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Abstract

Methods for manufacturing and characterizing permanent-magnet-based short-period undulators are presented. Two fabrication
methods, differing by the dimension range of their magnetic period, are described: the mini-undulator, with magnetic periods
ranging from 1 mm to 200 pm, fabricated by laser micromachining bulk permanent magnets; and the micro-undulator, with
magnetic periods from 200 pm to 10 pm, fabricated by electroplating or sputtering a hard magnetic material onto silicon. The
undulator gaps vary from 500 um down to tens of microns, corresponding to the reduction of the magnetic period. Undulator
peak magnetic fields can reach up to 0.7 T while maintaining a reasonable undulator gap. Using these short-period undulators,
high-photon-energy radiation can be generated at lower electron beam energies compared to current state-of-the-art undulators.
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1. Introduction

Magnetic undulators are used in synchrotron sources to create high brightness, narrowband electromagnetic
(EM) radiation—typically visible light up to X-ray—by perturbing the trajectory of relativistic electrons [1]. The
undulator establishes a spatially varying magnetic field through which the electron beam passes such that the EM
radiation propagates on-axis with the electron beam. Undulators generally rely on assemblies of either
electromagnets or permanent magnets to generate the periodic magnetic field patterns with peak field intensities in
the range of 0.1 - 1.5 T.

An undulator is characterized by the dimensionless undulator parameter:
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K =0.9337B,[T]A,[cm] (1)

where By is the peak magnetic flux density of the sinusoidally varying magnetic field and 4, is the spatial period of
the magnetic field. For a typical undulator with magnetic field on the order ~1 T and a period of ~1 cm, K ~ 1 [2].

The non-dimensional undulator parameter governs the energy bandwidth and brilliance of the resultant radiation
[1]. To maximize the spectral purity of the EM radiation, short pole-pitch (K<<1) undulators are desired [3]. The
fundamental wavelength of the radiation is given by:

rad_z)/z 2 2)/2 ()

which reduces as shown for K<<1, where y is the Lorentz factor of the relativistic electrons.

A major application area for undulators is generation of soft and hard X-rays. Assuming a conventional
undulator with a period of 5 cm, achieving desirable X-ray photon energies (>1 keV) requires electron beam
energies in excess of 2 GeV. While such beams exist in large-scale storage-ring and linear accelerator facilities,
there is growing interest for more compact and more accessible narrowband X-ray sources. One path to achieve
this goal is to shrink the period, 4,, of the undulator. For example, a 100x reduction in period length (e.g. from 5 cm
down to 500 pm) would reduce the required electron beam energy from 2 GeV down to only 200 MeV to produce
the same wavelength of radiation.

Alternatively, coupled with high beam energies, miniaturized undulators could conceivably enable generation of
even higher-energy monochromatic beams, such as very hard X-rays and even gamma radiation. There is currently
strong interest in the medical and scientific communities to generate these higher bands of EM radiation to open
new doorways in material science, medical therapy, etc. [4] [5]

Generating higher-energy photons from lower-energy electron beams is naturally attractive, but reducing the
undulator period is not without cost. First, reducing 4, also proportionally reduces K, which results in fewer emitted
photons of a higher energy. Both electromagnet and permanent-magnet based undulators are material limited in
their maximum magnetic field strength By, so there is no obvious way to compensate for this reduction in K. There
are also some practical challenges. To maintain sufficient magnetic field strengths, the undulator’s air gap (between
top and bottom magnet arrays) must also be scaled down proportionally. This narrowed gap demands strict beam
alignment and low beam emittances in order to pass the electrons through the structure without beam scraping.

Reduced-pitch undulators based on micromachined electromagnets [6], hybrid permanent micropoles [7], and
superconductors [8] have been previously explored. Superconducting approaches are considered more exotic and
not further discussed, but of the other two, we argue there are clear advantages to permanent magnets rather than
electromagnets in reduced-scale undulators. First, a PM does not require electric power to generate the magnetic
field, nor does it require active cooling. Small-scale undulators will generally be placed within the vacuum of the
beam-line, so vacuum compatibility and minimization of feed-throughs is a major consideration. Second,
permanent magnets can be scaled down and maintain their same field strength, whereas in electromagnets a linear
increase in the current density is required as the electromagnet is scaled down [9] [10]. One drawback however is
that PM-based undulators have fixed magnetic field strength and period length once assembled. Conventional
undulators often require shimming to fine-tune their magnetic field profile [1]; such approaches may be difficult to
replicate at small scales.
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In this paper, we describe two different manufacturing technologies to enable short-period, permanent-magnet
undulators. The focus here is on simple pole arrangements with two poles per period (north-south-north-...) in
order to develop and demonstrate the concepts. Herein, “mini” denotes undulators fabricated by top-down laser-
micromachining of bulk materials with undulator periods from millimeter length scales down to ~200 um. We then
show methods toward “micro” undulators that employ magnetic films deposited onto silicon substrates, enabling
undulator periods from ~200 um down to potentially below 10 um.

