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Abstract

The central singularity present in black hole (BH) spacetimes arising in the general theory
of relativity (GR) can be avoided by using various methods. In the present work we have
investigated the gravitational effect of one of such spacetime known as a black-bounce-
Reissner—Nordstrom spacetime. We revisited its horizon structure along with first integrals
of its geodesic equations. We derived the expressions for Newtonian radial acceleration
for freely infalling neutral test particles. For the description of tidal effects, the geodesic
deviation equations are derived and solved analytically as well as numerically. To be
specific, in the numerical approach, we have opted for two initial conditions to elaborate
on the evolution of geodesic deviation vectors in radial and angular directions. The
corresponding nature of geodesic deviation vectors in radial and angular directions is then
compared with the standard results such as Schwarzschild and Reissner-Nordstrom BHs
in order to figure out the differences.

Keywords: black holes; physics of black holes; classical black holes

1. Introduction

Gravity itself seems to be one of the greatest puzzles of all time and Einstein’s GR [1-3]
is still believed to give its most precise description to date. A few theoretical solutions of the
fundamental field equations of GR have been identified as some mysterious astrophysical
objects such as BHs. However, these BH spacetimes themselves pose some practical limits
on the underlying theory itself. Many attempts have been made in order to avoid the
naturally occurring central singularities in the recent past. The notion of ‘singularity’ is
complicated as far as GR is concerned [4,5] since the solution of Einstein’s Field Equations
(EFEs) is not just the spacetime metric, describing the gravitational field and the spacetime
geometry, but also the spacetime manifold on which the metric is defined. Hence, a point of
spacetime cannot be defined as a singularity in GR, as, by definition, the spacetime structure
would not be defined there. A better way is to look for the geodesics [3,6]. Thus, a given
spacetime arising as a solution of the EFE is considered to be singular if it is geodesically
incomplete. Again, in GR one is free to use any coordinate system; hence, one has to use the
curvature invariants [7]. A breakthrough in the understanding of spacetime singularities
was the singularity theorem of Penrose, which identified general conditions under which a
spacetime must be geodesically incomplete [8].

One important fact is that although the solutions of EFE, established as BHs, are accom-
panied with singularities, it is still not the singularity which fundamentally characterizes
the BH [1,2,8]. It is the presence of the BH’s event horizon which does so [1-3]. That is
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why it is theoretically possible to construct a BH solution free from singularities, known as
regular BHs.

A metric which is singular at the center (i.e., the Riemannian curvature there is infinite)
can be converted to a regular metric by removing the singularity along with its close
neighborhood from spacetime and then smoothly joining its remaining part to one more
copy of this part. In this way, the Schwarzschild metric can be converted into a wormhole
throat or BH depending on the region in which it resides. In a similar line of action, some
models have been proposed which modify and regularize the Riemannian metric behavior
near singularity while almost preserving the geometry in the regions of weak or moderate
curvature. One of the pioneering works in this field was by J. Bardeen [9], who probably
used for the first time a regular BH metric rather than the Schwarzschild metric.

A more recent development came from Simpson and Visser, who proposed another
regular solution [10,11]. The black bounce proposal by Simpson and Visser is actually based
on Elli’s proposal for wormholes, via the radial function later recovered by them [8,12,13]
and from references therein. Simpson and Visser applied the coordinate transformation
to V12 4 a? to modify the Schwarzschild metric to avoid central singularity. The modified
metric is known as the Simpson-Visser (SV) spacetime or the Schwarzschild spacetime with
black bounce [10]. Like the Bardeen solution, their model includes a parameter without an
immediate physical interpretation. Depending on the value of this parameter, the solution
may describe a BH, a regular BH, or a wormhole [10,11]. The presence of a throat inside
the event horizon and the ability of the solution to interpolate between a regular BH and a
wormhole define the class of objects known as black bounces. Afterwards, the electrically
charged counterpart of this SV spacetime was also derived in a similar manner [14-16]
followed by the rotating extension presented in [17].

The presence of tidal forces prevail from our solar system to the most mysterious ex-
treme gravity events such as BH mergers. Studies related to tidal forces have become more
relevant in view of recent advancements in observation facilities in the form of missions
like LIGO [18,19]. The significance of the study of tidal forces has also been discussed
in view of their interrelation with gravitational waves [20]. Tidal forces around various
interesting non-rotating spacetime backgrounds have been studied recently [21-26].

