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Abstract
One of the Grand Challenges in beam physics relates to the

use of virtual particle accelerators for beam prediction and
optimization. Useful virtual accelerators rely on efficient and
effective methodologies grounded in theory, simulation, and
experiment. This work extends the application of the Sparse
Identification of Nonlinear Dynamical systems (SINDy) al-
gorithm. The SINDy methodology promises to simplify the
optimization of accelerator design and commissioning by
discovery of underlying dynamics. We extend how SINDy
can be used to discover and identify underlying differential
systems governing the beam’s sigma matrix evolution and
corresponding invariants. We compare discovered differen-
tial systems to theoretical predictions and numerical results.
We then integrate the discovered differential system forward
in time to evaluate model fidelity. We analyze the uncovered
dynamical system and identify terms that could contribute
to the growth(decay) of (un)desired beam parameters. Fi-
nally, we propose extending our methodology to the broader
community’s virtual and real experiments.

INTRODUCTION
Nagaitsev et al. [1] have enumerated four Grand Chal-

lenges enabling future Department of Energy (DOE) High
Energy Physics (HEP) programs. Grand Challenge #4 Beam
Prediction poses the question: “How do we develop predic-
tive ‘virtual particle accelerators’”? We continue to address
an aspect of this Grand Challenge in this paper, continuing
our work from NAPAC22 studying prediction of beam dy-
namics, specifically the beam centroid, in rings [2]. Our aim
is to speed up commissioning and design studies of acceler-
ators by uncovering underlying physics in virtual and real
accelerators. Our approach is to apply an existing method
from the data-driven, nonlinear dynamics community called
Sparse Identification of Nonlinear Dynamics (SINDy) [3, 4]
to uncover physics in problems that can’t be solved analyti-
cally. Here we apply SINDy to a linear accelerator seeking
to capture deviations from equilibrium, where deviations
away from the an ideal solution are not captured analytically.

This method is both Predictive and Productive. The
method is predictive in the context of providing an end result
model that can be used to predict beam dynamics beyond the
training dataset; the method is productive in the context of
producing interpretable, physics-based equations predicted
upon provided basis functions. In this work be build upon the
work of our collaborators at the University of Maryland [5]
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who use an adjoint technique to optimize the locations and
strengths of a flat to round (FTR) to solenoid lattice, Fig. 1,
based on an figure of merit. In their work, they assumed an
idealized Kapchinsky–Vladimirsky (K-V) distribution and
integrated that forward along the lattice solving the moment
equations with space charge.

Figure 1: Flat to Round transformation beamline analyzed
in Ref. [5]. The four lattice elements consist of the first FTR
quadrupole 𝑞0, the second FTR quadrupole 𝑞1, and the third
FTR quadrupole 𝑞2, and the long solenoid.

In our work here we use a particle in cell code WARP [6]
for a pipe-centered beam at a waist which has the following
parameters: 5 keV; 5 mA; √⟨𝑥2⟩ = 2.26 mm; √⟨𝑦2⟩ = 0.226
mm; 𝜀𝑥 = 64.1 μm, 𝜀𝑥 = .641 μm. The WARP simulation
had the following numerical parameters: pipe radius = 500
mm; grid resolution 𝑁𝑥 = 𝑁𝑦 = 2048; number of particles
𝑁𝑝 = 400 k; and step size 𝑑𝑧 = .1 mm. The hard-edged
lattice parameters are summarized in Table 1.

Table 1: Lattice Parameters for FTR → Solenoid.

Element Start [mm] Length [mm] Strength

Quad 0 4.2 10 -0.2087 T/m
Quad 1 134.6 10 0.2509 T/m
Quad 2 225.2 10 -0.1992 T/m
Solenoid 240.7 200 17 Gs

Two different distributions with the same moments were
chosen to highlight how differences between initial distri-
butions affect downstream beam dynamics: the K-V distri-
bution and a rectangular distribution of the following form,
when |𝑥|/√⟨𝑥2⟩ < √3/2 and |𝑦|/√⟨𝑦2⟩ < √3/2 (forming a
rectangle in configuration space),

