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Abstract

Non-supersymmetric Grand Unified SO(10) x U(1)pq models have all the ingredients
to solve several fundamental problems of particle physics and cosmology — neutrino
masses and mixing, baryogenesis, the non-observation of strong CP violation, dark
matter, inflation — in one stroke. The axion — the pseudo Nambu-Goldstone boson
arising from the spontaneous breaking of the U(1)pg Peccei-Quinn symmetry — is the
prime dark matter candidate in this setup. We work out the constraints imposed on
the axion mass by gauge coupling unification. We also discuss the cosmological and
phenomenological implications.

We consider the described models in the larger context set by combining the Peccei-
Quinn symmetry with new gauge symmetries in different ways. We classify the relevant
models and give a general procedure by which the physical axion must be identified.
Additionally, we apply this procedure to multiple examples. Finally, we discuss the
possibility of obtaining the Peccei-Quinn symmetry as an accidental symmetry.
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Zusammenfassung

Das Standardmodell der Teilchenphysik und Kosmologie wird derzeit von verschiede-
nen Problemen geplagt. Einige davon sind: die Unerklértheit der Neutrinomassen und
-mischungen, die Baryogenese, die geringe Stiarke der CP-verletzenden starken Wechsel-
wirkungen, Dunkle Materie und Inflation. Alle genannten Probleme kénnen potentiell
in nicht-supersymmetrischen vereinigten SO(10) x U(1)pq Theorien auf einen Schlag
gel6st werden. Das Axion ist das pseudo Nambu-Goldstone Boson der spontan gebroch-
enen U(1)pq Symmetrie. Es ist auch der beste Kandidat zur Erkldrung Dunkler Materie
in diesen Modellen. Wir berechnen, welche Einschréankungen an die Axionmasse sich
aus der Bedingung, dass die Eichkopplungen an einer hohen Scala vereinheitlicht sein
sollen, ergeben. Kosmologische und phénomenologische Implikationen werden disku-
tiert.

Die genannten Modelle sind in einem grosseren Kontext zu betrachten, der sich dadurch
ergibt, dass die Peccei-Quinn Symmetrie sich auf unterschiedliche Weisen mit neuen
Eichsymmetrien kombinieren lésst. Die verschiedenen Modelle werden Kklassifiziert.
Ausserdem bestimmen wir eine allgemeine Regel, nach der das physikalische Axion in
allen Modellen identifiziert werden muss, und wenden sie auf verschiedene Beispiele an.
Die Moglichkeit eines Modelles, in dem die Peccei-Quinn Symmetrie zuféllig auftritt,
wird gepriift.
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CHAPTER 1

Introduction

Unification of two old ideas

This thesis deals with the combination of two originally separate ideas — the Peccei-
Quinn solution [I] of the strong CP problem as well as the embedding of the Standard
Model (SM) gauge group in a Grand Unified Theory (GUT) [2]. We will motivate these
ideas separately starting with the former, demonstrating the underlying connections in
the process. Both concepts were already invented in the 80’s. Therefore, most results
in this thesis might have been obtained much earlier in principle. In a sense, this work
represents a missing piece in the existing literature. Along the way we will point out
where our work complements existing older papers.

Symmetries in particle physics

Let us start by considering the Standard Model of particle physics. It describes all
elementary particles in terms of excitations of quantum fields. There are certain trans-
formations of these fields that do not change the physics, i.e. the predictions of the
model. Such transformations are generally referred to as symmetries.

The origin of a symmetry in the mathematical description of a system can be twofold —
one option being that the symmetry has a physical meaning itself, in which case there is
a conserved observable quantity under the transformation. Such a symmetry describes
a physical property of the system and is referred to as a global symmetry. Alternatively,
the symmetry could be a mathematical artifact — in this case, it describes redundant
degrees of freedom in the chosen description. In principle, one can get rid of this re-
dundancy by passing to an equivalent description of the system. In this case, we speak
of a local or gauge symmetry.

An important property of a symmetry is whether or not it is anomalous — in general, a
theory can be classically invariant under a transformation, but the transformation can
fail to be a symmetry if one considers the quantum theory. In this case, the (classi-
cal) symmetry is said to be anomalous. While a consistent quantum field theory can
only contain anomaly-free gauge symmetries, there is no such requirement for global
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symmetries [3].

Both types of symmetries — gauge and global — play important roles in particle physics.
However only gauge symmetries are assumed as fundamental in the Standard Model.
All global symmetries in the SM are accidental, i.e. they appear due to the arrangement
of SM particles, but are not imposed as fundamental assumptions. In extensions going
Beyond the Standard Model (BSM), oftentimes global symmetries are introduced “by
hand”, meaning that they are proposed as fundamental properties of the model.

There are “folklore” arguments against the assumption of global symmetries as fun-
damental properties of the system [4, 5] [6l [7]. These arguments usually assume some
knowledge of a theory of quantum gravity and are not undisputed, especially in the case
of discrete global symmetries. In any case it is usually agreed upon that the assumption
of fundamental gauge symmetries is more aesthetically pleasing than the assumption of
fundamental global symmetries.

An anomalous global symmetry

Nonetheless, a particular global anomalous symmetry — U(1)pq — has attracted the
attention of model builders for many years. The so-called Peccei-Quinn symmetry, if
present, allows a dynamical solution of a long-standing problem of the Standard Model
— the question of why the strong interaction does not violate the combined symmetry
of charge (C) and parity (P) conjugation to a larger amount. Naively, the coefficient
of the CP violating term in the strong interaction should be of order one, but the non-
observation of the electric dipole moment of the neutron limits this strength to less
than 10719, This disparity between expectation and observation is known as the strong
CP-problem. Various solutions to the strong CP problem have been suggested, the
Peccei-Quinn solution being arguably the most famous one.

In the proposed models, the Peccei-Quinn symmetry is eventually broken by non-
perturbative QCD effects. The corresponding pseudo-Goldstone boson, called the azion
[8, @], is an excellent Dark Matter candidate |10, 11]. In [12] it was pointed out that
axion models can also provide a natural candidate for the inflaton field, thereby ex-
plaining another two phenomena which cannot be understood in the context of the
pure Standard Model of particle physics. The fact that these models can solve three
SM problems at once makes them particularly interesting. A recent proposal called
SMASH [13] (Standard Model-Axion-Seesaw-Higgs portal inflation) has shown how a
simple axion model can be combined with the introduction of heavy right-handed neu-
trinos and thereby also explain both neutrino masses and the baryon asymmetry of
the universe, as well as give a mechanism for inflation. The SMASH model ergo solves
five fundamental problems of modern particle physics and cosmology in one stroke. An
important feature of the model is that the scale of Peccei-Quinn breaking is associated
to the masses of the heavy neutrinos — they obtain their masses from Yukawa couplings
to the Peccei-Quinn breaking scalar.

It is common to most simple axion models that the scale of Peccei-Quinn breaking —
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and therefore the mass of the axion — is not predicted by the model. In this thesis we
consider models in which the PQ solution is combined with a unified gauge group, and
derive constraints on the axion mass. In principle, there are different ways in which the
PQ symmetry can be combined with gauge symmetries. These different combinations
are discussed in the following section.

Combining different types of symmetries

In this thesis we will deal with both types of symmetries — global symmetries and local
symmetries. A certain anomalous global symmetry — the so called Peccei-Quinn symme-
try — is a fundamental ingredient to a solution of the strong CP problem, while Grand
Unified Theories (GUTS) usually assume a large gauge symmetry which can contain the
SM gauge group. A global Peccei-Quinn symmetry and extra gauge symmetries can
appear in different combinations in SM extensions. We have summarized the different

options in table

SM + extended gauge group SM embedded in unified gauge group

PQ by hand A B
PQ accidental C D

Table 1.1: Various combinations of gauge symmetries and Peccei-Quinn symmetry
in BSM model building. Unified gauge groups are separated from other,
non-unified gauge extensions in this table. The main focus of this thesis
is on models of type B.

Of course the horizontal differentiation is somewhat artificial — clearly a unified gauge
group is also an extension of the SM gauge group. As a unified gauge group is aesthet-
ically more pleasant and often more predictive than a simple extension, for example by
an extra gauge factor, we will keep this distinction.

Probably the most pleasing option D — in which the Peccei-Quinn symmetry follows
from the imposed gauge symmetries — is unfortunately also the hardest to realize. We
will discuss briefly the existing literature on these types of models in the context of
GUT model building.

It is relatively easy to propose a model of type C, i.e. a model with an extended gauge
symmetry which contains an accidental Peccei-Quinn symmetry - an example with an
extra U(1) gauge factor has already been proposed in 1992 [14]. As these types of
models contain stable charged fermions, they might suffer from a cosmological problem
[15]. Consequently we suggest an extension in which all exotic charged fermions have
couplings to SM particles and can therefore decay, avoiding the cosmological problem.
Models of type A are considered less interesting for our purpose, since they lack the
predictivity of grand unification and the elegance of an accidental PQ symmetry. We
will discuss models of all classes except A. Our main focus will be on models of type
B — while they do suffer from the difficulties involving artificial global symmetries, the

3
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Peccei-Quinn symmetry is well motivated by the GUT model building process, as we
will explain in the following.

GUT model building

The fundamental gauge group associated with the Standard Model is SU(3).xSU(2)r, X
U(1)y. An obvious question is raised by the seemingly complicated structure. The
attribute “complicated” evidently depends heavily on the chosen description of mathe-
matics. One may however apply a criterion of minimality and realize that a coupling
constant is associated to each of the three simple groups. As it is possible to embed
above gauge model into a model with only one gauge coupling, it is a very appealing
idea to propose a larger, unified symmetry which is broken down to the SM at a certain
high scale. A mechanism to break a larger symmetry down to a smaller one is already
present in the Standard Model — the Higgs mechanism used to break the electroweak
symmetry — and therefore does not require the introduction of new concepts.

The GUT proposal entails a requirement on the running gauge couplings of the model,
where the “running” refers to the fact that the strength of each of the coupling constants
depends on the energy scale at which they are observed. With increasing energy, the
three gauge couplings approach each other. In a consistent GUT model with one-step
GUT breaking, all three couplings must unify at one scale. It turns out that this re-
quirement is not fulfilled in the simplest GUT extensions — i.e. the three couplings do
not meet at one point. In one-step GUT models without additional particles, this effect
invalidates the unification. One can circumvent this problem by introducing additional
particles or choosing a larger unifying gauge group and additional intermediate symme-
try breaking steps.

The choice of unifying gauge group is up for debate - various proposals of various degrees
of minimality exist in the literature, as we will discuss in this thesis. The group SO(10)
is a particularly convincing choice as its smallest spinorial representation — the 16 —
allows for a very natural embedding of one generation of SM fermions. By demanding
an intermediate symmetry breaking scale, one can solve the problem of gauge coupling
unification. The experimental constraints from proton decay are not in tension with
many of these models. Like multiple authors before, we therefore consider SO(10) a
particularly interesting group and study it in more detail in this thesis.

Despite the aforementioned advantages, the Yukawa sector of pure SO(10) theory lacks
predictivity in realistic models. It was therefore suggested to introduce a Peccei-Quinn
symmetry which forbids one of the potential Yukawa couplings, thereby making the
model more predictive [16} [I7]. This argument shows that in SO(10) GUT models, the
Peccei-Quinn symmetry is particularly motivated, despite the fact that it needs to be
imposed by hand — i.e. we are dealing with models of type B according to table [I.1]
The main work of this thesis (which also resulted in a previous publication, [1§]) is
therefore focused on SO(10) models with an additional global U(1)pg symmetry.
Models with SO(10) as a fundamental gauge group were already considered in the 70s

4
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[19, 20]. The combination of GUT symmetry with the Peccei-Quinn symmetry was first
proposed in terms of SU(5) model building [21I] in 1981. The first proposal using an
SO(10) gauge group and a Peccei-Quinn symmetry was made in the same year [22]. The
same paper already discusses the possibility of embedding an automatic Peccei-Quinn
symmetry as an accidental symmetry of an Eg gauge group, as well as the impossibility
of doing the same in an SO(N) gauge group. No numerical analysis of the coupling uni-
fication requirement was made. In [23], a one-loop analysis of the relevant couplings was
done for an SO(10) model containing a real 45 and complex 10, 16 and 126 represen-
tations. In the same year, a mechanism was proposed which allows for the embedding
of the discrete residual symmetry of the broken Peccei-Quinn symmetry into the center
of the gauge group, thereby evading the well-known domain-wall problem many axion
models suffer from [24]. This mechanism — which requires the introduction of exotic
fermions — finds application in one of the models considered in this thesis [25]. A sim-
pler form of this model (which does not involve exotic fermions) was considered in [26].
The model involves a complex 10 and a complex 126 representation to give Yukawa,
masses to the fermions. A 2-step symmetry breaking chain is employed, in which the
GUT symmetry is broken at a high scale by the vacuum expectation value (VEV) of
a 210 to an intermediate gauge group — the Pati-Salam group — which is broken down
to the SM gauge group at an intermediate scale, at which both the 126 as well as the
45 acquire their VEVs. This assumption implies that the Peccei-Quinn symmetry is
broken at the same scale as the B-L symmetryﬂ The authors find a Yukawa sector in
agreement with all data on fermion masses and mixings and analyze the gauge coupling
unification constraints at the one-loop order.

A 2-loop analysis which takes into account the appearance of threshold corrections at
the various symmetry breaking scales in an SO(10) model with an additional global
Peccei-Quinn symmetry is given in [27]. Here, however, the GUT breaking is done via
a 54 complex scalar, which leaves intact the so-called D-parity — a discrete symmetry
embedded in SO(10), which constrains the running of the gauge couplings at a high
scale.

We have filled a gap in the literature by analyzing the model used in [26] in more detail
and generality — we allow for independent breaking of U(1)g_, and U(1)pq and consider
the constraints from gauge coupling unification at the two-loop level. Furthermore, we
consider variations of said model in which the Peccei-Quinn symmetry is broken at the
unification scale or at an independent scale. For each of our models, we have calculated
the possible ranges of the axion mass and decay constant after imposing experimental
and theoretical limits.

An important result of this thesis is also the explicit construction of the axion in terms
of the fundamental scalar fields of the model and a general description of the procedure.

'B-L symmetry refers to the U(1) symmetry under which the quarks are charged by the difference of
baryon number (B) and lepton number (L). This symmetry often appears in the GUT to SM breaking
chain. It is the scale at which heavy-right handed neutrinos acquire their masses in models employing
the see-saw mechanism, i.e. in all models considered here.
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In particular, one must take into account that the axion must be gauge invariant and
perturbatively massless.

Our models give concrete physical predictions. A large fraction of the axion mass range
will be covered by axion experiments in the near future. In combination with proton
decay searches, some models might be falsified within the next decade.

Finally, a motivation for this thesis is the identification of candidate theory which could
be a grand unified version of the original SMASH model — a GUT SMASH. This idea
is plausible, as many of the mechanisms employed in SMASH can be applied in the
context of SO(10) GUT models as well. We comment on the conditions under which
each of our models could be a GUT SMASH candidate.

Structure of this thesis

Anomalies play an important role both for axion model building as well as for the
postulation of extended gauge groups with extra fermions. We briefly review anomalies
as well as the SM particle content in chapter 2] Axion models in general, including a
general way to construct the axion field, are reviewed in chapter [3| This chapter also
includes a proposal of an extended Barr-Seckel model which allows for exotic fermions to
decay to SM particles (section . In the following chapterwe discuss and motivate
model building using various unified groups. For a reader who is not familiar with group
and representation theory, appendix [B] provides a non-technical introduction and may
be beneficial to read for a better understanding of some of the concepts used in chapter
Ml Having motivated our choice of GUT, we specify three concrete SO(10) x U(1)pq
GUT models in chapter In this chapter, we present the specific models we have
analyzed. We identify the axion, the axion decay constant as well as the domain wall
number for each of these models.

Finally, the constraints on the axion mass from gauge coupling unification, proton decay
and other experimental limits are presented in chapter [} The beta functions necessary
for the numerical analysis are given in appendix |D| First steps towards a more detailed
analysis of the scalar spectrum of an exemplary model are undertaken in appendix [F]
We summarize our results and conclude the thesis in chapter [7}

Parts of the results discussed in this thesis have already been published in similar form
in [I8]. The relevant sections are marked accordingly.

Notation

Before beginning the discussion, we will introduce some of the notation that will be
used throughout this thesis.

We take the generators T of a Lie algebra to be hermitian, (7%)" = T, with structure
constant ¢ given by

[T, TP = ifebere. (1.0.1)
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The indices a, b and ¢ run from 1 to D, the dimension of the Lie algebra (i.e. the number
of generators). The representation matrices of a specific p-dimensional representation p
are denoted by T),. We define the normalized trace Tr over an arbitrary representation
of the Lie algebra as

1
Tr=—Tr,
25(p) *

The Dynkin index S(p) of a representation p is defined by Tr,T*T) = S(p)o™".
Therefore the normalized trace is independent of the chosen representation:

ﬁwﬂ:%W

2
€"P7 is the antisymmetric Levi-Civita tensor, with €239 =1,
The Dirac matrices are v* for u = 0,...,3, they obey the anti-commutation rule
{77} = —2¢", (1.0.2)
where ¢g" is the Minkowski metric with sign convention (+ — ——). We also define +°,

which anti-commutes with each of the four Dirac matrices and squares to the identity:

7° =iy 1y, (1.0.3)
{*.7"} =0, (1.0.4)
(v°)? = 1. (1.0.5)
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CHAPTER 2

Anomalies in the Standard Model

Motivation

The goal of this thesis is the construction of phenomenologically viable models of new
physics, which can solve as many problems of the Standard Model as possible. Anoma-
lies play an important role for model building - they will be reviewed in this chapter.
Since every model of new physics must necessarily reproduce the confirmed Standard
Model predictions, we start with a very brief review of the Standard Model of particle
physics. We concentrate especially on the fermion representations, since they are im-
portant for the choice of unified gauge group. After a general definition of anomalies in
section we briefly discuss the implications of the various types of anomalies. Finally
we consider a special case, the Standard Model coupled to an anomalous global U(1)
symmetry, in section [2.4]

2.1 Standard Model particle content

Fermions

The gauge group of the Standard Model (SM) of particle physics is SU(3)c x SU(2) 1, X
U(1)y. The SM fermions transform in various representations of this symmetry. In the
Weyl language, we have three generations of the following particles (for consistency, we
write all particles in their left-handed variation):

e ¢=(3,2,%), the left-handed quarks (SU(2)-doublets),
o u= (31, —%), the left-handed anti down-quarks (SU(2)-singlets),

e d= (3,1, %), the left-handed anti up-quarks (SU(2)-singlets),

l=(1,2, —%), the left-handed lepton doublets, containing both left-handed charged
leptons and left-handed neutrinos,

e ¢ =(1,1,1), the left handed anti-lepton singlets.

9



CHAPTER 2: ANOMALIES IN THE STANDARD MODEL

Two left-handed Weyl spinors and their right-handed conjugates are equivalent to a
Dirac spinor field and its conjugate. In the Standard Model for example, the left-
handed electron and the right-handed anti-electron together with their right-handed
conjugates (the right-handed electron and the left-handed anti-electron) combine to de-
scribe the electron and its anti-particle, the positron.

All of these particles acquire their mass through spontaneous symmetry breaking. The
couplings to the Higgs field H = (1, 2, %) are described by the Yukawa interactions:

Lyvuiawa = —Yu qHu — Y qH'd — Vi IHe. (2.1.1)

The 3-by-3 Yukawa matrices Y,, Yy and Y; need not be diagonal in general - they
describe the mixing between different generations of fermions. The Higgs itself takes a
non-zero vacuum expectation value (vev),

1 (o
(H) = 7 <v> (2.1.2)

with v = 246 GeV, so that above interactions become mass terms for the fermions.

Symmetry breaking

The non-zero Higgs vev v breaks the SU(2);, x U(1)y symmetry (leaving a U(1)gas
symmetry invariant) and thereby gives masses to the three gauge bosons W+ W~ and
Z 128, 29].

Finally, the SM also contains the eight massless gauge bosons of the unbroken gauge
group SU(3) (also known as gluons), and the massless photon - it is the gauge boson
of the unbroken group U(1)gas.

2.2 Chiral anomalies

Motivation

The requirement of anomaly freedom is an important one for the consistency of a quan-
tum field theory. Every consistent quantum field theory must contain only anomaly free
gauge groups — for a more detailed discussion of this statement refer to the end of this
section. In particular the fermionic SM representations are chosen in exactly the right
way to cancel all gauge anomalies.

Global symmetries, however, are not affected by this statement — in fact, a global
anomalous symmetry is a requirement for the most famous solution to the strong CP
problem. This is also the solution considered in this thesis. We therefore start with a
general introduction to anomalous chiral transformations.

10



CHAPTER 2: ANOMALIES IN THE STANDARD MODEL

Chiral transformation

A chiral transformation of a Dirac fermion f coupled to a single gauge group acts as
f o et T f, (2.2.1)

where T generate the transformation - we use the hat symbol to differentiate from
the generators of the gauge group, which will be denoted by T%. The symbols €
are the transformation parameters and should not be confused with the 4-index Levi-
Civita symbol. For an SU(N) symmetric transformation, a takes values in the range
1,...,N?2—1. In the case of a U(1) transformation, there will only be one transformation
parameter, the charge ay of a fermion f, such that T, = ag.

Above transformation may equivalently be written in terms of Weyl fermions (both for
abelian and non-abelian transformations). Using the projectors

1—7° 14+4°
v and R = —;’Y

L= (2.2.2)

we can decompose any Dirac fermion into left- and right-handed chiral Weyl fermions
frR=Rf and fr=Lf
Keeping in mind that {7°,v*} = 0, we find that
FR=f"'R=flLy" = (L)'’ = fi. (2.23)
On the chiral fermions, the chiral transformation acts as

fo— e T T (2.2.4)

fo—= T, fr— e T R,
Under a chiral transformation, the left- and right-handed fields transform in opposite
directions (as opposed to non-chiral rotations, under which fr and fg transform in the
same way). In this notation it is obvious that a non-dynamic mass term

—mff=—mfrfr —mfrfr (2.2.5)

is not allowed by the chiral symmetry.

Non-trivial transformation of the measure: the anomaly term

In a theory with only massless fermions, above transformation however leaves the La-
grangian invariant. It changes the integration measure of the corresponding path inte-
gral. This means that we have a quantity that is classically conserved, but not conserved
at the quantum level - this is the definition of an anomalous symmetry in quantum field
theory. Anomalous symmetries were orginally calculated in terms of triangle diagrams
describing the non-conservation of certain quantum numbers, in particular baryon num-
ber in the SM [30, 31, [32]. Later a way to directly compute the change of the integration

11



CHAPTER 2: ANOMALIES IN THE STANDARD MODEL

measure of the path integral — using e.g. a momentum cutoff regularization — was ob-
tained [33]. Under the transformation, the measure transforms as [34]
2

9 vpo M. (Ta
dp — d,uexp/dxea [—1671_26“ PO T (T Fuy(m)FpU(m))] . (2.2.6)

Note that Fy,, = Fj,T% where T are the generators of the gauge group, and g is
the coupling constant of said gauge group. The above change in the measure can
equivalently be written as

2
a 9 vpo b c 1 ma (b e
dp — duexp/d:ve [—We“ POF,, (2) Fpp () §Tr (T{1°,T })] . (2.2.7)

This is the change in the measure due to the anomalous transformation of a single Dirac
fermion, or equivalently, two chiral fermions. In a theory with multiple fermions, each
fermion contributes additively to the anomaly. We can therefore define the anomaly
coefficient corresponding to a symmetry generated by 1% with a gauge symmetry gen-
erated by T for a theory as

1 ~
Dabe — 5 Trw T{T° T°}. (2.2.8)

Here the trace also includes a sum over all fermion representations. This is due to
the fact that each fermion in the theory contributes separately and additively to the
anomaly. The change in the measure can alternatively be formulated as a change in the
Lagrangian density of the theory:

2
g pabe capuwpo b e (2.2.9)

AL = 1672 = por

This term is sometimes referred to as the anomaly term, and it will be used multiple
times in this thesis.

Mixed anomalies

Note that the generators T can refer to any gauge symmetry of our model, while 1@
can refer to any (gauge or global) symmetry, and all possible combinations must be
taken into account for a model. That means that if a model is constrained by multiple
simple gauge groups G1 X G2 X ... X G, one must consider all anomalies of the form
G? x Gj, where 4,7 = 1,... n, which refers to anomaly coefficients as defined in
with 7% generating G; and 7o generating G .

In fact, there is an additional symmetry which has to be considered — the symmetry
of the local Lorentz transformation, SO(3,1). The resulting mixed gauge-gravitational
anomalies have to be canceled. Gravitational anomalies are beyond the scope of this
thesis, and their origin will not be discussed further.

12



CHAPTER 2: ANOMALIES IN THE STANDARD MODEL

2.3 Implications of anomalies

What does it mean for a symmetry to be anomalous? The answer depends on the type
of the symmetry: A global symmetry being anomalous just means that processes which
are forbidden in the classical theory by selection rules can be allowed in the quantum
theory. This happens e.g. in the case of the Abelian anomaly.

For local (gauge) symmetries, the situation is more serious: A gauge symmetry must
always be anomaly free, since the anomaly violates gauge invariance and therefore uni-
tarity. It is a standard result that the charges of the Standard Model fermions are
arranged exactly in the right way to cancel all gauge anomalies. In BSM extensions
however, new gauge symmetries are often introduced, and one has to ensure that these
symmetries are anomaly-free.

A possible exception to this rule is given in superstring-theoretic extensions, in which
anomalies can be canceled through the so-called Green-Schwarz mechanism [34], 35].
Such theories are beyond the scope of this thesis, and we will only work with anomaly-

free gauge theories.

2.4 Standard Model plus anomalous global symmetry

An anomalous transformation

As explained in the previous section, the Standard Model is gauge-anomaly free, making
it a consistent quantum field theory. One can, however, consider extensions of the
Standard Model under which a global anomalous U(1) 4 symmetry exists.

Let us define such a (global) chiral anomalous U(1)4 transformation by

fo ey, (2.4.1)

for each fermion f. Such a transformation is relevant to many models beyond the Stan-
dard Model (BSM), including the axion models considered in this thesis. As explained
below , every possible combination of U(1)4 with a gauge symmetry can lead to
an anomaly. This leaves us with three cases, all of which are discussed in the following.

Color anomaly
The SU(3)% U(1)4 anomaly, also referred to as the color anomaly , simplifies to

DE=d"Cc=05" > asS(ps). (2.4.2)
quarks f

Comparing this to equation (2.2.8)), we have suppressed the index a, since the U(1)4
symmetry is one-dimensional. Due to the symmetry of the anomaly coefficient we can
pull out the Kronecker symbol §°¢ and define the factor C, which will be referred to as
the SM color anomaly coefficient. The Dynkin index should be evaluated with respect

13



CHAPTER 2: ANOMALIES IN THE STANDARD MODEL

to the SU(3)¢ group, and include the appropriate coefficients for the dimensionality of
the representation under SU(2)r,.

Electromagnetic anomaly

For the SU(2)7 U(1) 4 anomaly, we get a similar result but can use the fact that if the
T® generate SU(2), we have {T%, T} = 259, such that

Dy =s* Y % (2.4.3)
left-handed f

Finally we have to consider the hypercharge (U(1)3-U(1)4) anomaly:

Dy = Y a7, (2.4.4)

all fermions f

with Yy being the hypercharge of a fermion f. Equations (2.4.3) and (2.4.4) are of
course relevant in the unbroken phase. After electroweak symmetry breaking, one has

to consider the U(1)%,,; U(1)4 anomaly instead:

Dem= Y, a;C} (2.4.5)

all fermions f

where C refers to the electric charge of a fermion f.

This concludes our brief overview over the different types of anomaly coefficients which
will be used later in the thesis. The color anomaly will play a prominent role in the
solution of the strong CP-problem, as discussed in the following chapter.
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Axions

Two birds with one stone

This chapter is devoted to a hypothetical particle - the axion. Originally the axion
was a byproduct of the Peccei-Quinn solution to the strong CP-problem. This solution
gained popularity since the axion can also be a promising candidate for Dark Matter.
It seems that with the introduction of the axion, (at least) two problems of the pure
Standard Model can be solved in one go.

We begin this chapter with an introduction to the strong CP problem and its most
popular solution. This chapter also discusses the general properties of the axion. In
section [3.3] we introduce the different axion models and discuss the identification of
the axion in each of them. This serves as a pedagogical basis for the more general
discussion of the axion identification in section After the axion is identified, various
other aspects of the model will be illuminated: we will discuss the domain wall number
(section and the coupling of the axion to other particles (section . Section
deals with a possible problem common to most axion models: the violation of the PQ
symmetry due to quantum gravity effects. We discuss possible solutions to this problem
and introduce a model which is safe from such effects in section 3.8 Finally, the role of
the axion as a Dark Matter candidate is discussed in [3.9] and we review the status of
experimental searches in [3.10] A brief interim conclusion is given in [3.11

3.1 The Strong CP problem

The Lagrangian of Quantum Chromodynamics

The strong interaction of the Standard Model is described by an SU(3) gauge group.
The analogue to the electric charge in the strong interaction is referred to as color,
which is why the theory of this interaction is named quantum chromodynamics (QCD).
The SU(3)¢ transformations are generated by traceless hermitian matrices 7%. Quarks
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q transform in the fundamental representation as
P — P = Uy(2)p?. (3.1.1)
The unitary transformation matrix U;j, for ¢, j in {1, 2,3}, is given by

Uij(w) = exp(ie”(z)T7}). (3.1.2)

The theory is described by the following gauge-invariant Lagrangian density function

9 1

Lqcep = Ziﬁi(q) (iqufj — mf(;ij)¢](- ) G G (3.1.3)
q

4

where ij = OMé;5 + igsTi‘;Aa“ is the covariant derivative that keeps the fermion sector
gauge invariant. Gauge invariance requires the introduction of a gauge field A%#, a =
{1,...,8}, also named the gluon. The field strength tensor of QCD is then defined as

GZV = auA?/ - al/AZ - gsfabCAzAlc/- (3.1.4)
With these definitions, all interactions are proportional to the strong coupling constant

9s-

Theta-term

The above structure of the QCD Lagrangian is dictated by the fundamental principle
of gauge invariance. However, gauge invariance allows for the inclusion of an additional
term that is often omitted (for reasons discussed below):

2 2
gse . v gse M. MVpo
E@ = 167T2Tr GMVG'u = ?’Q?Tr 6“ P G/“/Gpo" (315)

The parameter 6 characterizes the strength of this additional coupling.

Naively, one could argue that this additional term should not matter in calculations,
since it can be written as a total derivative:

TrG 0 G = 9,("% Ao |Gy — % FabeApsAc]).

In perturbative calculations, only field configurations that vanish at the boundary
are considered, and therefore the CP-violating term has no effect. However, non-
perturbative field-configuration — which can be nonzero at the boundary as long as
they correspond to a gauge transformation of 0 — induce a modification of QCD if
0 # 0. In particular, they contribute to a nonzero electric dipole moment (EDM) of the
neutron d,, [36].
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Theta term and quark masses

Another reason the 8- term given in cannot be ignored is given by the chiral
anomaly. Comparing it to equation , we notice that a color anomaly gives an
additional contribution to the #-term, meaning that one can change the value of 6 by
rotating the quarks. In fact, in a (hypothetical) theory where at least one of the quarks
is massless, the € can be set to zero just by rotating this massless quark. The same
holds true for a theory in which one of the massive quarks only couples to fermions
uncharged under the SU(3) gauge group. In this case, one could cancel the phase 6 by
a rotation of the charged quark, and compensate for this rotation with a transformation
on the uncharged quark without adjusting the mass matrix.

In the Standard Model however, all quarks are paired up with other quarks, and all
are massive. In this case one needs to also take into account the change in the quark
mass matrix that is induced by the rotation. Applying the transformation , the
changes in the quark mass Lagrangian are given by:

Lo, = —2icy M§ fofp. (3.1.6)

In a physical basis, one works with diagonal mass matrices. In order to get there, one
must perform a chiral transformation on the quarks which changes 6 by Arg Det M, My
[37]. Therefore one has to rewrite the Lagrangian in in terms of the physical
parameter 0 = 6 + Arg Det M, M,

920
1672

g2(0 + Arg Det M, M)
1672

L;= TrG,,G" = Tr G, G". (3.1.7)

Physics is invariant under a discrete shift symmetry of this new parameter 6:
0 — 0+ 2mn, (3.1.8)

for any integer n, so @ is a periodic quantity. An easy way to see this is that above shift
can always be undone by a 27 rotation of any of the quarksﬂ
One can also show that the partition function of QCD inherits the periodicity.

Experimental bounds on 6

The parameter § can be tested by measurement of the neutron EDM, which is given by
[36, 138, [37]

efm, .
My,

dp ~ (3.1.9)

The mass of the neutron is given by My, and my is defined in terms of the masses
My My
Moy +My

my/q of the up- and the down-quarks: m, = . Existing bounds on d,, [39] imply

!By studying the vacuum configurations of QCD, one can see that this periodicity is given even in
a theory without quarks [37].
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0| = |0+ Arg Det M, My| < 10710, Since other couplings in the Lagrangian are typically
of order 1, one might wonder why 6 is so small. This question is generally known as
the strong CP problem. It is essentially a fine-tuning problem, posing the question why
two quantities, which a priori need not be particularly small should cancel out to give
such a small sum.

3.2 Peccei-Quinn solution

An extra U(1) symmetry

An idea to solve this problem was already introduced in 1977 by Roberto Peccei and
Helen Quinn [I]. It relies on the introduction of (at least) one additional complex
scalar field charged under a global U(1)pq symmetry which has a color anomaly. As we
want to avoid massless degrees of freedom, all the new scalars need to acquire vacuum
expectation values, i.e. U(1)pq has to be broken. An important consequence of this
construction is the fact that the CP violating phase 6 is replaced by a dynamical field.
The extra scalar couples anomalously to the quarks and therefore contributes to the

anomaly as well. Equation (3.1.7)) is replaced by

A(z) g3

L4 —
A fa 1672

Tr G, G". (3.2.1)

Here, A(x) is the angular degree of freedom of our additional scalar, or, as in the case
of GUT or even the simpler DFSZ (Dine-Fischler-Srednicki-Zhitnitsky, also see section
models, the angular degree of freedom of a linear combination of extra scalars.
We have defined A to absorb the CP-violating phase 6. The field A is known as the
azion field. The constant f4 is related to the scale at which the PQ-symmetry is broken,
and as it appears in the coupling of the axion to gluons, it is named the azion decay
constant. As explained later in the text all couplings of the axion to SM particles will be
suppressed by f4, it is the most important parameter needed to describe the properties
of the axion.

The axion inherits a shift symmetry. For any integer n, the perturbative axion La-
grangian is invariant under

A— A4+n2m Npw fa (3.2.2)

from U(1)pq. The integer Npw is known as the domain wall number. It depends on
the specific choice of axion model and is discussed in detail for example in section [3.4]

One can see from equation (3.2.1)) that the strong CP problem is solved if there is a
dynamical reason that sets é(az) = % to zero. Such a reason is given by the non-

perturbative effects of QCD, which will be summarized in the following section.
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Potential at zero temperature

In chiral perturbation theory with two flavors, the axion potential can be expressed
in terms of the masses of the lightest quarks, and the pion mass and decay constantﬂ
[411 [42]:

— _m2f2 1= Amymy gin2 A
V(A) = ﬂfﬂ\/l ( 2 < > (3.2.3)

My, + Mg 2fa

The minimum of this potential is at (A) = 0, so that the strong CP problem is indeed
solved!

The effective potential breaks the continuous shift symmetry of the axion, but leaves a
discrete shift symmetry intact. The transformation

A— A4n2rfy (3.2.4)

leaves the potential invariant for any integer number n. The axion and the effective
parameter 6 can still be considered an angular degree of freedom, taking values in the
interval [0, 27).

From this formulation of the potential, we can also read off the mass of the axion in
chiral perturbation theory with two flavors as

4mymyq m72rf7%
(my + md)Q ff;

Throughout this thesis, we will also use a numerical result for the mass of the axion,

m?% ~ (3.2.5)

which has been obtained using chiral perturbation theory at next-to leading order [43,
2]
101! GeVv
ma = 57.0(7) (e) jeV. (3.2.6)
fa
This result is in agreement with formula (3.2.7]), which holds for all temperatures, and

which equation (3.2.6]) is a special case of. Note that for a given temperature, axion
mass m4 and axion decay constant f4 are in a one-to-one correspondence.

High-temperature mass

For any temperature, the effective axion mass obeys the formula

m?‘l(T)ffl = Xtop.(T)a (327)

2The numerical values of the pion decay constant and pion mass are fr = 92MeV and m, = m, o =

134.98 MeV. The other ingredient needed are the quark masses. In fact the potential only depends on

their ratio, z = e where the bars indicate the choice of the MS renormalization scheme. The current

status for this quantity is z = 0.46(5) [40].
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where xtop.(T') is the topological susceptibility of QCD. It is a temperature-dependent
quantity and has been calculated in lattice simulations [44]. The temperature-dependence
of Xtop. is illustrated in figure @ At high temperatures, the axion mass falls rapidly
with increasing temperature and can be described by a power law:

A4

m4(T) = aaE

T —n
<A> ) for T > 1GeV. (3.2.8)
A recent study in lattice gauge theory [44] yields an exponent of n = 8.16 and a phe-
nomenological paramter A ~ 400 MeV, which is in agreement with the results using the
dilute instanton gas approximation [45]. Older studies using the interacting instanton
liquid model report an exponent of n = 6.68 and an overall coefficient of a; = 1.68x 1077
[46]. At small temperatures however, the temperature dependence of the topological
susceptibility flattens out, as it is illustrated in figure At zero temperature equation

(3.2.6]) holds for the mass of the axion — in agreement with equation ([3.2.7)).

xlfm™]
3
'S

100 200 500 1000 2000

T[MeV]

Figure 3.1: Topological susceptibility x of QCD versus temperature 7. Lattice
QCD calculation, the figure is adapted from [44]. The width of the line
corresponds to the combined statistical and systematic errors.