Motivated by the above studies, we study the tidal forces and their effect in the
background of a black-bounce-Reissner—Nordstréom BH (black-bounce-RNBH) spacetime in
this article. Generalized geodesic deviation equations are derived and solved to observe the
possible difference due to the presence of length scale parameters a and charge parameter
Q involved here. The article is arranged as follows, in Section 2 the horizon structure of
black-bounce-RNBH spacetime is reviewed. In Section 3, we discuss the first integrals of
geodesic equations and the effective potential for neutral massive test particles. In Section 4,
the Newtonian acceleration for a radially infalling neutral test particle is discussed in detail
along with the tidal forces. Generalized geodesic deviation equations and their generalized
and specific solutions are discussed in Section 5. Conclusions and future directions are
discussed in Section 6.

2. Black-Bounce-Reissner-Nordstrom Spacetime

A black-bounce-RNBH spacetime is considered a black-bounce extension of gen-
eral Reissner—-Nordstrom spacetime [1]. The metric for black-bounce-RNBH spacetime is
given as,

ds? = —f(r)d® + f~1(r)dr* + h2(r) (d92 + sin? 9dq>2), (1)

where
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W2 (r) = (1,2 + a2>, (©)]

where M and Q, respectively, represent the mass and charge of the black-bounce-RNBH.
Here a is known as a length-scale parameter which is related to the Planck length; it is
also known as the bounce parameter. The presence of a non-zero bounce parameter is the
foremost requirement for the regularization procedure chosen to make the classical black hole
spacetimes regular at the center. It does not have any immediate physical interpretation so far.

The RNBH metric describes a charged, non-rotating BH and is derived from the
Einstein-Maxwell field equations [1]. The black-bounce-RNBH spacetime arises when the
standard Maxwell electromagnetism is coupled with an anisotropic fluid. It is a theoretical
construct in GR that modifies the traditional RNBH solution to eliminate its singularity,
resulting in a globally regular and traversable spacetime [16,27-29]. The black-bounce-
RN spacetime reduces to the RN spacetime in absence of length-scale parameter, the
black-bounce-Schwarzschild spacetime in the absence of the charge parameter, and to the
Schwarzschild BH in the absence of both the length-scale and charge parameter, i.e.,, a =0
and Q = 0 simultaneously [2]. Further, it reduces to the Ellis wormhole [12] with M = 0
and Q = 0.

Event Horizon of Black-Bounce-RNBH Spacetime

Horizons of the spacetime given in Equation (1) are represented as,

- Sl\/(m+52\/m2—Q2)2—a2, @)

where S; = +1 corresponds to our universe and a copy of it, respectively. On fixing
Sy = #£1, Equation (4) gives the distances of the outer and inner horizons, respectively [1].
The presence of the bounce parameter changes the horizon structure and there are con-
straints on all three parameters M, Q, a for Equation (1) to correspond different geometries
as in [28], shown in Table 1.

Table 1. Table listing the possible theoretical conditions on various parameters involved in black-
bounce RN spacetime to represent the respective enlisted physical object.

. A charged regular BH spacetime
— /M2 - 02
@ QI <Manda<M M®=Q% " \ith inner and outer horizons present.

(i) Q] < Manda =M+ /M2 — Q% Non-traversable wormhole
or|Q]=Manda=M event horizon present at the throat.

(i) Q] < Manda > M+ /M2 — Q2
or|Q=Manda > M

(iv) |Ql=Manda >M An extremal BH with horizon at v M2 — 42,
v) Q| > M Traversable wormhole.

Traversable wormhole.

As the presence of the length-scale or bounce parameter removes the singularity
present at the center in the RN BH arising in GR and replaces it with a bounce [16,27-29],
the horizon structure is also modified accordingly. In order to visualize this modification,
and specifically the characteristics of the event horizon, we have plotted the event horizon
radius of the BH with the length-scale parameter a and BH charge Q, depicted in Figure 1.
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Figure 1. The event horizon radius vs. length-scale parameter 2 and BH charge Q at M = 1. Left

panel (i): curves from bottom to top represent possible horizon radius for Q = 1 to Q = 0. Right
panel (ii): curves from bottom to top represent possible horizon radius fora =2 to Q = 0.

