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Abstract
We study the representation and visualization of finite-dimensional, coupled
quantum systems. To establish a generalized Wigner representation, multi-spin
operators are decomposed into a symmetry-adapted tensor basis and are mapped
to multiple spherical plots that are each assembled from linear combinations
of spherical harmonics. We explicitly determine the corresponding symmetry-
adapted tensor basis for up to six coupled spins 1/2 (qubits) using a first step
that relies on a Clebsch–Gordan decomposition and a second step which is
implemented with two different approaches based on explicit projection oper-
ators and coefficients of fractional parentage. The approach based on explicit
projection operators is currently only applicable for up to four spins 1/2. The
resulting generalized Wigner representation is illustrated with various exam-
ples for the cases of four to six coupled spins 1/2. We also treat the case of two
coupled spins with arbitrary spin numbers (qudits) not necessarily equal to 1/2
and highlight a quantum system of a spin 1/2 coupled to a spin 1 (qutrit). Our
work offers a much more detailed understanding of the symmetries appearing
in coupled quantum systems.
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1. Introduction

Quantum systems exhibit an intricate structure and numerous methods have been established
for the visualization of their quantum states. A two-level quantum system such as a single spin
1/2 or qubit can always be faithfully represented by a three-dimensional vector (i.e. Bloch vec-
tor), as detailed in the seminal work of Feynman et al [1]. Applications of the Bloch vector are
frequently found in the field of quantum physics, in particular in magnetic resonance imaging
[2, 3], spectroscopy [3] and quantum optics [4]. However, for systems consisting of coupled
spins, standard Bloch vectors can only partially represent the density matrix, whereas impor-
tant terms, such as multiple-quantum coherence [3] or spin alignment [3], are not captured.
In this case, the complete density operator can be visualized by bar charts, in which the real
and imaginary parts of each element of the density matrix is represented by a vertical bar, an
approach which is commonly used to graphically display the experimental results of quantum
state tomography [5]. Alternatively, energy-level diagrams can illustrate populations by circles
on energy levels and coherences by lines between energy levels [6]. Density operators can also
be visualized by non-classical vector representations based on single-transition operators [3, 7,
8]. However, these techniques are inconvenient for larger spin systems and often do not provide
an intuitive view of the spin dynamics.

Phase space representations [4, 9–11] and, in particular, Wigner functions [4, 9, 12] have
been originally developed for the description of the (infinite-dimensional) quantum state of
light [13–17]. They also provide a powerful alternative for the characterization and visual-
ization of finite-dimensional quantum systems. One valuable class for the representation of
finite-dimensional systems are discrete Wigner functions [18–23], but we will focus in this
work on continuous representations which naturally reflect the inherent rotational symme-
tries of coupled spins. General criteria for continuous Wigner functions of finite-dimensional
quantum systems have been established in the work by Stratonovich [24] and the case of sin-
gle spins has been studied in the literature [25–32]. Extensions to multiple spins have been
considered in [4, 33–36], but a general strategy for multiple coupled spins was still missing
[35, 36]. Recently, Garon et al [37] identified such a general strategy. Subsequently, further
approaches to phase-space representations have been developed [38–43], while rotated parity
operators [29, 38, 40–43] and tomographic techniques [40, 42, 44, 45] became further focal
points.

We build in this work on the general Wigner representation for multiple coupled spins
introduced in [37]. This Wigner representation is denoted as DROPS representation (discrete
representation of operators for spin systems). It is based on mapping operators to a finite set
of spherical plots, which are each assembled from linear combinations of spherical harmonics
[46] and which are denoted as droplets or droplet functions [37]. These characteristic droplets
preserve crucial symmetries of the quantum system. One particular version of this representa-
tion relies on a specific choice of a tensor-operator basis, the so-called LISA basis [37], which
characterizes tensors according to their linearity, their set of involved spins, their permutation
symmetries with respect to spin permutations and their rotation symmetries under rotations that
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operate uniformly on each spin. In a first step, these symmetry-adapted tensors are constructed
with the help of a Clebsch–Gordon decomposition [47–50]. A second step of the construction
can then rely on explicit projection operators which are given as elements of the group ring of
the symmetric group [37, 51–57]. We apply this approach to a larger number of coupled spins
1/2 (qubits) as compared to [37] and we also treat two-spin systems with arbitrary spin num-
bers (qudits) not necessarily equal to 1/2. The approach based on explicit projection operators
leads to incorrect results for more than four spins 1/2 (as discussed and analyzed in section 7).
Therefore, we implement a second, alternative computational methodology for the second step
of the construction that relies on so-called coefficients of fractional parentage (CFP) [58–64]
in order to obtain the symmetry-adapted LISA basis.

Our contribution can also be put into a larger context of symmetry-adapted decompositions
of tensor operators. Symmetry-adapted (tensor) bases have a very long tradition in physics.
Important mathematical contributions were made by Weyl [65–68] and Wigner [47, 69], even
though the corresponding group theory was (at least in the beginning) not universally embraced
in the physics community (see p 10–11 in [70]). Building on [70], Racah [58, 71–75] developed
tensor-operator methods for the analysis of electron spectra. These tensor methods have been
widely studied [61, 76–78] and initiated an active exchange between group theory and physics
[47, 54, 55, 57, 67, 79, 80]. Moreover, tensor operators (as well as coefficients of fractional
parentage) play an important role in applications to atomic and nuclear structure for which an
expansive literature exists [59, 60, 62, 81–89]. In this context, we also mention the work of
Listerud et al [90, 91] which partly motivated the approach taken in [37] and this work.

This paper is structured as follows. In section 2, we introduce the symmetry-adapted ten-
sor basis and its mapping to Wigner functions. An overview of the construction process of
this tensor basis using either explicit projection operators or fractional parentage coefficients
is presented in section 3. In section 4, the tensor-operator basis is illustrated for up to six cou-
pled spins 1/2 by examples and applications from quantum information and nuclear magnetic
resonance spectroscopy. Coupled two-spin systems with arbitrary spin numbers are treated
in section 5. The explicit construction of the LISA basis is detailed in section 6. Before we
conclude, limitations of the construction method based on explicit projection operators are
discussed and analyzed in section 7. Additional illustrative examples for spins 1/2 are pre-
sented in appendix A and appendix B lists the employed values of the fractional parentage
coefficients.

2. Symmetry-adapted decomposition and visualization of operators of
coupled spin systems

We summarize the approach of [37] (see also [44, 45]) to visualize operators of coupled
spin systems using multiple droplet functions which are chosen according to a suitable
symmetry-adapted decomposition of the tensor-operator space. This allows us to also fix
the setting and notation for this work. The general idea relies on mapping [61, 88] compo-
nents T (�)

jm of irreducible tensor operators [47, 48, 69, 72] T (�)
j to spherical harmonics [46]

Yjm = Yjm(θ,φ). Spherical harmonics Yjm(θ,φ) = r(θ,φ)exp[iη(θ,φ)] (and droplet functions)
are plotted throughout this work by mapping their spherical coordinates θ and φ to the radial
part r(θ,φ) and phase η(θ,φ). An arbitrary operator A in a coupled spin system can be expanded
into linear combinations

A =
∑
�

A(�) =
∑
�

∑
j∈J (�)

j∑
m=− j

c(�)
jmT (�)

jm (1)
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Table 1. Overview of how irreducible tensor operators T (�)
j with components T (�)

jm are
partitioned in the LISA basis according to their label � and rank j for the prototypical
case of six spins 1/2 (left). For a generic operator with randomly chosen complex matrix
elements, the droplet functions f (�) are illustrated separately for each label � (right).
For all droplet functions, the maximum radii are normalized to one for better visibility.
Each label � consists of a number of sublabels: the cardinality g of the set of involved
spins (i.e. the g-linearity) and the explicit set G, the symmetry type given by a standard
Young tableau τ [g]

i of size g and, possibly, an ad hoc label given by a roman numeral.
Ad hoc sublabels are necessary for g = 6 as otherwise one could not distinguish, for
instance, between the doubly occurring rank 2 (in bold) for the symmetry type τ [6]

7 . The
structure of the partitioning is illustrated on the right for the zero-linear term (Id) and
selected linear, bilinear, trilinear and six-linear components. Plots for all possible droplet
functions are shown in table 2 for a system consisting of four spins and in figures A4–A6
for six spins.

of tensor components T (�)
jm according to rank j and order m with −j � m � j and suitably chosen

labels (or quantum numbers) �, such that the set J (�) of ranks j occurring for each label � does
not contain any rank twice. Depending on the chosen labels, certain properties and symmetries
of the spin system are emphasized. Each component A(�) is now bijectively mapped to a droplet
function f (�) = f (�)(θ,φ), which can be decomposed into

f (�) =
∑

j∈J (�)

j∑
m=− j

c(�)
jmY jm, (2)

where the coefficients c(�)
jm in (1) and (2) are identical. This approach enables us to represent each

operator component A(�) by a droplet function f (�), which is given by its expansion into spherical
harmonics, refer to the example on the rhs of table 1. The droplet functions f (�) are denoted as
droplets and the set of all droplets form the full DROPS representation of an arbitrary operator
A.
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The task to find suitable labels � that allow for a complete decomposition of the tensor-
operator space according to (1) has been widely studied [89, 92–94] and is related to the search
for a complete set of mutually commuting operators or good quantum numbers [95]. Differ-
ent possibilities have been discussed in [37], but here we will focus on the LISA basis [37],
whose labeling scheme is outlined in table 1. First, tensor basis operators are subdivided with
respect to the cardinality g ∈ {0, 1, . . . , N} of the set of involved spins (i.e. their g-linearity),
where N denotes the total number of spins. Second, tensor operators with identical g-linearity
are further partitioned according to the explicit set G ∈

(
{1, 2, . . . , N}

g

)
of involved spins, where

(
{1, 2, . . . , N}

g

)
denotes the set of all subsets of {1, 2, . . . , N}with cardinality |G| = g. For example

for g = 2 and N = 4, we obtain G ∈ {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}. Third, we
further partition with respect to the symmetry type given by a standard Young tableau [54–56,
96] τ [g]

i of size g (and with at most (2J + 1)2 − 1 = 4J(J + 1) rows, depending on the spin
number J), which results in a decomposition according to symmetries under permutations of
the set G. For reference, all potentially occurring symmetry types τ [g]

i for g ∈ {1, 2, 3, 4, 5, 6}
are uniquely enumerated and specified according to their index i in tables 2 and A1. For g = 3
and G = {1, 2, 3} we have the symmetry types

(3)

and equivalent symmetry types arise for all the other sets G ∈
(
{1, 2, . . . , N}

3

)
of involved spins

with |G| = g = 3. Fourth, an ad hoc sublabelA given by a roman numeral is used to distinguish
between cases if the same rank occurs more than once [64, 97]. For g = 6 and the symmetry
type τ [6]

7 , the rank of j = 2 (as shown in bold on the lhs of table 1) would occur twice if these
cases would have not been distinguished by the ad hoc sublabels I and II. In summary, our
labeling scheme for the LISA basis is given by � := (G, τ [g],A). We often suppress redundant
sublabels. As discussed in more detail in section 5, for systems containing spins with spin
numbers larger than 1/2, the decomposition structure is considerably simplified by additional
parent sublabels P .

