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Abstract

This note describes a measurement of the efficiency for identifying b-jets in data
using the Roma Neural Net (RomaNN) b-tagger. This tool is used to make a per-
jet b-tag decision (binary mode RomaNN) by placing a cut on the RomaNN output
value. A sample of b-enriched jets is collected in the data by looking for jets con-
taining a semi-leptonic decay; the transverse momentum of the lepton relative to the
jet vector is used to discriminate between b and non-b-jets. The fractions of these
types of jets in “tagged” and “not-tagged” samples are used to calculate the tag
efficiency for b-jets. This data efficiency for tagging b-jets is compared to the effi-
ciency for tagging b-jets in Monte Carlo (MC) simulated events, and the resulting
mismatch in data and simulation efficiencies is expressed as a scale factor, which can
then be used to obtain agreement between the simulation and the data. The oper-
ating point optimized for the WH analysis, RomaNN3out>0.00, has a scale factor of
(0.8821 — 0.006541 x (JetEp(inGeV') — 45))+0.061(stat+ Jet Ep param)+0.028(syst)
for all muon jets, and for all other jets a scale factor of

0.793 x LETTL-0.02280x (nZvertea—18) 4 018 (stat) + 0.030(nZvertex) + 0.080(syst).

Contents

1 Motivation: The RomaNN b-Tagger 2

2 Efficiency Measurement: Lepton p¢ Technique 5
2.1 Electron vs Muon . . . . . . . .. 7

3 Event Selection 8
3.1 Samples . . . . . 8

4 Lepton p}¢! Procedures 12
4.1 MC Electron pi' Templates Construction . . . . . . . . ... .. .. ..... 12
4.2 MC Muon pi Templates Construction . . . . . . ... ... ... ...... 13
4.3 Fitting The Data pi¥ Distribution . . . . . . ... ... .. ... ... .. .. 14

5 Results for RomaNN3out>0.00 15
5.1 Generic-Jets as Represented by Electron-Jets . . . . . . . ... ... ... .. 15
5.2 Muon-Jets . . . . L 17

keungj@fnal.gov


mailto:keungj@fnal.gov

1 MOTIVATION: THE ROMANN B-TAGGER

6 Systematic Errors and Cross Checks

6.1

6.2

Electron phe . . . . . .
6.1.1 Jet Transverse Emergy . . . . . . . . ... ... ... ...
6.1.2 Track Multiplicity . . . . . .. . ... oL
6.1.3 Conversion Template Shape . . . . .. ... ... ... ...
6.1.4 MC b-jet Model . . . . . .. ...
6.1.0 Jetm ..o
6.1.6 Jet o . . . .
6.1.7 Data Period . . . ... .. ... .. ... . ... ... ...,
6.1.8 Even and Odd Event Number . . . . . ... .. ... .. ..

rel

Muon pi™ . . . ..o
6.2.1 Track Multiplicity . . . . . . .. . ... .. L
6.2.2 MC b-jet Model . . . . . . ...
6.2.3 Number Of z Vertex In Event . . . . . .. .. ... .. ...
6.24 Jetm ...
6.25 Jet o . . ..
6.2.6 Data Period . . . . . . . . ...
6.2.7 Even and Odd Event Number . . . . . . . .. ... .. ...

7 Conclusion

8 Appendix

Naive Fits and Calculations Using Entire Data Sample . . . . . ..

rel

8.1.1 Electron pi™ . . . . . ..o o
8.1.2 Muon phet . ..
Other Operating Points . . . . . . . .. .. ... ... ... ... ..
Additional Cross checks . . . . . . . .. ... L oL

8.1

8.2

8.3
8.3.1
8.3.2

rel

Tight SecVtx Scale Factor Measurement using Electron pi® . . . . .
Jet Direction Measurement . . . . . . . . . . ... ... ... ... ..

8.3.3 Alternate Electron pi? Observable . . .. ... ... ... ......
8.4 Supporting plots . . . ...

8.4.1

Fits From Electron pi¥ Trends . . . . . . . .. ... ... ... ....

8.4.2 Fits From Muon p5 Trends . . . . . . . ... ... .. .. ... ...
8.4.3 Pseudoexperiments . . . . . . . ... ..o

1 Motivation: The RomalNN b-Tagger

18
18
21
21
23
23
26
26
26
27
27
28
30
31
33
33
33
34

34

36

At CDF it is often necessary to identify jets that come from b quarks, so-called b-tagging.
The identification of b-jets is an essential component for measurements in the top quark
sector and searches for a low mass Higgs boson and other new phenomena. The signatures
of these interesting signal processes all contain b jets; the ability to discriminate b jets from
the overwhelming inclusive jet background helps increase the purity of the selected event
sample. For a signature like W H — [vbb, the most useful sample has two b-tagged jets: the
number of such signal events is proportional to the square of the efficiency for tagging b-jets.

The motivation for this study is to calibrate the efficiency of a new b-tag algorithm [4].

The Roma neural net b-tagger (RomaNN) is a new b-tag algorithm [!] that has demon-
strated improved performance over SecVtx [8] and JetProb [9], the standard CDF b-tagging



algorithms. Fig. 1 shows the efficiency for tagging light-jets as a function of the efficiency for
tagging b-jets for the Tight/Loose SecVtx and RomaNN taggers. If one draws a horizontal
line, then an indicator of the performance of a b-tagger is how far to the right the curve
intersects it. The further to the right the intersection indicates better separation power be-
tween b-jets and light-jets, since for the same efficiency for tagging light-jets it has a higher
efficiency for tagging b-jets. For example, in a pp — ¢q di-jet MC, the Tight SecVtx has
an efficiency for tagging light-jets of 0.017, and achieving an efficiency for tagging b-jets of
0.4; whereas the RomaNN tagger achieves an efficiency for tagging b-jets of 0.53 at the same
efficiency for tagging light-jets of 0.017.

This note describes the calibration of the efficiency for tagging b-jets in data. This is
necessary since simulations may not adequately model the detector and result in an over-
estimate or under-estimate of the efficiency for tagging b-jets. Previous studies for SecVtx
used semileptonic B hadron decays from a data sample triggered by a muon, and found a
data/MC correction factor of 0.932£0.022. In this study, we use a data sample triggered by
an electron to avoid any bias due to the RomaNN algorithm using muons as a discriminating
observable between heavy and light flavor hadrons.

RomalN is different from the standard tagging algorithms in that it is a multivariate tool,
incorporating information from several sources simultaneously. It incorporates information
from SecVtx, JetProb, soft muon from semileptonic decays, as well as other variables in its
per-jet tagging decision, to achieve a net gain of 30% in the efficiency for tagging b-jets [5] in
simulated Monte Carlo (MC) events. RomaNN provides a per-jet output value in the range
from -1 to +1; a value near +1 indicates that the jet is consistent with coming from a b and
values away from +1 indicate the jet is more consistent with originating from some other
flavor. Each analysis can choose its own cut in the RomaNN output value (binary mode
RomaNN), giving an opportunity to customize the level of b purity.
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Figure 1: Efficiency for tagging light-jets as a function of efficiency for tagging b-jets for the
Tight/Loose SecVtx and RomaNN taggers [5].



4 1 MOTIVATION: THE ROMANN B-TAGGER

The RomaNN consists of three Neural Networks, for vertex identification (VerticesNN),
track identification (TracksNN), and flavor identification. The Neural Networks are based

on the commercial NeuroBayes package [1]. Fig. 2 gives an overview of the information flow
within RomaNN.

@ JetProb info SLTu info

SecVix info

New Vertexing |

multiple |
verticies
reconstruction / racis NN
(based on I
CTVMFT) / . : . . :
NeuroBayes™ . \b-c/ \bb—b/ \cc—c/
ac® °o | | |
o | = |

’ 5 flavour NN |

g =
- £ - L]
TMultiLayerPerceptron =—— ¢ | 3 flavour NN I 3
° L]

°

L]
*ee, . .o OUpULS

Figure 2: Flow chart of RomaNN.

A first Neural Network VerticesNN makes use of a vertexing algorithm based on the
CTVMEFT package, which associates the collection of tracks inside a jet to a set of vertices,
and is used to distinguish the vertices produced by the decay of heavy flavor from light
flavor hadrons. For the tracks not used by VerticesNN, a second Neural Network TracksNN
is used to distinguish between tracks produced by heavy hadron decay and prompt tracks.
The information from these two Neural Networks is combined with information from existing
CDF b-tag tools SecVtx, JetProb, and SLTu to form a third Neural Network, giving two
output numbers. One of the output number is “RomaNN3out”. Fig. 3 is the output of
RomalNN for MC jets passing W+2jets selection, showing that b-jets have output higher
values than charm or light-jets.
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Figure 3: RomaNN3out of MC jets passing W+2jets selection, normalized to unit area:
Signal B jets from WH(120GeV) and WZ, C jets from W+cc and LF jets from W+qq.
Flavour is matched to OBSP hadron within deltaR of 0.4.



