref. [32]

ed anche per il fattore di forma assiale è possibile definire una approssimazione di
dipolo, per la quale risulta che

FA(Q2) =
gA(

1 + Q2

M2
A

)2 (3.39)

dove gA = −1.267 e con il valore medio mondiale MA = 1.026± 0.020 GeV .
Gli esperimenti condotti sui neutrini forniscono valori differenti per MA a seconda
dei valori di gA e dei fattori di forma elettromagnetici ipotizzati nel processo di
estrazione.

3.2 Diffusione elastica da correnti neutre N(ν, ν)N

Per processi di diffusione quasi-elastica NC il tensore adronico Wαβ è definito dalla
corrente [44, 45, 46, 47, 48]

JQE
α = < N |JNC

α (0)|N >=

= < N |(V NC
α − ANC

α )(0)|N >=

= ū(p′)Bαu(p) (3.40)

con N = p, n , qα = p′α e

Bα =
(
γα − γqqα

q2

)
F̃N

1 +
i

2MN

σαβqβF̃N
2 + γαγ5F̃

N
A +

qα

MN

γ5F̃
N
P (3.41)

dove MN indica la massa del nucleone, F̃N
1,2, F̃N

A e F̃N
P rispettivamente i fattori di

forma vettoriale, assiale e pseudo-scalare, funzioni reali di Q2 come conseguenza
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dell’invarianza temporale.
La seconda uguaglianza in (3.40) è permessa dall’invarianza di Lorentz e la forma
(V − A) è dettata dalla violazione della parità.
Le correnti vettoriali ed assiali nella loro espressione più generale si scrivono rispet-
tivamente:

V NC
α = ūN

[
γαF̃N

1 (Q2) +
i

2M
σαβqβF̃N

2 (Q2)
]
uN (3.42)

ANC
α = ūN

[
γαγ5F̃

N
A (Q2) +

qα

M
γ5F̃

N
P (Q2)

]
uN . (3.43)

E’ importante notare che i fattori di forma F̃ differiscono da quelli associati ai
processi CC.
La sezione d’urto per processi quasi-elastici NC si scrive come

dσ

dQ2
=

M2G2
F

8πE2
ν

[
A∓ (s− u)

M2
B +

(s− u)2

M4
C

]
(3.44)

dove

(s− u) = 4MEν −Q2 (3.45)

τ =
Q2

4M2
(3.46)

e con

A =
Q2

M2
[(1 + τ)(F̃N

A )2 − (1− τ)(F̃N
1 )2 + τ(1− τ)(F̃N

2 )2 + 4τF̃N
1 F̃N

2 ] (3.47)

B =
Q2

M2
F̃N

A (F̃N
1 + F̃N

2 ) (3.48)

C =
1

4

(
(F̃N

A )2 + (F̃N
1 )2 + (F̃N

2 )2
)

(3.49)

La sezione d’urto è indipendente dal sapore del neutrino; in essa inoltre non compa-
re il fattore di forma pseudo scalare, come conseguenza della massa nulla del fascio
incidente. L’unica differenza tra la sezione d’urto di neutrini ed antineutrini risiede
nel segno davanti al termine B.
In (3.44) è possibile trascurare il fattore di forma pseudoscalare F̃N

P perchè è mol-
tiplicato per la massa del neutrino, mentre il termine (γqqα)/q2 garantisce la con-
servazione della corrente vettoriale anche se le masse dei nucleoni iniziale e finale
differiscono, eventualità legata alla presenza di un campo potenziale nucleare medio
dipendente dall’impulso.
Il tensore adronico assume quindi la seguente formulazione:

W αβ
QE =

1

2
Tr

[
(p/ + M)B̃α(p/ ′ + M)Bβ

]
(3.50)
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dove

B̃α = γ0B
∗
αγ0 (3.51)

e dove M = M ′ = MN nel caso di nucleoni liberi.
La corrente vettoriale si scrive come

V NC
α = (1− 2 sin2 θW )V 3

α − 2 sin2 θW
1

2
JY

α −
1

2
Js

α (3.52)

dove θW è l’angolo debole di Weinberg (sin2 θW = 0.2228), V 3
α è la terza componente

della corrente isovettoriale, JY
α la corrente isoscalare (ipercarica) e Js

α rappresenta il
contributo strano. Inoltre

V 3
α = ū

[
γαF v

1 +
i

2M
σαβqβF v

2

]τ3

2
u (3.53)

1

2
JY

α = ū
[
γαF s

1 +
i

2M
σαβqβF s

2

]1

2
u (3.54)

dove

F v,s
1,2 = F p

1,2 ∓ F n
1,2 (3.55)

con F p,n
1 e F p,n

2 sono i fattori di forma del nucleone di Dirac e Pauli.
Per quanto riguarda la parte strana si ha che

1

2
J2

α = ū
[
γαF S

1 +
i

2M
σαβqβF S

2

]1

2
u (3.56)

dove F 2
1,2 sono i fattori di forma vettoriali strani.

Le tre correnti hanno la stessa struttura di Dirac ed i fattori di forma per processi
NC risultano:

F̃ p
1,2 =

(1

2
− 2 sin2 θW

)
F p

1,2 −
1

2
F n

1,2 −
1

2
F s

1,2 (3.57)

F̃ n
1,2 =

(1

2
− 2 sin2 θW

)
F n

1,2 −
1

2
F p

1,2 −
1

2
F p

1,2 (3.58)

espressi in termini dei fattori di forma dei nucleoni di Dirac e Pauli F p,n
1,2 e della

componente strana F s
1,2.

Analogamente la formulazione della corrente

ANC
α = A3

α +
1

2
As

α (3.59)

implica che

F̃ p,n
A = ±1

2
FA +

1

2
F s

A (3.60)

dove FA indica il fattore di forma assiale per la diffusione quasi-elastica di correnti
cariche (differente in segno per protoni e neutroni) e dove F s

A è il fattore di forma
assiale strano.
La diffusione di neutrini NC risulta poco sensibile ai fattori di forma vettoriali, ma
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estremamente sensibile a quelli assiali, quindi per semplicità si possono imporre le
seguenti condizioni di uguaglianza:

F s
1,2(0) = 0 (3.61)

F s
A(Q2) =

∆s(
1 + Q2

M2
A

)2 (3.62)

assumendo che la massa assiale strana sia uguale a quella non strana.

Figura 3.3: Sezione d’urto dei processi NC su protoni e neutroni in funzione del quadri-impulso
trasferito e dell’energia del neutrino. La linea continua rappresenta risultati per ∆s = −0.15, la
linea tratteggiata per ∆s = 0. Adattato dalla Ref. [32]

In Figura 3.3 viene mostrata la dipendenza della sezione d’urto elastica dal fattore
di forma assiale.
E’ importante notare come il segno opposto per protoni e neutroni nell’espressione
(3.60) si rifletta nella sezione d’urto.
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Capitolo 4

Diffusione di elettroni e neutrini
da nuclei

4.1 Diffusione quasi-elastica inclusiva di elettroni

A(e, e′)X

In Figura 4.1 è rappresentato il processo di diffusione inclusiva

e + A −→ e′ + X (4.1)

in cui viene rivelato soltanto l’elettrone diffuso e′.

Figura 4.1: Diagramma OPA della diffusione inclusiva elettrone-nucleo.

La sezione d’urto inclusiva nel sistema del laboratorio si ottiene sostituendo N con
A nell’eq.(2.22) e si scrive come [33]

dσ

dΩ′dE ′ =
4α2

Q4

E ′

E

1

2
LµνWA

µν (4.2)
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con

α =
e · eA

4π
(4.3)

dove il tensore leptonico è lo stesso della diffusione eN , mentre il tensore adronico
diventa

WA
µν =

1

4π

∑
αA

∑
X

(2π)4δ(4)
(
PA + q − PX

)

< αA, ~PA = 0|JA
µ (0)|αX , ~PX >< αX , ~PX |JA

ν (0)|αA, ~PA = 0 > (4.4)

dove ancora una volta
∑

αA
rappresenta la media sui numeri quantici dello stato

iniziale del bersaglio,
∑

X la somma su tutti gli stati discreti ed un integrale su
quelli continui dello stato finale non rivelato.
In analogia con l’eq. (2.34), la sezione d’urto inclusiva si scrive come

d2σ

dΩ′dE ′ = σMott

[
WA

2 (ν,Q2) + 2WA
1 (ν, Q2) tan2 θ

2

]
(4.5)

e separando le componenti lognitudinale e trasversa delle funzioni risposta si ottiene
nuovamente l’eq. (2.37)

Nel caso di diffusione elastica, W 2 = M2
A, ν = Q2

2MA
e le risposte longitudinale e

trasversa si scrivono come

RA
L(ν, Q2) = F 2

L(Q2)δ
(
ν − Q2

2MA

)

RA
T (ν, Q2) = F 2

T (Q2)δ
(
ν − Q2

2MA

)
(4.6)

dove FL e FT sono i fattori di forma nucleari longitudinale e trasversa, che possono
essere scritti in funzione dei multipoli di carica (C) e magnetico (M) come

F 2
L =

∑
J≥0

|FC
J |2

F 2
T =

∑
J>0

|FM
J |2 (4.7)

dove l’indice delle sommatorie J soddisfa la conservazione del momento angolare
0 ≤ J ≤ 2J1 e della parità πiπf = (−1)J+λ, con J1 spin del bersaglio e λ = 0, 1
rispettivamente per multipoli coulombiani e magnetici.
La sezione d’urto elastica si scrive pertanto come

dσ

dΩ
= σMott

E ′

E

{Q4

~q 4
F 2

L(Q2) +
1

2

(Q2

~q 2
+ 2 tan2 θ

2

)
F 2

T (Q2)
}

. (4.8)

Nella diffusione eN si è introdotta la variabile di Bjorken x = Q2

2Mν
, che per un

nucleone risulta compresa nell’intervallo 0 ≤ x ≤ 1, mentre per un nucleo si ha

x =
Q2

2Mν

MA

MA

=
Q2

2MAν

MA

M
' Q2

2MAν
A ≡ xA · A (4.9)
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e pertanto 0 ≤ x ≤ A.
In Figura 4.2 è riportato l’andamento qualitativo delle sezioni d’urto eN e eN pro-
prio in funzione della variabile di Bjorken x.
In a) il bersaglio è un nucleone. Il picco in x = 1 corrisponde alla diffusione elastica,
mentre i picchi in x < 1 rappresentano eccitazioni coerenti delle risonanze nucleo-
niche. Il picco in x = 1/3 rappresenta infine l’accopiamento fotone-quark, ovvero la
diffusione quasi-elastica sui partoni del nucleone, di massa M̃ = M

3
.

In b) il bersaglio è un nucleo. Il picco elastico è centrato in x = A, mentre le eccita-
zioni coerenti dei livelli discreti in x < A. In x = 1 compare il picco quasi-elastico,
relativo alla diffusione su nucleoni legati, mentre i picchi in x < 1 rappresentano le
risonanze nucleoniche ed eventualmente processi DIS su nucleoni legati.