3. Summary of the techniques used to construct the LISA basis

In this section, we provide an overview how to explicitly construct the LISA basis, which
has been introduced in section 2. We focus on spin systems where each spin has the same
spin number J ∈ {1/2, 1, 3/2, . . .}. The LISA basis is a symmetry-adapted basis according to
symmetries under simultaneous SU(2) rotations of spins as well as under spin permutations.

As discussed in section 2, these symmetries of a tensor operator T (G,τ [g] ,A)
jm are specified by the

rank j and order m as well as the symmetry type τ [g]. We start by discussing the simple cases
of zero and one spins and explain how to use the Clebsch–Gordan decomposition [47–50] to
symmetrize tensors according to SU(2) symmetries when a new spin is added to a spin system.
This is the first step of the iterative construction, which is schematically illustrated in figure 1.
Depending on the spin system, in the second step two alternative methods (denoted A and B)
are used for the symmetrizing with respect to spin permutations. Method A relies on explicit
projection operators [54–57, 98] and symmetrizes all g-linear tensors in one step. Method B
uses a basis change according to fractional parentage coefficients [58–64] (CFP) and iteratively
symmetrizes g-linear tensors with respect to spin permutations, which in the previous iteration
have already been partially symmetrized with respect to the first g − 1 spins. We close this
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Figure 1. Flow charts for methods A and B used to iteratively construct g-linear ten-
sors for g ∈ {1, . . . , n}. Both methods rely first on a Clebsch–Gordan decomposition
to symmetrize tensors according to SU(2) symmetries after adding an additional spin.
In a second step, method A applies projection operators to symmetrize the tensors with
respect to permutations. Method B uses a basis change according to fractional parentage
coefficients (CFP), in order to completely permutation symmetrize the tensors, which
already have been partially symmetrized with respect to the first g − 1 spins in the
previous iteration.

section by discussing sign conventions and how to embed g-linear tensors into larger spin
systems. Further details are deferred to section 6.

For zero-linear tensors (i.e. g = 0), we have the tensor operator T [0]
0 with the single compo-

nent T [0]
00 . We use the notation T [g]

j for general g-linear tensors of rank j, but we will often drop
the index [g]. For the spin number J = 1/2, we in particular obtain [3]

T [0]
00 = T00 =

1√
2

(
1 0
0 1

)
. (4)

For linear tensors and spin number J = 1/2 (i.e. qubits), we have the three components [3]

T [1]
1,−1 = T1,−1 =

(
0 0
1 0

)
, T [1]

10 = T10 =
1√
2

(
1 0
0 −1

)
, T [1]

11 = T11 =

(
0 −1
0 0

)
(5)

of the tensor operator T [1]
1 . For a general spin number J (i.e. qudits), all tensor operators JT [1]

j =
JT j with j ∈ {1, . . . , 2J} are present. Here, also single qudits are represented only using SU(2)
symmetries. The tensor operator components JTjm with m ∈ {−j, . . . , j} are given as (see, for
example, [27, 48, 99])

[
JT jm

]
m1m2

=

√
2 j + 1
2J + 1

CJm1
Jm2 jm = (−1)J−m2C jm

Jm1J,−m2
(6)

in terms of Clebsch–Gordan coefficients [47–50] where m1, m2 ∈ {J, . . . ,−J}.
Clebsch–Gordan coefficients are the expansion coefficients of a (coupled) total angu-
lar momentum eigenbasis in an (uncoupled) tensor product basis. We note that the

6
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Table 2. Decomposition structure of four coupled spins 1/2 into linearity g, tableau τ [g]
i

(or simply τ i for fixed g), and ranks j (left). For each subsystem G ∈
({1, . . . , 4}

2

)
, the

bilinear tensors corresponding to different tableaux are assembled in a single droplet
function and hence the label � of bilinear droplets does not contain a sublabel corre-
sponding to a specific tableau τ [4]

i . The permutation symmetry corresponding to tableau
τ [4]

10 does not appear in the four-spin-1/2 system, i.e. no rank j exists, which is indi-
cated by ‘−’ at the bottom of the last column. On the right side, all droplet functions
visualize together a complex random matrix. For each linearity g multiple subsystems
G ∈

({1, . . . , 4}
g

)
occur.

Clebsch–Gordan coefficients in (8) describe the (tensor-product) combination of pure
states into a density matrix |ψ1〉〈ψ2| = |ψ1〉 ⊗ 〈ψ2| of a single spin. Tables for the Clebsch–
Gordan coefficients can be found in literature [50] and there also exist several methods for
their computation including recursion relations and explicit formulas [47, 48, 100, 101].

After adding an additional spin, a basis change according to Clebsch–Gordan coefficients
[47–50] is applied in both methods A and B (see figure 1). This Clebsch–Gordon decompo-
sition [47–50] describes how a tensor product of two irreducible representations is expanded
into a direct sum of irreducible representations: the tensor product of two tensor operators T j1
and T j2 with ranks j1 and j2 are split up according to

T j1 ⊗ T j2 =

jl+ j2⊕
j=| jl− j2|

T j. (7)

The 2j + 1 tensor components Tjm with m ∈ {−j, . . . , j} of each tensor Tj on the rhs of (7) are
given by

T jm =

jl+ j2∑
j=| jl− j2|

∑
m=m1+m2

C jm
j1m1 j2m2

T j1m1 ⊗ T j2m2 (8)

7



J. Phys. A: Math. Theor. 53 (2020) 495301 D Leiner et al

via the Clebsch–Gordon coefficients [47–50] C jm
j1m1 j2m2

. Here, the Clebsch–Gordan coeffi-
cients in (8) describe how tensor operators for g − 1 spins are combined with the ones for
a single spin into tensor operators for g spins. In the case of spins 1/2, tensor operators
T j1 obtained from the last iteration are combined with the tensor operator T j2 = T1 (see (7)
and (8)). For higher spin numbers J, the tensor operator T j2 is substituted by the direct sum
⊕2J

q=1Tq. More concretely, a (g − 1)-spin system is joined with a single spin J, which results
in a g-spin system such that a (g − 1)-linear tensor T j1 generates a set of g-linear tensors
Tj:

T j1 ⊗

⎛
⎝ 2J⊕

q=1

Tq

⎞
⎠ =

2J⊕
q=1

j1+q⊕
j=| j1−q|

T j. (9)

The corresponding g-linear tensor components Tjm with m = m1 + k and k ∈ {−q, . . . , q} are
determined from the tensor components T j1m1 and Tqk via Clebsch–Gordan coefficients as
detailed in (8). After the Clebsch–Gordan basis change, either method A or B is used for the
symmetrization with respect to spin permutations. Details are treated in section 6.

The discussed g-linear tensor operator components Tjm of a rank j and degree m are
only defined up to a phase. We employ the Condon–Shortley phase convention [47, 48, 70]
T jm = (−1)mT†

jm that restricts the phase freedom to a freedom of choosing an arbitrary sign
for each rank j. In order to uniquely specify the tensor operators, we fix these sign factors as
detailed in section 6.3. Finally, the g-linear tensor operators are embedded into various N-spin
systems via N − g tensor products with suitably positioned tensor operators JT∅

00, which are
proportional to identity matrices. For each N-spin system, the g-linear tensor operators are

embedded according to the
(

N
g

)
available subsets G ∈

({1, . . . , N}
g

)
. For example, we denote

by T∅
00 the embedded variant of the zero-linear tensor operator component T [0]

00 and the linear
tensor operators T [1]

j result in the embedded tensor operator TG
j for each single-element set

G ∈ {{1}, {2}, . . . , {N}} of involved spins.

4. Examples and applications for multiple spins 1/2

In this section, we present examples and applications for multiple spins 1/2 and thereby illus-
trate and motivate our visualization approach. We focus on four and more spins 1/2, as exam-
ples for the case of up to three spins 1/2 have already been discussed in [37]. Building on the
general outline given in section 2, we start by discussing the labels and their structure for four
spins 1/2.

The left part of table 2 describes the decomposition of the tensor space. For each subsystem
size g, we list the potentially occurring partitions [54–56, 96] λ and the associated tableaux
τ [g]

i , which are given together with their quantity and index. Also, for each λ we state the
appearing tensor ranks j. The bilinear tensors for a fixed subsystem G ∈

({1, . . . , 4}
2

)
are com-

bined into a single droplet function, which is possible as the relevant ranks 0, 2 and 1 do not
contain any repetition. Note that for g = 4, the partition [1, 1, 1, 1] and its tableau τ [6]

10 do
not correspond to any rank j (indicated by ‘−’ at the bottom of the last column of the table
at the left side of table 2). For each of the possible subsystems G ∈

({1, . . . , 4}
g

)
, we have in

total one label for the zero-linear tensor, one label for linear tensors, one label for bilinear
tensors, four labels for trilinear tensors and nine labels for four-linear tensors. This labeling
structure for a system of four spins 1/2 is reflected on the right of table 2, where a 16 × 16

8
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Figure 2. (a) Visualizations of the density matrix |W〉〈W| of the four-qubit W state |W〉,
the droplet function for the subsystem {1, 2, 3, 4} is scaled to 2/3 of its original size. (b)
Visualizations of the density matrix |ψ〉〈ψ| of two EPR pairs |ψ〉 = (|0000〉 + |1111〉 +
|0011〉 + |1100〉)/2 (between spins 1 and 2 as well as 3 and 4).

complex random matrix is visualized using multiple droplet functions. The upper left panel on
the right of table 2 highlights the topology of the spin system, where nodes represent single
spins 1/2 and edges correspond to bilinear tensors. Each droplet f (�) is arranged according to
its label �. The visualization of the zero-linear tensor is labeled by � = Id, linear tensors by their
subsystem � = {a} for a ∈ {1, .. , 4}, and bilinear tensors also by their subsystem � = {a, b}
for a, b ∈ {1, . . . , 4} with a < b, i.e. � ∈ {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}. We use
� = (G, τ [g]

i ) for 3 � g � 4, which explicitly specifies the tableau τ [g]
i . On the right of table 2,

we also see the labels given by the four tableaux τ [3]
i for each of the trilinear subsystems

G ∈ {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}, where the edges between involved spins are indi-
cated by bold black lines whereas edges to non-involved spins are grayed out. In the four-linear
subsystem {1, 2, 3, 4}, non-zero droplet functions can only occur for the nine tableaux τ [4]

1 -τ [4]
9 .

Hence in a system consisting of four spins 1/2, the information contained in an arbitrary opera-
tor (consisting of (24)2 = 256 complex matrix elements) is represented by 36 droplet functions,
which have the correct transformation properties under non-selective rotations and which are
organized according to the subset G of involved spins and the type of permutation symmetry
specified by a Young tableau τ [g]

i .
The cases of g = 5 and g = 6 are detailed in table A1 and visualizations of a complex

random matrix for systems consisting of five and six spins 1/2 are shown in figures A4–A6
of appendix A.3, respectively. For subsystem sizes g � 6, in addition to the set G of involved
spins and the Young tabeleau τ [g]

i , the label � for a given droplet function may also include an
additional ad hoc sublabel A, resulting in � = (G, τ [g]

i ,A).
Next, two examples illustrate how inherent symmetries of density matrices are made appar-

ent in our visualization approach. We consider two entangled pure states [102–104] in a
four-qubit system (i.e. a system consisting of four spins 1/2), where the corresponding density
matrices are highlighted in figure 2 following exactly the prototype in table 2. The first example
is shown in figure 2(a), which represents the density matrix |W〉〈W| of the four-qubit W state
[102, 103] |W〉 = (|0001〉+ |0010〉+ |0100〉+ |1000〉)/2, which is also known as a Dicke
state [105, 106]. The highly symmetric structure of |W〉〈W| is clearly visible in figure 2(a).