Nomenclature

PM permanent magnet

CogoPtyy Cobalt-rich Cobalt-Platinum, permanent magnet material
NdFeB Neodymium-Iron-Boron, permanent magnet material
SmCo Samarium-2-Cobalt-17, permanent magnet material

2. Undulator fabrication

In this section, the fabrication approaches for the mini and micro undulators are presented. For mini-undulators,
a top-down approach of laser micromachining followed by microassembly is used. For micro-undulators, bottom-
up microfabrication techniques—including electroplating and/or sputtering—are used to create magnetic films tens
of microns thick followed by selective magnetization to create the magnetic pole patterns. With these two methods
of fabrication, it is feasible to create undulators with periods ranging from 1 mm down to below 10 um.

2.1. Mini-undulator

For the fabrication of a mini-undulator, the first requirement is to use high-energy-product PM materials that are
as thin as can be bulk-manufactured and that are also able to withstand the stresses of laser micromachining [11].
The rare-earth substrates used here are bulk pieces of 300-pum-thick samarium-2-cobalt-17 (SmCo). These samples
are first laser machined by a Nd:YLF IR laser (Resonetics) with pulse width = 100 ps, pulse period = 1 ms, cut
speed = 30 um/s, with air assist above and vacuum underneath. Using this approach, we have previously
demonstrated that the laser micromachined SmCo pieces retain more than 80 % of their magnetization even when
machined down to less than 50 pm in width [11]. When cut smaller, the material properties degrade quickly, which
is attributed to laser-induced damage. The laser machining hence sets a lower limit for the mini undulator period at
about 200 pm.

Using laser-micromachining, the magnets are cut into comb-like structures that can be assembled to form
spatially varying magnetic field profiles [12]. The initial laser-machined shape is shown in Figure 1(a). This comb
structure is used to help make the undulator design modular (any number of periods) and to provide a backbone
that can maintain the desired period. After laser machining, the magnets are cleaned in a citric acid solution (15 %
citric acid, at 80 °C, for 5 min), dipped in an ultrasonic bath, and vapor-coated with a protective 5-pm-thick
parylene layer. The comb structures are then magnetized through the thickness direction in a 7 T superconducting
magnet (Bruker DSX 300), creating either “north” or “south” arrays. The different comb arrays are eventually
assembled as shown in Figure 1(b) with their respective magnetization directions [12]. It should be noted that this
arrangement is a favorable placement for the magnetic poles, so the comb arrays easily assemble into these
interdigitated structures.




B.A. Peterson et al. / Physics Procedia 52 (2014) 36 — 45

Fig. 1. (a) Top-view photograph of a comb structure after laser micromachining and (b) rendering of an assembled PM array with an alternating
magnetic field

The magnet arrays are then placed in a recessed cavity in a non-magnetic frame (aluminum in this case) and
adhered to it using vacuum-safe epoxy(e.g. Varian TorrSeal); this frame provides the mechanical bracketing for
eventual external assembly. The magnets and frame are then polished using a rock slide polishing tool with
sandpaper and polishing papers, see Figure 2(b). To maintain a known gap, we laser machine shims from non-
magnetic (copper in this case) shim stock. An assembled undulator thus comprises two frames, each housing a
magnet array, which are fastened together but separated by two copper shims—one on each long edge of the
magnet arrays. The region between the two facing magnet arrays is the gap through which the electron beam will
pass. For beamline experiments, the undulator is then placed into an adapter allowing for precise alignment of the
2-mm-wide by 0.2-mm-tall gap with any electron beam or magnetic field measurement device. Figure 2 shows a
photograph of a fully assembled undulator in an adapter along with the top view of a single frame bearing a 400—
pm—period magnet array. The array comprises fifty magnet pole pairs.

4 20 mm, 50 periods

Magnet Array

Frame

Frames bearing
magnet array

Fig. 2. (a) Photograph of the front of an assembled undulator in an adapter; (b) Top-view photograph of a magnet array (another magnet array
placed directly above creates an undulator); and (c) Zoomed front-view photograph of the assembled undulator with frames and shims visible.