The strength of the RomaNN b-tag algorithm lies in its ability to use all useful infor-
mation. The input variables used in vertex, track, and flavor indentification are listed in
tables 1, 2, and 3 respectively. These variables all have significance > 50.

Rank | Variable

1 Vertex Pseudo ¢ (secondary and primary vertex separation)

2 Significance of the dy of the 2nd Most Displaced Track in Vertex

3 Angle Between Vertex Momentum Vector and Vertex Displacement Vector
4 L. Significance

) Invariant Mass of Vertex

Table 1: Input variables to the vertex NN, ranked by NeuroBayes.

Rank | Variable
1 track dy significance
2 D/L

3 vertex NN
4

5

«

D
Table 2: Input variables to the track NN, ranked by NeuroBayes. Variables defined in Fig. 4

SV

_/POCA (3d)

5 II|
PV track
Figure 4: Definition of track observables. PV is primary vertex. SV is secondary vertex.

POCA is point of closest approach in 3d of the track to the line segment connectinging PV
to SV.

2 Efficiency Measurement: Lepton p’¥ Technique

One of the most important performance parameters of the identification of b-jets is the
efficiency at which they are correctly identified. With this efficiency measurement one can
estimate in simulated Monte Carlo (MC) events the yield of signal and background as one
would expect in an analysis. However, this efficiency needs to be measured in the data, since
there is no guarantee that the efficiency measured in simulated events is accurate.
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Variable

JetProbability (when calculated with at least 2 tracks)
Pseudo c7 of Best Vertex

LooseSecVtx Tag

Number of Muons Identified By SLT

Eselected trackspT/Eall jet tracksPT (Scalar SU.HIS)

L. Significance of Best Vertex

Invariant Mass of Best Vertex

Invariant Mass of Selected Tracks (both Vertexed and Unvertexed)
9 Number Of Selected Tracks

10 L, of Best Vertex

11 Number Of Good Tracks In Jet

12 Yall jet tracksPr (scalar sums)

13 L, of Second Best Vertex

14 pr of (Highest pr) Muon With Respect To Jet Axis
15 Mass of SecVtx Vertex

16 Jet ET

O 1 O UL i W N =

Table 3: Input variables to the flavor NNs, ranked by NeuroBayes.

The approach widely used at CDF is to measure the efficiency for tagging b jets (Eqn. 4)
in the data and in the simulation, and encode any mismatch in a data/MC correction factor.
We follow this approach, and describe in this note a measurement of the data-to-MC scale
factor for the binary mode RomaNN.

In MC, the efficiency for tagging b-jets measurement can be calculated simply by counting
the b content of a sample from the OBSP bank, before and after applying the b-tag.

In data, the technique we use relies on the fact that the so-called lepton jets (data jets
resulting from heavy flavor decay B — uX or B — eX, where B represents a B hadron) will
on average contain a lepton with a higher transverse momentum relative to the jet vector
compared to the decay of a generic hadron, since B hadrons have a higher invariant mass

than generic hadrons. The lepton transverse momentum relative to the jet vector (pi<!) is

defined in Eqn. 1.
2
1— ?lepton : ﬁjet (1)
‘?lepton ‘ﬁjet

where ]_D)lept(m is the momentum of the lepton and ?jet is the momentum of the lepton-jet.

We use both the electron and the muon as the lepton. This will be explained in the
following section. The momentum of the electron is obtained from a combination of tracking
and calorimetry, processed through the “TopAlgorithms::correctElectron” algorithm. The
momentum of the muon is obtained from tracking. The energy and momentum of the
electron-jet is obtained from a combination of tracking and calorimetry, processed through
the “JetCorr” algorithm. The energy and momentum of the muon-jet, however, must be
corrected for the muon escaping the calorimeter with most of its momentum according to
Eqn. 2 and 3. This was not necessary for electron, since electrons do not escape.

P = Prat (1 Giv) P, o)

|pu

lepton pTTel = ‘?lepton
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(3)

Eio —2 GeV
ET,COM‘ = ET,jet <]t> P,

Ejet

The b content of a sample can be determined by using the discriminating shape of the
¥ between b and non-b jets. Splitting the data sample into two subsamples, “tagged” and
“not-tagged”, we can fit their pi¢ distribution to find the b content of each. This allows us to
calculate the efficiency for tagging b-jets in data from the yields of b-jets in each subsample

(Eqn. 4).

€ = N%ag _ N’?ag (4)
Ntbotal Nf%ag + N]li/oTag

where N%ag is the number of b-jets that are tagged (RomaNN3out>RomaNNcut); N}(foTag is
the number of b-jets that are not tagged (RomaNN3out<RomaNNcut, including RomaNN
not-taggable jets); N2, is the total number of b-jets. Then we can obtain the data-to-MC

scale factor by dividing the efficiency for tagging b-jets in data by the efficiency for tagging
b-jets in MC (Eqn. 5).

SF —_ Edata (5)
eEMc

2.1 Electron vs Muon

The ph¢ technique has been used in CDF since 2005 [3] to measure the efficiency for tagging
b-jets, with the jets having a muon. These jets can represent the generic candidate jets
for the SecVtx b-tagger because the tagger does not explicitly use the muon information.
However, because the RomaNN uses explicitly the number of muons as an input, jets with
a muon are no longer good handles to measure the efficiency for tagging b-jets in general.

For this reason, we have developed the technique further, to use jets having an electron to
measure the efficiency for tagging b-jets. The RomaNN3out distributions from b-hadronic (no
muon and no electron) jets, b-jets containing an electron, and b-jets containing a muon are
shown in Fig. 5. It is clear that generic jets and jets with electrons have similar distributions,
while jets with a muon have a distribution shifted towards positive (b-like) values. Because
of this, we measure the scale factor of two sub-samples of jets: muon-jets, and generic jets
as represented by electron-jets.

But how do we justify representing generic jets with electron jets? In a di-jet sample
where events have “back to back” jets, with both jets have the same kinematic requirements,
we require one jet to have an electron. We require that both jets have RomaNN3out>0.0,
such that this sample is enriched in b-content. The jets with electrons are referred to as the
electron-jets, the other is referred to as the away-jets. The away-jets can represent generic
jets because they do not have any lepton requirements. In Fig. 6 we compare the NN3out
distributions of the electron-jets and away-jets. Fig. 6 a and b shows visually the level of
agreement between the data and MC NN3out distributions. Fig. 6 ¢ and d shows that the
difference between the electron-jets and the away-jets exist in both data and MC.

Fig. 7 shows the integral of the NN3out distribution of data/MC and electron/away-jets
starting from RomaNNcut=0.0, which is the number of jets tagged.

Fig. 8 shows the quotient of the number of away /electron-jets tagged in data and number
of away/electron-jets tagged in MC. To be sure these samples are not purely b-jets, but
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Figure 5: RomaNN3out distribution comparison between generic, electron, and muon, from
WZ Monte Carlo with jet || < 1.2 and Er > 9 GeV.

these quotient are scale factors between the electron-jet sample and the away-jet sample,
and equally contaminated. Their difference is shown in Fig. 9, showing that the difference in
equally contaminated scale factors of the away-jets and the electron-jets is small, justifying
our extrapolation of the generic-jets from electron-jets.

3 Event Selection

To measure efficiency for tagging b-jets, it is necessary to get a sample of jets with enriched b
content. To do that, we select events with “back to back” (|¢probe — Paway| > 2.0 radians) jets
(Fig. 10), having a probe-jet and an away-jet, requiring that the away-jet be LooseSecVtx
tagged. We require that the probe-jet contain a lepton within a cone of 0.4 in n—¢ space of
the center of the jet. Should there be more than one lepton inside the candidate probe-jet,
the lepton with the highest E7r is selected. The selection criteria for electron-jets, muon-jets,
and away-jet are listed in tables 4, 5 and 6.