9
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All droplet functions for different subsystems G of a given linearity g have an identical shape.
Also, only the fully permutation symmetric tensors corresponding to the tableaux τ [2]

1 , τ [3]
1

and τ [4]
1 appear. In total, only 16 droplet functions are nonzero. This is reflected by the tensor

decomposition

|W〉〈W| = T Id
00−

1
2

4∑
k=1

T{k}
10 +

( ∑
{k,l}∈G2

1√
3

T{k,l}
00 − 1√

6
T{k,l}

20

)
+

( ∑
{k,l,m}∈G3

− 3√
60

T
({k,l,m},τ [3]

1 )
10

+
4√
10

T
({k,l,m},τ [3]

1 )
30

)
+

(
2√
20

T
τ [4]

1
00 − 1√

7
T
τ [4]

1
20 − 16√

70
T
τ [4]

1
40

)

with the possible subsystems G2 = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}} and G3 =
{{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}.

The second example is given by the density matrix |ψ〉〈ψ| of two EPR pairs [104] |ψ〉 =
(|0000〉+ |1111〉+ |0011〉+ |1100〉)/2 and is illustrated in figure 2(b). Again, the symme-
try structure of |ψ〉〈ψ| is readily visible. In this case, linear and trilinear droplet functions are
completely absent. For the bilinear droplet functions, only the ones corresponding to the sub-
systems {1, 2} and {3, 4} are nonzero as the qubits 1 and 2 as well as 3 and 4 form the EPR
pairs. In the second example, we obtain the tensor decomposition

|ψ〉〈ψ| = T Id
00 +

(
1√
3

T{1,2}
00 + T{1,2}

2,−2 +
2√
6

T{1,2}
20 + T{1,2}

2,2

)

+

(
1√
3

T{3,4}
00 + T{3,4}

2,−2 +
2√
6

T{3,4}
20 + T{3,4}

2,2

)

+

[
7√
45

T
τ [4]

1
00 +

2√
63

T
τ [4]

1
20 +

6√
70

T
τ [4]

1
40 +

2√
42

(√
6T

τ [4]
1

4,−2 + T
τ [4]

1
2,−2 + T

τ [4]
1

22

+
√

6T
τ [4]

1
4,2

)
+ T

τ [4]
1

4,−4 + T
τ [4]

1
44

]
−
[

2
3

T
τ [4]

5
00 +

4√
18

T
τ [4]

5
20 +

2√
3

(
T
τ [4]

5
2,−2 + T

τ [4]
5

22

)]
,

which explains the occurrence of four-linear components in figure 2(b) even though the state
|ψ〉 is a product state and has no four-particle contributions as a pure state. This emphasizes
the fact that the DROPS visualization does not (directly) depict the symmetries of a pure state
|ψ〉 but of the corresponding density-matrix |ψ〉〈ψ|.

The last example in this section illustrates the value of the DROPS visualization for analyz-
ing the dynamics of controlled quantum systems [108]. This enables us to analyze the effect
of control schemes by illustrating the droplets and their symmetries appearing during the time
evolution. A free simulation package [109, 110] is available, which can be used to simulate
systems consisting of up to three spins 1/2. In the context of nuclear magnetic resonance spec-
troscopy, we consider the creation of maximum-quantum coherence in an Ising chain of four
spins 1/2 (see figure 3), which is based on a π/2 excitation pulse followed by a series of
delays and π/2 pulses [107]. An operator Ap has a defined coherence order [3] p if a rota-
tion around the z axis by any angle α generates the same operator Ap up to a phase factor
exp(−ipα), i.e. exp(−iα

∑N
k=1 Ikz)Ap exp(iα

∑N
k=1 Ikz) = Ap exp(−ipα). Recall that Cartesian

operators for single spins are Ix :=σx/2, Iy :=σy/2 and Iz := σz/2, where the Pauli matrices are

10
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Figure 3. Generation of a completely symmetric four-linear state in a chain of four spins
1/2 following table S2 in [107]. Starting from ρ0 =

∑4
k=1 Ikz a [π/2]y pulse on each spin

results in (a), the evolution under coupling with time t = 1/(2J) followed by a [π/2]y

pulse on each spin is repeating three times and visualized at various stages (b)–(d). The
droplet function in (d) is scaled to 1/3 of its original size. Linear and bilinear droplet
functions are plotted on the nodes (i.e. spins) and edges (i.e. couplings), respectively.
General g-linear components are indicated by dashed ellipses. (Hermitian operators lead
to droplet functions with positive and negative values, which are shown in red (dark gray)
and green (light gray).)

Figure 4. Interaction structure of visualized spin systems (nodes represent spins):
(a)–(c) systems with N ∈ {4, 5, 6} spins 1/2 (see section 4), (d) two spins with arbitrary
spin numbers J1 and J2 as discussed in section 5.

σx =
(

0 1
1 0

)
, σy=

(
0 −i
i 0

)
and σz =

(
1 0
0 −1

)
. For n spins, one has the operators Ikη :=

⊗n
s=1 Ias

where as is equal to η for s = k and is zero otherwise; note I0 :=
(

1 0
0 1

)
. All tensor-operator

components Tjm have the unique coherence order p = m. The Cartesian product operator Ikx ,
which corresponds to observable transverse magnetization, contains coherence order p = ±1
and a triple-quantum coherence state is a linear combination of tensor operators with rank j � 3
and order m = ±3. The maximal coherence order is limited by the number of spins and thus by
the maximal rank j of tensors. Note that a droplet f (�) representing an operator Ap with coher-
ence order p exhibits the same rotation properties as Ap. That is f (�) is reproduced up to a phase
factor exp(−ipα) if f (�) is rotated around the z axis by α, refer also to figure A1. The experiment
considered in [107] generates maximal quantum coherence states starting from the initial state
ρ0 =

∑4
k=1 Ikz, which is specified using the Cartesian product operators Ikz. All coupling con-

stants in the drift (or system) Hamiltonian are assumed to be equal, i.e. J = J12 = J23 = J34.
In a first step, a [π/2]y pulse is applied on each spin. Then, a transfer block consisting of an
evolution under the coupling with coupling period t = 1/(2J) followed by a [π/2]y pulse on
each spin is repeated three times. The panels in figure 3 show the state of the spin system for
different points in time: panel (a) represents the initial state ρ0 =

∑4
k=1 Ikz after a π/2 pulse

11
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with phase y is applied to each spin. Panels (b)–(d) depict the state after one, two and three
repetitions of the transfer block, respectively. In panel (d), the initial state has been fully trans-
ferred to a single four-linear droplet function corresponding to fully permutation-symmetric
tensors (as denoted by τ [4]

1 ), which also contains the desired maximum-coherence orders [107]
p = ±4. A similar example for an Ising chain consisting of five spins 1/2 is shown in appendix
A.2 (refer to figures A2(a1)–(a5)).

Additional examples and applications of the DROPS visualization are illustrated in
appendix A. In figures 4(a)–(c), general systems with four to six spins 1/2 are schematically
represented as complete graphs. In the following, we discuss the generalization of the DROPS
representation to systems consisting of two, see figure 4(d), or more spins with arbitrary spin
numbers.

5. Representation of systems with arbitrary spin numbers

Building on our description in section 2, we now consider the case of two coupled spins with
arbitrary spin numbers. Even though spins 1/2 (which are also known as qubits) constitute the
most important case, spins with higher spin number J > 1/2 are highly relevant and widely
studied as exemplified by bosonic systems, such as photons and gluons, composite particles
as deuterium or helium-4 and quasiparticles such as Cooper pairs or phonons. We start in
section 5.1 with the case of two coupled spins with arbitrary but identical spin number J. We
extend this case to two coupled spins with different spin numbers J1 	= J2 in section 5.2, which
also discusses examples and illustrations for the concrete spin numbers J1 = 1/2 and J2 = 1.
Generalizations of our approach to an arbitrary number of coupled spins with arbitrary spin
numbers are discussed in section 5.3.

We emphasize that in our approach also single qudits are represented only using SU(2)
symmetries (which are closely related SO(3) symmetries). To this end, we provide a complete
SU(2) symmetry basis (i.e. a complete set of quantum numbers) to represent qudits as detailed
in (6). This allows us to easily visualize single (and two coupled) qudits in three-dimensional
space (which would not be directly possible with SU(d) symmetries).

5.1. Two coupled spins with equal spin numbers

Recall from section 3 and (6) that the state of a single spin J can be described by 2J + 1
tensor operators Tj with ranks j ∈ {0, . . . , 2J} where each tensor operator Tj has 2j + 1 tensor-
operator components T jm ∈ C(2J+1)×(2J+1) with m ∈ {−j, . . . , j}. The rank j = 0 corresponds
to a zero-linear tensor operator and the ranks 1 � j � 2J correspond to linear tensor operators.
Compared to the case of spins 1/2, the number and multiplicity of the occurring ranks j in
tensor decompositions for multiple spins grow even more rapidly for general spin numbers.
This can already be observed for bilinear tensors of two spins as detailed for different values
of J1 = J2 = J on the left of table 3, where multiplicities of the occurring ranks are listed sepa-
rately for the permutation symmetries corresponding to the partitions [2] and [1, 1]. Additional
sublabels are required to distinguish between multiply appearing ranks j in order to maintain
the bijectivity of the mapping from tensor operators to spherical harmonics following section 2.

For two coupled spins, there are zero-linear, linear, and bilinear tensors as given by the
different numbers g ∈ {0, 1, 2} of involved spins. The treatment of the cases with g ∈ {0, 1}
follows section 2. For g = 0, the set G = ∅ of involved spins is empty. The corresponding
single zero-linear tensor operator of rank j = 0 requires no further partitioning and is given
the label � = Id. The linear tensors are partitioned according to the set G ∈ {{1}, {2}} of
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Table 3. Multiplicities of ranks j occurring for bilinear tensors in two-spin systems with equal spin numbers J1 = J2 = J (left)
and different spin numbers J1 	= J2 (right).