3.3 Construction of the physical axion:
pedagogical examples

Three simple axion models

Depending on the number of additional degrees of freedom in our BSM model as well as
on the extra gauge symmetries, the identification of the axion itself can become rather
cumbersome. We start by presenting the three most well-known axion models and
identifying the axion therein. Obviously the results are not new, but it is instructive
to consider the differences between each of the models. We have ordered our discussion
with increasing number of additional scalar degrees of freedom. For each additional
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degree of freedom, we must impose an additional condition in order to fix the axion.
The origin of these conditions is discussed for each model, allowing us to generalize to
more complicated models in section

3.3.1 Kim-Shifman-Vainshtein-Zakharov (KSVZ) axion

Model definition

The specific structure of the Yukawa terms in the Standard Model does not allow for
an anomalous assignment of U(1) charges to quarks and Higgs field. This structure is
of course enforced by SU(2);, gauge invariance. An obvious way out is the introduction
of an additional sector that is decoupled from the SU(2) gauge group. Such is the idea
behind the KSVZ axion model [47, 48]. In these models, we assume the existence of (at
least) two additional heavy quarks @ and Q in the fundamental and anti-fundamental
representation of SU(3). They are singlets with respect to SU(2); and can carry
hypercharge. They couple to a new scalar field S, which is a singlet with respect to the
Standard Model gauge group. One can then define the symmetry U(1)pq:

Q — e"*aQ (3.3.2)
S — e laatag)g (3.3.3)

and (assuming the heavy quarks are uncharged under U(1)y) obtain the Lagrangian

Lxsvz = AMSQQ + h.c. (3.3.4)

For Q/ Q hypercharge assignments i% /F % and an appropriate distribution of Peccei-
Quinn charges, additional terms coupling @/ Q to SM fermions occur. From the above
PQ charges, we can calculate the anomaly coefficient

C=aqg+ap, (3.3.5)

which is nonzero for an appropriate choice of PQ charges.

Identification of the axion

Since the KSVZ model contains only one PQ-charged scalar, the construction of the
axion is trivial. We include it here only to pave the road for the more complicated
model treated later. We simply expand the scalar S around its VEV wvg:

A

S =—(vs+ pg)evs. (3.3.6)

G-
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This introduces a non-standard mass term

US A/’U ~
LKsvz O A—— e S , 3.3.7
7 QQ (3.3.7)
which we can bring into standard form by rotating the quarks appropriately - i.e. making
use of U(1)pq for ag + ay = A/vs. Via the anomaly (2.2.7), this rotation introduces
the coupling between axion and two gluons shown in equation (3.2.1) for f4 = vg.
Let us make a small remark on the shift symmetries in this model: The axion being
a radial mode, the resulting Lagrangian is invariant under the shift % — % + 27mn.
This shift symmetry is in agreement with the symmetry of the potential of the effective
f-parameter introduced by non-perturbative QCD effects (3.1.8). We will see in the

next example that this is not always the case.

3.3.2 Peccei-Quinn-Weinberg-Wilczek (PQWW) axion

Model definition

In the pure Standard Model, one cannot define an anomalous symmetry for the only
available scalar H. As explained in section [2.2] any anomalous rotation on the quarks
would change the mass terms and can therefore not be a symmetry. The simplest way
to promote the transformation given in [2:4.1] to a symmetry is the introduction of a
second Higgs doublet [9, [I [§]. Denoting the two Higgs fields as

1
H;= (1,2, —5), (3.3.8)
1
H, = (1,2, 3). (3.3.9)
we obtain the Yukawa Lagrangian of a type-2 Two-Higgs-Doublet model (2HDM)
Lyvukawa = —Yu ¢Hyu — YgqHgd — Y LH ge. (3.3.10)

Flavour-changing neutral currents in this model are forbidden by the Peccei-Quinn
symmetry

U(l)pq : q — e *q (3.3.11)
u— ey (3.3.12)

d — e'd (3.3.13)

e — eldataae (3.3.14)

H, — e laatad g, (3.3.15)

Hy — e~ @ataa) (3.3.16)

written in terms of general charges «;. This symmetry is anomalous if

C =204+ ag+ o, #0.
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Identification of the axion

After the electroweak symmetry breaking, we can parametrize the Higgs fields as

H, (Vu + pu)e /v, (3.3.17)

_ L
V2

1 .
Hy = —=(vq + pa)e' /", (3.3.18)

3

Due to the breaking of the global symmetry U(1)pq, one (perturbatively massless)
Goldstone boson must exist in the theory in addition to the three would-be Goldstone
bosons that give masses to the electroweak gauge bosons. This massless mode (which
we will recognize as the axion) must of course correspond to a linear combination of the
angular degrees of freedom

A= cuﬁ + cagﬁ (3.3.19)
(% Vg

and we have yet to determine the constants ¢, and ¢4. In doing so, one has to keep
in mind that we have to differentiate between the Goldstone bosons that get eaten by
gauge bosons and the axion, which remains massless. The former can be “gauged away”
by going to the unitarity gauge, i.e. they transform under the electroweak gauge trans-
formations. The axion, however, has to be gauge invariant! In order to ensure this, we
have to impose an extra condition on the Peccei-Quinn charges «;: the transformation
induced by them has to be orthogonal to all gauge transformations which get broken at
the same scale. In particular, we notice that under a hypercharge gauge transformation
the phases transform as follows:

1 1
Uy : A, = Ay + iayvu Ag— Ag — §Ozyvd. (3.3.20)
The axion itself must stay invariant under this transformation:
Ay ay Ag  ay
Ul)y: A =+ = - 3.3.21
Wy d—e (52490 ) e (22 (3321)
— A+ %Y(cu )= A (3.3.22)

from which we conclude that ¢, = ¢4. The overall constant can be fixed by the proper
normalization and we obtain

A= 2L, (3.3.23)

In the next step we want to identify the anomalous coupling of the axion to gluons. As
in the KSVZ case, the expansion (3.3.17)) leads to contributions to the Lagrangian that
have the following form:

LD-Y, qeiA”/““u -Yy qeiAd/”dd — Y, letAa/vag, (3.3.24)
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In order to get rid of these non-standard terms, we can apply the Peccei-Quinn sym-
metry, subject to the constraints
A
Qg+ oy =% and a4 ag=—2. (3.3.25)
Uy, Vd
Due to the anomaly, this rotation will introduce a coupling between the axion and the
CP-violating term, so that we recover the axion-gluon coupling as

2 ~
L5320+ oy + ag) %Tﬁ GH' G, (3.3.26)
Aw Ad\ 2 — -
=3 (U:L + U:) 1%57TT1~ G @, (3.3.27)
A g2
_ El%sﬂTr G G- (3.3.28)

Here we have defined the axion decay constant in terms of the relevant VEVs in the
model,

11
— =35+ . (3.3.29)

Notice the extra factor of 3 which appears because we are rotating all 3 fermion gener-
ations. It corresponds to the domain wall number of this model, as discussed below.

A visible axion

All other properties of the axion including its mass and coupling to other particles are
determined by fa. In the Two-Higgs-Doublet model, the VEVs v, and vy are less than
or equal the scale of electroweak symmetry breaking since they must obey the following
relation:

v2 402 = v? = (246 GeV)2. (3.3.30)

This fixes f4 at the electroweak scale. The resulting axion couplings are too large to be
allowed experimentally - they have already been ruled out by beam-dump and collider
experiments [49, [50].

One way to decouple the PQ breaking scale from the electroweak scale was presented
in section Another way that does not call for the introduction of exotic fermions
is given by the so-called DFSZ-axion model, which is presented in the next section.
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Residual discrete symmetry

Before moving on to the next model, we will consider the residual symmetries present
in the PQWW axion model. Keeping in mind that A, /4 are phases, we notice that the
model is invariant under the shifts

Ay — Ay + 1y 2Ty, (3.3.31)
Ag — Ag + ng 2wy, (3332)

where n,, and ng are integers. These shifts induce a symmetry for the axion,

4 — 4 + 3 2m(ny + ng). (3.3.33)

fa  fa
At the same time, the non-perturbative QCD effects introduce the potential shown in
equation for the effective § parameter

0= 4 (3.3.34)
fa

This potential is periodic in 6 with period 27, and therefore must have periodic minima
as well. Most of these minima are (gauge-) equivalent, meaning that one can go from
one minimum to another minimum by a gauge transformation described in .
However, due to the different periodicities we are left with three inequivalent but de-
generate minima - a discrete Zsg symmetry remains. To go from one minimum to a
different one, one has to traverse a local maximum of the potential. The residual dis-
crete symmetry is associated with the formation of domain walls in the early universe.
Correspondingly one can define the the domain wall number of an axion model. In the
case of the PQWW model, Npw = 3.

3.3.3 Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) axion

Model definition

A simple modification of the PQWW axion introduces an extra scalar S, which extends
the PQ symmetry and decouples PQ breaking from the electroweak scale [51],[52]. The
Peccei Quinn symmetry for this model is an extension of (3.3.11)) by

S — els g, (3.3.35)

and for the assignments of the PQ charge ag we are presented with two options if we
require S to couple to the 2HDM Higgs doublet at the renormalizable level. Option
A ag = %(2% + ag + ay,) leading to the quartic term H,HyS? + h.c., or option B:
as = 204 + ag + oy, which entails the trilinear coupling H, HyS + h.c.. As will be
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explained later, the two options lead to two different values of the models’ domain wall
numbers - this has already been noted in [53]. In the rest of this thesis we will mostly
deal with models using charge assignment B — this is rather unusual, as the original
DFSZ axion model and many later incarnations deal with assignment A. However, as
will be explained later, assignment B together with specific GUT symmetries allows
us to evade the domain wall problem in some models. We therefore consider this an

interesting arrangement.

Identification of the axion

The construction of the axion can be done in a similar way to the construction in the
PQWW model. However, we now have three scalar fields that can contribute, and

therefore also three constants that need to be fixed:
A A A
A=c, 2t gy g2, (3.3.36)
Uy, Vd vs
As above, we can impose gauge invariance of the axion to get the constraint ¢, = c¢g
(as S is uncharged under the gauge symmetry we get no constraint on it). The second
constraint can be found by remembering that, at the perturbative level, the axion must
be massless. Expanding the quartic/trilinear coupling terms around the VEVs, we find
the linear combination of scalar fields that becomes massive after symmetry breaking:

A, A A\ 2 vgugvt
EDHquSl+h.c.3<+d+ls> vvd?JlS’
2v2

Uy Ud vs
where [ = {1, 2} for option { B, A}. As the axion itself is massless, it must be orthogonal

(3.3.37)

to the above combination, so that we impose

SO ) (3.3.38)
Vu U4 Vs

Combining both conditions and using proper normalization, we find

Ay A s
(80 + 22— % + J)As)

A= 4 - . (3.3.39)
2
To find the axion coupling to the anomalous term we again consider the rotation on the

quarks as defined in (3.3.25)) and notice that in this case not only the axion, but also
the massive combination found above couple to the anomaly:

A A 2
342y =3 Vs Y M+ i A, (3.3.40)

Yu  Vd VgUuA/ 120207 + v20d Pv2v3 + v2v?
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where M is the properly normalized massive combination we found in equation ({3.3.37)),

Ay A A

v o TS
/1 1z

Finally, from the second term of equation ([3.3.40)), the axion decay constant can be read
off:

M:

(3.3.41)

L i (3.3.42)
fa w/l%ﬁv% + UQU%
Under the shifts
Ay — Ay + iy 2Ty, (3.3.43)
Ay — Ag + ng 27y, (3.3.44)
Ag — Ag + ng 2mvg, (3.3.45)
a shift for the axion is induced:
A LA o loguu(nu + na) — nsvgv® (3.3.46)
fa fa Pv2v3 + vie?

The fraction on the right hand side reduces to an integer number for specific values of
the n;, with the smallest solution given by n,, = ng = 1,ng = —2. There is a residual Z3;
symmetry left in our model, and the domain wall number of these models is Npw = 3l
[53].

3.4 Construction of the physical axion:
general calculation

3.4.1 The effective axion Lagrangian

A generic axion model

The above examples indicate which constraints need to be taken into account when
constructing the axion. While they might seem trivial in these models, in the presence
of multiple scalars (or even fermions) and additional gauge symmetries, one needs a
generalized framework in order to avoid missing constraints. In this section we generalize
the axion construction to a theory with Weyl fermions 1, and complex scalars ¢;, and
Ny gauge groups. We have published the results discussed in this section before in a
similar fashion [I8§].

We assume a PQ symmetry under which the fermions and scalars have charges ¢, and
g, respectively, and which is broken spontaneously by VEVs (¢;) = v;/V/2.
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Peccei-Quinn breaking

In the broken phase, we may parameterize the scalar excitations as

1 A o
¢j = ﬁ(vj + pj)et il (3.4.1)

The spontaneous breaking of the global PQ symmetry implies the existence of a Gold-

stone state A [54], the axion, which corresponds to the following excitation of the phases:

A; = ;]f LA+ orthogonal excitations, (3.4.2)
PQ

where fpq is a dimensionful scale that is yet to be determined. Note that we have not
yet specified the PQ charges ¢; - the residual degrees of freedom in their definition will
be fixed in the following sections. The “orthogonal excitations* in equation (3.4.2) must
not be ignored - they encode massive scalar bosons and would-be Goldstone bosons in
our theory. Canonical normalization of A — whose kinetic term follows from applying
to the sum of kinetic terms of the complex scalars — implies

frq = /qu vs. (3.4.3)

From (3.4.2) one may then derive
fPQ quvl i (3.4.4)

Interactions with SM particles
The effective interaction between axion and SM particles can be obtained by rotating
the scalar phases away from the Yukawa couplings [55]. The PQ-invariant Yukawa
couplings induce contributions to the Lagrangian of the form
£5 yhybithaty + ce. > DbV a1 .o = Y itar A e, ¢ e
‘ V2 V2
(3.4.5)

where we used and the fact that the PQ invariance of the above Yukawa coupling
demands ¢; + g4 + @5 = 0. For simplicity, we suppressed the internal indices for the
different representations of the gauge groups, and considered the appropriate gauge-
invariant contractions. The phase factors in can be removed by field-dependent
chiral rotations of the fermions,

o — e MaA feay,, (3.4.6)

Note that the charges ¢/, under this rotation are not unique - while they can be chosen
to be equal to the PQ charges q,, in general they only need to satisfy

¢ +d,+q,=0. (3.4.7)
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This leaves us with some ambiguity in the fermion sector. After the above rotations,
the kinetic terms of the fermions pick extra contributions, given by the axion-fermion
interactions in . Accounting for the fact that the effective action picks up an
anomalous term after chiral rotations, one gets the following axion-gauge boson inter-
actions

c[A]eff—fa AD*A+9 AZ " (giom,) + 2 7 G Ty EE (348)
Ak

frq 167
where the effective decay constants are given by
fPQ
= 3.4.9
fak = N (3.4.9)
with
N =2 qaSk(va). (3.4.10)
a

The fermion rotations in are not umquely deﬁned by requiring them to eliminate
the axion dependence in the Yukawab as in . One may make different choices of
fermionic rephasings that will give rise to different effective actions. However, as these
just differ by redefinitions of the phases of the fermion fields, they will be physically
equivalent. In fact, by requiring the fermions to be written in the axial basis, one can
eliminate this remaining ambiguity (c.f. section .

As for the bosonic sector, from above construction it may seem that the different
fermionic charges satisfying lead to different axion- gauge boson interactions.
Fortunately, this is not the case - as shown in appendix [A] for all models considered in
this thesis, the bosonic interactions depend solely on the Peccei-Quinn charges of the
scalars.

Alternatively, the effective Lagrangian for the axion can be obtained from the anomalous
conservation of the PQ current [56]. The latter is given by

T =3 qulo e+ iy i(Oudlo; — 610.05), (3.4.11)
@ J

and satisfies the anomaly equation

Z g’f BT PR (3.4.12)

This equation can be reformulated to include the axion using (3.4.2)) in (3.4.11) at low

energies. In this case, the heavier excitations of the A; are decoupled and can be ignored
on the r.h.s of (3.4.2). The anomaly equation (3.4.12)) becomes
Ng

oY (3.4.13)
p 16

fPQDA + Z qaﬁu(%&“%) =
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The latter is equivalent to the Euler-Lagrange equations of the effective interaction
Lagrangian [56].

As anticipated earlier, the 0 parameter for a given group (see (3.1.5))) and the axion
enter the low-energy Lagrangian in the combination 6y + 1/f4 rA.

3.4.2 The physical axion: orthogonality conditions

Interplay of global and gauged U(1) symmetries

In the presence of both gauge and global symmetries, identifying the axion becomes a
bit subtle, as the PQ symmetry is not uniquely defined. This is due to the fact that
the gauge symmetries themselves are associated with global symmetries, so that any
combination of the PQ symmetry plus a global U(1) symmetry associated with one
of the gauge groups defines a new global U(1) symmetry. This arbitrariness implies
that one cannot readily identify the PQ charges ¢; that define the axion as in equation
, as well as determine the ensuing axion interactions and domain wall number,
all of which depend on the g;. Nevertheless, there is an important physical constraint
that allows to uniquely single out a global PQ symmetry PQppys: its associated axion
must correspond to a physical, massless excitation, and thus it must remain orthogonal
to the Goldstone bosons of the broken gauge symmetries. This allows to identify the
combination of phases that defines the axion, from which one can reconstruct the scalar
charges of PQpnys. This will be the procedure used in Section [5| when studying the
properties of the axion in concrete SO(10) models.

Perturbative masslessness

First, the combination of phases should be massless. Suppose the Lagrangian generates
a quadratic interaction for a combination of the phase fields,

2
LDOm (Z dmAm) , (3.4.14)

for some coefficients d,,. Then one can simply use (3.4.2) and demand that the term
becomes zero, which gives

> dimGmvm = 0. (3.4.15)
m
Writing the axion as
A= "cA;, (3.4.16)
i
then equation (3.4.15)) is equivalent to
> dmem =0, (3.4.17)
m

which can be interpreted as an orthogonality condition between the mass eigenstate

Y om dmAm (see (3.4.14])) and the axion ), cnAm.
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No mixing with heavy gauge bosons

Another physical constraint on the axion is the fact that it should not mix with the
massive gauge bosons. When the complex scalars are charged under gauge groups,
which are then broken by the VEVs, there are additional Goldstone bosons associated
with the broken gauge generators. These Goldstones are related to the longitudinal
polarizations of massive gauge bosons, and should be orthogonal to the axion. The
interaction of the scalars with a gauge field B,, contains the following terms:

/d4x£ = / dtax Z D@t DFpyy, + -+ - = /d41: Z(iBZgb;fnTﬁma“gbn +ce)+...

1% m-+mmn n m 2 )-

Using equation (3.4.2)), the cancellation of the axion-gauge boson interaction requires
the following constraint on the PQ charges:

> v T nvn = 0. (3.4.19)

It turns out that for our purposes it is sufficient to explicitly check orthogonality to
broken U(1) generators. For a U(1) generator under which the scalars ¢; transform by
simple rephasings with gauge charges ¢;, equation (3.4.19)) reduces to

> Gmamvi, = 0. (3.4.20)
m

(note that G, and g, represent the gauge and PQ charges, respectively). Again, the
avoidance of axion-gauge boson mixing can be also interpreted as an orthogonality con-
dition between the axion combination A =3, ¢;A; and the Goldstone G = > diA; of
the U(1) gauge group. Indeed, the same reasoning behind equation implies that
d; =1/ fq Givi, so that is equivalent to the orthogonality relation ) . ¢pdp =0,

or

> CmGmvm = 0. (3.4.21)
m

In this thesis, it will be sufficient to check orthogonality between the axion and the
heavy gauge bosons of a broken U(1) gauge symmetry, i.e. to impose that equation
(3.4.21)) holds. Orthogonality with respect to the non-abelian generators is treated in

appendix [C]
A global symmetry is left unbroken in the presence of a U(1) gauge symme-
try!

An important consequence following from the constraint of equation (3.4.20) is that if
a field ¢,, is charged under a given diagonal generator, then if the axion decay constant
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fa is to involve the VEV (#,) = v,/v/2, then there has to be at least another scalar
charged under the same generator as ¢, [57]. This simply follows from the fact that,
for a VEV v, to contribute to f4, the associated PQ charge ¢, has to be nonzero (see
equations and ) Then in order to have a solution to (3.4.20]) with nonzero
charge ¢, one needs at least another scalar charged under both PQ and the diagonal
generator. This is a consequence of the fact that if only one scalar is charged under PQ
and the diagonal gauge generator develops a VEV, a physical global unbroken symmetry
survives the breaking. Other fields are needed in order to break this surviving symmetry
and give rise to an axion. Even when there are several scalars with nonzero VEVs and
charged under both PQ and a diagonal generator, then if one expectation value is much
larger than the rest, it follows that f4 is bound to be of the order of the smaller VEVs.
The orthogonality condition implies that the PQ charge ¢" of the heavy field
goes as
N N
h I I " (3.4.22)

q = — Q= 192
~h, h
m 4

where the superscripts h,l denote the heavy field and the light fields, respectively.

Plugging this into (3.4.9)) and (3.4.3)), one gets

2

1 ~1 1,12

= Dol )+ (30 Tmldmim ) (3.4.23)
m m q/U

which shows explicitly that f4 is determined by the light VEVs v!,. This can be
interpreted in an effective theory framework as follows: as discussed before, the single
large VEV v" leaves a global symmetry unbroken, so that the theory with the heavy
field integrated out has a new PQ symmetry that can only be broken by the VEVs of
the light fields, which will determine the scale f4.

The physical PQ symmetry
Finally, once the axion has been identified by starting from a general linear combination

as in ((3.4.16)) and imposing the orthogonality and masslessness constraints, the effective
Lagrangian can be determined in terms of the coefficients ¢;, which encode the charges

of the physical PQ symmetry. Indeed, comparing (3.4.16)) with (3.4.4)), one has that
49 _ G
frq v

(3.4.24)

The charges ¢; correspond to the physical global symmetry PQpnys connected to the
axion. This symmetry must be a combination of the original global symmetries in the
Lagrangian, and one may find the corresponding coefficients by solving a system of
linear equations. This provides all the necessary information to construct the interac-
tion Lagrangian , together with the QCD induced photon corrections (3.6.5) and
the axion to nucleon interactions in ,, which only depend on the former
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ratios. This is clear for the axion-fermion interactions, while for the axion-gauge boson
interactions it follows from the fact that (3.4.9)), (3.4.3) and (3.4.12) imply

miﬂ?(f

da
PQ

> Sk(Ya)- (3.4.25)

Note how the ¢;/ frqQ, ¢a/ frq, and fa are invariant under rescalings of the PQ charges,
because under ¢; — ¢q;,qa — €qq, one also has fpq — cfpq, as follows from .
Thus, as expected, the axion effective Lagrangian does not depend on the overall
normalization of the PQ symmetry. The same applies to the axion mass .

3.5 Remnant symmetry and domain-wall number

Residual discrete symmetry

Under a PQ symmetry, which we may assume to be orthogonal to gauge transforma-
tions as discussed in the previous section, the scalar phases transform as d,A; = ¢;v;.

Together with (3.4.3)), this implies that the axion (3.4.4]) transforms as
daA = afpq. (3.5.1)

The effective Lagrangian accounting for the PQ anomaly, given in (3.4.8)), breaks the
continuous PQ symmetry to a discrete subset

2
S(n): A — A+ ;f”pr, nez. (3.5.2)

Like the periodicity of 6 discussed around (3.1.8)), this follows from the invariance of
the partition function, once the contribution [ d*zLeg in (3.4.8) is included.

Trivial and non-trivial rephasings

Within the previous transformations, not all of them are necessarily nontrivial, as some
may correspond to rephasings of the original scalar phases A; by 27v;, which leaves all
complex scalar fields unchanged. According to , these trivial symmetries generate
the following group of transformations for the axion:

2
2mN;q;V;

. n;€Z (3.5.3)
frq

Pn): A= A+)
(2

Thus the physical symmetry group left after the anomaly is the quotient Sppys = S/P.
If Sphys is a finite group, then any potential generated for the axion will have a finite
number of minima, and there will be domain walls. This is because the potential
has to be invariant under Sppys, so that its transformations relate minima with other
degenerate minima. The number of vacua must be then an integer times the dimension
of the finite group.
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Domain wall number

The only truly protected degeneracy is that induced by the finite group, and so we expect
as many minima as the dimension of the finite group (as happens for the potential of
the axion generated by QCD effects). The domain wall number Npw corresponds then
to the dimension of the finite group, dim(S/P):

Domain wall number: Npw = dim []SD] . (3.5.4)

Next we elaborate on a procedure to determine Npw in terms of fpq, the PQ charges
q; and the VEVs v;. Suppose that ny, is the minimum number n for which one
transformation in S (eq. (3.5.2))) can be undone with a transformation in P (eq. (8.5.3)).
This implies

2T Nmin Z 27miqwl-2
N 7
for some values n;. Then any transformation S(knmin), & € Z, can also be undone

with an element of P, as is clear by doing nmin — knmin, 7; — kn; in (3.5.5). This
means that any element in S(n) with knpin < n < (k + 1)nyin is equivalent, up to

(3.5.5)

i

a P transformation, to an element in {S(n),0 < n < nmpin}. For the extrema of the
interval, this follows from our previous arguments showing that all the S(knmin), k € Z
are equivalent to the trivial transformation S(0). For the transformations inside the
interval (knmin, (kK + 1)nmin) we have

271'71pr _ 27Tk'nminpr T 271'(5pr

n = kNmin + 0, 0<5<nmin:>5AS(n) = N

. (3.5.6)
The part involving 2mknmin fPq /N is by hypothesis equivalent to a transformation in
P, and the part involving 276 fpq/ N is a transformation in {S(n),0 < n < nyin}. This
proves that all S(n) are equivalent under P to S(n),n < nyi. Thus

S R )2
dimﬁ = Npw, Npw = minimum integer {NZ n}q;vz , n; € Z} . (3.5.7)
X PQ

If there is a finite solution for Npw, since S(Npw) ~ S(0) (equivalence up to a P

7

transformation), then one has in fact

S
5 = ZNow: (3.5.8)

which is the usual finite symmetry associated with domain walls.

We may write Npw in terms of the coefficients ¢; of the axion combination (3.4.16|).
Using (3.4.24) and (3.4.3) it follows that

1
Npw = minimum integer {f E n;c;v;, n; € Z} ) (3.5.9)
A T
K3
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Again, Npw is invariant under common rescalings of the PQ charges, as these leave
¢; and f4 invariant. A simple case is that in which N is an integer and the scalar
q; charges have at least one common divisor, which could be unity. Let k& denote the
maximal common divisor. In this case the domain-wall number is simply N /k. Indeed,
writing

g = ki, (3.5.10)

then the term in brackets in equation (3.5.7)) reaches a minimum integer value when
taking n; = q;/k:

2 2 £2 \

& n;q;v; ¢ q; fz N

Nmin = IV E 5 = N 5 = 7 - (3.5.11)
i fPQ i kf k

N/k is an integer because N is a sum of terms proportional to the charges (see (3.4.12))).
The latter have k as their maximal common divisor, and so k is a maximal divisor of
N.

Npw must be calculated for the physical axion

It should be stressed that the domain-wall number for the axion corresponding to
PQppys, computed after imposing orthogonality with respect to the gauge bosons, is
not the same as the domain-wall number calculated using the above formulae but with
the charges of the original PQ symmetry. The reason is as follows. Starting from the
original PQ symmetry, without imposing orthogonality conditions, one has a group of
discrete transformations S as in , but defined in terms of the original PQ charges.
Similarly, one can define P transformations as in . When identifying the phys-
ically relevant transformations within .S, then one has to remove not only the trivial
rephasings in P, but also the discrete transformations in the center Z of the gauge
group. Thus we may rewrite equation more precisely, emphasizing the fact that
it has assumed orthogonality with respect to gauge transformations, as follows:

Sphys
Domain wall number: Npw = dim [phy] = dim [S] . (3.5.12)
phys ZP

For SO(10) the center of the group is Z = Zs, so that the naive domain wall number

computed from the original PQ symmetry (e.g. (4.3.11)) using equations (3.5.7) or
(3.5.9) will be two times larger than the actual physical domain-wall number.

Implications of non-zero domain wall number

The domain-wall number Npw is relevant because the existence of Npw inequivalent,
degenerate vacua implies that, once the PQ symmetry is broken and QCD effects gen-
erate a nonzero axion mass, the universe becomes populated with patches in which the
axion falls into one of the Npw vacua. These patches are separated by domain walls
that meet at axion strings, with each string attached to Npw domain walls. Within
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a domain wall, the axion field has nonzero gradients, so that the walls store a large
amount of energy which may in fact overclose the universe, unless the system of domain
walls and strings is diluted by inflation —as is the case if the PQ symmetry is broken
before the end of inflation and not restored afterwards— or is unstable [58]. The latter
can happen if string-wall systems can reconnect in finite size configurations which may
shrink to zero size by the emission of relativistic axions or gravitational waves. This is
allowed for Npw = 1 [59], when for example a string loop becomes the boundary of a
single membrane; however, for Npw > 1 the loops become boundaries of multiple mem-
branes in between which the axion field takes different values, and such configurations
cannot, be shrunk continuously to a point, which prevents their decay.

3.6 Couplings to other particles

Axial basis

It is customary to write the axion-SM fermion couplings in terms of chiral currents of

the massive SM fermions:

O A —
L[Aleg D ZCf}‘—A Uty Wy, (3.6.1)
7

where ¥ = {1, @Z;T’é‘} are Dirac fermions constructed from the Weyl spinors paired by
mass termsﬂ The axial basis is particularly useful when accounting for non-perturbative
QCD effects in the axion-nucleon interactions, either because one may use current alge-
bra techniques [8, [56], or because the matching between the UV and nucleon theory is
simplified when using axial currents [42]. Moreover, as will be seen, the coefficients of
the fermion-axion interactions in the axial basis depend only on the scalar PQ charges.
One has Uyt = —ipiahy — 1/35”’1/3, from which it follows that the axion-fermion
interactions in the general formula can be recasted in terms of chiral currents
as in if the Weyl fermions connected by mass terms have equal PQ charges.
This won’t be the case in the GUT models considered here, for which the global sym-
metry associated with the physical axion enforces different charges for the fermions
interacting through Yukawas. However, one can always redefine the fermion fields with
axion-dependent phases in such a way that one recovers interactions of the form in
, without affecting the axion coupling to neutral gauge bosons or the Yukawa
couplings. Consider for example two SM Weyl spinors ), 1/; with PQ charges ¢1, ¢o,
and which can be grouped into a massive Dirac fermion after electroweak symmetry
breaking —e.g. {ur,u}, where uy, is the upper component of a ¢ doublet, in the notation

3We use a notation in which conjugates of Lorentz spinors are denoted with dotted indices, (d)a)T =
1/):;, and indices are lowered and raised with antisymmetric matrices €*?,e%?, e.g. P = 66‘31/1;3, with
€'?2 = €15 = 1. The chirality operator s is defined in such a way that a Dirac spinor ¥ = {ta,0} has

a negative eigenvalue.
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of table One can always redefine
b s IR L AN Ag— g - (362

Under such redefinition with opposite phases, the axion couplings to neutral gauge
bosons remain invariant, as the redefinition is a non-anomalous vector transformation,
rather than a chiral one. On the other hand, the axion couplings to 1, ¥ change to

oA | - Iytory + 2 gigrd| 5 9, AL TR G g, (3.6.3)
frq frq 2frq

The combination of charges g1 + g2 above can be related to the PQ charge of the Higgs
that gives a mass to the SM fermion in question, because the Yukawas have to be
invariant under the PQ symmetry. From it is clear that in the presence of a
PQ symmetry (enforcing Y =0in (4.3.9)) the up quarks receive their masses from the
scalars H,,Y,, and the down quarks and charged leptons from Hg, 4. Then in the
axial basis the axion interaction with u,d quarks and the electron can be expressed in
terms of axial currents involving the corresponding Dirac fields U, D, E as

qH,
2fpq

L[Aleg D 0 A e TylisU + 9, A Ey'ysE,  (3.6.4)
Q

4H, DAtvsD + oA
2fp Q

2fp
where g, and g, are the PQ charges of the Higgses. In regards to the neutrinos, in the
models considered here the Weyl spinors v D [ and and the SM singlet n (see table
have nontrivial charges under the physical PQ symmetry. For a high seesaw scale vg
(see equations and ), the light physical states in the neutrino sector will
be mostly aligned with the v;. One may always do an axion-dependent phase rotation
such that the v; end up carrying no PQ charge, and which again does not affect the
axion couplings to neutral bosons because the neutrinos are singlets under the strong
and electromagnetic groups. The physical light neutrinos can then be described with

Majorana spinors constructed from the v; and which do not couple to the axion, in
contrast to the other fermion fields in (3.6.4)).

Mixing with mesons and the axion-photon coupling

Although the effective Lagrangian in includes couplings of the axion to the
photon, such interaction is further modified by QCD effects. The reason is essentially
that QCD induces a mixing between the axion and the neutral mesons, which in turn
couple to photons through the chiral anomaly, involving the same FF interaction that
appears in the axion-photon coupling. The QCD-induced shift of the axion to photons
can be computed with current algebra techniques [8,56] or in chiral perturbation theory,
with next-to-leading order results provided in [42]. At lowest order, the modification of
the coupling can be recovered by noting that the mixing between the axion and neutral
mesons can be removed with an appropriate axion-dependent rotation of the meson
fields, which however induces an anomalous shift of the action which is precisely the
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QCD-induced axion-to-photon coupling. This shift is universal and does not depend on
the PQ charges of the quarks, and is given by

6C Ay AF,, F*, 6C gy = —g (

(07

87 fa

dmy, + my

0L = ) + higher order = —1.92(4).

My, + My
(3.6.5)

Axion-nucleon interactions

In regards to axion-nucleon interactions, they can also be obtained by current algebra
methods [60] 56], or alternatively using a non-relativistic effective theory for nucleons,
with couplings determined from lattice data [42]. The axion-nucleon interactions are
not universal, and are given in [42] in terms of the coefficients of the UV axion-fermion
effective Lagrangian in the axial basis, i.e. with fermion interactions as in , ,
with coefficients fixed by the scalar PQ charges. Equation shows that the UV
coefficients are simply determined by the scalar charges of the Higgses H,, H;. Then
the results in [42] imply the following axion-nucleon interactions in the chiral basis:

. CAN — o B Car - _,
0Leg = —0,A TfA NA¥ysN — 0, A TfA PrPs P, (3.6.6)
with
Can = — 0.02(3) + 0.41(2)QH“fA —0.83(3) aiafa.
Irq Irq
; ; (3.6.7)
Cap = — 0.47(3) — 0.86(3) Lt A | 4q(2) Pal2
IPQ IrQ

3.7 Peccei-Quinn symmetry and gravity

Black holes and global symmetries

It has been argued that global symmetries are expected to be broken by Quantum Grav-
ity (QG) effects. The argument can be illustrated by the following thought experiment:
If a particle charged under a global symmetry falls into a black hole, the information
of this charge is lost, since there is no way to access the charge once the particle has
crossed the event horizon. This is especially emphasized if the black hole subsequently
decays into photons and gravitons via Hawking radiation. The global symmetry would
not be conserved in this case. The same argument does not hold for local symmetries-
they obey Gauss’s law, meaning that the the local charge of a black hole can be de-
termined from the outside, since it is just the integral of the corresponding field over
a containing surface. There is no analogue of Gauss’s law for global charges, meaning
that the information thrown into the black hole will be lost. These facts are related
to the no-hair theorem, claiming that any black hole can be entirely characterized by
only three externally observable classical parameters: mass, electric charge, and angular
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momentum |4}, [5] [6].

In lack of a detailed knowledge of Quantum Gravity the effect of such musings on
phenomenological models and the amount of symmetry breaking induced by QG are
difficult to estimate.

One option would be that gravity does not allow the Peccei-Quinn symmetry at all. In
this case one would get PQ breaking operators at dimension two, and no axion would
occur, as well as no solution of the strong CP problem.

Other estimates assume that there is some unbroken symmetry which protects the
Peccei-Quinn symmetry up to a certain dimension. This protecting symmetry can be
either a gauge symmetry, or a discrete global symmetry, for which the role of gravity is
still under discussion and which might not be affected by the discussion above. If this is
the case, the PQ-violating operators are assumed to be suppressed by the appropriate
powers of the Planck mass according to their mass dimension, and we will consider their
effect in the following.

Higher order operators

We estimate the effect of such operators on the solution of the strong CP problem [61],
only taking into account the heaviest of the PQ- charged scalar fields. In both the DFSZ
and the KSVZ models we have referred to this scalar field as S. A generalization in
which all scalar fields are taken into account can be found in [55]. Let us assume that
the PQ violating operators are suppressed up to mass dimension D — 1, meaning the
lowest dimensional operators that break the Peccei Quinn symmetry are suppressed by
D — 4 powers of the Planck scale and have the form

M§_4(s*)bsc +he., (3.7.1)

P
where b, ¢ are non-negative integers with b+c¢ = D and g is a generic coupling constant.

These higher-dimensional operators introduce a contribution to the effective axion po-

tential (3.2.3) [62]:

AV = —]’39_’2& cos (D NDWA T AD> : (3.7.2)
V2T Mb fa

where Ap is a phase that in general is not small. From the effective potential one can

estimate the contribution of these higher-order operators to the axion mass. In order

to avoid that this contribution dominates the axion potential and thereby spoils the

solution to the strong CP problem, one has to require [62]

N?|g|NEy? ( fa

D—2
) Mpjcos Ap < m¥. (3.7.3)
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For realistic axion models, we have f4 > 108 GeV and, since g is a generic parameter in
the Lagrangian, it is expected to be of order 1. It follows that D should be larger than
8, in order to fulfill above requirement. In other words, a (gauge or global) symmetry
that protects the Peccei-Quinn solution to the strong CP problem should suppress PQ
violating operators up to dimension 8 or higher.

Another way to interpret equation is the following: Let us assume that there is
no PQ-protecting gauge or global discrete symmetry, and we believe that QG introduces
higher-dimensional operators as postulated above. In this case the first PQ-violating
operator would appear already at lowest non-renormalizable level, dimension 5. In
this case equation translates into a limit on the unknown coupling constant
g < 107909 If this holds true, the proposed solution to the strong CP problem would
require a fine-tuning to 50 orders of magnitude - essentially trading one fine-tuning for

another.