It can be inferred from Figure 1 that as Q — 0, the event horizon also tends to zero as
a approaches its limiting value, i.e., 2. Physically, it can be described as the transformation
of the BH spacetime into a wormhole spacetime [27,28]. On the other hand, as Q approaches
its upper limit, i.e., Q = 1, this limiting value for a reduces to 1. Similarly, as the parameter
a increases, the maximum allowed value of Q correspondingly decreases.

3. First Integrals of Geodesic Equations

The generalized set up of geodesic equations and their constraint equations [1-3,24,30]
are given by,

i+ TVt =0, ®)
guxti’ =e. (6)

where x# represents the spacetime coordinates and % represents the differentiation of x#
with respect to the affine parameter 7. Constant e in Equation (6) takes values 0 and —1 for
null and timelike geodesics, respectively. For neutral timelike geodesics (i.e., with e = —1),
Equation (5) reduces to the following set of equations for a given spacetime metric,

2r mvr? + a2 — Q? I
(P2 +a%) \ 2mvrZ + a2 — Q2 — (12 + a2) ’

. r(r2+a2+Q272m\/r2+7az) (ﬂnWJrQZ) i2
(P2+a2)
r(—m\/r2+/12+Q2) > r(r2+a2+Q2—2m\/72+112)

— )2
(r2+a?)(r2+a2+Q2—2m+/r2+a2 ) r (r2+-a2) o ®)

r(r+a24+Q%—2mvVr2+a2) . :
- ( (12442) ) sin® 0 (PZ =0,

@)

2r

N . e
9+mr97c059sm94) =0, 9)

. 2 . -
<P+r2+7ra2i’¢+2C0t99¢:0, (10)

with time-like constraint,
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(1- 2 - 2 (1 2, & )_1#

24a2  r2+a? 24q2 1> +a?

(11)
— (1’2 + az) (6 + sin29([)2) =1.
This set of equations from Equation (7) to Equation (11) is the basic initial requisite

for the study of various phenomena related to timelike geodesics around black-bounce-
RNBH spacetime.

Effective Potential for Black-Bounce-RNBH Spacetime

Now we restrict ourselves to the study of neutral test particles moving in the equatorial
plane only. For this, one has to fix 8 = 7r/2. Thus, the integration of Equations (7) and (10)
results in,

. K1
- 12
0 (12)
b= 13)

where the integrating constant x; corresponds to the conserved total energy E and «;
corresponds to the conserved angular momentum L of the neutral test particle [1-3,24,30].
Using Equations (12) and (13) with 6§ = 71/2 in the constraint Equation (11), the energy
conservation equation for the time-like geodesics [1-3,24,30] takes the following form,

2  E2-V,
5=—F2 off (14)
where V¢ is defined as an effective potential and can be expressed as,
2
Vegs(r) = £(r) (7 +1)
(15)

_ 2M 12 2mL? Q? 12
> Vegs () = (1 N \/r2+a2) TR T Gy T A (1 * r2+a2)'

The effective potential of black-bounce-RNBH spacetime is modified as compared
to SBH [1,2] due to the presence of bounce and charge parameters in this case. If one
compares termwise, the first term arises due to the Newtonian gravitational potential, the
second term shows the presence of a repulsive centrifugal potential, and the third term
represents the relativistic correction of GR which is proportional to 1/ (r* + a?) 32 [21,24].

rﬁ; (1 + rZIfzﬂ) in Equation (15) is due to the presence of both bounce and

charge parameters.

The extra term

4. Newtonian Radial Acceleration

On substituting V,s¢(r) for radial geodesics, i.e., where L = 0, the Equation (14)
reduces to,
2 =E>— f(r). (16)

A test particle which is initially at rest and starts falling freely from a fixed position b
will have initial energy E = \/f(r = b) [21,22,24,31]. Newtonian acceleration for test parti-
cles falling freely along such radial geodesics is known as ‘Newtonian radial acceleration’.
For radial geodesics, where a particle has zero angular momentum, the particle is falling
radially towards or away from the center. Hence, this acceleration quantifies the stretch or
compression exerted on the particle and in this way it gives some hint as to the tidal force
present there due to the central object. It is defined as [21,22,24,31,32],

AR =3 (17)
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For black-bounce-RNBH spacetime, using Equation (16), the Newtonian radial acceler-
ation takes the following form,