J λ j = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 J1 J2 j = 0 1 2 3 4 5 6 7 8 9 10

1/2 [2] 1 1 1/2 1 1 2 2 1
[1, 1] 1 1/2 3/2 1 2 3 2 1

1 [2] 2 1 3 1 1 1/2 2 1 2 3 3 2 1
[1, 1] 3 1 2 1/2 5/2 1 2 3 3 3 2 1

3/2 [2] 3 2 6 3 4 1 1 1/2 3 1 2 3 3 3 3 2 1
[1, 1] 5 3 5 2 2 1/2 7/2 1 2 3 3 3 3 3 2 1

2 [2] 4 3 9 6 8 4 4 1 1 1 3/2 2 5 6 5 3 1
[1, 1] 7 5 9 5 6 2 2 1 2 2 5 7 7 5 3 1

5/2 [2] 5 4 12 9 13 8 9 4 4 1 1 1 5/2 2 5 7 8 7 5 3 1
[1, 1] 9 7 13 9 11 6 6 2 2 1 3 2 5 7 8 8 7 5 3 1

3 [2] 6 5 15 12 18 13 15 9 9 4 4 1 1 1 7/2 2 5 7 8 8 8 7 5 3 1
[1, 1] 11 9 17 13 17 11 12 6 6 2 2 3/2 2 3 8 11 11 9 6 3 1

7/2 [2] 7 6 18 15 23 18 22 15 16 9 9 4 4 1 1 3/2 5/2 3 8 12 13 12 9 6 3 1
[1, 1] 13 11 21 17 23 17 19 12 12 6 6 2 2 3/2 3 3 8 12 14 14 12 9 6 3 1

2 5/2 4 11 16 18 17 14 10 6 3 1
2 3 4 11 17 20 20 18 14 10 6 3 1
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involved spins, which contains either the first or the second spin. For both cases, 2J linear tensor
operators with ranks j ∈ {1, 2, . . . , 2J} are present and no rank appears twice. This ensures
that no additional sublabels are necessary and the labels � = {1} and � = {2} can be used to
uniquely specify the linear tensor operators. So far, the tensor operators corresponding to the
labels � ∈ {Id, {1}, {2}} result jointly in three droplet functions.

For bilinear tensors, the occurring ranks j and their multiplicity are detailed on the left
of table 3 separately for the partitions [2] and [1, 1]. Additional sublabels are necessary for
J > 1/2 to uniquely distinguish the appearing tensor operators. This is also true after the sub-
labels for permutation symmetries given by the partitions [2] and [1, 1] (or the related Young
tableaux τ i) have been applied. Ad hoc sublabels could be used, but they usually do not cor-
relate with any physical properties of the quantum system. Instead, here we employ so-called
parent sublabels (or parents), which are motivated by classical methods [58–60, 62, 63, 70,
72–74, 89]. Recall that a bilinear tensor operator Tj of rank j is obtained in the Clebsch–
Gordon decomposition (see (7)) from the tensor product of the two linear tensor operators
T j1 and T j2 . The ranks j1 and j2 (with j1 � j2) form the parent sublabel P = ( j1, j2) of Tj. For
example, the bilinear tensor operator T1 appears in the decomposition of T1 ⊗ T2. This results
in the parent sublabel (or parents) P = (1,2) for this bilinear tensor operator T1, representing
the ranks j1 = 1 and j2 = 2 of the linear tensor operators T1 and T2. One significant advantage
of using parent sublabels is that they naturally arise in the construction of tensor operators.
All parents that appear for bilinear tensors of two coupled spins with arbitrary but equal spin
number are detailed on the left-hand side of table 4. The bilinear tensors are grouped accord-
ing to their parents and their Young tableaux τ i, which specify permutation symmetries as
discussed above. This scheme results in (2J)2 droplet functions representing bilinear tensors.
In total, (2J)2 + 3 droplet functions are needed to completely specify the quantum state of
two coupled spins with identical spin number J. Recall that for two coupled spins 1/2 (i.e.
with J1 = J2 = J = 1/2), bilinear tensors can be uniquely represented by only one ((2J)2 = 1)
droplet function, which is fully specified by the label � = G = {1, 2}, which indicates that it
contains operators acting on the first and second spin. However, for two coupled spins with
J1 = J2 = J′ = 1, four ((2J′)2 = 4) droplet functions are necessary to represent all bilinear
tensors, which obviously are not uniquely specified by the set G = {1, 2} of involved spins.
Of these four bilinear droplet functions, two function have identical parent ranks ( j1 = j2) and
are fully characterized by a label of the form � = (G,P): the complete label for j1 = j2 = 1
is ({1, 2}, 1, 1) and ({1, 2}, 2, 2) for j1 = j2 = 2. The two remaining bilinear droplet functions
have parent ranks j1 = 1 and j2 = 2 but different Young tableaux τ i. They are fully specified
by the labels ({1, 2}, 1, 2, τ1) and ({1, 2}, 1, 2, τ2), respectively (cf fourth column in table 4).

5.2. Two coupled spins with different spin numbers

Building on the methodology introduced in section 5.1, we address in this section the case of
two coupled spins with different spin numbers J1 	= J2. As before, the appearing bilinear tensor
ranks j and their multiplicity grows rapidly as shown on the right of table 3. Zero-linear and
linear tensors can be—as before—represented using three droplet functions. In contrast to the
case of equal spin numbers, we can no longer rely on permutation symmetries to label bilinear
droplet functions, because permuting spins with different spin numbers does not preserve the
global structure of the quantum system. We combine parent sublabels with ad hoc sublabels in
order to completely subdivide all bilinear tensors. The labeling scheme for bilinear tensors is
summarized on the right of table 4. Overall, 4J1J2 different droplet functions exist for bilinear
tensors and arbitrary operators are represented by 4J1J2 + 3 droplet functions.

14



J. Phys. A: Math. Theor. 53 (2020) 495301 D Leiner et al

Table 4. Labeling scheme for bilinear tensors of two coupled spins. For J1 = J2 = J
(left), parent sublabels P and Young tableaux sublabels τ [g]

i are used. For J1 	= J2 (right),
Young tableaux are replaced by ad hoc sublabels. Both cases result in 4J1J2 droplet
functions.

Figure 5. The labeling scheme for two spins with spin numbers J1 = 1/2 and J2 =
1 results in five groups of tensors (left). The right panel visualizes the corresponding
droplet functions for a 6 × 6-dimensional complex random matrix.

A concrete example is given in figure 5 for the case of two coupled spins with the spin
numbers J1 = 1/2 and J2 = 1. The labeling scheme is detailed on left of figure 5. One observes
the tensor rank of zero for the zero-linear tensors, the linear tensor rank of one for the spin
1/2 and the linear tensor ranks of one and two for the spin 1. The bilinear tensor ranks are
given by zero, one, and two for the parent sublabel P = (1, 1) as well as one, two and three
for the parent sublabel P = (1, 2). The right panel of figure 5 shows the corresponding droplet
functions, which are arranged according to their labels.

For the same case of one spin 1/2 and one spin 1, we visualize in figure 6 the dynamics of
quantum states during an isotropic mixing polarization transfer experiment. In this experiment,
x polarization of the first spin (represented by droplet{1}), which corresponds to the initial den-
sity operator S1x, is transferred via bilinear operators (represented by the droplets ({1, 2}, 1, 1)
and ({1, 2}, 1, 1)) to x polarization of the second spin (represented by droplet {2}) under the
effective isotropic mixing (Heisenberg) coupling Hamiltonian Hiso = 2πJiso(S1xS2x + S1yS2y +
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Figure 6. Visualization of a negative polarization transfer under isotropic mixing con-
ditions in a two-spin system consisting of a spin 1/2 and a spin 1 (see [111]): (a) 0 ms,
(b) 10 ms, (c) 20 ms and (d) 30 ms. Note the different order of the red and green parts
of the droplet labeled by {1} (red box) in (d) as compared to (a).

S1zS2z) [111]. The operators in this case are defined by S1η1 := Iη1 ⊗ id3 and S2η2 := id2 ⊗ Sη2 ,
where

Sx =
1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠ , Sy =

1√
2i

⎛
⎝0 1 0
−1 0 1
0 −1 0

⎞
⎠ , and Sz =

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠

are the spin-1 matrices and idn denotes the n × n identity matrix. For a coupling constant Jiso

of 11 Hz, the four panels in figure 6 show DROPS representations of the density matrix after
(a) 0 ms, (b) 10 ms, (c) 20 ms and (d) 30 ms, respectively. The time-dependent x polar-
ization of the first spin is given by the function T1x(t) = {11 + 16 cos(3πJisot)}/18, which is
negative for t = 30 ms. This is visible in panel (d), where the sign of the linear droplet cor-
responding to the first spin (labeled {1}) is inverted compared to figures 6(a)–(c): whereas
initially, the positive (red) lobe of the droplet {1} points in the positive x direction, the positive
(red) lobe of the droplet {1} points after 30 ms in the negative x direction. The occurrence
of polarization with inverted sign in such a simple two-spin system (consisting of a spin 1/2
and a spin 1) is of interest [111] because at least five spins are necessary to achieve nega-
tive polarization in isotropic mixing experiments in systems consisting exclusively of spins
1/2.

5.3. Generalization to an arbitrary number of spins with arbitrary spin numbers

We discuss now how parent sublabels can be also applied to more than two spins. The most
general spin system is composed of an arbitrary number of coupled spins with arbitrary spin
numbers Jk. The zero-linear and linear tensors can be described as before. In particular, one
has 2Jk linear tensors with rank j ∈ {1, . . . , 2Jk}. Bilinear and general g-linear tensors can
be initially divided with respect to the set G of involved spins. A g-linear tensor operator
Tj is obtained via repeated Clebsch–Gordan decompositions from g linear tensor operators
T jk of rank jk with 1 � k � g. And the parent sublabel P = ( j1, j2, . . . , jg) of Tj is given
by the sequence of ranks. For example, the trilinear tensor operator T2 is contained in the
Clebsch–Gordon decomposition of the tensor product of the three linear tensor operators T1,
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T1, and T2 and its parent sublabel is given by P = (1,1,2). Young tableaux specifying permuta-
tion symmetries could be at least applied to subsystems with equal spin numbers. Theoretically,
ad hoc sublabels can always be used to discern between any remaining tensor operators with
equal rank. However, the practicability of this approach, which is related to the scaling of the
number of necessary ad hoc sublabels, has to be investigated in future work together with the
option of subgroup labels [58–60, 62, 63, 70, 72–74, 89].

6. Explicit construction of the symmetry-adapted bases

Here, we present the details for constructing symmetry-adapted bases as outlined in section 3.
Each tensor operator has to be uniquely identified by a set of sublabels (or quantum numbers).
After the space of all tensors has been divided according to their g-linearity and the subsystem
G of involved spins, the tensors can be further subdivided with respect to their parents P (as
introduced in section 5), their permutation symmetries as given by a Young tableau τ [g] of size
g and/or necessary ad hoc sublabels A that together with the rank j and order m ∈ {−j, . . . , j}
finally identify a one-dimensional tensor subspace. Some of this information might be redun-
dant or inapplicable in certain cases (as permutation symmetries in the scenario of section 5.2)
and we also do not utilize parent sublabels in spin-1/2 systems. Our explanations start below
with the initial construction of zero-linear and linear tensors. In sections 6.1 and 6.2, we then
separately describe the iterative construction of g-linear tensor operators (for g � 2) based on
the projection method (denoted as method A in section 3) and on the CFP method relying on
fractional parentage coefficients (denoted as method B in section 3). We conclude by explain-
ing the chosen phase convention for DROPS basis tensor operators (see section 6.3) and how
tensors are embedded into a full N-spin system (see section 6.4).

Let us first recall the tensor-operator notation T (G,P ,τ ,A)
jm , which uses the rank j and order m

together with all possible sublabels given by the set G of involved spins, the parent sublabel
P , the permutation symmetry τ , and the ad hoc sublabel A. Below, a superscript [g] is used
for each sublabel to indicate a specific linearity g. Before accounting for the embedding in
section 6.4, the label G[g], is dropped. By default, we assume for a g-linear term that the set of
spins consists of the first g spins of the system, i.e. G[g] = {1, . . . , g} for a linearity g � 1 and
G[0] = ∅.