The above discussion is rather speculative in the absence of a precise theory of quantum
gravity. It covers the worst-case scenario in which we have no control over the higher-
dimensional operators introduced by QG effects. A way around the described problems
is introduced in the following section.

3.8 Peccei-Quinn as an accidental symmetry

3.8.1 PQ protection via a discrete global symmetry

Accidental symmetries

Assuming that global continuous symmetries are indeed spoiled by quantum gravity
effects as described in the previous section, the violation of the Peccei-Quinn symmetry
through low-dimensional non-renormalizable operators can be avoided only in models
in which the global Peccei-Quinn symmetry is accidental.

An accidental global symmetry is a symmetry that is not assumed as a fundamental
property of the model, but which follows from the arrangements of other (allowed)

symmetries.

Discrete symmetries - safe from quantum gravity effects?

Whether the arguments concerning the violation of global symmetries by Quantum
Gravity effects apply to discrete symmetries as well, has been under discussion |7} 63].
It seems that the argument in this case is much weaker. Discrete symmetries appear
naturally in compactifications of superstring theory, in this case they are referred to
as discrete gauge symmetries [64]. Assuming that discrete global symmetries are not
spoiled by QG, we can impose a discrete global symmetry as fundamental to our BSM
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model, and have an accidental axion protected by the discrete symmetry. The neces-
sary global symmetries are usually large (Zy, where N is O(10), e.g. [55]) and therefore
not very appealing. However, the assumption of global discrete symmetries remains a
popular argument to justify the Peccei-Quinn symmetry.

3.8.2 PQ protection via a gauge symmetry

Embedding Peccei-Quinn in a larger gauge symmetry

Perhaps a more appealing idea — which at the same time seems much more difficult
to realize — is the introduction of a fundamental gauge symmetry which entails an
accidental Peccei-Quinn symmetry. Since gauge symmetries are not affected by black-
hole arguments, there is no problem in assuming them as fundamental.

In order to have a BSM model with an accidental Peccei-Quinn symmetry, we must
assume a fundamental gauge group that is larger than the PQ Standard model gauge
group SU(3)c x SU(2)r, x U(1)y x enhanced by a global U(1)pq symmetry. An ap-
pealing idea is the embedding of the Standard Model in a larger unified gauge group
- it turns out, that the exceptional group FEjg is a candidate for such a PQ-protecting
embedding. The (not entirely successful) attempts will be examined in section as
the discussion requires some insight into model building in Grand Unified Theories.
This top-down path can be contrasted to a much more minimal bottom-up approach
in which we extend the SM gauge group by arguably the smallest possible gauge factor
and introduce an additional U(1)’. Such a model in its simplest form has already been
proposed in 1992 by Barr and Seckel. We will discuss it in the following [14].

Barr-Seckel models: definition

Models of this type — in the following referred to as Barr-Seckel-models after their
first inventors — rely on the introduction of SU(3)c x SU(2)r, x U(1)y x U(1)" as the
fundamental gauge symmetry. In addition to the Standard Model fields, one adds quarks
Qo, Qp and @, as denoted in table , and two scalar fields S, and S, whose U(1)’
charges are indicated in table [3.2]

/

The new symmetry U(1)" is anomaly-free - the color anomaly vanishes by definition,
since C =¢q-p+p-(—¢q) = 0. Since the additional quarks are neutral under SU(2)r, X
U(1)y, the only non-vanishing anomaly is the U(1)"® anomaly, which can be canceled
for example by inclusion of additional singlet fermions 3¢ x F,, and 3p x Fy, which are

also listed in table B.11

An accidental Peccei-Quinn symmetry

Assuming that p 4+ ¢ > 4 for the positive integers p and ¢, the renormalizable part of
the Lagrangian has two global U(1) symmetries which correspond to the independent
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SU3)c copies U(1)  U)p U(l)g
Qo 3 p+q 0 0 0
@ 3 q p P 0 (3.8.1)
Qq 3 p —q 0 -Q
Fp 1 3q —p — —
7q 1 3p q — —

Table 3.1: Charges of the additional quarks in the original Barr-Seckel-model|T4].
p and ¢ are positive integers. SU(3)¢ refers to the usual strong inter-
actions in the Standard Model. All BSM particles are uncharged under
SU(2), x U(1)y. The singlet fermions F; are included for completeness,
as they are needed for anomaly cancellation. The exact choice of these
representations is not unique, but we have indicated here the most mini-
mal case.

U(1)p and U(1)q are accidental global symmetries — they are not funda-
mental in the model, but follow from the gauge symmetries.

Table 3.2: Charges of the additional scalar fields in the original Barr-Seckel model.

rephasings of the scalar fields by phases P and ). These global symmetries are denoted
by U(1)p and U(1)g and they are also indicated in the tables mentioned above. Let
us also assume that p and ¢ are coprime, i.e. ged(p,q) = 1. In this case, the lowest
dimensional operator that does not respect these symmetries has dimensionality p + ¢:

Qp+q = (55)(5g)" (3.8.2)

Each of these global symmetries is a chiral transformation of the additional quarks, and
is anomalous with color anomaly coefficients

Cp =qP (3.8.3)
Cq = —pQ.

There is one anomaly-free linear combination of these global symmetries,

U(l)anomalyfree = aU(l)P + bU(l)Q (385)
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which has anomaly coefficient

aP

b@Q

O;C:aqP—pr% b

(3.8.6)

implying that this symmetry is exactly proportional to U(1)’, the original gauge sym-
metry. The orthogonal combination however

U(Lertn = bU(1)p — all(1)g (3.8.7)

has nonzero anomaly coefficient

C = bgP + apQ (3.8.9)
= const. x pq(P% + Q?). (3.8.10)

We therefore identify this symmetry with the Peccei-Quinn symmetry. The resulting
model is of the KSVZ type - the anomalous symmetry is decoupled from the SM particles
and only the additional heavy quarks are charged under it.

Symmetry breaking: kinetic part

It is instructive to see how the PQ-breaking relates to the gauge symmetry breaking.
We start by considering the kinetic Lagrangian of our model. The kinetic Lagrangian
contains the U(1)" gauge boson B, in the covariant derivatives on S, and Sy, as well as
the U(1) gauge coupling go:

Liin(Sp, Sq) = ((9MS; + ipggBuS;)(ﬁ"Sp — ipga B"S)) (3.8.11)
+ (0,S; — iqg92B,.S;) (0" Sy +iqga B! Sy). (3.8.12)

In the broken phase, we write

S, = Wef‘p/”p (3.8.13)
Vg + O
S, = L9 eAd/va (3.8.14)
V2
(3.8.15)

and expand equation (3.8.11]) to obtain the kinetic Lagrangian for the scalar phases 4,
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and Ag:
Lhin(Sp, Sq)
- (%a#ap - ZUP\J/F;” 0, Ay + ipgs B, “p:/r;p) x
(%auap + ipvp—l_\/;‘pa“/lp — nggB“Up\_/gUp)
+ (;auaq _UZ vq\—/gaqaqu 19928, q\—/gaq) X
(%8“0,1 + ;“q\g’q 9" Aq + iqggB“qu/;q)

1 1 1 1
= S0u0p0" oy + 50u040" 0y + S0 Ap0" Ay + S0, A0 Ay

1
+ §BMB“ g3 (p%i + q2v§) + g2 B, (pv,0"' Ay — qug0* Ay) + (mixing terms).

Now we can read of the mass of the gauge boson, mp = g2, /p?vZ 4 ¢*v2 and define the

linear combinations

_ PupAp — qugdq

b (3.8.16)
\/PPUE + q?v?
A A

A= 9V Ap T PUpAg (3.8.17)

\/PPvp + @*vg

One of these combinations — b — is the would-be Nambu-Goldstone boson of U(1)" and

gets eaten by the gauge boson:

1 L1 L m dub\>
Ekin(Sp, Sq) :iaﬂapa Up + 58/10-118 O'q + T BN — miB
1
-1—58”148“14 + (higher order terms)

The orthogonal combination A remains massless at this stage - this field is identified
with the axion.

Symmetry breaking: Yukawa sector

In order to find the axion and its properties, let us study the Yukawa sector under
the symmetry breaking. All fermions acquire their masses from couplings to the new
scalars, so we can write their Yukawa Lagrangian as

q p
EYuk:(Qpa Qq) > Z fzS;szsz =+ Z hlS;Q%qu

i=1 =1
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We choose generic Yukawa coupling constants f; fori =1,... ,gand h; fori=1,... ,p.

Expanding around the VEVs as defined in (3.8.13]) we obtain (non-standard) mass terms
for the heavy quarks:

Up + Op

V2

i
Vg +0q —

taq ~
\/5 e th’ Q(Ii ‘
iap iaq

By a chiral a rotation on @, — Qpe» and Q; — Qe s these mass terms can be

brought into standard form and we obtain an effective change in the Lagrangian

q iap 3 P
ﬁ(Qqu) ) Zfz e_ﬁQpiQpi +Zhi
i=1 =1

2
9s 7 A v
Loa(Qp, Qq) — 97167r2Tr G G"

ia ia 2
o o ap ag\ 95 = A
e O e

iap iag \/PPUE + q?v? ¢ — - )
1Qq) — | 0 - A| 5T GG,

=L ~(e"Q,ev
GG( Qp? vy,

We have used the definition of the axion in this model as given in equation [3.8.17 We
can read off the axion decay constant

1 Pty

— = , 3.8.18
T ot (3.8.18)

and notice that it is dominated by the smaller of the two VEVs. This is in accordance
with the results described in section [3.4]- if a global U(1) and a local U(1) symmetry are
broken by two VEVs, the local symmetry will survive down to the scale of the smaller
VEV. Finally the domain wall number of this model can be calculated. Under shifts

A, A
L5 24 2omn, (3.8.19)
Up Up
A, A
2 5 4 4 21, (3.8.20)
Vg Yq

for integer ny, ng, the effective 6 parameter transforms as
A — +
fa  fa

It is a standard result from number theory that n, and n, can be chosen such that

(gng + pny) 27. (3.8.21)

qng+pny = ged(p, ¢). The corresponding values can be found using Euclid’s algorithm.
We conclude that the domain wall number Npyw of this model is the greatest common
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divisor of p and q. For coprime number p and ¢, Npw = 1 and the constructed model
does not have a domain wall problem [I4].

With the above construction, Barr and Seckel have succeeded in constructing a simple
model in which the Peccei-Quinn symmetry is accidental and protected up to dimension
p+ q — 1. For appropriately chosen values of p and ¢, we can even evade the domain
wall problem in this model. There is, however, a possible problem not addressed by the

simplest form of the model, which will be discussed in the following.

A cosmological problem: Heavy stable quarks

The described model contains stable exotic quarks, which are cosmologically not allowed
[15]. Their present density can be computed by following the thermal history of the
universe. At early times, their abundance must be in equilibrium with SM particles. As
the universe cools down and a certain freeze-out temperature is reached, they hadronize
together with SM particles. The resulting density of heavy hadrons is severely con-
strained by searches of superheavy elements. Also, the existence of large amounts of
heavy charged particles in the milky way halo is in contradiction with the lifetime of
neutron stars. We conclude that for a model to be viable it must contain a mechanism
which allows these heavy particles to decay. An idea to incorporate such a mechanism
into a simple Barr-Seckel model is discussed in the following.

Model idea

In cosmologically viable axion models, a coupling between the heavy quarks and some
Standard Model quarks is introduced, such that the heavy fermions can decay into
SM particles (e.g. [13]). This is also the path that we will follow in our modification
of the Barr-Seckel models, thereby constructing a class of models which are both cos-
mologically viable and protected from Quantum Gravity effects. All additional heavy
fermions are given renormalizable tree-level couplings to SM particles. This requires
the additional fermions to be charged under U(1)y as well as U(1)'.

Anomaly cancellation

Extending U(1)y to the invisible sector requires us to make sure that the SU(3)2U(1)y,
SU(2)2U(1)y, gravity? U(1)y and U(1)3. anomalies still vanish. In our model, this is
ensured by making the new fermions vectorlike with respect to the Standard Model
gauge group - i.e. for every fermion in the anti-fundamental we introduce a second
fermion in the fundamental representation with equal but opposite charges. Secondly,
all U(1)" anomalies with SM gauge groups have to vanish, and finally we also need to
take into account the mixed anomalies U(1)2.U(1)" and U(1)yU(1)".

Together with the requirement that all heavy fermions can decay to SM fermions the
possible U(1)y charge assignments of the heavy fermions are relatively constrained. For
the simplest anomaly-free Barr-Seckel model described above (heavy quarks+ heavy
singlets), no such charge assignments could be found. Adding heavy charged leptons
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in the (anti-)fundamental representation of SU(2) allows for the construction of such a
desired model. The full particle content with all gauge charges is listed in table In
fact there is more than one possibility to assign the hypercharges of the new fermions
and still have them decay — all four possible hypercharge assignments are listed in table

3.4
copies SU(3)c SU(2), U(l)y U1 |U1)a UQl)p comment
ug 3 3 1 -2 0 0 0
s 3 3 1 3 0 0 0 SM particles
QL 3 3 2 3 0 0 0
e$ 3 1 1 1 0 0 0
L, 3 1 2 -1 0 0 0
v 3 1 1 0 0 0 0 (4 neutrinos)
H 1 3 2 3 0 0 0
Sp 1 1 1 0 D 0 P Barr-Seckel scalars
S, 1 1 0 —q -Q 0
Qp q 3 1 % P 0 P Barr-Seckel quarks
c q 3 1 -2 0 0 0
Qy P 3 1 —35 —q -Q 0
¢ P 3 1 3 0 0 0
R, q 1 1 -1 —p 0 -P additional fermions
R; q 1 1 1 0 0 0 (necessary for
R, D 1 1 0 q Q 0 anomaly cancellation)
Re P 1 1 0 0 0 0
D, q 1 2 -1 —p 0 —P
D ¢ 1 2 3 0 0 0
D, P 1 2 z q Q 0
D p 1 2 -1 0 0 0

Table 3.3: Anomaly free Barr-Seckel model (with hypercharge assignments A of ta-
ble. The second column indicates the number of copies that are being
introduced. The symmetries U(1) 4 and U(1)p are global and anomalous,
while the first four symmetries are gauge symmetries. The rows up to
the first double line represent the Standard Model particles (without the
gauge sector), they are uncharged under the additional gauge symmetry.
The rows up to the second double line represent the original Barr-Seckel
model. Everything below the second double line has been introduced to
cancel the remaining anomalies.

Low-energy Lagrangian

The modified Barr-Seckel model allows for the decay of heavy charged particles. Anomaly
cancellation necessitates the introduction of additional particles. The additional par-
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particle Qp Q4 R, R, D, D,
hypercharge ¢, ¢, 1, 1y dp dg
2 1 11

A 3. 3 -1 0 2oz

A R B

< P

D 5 3 -1 -1 -5 —3

Table 3.4: Possible assignments of hypercharges for the heavy fermions (respect-
ing anomaly freedom, and allowing all heavy particles to decay into
SM-particles via renormalizable operators. The charges of the anti-
fundamental partners are fixed by the vector-like condition and are equal
but opposite.

ticles change the the low-energy Lagrangian. We summarize the axion-gauge boson
interactions as

1 A g2
= —0,APA — = =5
£ 28“ 9 fa 167

A e2 Cay

Tr GG,y — 78
A s

E, Fr,

where the axion decay constant f, is defined as

R R

fa B UpUq ’

the axion-photon interaction depends on the anomaly coefficient
Coy = (qQUg(—ch + 2d127 + 7"1%) + p2v§(—3cg + 2d3 + rg)) .

Comparing this result to the original Barr-Seckel axion described around , the
additional particles contribute to the axion-photon coupling (depending on their hyper-
charge assignments) but leave the axion-gluon coupling invariant with respect to the
original Barr-Seckel model. This is to be expected, since the new particles are all SU(3)
singlet, but are charged under the electroweak interactions. We can conclude that just
in the original Barr-Seckel model, the domain wall number is given by

Npw = ged(p, q). (3.8.22)

Discussion

In the above analysis we have seen that the requirement of having an accidental Peccei-
Quinn symmetry can be fulfilled quite easily in an ad-hoc model. This model may
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however be problematic due to the presence of stable heavy charged fermions. We have
seen that it is possible to further extend these Barr-Seckel models to allow for the decay
of the charged particles. Anomaly cancellation presents a strong constraint and requires
the introduction of further particles.

Whether it is possible to further constrain the model remains to be analyzed. It is left
for a future work to check if it can be further constrained by experimental or theoretical
limits. An important effect in the model is the change in the running couplings at scales
above the Peccei-Quinn breaking scale as compared to the SM running. By imposing
asymptotic freedom or asymptotic safety constraints, it might be possible to further
constrain the possible range for p and gq.

3.9 Axions as Dark Matter

Overview

While the axion appears naturally in the Peccei-Quinn solution of the strong CP prob-
lem, in this section we will see how it can also help to solve an entirely different conun-
drum — the so called dark matter problem.

There are various astrophysical observations implying an unknown gravitational source
in the universe. These observations include the unexpectedly high rotational velocity in
galaxies and the fact that galaxy clusters seem to have a bigger mass — as measured from
their gravitational lensing effect — than expected by the observation of their luminous
matteIE| . A possible explanationlﬂ of this anomalous gravity source is the postulation of
one or multiple unknown particles named dark matter, which only interact gravitation-
ally, and possibly very weakly with other Standard Model particles. No Standard Model
particle has the required properties, which is why new physics models often propose a
new kind of particle (or even multiple particles) which can make up the dark matter
(DM). An alternative to the introduction of new particles may be given by postulating
that DM is largely made of primordial black holes — a concept outside the scope of this
thesis.

As invisible axions are stable and have weak interactions with Standard Model parti-
cles, they make excellent dark matter candidates. In this section we will see that their
production in the early universe depends strongly on the scale of inflation and on the
scale at which the Peccei-Quinn symmetry is broken. One has to differentiate between
the case in which the PQ symmetry is broken after inflation, in which one obtains a
rather precise prediction for the axion mass, and the case where the PQ symmetry is
broken already before inflation - in this scenario, the prediction for the mass of the
axion is less precise. In fact, there is no lower bound on the mass, unless one takes into

4There are many reviews of the observational evidence of dark matter [65], the text only names few
examples.

SThere are alternative proposals which try to explain the observations without postulating a new
particle. The viability of such models is still under discussion.
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account fine-tuning arguments. In this scenario isocurvature perturbations can place
limits on the scale of inflation.

The main process through which the axion is produced in the early universe is called
the misalignment mechanism. It relies on the fact that the non-zero energy stored in the
axion field as the Peccei-Quinn symmetry is broken is converted into axion particles. If
these axions make up the dark matter, they must contribute about 26% of the energy
density of the universe. From the requirement that the axion makes up 100% of dark
matter, one can compute the mass of the axion, depending on the initial field configu-
rations. In this section, we first introduce some background information on cosmology,
following the references |66, 67]. Building onto this, we show how to estimate the axion
mass in both scenarios [50)].

In principle, axions can also be produced thermally by freeze-out at the decoupling
temperature. However, all couplings of the axion to SM particles are suppressed by the
decay constant f4, as is the mass of the axion. Since observational constraints suggest
a rather light axion of mass smaller than ~ 6 eV (corresponding to f4 > 10° GeV), the
contribution to DM axions by freeze-out is negligible [50].

3.9.1 Some cosmology background

A homogeneous and isotropic universe

The general considerations in this section are largely based on [60, [67].

Let us make the experimentally very reasonable assumption that the universe observes
the cosmological principle, saying that on large enough scales, the universe looks the
same no matter which point it is viewed from, or which direction is considered. These
requirements are also known as homogeneity and isotropy. The distance element ds of
the most general space-time metric describing the geometry in this case is given by the
Friedmann-Lemaitre-Robertson-Walker (FLRW) metricﬁ

dr?

2 2 2
ds® = (Cdt) —a(t) m

+ r%(df? + sin? 0 dp?) | . (3.9.1)
Here, dr, df and d¢ denote comoving spherical polar coordinates, t is the proper time
and a(t) is called the scale factor - its time dependence is to be determined. Finally we
have defined the curvature parameter K - this constant is scaled such that it can only
take the values 1, 0 or -1. The three different values correspond to three different shapes
of the universe. It can either be closed (K = 1) - a hypersphere, the 4D analogue of
a sphere -, flat (K = 0) with conventional Euclidean geometry, or open(K = —1). A
defining property for each of the cases is the sum of the interior angles of a triangle - it
is bigger, equal to, or smaller than 7 respectively in each of the above cases.

5Here and in the following we will keep an explicit factor of ¢, although it is usually normalized to
1 in particle physics.
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Proper distance

The proper distance d, between two points P and Fp is an invariant distance measure
which must be the same for all observers. It is chosen to be the distance measured in
the rest frame of these two point. From the FLRW metric for ¢ = 0, we can define Py
to be at the origin of our coordinate system and read off the proper distance

T ad
dy, = — =a f(r), 3.9.2
y= | A = ar (3:9:2)
where f(r) depends on the geometry of the space time:
sin~lr  if K =1,
firy=<qr if K =0, (3.9.3)
sinh™'r if K =—1.

Expansion of the universe

Equation (3.9.2) simply tells us that the proper distance between two points now (at
time t) is proportional to the proper distance at an earlier time ¢

at) _ a(t)
d(to)  alto)

The time dependence of the proper distance due to the expansion of the universe is

(3.9.4)

encoded in the time dependence of the scale factor a. For the radial velocity v, of the
point P with respect to point Py, Hubble’s Law follows:

w:%@EH@. (3.9.5)

The radial velocity of a point with respect to some origin is proportional to its proper
distance (from the same origin), with constant of proportionality H = % This number is
actually not constant, but time dependent, and is called the Hubble parameter. Hubble’s
law can be observed, for example, in the redshift of supernovae. These observations,
along with the observation of other phenomena such as gravitational waves, allow for
an experimental measurement of the Hubble parameter. The presently agreed upon
value of the Hubble parameter was determined from fits of the CMB data to a flat
ACDM-model [68], 65]:

km

s Mpc

Hy = 100h with h = 0.675 £+ 0.005, (3.9.6)

where we have defined the dimensionless Hubble parameter h for later convenience. The

values obtained from gravitational wave observation and the observation of type la su-
pernovae are slightly higher [69, [70].
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Matter in an expanding universe: the Friedman equations

Above metric can be derived from a purely geometrical point of view, and does not
depend on the matter inside the described space. The relation between matter and
space time is described by the Einstein equations of General Relativity. They relate the
geometrical properties of space-time with the energy-momentum tensor corresponding
to the content of the universe. Modeling the matter content of the universe as a perfect
fluid with energy density p and pressure p, one can solve the Einstein equations and
obtain the Friedmann cosmological equations :

8tGp Kc?
H? = - — 3.9.7
. 47 P
i= -G (p n 35) . (3.9.8)

These equations relate the evolution of the scale factor or, correspondingly, the Hubble
constant to the matter content of the universe. In this notation, one can absorb the
possible effects of a non-zero cosmological constant in the definition of p and p.

A flat universe

For K = 0, the first equation defines the critical density corresponding to a flat universe
at a certain time £g:

3H?
Perit = Twcoz' (3.9.9)
The density parameter is defined as
=" (3.9.10)
Perit
With this definition, the Friedmann equation ([3.9.7)) can be rewritten as
Kc?

One can then associate an energy density px to the spatial curvature K, defining density
and density parameter respectively as

3Kc? Kc?
= d Qg = ———. 3.9.12
PK 8wGa? an K H2a? ( )
These definitions greatly simplify equation (3.9.7)):
1=0+ Q. (3.9.13)

The sum of all density parameters including the one due to spatial curvature is equal to
one. In particular, if Qx & 0, the universe is spatially flat. According to recent Planck
observations (combined with observations of baryon acoustic oscillations)

Qx = 0.0007 % 0.0019, (3.9.14)

suggesting that our universe is spatially flat.
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Matter, radiation and the cosmological constant

Finally, let us define the density parameter due to a species i of local density p;:

Q.. PO _ 87Gpio
2,0 — — b}
Pcrit,0 3H0

(3.9.15)

The index 0 indicates reference to a quantity measured at a certain time ty, which is
usually taken to be today.

A consequence of the Friedmann equations is the so called continuity equation, which
can also be derived directly from energy conservation in General Relativity:

p+3H <p + :iz) —0. (3.9.16)
Assuming an equation of state of the form
p = wpc?, (3.9.17)
we can solve the continuity equation to get the general evolution of the local density
p = poa 30FW). (3.9.18)

In cosmological applications, the equations of state for three different values for the
parameter w play a major role:

e w =0,ie p=po (%))3 describes a (cold/ non-relativistic) matter dominated
universe, also referred to as dust,

ew =1 ie p=pp (%0)4 describes radiation domination (or hot/ relativistic
matter),
e w = —1,ie. p = const. describes the behavior of a universe dominated by the

cosmological constant.

Radiation domination

Let us now specialize to a flat, radiation-dominated universe as it is required for the
analysis of the evolution of the axion field. Using the Friedmann equation ,
setting K = 0 and using the evolution of the matter density for a radiation dominated
universe we obtain:

<d>2 N ﬁm (@)4 = Hy (@>4> (3.9.19)

a a
which can be simplified to

1 a%
CLHO‘

(3.9.20)
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This equation can be integrated using the initial condition a(0) = 0, and one obtains the
evolution of the scale factor/ the Hubble parameter for a radiation dominated universe:

acxVt and H= % (3.9.21)

After having collected enough basic cosmological knowledge, we will consider the pro-

duction of axions in the early universe in the following section.

3.9.2 Misalignment mechanism

Evolution of a scalar field with constant mass in FLRW background

The production of axions in the early universe is best described by the evolution of a
scalar field in an FLRW background. This evolution is complicated by the fact that the
axion has a variable and temperature-dependent mass. As an instructive example let
us first consider the simpler case of a scalar field with a constant mass term.

We consider the equation of motion (EoM) of a scalar field ¢ with constant mass m in
a flat expanding Friedman-Robertson-Walker (FRW) universe, for a simple potential:

¢+ 3H¢+mip=0. (3.9.22)

It describes a damped harmonic oscillator with time-dependent friction proportional to
the Hubble constant H.

For a radiation-dominated equation (3.9.22)) can be solved analytically:

=

Njw

¢p=a" <t> : [C1 T (mat) + CoY, (mgt)] . (3.9.23)

t;
Here we have used

o« n=(3p—1)/2,

e J,(x), Y,(z) are the Bessel functions of the first and second kind,

t; is the initial time,

and the dimensionful coefficients C7 and Cs need to be fixed by the initial condi-
tions.

In other cases, e.g. when both matter and radiation dominate equally, one has to employ
a numerical method in order to solve equation (3.9.22)), e.g. the WKB approximation.
Above considerations are valid for a general scalar field with constant mass m.
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Evolution of the axion field

The mass of the axion however is temperature dependent — during inflation, it scans a
large range of values. For the case of the axion, equation (3.9.22)) is changed to

A+3H(MA+ X sin(é) =0, (3.9.24)

fa  fa

now with temperature-dependent potential proportional to the topological susceptibility
X(T). Above equation holds for a patch of the universe in which the axion field is
(approximately) homogeneous. In order to describe the evolution of non-homogeneous
patches one also has to take into account spatial derivatives in the EoM.

At high temperatures, the axion mass is strongly suppressed - the third term in
is essentially absent, the system is overdamped and can be solved analytically. As shown
in (3.9.21), in a radiation dominated universe, the scale factor evolves as a(t) x t%, SO
we can substitute H = % and obtain

. 3.
A+ —A= 9.2
+ T 0, (3.9.25)
which is solved by
A(t) = Ag + A%t’%. (3.9.26)

This equation implies that as the universe expands, the axion field tends towards a
constant value Ag. This allows us to fix the initial conditions for the axion field (in the
phase where non-perturbative effects become important):

A(tl) = fAeAﬂ' and A(tl) =0. (3927)

At the initial time ¢; (i.e. the time at which the Peccei-Quinn symmetry is broken),
the axion field takes some initial value proportional to 64 ;, the initial misalignment
angle. This angle may depend on spatial coordinates, but for now we consider the axion
evolution in a patch where the axion field is spatially approximately constant.

The number density of axions in a comoving volume is conserved

As the universe expands and the Hubble rate and temperature decrease, the axion mass
increases and at a critical temperature Tys, the system will start to oscillate
around its minimum. The energy density due to the oscillation can be interpreted as the
energy density of relic Dark Matter axions. The energy density in the zero momentum
modes of the axion is given by

pa(t) = =A2%(t) + %mi(t)AQ(t), (3.9.28)
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such that
mamaA? — ps = —AA —m4AA. (3.9.29)

When the oscillation has started (i.e. for H << m4), we can average over an oscillation
period and obtain

pa ~ (A?) =~ m? (A?). (3.9.30)
Using equation (3.9.24)) we obtain
SHA? = —m%AA — AA = —py + m3 424, (3.9.31)
mA

and with (3.9.30) and the definition of the Hubble constant

pP_MA_gpg_MA_ 3¢ (3.9.32)

P ma ma a

follows. Integrating this equation we conclude
L3 = no(Ty)a(Ty)? = const. = na(Tose)a(Tose)?, (3.9.33)

ma

i.e. the number density of axions n, in a comoving volume is conserved.

Finding the oscillation temperature

We can therefore estimate the relic abundance of axions today, i.e. at Ty ~ 2K, from
the abundance at any other point in time, in particular from the abundance at the time
when the field just starts oscillating. This will happen at a specific temperature, the
oscillation temperature Toec, which is defined by

3H (Tose) = ma(Tose)- (3.9.34)

Using the temperature dependence of the axion mass and the Friedman equation for a
radiation dominated universe, one can calculate Tys.. This calculation of course depends
on the details of the axion masses’ temperature dependence given by equation .
Since we are working in a flat universe, the temperature-dependent Hubble-parameter
is given by the energy density of the universe:

H= %mﬂ (3.9.35)

The total energy density and entropy density of the universe are given by the thermo-
dynamical functions [66]

p(T) = %g*(T)T“, (3.9.36)
7T2
s(T) = %gs*(T)Tg’, (3.9.37)
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where ¢./gs« is the relevant effective number of degrees of freedom given by all rela-
tivistic particles in the system for energy/entropy density. With lower temperature,
the number of relativistic species decreases, and so do g, and gs«. For the oscillation
temperature Tys. we deduce

813G s (TOSC)TS‘SC _ At (Tosc 3
3\/ 90 = Qq E A ) (3938)

which reduces to a power law dependence between T, and the axion decay constant f4.

The parameter n and «, depend on the model we use to calculate the high-temperature
axion mass, where we have assumed the form Using for example the set of
parameters |Z|

n=668 and o, =168x10"", (3.9.39)

we obtain

fa

Of course, modern calculations give a more complicated temperature-dependent axion

(3.9.40)

0.1873
T = 173 GeV < Gev) .

mass [44]. For such a model, Tps. has to be found numerically.

Estimating the relic abundance of misaligned axions

Having stated how the oscillation temperature can be found, we move on to the calcu-
lation of the relic abundance. We will use the conservation of the axion number density
in the comoving volume, given by equation (3.9.33). Furthermore, we make use of the
fact that the universe expands approximately adiabatically. This follows from the fol-
lowing facts: Firstly, the requirement of isotropy implies adiathermal expansion, since
any heat flow would define a preferred direction. Secondly, an adiathermal expansion is
adiabatic if it is reversible. Now, in principle irreversible processes do occur in the uni-
verse, however the entropy is dominated mostly by the cosmic microwave background,
so we can neglect entropy generation by irreversible processes. Adiabaticity expansion
implies that the entropy density s in a comoving volume is conserved:

s(To)a®(To) = 5(Tose)a® (Tosc) (3.9.41)
We obtain the following identities:

ag(TO) . S(Tosc) o nA(Tosc)
QS(TOSC) B s(To) B nA(TO).

(3.9.42)

"We also use the following constants: the phenomenological parameter A = 400MeV, the effective
number of degrees of freedom for the energy density in the early universe g.(Tosc) & 70, the gravitational
constant G' = 6.709 x 1073° GeV 2 [65].
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This allows us to relate the axion relic density today — which is constrained by the
observation of dark matter — to the number density at the start of the oscillation. The
latter is given by

PA (Tosc)

_ N} 2 r2
na(Toe) = 25 2 Sma(Tose )02 15 (3.9.43)

We can now compute the density parameter due to axions,

ot = P _ malTa(Te)
Pc,0 Pc,0
_ ma(To)na(Tosc) s(To) B2
- Pe,0 S(TOSC)
mA(TO)nA(Tosc) gs*(TO)TO3 h2
Pe,0 s (Tosc)Tc?sc
mA(TO)mA(Tosc) Hffi gs*(TO)Tf;3 h2
2p¢,0 Gsx (TOSC)Tg)sc 7

where pc o is the critical density today and we have used equations (3.9.36) and (3.9.43))
in the last two equalities. The index zero indicates that a quantity is to be evaluated at

temperature Ty, i.e. today. Finally, a general expression for the axion density parameter
can be obtained using equations (3.2.6) (assuming the zero-temperature axion mass

formula), (3.2.8) and (3.9.38))

Quh? = 67 (fA 2 Gg*(Tosc)W3> o g*l(TO)\/YTg . (3.9.44)
V5 2805 ™ gor (Tose) P
Coming back to the example , this reducesﬂ to
) ) fA 1.187
Qah” =0.390; <1012Gre\/'> , (3.9.45)

which needs to be compared to the observed cosmic abundance of dark matter, Qcpyh?® =
0.119. Whether the last free parameter, 92-2 can be fixed depends on the cosmological
scenario that we consider —i.e., on whether the Peccei-Quinn symmetry is broken before,
during, or after the inflation happens.

Post-inflationary Peccei-Quinn breaking

Assuming that Peccei-Quinn breaking scale is lower than both the scale of inflation as
well as the reheating scale, the PQ symmetry will be broken after inflation and never
be restored. In this case, the initial misalignment angle will be randomly distributed

80f course, here we must plug in the actual CMB temperature Ty = 2.725K = 0.2348 meV. We also
use the effective number of degrees of freedom for the entropy density today, gs«(7o) =~ 4, and in the
early universe gss«(Tosc) = 70.
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Post-inflationary PQ symmetry breaking scenario
Time b

end of inflation

PQ symmetry
restoration

PQ symmetry
' breaking

QCD phase
transition

] after QCD
K phase transition

Figure 3.2:

Assuming the Peccei Quinn symmetry is broken after inflation — or
even if it is broken during inflation but restored afterwards —, the initial
misalignment angle is randomly distributed over the observable universe.
Different colors indicate different values for 6; (of course this is just an

from [71].

illustration, the field must vary in a continuous way). Image adapted
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within an observable patch of the universe, where fluctuations occur at scales much
smaller than the present horizon. For an illustration of this scenario, refer to figure [3.2
In this secenario the average initial misalignment angle is just the average over a full
oscillation:
2 L[ m?

(07) = W/o 0°do = 3 (3.9.46)
Requiring now that the axion makes up all of the dark matter, i.e. setting Qah? =
QcpM, equation uniquely defines the axion decay constant. For the example
values , we invert equation and obtain f4 = 2.4 x 10! GeV, which
corresponds to a mass of my = 25.5 ueV.
Of course, there may be other components to the dark matter of the universe, so that
only a fraction of DM is made of axions. However, we cannot have more relic axions
than observed dark matter, such that the above calculated axion mass will still be a
lower bound.
In the given calculation, we have made various simplifications in order to make an
analytic estimate possible. We have neglected anharmonic terms in the axion potential,
and we have considered a very simple form of the temperature-dependent axion mass
(equation ) A more detailed, recent analysis in the framework of lattice gauge
theory is given in [44]. The lower limit on the axion mass obtained by the authors is

ma = 28(2) ueV. (3.9.47)

In fact, the authors estimate that 50% to 99% of axions are produced by other effects
than the misalignment mechanism (e.g. decay of topological defects), such that the
possible mass range is

50 peV < my < 1500 peV. (3.9.48)

The scenario described here is often refered to as the “classic window”. In this scenario,
topological defects are to be expected and need to be dealt with when constructing
models. Before moving on to the pre-inflationary axion window, we will briefly review
the production of axions from the decay of topological defects.

Axion production from decaying topological defects

In the described scenario, the axion field must vary in a continuous way through the
entire universe. We must however keep in mind that the axion field is periodic and
can only take values between 0 and 2mw. This leads to the formation of two types of
topological defects when the PQ symmetry is broken: cosmic strings and domain walls.
As the axion field varies from 0 to 27 around a linear structure, a string is formed. A
domain wall is a 2-dimensional surface on which § = 7, i.e. it is a surface at which the
axion field takes its maximum energy value. It follows that each string connects to at
least one domain wall.
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In the scenario where the periodicity of the axion field agrees with the periodicity of
its potential — i.e. the Npw = 1 case — exactly one domain wall connects to each
string. A network of domain walls surrounded by strings is formed. Under their surface
tension, the domain walls decay rapidly, leaving fluctuations of the axion field (i.e.
fluctuation in 6;). These fluctuations evolve in an expanding universe and contribute
to the relic abundance of axions, changing the prediction from the pure misalignment
mechanism. Calculating the effect on the predicted mass of dark matter axions is a
challenging task. Numerical simulations have resulted in the axion mass prediction
ma = (0.6 — 1.5) x 107%eV [72]. A later simulation taking into account effects in the
string core which had previously been ignored was published in 2017, giving a very
precise estimate of the the axion mass [73]

ma = (26.2+34)peV. (3.9.49)

This value results of course from the assumption that the axion accounts for 100% dark
matter.

Finally, one must also consider the Npw > 1 case. Here, at each string multiple domain
walls meet, setting up a stable network of strings and domain walls. Such a network
would be observable, so this scenario is essentially excluded. A way out appears if
one deals with a model in which the Peccei-Quinn symmetry is not fundamental, but
protected by a global discrete symmetry as described in section [3.8.1] In this case, the
Peccei-Quinn symmetry is not exact, but broken by a small amount. This breaking will
result in a small breaking of the degeneracy in the minima of the axion potential, making
the system of strings and domain walls unstable. In this case, the decaying system will
again contribute to the dark matter axions, thus changing the prediction for the axion
mass. In a specific model it also remains to be shown that a discrete symmetry can be
fond which is large enough to protect the PQ symmetry from quantum gravity effect,
while being small enough to allow for the decay of the string-wall network. The authors
of [62] find that in the DFSZ model, the mechanism can be implemented with a Zi
symmetry, allowing for an axion of mass (3.4 — 4.3) meV.