Figura 4.2: Andamento qualitativo della sezione d’urto in funzione della variabile di Bjorken
x = Q2/2Mν per un nucleone bersaglio (a) e per un nucleo bersaglio (b). Adattato dalla Ref. [36]

4.2 Diffusione quasi-elastica semi-inclusiva di elet-

troni A(e, e′p)X

In Figura 4.3 è rappresentato il processo di diffusione semi-inclusiva

e + A −→ e′ + p + X (4.10)

in cui vengono rivelati sia l’elettrone e′, che il protone p diffusi.
In base alla relazione (2.2), per determinare univocamente lo stato finale bisogna
affiancare altre tre variabili, determinate dall’adrone prodotto, alle già note x e Q2.
Di solito la scelta cade sulla frazione di energia portata dall’adrone rispetto a quella
del fotone virtuale

z ' Ep

ν
(4.11)
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Figura 4.3: Diagramma OPA della diffusione semi-inclusiva elettrone-adrone bersaglio. In questa
figura B ≡ h.

lungo la componente trasversa dell’impulso dell’adrone, ~PAT
, rispetto alla direzione

di ~q, e sull’angolo azimutale φ determinato dal piano degli impulsi dei leptoni inci-
dente e diffuso con il piano degli impulsi del fotone virtuale de dell’adrone prodotto.

Sostituendo f ≡ (p,X) e dτf = MBd3Pp

Ep(2π)3
in (2.1) si ottiene la sezione d’urto per il

processo semi-inclusivo [33, 49]:

d4σ

dΩ′dE ′dEpdΩp

=
4α2

Q4

E ′

E

|~Pp|Ep

Mp

LµνWA,s.i.
µν (4.12)

con

Pp ≡ (P 0
p , ~Pp), P 0

p =
√

(Mp + E∗
p)

2 + ~P 2
p .

Il tensore leptonico è nuovamente definito dall’espressione (2.24), mentre quello
adronico si scrive come

WA,s.i.
µν =

1

4

∑
αA

∑
αp,X

(2π)4δ(4)(PA + q − Pp − PX)

< αA
~PA = 0|JA

µ (0)|αX
~PX , αp

~PpE
∗
p >

< αp
~PpE

∗
p , αX

~PX |JA
ν (0)|αA

~PA = 0 > (4.13)

dove
∑

X rappresenta una somma sugli stati discreti ed un’integrazione sui numeri

quantici continui, mentre il vettore |αX
~PX , αp

~PpE
∗
p > consiste asintoticamente di un

nucleo p con momento ~Pp ed energia di eccitazione intrinseca E∗
p .

Rispettando le richieste di invarianza di gauge e di inversione temporale e di con-
servazione della carica, la parametrizzazione del tensore adronico per un processo
semi-leptonico richiede l’introduzione di 4 funzioni di struttura:

WA,s.i.
µν = −WA

1 gµν +
WA

2

M2
PA

µ PA
ν +WA

3

1

(PP · PA)

1

2
(PA

µ P P
ν +PA

ν P P
µ )+

WA
4

M2
P P

µ P P
ν
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(4.14)

Una formulazione alternativa e fisicamente più trasparente è fornita in funzione dei
quadri-vettori di polarizzazione del fotone virtuale:

εµ
± = ∓ 1√

2
(0, 1,±i, 0) , εµ

0 =
1√
Q2

(|~q|, 0, 0, q0) (4.15)

dove

εµq
µ = 0,

∑

λ

ε∗µλ εν
λ = −gµν +

qµqν

q2
, ελ = (−1)λε−λ , λ = ±, 0

Con questa notazione la contrazione tra il tensore leptonico ed il tensore adronico
si scrive come

LµνWA,s.i.
µν =

∑

λλ′
Lλλ′Wλλ′ (4.16)

con

Lλλ′ = εµ
λLµνε

∗ν
λ′ e Wλλ′ = (−1)λ+λ′ε∗µλ′ W

A,s.i.
µν εν

λ′ . (4.17)

L’invarianza temporale e la conservazione della parità restringono a quattro il nu-
mero di combinazioni indipendenti di λλ′ nell’eq. (4.16):

WA
L =

|~q|2
Q2

W00

WA
T = W11 + W−1−1

WA
LT =

|~q|√
Q2

2Re[W01 −W0−1]

WA
TT = −2ReW1−1 (4.18)

definite rispettivamente come funzione di risposta nucleare longitudinale (L), tra-
sversa (T), di interferenza longitudinale-trasversa (LT) e trasversa-trasversa (TT).
Si introduce il tensore adronico ridotto

Lλλ′ = 4EE ′ cos2 θ

2lλλ′
(4.19)

da cui si ricava:

l00 =
Q2

|~q|2

l11 =
Q2

2|~q|2 + tan2 θ

2

l1−1 = − Q2

2|~q|2 . (4.20)

La sezione d’urto semi-inclusiva si può quindi scrivere come

d4σ

dΩ′dE ′dEP dΩP

= σmott|~PP |EP

∑
i

ViW
A
i (ν, Q2, ~PP , Ef

P ) (4.21)
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con i = {L, T, LT, TT} e

VL =
Q4

|~q|4

VT =
Q2

2|~q|2 + tan2 θ

2

VLT =
Q2

√
2|~q|2

( Q2

|~q|2 + tan2 θ

2

) 1
2

VTT =
Q2

2|~q|2 (4.22)

noti come fattori cinematici.

4.3 Diffusione quasi-elastica inclusiva di neutrini

A(νµ, µ)X

In Figura 4.4 sono rappresentati processi di diffusione inclusiva neutrino-nucleo, in

Figura 4.4: Diagramma di Feynman corrispondente alla diffusione inclusiva neutrino-nucleo

cui soltanto il leptone finale è osservato.
Nell’approssimazione di scambio di un solo bosone la sezione d’urto nel sistema del
laboratorio si scrive come [32, 50, 51]

d2σ

dΩdEl

=
G2

F

4π2

|~k|
|~k′|

LαβWαβ (4.23)

dove dΩ = d cos θdφ, θ è l’angolo di diffusione, El l’energia del leptone diffuso e

GF =
√

2g2

8M2
W

= 1.16637 · 10−5GeV −2 è la costante di Fermi.

Per procedere nella parametrizzazione dei tensori leptonico ed adronico è necessario
distinguere tra processi CC ed NC.
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Correnti cariche

Il tensore leptonico nella sua formulazione di carattere più generale è definito come

Lαβ =
∑

s

∑

s′
[ūl(k

′)γα(1 + hγ5)uν(k)]∗[ūl(k
′)γβ(1 + hγ5)uν(k)] (4.24)

dove s ed s ′ sono gli spin iniziali e finali del leptone, mentre h corrisponde all’elicità
della particella incidente.
Per il neutrino h = 1:

Lαβ =
∑

s

∑

s′
[ūl(k

′)γα(1− γ5)uν(k)]∗[ūl(k
′)γβ(1− γ5)uν(k)] =

= Tr[(k/′ + ml)γα(1− γ5)(k/
′ + ml)γβ(1− γ5)] =

= 8[kα′kβ + kαkβ′ − gαβk · k′ + iεαβρσk
ρk′σ] =

= LS
αβ + iLA

αβ (4.25)

dove gli apici S ed A si riferiscono alla simmetria per scambio degli indici di Lorentz α
e β. Per gli antineutrini il termine asimmetrico è proporzionale al tensore totalmente
antisimmetrico εαβρσ.
La forma generale del tensore associato al neutrino è quindi la seguente:

Lν,ν̄
αβ = LS

αβ ± iLA
αβ (4.26)

E’ importante sottolineare che il contributo asimmetrico è strettamente legato alla
diffusione di neutrini e per questo risulta assente nella esplicitazione del tensore
elettromagnetico incontrato nella diffusione di elettroni.
Per determinare il tensore adronico elettromagnetico si è ricorsi alla conservazione di
parità e di carica e all’invarianza di Lorentz. Nell’interazione debole l’unico vincolo
imponibile è quello relativo all’invarianza di Lorentz

W αβ
ν,ν̄ = Lαβ

S ± iLαβ
A (4.27)

dove gli indici sono ancora una volta rappresentativi della simmetria del tensore.
Nella sua formulazione più generale, il tensore adronico debole risulta proporzionale
a sei funzioni di struttura indipendenti:

W αβ ≡ 1

2π

∫
eiq·zd4z < N |Jα(z)Jβ(0)|N >=

=
1

π
Disc

∫
eiq·zd4z < N |iT (Jα(z)Jβ(0))|N >=

= (−gαβ)W1 +
pαpβ

M2
W2 + iεαβρσ pρpσ

M2
W3 +

qαqβ

M2
W4 +

+
pαqβ + qαpβ

2M2
W5 +

i(pαqβ − qαpβ)

2M2
W6 (4.28)

dove [52] l’integrale si svolge inserendo un set completo di stati

1 =
∑
X

|X >< X| (4.29)
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in cui

|X > = |N > regione quasi-elastica

|X > = |Nnπ > regione risonante/poche particelle

|X > = | multiparticelle > regione DIS (4.30)

Le Wi sono funzioni reali che dipendono dagli scalari di Lorentz ν = p · q e q2 ed
anche in questo caso possono essere scalate nelle più convenzionali Fi.
La presenza di W3 e W6 è indotta dalla violazione della parità, mentre W4 e W5 sono
determinate dalla mancata conservazione della corrente.
Sostituendo i tensori (4.24) e (4.28) nell’eq. (4.23) si ottiene la sezione d’urto
differenziale doppia per correnti cariche

dσ

dΩdEl

=
|~k′|ElMG2

F

π2

{
2W1 sin2 θ

2
+ W2 cos2 θ

2
−W3

Eν + El

M
sin2 θ

2
+

m2
l

El(El + |~k′|)
[
W1 cos θ − W2

2
cos θ +

W3

2

(El + |~k′|
M

− Eν + El

M
cos θ

)
+

+
W4

2

( m2
l

M2
cos θ +

2El(El + |~k′|)
M2

sin2 θ
)
−W5

El + |~k′|
2M

}
(4.31)

dove M è la massa del nucleone. E’ importante sottolineare che se il fascio incidente
è composto da antineutrini bisogna cambiare il segno davanti a W3 e che nel risultato
non compare la funzione di struttura W6, in quanto si annulla nella contrazione dei
tensori leptonico ed adronico.
Nel caso di diffusione inclusiva profondamente anelastica la sezione d’urto può essere
esplicitata rispetto alle variabili {x, y, Q2}, con Q2 = 2MNEνxy:

dσν(ν̄)

dxdy
=

G2
F MNEν

π(1 + Q2/M2
W )2

{
(y2x +

m2
τy

2EνMN

)FW±
1 +

[
(1− m2

τ

4E2
τ

)− (1 +
MNx

2Eν

)y
]
FW±

2 ±

±
[
xy(1− y

2
)− m2

τy

4EνMν

]
FW±

3 +
m2

τ (m
2
τ + Q2)