(R) _ _ Mr _ QI’
A T (18)

The analysis of this radial force plays an important role in understanding the possible
difference in the effect of the gravitational field compared with that of an SBH and RNBH
qualitatively. Figure 2i shows a clear comparison of these three cases where radial accelera-
tion for an SBH (shown in the dashed blue curve) diverges near the center; for an RNBH
(shown in the dotted black curve), this divergence occurs before that of an SBH. For a
regular BH (shown in the solid red curve), radial acceleration drops to a minimum near the
center and again increases and remains finite. Figure 2ii shows that as the value of bounce
parameter a increases from zero to 2, the qualitative nature of radial acceleration changes
as the minima disappear for higher values of a2 and acceleration becomes negligible. It hints
as to the qualitative nature of the radial tidal force present near the center for such BHs.

(if)

20
-50

~404

(((((

F. . -1004
60

-804

-150

-1004——,

T T T T T

-200- T T T T T

,
0, Q70 <<+~ 0,070 — — a=0,Q-0] 0 02 0.4 0.6 038 1
r

l

Figure 2. (i) Newtonian radial acceleration for SBH, RNBH, and regular BH, (ii) variation in Newto-
nian radial acceleration with r where curves from bottom to top depict corresponding acceleration
function fora = 0toa = 2.

To study the effect of the gravitational field of the black-bounce-RNBH spacetime on
the orbiting neutral test particle, one may be interested in looking for the possible distance
from where a neutral test particle bounces back, as happened in a standard RNBH [21]. To
derive the expression for this distance, one will have to look for the real root of equation
E2(r = b) — f(r) = 0. After solving such a relation for black-bounce-RNBH, the expression
for such a distance comes out as,

—4a2M2b? + Q42 — 4a*M? + 422 MQ2V/ b2 + a?
Rpack—bounce—radius = — (19)

A M2b2 + Q* — A MQ2V? + a? + 4a2 M2

Analysis of Tidal Forces Acting in Black-Bounce-RNBH Spacetime

For any arbitrary object or test particles moving in a strong gravitational field, the
study of geodesic deviation explains the effect of spacetime curvature on their relative
motion [1-3,33]. It gives a quantitative analysis of the divergence or convergence present
for neighboring geodesics as an effect of the underlying gravitational field. In the present
work, the methodology used in [21,22,24,30,33] is adopted to derive the corresponding
geodesic deviation equation or Jacobi field equation,
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D217a
D12

where 7% represent the connection normal vectors to infinitesimally close geodesics, while

— R”bcdvhvciyd =0, (20)

v” represents the tangent vector to the geodesics.
The tetrad basis for radial free-fall reference frames in a given spacetime background is,

o = (?,«/E2—f,0,1>; o = (—%,—E,o,l);
et = (0,0,515,0); et = (0,0,0, 5755 )

where the normalization condition e eg 8uv = 1ap is satisfied by eh. 1ap being a Minkowski

(21)

metric. Hence, the geodesic deviation vector can be devised as,
i =eln’ 22
T=e (22)

The expressions for radial and angular tidal forces can be obtained by substituting
Equation (22) into Equation (20) as,

M(2r2 — 42 2(a? — 3r2 &
= { (rz( T a2)5/2) Q(r(z Ta2)3 )} Y (23)
rf'(r r)—E27 -
== {Z(r{—f— 5)12) +a* {rg :— az)z} E (24)

where i = 2,3 correspond to 6 and ¢ directions, respectively. Equation (20) for the time
coordinate gives 17f = 0, giving zero tidal force corresponding to t-coordinate. To study the
geodesic deviation is to find out the relative acceleration between neighboring geodesics, if
any. 17z = 0 does not give any physical information in this respect. Explicit expressions for
tidal forces along radial and angular directions are given in Equations (23) and (24). As
coordinate r depicts the distance from the center, one can treat it as a radial parameter and
observe the variation in radial and angular tidal forces with  while fixing other parameters
M, Q, and a to different possible values. One can infer from Equation (23) that the tidal
force in the radial direction becomes zero at,