2.2. Micro-undulator

For the development of the micro-undulator, the initial task is to fabricate PM films that will subsequently be
magnetized to obtain the alternating magnetic poles of the undulator. In this work, two different materials are
considered: electroplated Co-rich Co-Pt films and sputtered NdFeB. In brief, the Co-rich Co-Pt (CogPty) films are
electroplated onto Cu seed layers on silicon substrates using the processes described in [13]. Under the right
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deposition conditions, these films exhibit a strong magnetocrystalline anisotropy in the as-deposited state, without
any post-deposition temperature treatment. The NdFeB films are sputtered at 400 °C onto silicon substrates using
the process discussed in [14]. Films of 100-nm-thick tantalum are used as adhesion buffer and capping layers. A
post-deposition annealing treatment at 750 °C for 10 min is needed to crystallize the hard magnetic phase, so as to
achieve high values of coercivity. The demagnetization curves of these films—measured by vibrating sample
magnetometer—are shown in Figure 3 for a 15-pm-thick electroplated CogoPty and a 5-pm-thick sputtered NdFeB
film. They present a coercivity of 200 kA/m and 840 kA/m and a remanence of 0.58 T and 1.3 T, respectively.
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Fig. 3. Demagnetization curves (B vs. H) for Co-rich Co-Pt, and NdFeB.

A selective magnetization process [15] is then used to obtain the alternating magnetic pole patterns necessary
for use in an undulator. Figure 4 shows the procedure used for magnetic patterning of these thin films. The
magnetic layer is first pre-magnetized to induce a magnetization in the north direction through the thickness of the
entire layer. A micromachined soft-magnetic magnetizing head is then brought in contact with the magnetized
layer. In this case, a 125—um-thick iron (Fe) sheet is cut using a 355-nm wavelength laser to form the magnetizing
head (Oxford Lasers). The soft magnetizing head is composed of a periodic array of 2-mm-long rectangular slits
with slit widths ranging from 100 um down to 30 pm. Figure 5 shows the top view of the three magnetizing heads
used in this work.

With the magnetizing head in place, a pulsed magnetic field is applied in the reverse direction as shown in
Figure 4(c). Due to the high magnetic saturation magnetization (~2.1 T) and high relative permeability of iron (y, =
4,000), the regions that are in direct contact with the magnetizing head (covered regions in the figure) experience a
stronger reversal field than the uncovered regions, thus inducing a south pole in the covered regions. A pattern of
alternating poles (north-south-north-...) is thus produced in the hard magnetic film; this forms the magnet array for
the micro-undulator. As in the mini-undulator case, to form a complete undulator, two identical magnet arrays
would be assembled with a gap set by spacer shims. Shims for the micro-undulator can be machined and placed or
deposited via microfabrication on the silicon substrate itself.
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Fig. 4. Fabrication process: (a) Begin with unmagnetized electroplated CogoPt, or sputtered NdFeB film; (b) Magnetize the film; (c) Bring film
in contact with magnetizing head and apply a reversal field; (d) Magnetic patterns are formed based on the features of the magnetizing head.
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Fig. 5. Top view of Fe magnetizing heads for (a) 200—um—period, (b) 120—pm-period, and (c) 65—pm—period magnetic patterns.

3. Magnet array characterization

Due to the small spatial size of the magnetic field patterns of these mini- and micro-undulators, characterization
of the magnetic fields presents significant challenges. Multiple methods exist for measuring fully assembled large-
scale undulators including pulsed-, vibrating-, and moving-wire systems, as well as Hall-effect sensor probes [1].
For mini- and micro-undulators we have successfully used a scanning Hall-effect sensor and magneto-optical
imaging over a single open-faced magnet array. Characterizing the magnetic fields in the narrow gap of a
completely assembled mini or micro undulator remains an open challenge.

3.1. Scanning Hall probe system

Hall-effect sensors have long been used to measure the magnetic flux density inside undulators. Most
commercial Hall probes are based on sensors which have dimensions on the order of, or larger than, mini-
undulator period lengths. This causes averaging to occur over the width of the sensor active area. As such, for
measurement of mini- and micro-undulators, more specialized high-resolution Hall sensors are required with active
sensing areas smaller than a single pole width (i.e., 1 pm — 10 pm).

Scanning the Hall probe over a magnet array provides a detailed view of the magnetic flux density over a single
magnet array. Due to the size of the mini- and micro- undulators, the sensor must also be in close proximity
(<200 pm) to the surface of the magnets and is only capable of sensing the field perpendicular to the plane. Figure
6 shows Hall probe measurements taken ~80 um above the surface of four magnet arrays with differing period
lengths (4, = 400 pm, 300 pm, 250 um, and 230 pm). Due to superposition of magnetic fields, the on-axis field in
an ideal undulator (two vertically stacked, identical arrays) would be approximately double the field strength of a
Hall probe measurement over a single array. Using this fact and simulations of the magnetic fields (presented in
the next section), we are able to predict, with reasonable accuracy, the field within a mini- or micro- undulator.
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Fig. 6. Magnetic flux density measurements from a scanning Hall-effect sensor taken ~80 pm above the surface of four, laser-machined “mini”
magnet arrays (period lengths of 400 um, 300 pm, 250 um, and 230 um) along what would be the undulator axis as a function distance.