3.1 Samples

The MC samples correspond to an integrated luminosity of 1.5fb~!. The generating process
is Pythia di-jet Pr > 20 GeV, |n| < 2.0, filtered for the electron-jet sample to have an
electron with Pr > 8 GeV and |n| < 1.2, and filtered for the muon-jet sample to have a
muon with Pr > 9 GeV and || < 0.6. The data samples are taken from the 8 GeV Electron
trigger path and the 8 GeV Muon trigger path, with an integrated luminosity of 3fb~!. See
table 7 for definition. Events in the good runs list version 24 are selected (up to period 18).
Good quality silicon, muon and EM calorimeter runs are required for data; good silicon and
EM calorimeter runs are required in MC (the muon requirement not being modeled in Monte
Carlo). Level 5 Jet energy correction from the JetCorrl7 package are applied to the jets.
The probe/away-jet pair yields from the above samples are listed in tables 10, 11, 8 and 9.
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Figure 6: Comparison of the NN3out distribution of data/MC electron/away-jets.
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Figure 8: Quotient of the integrals between data and MC.
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3.1 Samples

Requirements

- raw Jet Er > 15 GeV
- Contains An Electron (AR < 0.4)

Electron CollType 1 (defEmObject)
CEM Electron (|n| < 1.2)

Er>9 GeV

Pr>38 GeV

0.5 <E/p<2

Had/em < 0.05

Lshr < 0.2

|Signed CES Az| < 3 cm

|CES Az| <5 cm

Strip x? < 10

2o Within 5 cm of Primary Vertex
Isolation > 0.1

Fiducial to SVX

Conversion Veto

Table 4: Electron-jet requirements.

Requirements
- raw Jet Er > 15 GeV
- Contains an SLT Muon
- Muon track x? < 2

Table 5: Muon-jet requirements.

Requirements
- Jet Energy Level 5 Corrected > 15 GeV
- Inl <15
- |Paway — PProve| > 2.0 radians
- LooseSecVtx Tagged

Table 6: Away-jet requirements.

NTupleSet | C Description
blpc data 3 fbo=!' | 8 GeV Electron Data

(run range 138425-264071)
bmecl data 3 fb=t | 8 GeV Muon Data

(run range 138425-264071)

btopla di-jet MC | 1.5 fb~! | Pythia di-jet Pr > 20 GeV, || < 2.0

Electron Pr > 8 GeV, |n| < 1.2
Muon Pr > 9 GeV, |n| < 0.6

Table 7: Data and Monte Carlo samples used to measure the Scale Factor.

11
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4 LEPTON PEFLE PROCEDURES

NTupleSet

# b RomaNN>(0.0

# b RomaNN<0.0

# c

btopla di-jet MC

19317 pairs

24945 pairs

88462 pairs

Table 8: Monte Carlo yields for electron-jets.

NTupleSet

# RomaNN>0.0

# RomaNN<0.0

blpc data

66864 pairs

180549 pairs

Table 9: Data yields for electron-jets.

NTupleSet

# b RomaNN>0.0

# b RomaNN<0.0 | # c

btopla di-jet MC

35480 pairs

4440 pairs

176230 pairs

Table 10: Monte Carlo yields for muon-jets.

NTupleSet

# RomaNN>0.0

# RomaNN<0.0

bmel data

172613 pairs

101242 pairs

Table 11: Data yields for muon-jets.

rel

4 Lepton p/ Procedures

The lepton ph¥ procedures consist of constructing a sample data distribution, a signal tem-

plate, and background templates, then fitting for the signal fraction in the data sample.

4.1 MC Electron p}' Templates Construction

Sources of electrons include semileptonic B and D hadron decays, fakes from light flavor jets,
and electrons from photon conversions in the detector material.

The bottom-jet templates (b-templates) are constructed from the electron-jets from bto-
pla MC, requiring OBSP level match to a b-jet, and the away-jet to be positively tagged by
Loose SecVtx; having the same b-enrichment event selection as in data. The RomaNN tag
information is used to separate the b-jets, which are then used to construct the tagged and
not-tagged electron pi b-templates as shown in Fig. 11. The difference in mean is 0.15 GeV,
due to the fact that the tagged sample has on average higher energy jets than the not-tagged
sample and the electron p4¢! is proportional to the electron pr and thus the jet energy.

The charm-jet template (c-template) is constructed from the electron-jets from btopla
MC, requiring OBSP level matching to c-jets, without any away-jet requirement. The Ro-
malNN tag information is ignored for the charm-jets. The light-flavor-jet template is con-
structed from the electron-jets from btopgb and btoprb MC (di-jet MC with Pr >18,40 GeV
respectively), veto on OBSP level match to b or c-jets, without any away-jet requirement.
The RomaNN tag information is ignored for the light-flavor-jets.

The conversion electron template is constructed from data electron-jets taken from the
8 GeV Electron trigger path, requiring the away-jet to be negatively tagged by Loose SecVtx,
and the electron inside the electron-jet to have 0 silicon hits registered where there should
have been hits. This sample is dominated by photon conversions where the electron originates

in the detector and is not from the primary vertex [10]. The RomaNN tag information is
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Figure 11: Comparison of the b electron pi¥ templates, normalized to unit area.

ignored for the conversion-jets. The electron pi¥ templates for charm, light-flavor, and

conversions are shown in Fig. 12.

The light-flavor template is very similar to the conversion template. Because of this, we
can choose either of the two to represent non-b and non-c: we chose the conversion electron
template since it has much more statistics than the MC light-flavor-jet template. We will
call the conversion electron template our [-template.

In this note, these b,c,l-templates are refered to as the default pi¢ templates.
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Figure 12: Comparison of the non-b electron pi¥ templates, normalized to unit area.

4.2 MC Muon p5! Templates Construction

Sources of muons include semileptonic B and D hadron decays, and fakes from light flavor
jets.

The bottom-jet templates (b-templates) are constructed from the muon-jets from btopla
MC, requiring OBSP level match to a b-jet, and the away-jet to be positively tagged by
Loose SecVtx; having the same b-enrichment event selection as in data. The RomaNN tag
information is used to separate the b-jets, which are then used to construct the tagged and
not-tagged muon ph¥ b-templates as shown in Fig. 13.

The charm-jet template (c-template) is constructed from the muon-jets from btopla MC,

requiring OBSP level matching to c-jets, without any away-jet requirement. The RomaNN
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Figure 13: Comparison of the b muon pi¢ templates, normalized to unit area.

tag information is used to separate the c-jets, which are then used to construct the tagged
and not-tagged muon p4¢! c-templates. The light-flavor-jet template is constructed from the
muon-jets from btopgb and btoprb MC (di-jet MC with Pr >18,40 GeV respectively), veto
on OBSP level match to b or c-jets, without any away-jet requirement. The RomaNN tag
information is ignored for the l-jets. The muon pi¥ templates for charm and light-flavor are

shown in Fig. 14.
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Figure 14: Comparison of the non-b muon p4¢ templates, normalized to unit area.

4.3 Fitting The Data p}' Distribution

To get the b content in data we multiply the number of jets by the b fraction obtained from
fitting the data pi¢’ distribution with the b, ¢, and [-templates. The b fraction in the sample
of jets is f, such that it maximizes in a two component likelihood fit (Eqn. 6).

Nbins

L= H P (ng, p1) (6)

=0
where P(a,b) is the Poisson probability of observing a events when expecting b; n; is the
number of data jets in bin i; y; is the expected number of jets in bin ¢ according to (Eqn. 7)

1 = Naata (T3 + fT0+ (1= fo = fo)T7) (7)
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where Nyq is the total number of data jets in all bins; f; is the b-fraction and f. is the
c-fraction; T7 is the size of the i’ bin of template z normalized to unit area.

We perform separate fits for the samples of tagged jets and not-tagged jets in data,
because the b-templates in these two categories have different shapes. In addition, the
muon c-templates are split into two categories because they too have different shapes. The
electron c-templates are not split into two categories because they have identical shapes.
The [-templates are not split into two categories because they have very low statistics.

5 Results for RomaNN3out>0.00

The data efficiency of the RomaNN tagging b-jets has been measured using the lepton ph¥
technique, using both the muon and the electron as the lepton. The MC and data efficiency
for tagging b-jets are calculated according to equation (4) and the results then produce a
scale factor according to equation (5).

5.1 Generic-Jets as Represented by Electron-Jets

There is an issue that the electron pi¢ spectrum depends on the Er distribution of the sample
(see Figs. 65-97). Fig. 15 shows a comparison between MC b/c/conversion-templates and
our data driven b-template (away-jet UltraTightSecVtx tagged), noting that the templates
have different Ep distribution thus affecting the pi¥ spectrum. Therefore the fits in the
individual Er bins are more accurate because they are not affected by the difference in Er
distribution between data and MC templates.

Fig. 16 shows a trend of the scale factor as a function of jet E7. We shift the x-axis
Fig. 17 in order to minimize the parameterization error. The linear fit (ignoring the last bin
due to insufficient statistics) of the scale factor from 20 GeV to 45 GeV shows a slight slope
of 0.00068 + 0.0024, which is consistant with zero. Therefore we fit a flat line in Fig. 18, to
get a scale factor of 0.793 £ 0.018(stat).
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0.25—
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0.2— i Mean 28.82
C i RMS 6.631
015
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Figure 15: Comparison of the Er distribution of the jets used to construct our electron ph?
templates.

Another issue is that the scale factor varies a lot with the number of z vertex in the event,
Fig. 19 shows the trend.
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Figure 17: Scale Factor vs. Jet Ep, x-axis shifted to minimize the parameterization error.