2M2 "2

M Q?
y= /b2+ﬂ2 b2 + g2’
Figure 3i represents the comparative plots of the radial tidal force around an SBH,
RNBH spacetime, and a black-bounce-RNBH with different possible values of the BH
parameters involved therein. As seen in the figure, the radial tidal force for an SBH

where

is always positive and diverges near singularity, which represents the infinite radial
stretching [21,24,31] as the object reaches near the center. As charge parameter Q comes
into play, the tidal force curve now has a maximum and diverges in the opposite direction
to that of an SBH, while for a black-bounce-RNBH, the radial tidal force is finite everywhere;
hence, no infinite radial stretching is present. Figure 3ii depicts the tidal force F,,; in the
radial direction, for a fixed value of the charge parameter, i.e., Q = 0.5, and for different
values of bounce parameter 4, as shown in the figure. As the value of 4 is increased, the
curve for F,,; becomes flatter and the maximum of the curve shifts towards a larger value
of r. Now Figure 3iii represents F,,, for a fixed value of the bounce parameter, i.e.,, a = 0.5
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and different values of charge parameter Q, as shown in the figure. Again, curves for F,4
become flatter with increasing Q values, but interestingly, they flip on the limiting value of
Q ie, 1.

Figure 4 depicts the variation in the radial tidal force with radial parameter r for an
SBH, RNBH, regular BH, and wormhole. It is clearly visible that despite being finite, the
tidal force in the case of a regular BH is substantially strong in comparison to the wormhole,
where the traveler/particle feels almost a negligible force near the center. In addition to
it, in the case of a regular BH, there exists a non-zero value of distance where the particle
bounces back, although the tidal force is finite but the particle does not approach the
singularity after a certain distance.

[—sBH----- RNBH — — a#0, Q0] — — a=05,Q=05 a=1,Q=0.5— - a=1.5, Q=03 [——a=05.0=0 a=0.5,Q=0.5— — a=0.5, Q1]

14

-10
r ’
(i) (i) (iii)

Figure 3. Plot of radial tidal force of a black-bounce-RNBH as a function of radial parameter r, with
M =1 and fixed values of the parameters shown in legends of the figures.

[—— SBH — - RNBH — — Regular-BH WH | [ Regular-BH — — WH|
20097y 1500-]
|
1004 |
| 1000-]
01-1 S
| 77
-1004 | /1
Frad(r) Iy F 1) 500
200 1o
00 11
11 0
|
-4001 | II |
v
7500‘! T T T T T -500- T T T T T
0 0.2 04 0.6 08 1 -04  -02 0 02 04

(i) (i)

Figure 4. Plot of radial tidal force as a function of r for different parameter settings as shown in legend.

Figure 5i represents the comparative plots of the angular tidal force around an SBH,
RNBH spacetime, and a black-bounce-RNBH with different possible values of the BH
parameters involved therein. The curve corresponding to an SBH diverges to negative
infinity as one approaches to singularity, representing the infinite angular compressing
present there [21,24,31], while this divergence is absent in the case of a black-bounce-RNBH,
again assuring the finite value tidal force is present everywhere.

Figure 5ii depicts the tidal force Fy,g in an angular direction, for a fixed value of the
charge parameter, i.e., Q = 0.5, and for different values of bounce parameter 4, as shown
in the figure. As the value of a is increased, the curve for Emg also becomes flatter. Now
Figure 5iii represents Fung, for a fixed value of the bounce parameter, i.e., a = 0.5, and for
different values of charge parameter Q, as shown in the figure. It is noticed that as the value
of charge Q reaches near its upper limiting value, i.e., 1, the qualitative nature of the radial
as well as the angular tidal force changes near the center as depicted in Figures 3iii and 5iii.
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Figure 6 depicts the variation in the angular tidal force with radial parameter r for an
SBH, RNBH, regular BH, and wormhole. The angular tidal force is quantitatively strong in
the case of a regular BH in comparison to a wormhole, similar to the radial direction.

In the next section the geodesic deviation equations for black-bounce-RNBH spacetime
are solved in order know more about the relative acceleration of freely falling particles in

this geometry.

a=0.5, Q=0.5 a=1,Q=0.5— — a=1.5, Q=0, 5‘ — a=0.5, Q=0 a=0.5, Q=0.5— — a=0.5, Q’I‘

[——2=0.0=0--~ 20.Q-05— —a-05.Q-05|

-
(i) (i) (iii)

Figure 5. Plot of radial angular tidal force of a black-bounce-RNBH as a function of radial parameter
r, with M = 1 and fixed values of the parameters shown in the legends of the figures.