4E2
νM

2
N

xFW±
4 − m2

τ

EνMN

FW±
5

}
. (4.32)

Nell’espressione precedente si sono trascurati i fattori m2
τ/2MNEν · Q2/M2

W pro-
venienti dal termine qµqν/M2

W del propagatore bosonico massivo. Una loro re-
introduzione è resa possibile dalla sostituzione

FW±
i −→ FW±

i · (1 + εi) (4.33)

dove

ε1 =
m2

τ (Q
2 + 2M2

W )

2M4
W

ε2 = −E2
νm

2
τy[4M2

W + y(Q2 + m2
τ )]

M4
W [4(y − 1)E2

τ + m2
τ + Q2]

ε3 = 0

ε4 =
Q2(Q2 + 2M2

W )

M4
W

ε5 =
Q2

M2
W

+
(M2

W + Q2)(m2
τ + Q2)y

2M4
W

(4.34)
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Nell’ eq. (4.32) le funzioni di struttura F4 e F5 sono potenze della massa del leptone
carico e quindi possono essere trascurate.
Nell’ordine principale, queste sono correlate alle funzioni di struttura usuali attraver-
so le relazioni di Albright-Jarlskog, generalizzazione delle relazioni di Callan-Gross
definite nel caso elettronico:

F4 = 0

2xF5 = F2 . (4.35)

Nell’eq.(4.32) e nella definizione delle Fi sono presenti correzioni alla massa del
bersaglio, perciò per la diffusione di neutrini è convenzione riscrive le Fi in termini
delle

Fi = (1− δi4)q(x,Q2) (4.36)

espressioni relative all’ordine principale, in cui si trascura la massa della targhetta.

Correnti neutre

I tensori adronico e leptonico sono gli stessi appena discussi, con ml = 0, in quanto
il neutrino mantiene la sua identità nei processi NC, e la sezione d’urto differenziale
per correnti neutre si scrive come [32] [53]

dσ

dΩ′dE ′ =
|~k′|ElMG2

F

π2

{
2WA

1 sin2 θ

2
+ WA

2 cos2 θ

2
−WA

3

Eν + El

M
sin2 θ

2

}
(4.37)

Anche questa volta per fasci di antineutrini è sufficiente cambiare il segno davanti
al termine W3.
La sezione d’urto può essere espressa anche in funzione del momento trasferito

Q2 = 2EνEl − 2|~k||~k′| cos θ −m2
l

e della massa invariante dello stato adronico finale

W 2 = M2 + 2M(Eν − El)−Q2

da cui si ottiene

dσ

dQ2 dW
=

πW

M |~k||~k′|
d2σ

dΩ dEl

La sezione d’urto totale per un neutrino incidente con energia nota si scrive quindi

σ(Eν) =

∫ Wmax

Wmin

dW

∫ Q2max

Q2
min

dQ2 dσ

dQ2 dW
(4.38)

con i seguenti estremi di integrazione

Wmin = M

Wmax =
√

s−ml (4.39)
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dove
√

s è la massa invariante del sistema iniziale νN .
Una vola fissato W, Q2 risulta compreso tra i seguenti valori:

Q2
min = −m2

l + 2Eν(El − |~kf |) (4.40)

Q2
max = −m2

l + 2Eν(El + |~kf |) (4.41)

Sia per la reazione CC che NC si è studiato il processo di diffusione νN , ma quanto
detto si adatta facilmente al caso νN , ponendo N = A e sostituendo alle funzioni di
struttura del nucleone quelle del nucleo, in perfetta analogia con il caso di diffusione
di elettroni. Anche in questo caso, pertanto, per esplicitare le funzioni di struttura
è necessario ricorrere a dei modelli di approssimazione.
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Capitolo 5

Modelli teorici per la diffusione
inclusiva di elettroni e neutrini da
nuclei

L’interazione leptone-nucleo viene in genere scomposta in due fasi: l’interazione del
leptone con un nucleone legato, seguita dalla propagazione nel mezzo nucleare di
quest’ultimo.
La descrizione teorica di tale processo richiede quindi la soluzione di un complesso
problema a molti corpi, sia per lo stato legato del nucleo bersaglio, che per gli stati
corrispondenti ad un nucleone nel continuo.
Il problema, ovviamente, non può essere risolto esattamente e l’uso di varie approssi-
mazioni ricorre frequentemente. Una tra le più diffuse è l’approssimazione impulsiva
con onde piane (PWIA1), che viene descritta nel paragrafo che segue.

5.1 L’approssimazione impulsiva

E’ utile a questo punto ricondurre il processo semi-inclusivo descritto nel paragrafo
4.2. Il processo inclusivo si ottiene da quello semi-inclusivo, eq. (4.21), integrando
sull’energia e sull’angolo solido del nucleone emesso e non rivelato.
La PWIA, che permette di calcolare le funzioni di risposta che appaiono nella (4.21),
si basa sulle seguenti ipotesi principali:

- la corrente nucleare è data dalla somma delle correnti dei singoli nucleoni
(approssimazione impulsiva) [49]:

ĴA
µ =

A∑
i=1

ĵNi
µ

- lo stato finale adronico si riduce al prodotto di due sistemi non interagenti,
rappresentati da onde piane:

ΨA−1,~pN
= Â

{
ei~pN ·~r|Φf

A−1 >
}
≡ |fA−1, ~pN >

1Dall’inglese Plane Wave Impulse Approximation
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dove Â è l’operatore di antisimmetrizzazione tra l’onda piana e Φf
A−1, intro-

dotto poiché lo stato finale di barione singolo può essere generato da uno
qualunque dei nucleoni iniziali; inoltre ~pN = ~p + ~q e Φf

A−1 costituisce un set

completo di autostati di ĤA−1: ĤA−1|Φf
A−1 >= Ef

A−1|Φf
A−1 >;

- non c’è interazione tra i due fattori dello stato finale, cioè si trascura l’in-
terazione tra particella colpita e sistema spettatore, ma si tiene conto delle
interazioni interne al sistema di (A-1) nucleoni.

Il processo in approssimazione PWIA è illustrato graficamente in Figura 5.1 e
la sezione d’urto quasi-elastica (Figura 5.1 (1)) può essere ridotta alla seguente
espressione:

d2σ

dΩ′dE ′ = σMott

{[
Q2

~q 2

]2

RL(ν, Q2) +
1

2

[
Q2

~q 2
+ 2 tan2 θ

2

]
RT (ν, Q2)

}
(5.1)

con

RL(T )(q, ν) = GL(T )(q, ν)I(q, ν) (5.2)

dove

GL(q, ν) =
[
ZGp2

E + NGn2

E

] (
1− q2

4M2

)

GT (q, ν) =
[
ZGp2

M + NGn2

M

] q2

2M2
(5.3)

sono le funzioni di struttura del nucleone e

I(q, ν) =

∫
dE

∫
d3p P (p, E)δ

(
ν − (~p + ~q)2

2M
− ~p 2

2(A− 1)M
− E

)
(5.4)

è la funzione di struttura nucleare, dove P (p, E) è la funzione spettrale, che rappre-
senta la probabilità di trovare in un nucleo un nucleone con momento |~p| ed energia
E.
Nel caso del grafico in Figura 5.1(2), le funzioni elastiche (5.3) vengono rimpiazzate
dalle corrispondenti funzioni anelastiche, dipedenti da fattori di forma anelastici del
nucleone. Il vertice adronico dipende quindi dalla funzione spettrale, le cui proprietà
sono descritte nel seguito.
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Figura 5.1: Alcune reazioni al vertice adronico in approssimazione PWIA: 1) quasi
elastica, 2) anelastica, 3) profondamente anelastica.

5.1.1 La funzione spettrale del nucleone

In ambito non relativistico si definisce la funzione spettrale del nucleone [14, 33, 49,
54]

PN(p, E) =
1

2J0 + 1

∑
M0σ

< ψ0
A|a∗~p, σ + δ

(
E − (H − EA)

)
a~p, σ|ψ0

A > (5.5)

che rappresenta la probabilità congiunta di trovare in un nucleo un nucleone con
momento |~p| ed energia di rimozione

E = |EA| − |EA−1|+ E∗
A−1 (5.6)

dove E∗
A−1 è l’energia di eccitazione (sempre positiva) del nucleo residuo (A − 1)

misurata rispetto al suo stato fondamentale, EA ed EA−1 l’energia di legame rispet-
tivamente del nucleo A, A− 1.
In (5.5) a∗~p, σ e a~p, σ indicano l’operatore di creazione ed annichilazione di un nucleo-
ne con momento ~p e spin σ; ψ0

A è l’autofunzione intrinseca dello stato fondamentale
dell’Hamiltoniana nucleare H, con autovalore EA, momento angolare totale J0 e
proiezione M0.
Dalle espressioni precedenti si ottiene una definizione alternativa ma equivalente del-
la funzione spettrale, che si identifica nella probabilità che il nucleo residuo (A− 1)
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abbia energia di eccitazione E∗
A−1.

Inserendo la relazione di completezza per gli stati finali del sistema residuo
∑

f

|ψf
A−1 >< ψf

A−1| = 1 (5.7)

dove

∑

f

≡
∑

fdiscreto

∫

fcontinuo

(5.8)

nella funzione spettrale (5.5) si ottiene

PN(p, E) =
1

2J0 + 1

∑
M0σ

∑

f

∣∣ < ψf
A−1|a~p,σ|ψ0

A >
∣∣2δ(E − (Ef

A−1 − EA) (5.9)

dove ψf
A−1 è l’autofunzione intrinseca dello stato finale f dell’Hamiltoniana HA−1,

con autovalore Ef
A−1 = EA−1 + E∗

A−1.
Si definisce l’integrale di sovrapposizione tra le funzioni d’onda dello stato fonda-
mentale del nucleo A e lo stato finale f del nucleo residuo A− 1

Gσ
f0

(~z) ≡
∫

d~x . . . d~y
[
χ1/2

σ ψf
A−1(~x . . . ~y)

]∗
ψ0

A(~x . . . ~y, ~z ) (5.10)

con χ
1/2
σ spinore a due componenti di Pauli del nucleone.