In the zero-linear case (g = 0), the parent sublabel is an empty list P [0] = (), the tableau
sublabel is empty (τ [0] = ∅) and the ad hoc label is canonically initialized to A[0] = I; also
j[0] = 0 and m[0] = 0. We use the abbreviations T0 and T00 for the tensor operator and its com-
ponent in the zero-linear case, while emphasizing that their explicit form depends on the spin
number J as detailed in (4) and (6).

For the case of linear tensors, P [1] = ( j[1]) for the rank j[1], τ [1] = and A[1] = I. The
linear tensor operators and their components can be uniquely identified using the simplified
notations Tj and Tjm with j = j[1] 	= 0. Their explicit form depends again on the spin number J,
see (5) and (6). After addressing these notational issues and default initializations, we discuss
the iterative construction process.

6.1. Projection method

In the first phase of the projection method, the tensor decomposition from (9) is iteratively
applied in order to construct g-linear tensors from (g − 1)-linear ones as outlined in section 3
and figure 1. The explicit form of the corresponding tensor components can be computed
with the help of (8) and the knowledge of Clebsch–Gordan coefficients. During this iteration
the Young-tableau sublabels are ignored since permutation symmetries are only accounted
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for in the second and third phase of the projection method. Ad hoc sublabels can be sup-
pressed during this phase. The parent sublabels are updated in each iteration by extending
the list of parents with that rank q ∈ {1, . . . , 2J} from the added spin J in (9) that resulted
in the tensor operator under consideration. When (9) has been repeated sufficiently many
times such that the desired linearity g is attained, the first phase of the projection method is
completed.

In the second phase of the projection method, we explicitly determine projection operators,
which will allow us to project tensor operators (and their components) onto subspaces with a
well-determined permutation symmetry. We follow the account of [37] and start by recalling
some basic ideas and notations [54–56, 96]. A permutation σ ∈ Sg contained in the symmet-
ric group Sg maps elements i ∈ G = {1, . . . , g} to elements σ(i) ∈ G such that σ(i1) 	= σ(i2)
for i1 	= i2. The multiplication of two elements σ2, σ1 ∈ Sg is defined by the composition
(σ2σ1)(i) := (σ2 ◦ σ1)(i) = σ2[σ1(i)] for i ∈ G. For example, we have (1, 2)(1, 3) = (1, 3, 2)
using the cycle notation for elements of S3. Young tableaux are combinatorial objects built
from a set of boxes, arranged in left-orientated rows, with the row lengths in non-increasing
order. The boxes are filled with the numbers {1, 2, . . . , g} but without repeating any number.
A Young tableau is called standard if the entries in each row and each column are increasing.
The number of boxes aj in each row j determines a partition λ = [a1, a2, . . .], which charac-
terizes the shape of a Young tableau. We use a superscript [g] in a Young tableau τ [g] in order
to clarify the number g of involved spins. The standard Young tableaux for g ∈ {1, 2, 3, 4} are
presented in figure 2 and g = 5 and g = 6 are summarized in tables A1 and A2. The set of
row-wise permutations R(τ ) of a Young tableau τ is given by all permutations of entries of τ
that leave the set of elements in each row of τ fixed. The set of column-wise permutations C(τ )
can be defined similarly. The Young symmetrizer eτ is an element of the group ring R[Sg] of
Sg and can then be written for each Young tableau τ as the product

eτ := fλ(τ ) HτVτ , (10)

where Hτ =
∑

σ∈R(τ )σ, Vτ =
∑

σ∈C(τ )(−1)|σ|σ and |σ| denotes the minimal number of trans-
positions necessary to write σ as a product thereof. The rational factor fλ(τ ) ∈ R is equal to the
number of standard Young tableaux with the same shape λ(τ ) as τ divided by g! and ensures
the correct normalization such that eτeτ = eτ ; note that fλ := fλ(τ ) is fixed by the shape λ(τ )
of τ . Next, we determine the projection operators Pp, which are orthogonalized versions of
the Young symmetrizers eτi . Let us consider the ordered sequence τr, . . . , τs of all standard
Young tableaux of fixed shape, where r denotes the first index in the list and s the last one. The
projection operators Pp are defined as

Pp =

{
eτp if p = r,

f [d (a,b) + ε]Pt if p > r.
(11)

For r < p � s, the index t and the two boxes and (with b := a + 1) can be found
as follows: there exists t ∈ {r, . . . , p − 1} such that the tableau τt differs from τp only by
the position of two boxes and . The signed axial distance d ∈ Z from the box
to in eτt is the number of steps from to while counting steps down or to the
left positively and steps up or to the right negatively. The transposition (a, b) permutes a
and b, while ε denotes the identity permutation. The normalization factor f ∈ R is chosen
such that PpPp = Pp. We also refer to the example computations in [37]. Note that limi-
tations related to applicability of this orthogonalization procedure (and under which con-
ditions the projection property PpPp = Pp holds) are discussed and analyzed in section 7.
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This completes the second phase and the projection operator Pp can be used in the third
phase.

In the third phase, each projection operator Pp corresponding to a standard Young tableau
τp is applied to the space of tensor operators. Tensor operators (and their components) are
projected onto the tensor subspace, the permutation symmetry of which is defined by τ p and

Pp. In many cases, the tensor components T
(P ,τp)
jm will be uniquely determined by the image

of the projection operator Pp, the rank j, the order m and, possibly, the parent sublabel P . But
additional ad hoc sublabels A ∈ {I, II, . . . } and an ad hoc procedure to partition the space of
all possible T

(P ,τp)
jm into one-dimensional subspaces identified by A are necessary in the most

general case. It is critical to coordinate the choice of these one-dimensional subspaces for (at
least) all projection operators Pp corresponding to Young tableaux τp that have the same shape.
Therefore, this procedure corresponding to the ad hoc sublabels could be applied even before
the projection operators. An example where ad hoc sublabels are necessary is given by six
coupled spins 1/2 (where we do not use parent sublabels) as detailed in table A1 in appendix
A.3.

6.2. CFP method

We describe in the following how to construct symmetry-adapted bases using a method based
on fractional parentage coefficients (CFP) [58–64]. We limit our presentation to multiple cou-
pled spins 1/2 and we do not consider any parent sublabels. As explained in section 3 and
(9), tensors of linearity g are constructed iteratively from the ones with linearity g − 1 in two
steps. These two steps can be repeated until the desired linearity has been achieved. In the first
step, the Clebsch–Gordan decomposition in (9) is used to construct g-linear tensors operators

T (τ [g−1],A[g−1], j [g−1])
j [g] from (g − 1)-linear ones T (τ [g−1],A[g−1])

j [g−1] , where the explicit tensor-operator
components are again determined using Clebsch–Gordan coefficients and (8). While execut-
ing the Clebsch–Gordan decomposition of (9), we temporarily record τ [g−1] and A[g−1] from
the previous generation together with the old rank j [g−1] in the labels of the provisional tensor

operators T (τ [g−1],A[g−1], j [g−1])
j [g] . This information is used in the second step below to recombine

the provisional tensor operators into their final form and to specify this final form using updated
labels. But first, the fractional parentage coefficients and their structure are explained which
will finally lead to a characterization of how this second step can be accomplished.

The fractional parentage coefficients can be interpreted as a block-diagonal transformation
matrix CFPg that acts on the space of g-linear tensors. This transformation creates specific g-
linear tensor operators that are fully permutation symmetrized assuming that the input tensor
operators are permutation symmetrized with respect to the first g − 1 spins. The transformation
matrix

CFPg =
⊕
j [g]

CFPg
j [g] =

⊕
j [g]

⊕
τ [g−1]

CFPg
j [g],τ [g−1] (12)

can be block-diagonally decomposed according to the rank j [g] of the target tensor operator and
the permutation symmetry τ [g−1] of the initial (g − 1)-linear tensor operator. In the example of
g = 4 and j [g] = 1, one obtains

(13a)
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(13b)

(13c)

for the transformation matrix resulting in tensor operators of fixed rank j [g] = 1 but with vary-
ing permutation symmetry τ [g]. We have supplemented the formal decomposition in (13a) with
an explicit description of the column basis for the provisional tensor operators as well as the
row basis for the final tensor operators in (13b) and (13c). For each block in (13b), the upper-left
corner contains τ [g−1], the left column enumerates the row basis specified by τ [g] and the row
on the upper right lists the column basis determined by the ranks j [g−1]. The associated trans-
formation matrix is located in the lower-right quadrant. Equation (13c) provides essentially the
same information. Consequently, one block CFPg

j [g],τ [g−1] of the transformation matrix CFPg

can be interpreted as the matrix [CFPg
j [g],τ [g−1] ]τ [g], j [g−1] with row and column indices given by

τ [g] and j [g−1], respectively. A tensor operator

T (τ [g])
j [g] =

∑
j [g−1]

[
CFPg

j [g],τ [g−1]

]
τ [g] , j [g−1]

T (τ [g−1], j [g−1])
j [g] (14)

of fixed rank j [g] and permutation symmetry τ [g] is now linearly combined from certain provi-

sional tensor operators T (τ [g−1], j [g−1])
j [g] . Note that the value of τ [g−1] is implicitly determined by

τ [g] (refer also to the next paragraph). In general, (14) has to be extended to account for poten-
tial ad hoc sublabels A by substituting permutation symmetries τ with combinations (τ ,A)
of permutation symmetries and ad hoc sublabels (and possibly summing over multiple val-

ues of A[g−1]). Note that the tensor-operator components T (τ [g])
j [g],m[g] have compared to the tensor

operators T (τ [g])
j [g] an additional dimension given by the order m[g] ∈ {−j [g], . . . , j [g]}. The tensor

operator components can be directly computed by extending the transformation matrix CFPg
j [g]

to CFPg
j [g] ⊗ id2 j [g]+1 (where id2 j [g]+1 is the identity matrix of dimension 2j [g] + 1) since the

fractional parentage coefficients do not depend on the value of the order m[g]. In summary, our
description of the fractional parentage coefficients provides with (14) an explicit formula to
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perform the second step to linearly recombine the provisional tensor operators into their final
form.

We close this subsection by further exploring the structure of fractional parentage coef-
ficients. For example, note that one block is repeated in (13b) and (13c), even though the
corresponding row and column bases differ with respect to the appearing permutation symme-
tries τ [g] and τ [g−1] for and . The structure of the transformations CFP4

j [g],τ [g−1]

is still completely determined when we substitute the occurring standard Young tableaux τ with
partitions λ(τ ) given by the shape of τ . The fractional parentage coefficients do not explicitly
depend on the standard Young tableaux, but only on their shape. For example, the information
in (13b) and (13c) is equivalent to

(15)

One can recover together with the standard Young tableaux in its row basis from

CFP4
1,[2,1]. Note that τ [g] is completely determined by τ [g−1] and the shape λ(τ [g]) of τ [g]. For

example, for and λ(τ [g]) = [3, 1] as there is only one possibility to add
the box while observing λ(τ [g]) = [3, 1]. This argument holds in general. The repeated
block in (13b) and (13c) is a consequence of the two possible standard Young tableaux for the
partition [2, 1]. One might wonder why no standard Young tableaux of shape [2, 2] or [1, 1,
1, 1] appear for the rank j [4] = 1 in (13b) and (13c). But these cases are ruled out by a priori
arguments [37] leading to the left part of table 2 and similar restrictions significantly reduce
the appearing cases in general. In this regard, note that 0 � j [g] � g. The full dimension of
the transformation matrix CFPg is given by the number of occurring tensor operators. For the
examples of systems consisting of three, four, five, and six spins 1/2, the matrices CFPg have
the dimension 7 × 7, 19 × 19, 51 × 51 and 141 × 141, respectively. The explicit form of the
fractional parentage coefficients for up to six spins 1/2 has been extracted from tables in [64]
and is given in appendix B.