The scale factor clearly decreases from about 0.95 for jets with only one z vertex to about
0.75 for jets with only four or more z vertices. We provide a correction factor of
0'8771*0‘022%?8?(722”6””71'8) (see Fig. 20). The correction factor is centered on 1.8 because it
minimizes the parameterization error. It is also the mean number of z vertices for our di-jet

data sample. Fig. 21 compares the distribution of the number of z vertex in events from
di-jet data, di-jet MC, and TTbar MC.

To get an estimate of the uncertainty of using the parameterization to extrapolate to
another sample, we take the combination of the highest/lowest constant value and slopes in
Fig. 20, weighted by the T'Tbar z vertices distribution, and take the standard deviation. The
standard deviation is 0.030. Therefore we take 0.030 as the uncertainty of parameterization.
In summary, we have a scale factor for generic-jets of

0.793 x L8T-002280x(nFverter—18) 1 (), 018(stat) + 0.030(nZverter).
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Figure 19: Scale Factor vs. Number Of z Vertex In Event.

5.2 Muon-Jets

Fig. 22 shows a trend of the scale factor as a function of jet Er, and that the scale factor
varies a lot with the transverse energy of the jet.

The scale factor clearly decreases from about 1.05 for jets with Er = 20 GeV, to less
than 0.9 for jets with Ep > 40 GeV. We provide a parameterization of
(0.8821 — 0.006541 x (JetEr(inGeV') — 45)) (see Fig. 23). The parameterization is centered
on 45 GeV because it minimizes the parameterization error. For comparison, the trend is
fitted with a flat line in Fig. 24.

Fig. 25 shows the jet Ep spectrum from the di-jet data, di-jet MC, and TTbar MC.
It is clear that the b-jets from TThar have higher average jet Ep than those in the di-jet
calibration sample. To get an estimate of the uncertainty of using the parameterization to
extrapolate to another sample, we take the combination of the highest/lowest constant value
and slopes Fig. 23, weighted by the worst case TTbar Ep spectrum, and take the standard
deviation.This takes into account the effect of the parameterization uncertainty, which is a
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Figure 20: Scale Factor vs. Number Of z Vertex In Event, x-axis shifted to minimize the
parameterization error.
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Figure 21: Comparison of the distribution of the number of z vertex in events from di-jet
data, di-jet MC, and TThar MC.

statistical error, as well as the systematic error in extrapolating to another sample. The
standard deviation is 0.061. Therefore we take 0.061 as the uncertainty of parameterization.

In summary, we have a scale factor for muon-jets of
(0.8821 — 0.006541 x (JetEp(inGeV') — 45)) £ 0.061(stat + Jet Er param)

6 Systematic Errors and Cross Checks

6.1 Electron p}*

The systematic errors in the scale factor measurement of the binary mode RomaNN for
electron-jets are listed in table 12.

For those systematics that are estimated using pseudoexperiments, we construct pseudo-
data in the alternate model and always fit using our default model. We use input fractions
as obtained in the central value fits (Fig. 52). For tagged, we use input fractions of 84.6%
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Figure 22: Scale Factor vs. Jet Er.
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Figure 23: Scale Factor vs. Jet Ep, x-axis shifted to minimize the parameterization error.

b, 4.3% ¢, and 11.1% conversion. For not-tagged, we use input fractions of 49.4% b, 19.2%
¢, and 31.4% conversion. We use 10000 events for both tagged and not-tagged, and perform
5000 pseudoexperiments each. The important thing is to determine the shift in b-fraction.
10000 events is enough to fill a distribution from templates which had 18 bins. 5000 pseudo-
experiments is enough such that the mean of the fitted result has only a 1% error. We use
the number of tagged and not-tagged events in data and only change the b-fraction according
to the systematic shift found.

We will compare the distribution of various quantities from the di-jet data, di-jet MC,
and TThar MC. For di-jet data, we are showing only jets with electrons. For di-jet MC, we
are showing only b-jets with electrons. For TThar we are showing every b-jets.
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Figure 24: Scale Factor vs. Jet Erp, fitted with flat line.
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Figure 25: Comparison of the Er distribution of muon-jets from di-jet data, di-jet MC, and

TTbar MC.

Source Systematic Error
- Jet Transverse Energy | 0.051
- Track Multiplicity 0.006

- Conversion Model 0.019
- MC b-jet Model 0.058
Total 0.080

Table 12: Systematic errors in RomaNN scale factor measurement.



6.1 Electron py! 21

6.1.1 Jet Transverse Energy

The b jets from other physics processes might have an Ep distribution different from the
sample used to measure the scale factor. Fig. 26 shows the jet Ep spectrum from the di-jet
data, di-jet MC, and TTbhar MC. It is clear that the b-jets from TTbar have higher average
jet Er than those in the di-jet calibration sample. A worst case scenerio using the TTbar
sample will be used to weight the bins to estimate a systematic error.

As a systematic error, we look at the worst case scenerio of extrapolating to the TTbhar
sample. We weight the Er spectrum of the TThar MC against the linear fit with plus and
minus standard deviation of slope error in Fig. 17, and look at the range/2. The scale factor
weighted with +10 error is 0.754, with +00 error is 0.805, with —1o error is 0.856, which
has a =% of 0.051.
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Figure 26: Comparison of the Er distribution of electron-jets from di-jet data, di-jet MC,
and TThar MC.

6.1.2 Track Multiplicity

The scale factor is measured on a sample of b-jets where the B hadrons decayed semilep-
tonically. If the scale factor depends on the track multiplicity, then it may be different for
the hadronic decays of the B hadrons. Fig. 27 compares the distribution of the number
of Roma Good Tracks inside the electron-jets from di-jet data, di-jet MC, and TTbar MC.
Fig. 28 shows a trend of the scale factor as a function of the number of RomaNN good tracks
embedded in the jet. A RomaNN good track is defined in Table 13. A worst case scenerio
using the TTbar sample will be used to weight the bins to estimate a systematic error.

As a systematic error, we look at the worst case scenerio of extrapolating to the TTbhar
sample. We weight the nTrack spectrum (Fig. 28) bin by bin with the di-jet MC and the
TThar MC, and compare their weighted scale factor against each other. The scale factor
weighted with di-jet MC is 0.875, TTbar is 0.881, which is a shift of 0.006.

The fits for each individual point can be found in the appendix.
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Figure 27: Comparison of the distribution of the number of Roma Good Tracks inside the

6 SYSTEMATIC ERRORS AND CROSS CHECKS

Requirements

collection == DefTrack
|AR(track, jet)| < 0.4
Pr>1GeV/c

zp < 1.0 cm

do < 0.15 cm

Reconstructed with both Silicon and COT hits

Table 13: RomaNN good track requirements.
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6.1.3 Conversion Template Shape

We estimate how sensitive the scale factor is to the choice of conversion template. The
default light-flavor templates are constructed from data by requiring the away-jet to be
negatively tagged by Loose SecVtx, and the electron inside the electron-jet to have 0 silicon
hits registered where there should have been hits. Figure 29 shows the distribution of number
of the silicon hits for the electron in the data sample.
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Figure 29: The distribution of number of Si-Hits in the electron-jet in the di-jet data sample.

We build 3 other light-flavor templates with 3/4/5 silicon hits registered instead of zero
silicon hits registered. The four [-templates along with the default b and c-templates were
used to generate 4 sets of pseudodata. These 4 sets of pseudodata are then fitted with the
default templates. The shift in scale factor would then be a good estimate of the error caused
by relying on a particular method of [-template construction. The standard deviation of the
scale factor is 0.019, so 0.019 is taken as the systematic uncertainty in this category.
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Figure 30: 4 different [-templates, built from data.

6.1.4 MC b-jet Model

We need to estimate how sensitive the scale factor is to our model of electron-b-jets. We
have two method of studying this: one based on comparison between data and MC, another
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Conversion Tagged Tagged Fit | Not Tagged | Not Tagged Fit | scalefactor
Template < ffited > mean 2 /DOF | < ff" > mean x?/DOF

Zero Si-hits 0.846 1.127 0.493 1.134 0.890
Three Si-hits | 0.866 1.329 0.542 4.119 0.851

Four Si-hits 0.860 1.219 0.524 2.124 0.865

Five Si-hits 0.866 1.273 0.544 2.605 0.849

Table 14: Dependence of RomaNN scale factor from the Conversion Model used.

one based on MC-tuning.

The first study we estimate the scale factor sensitivity to the difference in our MC model
of b-jets and an alternative data model of b-jets.

For the data based study, we obtain a data sample very enriched in b-jets by requiring the
away-jet to be tagged by the UltraTight SecVtx tagger, and that the electron-jet be tagged
with a RomaNNcut=0.8. From Fig. 3, we can assume that the RomaNN tagged electron-jets
in this sample are all from b-jets, with no contamination from charm or light. We use the
e of these tagged electron-jets as an alternate model of tagged b-jets.