In questo modo la funzione spettrale diventa

PN(p, E) =
1

(2π)3

1

2J0 + 1

∑
M0σ

∑

f

∣∣∣∣∣
∫

d~z Gσ
f0

(~z )

∣∣∣∣∣

2

δ(E − (Ef
A−1 − EA) (5.11)

e può essere scomposta in

PN(p, E) = P0(p, E) + P1(p, E) (5.12)

con

P0(p, E) ≡ 1

(2π)3

1

2J0 + 1

∑
M0σ

∑

f<c

∣∣∣∣∣
∫

d~zGσ
f0

(~z )

∣∣∣∣∣

2

δ
(
E − (Ef

A−1 − EA)
)

(5.13)

e

P1(p, E) ≡ 1

(2π)3

1

2J0 + 1

∑
M0σ

∑

f>c

∣∣∣∣∣
∫

d~zGσ
f0

(~z )

∣∣∣∣∣

2

δ
(
E − (Ef

A−1 − EA)
)

(5.14)

dove le sommatorie sono ristrette agli stati finali del sistema residuo corrispondenti
allo spettro discreto per P0(p, E) ed allo spettro continuo per P1(p, E).
Nel modello a shell la funzione spettrale si scrive come

P SM
0 (p, E) =

1

4πA

∑
α

AαnSM
α (p)δ

[
E − |εα|

]
(5.15)
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e

P SM
1 (p, E) = 0 (5.16)

dove Aα è il numero dei nucleoni nello stato α (
∑

α Aα = A) e la sommatoria su α
copre tutti gli stati del bersaglio.
La probabilità di occupazione si scrive come

SSM
α ≡

∫ ∞

0

dp p2nSM
α (p) =

{
1 α < αF

0 α > αF
.

Nel limite in cui A →∞ la funzione spettrale per un Gas di Fermi non interagente
si scrive come

P FG
0 (p, E) =

3

4πp3
F

θ(pf − p)δ
[
E +

p2

2M

]
(5.17)

e

P FG
1 (p, E) = 0 (5.18)

che implica che la probabilità di occupazione

SFG =

{
1 p ≤ pF

0 p > pF
.

Purtroppo definire la funzione spettrale richiede la conoscenza dello spettro delle
autofunzioni dello stato fondamentale e del continuo di A nucleoni interagenti, noto
solamente per A = 2 e A = 3, perciò per studiare sistemi più complessi si deve
ricorrere a modelli che tengano conto, in particolare, delle correlazioni NN tra i
nucleoni all’interno del nucleo.
Attualmente esistono, infatti, solo due modelli che descriveremo nel seguito. En-
trambi sono legati al concetto di distribuzioni di momento, illustrato nel paragrafo
che segue.

5.1.2 Distribuzione di momento del nucleone

La funzione spettrale è legata alla distribuzione di momento del nucleone n(p), ov-
vero alla densità di probabilità che una particella abbia un dato impulso ~p, dalla
relazione

n(p) = 4π

∫ +∞

Emin

dE PN(p, E) =
1

2π2

∫
d~z d~z ′ei~p·(~z−~z′)ρ(~z, ~z ′) (5.19)

dove Emin ≡ |EA| − |EA−1| è l’energia minima necessaria per rimuovere un nucleo-
ne dal nucleo, mentre la distribuzione d’impulso è definita come la trasformata di
Fourier della matrice densità ad un corpo non diagonale

ρ(~z, ~z′) ≡
∫

d~x . . . d~y
[
ψ0

A(~x . . . ~y, ~z)
]∗

ψ0
A(~x . . . ~y, ~z′) . (5.20)
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Inserendo in quest’ultima la relazione di completezza∑

f

|ψf
A−1 >< ψf

A−1| = 1 (5.21)

e ricordando l’eq. (5.11), si ottiene nuovamente l’eq. (5.19)
La distribuzione di momento riduce il problema alla conoscenza di una forma esplici-
ta della funzione d’onda nel suo stato fondamentale, soluzione del problema a molti
corpi.
Si è già anticipato che la funzione spettrale contiene informazioni sulle correlazio-
ni NN , ma per estrarle è necessario un modello realistico relativo al calcolo della
sezione d’urto, capace di tenere sotto controllo il meccanismo di reazione e tutte le
implicazioni teoriche.

Distribuzione di momento nel modello a Gas di Fermi

Nel modello gas di Fermi le particelle sono considerate indipendenti e confinate in
un volume Ω e le autofunzioni di particella singola sono semplicemente autofunzioni
dell’impulso, ovvero onde piane

ϕp(r) =
eip·r
√

Ω
. (5.22)

Antisimmetrizzando queste autofunzioni si ottiene la funzione d’onda di tutto il
sistema. Proprietà fondamentale di questo modello è che alla temperatura T = 0,
gli impulsi possono assumere soltanto valori inferiori all’impulso di Fermi pF .
La relazione

∑
p

−→ Ω

(2π)3

∫
dp (5.23)

definisce il passaggio da livelli discreti al continuo, mentre la densità del sistema

ρ(r) = S
Ω

(2π)3

1

Ω

∫
dpeip·re−ip·r =

S

(2π)3
4π

∫ pF

0

p2dp =
S

6π2
p3

F = ρ0 (5.24)

assume un valore costante, dipendente dal valore dell’impulso di Fermi, e dove S
indica la molteplicità.
La matrice densità ad un corpo non diagonale si scrive come

ρ(r, r′) =
S

2π2

J1(pF |r− r′|)
pF |r− r′| p3

F (5.25)

dove J1 è la funzione di Bessel del primo ordine.
Anche la distribuzione d’impulso

nFG
0 (p) =

SΩ

A(2π)3
θ(pF − p) (5.26)

assume un valore costante e risulta inoltre normalizzata ad uno. Dividendo infatti
per A il numero di particelle SΩ/(2π)3, con un dato impulso p, si ottiene una
corretta normalizzazione all’unità.
La funzione spettrale del modello a Gas di Fermi dà quindi

P (p, E)FG = nFG
0 (p)δ

(
E − p2

2M

)
. (5.27)
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5.2 L’interazione nello stato finale

Si è visto che l’approssimazione impulsiva trascura l’interazione tra il nucleone col-
pito e gli (A− 1) nucleoni spettatori.
E’ stato mostrato [55], che la PWIA sottostima notevolmente la sezione d’urto in-
clusiva e che ciò deve essere imputato all’assenza di interazione nello stato finale
(FSI2), cioè l’interazione delle particelle diffuse con il mezzo.
Esistono vari tentativi per tener conto di FSI [56, 57, 58].

5.2.1 Approssimazione WKB

Un metodo di approssimazione è rappresentato dalla teoria semiclassica WKB, che
si applica nella regione ka À 1, in cui la distanza necessaria al potenziale per cam-
biare in modo apprezzabile il suo valore è molto maggiore rispetto alla lunghezza
d’onda di De Broglie λ = 1√

2µ(E−V )
.

Si può dimostrare che, per grandi valori dell’energia cinetica della particella inciden-
te, la diffusione si concentra entro piccoli angoli.
Sia p il momento della particella incidente, tale che

p‖ = p cos θ = ∆p (5.28)

p⊥ = p sin θ ∼ pθ ∼ 0 . (5.29)

L’angolo di scattering θ risulta quindi

θ ∼ ∆p

p
∼

∫
Fdt

p
(5.30)

dove F è la forza che agisce sulla particella, per cui vale la relazione

F ∼ V

a

dove a è il raggio d’azione del potenziale.
Per quanto riguarda il tempo in cui la particella transita nel potenziale

t =

∫
dt ∼ a

v

e quindi

θ ∼ V

ap

∫
dt ∼ V

ap

a

v
=

V

pv
=

V

E
(5.31)

Come volevasi dimostrare, per energie sufficientemente alte la diffusione ha luogo
principalmente attraverso angoli piccoli.
In ambito quantistico l’incertezza sul momento è si scrive come

δp ∼ 1

a
(5.32)

2Dall’inglese Final State Interaction
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da cui risulta

δθ ∼ ∆p

p
∼ 1

ap
. (5.33)

Ciò implica che nel limite in cui la traiettoria della particella è definita, ovvero
quando l’incertezza sull’angolo di diffusione è minore dell’angolo stesso

θ

δθ
∼ V

E
ap À 1 (5.34)

la regione di validità della teoria WKB è limitata a quei valori che soddisfano

V a

v
À 1 . (5.35)

5.2.2 Approssimazione Eikonale

Un’ottima alternativa all’approssimazione WKB, caratterizzata, come si è visto, da
forti limiti di applicabilità, è rappresentata dall’approssimazione eikonale (dal greco
eikon, immagine), largamente utilizzata nella trattazione dei problemi di diffusione
ad alte energie [59], [60], [61].
Considerando inzialmente il caso unidimensionale, il processo di diffusione può avere
luogo in due sole direzioni, o preservando il senso del moto senza che la particella
incidente venga deflessa, o mandandola all’indietro.
I limiti di validità della teoria sono imposti dall’assunzione che l’energia della parti-
cella incidente sia molto più grande rispetto al modulo del potenziale V (~r) e che la
sua lunghezza d’onda sia molto più piccola della larghezza a della buca di potenziale:

V

E
¿ 1 ka À 1 (5.36)

E’ importante notare che quest’ultimi risultano meno restrittivi dei limiti imposti
dall’approssimazione di Born (kaV/E ¿ 1), in quanto indipendenti l’uno dall’altro.
Sotto queste condizioni è lecito assumere che le particelle si propaghino essenzial-
mente in avanti e che quindi il momento trasferito sia solo trasverso rispetto all’asse
~z. Nel caso tridimensionale, invece, sia l’asse ~z parallelo alla direzione del moto,
ovvero ~z‖k̂ e sia inoltre ~b il parametro d’urto perpendicolare a ~k. Si può quindi
scomporre il vettore posizione ~r nelle sue componenti parallela ed ortogonale alla
direzione ẑ, cioè

~r = îx + ĵy + k̂z = (~b, z) = ~b + k̂z . (5.37)

In base a questa notazione la funzione d’onda ψ diventa:

ψ(~r) = ei~k·~re−
i
v

R z
−∞ V (~b,z′)dz′ (5.38)

Anche nel caso tridimensionale le condizioni al contorno di ϕ implicano una variazio-
ne della quantità di moto (~k−~k′) = q = 2k sin(θ/2) molto piccola, motivo per cui si
può considerare la sola componente trasversale del momento trasferito, trascurando

62



quella longitudinale (~q · ~r ' ~q ·~b).
L’ampiezza di scattering diventa:

f(~k, ~k′) = − µ

2π

∫
e−i~k′·~rV (~r)ψ(~r)d3r

= − µ

2π

∫
d2b ei~q·~b

∫
dzV (~b, z)e−

i
v

R z
−∞ V (~b,z′)dz′dz

=
ik

2π

∫
d2b e~q·~b

{
1− e−

i
v

R+∞
−∞ V (~b,z′)dz′

}

=
ik

2π

∫
d2b ei~q·~b

{
1− eiχ(~b)

}
(5.39)

dove

χ(~b) = −1

v

∫ +∞

−∞
V (~b, z)dz (5.40)

rappresenta l’eikonale, ovvero l’integrale del potenziale lungo z con parametro d’ur-
to ~b fissato.
L’ampiezza di diffusione è quindi ottenibile integrando su tutti i valori di ~b e risulta
generalmente complessa, in totale accordo con il teorema ottico, nonostante l’eiko-
nale sia puramente reale per potenziali reali.
Si definisce la funzione profilo