6.3. Phase and sign convention

The phase and sign of tensor operator components are not uniquely determined by the meth-
ods for constructing symmetry-adapted bases and they can be chosen arbitrarily. We follow the
convention of Condon and Shortley [70], which fixes the phase up to a sign. We have devel-
oped in [37] criteria to select this sign factor such that droplet functions reflect the properties
of the depicted operators: first, droplet functions of Hermitian operators should only feature
the colors red and green (for the phases zero and π). Second, droplet functions of identity oper-
ators have a positive value that is shown in red. Third, droplet functions of a linear Cartesian
operator Inη with η ∈ {x, y, z} acting on the nth spin are oriented according to its Bloch vec-
tor representation. Fourth, the droplet function of a fully permutation-symmetric Cartesian
operator

⊗
n Inη with η ∈ {x, y, z}, has an elongated shape, and its positive lobe points in

the direction of η. Fifth, raising and lowering operators are visualized by donut-shaped and
rainbow-colored droplet functions. The number of rainbows directly reflects the coherence
order and the color transition of the raising operator is inverted when compared to the one
of the lowering operator. Finally, droplet functions of coupling Hamiltonians 2I1xI2y + 2I1yI2x
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Table 5. Phase and sign adjustments, which are multiplied to the g-linear tensors of
spins 1/2 that have been obtained using section 6.2 for up to g � 3.

g j = 0 0 1 1 1 2 2 2 3
T [g]

i = τ 1 τ 4 τ 1 τ 2 τ 3 τ 1 τ 2 τ 3 τ 1

0 1
1 1
2 −1 −i 1
3 i −1 1 1 i i 1

exhibit a planar shape. This motivates the sign adjustments in table 5 for g � 3, which are mul-
tiplied to g-linear tensors of spins 1/2 that have been obtained using the fractional-parentage
approach in section 6.2. This convention is consistent with the one used for three spins 1/2
in [37]. The phase-correction factors for tensors with g > 3 and rank j are given by the for-
mula exp[iπ(g − j)/2]. In the following, we assume that the phase factors of tensors have been
adjusted according to these rules.

6.4. Embedding tensors into the full N-spin system

Let us finally explain how to embed g-linear tensors into a full N-spin system. We consider
g-linear tensor-operator components T [g]

jm where additional sublabels such as parent sublabels
P , permutation symmetries τ and sublabels A have been suppressed for simplicity. We also
assume that the nth spin has spin number Jn. For g = 0, the zero-linear tensor component
T [0]

00 is mapped to the embedded tensor operator component T∅
00 :=⊗N

n=1
Jn T00. For g > 0, we

assume that the set of involved spins is given by G = {b1, . . . , bg} where bp < bq for p < q.
This enables us to define the permutation ζ := (1, b1) · · · (g, bg) while adopting the convention
that (p, p) := ε denotes the identity permutation. The g-linear tensor-operator components T [g]

jm

are transformed into their embedded counterparts TG
jm relative to the set G of involved spins

using the definition

TG
jm := ζ ·

⎡
⎣T [g]

jm ⊗

⎛
⎝ N⊗

n=g+1

Jζ(n)T00

⎞
⎠
⎤
⎦ , (16)

where ζ acts by permuting the tensor factors. We assume that T [g]
jm fits to the spins and their

spin number into which it is embedded. For N = 3 and G = {2, 3}, one obtains the example
of ζ = (1, 2)(2, 3) = (1, 2, 3) and

T{2,3}
jm = ζ ·

(
T [2]

jm ⊗ J1 T00

)
. (17)

7. Discussion and open problems related to the projection method for more
than four spins 1/2

In this section, we discuss and analyze limitations of the construction method based on explicit
projection operators which leads to incorrect results for more than four spins 1/2. For up to
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six spins 1/2, we have verified that the projectors Pτi = Pi that have been computed using the
method explained in section 6.1 are in almost all cases compatible with the tensor-operator
basis that has been obtained using the method based on the fractional parentage coefficients as
detailed in section 6.2. Everything is fine for up to four spins 1/2. But for five and six spins,
a few projectors which are given as elements of the group ring of the symmetric group are
corrupted as they do not even observe the projection property PτiPτi = Pτi (or more precisely,
they cannot be normalized such that they are projections): for five spins, the single projector
corresponding to the Young tableau

is corrupted. For six spins, the four projectors corresponding to the Young tableaux

are corrupted. This very limited failure of the projection method as explained in section 6.1
is puzzling. In the following, we explain the corresponding mathematical structure in further
detail and discuss potential reasons for this limited failure. But from an applications point
of view, the second method based on the fractional parentage coefficients (see section 6.2)
works without any problems and we have used it as a substitute in order to determine the
symmetry-adapted decomposition of tensor operators for up to six spins 1/2.

In order to clarify the subsequent discussion, we shortly recall how an element of the sym-
metric group Sg acts on the tensor space, but we limit ourselves to the case of spins 1/2 (i.e.
qubits). Given σ ∈ Sg, one has σ(A1 ⊗ · · · ⊗ Ag) :=Aσ−1(1) ⊗ · · · ⊗ Aσ−1(g) for Ai ∈ C2×2. The
action on the full tensor space is then obtained by linearity. The symmetric group Sg is gener-
ated by the transpositions (i, i + 1) with i ∈ {1, . . . , g − 1} and the action of Sg on the tensor
space can consequently be made even more explicit if we identify the action of the transposi-
tions (i, i + 1). In particular, the action of (1, 2) ∈ S2 can be described using the commutation
(or swap) matrix [112, 113] K as follows

(1,2)(A1 ⊗ A2) = K (A1 ⊗ A2) K = A2 ⊗ A1 with K =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ .

(18)

Equation (18) can be vectorized using the formula [112, 113] vec(ABC) = (CT ⊗ A)vec(B),
where vec(B) denotes the vector of stacked columns of a matrix B. One obtains (KT ⊗
K )vec(A1 ⊗ A2) = vec(A2 ⊗ A1) and (e.g.) [(K ⊗ I0 ⊗ I0)T ⊗ (K ⊗ I0 ⊗ I0)] vec(A1 ⊗ A2 ⊗
A3 ⊗ A4) = vec(A2 ⊗ A1 ⊗ A3 ⊗ A4), where I0 is the 2 × 2 identity matrix. This approach
allows us to explicitly specify the action of elements σ of the symmetric group or its group
ring on the tensor space using (albeit large) matrices Υ(σ) that operate linearly (by multi-
plication) on vectorized tensor-operator components. Note that Υ(σ) acts implicitly on all
tensor-operator components and not only the g-linear ones (assuming that g is equal to the
number of spins). Also, the transformation based on fractional parentage coefficients (i.e. the
second step in section 6.2) operates directly on tensor-operator components and can be there-
fore interpreted as a matrix transformation on the same space as Υ(σ) but restricted to g-linear
tensor operators. The explicit form of the action of the symmetric group ring on tensors given
by Υ will facilitate our further analysis. As Υ is a linear representation of the group ring of
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Sg, projection operators P ∈ R[Sg] with P2 = P are mapped by Υ to projection operatorsΥ(P)
with Υ(P)2 = Υ(P)Υ(P) = Υ(P2) = Υ(P). The representation Υ of the group ring is faithful
(i.e. the map σ ∈ R[Sg] �→ Υ(σ) is injective) for g � 4, but it has a one-dimensional kernel for
g = 5 and a 26-dimensional kernel for g = 6. The existence of a kernel unfortunately com-
plicates the analysis of the corrupt projectors Pτi . We, however, do not believe that this is the
cause for the corruption.

We continue our discussion by summarizing important, general properties of projection
operators. If a projector P is given as a matrix (as is, for example, Υ(Pτi)), then it has only
the eigenvalues zero and one, which will usually appear with multiplicity. The eigenvalue-zero
eigenspace is equal to the kernel of P and the image of P (i.e. the invariant subspace under the
projectionP) is equal to the eigenvalue-one eigenspace, the dimension of which is given by the
trace Tr(P). In the following, it will be important to distinguish two notions of orthogonality:
first, we have introduced in section 6.1 the projectors Pτi as orthogonalized versions of the
Young symmetrizers eτi with the intention that the eigenvalue-one eigenspaces of Υ(Pτi) are
orthogonal for different Young tableaux τ i. Second, two projectors P1 and P2 (as, for example,
eτi or Pτi , or even Υ(eτi) or Υ(Pτi)) are denoted as orthogonal if P1P2 = P2P1 = 0, i.e. if their
sequential application maps everything to zero. These two notions of orthogonality are not
necessarily related. For example, one has for g = 3 the Young symmetrizers

(19)

and the projection operators

Pτ2 = eτ2 and Pτ3 = [ε− (1,2) + 2 (2,3) − (1,3) − 2 (1,2,3)+ (1,3,2)]/3. (20)

One obtains that eτ2 and eτ3 are orthogonal (i.e. eτ2eτ3 = eτ3eτ2 = 0) while Pτ2 and Pτ3 are not.
But the eigenvalue-one eigenspaces of Υ(eτ2 ) and Υ(eτ3 ) are not orthogonal, while the ones of
Υ(Pτ2 ) andΥ(Pτ3 ) are. Orthogonal projections are particularly convenient and, in general, for a
given direct-sum decomposition V = V1 ⊕ · · · ⊕ Vv of a vector space V, one can always choose
v projectionsPi such that (i) all projectionsPi are mutually orthogonal, (ii)P1 + · · ·+ Pv = I
(where I is the identity projection onto V) and (iii) the image of Pi is equal to Vi (see, for
example, theorem 4.50 on p 92 of [114]). Also, the properties (i) and (ii) are closely related
as a sum of several projections is again a projection if and only if all projections are mutually
orthogonal (see, for example, [115]).

After these preparations, we can study certain peculiarities of the Young symmetrizers eτ
as defined in (10) for g � 5. We will not necessarily assume that the Young tableau τ is a stan-
dard Young tableaux, i.e. the boxes of τ are allowed to be arbitrarily filled with the numbers
{1, . . . , g} but without repeating any number. It is well known [54, 116] that Young sym-
metrizers are not necessarily orthogonal, even if one only considers standard Young tableaux.
In particular, one has eτ ′eτ = 0 for the Young symmetrizers eτ and eτ ′ if there exist two integers
i, j ∈ {1, . . . , g} such that i and j are in the same row of τ and the same column of τ ′ (see, for
example, proposition 6.3.2 in [116]). For example, we have for g = 5 only two pairs (τ ′, τ ) of
(non-equal) standard Young tableaux such that eτ ′eτ 	= 0, i.e. (τ ′, τ ) ∈ {(τ6, τ 10), (τ17, τ 21)}.
The corresponding shapes are [3, 2] and [2, 2, 1]. Similarly, one has 13 such pairs for g = 6
and in particular the pairs (τ 8, τ 15) and (τ 9, τ 15). The shapes of all the occurring standard
Young tableaux (for g = 6) are [4, 2], [3, 3], [3, 2, 1], and [2, 2, 2]. This non-orthogonality
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has also been studied in [117–119] together with the question of how to find orthogonal sets
of projectors. Also, Stembridge [120] notes that all Young symmetrizers for standard Young
tableaux of fixed shape λ are mutually orthogonal if and only if λ = [2, 2], λ = [m], or
λ = [m, 1, . . . , 1] for some positive integer m. This observed non-orthogonality may, however,
not have any implications for the corruption of the projection operators Pτi : Both symptoms
appear for g = 6 and τ 15, but this is the only case were both symptoms occur simultane-
ously for standard Young tableaux of the same shape and g ∈ {5, 6}. In addition, the pro-
jection operators Pτi are not even orthogonal for g = 3 (as discussed below (20)). The non-
orthogonality of Young symmetrizers of standard Young tableaux is therefore most likely
not the cause (or at least not the only one) for the corruption of the projection operators
Pτi .