We construct pseudoexperiments using the alternate model for tagged b-jets (with a
RomaNNcut=0.8) and the default models for charm, conversion, and not-tagged b-jets. We
fit using the default model for tagged b-jets (with a RomaNNcut=0.8) and the default models
for charm, conversion, and not-tagged b-jets. We find a b-fraction of 0.766 instead of the
input 0.846. When we propagate this to the scale factor we get 0.836, which is a shift of
0.050. We take this shift to be the systematic uncertainty estimation using this data based
method.
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Figure 31: Comparison of the tagged templates, red = MC based(default) b-template, blue
= data based b-template.

The second study we estimate the scale factor sensitivity to the MC-tuning.

The model of b-jets depends on an accurate simulation of heavy flavor hadron production
and decay. The fragmentation model is the mechanism responsible for assigning in MC
the b-quark’s momentum amongst the B hadron and the other hadron in the b-jet. The
fragmentation model used in the default templates is the Bowler-Lund model, which uses
parameters as fitted from OPAL [11].



6.1 Electron pi¢! 25

In order to investigate the dependence of the scale factor to the fragmentation model
used in the MC simulations, we would ideally use MCs with Bowler-Lund within a band of
its parameters’ uncertainty, and accordingly and perform pseudoexperiments. But we only
have one MC generated by the Bowler-Lund model.

So the strategy used is to estimate the scale factor shift within a band of parameters’
uncertainty of an alternative fragmentation model, the Peterson model, of which we fortu-
nately have 2 existing W + bb MC. These two MCs used PFP=(0.0025,0.0041), the lower
bound of ALEPH (0.0031 £ 0.0006) and the central value of OPAL (0.00412 + 0.00037) re-
spectively [I1]. Then we would have the scale factor shift as a function of PFP shift, with
which we can get the scale factor uncertainty as a result of PFP uncertainty. We would use
the PFP uncertainty from OPAL since the Bowler-Lund model used in our scale factor value
calculation uses parameters as fitted from OPAL.

We also have a W + bb MC based on the Bowler-Lund model. The 3 W + bb MCs were
used to build 3 different b-templates (Fig. 32), these along with the default ¢ and [-templates
were used to generate 3 sets of pseudodata. These 3 sets of pseudodata are then fitted
with the b-template from the Bowler-Lund modeled W + bb, along with the default ¢ and
I-templates. We must fit using the b-template from the Bowler-Lund modeled W + bb instead
of the di-jet b-templates since we generated the Peterson pseudodata with b-templates from
W + bb MC.

A shift in PFP of 0.0041-0.0025=0.0016 changes the scale factor by 1.049-0.799=0.250, so
the scale factor uncertainty as a result of PFP uncertainty would be 0.00037 x 00_'0205106 = 0.058.
We take this shift of 0.058 to be the systematic uncertainty estimation using this MC-tuning
based method.

To be conservative, we take the larger of the two errors (table 16) to be the estimate of
how sensitive the scale factor is to our model of electron-b-jets, and assign a systematic error

of 0.058.
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[ Mean  1.361 EMean 1.523 012 Mean  1.121 Mean 1.126
0.08— RMS 0.8219 ERMS 0.8482; 0.1 RMS 0.7238 ERMS 0.6981;
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(a) Tagged templates. (b) Not Tagged templates.

Figure 32: 3 different b-templates, built from W + bb MCs. Note that jets from W + bb MC
have higher Er than from di-jet MC, so that the electron pi¢ is shifted to higher values (in
the tagged templates: 1.46 for Bowler-Lund W + bb compared to 1.13 for Bowler-Lund di-jet

(Fig. 11) ).
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Fragmentation | Tagged Tagged Fit Not Tagged | Not Tagged Fit | scale factor
Model < ffited > mean 2 /DOF | < ff" > mean x?/DOF
Bowler-Lund | 0.846 1.005 0.493 1.010 0.889
Peterson 0.765 59.0 0.528 477 0.799
PFP=0.0025
Peterson 0.978 17.6 0.428 20.0 1.049
PFP=0.0041

Table 15: Dependence of RomaNN scale factor from the Fragmentation Model used.

Method of Estimation

Estimated Value

Assigned Value

Data b-model

0.050

no

Tuned MC b-model

0.058

yes

Table 16: Summary of the estimation in the MC b-jet Model systematic error.

6.1.5 Jetn

Fig. 33 compares the n distribution of the electron-jets from di-jet data, di-jet MC, and
TTbar MC. As a cross-check we show that the scale factor varies minimally within the 7
range of our measurement in Fig. 34. We do not quote a systematic error for this.

The fits for each individual point can be found in the appendix.
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Figure 33: Comparison of the 7 distribution of electron-jets from di-jet data, di-jet MC, and

TThar MC.

6.1.6 Jet ¢

Fig. 35 compares the ¢ distribution of the electron-jets from di-jet data, di-jet MC, and
TTbar MC. As a cross-check we show that the scale factor varies minimally within the ¢
range of our measurement in Fig. 36. We do not quote a systematic error for this.

The fits for each individual point can be found in the appendix.

6.1.7 Data Period

Fig. 37 shows the distribution of the number of events in the runs used. Fig. 38 shows
that the scale factor varies a lot with the data period. This is correlated to the fact that the
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Figure 35: Comparison of the ¢ distribution of electron-jets from di-jet data, di-jet MC, and
TTbar MC.

instaneous luminosity is different for each data period, so we do not quote another systematic
error.
The fits for each individual point can be found in the appendix.

6.1.8 Even and Odd Event Number

As a cross-check we show that the scale factor varies minimally between odd and even events
in Fig. 39. We do not quote a systematic error for this.
The fits for each individual point can be found in the appendix.

rel

6.2 Muon p

Muon pi¥ is a well tested method, so it is just summerized in table 17 and not described
in too much detail, leaving more room for the Electron pi¥ method instead. Trends are
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Figure 36: Scale Factor vs. Jet Phi.
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Figure 37: Distribution of the data over run number from di-jet data.

provided here to build confidence in this measurement.

6.2.1 Track Multiplicity

Fig. 40 compares the distribution of the number of Roma Good Tracks inside the muon-jets
from di-jet data, di-jet MC, and TTbhar MC. Fig. 41 shows a trend of the scale factor as a
function of the number of RomaNN good tracks embedded in the jet.

As a systematic error, we look at the worst case scenerio of extrapolating to the TTbhar
sample. We weight the nTrack spectrum (Fig. 28) bin by bin with the di-jet MC and the
TTbar MC, and compare their weighted scale factor against each other. The scale factor
weighted with di-jet MC is 0.915, T'Tbar is 0.893, which is a shift of 0.022, to be taken as
the systematic error.
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Figure 39: Scale Factor vs. Even and Odd Event Number.

Table 17: Systematic errors in RomaNN scale factor measurement for muon-jets.

Data_Period

Figure 38: Scale Factor vs. Data Period.

—¥—— MCefficiency_vs_Event number_ mod 2 | DataBTaggedi2081di28803 o
i Data B NotTagged|45632]50704
——a—— DATAefficiency_vs_Event_number_mod_2 WG B Tagged 97599559
——a—— BeffScaleFactor_vs_Event_number_mod_2 MC B notTagged|12443|12478
—

/

Event_number_mod_2

Source Systematic Error
- Track Multiplicity | 0.022
- MC b-jet Model 0.018

Total 0.028

29
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Figure 40: Comparison of the distribution of the number of Roma Good Tracks inside the
muon-jets from di-jet data, di-jet MC, and TTbar MC.
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Figure 41: Scale Factor vs. Number of RomaNN good tracks.

6.2.2 MC b-jet Model

We need to estimate how sensitive the scale factor is to our model of muon-b-jets. We have
two method of studying this: one based on comparison between data and MC, another one
based on MC-tuning.

The first study we estimate the scale factor sensitivity to the difference in our MC model
of b-jets and an alternative data model of b-jets.

For the data based study, we obtain a data sample very enriched in b-jets by requiring the
away-jet to be tagged by the UltraTight SecVtx tagger, and that the electron-jet be tagged
with a RomaNNcut=0.8. From Fig. 3, we can assume that the RomaNN tagged electron-jets
in this sample are all from b-jets, with no contamination from charm or light. We use the
it of these tagged electron-jets as an alternate model of tagged b-jets.