Γ(~b) = 1− eiχ(~b) (5.41)

in termini della quale l’ampiezza di scattering assume la forma definitiva

f(~q) =
ik

2π

∫
ei~q·~b Γ(~b) d2b (5.42)

La relazione (5.41) non è altro che la trasformata di Fourier dell’ampiezza di scattering:

Γ(~b) =
1

2πik

∫
e−i~q·~b f(~q) d2q (5.43)

perciò conoscere la funzione profilo equivale a conoscere f(~q) e viceversa.
Nel caso di diffusione elastica nucleone-nucleone, l’ampiezza di scattering assume la
forma gaussiana

fel(~q) =
ik

4π
σtot(1− iα)e−

1
2
b20q2

0 (5.44)

dove b0 è un parametro che individua la pendenza di f(~q), α = Re f(0)

Imf(0)
e σtot =

2
∫

Re Γ(~b)d2b.
La trasformata di Fourier di una gaussiana è ancora una gaussiana, per cui non è
difficile ricavare

Γel(b
2) =

σtot(1− iα)

4πb2
0

e
− b2

2b20 (5.45)
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In questo contesto rivestono particolare importanza i processi con potenziali a sim-
metria azimutale, per la loro stretta analogia con i problemi di diffrazione.
[58, 57] L’ esempio più semplice è fornito da un potenziale assorbente (ImV (r) < 0)
confinato in una sfera opaca di raggio a. Per produrre questo effetto il valore as-
soluto del potenziale immaginario non deve essere necessariamente molto grande,
in quanto anche un potenziale debolmente assorbente risulta opaco se il suo raggio
d’azione è sufficientemente grande.
Rimanendo nell’ipotesi di piccoli angoli di diffusione, valgono le seguenti relazioni:

~q ·~b ' qb cos φ = 2kb sin(θ/2) cos φ (5.46)

dove θ è l’angolo di diffusione, mentre φ è l’angolo spazzato da b.
L’ampiezza di diffusione si scrive

f(θ) = ik

∫ +∞

0

J0(2kb sin(θ/2)){1− eiχ(~b)}b db (5.47)

con

J0(2kb sin(θ/2)) =
1

2π

∫ 2π

0

e2ikb sin(θ/2) cos φdφ (5.48)

funzione di Bessel di ordine zero e{
eiχ(~b) = 0 b < a

eiχ(~b) = 1 b > a
. (5.49)

Ricordando la proprietà delle funzioni di Bessel al primo ordine per cui

zJ0 =
d

dz
zJ1z (5.50)

il modulo quadro dell’ampiezza di diffusione diventa

|f(θ)|2 = (ka2)2J2
1 (2ka sin(θ/2)

[2ka sin(θ/2)]2
(5.51)

in perfetta analogia con i risultati ottenuti in ottica per la diffusione diffrattiva da
un disco completamente assorbente. La diffusione a piccoli angoli ha l’andamento
di una tipica figura di diffrazione con un massimo centrale e massimi secondari più
piccoli.
La sezione d’urto totale è quindi uguale a

σtot = 2

∫
(1− Re eiχ(~b)) d2b = 2πa2 . (5.52)

che è il doppio di quello classico ed a cui contribuisce per metà la riflessione diretta,
pari alla proiezione dell’area geometrica, e per l’altra metà la diffusione diffratti-
va che deve accompagnare la formazione di un’ombra dietro l’ostacolo. Va inoltre
sottolineato che dalle formule ricavate si evince l’indipendenza della seconda metà
della sezione d’urto totale dalla forma particolare del diffusore, almeno nel limite di
piccole lunghezze d’onda. Gli esperimenti ad alta energia, se effettuati in modo tale
da poter valutare correttamente l’intenso picco in avanti delle sezioni d’urto diffe-
renziali, mostrano che effetti diffrattivi intorno alla sfera bersaglio hanno realmente
luogo e suffragano il risultato quantistico per valori grandi ma finiti di ka.
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5.2.3 Teoria della diffusione multipla di Glauber

[59] Le condizioni di validità della teoria eikonale appena esposta

V

E
¿ 1 ka À 1 (5.53)

non impongono restrizioni sul numero di particelle del sistema bersaglio, motivo per
cui questa trattazione può essere estesa in maniera naturale allo studio di sistemi
complessi, dando luogo alla teoria di Glauber, o teoria diffrattiva dello scattering da
sistemi compositi. Problemi oggetto di questo metodo di approssimazione sono gli
attuali esperimenti di diffusione, in cui le particelle della targhetta sono libere di
muoversi e di rinculare per effetto dell’assorbimento dell’impulso.
Nell’approssimazione eikonale la funzione d’onda si scrive nella forma

ψ~k,i(~r, ~q) = exp

[
i~k · ~r − i

v

∫ z

−∞
V (~b + k̂z′ − q)dz′

]
ui(q) (5.54)

che descrive l’interazione della particella solo lungo la sua direzione di propagazione.
La corrispondente ampiezza di diffusione diviene

Ffi(~k
′, ~k) = −2µ

4π

∫
e−i~k′·~ru∗f (~q)V (~r − ~q)ψ~k,i(~r, ~q)d~rd~q

=
k

2πi

∫
d2bei(~k−~k′)·~b

∫
d~qu∗f (~q)

[
eiχ(~b−~s) − 1

]
ui(~q) (5.55)

con lo sfasamento dato da

χ(~b− ~s) = −1

v

∫ +∞

−∞
V (~b− ~s + k̂z)dz (5.56)

dove l’integrazione sull’intervallo [−∞, +∞] implica l’indipendenza dalla coordinata
longitudinale del bersaglio (k̂ ·~q), e dove il parametro d’impatto relativo ad un centro
fissato è sostituito da

~s = ~q − k̂(k̂ · ~q) (5.57)

che è la componente di ~q perpendicolare alla direzione di propagazione ~k.
Non resta che estendere la trattazione al processo di diffusione ad alte energie di una
particella su un sistema a molti corpi.Si consideri il processo di diffusione su atomi
o nuclei bersaglio. Le particelle inizialmente si trovano in un certo stato legato da
cui transitano verso altri stati, liberi o legati, a seguito della diffusione.
Si consideri un sistema composto da N particelle e la corrispondente funzione d’onda
ad esso associata

u(~q) −→ u(~q1, ~q2, ..., ~qN) (5.58)

Anche in questo caso l’impulso trasferito è piccolo, ma stavolta ciò oltre ad implicare
piccoli angoli di diffusione, impone che anche l’energia ceduta sia piccola. Si assuma
per di più che le velocità individuali delle particelle bersaglio siano minori rispetto
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alla velocità del proiettile incidente.
Nel sistema di riferimento del laboratorio il bersaglio è fermo ed il potenziale d’in-
terazione si scrive come:

V (~q − ~q1; . . . ; ~q − ~qN) = V (~b− ~s1, z − z1; . . . ;~b− ~sN , z − zN) (5.59)

dove ~qi è la coordinata i-esima della i-esima particella targhetta, ~si la sua proiezione
lungo ~b, ~r = ~b + k̂z la coordinata del proiettile.
Il numero dei costituenti la targhetta è molto elevato ed impostare il problema rispet-
to alle coordinate relative del sistema risulta piuttosto complicato, perciò Glauber
propose alcune ipotesi semplificative:

- il proiettile incidente interagisce con le particelle bersaglio attraverso forze a
due corpi, cos̀ı che lo sfasamento totale si riduce alla somma degli sfasamenti
delle singole particelle:

χtot(~b) ≡ χ(~b;~s1;~s2, . . . , ~sN) =
N∑

i=1

χi(~b− ~si) (5.60)

- le particelle bersaglio possono essere pensate come congelate nelle loro posizioni
istantanee durante il passaggio della particella incidente, cos̀ı che l’interazione
della particella i-esima con la particella incidente non dipende dall’interazione
delle rimanenti N − 1 particelle con l’i-esima;

- la traiettoria della particella incidente è rettilinea, anche durante l’interazione.

Sulla base di queste ipotesi l’ampiezza di diffusione diventa:

Ffi(~q) =
ik

2π

∫
d2bei(~k−~k′)·~b

∫
u∗f (~q1 . . . ~qN)

[
1−eiχtot(~b)

]
uf (~q1 . . . ~qN)

∏
j

d~qj (5.61)

espressione valida per particelle bersaglio distanti R ¿ kd2 l’una dall’altra, condi-
zione sempre soddisfatta per scattering su nuclei, in quanto kd À 1.
Nel caso di diffusione elastica

Fii(~q) =
ik

2π

∫
ei~q·~b < i|

[
1− eiχtot

]
|i > d2b (5.62)

dove

χtot =
N∑

i=1

χ(~b− ~si) (5.63)

e

χ(~b− ~si) = −m

k

∫ −∞

−∞
V (~b− ~si, zi)dzi (5.64)

in cui V (~b− ~si, zi) è il potenziale dovuto all’i-esima particella.
E’ ora necessario introdurre la funzione profilo totale

Γtot(~b, ~s1, . . . , ~sA) = 1− ei
PN

i=1 χ(~b−~si) = 1−
N∏

i=1

(1− Γ(~b− ~si)) (5.65)
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Svolgendo la produttoria si giunge ad una formulazione più pratica:

Γtot = 1− (1−Γ1) · (1−Γ2) · . . . · (1−ΓA) =
∑

Γ−
∑

ΓΓ+
∑

ΓΓΓ− . . . (5.66)

dove

∑
Γ =

A∑
i=1

Γ(~b− ~si)

∑
ΓΓ =

∑
i<1

Γ(~b− ~si)Γ(~b− ~sj) (5.67)

e cos̀ı via.
La prima sommatoria contiene informazioni sulla diffusione singola, in cui ogni parti-
cella interagisce con quella incidente indipendentemente dalle altre N−1,

∑
j 6=l ΓjΓl

indica lo scattering doppio, in cui la condizione j 6= l impedisce che una particella
bersaglio possa essere colpita più volte, e cos̀ı do seguito. Ciò si visualizza in modo
più immediato attraverso l’operatore di Glauber

ŜG(~q1, ~q2, . . . , ~qN) =
N∏

j=2

G(~b, ~q1, ~qj) =
N∏

j=1

[
1−Γj(~b−~sj)

]
=

N∏
j=2

[
1−Θ(zj−z)Γj(~b−~sj)

]

(5.68)

dove la presenza della funzione Theta di Heaviside vincola la particella bersaglio
urtata ad interagire solo con le particelle in avanti rispetto alla sua direzione di
propagazione rettilinea.
L’ampiezza (5.62) si riscrive come:

Fii(~q) =
ik

2π

∫
ei~q·~b < i|

[
1− ei

PN
i=1 χ(~b−~si)

]
|i > d2b =

=
ik

2π

∫
ei~q·~b < i|

[
1−

N∏
i=1

eiχ(~b−~si)
]
|i > d2b

=
ik

2π

∫
ei~q·~b < i|

[
1−

N∏
i=1

(
1− Γ(~b− ~si)