The previous dicussion only applies to the case where the Peccei-Quinn symmetry is
broken after inflation, or possibly also to a scenario in which it is broken during inflation,
but restored during the reheating phase. The discussion is entirely different in the
alternative scenario discussed in the following section.

Pre-inflationary Peccei-Quinn breaking

Of course, as long as we know neither the Peccei-Quinn breaking scale nor the scale of
inflation, we cannot be sure that equation holds. If the PQ symmetry is broken
before or during inflation, the axion field will also take random values distributed within
a Hubble patch, but small patches will then inflate beyond our observable horizon. For
an illustration of this process, refer to figure 3.3} The initial misalignment angle in our
observable universe will be a randomly chosen value between 0 and 27 - we cannot fix
the free parameter 0? in equation , unless we use fine-tuning arguments which
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Pre-inflationary PQ symmetry breaking scenario
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Figure 3.3:

In a scenario in which the Peccei-Quinn symmetry is broken before or
during inflation and never restored, the extreme expansion phase ensures
that small patches of correlated 6; are expanded to sizes larger than our
observable universe. The value of 6; in the observable patch is unknown

in this scenario. Image adapted from [71].
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usually depend on taste. These arguments indicate that in the pre-inflationary PQ
breaking scenario, a much larger range of values is allowed for axion mass and decay
constant.

A important differentiating characteristic of the pre-inflationary scenario is the absence
of topological defects. Any axionic strings or domain walls appearing during the break-
ing of the Peccei-Quinn symmetry will have been inflated outside of our observable
horizon. In models assuming a Peccei-Quinn scale greater than the scale of inflation a
domain wall number greater than unity is therefore allowed without further restrictions.
As the axion field is already present during inflation, quantum fluctuations of the field
will lead to isocurvature perturbations. The non-observation of such perturbations in
the cosmic microwave background leads to an upper limit on the scale of inflation. These
limits need to be dealt with, however they are out of the scope of this thesis.

In this scenario the initial misalignment angle ; can be chosen to be small on anthropic
grounds — it is therefore often referred to as the “anthropic window”.

Note, however, it is possible that the PQ symmetry gets restored after inflation through
reheating, and then broken again at a later time. In this case, the isocurvature fluctua-
tions are washed out and the axion field will again take random values at the second PQ
breaking. It follows that if the reheating temperature is smaller that the PQ breaking
scale, one again has to consider the classic window.

3.10 Experimental searches

Invisible axions

As explained in section [3.3] one can construct axion models for a very large range of
axion masses. In the simplest, most minimal model described in section the axion
decay constant is fixed at the electroweak scale, leading to an axion of relatively large
mass which has been excluded in beam dump experiments already in 1987 [49]. In the
more complicated KSVZ or DFSZ models however, the mass of the axion can freely be
chosen to be much smaller. These lighter axions are generally dubbed “invisible axions”
- all couplings to SM particles are proportional to the axion mass, meaning that the
lighter an axion is, the smaller its couplings to matter will be. This makes the search
for invisible axions a challenging task.

All experimental searches rely on one of the couplings that the axion has to SM particles.
For the QCD axion, there is a one-two-one correspondence between axion mass and a
specific coupling (only depending on the model choice), however it is of course possible
to postulate particles in which coupling and mass are independent. These particles
are usually referred to as axion-like particles (ALPs). They are similar to the axion
in that they are usually pseudoscalars and also obey a shift symmetry. In contrast to
the QCD axion, ALPs do not obey the one-to-one correspondence between mass and
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decay constant , so that their couplings and mass are independent in general. In
a two-dimensional parameter space relating ALP mass and a specific ALP coupling to
SM matter, the QCD axion is defined by a single line, whose position depends on the
specific model that has been chosen. Axion experiments usually search both for axions
and more generally for axion-like particles as well. This of course makes sense since one
should stay as open and model-independent as possible in constructing experiments.
This review however is focused on the experimental detection of a QCD axion.

The parameter space for the axion decay constant has already been constrained by
astrophysics. The duration of the neutrino burst from the supernova SN1987a can con-
strain the axion-nucleon interaction, since axion emission would provide an additional
energy loss channel thereby shortening the duration of the burst. The calculation of
supernova energy loss contains many uncertainties. An approximate lower bound has
been obtained for axions of the KSVZ type: fa > 108 GeV [74, [75]. Axions will also
show up in other astrophysical phenomena: their coupling to photons reduces the life-
time of globular clusters in the horizontal branch since the decay to axions provides an
additional sink of energy. Precise knowledge of the evolution of globular clusters allows
to constrain the axion-to-photon coupling, and therefore the allowed ranges for axion
mass and decay constant. As this limit is independent on the type of axion model we
use it in this thesis as a lower bound on f4 [70]:

fa>13x10"GeV, (3.10.1)
An upper bound on the decay scale is given by black hole spin measurements,
fa < 10'7 GeV. (3.10.2)

This bound is found by considering the Penrose superradiance process, which implies
that axions lead to an additional loss of energy to a black hole [77].

Many experimental efforts to find the axion, as well as phenomenological model build-
ing endeavors, are focused on axions in the range defined by inequalities and
. In this section we will review the most important current experimental efforts
in finding invisible axions and the determination of their mass.

Various couplings to SM particles

A way to classify the various axion experiments is given by the relevant coupling to
matter that is exploited. For many purposes, the axion-photon coupling is used — it
allows for the conversion of an axion into a photon (and vice versa) in the presence
of a strong magnetic field, also known as Primakoff effect, described by the following
Feynman diagram:
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B

There are other proposals making use of the axion-to-fermion coupling as well as the
coupling to gluons (also see the paragraph on CASPEr experiments).

Another important differentiation between experiments is the source of axions that is
employed. While axion haloscopes rely on the local dark matter density being made
up of axions, axion helioscopes can detect axions that are produced in the sun. A
third approach is the production of axions in the laboratory. The so-called light-
shining-through-a-wall experiments rely on the fact that photons mix with ALPs or
weakly-interacting Sub-eV particles (WISPs), traverse through an optical barrier and
are regenerated on the other side of the barrier, all in the presence of strong magnetic
fields. Their current sensitivity however does not suffice to touch the QCD axion range.
We will briefly review current experiments for each type of axion search.

Detection of Dark Matter axions

In 1983, Pierre Sikivie showed that axions from the Milky way halo can be converted
resonantly into a monochromatic microwave signal. This should be possible in a mi-
crowave cavity with high quality factor @, which is permeated by a strong magnetic
field of field strength By [78] [79]. In such an experiment, the conversion power is given
by [80]

P A local

P=ng,, ( > BivVCQy, (3.10.3)

where p jocqr Tefers to the local density of axions in the Milky way halo. Optimistically
it is assumed to be equal to the local density of Dark matter p, ~ 0.3%&11_3 [65].
The volume of the cavity is denoted by V', other experimental parameters are the form-
factor C' and the fraction 7 of power coupled out by the antenna probe. The resonant
frequency v is given by the mass of the axion:

h = mall + %O(ﬁz)], (3.10.4)

where 8 ~ 1073 refers to the galactic virial velocity. In the experimental setup, the
cavity needs to be adjustable to scan over many resonant frequencies. If the resonant
frequency fullfills equation (3.10.4)), an increased interaction between the magnetic field
and the axion background field leads to a small amount of power deposited in the cavity.
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Since the signal is so low, axion haloscopes usually need to be cooled down to a few
Kelvin in order to reduce background noise.

The Axion Dark Matter Experiment (ADMX) [81, 82 [83] sited at the University of
Washington uses such a resonant microwave cavity in order to exclude or discover ax-
ions in the mass range 2 pueV to 20 ueV within the next decade. ADMX has already
succeeded in excluding the KSVZ axion model in the range 1.0 ueV to 3.53 ueV. Other
cavity setups presently under construction, such as the CULTASK [84] experiment in
South Korea, which will search for axions in the range 10 ueV to 30 ueV. The Halo-
scope at Yale Sensitive to Axion CDM (HAYSTAC) can probe down to axion masses
of 20 peV.

Another approach is taken by the MADMAX [85] experiment, which is based on the
axion-photon conversion at the interface between different dielectric media [86]. The
signal is enhanced by using 80 layers of dielectrics instead of one [87]. By tuning the
dielectric disc distances, the experiment should be able to cover the axion mass range
50 neV to up to 230 ueV, thereby covering a large fraction of the currently preferred
region for axion dark matter in the post-inflationary scenario. The ABRA-
CADABRA [88] experiment is still in the planning phase, it exploits the fact that in
the presence of a static magnetic field, the axion field produces response electromag-
netic fields that oscillate at the axions Compton frequency. The experiment uses a
large toroidal magnet in order to detect the effect of the axion field in a mass range of
107 eV to 1070 eV.

While the mentioned experiments have in common that they all exploit the axion-to-
photon coupling, it is also possible to use the pseudoscalar couplings to nucleons. The
Cosmic Axion Spin Precession Experiment (CASPEr) [89] will detect the spin preces-
sion caused by axion dark matter, using nuclear magnetic resonance (NMR) techniques.
Two different couplings are being looked for in two different experiments: CASPEr-Wind
searches for the “axion wind” effect caused by the direct coupling of the axion to the

spin of nuclei,
LD gann(8ua) N 5N, (3.10.5)

which causes a precession of a nucleon spin around the gradient of the local axion DM
field. A different effect is exploited by CASPEr-Electric. The axion-gluon coupling
induces a nucleon electric dipole moment (EDM). The effective operator can be
written as [80]

LD —%gda]vaw%NF“”. (3.10.6)

Both effects (EDM and wind) are time-varying because the background axion DM field
will oscillate at a frequency given by the axion mass. The CASPEr experiments use the
effects to cause precession of nuclear spins in a given material probe, the corresponding
NMR signal can then be observed with the help of a precise magnetometer. Various
Larmor frequencies are scanned by ramping the external magnetic field, thereby scan-
ning over axion masses. CASPEr is expected to be sensitive to QCD axions in the mass
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range from 107%eV to 107'2eV. It is therefore complementary to axion haloscopes,
which scan in much higher mass ranges. Of course, a detection of axion Dark Matter
in this mass range would only be possible for the scenario in which the Peccei-Quinn
symmetry is broken before or during inflation, and never restored thereafter.

Detection of solar axions

Axion haloscopes and similar experiments are very sensitive to the local Dark Matter
density, meaning that if for some reason there was less Dark Matter on the Earth’s
path than expected, or even none at all, these experiments will not measure a signal.
A way out is of course to measure axions that do not contribute to the dark matter
halo, but are produced - either in natural physical phenomena such as the sun, or
even in the laboratory. Solar axions are produced due to the Primakoff effect — the
axion-photon coupling allows for the conversion of plasma photons into axions in a
Coulomb field of charged particles. Experiments observing solar axions — so called
axion helioscopes — then use a transverse magnetic field to transform the solar axions
back into observable photons. The CERN Axion Solar Telescope (CAST) [90] uses
LHC dipole prototype magnets, it has excluded the KSVZ QCD axion in the mass
range 0.1 — 1eV approximately. CAST will eventually be replaced by the International
Axion Observatory (IAXO) experiment, which will be able to detect axion masses above
10~3eV in phase II [91].

Laboratory searches

A third class of experiments does not rely on cosmological or astrophysical sources,
but on the production of axions in the laboratory. So called Light shining through wall
(LSW) experiments rely on the conversion of photons into axions in a strong magnetic
field through the Primakoff effect, on the axions traversing an optical barrier, and on
the regeneration of photons on the other side of the barrier by an inverse Primakoff
effect. The most advanced proposal for an LSW experiment is ALPS IT at DESY, the
successor of ALPS I [92]. LSW experiments have the potential to probe a large fraction
of the parameter space for axion-like particles, however, presently they will not be able
to reach the QCD axion band. An alternative proposal which might be able to detect
or exclude the QCD axion in the laboratory is given by the Axion Resonant Interaction
Detection Experiment (ARIADNE), which uses NMR techniques to detect the coupling
of axions to nucleons. The experiment will be able to detect axions in the mass range
(0.1 —10) meV [77, 93].
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3.11 Interim conclusion

An attractive particle with an unknown mass

This concludes our discussion of the generic axion. We have presented the axion as
a solution to two problems of the Standard Model of particle physics - the strong
CP problem as well as the problem of Dark Matter. The axion solution is especially
attractive as the required extensions of the Standard Model are quite minimal and
favor the postulation of only one additional parameter — the axion decay constant f4.
The scale of f4 —and therefore the mass of the axion —is quite unknown and we have
mentioned various experiments which might exclude or confirm the existence of an axion
in the near future.

While there are few experimental hints on the scale of the axion mass, one might wonder
if any clues could be taken from theory. A central objective treated in this thesis is the
connection of the Peccei-Quinn solution with another attractive modeling idea — the
concept of Grand Unified Theories (GUTs). The next chapter will therefore represent
an excursion from the topic “axion” We will dicuss the principal ideas of GUT model
building, in which the PQ-symmetry appears in an entirely different context.

Here the motivation for the axion in connection with SO(10)-GUT model building will
become apparent, and different models of this type will be analyzed in chapter [5] The
sense in which the axion mass can be constrained in these models will finally be discussed
in [6

For a reader more interested in the theoretical base of GUT model building, a non-
technical introduction to the representation theory of semisimple Lie algebras is given
in appendix [B]
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GUT model building

4.1 Why GUT - and which GUT?

Motivation

The idea of the unification of the gauge groups is a compelling one - it stems from the
fact that the gauge group of the Standard Model, SU(3) x SU(2) x U(1) looks rather
complicated and one would like to simplify it. This is not an outrageous idea - after
all, we observe the breaking of a larger symmetry — SU(2)¢c x U(1)y — to a smaller one
— namely U(1)gps — in nature, so the notion of a similar process appearing at higher
energies naturally comes to mind. As it turns out, the GUT embedding of the Stan-
dard model fermion representations motivates the seemingly arbitrary observed charge
assignments given in section The unification of the gauge couplings sometimes
quoted as evidence for GUT is more a requirement than a hint - at least in the non-
supersymmetric versions that we consider in this thesis. In supersymmetric extensions,
gauge coupling unification comes more naturally even in simple GUT theories.

For clarity of notation, we will often abbreviate tensor products of groups, e.g. the stan-
dard model gauge group SU(3)c x SU(2)r, x U(1)y will often be written as 3¢211y. A
non-technical introduction to group and representation theory is given in appendix [B]

SM embedding and the choice of GUT

GUT model building from a bottom up perspective is usually done in the following
way: Choose a gauge group containing the SM gauge group, and a representation that
can accommodate the fermionic sector of the Standard model. As a second step, one
has to choose the scalar representations which can mediate the breaking of the unified
group. With these choices one can start to analyze the model for its phenomenological
viability. The choice of possible gauge groups is limited by the requirement that the
GUT must contain the SM gauge groups. Model builders have been inspired by the
following observation:

SU(3)e x SU(2)r, xU(1)y C SU(5) € SO(10) C Eg C E7 C Es. (4.1.1)

69



CHAPTER 4: GUT MODEL BUILDING

This can easily be checked by using the method of identifying non-maximal regular
subalgebras explained in section and the classification shown in section This
thesis focuses on SO(10) models, but we will briefly introduce a simple SU(5) model
as an intermediate step. Models with a gauge group F(6) have been interesting for
theorists in the context of unification and axions - they represent one of the rare cases
in which the Peccei-Quinn symmetry can be accidental. Why this is desirable has
already been discussed in the chapter on Peccei-Quinn symmetry and gravity [3.7, and
a few relevant models will be discussed at the end of this chapter. The larger groups
E; and Eg only admit self-conjugate representations. Given the chiral structure of the
Standard Model, these theories are less interesting for GUT model building. The gauge
structure of these GUTs would allow for a non-dynamic mass term for a fermion in a
representation R, since we have

RxR=RxR=1+... (4.1.2)

The resulting fermion mass would then be allowed to be arbitrarily large, the imple-
mentation of light fermions with masses proportinal to the Higgs VEV would be rather
involved. We therefore omit these large groups in our discussion.

Note that the above embedding via SU(5) is not the only possible option. The Lie
algebra of SO(10) contains as a maximal regular subalgebra also the so called Pati-
Salam group SU(4)c x SU(2)r, x SU(2)g, and we can embed the SM gauge groups
via SU(3)¢ C SU(4)¢ and U(1)y C SU(2)g. Unlike the chain (4.1.1)), the resulting
breaking chain

SUB)e x SU(2)L, xU(l)y C SU(4)c x SU(2)r, x SU(2)r C SO(10) (4.1.3)

does not require one-step unification. Considering the fact that the SM gauge couplings
do not naturally unify at the same points, this second chain may be even more attractive
from a model-building point of view and we will employ it in the models considered in
this thesis.

4.2 SU(5): Georgi-Glashow model

Building the model

The first true GUT with a semisimple gauge group was proposed by Georgi and Glashow
in 1974 [2]. It relies on the group A4 = SU(5). This group is minimal in the following
sense: The Lie algebras of the SM gauge groups have ranks 2, 1 and 1. The smallest
gauge group containing the SM must therefore be at least of rank 4. A deciding criterion
for the choice of gauge group is whether or not it is possible to embed the SM fermion
representations in a meaningful way. It turns out, that this is possible in SU(5) using the
two smallest representations. In section[B.6|one can see how to obtain the decomposition

70



CHAPTER 4: GUT MODEL BUILDING
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Figure 4.1: Running of the Standard Model gauge couplings with the appropriate
normalization for U(1)y for SU(5) GUT building. Without additional
particle content, the three couplings do not unify at one point.

rules for SU(5) D SU(3) x SU(2) x U(1):

5= (1,2, %) ¥ (3,1, —é) (4.2.1)
10=(1,1,1) + (3,1, %) + (3,2, é). (4.2.2)

Comparing these subrepresentations, to the SM representations, we notice that one
generation of quarks and light leptons can be embedded exactly into these two rep-
resentations. Now the reason for the normalization of the U(1) charges is obvious -
we have normalized the electron charge to unity. It is possible to include heavy right
handed neutrinos by adding an extra singlet per generation. It turns out that this choice
of fermionic representations is anomaly free!

In the next step of the model building process, we must choose a scalar sector which can
mediate the breaking of the unified gauge group to the Standard Model gauge group.
A simple rule applies to the choice of the scalar fields: In order to break a gauge group
G down to a subgroup G’ C G, we must choose a multiplet representation R of G
which contains a singlet under the subgroup. The smallest irrep in SU(5) which con-
tains a singlet under SU(3) x SU(2) x U(1) is the 24y — the adjoint representation. It
decomposes as

24=(1,1,0)+(1,3,0) + (3,2, _%> + (3,2, %) + (8,1,0). (4.2.3)
Notice that this irrep does not contain the usual Higgs doublet that we need for the
electroweak symmetry breaking. Another scalar representation must be included, for
minimality reasons this is usually a 5. From equation we see that the SM
Higgs doublet can be contained in 55, and we also obtain a colour triplet scalar usually
referred to as T'. Of course, this model represents just a very simple case and suffers
from multiple problems discussed in the following. Many alternative models have been
proposed since.
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Unification of the gauge couplings

In the non-supersymmetric Standard Model, the gauge couplings of QCD and the weak
interaction meet at a scale of circa 10’617 GeV. The hypercharge gauge coupling with
the appropriate normalization however does not meet the other couplings at this scale
(compare figure [.1)). The simplest SU(5) model is therefore not viable. This problem
does not appear for SUSY extensions of SU(5) GUTs, since the supersymmetry needs to
be broken at an intermediate scale, introducing a bending of the running of the gauge
couplings. In this thesis we will use a similar approach to circumvent the problem,
which however does not rely on the introduction of supersymmetry. In our models, a
larger gauge group with an an intermediate symmetry breaking step is introduced, as
well as extra degrees of freedom which change the running of the gauge couplings and
therefore allow for succesful unification.

Proton decay

Like all GUT models, the Georgi-Glashow model predicts the proton to be unstable.
The predicted lifetime of the proton depends on the unification scale and on the details
of the model. Proton decay in the Georgi-Glashow model appears due to the fact that
the gauge multiplet of SU(5), the 24, contains particles charged both under colour and
under the weak interactions. These so called leptoquarks can mediate the decay of a
proton into pion and positron, with an estimated decay rate of

2,5
ozUmp

1
M5

T(p — 7% ") ~ (4.2.4)
where Mx is the mass of the leptoquarks, m, the proton mass and oy the value of
the unified gauge coupling. Current experiments [94] limit the lifetime 7 = 1/I" of the

034

proton in the given channel to larger than 1.6 x 10°* years. For realistic values of the

unified gauge coupling (aal ~ 40) we can estimate the mass of the leptoquarks

My > 4.3 x 101° GeV. (4.2.5)

Since the mass of the gauge bosons is proportiona]lﬂ to the VEV that breaks the GUT
symmetry, this points to too high a unification scale in tension with the prediction from
gauge coupling unification. A detailed analysis of the scalar sector shows that this does
in fact strongly disfavor the model [95].

The prediction of proton decay is an important characteristic of many GUTs. We will
also use it in the SO(10) models analyzed later in this thesis.

Doublet-triplet splitting problem

The scalar sector of our model contains a color charged triplet particle T" which may also
be responsible for proton decay. In order to keep the proton stable, this particle must

!The constant of proportionality is the relevant gauge coupling, i.e. a number of order 10.
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be extremely heavy, M7y > 102 GeV. At the same time, the “usual” Higgs doublet,
which sits in the same 5-plet as T" must remain light in order for the EW symmetry
breaking to work. This large splitting between the two masses is usually referred to as
the doublet-triplet splitting problem. It can be solved by allowing for large fine-tuning
in the model, or by introducing supersymmetry. Some degree of fine-tuning is common
to all GUT models, we will also discuss it for the models treated in this thesis.

SU(5): pros and cons

As indicated in this section, the simplest SU(5) model proposed by Georgi and Glashow
- while on a theoretical level very attractive - faces some serious difficulties when com-
pared to observations. While it is an appealing idea to unify the three SM gauge
couplings into one, in practice the couplings do not meet at the same scale. Also proton
decay observations place serious limits on the phenomenological viability of the model.
There are various ways to extend the model to increase the phenomenological viabil-
ity, for example by changing the particle content. An elegant proposal by Bajc and
Senjanovic suggests the inclusion of a fermionic multiplet in the adjoint (24 ) represen-
tation, which changes the RGEs enough to allow gauge coupling unification and includes
a heavy right handed neutrino which lives in the SM singlet part of the 24 [96]. This
proposal has recently been extended to allow the postulation of an additional Peccei-
Quinn symmetry and even the prediction of the axion mass to a very small window [97].
Other proposals usually feature the inclusion of an 15-plet in the scalar sector, which
changes the particle content enough for the gauge couplings to unify at one scale, but
does not answer any questions about the origin of neutrino masses. It is a drawback
common to all SU(5) models that nonzero neutrino masses are usually not incorpo-
rated in a natural way. One can, of course, always include additional singlets (or even
multiplets) and introduce heavy right-handed neutrinos by hand. The small masses
of the left-handed neutrinos are then implemented via some variation of the see-saw
mechanism. A more elegant way of including neutrino masses however is implemented
in models with an SO(10) gauge group, which are presented in the following section.

4.3 SO(10) model building and the case for a Peccei-Quinn
symmetry

Note: this section has already been published in a similar form in [I§].

Fermion content

The SM matter content — now including heavy right handed neutrinos — nicely fits in
three generations of a 16-dimensional spinorial representation 16 of SO(10), cf. Table
This can also be checked by calculating the weight system of the 16 representation
and using the matrix given in to find the corresponding subrepresentations under
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the Pati-Salam group. The fact that all fermions of one generation are accounted for
— including the previously ignored right handed neutrinos — is a strong motivation for
choosing SO(10) over SU(5) as the underlying gauge group.

SO(10) 402:.2r  4c201r 3¢201rlp_1 3c2. 1y

16 (4,2,1) (4,2,0) (3,2,0, 1) (3,
(1,2,0,-1) (1,2,—3) :=
(

(17172) (Zala%) (gvla%a_

Table 4.1: Decomposition of the fermion multiplets according to the various sub-
groups in our breaking chains. All SM fermions have masses set by the
Higgs mechanism, the heavy right handed neutrinos acquire their mass at
the BL breaking scale from the coupling to the 126 5.

The weights under 40272 are of the form {w;},i = 1,...,5, where w; is the weight
corresponding to the generator T5 of 21, wy is the weight of T3 for the group 25 (or, as
denoted in tables , the 1g charge), and ws, wy, w5 are the three weights of the
Cartan algebra of SU(4), with ws,w, the weights of the Cartan generators T2, T8 of
SU(3).

With the fermion assignments given as in table [4.1 one can identify the charge B — L
as a combination of SU(4) weights

1 2
B—L:§w3—|—§w4—|—w5. (4.3.1)
The electric charge is
1 w1 w9 1 1 1
=T5+1 - (B-L)=—+—+-= - —ws. 4.3.2
Q="T3+ R+2( ) 2+2+6w3+3w4+2w5 (4.3.2)

Scalar sector

As explained in , we choose to employ the breaking chain via the Pati-Salam
group. The scalar sector must allow for the chosen symmetry breaking to take place
while at the same time ensure that fermion masses can be reproduced- the particle con-
tent we choose is listed in table [£.2] It is motivated mainly by representation theoretic
arguments.

Group theory requires at least the following representations in order to achieve a full
breaking of the rank five group SO(10) down to the rank 4 SM group SU(3) x SU(2) x
U(1):
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SO(10)  4¢212r  4c2rlp  3c¢2rlplp_r  3c2rly 3clem VEV
104 (1,2,2) (1,2,3) (1,2,,00  (1,2,1) | (1,00=H, v°
(1,2,-3) (1,2,-100 (1.2,-1)| (1,00=Hy o}

1265 (10,1,3) (10,1,1) (1,1,1,—2) (1,1,0) |(1,0)=:Ar g
(15,2,2) (15,2,3) (1,2,5,0) (1,2,3) | (L,0)=:%, v,
(15,2,—%> (1,2,-3,0) (1,2,—3) | (1,0)=:2q u;*

210y (1,1,1)  (1,1,0) (1,1,0,0) (1,1,0) | (1,0) =:¢ %1

Table 4.2: Decomposition of the scalar multiplets according to the various subgroups
in our breaking chains. We only display the multiplets which get nonzero
vacuum expectation values (VEVs) in the different models considered in
the paper.

e 16y or 126: they reduce the rank by at least one unit, either leaving a rank
four SU(5) little group unbroken, or else breaking the SM group.

e 455 or 54y or 210g: they admit for rank five little groups, either SU(5) x U(1)
or different ones, like the Pati-Salam (PS) group SU(4) x SU(2) x SU(2) [9§]. In
the latter case, the intersection of the little group with the SU(5) preserved by a
16y or 126y can give the SM gauge group.

We will exploit in our explicit models the 126 and the 210 representations. Since
16r x 16 = 10y + 1204 + 1264, (4.3.3)

the most general Yukawa couplings involve at most three possible Higgs representations,

Ly =165 (Y1010y + Y1201205 + Y126126) 165 + h.c., (4.3.4)

where Y19 and Yj96 are complex symmetric matrices, while Yiog is complex antisym-
metric. It is then natural to ask: what is the minimal Higgs sector to reproduce the
observed fermion masses and mixings? Clearly, in order to get fermion mixing at all,
one needs at least two distinctive Higgs representation&ﬂ Out of the six remaining
combinations, however, only three turn out to give realistic fermion mass and mixing
patterns: 10y + 126, 120y + 126y, and 10y + 120y (see for example [99, [100]
and references therein). From these combinations, the first two are phenomenologically
preferred since the 126 is required for neutrino mass generation via the seesaw mech-
anism. The first one is the most studied, in particular because it is the one occurring
in the minimal supersymmetric version of SO(10). We will also exploit it in our PQ
extensions of SO(10), as elaborated next.

2A single Yukawa matrix can always be diagonalized by rotating the 16 fields.
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Real or complex 107

First of all, it is important to note that the components of 105 can be chosen to be
either real or complex. In the non-supersymmetric case it is natural — as it is more
minimal — to assume a real 10y representation. However, as pointed out in [I7, [16],
this is phenomenologically unacceptable, because it predicts m; ~ my. In the alternative
case in which the complex conjugate fields differ from the original ones by some extra
charge, 10y # 107, both components are allowed in the Yukawa Lagrangian,

Ly =16p (leOH + }71010}} + Y126126H) 16 + h.c., (4.3.5)

since they transform in the same way under SO(10).

Assignment of the VEVs

The representations in decompose under the Pati-Salam group SU(4)cxSU(2) 1, x
SU(2)R as

16 = (4,2,1) + (Z, 1,2),

105 = (1,2,2)+(6,1,1), (4.3.6)

1265 = (6,1,1) +(10,1,3) + (10,3,1) + (15,2,2) .
(Throughout this section we will consider decompositions of representations under the
PS gauge group by default). From the above it follows that the fields which can develop
a VEV in which the SM subgroup SU(3)¢ x SU(2)r x U(1)y is only broken by SU(2)r,
doublets, as in the standard Higgs mechanism, are (1,2,2), (10,3,1), (10,1,3), and
(15,2,2): as seen in table the above PS representations include singlets under
SU(3)c x U(1)gnm. We denote the associated VEVs as

v = <(E,3, 1)126> s VR = <(10, 173)126> s (4 3 7)
vua =((1,2,2)00) vl =((15,2,2),7%) . -

The (1,2, 2) bi-doublet can be further decomposed under the SM gauge group, yielding
(1,2,2)ps = [(1,2, +1)sm = Hu] + [(1,2, —3)sm = Hy), where the suffixes PS and SM
refer to decompositions of representations under the Pati-Salam and SM gauge groups,
respectively. Now if 105 = 10}, we have H;; = Hy as in the SM, while if 10y # 107,
~the case we consider in this thesis— then H # H, as in the MSSM or in the Two Higgs
Doublet Model (2HDM).

Fermion masses

As can be seen in table each generation of SM fermions in the 16y of SO(10)
transforms as (4,2,1) and (4,1,2) under SU(4)¢c x SU(2), x SU(2)r. The SM colour
group SU(3)¢ is embedded within the SU(4) of the PS group, SU(4)c D SU(3)c X
U(1)p—_r, while SM hypercharge is identified as

Y = U(l)p+ %U(I)B,L, (4.3.8)
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with U(1)g being the usual T% generator within the Lie algebra of SU(2)z. Given
this embedding of the SM fermion families into PS representations, we can express
the fermion mass matrices arising from the interactions in after electroweak
symmetry breaking as

M, = Yiovl? + Yioul? + Yigeu}?®
My = Yiovg® + Yigvl? + Yiggug?®,

M, = Yl()’UCllO + ?101]}10* — 3Y126’Ucllzﬁ s (439)
Mp = Yiovl® + Yipv}® — 3196032

Mpg = Y126vR ,

My, = Yio6vp, -

Here, Mp, Mg and M7, enter the neutrino mass matrix defined on the symmetric basis

(v, n )
( Mz Mp ) : (4.3.10)
ML My

Predictivity and the Peccei-Quinn symmetry

The three different Yukawa coupling matrices in (4.3.9)) weaken the predictive power of
the model. This motivated the authors of Ref. [16] to impose a PQ symmetry [I], under
which the fields transform as

16y — 16Fei°‘,
105 — 10ge %, (4.3.11)
126 — 126¢ %,

which forbids the coupling Y1¢ in ([£.3.9) (see also Ref. [I7]). This is how in many GUT

models, a Peccei-Quinn is used without the primary reference to the strong CP problem!

Breaking SO(10)

As mentioned above, the 126 alone breaks SO(10) to the experimentally disfavored
SU(5) —or else it would also break the SM group— so that we have to introduce a third
Higgs representation to achieve a symmetry breaking pattern that arrives at the SM
gauge group at a scale above that of electroweak symmetry breaking. We exploit in this
paper the 210 representation, which has the following PS decomposition:

210y = (1,1,1) +(15,1,3) + (15,1,1) + (15,3,1) + (10, 2, 2) + (10,2, 2) + (6,2, 2) .
(4.3.12)

3In the notation of table v denotes the left-handed neutrinos included in the lepton doublets [,
and n designates the right-handed neutrinos.
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The former allows for a VEV that preserves the SM gauge group,
0?10 = ((1,1,1)910) . (4.3.13)

We will further assume vz, = 0 (see equation (4.3.7))), which implies M, = 0 in the mass
matrices in equations (4.3.9) and (4.3.10)), thus giving a type-I seesaw, and yielding the

following two-step breaking chain:

N 10,126
vR—126p wa  —10H

210 _
VIR g o9, VRII0H g 9 g

S0(10) 3¢ Lem. (4.3.14)

The symmetry breaking VEVs are constrained by the requirement of gauge coupling
unification and can be calculated from the renormalization group running of the coupling

constants, see Section@. vg and v210

are further constrained by proton decay and lepton-
number violation bounds, but the former still allow for excellent fits to the fermion
masses and mixings, as was seen in [I01] 26, [102] and references therein. For a recent

analysis of unification with intermediate left-right groups, see [103].

4.4 Fs model building and accidental axions

Fermion representations and scalar content

The fundamental representations of Fg decomposes as follows under Eg D SO(10) X
U(1):

27 = (16,1) + (10, —2) + (1,4). (4.4.1)

It is advisable to assign the Standard Model fermions to the 16p-plet of SO(10), as
given in table [£.I] and therefore to the 27 of Fs. Eg group theory then predicts 11
additional degrees of freedom per generation of fermions. Consider the tensor product
decomposition

27 x 27 =275+ 351% + 351 4, (4.4.2)

where we have indicated whether the resulting representation matrices are symmetric
or antisymmetric. In order to obtain fermion masses by Yukawa couplings, we must
introduce at least one of the scalar representations on the right hand-side of equation
. Models with only a 27 in the scalar sector have been proposed [104], 105].
In [I04], the singlets in the 27 play the role of sterile neutrinos. Other models addi-
tionally include at least a 351 or 351%;. We can check how the scalar representations
decompose under Eg D SO(10) x U(1):

351" = (1,—8) + (10, —2) + (16, —5) + (54, 4) + (126, —2) + (144, 1). (4.4.3)

FEg theory features a unique property that is not shared by the smaller groups treated
above: the VEVs needed in order to break the GUT symmetry as well as electroweak

78



CHAPTER 4: GUT MODEL BUILDING

symmetry can all be contained in representations coupling to the fermion bilinears. For
example, the SU(2) doublets in the 10 C 27 can mediate the electroweak symmetry
breaking, while the SO(10) singlet in the 351" suggests SO(10) as an intermediate
symmetry breaking chain [I06]. The breaking via SO(10) however is not the only
possible breaking chain, several models featuring an intermediate gauge group SU (3)¢ X
SU(3)r x SU(3)r have been proposed [107, 108].

FEg and an automatic Peccei-Quinn symmetry

As explained in section [3.7] from a theoretical point of view it would be desirable to have
a model in which the Peccei-Quinn symmetry is not imposed by hand, but follows as an
accidental symmetry from the imposed gauge symmetries. Certain Eg models are the
closest that a GUT theory has come to this goal, even though their phenomenological
viability remains open for debate.

The idea for automatic PQ-protection is for the gauge symmetry to forbid scalar opera-
tors that would be PQ-violating if allowed up to a certain mass dimension D > 4. This
idea does not work in SO(10). Because of equation (4.3.3]), any PQ-charged scalar must
be in one of the representations 10, 120 or 126 if we require renormalizable Yukawa
interactions. Allowing for dimension 5 operators to act as Yukawa-like couplings giving
masses to the fermions, one might also take into consideration the 45 or the 16 repre-
sentations. The lowest dimensional gauge invariant operators made up of only one of
the aforementioned representations are (10)2, (16)? (45)2, (120)2 and (126)* - none
of which is invariant under a PQ symmetry [109].

The gauge structure of Fg, however, allows for the idea to work, as shown in reference
[109]. Out of the representations on the left-hand side of equation (4.4.2)), the 351 is an
interesting one as no operators of the form (351)" are allowed for n < 5. The proposed
model therefore contains fermions in 27p representations, and one or two scalars in
351’s. The Peccei-Quinn symmetry is therefore protected up to dimension 5.

As pointed out in section 3.7} a much higher degree of protection is probably needed.
The proposed model has other disadvantages: As mentioned in [I10], the model entails
antisymmetric fermion mass matrices, which lead to a phenomenologically unacceptable
massless generation. Also note that symmetry breaking in the model goes via an SU(5)
group — therefore encountering similar problems as the Georgi-Glashow model described
in section 1.2

An extension of this model was proposed in which these phenomenological problems
can be circumvented while still having an accidental Peccei-Quinn symmetry [110]. The
basic gauge group in this model however is not simple: Eg x U(1). Considering that
the idea of unification was the original purpose of our discussion, we find this model
less interesting due to its complicated gauge structure.
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Note: parts of this section were already published in a similar form in [I§].