[—— SBH — — RNBH — - Regular-BH WH | [ Regular-BH — — WH|
200 I
|
/\\ |
100 ’ \l
1 \
[ \\
BN
Fagr) 04 ' e
100 Il
-200 r I T T T T T -700- T T T T T
0 0.2 0.4 0.6 0.8 1 -04  -02 0 02 0.4

@ (i)
Figure 6. Plot of angular tidal force as a function of r for different parameter settings as shown in

the legend.

5. Revisiting the Geodesic Deviation Equations and Their Solutions

To devise the geodesic deviation equations, we have assumed massive neutral particles
in the form of charge neutral dust infalling radially in a charged black bounce spacetime
due to the presence of tidal force.

The boundary conditions chosen are as follows: ICI corresponds to release from rest,
at the radial coordinate » = b, a body constituted of dust with no internal motion, while
ICII corresponds to a body constituted of dust to ‘explode” at r = b, where b > ry. The
effect of different initial conditions is visible in the result and is discussed in detail with
the help of plots. Using Equation (14) for particles falling freely along radial geodesics, i.e.,
having L = 0, the radial coordinate r can be written as,

dr

— = —/E2- . 26

o £0) (26)
Now let us re-frame the set of geodesics deviation equations given in

Equations (23) and (24) as the function of the radial coordinate itself,
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a2l I dpl "
(o) 5E L0 = @
Pi LA of @) B\
(EZ —f(r)) er _ EW = _<2(1’2—|—ﬂ2) + (r2+a2)2 )77 (28)

The analytic solutions [21] of Equations (27) and (28) can be written in standard form
using elliptical integrals as,

i = {Al +B1/(f(:l)r)3/2] (1), (29)
i 4 ' dr .
7= A +Bl/ (r2 + a?) f(r)] ' (30)

where A4, By, A;, and B; are constants of integration.

For the numerical solutions of Equations (27) and (28), we have opted for the boundary
conditions used in [21,24,32,33]. A particle falling from its initial position outside the event
horizon r = b > rp is considered in the above boundary conditions. Specifically, the first
initial condition ICI is,

7t (b) = 1,7%(b) =0, (31)

According to this condition the 4-velocity component of an infalling particle is taken
as zero, i.e., 7 = 0, which further fixes the energy of the particles E = f(b). Similarly, the
second initial condition IC-II mathematically reads as,

n*(b) = 0,7%(b) = 1. (32)

which physically corresponds to the particle ‘exploding” at r = b > ry. Now,

) = (33)
f(b)
and thus, the energy E of the infalling test particle is not a fixed parameter. One can say that
the energy of the particle also affects the kinematical evolution of the geodesic deviation
vectors in this condition.

It can be observed from Figures 7-10 that for large values of r, the variation in the
geodesic deviation vector with radial distance is similar, while near singularity, the relative
compression or stretching becomes weaker as both a2 and Q become non-zero. A further
increment in both of these parameters shows a further decrement in the corresponding
geodesic deviation vector magnitude, showing the presence of a comparatively weak
gravitational field.

As the radial parameter varies beyond the event horizon radius, the relative separation
between geodesics increases first, reaches a maximum value, and then decreases. Although
the qualitative behavior shown in Figure 7i,ii is similar, one can observe the difference due
to the presence of scale and charge parameters a and Q. As a and Q have non-zero values
and either of the parameters increase, the steepness of the curves obtained on both sides of
the maxima decrease. It is worth noting that the position of the maxima is unaffected due
to the change in the values of 2 and Q.

Under IC-II the initially diverging geodesics keep on diverging and divergence is
stronger in the presence of 2 and Q as depicted in Figure 8.

In contrast to the radial geodesic deviation vector, the corresponding vector in the
angular direction decreases up to a certain distance and then increases further under IC-I.
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The qualitative behavior is similar but the magnitude of the vector becomes smaller with
increasing values of either a or Q. It again depicts a correspondingly weaker gravitational
field around the given BH.

[—— sBH — - — RNBH — — a#0, Q#0| [—— a=0.5,Q=0— - — a=0.5,Q=0.5— — a=0.5, Q=1]
1.0

0.99

0.8

0.7

-
o
o0
IS
=
=
>

@ (i)

Figure 7. Variation in radial geodesic vector ;" with radial parameter r under ICI, where M = 1 and
other parameters have different mentioned values in the figure.