The measurement results, taken using the Hall-effect sensor over an open magnet face, are then compared with
a finite-element simulation (COMSOL Multiphysics) of the predicted fields. Figure 7 shows a comparison of the

magnetic fields from a measured magnet array and a COMSOL Multiphysics simulation, indicating good
agreement.
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Fig. 7. Magnetic field measurements (a) and respective COMSOL simulations (b) along the centerline of a 300-um-period magnet array at
various heights (80, 100 and 150 pm) from the surface of the magnet.

3.2. Magneto-optical imaging film

As a complement to the scanning Hall probe magnetic field measurements, magneto-optical indicator films
(MOIF) are used to provide a qualitative image of the stray field pattern produced by the magnet arrays. Placing a
MOIF layer in contact with the surface of a magnetic array facilitates a microscopic optical image of the magnetic
fields by using a microscope with a polarized illumination and a polarization analyzer. It functions by using the
Faraday effect, which describes how the polarization of light rotates as it passes through a magnetic material [16].
The uniaxial MOIF used here, which is made of bismuth-substituted yttrium iron garnet (Bi:YIG), which has a
high Faraday rotation coefficient, reveals the direction of the z-component of the stray field produced by the
magnet array upon which it is positioned. Such a MOIF provides a spatial resolution of about 10 pm. The
possibility of using MOIF for quantitative imaging of the field patterns produced by micron-scaled magnets is also
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being explored. This may be necessary for measuring the magnetic fields from the CogoPtyo and NdFeB thin films,
because the current scanning Hall probe measurements are too far from the surface of the thin films, whereas the
height at which the MOIF measures the magnetic field is its thickness (~1 um).

The MOIF is used to reveal the magnetic field pattern (north or south) produced by the magnet arrays of period
lengths 200 pm, 120 um, and 65 pm. Figure 8 shows the magnetic field patterns obtained by selective
magnetization of both the CogPt,;o and the NdFeB thin films. The patterns in the CogoPty films are obtained using
a reversal magnetic field of 0.5 T, whereas the patterns in the NdFeB films require a reversal field of 1.5 T due to
the higher coercivity of the NdFeB film (840 kA/m, compared to 200 kA/m for CogPt;;). Note that the areas
outside the selectively magnetized regions do not present enough magnetic fields to saturate the MOIF, and hence
show the natural, labyrinth-like domain structure of the YIG layer.

i i

Fig. 8. MOIF images of a (a & d) 200—pm-—period, (b & ) 120—pum—period, and (¢ & f) 65—um—period magnetic pattern on (a-c) a 15—um-—thick
electroplated Co-rich CoPt film and (d-f) a 5—um-—thick sputtered NdFeB film.

PRETEEp——

4. Undulator simulations

As mentioned previously, simulations provide a check for our Hall probe measurements, but can also be useful
for designing new geometries and modifying our undulator to produce specific EM radiation spectra. Thus, finite-
element simulations (COMSOL Multiphysics) are additionally used to simulate the B-field produced by a micro-
undulator modeled in 2D, having 50 periods. The arrays are designed with a 15—pm—thick hard magnetic film with
a 50—pm period, north and south poles having the same width. The simulation is performed with gaps ranging from
10 um to 50 um, with the nominal gap value being 20 pum for the 15—um-—thick film. The two hard magnetic
materials considered for the simulation are CogyPt;o and NdFeB.

The undulator properties expected from using these two materials are listed in Table 1 along with mini-
undulator properties for comparison. The B-field expected on-axis for the undulator made from the NdFeB film is
about four times stronger than the B-field of the undulator made from CogPt;. Figure 9 shows the on-axis peak
B-field from the 50—pm—period NdFeB undulator as a function of undulator gap size.
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Fig. 9. Simulated peak on-axis B-field from the NdFeB undulator as a function of gap size.

Table 1: Summary of mini- and micro-undulator designs.

Undulator magnetic material Gap PM thickness Period B-field (T) K

(um)  (um) (um)  (peak, on-axis)
Laser machined SmCo 200 200 400 0.23 0.0086
Plated Co-rich Co-Pt 20 15 50 0.101 0.00047
Sputtered NdFeB 20 15 50 0.386 0.00180

5. Summary

We have shown the feasibility of fabrication for miniature undulators with period lengths from 1 mm down to
tens of microns with at least one complete undulator prototype at a period length of 400 pm. These undulators will
allow for future linear accelerators to be smaller and more portable, for a given desired output energy, leading to
greater efficiency and accessibility throughout the medical and scientific communities. Future developments
include the characterization and testing of these undulator structures in photon-generation experiments. Also, more
complex magnetic arrangements with correspondingly higher magnetic field levels are envisioned in future work.
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