Axion properties in various SO(10) X U(1)pq models

After motivating the PQ symmetry in predictive SO(10) constructions and reviewing
its connection to the axion solution to the CP problem (section , next we study the
properties of the axion in various SO(10) models, using the results about the general
axion construction detailed in section [3.4 We will motivate the particle content of our
models. First, we will show that the Peccei-Quinn symmetry —postulated to get
a predictive scenario for fermion masses and mixing— is phenomenologically unaccept-
able unless other scalar fields with nonzero PQ charges are introduced. This is because
the model with the 10 and 126 scalars predicts an axion decay constant at the elec-
troweak scale, which has been ruled out experimentally (for a review, see [65]). Then
we will move on to consider models in which the axion decay constant lies at either the
unification scale or in between the latter and the electroweak scale. For each of these
models, the axion will be constructed explicitly. A more detailed numerical analysis of
the constraints put on the axion mass by gauge couping unification is delayed to chapter

6l

5.1 Models with an axion decay constant at the electroweak
scale

The various VEVs in the model

Here we consider the minimal scalar content motivated in Section ie. a 210y, a
10y and a 126, with the latter two charged under the PQ symmetry in accordance to
equation . The scale f4 will be a combination of the VEVs of the fields charged
under PQ, i.e. 10g,126y. These VEVs determine the fermion masses, which include
the SM fermions —whose masses and associated VEVs must lie below the electroweak
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SO(10) 4¢212r  4021lr  3c¢2plrlp.r  3c2rly 3clem scale VEV
105 (1,2,2) (1,2,3) (1,2,3,00  (1,2,3) | (1,00=H, My vl
(1,2,-4) (1,2,-1,00 (1,2,-1)| (1,00=Hy My o}

45,5  (1,1,3)  (1,1,0) (1,1,0,0) 1,1,0) | (1,0):=0 Mpq wvpq

(
mH (107]-’3) (107171) (1’1’17_2) ( (170) = AR Mg wvBL
(15,2,2) (15,2,1)  (1,2,4,00 ¢ 0):=%, My vl

(15,2,-3) (1,2,-3,0) (1,2,—3) | (1,0):=%g Mz v}*

2105 (1,1,1)  (1,1,0) (1,1,0,0)  (1,1,0) | (1,0):=¢ My oy

Table 5.1: Decomposition of the scalar multiplets according to the various subgroups
in our breaking chains. We only display the multiplets which get nonzero
vacuum expectation values (VEVs) in the different models considered in
the paper. “Scale” refers to the contribution to gauge boson masses in-
duced by the VEV of a multiplet, rather than to the mass of the multiplet
itself. According to the extended survival hypothesis, we only keep the
multiplets which acquire a VEV at lower scales, (with the exception of
Yiu, 24, which decouple at Mpy, in order to give rise to a low-energy 2HDM
limit). All submultiplets not in the list are assumed to be at the unifi-
cation scale My. In all cases, we have M, < {Mpr, Mpq} < My. The
different relations between Mpy, and Mpq are considered in the cases A
and B. Depending on the model, not all listed multiplets are included.
The various models are described in the text.

scale— and the right-handed neutrinos, which are allowed to be heavy. The mass of
the latter is set only by the VEV vg = ((10,1,3)126) within 126, as follows from
equations (4.3.7), (4.3.9), (4.3.10). The U(1)p_r D SU(4)c symmetry is broken only
by the VEVs vg = ((10,1,3)126) and vy, = ((10,3,1)126). The latter breaks the
electroweak symmetry and contributes to light neutrino masses and low-energy lepton

number violation, so that vg > vr. Then we are at the situation commented at the end
of the previous section, in which a gauge symmetry is broken by several VEVs, with a
single dominant one.

It follows that f4 is of the order of the light VEVs, i.e. vp, vllLOd, v}fdﬁ, which are at the
electroweak scale or below. For an overview of the various VEVs and mass scales, see
table The corresponding mass scales of the fermions are presented in table

The physical axion

Despite the lack of viability of the model, it is instructive to construct the axion explic-
itly using the techniques outlined in section this will serve as a simple example that
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50(10) 402[23 4C2L1R 302L1RleL 302L1y scale
16  (4,2,1) (4,2,0) (3,2,0,%) (8,2,8) :==q My
(1,2,0,—1) (1,2,-3) =1 My

(4,1,2) (4,1,3) (3,1,3,—3) (3,1,3):=d My
(1,1,3,1) (1,1,1):=e My

(41,-3) (B1,-3-3) (B1,-3)=u M

(1,1,-11) (1,1,0) :==n Mgy,

10, (6,1,1) (6,1,0) (3,1,0,—2) (3,1,—%):=D Mpq
3,1,0,2) (3,1,3):=D Mpq

(1,2,2) (1,2,1) 1,2,1.0) (1,2,1) =L Mpq
(1L2-1) (1L2-30) (1L2-1):=1 M

Table 5.2: Decomposition of the fermion multiplets according to the various sub-
groups in our breaking chains. All SM fermions have masses set by the
Higgs mechanism, the heavy right handed neutrinos acquire their mass at
the BL breaking scale from the coupling to the 126. Fermions in the
10 representation can obtain a mass from a Yukawa coupling to the 455
or to a scalar singlet (if present).

will pave the way to the computations in viable models. Again, the axion involves the
fields charged under PQ and getting nonzero VEVs, which are contained in the 126
and 107 multiplets. As detailed in table the PQ fields getting VEVs are the Hig-
gses Hy, Hy D (1,2,2)10, Xy, 2q D (15,2, 2)196, and the SM singlet Ar D (10,1, 3)19.
To simplify the notation as much as possible, we will denote the VEVs with v and the
phases with A, with appropriate subindices, as in equation . We define

¢1 EEU, ¢2 Ezd, ¢3 EHu, ¢4 EHd, ¢5 EAR. (511)

For simplicity, and as was anticipated in Section 4.3, we consider a zero VEV vy, for the
(10, 3, 1)196 multiplet, in order to avoid B — L violation at low energies, and to realize
the simplest version of the seesaw mechanism (see equations through )
We will also denote vgy, = vg as this is now the only B-L breaking VEV.

In the following, we will construct the physical axion, and thereby the physical Peccei
Quinn symmetry PQ,,¢ in this model. A general parametrization of the axion, without
knowledge of the PQ charges, can now be written as in .

Since we expect PQ,,s to act as a rephasing of fields, and since all fields have well-
defined quantum numbers (weights) under the generators of the Cartan subalgebra of
SO(10), it is natural to expect PQp.s to be a combination of the original PQ symmetry
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and the transformations in the Cartan subalgebra. The latter includes in particular the
charges R and B — L of tables and Once the relevant combination of global
symmetries has been identified, then one can immediately obtain the ratios g,/ fpq for
the fermion fields. These can then be used to write out the Lagrangian of the physical

axion, as explained below equation (|3.4.24)).

Orthogonality constraints

As detailed in section [3.4] we may constrain the previous coefficients by imposing or-
thogonality with respect to the Goldstone bosons of the broken gauge symmetries, as
well as perturbative masslessness. For the gauge constraints, the choice of nonzero VEVs
is such that, as commented in [3.:4.2] and and shown in Appendix [C] the only nontrivial
orthogonality conditions are those with respect to the Goldstones associated with the
generators in the five-dimensional Cartan subalgebra of the gauge group. Since all the
VEVs corresponds to color singlets, they carry no weights under the two generators of
the Cartan subalgebra of SU(3)¢c D SU(4)¢. By assumption, the fields also carry no
electric charge, which eliminates another combination of Cartan generators (see equation
for the relation between the electric charge and the weights corresponding to the
Cartan generators of the group SU(4)c x SU(2)r, x SU(2)r D SO(10)). This leaves two
independent Cartan generators giving rise to two nontrivial orthogonality constraints.
We may use the generators U(1)p—y, D SU(4)c and U(1)r D SU(2)r —see Appendix
for how B — L is embedded into the Cartan algebra of SU(4)c x SU(2)r x SU(2)R).
The charges of our fields ¢; = {Hy 4,24, Ar} under these symmetries are given in

table The orthogonality constraints ((3.4.21) yield

11 — CoVg + c3v3 — cqvq = 0, (5.1.2)
05 - 0

Moving on to impose perturbative masslessness, we note that in the scalar potential

the term 105 10y 126;{126;{ + h.c. is allowed by both the gauge and PQ-symmetries.

After symmetry breaking, these terms induce masses for some combinations of phase
fields. Denoting gauge-invariant contractions by “inv”, we have:

10 105 1265 126 |iny + hec. D (1,2,2)(1,2,2)(15,2, 2)(15, 2, 2)|imy + h.c.
> (Hy + Hy)(Hy + Hy) (S + S (E] + Sy + hec.

As A2 Ay Ag\?
D_U§U§<3_1> _vzvg(k?).

U3 U1 V4 V2
The orthogonality conditions as in equations ((3.4.14]),(3.4.17)) yield
_2 + cj :0
vro s (5.1.3)
V2 V4

More massive combinations can be found under closer inspection of the scalar potential,
but they cannot give additional constraints on the axion as we already identified four
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constraints which, together with the requirement for a canonical normalization of the
axion, fix the five independent coefficients ¢;. Proceeding in this way we can finally
conclude that the axion is given, up to a minus signﬂ by

A= (Aot Agoa) (05 + 0]) + (Asvs + Aro) (i +v5) o _ > vl

V(v +v3) (vF + 0F) P

We remind the reader that the above parameters v;, A; are defined by equations (3.4.1))
and (511).

Couplings to matter

The axion couplings to matter can be calculated using the results of section 3.4l Equa-
tions and imply that the effective Lagrangian can be simply derived
from the ratios ¢,/ fpq corresponding to the fermions. The ones corresponding to the
scalars can be obtained from the scalar ratios ¢;/ fpq, which can be immediately derived
from the axion coefficients ¢; by using . Applying the latter identity to the axion
combination , it follows that

@ B \/UZ-HJ% © _ 4 \/U§+U% g5 =0 (5.1.5)
frq  frq v/ (W2 +02)  frq  frq vy/(02 +v2)

From these we may derive the PQ charges ¢,/ fpq of the Weyl fermions by identifying
the appropriate combination of global symmetries in the Lagrangian that gives rise to
the charges in . The physical symmetry PQ,p,,s can be expressed as a combination
of the global PQ,U(1)g and U(1)p_r, —as anticipated in the modification of PQ

involves the symmetries within the Cartan algebra of the group:
PQuhys = s1PQ+s2U(L)r + 53U (1)B-1- (5.1.6)

From the conventions in (5.1.1), the PQ charges in (4.3.11) and the U(1)r,U(1)p—_1
charges given in table [£.2] one deduces:

S1 _ v S9 _ v%—v%—l—vg—vz
oo /(1 +03) (B+03)  TPQ w07 +03) (0] + )

9 9 . o 9 (5.1.7)
s3 vy —3v; +v3 — 3u]

TeQ o, /(63 +03) (03 +03)

"We choose the sign that gives a positive value for the fa x, see (5.1.9).
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Finally, the values of ¢,/ fpq for the fermions follow from and ( -, and the
charge assignments in table |5

qq 1 v? + vg Qu —v? 4 3v3 — v§ + 3v3
T\ (2 L 2)° - ’
feq  3u (v +vj) oo 30, /(03 +03) (03 +03)
g0 _ 2 [ vitvy a1 [ vitui (5.1.8)
frq v (U% + UZ) 7 frq v (U% + ’U%) ’
Qe v%—v%#—v%—vi an

Fro o fr e (3 e

From the above we may obtain the f4 using (3.4.25):

5 1 | (v? 4+ 02) (v2 + 02
fage = faz, =3fay = 3\/( 1 312( 2 4). (5.1.9)

As explained in the value of f4 3, only depends on the scalar PQ charges, and can
be also obtained from equation (A.0.5). The simple relations above reproduce exactly
the result of equation (3.4.8)). We obtain the effective Lagrangian for the axion

A a8 A q _
e =50 AP A + 2 G GO =D B P 9,4 Y o (flar
Lint = a 0 +87TfAG LG +87r3f + 0, oy PQ(fa 1),

(5.1.10)

where the gr/ fpq factors (which are the same across generations) are given in equation
(15.1.8]).

As stated at the end of section one may obtain a physically equivalent effective
Lagrangian £! . by starting from the usual fermion kinetic terms and Yukawa inter-
actions and perform different phase rotations that remove the scalar phases in
the Yukawa terms. This does not affect the coupling of the axion to the photon; see
Appendix [A] for more details. At low energy, incorporating the QCD effects from the
axion-meson mixing in equation and the nucleon interactions in , ,
and expressing the electron interactions in the axial basis as in equatlon 3.6.4, the
Lagrangian involving the axion, the photon, nucleons and electrons is:

L3P —%aﬂAaﬂA = %miﬁ o Cay yp

int 87‘(‘ fA
Cap—t CAN—t Cap—t_,
— 8 A P Hrys P + N s N + E FE
24 2fa 2fa ’Y V5
8
Cay = 3 1.92(4), (5.1.11)

Cap = —0.62 + 0.43 cos® 5 + 0.03,
Can =0.26 — 0.41 cos® 5 £ 0.03,

1
CAE = g Sin2 ﬁ,
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where we defined

2 2
v + U3
2 2°
vy + vy

tan? B = (5.1.12)
The couplings to fermions coincide with those in the usual DFSZ model [52] 111], 42],
although the relation between the parameter 8 and the scalar VEVs now involves addi-
tional fields. As commented in potential differences with respect to DFSZ models
could come from the axion interactions with the weak bosons, which in the axial basis
leading to (5.1.11]) will contain the information of the PQy,,. charges of the fermions.

Domain wall number

The domain-wall number of the model can be calculated from . We may first
consider the “naive” domain wall number obtained by using the PQ charges of equation
, without imposing orthogonality conditions. In this case N =12 (see )
is an integer —note that the value of N is the same for the GUT group and all its
non-Abelian subgroups, as follows from the fact that N in can be expressed
as a single trace over all fermions, which fall into GUT representations. On the other
hand, the scalar charges have k = 2 as a maximum common divisor. In this situation,
as discussed in section , the domain wall number would be N /k = 6, as corresponds
to a DFSZ axion model. On the other hand, using the physical PQ charges in ,
the calculation is a bit more involved. Starting from equation , the quantity in
brackets is a rational function of the v;. In order to have an integer result, we must
demand that the numerator is proportional to the denominator. This gives a system of
equations, as many as there are independent monomials in the denominator. Denoting
the minimum integer as npyin (which will be the domain-wall number) one has:

Nmin + 3(n1 +n2) =0, Nmin + 3(n2 +n3) =0,

(5.1.13)
Nmin + 3(n1 +n4) =0, Nmin + 3(ng + n4) =0.

Since the n; are integers, clearly one has Npw = nmin = 3. That is, the domain wall
number is half of the naive estimate with the unphysical PQ symmetry in . As
discussed around equation , this is due to the fact that the naive estimate is not
taking into account the need to quotient the remnant discrete symmetry by the center
Zo of the gauge group .

A visible axion

As anticipated at the beginning of this section, all VEVs appearing in fa = fa3, in
equation have to be at the electroweak scale, as follows from the conventions in
and equation . Hence, the axion described in this model is visible, being
just a GUT-embedded variant of the original Peccei-Quinn-Weinberg-Wilczek model
discussed in section which is phenomenologically unacceptable (for a review, see
|63]).
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There are several ways to lift the axion decay constant to higher values, which, as
follows from the discussion in [3.4.2] must involve additional scalars with PQ charges.
The simplest way is to give a PQ charge to the Higgs field responsible for the GUT
symmetry breaking [23]. An alternative way is to introduce a new scalar multiplet, e.g.
a 45y, also charged under the PQ symmetry [25] 26]. A third way is to introduce an
SO(10) singlet complex scalar field responsible for the U(1)pq symmetry breaking [27].
We will consider in this paper benchmark models from all these three categories.

5.2 Models with an axion decay constant at the unification
scale

An extended Peccei-Quinn symmetry

As follows from the arguments in Section in order to have a heavy axion one
needs at least two fields charged under PQ and getting large VEVs. In the model of
the previous section, the scalar 210, which was needed to ensure the breaking of the
GUT group, was not charged under PQ. Thus the most minimal way to decouple the
axion decay constant from the electroweak scale is to extend the PQ symmetry
to the 210y,

165 — 16p¢',
Model 1 : 1075 — 105e %,

1265 — 126¢ %,

2105 — 2105,

(5.2.1)

The PQ charge of 210 follows from the requirement of allowing gauge invariant cubic
interactions between the 210y multiplet the other scalars. The only possibility is
210 1267 1047, which fixes the above PQ charge.

Axion construction: Orthogonality constraints

The construction of the axion field in this model proceeds along the same lines as in
the previous section, yet with an added extra phase associated with the ¢ = (1,1,1)
component of the 210y multiplet whose VEV vy = vy = vg breaks SO(10) to 4¢ x
21, X 2 (see table[4.2). We now define

$1 =Ny, ¢2=%4, ¢3=Hy, ¢4=Hg, ¢5=Ar, ¢s=0. (5.2.2)

The general parametrization of the axion is now A = Z?:l c;A;. When imposing
perturbative masslessness, we have the same constraints (5.1.3) as before, plus new
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ones coming from the new interaction 2105 1265 104:

2105 1267 105 |y + hoc. O (1,1, 1)[(10,1,3) + (15,2, 2)](1,2, 2) iy + h.c.
— ¢SuHy + ¢SqH, + h.c.
vevivg (As A1 Ag\? wvgvavs (Ag | Ay Az’
Y ( o 1)4) B ( *)

where “inv” denotes a projection into gauge-invariant contractions. Masslessness of the
axion requires then

(5.2.3)

In addition, since ¢ is a singlet under U(1)g and U(1)p_r, we still have the same

constraints from orthogonality as before, equations (5.1.2) and (5.1.3)). Solving the

linear system of equations and normalizing, we construct the axion for this model:

A—_ (Aqvg + Agvz)(vg + U%) + (Asvs + Alvl)(vz + U%) — A6U61)2’ o2 = Z ’UZ-2.
V(v +v3) (05 + v) + vgv?) pa
(5.2.4)

Note that in the limit My < My the axion is just A = Ag. This follows from the field

assignments in ([5.3.3]) and the scales in table . Therefore, the dominant contribution
to the axion field comes from the 210 HE| The PQpnys charges of the scalars are now:

Qa9 v3 + vf
e fra oy (0203 + (v + 03) (0§ +03))
@ u v} + 03
o Jea oy J(02d + (0 +03) (13 +03)) (5.2.5)
Q5:07
v

g6 = .
Vo + (o 4+ 08) (03 + 03)

Once more, the global symmetry PQ,,s can be expressed as a combination of PQ and
the Cartan generators U(1)g and U(1)p_r, as in equation (5.1.7)), but with coefficients

ZNote that the 210y is not charged under U(1)g and U(1)p_1 —see table so that the axion
can be aligned with the phase of a field getting a large VEV, like ¢ D 210y, without violating any
orthogonality condition. This is in contrast to the model @
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s; that now take the values

s1 v S22 v%—v%—kv%—vi
e 4 (3 +03) (i +o3) +02d TP w02+ 03) (0 +03) + 020
s3 v? — 3v3 + v3 — 3}

Tea  qu [(07 +03) (13 +03) + 0?0}

5.2.6
The PQp,ys charges of the fermions can be obtained from and (5.2.6), al(ld thi
charges of table [5.2}
a4 v} +v3 T —v? + 303 — v3 + 303
feq 30\/(11% +v3) (v +v3) + U%g’ fea 3v\/(v% +v3) (v +v}) + 11211(25’
G _ 2(vf + v3) @ _ v3 +
frq 31;\/(12% +v3) (v3 +v3) + U%g’ feq v\/(U% +v3) (V3 +v3) + U%g’
Qe v — v + V5 — v} In

= 5 :O
Tea .\ f(02 +03) (o +0F) +om}  FP0

(5.2.7)
The axion decay constant fa, following from (|3.4.25)) is given by:
1 [vzv? + (vF +v3)(v3 + v?

In the limit Mz < My, fa ~ % = %, so that the axion decay constant is dominated

by the GUT-breaking scale. The effective Lagrangian for the axion is as in equation

(0.1.10), with the PQ,,,s charges in (5.2.7). At low energies, incorporating QCD effects
and going into the axial basis, one gets the DFSZ-like interactions in (|5.1.11)), with the

the parameter 8 in (5.1.12)).

Domain wall number

As in the previous model, the original PQ symmetry in involves scalar charges
with a maximum common divisor £k = 2, and one has integer N = 12 (common to
the GUT group and its non-Abelian subgroups). Thus the naive domain-wall number
—without imposing orthogonality of the axion with respect to the gauge fields— is again
N /k = 6. To get the physical domain-wall number we may use . As was done for
the previous model, can be converted into a system of equations involving nmin
and integer n;:

Nmin + 3(n1 +n2) =0, Nmin + 3(n2 +n3) =0,
Nmin + 3(711 + n4) =0, Nmin + (n3 + n4) =0, (529)

Nmin — 3n6 =0.
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Once again, one has Npw = nmin = 3, half of the naive estimateﬁ )

5.3 Models with an intermediate scale axion decay con-
stant

Extended PQ symmetry and an additional 45

As was mentioned before, lifting the axion from the electroweak scale requires a scalar
other than the 1265 having a nonzero PQ charge and a large VEV. In the previous
section, this scalar was chosen as the one responsible for the first stage of GUT breaking.
This linked f4 and the GUT scale. Choosing nonzero VEVs along other components of
the 210 multiplet which are not involved in the first-stage breaking and can thus have
smaller values does not help in lowering f4, as there is always the GUT-scale VEV.
However, one may consider an additional scalar with a lower-scale vacuum expectation
value. To motivate the choice of representation under the unified group, we can be
guided by minimality and predictivity. We would like to constrain the axion mass by
the requirement of gauge coupling unification, which is only possible if the PQ-breaking
VEV of the new scalar is also related to the breaking of a gauge group. It should
therefore be a singlet under an intermediate symmetry group between 40272 and
3c2r1ly. In other words, it should break the Pati-Salam group, but not to the Standard
Model. There are few multiplets in the SO(10) representations up to 2105 which fulfill
this criterion -the lowest ones being the (1,1, 3) and the (15,1,1) of the 45, denoted
by their Pati-Salam quantum numbers,

455 = (1,1,3) @ (1,3,1) & (6,2,2) & (15,1,1).. (5.3.1)

The only other option would be the (15,1,1) of the 210y, which, as mentioned above
does not help in lowering f4, as the multiplet contains a GUT-scale VEV. One could
consider an additional 210, independent of the GUT breaking, but minimality favors
a smaller multiplet like the 45. We will adopt this choice, and to comply with existing
literature [26], 25], we choose to use the field o = (1,1,3) D 455, which breaks SU(2)r
down to U(1)r when it acquires its VEV vpq = (o). Aside from the GUT scale My,
the theory will now have two additional physical scales Mgy, and Mpq related with the
VEVs of the 1265 and 45, respectively (see table [4.2)). In this model, the 210 does
not carry PQ-charge, as again this would lift f4 to the GUT scale. For the 455 we
can choose different PQ charges, depending on the interactions we want to allow with
the other scalars. As opposed to the case of the 210 in the previous section, there
are no cubic interactions of the 45 with the other scalars that are compatible with a

3As already pointed out in [53]|, a DFSZ model featuring Npw = 3 can also be constructed without
reference to a bigger gauge group. The defining criterion is a Peccei-Quinn charge assignment that
allows a dimension three coupling between the PQ charged scalars. This is common to the models 2.1,
2.2, 3.1 and 3.2 considered in this thesis.
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nonzero PQ charge for the 45;. On the other hand, one can allow the quartic couplings
210 x 126 x 126 x 4577, 210 X 105 x 1267 x 45, which enforce a PQ charge
of four units for the new scalar:

165 — 16p¢',

105 — 10e~ 2,

Model 2.1 : 126 — 126¢ %, (5.3.2)
210y — 210y,
455 — 45",

Axion construction and orthogonality constraints

The construction of the axion goes analogous to Section @ The VEV vpq of the 455
now plays the role of the VEV of the 210, so we define:

¢1 =Xy, ¢2 =Yg, ¢3=Hy, ¢4 =Hg, ¢5=Agr, ¢s=0. (5.3.3)

The masslessness conditions now arise from the interactions 210y x 1265 x 1265 x 455
— which includes terms going as ¢, >4, see table — and 210y x 10 x 1265 x 45,
which includes ¢o(H /%), (3/H)4. Since o is not charged under U(1)g and U(1)p_1,
the orthogonality conditions are as in Section [5.1] Despite the different masslessness
conditions, the formulae (5.2.4), (5.2.5), (5.2.7) and of the previous section apply
to this model, although with vg and Ag now referring to the field o. In the limit
Mz < Mpq, the axion is dominated by the VEV of the 455 and we have

Fa~ %6 = FQ (5.3.4)

Domain wall number

Once more, the initial PQ symmetry in has scalar charges with a maximum
common divisor k = 2; on the other hand, for the GUT group and its non-Abelian
subgroups one has integer N = 12, giving a naive domain-wall number of 6. The
physical domain-wall number follows from , which is equivalent to the following
system of equations:

Nmin + 3(n1 +n2) =0, Nmin + 3(n2 +n3) =0,
Nmin + 3(n1 +14) =0, nmin + 3(n3 + ng) =0, (5.3.5)
Nmin — 9Ng = 0.
Once again, one has Npw = nmin = 3, half of the naive estimate. The effective
Lagrangian for the axion is as in (5.1.10]), with the values of f4 and ¢;/fpq given in

equations ((5.2.5)) and (5.2.8]). Accounting for QCD effects in the axial basis, one recovers
again the DFSZ-like interactions in ((5.1.11)), (5.1.12)).
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The scale of PQ breaking: two cases

In [26] vpq was chosen to lie at the same scale as the VEV of the 126y . In principle,
there is no reason for this equality, so we will not use it in our analysis. Generically, as
mentioned before we have two physical scales Mgy, and Mpq associated with the VEVs
of 126y and 455. We will now distinguish between two cases:

Case A: Mpqg > Mgy,. If the 455 acquires its VEV before the 126y, it takes part
in the gauge symmetry breaking. This is because, as said before, vpq breaks the Pati-
Salam group to SU(4)¢ x SU(2)r x U(1)g (see table[4.2)). We are therefore confronted
with the following three-step symmetry breaking chain:

— Mpg—45 — —
S0(10) MUE 4o, 25 TS 402, 1, MO 300, 1y MV 3095,3.6)

Both vpq, related to Mpq, and the VEV vpy, related to Mgy, have to be compatible
with gauge coupling unification at My. Since vpg ~ 3fa (see (5.3.4)), this constrains
the axion decay constant. Such constraints will be analyzed in Section [6]

Case B: Mg, > Mpq. In this case the 45y does not take part in the gauge symmetry
breaking, because vpy, breaks the Pati-Salam group to the SM, which is preserved by the
VEV vpq of 0. Hence, in these scenarios one cannot constrain the axion-decay constant
fa from unification requirements. The only limit on vpq is set by the requirement

UBL > UPQ-

A variation: Additional 455 and extra fermions

All the models analyzed so far feature Npw = 3 and are therefore troubled by a domain-
wall number problem, if the topological defects are not diluted by inflation. A variant
of the model in Section [5.3] which does not suffer from the domain wall problem was
originally proposed in [24]. It additionally contains two generations of fermions in the
10r representation which become massive via Yukawa interactions with the 45,

165 — 16p¢'*,

107 — 10e~ %,
Model 2.2 : 1265 — 126e 2,

2105 — 2104,

455 — 45 et

107 — 10pe 22,

(5.3.7)

The axion is given by the same combination of phases as in section [5.3] as the construc-
tion only depends on the scalar PQ charges. The axion decay constant can be obtained
from equation (3.4.25) — which, applied to models with Nyg extra fermion multiplets in
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the 105, gives (A.0.5) — substituting the values of ¢;/ fpq in (5.2.5)), and using Nyg = 2.
This gives

v2v? + (V2 4 v2) (V3 + v?
fa=fage = \/ ov” + v 2 )05 1) (5.3.8)

Avoidance of a domain wall problem

Due to the extra fermions, the PQ symmetry in has now N = 4, as opposed
to the previous value of 12. Again, the scalar PQ charges have a maximum common
divisor of 2, so that the naive domain wall number is 2. When taking the quotient
of the discrete symmetry group with respect to the center Z, of the gauge group, one
expects then a physical domain wall number Npw = 1, which gets rid of the domain-
wall problem. This can be explicitly checked using equation , which now implies
the following system of equations for the n; and the minimum integer nuy;, that gives
the domain-wall number:

Nmin + (M1 +n2) =0, Nmin + (n2 +n3) =0,
Nmin + (n1 + n4) =0, Nmin+ (ng + n4) =0, (539)

Nmin — N6 = 0.
As expected, we have Npw = nmin = 1.

Effective axion Lagrangian

In order to obtain an axion effective Lagrangian we need the PQy¢ charges of the extra
fermions D, D, L, L in the 10p (see table . As the scalar content of the theory is
as in the previous section, we have that, as before, PQy¢ is given by with the
8; in . Using the 1 and 1p_1 assignments in table the charges of the extra

fermions are:

9o _ _ 2(vf +v3) a0 v? + 3v2 + v + 3}
frq 31;\/(1)% + v) (v} + v3) + v203 frq 30\/(1}% + v3) (v3 + v}) + v20d
9 _ (v3 + v}) w _ vf + v3
o w4 ed) (B +ed) o TP (02 +0) (03 + 0]) + 023
(5.3.10)
The axion interactions are then given by
1 as A ~ a8 A ~ qf
Ling ==0,AMA+ =G0 G + — " F, F*" +9,A Af ptsn
t 2 1 +87TfA ny +87T3fA 12 + M Z fPQ(fO—f)’
,u,d, e,
f= %,D,f,,L

(5.3.11)

with the values of f4 and ¢;/ fpq given in equations (5.2.8)), (5.2.5), and ([5.3.10). Includ-

ing QCD effects and going to the axial basis, the Lagrangian for axion, photon, nucleon
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and electrons now has a different relative weight between axion and fermion couplings
than in the previous DFSZ-like result of (5.1.11)). In the current domain-wall-free model
one has now an extra factor of three in the fermionic couplings:

1 1 C -
LR =50, A0 A= SmA A + ﬁ AF,, B
Cap—t CAN CAp -+t
— 0,A | 222D s P ZANN e N ZAEE i B
8
Cay =5 — 1.92(4), (5.3.12)

Cap = — 0.91+ 1.30 cos? 3 + 0.05,
Can =0.81 — 1.24 cos® 8 £ 0.05,

CAE = Sin2 /87

with 3 as in (5.1.12). Since the scalar content of the models is unchanged with respect
to the previous section, the symmetry breaking chains are the same as before. A slight
difference occurs in case B: If Mgy, > Mpq, the extra fermions acquire masses only
below the scale Mpq. In the analysis of gauge coupling unification, one has to take into
account the extra contributions of these fermions between My and Mpg.

5.4 Models with a decay constant independent of the gauge
symmetry breaking

Extended Peccei-Quinn symmetry and an extra singlet

A third way to lift the PQ-breaking scale from the electroweak scale, also relying on a
new scalar charged under the PQ symmetry and getting a large VEV, relies on the in-
troduction of a complex gauge singlet scalar .S and thus exploits an even more minimal
scalar sector than the previous intermediate scale axion models exploiting an additional
45y. However, this choice lacks the predictivity of the previous approaches since the
singlet .S does not participate in the gauge symmetry breaking. As in the models con-
taining a 45, the minimal model has a domain wall problem which can be avoided by
introduction of two generations of heavy fermions. Under the Peccei Quinn symmetry,
the scalar fields transform as follows for the two models:

16 — 16p¢'*,
107 — 107e %,
Model 3.1 : 126 — 126¢ %, (5.4.1)
2105 — 210y,
S — Set,
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which features Npw = 3, and

16 — 165",

10y — 10g5e~ %,
Model 3.2 : 1265 — 126¢ 2,

210y — 210y,

S — Setia,

10 — 10F6_2m,

(5.4.2)

for the model with Npw = 1.

Discussion

In both of these models the construction is analogous to[5.3|and 5.3 where the role of the
455 is now played by the singlet S. Like o in Sections[5.3|and[5.3] S is not charged under
U(1)r and U(1)p—r, so that the orthogonality conditions are unchanged. The massive
combinations which the axion needs to be orthogonal to only occur at dimension 6 in
the shape of the operator 126 126 10 105 S S. The resulting system of equations
however yields the same formulae as in equations , , as well as —with
no additional fermions in the 107— and — with fermions in the 10 — yet with vg
and gg corresponding now to the field S. The calculation of the domain wall number is
identical to that in Section [5.3] and so is the axion effective Lagrangian. In particular,
at low energies we get the DFSZ interactions in for the Npw = 3 model, and

the result in (5.3.12]) for the Npw = 1 case.
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Constraints on axion properties
from gauge coupling unification

Introduction

In this section we analyze the previously defined models in more detail. An important
step in the analysis of the phenomenological viability of a model is the check of the
possibility of gauge coupling unification. In some of the models analyzed in this thesis
the requirement of gauge coupling unification put constraints on the allowed axion
mass. These constraints are the main topic of this chapter. We will also comment on
the stability and perturbativity constraints of the scalar potential in a representative
model.

We start this chapter by motivating and explaining the necessary scans, we then present
the results for each of the three considered models. We also consider the dependence of
our results on the observed lifetime of the proton in section Finally we summarize
our findings and discuss possible observations in section [7] This chapter has already
been published in similar form in [I8].

6.1 RGE evolution and threshold corrections

A two-loop analysis

We analyze which constraints can be put on the axion mass from the requirement of
gauge coupling unification for each of the models defined in chapter [5l In each case, we
take into account the running of the gauge couplings at two-loop order. A consistent
analysis to this order needs to take into account one-loop threshold corrections. The
general and model-specific S-functions and matching conditions are given in Appendix
@]ﬂ Since the scalar masses depend strongly on the parameters of the scalar potential,

!Our analysis has been performed using Mathematica [T12]. In the calculation of the beta functions,
we have employed the LieART package[113], as well as our own code. The appearance of our plots was
enhanced using Szabolcs Horvat’s MaTeX package.
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which are not known a priori, the scalar threshold corrections due to the Higgs scalars
cannot be calculated exactly. Instead, we have assumed that the scalar masses are
distributed randomly in the interval [{5 Mz, 10My], where My (T € {U,BL,PQ}) is
the threshold at which these particles acquire their masses.

Which particles contribute at which scale?

For the RG running, we have employed a modified version of the extended survival
hypothesis [114]. According to the latter, scalars get masses of the order of their VEVs,
so that the scalars remaining active in the RG at a given scale are those whose VEVs lie
below that scale. We consider however an exception [27, [I7]: in order to have a 2HDM
at low energies, we will assume that ¥, and ¥4, the SM doublets in the (15,2,2)pg of
the 126, have masses of the order of Mgy,. Such a choice is not arbitrary. First, as
commented in Section realistic fermion masses require VEVs v}fdﬁ of the order of the
electroweak scale for the previous fields. Small VEVs for massive fields can be achieved
through mixing with the light doublets H,, H; in the 10y, which themselves must
acquire electroweak VEVs vi?d. The mixing can be induced by a PQ invariant operator

such as 10g 126L 126y 126}[, which gives VEVs vqu of the order of v]%,L/M(Q15 9 2)vi?d,

where M(15 9y is the mass of the (15,2, 2)pg multiplet [27, [I7]. If the mass is of the
order of vpy,, the desired electroweak-scale VEVs are achieved. Taking into account the

scalar content of each model, the surviving multiplets can be read from table The
RG equations also take into account the fermionic representations — three generations
of fermions in the 16 representations, and two additional generations in the 10g in
the models defined in equations (5.3.7) and ((5.4.2)).

Experimental bounds

To sharpen the predictions of our models, we take into account constraints from the
non-observation of proton decay, bounds on the B-L breaking scale obtained from fits
to fermion masses, as well as black hole superradiance and stellar cooling constraints.

In regards to proton decay, we use a naive estimate for its lifetime, considering only the
decay mediated by superheavy gauge bosons [I00]. We approximate the lifetime of the
4

proton by 7 ~ mj\;[g2 (for my, = 0.94GeV) and compare it to the current experimental
P—U

limits [94] 7(p — 7e*) > 1.6 x 10**y. In subsequent plots, constraints imposed by
current limits from proton decay will be shown in blue.

The constraints on the B-L scale in SO(10) models can be obtained by fitting the
observed values of fermion masses and mixing angles to the relationships implied by
the gauge symmetry (eq. (4.3.9)). Such fits have been performed for example in [102]
and [I0I]. In the former the fit was performed at the weak scale, while in the latter it
was done at the GUT scale. As in the models in our analysis, [LI01] considered a two-
Higgs-doublet model at low scales above Mz. Both studies only considered the scalar
fields contributing to the Yukawa interactions —in our model the 105 and the 1265
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since these are largely model independent. In both cases the analysis yielded an upper
bound on the B-L breaking scale of about 3 x 10' GeV. The final formula for the B-L
breaking VEV can be derived from (4.3.9) and the seesaw formula, and it includes two

mixing angles 8 and -:
vite = vpr = 3 x sinycos § x 1015 GeV, (6.1.1)

where we have defined

Vd \/ 2102 4 (p126)2
0526
tany = S5
Yd
. . . 2126 210 .
Since the fits only determine the ratios S and o the two factors sin+y and cos 3
d

are not constrained. Allowing for some %ne tuning — as it is customary in SO(10)
models— the B-L breaking scale can be lowered to 10° GeV. For each of our models
we have considered different levels of fine tuning in this sector, allowing vgr, to be
within windows with an upper value of 10'° GeV and a lower value of either 10?, 10!
or 10'3 GeV. In the figures of the rest of the section, constraints imposed by the B-L
scale will be shown in green.

Finally, black hole superradiance constraints arise from the fact that axion condensates
around black holes can affect their rotational dynamics and the emission of gravitational
waves [115], [1T6], 117]. We will show the associated constraints in black. Bounds from
stellar cooling arise from taking into account the loss of energy by axion emission due to
photon axion-conversion in helium-burning horizontal branch stars in globular clusters
[76]. Such constraints will be shown in gray.

6.2 Running with one intermediate scale

Gauge coupling unification in the case of minimal threshold corrections

Let us first consider Model 1 described by with PQ charged scalars in the 210y,
126y and 10y representations. Figure shows the predicted running of the gauge
couplings for the case of minimal threshold corrections, in which all scalar masses are
degenerate with the corresponding gauge boson masses. Gauge coupling unification
fixes the different scales in this case to

My = Mpq = 1.4 x 10" GeV, ay(My)™! = 33.6, MpL, = 6.3 x 10'°GeV. (6.2.1)
The unification scale is well above constraints from proton decay. Exploiting the relation
MU = guvu, (622)
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Figure 6.1: Running and gauge coupling unification in Model 1 in the case of min-
imal threshold corrections [I§].