[—— sBH — - — RNBH — — a#0, Q#0| [—— sBH = - = RNBH — — a#0, Q#0|

(i) (ii)

a=0.5, Q=0 — " — a=0.5, Q=0.5— — a=0.5, Q:ll — a=0.5, Q=0 — * — a=0.5, Q=0.5— — a=0.5, Q:1|

T T

(iii) (iv)

Figure 8. Variation in radial geodesic vector " with radial parameter r under ICII, where M = 1 and
other parameters have different mentioned values in the figure.
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Figure 9. Variation in angular geodesic vector 7 with radial parameter r under ICI, where M = 1

and other parameters have different mentioned values in the figure.
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Figure 10. Variation in angular geodesic vector ;' with radial parameter r under ICII, where M = 1

and other parameters have different mentioned values in the figure.

6. Conclusions

In the present work, we focused on black-bounce-RNBH spacetime and discussed

the evolution of tidal forces in its vicinity. The discussion was carried forward with the

help of equations of motion for tidal forces in radial and angular directions. For a better
understanding of the gravitational field and its effect, the geodesic deviation equations
were derived and solved analytically as well as numerically. A few key results of this study
are outlined as below:

)

(ii)

(iii)

(iv)

v)

The presence or absence of horizons defines whether it is a black bounce (with event
horizon) or a wormhole-like structure (without horizon). Different conditions for the
possible horizon structure are tabulated in Table 1.

The expression for Newtonian radial acceleration is obtained for black-bounce-RNBH
spacetime, and further, the tidal forces in radial and angular directions are analyzed
in detail. Newtonian radial acceleration is plotted as a function of radial parameter r,
in order to identify the quantitative difference to those of classical BHs (SBH, RNBH).
Comparative plots for tidal forces show the absence of infinite radial stretching and
infinite angular compression in the case of black-bounce-RNBH spacetime for any
object approaching central singularity. As the particle reaches near the central region,
now it is not turned apart by infinite forces as in the case of an SBH, but the magnitude
of the tidal forces reaches their respective maximum and decreases afterwards.

The tidal force in the case of a regular BH is substantially strong in comparison to a
wormhole, where the traveler/particle feels an almost negligible force near the center.
In addition to it, in the case of a regular BH, there exists a non-zero value of distance
where the particle bounces back, although the tidal force is finite but the particle does
not approach the singularity after a certain distance.

The generalized set up of geodesic deviation equations around black-bounce-RNBH
spacetime are derived and solved analytically in terms of elliptical integrals.
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(vi) The geodesic deviation equations are also solved numerically using two initial condi-
tions, the first corresponding to the particle starting from rest and having fixed energy,
while the second corresponds to an exploding particle with a varying energy value
along its path. The numerical plots are shown in Figures 7-10. If one observes that
under IC-I radial divergence between neighboring geodesics starts at a fixed r and it
increases for far distances from THE center, in the near central region, the behavior
is the opposite. The strength of relative separation reduces for black-bounce-RNBH
spacetime in comparison to an SBH and RNBH. In contrast, the initially diverging
geodesics keep on diverging in radial as well as angular directions under IC-II.

(vii) In the angular direction, the initially converging geodesics for an SBH diverge under
IC-1. Now if one observes the far field behavior, the non-zero and increasing values
of both Q and a result in a larger magnitude of the separation vector, thus helping
the relative divergence of geodesics. A similar pattern is seen under IC-II in the
angular direction.

(viii) To visualize any observational signature arising due to distinct tidal behaviors, one
needs to carry out the study of phenomena such as the formation and properties of the
accretion disk around the rotating counterpart of such BHs or study the kinematics of
geodesic flows in general. Further, the study of these phenomena will be helpful to
look for the physical implications of the bounce parameter, especially in the bounce
or throat region where the parameter shows its significant presence.

The work presented in this article is important so as to have a better understanding
of the gravitational field of black-bounce-RNBH spacetime. It can be extended further to
discuss the tidal force transition through the bounce, which can be studied in order to
understand the gravitating effects of a wormhole-like or bounce passage to another region.
We intend to report these issues with possible analytic solutions in the near future.
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