In a final step, we restrict our focus to Young tableaux τ of fixed shape as the con-
struction in section 6.1 essentially operates only on Young tableaux of fixed shape and the
corresponding Young symmetrizers eτ . For a given partition λ, let us define the projector
eλ := fλ

∑
τeτ = f 2

λ

∑
τHτVτ where the sums go over all (not necessarily standard) Young

tableaux τ of shape λ (see (10)). The projector eλ is contained in the center of the group
ring R[Sg], i.e. it commutes with R[Sg] (see corollary 6.3.7 in [116]). All projectors eλ are
mutually orthogonal and one obtains the identity by summing the eλ for arbitrary partitions
λ. In addition, eλ projects onto the left ideal of R[Sg] spanned by the Young symmetrizers eτ
for standard Young tableaux τ of shape λ and this left ideal describes an irreducible repre-
sentation of Sg [54, 116]. Our orthogonalization construction for the projection operators Pτi

(see section 6.1) aims at splitting the eigenvalue-one eigenspace of Υ(eλ) into the orthogo-
nal eigenvalue-one eigenspaces of Υ(Pτi). This, however, fails for (e.g.) τ 16 and g = 5, even
though an extension of the relevant eigenspaces of the projections Υ(Pτ11 ), . . . ,Υ(Pτ15 ) to the
one of Υ(e[3,1,1]) is possible. An analysis along these lines might give further insight into how
the projection method of section 6.1 is connected to the method based on fractional parentage
coefficients (see section 6.2) and why the corruption of the projection operators Pτi arises. But
the high-dimensionality of the corresponding matrices significantly complicates the analysis.
In summary, we are currently not able to explain the corruption in the projection method and
leave this as an open question. However, the method based on fractional parentage coefficients
provides a suitable substitute for practical purposes.

8. Conclusion

We have extended the DROPS representation of [37] to visualize finite-dimensional, coupled
quantum systems for up to six spins 1/2 as well as two spins of arbitrary spin number. A general
multi-spin operator can be completely characterized and visualized using multiple spherical
plots that are each assembled from linear combinations of spherical harmonics Y(θ,φ). The
DROPS representation relies on decomposing spin operators into a symmetry-adapted tensor
basis and subsequently mapping it to linear combinations of spherical harmonics. The construc-
tion algorithm in its original form for up to three spins relies on explicit projection operators
[37]. Due to the limitations discussed and analyzed in section 7, the projection method is only
directly applicable for up to four coupled spins 1/2. By applying a methodology based on
fractional parentage coefficients, we have circumvented these limitations. This methodology
relies on consecutive transformations from partially to fully permutation-symmetrized tensors.
With this technique, tensors of systems consisting of arbitrary numbers of spins 1/2 can be
identified by the sublabels g, G, τ [g] and, for larger systems with six particles and more, addi-
tionally by ad hoc sublabels A, as well as the rank j and order m. These tensors and their
mapping to generalized Wigner functions were calculated explicitly for various examples for
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up to six spins 1/2. In addition, we provide in the supplementary material (available online
at https://stacks.iop.org/JPhysA/53/495301/mmedia) data files readable in Matlab [121] that
specify the explicit form of the LISA basis for three to six spins 1/2. Note that the necessity
of ad hoc sublabels for six and more spins had been already anticipated in [37].

We further extended the projection method to spins with arbitrary spin numbers. In partic-
ular, we discuss the cases of two coupled spins with J1 = J2 and J1 	= J2. Since the number
of appearing tensors is rapidly increasing with the spin number, the partitioning of the tensors
according to physical features of the system and inherent properties of tensors characterized
by g, G and τ [g] do not suffice to obtain groups in which every tensor rank j appears only once.
Although ad hoc sublabels, analogously introduced as in the case of spins 1/2, could resolve
this problem, they suffer from a lack of systematics and connections related to tensor proper-
ties. For larger spin numbers, the number of occurring tensors is substantially larger compared
to systems consisting of spins 1/2 and a large set of ad hoc sublabels A would be required even
for two spins. This inconvenience can be circumvented by relying on parent sublabels which
are in particular suitable for larger spin numbers. Parent sublabels can be more methodically
and consistently applied and are better connected to tensor properties. Tensors of a system
consisting of two spins with J1 = J2 can be conveniently grouped according to the sublabels
g, G, P and τ [g]. In systems with J1 	= J2, where permutation symmetries are not meaningful,
tensors are organized using the sublabels g, G, P and A. We discuss the extension to a larger
number of spins (with arbitrary spin numbers), but an explicit treatment is beyond the scope
of the current work.

Illustrative examples for up to six spins 1/2 and a spin 1/2 coupled to a spin 1 are pro-
vided. These examples also include entangled quantum states. Quantum systems are frequently
described by abstract operators or matrices and our methodology is in this regard particularly
useful in visualizing quantum concepts and systems by conveniently partitioning the inherent
information. The DROPS representation has the favorable property to naturally reflect transfor-
mations under non-selective spin rotations as well as spin permutations. This approach is also
convenient for highlighting the time evolution of experiments as animations. A free software
package [109, 110] for the interactive exploration of coupled spin dynamics in real time based
on the DROPS visualization is already available for up to three coupled spins 1/2. Potential
applications of the DROPS visualization for larger spin systems and for particles with spin
number larger than 1/2 range from electron and nuclear magnetic resonance applications in
physics, chemistry, biology and medicine to theoretical and experimental quantum information
theory [122] where quantum information is stored for example by electron or nuclear spins,
trapped ions, quantum dots and superconducting circuits or (quasi-) particles of arbitrary spin
numbers.

Finally, our work provides a much more detailed description of the plethora of symmetries
present in coupled quantum systems. We primarily focus on the symmetries resulting from the
simultaneous action of SU(2) on all spins (which are identified by the rank j and order m) as
well as from permutations of spins (which are identified by the standard Young tableaux τ ),
while also separating between different sets of involved spins (which correspond to the labels
g and G). We explicitly show which combinations of symmetries appear and how they can be
illustrated.

Supplementary material

See supplementary material for data files readable in Matlab that specify the explicit form of
the LISA basis for three to six spins 1/2.
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Appendix A. Further visualizations for four, five or six spins 1/2

In this appendix, we provide additional examples to further illustrate experimental spin opera-
tors using the DROPS representation. In appendix A.1, we analyze the Wigner representation
of fully symmetric operators [see (A.1)], raising operators and anti-phase operators typically
arising in NMR spectroscopy for up to six coupled spins 1/2. In appendix A.2, we visual-
ize multiple experiments: first, we show the evolution of droplet functions in the generation
of multiple-quantum coherence in a five-spin system, followed by an efficient state-transfer
experiment in a spin chain consisting of six spins 1/2. Finally, we present snapshots of droplet
functions during an isotropic mixing experiment in a system consisting of four spins 1/2.
In appendix A.3, we present the DROPS representations for (complex) random matrices for
systems consisting of five and six spins 1/2.

A.1. Wigner representations of prominent spin operators

We show the visualization for some prominent operators in NMR spectroscopy. In figure A1(a),
the droplet functions representing the fully symmetric operator

A =

N∏
k=1

Ikη (A.1)

with η = x for different systems consisting of up to N = 6 spin 1/2. The only non-vanishing
tensor components have permutation symmetries τ [N]

1 and hence, we find only one droplet func-
tion labeled by G or (G, τ [N]

1 ). The elongated shape with N − 1 rings, having alternating phases
in the center of droplet, is characteristic for the DROPS representation of these operators. The
operators for η ∈ {y, z} (not shown) exhibit the same shape but are orientated along the y and
z axis, respectively.

Figure A1(b) shows the droplet functions representing the p-quantum operators

B =

p∏
k=1

I+k (A.2)

with the single-spin raising operators defined as I+k = Ikx + iIky. In the DROPS representation,
p-quantum operators are represented by rainbow-colored donut shapes with p rainbows coding
for p phase transitions from 0 to 2π when the operator is rotated by 360◦ around the z axis.
The color transition for an operator I−k = Ikx − iIky is inverted (not shown). Again, only the
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Figure A1. The droplet functions f (�) visualizing various operators for up to six coupled
spins 1/2 (N = 6). The full labels are given in the second column and the occurring
tensors ranks j are shown in the third column of each table. The detail column shows
the corresponding magnified centers of f (�). In table (a), the spherical functions f (�)

of the fully symmetrical operator A =
∏N

k=1 Ikx are shown. Table (b) depicts the rep-
resentations of the non-Hermitian operators B =

∏p
k=1 I+k . In tables (c) and (d), the

visualizations of the antiphase operators C = I1x(
∏N

k=2 Ikz) are depicted. There is only
one symmetry type τ [N]

1 for the partition [N ] and the related droplet is shown in table
(c) . For the partition [N − 1, 1], we find N − 1 different standard Young tableaux τ [N]

i
with i ∈ {2, . . . , N} and thus, have N − 1 droplets f (�). They all have identical shapes
but different sizes and one representative spherical function for this case is illustrated in
table (d). In total N droplets visualize the antiphase operator from (A.3). In contrast to
our usual strategy, droplets for two spins (i.e. N = 2) are plotted here separately for the
fully permutation-symmetric part (i.e. for the partition [N ]) in (c) and the remaining part
in (d).

coefficients of tensors with symmetry τ [N]
1 are non-zero for both I+k and I−k and thus, only one

droplet is found.
In figures A1(c) and (d), the droplet functions representing the antiphase operators

C = I1x

(
N∏

k=2

Ikz

)
(A.3)

for different sizes of spin-1/2 systems with number of particles N ∈ {2, 3, 4, 5, 6} are shown.
Only coefficients of tensors with symmetries given by the partitions λ(τ [g]

i ) = [N] and
λ(τ [g]

i ) = [N − 1, 1] are non-vanishing. There is only one symmetry type τ [N]
1 for the parti-

tion [N] and the related droplet is shown in figure A1(c). The typical features of the droplet
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Figure A2. Visualization of experiments: in panels (a1)–(a5), the initial state ρ0 =∑5
k=1 Ikz is transformed into five-quantum coherence using a sequence of π/2 pulses

and optimized delays. Panel (a1) visualizes the density matrix after an [π/2]y pulse
on each spin. Panels (a2)–(a5) illustrate the state after repeated evolutions under cou-
pling with time t = 1/(2J) followed by [π/2]y pulses on each spin, see also figure 3.
The droplet in panel (a5) is scaled to 1/3 of its original size. Panel (b) shows the
coherent transfer of the initial state ρ0 = I1x + iI1y to the target state ρN = I6x + iI6y:
bilinearly encoded states are created, which are efficiently transferred and eventually
decoded at the end of the chain (see [125]). In panels (c1)–(c4), a polarization transfer
under isotropic mixing conditions is displayed (only the linear and bilinear terms are
shown).

functions f (G,τ [N]
1 ) are four arms with N − 2 plates with alternating phases separating the two

pairs of arms. For the partition [N − 1, 1], we find N − 1 different occurring symmetries τ [N]
i

with i ∈ {2, . . . , N} and thus, have N − 1 droplets f (�). They all have identical shapes but
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Figure A3. Visualization of a complex random matrix for five spins 1/2. The droplet
functions are arranged according to their g-linearity. The top left panel shows the topol-
ogy of the system with nodes representing the spins and edges their couplings. Here,
f Id is placed beneath the diagram, the droplets corresponding to g = 1 are plotted on
the nodes and the bilinear droplets for g = 2 are placed on the edges. The top right

panel illustrates f (G,τ [3]
i ) for all possible subsystems with g = 3. The bottom left and

right panels depict the droplet functions for all occurring subsystems with g = 4 and
g = 5, respectively. The topologies of each G are visualized by diagrams located at each
subpanel. Droplet functions are normalized for better visibility.

different sizes and one representative droplet function for this case is illustrated in figure A1(d).
In total N droplets visualize the antiphase operator from (A.3). In addition, for each tensor only
orders with |m| = ±1 occur.