10°GeV < vgy, 10" GeV < vpy, 10%GeV < vpy,
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Figure 6.2: Intermediate and unification scale for randomized scalar threshold cor-
rections in Model 1. Only the large orange points are not excluded by
our constraints. Points in blue are excluded by proton decay limits,
points in black are excluded by the limits from black hole superradiance
constraints. Points in green are allowed by black hole superradiance and
proton decay, but forbidden by the chosen range of B-L breaking. The
black cross indicates the minimal threshold case, i.e. the case when all
scalar masses are degenerate and at the corresponding unification scales
for which the running of the gauge couplings is illustrated in figure [6.1]
We have performed the scan for 400 sets of initial conditions, 310 of
which yielded unification of the gauge couplings [18].

between the mass of the superheavy gauge bosons and the VEV vy and the relation
(5.2.8]) between the axion decay constant and the VEVs, we obtain

M M)~ 1
oy = =Y ou(My) My = 7.7 x 10'° GeV, (6.2.3)

39U 3V/4r

yielding, via (3.2.6), an axion mass

fa

W =

ma=T7.4x10710 eV, (6.2.4)

This result is illustrated in the first three lines of figure [6.3] which summarizes our

results for the case of vanishing threshold corrections.
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Figure 6.3: Possible ranges of the axion mass and decay constant consistent with

gauge coupling unification in our models, for the case where all heavy
scalars are degenerate at their various threshold scales. Regions in black
are excluded by constraints from black hole superradiance, regions in
blue by proton stability constraints. Regions in green are disfavored
depending on the allowed range of the B-L breaking scale. Regions in
gray are excluded by stellar cooling constraints. The width of the region
in Model 1 is exaggerated to make the bar visible. Note that for the
Models 2.1, 2.2 and 3 the exclusion of the higher B-L breaking scales
comes from an interplay of the proton stability constraint and the limit
on vpy,. In all these models, a higher B-L breaking scale corresponds to a
lower GUT unification scale, which leads to an instability of the proton
and is therefore excluded [I§].

Including randomized threshold corrections

Model 1

Npw =3

Model 2.2
Npw =1

Model 3
Npw € {1,3}

As illustrated in figure and as already pointed out in [I1§], taking into account the
possibility of scalar threshold corrections induces large uncertainties in the prediction

of the GUT scale, which result in corresponding large uncertainties in the prediction of

the axion mass. Including constraints from proton decay limits and the non-observation

of black hole superradiance, the allowed range is

2.6 x 101 GeV < f4 < 3.0 x 1017 GeV,
1.9x 107" eV < my < 2.2 x 107 %eV.

(6.2.5)

Finally, we have considered the various constraints imposed by the B-L breaking scale.

As shown in figure varying the allowed range of vpp, changes the viable range of
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vpq and therefore of f4. For vgr, > 10'1(10'3) GeV, the upper bound on f4 is lowered
to 1.0 x 10*7(3.5 x 10'%) GeV. In the latter case, our random sample contains only two
viable points (cf. figure . These findings are summarized in the first three lines of

10" GeV < vpy,

10 GeV < vgy A\vIu(lL‘l 1
Npw =3

10” GeV < vg,

10" GeV < vpy,

10" GV < vp A\It‘)(l(-'l Zl
Npw =3

107 GeV < gy,

10" GeV < vpy

falGeV]
10" 10" 106 10% 10" 10" 10" 101 10" 10° 10°% 107

Model 2.2

10" GeV < v .
o = e Npw =1

10° GeV < vpy,

10 GeV < vpy,

Model 3
Npw € {1,3}
10° GeV < gy,

10" GeV < vpy,

10" 10710 107? 1078 1077 10°° 10°° 1074 1073 1072 107!
ma[eV]

Figure 6.4: Possible ranges of the axion mass and decay constant consistent with
gauge coupling unification in our models, for the case where scalar
threshold corrections have been taken into account. Regions in black
are excluded by constraints from black hole superradiance, regions in
blue by proton stability constraints. Regions in green are disfavored de-
pending on the allowed range of the B-L breaking scale. Regions in gray
are excluded by non-observation of excessive cooling of helium burning
stars by axion emission [I§].

figure

6.3 Running with two intermediate scales

6.3.1 An extra multiplet

Two- or three-step breaking

In the Model 2.1 described in , the requirement of gauge coupling unification
does not sufficiently constrain the system of differential equations to uniquely fix both
intermediate scales - we can only infer a relationship between the three unification
scales Mpq, Mp1, and My. We have calculated this relationship, and also imposed the
aforementioned limits on the unification scale and on the B-L breaking scale.

Depending on which VEV is bigger, the RG running is different. In case B, i.e.
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Figure 6.5: Relationship between the three unification scales for the Model 2.1 de-
scribed in in the case of minimal threshold corrections. The
regions in blue are excluded by the non-observation of proton decay. In
case B, Mpq < MsgL, Mpq is unconstrained - it can take any value,
while the B-L breaking scale Mgy, is fixed at ~ 101° GeV [I8].

Mpg<Mpy, the Peccei-Quinn breaking VEV does not break any gauge symmetries,
and thus it is unconstrained by the evolution. In this case, we have essentially a two-
step breaking model, in which the two symmetry breaking scales My and Mpy, are fixed.
In case A, with Mpq> Mgy, vpq breaks the SU(2)r gauge symmetry and is therefore
constrained by the evolution. Both cases are indicated in figure [6.5

Minimal threshold corrections

In the case of minimal threshold corrections, in which all scalars are assumed to be
degenerate in mass with the gauge bosons that get masses at the corresponding threshold
scale, gauge coupling unification and limits from proton decay constrain the intermediate
scale Mp1, between

1010 GeV < My, < 2.3 x 10! GeV (6.3.1)

and put an upper bound on Mpq of order
Mpq < 1.3 x 10 GeV, (6.3.2)

cf. figure An example of the evolution of the gauge couplings in this case is shown
in figure For completeness, let us also mention the special case in which the PQ and
the B-L scales are taken to coincide E|7 Mpg = Mpy,. We find in this case, for minimal

2See also |26], which considered the same model, however only taking into account only one-loop
running and a single Higgs doublet at the weak scale. They find in this case Mpq = 1.3 x 10! GeV
and My = 1.9 x 10'° GeV.
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Figure 6.6: Running gauge couplings for Mpr, = 6.3 x 10'° GeV in Model 2.1. The
corresponding higher unifications scales are Mpq = 1.3 x 10'2 GeV and
My = 2.1 x 10'° GeV. Threshold corrections due to non-degenerate
scalars are not included. Beta functions for this model are given in

Appendix |§| [18].

threshold corrections,

Mpq = Mpp, = 1.1 x 10" GeV, My = 1.6 x 100 GeV. (6.3.3)

The upper limit on Mpq — derived by proton decay constraints in the case of
minimal threshold corrections — can be turned into an upper limit on the axion decay
constant and a corresponding lower limit on the axion mass as follows. Since Mpq is
the mass of the gauge bosons that become heavy by the SU(2)r — U(1)g breaking, we
get

MPQ = JRVUPQ- (634)

The corresponding limit on the axion mass follows straightforwardly from

1 Mpq Mpq [ 11
fa=-vpg = —= = ap < 1.4x10°° GeV
377 39 3y/An V'R (6.3.5)

ma > 4.1x107° eV.

This limit is illustrated in lines 4 to 6 of figure This constraint however is still
subject to potentially large corrections from scalar threshold effects.

Including randomized threshold corrections

In fact, in figure we display the relation between the different unification scales
—as in figure but now for randomized scalar threshold corrections for different
ranges of vgr. Obviously, the threshold corrections can increase the bound on Mpg
and thus on fa. For 109(1011)G6V < vpr, < 10" GeV, we get fa < 6.7 x 102 GeV
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Figure 6.7: Intermediate scales Mpq and Mgr, and GUT-scale My for different
threshold corrections in Model 2.1. Refer to figure [6.5] for a clearer view
of the different scales. The curves in blue are excluded by gauge-mediated
proton decay limits, the curves in green by the limit on the B-L breaking
scale. We have considered three different ranges of allowed B-L breaking
scales. The threshold corrections are randomized in the following way:
All scalars take masses among the values {%71, 10} times the corre-
sponding threshold scale, where we have taken care not to make proton
decay mediating scalars contained in the (6, 2,2) (Pati-Salam) multiplet
light. We have chosen this discrete set of masses in order to focus on
the largest possible corrections coming from the mass degeneracies. The
scan was performed using 240 different sets of threshold corrections. Al-

lowing the scalars to take masses in the whole interval [1—10, 10] times the

threshold scale, one could "fill the gaps" and find even more compatible
solutions. These would however not significantly increase the allowed
region of Mpq, whose upper and lower limits we are interested in [Ig].

and m4 > 8.5 x 1077 eV, while for 10" GeV < vgy, < 10" GeV no allowed range of f4
remains - in this case, the model is excluded. These findings are summarized in lines 4

to 6 of figure

6.3.2 An extra multiplet, and additional fermions

Effect of the additional fermions

Model 2.2 with PQ charges given in contains additional quarks which acquire
masses at the scale Mpqg. Above Mpgq, they contribute to the running of the coupling
constants (cf. Appendix@[). Correspondingly, in this model we obtain a relation between
Mpq and Mgy, even in the case where Mpq does not break a gauge symmetry. However,
the effect on the RGE running due to the additional fermions is weak.

Scans including randomized threshold corrections

The corresponding plots are shown in figure [6.8] After constraining the B-L breaking
scale we obtain an upper limit on the axion mass and decay constant in this model.
The minimal threshold case is only allowed if Mgy, can be as low as 10° GeV, in this
case the maximal allowed f4 is 4.2 x 10" GeV — this is also shown in lines 7 to 9 of

figure
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10" GeV < vgy,

10° GeV < vy,

M[GeV]
M[GeV]
M[GeV]

106 100 102
Mpq[GeV] Mpg[GeV] Mpg[GeV]

Figure 6.8: Intermediate scales Mpq and Mg, and GUT-scale My for Model 2.2
for different threshold corrections. The curves in blue are excluded by
gauge-mediated proton decay limits, the curves in green by the limit on
the B-L breaking scale. We have considered three different ranges of
allowed B-L breaking scales. The threshold corrections are randomized
in the following way: All scalars take masses among the values {1—10, 1,10}
times the corresponding threshold scale, where we have taken care not
to make proton decay mediating scalars contained in the (6,2,2) (Pati-
Salam) multiplet light [18].

Including all threshold corrections in our random sample, for 10(10*) GeV < vpp, <
10'® GeV, f4 is constrained to be smaller than 8.6 x 1012 GeV. For 10'3 GeV < vpy, <
10 GeV, no viable solutions were found in the sample - the model is strongly disfavored
in this case. The results on the axion decay constant are summarized for this model in

lines 7 to 9 of figure [6.4]

6.4 Models with a scalar singlet

An additional singlet does not affect the RGE equations

In the simplest Model 3.1, described in , the Peccei-Quinn breaking is driven by
a scalar singlet and the axion mass is unconstrained, cf. line 12 in figure [6.4] There
is no relation between the PQ breaking scale and the two other scales. The possible
ranges for My and Mpy, however can be read from figure [6.2] -the extra scalar singlet in
this model does not change the running. Also in this model a lower B-L breaking scale
is preferred, and the model is excluded if vgr, > 10'3 GeV is imposed.

Additional fermions

If, however, we employ the mechanism of reference [24] to reduce the domain wall num-
ber and introduce additional heavy fermions (Model 3.2, ), one has to account
for how the latter change the running of the gauge couplings above the scale Mpq at
which they acquire their masses, if Mpg < My. Correspondingly we obtain a relation
between the scales My, Mpqg and Mgy, also in this model. However, this dependence
—plotted in figure for different sets of threshold corrections— is very weak, and the
additional fermions do not change the beta functions enough to introduce additional
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10° GeV < vy, 10" GeV < gy, 10" GeV < vp,
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Figure 6.9: Intermediate scales Mpq and Mg, and GUT-scale My for Model 3.2
for different threshold corrections. The curves in blue are excluded by
gauge-mediated proton decay limits, the curves in green by the limit on
the B-L breaking scale. We have considered three different ranges of
allowed B-L breaking scales. The threshold corrections are randomized
in the following way: All scalars take masses among the values {%, 1,5}
times the corresponding threshold scale, where we have taken care not to
make proton decay mediating scalars light. We have reduced the range of
possible threshold corrections since the bigger range did not yield enough
viable solutions [1§].

constraints. We have verified that the model is still allowed in the entire parameter
space of vpq.

For Mpq > My, the extra fermions are integrated out above the GUT scale and do not
change the running of the three gauge couplings. This case is always allowed, as long
as the model without the additional fermions is not ruled out. The only constraint on
both Models 3.1 and 3.2 — which we summarize as Model 3 — comes then from the B-L
breaking scale. For degenerate scalars at the thresholds, we need to allow for vgy, as
low as 10 GeV, as indicated in lines 10 to 12 of figure If we allow variations in the
masses of the heavy scalars, values of vgy, of order 10'" —10'2 GeV are still allowed. For
vgr, > 103 GeV, Model 3 is excluded. This is illustrated in in lines 10 to 12 of figure
The explicit scalar potential of model 3.1 as well as some comments can be found
in appendix [F]

6.5 Dependence on the proton lifetime

Hyper-Kamiokande: increase of proton lifetime bound by one order of mag-
nitude

In our analysis we are dealing with three different scales, none of which have been
observed so far. Apart from the axion mass, one could also hope to constrain the uni-
fication scale in the future by detecting proton decay. The projected sensitivity of the
Hyper-Kamiokande Cherenkov detector to the channel p — et 7" after 10 years of mea-
surement is 1.3 x 103%yr at 90%CL [119]. Assuming that proton decay is observed during
the first decade of Hyper-Kamiokande, we can place further (hypothetical) constraints
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on the axion decay constant in each of our models.
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Mpq|GeV] Mpq[GeV]

Figure 6.10: Intermediate and unification scale for randomized scalar threshold cor-
rections in Models 1 (top), 2.1 (bottom left) and 2.2 (bottom right)
including the limit coming from a hypothetical observation of proton
decay at Hyper-Kamiokande. Only the orange points/regions are not
excluded by the constrained proton lifetime. For models 2.1 and 2.2,
the threshold corrections induce large uncertainties in the viable fa
ranges even in the case where the unification scale is known [I§].

Effect on the allowed axion mass ranges

In figure we illustrate how an upper bound on the proton decay scale constrains the
scale of Peccei-Quinn breaking and ergo the axion decay constant and mass. We make
a naive analysis and assume that proton decay is only mediated by the heavy gauge
bosons. As a lower bound for the proton lifetime we use the present limit 1.6 x 1034yr
[94]. As shown in figure , an observation of proton decay is very constraining only
for our Model 1 ~here we obtain 2.6 x 10'° GeV < f4 < 4.0 x 10'° GeV- , while in the
other models the allowed ranges of f4 are still rather large.

In model 1, the reasoning can also be conversed. If Hyper-Kamikande were not to
observe proton decay in the next 10 years (i.e. if there was a higher experimental lower
bound on the proton lifetime), the prediction for the GUT scale axion mass would shrink
to 4.0 x 10 GeV < f4 < 3.0 x 1017 GeV.
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Figure 6.11: Viable ranges of f4 in the hypothetical case of a known proton lifetime
between 1.6 x 103 and 1.3 x 103 years. Allowed regions are plotted in
orange. Regions in black are excluded from black hole superradiance
constraints, regions in gray from the non-observation of excessive stellar

cooling [18].
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CHAPTER 7

Summary and discussion

Note: parts of this section were already published in a similar form in [I§].

7.1 Various Peccei-Quinn embeddings

In this thesis we have considered various models featuring a global anomalous U(1)pq
symmetry — which is an essential ingredient in the Peccei-Quinn solution of the strong
CP problem — and also additional gauge symmetries. These models can be classified
according to whether or not the PQ-symmetry is accidental, and also whether they
involve a unified gauge group or just a (non-unified) extension of the Standard Model
gauge group (see table .

Except for the case where the PQ symmetry is introduced by hand and not combined
with a GUT symmetry (type A), all possible combinations were considered in this thesis.
While models of type D — featuring a GUT symmetry with an accidental PQ symmetry
— are difficult to construct, a model of type C is easy to write down. For this type the
Peccei-Quinn symmetry must be accidental, but the SM gauge groups are not unified.
An existing model relies on the introduction of many stable charged fermions [14]. We
have extended this model in order to allow for these charged fermions to decay to SM
particles. The requirement of anomaly freedom of all gauge symmetries restricts the
range of possible extensions. The large number of exotic quarks changes the running of
the gauge couplings compared to the SM. Whether additional constraints can be placed
on this model by e.g. considering asymptotic safety is a question left for future research.

Our main focus was on models of type B — i.e. models featuring gauge unification
and a Peccei-Quinn symmetry imposed by hand. In particular, we have considered
models with an SO(10) gauge group. We have imposed the requirement of gauge cou-
pling unification and calculated constraints on the axion mass — the results are presented
in the following section.

For all models in consideration, we have explicitly constructed the physical Peccei-Quinn
symmetry and ensured in our construction that the physical axion is perturbatively
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massless and gauge invariant.

7.2 Analyzed SO(10) x U(1)pq models

We have analyzed various non-supersymmetric Grand Unified SO(10) x U(1)pq models
for their predictions on the axion mass, the domain wall number, and the low-energy
couplings to SM particles. The basic field content of all the considered models consisted
of three spinorial 16 representations of SO(10) representing the fermionic matter
content and three Higgs representations: 210y, 126y and 10y, see table [7.1, The

16r 126y 10y 210y 455 S 10r Npw

Model 1 1 —2 —2 4 - - = 3
Model 2.1 1 —2 -2 0 4 - - 3
Model 2.2 1 -2 -2 0 4 - =2 1
Model 3.1 1 -2 -2 0 - 4 - 3
Model 3.2 1 -2 -2 0 - 4 =2 1

Table 7.1: Field content, PQ charge assignments, and resulting domain wall number
Npw in the various SO(10) x U(1)pq models considered in this paper.

latter have been assumed to take VEVs in such a way that SO(10) is broken along the
symmetry breaking chain

SO(10) MUZE goop0p MELTROH 3 0, M2 g 1 0 (7.2.0)
In some of the models, this basic field content was extended by further scalar and
fermion representations. This includes an additional scalar in the 457, in which case
we have considered a further symmetry breaking chain,

_ Mpo—45 — _
S0(10) MZE 4o 0p2p TS 4o 15 PO 300, 1y M 301

7.3 Interaction Lagrangian for SO(10) x U(1)pq models

In all models one can choose a basis of fermion fields for which the phenomenologically
most important couplings to photons (7), electrons (f = e), protons (f = p) and
neutrons (f = n) read, at energies lower than Aqcp,

a Cay
8t fa

1 CAf

1 1 N _
L= 50,A0"A~ 5mE,A2 + AFu P =2 N OpA U pytysUy . (7.3.1)
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with "
10 GeV
ma = 57.0(7) <e> eV, (7.3.2)
fa
and with the couplings C4, given by
8 . 9
Cay = 3 1.92(4), Cyhe = Now sin” 3,
3
Cap = —0.47(3) + [0.29 cos? B — 0.15sin? B + 0.02] (7.3.3)
Npw

[—0.14 cos® 8 4 0.28 sin”  + 0.02] ,

3
Can = —0.02(3) + Now
where tan? 8 = ((v1%)? + (v12%)?)/((v}9)? + (v}*6)?), and Npw is the domain-wall num-
ber, which in the models considered is either 3 or 1. For Npw = 3 one recovers the
results for the DFSZ axion [52], 111, 56l 42], although the microscopic origin of the
parameter [ differs (as it is determined by the VEVs of four Higgses, as opposed to
two in DFSZ models). The fermion fields for which the above interactions are valid are
obtained after special axion-dependent rotations of the fermion fields that carry charges
under the global symmetry PQ,,s compatible with the GUT symmetry. These fermion
rotations do not act in the same way over all the components of the 16 multiplets, and
thus will “hide” the GUT symmetry, and moreover modify the axion couplings to the
weak gauge bosons. A possible measurement of the latter couplings would open up the

possibility of recovering the GUT compatible charges under PQ and discriminate

phys>
these models from e.g. simpler DFSZ scenarios.

7.4 Viable ranges for axion mass and decay constant

The overall phenomenologically viable range in the axion decay constant of these mod-
els spans a very wide range, 10”7 GeV < fu < 10'7 GeV, corresponding to an axion
mass m4 between 1071V and 107! eV (see the orange regions in figure . These
predictions survive constraints from gauge coupling unification, from black hole super-
radiance (black), from proton decay (blue), and stellar Coolingﬂ (gray). The features of
the different models are summarized next.

Model 1 — employing just the basic field content mentioned above and assuming that
all these fields are charged under the PQ symmetry, cf. equation and table
— appears to be most predictive. In fact, we infer from the first line in figure that
the aforementioned phenomenological constraints result in an axion parameter region

2.6x10% GeV < f4 <3.0x107GeV, 1.9x107MeV <my <2.2x107%eV, (7.4.1)

'For the stellar cooling bound, we took the one on the photon coupling from horizontal branch
stars in globular clusters [76]. The one on the nucleon coupling from supernova 1987A is presumably
stronger, fa > 3 x 10® GeV, corresponding to ma < 0.02meV [122, [75], but suffers still from nuclear
physics uncertainties.
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if we allow the seesaw scale to get as low as vpr, ~ 10° GeV. The allowed axion mass
range moves towards the upper end, my4 ~ 2.2 x 1072 eV, if we restrict the seesaw scale
to higher values, vpy, > 1013 GeV, cf. figure (first and second line).

The small axion mass predicted in Model 1 implies that the PQ symmetry has to be bro-
ken before and during inflation and must not be restored thereafter [44] (pre-inflationary
PQ symmetry breaking scenario). In fact, in the opposite case (post-inflationary PQ
symmetry breaking scenario), the axion mass is bounded from below by about 23 ueV
[441 73], cf. figure In order for axion cold dark matter not to become overabundant,
the initial value of the axion field in the causally connected patch which contains the
present universe had to be small, 1072 < |0;| = |A(¢;)/fa] < 1072 [44).

Remarkably, the predicted axion mass range of Model 1 will be probed in the upcoming
decade by the CASPEr experiment [89], cf. ﬁgureand ﬁgure which aims to detect
directly axion dark matter by precision nuclear magnetic resonance techniques. There
is only a very small chance of axion detection at the ABRACADABRA experiment,
which can reach down to masses of 2 x 1072 eV in its resonant search mode [88], cf.
figure If successful and interpreted in terms of Model 1, one may translate, via
, the measurement of the axion mass into an indirect determination of the mass
of the superheavy gauge bosons, i.e. the unification scale,

My ~ 3gu+/X/ma, (7.4.2)

where Y is the topological susceptibility in QCD, x = [75.6(1.8)(0.9)MeV]* [42] [44]. The
unification scale can be probed complementarily by the next generation of experiments
searching for signatures of proton decay, such as Hyper-Kamiokande [123] or DUNE
[124]. In fact there is an interplay between the different experiments: As indicated
in figure the GUT scale axion as described in Model 1 can only be observed by
ABRACADABRA if proton decay occurs at timescales that should be in reach of Hyper-
Kamiokande.

Models featuring an axion with a larger mass, ma = 23 ueV, compatible with the
post-inflationary PQ symmetry breaking scenario, can only be obtained if the 210g
responsible for the first gauge symmetry breaking at My has no PQ charge. But in
addition — as emphasized already in references [25] [16] — the scalar sector has to be
extended by yet another PQ charged field obtaining a VEV. Otherwise the axion decay
constant is predicted to be as low as the electroweak scale, which is firmly excluded by
laboratory experiments and stellar astrophysics. Correspondingly, we considered also
models which have additional scalar fields such as a PQ charged 455 (Models 2.1 and
2.2) or a PQ charged SO(10) singlet complex scalar field S (Models 3.1 and 3.2), cf.
table Crucially, in these extended models, the PQ symmetry breaking scale vpqg
and the seesaw scale vpy, are independent parameters — in fact, the axion field has to
be orthogonal to the Goldstone field which is eaten by the gauge bosons getting mass
by B-L breaking. This is different in the original SMASH model [125] [13], where the

PQ symmetry is at the same time also a B-L symmetry.
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Model 2.1 features PQ charges for the 16, 126 and 10y multiplets and an ad-
ditional PQ charged 45p, cf. and table The range in the axion decay-
constant /mass is predicted to be quite distinct from the one of Model 1, see figure
Just accounting for gauge coupling unification with scalar threshold corrections, we have
found an upper bound on the decay-constant f4 < 4.0 x 10'* GeV, and a corresponding
lower bound on the axion mass, m4 > 1.4 x 1078 eV. Imposing in addition constraints
from proton decay, the upper limit on f4 comes further down, while constraints on the
photon coupling from stellar cooling introduce also a lower limit on f4,

1.3 x 107 GeV < f4 < 6.7 x 10"2GeV, 85x1077eV <my <0.5eV.  (7.4.3)

Furthermore, the model features an upper limit on the scale of B-L breaking: vgp, <

103 GeV, cf. figure

In this model, both the pre-inflationary as well as the post-inflationary PQ symmetry
breaking scenarios are possible, see figure As far as the latter case is concerned, it is
important to note that the possibly inherent domain wall problem can be circumvented
if the PQ symmetry is only a low energy remnant of an exact discrete symmetry, so
that Planck scale suppressed PQ violating operators — which have been argued to be
induced in any case by quantum gravity effects [126] 14, 127, [61], and which render
string-wall systems with Npw > 1 unstable — occur at dimension tenE| [62]. In this case,

16 10y 1265 455 S

1 1 1 1
1 1 1 1

Table 7.2: Charges of the fermionic and scalar fields under a PQ-protecting discrete
Z40 symmetry for Models 2.1 and 3.1. The lowest dimensional PQ vio-
lating operators allowed by these symmetries are 45 for Model 2.1 and
S10 for Model 3.1.

the preferred mass range for dark matter is a bit higher than the one singled out in the
post-inflationary Npw = 1 scenario. In particular, for Npw = 3, as in Model 2.1, it is
given by 0.18 meV < my < 2.0meV, cf. figure Intriguingly, for m4 = O(10) meV
and tan 5 2 0.3, the axion in this model may explain at the same time recently observed
stellar cooling excesses observed from helium burning stars, red giants and white dwarfs
[122].

Fortunately, there are a number of running (ADMX [121], HAYSTAC [128], ORGAN
[129]), presently being assembled (CULTASK [84], QUAX [130]), or planned (ABRA-
CADABRA |[88](also consider figure KLASH [131], MADMAX [85], ORPHEUS

2For explicit examples of such discrete symmetries and more details see table and Appendix
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[132]) axion dark matter experiments, which cover a large portion of the mass range of in-
terest for axion dark matter in the pre-inflationary PQ symmetry scenario in Model 2.1,
see figure Furthermore, in the meV mass range of interest for the post-inflationary
PQ symmetry breaking scenario, the model can be probed by the presently being build
fifth force experiment ARTADNE [77] and the proposed helioscope IAXO [91], cf. figure
1l

Model 2.2 has no domain wall problem whatsoever. Allowing vpy, to be as small as
10° GeV, the allowed mass range in this model is very similar to the one of Model 2.1.
Taking into account additional limits from gauge coupling unification, proton decay and
the limit from stellar cooling, the preferred ranges in this model are

1.3x 107 GeV < f4 < 1.5 x 1083 CeV, 38x107eV <my<05eV. (7.4.4)

This model can be probed by the same experiments as Model 2.1. Similar to Model
2.1, this model allows for axions in the post-inflationary DM window. Remarkably, the
model features a second potential DM candidate: the lightest stable combination of the
additional fermions [133],[134], [135], [I36]. Therefore we do not need to insist on the axion
being 100% of the observed dark matter and can allow for bigger axion masses (cf. the
region labeled "subdominant" in the Npw = 1 bar of figure [7.1).

Model 3.1 contains PQ-charged fermions in the 16z representation, as well as PQ
charged scalars in the 10y, 1265 and a singlet S. The axion decay constant in this
model is set by the VEV of the scalar singlet. It is a free parameter not constrained by
gauge coupling unification, since it does not break any gauge symmetries. In a sense,
Model 3.1 is the most minimal GUT model with an invisible axion with decay constant
possibly in the intermediate range between the electroweak scale and the unification
scale, see figure [7.I] Similar to Model 2.1, its possible domain wall problem in the
post-inflationary symmetry breaking case can be avoided if the PQ symmetry is only
an accidental symmetry of a discrete symmetry which forbids PQ-violating operators
up to dimension 10. For an example of such a discrete symmetry, we refer to table [7.2]

Model 3.2 adds to the field content of Model 3.1 two vectorial 10r representations of
fermions getting their masses by the VEV vg of the singlet S. Despite the fact that the
fermions affect the running of gauge couplings at scales above vg, we found that, as in
Model 3.1, the axion decay constant cannot be constrained by the running of the gauge
coupling. Both models 3.1 and 3.2 feature a B-L breaking scale lower than 102 GeV.

7.5 Possible variations

Variations of these models can be obtained by: (i) Changing the PQ-charges of the
scalar that sets the axion decay constant while keeping the other PQ charges constant.
E.g., a lower PQ charge 2 of the S in our Model 3.1 will result in an increased domain
wall number Npw = 6. (i) Choosing a different scalar sector and therefore different
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breaking chains. For example, one can choose SU(3)c x SU(2)r, x SU(2)r x U(1)p—_p,
as the intermediate gauge group by assigning a VEV to the corresponding singlet in
the 210p. Or one may replace the 210y by a 455. For both these model variations —
(i) and (ii) — we expect similarly large ranges of viable axion masses. (i17) Employing
a different gauge group at the unification scale. If the breaking chain does not go via
SO(10), the analysis can be very different from the one in this thesis.

7.6 GUT SMASH candidates?

The aim of a GUT SMASH model is the implementation of an inflationary model in
the context of a GUT without the introduction of additional fields. In particular, this
requires the identification of the inflaton among the fields that are already present in the
model. This identification usually depends on a detailed analysis of the scalar spectrum
of a theory.

The GUT framework raises an additional question compared to non-unified models — the
production of monopoles during the GUT breaking process [137]. Since GUT monopoles
have not been observed so far, their absence must be resolved in any cosmological
model. Inflation can solve this problemﬂ As approximately one monopole is expected
per Hubble patch, the inflation of a patch to the scale of the observable universe explains
why no monopoles are observed. Monopoles are expected to appear at each symmetry
breaking step, therefore all intermediate symmetry breaking steps must proceed during
inflation. For our models, this places an upper limit on the energy scale of inflation of
order 1013~ GeV.

Finally, a necessary (yet not sufficient) condition for any GUT SMASH model is always
the agreement with present cosmological data. The model must be able to reproduce
the observed dark matter abundance. Also, the absence of cosmic strings and domain
walls must be explained.

In principle, these conditions can be fulfilled for all three classes of models considered
in chapter [p| — although one must assume different cosmological scenarios.

For Model 1, the only valid explanation of the DM abundance lies in the assumption that
the Peccei-Quinn symmetry was broken before inflation (and never restored thereafter)
and that the initial misalignment angle was tuned to |§;| < 1072, There is no domain
wall problem in this model since the density of domain walls is sufficiently reduced by
the inflation. The identification of a possible inflaton is not obvious. A possible choice
is the radial component of ¢, the Pati-Salam Singlet in the 210 representation, thus
mimicking SMASH, where the saxion — i.e. the radial component of the scalar whose
angular component becomes the axion — plays the role of the inflaton. In choosing
the inflaton, care must be taken that inflation proceeds until after the intermediate
Pati-Salam symmetry is broken to avoid an overpopulation of magnetic monopoles and

30f course, inflation is desirable anyways at it provides a solution for the cosmological horizon
problem and the flatness problem.
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that none of the unified theories is restored during reheating’} Isocurvature constraints
might be avoided in this model if the orthogonal directions to the inflaton acquire heavy
masses during inflation, however a dedicated analysis is needed.

For Model 3, there is no need to fine-tune the initial misalignment angle if one works in
the post-inflationary Peccei-Quinn breaking scenario. Model 3 allows for the implemen-
tation of both cosmological axion scenarios in principle. We consider it the best GUT
SMASH candidate among the examined models. In fact, there should be no problem
applying similar methods to construct the inflationary model along the same lines as in
the original SMASH paper [13] by identifying the radial part of the extra scalar with
the inflaton, or a linear combination of this radial mode with e.g. a radial Higgs mode.
This linear combination of the scalar fields should be able to roll towards an attrac-
tor along a valley in field space for a large set of initial conditions, thereby realizing
the inflation. In principle, such valleys in field space could also be identified in our
SO(10) x U(1)pqg models. An analysis of pre- and reheating in this model can then
place further constraints. Assuming that both the GUT symmetry and the Pati-Salam
symmetry are broken before the end of inflation and not restored thereafter, the GUT
monopole problem can be avoided in this model. We consider Model 3 the best candi-
date for a GUT SMASH model.

Model 3.1 in principle suffers from the domain wall problem. This however can be cured
by either considering the introduction of extra fermion representations — i.e. considering
Model 3.2 — or by assuming that the PQ symmetry is just an accidental symmetry of a
global discrete symmetry as defined in table [7.2]

Model 2 could also function as a candidate and has a more constrained axion mass.
It is however less minimal and the analysis of the scalar sector may be more compli-
cated due to the appearance of a larger representation. Since in Model 2 the Peccei-
Quinn breaking is tied to the breaking of SU(2)g, magnetic monopoles are expected
to be produced during the symmetry breaking process. In order to avoid the monopole
problem, one must assume that inflation proceeds until after the SU(2)r symmetry,
and therefore also the Peccei-Quinn symmetry, is broken. Assuming no other solution
for the monopole problem can be found, Model 2 only allows for the pre-inflationary
Peccei-Quinn breaking scenario. In this case, as in Model 1, isocurvature constraints
should be considered in detail.

7.7 Outlook

A more detailed analysis of the scalar sector of the models in consideration is desirable.
Starting from the scalar potential given in appendix [F] it would be interesting to ana-

4Unless, of course, an alternative solution to the monopole problem is found.
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lyze the stability of the potential at various scales up to the Planck scale. The stability
of the potential is a necessary condition in the construction of a model describing all
physics from the Big Bang till today. Additional scalars and thresholds as they appear
in our model tend to increase the stability of a model [I38] — we do not expect large
constraints coming from the stability requirement.

Another important requirement is perturbative unitarityﬂ Already at relatively low en-
ergies, this condition can be quite constraining. The models proposed in chapter [5| have
a type-1I two-Higgs doublet model as their low-energy effective theories. The stability
and perturbativity of two-Higgs doublet models are considered in detail in [139]. The
authors conclude that just the named requirement&ﬁ up to a scale of 1TeV suffice to
push the model close to the alignment limi‘ﬂ It would be very interesting to see which
constraints can be deduced from imposing these requirements up to the Planck scale,
or at least up to the GUT scale.

Finally, if a model is identified that is both stable and perturbative up to a high scale,
possible valleys in field space should be identified in order to allow the identification of
the inflaton, allowing for a detailed analysis of the inflationary model which must be
confronted with cosmological data. Possible isocurvature constraints should be consid-
ered in detail for cosmological scenarios in which the Peccei-Quinn symmetry is broken
after inflation.

Above considerations hold for all models considered in this thesis — even the extended
Barr-Seckel model could be further constrained by such an analysis — however we deem
Model 3 the most promising candidate. It would be an interesting starting point for
future work.

5If a model does not satisfy this requirement, it is not necessarily wrong — but we need to impose it
in order to be able to trust our calculations.

5For a type II Higgs doublet, and in combination with B-physics bounds on the charged Higgs mass.

7 Alignment here means the fact that the scalar state of mass 125 GeV needs to be almost aligned
with the VEV and there is little mixing between the two CP-even states. For more information, see
[139].
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Figure 7.1: Possible ranges of the axion mass and decay constant consistent with
gauge coupling unification in our four models. Regions in black are ex-
cluded by constraints from black hole superradiance, regions in dark blue
by proton stability constraints. Regions in gray are excluded by stellar
cooling constraints from horizontal branch stars in globular clusters [76].
For comparison, we show also the mass regions preferred by axion dark
matter (DM) (lines 5 to 7), cf. [120]. Here, the dark regions indicate
the ranges where the axion can make up the main part of the observed
DM, with the possibility of fine tuning the initial misalignment angle in
the scenario where the PQ symmetry is broken before the end of infla-
tion and not restored thereafter (pre-inflationary PQ symmetry breaking
scenario). In the light regions, axions could still be DM, but not the dom-
inant part. The remaining regions are not allowed - axions in this mass
range would be overabundant. Note that the region in the Npw = 3
case has been derived under the assumption that the PQ symmetry is
protected by a discrete symmetry, so that Planck scale suppressed PQ
violating operators are allowed at dimension 10 or higher [62]. In the last
two lines the projected sensitivities of various experiments are indicated

[R9 12T, [84 [88], [85) [77, 0T, 122] A similar plot was already published in
[18].
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Figure 7.2: Plot adapted from [89]. Experimental reach of CASPEr Electric. The
QCD axion is indicated by a band in the parameter space, and the range
predicted by Model 1 is indicated in orange and light green. Black hole
superradiace limits are drawn in black as usual, and the range excluded
by proton decay limits is indicated in dark green, to avoid confusion
with the ADMX sensitivity range painted in blue. The small light green
region labeled HK indicates the predicted range in the case that the
Hyper-Kamiokande experiment observes proton decay. If after 10 years
of data collection Hyper-Kamiokande does not observe proton decay, the
predicted region reduces to the orange band alone. The light orange, red,
and maroon regions demonstrate the predicted sensitivity of the CASPEr
electric experiment in the phases I-III as explained in [89]. Phase IIT will
be able to reach the SO(10) - GUT axion as predicted by our Model 1.
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Figure 7.3: ABRACADABRA expected sensitivity. Plot adapted from [88]. The

QCD axion is indicated as a band in the parameter space of axion mass
and axion-photon coupling. The corresponding axion decay constant
is inset in the bottom right. The blue and orange lines indicate the
expected reach for the broadband and resonant search strategies as ex-
plained in [88]. The predicted axion mass/decay constant range of our
Model 1 is drawn in orange and light green, limits from black hole super-
radiance and from proton decay at Superkamiokande are shown in black
and dark green respectively. Depending on whether Hyper-Kamiokande
will discover or exclude proton decay after 10 years of data taking, the
predicted region will shrink to the light green or orange region. The
plot indicates that if SO(10) GUT scale axion (as described by Model
1) is observed by ABRACADABRA, an observation of proton decay at
Hyper-Kamiokande is to be expected and vice versa.
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APPENDIX A

Invariance of axion-neutral gauge
boson couplings under fermionic
rephasings

Yukawa sector in generic SO(10) models

As mentioned in Section one may obtain the axion effective Lagrangian by perform-
ing redefinitions of the fermionic phases which eliminate the dependence of the Yukawa
interactions on the axion field. Although rephasings fixed by the fermionic PQ charges
suffice, one may choose alternative redefinitions —all canceling the axion dependence
coming from the Yukawas— which will give rise to different effective actions. These are
physically equivalent, as they only differ by field redefinitions whose effects vanish on-
shell. In this appendix we show explicitly that, in keeping with these expectations, the
SU(3)¢c axion decay constant f4 3. —and with it the axion mass— as well as the coupling
of the axion to photons are not sensitive to rephasings of the fermion fields. Although
the interactions of the axion with fermions and massive gauge boson remain sensitive
to the choice of fermionic PQ charges, the different effective Lagrangians should yield
identical on-shell results.