We construct pseudoexperiments using the alternate model for tagged b-jets (with a
RomaNNcut=0.8) and the default models for charm, conversion, and not-tagged b-jets. We
fit using the default model for tagged b-jets (with a RomaNNcut=0.8) and the default models
for charm, conversion, and not-tagged b-jets. We find a b-fraction of 0.630 instead of the



6.2 Muon p! 31

L Data B Template

B P Entries 83512

0.1— Mean 1.066

r RMS 0.5934

K MC B Template

0.08— Entries 35480

H Mean 1.138

B RMS 0.5982
0.06—
0.04;
0.02;

07\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘“\--\"\-T- FUS——

0 0.5 1 15 2 2.5 3

35 4
1 PP (GeVic)
Figure 42: Comparison of the tagged templates, red = MC based(default) b-template, blue
= data based b-template.

input 0.698. When we propagate this to the scale factor we get 0.875, which is a shift of
0.015. We take this shift to be the systematic uncertainty estimation using this data based
method.

The second study we estimate the scale factor sensitivity to the MC-tuning.

Like for the electron-jets, the strategy used is to estimate the scale factor shift within
a band of parameters’ uncertainty of an alternative fragmentation model, the Peterson model,
of which we fortunately have 2 existing W+bb MC. These two MCs used PFP=(0.0025,0.0041),
the lower bound of ALEPH (0.0031 4 0.0006) and the central value of OPAL (0.00412 +
0.00037) respectively [I1]. Then we would have the scale factor shift as a function of PFP
shift, with which we can get the scale factor uncertainty as a result of PFP uncertainty. We
would use the PFP uncertainty from OPAL since the Bowler-Lund model used in our scale
factor value calculation uses parameters as fitted from OPAL.

We also have a W + bb MC based on the Bowler-Lund model. The 3 W + bb MCs were
used to build 3 different b-templates (Fig. 32), these along with the default ¢ and [-templates
were used to generate 3 sets of pseudodata. These 3 sets of pseudodata are then fitted
with the b-template from the Bowler-Lund modeled W + bb, along with the default ¢ and
I-templates. We must fit using the b-template from the Bowler-Lund modeled W + bb instead
of the di-jet b-templates since we generated the Peterson pseudodata with b-templates from
W + bb MC.

A shift in PFP of 0.0041-0.0025=0.0016 changes the scale factor by 0.998-0.919=0.079, so
the scale factor uncertainty as a result of PFP uncertainty would be 0.00037 x 0%%7196 = (.018.

To be conservative, we take the larger of the two errors (table 19) to be the estimate of
how sensitive the scale factor is to our model of muon-b-jets, and assign a systematic error
of 0.018.

6.2.3 Number Of z Vertex In Event

Fig. 43 compares the distribution of the number of z vertex in events from di-jet data, di-jet
MC, and TTbar MC. Fig. 44 shows a trend of the scale factor as a function of the number
of z vertex in the event. We do not quote a systematic error for this.
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Fragmentation | Tagged Tagged Fit Not Tagged | Not Tagged Fit | scale factor
Model < fl"d > | mean x2/DOF | < ffifed > mean x?/DOF

Bowler-Lund | 0.697 1.02 0.318 1.03 0.894
Peterson 0.503 1.68 0.198 4.37 0.919
PFP=0.0025

Peterson 0.648 1.72 0.145 2.58 0.998
PFP=0.0041

Table 18: Dependence of RomaNN scale factor from the Fragmentation Model used.

Method of Estimation | Estimated Value | Assigned Value
Data b-model 0.015 no
Tuned MC b-model 0.018 yes

Table 19: Summary of the estimation in the MC b-jet Model systematic error.
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Figure 43: Comparison of the distribution of the number of z vertex in events from di-jet

data, di-jet MC, and TTbar MC.
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Figure 44: Scale Factor vs. Number Of z Vertex In Event.
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6.2.4 Jetn

Fig. 33 compares the n distribution of the muon-jets from di-jet data, di-jet MC, and TTbar
MC. As a cross-check we show that the scale factor varies minimally within the 7 range of
our measurement in Fig. 46. We do not quote a systematic error for this.
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Figure 45: Comparison of the n distribution of electron-jets from di-jet data, di-jet MC, and
TTbar MC.
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Figure 46: Scale Factor vs. Jet Eta.

6.2.5 Jet ¢

Fig. 47 compares the ¢ distribution of the electron-jets from di-jet data, di-jet MC, and
TTbar MC. As a cross-check we show that the scale factor varies minimally within the ¢
range of our measurement in Fig. 48. We do not quote a systematic error for this.

6.2.6 Data Period

Fig. 49 shows the distribution of the number of events in the runs used. Fig. 50 shows a
trend of the scale factor as a function of the data period. We do not quote a systematic
error for this.
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Figure 47: Comparison of the ¢ distribution of electron-jets from di-jet data, di-jet MC, and

TTbhar MC.
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Figure 48: Scale Factor vs. Jet Phi.

6.2.7 Even and Odd Event Number

As a cross-check we show that the scale factor varies minimally between odd and even events
in Fig. 51. We do not quote a systematic error for this.

7 Conclusion

The efficiency and scale factor measurement is performed for the binary mode RomaNN using

the electron p

technique. The operating point RomaNN3out>0.00, has a scale factor of

(0.8821 — 0.006541 x (JetEp(inGeV') — 45)) +0.061(stat + Jet Ep param) £ 0.028(syst) for
all muon jets, and for all other jets a scale factor of

0.793 x 0.8771—0.02285x (nZvertex—1.8) +0.018

0.8771

(stat) £ 0.030(nZvertex) £ 0.080(syst).
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8 Appendix

8.1 Naive Fits and Calculations Using Entire Data Sample
8.1.1 Electron pi¥

Using the definition of RomaNN3out>0.0 for tagged, the data distribution and best fit results
are shown in Fig. 52a for tagged jets and Fig. 52b for not-tagged jets. Table 20 summarizes
the best fit results.

With 70,182 tagged jets in data, the best fit finds a b-fraction of 84.5 & 2.2%, a charm-
fraction of 3.8 £ 3.4%, and a light/conversion-fraction of 11.7 + 5.1%, with 18 bins of
3/18 GeV/c and 2 fit parameters (f, and f.). The x*/degree-of-freedom is 4.1.

With 191,540 not-tagged jets in data, the best fit finds a b-fraction of 49.0£1.5%, a charm-
fraction of 18.4+1.4%, and a light /conversion-fraction of 32.6+2.4%. The not-tagged sample
has a lower b-fraction than the tagged sample as expected. The x?/degree-of-freedom is 3.1.
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Figure 52: Fitting b and non-b components to elec pi¥ data, using definition of

RomaNNout3>0.0 for tagged.

The data efficiency for this sample of jets is then
0.845 x 70182 59308

0.846 x 70182 + 0.490 x 191540 59308 + 93885

In MC, the efficiency is estimated from the number of OBSP b-jets (passing the same kine-
matic cuts)

= 0.387 + 0.009 (9)

€data =

19330
MC = T0330 1 24932 43T 000 (10)
Therefore, the naive scale factor is
ata  0.387
SFype = St — 200 (886 +0.025 (11)

EMIC 0.437
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However, this central value cannot be taken as the official scale factor, since the electron
P spectrum depends on the Er distribution of the sample. This is discussed in section 6.1.1.

%0

Sample || #tagged | %b | #b tagged | #not-tagged #b not-tagged | €,
MC 19330 n/a | 19330 24932 n/a | 24932 0.437
data 70182 84.5 | 59308 191540 49.0 | 93885 0.387

Table 20: Data and Monte Carlo calculations using definition of RomaNNout3>0.0 for tagged

in the electron p5¥ method.

8.1.2 Muon pi¢

Using the definition of RomaNN3out>0.0 for tagged, the data distribution and best fit results
are shown in Fig. 53a for tagged jets and Fig. 53b for not-tagged jets. Table 21 summarizes
the best fit results.

With 498,262 tagged jets in data, the best fit finds a b-fraction of 70.2 & 1.0%, a charm-
fraction of 31.3 £ 2.0%, and a light-fraction of —1.4 + 1.2% (consistent with zero), with
14 bins of 3/18 GeV/c and 2 fit parameters (f, and f.). The x?/degree-of-freedom is 15.7.

With 287,592 not-tagged jets in data, the best fit finds a b-fraction of 31.7 £ 1.2%, a
charm-fraction of 63.3 +£8.7%, and a light-fraction of 5.0+ 7.8%, with 14 bins of 3/18 GeV /c
and 2 fit parameters (f, and f.). The not-tagged sample has a lower b-fraction than the
tagged sample as expected. The x?/degree-of-freedom is 10.7.

‘ MuonJet_awayLoose_pTrel_RomaTagged00 | MFData ‘ MuonJet_awayLoose_pTrel_notRomaTagged00 | MFData
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" Data - Mean 1.035 E " Data . - Mean 07773
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(a) Tagged, total # of jets = 498262, b fraction

(b) Not Tagged, total # of jets = 287592, b

= 70.2% fraction = 31.7%
Figure 53: Fitting b and non-b components to muon p4¢ data, using definition of
RomaNNout3>0.0 for tagged.