A.2. Visualization of experiments

We use our approach to represent and visualize experiments with up to six spins 1/2. First we
show maximum quantum coherence generation [107] in a chain of five spins 1/2 using π/2
hard pulses and delays (see table S2 in [107]). This is the five-spin analog to the experiment
visualized given in figure 3 of section 4 for four spins. The initial state is ρ0 =

∑5
k=1 Ikz and the

coupling is given by an Ising Hamiltonian. All coupling constants in the drift Hamiltonian are
assumed to be equal, i.e. J = J12 = J23 = J34 = J45 = J. Figures A2(a1)–(a5) show the droplet
functions for different points in time. Panel (a1) shows the droplet functions after π/2 pulses
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Figure A4. Visualization of a complex random matrix for six spins 1/2 analog to
figure A3. Droplet functions for g ∈ {0, 1, 2} are placed in the top left panel. The top
right and the bottom panel illustrate all appearing droplet functions for all subsys-
tems with g = 3. Droplet functions are normalized. The contributions for g = 4 and
g ∈ {5, 6} are shown in figures A5 and A6, respectively.

with phases y on each spin. A coupling evolution of duration t = 1/(2J) followed again by π/2
pulses with phases y on all spins is repeated four times. Panels (a2)–(a5) depict the droplets
representing the state after each of these repetitions. In the course of the experiment, higher
orders of coherence are created, which is reflected by the occurrence of droplets of larger g.
Although many different tensors in various subsystems and symmetries appear, the information
can still be partitioned in a clear manner. Eventually, after the full pulse sequence in panel
(e), the state is fully described by a single five-linear droplet (representing G = {1, 2, 3, 4, 5}
with the Young tableau sublabel τ [5]

1 ), which also contains the desired maximum-quantum
coherence.

As an additional illustrative example, we present an efficient transfer of an initial state
ρ0 = I1x + iI1y to the target state ρt = I6x + iI6y by unitary transformations. We consider
a linear chain of six coupled spins 1/2 and only assume Ising couplings (with identical
coupling constant J ) between the next neighbors and the free evolution Hamiltonian is given
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Figure A5. Four-linear contributions missing in figure A4. Spherical functions are
normalized.

by H = 2π
∑6

k=2 J I(k−1)zIkz. The approach in [125] first encodes the initial linear operators
into bilinear operators, which can then be efficiently propagated through the spin chain.
Figure A2(b) shows the state visualized by droplet functions for different points in time. The
nodes represent the particles and the edges the couplings between the spins. The first row shows
the visualization of ρ0. This initial state is then encoded by applying a π/2 pulse with phase
−x followed by π/2 pulse with phase y on the first spin, which then evolves under the cou-
pling Hamiltonian H for a duration 1/(2J) resulting in the state shown in the second row of
figure A2(b). Subsequently, a sequence of a π/2 pulse with phase x on the first spin, a π/2
pulse with phase y on the second spin and a free evolution period under the coupling Hamil-
tonian H with duration 1/(2J) generates the encoded state, which is shown in the third row
of figure A2(b). This encoded state, which consists only of bilinear operators can then be effi-
ciently propagated along the spin chain by applying an effective soliton sequence composed
of a π/2 pulse with phase y on all spins followed by a free evolution under coupling with
duration 1/(2J), which results in the propagation of the encoded state by one spin position.
This is repeated three times and the resulting states are depicted in row four to six. The state
is then decoded first by repeating the soliton sequence one more time (row seven) and then
by a sequence consisting of a π/2 pulse with phase −y on the fifth spin, a π/2 pulse with
phase x on the sixth spin, a free evolution with duration 1/(2J) and a π/2 pulse with phase
x on the sixth spin is applied. This finally generates the desired state ρt = I6x + iI6y depicted
in row eight. Neglecting the durations of the hard pulses, the total transfer time is 7/(2J). For
comparison [125], the same transfer could be achieved by a sequence of five next-neighbor
SWAP operations (each with a duration of 3/(2J)) which would require a total transfer time
of 15/(2J).

32



J. Phys. A: Math. Theor. 53 (2020) 495301 D Leiner et al

Figure A6. Five- and six-linear contributions missing in figure A4. Spherical functions
are normalized.

Last, we show the visualization of the dynamics of a polarization transfer from spin one
to spin two in a system consisting of four coupled spins 1/2 under isotropic mixing condi-
tions [126]. Isotropic mixing is one of the most important methods to transfer polarization in
high-resolution NMR spectroscopy and is frequently used in homonuclear and heteronuclear
experiments to maximize polarization transfer. Its efficiency depends extremely on the mixing
time duration. For four coupled spins 1/2, the ideal isotropic mixing Hamiltonian has the form
H = 2π

∑4
i< j Ji j(IixI jx + IiyI jy + IizI jz). For the model system consisting of the 1H nuclear spins

of trans-phenylcyclopropane carboxylic acid, the coupling constants are given by J12 = 4.1
Hz, J13 = 9.4 Hz, J14 = 6.8 Hz, J23 = 5.3 Hz, J24 = 8.2 Hz and J34 = −4.6 Hz. Starting with
the initial density density operator ρ(0) = I1z, figures A2(c1)–(c4) show the DROPS repre-
sentation of the states for different mixing times: (c1) 0 ms, (c2) 20 ms, (c3) 40 ms and
(c4) 133 ms. Again, nodes represent the particles and edges their couplings. Note that for
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Table A1. Standard Young tableaux τ [g] for g ∈ {5, 6} with the corresponding partitions
λ ordered with index i. Also the appearing ranks j for each τ [g] are shown, see also [37].
Ad hoc sublabels are required in the case g = 6 for j = 2 and λ = [4, 2].

simplicity, here we only plotted the linear and bilinear tensor components. During the course
of the experiment, the free evolution under isotropic mixing conditions results in the generation
of coherences, which is reflected by the occurrence of non-vanishing bilinear tensors (g = 2)
and visualized by droplets located on the edges. Also small amounts of polarization occur on
the other spins depicted by the droplet functions on these nodes. After 133 ms (panel (c4)),
almost all polarization has been transferred from spin one to spin two.

A.3. Representing systems consisting of five and six coupled spins 1/2

We also show the droplet functions for a (complex) random matrix A ∈ C32×32 of a
five-spin-1/2 system. Although such systems are quite complex, with our approach, we
can conveniently partition the information in different subsystems given by the pan-
els and subpanels in figure A3. We find one zero-linear subsystem G = ∅ with one
droplet, five linear subsystems with one droplet in each G ∈ {{1}, {2}, {3}, {4}, {5}}
and ten bilinear subsystems with also one droplet in each G ∈ {{1, 2}, {1, 3}, {1, 4},
{1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}}. They can be plotted together as shown
in the upper left panel of figure A3, where the droplets visualizing the linear subsystems
are plotted on the corresponding nodes representing the spins and the droplet functions for
the bilinear subsystems are placed on the edges between two spins. The identity part (Id)
is placed beneath this scheme. In the upper right panel, all of the ten trilinear subsystems
G ∈ {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5},
{3, 4, 5}} are each represented by four droplets. For each of the subsystems, the topol-
ogy of the involved spins is sketched at the top of each subpanel. The bottom left panel
lists all of the five four-linear subsystems with nine droplets for each G ∈ {{1, 2, 3, 4},
{1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}}. Again, the subsystem is graphically given
at the beginning of each subpanel. Finally, the five-linear subsystem with 21 droplets is
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Table A2. Explicit values of fractional parentage coefficients for g ∈ {2, . . . , 5}; the
values for g = 6 are given in table A3. Empty boxes in the standard Young tableaux
τ [g−1] have to be filled with all possible values as detailed in tables 2 and A1.

illustrated in the bottom right panel of figure A3. In total we have 122 droplet functions
uniquely representing the matrix A. We omit the superscript [g] for τ [G] in this figure, since
g = |G| holds and G is clear from the context.

We conclude this section by visualizing a (complex) random matrix A ∈ C64×64 for a six
coupled spins 1/2 as given in figures A4–A6. The information can be analogously partitioned
and presented as given in figure A3. In the upper left panel of figure A4, the topology of
the system is sketched. The zero-linear subsystem containing one droplet can be located in
right lower corner of the scheme. The droplet functions representing the six linear subsystems
G ∈ {{1}, {2}, {3}, {4}, {5}, {6}}are plotted on the nodes, the droplet functions of the fifteen
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Table A3. Explicit values of fractional parentage coefficients for g = 6; refer also to
table A2 for the values for g ∈ {2, . . . , 5}. Empty boxes in the standard Young tableaux
τ [g−1] have to be filled with all possible values as detailed in table A1.

bilinear subsystems with also one droplet in each G ∈
(
{1, . . . , 6}

2

)
are plotted on the edges.

The top right panel and the bottom panel in figure A4 present the twenty trilinear subsystems
G ∈

({1, . . . , 6}
3

)
with the related droplet functions. The four-linear subsystems G ∈

({1, . . . , 6}
4

)

with the nine corresponding droplets for each G are given in figure A5. The droplets of the
five-linear systems G ∈

({1, . . . , 6}
5

)
are plotted in the left panel of figure A6. Finally, the droplet

functions of the six-linear system G = {1, 2, 3, 4, 5, 6}are shown in the right panel of figure A6.
In total we find 423 droplets, which uniquely represent the information contained in the 642 =
4096 complex matrix elements of such an operator. Again, we omit the superscript [g] for τ in
this figure and we use the additional ad hoc sublabels only when required, i.e. for g = 6 and
τ [6]

i with i ∈ {7, . . . , 15}. The standard Young tableaux for g = 5 and g = 6 are summarized
in table A1.
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Appendix B. Explicit values of the fractional parentage coefficients

The explicit values of the fractional parentage coefficients for up to g = 6 are given in tables A2
and A3. We have used the fractional parentage coefficients as defined in [64] and we have not
applied the phase amendments from the footnote on p 241 of [127].
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