𝑓Rect.(𝑥, 𝑥′, 𝑦, 𝑦′) = 1
8𝜋2𝐴

exp [−1
2 ( 𝑥′2

⟨𝑥′2⟩
+ 𝑦′2

⟨𝑦′2⟩
)] (1)

where 𝑥, 𝑥′, 𝑦, 𝑦′ denote the usual trace space variables
(phase space momentum 𝑝𝑥 → 𝑥′ via the paraxial approxi-
mation), and 𝐴 = √⟨𝑥2⟩⟨𝑥′2⟩⟨𝑦2⟩⟨𝑦′2⟩. These two different
distributions are qualitatively compared to each other in
Figs. 5(a) and 5(b). It was noted that the moments between
the different distributions and those of the moment code
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matched quite well. However, trace space images produced
by the different distribtuions showed significant variations.

SINDy was used to capture the analytic equations gov-
erning the difference between the moment code’s values for
⟨𝑥2⟩(𝑧) and ⟨𝑦2⟩(𝑧) and the WARP K-V result. In this work
we explore the results of how this deviation can be back
projected onto perturbations to the envelope equation.

APPROACH

Our approach is to prescribe a mathematical model based
upon underlying accelerator physics. SINDy works by as-
suming one can model the evolution of some 𝑛-dimensional
state vector x ∈ ℝ𝑛 as a system of ordinary differential
equations

𝑑x/𝑑𝑡 = f(x). (2)

The variable 𝑡 is the independent variable, x is the
𝑛-dimensional state vector of observables either from a sim-
ulation or experiment, and f(x) is the 𝑛-dimensional function
governing the evolution of x.

After one designates the number 𝑛 of state variables, one
can then take measurements of x at 𝑚 equidistant times 𝑡𝑗 ∈
{𝑡1, 𝑡2, … , 𝑡𝑚}, placing the measurements into a rectanglualr
matrix X:

X =
⎡
⎢
⎢
⎣

x𝑇(𝑡1)
...

x𝑇(𝑡𝑚)

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

𝑥1(𝑡1) … 𝑥𝑛(𝑡1)
... ⋱

...
𝑥1(𝑡𝑚) … 𝑥𝑛(𝑡𝑚)

⎤
⎥
⎥
⎦

.

One then differentiates the matrix 𝑑X/𝑑𝑡 = Ẋ which is
then used in the discovery stage of SINDy. One proposes a
candidate Θ(X) which consists of a number of intuited/de-
sired basis functions for the underlying dynamics. The ma-
trix Ẋ is equated to Θ(X) times a sparse coefficient matrix
Ξ = [𝜉0 𝜉1 … 𝜉𝐵𝐹] which is solved with a given optimiza-
tion technique

Ẋ =
⎡
⎢
⎢
⎣

ẋ𝑇(𝑡1)
...

ẋ𝑇(𝑡𝑚)

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

̇𝑥1(𝑡1) … ̇𝑥𝑛(𝑡1)
... ⋱

...
̇𝑥1(𝑡𝑚) … ̇𝑥𝑛(𝑡𝑚)

⎤
⎥
⎥
⎦

= Θ(X)Ξ .

Adapting this framework for beam physics can be done
by taking Eq. (2) and transforming the time variable 𝑡 to
the axial location variable 𝑧 via the paraxial approximation,
𝑡 → 𝑧/𝑐𝛽𝑧. We then assume a number of variables to learn;
here we set 𝑛 = 3 for ready visualization. We chose two spa-
tial moments of the sigma matrix Σ𝑥𝑥 = ⟨𝑥2⟩, Σ𝑦𝑦 = ⟨𝑦2⟩
and the the independent variable 𝑧 to ensure the learned dif-
ferential system is autonomous. Thus, we learn the evolution
dynamics for 𝑥 = [𝑧, ⟨𝑥2⟩, ⟨𝑦2⟩]𝑇. Figure 2 shows a direct
comparison for the lattice in Fig. 1 solved in the moment
code and WARP.

Figure 2: The above plot shows comparisons between WARP
and an idealized moment code’s results for ⟨𝑥2⟩ and ⟨𝑦2⟩.