The data efficiency for this sample of jets is then

0.702 x 498262 B 349692
0.702 x 498262 + 0.317 x 287592 349692 + 91129

In MC, the efficiency is estimated from the number of OBSP b-jets (passing the same kine-
matic cuts)

= 0.793 + 0.007 (12)

€data =
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35480

=—————— =0.889 +0.002 13
MC = 35480 + 4440 (13)
Therefore, the naive scale factor is
€data  0.795
SFuon = = —— =0.893 £ 0.008 14

Sample || #tagged | %b | #b tagged | #not-tagged | %b | #b not-tagged | €,
MC 35480 n/a | 35480 4440 n/a | 4440 0.889
data 498262 | 70.2 | 349692 287592 31.7 | 91129 0.793

Table 21: Data and Monte Carlo calculations using definition of RomaNNout3>0.0 for tagged
in the muon p5¥ method.

8.2 Other Operating Points

We have measured the MC efficiency, data efficiency, and scale factors for muon jets and
hadronic jets, with the hadronic jets represented by electron jets. The scale factors are
flat for a range of operating points from RomaNN3out>-0.30 to RomaNN3out>0.50, shown
in Fig. 54, 55. This range can be seen to be useful from the RomaNN3out normalized
distribution of MC b,c,l-jets in Fig. 3, where there is a good signal to background ratio
without sacrificing too much signal.

It is convenient to express the scale factor for any RomaNNcut in terms of the scale
factor at RomaNNcut=0.0. Table 22 lists the SF-Multipliers for cuts in a range of operating
points from RomaNN3out>-0.30 to RomaNN3out>0.50.

| eff_and_BeffSF_vs_RomaNNcut |

1.2

MCefficiency_vs_RomaNNcut

DATAefficiency_vs_RomaNNcut

BeffScaleFactor_vs_RomaNNcut
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| L | L | L L | L |
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1
(=4
B

Figure 54: Scale Factor as a function of RomaNN3out cut value, muon p4¢! method.
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RomaNNcut | Electron SF-Multiplier | Muon SF-Multiplier
-0.30 1.042 1.066
-0.25 1.021 1.063
-0.20 1.020 1.051
-0.15 1.013 1.040
-0.10 1.006 1.038
-0.05 1.000 1.014
0.00 1.000 1.000
0.05 0.987 0.986
0.10 1.005 0.980
0.15 1.012 0.975
0.20 1.014 0.965
0.25 1.004 0.958
0.30 0.996 0.948
0.35 0.988 0.943
0.40 0.979 0.929
0.45 0.965 0.920
0.50 0.962 0.915

Usage: SF(RomaN Ncut) = SF(RomaNNcut = 0.0) x SF-Multiplier(RomaN N cut)

Table 22: SF-Multipliers for cuts in a range of operating points from RomaNN3out>-0.30
to RomaNN3out>0.50.

8.3 Additional Cross checks

8.3.1 Tight SecVtx Scale Factor Measurement using Electron p;¢

Using the electron ph¥ method as was done for the RomaNN, the MC and data efficiency
for tagging b-jets using Tight SecVtx are calculated according to equation (4), the best fit
results then produce a central scale factor of 0.928+£0.015(stat)£0.80(syst) (Fig. 56).

There is an issue that the electron p5 spectrum depends on the Ep distribution of the
sample, therefore the fits in the individual E7 bins are more accurate because they are not
affected by the difference in Ep distribution between data and MC templates.

Fig. 57 shows a trend of the scale factor as a function of jet Fr. Fitting a flat line we
get a scale factor of 0.8554-0.013(stat)4-0.069(syst), in agreement with the muon p4¢ blessed
results 0.932+0.022(stat)40.049(syst) [2]. Furthermore, the scale factor does not depends

on jet Ep, as shown in Fig. 57.

Sample || #tagged | %b #b tagged || #not-tagged | %b #b not-tagged | €,
MC 13917 n/a 13917 30345 n/a 30345 0.314
data 47531 88.97 | 42288 199935 51.32 | 102607 0.292

Table 23: Data and Monte Carlo calculations using definition of SecvTag=1 for tagged, and
SecvTag#1 for not-tagged.

€data  0.292
Foee = = —— =10.928 = 0.0153(stat 15
S ! EMIC 0314 (8 “ ) ( )
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Figure 55: Scale Factor as a function of RomaNN3out cut value, using electron p4¢.
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Figure 56: Fitting b and non-b components to elec pi¥ data, using definition of SecvTag=1

for tagged, and SecvTag=#1 for not-tagged.

8.3.2 Jet Direction Measurement

In addition to the momentum being correct, an accurate p¢ depends on the jet direction

being correct as well. In this study, the jet direction is measured using the calorimeter. The
previous SecVtx scale factor measurements [2], [3] using the muon pi¥ technique studied
an alternative method of determining the jet direction: it can be measured from the tracks
lying inside the jet cone.

However, in the electron p4¢! technique, this alternative method of determining the jet
direction is not possible. This is due to the fact that bremsstrahlung photons are a significant
part of an electron-jet, and the calorimeter is needed to capture the photon information to
accurately determine the jet direction. This is evident in the comparison of the p¥ templates
(Fig. 58, 59, 60) where the electron in the track based reconstruction is much closer to the

jet axis.
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Figure 58: A comparison of the calorimeter and track based pi¥ b-templates.

8.3.3 Alternate Electron p/¥ Observable

We checked the robustness of our pi¥ results by considering an alternate observable, pi¢! / Ep,
which does not depend on the jet Ep as much Fig. 61. (This was done using data up to
pl7). Using this alternate observable, we calculated the central value of the scale factor to
be 0.812 + 0.018(stat), and plotted Fig. 63 shows a trend of the scale factor as a function of
jet Ep. Fitting a flat line we get a scale factor of 0.803 £ 0.009(stat), both are consistent
when comparing it to scale factor of 0.793 £ 0.018(stat) from Fig. 16.

Also we show in Fig. 64 a trend of the scale factor as a function of the number of tracks
in the jet.

€data  0.3D6

= 250 0,812 4 0.018(stat 16
eve 0437 (stat) (16)

SFelec =
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Figure 59: A comparison of the calorimeter and track based p’;
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Figure 60: A comparison of the calorimeter and track based p’s
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Sample || #tagged | %b | #b tagged | #not-tagged | %b | #b not-tagged | €,
MC 19330 n/a | 19330 24932 n/a | 24932 0.437
data 66912 82.6 | 55262 180748 55.4 | 100044 0.356

Table 24: Data and Monte Carlo calculations using definition of SecvTag=1 for tagged, and

SecvTag#1 for not-tagged.
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Figure 62: Fitting b and non-b components to elec pi data, using RomaNNCut=0.0.
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8.4.1 Fits From Electron p;¢ Trends
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Figure 67: Fitting b and non-b components to elec pi¥ data, using definition of
RomaNNout3>0.0 for tagged. Bin of 26 < Ep < 29.
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Figure 68: Fitting b and non-b components to elec ph¥

RomaNNout3>0.0 for tagged. Bin of 29 < Er < 32.
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Figure 69: Fitting b and non-b components to elec pi¥ data, using definition of
RomaNNout3>0.0 for tagged. Bin of 32 < Ep < 35.
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Figure 73: Fitting b and non-b components to elec pi¥ data, using definition of
RomaNNout3>0.0 for tagged. Bin of nGoodTracks = 2.
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Figure 74: Fitting b and non-b components to elec pi¥ data, using definition of
RomaNNout3>0.0 for tagged. Bin of nGoodTracks = 3.
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Figure 75: Fitting b and non-b components to elec pi¥ data, using definition of
RomaNNout3>0.0 for tagged. Bin of nGoodTracks = 4.
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Figure 76: Fitting b and non-b components to elec pi?
RomaNNout3>0.0 for tagged. Bin of nGoodTracks > 5.
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Figure 77: Fitting b and non-b components to elec pi¥ data, using definition of
RomaNNout3>0.0 for tagged. Bin of nZvertex = 1.
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Figure 78: Fitting b and non-b components to elec pi¥ data, using definition of

RomaNNout3>0.0 for tagged. Bin of nZvertex = 2.
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Figure 79: Fitting b and non-b components to elec pi* data, using definition of

RomaNNout3>0.0 for tagged. Bin of nZvertex = 3.
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Figure 80: Fitting b and non-b components to elec pi¥ data, using definition of

RomaNNout3>0.0 for tagged. Bin of nZvertex > 4.
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Figure 84: Fitting b and non-b components to elec pi¢ data, using definition of
RomaNNout3>0.0 for tagged. Bin of 0 < ¢ < %.
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Figure 85: Fitting b and non-b components to elec pi¥ data, using definition of
RomaNNout3>0.0 for tagged. Bin of ¥ < ¢ < %”
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Figure 86: Fitting b and non-b components to elec pi¥ data, using definition of
RomaNNout3>0.0 for tagged. Bin of %’“ <o¢p<m.
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Figure 87: Fitting b and non-b components to elec pi¢ data, using definition

RomaNNout3>0.0 for tagged. Bin of 7 < ¢ < 4%.
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Figure 88: Fitting b and non-b components to elec pie!