To prove the assertions about the couplings of the axion to the massless bosons, we
will consider the Yukawa interactions for the Weyl fermion fields ¢, u, d, [, e, n (see table
4.1) generated by the SO(10) invariant couplings in , with Y19 = 0 due to the
assumed PQ symmetry . For completeness, we will also add the Yukawas of
additional Ny fermion multiplets in the 10 of SO(10) coupled to a scalar in the 45,
as needed in some of the models of section [Gt

Ly =16p (Y1010H + Y126126H) 16p + Y3510p45510F + he.c.. (AOl)

Using the decompositions of the scalars in the 10y, 1265 and 455 into SM representa-
tions given in table as well as the decompositions of the fermion representations in
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FERMIONIC REPHASINGS

table [£.1] we may write

Ly D Yl()(qHu + qHgd + lHge + lHun) + Y126(q2uu + qXqd + 1Xge + lZun) (A 0 2)
+ Y50 (DD + LL). o

Physical Peccei-Quinn charges and axion-gauge boson interactions

Since they couple to the same fermion fields, H, and ¥, must have identical PQphys
charges ¢1/ fpq; similarly, Hg and ¥, must have a common charge g2/ fpq. We also allow
a charge gg/ fpq for the field UH Then we may remove the axion contributions to the
Yukawa couplings by performing any of the following fermion rotations, parameterized
by arbitrary ¢4, 4, qp, qr:

¢CL %elqa/fPQA/l/Ja’ /ll}a = {Q7 u? d7l’e7 n? D? D’ L’ INJ}’

é:_Q1_qA7 qu:_QQ_qA7
N N i a (A.0.3)
Qe = —q2 — q1, qn = — 41 — 41,
dp = — a6 — 4D d; = — g6 — 4L

Under such anomalous transformations, after redefining A — —A, the axion-gauge
boson interactions become:

oL D—Z <QZQaTk ) 12’“ TrFk Fhmv —

fPQ k a

3 3 N
4 < o 3% 10%) 932 TrF3 3w
frq  frq  frq 167T

3q 94q N
LA < qi 4q 10%) 2T F2 F2nv
feq  feq  frq / 16w (A.0.4)

_ A <3(jl 96_?(1 8q1 8(]2 5N10q6) T Fl FLHV
frq  frq frq frq  3frq 167r2

N
4 (3(11 n 3q2 n 10(]6> D Ga Gow
frq  frq  frq ) 87

q2 Niogs \ «
—8A o > —
<fPQ frq  3fpq /) 87

F Fr,

where as = ¢g2/(4n), a = €2/(4m) = g3g2/(g? + g5)/(4n) are the strong and electro-
magnetic fine-structure constants, and G***, F*¥ denote the components of the strong
and electromagnetic field strengths, respectively. The previous result shows explicitly
that, although the fermionic PQ charges appear in the effective Lagrangian, the in-
teractions between the axion and the massless bosons only depend on the PQ charges
of the scalars, and thus are independent of possible rephasings of the fermions in the

low-energy theory. From our results we may obtain an expression for f4 = fa3. in

!The notation is chosen for compatibility with sections
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terms of the scalar PQ charges:
_ _ q1 q2 q6
fal=fit =-3 < + > — Nyg——. A.05
4 430 frq  frq frq ( )

Including the axion-fermion interactions arising from the fermion rephasings, we may
finally write the effective Lagrangian defined for the general fermion rotations in ({A.0.3)
and the above f4 value:

j A oy ~ A8 «a -
-9 A T u S Qeqwy - F  FM.
Legg =0, Ea fra (Vhat,) + Fa 87 GWG + u (A.0.6)

fa 38w
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APPENDIX B

Group theory for unified models

This chapter gives a practical account of the mathematical structures that form the
basis for unified model building. Without proof, we introduce important concepts and
give examples on how they can be applied for small groups and representations. Al-
though the same methods extend in principle to larger representations, in practice the
calculations can become very tedious and one should refer to computer programs like
LieART [113] or the tables as given in [140].

For model building purposes, the most important concepts are the decomposition of a
simple Lie algebra into subalgebras as well as the decomposition of the various repre-
sentations treated in sections and We also make reference to tensor products
of representations as explained in section [B.7]

This section is largely based on [I41], and uses similar notation.

B.1 Roots and weights

Cartan subalgebra

Often a Lie algebra is given in terms of matrices 7T, satisfying the defining commutation
relations (1.0.1). These matrices are also referred to as generators of the Lie algebra.
In order to analyze the structure of the Lie algebra, one starts by identifying the largest
possible set of commuting hermitian generators. This is referred to as a Cartan subalge-
bra of the Lie algebra. The Cartan generators Hy, .., H, are the elements of the Cartan
subalgebra satisfying

H;=H' and [H; Hj] =0. (B.1.1)
The number n of Cartan generators is called the rank of the Lie algebra. In matrix
notation, the Cartan generators are a set of simultaneously diagonalizable matrices. In

a basis where the generators are diagonal, the states of a representation D on which
the algebra elements act can be labeled by their eigenvalues of the Cartan generators
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as well as some other label x:

Weights of a representation

The p; are called the weights of the representation. The vector pu = (u1,... ,ln)
called the weight vector lives in an n-dimensional vector space. Since the weights are
eigenvalues of hermitian matrices, they are real. The number of weights appearing in a
representation is equal to the dimension of said representation, although some weights
may appear more than once.

Adjoint representations and roots

The adjoint representation of a Lie algebra is a specific representation whose generators
X, are given by the structure constants of the representation

[Xa]bc = _ifabca (B13)

so the states | X,) of this representation are also labeled by the generators X,. On such
a state, the adjoint representation acts by commuting:

Xao | Xp) = |[Xa, Xp]) - (B.1.4)
The dimension of the adjoint representation is equal to the dimension of the Lie algebra.

Roots

While in general the weights can be calculated for any representation (and in fact, the
set of weights defines the representation), the roots of a Lie algebra are the weights of
its adjoint representation. They are therefore unique to the algebra, and not to any of
its representations.

There are n zero roots corresponding to the Cartan generators in our algebra (recall
that the states of the adjoint representation are labeled by the generators themselves):

H; |Hy) = |[H:, H))) =0, (B.15)

since all Cartan generators commute. All other states in the adjoint have non-zero
weight vectors — called root vectors — which we shall refer to as a = (av, ... , ). They
are of course the eigenvalues of the Cartan generators:

H;|E,) = o; |Ey) , (B.1.6)
so that the generators E, satisfy

[Hi,Ea] = aiEa. (Bl?)
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The E, cannot be hermitian - taking the hermitian conjugate of (B.1.7)), we get
(Hi, Eu))' = [EL, Hi) = —[H;, El] = o EJ,. (B.1.8)
Taking El, = E_,, we get

[Hi7 E_a] = _aiE—a- (B19)

One can show that the roots uniquely define the states of the adjoint representation.
Roots are also important in the construction of their representations, as we will see
below.

The number of roots (including the zero roots of the Cartan generators) is equal to the
dimension of the adjoint representation.

Raising and lowering operators

The commutation relations (B.1.7) and (B.1.9) are reminiscent of the commutation
relations of the raising and lowering operators of SU(2). In fact, we can check that the
action of Fi, on a state labeled by its weights u raises or lowers the weight of the state

by a:
H,E., ‘/J, D) = [HZ‘, E:ta] ‘/J, D) + E+oH; |u, D) (B.1.10)
=t a;Fiq |, D) + Exqpi|p, D) (B.1.11)
= (ta; + wi)Fia |1, D) . (B.1.12)
(B.1.13)

In this way, the root vectors allow us to move from one weight vector to another.

The final commutation relation needed to complete the picture is of course between
raising and lowering operators, and it can be shown that

[Fuo,E_o) = o;H; = - H. (B.1.14)

In general, there is an SU(2) subalgebra for each pair of root vectors +c, the generators
being

E* = |a| ' By (B.1.15)
B3 =|a|%a - H. (B.1.16)

We can check that the defining commutation relations are satisfied:

[E3, EF]) = |a| 3 H, E14] (B.1.17)
= |a|3a - (+a)Fiq (B.1.18)
= +|a| 1 Eiq = +E* (B.1.19)
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and

[EY,E7] =|a|™?[Ba, E_o] = || 2a- H = Ej3. (B.1.20)

From this analogy it follows that roots and weights must be integers. The analogy to
SU(2) is an important one. We will exploit it in order to visualize and construct the
irreducible representations of a group.

B.2 Simple roots, highest weights and Dynkin diagrams

Positive roots

The set of all root vectors can be divided into positive and negative root vectors by
defining a root vector to be positive if its first non-vanishing element is positive, and
negative otherwise.

Simple roots

Simple roots o (j = 1,...,n) are positive root vectors that cannot be expressed as
the sum of other positive root vectors. Simple roots are linearly independent, and they
span the vector space of roots. They are not orthonormal in general. The simple roots
uniquely define a Lie algebra, and any representation of the algebra can be constructed
in terms of the simple roots. Similar to the general root vectors, the simple roots must
have integer components.

Fundamental weights

A set of n vectors ug, (k=1,...,n) in n-dimensional space, which satisfy the relation
Qin - v
R R (B.2.1)
Oéj . aj

are referred to as the fundamental weights of the Lie algebra. Just like the roots, the
fundamental weights are linearly independent but not orthonormal in general.

Highest weight of a representation

The highest weight p in an irreducible representation uniquely defines the representa-
tion. It is defined by the property that p + ¢ is not a weight for any positive root
¢. In terms of the fundamental weights defined in the previous paragraph, the high-
est weight is always of the form ), lyug. The I, are non-negative integers called the
Dynkin labels. Since a highest weight uniquely defines a representation, the Dynkin
labels uniquely identify the representations.
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Cartan matrix and Dynkin Diagrams

The Cartan matriz summarizes the relative length and position (in weight space) of the
simple roots. It is defined by

(B.2.2)

An important property of the Cartan matrix is encoded in the following formula:
aj = Ajipi. (B.2.3)
i

The jth row of the Cartan matrix corresponds to the Dynkin labels of the jth simple
root.

Each 2-by-2 submatrix of the Cartan matrix describes the relation between two simple
roots. The diagonal elements are 2 by definition, while the off-diagonal elements can be
related to the angle and relative length of the corresponding simple roots. Due to the
various constraints put on the simple roots by the Lie algebra structure, there are only
6 different possibilities for these 2-by-2 subalgebras. They are listed in table

o O *—o o——=0 *«—=—=0 «— «——

Table B.1: Possible 2-by-2 submatrices in a Cartan matrix. They correspond to
the basic building block of Dynkin diagrams, which are indicated in the
second row. In each diagram, the left node corresponds to the first row
and the first column of the matrix. The arrow points in the direction of
the shorter root.

We use this opportunity to introduce Dynkin Diagrams. A Dynkin Diagram encodes
the relation between all simple roots, similar (and in one-to-one correspondence) to the
Cartan matrix. In a Dynkin Diagram of an algebra, every simple root is represented by
a solid circle, and the 2-by-2 Cartan submatrix is encoded by the type of line between
the dots. The encodings are listed in table as well.

B.3 Classification theorem

The knowledge of the simple roots suffices to construct the full Lie algebra and its
representations. Illustrative examples can be found in section Since all necessary
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information about simple roots is encoded in the Cartan matrix, and thereby in the
Dynkin diagram, it suffices to classify the diagrams in order to classify all simple Lie
algebras. This can be done in terms of geometric arguments in root space. A proof
is given for example in reference [141], here we will only quote the result. The upshot
is that all possible Dynkin diagrams must belong to any of four families, or be one of
5 exceptional diagrams listed in table The four families have been labeled A,,,
B, C, and D, by Cartan. The corresponding algebras generate the so-called classi-
cal groups. Of course, this classification of the diagrams induces a classification of the
corresponding simple Lie groups. The classical groups are, in different notation, the
groups SU(n + 1), SO(2n + 1), Sp(2n) and SO(2n).

o—eo *—eo A, SUMn+1)
o—eo o—e—9 B, SO(2n+1)
o—eo *—e=—» Ch Sp(2n)
° ° ° D, SO(2n)
— Go
o—eo—0—o Fy
[ ® I ® ® Eg

[ °® I ® ® ® ® I3
Table B.2: List of all allowed types of Dynkin diagrams.

B.4 Building representations

A simple example

In this section we illustrate how one can use the Cartan matrix to build any irreducible
representation (irrep) of the Lie algebra. For small irreps, this is easy to do by hand,

132



APPENDIX B: GROUP THEORY FOR UNIFIED MODELS
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1
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Figure B.1: Weight diagrams for the 2 (fundamental) and 3 (adjoint) representa-
tions of SU(2). All representations of higher rank groups are essentially
combinations of these simple representations.

for larger irreps the process must be automatized. Since the process is best explained
using an example, we will start by constructing the adjoint representation of SU(3).
From the Dynkin diagram of SU(3), @&——e, we can read off the Cartan matrix:

2 -1
Hgys) = L (B.4.1)

The property (B.2.3) tells us the simple roots of SU(3) in terms of their Dynkin labels:
(2,—1) and (—1,2).

Constructing weight systems

There is a simple algorithm for the construction of any representation (in terms of its
weight diagram) starting from its highest weight. It is instructive to consider the ex-

ample shown in figure

The given algorithm relies on the fact that the generators E, of a group correspond to
raising and lowering operators of certain SU(2) subgroups. The representation must
therefore encode the transformation properties under the various SU (2) subgroups. We
must keep in mind that SU(2) representations can be labeled by the highest J3 value j
in the representation (which must be half-integer), and the states by the various allowed
Js values [, which take the values from —j to j in steps of 1. In our normalization we
include a factor of 2 and label the states of the SU(2) multiplets by 2I. The weight
diagrams of the simplest SU(2) representations are shown in figure

1. Start by writing down the highest weight of the representation.

2. Subtract the simple roots (in terms of their Dynkin labels) in order to complete
SU(2) multiplets in each of the columns. Write the results (i.e. the new weights)
in the next line. Connect the corresponding SU(2) multiplets by a line. If this
step introduces new positive numbers in the weights, new SU(2) multiplets are
started. Repeat this step until all SU(2) multiplets are complete.
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3. The last line of the representation (i.e. the lowest weight) must consist of non-
positive integers. The representation must be spindle shaped.

The dimension N(R) of the representation R can be read off by counting the number
of weights. The number of rows constructed in this way is named the height T of the
representation.

Note: A subtlety arises when the same weight is constructed multiple times at the same
level. In a construction “by hand” it is often sufficient to keep in mind the spindle shape
of the representation. The spindle shape is enforced by two criteria: The number of
weights in row k (referred to as a level) must be smaller or equal than the number of
weights in row k + 1 if £ < 7'/2, and the number of weight at level £ must be equal to
the number of weights at level T — k.

If this criterion does not sufficiently constrain the multiplicity m) of weight A\ in a
representation with highest weight A, one can apply the Freudenthal recursion formula

2> > (A+ka,a)maiga = [(A+6,A+8) = (A+5,A+6)my. (B.4.2)
acAt k>0
Here AT refers to the set of positive roots and § = (1,1,...,1). In automatized

realizations of Lie algebra calculations, such as LieART [I13], this formula is used in
order to determine the degeneracy of a weight.
Following above algorithm, the weight diagram of any representation of a Lie algebra
with known Cartan matrix can be constructed.

Selfconjugate and non-selfconjugate representations

An irrep is said to be self-conjugate if the weights at a level k are the negatives of the
weights at level T' — k, where T is the height of the representation. If the height of a
self-conjugate representation is even, the representation is said to be real, since in this
case the representation matrices can always be brought to a real form. It the height of
a self-conjugate representation is odd, the representation is called pseudoreal.

In physicists’ notation, an irreducible representation of dimension R is usually denoted
by R, and its conjugate by R. The conjugate refers to the representation with weight
system given by upside-down mirroring and negating all weights in the weight system of
R. This notation however is sometimes ambiguous, as there may be multiple inequiva-
lent representations of the same dimension R. In this case, the various representations
are denoted by R, R’, R" etc., and one must refer to the summary tables given in [140)]
in order to find out a given irreps’ properties.

More example weight systems

In the original Glashow-Weinberg model which relies on the gauge group SU(5) all
fermions are grouped in the 5 and the 10 representations. They correspond to the irreps
with Dynkin labels (1,0,0,0) and (0, 1,0,0) with weight diagrams given in figures
and [B.4l
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-1]-1

Figure B.2: Constructing the weight diagram of the adjoint (8) representation of
SU(3). Every pair of boxes represents a weight of the representation.
The construction starts by writing down the highest weight (1,1). We
notice that this is a starting point for two SU(2) doublets, in the next
line write down both possibilities in which these doublets can be com-
pleted via the subtraction of the simple root. This operation in turn
starts new SU(2) multiplets (more specifically, triplets) which need to
be completed in the lines below. The procedure is repeated until all mul-

tiplets are complete - i.e. until the last line contains only non-positive
integers. The double multiplicity of the zero weight is enforced by the
requirement of spindle-shapedness.

It is easy to see that this is a self-conjugate representation, 8 = 8.
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110]0]0
-1f 11 010
Of-1] 1|0
010]-1]1
0101 0]-1

Figure B.3: The 5 representation of SU(5). This irrep is not self-conjugate.

A special case: the adjoint representation

The adjoint representation is defined in terms of the roots of the algebra. Its weight
diagram can therefore be found by constructing the root system from the positive roots.
E.g. consider the weight diagram of the adjoint representation of SU(3) given in figure
Instead of starting from the highest weight (which is not necessarily known before),
one can also start from the next-to middle line which contain exactly the simple roots of
SU(3). By adding and subtracting simple roots the entire representation — and thereby
the entire root system — can be constructed.

In figure we apply this construction also to the adjoint representation of SO(10),
which has the Cartan matrix

Hsopppy=| 0 -1 2 -1 -1]. (B.4.3)

B.5 Subalgebras

In model building, it is often important to understand how a specific group (usually
the Standard Model gauge group) can be embedded in a larger group. A subalgebra
R of a Lie algebra A is regular if the roots of R are a subset of the roots of A and
the generators of the Cartan subalgebra of R are linear combinations of a subset of the
Cartan generators of A. In this thesis, we will only consider regular subalgebras. The
Dynkin diagram of a regular subalgebra can be obtained from the Dynkin diagram of
the original Lie algebra. One has to differentiate between maximal and non-maximal
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Figure B.4: The 10 representation of SU(5).

subalgebras. A regular subalgebra is called mazimal if it is of the same rank as the
original subalgebra. In this case, the Cartan subalgebras are identical by definition.

Non-maximal subalgebras

Take any Dynkin Diagram and remove a circle from it - the result will be one or multiple
disconnected Dynkin diagrams. They correspond to the subalgebras of the Lie algebra
described by the original diagram. Disconnected diagrams represent the direct product
of the subgroups each individual diagram corresponds to. Additionally, each removed
circle corresponds to a U(1) factor in the direct product. As an example, consider the
Dynkin diagram e e ° @ of the Lie Algebra A,, = SU(n+ 1): removing
one circle yields the Dynkin diagram of A,_1; = SU(n). The diagrams illustrate the
relation SU(n + 1) D SU(n) x U(1).

Maximal subalgebras

In order to find the maximal subalgebras of a given Lie algebra one can also use diagram-
matic methods, but has to start from the extended Dynkin diagram - a Dynkin diagram
with an extra point. This point must be added in a certain defined fashion, which can
be looked up in [141]. By removing any circle from the extended Dynkin diagram one
obtains a maximal subalgebra. Let us consider the Lie algebra of SO(10) = D(5), which

137



APPENDIX B: GROUP THEORY FOR UNIFIED MODELS

[ ol 0

1f-11 1{ 0] 0

Lafof ifolof [rfolaff1]

Al [l [ 1] [t]olo]a] 1] [1]ofo] ][]

y
Lol ol-1f o] 2 [ofof-1f2[ o] [of-]2]-a]-1] [-1f 2[-1f o o] {2[-1] o] o] 0]
| | | | |

Lolofloloflo|l [ofofofofo] [o]o]o]ofo] [ofofofof[o] [ofofo]o]o]

| | | | |
Lol of 1]ol2] [ofof1][2]0] [o 1!-2!1 1| [ 12 tfofo] [-2] 1] o] o] o]
_—

JE
1] 1

] i[af1] [ ol o] 1]] [ o o] 1]

Ll of-1fof o] [eafol f 1] ]
1 -] o of
Figure B.5: The 45 (adjoint) representation of SO(10).
corresponds to the following extended Dynkin diagram:
(B.5.1)

Removing any of the external circles just yields the Dynkin diagram of the original Lie
algebra, so we must remove one of the internal circles to obtain

o—eo—0 o o (B.5.2)
an illustration of the relation

SO(10) 5 SU(4) x SU(2) x SU(2). (B.5.3)
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This is an important relation in model building and will be used in the main models in
this thesis.

B.6 Decomposition of representations

Decomposing weight systems

For model building purposes, it is especially important to know how a representation
of a larger group behaves under the subalgebras. In the case of a non-maximal regular
subalgebra, this can be analyzed in terms of the weight diagrams. To obtain the de-
composition rules for a given representation, omit the lines and boxes corresponding to
the root corresponding to the removed circle in the Dynkin diagram. This yields a set
of disconnected weight systems describing the representations under the non-maximal
subgroup. The charges under the U(1) factor(s) have to be worked out separately.
The procedure is best illustrated in an example. As a very simple one, let us consider
the fundamental representation of SU(4) under the subgroup decomposition SU(4) D
SU(3) x U(1) described by the following weight system:

I{ 00
-1 1 0
01-1] 1
010]-1

Keep in mind that we must ignore one of the external roots in the Dynkin diagram
o—e o of SU(4) to obtain the Dynkin diagram e——e of SU(3). We now omit
the first (left-most) boxes in the weight diagram, since they describe the transformation
under the first root.
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Of 0
{0
-1 1
01]-1

The resulting picture leaves us with two disjoint SU(3) representations - a singlet and a
triplet. The fundamental representation of SU(4) decomposes as 4 = 3+ 1 in physicists’
notation. In the same fashion, subrepresentations of larger groups and representations
can be found.

Projection matrix

The described procedure can be summarized in a projection matrix P, which takes
weights of the larger algebra to the weights of the subalgebra. Once constructed, this
matrix must apply to all weights in all representations. It corresponds to a diagonal
matrix with the ith line left out, where 7 is the index of the root that has been omitted
from the Dynkin diagram. For the given example, we have

P(SU(4) > SU(3)) = (g (1) ?) (B.6.1)

Finally, the U(1) charges for the subrepresentations can be found by including the U (1)
subgroup in the projection matrix as well. From the requirement that each of the
weights in the 3 representation must have the same U(1) charge, we can infer

P(SU(4) > SU(3) x U(1)) = (B.6.2)

w o O

1
0
2

= = O

We have normalized the U(1) charges to integer values. We write the decomposition

rule under SU(4) D SU(3) x U(1) as
4=(1,3)+(3,-1). (B.6.3)

Charges under U(1) subgroups are indicated in non-bold letters.

Another instructive example is given by the embedding of the Pati-Salam group SU (4)¢ X
SU(2)r, x SU(2)g in SO(10). In the models considered in this thesis we will employ it
as an intermediate symmetry breaking step.
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SU4)cxSU(2)r, x SU(2)r C SO(10) has rank 5 and is therefore a maximal subgroup.
Its Cartan generators contain those of SO(10), and the two bases of Cartan generators
for each group are related by a linear transformation. One can map weights of repre-
sentations of SU(4)c x SU(2) x SU(2)r into weights of SO(10). The relation is given
by an invertible projection matrix P such that

0 0 1 1 1
0 0 1 0 O
P(SO(10) > SU@A)e x SUR) L xSU@)) = | 1 1 1 o0 1 (B.6.4)
0 1 1 1 0
-1 -1 -1 -1 0

B.7 Tensor products of representations

The final ingredient for our model building purposes lies in the construction of tensor
products of two (or more) representations. After all, we must combine multiple repre-
sentations to gauge invariant quantities in order to build a Lagrangian.

In principle, the tensor product Ry ® Ro of two irreducible representations Ry and Ra
decomposes into a sum of other irreducible representations:

Ry ® Ry = ZRZ (B.7.1)

]

This decomposition can be calculated (in principle) in terms of their weights. This
process is described in [140]: Firstly, we find all weights of both representations (in
other words, construct their weight systems). Secondly, we make a list of all possible
sums of weights, where one weight is taken from R; and one weight is taken from
R3. This list has N(R1) - N(Rz2) elements. Thirdly, we construct the weight diagram
corresponding to the highest weight in the list, and delete all weights appearing in this
process from the original list. This third step is then applied to the list until no more
weights are left.

It is obvious from the construction that the following rule applies to the dimensions of
the irreps in the tensor product:

N(R; ® R2) = N(Ry) - N(Rp) = Z N(R;). (B.7.2)

Let us now apply the described algorithm to work out the tensor product 3 ® 3. The 3
has Dynkin label (1,0) and corresponds to the weight diagram
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110
-111
01]-1

The list of all pairs of weights has 9 elements:

(2,0),(0,1),(1,-1),(0,1),(-2,2),(-1,0),(1,-1),(—1,0), (0, —2).

Note that we do not ignore double weights - they are needed in order to get the right
sums of dimensions. Now we take the highest weight in the list — (2,0) — and construct
the weight diagram:

210
011

212 1 (-1
01]-2

Crossing all these weights of the list, we are left with:

(0,1),(1,-1),(—1,0).

These are exactly the weights of the 3 irrep. We have therefore constructed the tensor
product 3 ® 3 = 6 + 3.

The same method can in principle be applied for larger irreps, but will become tedious
quickly. It therefore advisable to refer to the tables given in [I40] or appropriate com-
puter programs.

So called tensor methods are an alternative way to construct the tensor products explic-
itly. Here, the irreps are analyzed in terms of the symmetry properties of the tensors
representing them.

The methods reviewed in this appendix are applied in chapter [4|, where some attempts
at realistic model building are reviewed.
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Orthogonality of the non-Abelian
generators

Orthogonality criterion for non-Abelian generators

With the group theoretic tools given in chapter [B] we may prove that with the choice of
fields getting VEVs in table the orthogonality conditions of the axion with respect to
Goldstone bosons associated with the off-diagonal gauge generators are always satisfied.
The non-diagonal generators of the Lie algebra in a given representation are spanned
by the F,. Let’s assume a representation of scalar fields in which the nonzero VEVs
v; correspond to states |A(7)). Then the orthogonality constraints from off-
diagonal generators can be satisfied with the following sufficient conditions:

(Eo)mn =0 for m,n such that v, # 0,v, # 0, # 0. (C.0.1)

The previous conditions have to be verified within each SO(10) irreducible representa-
tion, as the generators only link field components within them. One has

(Ea)mn = (A(m)|EalA(n)) = Noam) (A(m)|A(n) + @) = Noam)orm) Am)+a- (C-0.2)

This means that (Eq)mn will be zero —and the orthogonality condition with all the E,
(and with them the non-diagonal generators) automatically satisfied— if the difference of
the weights associated with the v, # 0 is not a nonzero root of the Lie algebra, that is
A(m) # A(n) + a for all roots a # 0. This will always be the case if only one component
in a given representation has a nonzero VEV, but has to be checked for more general
situations. If the property holds, then the only nontrivial orthogonality conditions are
those arising from ([3.4.20)) applied to the diagonal Cartan generators (or their linear
combinations).

Extracting the weights of the VEV-acquiring multiplets

In this thesis, we consider the following scalar representations: 210, 105, 455, 126 .
In both the 210y and 45, only one component (¢ for the 210g, o for the 455, see
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table gets a VEV, so that orthogonality with respect to the off-diagonal generators
is guaranteed. For the 10y and 126, however, we have two respectively three field
components getting a VEV: the neutral components of H, and Hy, and those of 3,
and X4, as well as the B-L breaking VEV Ag. H, has the same quantum numbers
as Y, meaning identical weights. A similar relation holds for H; and Y4. Since the
orthogonality condition can be checked in terms of weights, it suffices to consider the
>} components, whose weights w;, ¢ = 1,... 5 under the Pati-Salam group need to be
found. From table one gets their quantum numbers under 1p, B — L. We must also
keep in mind the embedding of the Pati-Salam group in SO(10). The weights under
40212R are of the form {w;},7 =1,...,5, where w; is the weight corresponding to the
generator T3 of 2, wy is the weight of T3 for the group 2 (or, as denoted in tables
the 1 charge), and w3, wy, ws are the three weights of the Cartan algebra of
SU(4), with w3, wy the weights of the Cartan generators T3, T of SU(3).

Let us first consider the states 3, /4. The fact that the states are color singlets implies
w3 = wyq = 0. The table gives B — L = 0, so that equation implies then wys = 0.
Charge neutrality, together with , fixes T3 = —1g. Then the 40212 weights of
the neutral 3, and ¥, states in the Dynkin basis are

AZY) = (1,-1,0,0,0)402,25, ME)) = (=1,1,0,0,0)4.2,25-

For Ag, we know B — L = —2 and 1 = 1 (compare table . It is a color singlet,
so ws = wy = 0, and a singlet under SU(2)y, therefore wy = 0. Equations (4.3.1)) and
(4.3.2) then fix the remaining two weights and we obtain

A(AR) = (0,2,0,0 — 2).
Inverting the relation (B.6.4)), the resulting SO(10) weights in the Dynkin basis are

)‘(22) = (0’ 0,-1,1, 1)50(10)7
A(Eg) = (07 0,1, -1, _1)30(10)7
A(AR) = (2’ _27 27 Oa _2)50(10)'

Finally we can consider all possible differences between these weights:

) = (0,0, -2,2,2)50010)
)\(AR) - A(Eg) = (27 _2) 1) _17 _1)50(10)
( (22) = (Qa _27 37 _17 _3)50(10)

P>
z
|
>

None of these differences is a root of the Lie algebra SO(10), as they do not appear in
the weight system of the adjoint representation given in figure This means then
that the orthogonality condition is satisfied for all non-diagonal generators in
the 126y representation. Identical results apply for the 10y.
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Coupling evolution

D.1 Renormalization group equations

As usual, we can write the renormalization group equations for the gauge couplings as

da;l(/‘) :_ﬂ_z bij (D.1.1)
dlnu 2T 7 871'204;1(;0 o

where 7, j indices refer to different subgroups of the unified gauge group at the energy

scale 1 and
1 A4m
9i

; (D.1.2)
The S-function of a gauge coupling g; associated with the gauge group G; at two-loop

order in the MS scheme is given by [142]

e g 11 4 " 1 "
Bgi = 'ud,u = (471')2 { 302(Gz) 3"‘3%:”&,%5%@(1) GH;RmuZSZ(pm)}

;) 349 202
~aT ) 3 GG = r 3 43 giCo(p) + =S Co(G) | maiSilpn)
a J

2
9;
=03 |23 67C,(om) + §Ca(Gi) | mimiSilpm) ¢ (D.13)

m J

In the above equation, the irreducible fermion and scalar representations are labelled
by a and m, respectively. An irreducible representation of a product of groups can
contain several copies of irreducible representations of the individual groups. For a
fermion representation p, we denote the multiplicity of representations of the group i
as ng,q; similarly, for a scalar representation p,, we use the notation and n,, ;. Si(pa)
is a shorthand for the the Dynkin index of the irreducible representation of the group i
contained within a given fermion representation p,. S;(pm) is the analogue for a scalar
representation p,,. Co(G;) = S;(ad) designates the quadratic Casimir for the gauge
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fields in the adjoint representation of the gauge group i, while Co;(ps), Ca,i(pm) are
the quadratic Casimirs of the representation of the group ¢ contained in p, and p,,,
respectively. Finally, in equation (D.1.3)) one has k = 1, % for Dirac and Weyl fermions,
respectively, and n = 1,2 for real and complex scalar fields.

At each scale, one has to take care as to which multiplets have to be included in the
running. As described in section [6] we consider for the scalars an extended survival
hypothesis, modified so as to allow for a two-Higgs doublet model (2HDM) limit at low
energies, while still having electroweak VEVs for all doublets in the 10 and 126, as
needed to achieve realistic fermion masses. According to the extended survival hypoth-
esis, fields contribute to the running only if they acquire a VEV at lower scales. The
exceptions are the doublets ¥, ¥4 in the (15,2,2)pg component of the 126, which are
assumed to have a mass of the order of Mpy,. A list of the scalar components that get
VEVs is given in table [4.2l The decomposition of the fermions is given in table
With the previous assumptions, between My, and the lowest intermediate scale, the
beta functions for all models mentioned in this paper are the beta functions of a two-
Higgs doublet model, with gauge groups given in the order SU(3)c x SU(2)r, x U(1)y:

9 11
—7 —26 9 U

asgpm = | =3 |; bopm = 12 8 ¢ , (D.1.4)
21 44 18 104
5 5 5 25

where we used the GUT normalization for the hypercharge gauge coupling, gy =
\/%g' , which ensures that the generator 7y enters the Lagrangian in the combination
9y \/%Ty, with \/%Ty a generator with the appropriate GUT normalization. For a
consistent analysis at the two-loop order, at each symmetry breaking scale one needs
to impose matching conditions for the gauge couplings that account for finite one-loop
thresholds. For a symmetry breaking scale in which each ultraviolet group GZUV is bro-
ken down to a subgroup G%R, the matching conditions for the gauge couplings g; are of
the form [143, [144]:

L ) (D.1.5)

affi(p)  agV(w) 127

where, assuming diagonal mass matrices compatible with the infrared gauge symmetries

— that is, with a common mass for each IR multiplet — one has
My,
1

Xi(p) =Co(GFY) = Co(GIF) =21~ 55(V;) In
i

M y (D.1.6)
+1n Z Si(Skpnys) I 7;"}”5 + 8k Z Si(F)In HFl :
l

Epnys

For each value of ¢ in the above equation, the V; designate the G%R representations of
gauge bosons that receive a mass at the corresponding threshold, leading to the breaking
of the UV group G'V. Skuys designate the GR representations of heavy scalars that
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are integrated out at the threshold, omitting the unphysical Goldstone bosons. Finally,
F} are the GZI-R representations of heavy Dirac fermions that decouple at the threshold.
The notation of 77 and & is as in equation . We will apply the former matching
conditions at the threshold scale p corresponding to the masses of the heavy gauge
bosons, so that the contributions )\ZV can be ignored (up to subleading effects from
possible lack of degeneracy of the massive gauge bosons from different groups, if the
UV gauge group is not simple).

Next we consider the case in which a U'f(1) group arises by combining two U(1)
subgroups in the UV, denoted as Uy (1) € GYV and Us(1) € GYV. The associated U(1)
generators TR, TV TPV are all part of the Lie Algebra of the GUT group, and for
GUT multiplets in representations p of the GUT group with Dynkin index Sgur(p),
they satisfy

1 1 1
Tr,(T™)? = — Squr(p), Tr,(TVV)? = & Scur(p), Tr,(TyV)? = = Saur(p).

kg
(D.1.7)

The k; encode the normalization of the U(1) generators when embedded into the GUT
group, such that kg T, ki TlUv and ko TQUV define GUT generators with the
usual normalization. Assuming that G}V and GY¥V become broken at the threshold
to GIF and GIR, respectively — so that part of the symmetry breaking is given by
GYV @ GYY — GIF @ GIR @ U(1)™ — the matching of couplings goes as:

1 1 Au) 1 1 Au)

- — = + — , (D.1.8
krra™(p)  kialV(p)sin?61p 120 k1 alPV(p)  kealV(n) 127 ( )
with
2
g3 k2
tan? 0o = “2—=,
12 g%kl
2
& aE™) s M
=3 | A S D19
i= j

Mfp,

Mg,
47 Y QFp(Skyy,,) In T +85)  Qip(F)In
l

Epnys

In the above equation, g; and gy are the couplings of the groups GY¥ and GYV, respec-
tively, and Q%p, represent the U(1) charges under the generator T IR " The coupling grr
arising from the previous matching is in the GUT-compatible normalization, as ensured
by the factors of k;.

Before moving on to the different models, we provide in table a summary of the
decompositions of the different scalar multiplets under the gauge groups appearing in
our breaking chains. The table also lists the scales at which the different representations
decouple; decompositions are only provided for gauge groups which emerge at or above
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the decoupling scale, with the exception of fields decoupling at Mpq, since the latter
may or may not break the gauge group. For fermion fields, the reader is referred to
table

D.2 Model 1

In this minimal model the 45 is not present. Between Mg, and My, all particles men-
tioned in the second column of table [£.2] are included in the RG running. The resulting
beta functions for the coupling constants of the gauge group SU(4)c x SU(2), x SU(2)r
are

_7 2435 105 249
3 6 2 2

26 1245 779

3 = 48

In this model, there are two high-scale thresholds associated with the breakings SO(10) —
SU4),@SU2)L®@SU((2)r — SU(3)c ®SU(2), ®U(1)y. The matching conditions of
each gauge coupling at each threshold are determined by the group structure and the
particle content of the theory, following equations (D.1.5)), (D.1.6)), (D.1.8)) and (D.1.9).