THEORY
The envelope evolution equations for an axisymmetric

beam may be written as

𝜎″ + 𝑘2
0𝜎 − 𝐾

4
1
𝜎 − (𝜀2

𝜎 + ⟨𝐿⟩2

4𝑝2
𝑧

) 1
𝜎3 = 0 . (3)

If one adds a perturbation 𝜎(𝑧) → 𝜎0 + 𝛿𝜎(𝑧) to Eq. (3)
and expands for small 𝛿𝜎(𝑧) one obtains the following

𝛿𝜎″ + 𝛿𝜎𝑓 (𝑧; 𝜎0) + 𝛿𝜎2𝑔(𝑧; 𝜎0)
+ ℎ(𝑧; 𝜎0) + 𝒪(𝛿𝜎3) = 0 .

(4)

We seek with SINDy to discover the functions
𝑓 (𝑧; 𝜎0), 𝑔(𝑧; 𝜎0), and ℎ(𝑧; 𝜎0). If we select basis
functions that correspond to functional forms shown above,
we can project how deviations between the idealized
moment code result from Dovlatyan et al. [5] and WARP
occur. These deviations can then be mapped onto an
effective moment equation. We note that this heuristic
example gives rise to terms that scale with polynomial
powers. This result for a perturbation to the idealized
moment equation seeds SINDy’s f(x).

First, we nondimensionalize the moment deviations to
make the values closer to unity to assist the optimization
procedure by not making the entries of the matrix too large

𝛿⟨𝜁𝜂⟩
⟨𝜁𝜂⟩ ≡ ⟨𝜁𝜂⟩WARP − ⟨𝜁𝜂⟩mom.

⟨𝜁𝜂⟩WARP
. (5)

We assume a profile for FTR quadrupole (de)focusing

𝐾𝑞𝑚
(𝑧) = 1

1 + 𝑒−𝜅(𝑧−𝑞start,𝑚)⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑧− rise up

+ 1
1 + 𝑒𝜅(𝑧−𝑞end,𝑚)⏟⏟⏟⏟⏟⏟⏟

𝑧+ fall down

−1 . (6)

The nondimensionalization, Eq. (5), and the assumed
quadrupole profile, Eq. (6), seed SINDy’s f(x) with polyno-
mial terms going to second order

𝑓𝑙(x) ≈
2

∑
𝑖,𝑗,𝑘=0

[𝜉poly. 𝑧𝑖 (𝛿⟨𝑥2⟩/⟨𝑥2⟩)𝑗 (𝛿⟨𝑦2⟩/⟨𝑦2⟩)𝑘]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

polynomial

+
2

∑
𝑖,𝑗,𝑚=0

[𝜉quad. (𝛿⟨𝑥2⟩/⟨𝑥2⟩)𝑖 (𝛿⟨𝑦2⟩/⟨𝑦2⟩)𝑗 𝐾𝑞𝑚
(𝑧)]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
polynomial + quadrupole

.

(7)
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RESULTS
Polynomial

Figure 3 shows the result learned SINDy dynamics of
the normalized moment difference, Eq. (5), using only the
polynomial terms in Eq. (7). Note that even for this limited
dataset of only one trajectory in a lattice of 0.3 m how the
overall structure of the moment deviations can be captured.

Figure 3: This figure shows the normalized moment differ-
ence 𝛿⟨𝜁𝜂⟩/⟨𝜁𝜂⟩ in color and the learned SINDy’s learned
trajectory in black based on the polynomial basis functions,
Eqs. (4) and (7).

Polynomial Plus Quadrupole
Figure 4 shows the result for learned SINDy dynamics

of the normalized moment difference, Eq. (5), using only
the polynomial terms in Eq. (7). Note how the first twist
in the data occuring at 5 mm along the beamline is more
accurately captured than in Fig. 3. However, there is a larger
deviation from the overall trajectory at the second twist.
Larger data sets with more trajectories for the beam will
assist in reducing such errors, and is a future research avenue.

Figure 4: This figure shows the normalized moment differ-
ence 𝛿⟨𝜁𝜂⟩/⟨𝜁𝜂⟩ in color and the learned SINDy’s learned
trajectory in black based on the polynomial and polynomial
plus quadrupole basis functions, Eqs. (4) and (7).