)]
|i > d2b =

che è nota come serie dello scattering multiplo di Glauber

=
ik

2π

∫
d2b ei~q·~b

{
1−

∫
|ψ(~q1, ~q2, . . . , ~qN)|2

A∏
i=1

[
1− Γ(~b− ~si)

] N∏
i=1

d~qi

}
(5.69)

Per giungere ad una formulazione dell’ampiezza di scattering più semplice è neces-
sario riscrivere la funzione d’onda mediante ilmodello a particelle indipendenti :

|ψ(~r1, ~r2, . . . , ~rN))|2 '
N∏

i=1

ρ(~ri) (5.70)
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dove

ρ(~ri) = |φ(~ri)|2 (5.71)

Nel limite di grandi N l’ampiezza di scattering si scrive:

Fii(~q) =
ik

2π

∫
d2b ei~q~b

{
1−

∫ N∏
i=1

ρ(~ri)
N∏

i=1

[
1− Γ(~b− ~si)

] N∏
i=1

d~qi

}
=

=
ik

2π

∫
d2b ei~q~b

{
1−

{ ∫
ρ(~ri)

[
1− Γ(~b− ~s)

]
d~q

}N
}

=

=
ik

2π

∫
d2b ei~q~b

{
1−

[
1−

∫
ρ(~r)Γ(~b− ~s)d3r

]N
}

=

=
ik

2π

∫
d2b ei~q~b

{
1− e−N

R
ρ(~r)Γ(~b−~s)d3r

}
(5.72)

La teoria di Glauber, che si rivela più completa dell’approssimazione di Born, ha
avuto un grande successo nell’interpretazione teorica della diffusione di particelle di
alta ed altissima energia su nuclei. Recentemente è stata generalizzata per poter
essere applicata ai processi esclusivi A(e, e′p)B, per descrivere lo scattering multiplo
che il protone colpito subisce nell’attraversare il mezzo nucleare, formato dal nucleo
residuo (A− 1).
In Figura 5.2, si può notare l’ elevata accuratezza con cui vengono riprodotti i recenti
dati sperimentali ottenuti al Jlab sul processo 3He(e, ep)2H.
Sono attualmente in corso vari tentativi per poter applicare il metodo di Glauber ai
processi inclusivi; la teoria in questo caso è più complessa in quanto, rivelando solo
l’elettrone diffuso, non è dato sapere se il nucleone colpito subisce, oltre a diffusione
elastica, anche diffusione anelastica. Per questo motivo, nella diffusione inclusiva,
gli effetti della FSI vengono trattati con diverse versioni del modello ottico.

5.2.4 Il modello ottico

In questo modello, si suppone che il nucleo residuo generi un potenziale medio
complesso

Vopt(r) = V0(r) + iW0(r) (5.73)

nel quale la particella colpita si propaga subendo diffusione elastica da parte di V0 e
diffusione anelastica da parte di W0. Mentre la diffusione elastica influisce solo sulla
direzione del moto della particella, la diffusione da parte di W0 porta, a causa dei
processi anelastici, ad una riduzione del flusso delle particelle.
In un processo inclusivo il flusso deve però conservarsi e quindi l’effetto di W0 sarà
quello di ridistribuire il flusso in regioni cinematiche diverse mantenendolo però co-
stante.
Il potenziale ottico viene introdotto nel propagatore energetico del nucleone e si ar-
riva, sulla base della teoria della funzione di Green e della rappresentazione eikonale
del propagatore, al seguente risultato.
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Figura 5.2: Sezione d’urto del processo 3He(e, e′p)2H. La linea tratteggiata corrisponde alla
PWIA. Le altre curve includono l’interazione nello stato finale calcolata nell’ambito di una teoria
di Glauber generalizzata, cioè tenendo conto del processo di diffusione multipla del nucleone colpito
con i nucleoni di 2H. Linea a tratto punto: PWIA più diffusione singola; linea continua: PWIA
+ diffusione singola + diffusione doppia. Dati sperimentali da [62].

69



Sia ν l’energia trasferita, ~q il tri-impulso trasferito e p = (p0, ~p) il quadri-impulso
iniziale del nucleone all’interno del nucleo.
Per la conservazione dell’energia si può scrivere

ν + MA =
√

(~p + ~q)2 + M2 +
√

M∗2
A−1 + ~p2 (5.74)

dove

MA = p0 +
√

M∗2
A−1 + ~p2 (5.75)

e quindi

p0 = MA −
√

M∗2
A−1 + ~p2 (5.76)

con M , MA e M∗
A−1 rispettivamente massa del nucleone, del nucleo iniziale e del

sistema eccitato di (A− 1) nucleoni.
L’eq. (5.74) può essere riformulata come segue:

ν + MA −
√

M∗2
A−1 + ~p2 = ν + p0 =

√
(~p + ~q)2 + M2 . (5.77)

La PWIA può quindi essere scritta nella forma (vedi paragrafo 5.1)

d2σ

dΩ′dE ′ =
A∑

N=1

∫
d~p dEσeNP (p, E)δ

(
ν + p0 − E~p+~q

)
(5.78)

dove ricordiamo che σeN è la sezione d’urto elastica eN e P (p, E) è la funzione
spettrale.
L’introduzione del potenziale ottico conduce alla seguente espressione:

d2σ

dΩ′dE ′ =
A∑

N=1

∫
d~p dEσeNP (p, E)

ν + p0

q
∆(p)opt (5.79)

dove

∆(p)opt = −
∫ E−p

E+
p

dEp
Ep

π(ν + p0)

Im Vopt[
ν + p0 − Ep −Re Vopt

]2
+

[
Im Vopt

]2 . (5.80)

I limiti di integrazione si ottengono dalla conservazione dell’energia ed il potenziale
Vopt dalla teoria dello scattering multiplo, che fornisce

Vopt = ρvNσNN
(i + α)

2
(5.81)

dove ρ è la densità nucleare, vN la velocità del nucleone colpito, σNN la sezione
d’urto nucleone-nucleone ed α il rapporto tra la parte reale e quella immaginaria del
potenziale.
Tutti questi parametri sono noti da altri processi [63].
Nel seguito useremo questo modello per poter tenere conto della FSI.
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Capitolo 6

Calcolo dei processi inclusivi
quasi-elastici in approssimazione
impulsiva indotti da elettroni e
neutrini

Ricordiamo che l’interazione leptone-nucleo è intesa come una somma delle singole
interazioni leptone-nucleone, cos̀ı come la corrente nucleare debole è una somma di
correnti nucleoniche deboli.
Pertanto in un primo momento il leptone interagisce con un nucleone del nucleo, il
quale possiede impulso ed energia determinati dalla struttura nucleare; dopo l’inte-
razione iniziale, il nucleone si propaga nel mezzo nucleare dando origine alla FSI.
La descrizione di questi processi richiede l’utilizzo di modelli teorici, sia per la strut-
tura nucleare (Funzione Spettrale del nucleone), che per i meccanismi di propagazio-
ne di un nucleone nel mezzo nucleare (FSI). A questo fine utilizzeremo vari modelli
che sono descritti nel seguito.
Mostreremo i risultati del calcolo dei processi di diffusione 16O(e, e′)X, 16O(νµ, µ)X
e 16O(νe, e)X. A tal fine abbiamo utilizzato la teoria di [14] per la Funzione Spet-
trale e quella di [64] per la FSI. Confronteremo i nostri risultati con quelli ottenuti
utilizzando una teoria diversa per entrambe le grandezze [65, 66]. In entrambi i casi
si confronteranno i risultati con quelli ottenuti con il Gas di Fermi, per chiarire se il
processo neutrino-nucleo, ed eventualmente la misura delle oscillazioni dei neutrini,
sono sensibili, e in che misura, ai dettagli della struttura nucleare.

6.1 Diffusione quasi-elastica di leptoni

Come sappiamo, la sezione d’urto quasi-elastica inclusiva lN di un generico leptone
l si scrive [67]

dσ

dΩ′dE ′ =
k′

8(2π)4MAE

∫
d3p dE P (p, E)|MlN |2δ

(
ν + p0 − Ep+q

)
(6.1)

dove E è l’energia del leptone incidente, MA e p0 la massa e l’energia iniziale del
nucleo bersaglio, E ′ e k′ rispettivamente energia ed impulso del leptone diffuso,
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P (p, E) la funzione spettrale e |MlN | 2 è il quadrato dell’ampiezza invariante, che
nel caso di elettroni incidenti si scrive

|MeN | 2 =
∑

n

σeN (6.2)

dove σeN è la sezione d’urto elastica eN , mentre per neutrini incidenti si scrive

|MνN | 2 =
G2

2

(
A(t)− (s− u)B(t) + (s− u)2C(t)

)
. (6.3)

La costante di accoppiamento è G = 1.12 · 10−5 GeV −2, mentre A(t), B(t) e C(t) si
scrivono in funzione delle variabili di Mandelstam e dei fattori di forma vettoriale
(F1(t), F2(t)), pseudo-scalare (Fp = 0) ed assiale (FA(t)), già menzionati nel capitolo
3, come

A(t) = −4M2(t−m2)
[(

4− t

M2

)
F 2

A −
(
4 +

t

M2

)
F 2

1 −
t

M2

(
1 +

t

M2

)
F 2

2 −

−
( 4t

M2

)
F1F2 − m2

M2
{(F1 + F2)

2 + F 2
A + tF 2

p − 4MFAFp} (6.4)

B(t) = 16tFA(F1 + F2) (6.5)

C(t) = 4{F 2
1 −

( t

4M2

)
F 2

2 + F 2
A} . (6.6)

La sezione d’urto quasi-elastica lN può essere scritta anche in funzione dell’energia
trasferita ν e dell’angolo di diffusione θ come

dσ

dνd cos θ
=

k′

4(2π)3M2
AE

∫
d3p dE P (p, E)|MlN |2δ

(
ν + p0 − Ep+q

)
. (6.7)

I fattori di forma e tutte le grandezze che compaiono nelle eq. (6.1) e (6.7) sono
note dai dati sperimentali eN e νN ; le uniche incognite sono le funzioni spettrali
P (p, E) e per esplicitarle è necessario ricorrere a dei modelli teorici.

Funzione spettrale

Modello a Gas di Fermi

Il Modello a Gas di Fermi è molto diffuso per la facilità con cui si utilizza nei processi
di simulazione Monte Carlo, nonostante fornisca risultati piuttosto approssimati.
Questo modello, infatti, dà una buona descrizione della sezione d’urto totale, ma
non descrive altrettanto accuratamente le sezioni d’urto longitudinale e trasversa.
Nel modello a Gas di Fermi si ha

P (p, E) = nFG
0 δ

(
E − Ep

)
(6.8)

dove

Ep =
√

p2 + M2 − EB (6.9)
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è l’energia iniziale del nucleone con massa M ed energia media di legame EB e nFG
0

è la distribuzione di momento (5.26) definita nel paragrafo 5.1.2.
L’eq. (6.8) mostra che i nucleoni sono considerati non interagenti e con energia
EB = cost.
I valori dei parametri EB e PF dipendono dal modello teorico scelto e dal nucleo
in esame. Nel caso del nucleo 16O, sono stati utilizzati i valori PF = 225 MeV e
EB = 25 MeV [69].