Model 1 matching: SO(10) — SU(4). ® SU(2);, @ SU(2)r

This breaking is triggered at the scale My by the (1,1,1) VEV vy in the 210 repre-
sentation, which, given its nonzero PQ charge (see (5.2.1))), is taken as complex, as are
the scalar representations 126 (complex to start with) and the 10. There are 24 broken
generators, and correspondingly 24 Goldstone bosons inside the 210 representation,
with the same quantum numbers as the broken generators. These Goldstones reside in
the real part of the (6,2,2) C 210. According to the extended survival hypothesis, the
scalar multiplets which don’t get VEVs at lower scales should be integrated out. These
are the multiplets not included in table , (see also table and listed below:

210 > {(1,1,1),(15,1,1),Re(6,2,2)(G),Im(6,2,2),(15,3,1), (15,1, 3), (10, 2, 2),
(10,2,2)},

126 ©{(6,1,1),(10,3,1)},

10 O (6,1,1),
(D.2.2)
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where the G indicates where the Goldstones reside. The relevant matching conditions

are (D-1.3), , which give

1 1 1 |
) ) =(1,1,1) ———— N AT N,
(a4c(MU) aor(Myr) agL(MU)> ( ) aG(MU) 12 (Nics A2ps Aar)

(Aies ASRs ASL) = (4,6,6) + (8,0,0) logy Mas,,1) + (4,6,6) logyy Mg 29
+ (24,60,0) logy; M1531) + (24,0,60) logy, M15.1,3)
+ (24,20, 20) logyy M(10,2,2)M(15,2,2) + (2,0,0) logyy Mgy 1)Ms,1,1)

+ (187 40, 0) 10gU M(ﬁ,f},l)'
(D.2.3)
In the previous equations, we have defined

A B

We have omitted threshold corrections depending on the masses of the heavy gauge
bosons, as we assumed a choice of p = My for which these contributions cancel; we will
proceed similarly in the rest of the section.

Model 1 matching: SU(4). ® SU(2)r, ® SU(2)r — SU3)c @ SU(2), @ U(1)y

This breaking is triggered at the scale Mpy, by the VEV wvg inside the (1,1,0)sas
of the 126 (In the rest of this subsection, decompositions refer to the SM gauge
group). There are 9 Goldstone bosons, contained in the real and imaginary parts of
{(3,1,2/3),(1,1,—1)} D 126, and in the real part of (1,1,0) C 126. All the 210
fields were already integrated out at the previous threshold. Within the extended sur-
vival hypothesis, plus the assumption that ¥, 4 decouple at Mgy, the scalar fields to be
integrated out at Mpy, are only inside the 126 —since the surviving ones from the 10
include the fields H,,, Hy that get VEVs at the electroweak scale— and are given by (see

table |D.1):

126C{Re(1 1 0),Im(1 1,0)(G),(1,1,-1)(G), (1,1,-2),(3,1,2/3)(G)
Bt 113, (1,413 (6 4.(6,1 179, 0,579, (8,212 -
(8,2,-1/2),(3,2 7/6) (3,2,1/6),(3,2,-1/6),(3,2,-7/6),(1,2,1/2)
(1.2,-1/2)}.
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The matching of the couplings of the groups 3¢ and 2y, follows equations (D.1.5)) and
(D.1.6]), which yield

( : . >—( ! 1 )_1()\BL ABL)
azc(MpL)” azr(Mer,) asc(Mpr) asr,(Mgy,) 197 \\8C 2L )

(A5, ABF) = (1,0) + (1,0) log gy, M31,—1/3M(3,1,—1/3)
+(5,0) loggy, Ms,1,4/3M6,1,1/3)M6,1,—2/3) + (12,8) logg, Mg2,1/2)M8,2,~1/2)
+(2,3) logpr, M(32,7/6)M3.2,1/6)M(3.2,—7/6)M(3.2,-1/6)

+(0,1) logpr, M(1,2,1/2)M(1,2,—1/2)
(D.2.6)

@ Y
loggy A* - BY - .- =log [(JWABL> (JWBBL) } (D.2.7)

The matching for the hypercharge coupling can be obtained by applying and
(D.1.9). The relevant U(1) generators in the UV are TV = (B — L)/2 C SU(4)c
and TyV = T3, C SU(2)R, with associated k1 = 3/2, ko = 1. On the other hand,
the GUT-normalised hypercharge coupling gy has an associated ky = 3/5. Then the

where now

matching goes as

I 2 AR 2 N 3 ABL
Oéy(MBL) 5a4c(MBL) sin2 93L 127 5a4c(MBL) 5azR(MBL) 127 ’
2
tan? Opr, = OQR,
30[40
14
BL __ 24/5 2/5 4/5 32/5 64/5
A= 5t logpr My —oy Mz 1175 M,1,175M3,1,-a/3) M 1,473

16/5 24/5 24/5 49/5 1/5 49/5
X M(G,l,—2/3)M(8,2,1/2)M(8,2,—1/2)M(372,7/6)M(3,271/6)M(§,27—7/6) X

1/5 3/5 3/5
X M(§,2,71/6)M(1,271/2)M(172»*1/2)'
(D.2.8)

The above matching conditions, especially the matching of hypercharge to the higher
gauge groups, are in agreement with existing literature [145] [146].

D.3 Model 2.1. Case A: Mpqg > Mgy,

The 455 breaks 40212r to 4¢2p1Rr, so we need to consider the RG running for
both groups. Between My and Mpq, the beta functions for the coupling constants
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of SU(4)c x SU(2), x SU(2)R are given by:

1 2435 105 249
3 6 2 2
28 1245 835
3 o 48

The differences between and come from the inclusion of the (1,1,3)
multiplet of the complex 455 (the rest of the fields in the 455 are integrated out at
My, to conform with the extended survival hypothesis —see table . Between Mpq
and Mgy, the gauge group is SU(4)c x SU(2)p, x U(1)g with beta functions

_13 1691 105 59
3 6 2 2

a= 2 |; b=| %2 73 16 |. (D.3.2)
38 885
3 85 48 59

The matching conditions are given next.

Model 2.1.A matching: SO(10) — SU(4). ® SU(2)p ® SU(2)r

Things go as in[D.2] but with the following differences: in models such as the presently
analyzed —and the ones that will follow— the 210 is not charged under PQ and can be
taken as real, which reduces the threshold corrections. Also, there are new fields in the
45y (which is charged under PQ and thus complex) which have to be integrated out,
as they don’t get VEVs at lower scales. The scalar multiplets to be integrated out at
the My threshold are then (see table [D.1)):

210 D {(1, 1,1),(15,1,1),(6,2,2)(G),(15,3,1),(15,1,3),(10, 2, 2), (TO, 2, 2)},
126 > {(6,1,1), (10,3, 1)},
10 O (6,1,1),

45 >{(6,2,2),(1,3,1),(15,1,1)}.
(D.3.3)
The matching conditions(D.1.5) and (D.1.6]) give now (using the same notation as be-

fore)
(Afs A5, ASL) = (4,6,6) + (4,0,0) logyy Mi51.1) + (12,30,0) logy M54
+ (12, 0, 30) IOgU M(157173) + (12, 10, 10) IOgU M(107272)M(ﬁ7272)
+(2,0,0) logy Mg 1 1)Ms1,1) + (18,40,0) logyy M1551)
+ (8,0,0) logy; M('15’171) +(0,4,0) logy; M1,31) + (8,12,12) logyy M(g2,9)-

(D.3.4)

Model 2.1.A matching: SU(4).® SU(2), @ SU(2)r — SU(4)c @ SU2) @ U(1)r

This breaking is triggered at a scale Mpgq by the VEV vpq within the (1,1,0)4,2,1, C
45 (We consider decompositions along 4¢c271g in the rest of this subsection). There
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are two broken generators of SU(2)r, whose Goldstones are in real part of the (1,1,1)
and (1,1,—1) components of the 45. The scalar fields to be integrated out are (see
table |D.1])

45 D {Re(1,1,1)(G),Im(1,1,1),Re(1,1,-1)(G),Im(1,1,-1),(1,1,0)},

_ (D.3.5)
126 5{(10,1,0), (10,1, —1)}.

This gives threshold corrections (with notation that should be clear from the above
cases)

MG A ALR) = (0,0,2) +(0,0,1) log pg Mi,1,1Mi,1,-1 + (6,0,0) logpg Mio,1,0

+ (6, 0, 20) logPQ MlO,l,fl-
(D.3.6)

Model 2.1.A matching: SU(4). ® SU(2);, @ U(1)g — SU(3)c ® SU(2), ® U(1)y

This case is similar to that in section [D.2] with the following differences. First, the
Goldstones from the breaking of SU(2)g are now shared between the 45 (whose Gold-
stones were integrated out at the previous thresholds) and the 126. Additionally, now
one must exclude from the loops the heavy gauge bosons that were decoupled at the
scale Mpgq. All the 45 fields were integrated out at the latter scale, so that the fields
that acquire a mass at the scale Mpy, are (see table :

126 D {Re(1,1,0),Im(1,1,0)(G), (3,1,2/3)(G),(6,1,4/3),(8,2,1/2),(8,2,-1/2),
(3,2,7/6),(3,2,1/6),(3,2,-1/6),(3,2,-7/6),(1,2,1/2),(1,2,—-1/2)}.
(D.3.7)
Note the difference in Goldstone mode counting with respect to (D.2.5)), and the absence
of the descendants of the (10,1, 0)4,2, 15, (10,1, —1)4,2,1,. The values of )‘BB(%? )\QBLL are,

as follows follows from equations (D.1.5) and (D.1.6]),

ABE MEE) =(1,0) + (5,0) logg, Mg1,473) + (12,8) logpr, Mg 2,1/2)Ms,2,~1/2)
+(2,3) logpr, M(32,7/6)M3.2,1/6)M(3.2,—7/6)M (32,1 /6)
+(0,1) loggr, M(12.1/2)M(1,2,-1/2)5
(D.3.8)

while for Ay we now have

8 64/5 24/5 24/5 49/5 1/5
Ay = 5 tlogpr Mg 475y Mg 2,172 M(s,2,-1/2)M(3.2.7/6)M(3,2,1/6) % (D.3.9)

49/5 1/5 3/5 3/5
x M(§,2,—7/6)M(§,2,—1/6)M(172,1/2)M(1727—1/2)'

D.4 Model 2.1. Case B: Mg, > Mpq

Since the 45 in this case acquires its VEV only after the 126, there is only one
intermediate gauge symmetry group to consider, SU(4)c x SU(2)r x SU(2)r. The
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beta functions between My and Mpy, are given by , while for scales below Mg,
they are given by (the only field in the 45 surviving below the Mpy, threshold is
a SM singlet, and thus does not contribute to the beta functions). Since the symmetry
breaking chain is the same as in model[5.2] the matching conditions are similar. However
we have to take into account additional heavy particles from the 45 multiplet.

Model 2.1.B matching: SO(10) — SU(4). ® SU(2)rL @ SU(2)g
The matching goes in this case as in equation (D.3.4)).

Model 2.1.B matching: SU(4). ® SU(2), ® SU(2)r — SU(3)c @ SU(2), @ U(1)y

The matching is similar to that in section [D.2] but with the difference that now the
components of the 45 which do not get a VEV below the Mg, threshold have to be
integrated out —in addition to the fields in f so as to comply with the extended
survival hypothesis. As the new components are singlets under SU(3)¢ and SU(2),, the
matching of asc and asy, is as in . On the other hand, the threshold correction
for avy receives extra contributions:

14
BL _ 24/5 2/5 4/5 32/5 64/5
Ay” = 5 +logpy, M(1,1,72)M(3,1,71/3)M(6,1,1/3)M(3,1,74/3)M(6,1,4/3) X

16/5 24/5 24/5 49/5 1/5 49/5
X M(6,1,—2/3)M(8,2,1/2)M(8,2,—1/2)M(3,2,7/6)M(3,2,1/6)M(§,2,_7/6) X (D'4'1)

1/5 3/5 3/5 6/5 6/5
X M(§,27_1/6)M(1,2,1/2)M(1,2,—1/2)M(1,1,1)M(1,1,—1)'

Model 2.1.B matching across the PQ threshold (no group breaking)

At the Mpq threshold there is only one field component getting a VEV, (1,1,0)sa C
45. This is a singlet under all SM groups, and thus it does not contributes to finite
threshold corrections. The matching is then trivial.

D.5 Model 2.2. Case A: Mpqg > Mgy,

In contrast to Model 2.1.A one has to consider the additional fermions in the 10 repre-
sentation, which contribute to the running between My and Mpq. The beta functions
of SU(4)c x SU(2)r x SU(2)g are changed accordingly:

1 885 105 249
2 2 2
— 1 . — 2 2
a=| ¥ |; b= | 228 2 51 |. (D.5.1)
32 1245 884
K3 2 5 5

Between Mpqg and Mgy, the heavy fermions have been integrated out and do not
contribute to the running anymore. The beta functions are given by (D.3.2]). Below
Mgy, the running is that in equation (D.1.4). The matching conditions are discussed
next.
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Model 2.2.A matching: SO(10) — SU(4). ® SU(2), ® SU(2)r
As in (D.3.4).

Model 2.2.A matching: SU(4). ® SU(2), ® SU(2)r — SU(4)c @ SU2)L @ U(1)r

The difference with the matching in 2.1.A (section comes from the heavy fermions
in the 10 of SO(10), which acquire masses due to the VEV vpq. The Weyl fermions
from the two multiplets in the 10 can be grouped into massive Dirac fermions. Then
in addition to the fields in , one has to integrate out the heavy Dirac fermions
from the 10F in the following representations of SU(4)c ® SU(2)r @ U(1)gr (see table

59)
{10F7 10F} - {(67 1,0),(1,2,1/2), (17 2, _1/2)} (D52)
As a consequence of the extra fields above, (D.3.6)) must be modified to

(Afg, )\gLQ, )\fg) = (0, 0, 2) + (0, 0, 1) logPQ M17171M1’17,1 + (6, 0, 0) logPQ MlO,l,O
+ (6,0,20) log pg M10,1,—1 + (8,0,0)log pg Mg 1,0

+(0,4,4)logpg M(1,2,1/2)M(1,2,—1/2)-
(D.5.3)

Model 2.2.A matching: SU(4). ® SU(2);, @ U(1)g — SU(3)c ® SU(2), ® U(1)y

With the extra fermions already integrated out, the matching goes as in (D.3.8)) and
[D:39).

D.6 Model 2.2. Case B: Mg, > Mpq

The fermions contribute the the RG running down to the scale at which they acquire
their masses - Mpq. Between My and Mgy, the relevant gauge group is SU(4)c %
SU(2)r, x SU(2)g and the beta functions the same as (D.5.1). At lower scales between
Mgy, and Mpq however, the additional fermions are still active and contribute to the
coupling evolution. The corresponding beta functions for the gauge group SU(3)¢ X
SU(2)r, x U(1)y are

_17 _2 9 4

3 3 2 30

— 5 — 739
a= -3 | b= 12 2 = . (D.6.1)

83 164 27 347

15 15 5 715

Model 2.2.B matching: SO(10) — SU(4). ® SU(2)r ® SU(2)r
As in equation (D.3.4).
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Model 2.2.B matching: SU(4). ® SU(2), ® SU(2)g — SU(3)c @ SU(2), @ U(1)y
As in .

Model 2.2.B matching across the PQ threshold (no group breaking)

From the 45, only the SM singlet was left below the Mpy, threshold. This field cannot
contribute to one-loop finite corrections of the gauge couplings. Still, one has to inte-
grate out the fermions in the 10 of SO(10), whose decomposition under the SM gauge

group is (see table
{105,105} © {(3,1,1/3),(3,1,-1/3),(1,2,1/2), (1,2, —-1/2)}. (D.6.2)

The matching is then

PQ \PQ \P 8
(>‘3CC'27 A2 ALe) = (4, 0, 5>1ngQ Mz1,1/3M31,-1/3)
(D.6.3)

12
+ (074, 5>10gPQ Mu2,1/2)M1,2,-1/2)-

D.7 Model 3.1

The model differs from Model 1 by the addition of a singlet under all gauge symmetries.
Then one can take the beta functions and matching conditions as in section (if the
210 is again assumed to be complex).

D.8 Model 3.2. Case A: Mpqg > Mgy,

With the heavy quarks acquiring their masses before the B-L scale is broken, we obtain
the following beta function coefficients for scales between My and Mpg:

1 885 105 249
2 2 2

a=| ¥ |; b=| 2 28 51 |. (D.8.1)
10 2551 276

At scales below Mpg and above Mgy, the beta coefficients are given by . At the
lowest scales above Mz, we have two Higgs doublet running given by as usual.
The matching will only differ from that of Model 1 due to the effects of the fermions,
as summarised next.

Model 3.2.A matching: SO(10) — SU(4). ® SU(2), ® SU(2)r
As in (D23)
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Model 3.2.A matching at Mpg (no group breaking)

The only effect comes from the fermions in the 10z, whose representations under the
Pati-Salam group are

{1OF710F} =) {(67171)7(172a2)}' (D82)
Their effect on the matching follows from (D.1.6]):
(Afos A5k, AST) = (8,0,0) logpg Ms,1,1) + (0,8,8)logpg M(1,2,2)- (D.8.3)

Model 3.2.A matching: SU(4). ® SU(2), ® SU(2)r — SU(3)c ® SU(2), ® U(1)y

With the extra fermions already integrated out, the matching is as in (D.2.6) and
D23.

D.9 Model 3.2. Case B: Mgy, > Mpq

Between My and Mgy, the beta coefficients are given by (D.8.1)). At scales between
Mgy, and Mpqg, we obtain (D.6.1) (in model 2.2.B, the only component from the 45
left below the Mgy, threshold is the SM singlet, which does not contribute to the beta
functions). Below Mpgq one has the 2HDM running of (D.1.4).

Model 3.2.B matching: SO(10) — SU(4). ® SU(2);, ® SU(2)r

As in equation (D.2.3]).

Model 3.2.B matching: SU(4). ® SU(2)L, ® SU(2)g — SUB)c @ SU(2)L @ U(1)y
As in in (D.2.6) and (D.2.8).

Model 3.2.B matching at Mpg (no group breaking)

As in (D6.3).
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SO(10)  4¢212r 4c211R 3c2r1rlp_ 1 3c2p1ly Decoupling scale VEV
210H (].7 ].7 1) MU VU
(15,1,1) My
(6,2,2) My
(15,1,3) My
(15,3,1) My
(10,2,2) My
(ﬁ7 2, 2) My
10y (6,1,1) My
(1,2,2)  (1,2,1/2) (1,2,1/2,0) (1,2,1/2) Mz vy’
(1727_1/2) (1727_1/270) (1727_1/2) MZ v}io
126y (6,1,1) My
(10,3,1) My
(10,1,3)  (10,1,1) (1,1,1,-2) (1,1,0) Mgy, VBL
(3,1,1,—2/3) (3,1,2/3) Mgy,
(6,1,1,2/3) (6,1,4/3) Mgy,
(10,1,0) (1,1,0,-2) (1,1,-1) Max{Mpq, ML}
(3,1,07—2/3) (3717—1/3) Max{MPQ,MBL}
(6,1,07 2/3) (6,1,1/3) MaX{MPQyMBL}
(10,1,-1) (1,1,-1,-2) (1,1,-2) Max{Mpq, ML}

(3,1,—-1,-2/3) (3,1,-4/3) Max{Mpq, Mg}
(6,1,-1,2/3) (6,1,-2/3) Max{Mpq, MaL}

(15,2,2) (15,2,1/2) (1,2,1/2,0) (1,2,1/2) Mgy, v}26
(3,2,1/2,4/3) (3,2,7/6) MgL,
(3,2,1/2,-4/3) (3,2,-1/6) Mg,
(8,2,1/2,0) (8,2,1/2) MsgL,
(15,2,-1) (1,2,-1/2,0) (1,2,-1/2) Mgt v126
(3,2,-1/2,4/3)  (3,2,1/6) ML,
(3,2,-1/2,—-4/3) (3,2,-7/6) Mg,
(8,2,-1/2,0) (8,2,-1/2) Mgy,
45y (1,3,1) My
(15,1,1) My
(6,2,2) My
(1,1,3) (1,1,0) (1,1,0,0) (1,1,0) Mpq vpQ
(1,1,1) (1,1,1,0) (1,1,1) Max{Mpq, Mp1}
(1,1,-1) (1,1,-1,0) (1,1,-1)  Max{Mpq, MpL}

Table D.1: Decomposition of the scalar multiplets according to the various subgroups
in our breaking chains. We list the scales at which the different represen-
tations decouple, and for a given representation we don’t provide the de-
composition under gauge groups that emerge below its decoupling scale,
except for fields decoupling at Mpq (depending on the model, Mpq can
lead to the breaking of the gauge group, or not).
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APPENDIX E

Higher dimensional P(Q-violating
operators

In models where the Peccei-Quinn symmetry is a low-energy remnant of a discrete global
symmetry — which can protect the axion sector from gravitational corrections [147, 14
127] — one can derive constraints on charges of the scalar fields under such discrete
symmetries, see e.g. [62]. (For other works using discrete symmetries to protect the
axion’s interactions in models with extended gauge groups, see for example [148], 64}, [149],
and the recent [150} 151]).

For the derivation we need to know how the higher-order Peccei-Quinn violating oper-
ators that are allowed by the discrete symmetry enter in the axion effective potential.
In order to keep in line with the non-observation of the electric dipole moment of the
neutron, one has to ensure that the contributions of these higher order operators are
small enough. In the models described in [62], the VEV that breaks the accidental
Peccei-Quinn symmetry is the VEV of the additional scalar o whose phase eventually
becomes the axion. The dominant contribution to the axion potential then comes from
the PQ violating operator #N_zl. In Models 2.1 and 3.1 of the present paper, it is
not quite so obvious which operator is dominant, as additional fields that acquire large
VEVs are present. In particular, the 126 acquires a VEV vpy, that can even be larger

than vpqg. In the following we will analyze the dominant contributions derived from the
symmetry defined in table [7.2] for Model 2.1.

The discrete symmetry allows for Peccei-Quinn violating operators in the Lagrangian

of the form
126, "B 45"PQ ,UnPQ,UnBL
B "2H e > PO B L he, (E.0.1)
Mp Mp
with
D= npQ + NBL- (E.0.2)

Not all of these operators are allowed by the gauge symmetries of the models. From
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table we read that

1 1
EnPQ + %TLBL =7 — 2an + npr, = 207 (E.O.3)

must be satisfied for some positive integer Z. (Negative Z just correspond to complex
conjugates of these operators, Z = 0 describes Peccei-Quinn conserving operators). The

. . . 4510 vl . . .
lowest dimensional such operator is O19 1= & D ]\l}(g. At dimension 10, this is the

only PQ violating operator. We now impose that all Iﬁgher order operators should be
suppressed with respect to Oqg:

U%%z U;gQUgEL 20Z—2 10 10
—2npqQ —NpQ—NBL —NpQ
v M <w : (E.0.4)
N6 VD4 BL P PQ
p p

Let us first consider the case Z = 1. In this case, npqg < 10 and (E.0.4) becomes
11]23[‘]\410_1 < vpq. (E.0.5)

Using the upper bound vpy, < 10'3 GeV derived in sections |§| and (7, we obtain a lower
bound on vpg:
(1012 GeV)?(10™ GeV) ™! = 10® GeV < vpq. (E.0.6)

This lower bound is fulfilled if the axion is the dominant component of dark matter
(compare ﬁgure. The case Z = 1 covers all operators up to dimension 19. Operators
of even higher dimensions are suppressed by higher orders of M, and can therefore be
neglected. We can conclude that Qg is the dominating PQ violating operator in this
model.

Our model is a special case of the DFSZ axion model and the calculation of the relic
abundance goes through as in reference [62] (however with N = 10 and Npw = 3). The
same argument can be applied to Model 3.1, replacing 455 — S.
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Scalar Potential in an
SO(10) x U(1)pg model

Stability and perturbative unitarity

In principle, for a proper study of the our GUT models, one must analyze the scalar
potential and check if it is possible to accommodate the chosen symmetry breaking
chain. As our goal is to construct a GUT model describing physics from the early
universe until now, we have to make sure that candidate model remains viable up to
very high scales. In particular it is necessary to check if the potential remains stable
and perturbatively unitary all the way up to the Planck scale.

The criterion of perturbative unitary does not necessarily exclude a model if unfulfilled.
However, if the couplings in a model become large at a certain scale, i.e. if perturbative
unitarity is broken, the perturbative expansion that we assume for most calculations
break down and we cannot trust our result anymore. We therefore demand that a model
should be perturbatively unitary up to very high scales. The other criterion imposed
on the model — the stability of the vacuum — is usually ensured by making sure that
the scalar potential is bounded from below at all scales. As our model contains various
threshold scales at which heavy particles acquire masses, we must take into account
threshold effects at which low-scale couplings are matched to high-scale couplings. These
threshold effects usually increase the stability of the potential compared to the pure SM
Higgs potential.

In practise, one should write down the scalar potential (at tree level), and evolve the
scalar couplings according to their RGE equations. At all scales one must check if the
criteria of boundedness from below and of perturbative unitarity are fulfilled.

Due to the complexity of the scalar potentials occuring in GUT models, this is a rather
challenging task. One must proceed in a step-by-step fashion and consider the different
potentials occurring at different scales. We have computed the scalar potentials for the
different scales as a first step towards a more complete analysis.

As model 3.1 is the least restrictive model — and also the most minimal one — considered
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in sections [5 and [6] it will be interesting to study its scalar sector. At different energy
scales, different fields need to be taken into account (this is similar to the calculation of
the beta functions). As a first step towards a more detailed understanding of the scalar
sector, we construct the scalar potential for model 3.1, described in

In this model, four different symmetries get broken at four different scales. The gauge
symmetry breaking chain is given in . In order for the symmetry breaking to work
in this way, we must have My < Mgy, < My. The fourth relevant scale describes the
scale of Peccei-Quinn breaking: Mpq. As in this model the breaking of U(1)pq is not
associated to the breaking of any gauge symmetries, Mpq is unconstrained in general.
In order to construct the scalar potential at the different scales, one must therefore
consider three different cases: (a) Mz < Mpg < Mgy, (b) Mgy, < Mpqg < My and (c)
My < Mpq. The case Mpq < Mz is excluded experimentally. In these notes, we only
treat the case (a) — we consider it to be the most general case, as the scalar potential for
both cases (b) and (c) can in principle be obtained by integrating out the scalar field S
at scales lower than Mpq.

In the following section, for every scale range of the model, we list the included scalar
representations and construct the (renormalizable) scalar potential - i.e. we write down
all scalar operators up to dimension 4 which are allowed by the gauge symmetries
and the PQ symmetry. At each of the included threshold scales, heavy particles are
integrated out - we therefore write down tree-level matching conditions which can be
used to obtain low-energy couplings if the high-energy couplings are known at each
scale.

Between Mz and Mpq

At scales right above the electroweak scale, the relevant gauge group is just the SM
gauge group SU(3)c x SU(2)r, x U(1)y. We include scalar particles in the following

representations:

1
Hy= (1,2, 5) C10

1
H, =(1,2,~5) C 10

Note that at these scales the Peccei-Quinn symmetry is broken according to our as-
sumptions, and there is no scalar singlet degree of freedom. The resulting potential is
that of a type-2 CP-conserving Two-Higgs doublet model, for real parameters A5 and
mio:

Vonpm = m%1H1TH1 + mggH;ng + /\1H1TH1H1TH1
+ Ao HS . HoHYHy + Ny H{Hy H{Hy + \HSH H] Hy (F.0.1)
A
+ (_m%QHIHQ + gHngHng + hC)

At the lowest scales just above Mz - i.e. at a scale where both the GUT symmetry
as well as B-L symmetry and the Peccei-Quinn symmetry are broken, the resulting
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potential just corresponds to that of a CP-conserving type-II two-Higgs-doublet model
(2HDM). The stability and perturbative unitarity of these models have been analyzed in
detail in [139]. The authors conclude that for the type-II scenario — in which B-physics
limits force the mass of the charged Higgs to be larger than 580 GeV — alignment is
enforced just by requiring the model to be valid up to 1 TeV. Alignment in this context
means broadly that there is only small mixing between the two CP-even scalars in the
2HDM. For comparison, for our GUT purposes we need validity of the 2HDM up to the
minimum of the Peccei-Quinn breaking scale or the B-L breaking scale — both of which
are usually assumed to be of order 10° GeV.

The analysis of stability and perturbative unitarity for the higher scales of our model
remain an open question.

Matching conditions at Mpq

At the scale where the PQ-symmetry is broken, the heavy scalar S must be integrated
out. The resulting matching conditions are given in the following. Of course these
matching conditions are best understood in context with the parameter definitions of
the potential above Mpq, given in equation .

)\2
AL = Ag — 554
1 d )\S
)\2
g = A, — Su
2 )\S
ASdASu ’CSud|2
)\ — )\u - -
3 d AS 4U2PQ)\S
IV ASdASu B ’CSud|2 (F.O.Q)
4 ud s 4@3@)\5
2
C
Ar = —oud
5 2?}%3(2)\5

2 2 2
mi; = my + Asdvpg
2 2 2
Moo = My, + ASUUPQ

2
—Mi9 = CSudVPQ

Between Mpqg and Mgy,

Above the scale of PQ-breaking, the relevant gauge group is still the Standard Model
group. The potential must however respect the unbroken U(1)pq global symmetry, and
we have to include the additional scalar field

S =(1,1,0). (F.0.3)
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The scalar potential becomes

Varpmys = m3H Hy +m2 Hl H,
+ NH HIHyHy + N\ H H] Hy Hy, + \yaH HgH H, + N, H H, HI Hy
+m%5*S + Ngu HI H,S*S + AsaH HyS*S + As(S*S)(S*S)
+ couaHyHaS + chgHLH 'S .

(F.0.4)
This scalar potential contains 10 real parameters and one complex parameter (cgyq)-

Matching at Mgy,

At the scale Mgy, and above, the relevant gauge symmetry is SU(4)c x SU(2), x SU(2)r
and we must take into account the following scalar multiplets:

H=(1,2,2) C 10
Y = (15,2,2) C 126
( ) (F.0.5)
A =(10,1,3) C 126
S=(1,1,1)

We also assume an unbroken U(1)pg. We identify the two Higgs doublets in the bidou-
blet (1,2,2) as

H? Hf
e :(Hu Hd)- (F.0.6)
H; HY

The B-L breaking VEV is identified whithin the multiplet A as

0 0
(A) = VI (F.0.7)
rt5 0
We obtain tree-level matching conditions due to this vev from integrating out d:
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mi — (A\jja — Mza)v

mg

R
mi, = miy — (\jgx + Nga)vh
by

(1) (2) \2
1 2)  (Aga — )
)\d:)\g{)"i')\g{)_ HA)\AHA
1 2
ay = A @ _ Qi+ X0
U H H )\A
1 2
A= 2AD (Ajza)? = (Af7A)?
c - (F.0.8)
1 2 F.0.8
Vo oy@ _ A= (AL
ud H )\A
mg = mg + Asavk
/ )‘?S‘A
Ag = Ng — 284
s A
2 1
Now = Agsr — (A7A + A7) Asa
2 1
Moy — Asir — (AGA = A0 Asa
Aa

These matching conditions must be taken in context with the scalar potential above
Mgpt,, which is indicated in the following paragraph.

Between My, and My

Finally we can write down the scalar potential at scales above Mpr, and below My. The
relevant multiplets are given by and we use {i,k} as SU(2)r, indices and {j,{}
as SU(2)g indices. The indices of SU(4)¢ are denoted by {a,b,c,d}. Unless otherwise
specified, the trace Tr is evaluated in terms of SU(4)¢ indices and commutators are
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evaluated with respect to SU(2)r.

V =m4HH + m33Ts + miATA
+ A ATAATA

+ )\(I)Hinle* Hi, + A2 )HZ]Hle;;Hk]

+ AP Hy HuS S + Mo Hi Hu S5 S5
2)

+ N S H G HE S + NS Hi Hi S S + NS Hy H S St + Ny Hig Hiy Susy

+ N HyTr(SuShEh) + Now Hy Tr(Susish))
+ )‘”I}?HWTT(ZMZM )+ )\”(4)H T (XpXp25;)
A HTHATA + 22, HYAT AlH

+ AT (S Tr (S35 + AP Tr(SySw) Tr(SE,E5)
+ A TS5 S00) Tr(S5,555) + M Tr(S553) Tr(SSh)
+ A Tr(S5 5 Tr (S Za) + A0 Tr(S5Ea) (S Sry)
+ AMDTr (855555 S0) + A Tr (555,55 5a)

+ )\(g)Tr( SaXZ) + /\( )TT(E* Y Zij)

n A(ll)TT(EZE:‘]EMEkl) + AT (ST S0 Ta)

+ A8 Sk Sk) + )\(14)T7’(E* EhXrij)

+ AU w! mabAhyd A, 4 ACL wF see (A, A
+ 28wt moc(Ahyd Ab, 4 A wT sed(Atye A

5 ¢ a 6 ac
A (AN, Az 2O st (AT, A d]z

7 ac 8 a c
+AAEL (AN, Al s+ AG ST [(ah)e,, Al e

+ AR (845), (Si)¢ Trar (AL ALY + XReV9(A (£)%)i5(AL(£) )i
+ A Hif (107 Trar(A%(A) ) + A (SH% AL (A% H) g,
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+ MO Trop (AL AT VTrag (AP A 4 ADTrop (AL, AT )Trop(AAD)
+ AOTro (AT, AN Trog(ALL A + A Trop(Al, AP)Tryp(AT A
+ AS)TT'QR(ALbACd)TTQR(AZdAab)

+ m’gSTS +csgSHH + cgsSEX
+AsgHYHS*S + A\gx228*9
+ AgaSTSATA + Ny (S5*S)?

At these high scales, the scalar potential becomes rather complicated. We count 12
complex parameters (csy, csy, )\g)i@), )\;/{%)7(4), )\ggg), )\(Elk@)) and 43 real paramters,

leading to 67 independent real parameters which need to be fixed in the scalar potential.

Above Mj;

At the highest scales, the relevant gauge group is just SO(10). The Peccei-Quinn
symmetry is assumed to be unbroken. The relevant multiplets are

Y =126
H=10
(F.0.10)
® =210
S p—

In order to describe the various contractions of the field we assign indices as follows.
The 10 is the vector representation with indices i € {1,...,10}. Xjjpm, is the totally
antisymmetric rank-5 tensor with anti self-duality property:

1
Z:ijklm = aeijklmnopqrznopqm (FOll)

where € is the totally antisymmetric tensor in 10 dimensions. ®;;x; is a totally antisym-
metric rank-4 tensor. For clarity, we have abbreviated some tensor products. (AB)gr
denotes the representation R in the tensor product of representations A and B. The
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resulting scalar potential can be written as

% :msS*S + /\ESEfjklmZijklmS*S + )\S<1>‘I>;-kjqu)ijk15*s

+ As(S*S)? + g H; H;S*S

+ mug H; Hy + ms X0, Sijkim + mae® 5 Par
+dysHiH;S + dos®ijuiPijiS

AV H HHH; + 32 H B HEH,

+ A Ho Hn X 10m X km

ijklm
1 * * 1 * *
+ /\,I({E))HmHnEijklmEijkln + )‘;(IZ)HmHnZijkszijkln
1 * * 2 * *
+ /\gfszmHm‘I’ijkz‘I’ijkl + )‘gJZDHmHl(I)ijkl ijkm
N H (@%@ + ©F o Pisem)
HoHEmAI\Fijkm *ijkl ijkl ¥ ijkm
2 * * *
+ )‘;S{))HmHl(q)ijkm(I)ijkl — 5 Pijkm)
o (F.0.12)

+ N Hp Hin (@7 Pijri)

4 * *
+ /\,I(JCE))Eabchfghij HyHy® g 1 Pghij

1 * * *

+ )\g{)EHa Hb(zacdebeCdef - Zbcdefzacdef)
2 * *

AL H Ho (S, £ bedef)

+ N HiSijkimZap ko Xabimo

1 * * 2 * *
+ Ag{)ECI)HiEZ'jkOP(I)klab(I)opab + AE’{)Z@H‘ZEijkopq)baij(Pbkop

1 *
+ /\,[({z))cpHiZijkopq)klab(I)opab

2 3 .
+ /\/zfgrz)@Hazijkop‘I’baij Pprop T )‘/[EIX))CI:oHaEijkopq)bkop(I)baij
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1 * * 2 * *
+ )‘(2 ) Eijklmzijklmzomrs by + )‘(2 ) Eijklmzijkls Zozvqr‘s by

opqrs opgrm

) - : & ; o
T A Bijkim 2 jors Bopars Xopgim T A Hijkim 4 jrs Zopals Zopgrm

(1) * *

+ Ay Bijkin 2ijkim P apen Pabem
(2) * *

+ )\X@Eijklnzijmno akln *amno

3) .
+)\E¢Eijklnzijn0p¢jklm mnop

+ Ay Patea®avea®ijua Pt + Ay PaveaPabe jea®ijna

+ )\g’) (PabeaPabki + Pabet Pavka) P rea®Pe pri

+ A8 (PaseaPajit + PabaPajid + PabkaPajet + PajeaPabit) Pipea®lin

+ A (@abea®ijir + PaberPijid + Pabka®Pijer + PajeaPivkt + PibedPajkt) LapeaPijr
+ A5 €atede ronij PabeaPe fgh Coparstunii opar Pitun

+ A5 €atede ghij ®abed®Pe fed Capede opar Popay Parey

+ A1 @@) 10501 11(2**) 1551

+ 25]1(@@) 15511 11(@*®*)0sol|

+ )\go)H(@@)me (") 5040 |

+ )‘;‘%EZbcdeEabcdeq):jqu)ijkl
A (Specte Sabedt — Shped Sabede) (0 Pijke — Phjpe Pijt)
+ )‘(Xijg(EZbcdezabcdl - ZZbcdlEabcde) 6opqrstuvel<I>zpqr(1)stuv
+ A(ZégﬁadeefghijzefgoZZijo €abeda't/ ! d' e’ f’ 6a’b’c/d’e’f’g’h’i’j/(p;/h/xyq)i/jlxy
+ )‘(;éeabcdefghijzefgozzzjo 6abcda’b’c’d’e’f’q):;’b/c/yq)a’b’c’gy
+ A (S Sabokt + ZhpestZabelej + Sipor; Saveit + StportZabeis ) -
--~(<I>:pij(1)0pkl + q)Zpilq)oz)kj + (I)Zpqu)oz)il + <I>;§pkl<1>0pij)
+ A S)s0105 1 1(@3 5005 |
MG (2" D010, 155010,
(

9 * *
+ AT (%) s010] (@3 )00
(F.0.13)
L : (1),(2) yn (1),(2)
We count 14 complex parameters in the potential (drs, dos, Aas: Aga s Nirss Agsi s
)\/ISIZ)’(I?)’(?’), )\(21(1)),(2),(3)) and 39 real parameters, leading to 67 real parameter degrees of
freedom. Interestingly, this is the same number of parameters needed to describe the

potential after SO(10) breaking.
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