Comparison between Distributions
Although the overall moments between various distribu-

tions and the idealized moment code are similar, the granular
structure of the beam’s trace space is heavily dependant on
the initial distribution. Figures 5(a) and 5(b) shows a direct
comparison between an initially K-V beam and an initially

Rectangular beam. Thee differences are not captured in only
second order moments.

(a) (b)

Figure 5: Configuration space comparison for 5 keV, 5 mA
beams. (a) K-V (𝑥, 𝑦) projection. (b) Rect. (𝑥, 𝑦) projection.

A deeper understanding of the how differences between
theory and real distributions is required to control beam
dynamics on a finer scale, a scale that will be approached as
beams become more intense.

CONCLUSION
We believe SINDy is a promising method that enables the

intensification of accelerator commissioning by uncovering
underlying beam dynamics. We have shown both recover-
able beam dynamics in rings [2] in prior work and also how
deviations from idealized solutions can be captured with
interpretable, physics-based functions in a limited dataset.
With this methodology we aim to develop a Predictive and
Productive framework for beam dynamics with high fidelity.
We have yet to explore how differences between more real-
istic distributions like the rectangular distribution, Eq. (1),
and note that more moments of the matrix will be necessary
to close the second moment differential system1. We seek
to uncover how these moments (and perhaps higher order
ones) may be used to compose invariants of motion for the
beam that are not tractable analytically [7].

ACKNOWLEDGEMENTS
The authors would like to than Daniel P. Lathrop for col-

laborative discussions and constructive critiques. Work sup-
ported by US DOE-HEP grants: DE-SC0010301 and DE-
SC0022009.

REFERENCES
[1] S. Nagaitsev et al., “Accelerator and Beam Physics Research

Goals and Opportunities,” 2021.
doi:10.48550/arXiv.2101.04107

[2] L. A. Pocher, T. M. Antonsen, L. Dovlatyan, I. Haber, and
P. G. O, “Optimizing the Discovery of Underlying Nonlinear
Beam Dynamics,” in Proc. NAPAC’22, Albuquerque, NM,
USA, 2022, pp. 335–338.
doi:10.18429/JACoW-NAPAC2022-TUZE3

1 The terms corresponding to the emittance 𝜀𝜎 and angular momentum
⟨𝐿⟩ in Eq. (3) are composed of second order moments.



14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-THPL036

MC6.A27: Machine Learning and Digital Twin Modelling

4505

THPL: Thursday Poster Session: THPL

THPL036

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.



[3] B. M. de Silva, K. Champion, M. Quade, J.-C. Loiseau,
J. N. Kutz, and S. L. Brunton, “Pysindy: A Python package for
the Sparse Identification of Nonlinear Dynamics from Data,”
2020. doi:10.48550/arXiv.2004.08424

[4] A. A. Kaptanoglu et al., “Pysindy: A comprehensive Python
package for robust sparse system identification,” Journal of
Open Source Software, vol. 7, p. 3994, 2022.
doi:10.21105/joss.03994

[5] L. Dovlatyan, B. Beaudoin, S. Bernal, I. Haber, D. Sutter, and
T. Antonsen Jr, “Optimization of flat to round transformers

with self-fields using adjoint techniques,” Physical Review
Accelerators and Beams, vol. 25, p. 044 002, 2022.
doi:10.1103/PhysRevAccelBeams.25.044002

[6] D. P. Grote, A. Friedman, J.-L. Vay, and I. Haber, “The WARP
Code: Modeling High Intensity Ion Beams,” in AIP Confer-
ence Proceedings, American Institute of Physics, vol. 749,
2005, pp. 55–58.

[7] G. Rangarajan, A. Dragt, and F. Neri, “Generalized Emittance
Invariants,” in Proc. PAC’89, Chicago, IL, USA, Mar. 1989,
pp. 1280–1283.



14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-THPL036

4506

MC6.A27: Machine Learning and Digital Twin Modelling

THPL036

THPL: Thursday Poster Session: THPL

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.