Modello della densità locale

Come già sottolineato nell’eq. (5.11), la funzione spettrale, che include le correlazioni
tra nucleoni, può essere scritta nella forma

P (p, E) = P0(p, E) + P1(p, E) . (6.10)

Mentre P0 è legata al modello a shell, la P1 è nota solo per sistemi a pochi nucleoni
[14] e per la materia nucleare infinita [64].
In [75], è stata usata l’approssimazione della densità locale per ottenere P1 per un
nucleo finito, scrivendo

P1(p, E) =

∫
d3rρA(~r)PNM

1 (p, E; ρ = ρA(~r)) (6.11)

dove ρA è la distribuzione di densità nucleare e PNM
1 è la componente della funzione

spettrale per la materia nucleare uniforme a densità ρ = ρA.

Modello delle correlazioni a due corpi

Il modello delle correlazioni a due corpi, sviluppato nella sua forma più semplice
in [76] ed in quella più avanzata in [14], ipotizza che le correlazioni a corto raggio
dipendano dalle proprietà locali dei nuclei e che quindi, essenzialmente, le loro ca-
ratteristiche siano indipendenti dal numero di massa A.
In questo quadro, nel modello più semplice, il nucleone ”1” con elevato impulso ~p1

è correlato con il nucleone ”2” con impulso ~p2 ∼ −~p1, cosicchè, per la conservazione
dell’impulso

~p1 + ~p2 +
A∑

i=3

~pi = 0 (6.12)

avremo

~pA−2 =
A∑

i=3

~pi ' 0 . (6.13)

In questo caso, in base alla conservazione dell’energia incidente ed indicando ~p1 ≡ ~p,
possiamo scrivere la relazione

p2

2M
=

p2

2MA−1

+ E∗
A−1 (6.14)
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da cui si ottiene l’energia di eccitazione del sistema A− 1 come

E∗
A−1 =

A− 2

A− 1

p2

2M
. (6.15)

Verifichiamo quindi che l’energia di rimozione

E = |EA| − |EA−1|+ E∗
A−1 (6.16)

è correlata con l’impulso del nucleone p.
Nel modello avanzato di [14] si tiene conto che il nucleone equilibria il proprio impulso
sia con il nucleone 2 che con A− 2, ottenendo per la funzione spettrale

P (p, E) = P0(p, E) + P1(p, E) (6.17)

con P0(p, E) della nota forma, eq. (5.15), e

P1(p, E) =

∫
d~p3δ

[
E− A− 2

2M(A− 1)

(
~p+

A− 1

A− 2
~p3

)2
]
nrel

(|~p+
~p3

2
|)nCM

(|~p3|
)

(6.18)

dove ~p3 ≡ −~pA−2 e nrel e nCM descrivono il moto relativo e quello del baricentro
della coppia correlata. Tali quantità sono disponibili da calcoli a molti corpi con
potenziali realistici [14].
I due modelli di funzione spettrale per nuclei finiti che abbiamo descritto, sono
gli unici attualmente disponibili e sono stati largamente usati per il calcolo della
diffusione di elettroni.
Il primo modello è stato anche usato recentemente per trattare la diffusione neutrino-
nucleo, ed in questa tesi applicheremo per la prima volta al calcolo dell’interazione
neutrino-nucleo il secondo modello di funzione spettrale.

Interazione nello stato finale

Modello ottico

Per considerare l’interazione nello stato finale si può ricorrere al modello ottico già
discusso in precedenza nel paragrafo 5.2.4 e di cui ne riportiamo l’espressione:

Vopt = ρvnσNN
(i + α)

2
(6.19)

dove ρ è la densità nucleare, vn la velocità del nucleone colpito, σNN la sezione d’ur-
to nucleone-nucleone ed α il rapporto tra la parte reale e quella immaginaria del
potenziale.
Ricordiamo inoltre che questi parametri sono noti dai dati sperimentali sulla diffu-
sione NN [63].
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6.2 Diffusione quasi-elastica di elettroni

Modelli teorici a confronto

In questo paragrafo si confrontano i modelli teorici appena discussi, utilizzando due
differenti modelli per la funzione spettrale.
Nei grafici in Figura 6.1 ed in Figura 6.2, è rappresentata la sezione d’urto speri-
mentale 16O(e, e′)X [68] inclusiva in funzione dell’energia trasferita ω: il primo picco

rappresenta la diffusione quasi-elastica localizzata a ν ∼ Q2

2M
, ed il secondo la produ-

zione della prima risonanza nucleonica ∆(1236). Nelle figure sono indicati i valori
dell’energia incidente dell’elettrone, E, e l’angolo di diffusione θ. La linea tratteg-
giata rappresenta il modello a Gas di Fermi, mentre le linee continua e punteggiata
indicano, rispettivamente, il modello della funzione spettrale [66] in IA, senza e con
gli effetti di FSI.

Figura 6.1: Sezioni d’urto inclusive 16O(e, e′)X in funzione dell’energia trasferita ω, per due
diversi valori dell’energia incidente E ed angolo di diffusione fisso θ = 32◦. I dati sperimentali sono
da [68]. I calcoli teorici rappresentano le previsioni del Gas di Fermi (FG) e della teoria spettrale
nell’approssimazione della densità locale, eq. (6.10), (SF). Adattato ref.[69]
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Figura 6.2: Stesso grafico della Figura 6.1, con l’aggiunta degli effetti di FSI per la funzione
spettrale (linea punteggiata SF+FSI) [69].
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Nelle figure sono mostrati i contributi quasi-elastico (W 2 = M2) e della produzione
della ∆(1236) (W 2 = M2

∆), a cui corrispondono rispettivamente il picco a basse e
ad alte energie.
Nella regione quasi-elastica, la funzione spettrale è in accordo con i dati sperimentali
anche nel caso in cui vengano trascurati gli effetti di interazione nello stato finale,
mentre il modello a Gas di Fermi sovrastima i risultati sperimentali per qualsiasi
valore dell’energia del fascio incidente. L’introduzione degli effetti di FSI comporta
un maggiore accordo con i dati sperimentali soltanto per energie inferiori a 1 GeV .
Per qualsiasi valore dell’energia del fascio incidente, la funzione spettrale presenta
delle code ad alte energie trasferite, generate dalle correlazioni NN a corto raggio,
non previste nel modello a Gas di Fermi.
Al di là della regione quasi-elastica, sopratutto nella regione di transizione, le sezioni
d’urto calcolate risultano sempre in disaccordo con i dati sperimentali.
Nei grafici in Figura 6.3, gli stessi dati vengono confrontati con la teoria di [14]

Figura 6.3: Stessi dati sperimentali della Figura 6.1 e della Figura 6.2 in funzione della massa
invariante W =

√
M2 + Q2(1/x− 1). I calcoli teorici si basano sulla funzione spettrale della FSI

di ref.[14]

dove si usa la funzione spettrale del modello delle correlazioni a 2 corpi descritto nel
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paragrafo 6.1.
Nella regione quasi-elastica si osserva un ottimo accordo tra calcoli teorici e risultati
sperimentali.
Possiamo concludere che la teoria di [14] fornisce un migliore accordo con i dati spe-
rimentali. Ciò è corroborato dai risultati mostrati in Figura 6.4, dove si può notare
un buon accordo con i dati sperimentali ad alte energie.

Figura 6.4: Sezione d’urto σ = dσ/dΩ′dE′ ottenuta al CEBAF E89-008 con elettroni incidenti
di E = 4 GeV , confrontata con i calcoli teorici di [70, 71]. I valori di Q2 nei vari gruppi di dati
sperimentali sono circa costanti e corrispondono, da sinistra verso destra, a Q2 = 0.97, 1.94, 2.78,
2.353, 4.24, 4.92, 5.75 GeV . La curva a tratteggio lungo rappresenta il contributo anelastico PWIA,
mentre il contributo quasi-elastico PWIA è mostrato con la linea a tratteggio corto, il contributo
PWIA totale con la linea punteggiata ed il contributo PWIA+FSI con la linea continua.
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6.3 Diffusione quasi-elastica di neutrini

Modelli teorici a confronto

In modo del tutto analogo al paragrafo precedente, presentiamo un confronto dei
modelli teorici appena discussi, applicati alla diffusione dei neutrini.
Nelle Figure 6.5 e 6.6 è mostrata la sezione d’urto del processo 16O(νµ, µ)X in
funzione dell’energia del muone diffuso, sia per il modello a Gas di Fermi che per la
funzione spettrale1.
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Figura 6.5: Diffusione quasi-elastica 16O(νµ, µ−)X in funzione dell’energia del muone diffuso,
con energia del neutrino incidente pari a E = 0.8 GeV . Le sezioni d’urto riportate sono calcolate
usando la funzione spettrale SF con o senza il blocco di Pauli (linea continua e linea tratteggiata)
ed il Gas di Fermi, linea punteggiata. Adattato Ref.[69]

Si può notare che nel modello a Gas di Fermi il valore della sezione d’urto nel
picco è molto maggiore di quello ottenuto con la funzione spettrale. Questo fatto è
facilmente comprensibile se si considera che le correlazioni a corto raggio creano una
”coda” di componenti di alto impulso nella funzione spettrale, assenti nel modello
a Gas di Fermi; in conseguenza di ciò, aumenta la probabilità di avere nello stato
finale muoni di grande energia, ovvero di avere una sezione d’urto incrementata a
piccoli valori dell’energa trasferita ν = Eν −Eµ: per conservazione della probabilità( ∫

dσ
dΩ′dE′dE ′ = cost

)
la sezione d’urto nel picco decresce. Quindi la diffusione

quasi-elastica di neutrini, cos̀ı come quella di elettroni, ad energie Eν ∼ 1 GeV
risulta essere sensibile ai dettagli della struttura nucleare, quale la presenza delle
correlazioni internucleoniche.
Secondo gli autori della ref. [65], la differenza di circa il 30% nel picco, sarà di