: 4 57
RomaNNout3>0.0 for tagged. Bin of 5F < ¢ < °F.

data, using definition

ElectronJet_awayLoose_pTrel_ejet_phix100_525_628 ‘ MFData ‘ ElectronJet_awayLoose_pTrel_ejet_phix100_525_628 r ‘ MFData
Entries 10916 Entries 28640
Mean 1078 e} Mean 0904
RMS 05530 4000 5’°mbi"9d Fit 1 aus 05345
1200 Undertiow 0 ~ Eonversion Undertiow o
Overflow o 3500 Overflow o

Integral  1.09e404 Integral  2.863¢+04

1000 3000

Chi2/DOF= 3.18

b: 82.96+ 2.90- 2.94%
c: 3.94+ 4.78- 4.92%
Conversion: 13.11+ 6.38- 6.38%

Chi2/DOF= 2.77

b: 55.74+ 2.29- 2.29%
c: 25.33+ 2.55- 2.59%
Conversion: 18.92+ 3.27- 3.27%

80 2500

3

2000
601

3

1500

40

3

1000

EIAARANAARANRARANRRRANRERRS REREYS

200
500

ofx b PR at el ESEtine weieliaie
0 0.5 1 1.5 2 25 3 35 4 0 0.5 1 15 2 2.5 3 3.5 4
P GeVic P GeVic

(a) Tagged (b) Not Tagged

Figure 89: Fitting b and non-b components to elec pi¥ data, using definition
RomaNNout3>0.0 for tagged. Bin of 5{ < ¢ < 2m.
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Figure 90: Fitting b and non-b components to elec pie!

RomaNNout3>0.0 for tagged. Even event number bin.

data, using definition of
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Figure 91: Fitting b and non-b components to elec pi¥
RomaNNout3>0.0 for tagged. Odd event number bin.

data, using definition of

8.4.2 Fits From Muon p/¥ Trends
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Fitting b and non-b components to muon p’f
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el data, using definition of

RomaNNout3>0.0 for tagged. Bin of 20 < Ep < 29.
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Fitting b and non-b components to muon pi°
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Figure 94:

(a) Tagged

Fitting b and non-b components to muon pi°
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RomaNNout3>0.0 for tagged. Bin of 32 < Ep < 35.
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RomaNNout3>0.0 for tagged. Bin of 35 < Er < 40.

Figure 96:

data, using definition of
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data, using definition of
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Figure 98: Fitting b and non-b components to muon p
RomaNNout3>0.0 for tagged. Bin of nGoodTracks = 2.
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Figure 99:
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Fitting b and non-b components to muon pi°
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Figure 100: Fitting b and non-b components to muon pi¥ data, using definition of

RomaNNout3>0.0 for tagged. Bin of nGoodTracks = 4.
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Figure 101: Fitting b and non-b components to muon pi¥ data, using definition of
RomaNNout3>0.0 for tagged. Bin of nGoodTracks > 5.
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Figure 102: Fitting b and non-b components to muon ph¥ data, using definition of
RomaNNout3>0.0 for tagged. Bin of nZvertex = 1.
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Figure 103:

Fitting b and non-b components to muon p7
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Figure 104: Fitting b and non-b components to muon p7;
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Figure 105:

Fitting b and non-b components to muon p7
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rel data, using definition of

RomaNNout3>0.0 for tagged. Bin of nZvertex > 4.
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Figure 106: Fitting b and non-b components to muon pi? data, using definition of

RomaNNout3>0.0 for tagged. Bin of 0 <17 < 0.15.
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Figure 107: Fitting b and non-b components to muon pi¥ data, using definition of
RomaNNout3>0.0 for tagged. Bin of 0.15 < n < 0.30.
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Figure 108: Fitting b and non-b components to muon ph¥ data, using definition of
RomaNNout3>0.0 for tagged. Bin of n > 0.30.
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Figure 112: Fitting b and non-b components to muon pi¥ data, using definition of
RomaNNout3>0.0 for tagged. Bin of 7 < ¢ < 4%.
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Figure 113: Fitting b and non-b components to muon pi¥ data, using definition of
RomaNNout3>0.0 for tagged. Bin of %’T << %”
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Figure 114: Fitting b and non-b components to muon pi¥ data, using definition of
RomaNNout3>0.0 for tagged. Bin of 5{ < ¢ < 2m.



8.4 Supporting plots 63

‘ MuonJet_awayLoose_pTrel_mujet_eventnum_mod2_0_1._ | MFData MuonJet_awayLoose_pTrel_mujet_eventnum_mod2_0_1_r | MFData
Enries 498868 Enuies 287540

L L 104 LI L ormma
gombined Fit | | gyg 06005 fyombined Fit | gyg 06253
- Underfiow 0 50000 - Underflow 0

Overflow 0 Overflow, 0

60000

50000

Integral  4.989e+05 Integral ~ 2.875e+05

Chi2/DOF=29.98 40000
b: 70.15+ 1.34- 1.34%
c: 31.21+ 2.60- 2.60%

Chi2/DOF=25.38
b: 32.28+ 1.89-1.91%
c: 62.56+11.99-11.86%

40000

R TR B L R

1: -1.36+ 1.60- 1.60% 30000 I: 5.15+10.44-10.44%
30000
20000
20000
10000

TR I s
. 15 2 25 .
P GeVic P GeVic

(a) Tagged (b) Not Tagged
Figure 115: TFitting b and non-b components to muon pi¥ data, using definition of
RomaNNout3>0.0 for tagged. Even event number bin.
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Figure 116: Fitting b and non-b components to muon p5* data, using definition of

RomaNNout3>0.0 for tagged. Odd event number bin.

8.4.3 Pseudoexperiments

Sanity check of fit code.
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Figure 117: Verification plots using same templates to generate pseudo-data as fitted, show-

ing that the pseudoexperiment framework is valid, that < f;.;
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Figure 120: Verification plots using same templates to generate pseudo-data as fitted, show-

ing the correlation between < fy .;
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Figure 121: Distribution of x2/DOF from elec p5¥ pseudoexperiment fits, with pseudo-data
generated from default tagged b-template, default c-template, and 4 different conversion
templates. Fitted with default tagged b-template, default c-template, and default conversion

template.
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Figure 122: Distribution of x?/DOF from elec pi pseudoexperiment fits, with pseudo-data
generated from default not-tagged b-template, default c-template, and 4 different conver-
sion templates. Fitted with default not-tagged b-template, default c-template, and default
conversion template.
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Figure 123: Elec p7¥ Pseudoexperiments, with pseudo-data generated with tagged data-

based b-template, default c-template, and default conversion templates. Fitted with tagged
MC-based b-template, default c-template, and default conversion templates.
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Figure 124: Distribution of x2/DOF from elec pi¢! pseudoexperiment fits, with pseudo-data
generated with tagged b-templates from W + bb MC with 2 different Peterson fragmenta-
tion modelling, default c-template, and default conversion templates. Fitted with tagged
b-template from W +bb MC with Bowler-Lund fragmentation modelling, default c-template,
and default conversion template.
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Figure 125: Distribution of x?/DOF from elec p’' pseudoexperiment fits, with pseudo-
data generated with not-tagged b-templates from W + bb MC with 2 different Peterson
fragmentation modelling, default c-template, and default conversion templates. Fitted with
not-tagged b-template from W + bb MC with Bowler-Lund fragmentation modelling, default
c-template, and default conversion template.
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Figure 126: Muon pi¢ pseudoexperiments, with pseudo-data generated with tagged data-
based b-template, default c-template, and default conversion templates. Fitted with tagged
MC-based b-template, default c-template, and default conversion templates.
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Figure 127: Distribution of x?/DOF from muon p4 pseudoexperiment fits, with pseudo-
data generated with tagged b-templates from W + bb MC with 2 different Peterson fragmen-
tation modelling, default c-template, and default conversion templates. Fitted with tagged
b-template from W +bb MC with Bowler-Lund fragmentation modelling, default c-template,
and default conversion template.
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Figure 128: Distribution of x?/DOF from muon p4 pseudoexperiment fits, with pseudo-
data generated with not-tagged b-templates from W + bb MC with 2 different Peterson
fragmentation modelling, default c-template, and default conversion templates. Fitted with
not-tagged b-template from W + bb MC with Bowler-Lund fragmentation modelling, default
c-template, and default conversion template.
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