1Si noti che l’16O [72] sarà il nucleo bersaglio principale nelle targhette degli esperimenti SK [3]
e K2K [73]
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Figura 6.6: Stesso grafico della Figura 6.5, ma con energia incidente E = 2.0 GeV . Adattato
Ref.[69]

primaria importanza nell’interpretazione dei risultati dei futuri esperimenti sulle
oscillazioni del neutrino.
Alla luce di ciò, diventa urgente chiarire in che misura i modelli della struttura
nucleare e della FSI, influenzano la sezione d’urto νN . E’ proprio questo lo scopo
che ci siamo prefissi con il nostro lavoro di tesi.
Nelle Figure 6.7 e 6.8 sono mostrati i risultati preliminari del calcolo della sezione
d’urto dσ

dEµ
per il processo 16O(νµ, µ)X e della sezione d’urto dσ

dΩ′dν
per il processo

16O(νe, e)X, effettuati usando il secondo modello di funzione spettrale attualmente
esistente, ovvero quello delle correlazioni a due nucleoni descritto nel pragrafo 6.1.
I nostri risultati (2NC), ottenuti nel presente lavoro di tesi con un programma di
calcolo [74] basato sull’approccio di [64], sono confrontati con quelli ottenuti in [75],
dove si è usata la funzione spettrale nell’approssimazione della densità locale (DL).
Si può notare che i due approcci possono differire fino al 15%.
Quanto tali differenze possano influenzare le misure sulle proprietà dei neutrini, che
vengono pianificate con una precisione del 1%, potrà essere stabilito dai risultati
di simulazioni di Monte Carlo basato su gli approcci alla sezione d’urto del tipo
descritto.
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Figura 6.7: Confronto tra i risultati preliminari dei nostri calcoli per la sezione d’urto del processo
16O(νµ, µ)X ottenuti con la funzione spettrale di [64] ed i risultati di [75]. La sezione d’urto è
rappresentata in funzione dell’energia del muone per energia del neutrino incidente pari a Eν =
0.8 Gev.
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Figura 6.8: Confronto tra i risultati preliminari dei nostri calcoli per la sezione d’urto del processo
16O(νe, e)X ottenuti nel presente lavoro di tesi con la funzione spettrale di [64] ed i risultati di
[75]. La sezione d’urto è rappresentata in funzione dell’energia trasferita ν = Eν −Eµ, per energia
del neutrino incidente pari a Eν = 1 Gev ed angolo di diffusione θ = 30◦.
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Capitolo 7

Conclusioni

In questo lavoro di tesi ci siamo occupati dell’interazione dei neutrini con i nuclei
atomici, tema che è oggetto di grande attenzione da parte della comunità scientifi-
ca che si occupa dello studio delle proprietà del neutrino, in particolare dei valori
della loro massa e delle loro oscillazioni. Infatti, dopo la verifica sperimentale delle
oscillazioni dei neutrini, è aumentato l’interesse sia teorico che sperimentale verso
queste particelle, nonchè il numero di interrogativi intorno ad esse.
Sono già pianificati, in laboratori di vari paesi, esperimenti mirati non solo a ridurre
l’errore sulla determinazione del parametro di oscillazione, ma anche per poter de-
terminare con altissima precisione le masse dei neutrini.
Poichè tali esperimenti sono basati sull’interazione dei neutrini con nuclei, e poichè
la stima dell’errore (20%) sul parametro di oscillazione dovuta agli effetti nucleari è
stata effettuata sulla base di calcoli teorici della sezione d’urto neutrino-nucleo trat-
tando quest’ultimo in termini di Gas di Fermi, modello alquanto obsoleto, diversi
gruppi, anche a seguito delle richieste della comunità dei fisici delle alte energie,
stanno calcolando la sezione d’urto neutrino-nucleo in termini di modelli realistici
della struttura nucleare.
In questa tesi abbiamo presentato i risultati preliminari dei calcoli delle sezioni d’ur-
to elettrone-nucleo e neutrino-nucleo sulla base di un approccio che include sia le
correlazioni dimaniche tra nucleoni, che l’interazione nello stato finale del nucleone
colpito dal leptone incidente. Il confronto dei nostri risultati preliminari con quelli
ottenuti con un altro approccio, che considera comunque gli stessi fenomeni da noi
considerati (correlazioni e FSI), mostra una differenza che arriva sino al 15%.
Riteniamo che tali differenze possano manifestarsi sull’errore degli esperimenti pro-
grammati per la misura delle proprietà del neutrino.
Rimane quindi ancora del lavoro da fare per arrivare ad una conoscenza teorica del
processo neutrino-nucleo con una precisione sulle proprietà del neutrino quale quella
richiesta dai futuri esperimenti e da quelli in corso.
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Appendice A

Sezioni d’urto

L’approssimazione di scambio di un solo fotone è resa possibile dal valore della
costante di struttura fine α ' 1

137
associata all’elettrodinamica quantistica (QED),

teoria nell’ambito della quale rientra il processo d’interazione in esame.
La matrice di diffusione [77, 35]

Ŝ =
+∞∑
n=0

(−i)n

n!

∫ ∫
· · ·

∫
d4x1d

4x2 · · · d4xnT

{
ĤI(x1)ĤI(x2) · · · ĤI(xn)

}
(A.1)

al primo ordine della teoria perturbativa si riduce a

Ŝ = −i

∫
d4xĤI(x) (A.2)

dove HI(x) rappresenta la densità d’ Hamiltoniana di interazione, x ≡ xµ ≡ (t, ~x).
In questo caso

ĤI(x) = −LI(x) = −eĵµ(x)Âµ(x) (e > 0)

dove la tetra-corrente elettronica

ĵµ(x) = ψ̄(x)γµψ(x)

è descritta dalle funzioni d’onda dell’elettrone

ψ(x) =

√(me

εi

)
u(ki, si) e−iki·x ψ̄(x) =

√(me

εf

)
ū(kf , sf ) e−ikf ·x

corrispondenti ad energie positive, mentre la tetra-corrente adronica Ĵµ(x) ed il
quadri-potenziale Âµ(x) soddisfano l’equazione

2Âµ(x) = eAĴµ(x) .

Integrando quest’ultima si ottiene

Âµ(x) = eA

∫
d4yDF (x− y)Ĵµ(x) (eA > 0)
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con DF (x− y) funzione di Green del fotone, tale che

2DF (x− y) = δ(4)(x− y)

Nello spazio deli impulsi risulta

DF (x− y) =

∫
d4q

(2π)4
eiq(x−y) −1

q2 + iε
eiq(x−y)Ĵµ(y)

Sostituendo l’Hamiltoniana d’interazione appena descritta nella matrice di diffusione
(2) si ottiene

Sfi = −ieA

∫
d4xAµ(x)Jµ(x) = −ieeA

∫
jµ(x)

1

Q2
Jµ(x) = (A.3)

= −ieea

∫
j µ

(−gµν

q2

)
Jν(x)d4x

dove −gµν

q2 è il propagatore fotonico, gµν il tensore metrico, jµ e Jµ rispettivamente
gli elementi di matrice degli operatori densità di corrente elettronica ed adronica

jµ(x) ≡< φf |ĵµ(x)|φi >

Jµ(x) ≡< Ψf |Ĵµ(x)|Ψi > (A.4)

L’invarianza di Lorentz assicura la validità della seguente uguaglianza

Jµ(x) ≡< Ψf |Ĵµ(x)|Ψi >=< Ψf |Ĵµ(0)|Ψi > ei(Pf−Pi)·x = Jµe
i(Pf−Pi)·x

ed analogamente per jµ(x). Inoltre

∫
d4xJµ(x)eiq·x = (2π)4δ(4)(Pf − Pi − q)Jµ

per cui si può riscrivere l’eq.(A.3) come

Sfi = −ieeAj µ
(−gµν

q2

)
Jν(2π)4δ(4)(Pf − Pi − q)

oppure in funzione dell’ampiezza di scattering invariante Mfi

Sfi = −i(2π)4δ(4)(ki + Pi − kf − Pf )Mfi

Da quest’ultima si ottiene

|Sfi|2 = (2π)8[δ(4)(ki + Pi − kf − Pf )]
2|Mfi|2 = (A.5)

= (2π)8

[
V · T
(2π)4

δ(4)(ki + Pi − kf − Pf )

]
|Mfi|2 (A.6)

Per studiare il processo di scattering leptone-adrone è necessario ricorrere al concetto
di sezione d’urto, che rappresenta una misura della probabilità d’interazione tra le
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particelle incidenti ed il bersaglio ed è definita dalla seguente formula di carattere
generale

dσ =
ωfidQ

F
(A.7)

dove

F =
1

V

è il flusso delle particelle incidenti per densità della targhetta nel sistema del labo-
ratorio,

ωfi = lim
T,V→∞

|Sfi|2
T · V (A.8)

rappresenta la probabilità di transizione per unità di tempo e di volume, mentre il
fattore invariante dello spazio delle fasi

dQ =
n∏

f=1

1

(2π)3

d3Pf

2Ef

(A.9)

indica il numero di stati finali accessibili nel volume V, con impulso compreso tra
~Pf e ~Pf + d~Pf . Ef ed n rappresentano rispettivamente l’energia ed il numero delle
particelle nello stato finale.
Dalla definizione di probabilità di transizione eq. (A.8) e dall’eq. (A.5) si ottiene

ωfi = (2π)4δ(4)(ki + Pi − kf − Pf )|Mfi|2

Nella maggior parte degli esperimenti le particelle incidenti non sono polarizzate e la
polarizzazione delle particelle finali non è osservata; è quindi necessario effetturare
la seguente sostituzione

|Mfi|2 −→
∑

i

∑

f

|Mfi|2

che permette di sommare sugli stati finali di spin e mediare su quelli iniziali.
L’eq. (A.7) si può quindi riscrivere come

dσ =
1

2Ei 2εi |(~ki/m)− (~Pi/m)|
∏

f

d3Pf

(2π)32Ef

|Mfi|2(2π)4δ(4)
(
Pi + ki−Pf − kf

)
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Appendice B

Matrici di Dirac e matrici di
Gell-Mann

Matrici di Dirac

Il tensore di Dirac si scrive come

gµν = gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 . (B.1)

Per le matrici di Dirac si è usata la seguente rappresentazione:

γα = (γ0, ~γ) (B.2)

γ0 = γ0 =

(
1 0
0 −1

)
(B.3)

~γ =

(
0 ~σ

−σ 0

)
(B.4)

dove 1 è la matrice unitaria 2× 2 e

~σ = (σx, σy, σz) (B.5)

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(B.6)

sono le matrici di spin di Pauli.
Si introducono inoltre le combinazioni di queste matrici, ovvero

γ5 = γ5 = iγ0γ1γ2γ3 =

(
0 1
1 0

)
σαβ =

i

2

[
γα, γβ

]
. (B.7)
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Matrici di Gell-Mann

La rappresentazione standard delle matrici di Gell-Mann per i generatori SU(3) si
scrive come

λ1 =




0 1 0
1 0 0
0 0 0


 λ2 =




0 −i 0
i 0 0
0 0 0


 (B.8)

λ3 =




1 0 0
0 −1 0
0 0 0


 λ4 =




0 0 1
0 0 0
1 0 0


 (B.9)

λ5 =




0 0 −i
0 0 0
i 0 0


 λ6 =




0 0 0
0 0 1
0 1 0


 (B.10)

λ7 =




0 0 0
0 0 −i
0 i 0


 λ8 =

1√
3




1 0 0
0 1 0
0 0 −2


 (B.11)

con λ± = (λ1 ± iλ2).
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Raffaele, l’ingegnere di casa (del resto nessuno è perfetto...e poi già ci sono io!). La
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